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Chapter 1

The aims of the doctoral thesis

1.1 The aimsof the thesis research
project

The aim of this work is to investigate best practices in RNA-seq data

analysis and to develop an approach to improve the reproducibility and ro-

bustness of the results. The solution presented here is based on existing

research and available tools but modifies and combines them into a cus-

tom pipeline. It constitutes a collection of methods chosen as the best

ones during analysing different data sets and problems associated with

them. Three of those projects are described in further chapters.

There are no gold standards when it comes to measurement technolo-

gies in life sciences, depending on the type of data and the research ques-

tion, different approaches might be needed. This was clearly stated in

1
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multiple manuscripts by US FDA MAQC and SEQC Consortia [22, 23] as

well as in our recent work within the epigenomics quality control (EpiQC)

Working Group of the US FDA led SEQC2 Consortium, where different ap-

proaches for interrogating modifications in DNA were benchmarked [38].

That is why the developed pipeline consists of different options for particu-

lar stages of analysis (quality control, preprocessing, alignment, quantifica-

tion, differential gene expression (DGE) and Gene Set Enrichment Analysis

(GSEA)). What is unique about this solution is that it integrates multiple

stages of RNA-seq data analysis, in contrast to existing workflows, which

are focused on particular modules (like alignment). In addition, it also in-

corporates tools for alternative splicing (AS) analysis (AS detection and

analysis of its consequences on the transcript and protein level) and visu-

alization. At the same time, it is tailored in a way that allows easy data flow

between different analysis stages without the need for file format adjust-

ments. The general pipeline overview is presented in Figure 3.1. Our recent

work, currently available as preprint, provides a comprehensive overview

of the RNA-seq technology and available tools [26].

The main focus of this work is the analysis of the RNA-seq data. How-

ever, the complementary high-throughput technology of expression profil-

ing by microarrays is correctly still of wide use. Here, with help of one

side data set, it was demonstrated how we can leverage the knowledge

of data analysis techniques used for one technology in the exploration of

data drawn from another one. With some adjustments for the nature of the



1.2. MOTIVATION 3

data the essential steps of differential gene expression analysis as well as

the downstream analysis for both are very similar if not the same.

The analysis of themain data set shows that RNA-Seq data are very rich

in wide spectrum of information. And even if sometimes the best state-

of-the-art approaches are not allowing for meaningful quantitative analy-

sis of the RNA-Seq data one can still explore the qualitative potential of

those. That part is missing from standard analysis pipelines, however it

is crucial for better understanding and annotation of gene models. Solu-

tion presented here bridges that gap, providing end-to-end workflow- from

raw reads, through alignment, DGE and AS analysis to protein level after-

math. In the main data set analysis the results of novel alternative splic-

ing events detection are very stable, but with another side data set (from

SEQC2 project) the sources of potential challenges are highlighted.

1.2 Motivation
In recent years, researchers have become more and more aware of the

reproducibility crisis that thewhole scientific community is facing. As high-

lighted by Baker [6], 70% of the researchers have tried and failed to repro-

duce another scientist’s experiments, and more than half have failed to re-

produce their own experiments. Furthermore, as noted by Freedman, Cock-

burn, and Simcoe [41] in the year 2015 approximately $28 billion was spent
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on preclinical research that is not reproducible.

Despite comprehensive benchmarks and guidelines provided, such as

[23, 107, 22], the reproducibility problem is also an important issue for RNA-

seq data analysis. The reason behind that is very often lack of applying

those guidelines and best practices and also using tools, which are out-

dated but simply well-known. As an example, the 2019 article shows that

many researchers do not yet address different gene lengths, leading to sig-

nificant biases in the analysis results [71].

As I was involved in multiple projects at different stages of RNA-seq

data analysis, whichwere also often repeated for different data sets, I searched

for automatic solutions that contained state-of-the-art methods and would

also be easy to run. I could not find a single software that would provide

me with all the necessary steps and also meet the standards for RNA-seq

analysis. Moreover, such pipelines are very often constructed for a particu-

lar data set and are not further developed or even maintained after the end

of the project. This work aims to construct such a pipeline, consisting of

the best possible solutions and guidelines available at the moment. It also

enables an easy flow between one program’s output and another’s input

files.

Another, more complex reason behind the lack of reproducibility in RNA-

seq could be the transcriptomic landscape complexity [27]. Although the

human genome is the most studied and complete, there are still new anno-

tation updates released, differing in the number of genes and transcripts.
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A summary of changes in the Ensemble/GENCODE annotation is provided

in Zerbino, Frankish, and Flicek [104]. The number of genes and transcripts

in reference annotation has changed a lot in the years 2003-2019. In addi-

tion, the number of particular feature types has altered. A closer look at the

human and mouse reference models reveals that although both contain a

similar number of genes, the number of mouse transcripts is smaller [40,

39]. Current statistics for GENCODE releases state that there are 62,696

genes and252,416 transcripts annotated for humans [90] and56,923genes

but only 149,423 transcripts annotated for mice [91]. This disproportion

might indicate incomplete information for themouse transcriptome, which

can cause misleading alignments and thus problems with reproducibility.

That is why part of this work is focused on searching for novel alterna-

tively spliced events and studying their implications, possibly leading to

reference model extension and reproducibility improvement.

1.3 Thesis outline
The thesis is structured in the following way:

• Chapter 2 provides brief introduction to transcriptomics and high-

throughput analysis methods. It also describes current challenges

and solutions in RNA-seq data analysis.
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• Chapter 3 introduces the developed pipeline as well as provides a

comprehensive overviewof all themethods used in the analysis, high-

lighting what makes them a good choice to obtain robust and reliable

results. This part also gives a summary of data sets being used.

• Chapter 4 presents results for the microarray data set as well as for

two RNA-seq data sets. It also highlights how and which part of the

data analysis methods can be borrowed between the two technolo-

gies.

• Chapter 5 provides a summary of this work, its advantages and ways

of future improvement.



Chapter 2

Introduction

2.1 Basics of transcriptomics
Although humans contain approximately 20,000 protein coding genes

[72], only a fraction of them are actively expressed as transcripts at any

given time. Transcripts are then processed and translated into proteins

that perform a wide variety of functions in all living organisms. The whole

process is known as the central dogma of molecular biology and consists

of many complex stages [20]. Even though in the past decades our knowl-

edge of those processes has expanded very rapidly, with many new tools

and technologies being constantly developed, much remains unknown.

Genes consist of exons and introns. Transcription is the stage where

genetic information is being rewritten to new molecules- premRNAs. One

of the modifications that premRNA undergoes is cutting out introns and

7
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concatenating exons in a final molecule. During this process, different ver-

sions of the transcript might be produced, depending on which exons are

bound together and how, this mechanism is known as alternative splicing

(AS). Almost all multiexonic genes in mammals undergo alternative splic-

ing [82, 75]. This process is crucial in cell development and differentiation,

and its dysfunction is associated with numerous diseases [97]. It also par-

ticipates in the post-transcriptional regulation of mRNA levels and is the

main mechanism that has allowed eukaryotes to produce a repertoire of

diverse and highly specific proteins from a limited number of genes and

therefore plays an important role in evolution [10]. The more complex an

organism, the more widespread AS [58]. Splicing has been shown to vary

evenmore between different tissues than between individuals and has also

been found to occur more frequently in functionally complex tissues such

as the brain [98, 103]. This is due to the complicated processes that take

place in the nervous system [69]. AS contributes to the formation of com-

plex neural networks and also to synaptic plasticity [18]. As recently re-

ported, many novel alternatively spliced events (nASEs), characteristic of

a particular cell type, can still be found in different regions of the brain [55].

Transcriptomics denotes techniques used to study RNAmolecules and

the complex processes they undergo. Among high-throughput technolo-

gies, the most popular ones are those based on hybridization (high den-

sity microarrays) or sequencing (RNA-Seq by Next Generation Sequenc-

ing). Once the data are generated, there are numerousways and algorithms
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that can be used to study them.

2.2 Microarray technologies sum-
mary

Microarray approach is basedonhybridization between twoDNAstrands

due to the nucleic acids strands property of complementarity. Specific nu-

cleotide base pairs are bound together by two or three hydrogen bonds. Mi-

croarrays consist of a predesigned library of synthetic nucleic acid probes

that are immobilized and spatially arrayed on a solid matrix. These probes

hybridize with complementary mRNA sequences that appear in an exam-

ined sample. Thanks to fluorescent labeling of binding sequences they

generate a signal whose strength is dependent on the amount of mRNA

bound to the spot. To assess the gene expression level, microarrays are

scanned, and the signal obtained must be properly preprocessed [50]. Ac-

cording to Fajriyah [35] the two most used platforms are Affymetrix (re-

cently acquired by Thermo Fisher Scientific) and Illumina.

Affymetrix produceoligonucleotidemicroarrays, composedof short 25-

mer oligonucleotide probes organized in 11- 20 pairs complementary to dif-

ferent regions of the same transcript. Each pair consists of a fully com-

plementary probe- PM (perfect match) and a probe, which contains one

non-complementary nucleotide in the 13 th position- MM (mismatch). The

DNA sequences are synthesized directly on the surface of the plate. The
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probes are carefully chosen and constructed to match parts of the se-

quence of known or predicted open reading frames. The technique used

to produce these arrays is called photolithography. The array, whose sur-

face is made of silica, is covered with special chemical substances that

are used to bind specific sequences. These substances are protected by

light-sensitive masking agents. The plate is covered by a single nucleotide

solution. Then, the places where this nucleotide should be bound are irradi-

ated, and the solution is washed away after the nucleotide is attached. The

whole procedure is repeated until the sequences of every probe are fully

constructed. To estimate gene expression levels, fluorescent dye is used.

During several biochemical reactions, RNA is labeled with biotin. The plate

is then placed in this solution for a few hours, so that RNA can hybridize

with the oligonucleotide probes. After the solution is washed, the array is

exposed to a fluorescent label bound to strepatavidin. Due to the fact that

biotin has a strong affinity for streptavidin, it binds to the places of the ar-

ray, where hybridization occurred [50].

Illuminamicroarrays, on the other hand, useBeadArray technology. They

were designed to overcome some of the limitations of spotted arrays, such

as poor data quality. The technique is based on small (3 microns in diam-

eter) silicone beads, randomly positioned across wells on an array. Each

bead is coveredwith 50-mer oligonucleotide sequence, specific to the char-

acteristic position in the genome. Those sequences are repeated random

number of times (usually about 700,000).There are up to 1,536 different
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bead types, each of them is replicated on an array for about 30 times. The

location and type of each bead is determined in a sequential decoding pro-

cess, with complementary dye-labeled oligonucleotides, called decoders

[47].

A microarray experiment is performed under the assumption that the

intensities of the genes reflect the actual levels of mRNA. However, raw

microarray data obtained after scanning contain relevant biological infor-

mation that is highly influenced by a number of non- biological sources of

variation. This so- called technical bias can be caused by many reasons,

such as uneven hybridization, batch bias, scanner settings, background flu-

orescence [102]. Therefore, to achieve biologically meaningful data, cor-

rection of technical bias is a crucial step in microarray data analysis. It

improves concordance with known biological information. This stage is

divided into three steps: background correction, normalization, and sum-

marization [43]. In order to obtain true signal values, the data should be ad-

justed for non- specific binding and optical noise, which is done in the back-

ground correction step. Optical noise is introduced by a scanner, which

measures hybridization strengths. Depending on the scanner used, differ-

ent signal values will be obtained. Nonspecific binding occurs because PM

probes, apart from detecting transcripts from the intended gene (specific

hybridization), detect also other sequences (nonspecific hybridization) [93].

Normalization step aims at manipulating data in a way that will makemea-

surements from different arrays comparable, which means achieving the
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measurement scale that has the sameorigin (zero) for all spots. Affymetrix

GeneChip uses a set of 10-20 probes to measure expression levels of a

gene and on average 4 probes for an exon. After preprocessing, thosemul-

tiple measurements have to be combined to provide final measure of gene

expression. There are multiple methods available to perform this step [51,

12].

Whatweare looking for in amicroarray experiment are relevant changes

in gene expression level between different conditions. The simplest way to

asses if a particular gene changes its expression is to evaluate the log ra-

tio between two conditions and set a cut- off value. If log fold change is

above the cut-off value, a gene is considered as differentially expressed.

This method, however, has no statistical support and is not robust to type

I and II errors. That is why to decide whether the expression of gene A

is different in the treated group than in the control group, the measure-

ment is repeatedmultiple times and then usually a statistical test is applied

[74]. Through this process, we compare how much gene expression has

changed between different conditions and within replicates of the same

condition. We assume that the gene did not change its expression; that

is, the so-called null hypothesis and it is true for majority of genes. If the

true null hypothesis is rejected, a Type I error occurs. Type II error means

that the false null hypothesis was accepted. The value which indicates if

the result is significant is the p-value. It is the probability of observing a

particular result or a more extreme result assuming that the null hypothe-
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sis is true. Small p-values give strong evidence against the null hypothesis.

Genes with low p-values are the ones that are referred to as significantly

differentially expressed; for those genes, we can reject the null hypothesis

and conclude that there are differentially expressed. The typical threshold

for p-value is 5% but that cutoff is arbitrary, and one might need to set it,

for example, a bit higher when it comes to more noisy data. What p-values

inform about is actually the probability of making type I error. If a p- value

threshold is set to 5%and 20,000 genes are tested, we should be aware that

1,000 genes will be considered significant although they are actually not.

There are two approaches to control those false positives either by control-

ling Family- Wise Error or the False Discovery Rate [45]. After this adjust-

ment, a corrected p-value is obtained which is then used. Limma package

is one of the most popular approaches for DEA. It fits a linear model and

uses moderate t-statistics to detect differentially expressed genes [83].

2.3 NGS technologies summary
Next-generation sequencing, also knownas second- generation sequenc-

ing, is derived from the Sanger sequencing technique (first- generation se-

quencing) with a huge improvement in terms of throughput, that is, the

number of sequencing reactions in a single run. The pioneering chain- ter-

mination method of DNA sequencing was developed by Frederick Sanger
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and colleagues in 1977. The process requires, among others, two types of

nucleotides- normal and modified ones, which lack a 3’-OH group and thus

prevent two consecutive nucleotides from forming a phosphodiester bond,

resulting in termination of DNA strand elongation. In addition, those modi-

fied nucleotides are also radioactively or fluorescently labeled, allowing for

detection. The process is repeated four times for each of the nucleotides.

This results in DNA fragments of different lengths, which are then sepa-

rated by capillary electrophoresis and visualized by autoradiography or UV

light to determine the exact DNA sequence [86].

RNA-seq describes all the experimental and computational methods

used to assess the origin and abundance of RNA molecules in a studied

sample. The main difference between this approach and microarrays is

that randomly sampled fragments are sequenced, and thus, we measure

expression of any alternative transcript irrespective of whether it or its par-

ent gene is known or unknown. We are not bound to only known ones as

we do not rely on predefined set of probes, as in microarrays.

Nowadays there are many different vendors that provide RNA-seq plat-

forms and therefore the technology and analysis could differ a lot. There

are also different applications of sequencing, like gene expression profil-

ing, alternative splicing or fusion gene discovery, or determining cell-type

abundance. Common and general steps include RNA isolation (from tis-

sue, cell, or bulk RNA), preparation of the library, which represents all RNA

molecules in a given sample, and actual sequencing.
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Major providers of RNA-seq solutions include Illumina, Thermo Fisher,

Pacific Biosciences, and Oxford Nanopore Technologies. Each company

provides different technologies that are targeted at a wide variety of appli-

cations. They differ by sequencing and detection methods, read lengths,

throughput, run time, and costs and availability.

Illumina provides sequencing by synthesis system, which produces short

(50-500bp, depending on a system), paired-end or single reads. cDNA is

passed through a flow cell, which is a glass slide with lanes with oligo

adapter sequences on the surface. These sequences are complementary

to adapters on cDNA fragments and bind to the surface at both ends, form-

ing a bridge. In a process of cluster generation, the sequence is ampli-

fied and new molecule hybridizes nearby. The process is repeated many

times, simultaneously, for millions of clusters, resulting in many copies of

the original fragments. After this step is completed, the reverse strands are

cleaved and washed away. The remaining forward strand is sequenced in

a process in which fluorescently labeled nucleotides are attached to the

growing complementary strand. As the nucleotide is incorporated, the sig-

nal is emitted and stored for subsequent analysis [61].

Thermo Fisher’s Ion Torrent technology is unique in its approach and

allows short reads to be detected. Rather than the fluorescent signal, it de-

tects changes in the pH caused by hydrogen ion released during incorpo-

ration of a nucleotide into the mix. Ion Torrent uses special semiconductor

chips with microwells that contain multiple copies of a template molecule
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that undergoes sequencing. The benefits of this approach include a lower

cost and faster run time; however, it struggles with homopolymer regions

and has a lower throughput [61].

PacBio and Oxfrod Nanopore are examples of methods that produce

long reads and are also referred to as third-generation sequencing meth-

ods. PacBio is also basedon sequencing by synthesis but introducesSMRT

(SingleMolecule, Real-Time) technology. Adapters are added to the double-

stranded template, forming a circular molecule. The molecules are then

immobilized in small wells (zero-mode waveguides) in a SMRT cell. Each

cell consists of many ZMW but each ZMW contains only one molecule,

no amplification is required. During nucleotide incorporation light signal is

detected. With this approach nucleotide incorporation is measured in real

time for each molecule separately. This approach provides great improve-

ments in terms of speed and accuracy, but has lower throughput and can

be very expensive. Nanopore provides a cheaper alternative to obtaining

long reads. It is also singlemolecule technique, where amolecule is guided

through a protein pore embedded in a membrane. While passing through a

pore, DNAchanges its ion current, which is specific to the type of nucleotide

passing. This simple design also allows for small device sizes [61].

When the read generation process is completed data is stored, usually

in FASTQ files, providing information about detected reads and reference

quality score. Next steps include quality control, preprocessing and align-

ment either to reference genome or transcriptome. If the reference is un-
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known, it is possible to obtain it using de novo transcriptome assembly.

Quality control step checks for artifacts introduced in the process of

library preparation and sequencing process itself. One of the most popu-

lar software used for this purpose is FastQC [4], which can accept files in

FASTQ format, but also already aligned reads in BAM or SAM format. It

provides a variety of plots summarizing potential problems with analyzed

samples. Possible issues include untrimmed adapters, sequence duplica-

tion, and sequence length distribution. We should also check the GC con-

tent and sequence contamination with other organisms. Acceptable arti-

facts levels are dependent on experiment, it is advised that outliers with

over 30% disagreement should be discarded. It is typical for read quality to

decrease towards 3’ end, but too low quality values might decrease map-

ping quality and thus should also be trimmed [21].

Read alignment is a process of finding the place in the reference tran-

scriptome or genome where the read originates. This step is computa-

tionally intensive, and the exact time and computational resources depend

on the software used. Usually, to accelerate this process, the reference is

transformed into an index beforehand. The most popular transformation

is the Burrows–Wheeler algorithm. It is a lossless compression method

that has many applications, but due to the many repeated patterns in DNA

strings, it is particularly useful for genomic data. The idea behind algorithm

is to build an array where rows contain all possible cyclic rotations of the

input string, sort them lexicographically, and return the last column of ob-
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tained array. This column is the output- desired index. It contains chunks

of the same characters that can be stored in compact form. It is also pos-

sible to easily recreate the original string from the index [16].

The final part of the usual pipeline, just as in the microarray approach,

includes the estimation of the abundances of transcripts or genes and the

subsequent comparison of expression levels between conditions. Statisti-

cal approaches are usually employed to detect expression levels of various

genomic features (such as genes, exons, transcripts) that exhibit signifi-

cant statistical differences across experimental groups.

2.4 RNA-seq technology challenges
RNA-seq is a powerful and commonly used technique, with many new

approaches, both laboratory protocols and algorithmsused for further anal-

ysis, constantly being developed and improved. However, there are still

many issues that need to be addressed to obtain robust and reproducible

results.

There are many sources of distortion through many steps leading from

collecting a tissue sample, to results obtained by bioinformaticians. The

library preparation step itself includes many stages and is the source of

huge noise in data. An article by Fu et al. [42] states that at the stage of

PCRamplification only 0.7%of the original signal froma target still persists.
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Choosing sequencing technology is crucial for obtaining reliable results,

as there is a trade-off between read length, throughput, and accuracy. De-

tecting changes like single nucleotide polymorphisms requires the high-

est accuracy, whereas tasks such as annotating novel genes would benefit

from longer reads. I would like to focus on the issues related to choos-

ing appropriate approaches in the analysis of generated reads. One of the

problems is how to deal with junction-spanning reads, which are reads that

spanmore than one exon. Possible options include using a splice-informed

aligner (such asHiSat2 [60] orMAGIC-BLAST [13]) or aligning reads against

the transcriptome [9]. The choice is not trivial, as technology is rapidly

changing and there is no single right answer. However, there are articles

benchmarking different tools and providing guidelines [107, 23].

Apart from the changes in technology, reference annotation also changes

over time, as explained in Section 1.2. The choice of annotation can have

a huge impact on the results obtained. This is true for both using out-

dated annotation, but also deciding between different sources for anno-

tation. The most popular ones are Ensembl [24] and RefSeq [73], however,

the SEQC study shows that the AceView annotation is the most accurate

[23].

Gene and transcript level abundances estimation is crucial step for fur-

ther analysis. Gene-level quantification is the most common approach.

The simplest way is to directly count fragments per gene, based on co-

ordinate information from a GTF file, and treating a gene as a union of its
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transcripts [21]. Approaches differ in how to treat multimapped reads or

in how much of a fragment must be assigned to a feature to be counted.

There is also the possibility of assigning reads to transcripts and then ag-

gregating the results at the gene level. This approach allows for observing

the expression of different isoforms and allows us to properly model multi-

mapping reads. On the other hand, due to alternative splicing, the origin of

many reads can be unambiguous, and to resolve this issue, probabilistic

modeling is needed [9].

However, raw read counts are not enough to properly infer about differ-

ential expression. They need to be adjusted for different transcript lengths,

total number of reads mapped for a given sample (library size), and also

GC- content. To account for that, several normalizationmethods have been

developed. To normalize within the sample for gene length and between

samples for library size RPKM (Reads per Kilobase Million) and its exten-

sion for paired end reads - FPKM (Fragments per Kilobase Million) was in-

troduced. RPKM divides counts by transcript length and by the total num-

ber of reads. However, those measures did not account for the possibil-

ity of a different transcript length distribution in another sample. That is

why TPM (transcripts per kilobase of base million) is becoming more and

more popular. The difference is that instead of division by the total number

of reads, it uses the sum of reads normalized for the length of the tran-

script [61]. As far as RPKM, FPKM and TPM account for library size and

gene length biases and allow comparison between samples, they perform
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poorly on data that are skewed by highly expressed features [15]. Examples

of methods that account for the high variability in the data are TMM [84]

and DESeq2 [70].

There is yet another set of factors that can cause biases in RNA-seq

data analysis and cannot be addressed with the normalization methods

described above. In addition to known confounders, such as library size,

the data could also be affected by unobserved factors. This reflects the

variation related to, for example, different laboratory, protocol (GC content,

evenness of the gene body coverage, nucleotide composition), date of ex-

periment [68]. In molecular biology the sources of non- biological variation

are usually denoted as batch effects, however, the exact definition of this

term is a challenging task. As stated in Lazar et al. [64] there are at least

five different definitions. To avoid further confusion, I would like to define

batch effect as a known, non- biological source of variation, resulting from

processing samples in different bundles. Other, unknown sources of non-

biological variation will be denoted as hidden confounding factors. Popu-

lar approaches for detecting (hidden) and correcting (hidden and known)

confounders include PEER [92] and SVAseq [65].

Even after applying all the corrections described before, there could still

be a need for additional filters to avoid a high eFDR. For RNA-seq data, it is

advised to apply not only filter for small effect size (fold change), similarly

to microarrays, but also for expression levels[22, 23, 68].

Due to the complicated nature of RNA-seq experiments, the measures
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of expression for the same gene under different conditions cannot be di-

rectly compared. There are several reasons behind this. We cannot be

certain about all the existing kinds of RNAs in the total DNA, since what we

take for an experiment is a statistical sample giving us only relative mRNA

levels (relative to other mRNAs present in the current sample). Another

ambiguity is introduced by the fact that reads can align to multiple places,

andmRNA levels also change over time, sowemust ensure that the change

we observe is due to change of conditions indeed. Similarly to micrarrays,

statistical modelling is used to solve this issue. The main difference for

differential expression analysis between microarrays and RNA-seq is that

the latter generates discrete count values, rather than a continuous sig-

nal. That is why the statistical approaches used for microarrays cannot

be applied, unless a proper transformation of the counts is performed. An

example could be using limma algorithm, originally developed for microar-

rays, with the voom transformation [63]. Random sampling of RNA-seq

reads causes noise visible in variability between technical replicates, which

can be modeled quite well by Poisson distribution. However, the variability

can get even higher, when the samples are taken from different individuals.

Thus, read counts are very often modeled with negative binomial distribu-

tion (overdispersed Poisson distribution) [61]. Both DESeq2 [70] and edgeR

[84] algorithms use this approach. There is also a group of approaches that

do not make any assumptions about the data underlying distribution and

perform statistical testing based on ranked gene lists. An example can be
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SAMseq [67] and NOIseq [95] methods. It can be beneficial to consider

nonparamteric methods for experiments with sufficient amount of biolog-

ical replicates ( at least 5-10) [61, 28].

Aswe can see, the complex nature of the RNA-seq experiments involves

many possible problems that must be considered during data analysis.

The amount of available tools and approaches, even though thoroughly

described and benchmarked in many scientific articles, can be overwhelm-

ing. The researchers claim that the correct combination of methods leads

to high robustness and reproducibility of the RNA-seq data analysis results

[107, 23]. However, it should be noted that every RNA-seq experimentmight

potentially have different blend of methods giving optimal results, thus it

is not possible to construct an all-purpose approach.
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Chapter 3

Methods and data used in analysis

3.1 General pipeline overview

Figure 3.1: General pipeline overview.

25



3.1. GENERAL PIPELINE OVERVIEW 26

The pipeline uses Snakemakeworkflowmanagement system [34] to en-

close commands used for different parts of analysis and to run every stage

automatically for desired samples. It is faster than simply using bash, pro-

vides a better control over the workflow and comes with a set of additional

advantages. In terms of flexibility and explorative analysis it is better than

workflows like Galaxy, which are a great tool for users wiling to automate

some routine analysis, but with little knowldge in terms of computer sci-

ences.

Snakemake comes with three very important features- scalability, re-

producibility and transparency. Scalability refers to the fact that it allows

for running tasks on different amount of avaliable resources and different

sample sizes. It also decides automatically which jobs can be run in paral-

lel, depending on the resources needed by job and those available. Repro-

ducibility denotes that results generated are the same between different

runs on different systems, given that settings remain the same. Snake-

make workflows are written in a way that complex tasks (like alignment)

are broken down into particular jobs (like reference indexing, file decom-

pression, actual alignment, sorting, quality control and quantification). One

jobs outputs are following one inputs. Such approach makes all the anal-

ysis steps understandable and transparent. It also allows for control over

specific parameters via configuration file, which reduces the possibility of

loosing information about options used in case of large and often repeated

analysis. A very useful option, especially in case of analysis requiringmany
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tasks run on huge amount of samples, is the dry run mode, where Snake-

make does not run the workflow, but resolves all the jobs and the order of

running them, providing information whether or not the pipeline is correct.

Almost all pipeline’s dependencies are installed via Conda package and

environment management system [3]. Conda is an open source software

which allows for installation of packages and their dependencies in sep-

arate and independent enviornments. This enables running several differ-

ent distrubutions of desired language along with all required dependen-

cies on the same system, without the need for resolving any possible con-

flicts. With all requirements defined in in YAML file Conda automatically

builds a new environment, resolves conflicts and downloads all dependen-

cies. What makes Conda a great tool is also the fact that it allows non-

administrative users to install and manage software within environment

isolated from the main operating system. Snakemake supports conda an-

vironemnts and even provides the possibility to define separate environ-

ments for particular jobs.

Additionally, pipeline consists of an R Markdown [2] script for microar-

ray data analysis and a set of R Markdown scripts for RNA-seq data analy-

sis. RMarkdown is a file format enabling creating dynamic documentswith

R. One of the main advantages of using R Markdown is once again repro-

ducibility. It explicitly combines text and code pieces into one document.

Code in RMarkdowdocuments is organisedwithin chunksmaking analysis

steps transparent and easier to understand. A great property of this solu-
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tions is thatwith importing reticulate package [96], R andPython languages

can very easily be used interchangeably, written as separate code chunks

within those documents. R comes with variety of visualization and statis-

tical analysis methods. It also makes use of Bioconductor [44], which is

a comprehensive repository of software for analysing data from biological

experiments. While it provides great solutions for differential gene expres-

sion or Gene Ontology analysis, Python can sometimes be an easier and

faster way for some general tasks. It can also integrate PyEnsembl pack-

age which provides interface for Ensembl reference metadata and also en-

ables custom reference metadata analysis.

The pipeline makes use not only of the interchangeability of methods

between sequencing and microarrays, but also of different solutions aim-

ing into making analysis more reproducible, transparent and automatic.

Chosen tools are easy to integrate together to be used on different stages

of analysis making data flow between different steps automatic. A unique

property of the presented solution is combining different stages of anal-

ysis into one pipeline. Workflows available usually combine only a few

selected steps presented here. Apart from preprocessing and alignment

modules for alternative splicing discovery and analysis of selected events

in more detailed way with InterProScan and visualizationmodule are incor-

porated. This step is crucial for exploring and expanding currently known

gene models, however is not yet present in available pipelines. The most

recent version is available onGitHub page (https://github.com/aagatam/

https://github.com/aagatam/Pipeline
https://github.com/aagatam/Pipeline
https://github.com/aagatam/Pipeline
https://github.com/aagatam/Pipeline
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Pipeline). This page also contains requirements for running the pipeline

as well as detailed description of particular stages with outputs.

Microarray data analysis script in RMarkdown consists of the following

steps:

• Preprocessing

This pipeline accepts files in IDAT format, which contains summa-

rized intensities for each probe-type on an array, that is why summa-

rization step was not necessary here. The first approach included

using the BGX file supplied by Illumina as annotation and NEQC nor-

malization implemented in limmapackage [83] . The second and third

option utilizes illuminaHumanv4.db package [29] as annotation and

VSN or quantile normalization provided by beadarray package [30].

• Quality control

To check data quality MA plots, density plots and boxplots are avail-

able.

• Confounding factors correction

To account for confounding factors the SVA algorithm was used for

all three sets of normalized data.

• Differential gene expression analysis

Bioconductor’s [44] Limma package was used for DEGs discovery.

• GO terms analysis

https://github.com/aagatam/Pipeline
https://github.com/aagatam/Pipeline
https://github.com/aagatam/Pipeline
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A Parentchild [46] algorithm with Fisher test was used with p-value

cut-off of 1%.

• Visualization

Possible visualization include heatmaps, PCA plots and Venn dia-

grams.

RNA-seq analysis is divided into several RMarkdown scripts and snake-

make pipeline. As FASTQ files usually take a lot of disk space, three input

options are available, supporting different compression methods. There

is a possibility of providing uncompressed files, fastq.gz files and also

fastq.dsrc files. The last option is not as popular as previous ones, how-

ever it is specifically designed for effective FASTQ files compression [25].

The pipeline consists of following steps:

• Quality control

Initial quality control on FASTQfiles is performedwith FastQC [4], then

also alignment quality report is produced by MultiQC [33].

• Alignment and quantification

Performed either to genome with HiSat2 + StringTie or pseudoalign-

ment to transcriptome with Kallisto. Each variant consists of index

building (if necessary). All intermediate files not necessary for fur-

ther analysis (uncompressed FASTQ files, SAM files, unsorted BAM

files) are temporary files, removed after job is finished.
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• Alternative splicing discovery with Spladder

Spladder performsalternative splicing analysis onBAMfiles obtained

for genome alignment.

• Protein level implications analysis with Bisbee

Spladder output files are prepared for Bisbee analysis and then Bis-

bee reports effects, peptides, and FASTAfileswith changed transcript

for all 6 ASE.

• Joint Bisbee and Spladder analysis

Pipeline automatically runs another R MArkdown script to analyze

both programs output and provides pdf report, csv, and txt files with

results for interesting events and associated GO terms, as well as

files used in the next step by InterProScan.

• Protein level implications analysis with InterProScan

Then the FASTA files from the previous step are grepped for those in-

teresting events and fed into InterProscan to obtain protein domains

information.

• Visualization

Also in a form of R Markdown script visualization for changes intro-

duced with the new event is available.

Alternatively, after alignment, differential expression analysis can be

performed. R Markdown script performing this step consists of the fol-
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lowing steps:

• Preprocessing

Either DESeq2or edgeR’s TMMpreprocessing is used. Also genes/transcripts

with low number of mapped reads are removed.

• Confounding factors correction

To account for confounding factors the SVAseq algorithm was used

for all three sets of normalized data.

• Differential gene expression analysis

Three approaches are available for DEA: limma, edgeR and DESeq2.

• GO terms analysis

AParentchild algorithmwith Fisher test was usedwith p-value cut-off

of 1%.

• Visualization

Possible visualizations include heatmaps, violinplots, PCAplots, Venn

diagrams.
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3.2 Experimental study design and
data

3.2.1 Real NGS data - main data set

For this study, tissue samples were obtained from the dorsal part of the

lumbar spinal cord of c57/BL6mice. The genome-wide transcriptional pro-

filing (RNA-seq) study were performed on three batches of control (WTP)

and three types of gene knockouts mice. Several mouse lines with condi-

tional deletion of the mu (MOR) and the delta (DOR) opioid receptor and

proenkephalin (PENK) within the specific brain structures have been used

in the study. For each group, there was a subgroup with induced neuro-

pathic pain (PNSL) and a respective control subgroup in which sham oper-

ation (SHAM) was performed (3.1). There were four biological replicates

for each condition, so a total of 88 samples were analyzed. This data

is described as ’real data’ as it was not indented to be a benchmarking

dataset, but rather a way of finding targets for neuropathic pain treatment.

Thus those camewith some ’real world’ issues, pottentialy affecting down-

streamanalysis. Namely, low signal values and complex batch effects. The

following table summarizes the experiment.
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Wildtype Knockout
Batch/ Sample type WTP DLX CMV NAV

PENK (Batch 1) SHAM/PNSL SHAM/PNSL SHAM/PNSL -
DOR (Batch 2) SHAM/PNSL SHAM/PNSL SHAM/PNSL SHAM/PNSL
MOR (Batch 3) SHAM/PNSL SHAM/PNSL SHAM/PNSL SHAM/PNSL

Table 3.1: Study design. PENK- proenkephalin, DOR- delta opioid recep-
tor, MOR- µ opioid receptor, WTP- wildtype, DLX- knockout in the forebrain,
CMV- systematic knockout, NAV- knockout in the peripheral nerve, SHAM-
sham surgery(control), PNSL-neuropathic pain.

3.2.2 Reference NGS data

For this part reference RNA samples A and B samples from the SEQC2

consortium [56] were used, where A is mixture of 10 different cancer cell

lines and B- healthy individual. Then samples A and B were mixed in dif-

ferent ratios, which enabled validation of results based on titration. Figure

3.2 summarizes the experiment.

Figure 3.2: SEQC2 study design.
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In the project samples were targetedwithmultiple commercial and cus-

tompanels. For part of thework presented hereweused data obtainedwith

use of following targeting panels:

• Agilent commercial (A1) - commercial panel targeting 1064 genes,

• Agilent custom (A2) - panel design by the SEQC, combining different

targets from commercial panels (eg. A1) + known oncogenes, target-

ing 2125 genes,

• Roche custom (R1) - panel designed by Roche to target the same ge-

nomic regions as A2.

Each sample was targeted with those panels and then 4 independent li-

brary have been created for short read sequencing by Illumina. As it was a

dataset designed for benchmarking studies of the SEQC consortium, it is

well described and the signal is designed to be strong.

In the project also complementary: i) long read sequencing (PacBio and

ONT) on samples A, B, C targeted by panels A2 andR2 (subset of 564 genes

from R1); ii) long read sequencing (PacBio and ONT) of individual cell lines

composing sample A targeted by panel R2; and iii) long read (PacBio and

ONT) whole transcriptome sequencing (WTS) of samples A and B was per-

formed. Those rich long read data sets were then used to predict with use

of IsoQuant [81] possible new transcripts which were then rigorously fil-

tered based on encoded to study design ground truth to remove possible

false positives. We have resulted with about 70k new alternative transcript



3.3. ALIGNMENT AND QUANTIFICATION PROGRAMS 36

were over 8k are ones from genes located on targeting panels. Such ob-

tained set of new alternative transcripts is used here as an extension to the

comprehensive AceView annotation. The SEQC2 study is ongoing and the

results are not yet published, thus more details from the study cannot be

provided in this thesis.

3.2.3 Microarray data

Microarray datawere obtained fromseven patients suffering fromParkin-

son’s disease and also from seven healthy volunteers. Analysis was per-

formed using Illumina HumanHT-12 v4microarrays. As these arrays are de-

signed to target specific transcripts, whole analysis was done at this level.

There were fourteen samples, but as those microarrays consist of twelve

lanes, that is why two samples were run on a different array (Healthy 6 and

7).

3.3 Alignment and quantification
programs

3.3.1 Kallisto

Kallisto [14], alongwith Salmon [77] andSailfish [76] is one of the alignment-

free quantification methods. It introduces an idea of pseudoalignment,
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which assumes that the exact place in the transcript where the read is

coming from is not relevant; what matters is only the transcript itself. With

removing the need for alignment, Kallisto reduces the time necessary for

read processing, which is the major bottleneck in RNA-seq analysis [14].

There are several steps in the Kallisto algorithm. Beforehand an index

is built with use of the transcriptome de Bruijn graph (T-DBG). Each tran-

script is represented as a set of k-mers, and the index stores information

about their original transcipt(s) and positions in the form of a hash table.

Each node in T-DBG is a k-mer and can be associated with more than one

transcript, which is referred to as the k-compabtibility class. To align reads,

each one is also decomposed into k mers, which are used to find a match-

ing path in T-DBG. Another adjustment that improves speed is to skip re-

dundant information. When a read k-mer is matched, Kallisto skips neigh-

boring k-mers, using the k-compatibility class of the node as a look-up, be-

cause they often belong to the same transcript. Another improvement is

introduced by the fact that Kallisto assigns reads to transcripts and also

quantifies their abundances at the same time [14].

Despite the fact that Kallisto does not perform a standard alignment ac-

cording to the authors and also the follow-up papers, it is still very accurate

and fast at the same time [54, 32, 107].
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3.3.2 HiSat2 + Stringtie

HiSat [59] is an example of a splice- aware aligner that uses the genome

as a reference. It provides several improvements to speed up the alignment

process.

HiSat introduces a newhierarchical indexing strategy basedon theBurrows-

Wheeler [16] transform and the FM index [37]. Indexing is performed in a

very similar way to Bowtie’s FM index, but with the difference in using two

different indexes:

• global FM index for the whole genome,

• many local FM indexes of about 64,000 bp, that together cover the

whole genome.

It also provides three categories of exon- spanning reads:

• Long-anchored reads with at least 16 bp aligned in each of the read,

• intermediate- anchored reads with 8-15 bp in one exon,

• short-anchored reads with 1-7 bp in one of the exons.

The latter two categories are those that provide the main challenges in

aligning correctly and also according to [59] take up to 30-60% of the to-

tal run time for other aligners. Here HiSat takes advantage of the differ-

ent types of indexes and also of splice sites information, either found by

previous alignments or already known ones. First, a global index is used
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for part of the read to find its possible location in the genome, and then

one of the local indexes is used to align the remaining part of the read.

Another improvement was introduced with the HiSat2 version, which

uses a graph-based FM index (GFM) [60]. This explains the fact that the

reference genome was built with information from a small number of indi-

viduals, 70% of which come from a single person , which does not reflect

the genetic diversity between individuals and populations [62]. With the

graph approach, it is possible to make use of extensive information avail-

able in public databases and expand the referencewith additional data that

contain information about different genetic variants.

In order to assemble transcripts andgenes and assess their abundances

from short aligned reads, one of the options is to use StringTie software.

It allows genome-guided transcriptome assembly combinedwith concepts

of de novo genomeassembly and estimation of expression levels for genes

and transcripts [78]. According to the authors, 36-60%more transcript than

with Cufflinks is correctly identified. Furthermore, the expression levels es-

timated by StringTie showed a higher agreement with the true values [79].

StringTie assembles transcript fragments and infers about isoforms. It

can also leverage annotation files to infer those isoforms with greater con-

fidence. A network flow algorithm borrowed from optimization theory is

used to reconstruct and quantify transcripts at the same time. StringTie as-

sembles the splice graph and then calculates the abundances of each an-

notated transcript by calculating the maximum flow through the network.
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Next, this isoform is removed and maximum flow is recalculated for the

next most common isoform. As a result, we receive concluded annota-

tions and estimated expression levels [79].

3.3.3 Magic-BLAST + Salmon

Magic-BLAST is another splice-aware alignment tool that is used for

fast and accurate mapping of both short and long reads against a genome

or transcriptome. It also allows for accurate mapping of introns, which is

a rare trait [13].

What makes it different from many other aligners is that it does not

build one index, instead it builds an index for a batch of reads and then

runs it against BLAST database to search for matches. At first, it looks for

a perfect 16 base match (seed alignment). In order to avoid ambiguous

matches, a selective masking technique is used. Original 16-basematches

are not indexed in the lookup table if they appear in the referencemore than

a given number of times (by default, 60). In addition, seeds with more than

15 A’s or T’s are also masked out. The next step is to expand the match to

the length given by the user using a simplified greedy alignment extension

procedure. For paired reads, the sum of the quality of the pair is taken to

select the best match [13].

Again, to obtain transcripts and genes abundances a specific software

is needed. Salmon, as mentioned before, is another of the alignment-free
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quantification methods. It can work in two ways- either performing quasi-

mapping (indexing +quantification) of FASTA/FASTQfiles or performquan-

tification using pre-computed alignments to transcriptome (in this case by

Magic-BLAST) from BAM/SAM files [77].

Quasi-mapping is based on a concept similar to Kallisto’s pseudoalign-

ment called lightweight alignment. The difference is that, in fact, it tracks

the approximate location and orientation of all mapped reads. According

to the authors, this piece of information is crucial for accurate quantifica-

tion. To find that position, Salmon uses chains of maximal exact matches

(MEMs) and super maximal exact matches (SMEMs), which can be com-

puted very efficiently [77].

3.3.4 Comparison

There are a couple of issues one should consider when deciding on

alignment and quantification tools. Kallisto is a very good choice if whatwe

are looking for is solely quantification. It is very fast, due to the lack of align-

ment process but at the same time have performance comparable with

standard approaches [107]. Additional benefit is the fact that Kallisto does

not produce SAM/BAM alignment files and thus require less resources not

only in terms of computational power but also available disk space.

Alignment- free approaches are not enough in case of studies reaching

beyond quantification, like alternative splicing. HiSat2 is a good option in
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this case, as it has the property of identifying splice junctions and is also

currently the fastest splice aware tool available. As HiSat2 maps reads

against genome, it has to detect exon- exon junctions. It is no longer an

issue for the third option- Magic-BLAST used with alignment to transcrip-

tome and Salmon. Aligning directly to transcriptome removes this issue

and also gives better results for data with weaker signal. For the purpose

of this work HiSat2 is a sufficient option and thus was incorporated in the

pipeline, along with Kallisto for lightweight analysis option.

3.4 Methods for confounding fac-
tors discovery and removal

3.4.1 SVAseq

SVA stands for surrogate variable analysis. The concept was intro-

duced in 2007 to identify and remove unknown sources of variation in ge-

nomic data and was initially designed for microarrays. It enables to cap-

ture, model, and also remove all possible variables (known, unknown, and

latent) affecting the value of interest by looking simultaneously at all ex-

pression levels. Surrogate variables estimation is performed using the it-

eratively re-weighted least squares approach [66].

SVAseq is an extension of this method that aims to analyze the count

data derived fromsequencing experiments. To account for the type of data,



3.4. METHODS FOR CONFOUNDING FACTORS DISCOVERY AND
REMOVAL 43

amoderate log log transform is applied prior to the calculation of surrogate

variables [65].

3.4.2 PEER

Probabilistic Estimation of Expression Residuals (PEER) is another tool

used for the discovery and removal of unwanted variations. It is a collection

of Bayesian approaches combined with factor analysis methods. The as-

sumption is that those latent factors have a global effect and affect a large

portion of all genes. PEER first estimates hidden factors from expression

data and then incorporates them into the analysis along with known and

measured confounding variables [92].

3.4.3 Comparison

PEER and SVA were both top tools for confounding factors discovery

and removal according to the SEQC article [68]. Since that article was

published, SVA was developed and SVAseq algorithm was introduced, that

is tailored to be used for RNA-seq data. Another argument in favour of

SVAseq is that it is available as an R package and detected confounders

can easily be combinedwith further algorithms for differential gene expres-

sion.
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3.5 Methods for differential gene
expression analysis

3.5.1 Limma

Limma is an R/Bioconductor staple package when it comes to statisti-

cal genomics. It provides not onlymethods for differential gene expression

discovery but also a variety of approaches for modeling and visualizations

for microarrays, RNA-seq, protein arrays and other types of data [83].

Limmawasoriginally developed formicroarrays and thus providesmany

ways to preprocess this kind of data, including reading in and normaliza-

tion of different types of arrays. However, several improvements have been

made over the years, so that after initial steps all downstream analysis

methods are now available not only for microarrays but also for other plat-

forms. This includes RNA-seq differential expression and splicing analy-

ses, which will be discussed in the current chapter [83].

There are several statistical principles that Limma integrates that make

it one of themost effective and frequently used approaches for high- through-

put expression studies. Although Limma originally applies Quantile nor-

malisation, it is recommended to use TMMapproach for RNA-seq data (de-

scribed in Section 3.5.3. Due to the discrete nature of the RNA-seq data,

prior to analysis counts are converted to the log scale, and mean-variance

trend is estimated and subsequently converted into precision weights and
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incorporated into the analysis. This process is called the voom method

[63]. Limma then fits a linear model for each row (gene or transcript) in the

data set but at the same time borrows information between those genes

and thus allows for different variability levels between targets and sam-

ples. To achieve that, the Empirical Bayes method is used. The estimated

variance of the genes becomes a compromise between the measure ob-

tained for the gene itself and the global variability across all genes. This

procedure might be sufficiently influenced by genes with very low or small

variances. To avoid this a robust EB procedure was introduced, which in-

corporates mean-variance trend into global variance estimate. Genes with

extremly low or high variances are identified and treated as outliers. This

approach makes results more reliable even for small sample sizes and en-

ables measuring possible correlation between samples or genes [80].

3.5.2 DESeq2

DESeq2 algorithm basic assumption is that majority of genes are not

differentially expressed. It uses "median ratio method" for normalization.

Each gene’s counts in each samples are divided by it’s geometric mean

across all samples. This corrects for both library sizes and also differences

in RNA composition between samples [70].

The counts are modeled by Negative Binomial distribution, where the

dispersion is estimated as the maximum of fitted value for each gene and
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the gene- wise estimate. Finally, empirical Bayes is used to shrink the gene-

wise dispersion estimates towards the fitted values to obtain the final dis-

persion values. Wald test is used for differntial expression testing.

DESeq2 also automatically detects and removes otliers using Cook’s

distance. Additionaly it removes genes with low counts (below threshold

determined by an optimization procedure) [70].

3.5.3 EdgeR

The edgeR package uses weighted trimmed mean of the log expres-

sion ratios (trimmed mean of M-values values- TMM) [85]. It assumes

that majority of genes are not differentially expressed and excludes highly

expressed or variable genes. Then a weighted avarage of the remaining

genes is used to calculate normalization factor.

In the next step data is modeled using Negative Binomial model, which

accounts for biological and technical variation. The degree of overdisper-

sion ismodeled and then shrunken towards the common or trended disper-

sion, obtained from information borrowing between genes, with an empiri-

cal Bayes method. Differentially expressed genes are detected with exact

test, similar to Fisher’s exact test adapted for overdispersed data or with

generalized linear model likelihood ratio test [84].
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3.5.4 Comparison

No statistical modeling can fully capture biological variance present in

the data. Each algorithm came with assumptions that may or may not be

satisfied, and depending on the data sets one of them might perform bet-

ter and capture more of the true signal, but different algorithms results are

not mutually exclusive. Limma, edgeR and DeSeq2 are among the most

popular choices for DEA, they are all proven to provide reliable results for

complex designs and smaller number of biological replicates [61]. Depend-

ing on the situation onemight consider taking an intersection of results for

all three methods, or just take the approach giving the biggest number of

genes. The first approach would results in the most certain list of genes,

whereas the second is useful during initial screening and exploring the re-

sults.

3.5.5 Choosing differentially expressed genes

Asmentioned in Section 2.2 a corrected p-value is used to decidewhether

a gene is differentially expressed or not. There are two approaches for p-

value corection.

• Familywise Error Rate (FWER) is the probability of at least one type

I error among all rejected hypothesis [45]. An example of correction

method is Holm approach [52].

• False Discovery Rate (FDR) is the proportion of type I errors among
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all rejected hypothesis [45]. Here the most popular approaches are

Benjamini- Hochberg (BH) [7] and Benjamini-Yekutieli (BY) [8] correc-

tions.

The most popular approach is to use Benjamini- Hochberg correction with

threshold for the p-value set for 5%. BH correction is the least stringent

one and also provides good balance between finding truly differential ex-

pressed genes and limiting False Positives. On the other hand, it assumes

individual tests to be independent of each other, which is not necessarily

true for genes and transcripts. That is why BY correction is a more correct

approach, as it does not make such assumption [45].

There is no real reason behind setting a p-value thershold for 5%, simply

it has to be set somewhere and can be tweaked if we would like to change

the number of genes detected. While it is a proper approach to shorten our

gene list and reduce the number of False Positives, it is not a correct value

to sort this list by. The p-value does not inform about how "big" the effect is,

it is only a way of indicating the probability of obtaining the effect of given

size by chance. Using only p-value ranking might lead to false conclusions

and lower reproducibility. It is the combination of p-value and logarithm of

fold change (logFC) that gives most reliable results [22, 88].

Minimum Significant Difference (MSD) is an example of more complex

method of sorting gene lists, than simply using logFC. It can be described

as theworst possible logFC estimation, within 95% confidence interval (CI).

For positive logFC values it is the lower CI boundary, and negative of the up-
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per CI value otherwise [105].

3.6 Functional analysis methods
The Gene Set Enrichment Analysis of differentially expressed genes

aims at obtaining the potential biological meaning of the experiment. Ex-

ploring Gene Ontology annotations is one of the most popular methods to

receive this information.

Gene Ontology is a major bioinformatics initiative to store and unify vo-

cabulary to describe the roles of genes and gene products in many organ-

isms. There are three independent ontologies available: biological process,

molecular function, and cellular component [5].

Genome annotation is the process of attaching biological information

to sequences. After obtaining a list of genes that have significantly changed

their expression, it is possible to annotate themwith associated GO terms.

The Bioconductor package go.DB provides us with detailed information on

the most recent version of Gene Ontologies, while the topGO [1] package

is designed to enable enrichment analysis of GO terms, as well as inter-

pretation and visualization of results. There are many algorithms and test

statistics to extract relevant GO terms provided by the package. For this

project, the Fisher test was used with the Parentchild algorithm.

Go terms form a direct acyclic graph (DAG). In this graph, the nodes

represent individual terms. Direct edges connect nodes in such a way that
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each term is a more specific child of one or more parents. The graph goes

from less to more specific nodes. There are many algorithms to account

for the GO topology. So far, the most common method was term-for-term

approach. It assumes that if a gene is assigned to a term, it is also assigned

to all parents of this term. This approach suffers from overlapping anno-

tations. Each GO term shares all the annotations of all of its descendants;

in addition, individual genes might be associated with multiple unrelated

terms that are connected only by the root term. What differs between this

approach and the Parentchild algorithm is the definition of the analyzed

sets. Parentchild algorithm is applied only to a child and its parent (or par-

ents). It is a better approach because some graphs have a very complex

structure, whereas others do not [46].

3.7 Methods for alternative splic-
ing discovery

3.7.1 Spladder

Spladder is a software which allows for detection and quantification of

novel and existing in current annotation splicing events. It also allows for

differential testing of events aswell as provides amodule for splicing varia-

tion visualizations. What is unique for Spladder is that rather than focusing

on whole transcripts, it focuses solely on alternative soling events [57]. Al-



3.7. METHODS FOR ALTERNATIVE SPLICING DISCOVERY 51

though it was designed for short read data, our initial tests showed that it

might also be used for long reads.

Based on the current annotation, Splader builds a splicing graph and

then expands it with events detected in provided alignment files. Currently,

Spladder supports detection of six canonical types of ASE: exon skip, in-

tron retention, alternative 3’ and alternative 5’ splice sites, multiple exon

skips, and mutually exclusive exons [57].

3.7.2 IsoQuant

IsoQuant is also a tool for alternative splicing discovery, however it is

specifically tailored for long reads. It can either take an annotation file, ref-

erence genome and alignment files, similarly to Spladder, or can perform

alignment usingminimap2. It also does not only focus on particular events

but reports full transcripts[81].

IsoQuant starts with assigning reads to already known isoforms from

reference. Then there is transcript quantification step, wheremulti-mapped

reads are treated as potential new isoforms and are omitted. Afterwards

uniquely mapped reads are corrected with regards to the reference. The

last step is transcript model construction and novel isoforms discovery us-

ing intron graph, which is based on splice graph approach used in Spladder

[81].
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3.8 Methods for alternative events
implications analysis

3.8.1 Bisbee

Bisbee is a program specifically designed to handle Spladder output

files. It enables differential splicing analysis, splicing outlier analysis, and

splice isoform protein sequence prediction [48]. Bisbbe needed to be cus-

tomized for this project as similarities rather than differences were stud-

ied.Bisbee output files were used to determine which isoform was present

or not in the reference genome. Also information about predicted effects

on the protein levels was used. Bisbee also enables us to generate FASTA

files containing reference and altered sequences. The latter was used as

an input to the InterProScan software in further analysis.

3.8.2 InterProScan

InterPro is a database of protein sequences built on information pro-

vided from a variety of resources. It integrates PFAM, Panther, PROSITE

profiles and many other databases. This gives an overview of proteins

families, domains and sites. InterProScan is a software which provides

the possibility to query this enormous collection of protein information. It

is available through awebsite, but also as a standalone software package.
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3.9 Microarray normalizationmeth-
ods

3.9.1 Quantile

Quantile normalization assumes that there is an underlying common

distribution of intensities across chips. To check if two datasets come

from the same distribution one can use a qqplot. The method give the

datasets the same distributions by transforming the quantiles of each to

have the same value. The algorithm is very simple and fast [11].

3.9.2 NEQC

NEQC method performs non-parametric background correction (using

negative control probes) and then quantile normalization (using both neg-

ative and positive control probes) [89]. Background correction method in-

troduced in this approach is similar to very popular correction method for

Affymetrixmicroarrays- RMA. It uses normal-exponential convolutionmodel

to fit the negative control probes on the array. There are three different

methods for parameter estimation (non-parametric, maximum likelihood

andBayesian), however non- parametric approach is simple and fast, whilst

still reliable [101].
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3.9.3 VSN

VSN method aims at stabilizing the variance of microarray data across

the full range of expression. The method is useful when one needs to use

traditional statistical methodologies such as ANOVA, which assume the

normal distribution of the data with constant variance. The first attempt

was to apply log transformation to the data. This approach indeed made

the variance constant for large expression values, but it also led to prob-

lems when it comes to negative or very small values. VSN transformation

is the logarithm at the upper end of the intensity scale, approximately linear

at the lower end, and smoothly interpolates in between [31].

3.9.4 Comparison

Each normalization have different advantages and works best depend-

ing on a data set, that iswhy all threemethodswere included in the pipeline.

Quantile normalization is proven to work very well, but on the other hand

can, along with the technical variability, remove also interesting biological

variation if the assumptions are not satisfied [49]. NEQC, apart from quan-

tile noirmalization, adds additional step- background correction. According

to [87] data that were background normalized tend to better reflect the real

fold changes, but this correction might introduce additional variation. VSN

normalization allows for better precision when it comes to transcripts ex-

pressed at lower levels, which tend to have larger variances.



Chapter 4

Results

4.1 Real data

Figure 4.1: Pipeline stages used for real data set analysis.
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For the neuropathic pain data set the whole pipeline was run. Analysis

of differential expression stems greatly for the approach developed for mi-

croarray data. The aim was to see how the combination of different guide-

lines, basedmainly on artificially created data sets with strong signals, can

improve analysis of a problematic data set.

4.1.1 Differential expression analysis

As the study design for the neuropathic pain data was quite complex,

my objective was to analyze the simple difference between the control

group (WTP_SHAM) and the group with induced neuropathic pain (WTP_-

PNSL) for each batch. The idea was to compare lists of differentially ex-

pressed genes obtained for each of the 3 batches and proceed with the

method that gives the best results in terms of reproducibility. At first at-

tempt, most of the tools applied for DEG discovery (limma, EdgeR, DeSeq2)

did not give any results. Only limma showed up to 33 DEGs, depending on

a batch and thus this method was chosen for further analysis.

As the data come in three runs, and also from different mice, it was ob-

vious that it was affected by both known and hidden confounding factors.

According to [107] and [68] adjusting for that should result in great improve-

ment in reproducibility across laboratories. For this purpose the SVAseq

algorithm was used, however, its proper application requires a thorough

rethink.
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SVAseq asses the possible number of hidden factors and then in the

next step allows one to either remove them (which should be used only for

visualization) or adjust the data for further analysis. It is also possible to

include known confounding factors, however they should also be automat-

ically detected by SVAseq. The first factor should account for the batch ef-

fect. The problem is how many of those factors should be removed. If too

many, there is a risk of removing not only unwanted variability but also true

changes between conditions. Our indicator for that were PCA plots and

also limma algorithm producing warnings or even errors. As we can see

in Figure 4.2a all groups and batches are mixed together before applying

SVAseq. In Figure 4.2b we can see incorrect SVAseq use, where all factors

have been removed and there is no variability between technical replicates.

Proper approach is shown in Figures 4.2c and 4.2d. We can see that the

unwanted variability is removed, but at the same time samples within clus-

ters remain different from each other. The last two figures represent also

another question- how to apply correction method to batches themselves.

Should we indicate that SHAM and PNSL samples come from different

batches (Figure 4.2c) or should we treat them together (Figure 4.2d)? The

first approach causes clustering by batch and the second- by group. The

answer to this question depends on the type of analysis one would like to

perform-whether to compare all PNSL samples versus all SHAM samples

or to seek for reproducibility between batches.
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(a) PCA before applying SVAseq (b) PCA with all detected factors removed (15), applied
separately for each batch.

(c) PCA with 7 factors removed, applied separately for
each batch.

(d) PCA with 7 factors removed, applied together for all
batches.

Figure 4.2: PCA plots before and after different ways of applying SVAseq.
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This is reflected in the reproducibility results obtained for the data ana-

lyzed. In Figure 4.3we can see that applying SVAseq significantly increased

the number of DEGs detected, but the reproducibility still remains at ap-

proximately 8% if applied SVAseq separately (Fig. 4.3a), but even lower- 6%

when applied together(Fig. 4.3b). In addition a higher number of common

DEGs is obtained for the separate approach, when comparing two consec-

utive batches in Table 4.1. A number of differentially expressed genes de-

tected for SHAM groups comparision between two consecutive batches is

presented in Table 4.2. The number is higher for the separate approach,

which indicates that the other method is correct for this type of analysis.

However, this does not apply to the comparison between batches second

and third. This can be explained by observation that batch 2 and batch

3 seem to be more similar than any of them with batch 1. That is visible

on PCA plots (Figure 4.2b and 4.2c) and also in Table 4.3. Later, it was

confirmed that the batch 2 and batch 3 samples were prepared by one lab-

oratory, while batch 1 was prepared by a different laboratory. This causes

the higher False Positive number when samples are analysed together.

Batch Analysed separately Analysed together
1 vs 2 21% 19%
1 vs 3 21% 19%
2 vs 3 28% 20%

Table 4.1: Percentage of common DEGs between batches.
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Batch Analysed separately Analysed together
1 vs 2 9870 4627
1 vs 3 8470 5978
2 vs 3 1880 5373

Table 4.2: Number of DEGs for control comparison (False Positives).

(a) SVAseq applied separately. (b) SVAseq applied together.

Figure 4.3: Venn diagrams showing reproducibility between batches for
different SVAseq approaches.

Although lists of differentially expressed genes were obtained, the re-

producibility results remain low. That is why, another recommendation to

add additional filter on logFC (above 1) was used. It resulted in reproducibil-

ity of differential expression calls with up to 95% concordance in DEGs ac-

cording to [23]. However in this particular case the signal change is so

small, that applying this filter resulted in removing a huge portion of genes

and worsened reproducibility (Figure 4.4).
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Figure 4.4: Reproducibility results obtained after setting logFC>1.

4.1.2 Global view on alternative splicing

As quantitative analysis for neuropathic pain data did not provide sat-

isfactory biological results, focus was shifted on qualitative analysis of all

88 samples to explore the unseen landscape of the mouse transcrtiptome.

By including also knockout samples, we should be able to identify novel

ASEs that are specific for the spinal cord, regardless of the stress condi-

tions. Intron retention events were excluded from the analysis because the

library preparation protocol was based on ribodepletion and thus a high

number of False Positives nASEs of this type could be expected due to the

presence of immature mRNA. Spladder reports results for two isoforms,

one containing given event, one excluding it, thus, after considering ASE

already existing in the annotation, our data are divided into three groups:

• new isoform + known isoform (new+old),
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• both new isoforms (new+new),

• both known isforms (old+old).

Spladder, among other metrics, reports the PSI (percent spliced in) value

for each event and sample. This is the ratio of the signal supporting given

event and sum of the signals for both events. Using PSI and appropriate

threshold, False Positives number can be reduced. For this purpose plots

shown on Fig. 4.5 were made. They show how number of valid events

is changing for three groups and all considered types of ASEs, depend-

ing on standard deviation threshold. After analyzing it, a set of criteria to

choose valid events was chosen. The first one, applied for all three groups,

was setting a threshold on PSI standard deviation. Those events that had

it above 0.2 in all 4 replicates were treated as valid. The reason for that

is that around this value we can see the plot’s elbow, where the trend is

changing. As further Bisbee analysis is currently available only for events

with at least one isoform already in annotation, it was conducted only for

the group with new+old events. To focus on strong enough events which

have a higher chance to not be false positives, a more stringent approach

was applied and also a threshold on the PSI value was added- it should be

above 0.2 (which essentially means that the glsnase constitutes at least

1/4 of already known ASE).
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Figure 4.5: Plots showing number of events common for all 88 samples
depending on a standard deviation threshold for three groups of events.
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Despite the high diversity of the samples analyzed and the low repro-

ducibility at the gene expression level, still common events for all of them

were found, with standard deviation for PSI lower than 0.2 in all 22 groups

(Table 4.3 and Table 4.4) reaching up to about 60% events for the new+old

group are common for all samples. We can see in Table 4.3 that although

mutually exclusive exons and multiple exon skip are the smallest groups,

noticeably more of them pass the stringent threshold (12.37% and 5.54%

respectively in contrast to around 0.16% for more numerous groups).

Although many events can occur at the same gene we can see in Ta-

ble 4.4 that still a huge number of different genes is affected by alternative

splicing. Majority of those genes contain only one event. This observation

also applies to genes affected by events selected with an additional filter.

Event Both iso known Both iso new New and old Total
sd<0.2 sd<0.2 sd<0.2 PSI>0.2 & sd<0.2

All Common Percentage All Common Percentage All Common Percentage Common Percentage
Alternative 3 prime 2692 828 33.76 1154 188 16.29 8256 4453 53.49 13 0.16 12102
Alternative 5 prime 2108 552 26.19 915 138 15.08 4996 2468 49.40 8 0.16 8019

Exon skip 5776 1294 22.40 3477 93 2.67 7269 2242 30.84 12 0.17 16522
Mutually exclusive exons 95 45 47.37 305 133 43.61 97 51 52.58 12 12.37 497

Multiple exon skip 383 164 42.82 1006 550 54.67 886 510 58.89 48 5.54 2255

Table 4.3: Table showing number of detected ASEs depending on a type
and group and also common number of events.

Event Both iso known Both iso new New and old Total
sd<0.2 sd<0.2 sd<0.2 PSI>0.2 & sd<0.2

All Common Percentage All Common Percentage All Common Percentage Common Percentage
Alternative 3 prime 2075 702 33.83 698 143 20.49 4364 2322 53.21 13 0.30 7137
Alternative 5 prime 1722 498 28.92 648 107 16.51 3295 1614 48.98 7 0.21 5665

Exon skip 3668 929 25.33 1885 61 3.24 4294 1419 33.05 11 0.26 9847
Mutually exclusive exons 86 42 48.84 131 45 34.35 89 46 51.69 11 12.36 306

Multiple exon skip 363 160 44.08 746 449 60.19 762 459 60.24 40 5.25 1871

Table 4.4: Table showing number of genes containing detected ASEs de-
pending on a type and group and also common number of genes.
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Looking closer into this for new+old group we can see in Fig. 4.6:

• black line is the total number of detected events,

• green line is the number of common events for all samples,

• the red part of a bar- intersection is the number of all events for par-

ticular sample, where all four probes met PSI criteria,

• the blue part are remaining events,

• red line- median for intersection.

Thismakes us sure that although there aremany limitations in studied data

with multiple confounding factors resulting in difficulty of proceeding with

classical quantitative analysis we see very stable pattern for the existence

of large group of new gene isoforms resulting in observation of new ASE

for the known isoforms/transcripts. This observation is stable across all

three groups (See Supplementary Figures S1, S2).
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Figure 4.6: Barplots showing summary statistics for different events.
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4.1.3 Known ASE

When examining a group with only events already annotated, we can

see in Figure 4.7 that the overlap betweengenes containing commonevents

for different types of AS is very small. This is also true for the common GO

terms presented on UpSet plots in Figure 4.8. In Table 4.5 we can see that

up to 61% of genes is unique for a given event. The percentages are also

high for unique GO terms in Table 4.5, however they drop noticeably for CC

terms, which is expected as we are studying selected tissue.

It is worth noting that those results, both for genes and GO terms, are

greatly limited by lower number of events reported for multiple exon skip

and mutually exclusive exons events. Still among 5 CC terms reported for

all 5 types of events, three directly indicate nervous system (Table 4.7). Ex-

cluding those two types gives 29 additional common terms for the remain-

ing types, among which there are terms related with nervous system (ex.

node of Ranvier, neuron projection, myelin sheath) but also with electron

transport chain (ex. respirasome, respiratory chain complex, mitochondrial

respirasome).

If we take a more detailed look at the results for GO terms, especially

at the Cellular Component, we can see that for every type of event, among

the top 10 terms there are many connected with the nervous system (Sup-

plementary Figure S4).
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Figure 4.7: UpSet plot for genes containing common nAES for old+old
group.

Type Total Unique Percentage
Mutually exclusive exons 42 15 36%

Multiple exon skip 160 87 52%
Alternative 5 prime 498 271 54%
Alternative 3 prime 702 418 60%

Exon skip 929 570 61%

Table 4.5: Table showing percentage of genes unique for a given event.
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(a) UpSet plot for Biological Processes

(b) UpSet plot for Molecular Function
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(c) UpSet plot for Cellular Component

Figure 4.8: UpSet plots for GO terms for old+old group

Type BP MF CC
Mutually exclusive exons 55% 53% 19%

Multiple exon skip 43% 43% 19%
Alternative 5 prime 37% 43% 14%
Alternative 3 prime 38% 51% 21%

Exon skip 55% 60% 38%

Table 4.6: Table showing percentage of terms unique for a given type of
event.
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Type CC BP MF

Common terms

cytosol,
endomembrane system,

cell projection,
perikaryon,
presynapse

metabolic process,
positive regulation of biological process

protein domain specific binding,
protein binding

Table 4.7: Table showing common GO terms for different types of events
for old+old group.

4.1.4 New ASE for known isoform

When examining group with new event for already existing one, we can

see that the overlap of common genes and terms is low, however here it is

even more clear that this observation is limited by low number of mostly

mutually exclusive exon events but also multiple exon skip (Figure 4.9 and

Figure 4.10). In every UpSet plot we can see two peaks showing high num-

ber of common genes and different types of GO terms. The larger of those

two peaks contain common terms for exons skip, alternative 3 and 5 prime

ends and the other includes alsomultiple exon skip group for every plot, ex-

cept the one for CC terms, where the opposite is true. Again in top 10 CC

termswe can observe terms strongly related with nervous system (Supple-

mentary Figure S7).

The percentage of unique genes for events, shown in Table 4.8, is lower

than in old+old group, reaching only 38%. It is lower as well for unique GO

terms (Table 4.9) and once again we can observe the drop in unique events

for CC terms.
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Figure 4.9: UpSet plot for genes containing common nAES for new+old
group.

Type Total Unique Percentage
Mutually exclusive exons 46 5 11%

Multiple exon skip 459 150 33%
Alternative 5 prime 1614 445 28%
Alternative 3 prime 2322 871 38%

Exon skip 1419 310 22%

Table 4.8: Table showing percentage of genes unique for a given event.
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(a) UpSet plot for Biological Processes

(b) UpSet plot for Molecular Function
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(c) UpSet plot for Cellular Component

Figure 4.10: UpSet plots for GO terms for new+old group

Type BP MF CC
Mutually exclusive exons 44% 13% 15%

Multiple exon skip 28% 21% 13%
Alternative 5 prime 21% 24% 16%
Alternative 3 prime 28% 35% 20%

Exon skip 23% 24% 17%

Table 4.9: Table showing percentage of terms unique for a given type of
event.
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Type BP MF CC

Common terms integral component
of synaptic membrane

regulation of biological quality,
neuron differentiation,

neurogenesis
molecular adaptor activity

Table 4.10: Table showing common GO terms for different types of events
for new+old group.

4.1.5 New ASE with both isoforms new

Astonishingly, for a group that contains only new events, a different pat-

tern is observed. The lack of commonalities is not only limited to genes

(Figure 4.11) but affects also different subgroups of GO terms comparisons

(Figure 4.12 and Table 4.12). The characteristic peaks for the two visible

subgroups for the old + old and new + old groups are no longer present on

the UpSet plots. Table 4.11 shows that up to 83% of genes is unique to a

given event, multiple exon skip in this case. Interestingly, the common part

for CC terms in all events is the largest of all the comparisons, among the

10 reported terms, we can once again see the connection with the nervous

system (Table 4.13). In the Table 4.12 we can see that the percentage of

unique events noticeably drops when looking at the CC terms.
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Type Total Unique Percentage
Mutually exclusive exons 45 13 29%

Multiple exon skip 449 373 83%
Alternative 5 prime 107 64 60%
Alternative 3 prime 143 89 62%

Exon skip 61 20 33%

Table 4.11: Table showing percentage of genes unique for a given event.

Figure 4.11: UpSet plot for genes containing common nAES for new+new
group.
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(a) UpSet plot for Biological Processes

(b) UpSet plot for Molecular Function
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(c) UpSet plot for Cellular Component

Figure 4.12: UpSet plots for GO terms for new+new group

Type BP MF CC
Mutually exclusive exons 30% 43% 30%

Multiple exon skip 76% 66% 19%
Alternative 5 prime 38% 36% 9%
Alternative 3 prime 57% 50% 12%

Exon skip 29% 20% 11%

Table 4.12: Table showing percentage of terms unique for a given type of
event.
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Type CC BP MF

Common terms

cell junction,
postsynapse, cytoplasm,
cellular anatomical entity,

axon initial segment,
somatodendritic compartment,
cell projection, cytosol, organelle,

node of Ranvier

cellular process
cellular component organization or biogenesis,

localization,
cellular localization,

neuron differentiation,
cell development,

multicellular organism development

binding

Table 4.13: Table showing common GO terms for different types of events
for new+new group.

4.1.6 Functional level analysis implications of nASE

Complementary approach, except for the top 10 most significant terms

available as Suplemenatry Figures S3 - S11, were two kinds of plots demon-

strating changes in GO terms, depending on a group analyzed. The first

type shows how the top 10 terms from the old+old group change if old+new

events are added and then also new+new events. The second type of plot

shows the top 10 terms from every group and how relevant are they in other

groups. We can observe if the number of genes annotated for that term

increases and if the p-value changes. All plots are available in the supple-

mentary section, here only a few interesting examples are presented.

Figure 4.13 presents top 10Molecular Function GO terms for alternative

3 prime event and how significant are they among other groups. We can

notice three terms which are not relevant in old+old and new+old group,

however for new+new group of events those terms are significantly anno-

tated. Those terms are:
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• structural constituent of postsynaptic intermediate filament cytoskele-

ton,

• phosphorylation-dependent protein binding,

• ATPase-coupled transmembrane transporter activity

The actin filaments, which build cytoskeleton, can dynamically form differ-

ent structures in response to newstimuli, which is described as experience-

dependent plasticity [94]. Protein phosphorylation is a major factor in sig-

nal transduction pathways [99]. Transmembrane transporter activity might

relate to signaling via neurotransmitters in nervous system.

Figure 4.13: Top 10 MF GO terms for alternative 3’ event shown across
three groups.
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Figure 4.14 presents the first type of plot for alternative 3 prime CC

terms. We can see that the terms relevant to old+old group are still valid

after adding genes for new+old and new+new groups, the difference is that

the number of genes annotated to that term becomes bigger. This is an-

other indicator that the reference annotation is incomplete.

Figure 4.14: Top 10 MF GO terms for alternative 3’ event shown across
three groups.
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4.1.7 Protein level implications of nASE

For 93 previously selected nASE of different types Bisbee and Inter-

Proscan analysis for new+old group was performed. Table 4.14 summa-

rizes ORF and amino acid effects on proteins introduced with the new tran-

script version. Premature stop was mainly caused by substitution. Four

events caused protein loss, and seven were silent. For most of events, In-

terProscan was able to find and assign reference protein domains. In the

next step several chosen events were visualised.

Event Premature Stop In frame Protein loss Total Assigned by InterProScan
Insertion Substitution Deletion Insertion Substitution Silent Start loss Stop loss

Alternative 3 prime 0 3 3 4 2 1 0 0 13 12
Alternative 5 prime 0 2 2 2 1 0 1 0 8 7

Exon skip 0 3 4 4 1 0 0 0 12 12
Mutually exclusive exons 0 4 0 0 8 0 0 0 12 12

Multiple exon skip 1 21 3 12 2 6 0 3 48 41

Table 4.14: Table showing the type of changes introduced by nASE from
new+old group, and also the number of modified transcripts, which were
assigned domains by InterProScan.

An example in Fig. 4.15 was made for the multiple exon skip event in

Nrcam gene, which, among others, is involved in neuron- neuron adhesion

and promotes directional signaling during axonal cone growth. It may play

a general role in cell-cell communication. The plot is divided into 5 parts:

• additional events- other than themain investigated event events, also

selected as valid ones,

• alignment track- read support provided by all 88 samples,

• detected event- transcript with novel event incorporated,
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• original- original transcript,

• Interpro protein domains- domains assigned for the original transcript.

The part with event of interest is marked in red rectangular box, and the

close-up is also available in Fig. 4.16. We can see that the peaks for exons

reported as missing in multiple exon skip event are indeed much smaller

than the peaks for rest of the exons. The protein track shows that two do-

mains are affected by this event. They are described by InterProScan as

neuronal cell adhesion molecule.

Figure 4.15: Visualization of multiple exon skip in the Nrcam gene.
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Figure 4.16: Visualization of multiple exon skip in the Nrcam gene- close
up.

Another interesting event is presented in Figure 4.17. It is a mutually ex-

clusive exon event detected in the Gria1 gene. We can see that two peaks

related with two mutually exclusive exons are approximately 1/2 height of

the other two exons visible on the plot. The change caused by this event

results in premature stop. Those exons are related to protein domains as-

signed by Interproscan to the NMDA receptor signature, which is a gluta-

mate receptor and ion channel found in neurons [53].
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Figure 4.17: Visualization of mutually exclusive exons in the Gria1 gene-
close up.

4.1.8 Discussion

Results for differential expression showed that analysis recommenda-

tions basedon studieswith artificially created data sets, where signal changes

are high, should be applied to "real-life" problems with caution. In the case

of data with low signal values, the reproducibility can vary significantly, de-
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pending on a chosenmethod, and obtaining results as high as the reported

over 90% concordance in the DEG lists [23] may not always be possible.

Also, filtering methods should be adjusted to signal values, not applied ar-

bitrarily, based on benchmarking papers.

It can be very beneficial to think about the possibility of batch effects

occurring in our data and to adequately account for them. The first issue

to solve would be to carefully think about the questions we need to answer

and which comparisons should be made. In addition, choosing the right

number of factors to adjust for is crucial.

Even though the reproducibility for differential expression analysis is

very low, alternative splicing analysis revealed a lot of AS events consis-

tent for all 88 samples. They also affect a large number of genes, but fur-

ther analysis in sections 4.1.3 - 4.1.5 showed that although they appear to

affect different processes and functions, they are all mainly connected to

the nervous system. Furthermore, the functional analysis with the combi-

nation of events from different groups in Section 4.1.6 showed that new

events might provide new information for annotation.

Still observation that different ASE types are potentially associatedwith

exclusive sets of functions seems to be understudied. In discussion with a

few experts it was pointed out as plausible, but no publication clearly talk-

ing about this phenomenon was found.

Further validationwith long-read sequencing, for example, is needed for

confirmation, but also for visualization of how exactly whole transcripts
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look like, as we can see that many of them can occur in the same gene

and overlap with each other, and here we can only study short fragments.

However, visualizations in Section 4.1.7 seem to confirm, at least for the

new + old group, that the reads support detected events and, in addition,

they tend to occur in genes related to the nervous system and even affect

important protein domains.

The results from this chapter show that even applying best practices

might not be enough to receive stable and reproducible quantitative results.

This is due to the complexity of RNA-seq data generation and analysis but

as shown in section 4.1.2- 4.1.7 might also be caused by the incomplete

mouse transcriptome annotation. The performed analysis provided, how-

ever, a number of interesting qualitative observations and can be a good

starting point for further studies of alternatively spliced events, which ulti-

mately will lead to better differential expression estimation.
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4.2 Reference NGS data

Figure 4.18: For SEQC data set only Spladder analysis was run.

Here we wanted to investigate how Spladder will work on the bench-

marking data where the signal suppose to be strong. As it was stated in

Section 3.2.2 we were using data generated by targeted short reads se-

quencing where panels A1, A2, and R1 were used. Spladder was run on

those using as reference either the AceView annotation or AceView ex-

tended by the SEQC2 consortium (with IsoQuant run on long reads - see

section 3.7.2). Figure 4.19 shows how detected by Spladder ASE in SEQC2

short reads data overlap with original and extended annotation, depending

on the reference used. It is important to note that for reference (AceView

or AceViewExtended) we report all exon-exon junctions (introns) present
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in the reference, while Spladder reports only those directly involved in the

alternative splicing events.

• Spladder run with AceView annotation reported 138,772 junctions in

total. Approximately 1/3 of those junctions are concordant with Ace-

View and constitute 10.5% of junctions in reference (Figure 4.19a).

To have a better understanding, we need, however, to focus only on

genes present on the targeting panels, as those are enriched in the

samples. Analysis of the remaining ones will be highly affected by

the lower effective sequencing depth of those.

• In Figure 4.19bwe focus on 2343 genes that were effectively targeted

by either panel A1, A2, or R1. It can be seen that about 60% of junc-

tions reported for those genes from AceView annotation are among

those seen by Spladder in short reads data. This level should be

consider as reasonable as: i) not all junctions in a gene is involved

in ASE, ii) it was estimated that about 80% of transcriptome is ac-

tive/detectable at specific time point [106]. Interestingly Spladder is

seeing about 85k of new junctions which is 87% of all new junctions

reported by Spladder (see Figure 4.19a). That from one site confirms

the targeting efficiency while from the other site shows that even

such comprehensive annotation as AceView is still not covering full

transcriptome landscape.

• On Figure 4.19c we show results when Spladder was run and com-
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pared with extended AceView annotation. It is interesting to note that

amount of known junctions seen by Spladder in short reads data in-

creased by abut 4.5k while number of not seen by Spladder junctions

increased by 11.5k and now the fraction of junctions from annotation

seen by Spladder dropped to about 50%. As we are talking about

the same set of genes it is unlikely that in the extended set we were

adding new transcripts with dominating fraction of junctions not tak-

ing part in alternative splicing. Also this extended set of alternative

transcripts has been obtained from the same samples so those are

definitely expressed. Thus the only explanation is that short reads

sequencing technology is unable to detect some junctions and the

reason could be that effective depth of targeted long read sequenc-

ing is higher than one for short reads. Also number of new junctions

involved in ASE detected by Spladder increased. This might be re-

lated with two Spladder features. First of all it filters out all introns

which originate from more than one gene. Secondly it comes with a

certain redundancy- Spladder reports all possible variants of a given

event. Introducing new transcript with extended annotation might

then cause several new events reported for previously filtered out re-

gions.
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(a) AceView and Spladder. (b) Spladder and Aceview filtered for panel genes.

(c)Spladder extended andAceView extended filtered for
panel genes.

Figure 4.19: Venn diagrams comparing alternative splicing events found
by Spladder in SEQC2 short reads data with those existing in: i) AceView
annotation, ii) additional set of transcripts identified by IsoQuant in SEQC2
long reads data and filtered out based on study design ground truth, iii)
AceView extended (i+ii). Spladder was run either with original AceView as
reference or with extended AceView as reference.
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4.2.1 Discussion

The results for the benchmarking data sets provide solid proof that

Spladder results are reliable and it is a good choice for the developedpipeline.

The percentage of known introns detected by Spladder for targeted genes

is in line with the fraction of transcriptome expected to be expressed at any

given time point. It also confirmed the efficiency of targeted sequencing as

87% of the reported junctions originated from panel genes.

Despite extending reference annotation, Spladder still reports almost

95k new junctions. One must bare in mind that transcripts expanding an-

notation were chosen in a very rigorous approach, where about 90% of ini-

tially reported transcripts were rejected. Spladder results might be an in-

dicator that those junctions are correct, but need to be further validated.

Once again we see evidence that even comprehensive annotations are still

incomplete.



4.3. MICROARRAY DATA 93

4.3 Microarray data

Figure 4.20: Part of the general pipeline used for microarray data prepro-
cessing (only dark green boxes).

This part of the project can perfectly demonstrate both the similarities

in NGS and microarray data analysis and the power of the SVA algorithm

and the problems it might entail. Besides normalization, quality control,

and SVA instead of SVAseq, the rest of the pipeline uses the same ap-

proaches as for RNA-seq.

The venn diagram in Figure 4.21a demonstrates how different normal-

izationmethods can influence the obtained lists of differentially expressed

genes. We can see that NEQC and quantile method share a huge portion

of genes, that is because the difference is only in the background correc-
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tion step. The common part- 251 genes constitute only about 18% of all

genes detected with different methods. These observations are also true

for further Gene Ontology analysis as shown on Figures 4.21b, 4.21c and

4.21d.

(a) Venn for DEGs found with different methods. (b) Venn diagram for BP GO terms.

(c) Venn diagram for CC GO terms. (d) Venn diagram for MF GO terms.

Figure 4.21: Differences in results for DEGs and GO terms caused by dif-
ferent normalization methods.

As explained in 4.1.1 SVA is a useful tool but should be applied with

caution. Figure 4.22 once again presents how misleading SVA results can

be. Although removing the maximum number of hidden factors (10 in this
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case in Figure 4.22b) produces a perfect separation between Patient and

Healthy samples, it also reduces the variability within the group so much

that any change between groups is treated as significant, causing the error

of the limma algorithm andmaking differential expression analysis impos-

sible. Adjusting for a smaller number of hidden factors allows us to remove

unwanted variation without overfitting data. In this case, two factors are

enough to roughly separate two sample groups.

(a) Heatmap and dendogram before SVA
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(b) Heatmap and dendogram with 10 factors removed.

(c) Heatmap and dendogram with 2 factors removed.

Figure 4.22: Plots showing changes in the results of the gene clustering,
depending on whether or not SVA was used and how many surrogate vari-
ables were removed.
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4.3.1 Discussion

Microarray data analysis confirmedfindings fromRNA-seq results. Batch

correctionmethods can be very useful if applied in the rightmanner, but still

data produced for medical experiments, rather than benchmarking, can be

very problematic and despite applying best practices, we may also obtain

low reproducibility.

Based on previous experienceswith RNA-seq data, a completemicroar-

ray analysis pipeline was built in a relatively short amount of time. The

fact that those technologies can borrow methods from each other is a

huge advantage, as microarrays are an older technology with a variety of

well-established, robust preprocessing algorithms. Knowledge of both ap-

proaches is crucial as they should not be treated as concurrent methods

but rather be used interchangeably, depending on a scientific problem. That

is why developing and incorporating steps formicroarray data analysis into

the pipeline can be very beneficial.
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Chapter 5

Summary

5.1 Thesis summary
Based on the results obtained, four major conclusions, constituting the

most important outcome of this studies, can be outlined:

1. Currently there are no gold standards in the analysis of data from

high-throughput technologies.

This was confirmed by the results for the 3 data sets in Sections 4.1

- 4.3. Depending on the algorithms used, the results obtained for dif-

ferential gene expression can vary considerably for microarrays (Sec-

tion 4.3) and RNA-seq (Section 4.1). This issue is true for both the

choice of data analysis methods and also the laboratory techniques

(different types of sequencing or microarrays). Section 4.2 showed

that the results obtained with long reads differ a lot from those ob-

99
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tained with short reads, and this discrepancy occurs despite the fact

that in this part a data set for benchmarking was used. We cannot be

entirely sure if such a huge discrepancy is the result of differences

in sequencing or the chosen tool. Therefore, it is very important to

choose the technology best tailored to our needs and validate the

results with other approaches, as they can often complement each

other.

2. Analysis recommendations based on studieswith artificially created

data sets should be applied to real-life problems with caution.

Data sets used for benchmarking tend to have strong signal values

and comprehensive metadata documentation, those two very impor-

tant aspects are often not fulfilled when it comes to real-life scenar-

ios. We cannot be sure what are the true reasons for distortions and

we might very often need to work with data of poor quality or low

signal values. Such cases might require more complex approaches

(such as accounting for hidden confounding factors), and results can

still be uncertain.

3. RNA- seq andmicroarray approaches both have strengths andweak-

nesses and should be used interchangeably, depending on the sci-

entific problem.

It is worth noting that solutions already developed for microarrays

can often be a good starting point for RNA-seq data analysis, as they
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have already been tested and proven to provide meaningful results;

however, one has to bare in mind the differences in nature of both

technologies and incorporate appropriate alterations.

4. Great improvements can still be made in the field of reference tran-

script annotation.

This work showed that the complexity of the mouse, but also the hu-

man genome, is not yet fully understood. Human genemodel is more

comprehensive and better studied, thus it might be harder to find new

and trustworthy isoforms. Despite that, results for benchmarking

data set in Section 4.2 report thousands of previously unannotated

junctions for human reference. Mouse reference, on the other hand,

remains not fully annotated, and new findings are more confident.

Despite the presence of many confounding factors, such as differ-

ent sample batches and knockouts induced in different structures, it

was possible to detect common patterns in the data. Although over-

lap at the level of gene and functional analysis was low, it was ob-

vious that the common CC terms between different types of ASEs

were related to the nervous system. It appears that the functions of

the detected ASEs and the processes in which they are involved are

characteristic of a given event type. This is an observation that does

not yet have any evidence in the literature, however, was pointed out

as possible in discussionwith a fewexperts. Asmentioned before, re-

sults are based on short read sequencing and we cannot infer whole
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transcripts. Nevertheless, they indicate that there are many events

not present in reference, and they originate from genes related to the

nervous system. That is a strong indication that long-read sequenc-

ing experiment is much needed to validate those events and possibly

expand existing annotation, providing a better understanding of the

mouse gene model. Such conclusions have also been confirmed in

the literature, and work has already begun for some brain structures

[55]. Also further visualization with plots showed that these events

have support in the reads and could have an impact on important pro-

tein domains. This observation is in line with several recent articles

reporting many novel alternatively spliced events occurring in differ-

ent regions of the brain and also other tissues in different species

[100, 19, 36]. Great improvements can still be made in the field of ref-

erence transcript annotation, as even for model organisms, the refer-

ence gene models are not mature yet.

Building and developing solutions that combine best practices can make

the analyses more reliable and reproducible. For these tools to be useful,

it is crucial to apply the methods in the correct way. Sections 4.1.1 and 4.3

demonstrated how many pitfalls can arise when only one step in the data

analysis pipeline is used incorrectly.

As a result of this studies, a comprehensive pipeline covering differ-

ent aspects of high- throughput data analysis and providing a variety of
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different approaches was developed. It includes all the major steps re-

quired for proper preprocessing and further analysis of both microarrays

and sequencing data. Initial focus was placed on improving the repro-

ducibility of differential gene expression detection; however, the research

shifted towards alternative splicing analysis, a topic which was found to be

very broad and also with no established solutions. A fairly exhaustive ap-

proach, covering different stages of the analysis was developed. Solution

was based on already existing tools; however, not all of them were com-

patible with others. Bisbee software was a good starting point, but since

it is not further supported, it had to be modified to suit our needs. With a

set of additional scripts a complete approach was developed-from align-

ment to possible effects on the protein level. This solution ismuch needed,

not only to improve reproducibility of results but also to fill the gap of au-

tomatic detection and analysis of AS and its consequences. This stage is

missing from available workflows, but can provide a lot of new informa-

tion and help to expand and better quantify transcriptional landscape. This

work is mainly focused around AS in the nervous system and proves that

a lot of isoforms are not known yet. AS ia also known to play a major role

in many diseases. An automatic approach for alternative splicing analysis

can thus facilitate new insights into alterations occurring in conditions like

Parkinson’s disease, SMA, or different cancer types.

As mentioned before, there is no single all-purpose solution when it

comes to high-throughput data analysis. However, the pipeline presented
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is this study benefits from the fact that it was created in the course of

analysing multiple data sets and each provided new insights and caused

new improvements. The fact that different problems were solved with the

same approaches is a validation of pipeline’s diversity. That is why it can

be used for many analysis problems or at least be a good starting point for

others. Working with many different high- throughput data sets shows that

each experiment provides answers but at the same time new questions

which result in many ideas for follow-up studies.

5.2 Data availability and relatedwork
Data sets presented in Section 4 are not yet published and thus cannot

be publicly available. For each of them, the publications are in the final

stage of preparation. During the course of this PhD work, two publications

have been published:

• Foox, Nordlund, Lalancette, et al. [38], where I was responsible for

ATAC-seq data analysis ,

• Chlebanowska et al. [17], where I was responsible for bioinformatic

analysis, including differential gene expression analysis of microar-

ray data.

The third publication Deshpande et al. [26] is in the final stage of the review

process in Frontiers in Genetics. I was responsible for outlining the section
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about differential gene expression analysis methods. Pipeline presented

in this work is available on GitHub page (https://github.com/aagatam/

Pipeline).

https://github.com/aagatam/Pipeline
https://github.com/aagatam/Pipeline
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Attached USB drive content

Attached USB drive contains:

• a pdf file containing this thesis,

• source code for analysis pipeline,

• a pdf file containing additional plots for Section 4.1.6.
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Figure S1: Barplots showing summary statistics for different events for
group with both known events.
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Figure S2: Barplots showing summary statistics for different events for
group with both new events.



138

Figure S3: Top 10 BP terms for old+old group.
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Figure S4: Top 10 CC terms for old+old group.
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Figure S5: Top 10 MF terms for old+old group.
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Figure S6: Top 10 BP terms for new+old group.
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Figure S7: Top 10 CC terms for new+old group.
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Figure S8: Top 10 MF terms for new+old group.
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Figure S9: Top 10 BP terms for new+new group.
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Figure S10: Top 10 CC terms for new+new group.
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Figure S11: Top 10 MF terms for new+new group.
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