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Abstract 

 

 The subject of the dissertation is the analysis of data acquired by mass 

spectrometry imaging of samples obtained from patients with head and neck cancer. The 

following hypotheses were made in the thesis. The first hypothesis states that peak 

identification in mass spectra can be successfully performed using a spectrum modeling 

approach by fragmenting the spectrum into parts and then modeling them with Gaussian 

mixture models. The second hypothesis states that the spatial distribution information 

obtained through imaging can be used to remove redundancy and reduce the 

dimensionality of the data, while maintaining the quality of the data. The final 

hypothesis states that evaluating the importance of features in heterogeneous data is 

possible and effective through the use of multiple unit models. The first chapters of the 

thesis address the basic issues related to proteomics and mass spectrometry. First, the 

general description of mass spectrometry and mass spectrometric imaging of biological 

samples is described. This is followed by a description of the main ionization methods 

and mass analyzers commonly used for the analysis of biological samples, especially 

samples from cancer patients. Then, there is a brief description of sample preparation, 

as well as data acquisition, its characteristics, and the initial steps taken to prepare the 

data for further analysis. These steps are baseline correction, normalization and 

alignment of the spectra.  

 The next chapter deals with the aggregation of mass spectra and the state of the 

art in peak detection. Peak detection was performed on the aggregated data using the 

most commonly used for this purpose methods. First, peaks were identified using 

a simple method based on the signal-to-noise ratio of peak intensities. Then peaks were 

identified with a peak modeling method based on the continuous wavelet transform. 

 In the following chapter, a more complicated method of peak identification was 

described in detail. With this method, peaks are identified by splitting the spectrum into 

smaller fragments and modeling them with Gaussian mixture models. First, a new signal 



splitting method is described that differs from the method proposed in the original paper. 

A detailed operation scheme is described, and compared with the original method as 

well as the pseudocode for the algorithm implementation. The next section of the paper 

deals with the process of fitting the parts of the spectrum with Gaussian mixture models, 

with the general and mathematical description of the custom implementation of the 

expectation-maximization (EM) algorithm used for the fitting of Gaussian mixtures. The 

thesis also describes the selection of the optimal number of elements in the mixture and 

the influence of the stochastic nature of the EM algorithm on the results. All peak 

identification methods are compared to each other. The results of proposed peak 

identification method confirm the validity of the first hypothesis. 

 The sixth chapter describes the entire process of feature engineering. The deals 

with the use of statistics and spatial distribution to remove redundancy in the data and 

reduce the dimensionality of the data. To this end, noise was filtered using the 

parameters of the normal distributions that make up the spectrum model. Feature 

engineering is then continued by using the information provided by the imaging. The 

spatial distributions of nearby elements of the spectrum model are compared. The 

comparison is made using Peacock's statistical test for similarity of distributions. This 

statistical test is an extension of the Kolmogorov-Smirnov test to two dimensions. The 

critical values are calculated experimentally, and then the nearby elements with 

statistically identical special distribution are merged. The dimensionality reduction 

process ends with the detection of isotopic envelopes, which are also reduced to a single 

feature. Isotopic envelopes are detected by examining the distance between successive 

peaks, their shape, and their spatial distribution. The results show a significant reduction 

in the dimensionality of the data, from 9454 elements of the spectrum model to 888 

features in the final set. These results confirm the second hypothesis of the paper. 

 The following sections describe the training of the classifiers on the processed 

data. Two groups of classifiers were trained. The first group was trained with an 

algorithm that uses multinomial logistic regression. The model is trained by iteratively 

performing logistic regression to find the best feature from the remaining set and adding 

it to the predictor list of the final model. The second set of classifiers are fully connected 

neural networks with two hidden layers, where the number of nodes is equal to the 

number of features. The performance of the classifiers was evaluated using metrics such 

as accuracy, precision, negative predictive value, sensitivity, specificity, f1 score, and 

ROC curves, precision-sensitivity curves, and their areas under the curve. 

 The process of feature importance evaluation was described next. Feature 

importance is assessed by assigning a score to each feature in unit models and averaging 



the results to determine the total feature importance score. For logistic regression 

models, scores are based on the feature's place in the predictor list. For neural networks, 

black-box model interpretation methods were used, LIME and Shapley values. 

 The last chapter of the thesis is the discussion about the experiments, the results, 

the conclusions drawn, and the goals for the future. 


