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Abstract 

Plastic waste, including polyurethane (PUR), represents a significant environmental 

challenge due to its widespread use in various industries and its resistance to natural 

degradation. As traditional recycling methods for plastics remain inefficient, alternative 

approaches, such as enzymatic degradation, offer a promising, eco-friendly solution. However, 

research on enzymes capable of degrading PUR is still limited. This dissertation focuses 

on investigating the cutinase enzyme from Thermobifida fusca (TfCut2) and its potential 

for PUR degradation, with Impranil DLN used as a model substrate to explore the enzyme's 

catalytic activity. 

The study employs a combination of computational and experimental methods 

to identify the molecular determinants involved in substrate binding and catalysis. Molecular 

docking and molecular dynamics simulations were performed to study the interactions between 

TfCut2 and Impranil DLN, identifying key residues that play a role in the enzyme’s ability 

to bind to the PUR substrate. In addition, computational protein design tools were used 

to engineer mutations aimed at enhancing protein-ligand binding and enzyme's catalytic 

performance. 

Experimental validation of the designed mutants showed that three single-point 

variants, namely G62A, T61V and T207D, demonstrated significantly increased degradation 

rates, with G62A achieving more than a twofold improvement in activity over the wild-type 

enzyme. T207D also showed a marked increase in production yield, further underscoring 

the potential of rational enzyme engineering. These results suggest that engineering mutations 

can substantially enhance the catalytic efficiency of TfCut2 for PUR degradation. 

The study highlights the complexities of modelling and experimentally assessing PUR 

degradation, given the heterogeneity of PUR structures and their degradation products. Despite 

these challenges, this work establishes a framework for tailoring cutinases for synthetic 

polymer degradation, providing insights into substrate binding modes, and potential 

rate‑limiting steps. The findings contribute to the broader goal of developing efficient, 

sustainable solutions for polymer recycling and plastic waste remediation. 

 

 

 

 

 

Keywords 

Plastic biodegradation, Enzymatic degradation, Polyurethane, Cutinase, Enzyme 

engineering, Molecular modelling, Molecular dynamics, Protein design  
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Résumé (Abstract in French) 

Les déchets plastiques, y compris le polyuréthane (PUR), représentent un défi 

environnemental majeur en raison de leur utilisation répandue dans diverses industries 

et de leur résistance à la dégradation naturelle. Alors que les méthodes traditionnelles 

de recyclage des plastiques restent inefficaces, des approches alternatives, telles 

que la dégradation enzymatique, offrent une solution prometteuse et écologique. Cependant, 

les recherches sur les enzymes capables de dégrader le PUR demeurent limitées. Cette thèse 

se concentre sur l’étude de l’enzyme cutinase de Thermobifida fusca (TfCut2) 

et de son potentiel pour la dégradation du PUR, en utilisant l’Impranil DLN comme substrat 

modèle pour explorer l’activité catalytique de l’enzyme. 

L’étude combine des méthodes computationnelles et expérimentales pour identifier les 

déterminants moléculaires impliqués dans la liaison au substrat et la catalyse. Des simulations 

de docking moléculaire et de dynamique moléculaire ont été réalisées pour étudier 

les interactions entre TfCut2 et l’Impranil DLN, permettant d’identifier des résidus clés jouant 

un rôle dans la capacité de l’enzyme à se lier au substrat PUR. De plus, des outils de conception 

computationnelle de protéines ont été utilisés pour prédire des mutations visant à améliorer 

la liaison protéine-ligand et les performances catalytiques de l’enzyme. 

La validation expérimentale des mutants prédits a révélé que trois mutants ponctuels, 

à savoir G62A, T61V et T207D, présentent des taux de dégradation significativement accrus, 

avec G62A affichant une amélioration de l’activité de plus du double par rapport à l’enzyme 

sauvage. T207D a également montré une augmentation marquée du rendement de production, 

mettant ainsi en évidence le potentiel de l’ingénierie rationnelle des enzymes. Ces résultats 

suggèrent que les mutations ingénieurées peuvent améliorer de manière substantielle 

l’efficacité catalytique de TfCut2 pour la dégradation du PUR. 

L’étude met en lumière les complexités de la modélisation et de l’évaluation 

expérimentale de la dégradation du PUR, étant donné l'hétérogénéité des structures du PUR 

et des produits de dégradation associés. Malgré ces défis, ce travail établit un cadre pour 

l’adaptation des cutinases à la dégradation des polymères synthétiques, offrant des éclairages 

sur les modes de liaison au substrat et les étapes potentiellement limitantes. Les résultats 

contribuent à l’objectif plus large de développer des solutions efficaces et durables pour 

le recyclage des polymères et la gestion des déchets plastiques. 

 

 

Mots-clés  

Biodégradation des plastiques, Dégradation enzymatique, Polyuréthane, Cutinase, 

Ingénierie des enzymes, Modélisation moléculaire, Dynamique moléculaire, Conception 

protéique  
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Streszczenie (Abstract in Polish) 

Odpady plastikowe, w tym poliuretany (PUR), stanowią poważne wyzwanie 

środowiskowe z powodu odporności na naturalną degradację. Mimo że tworzywa sztuczne 

odgrywają kluczową rolę w wielu branżach, ich nadmierna produkcja i trudności w recyklingu 

prowadzą do nagromadzenia odpadów, które zanieczyszczają ekosystemy lądowe i wodne. 

W tradycyjnych metodach recyklingu plastiku, takich jak recykling chemiczny, stosunkowo 

niska efektywność procesów sprawia, że stają się one niewystarczające do rozwiązania 

problemu. Metody, takie jak degradacja enzymatyczna, mogą stanowić ekologiczną 

i efektywną alternatywę, umożliwiającą rozkład odpadów w sposób zrównoważony. Jednak 

badania nad enzymami zdolnymi do degradacji PUR wciąż pozostają w fazie początkowej. 

Celem niniejszej pracy było zbadanie aktywności enzymu kutynazy bakteryjnej 

pochodzącej z Thermobifida fusca (TfCut2) wobec PUR, przy użyciu modelowego substratu 

Impranilu DLN, aby zrozumieć mechanizm degradacji oraz możliwości inżynierii tego enzymu 

w celu zwiększenia jego wydajności katalitycznej. Praca łączy podejścia obliczeniowe 

oraz eksperymentalne, aby zidentyfikować molekularne aspekty odpowiedzialne za wiązanie 

substratu oraz katalizę reakcji degradacji. Symulacje dokowania molekularnego oraz dynamiki 

molekularnej pozwoliły na zbadanie interakcji między TfCut2 a Impranilem DLN, 

identyfikując kluczowe aminokwasy na powierzchni enzymu, które odgrywają rolę w wiązaniu 

PUR. Zastosowano również narzędzia do projektowania białek, które umożliwiły opracowanie 

mutacji w celu zwiększenia powinowactwa enzymu do substratu oraz poprawy jego 

wydajności katalitycznej. 

Walidacja eksperymentalna zaprojektowanych mutantów wykazała, że trzy warianty 

punktowe enzymu TfCut2 – G62A, T61V i T207D – wykazały zwiększenie szybkości 

degradacji Impranil DLN, przy czym G62A uzyskał ponad dwukrotną poprawę aktywności 

w porównaniu do enzymu typu dzikiego. Mutant T207D wykazał również wyraźny wzrost 

wydajności produkcji, co podkreśla potencjał racjonalnej inżynierii enzymów w kontekście 

degradacji PUR. Zgodnie z wynikami eksperymentalnymi, inżynieria mutacji może znacząco 

zwiększyć efektywność katalityczną TfCut2, co otwiera nowe możliwości w zakresie inżynierii 

enzymów do degradacji polimerów syntetycznych. 

Przeprowadzone badania uwydatniają złożoność modelowania 

oraz eksperymentalnego oceniania degradacji PUR, biorąc pod uwagę heterogeniczność 

ich struktur oraz produktów ich degradacji. Pomimo tych wyzwań, wyniki tej pracy stanowią 
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istotny krok w kierunku opracowania ram do dostosowania kutynaz do degradacji polimerów 

syntetycznych, umożliwiając lepsze zrozumienie sposobów wiązania substratu, a także 

identyfikację potencjalnych etapów ograniczających szybkość reakcji. Ponadto, badania 

te dostarczają cennych informacji dotyczących znaczenia kontekstu strukturalnego 

i funkcjonalnego enzymu przy projektowaniu nowych mutantów do degradacji polimerów 

syntetycznych. 

W kontekście szeroko pojętej gospodarki o obiegu zamkniętym, wyniki niniejszej pracy 

przyczyniają się do rozwoju metod recyklingu polimerów syntetycznych, proponując 

rozwiązania oparte na enzymach, które mogłyby znaleźć zastosowanie w odzyskiwaniu 

materiałów z odpadów plastikowych. Badania nad enzymatyczną degradacją PUR mogą mieć 

kluczowe znaczenie w poszukiwaniach bardziej zrównoważonych metod recyklingu, 

które pozwolą na skuteczniejsze przetwarzanie odpadów plastikowych. W przyszłości 

możliwe jest dalsze doskonalenie tego procesu poprzez iteracyjną inżynierię enzymów, a także 

dostosowanie warunków eksperymentalnych, takich jak optymalizacja temperatury, 

aby uzyskać większą wydajność katalityczną w warunkach przemysłowych. 

Wnioski z pracy stanowią istotny wkład w globalną walkę z problemem odpadów 

plastikowych, zwłaszcza w kontekście recyklingu PUR, i otwierają drogę do rozwoju nowych, 

efektywnych i zrównoważonych rozwiązań w zakresie ochrony środowiska. 
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Résumé détaillé (Detailed Résumé in French) 

Contexte 

Les plastiques, matériaux polyvalents et durables, figurent parmi les avancées 

technologiques les plus marquantes du XXᵉ siècle, transformant des secteurs tels 

que l’emballage, la santé et l’électronique. Cependant, leur résistance chimique les ont rendus 

symboliques de la consommation non durable. La majorité des déchets plastiques, en raison 

d’un recyclage insuffisant, finit dans des décharges, polluant les écosystèmes terrestres 

et aquatiques [1,2]. 

Face à cette crise, les procédés enzymatiques offrent une alternative prometteuse 

au recyclage chimique. Certains plastiques, tels que les polyuréthanes (PUR), possédant 

des liaisons hydrolysables, peuvent être dégradés. Les enzymes, comme les cutinases, 

permettent une dégradation spécifique et respectueuse de l’environnement, mais leur 

application aux PUR reste peu étudiée. 

Objectifs  

La thèse vise à explorer et optimiser les mécanismes enzymatiques de dégradation 

des PUR via l’étude de la cutinase bactérienne de Thermobifida fusca (TfCut2) 

et son interaction avec le substrat modèle polyester PUR Impranil DLN. L’objectif principal 

est de caractériser les déterminants moléculaires impliqués dans la dégradation enzymatique 

des polymères synthétiques de la famille des PUR et d’améliorer la performance de TfCut2 

à l’aide d’approches computationnelles combinées à des évaluations expérimentales. 

Les objectifs spécifiques de cette thèse incluent : 

1. Caractérisation de la TfCut2 sauvage et identification des déterminants moléculaires clés 

impliqués dans la liaison du substrat, notamment l’élucidation structurale de l’Impranil 

DLN et son interaction avec TfCut2 dans le cadre du mécanisme d’hydrolyse enzymatique. 

2. Re-design du site de liaison du substrat pour proposer une librairie de mutants de TfCut2 

permettant d'explorer les rôles spécifiques des résidus dans la liaison. 

3. Évaluation computationnelle et expérimentale des mutants de TfCut2 pour étudier les effets 

des mutations sur la liaison et l’efficacité catalytique. 

Méthodes 

Pour caractériser les interactions moléculaires entre TfCut2 et l’Impranil DLN 

et identifier les déterminants critiques de la liaison, des approches computationnelles ont été 
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utilisées : Rosetta docking, simulations de dynamique moléculaire, analyses ProLIF, calculs 

MM-GBSA ; et vérification expérimentale de structure de l’Impranil DLN par RMN. 

Pour concevoir des mutations visant à renforcer les interactions enzyme-substrat tout 

en maintenant la stabilité de l’enzyme, des outils de re-design des protéines et d’analyse 

évolutive ont été appliqués : Rosetta design, FoldX, HotSpotWizard, et analyse MSA. 

Les performances des mutants ont été évaluées par des tests expérimentaux (analyses 

d’activité enzymatique et mesures de thermostabilité) et des simulations computationnelles 

(dynamique moléculaire et analyses visuelles). 

Resultats 

Structure de l’Impranil DLN et hydrolyse de ses liaisons 

La structure propriétaire de l’Impranil DLN a présenté des défis pour la modélisation 

moléculaire, avec des descriptions variables dans la littérature [3,4]. Pour surmonter 

ces incertitudes, des analyses approfondies par RMN ont permis de caractériser sa composition 

chimique, comprenant : 1,6-hexanediol, acide adipique, glycol néopentyl, 

et 1,6‑hexaméthylène diisocyanate. 

L’analyse des échantillons hydrolysés par TfCut2 a révélé une préférence pour 

l’hydrolyse des liaisons ester adjacentes au 1,6-hexanediol, acide adipique et glycol néopentyl. 

Modélisation des interactions enzyme-polymère 

Des études computationnelles ont été menées pour modéliser les interactions entre 

TfCut2 et l’Impranil DLN. Huit modes de liaison ont été explorés à l’aide de docking 

moléculaire et de simulations de MD, en considérant les liaisons ester et uréthane comme 

susceptibles d’être clivées. Une méthodologie a été développée pour sélectionner 

des conformations "productives" en fonction des distances catalytiques clés (attaque 

nucléophile et transfert de proton).  

Les résultats montrent que TfCut2 reconnaît globalement la chaîne de polymère. 

Des résidus clés, tels que Y60, M131 et W155, stabilisent la polymère chaîne, d'autres résidus 

hydrophobes contribuant également à la liaison mais étant moins critiques. Les interactions 

hydrophobes dans le sillon de TfCut2 offrent une flexibilité dans la liaison à la chaîne polymère, 

expliquant la large promiscuité de substrat des cutinases. 

Ingénierie rationnelle de l’enzyme 

Des outils computationnels ont été utilisés pour prédire des mutations destinées 

à améliorer l’affinité et l’efficacité catalytique. Une analyse de mutabilité a permis de prioriser 

neuf positions clés : T61, G62, A65, S66, Q92, I178, T207, F209 et N212. Ces résidus ont été 
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ciblés pour optimiser les interactions hydrophobes, la complémentarité stérique, ou l’efficacité 

catalytique.  

Une librairie de mutants a été proposée en combinant re-design computationnel à l’aide 

de Rosetta et d'algorithmes génétiques, tout en validant les propositions par inspection visuelle. 

Évaluation expérimentale des mutants 

Parmi 24 mutants simples et 5 mutants multiples proposés, 20 mutants simples 

et 5 combinés ont été produits et testés. Trois mutations simples (G62A, T61V et T207D) ont 

montré des taux de dégradation accrus, G62A présentant une amélioration de plus de deux fois 

par rapport au type sauvage. Les autres mutations ont eu peu ou pas d’effet, et plusieurs 

ont réduit l’activité catalytique, notamment pour les mutants combinés. 

Les résultats suggèrent que la liaison du substrat n’est pas nécessairement l’étape limitante 

de la dégradation de l’Impranil DLN. D’autres facteurs, tels que la stabilité structurelle, 

les propriétés de surface ou la dynamique du site actif, peuvent jouer un rôle plus important 

dans la détermination de l’efficacité enzymatique. Ces résultats soulignent l’importance 

de prendre en compte le contexte plus large de la fonction enzymatique lors de l’interprétation 

des prédictions informatiques et de la conception des expériences futures. 

Apports de la thèse et perspectives 

Cette thèse représente une étude complète, alliant à la fois une analyse bioinformatique 

et une validation expérimentale, visant à explorer le processus de dégradation enzymatique 

du PUR. Elle constitue également la première étude systématique sur l’ingénierie des cutinases 

pour la dégradation du PUR, offrant un aperçu des déterminants moléculaires impliqués dans 

la liaison du PUR au site de liaison de TfCut2. 

L'intégration des approches bioinformatiques et expérimentales a permis d’identifier 

des déterminants critiques pour la liaison et la catalyse, ainsi que des mutations prometteuses 

susceptibles d’améliorer les performances de TfCut2. Cette thèse démontre que bien 

que la liaison au substrat soit cruciale, elle n'est pas l'étape limitante de la vitesse 

de dégradation du PUR. 

Les travaux futurs pourraient se concentrer sur l’amélioration des enzymes 

en recombinant les mutations bénéfiques identifiées dans cette étude, afin de guider des cycles 

itératifs d’ingénierie enzymatique. Par ailleurs, l’exploration de nouvelles conditions 

expérimentales, telles que l’augmentation de la température, pourrait offrir des pistes pour 

optimiser les performances catalytiques dans des contextes industriels. 
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Cette recherche s'inscrit également dans une perspective plus large, visant à favoriser 

une économie circulaire. Elle ouvre la voie au développement de filières intégrées combinant 

prétraitements efficaces, conditions optimisées de réaction et formulations enzymatiques 

adaptées aux défis spécifiques de la dégradation des polymères synthétiques. Une meilleure 

compréhension des mécanismes moléculaires sous-jacents pourrait également guider 

la conception de matériaux polymériques plus biodégradables, répondant ainsi aux enjeux 

environnementaux. 

Enfin, cette thèse contribue significativement à l’enjeu mondial du recyclage des 

plastiques, en particulier des PUR. En proposant des solutions enzymatiques durables 

et innovantes, elle s’inscrit dans une démarche visant à réduire les déchets plastiques 

et à promouvoir une économie circulaire, offrant ainsi une approche résiliente et respectueuse 

de l’environnement pour le traitement des polymères synthétiques. 
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Introduction 

Plastics, versatile and durable as they are, rank among the 20th century’s most impactful 

technological advancements, revolutionising industries such as packaging, healthcare, 

and electronics. However, these same properties—once celebrated—have now rendered plastic 

a symbol of unsustainable consumption and environmental peril. As we navigate 

the Anthropocene, the geological epoch defined by the human influence on the planet, 

widespread pollution caused by plastic waste stands as a clear indicator of our environmental 

impact. 

At present, plastics are not only ubiquitous materials but they are also an enduring 

marker of the human presence. From the depths of the oceans to the summit of Mount Everest, 

plastics have become a permanent fixture in every corner of the Earth, even in the most isolated 

places. Sadly, future archaeologists will not uncover relics of pottery or ancient tools; instead, 

they will unearth plastic bags, candy wrappers, and discarded packaging. Plastic waste has 

become an ecological footprint that, as noted by Estelle Praet, embeds human impact 

permanently into the planet's geological record [5]. 

The high chemical and thermal resistance of synthetic polymers, as well as their low 

weight and high strength are the reasons for their continuing popularity [2]. The challenge 

of managing vast amounts of plastic waste has led to the development of various chemical 

recycling processes. However, these methods require high temperatures and often produce 

byproducts that contribute to environmental pollution. More primitive disposal methods, such 

as combustion, release highly toxic organic compounds; for instance, burning polyvinyl 

chloride (PVC) generates carcinogenic furans and dioxins [6]. According to the Environmental 

Protection Agency, only 7% of the plastic waste generated is recycled annually, with 

an additional 8% incinerated [7]. 

Due to insufficient recycling, the majority of plastic waste is sent to landfills, where 

millions of tons accumulate each year, polluting land and aquatic environments, causing 

harmful effects on these ecosystems [1,2]. The decomposition of plastic is a very slow process, 

taking hundreds of years, which is why this type of waste remains, disturbing the balance of the 

ecosystem. In addition, plastic stored on land is exposed to oxygen and strong sunlight, which 

causes it to partially disintegrate and crack, resulting in the formation of microplastics. 

Microplastics, now pervasive in the water, soil, and even the air we breathe, present 

an increasing danger which is difficult to eliminate. As is lamented by Treebeard in ‘The Lord 
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of the Rings’ [8], “For the world is changing: I feel it in the water, I feel it in the earth, 

and I smell it in the air”; plastic pollution, much like the creeping evil in Tolkien’s world, now 

threatens the very fabric of our environment. Microplastics can enter the upper respiratory tract 

with air, penetrate the digestive system with food and contaminated water, and penetrate 

the skin. Once in the body, they can cause cytotoxic effects, inflammation, and even lead 

to the production of reactive oxygen species [9]. 

In the face of this challenge, biotechnology offers a compelling answer through 

the power of enzymes. Plastics that have a hydrolysable bond in their structure may undergo 

degradation. Enzymes stand out compared to other biotechnological approaches due to their 

specificity, mild operational conditions, and potential for scaling. Enzymatic biocatalysis, 

an alternative and environmentally friendly approach to plastic degradation, involves replacing 

chemically catalysed processes with enzyme-driven ones. 

While synthetic chemistry has catalysed the rise of plastics, enzymes—nature’s own 

catalysts—may now play a pivotal role in their degradation. Ironically, we now turn to natural 

processes to break down materials once engineered to resist them. Inspired by the fictional idea 

of plastic-eating organisms in Mutant 59: The Plastic-Eaters [10], today’s science is bringing 

this vision to life through enzyme-based degradation, a prime example of green chemistry’s 

potential to eliminate hazardous waste sustainably. 

This environmental era compels us to rethink our responsibility towards the planet 

and our place within it, as emphasised by Bruno Latour [11] in his concept of “earthbound”—

a reminder that our environmental disruptions directly affect our own well-being. Driven 

by concern for the environment and a fascination for enzymatic potential, this dissertation 

investigates enzyme-based solutions to plastic pollution. By studying how enzymes recognise 

and degrade synthetic polymers, this work aims to contribute to a new wave of sustainable 

waste management practices. As Carl Sagan reflected in Pale Blue Dot [12], the Earth is the 

only home we have ever known, and it is up to us to protect it. Through this research, I hope 

to advance both science and environmental stewardship, addressing one of our most pressing 

global challenges. 

This dissertation is organised as follows: Chapter 1 introduces the motivation, 

objectives and scope of this dissertation. Chapter 2 provides a comprehensive literature review 

on PUR and enzymes involved in its biodegradation, that led to a publication of a review article 

in Biotechnology Advances in 2024 [13]. This chapter also includes additional sections 
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detailing literature data on cutinases, as well as information on computational studies related 

to PUR degradation and mutational data on PUR-degrading enzymes. 

Chapter 3 outlines the theoretical background of the computational methods applied 

in this study. Chapters 4-6 present and discuss the results for each of the three main objectives: 

investigating the binding of a PUR model to TfCut2, conducting computational protein design 

and mutational analysis of TfCut2, and validating the proposed TfCut2 mutants. Finally, the last 

Chapter 7 summarises the main conclusions and outlines perspectives for future research.  
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Chapter 1: Objectives and scope of the thesis 

The main objective of my thesis is to investigate the molecular determinants involved 

in enzyme-based degradation of synthetic polymers from the polyurethane family (PUR) 

and further optimise the degradation performances of a targeted enzyme using a combination 

of computational and experimental methods. 

While most of the current research on plastic degradation focuses on polyethylene 

terephthalate (PET), PUR presents unique advantages and challenges for studying substrate 

recognition. PET is often considered a model system for biodegradation research due to its 

uniform bond types and consistent chemical environment, which simplifies the study 

of enzymatic cleavage. PUR, in contrast, features a variety of bonds and chemical contexts 

within a single polymer chain, making it an ideal candidate for investigating enzyme-mediated 

polymer recognition. 

Beyond its structural complexity, PUR’s widespread production also underscores 

the need for effective degradation methods. As the sixth most-produced plastic globally, PUR 

accumulates significantly in the environment. Its complex structure, which includes both C–O 

and C–N bonds, often leads to lower reaction barriers and nearly neutral reaction free energies, 

properties that can theoretically facilitate degradation [14,15]. However, PUR’s structural 

diversity complicates the development of a unified enzymatic degradation strategy, posing 

unique challenges compared to more uniform plastics [16–18].  

A review of current literature reveals that enzymatic PUR degradation research is still 

in its early stages. To date, only a few hydrolytic enzymes have been identified with the ability 

to depolymerise PUR [19–25]. The field is gradually expanding, with recent discoveries 

of novel fungal cutinases, such as CpCut1, which has shown enhanced activity relative to other 

fungal and bacterial cutinases [24], and urethanases [19,26], which target PUR degradation 

through urethane bond cleavage. These advancements highlight the potential for enzymatic 

degradation of PUR, but critical research gaps remain unaddressed. 

Foremost among these gaps is the scarcity of computational studies on PUR enzymatic 

degradation processes. Experimental studies have also been limited, partly due 

to the proprietary and complex nature of many PUR compounds, such as the commonly used 

model substrate, Impranil DLN. Most research has focused on isolated PUR components, like 

carbamates or dicarbamates, rather than on the complete polymer structures. Monitoring 

degradation progress presents further challenges: many PUR polymers lack well-defined 
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structures, making it difficult to quantify the exact number of cleaved bonds or identify 

degradation intermediates. For instance, while turbidity reduction is often used as a measure 

of polyester PUR degradation, it remains unclear which bonds are being cleaved or what 

fraction must be hydrolysed to achieve transparency, commonly interpreted as "complete 

degradation" [24].  

Key mechanistic questions also persist, including the exact nature of PUR binding 

to enzyme surfaces and whether binding constitutes the rate-limiting step in degradation. 

A study involving enzyme fused with binding module suggests that initial adsorption could 

play a crucial role in the degradation process [27]. 

Critically, no mutational data or computational protein engineering studies have been 

published on PUR-degrading enzymes. This dissertation addresses this gap by focusing 

on the mechanisms of binding between TfCut2 and a model PUR substrate, Impranil DLN, 

and by investigating whether binding is the rate-limiting step in degradation. Through this 

research, mutations to TfCut2 are proposed to enhance its activity and affinity for PUR 

substrates, marking the first computational protein redesign attempt for a PUR-degrading 

enzyme. By deepening the understanding of the enzymatic process involved in PUR 

depolymerisation, this study aims to use the acquired insights to enhance the stability, affinity 

and activity of the selected PUR-degrading enzyme, as well as to verify the hypothesis whether 

binding is the rate limiting step of the enzymatic PUR degradation process. The knowledge 

gained in this process is expected to advance both fundamental knowledge and practical 

applications, potentially enabling engineering of improved enzymes for more efficient PUR 

degradation. 

To fulfill the objectives of my dissertation, I had to select both model PUR substrate 

and enzyme for its degradation. Impranil DLN, a polyester PUR model molecule containing 

ester and urethane linkages, was selected as a model substrate to provide insight into 

the recognition and binding of these functional groups by the enzyme. Impranil DLN, produced 

by Covestro (Germany), was previously used in many studies identifying PUR-degrading 

enzymes [20,28,37–39,29–36]. Based on my literature review of reported PUR-degrading 

enzymes, conducted in mid-2020/2021, I identified a cutinase from the bacteria Thermobifida 

fusca (TfCut2), whose PUR-degrading activity—tested on substrates including Impranil 

DLN—was examined by Schmidt et al. [20], as the most promising enzyme at that time 

for further study and redesign. 
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To investigate at molecular level, how this enzyme can degrade the PUR model 

and provide insights to guide the engineering of TfCut2 to improve the performance 

of the enzyme to degrade PUR, I have developed a strategy that combines both modern 

computational techniques with experimental evaluation. Integrating in silico and experimental 

methods to ensure comparable results is often challenging, as simulations typically simplify 

complex biological systems and may not fully capture actual conditions. Moreover, 

computational studies typically examine single-molecule interactions in isolation, while 

experimental results represent an averaged view of numerous molecules in various 

conformational states. Experimental evaluation is therefore essential to assess whether 

computational predictions —such as binding affinities or structural stability of enzyme 

variants—accurately reflect the enzyme’s behaviour in realistic settings. After experimental 

evaluation, the next step would involve analysing the results to confirm whether 

the experimental data align with the computational predictions.  

This work was thus divided into three main objectives that will be described 

in the results section:  

1. Characterisation of wild-type TfCut2 and identification of key molecular determinants 

involved in substrate binding – characterising the TfCut2 enzyme and analysing critical 

aspects of PUR recognition and binding, including structural elucidation of the model PUR, 

Impranil DLN, to understand its interaction with TfCut2 in line with the enzyme's 

hydrolysis mechanism. 

2. Re-designing the substrate binding site of TfCut2 – suggesting a library of mutants 

of TfCut2 to investigate the specific roles of residues in TfCut2's binding site. 

3. Computational and experimental evaluation of TfCut2 mutants – assessing the effects 

of the proposed mutations on binding and catalytic efficiency. 

To fulfil the first objective— Characterisation of wild-type TfCut2 and identification 

of key molecular determinants involved in substrate binding, which involves characterising 

TfCut2 and resolving structure of the model substrate, Impranil DLN, several in silico methods 

were applied to analyse critical aspects of PUR recognition and binding to TfCut2 consistent 

with its hydrolysis mechanism. They included Rosetta molecular docking, MD simulations, 

and enzyme-ligand interaction analyses using ProLIF and MM-GBSA. The goal was to develop 

structural models for Impranil DLN and TfCut2, characterise TfCut2, and model its interactions 

with the substrate. This included ensuring that enzyme-ligand complexes adopted a 'productive 

pose,' aligning catalytic distances to facilitate the initial hydrolysis step. To achieve this, 
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a pipeline was developed to select frames from MD simulations in a productive configuration, 

which were then analysed to identify key residues in the binding site. The enzyme-ligand 

interactions, as well as individual amino acid contributions to Impranil DLN binding, were 

examined to characterise the molecular interactions critical for effective binding. Due 

to Impranil DLN's proprietary nature and structural inconsistencies in literature, it became 

evident during the research that the initially proposed and utilised structure might 

not be correct. As a result, NMR studies were carried out to verify the structure and provide 

a reliable model for all analyses (Fig. 0). 

The second objective—Re-designing the substrate binding site of TfCut2, involving 

the selection of amino acid mutations to investigate specific residue roles in TfCut2's binding 

site—was achieved by analysing data from the first objective, combined with an assessment 

of the mutability of TfCut2 and the feasibility of introducing mutations that enhance 

enzyme‑ligand interactions while preserving protein stability. Since Impranil DLN 

is not a native substrate of TfCut, I hypothesised that substrate recognition and binding affinity 

may be key determinants in facilitating catalysis, and that enhancing enzyme-ligand 

interactions could be beneficial to activity. For this, mutations were proposed 

to TfCut2‑Impranil DLN complexes using Rosetta protein design. Moreover, sequence, 

structure, evolutionary variability of positions in sequence, and overall mutability of TfCut2 

were analysed using tools and webservers such as: FoldX, HotSpotWizard and BALCONY. 

This way, a library of TfCut2 mutants was proposed (Fig. 0). 

The third objective—Computational and experimental evaluation of TfCut2 mutants—

was addressed using both experimental and computational approaches. Experimental tools, 

such as activity analysis and thermostability measurements, directly assessed the activity 

of TfCut2 and its mutants on Impranil DLN degradation and the enzymes' thermostability. 

These methods, however, when applied to analysis of degradation of a PUR substrate, 

do not reveal the exact impact of each substitution or its influence on specific degradation 

aspects (e.g., catalytic efficiency, binding). To address this, additional computational 

and visualisation techniques were applied to develop a rationale behind the mutations in TfCut2 

and their potential influence on activity (Fig. 0). 



8 

 

 

 

Fig. 0. Schematic overview of the computational and experimental methods design 

and integration with respect to objectives of this dissertation. Computational methods 

are represented in blue, and experimental methods in green, with comparable 

and corresponding results highlighted by blue connections. The specific objectives for each 

method are indicated in orange. 
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Chapter 2: Literature Review on PUR and 

PUR‑degrading Enzymes 

PUR are durable synthetic polymers widely utilised across numerous industries, 

contributing substantially to global plastic consumption. Despite their broad applicability, PUR 

pose significant challenges in terms of degradability and recyclability, mainly due to their 

intricate compositions and diverse formulations. The proprietary additives and structural 

variations found in commercial PUR formulations further complicate recycling efforts, making 

effective PUR waste management an urgent environmental priority. Although PUR incorporate 

hydrolysable bonds, primarily urethane and ester linkages, their depolymerisation requires 

the action of esterolytic and urethanolytic enzymes capable of cleaving these bonds. 

The structural diversity, binding site architecture, and active site composition of these enzymes 

are crucial factors influencing their specificity for different bond types and their efficiency 

in degrading complex, bulky substrates like PUR. 

Parts of this chapter (specifically subsections 2.1–2.4) are based on a review article 

published in Biotechnology Advances, Volume 77, December 2024 [13]: 

 

Raczyńska A., Góra A., André I. 

An overview on polyurethane-degrading enzymes 

Biotechnology Advances (2024) 77, 108439 

 

This manuscript was authored primarily by Agata Raczyńska, who was involved in all 

steps of the article creation, whereas Dr. Artur Góra and Dr. Isabelle André were responsible 

for guidance, supervision and Review & Editing of the original manuscript and served 

as corresponding authors. No other researchers contributed to the manuscript. 

Since this dissertation is prepared in accordance with both Polish and French university 

requirements as part of a dual doctorate cotutelle, reproducing the full text of the manuscript, 

rather than paraphrasing, was necessary to meet French institutional standards that regard 

rephrasing published content as potential plagiarism. While Polish guidelines typically favour 

rephrasing, the unaltered inclusion of the manuscript ensures compliance with both institutions.  

The manuscript is a result of the initial literature review performed at the beginning 

of this dissertation, on the reported PUR-degrading enzymes in order to carefully select a model 
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enzyme, in this case TfCut2, for the studies. This analysis later expanded, resulting 

in the publication. The manuscript explores the enzymatic degradation of PUR, detailing 

the structural and functional characteristics of both enzymes and PUR substrates. It examines 

native enzymes reported to hydrolyse specific PUR bonds, discussing their structural 

configurations, reaction mechanisms, substrate specificity, and binding site architecture. 

Additionally, it highlights features necessary for enzyme redesign to enhance the efficiency 

of PUR biodegradation. Together, these insights provide a comprehensive foundation 

for readers, orienting them to the challenges of enzymatic PUR degradation and informing 

the objectives of this dissertation. 

Chapter 2.1 constitutes an introduction to the problem of PUR waste and explains 

the need for research towards its sustainable management. Chapter 2.2 “PUR structures 

and functional groups” explains the structure and functional groups of PUR, challenges 

with managing its degradation, and introduces possibility of application of enzymes 

for its degradation. Chapter 2.3 “Enzymes for PUR degradation” constitutes an overview 

of reported enzymes that degrade PUR, together with information about their classification, 

activity, structure, architecture of the binding site and catalytic mechanism. Lastly, in chapter 

2.4, conclusions and future prospectives on research on PUR enzymatic degradations 

are discussed.  

Additionally, subsection 2.5 presents further findings and identifies research gaps 

uncovered through an extended literature review, that were not included in the published 

manuscript, which guide this study’s aims of contributing to sustainable PUR waste 

management and pollution reduction. 

 

2.1. Introduction 

Synthetic polymers, commonly known as plastics, are durable materials that possess 

many desirable features, but their high resistance to biodegradability, once considered 

an advantage, is now one of the main causes of pollution in terrestrial and aquatic 

environments. Production of plastics has outgrown most man-made materials, however, 

the management of their end-of-life remains very limited.  

Polyurethanes (PUR) represent a prevalent and economically significant class 

of plastics, primarily derived from fossil-based resources, constituting 5.3% of the global 

plastics production, accounting for 21.2 Mt in 2022 [40]. Current trends in polymer research 
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show an increasing focus on developing PUR from natural and renewable raw materials, 

with the aim of proposing more sustainable and degradable alternatives [41,42]. The global 

market for PUR has witnessed substantial growth, with a valuation of USD 75.8 billion in 2022, 

projected to reach USD 108.8 billion by 2031, exhibiting a Compound Annual Growth Rate 

(CAGR) of 4.1% during the forecast period (2023-2031) [43]. Widely used across industries, 

PUR finds applications in coatings, elastomers (thermoplastics), and flexible and rigid foams 

(thermosets). Thermoset PUR, characterised by their chemically cross-linked nature, represent 

the most commercially prevalent form, albeit posing significant recycling challenges due 

to their complex composition and varied formulations. Combined with the diverse composition 

of PUR encountered during waste disposal, the effective management of PUR waste 

is a significant challenge. 

Given the significant challenges associated with managing PUR waste, alternative 

solutions are being explored. Enzymatic polymer recycling has emerged as a promising 

solution, offering lower supply chain energy requirements and reduced greenhouse gas 

emissions [14,24,44–47]. However, scaling up enzymatic degradation on an industrial level 

presents a complex challenge that necessitates the development of specialised enzymes. 

Synthetic polymers, introduced on a large scale only in the 1960s, have not been subjected 

to the evolutionary pressures that would have fostered the emergence of effective 

polymer‑degrading enzymes [2]. To address this challenge, three avenues are usually explored 

to identify novel enzyme catalysts: i) by searching novel adapted enzymes in environments 

with accumulated synthetic polymer waste, ii) by using promiscuous enzymes with potential 

polymer-degrading activity, and iii) by engineering existing enzymes towards enhanced 

polymer degradation. In particular, the discovery and engineering of efficient enzymes capable 

of degrading synthetic polymers have been reported with notable success. For instance, the 

enzymatic depolymerisation of polyethylene terephthalate (PET) into its constituent monomers 

has been achieved, allowing for the subsequent production of PET without any loss 

of properties [48–51]. 

While extensive work has been conducted on PET-degrading enzymes [52–55], 

research on enzymatic degradation of PUR, polyamides (PA) and other recalcitrant synthetic 

polymers remain in the lag phase. PUR and PA are structurally related through their 

nitrogen‑containing backbones and liberate primary amines upon hydrolysis. Polymers with 

backbones composed of C-O and C-N bonds inherently have lower reaction barriers and nearly 

neutral reaction free energies. These structural features favourably contribute 
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to the degradation process of plastics. [14,15]. However, unlike PET and PA, which are 

composed of uniform monomers and feature exclusively either C-O or C-N bonds (ester 

and amide, respectively), PUR may contain many different bonds: urethane, ester, urea, amide 

and ether [16–18]. PUR presents a significant challenge for degradability and recyclability due 

to its intricate chemical composition and the steric effects associated with its supramolecular 

structures, which include soft and hard segments [24,56–58]. Moreover, commercial PUR 

structures are often proprietary, what prevents the development of a universal recycling method 

for all PUR families [15,59,68,69,60–67]. In some studies, however, PUR-based molecules 

were purposely synthesised by the authors and were thus rather well characterised 

[22,24,77,27,70–76]. Given the complexity and diversity of structural facets in PUR, coupled 

with the presence of additives, real-world pre- and post-consumer PUR products exhibit high 

recalcitrance and limited susceptibility to microbial and enzymatic degradation [24,56–58,78]. 

Most reported PUR-degrading enzymes, including urethanases, amidases, and esterases, 

primarily target soluble carbamates or polyester PUR, such as Impranil DLN, but not 

polycarbamates [3,14,81–83,20,31–33,37,38,79,80]. 

Within the scope of this review, we aim to adress the inherent challenges posed 

by the complex and often unspecified composition of PUR structures, particularly 

in the context of enzymatic hydrolysis. These challenges significantly impact the study 

of enzymes involved in PUR degradation, leading to uncertainties in substrate specificity 

determination, limitations in accurately measuring enzymatic activity, and deficiencies 

in establishing standardised analytical methodologies. Furthermore, these obstacles hinder 

the scalability of enzymatic processes, impeding efforts to effectively translate laboratory 

findings into industrial applications. By examining these challenges, we aim to provide insights 

into the complexities of enzymatic PUR degradation and offer avenues for future research 

to overcome these hurdles effectively. Our focus aims at exploring the structural and functional 

characteristics of PUR and how they influence enzymatic degradation mechanisms. 

Subsequently, we survey documented native enzymes with reported efficacy in degrading 

various bonds within PUR. Our analysis encompasses a thorough examination of enzyme 

structures, reaction mechanisms, substrate preference, and the architecture of substrate binding 

and catalytic sites. Moreover, we propose essential features for the future redesign of enzymes 

to optimise PUR degradation efficiency. Finally, we outline prospective research directions 

aimed at advancing the field of enzyme-based degradation of PUR. 
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2.2. PUR structures and functional groups  

The potential for enzymatic degradation of PUR (and other synthetic polymers) 

is significantly constrained by factors related to 1) the supramolecular structure of PUR, 

including the 3D polymer structure, hydrophobicity, crystallinity, and the availability 

of hydrolysable groups for enzymes, and 2) the conditions required for PUR enzymatic 

hydrolysis, such as the energy needed to hydrolyse bonds and the characteristics of specialised 

enzymes capable of binding to synthetic polymers and cleaving these bonds. Addressing these 

limitations involves two primary approaches: overcoming challenges related to PUR's 

structural properties, which may require pretreatment, and optimising enzymatic hydrolysis 

through the selection and redesign of appropriate enzymes. Subsections 1.1 and 1.2 of this 

review will respectively delve into these factors, focusing specifically on the information 

relevant to the enzymatic hydrolysis of PUR while directing readers to additional literature for 

comprehensive insights into PUR synthesis, structure, function, and applications [16,84–89]. 

 

2.2.1. PUR structures 

PUR is a highly diverse group of synthetic polymers characterised by the presence 

of urethane bonds in their chain. These bonds are formed through a reaction between alcohols 

(–OH) and isocyanates (-NCO) (Fig. 1A) [16,88,90], constituting the core structure of PUR. 

Despite PUR’s nomenclature, pure PUR are infrequently encountered in practical applications. 

Additionally, chain extenders and cross-linkers, carrying various functional groups, can be 

used to produce more rigid or mechanistically stronger PUR structures, respectively [85].  

By combining structural units containing two functionalities, long linear polymers are 

formed, which are referred to as thermoplastic PUR (TPU). TPU are commonly described 

by two types of segments: hard and soft (Fig. 1A). Generally, the soft segments, made from 

high molecular weight polyols, are flexible and can even form foil-like structures. In contrast, 

the hard segments, composed of isocyanates and chain extenders, are rigid and immobile 

[57,91,92]. TPU are often semi-crystalline structures, as the segments are generally organised 

with a specific micro-segregation. The urethane linkages located near the isocyanate segments, 

have the possibility to be associated by hydrogen bonds to generate the hard segments 

of a PUR elastomer (Fig. 1B). The strong hydrogen bonding interactions between groups 

of the hard segments cause the chains to align in a very orderly fashion (Fig. 1C). 
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The percentage of NH groups forming hydrogen bonding interactions with carbonyl (-C=O) 

groups of the hard segment is large (> 45%). The network of strong hydrogen bonds present 

in the hard segment groups is sensitive to the solvent environment, in particular the presence 

of water molecules [93]. Segments content and properties can influence the biodegradation 

susceptibility of a given PUR [94,95], as mobile soft PUR segments are more easily recognised 

by enzymes than hard PUR segments. Consequently, the higher the content of hard segments, 

the lower the susceptibility to biological degradation [57]. 

Structural units with more than two functionalities enable polymer crosslinking, 

allowing the synthesis of branched three-dimensional PUR structures known as thermosets 

(Fig. 1D). As crosslinks are made up of covalent bonds, thermosets are thermally, 

mechanically, and chemically resistant and therefore their recycling is currently very difficult 

and energy intensive [96]. As opposed to thermoplastics, thermosets remain hard even when 

heated. Thermoset polyurethanes typically do not have significant crystalline regions due 

to their highly crosslinked structure, which restricts the movement and alignment of polymer 

chains necessary for crystallisation. However, localised or partial crystallinity can occur 

in certain formulations, especially in the hard segments of the polymer [97]. The reported 

PUR‑degrading enzymes have been mainly tested on TPU and only few were reported 

to degrade thermoset PUR foams [58,70,77]. 

 

Fig. 1. PUR synthesis and structure. The polyol structural units are represented by green circles 

and isocyanate structural units as yellow circles. Isocyanate fragment can contain chain 

extenders and soft polyol fragment can additionally contain ether or ester bonds. A) Common 

route for the synthesis of PUR. B) Hydrogen bonds forming between urethane linkages in PUR. 
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C) Linear TPU structure. TPUs are often semi-crystalline structures. The hard segment 

is a block segment with low mobility mainly formed by the isocyanate and the short-chain 

extender. By contrast, the soft segment is mainly based on the long polyol part. D) Simplified 

structure of a thermoset. The linear polymer chains are covalently connected by crosslinking 

compounds indicated by dark green circles that can be e.g. trifunctional crosslinking hydroxyl 

compound. 

 

2.2.2. PUR functional groups and their enzymatic hydrolysis  

The incorporation of various structural units, including isocyanates, polyols, 

cross‑linkers, and chain extenders, not only alters the properties of PUR but also introduces 

different functional groups beyond urethane bonds into their structure. In the case of polyols, 

they are most often either based on polyethers, especially in thermosets, which is the main 

application of PUR; or on polyesters, particularly in TPUs. Corresponding polymers are thus 

often referred to as polyether PUR and polyester PUR, respectively. Overall, PUR may contain 

urethane, ester, ether, amide and urea functional groups, characterised by either C-N or C-O 

links in their backbone [98]. Enzymes with specific activities can target these bonds 

for hydrolytic cleavage, however, ether bonds demonstrate exceptional hydrolytic stability, 

rendering polyether PUR more suitable for applications in moist environments compared 

to polyester PUR [84]. 

Functional groups containing carbonyl groups facilitate the nucleophilic attack on their 

carbonyl carbon, leading to the cleavage of neighbouring C-N or C-O bonds. The C-N link 

is present in urethane, amide and urea bonds in PUR and can be hydrolysed by enzymes such 

as: urethanases, amidases and ureases that belong to EC 3.5.1 (3. Hydrolases; 5. Acting 

on carbon-nitrogen bonds other than peptide bonds; 1. In linear amides) (Fig. 2A-C). The C-O 

links are located in urethane and ester functional groups. The ester and urethane bonds 

can be hydrolysed by enzymes: esterases, cutinases and lipases that are categorised under 

EC 3.1.1 (3. Hydrolases, 1. Acting on ester bonds, 1. Carboxylic ester hydrolases) [57,99,100] 

(Fig.2D‑E). Throughout this review, we will denote these enzyme groups as "urethanolytic" 

and "esterolytic," as their activities predominantly involve the hydrolysis of urethane and ester 

bonds in PUR or analogous compounds. 
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Fig. 2 Two types of hydrolysable bonds in PUR: C-N (A-C) and C-O (D-E). Functional groups 

containing C-N bonds (on blue background) include A) urethane, B) amide, and C) urea; 

and those containing C-O bonds (on red background) include D) urethane and E) ester. 

The hydrolysis reaction pathways by urethanolytic enzymes (urethanases/amidases/ureases) 

and esterolytic enzymes (esterases/lipases/cutinases) are depicted. Following enzymatic 

cleavage, the subsequent reactions are characterised by spontaneous decomposition, leading 

to further breakdown of the polymer. The chemical structures were drawn using ChemSpacE 

[101]. 

The primary bonds within PUR, namely urethane bonds, comprise both C-N and C-O 

bonds, suggesting the potential for hydrolysis by enzymes possessing either urethanolytic 

or esterolytic activities. Urethanolytic enzymes, acting on the C-N bond, catalyse 

the hydrolysis of urethane bonds into an amine and an alkyl carbonate, which subsequently 

decomposes into an alcohol and carbon dioxide. Conversely, esterolytic enzymes, targeting the 

C-O bond, hydrolyse urethane bonds into an alcohol and a carbamic acid group, with the latter 

decomposing into an amine, releasing carbon dioxide [77,84,99]. Despite the different 

pathways, the products of urethane bond hydrolysis remain consistent, regardless of the cleaved 

bond: an amine, an alcohol, and carbon dioxide (Fig. 2A, 2D).  

In terms of energy considerations, ester bonds generally exhibit lower resistance 

to hydrolysis compared to urethane bonds [102]. Several factors influence the hydrolysis 

resistance of these bonds, including temperature, steric hindrance, and pH. Steric hindrance not 

only impacts the accessibility of the bond to water but also affects the hydrophobicity 
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of the polymer. pH plays a significant role in hydrolysis reactions, particularly in acidic 

conditions where the reaction is catalysed. Esters undergo hydrolysis to form acid and alcohol 

groups (Fig. 2E), potentially leading to an autocatalytic reaction when additional acid 

functionality is introduced [84]. 

So far, mainly enzymes degrading polyester PUR have been reported. It is 

not surprising, as easily-hydrolysable ester linkages in polyester PUR are often found in the 

soft fragments constituted of polyols, which represent vulnerable points in the polymer 

structure. Polyester PUR are more prone to rapid degradation, especially in high humidity 

or when exposed to water, leading to faster disintegration due to volume swell and property 

reduction. Water infiltration between molecules acts as a plasticizer, forming hydrogen bonds 

with polar urethanes and disrupting internal hydrogen bonds between polymer chains. 

In contrast, polyether PUR exhibits low water absorption rates and minimal volume swell, 

rendering them water-repellent and resistant to disruption by water interacting with urethane 

bonds. Additionally, ether bonds are highly resistant to hydrolysis [47,84], making them less 

susceptible to be degraded by hydrolases. 

Most PUR-degrading enzymes were identified using a model PUR molecule, Impranil 

DLN, which is in fact a 40% water dispersion of polyester PUR. As Impranil DLN becomes 

translucent when the hydrolysis of ester bonds occurs in its structure, it is possible to develop 

activity assays based on visual inspection of Impranil DLN plates [20,80,103–106]. 

Consequently, the majority of identified polyurethanases are, in fact, polyesterases capable 

of degrading ester bonds in polyester PUR. Impranil DLN chemical structure is proprietary, 

although its chemical structure was proposed in two studies, first in 2015 by Biffinger et al. [3] 

and then in 2022 by Fuentes-Jaime et al. [4]. While Biffinger et al. describe the synthesis 

of Impranil DLN from hexamethylene diisocyanate and polyhexane neopentyl adipate 

polyester, Fuentes-Jaime et al. suggest that Impranil DLN is derived from hexamethylene 

diisocyanate, neopentyl glycol, adipic acid, and 1,6-hexanediol, along with certain plasticizers 

and chain extenders. The lack of clarity regarding the composition of Impranil DLN utilised 

in PUR hydrolysis studies poses numerous obstacles [107]. These include the identification 

of the precise bonds whose cleavage triggers translucency, quantifying the proportion of bonds 

that must be cleaved to induce this effect, understanding the resulting products of hydrolysis, 

determining the extent of substrate degradation, and evaluating the possibility to recover PUR 

building blocks from the hydrolysed substrate. These uncertainties introduce complexity into 

the comparison of enzymatic activities across various research endeavours. 
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Recently, a novel polyester PUR, poly(1,4-butylene adipate)-based PUR (PBA-PUR), 

was synthesised and proposed as a model TPU to replace Impranil DLN. PBA-PUR was 

synthesised from 4,4’-methylene diphenyl isocyanate and PBA. The authors suggest that 

it more closely resembles commercial bulk PUR materials compared to Impranil DLN, 

which is primarily utilised in textile coatings [76]. Similar to Impranil DLN, PBA-PUR can be 

employed for screening microorganisms and enzymes for polyester PUR-degrading activity, 

as it becomes translucent upon degradation [23,24,76]. Furthermore, due to its well-defined 

structure, the metabolites resulting from its degradation, which include adipic acid, 

1,4‑butanediol, and 4,4’-methylenedianiline, can be readily analysed.  

In summary, enzymatic degradation of PUR faces significant challenges due to their 

complex structure and limitations in enzymatic hydrolysis. These limitations are attributed 

to factors such as the three-dimensional organisation of PUR, its hydrophobicity, crystallinity, 

and the presence of various hydrolysable bonds. While enzymatic hydrolysis can target these 

bonds, its efficacy is influenced by bond energy and enzyme specificity. Polyester PUR is more 

susceptible to hydrolysis than polyether PUR due to its easily hydrolysable ester functional 

groups and reduced hydrophobicity, allowing easier permeation of water molecules 

and enzymes. Pretreatment methods are often necessary for enhanced enzymatic degradation 

of synthetic polymers. Types of pretreatments applied for synthetic polymers include thermal 

and thermochemical, oxidative, chemical, and mechanical methods [108,109]. For PUR, 

primarily thermochemical and mechanical methods of degradation have been proposed, such 

as hydrolysis [110], glycolysis [26,111,112], phosphorolysis [113], hydroglycolysis [41,114], 

and subcritical hydrothermal liquefaction [115]; these processes could serve as effective 

pretreatment techniques. Such approaches may be instrumental in overcoming the challenges 

of PUR biological degradation by making the polymer more accessible to enzymatic action 

and thus enhancing degradation efficiency.  

Another important factor is the effect of natural aging, which refers to the physical and 

chemical changes that materials undergo over time due to environmental factors such 

as exposure to light, oxygen, humidity, and temperature fluctuations. For PUR, natural aging 

can significantly impact biodegradability, particularly when it comes to enzymatic degradation. 

While aged PUR might be more susceptible to enzymatic degradation due to increased surface 

area, lower molecular weight, and the introduction of new functional groups, the effects 

of aging can also make the material more resistant if cross-linking and crystallinity increase 

[116–118]. Despite the recognised impact of natural aging on PUR properties, there is limited 
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research specifically exploring how these aging-induced changes influence subsequent 

enzymatic degradation. Understanding these interactions could be crucial for developing more 

effective recycling and biodegradation strategies for PUR waste. 

A comprehensive approach to PUR depolymerisation may entail employing a diverse 

array of enzymes that target specific types of chemical bonds, which could enhance 

the efficiency and effectiveness of the recycling process. Such a concerted strategy has already 

been proposed as a means to completely degrade PUR into recoverable building blocks, 

highlighting the importance of enzyme cooperation in the development of efficient 

biotechnological strategies for PUR waste management and recycling [4,119,120]. Applying 

an esterolytic enzyme to initiate the depolymerisation process of polyester PUR, succeeded 

by the enzymatic cleavage of urethane bonds within the fragmented PUR via an urethanolytic 

enzyme, offers a promising strategy to circumvent structural limitations arising from 

the restricted accessibility to urethane bonds in PUR. This dual-enzyme approach holds 

potential for facilitating the regeneration of PUR building blocks (Fig. 3). However, to date, 

comprehensive life cycle assessments (LCAs) of PUR derived from structural units obtained 

through biological recycling remain absent from the literature. Existing LCAs have primarily 

focused on PUR production from polyols regenerated via chemical recycling pathways 

[15,121], or from bio-based sources [122]. 

 

Fig. 3. A proposed holistic enzymatic degradation pipeline for polyester PUR, based 

on literature [4,119,120], entails the sequential utilisation of two classes of enzymes: 

esterolytic enzymes for initial depolymerisation through the cleavage of ester bonds in soft 
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PUR segments, followed by urethanolytic enzymes for the degradation of urethane bonds 

in exposed PUR fragments post-depolymerisation. This concerted enzymatic action aims 

to facilitate the retrieval of structural units inherent in PUR, namely diols and diisocyanates, 

thereby enabling their potential reuse in subsequent manufacturing processes. Through this 

systematic approach, the enzymatic breakdown of polyester PUR can be optimised, offering 

a sustainable solution for PUR recycling and resource recovery. 

 

2.3. Enzymes for PUR degradation 

The enzymes reported to have PUR-degrading activity are mainly hydrolases and 

oxido-reductases [70]. Oxido-reductases, however, can only catalyse non-specific oxidations 

under certain conditions and their degradation performance on PUR is often low. These 

enzymes typically release small quantities of undefined degradation products, which cannot 

be recovered in large quantities and may have other environmental toxicity [70,123]. 

As a result, oxido-reductases are unsuitable for the development of plastic degradation and 

recycling techniques.  

Instead, a more viable option is the use of hydrolases, which constitute a broad class 

of enzymes that catalyse bond cleavage by reaction with water. The natural function of most 

hydrolases is to breakdown nutrients into smaller units for digestion. Hydrolases are ideal 

catalysts, as they display a broad substrate specificity, do not require cofactors, are usually 

stable and can be easily purified, as they are generally extracellular enzymes [124]. However, 

enzymes that degrade insoluble or large molecules, such as those in PUR, can also be 

cell‑associated. These cell-associated enzymes, often linked to biofilm formation on insoluble 

substrates like PUR, tend to have higher specificity against high molecular weight substrates 

[72,125,126]. Hydrolases, including esterases, lipases, cutinases, amidases, proteases, 

and urethanases, have been reported to degrade certain PUR [57,58]. 

Given the limited information available on PUR-degrading enzymes in the literature, 

our aim is to systematise the current knowledge and offer classification and characteristics 

of native enzymes known to degrade PUR. For this purpose, in this review, we focus 

on describing PUR-degrading hydrolases that are included in the PAZY database 

(https://pazy.eu) [127] (as of August 2024) with reported degradation activity towards various 

PUR.  

The PAZY database gathers 31 hydrolases with verified activity on PUR. We discarded 

from the analyses two enzymes that did not have properly reported sequences or translated 
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genes (Pestalotiopsis microspora lipase, Rhodococcus equi TB-60). We also discarded five 

putative urethanases (Klebsiella oxytoca 1686, Burkholderia phytofirmans DSM17436, 

Microbacterium hydrocarbonoxydans, Sporosarcina ureae P17a, Rhodococcus erythropolis 

CCM2595) which were not confirmed in urethanase activity screening on ethyl carbamate 

as reported by the authors [83]. Additionally, one recently described fungal cutinases, 

Humicola insolens (HiC), not available in the PAZY database, was included in our analysis 

as this enzyme has a well documented PUR-degrading activity on several PUR [22]. 

Altogether, 25 enzymes were analysed in more detail (Table. 1).  

Table 1. Details of selected PUR-degrading enzymes reported in the PAZY database. 

Columns: Enzyme type - enzyme classification based on the dendrogram in Fig. 4A; Enzyme 

– general name of the presented enzyme, usually containing name of the host organism; 

Accession – Uniprot or NCBI id to the enzyme sequence; PDB - if available, 

PDB id of the crystal structure is provided; Catalytic triad – residue ids of amino acids 

constituting catalytic triad of a given enzyme; the numbering is according to the first reference 

in the Accession table; Oxyanion hole - residue ids of amino acids constituting oxyanion hole 

of a given enzyme; Size [kDa] - size of a given enzyme in kDA; Cleavage site – the type 

of bond(s) in PUR that were cleaved by a given enzyme in the literature; Substrate for activity 

test and reference - PUR substrate, on which a given enzyme’s activity was tested. 

Enzyme 

type 

Enzyme and origin Accession PDB Catalyt

ic triad 

Oxyani

on hole 

Size 

[kDa] 

Cleaved 

bond 

Substrate for activity 

test and references 

Bacterial 

cutinases 

TfCut2 
Thermobifida 

(Thermomonspora) 

fusca, (Cut2-kw3) 

E5BBQ3_TH
EFU  

 

4CG1, 
4CG2, 
4CG3 

S130 
D176 

H208  

Y60 
M131 

 

28.4 ester 
 

Impranil DLN; 
Elastollan B85A-10 and 

C85A-10 (supplied by 

BASF) [20] 
  

Tcur0390 
Thermobifida 

(Thermomonspora) 

curvata DSM43183 

ACY95991.1 
D1A2H1 

 S161 
D207 

H239 

F93 
M162 

31.3 ester 
 

Tcur1278 
Thermobifida 

(Thermomonspora) 

curvata DSM43183 

D1A9G5, 
ACY96861.1 

7YKO, 
7YKP, 
8GZD 

S159 
D205 

H237 

F91 
M160 

 

31.2 ester 
 

LCC 

leaf compost 

metagenome 

G9BY57 

 

4EBO 
and 

others 

S165 

D210 

H242 

Y95 

M166 

 

27.8 ester 

Hfor_PE-H 
Halopseudomonas 

formosensis 

WP_0905386
41.1 

 S171 
D217 

H249 

G97 
M172 

32.3 
 

ester 
 

Impranil DLN-SD; solid 
commercial bio-based 

polyester PUR coatings: 

ICO-THANE and 
ICO‑FIX (I-COATS 

N.V (Antwerp, 

Belgium)) [128] 

Fungal 
cutinases 

HiC 
Humicola insolens 

ASK40094.1 
A0A075B5G4 

4OYY, 
4OYL 
 

S105 
D160 

H173  

S28 
Q106 

19.9 ester, 
urethane, 

amide 

 

Polyurethane-polyester 
copolymer;  

pBPB, pNPC, pNPBS 

and pNPA [22] 

CpCut1 

Cladosporium sp. P7 

PRJNA99275

7 

OR245267 

 S129 

D184 

H197 

S50 

Q130 

22.5 ester 

 

Impranil DLN-SD; TPU 

film PBA-PUR; 

https://www.uniprot.org/uniprot/E5BBQ3
https://www.uniprot.org/uniprot/E5BBQ3
https://www.rcsb.org/structure/4CG1
https://www.rcsb.org/structure/4CG2#entity-1
https://www.rcsb.org/structure/4CG3#entity-1
https://www.ebi.ac.uk/ena/browser/view/ACY95991.1
https://www.uniprot.org/uniprotkb/D1A2H1/entry
https://www.uniprot.org/uniprot/D1A9G5
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&QUERY=ACY96861.1&LINK_LOC=protein&PAGE_TYPE=BlastSearch
https://www.rcsb.org/structure/7YKO#entity-1
https://www.rcsb.org/structure/7YKP#entity-1
https://www.rcsb.org/structure/8GZD#entity-1
https://www.uniprot.org/uniprot/G9BY57
https://www.rcsb.org/structure/4EB0
https://www.rcsb.org/search?q=rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession:G9BY57%20AND%20rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name:UniProt
https://www.rcsb.org/search?q=rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession:G9BY57%20AND%20rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name:UniProt
https://ncbi.nlm.nih.gov/protein/WP_090538641.1
https://ncbi.nlm.nih.gov/protein/WP_090538641.1
https://www.ncbi.nlm.nih.gov/protein/ASK40094.1?report=genbank&log$=prottop&blast_rank=1&RID=XPP79P4F013
https://www.ncbi.nlm.nih.gov/protein/4OYY_A?report=genbank&log$=prottop&blast_rank=2&RID=XPP79P4F013
https://www.rcsb.org/structure/4OYL


23 

 

 

post‑consumer polyester 

PUR foam [24] 

 BaCut1 

Blastobotrys sp. G-9 

XAQ58225  S107  

D184 
H199  

G38 

Y106  
 

23.4 ester PBA-PUR, polyester 

PUR foam [23] 

Esterases PudA  

Comamonas 

(Delftia) 
acidovorans TB-35 

BAA76305.1 

Q9WX47 

 S225 

E350  

H459  

H140 

G141 

G142 
A143 

57.8 ester 

 

Impranil DLN [28–30]; 

Polyester PUR 

synthesised from: 
poly(diethylene glycol 

adipate) and 2,4-tolulene 

diisocyanate  
[72]; 

poly(diethylene glycol 
adipate) [125] 

Diutina (Candida) 

rugosa 

20261 

P20261 

1CRL, 

1LPM, 

1LPN, 
1LPO, 

1LPP, 

1LPS, 
1TRH, 
3RAR 

S224 

E356 

H464  

F136 

G137 

G138 
G139 

58.6 ester 

 

Impranil DLN [31] 

CE_Ubrb 

metagenome-derived 

A0A2I2K6T5 

SIP63154.1 

 

 S127 

D230 

H262  

S56  

S128 

32.5 ester 

 

Impranil DLN; 

pNP chromogenic esters 

of various chain lengths 
(C2, C4 and C16) [32] 

 
 

Lipases 

PueA 

Pseudomonas 

chlororaphis 

AAD22743.1 

A0A0D5XYX

5  

 S207 

D255 

H313  

T143 

L208 

 

64.8 ester Impranil DLN [33–36] 

PueB 

Pseudomonas 

chlororaphis 

AAF01331.1 

Q9R9H2 

 S152  

?  

? 

?  

L153 

60.1 ester 

 

PueA 
Pseudomonas 

protegens strain Pf-5 

AAY92471.1 
A0A2C9EMV

6 

 S207 
D255 

H313  

T143 
L208 

65.0 ester 
 

Impranil DLN [37] 

PueB 

Pseudomonas 
protegens strain Pf-5 

AAY92474.2  S149 

D198  
H256 

L150 

T95 

59.1 ester 

 

PulA 

Pseudomonas 
fluorescens, esterase 

AAF66684.1 

Q9LAB9 

 S184 

D232 
H290 

L185  

? 

48.2 ester 

 

Impranil DLN [38,39] 

CalB 

Candida antarctica 

P41365 1TCA 
and 

others 

S105 

D187 

H224 

Q106 

T40 

33.0 ester TDI- and MDI-PCL 

based polyester PUR 

foams and polyester 
TPU coatings [77] 

Urethanas
es 

Lysinibacillus 

fusiformis 

KU353448 

A0A4Y5NHK

8 

 K81  

S156  

S180  

T177 

A178 

G179 

51.5 urethane Ethyl carbamate [82] 

amdS 
Aspergillus oryzae 

Q12559  K130 
S205 

S229 

I226 
G227 

G228 

60.1 Urethane, 
amide 

 

Ethyl carbamate; methyl 
carbamate, n‑butyl 

carbamate, acetamide, 

propionamide, 
butyramide, acrylamide, 

meth‑acrylamide, 
benzamide, 

thioacetamide, and 

nicotinamide [81] 

https://www.ncbi.nlm.nih.gov/protein/XAQ58225
https://www.ncbi.nlm.nih.gov/protein/BAA76305.1?report=genbank&log$=protalign&blast_rank=1&RID=NCETETKE014
https://www.ncbi.nlm.nih.gov/protein/P20261
https://www.rcsb.org/structure/1LPM
https://www.rcsb.org/structure/1LPN#entity-1
https://www.rcsb.org/structure/1LPO#entity-1
https://www.rcsb.org/structure/1LPP#entity-1
https://www.rcsb.org/structure/1LPS#entity-1
https://www.rcsb.org/structure/1TRH#entity-1
https://www.rcsb.org/structure/3RAR#entity-1
https://www.uniprot.org/uniprotkb/A0A2I2K6T5/entry
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&QUERY=SIP63154.1&LINK_LOC=protein&PAGE_TYPE=BlastSearch
https://www.ncbi.nlm.nih.gov/protein/AAD22743.1
https://www.ncbi.nlm.nih.gov/protein/AAF01331.1
https://www.uniprot.org/uniprotkb/Q9R9H2/entry
https://www.ncbi.nlm.nih.gov/protein/AAY92471.1
https://www.ncbi.nlm.nih.gov/protein/AAY92474.2
https://www.ncbi.nlm.nih.gov/protein/AAF66684.1
https://www.uniprot.org/uniprotkb/Q9LAB9/entry
https://www.uniprot.org/uniprotkb/P41365/entry#sequences
https://www.rcsb.org/structure/1TCA
https://www.rcsb.org/search?q=rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession:P41365%20AND%20rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name:UniProt
https://www.rcsb.org/search?q=rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession:P41365%20AND%20rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name:UniProt
https://www.ncbi.nlm.nih.gov/nuccore/KU353448
https://www.uniprot.org/uniprotkb/A0A4Y5NHK8/entry
https://www.uniprot.org/uniprotkb/A0A4Y5NHK8/entry
https://www.ncbi.nlm.nih.gov/protein/Q12559
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CPUTNase  

Candida parapsilosis 

NBRC 708  

P20261 

A0A679EIJ6 

 K149 

S224 

S248 

I245 

G246 

G247 

61.8 Urethane, 

amide 

 

Ethyl carbamate, methyl 

carbamate, n‑butyl 

carbamate, acetamide, 
propionamide, 

butyramide, acrylamide 

[129] 

AmdA  
Agrobacterium 

tumefaciens d3  

AAK28498.1 
Q9AHE8 

 

 K98  
S147  

S197 

Q194 
G195 

G196 

55.9 Urethane, 
amide 

 

Ethyl carbamate [83]; 
racemic 

2‑phenylpropionamide 

(amine) [130] 

Rhodococcus 
erythropolis MP50 

AY026386 
 

 

 K105 
S179 

S203  

E200 
A201 

G202 

55.6 urethane 
 

Ethyl carbamate [83] 

UMG-SP-1 

metagenome-derived 

WBR49956.1  K77 

S152 

S176 

I173 

G174 

G175 

45.4 urethane 

 

Low molecular weight 

dicarbamates: 

Methylenedianiline 

(MDA)-methanol, 
MDA-ethanol, 

MDA‑benzyl alcohol, 

Toluenediamine (TDA) 
-ethoxyethanol, 

2,4‑TDA-diethylene 

glycol, and 
2,6‑TDA‑diethylene 

glycol [26]; 

additionally UMG-SP-1: 
thermoplastic 

polyester PUR [19]; 

additionally UMG-SP-2: 
low 

molecular weight 

dicarbamates after 

glycolysis of TDI-based 

polyether PUR 

fragments [26] 

UMG-SP-2 

metagenome-derived 

WBR49957.1  K76 

S151 

S175 

I172 

G173 

G174 

45.7 urethane 

 

UMG-SP-3 

metagenome-derived 

WBR49958.1  K76 

S151 

S175 

I172 

G173 

G174 

45.6 urethane 

 

 

2.3.1. Enzymes classification 

All 25 selected enzymes were further analysed by computing a Multiple Sequence 

Alignment (MSA) and a phylogenetic tree (Fig. 4A). Overall, five clusters of homologous 

enzymes emerged and two outliers, CE-Ubrb and CalB, were found (Fig. 4A). These groups 

were classified based on their: 1) sequence and MSA analysis, 2) classification in Uniprot [131] 

and NCBI [132] databases, and 3) hydrolytic selectivity of PUR bonds (as reported in published 

studies listed in Table 1). The esterolytic enzymes were found in four distinct groups (referred 

to as “Bacterial cutinases”, “Fungal cutinases”, “Esterases” and “Lipases”). All the esterolytic 

enzymes belong to the alpha/beta-hydrolase fold superfamily and they display the classical 

Ser‑His-Asp/Glu catalytic triads. Urethanolytic enzymes, on the other hand, are found 

in a single group, referred to as “Urethanases” that all have Ser-(cis)Ser-Lys catalytic triad 

(Fig. 4A; Table 1). The "Urethanases" group exhibits the most variation among its enzyme 

members in terms of sequence identity (Fig. 4B). 

https://www.ncbi.nlm.nih.gov/protein/P20261
https://www.ncbi.nlm.nih.gov/protein/AAK28498.1
https://www.uniprot.org/uniprotkb/Q9AHE8/entry
https://www.ncbi.nlm.nih.gov/nuccore/AY026386
https://www.ncbi.nlm.nih.gov/protein/WBR49956.1?report=genbank&log$=prottop&blast_rank=1&RID=N3W4ZEVY013
https://www.ncbi.nlm.nih.gov/protein/WBR49957.1?report=genbank&log$=prottop&blast_rank=1&RID=N3W5EDUK013
https://www.ncbi.nlm.nih.gov/protein/WBR49958.1?report=genbank&log$=prottop&blast_rank=1&RID=N3W7CXJC016
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Fig. 4. A) Dendrogram of 25 enzyme sequences showing similarity relationships between 

PUR-degrading enzymes included in the PAZY database. Esterolytic enzymes marked in red 

and urethanolytic enzymes in blue. Additionally, one fungal cutinase, HiC, identified from 

the literature as having a PUR-degrading activity was added to the dendrogram. MSA 

and phylogenetic tree were prepared using the MAFFT webserver [133] with the G-INS-1 

progressive method. The enzymes were grouped based on pairwise sequence alignment using 

Ident and Sim suite [134], with a threshold of sequence identity >10%. Group classification 

was determined according to the classification of individual enzymes in the Uniprot [131] 

and NCBI [132] databases. B) Heatmap of pairwise sequence identity [%] of all the 25 selected 

enzymes. Pairwise sequence alignment was calculated using Ident and Sim [134] based 
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on the MSA computed by MAFFT [133]. The data was curated and visualised using Pandas 

[135] and Seaborn [136] Python libraries. 

While this review initially categorises enzymes based on their primary activity—

amidases/urethanases and esterases/lipases/cutinases—it is important to acknowledge that 

these enzymes often exhibit substrate promiscuity, meaning they can act on both ester 

and amide/urethane bonds. This promiscuity is particularly relevant for the degradation 

of polyester PUR, which contains both types of bonds.  

Recent studies have highlighted the dual activity of certain hydrolases, where enzymes 

traditionally classified as esterases also exhibit amidase activity, and vice versa. For instance, 

it was demonstrated through computational approaches that the substrate promiscuity 

of Candida antarctica lipase B (CalB) extends to amidase activity, a finding that has been 

supported by experimental data [137,138]. Similarly, esterases were engineered to enhance 

its activity on amide bonds, effectively switching its specificity [139,140].  

This promiscuity not only expands the potential applications of these enzymes 

in biocatalysis but also suggests that the enzymatic degradation of PUR might involve a more 

complex interplay of activities than previously assumed. The implications for PUR recycling 

are significant, as a single enzyme or a consortium of enzymes with overlapping specificities 

could potentially streamline the degradation process by targeting both ester and amide bonds 

within the polymer matrix.  

Given the growing body of research in this area [141–144], it is clear that understanding 

and leveraging enzyme promiscuity will be critical for the development of more efficient 

and versatile enzymatic systems for PUR degradation. 

 

2.3.2. Structures and binding sites 

For each enzyme, we curated 3D crystal structures or AlphaFold 2 models of enzymes, 

to examine and elucidate the shared structural motifs characteristic of the respective group. 

For the enzymes that do not have a crystallographic structure available in the Protein Data Bank 

(PDB) [145], or a 3D model in the AlphaFold2 Protein Structure Database (AlphaFold DB) 

[146–148], three-dimensional organisations were derived through computational modeling 

using AlphaFold 2 [146]. The details of the structure’s origin are listed in Table 2. 

Table 2. The binding and active site characteristics of the selected PUR-degrading enzymes. 

Columns: Group - enzyme classification as in the dendrogram in Fig. 4A; Enzyme – shortened 
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name of the presented enzyme; Structure – the origin of a given enzyme’s 3D structure; 

“PDB” if a crystal structure is available in the PDB database, “AF DB” if a model was 

downloaded from AlphaFold DB, or “AF2” if a structure was modelled using AlphaFold 2; 

Binding site – given enzyme’s binding site architecture based on the models presented 

in Fig. 5; Catalytic triad – amino acids forming the catalytic triad of a given enzyme, amino 

acids coloured according to Clustal Omega; Oxyanion hole – amino acids forming 

the oxyanion hole of a given enzyme, amino acids coloured according to Clustal Omega; Fold 

– the fold of an enzyme structure.  

Group Enzyme 
Structur

e 

Binding site 

architecture 
Catalytic triad Oxyanion hole Fold 

Bacterial 

cutinases 

TfCut2 PDB 

 
 

 

α/β 

Tcur0390 AF DB 

 Tcur1278 PDB 

LCC PDB 
 

Hfor AF2 
 

Fungal 

cutinases 

HiC PDB 

 
 

 CpCut1 AF2 

BaCut1 AF2 
 

Esterases 

PudA AF DB 

 
  

from D.rugosa PDB 

 
  

Outlier CE-Ubrb AF DB 

 
  

Lipases 

PueA  

P. chlororaphis 
AF DB 

 
 

 PueA  

P. protegens 
AF DB 

PulA  

P. fluorescens 
AF DB 

 

PueB  

P. protegens 
AF2 

 
PueB  

P. chlororaphis 
AF DB 

 

Outlier CalB PDB 

 
  

Urethanas

es 

AmdA AF DB 

 

 

 

? 

from L. 

fusiformis 
AF DB 

 

UMG-SP-1 AF2 

 
 

UMG-SP-2 AF2 

UMG-SP-3 AF2 

amdS AF DB 

CPUTNase AF DB 
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from R. 

erythropolis 
AF2 

 
 

Overall, the binding site architectures of the selected enzymes can be conceptualised 

into three distinct topologies (Fig. 5). Cutinases exhibit a highly exposed binding site located 

on the surface (Fig. 5A), reflecting their natural affinity for polymer chains. This configuration 

facilitates enzyme association with polymer substrates, thereby promoting enzymatic 

degradation. In contrast, some enzymes feature a more buried binding site that remains 

relatively wide and capable of tightly associating with polymer chains. However, in such 

a case, binding to a polymer may necessitate the enzyme to adopt a more open conformation, 

potentially slowing down the catalytic rate (Fig. 5B). The third type of binding site enables 

hydrolysis primarily of terminal or near-end groups of degraded compounds. Such a binding 

site is likely unsuitable for the depolymerisation of high molar mass PUR (Fig. 5C). This 

classification underscores the diverse strategies employed by enzymes for substrate recognition 

and catalytic activity, highlighting the importance of understanding binding site architectures 

in the context of enzymatic degradation pathways.  

 

Fig. 5. Schematic representation of different binding site topologies encountered 

in PUR‑degrading hydrolytic enzymes. 

For visualisation purposes, a single representative enzyme was chosen for each enzyme 

group (Fig. 6), except for the outliers, CE-Ubrb and CalB. However, in the case 

of "Urethanases," two representative enzyme structures were selected instead of one. This 

decision was driven by the bifurcation observed within this group: one subset displaying 

catalytic activity exclusively on short carbamates, while the other subset demonstrates activity 

towards short segments of polyether PUR. The selected enzymes representing each group 

are as follows:  

1. “Bacterial cutinases”: TfCut2 (PDB id: 4CG1 [149]) 

2. “Fungal cutinases”: HiC (PDB id: 4OYY [150]) 

3. “Esterases”: Diutina (Candida) rugosa (PDB id: 1CRL [151]) 
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4. “Lipases”: PueA, Pseudomonas chlororaphis (AlphaFold DB model, Uniprot 

id: A0A0D5XYX5) 

5. “Urethanases”: CPUTNase, Candida parapsilosis NBRC 708 (AlphaFold DB model, 

Uniprot id: A0A679EIJ6) and UMG-SP-2 (AlphaFold2 model) 

In the next subsections, we discuss the groups of enzymes in more detail focusing on 

their structure, binding site and reported activity. However, comparing the efficiency of PUR 

degradation among the selected enzymes is not feasible due to the lack of standardised 

PUR‑degrading assays. Various studies have employed diverse high molar mass PUR 

substrates and carbamates under differing conditions, including variations in time, pH, 

and temperature. Liu et al. [24] attempted to summarise the degradation efficiency of some 

reported PUR-degrading microorganisms, ranging from kinetic analyses to mere indications 

of clear zone formation on agar plates with Impranil DLN, underscoring the inherent variability 

in experimental approaches.  
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Fig. 6. Binding site architectures of representative enzymes from all homologous groups. 

Graphics were created using PyMOL [152]. Catalytic triads are depicted as black sticks, while 

oxyanion hole amino acids are shown as green sticks. The first column displays each enzyme 

in cartoon form. In the second column, a close-up of the binding site is presented, with the 

enzyme shown as a surface and the active site displayed transparently. The third column 

provides a side view of the active site, allowing its shape and depth to be observed. Arrows 

indicates entry to the binding site visible at the surface (middle column) or cross-section (rigth 

column). A. “Bacterial cutinases”: TfCut2 (PDB id: 4OYY); B.“Fungal cutinases”: HiC (PDB 

id: 4CG1); C. “Esterases”: Diutina (Candida) rugosa (PDB id: 1CRL); D. “Lipases”: PueA, 

Pseudomonas chlororaphis (AlphaFold DB model, Uniprot id: A0A0D5XYX5); 

E. “Urethanases”: CPUTNase, Candida parapsilosis NBRC 708 (AlphaFold DB model, 

Uniprot id: A0A679EIJ6); F. UMG-SP-2 (AlphaFold 2 model). 

Esterolytic enzymes 

The first group, “Bacterial cutinases” is formed by five bacterial cutinases 

(EC 3.1.1.74): one from leaf compost metagenome: Leaf-branch compost bacterial cutinase 

(LCC); and three from Actinobacteriota: Thermobifida (Thermomonspora) fusca (TfCut2), 

Thermobifida (Thermomonspora) curvata DSM43183 (Tcur1278), Thermobifida 

(Thermomonspora) curvata DSM43183 (Tcur0390) [20] and and one from Proteobacteria, 

Halopseudomonas formosensis (Hfor) [128]. All of the bacterial cutinases were reported 

to cleave ester bonds in Impranil DLN and other polyester PUR [20,128]. LCC and TfCut2 

caused a weight loss in Elastollan B85A-10 and C85A-10 of 0.9-3.7% in 60-70°C after 100h 

of incubation [20]. Hfor activity towards degradation of Impranil DLN, ICO-THANE 

and ICO‑FIX , was measured by the consumption of ammonium (NH+
4). 

The second group of enzymes, “Fungal cutinases” includes three cutinases 

(EC 3.1.1.74), one from Humicola insolens (HiC) [22], another from Cladosporium sp. P7 

(CpCut1) [24,76], and a recently characterised enzyme from Blastobotrys sp. G-9 (BaCut1) 

isolated from a 20-year landfill [23]. CpCut1 remarkable polyester PUR-degrading activity was 

recently shown on three polyester PUR (including a thermoset PUR), exceeding performance 

of some bacterial cutinases. CpCut1 exhibited superiority, completely degrading 

1.0% (vol/vol) of Impranil DLN-SD particle dispersion within 30 minutes, as evidenced by the 

gradual decrease in turbidity over time. In contrast, LCC, TfCut2, and HiC achieved 

comparable degradation levels of 1.0% Impranil DLN-SD dispersion after 3 hours of reaction, 

with extents of degradation at 23.5%, 5.3%, and 10.7%, respectively, significantly lower than 

CpCut1. Moreover, while differences in degradation efficiency among the cutinases were 

smaller for the other two PUR substrates, CpCut1 notably outperformed its counterparts, 

resulting in the highest weight loss in both the synthesised TPU film PBA-PUR 
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and post‑consumer PUR foam after 12 hours of treatment, 40.5% and 20.6%, respectively. 

In comparison, the weight loss for the PBA-PUR treated with the LCC, TfCut2 and HiC ranged 

from 20.8% to 13.7%, and for post-consumer PUR foam, it ranged from 9.5% to 5.8% [24]. 

BaCut1 was also reported to degrade PBA-PUR, releasing adipic acid as major product, 

and degraded 50% of commercial polyester PUR foam within 48 h at 37 ℃ [23]. All three 

fungal cutinases were reported to degrade ester bonds in polyester PUR. Additionally, HiC 

is the only polyester PUR degrading enzyme with confirmed uretanolytic and amidolytic 

activity [22].  

For the group of "Bacterial cutinases," we present the crystal structure of TfCut2 

cutinase (PDB id: 4CG1) (Fig. 6A), while for "Fungal cutinases," the selected structure is HiC 

cutinase (PDB id: 4OYY) (Fig. 6B). Interestingly, sequences of fungal cutinases are not very 

similar to bacterial cutinases (only 3.7-6.6% sequence identity), hence fungal and bacterial 

cutinases were grouped separately. However, structurally they partly align; fungal cutinases 

are smaller, as the bacterial cutinases structure is formed by central nine-stranded β-sheet 

flanked by 11 α-helices on both sides [149], whereas fungal cutinases contain only five β-sheet 

surrounded by α-helices [150] (Fig. 6A-B). Both fungal and bacterial cutinases feature an 

active site situated at the enzyme's surface, incorporating the classical Ser-His-Asp catalytic 

triad and an oxyanion hole formed by backbone amine groups of two amino acids (Table 1, 

Table 2). Notably, within the binding site, a hydrophobic groove facilitates polymer binding. 

Given the surface localisation of the active site, no tunnel leads to it, rendering it highly 

accessible and capable of binding bulky polymer chains, including their natural substrate, cutin, 

as well as synthetic polymers (Fig. 6A-B). The binding site of cutinases is illustrated in the 

model depicted in Fig. 5A. Overall, fungal and bacterial cutinases are a very promising group 

of enzymes for PUR depolymerisation, as they are serine hydrolases that naturally catalyse 

the breakdown of polyesters that form the cuticle that protects plants. The main component 

of cuticle is cutin, a waxy water-repellent lipid polyester, which is the natural substrate 

of cutinases [153]. As cutin resembles structurally synthetic polyesters that contain 

hydrolysable ester bonds, native cutinases have been shown to be able to degrade ester bonds 

in PET [154–157] and polyester PUR [20,22,24].  

The third group of enzymes, “Esterases”, is constituted of two quite distant (sequence 

identity of 25.7%) esterolytic (EC 3.1.2.-) alpha-beta hydrolases: Comamonas (Delftia) 

acidovorans TB-35 (PudA) carboxylic ester hydrolase from Proteobacteria [28–30,72,125] 

and Diutina (Candida) rugosa lipase 1 from Eukaryotic host [31]. After a period of seven days, 
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PudA enzyme achieved complete degradation of 10 g·L−1 of cube-shaped polyester PUR using 

it as a sole substrate, characterised by long-chain polyester segments synthesised 

from poly(diethylene glycol adipate and 2,4-tolylene diisocyanate), converting it into 

diethylene glycol (DEG) and a small amount of trimethylolpropane (TMP) [28]. Diutina 

(Candida) rugosa lipase 1 degraded Impranil DLN, yielding diethylene glycol (DEG) 

as a byproduct, at a generation rate of 0.12 mg/L/min [31] (Table 1). 

Our selection for structural representation focused on Diutina (Candida) rugosa 

(PDB id: 1CRL [151]), the sole protein within this group with available crystal 3D structures 

in the PDB database. Specifically, we opted to showcase the structure with the highest 

resolution. Notably, an alternate structure (PDB id: 1LPP) within the database features a ligand 

comprising a molecule of 1-hexadecanesulfonic acid which contains hydrophobic hydrocarbon 

tail. Although not depicted, it is worth noting that a PUR chain binding to Diutina (Candida) 

rugosa could mimic the conformation observed with this ligand. This enzyme is distinguished 

by its unique Ser-His-Glu catalytic triad, augmented by an oxyanion hole formed by HGG 

motif [158–160] that is substituted to FGG in Diutina (Candida) rugosa (Table 1, Table 2). 

Furthermore, Diutina (Candida) rugosa showcases a notable structural feature—a lengthy 

and slender tunnel extending from the active site amino acids deep into the protein core (Fig. 

6A), whose shape corresponds to the model on Fig. 5C. 

The fourth group, “Lipases” consists of five PUR-degrading lipases (EC 3.1.1.3) from 

Pseudomonas strains that belong to Proteobacteria: PUR esterases A (PueA) and B (PueB) 

from Pseudomonas chlororaphis [33–36], PUR lipase (PulA) from Pseudomonas fluorescens 

[38,39] and lipases A (PueA) and B (PueB) from Pseudomonas protegens strain Pf-5 [37]. 

Although they are often referred to as “polyurethanases,” these enzymes are more accurately 

classified as extracellular lipases and esterases [37]. All the discussed enzymes were proved 

to hydrolyse ester bonds in Impranil DLN, indicated by a change in relative absorbance [37] 

or a halo formation on Impranil DLN agar plates [25,33–35,37,38]. In the case of Pseudomonas 

chlororaphis and Pseudomonas fluorescens, two-enzyme systems were assigned to hydrolyse 

PUR: PueA with higher and PueB with lower activity. 

For the group of “Lipases”, we present the structure of PueA from Pseudomonas 

chlororaphis, for which an AlphaFold2 model is available (Uniprot id: A0A0D5XYX5). These 

lipases are relatively large enzymes (~60 kDa) stabilised by calcium ions. Their active site, 

comprising the classical catalytic triad and two residues forming an oxyanion hole (Table 1, 

Table 2), is situated within a spacious pocket, albeit more solvent-exposed compared 
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to cutinases. However, this pocket is still notably more buried than in the case of cutinases 

and represents the model on Fig. 5B. The depth of the active binding site in lipases may impose 

constraints on their ability to efficiently bind PUR polymer chains, potentially leading to lower 

efficiency of PueA [161] in comparison to cutinases. This distinction underscores the nuanced 

interplay between enzyme structure and substrate specificity, shedding light on potential 

differences in catalytic efficiency among enzyme classes (Fig. 6D). 

The outliers that were found, a metagenome-derived carboxyl-ester hydrolase 

belonging to the lipolytic family IV (CE_Ubrb) [32] and Candida antarctica lipase B (CalB) 

both show less than 10% sequence identity with any other enzyme (Fig. 4B). CE_Ubrb was 

reported to degrade ester bonds in Impranil DLN (Table 1) shown by its clearing [32]. CalB 

was reported to depolymerise polycaprolactone-based polyester PUR foams and TPU coatings 

due to ester bonds cleavage [77]. 

Urethanolytic enzymes 

The fifth group, “Urethanases” is formed by eight enzymes with reported urethanolytic 

activity (EC 3.5.1.75) from Actinobacteriota: Lysinibacillus fusiformis [82]; Eucaryotic hosts: 

Aspergillus oryzae (amdS) [81], Candida parapsilosis NBRC 708 (CPUTNase) [129]; 

Proteobacteria: Agrobacterium tumefaciens d3 (AmdA) [83,130], Rhodococcus erythropolis 

MP50 [83] and from metagenomes isolated from an enriched site containing perennial PUR 

waste (UMG-SP-1, UMG-SP-2, UMG-SP-3) [26]. These urethane bond-degrading enzymes 

were tested either on carbamates [82,83,129,130], prior-depolymerised PUR fragments [26] 

or polyether PUR [19]. In fact, most of the urethanases included in the PAZY database were 

identified as potential enzymes able to degrade ethyl carbamate with application in food 

industry, especially alcohol beverages [81–83,129]. Such urethanases usually naturally 

catalyse the hydrolysis of terminal urethane releasing alcohol, CO2, and NH3 [83,162], hence 

they might not be able to hydrolyse urethane bonds in PUR, as in such a case these bonds 

are incorporated inside a bulky polymer chain.  

In early 2023, Branson et al. reported three novel urethanases capable of degrading 

urethane bonds within low molecular weight dicarbamates [26]. These urethanases, namely 

UMG-SP-1, UMG-SP-2, and UMG-SP-3, were isolated from a metagenome library derived 

from soil exposed to PUR waste over an extended period. In their study, Branson et al. 

synthesised a TDI-based polyether PUR foam, which was subsequently depolymerised 

via glycolysis into low molecular weight dicarbamates. The resulting dicarbamates underwent 
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degradation facilitated by UMG-SP-2, releasing glycol, carbon dioxide, and aromatic diamine. 

UMG-SP-2 was able to convert approximately 65 % of glycolysedPUR fragments to aromatic 

diamine within 24 h. Adding more enzyme led to complete conversion after 48 h. This 

integrated approach proposed by Branson et al. effectively enabled the comprehensive 

degradation of polyether PUR foam through combined chemical and biological recycling 

methods [26]. In a recent study, the hydrolysis profile of UMG-SP-1 was expanded beyond the 

reported low-molecular-weight dicarbamates, demonstrating its ability to degrade urethane 

bonds in thermoplastic polyester PUR [19]. 

For the group of “Urethanases", two representative structures were chosen, CPUTNase 

and UMG-SP-2. CPUTNase exhibits urethanase activity limited to small carbamates, such 

as ethyl carbamate, methyl carbamate, n-butyl carbamate, acetamide, propionamide, 

butyramide, and acrylamide [129] (Fig. 6E). In contrast, UMG-SP-2 demonstrates activity on 

glycolysed PUR fragments [26] (Fig. 6F). Both urethanases feature an active site comprised 

of a Ser‑(cis)Ser-Lys catalytic triad, along with an oxyanion hole formed by three backbone 

amino acids: Ile, Gly, and Gly (Table 1, Table 2). The active sites of both enzymes are nestled 

within the protein structure, with CPUTNase exhibiting one tunnel and UMG-SP-2 displaying 

two tunnels. Notably, the binding cavity of UMG-SP-2 appears more capacious than that 

of CPUTNase, suggesting a potential for UMG-SP-2 to accommodate bulkier substrates. 

CPUTNase is likely specialised in cleaving terminal amine groups from substrates, whereas 

UMG-SP-2, isolated from an enriched site containing perrennial PUR waste, is indicative 

of an enzyme evolved to degrade urethane bonds within PUR. This observation underscores 

the adaptive nature of UMG-SP-2, potentially tailored for the degradation of PUR (Fig. 6E-F). 

The configuration of the CPUTNase active site groove aligns with the binding site model 

depicted in Fig. 5C, while the binding site of UMG-SP-2 could potentially be represented 

by the model in Fig. 5B. However, it is challenging to ascertain definitively for these enzymes. 

 

2.3.3. Active sites and mechanisms 

The PUR-degrading hydrolases selected in our study encompass one of two catalytic 

triads: the "classical" catalytic triad Ser-His-Asp (or its variant with Glu substituting Asp) 

(Fig. 7A-B), or the Ser-(cis)Ser-Lys catalytic triad (Fig. 7C-D). Notably, esterolytic enzymes 

exclusively feature the classical Ser-His-Asp/Glu catalytic triad, while urethanolytic enzymes 

possess the Ser-(cis)Ser-Lys catalytic triad (Table 2). Both types of catalytic triads facilitate 
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nucleophilic attack by an activated seryl residue onto the carbonyl carbon of the scissile bond 

(Fig. 7A, C), resulting in the formation of a tetrahedral intermediate. The substrate specificity 

of these catalytic triads primarily revolves around their ability to stabilise this tetrahedral 

intermediate [163,164]. Furthermore, both catalytic triads are accompanied by an oxyanion 

hole, typically formed from backbone amine groups. Among the selected enzymes, three types 

of oxyanion holes were observed. Interestingly, enzymes within the described groups share 

a common type of oxyanion hole: composed of backbone amine groups of four amino acids 

in "Esterases" [158], three amino acids forming a XGG or XAG motif in "Urethanases," and 

those created by only two amino acids in cutinases and lipases.Theoretical and computational 

findings by Cerqueira et al. (2017) [164] suggest remarkable similarities between the catalytic 

mechanisms of enzymes employing the Ser-(cis)Ser-Lys catalytic triad and the classical 

Ser‑His-Asp catalytic triad. Specifically, the role of the unconventional (cis)Ser alongside 

the catalytic Lys appears to replace the functional role of His-Asp. The (cis)Ser, positioned 

in an unusual cis orientation, facilitates precise contacts with the other two residues 

of the catalytic triad and stabilises the amine group of the tetrahedral intermediate. 

In esterolytic enzymes, however, it is the catalytic histidine that stabilises the ester bond’s 

alkoxy oxygen in the tetrahedral intermediate. A notable distinction lies in the arrangement 

of the catalytic triad within the active site. While the Asp in the classical triad does not directly 

interact with the substrate, the catalytic Lys in the Ser-(cis)Ser-Lys triad can engage directly 

with the substrate, influencing its orientation within the active site. Energy calculations suggest 

that the unique alignment of the Ser-(cis)Ser-Lys catalytic triad relative to the classical 

Ser‑His‑Asp triad may enhance the stabilisation of tetrahedral reaction intermediates, thereby 

lowering the activation energies required for catalysis and potentially rendering these enzymes 

more catalytically efficient [107]. 
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Fig. 7. A) Active site residues: classical Ser-His-Asp catalytic triad (black) with oxyanion hole 

(green) of esterase/lipase/cutinases during the first step of enzymatic catalysis on an ester bond. 

Catalytic histidine acts as a general base activating the catalytic serine hydroxyl group for 

nucleophilic attack on the carbonyl carbon of the ligand. The third component of this catalytic 

triad, aspartic acid, acts to increase the basicity of the catalytic histidine. The oxyanion 

intermediate formed is stabilised by the backbone amide groups of two residues (green). 

B) Active site of Pseudomonas chlororaphis lipase PueA modelled with AF2. The catalytic 

triad residues are shown as black sticks. The oxyanion forming residues shown as green sticks. 

C) Active site residues: Ser-(cis)Ser-Lys catalytic triad (black) and oxyanion pocket (green) 
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of amidases/urethanases during the first step of enzymatic catalysis on an urethane bond. Ser 

is ionised through proton transfer to (cis)Ser. In the same step, the proton bonded to (cis)Ser 

migrates to Lys. Ser performs nucleophilic attacks towards the carbonyl carbon of the substrate 

(grey), leading to formation of a tetrahedral adduct. The negatively charged carbonyl group 

of the amide of the substrate is stabilised by hydrogen bonding provided by the NH groups 

of the oxyanion pocket. D) Active site of UMG-SP-2 urethanase modelled with AlphaFold 2. 

The catalytic triad residues are shown as black sticks. The oxyanion forming residues shown 

as green sticks. 

Recently, a novel computational study has been published on the mechanism of ester 

bond cleavage in Impranil DLN repeating unit by PueA from Pseudomonas chlororaphis [161]. 

The proposed mechanism aligns with that suggested for other esterolytic serine hydrolases 

[165–169]. Additionally, computational studies on peptide amidases with Ser-(cis)Ser-Lys 

catalytic triads have also been explored [164,170]. The degradation mechanisms of both 

enzyme types, facilitated by their distinct catalytic triads acting on parallel C-N/C-O 

amide/ester bonds, exhibit parallel pathways and were divided by the authors into mechanisms 

consisting of either 4 or 5 steps. The degradation mechanisms mediated by both catalytic triads 

on parallel C-N/C-O amide/ester bonds can be outlined as follows: 

1. Nucleophilic Attack by catalytic serine: The catalytic serine residue undergoes 

nucleophilic attack on the carbonyl group of the substrate, resulting in the formation of the 

first tetrahedral intermediate. 

2. Formation of the Acyl-Enzyme Complex: The nucleophilic attack leads to the formation 

of an acyl-enzyme complex, wherein the substrate becomes covalently bound to the enzyme 

via an ester or amide linkage. 

3. Release of Ammonia/Alcohol Product: During this step, an ammonia or alcohol 

molecule, depending on the nature of the substrate, is released as a product of the reaction.  

4. Nucleophilic Attack by a Water Molecule: A water molecule then acts as a nucleophile, 

attacking the acyl-enzyme complex, leading to the formation of the second tetrahedral 

intermediate.  

5. Release of the Carboxylic Acid Product: Finally, the product of the reaction, typically 

a carboxylic acid, is released from the enzyme, completing the catalytic cycle. 

The divergence in substrate specificity among enzymes hydrolysing C-O and C-N 

bonds, despite their mechanistic similarities, is intriguing [171,172]. Particularly noteworthy 

is the prevalence of the classical Ser-His-Asp catalytic triad across diverse enzyme groups, 

including some amidases, similarly to the esterolytic PUR-degrading enzymes discussed in this 

review. As previously noted, the substrate specificity of hydrolases is primarily determined 
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by their ability to stabilise the tetrahedral intermediate formed during nucleophilic attack 

by an activated serine residue onto the carbonyl carbon of the scissile bond. Despite this shared 

mechanistic feature, the precise factors contributing to the observed differences in substrate 

specificity remain elusive. 

 When considering parallel C-N/C-O amide/ester bonds, it is crucial to acknowledge 

the distinct characteristics of amides compared to esters. Amides exhibit partial C-N double 

bond character and feature an additional hydrogen atom bound to the amide nitrogen, a feature 

absent in esters [163]. Esterases typically lack the capability to form a hydrogen bond with the 

scissile NH group of the substrate during the transition state. This interaction, crucial 

for amidase/protease-catalysed hydrolysis, affects the energy landscape of the reaction. 

In amidases, the transition state for nitrogen inversion corresponds to the highest energy point 

along the reaction coordinates for the acylation step of amide-bond hydrolysis [173]. 

This is attributed to the energetic cost of nitrogen inversion being added to the high energy 

of the tetrahedral intermediates formed during the reaction. The ability of an enzyme 

to accommodate such a hydrogen bond distinguishes amidases/proteases from 

esterases/lipases. Moreover, this hydrogen bond acceptor could reside either in the enzyme 

[140] or in the substrate, facilitating substrate-assisted catalysis [163,174]. Leveraging 

interactions with this hydrogen bond during the transition state can significantly reduce 

the activation energy of hydrolysis, equivalent to the energy of a hydrogen bond [163]. 

The importance of stabilising the tetrahedral intermediate in hydrolysed PUR was also 

confirmed in the previously mentioned computational study, which investigated the cleavage 

of ester bonds in Impranil DLN by PueA from Pseudomonas chlororaphis. While it was 

established that PueA can degrade ester bonds in Impranil DLN, the substrate’s binding mode 

was previously unknown. Consequently, the authors explored two possible opposing 

orientations of the Impranil DLN repeating unit in the binding site, referred to as RC1 and RC2. 

Their findings demonstrate that pose RC2 exhibits superior protein-ligand interactions 

decomposed by ligand and activation free energy of the acylation step, which is 10 kcal/mol 

lower than for RC1 starting structure. Interestingly, while the kinetics of activation 

of the catalytic serine is basically equivalent in the two reactions, a notable difference arises 

in the second step of the acylation. This step involves the proton transfer from the protonated 

catalytic histidine to the carbonyl oxygen of the Impranil, which is necessary to release the first 

product of the reaction, the alcohol [161]. Notably, in the favourable orientation RC2, 
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the interactions of the leaving group oxygen with the Nε atom of catalytic histidine are more 

feasible, facilitating stabilisation of tetrahedral intermediate.  

Introducing mutations to known esterolytic enzymes to create a hydrogen bond acceptor 

for the scissile NH group of the substrate could be a promising strategy for designing 

polyurethanases. These engineered enzymes could then be capable of degrading urethane, urea, 

and amide bonds in PUR. An example of such an approach is the re-engineering of HiC 

cutinase with altered substrate specificity towards amide hydrolysis through the introduction 

of single-point mutations acting as scissile NH hydrogen bond acceptors [140], 

or the development of a HiC variants with lost polyesterase activity (verified on PET) in favour 

of amidase activity, confirmed on the insoluble substrate 3PA 6,6 [139]. In the second study, 

however, no depolymerising activity on nylon 6,6 of these HiC variants was confirmed. 

Although the activity of these mutants has not been specifically verified on PUR 

depolymerisation, their potential as candidates for novel polyurethanases is promising, 

particularly given HiC cutinase's demonstrated ability to hydrolyse ester bonds, and, albeit less 

efficiently, urethane bonds in PUR [22]. 

These insights into the mechanistic underpinnings of substrate specificity not only 

reinforce the potential of such engineered enzymes but also suggest that exploiting 

or enhancing enzyme promiscuity could be a viable strategy for broadening their catalytic 

scope. For instance, by introducing mutations that enable esterases to form hydrogen bonds 

with the scissile NH group of amide bonds, these enzymes could potentially acquire or enhance 

amidase activity. This concept is exemplified by the aforementioned studies in which HiC 

cutinase variants were engineered for altered specificity towards amide hydrolysis [139,140], 

underscoring the potential for tailoring enzyme activity to target both ester and urethane bonds 

in complex polymers like PUR. 

 

2.4. Conclusions  

Enzyme-based degradation of PUR presents both promise and challenge 

as an alternative to traditional recycling methods. The complexity arises from the crosslinked 

structure of certain PUR types, particularly thermosets, and the diverse formulations 

encountered in PUR waste. This diversity complicates the development of a universal recycling 

method. Previous efforts in enzymatic depolymerisation have primarily focused 

on polyester PUR, targeting ester bonds using esterolytic enzymes. Recently, enzymatic 
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hydrolysis of urethane bonds in polyester PUR was demontrated, marking a significant 

advancement [19].However, depolymerisation via urethane bond cleavage remains largely 

unexplored. This gap can be attributed to several factors, including the inherent susceptibility 

of ester bonds to cleavage, their predominant localisation within accessible soft amorphous 

PUR segments, and the availability of specialised esterolytic enzymes such as cutinases 

in natural systems.  

The limited accessibility of urethane bonds may neccessitate pre-treatment steps 

of PUR to render the urethane bonds accessible. In particular, polyether PUR present additional 

challenges due to their higher resistance to degradation. The stable ether bonds and reduced 

water absorption capacity of polyether PUR hinder enzymatic hydrolysis, highlighting 

the complex interplay between polymer structure and enzymatic activity in PUR 

biodegradation. 

The diverse array of functional groups in PUR, such as urethane, ester, urea, amide, 

and ether, synthesised from various structural units, prevents the existence of a generalised 

PUR structure. Consequently, using a single enzyme for the degradation of all PUR types may 

not be feasible. Instead, it is important to investigate various enzyme groups and consider 

combining them with optimised mechanical and chemical recycling techniques to address 

the diverse nature of PUR. A holistic approach to biological recycling could involve 

the application of various enzymes targeting specific bond types, either as a mixture 

or in a systematic pipeline process. Alternatively, PUR may need to be categorised into distinct 

groups, each requiring a tailored degradation pipeline. This modular approach offers 

a promising avenue for the comprehensive and efficient biological recycling of PUR. 

The emerging understanding of enzyme promiscuity offers a promising avenue 

for tackling the challenges associated with PUR biodegradation. As the diversity of functional 

groups in PUR complicates the development of a universal enzymatic approach, leveraging 

the inherent promiscuity of certain hydrolases could be key to devising more versatile and 

effective degradation strategies. The ability of some esterases to also hydrolyse amide and 

urethane bonds suggests that a tailored combination of such promiscuous enzymes could 

significantly enhance the efficiency of PUR recycling processes. Furthermore, enzyme 

engineering efforts aimed at enhancing promiscuity or specificity could yield biocatalysts 

capable of addressing the structural heterogeneity of PUR materials.  

The effectiveness of serine hydrolases in PUR degradation depends on their ability 

to stabilise tetrahedral intermediates formed after the acylation step involving nucleophilic 
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attack of the catalytic serine on the carbonyl carbon of the cleaved group. The ability to stabilise 

‑O or ‑NH groups may dictate substrate specificity and the type of bonds hydrolysed (C-N 

or C‑O). Developing cutinases with urethanolytic activity holds thus promise as a strategy 

for hydrolysing urethane bonds in PUR.  

The field of PUR enzymatic degradation awaits redefinition [175]. Thus far, enzyme 

selection for PUR depolymerisation has predominantly been based on the ability to degrade 

the aqueous dispersion of polyester PUR using PUR model substrates, such as Impranil DLN. 

However, there is a growing recognition of the need to reconsider this approach and select new 

model PUR that more closely mimic the structures of commercially used PUR [76,88,176]. 

Each PUR variant may require specific hydrolysing enzymes, which could be sourced from 

nature or engineered through mutagenesis techniques. The redesign of PUR-degrading 

enzymes should ideally focus on enhancing several key properties: activity, thermostability, 

and binding affinity. Increasing the catalytic efficiency of enzymes can lead to more rapid 

breakdown of PUR materials. Improved thermostability enables enzymes to remain functional 

under harsh industrial conditions, which often involves elevated temperatures to increase 

reaction rates. Enhanced binding affinity ensures that the enzymes can effectively recognise 

and interact with PUR molecules. Tailoring enzymes for industrial applications necessitates 

thorough optimisation, but the initial step involves identifying promising candidates. This 

review aims to illuminate the structural and functional characteristics of enzymes reported thus 

far, laying the groundwork for future advancements in the enzyme-based degradation of PUR. 

 

2.5. Additional data and results 

In this chapter, additional information from literature is presented in order to provide 

the reader with more insight into specific problems and research gaps that dissertation aims 

to bridge. 

 

2.5.1. Cutinases 

Cutinases (EC 3.1.1.74) are enzymes distributed across fungi, bacteria, and plants, each 

exhibiting unique structures and properties (Liang et al., 2023). Traditionally, cutinases are 

recognised for degrading cutin, an aliphatic polyester that forms a protective barrier on plant 
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surfaces [177]. For plant pathogens, cutinases are crucial, as they enable the degradation of 

cutin, thereby accessing carbon sources within host tissues [178–180]. 

In recent years, cutinases have gained attention for their ability to hydrolyse synthetic 

polyesters, particularly in plastic degradation. The discovery of IsPETase, a PET-hydrolysing 

enzyme from Ideonella sakaiensis, marked a major breakthrough. IsPETase, discovered 

at a Japanese waste site, has evolved to metabolise PET as a carbon source [49]. Although 

structurally related to other bacterial cutinases, IsPETase, classified already as EC 3.1.1.101 

(PET hydrolase), possesses a highly flexible structure and a wider binding pocket, allowing 

it to accommodate synthetic substrates like PET (Yoshida et al., 2016). 

In contrast to lipases, which act at lipid-water interfaces with a mobile lid domain 

covering the active site [181], cutinases lack this structural feature. Instead, they possess 

an exposed active site, enhancing their capacity to catalyse diverse substrates effectively [182]. 

Cutinases exhibit significant degradation activity toward synthetic polyesters, including PET 

[48,49], poly(butylene succinate) (PBS) [183], and poly(butylene adipate-co-terephthalate) 

(PBAT)) [182], making them promising candidates for PUR biodegradation. 

Several cutinases, both bacterial and fungal, have been identified for their potential 

in degrading ester bonds in PUR, including Thielavia terrestris cutinase A (TtcutA) [184], 

Leaf‑branch compost cutinase (LCC), Thermobifida fusca cutinase 2 (TfCut2) [20], 

Thermomonospora curvata cutinase (Tcur1278) [154], Humicola insolens cutinase (HiC) [22], 

Cladosporium sp. P7 cutinase (CpCut1) [24], and Blastobotrys sp. G-9 cutinase (BaCut1) 

(Jiang et al., 2024). However, due to evolutionary adaptation focused on natural substrates, 

these enzymes typically exhibit higher activity on PUR oligomers than on solid, complex PUR 

forms wastes [23,119,185]. 

While bacterial cutinases have been widely studied, recent discoveries of novel fungal 

cutinases, BaCut1 and CpCut1, have shown that these enzymes also possess polyester 

PUR‑degrading abilities. In a 2024 study, CpCut1 outperformed previously characterised 

PUR‑degrading cutinases, making it a promising option for industrial applications [24]. 

 

2.5.2. Computational studies on PUR-degrading enzymes 

To date, few computational studies have thoroughly explored the degradation of PUR 

by microbial enzymes. One such study by Petry do Canto et al. [186] enhances our 

understanding of PUR degradation by modelling three-dimensional (3D) structures of lipases 
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from Pseudomonas species (specifically pueA, pueB, and pulA), known to experimentally 

degrade PUR. Using homology modelling, the study generated computational structures 

for these lipases for the first time. Molecular dynamics simulations were employed to assess 

structural stability, revealing stable configurations for pueA and pueB, while some flexibility 

was noted in the C-terminal region of pulA. Further docking studies identified favourable 

interactions between PUR monomers and key residues within the catalytic pockets, with 

consistent binding regions across the models. 

Another study by Flores-Castañón et al. [187] provides insights into the structural 

characteristics and potential activity of microbial cutinases, particularly TfCut2 and HiC, 

against PUR monomers. This study integrates structural and physiochemical analyses with 

molecular docking to evaluate the enzymes’ binding affinities for PUR monomers. Key 

findings suggest that these cutinases, noted for their thermostability and hydrophilicity, bind 

PUR monomers in hydrophobic grooves near the catalytic triad. The docking results indicate 

stable binding poses with an average binding energy around −6 kJ/mol, suggesting that 

microbial cutinases could play a role in PUR degradation, presenting a promising avenue 

for future bioremediation applications targeting synthetic plastic waste. 

However, neither of these studies verified that the docked poses they analysed were 

productive or confirmed that catalytic distances were optimised for effective catalysis. 

This lack of specificity in binding analyses limits the mechanistic insights provided. 

Recently, a novel computational study by Świderek et al. [161] has investigated the 

specific mechanism of ester bond cleavage in the Impranil DLN repeating unit by PueA from 

Pseudomonas chlororaphis. While PueA’s capacity to degrade ester bonds in Impranil DLN 

was known, the binding mode of the substrate had not been previously characterised. 

To address this, the authors examined two potential orientations of the Impranil DLN unit 

within the binding site, termed RC1 and RC2. Their findings reveal that the RC2 orientation 

offers stronger protein-ligand interactions and has an activation free energy for the acylation 

step that is 10 kcal/mol lower than that of the RC1 configuration. Although the activation 

kinetics of the catalytic serine were similar between the two reactions, a significant difference 

arose in the second step of acylation. This step involves proton transfer from the protonated 

catalytic histidine to the carbonyl oxygen of Impranil DLN, facilitating the release of the 

reaction’s first product, the alcohol. In the favourable RC2 orientation, interactions between 

the leaving group oxygen and the Nε atom of the catalytic histidine are more stabilised, which 

promotes the formation of the tetrahedral intermediate [107]. 
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This study is particularly relevant to this dissertation as it aligns with the hydrolysis 

mechanism proposed for TfCut2 cutinase, offering insight into the preferential binding pose 

of Impranil DLN and the energetics of each reaction step. Apart from this recent contribution 

by Świderek et al. [161], there remains a significant research gap in the computational 

understanding of enzymatic PUR degradation, which this dissertation aims to help bridge. 

 

2.5.3. Engineering of PUR-degrading enzymes 

To date, only a few studies have explored protein engineering specifically for PUR 

degradation. Although the PUR-degrading enzymes discussed in earlier chapters—primarily 

cutinases—have been engineered, these efforts were largely directed at other substrates such 

as PET [48,188–191], tomato cutin [192] or small esters such as pNPB [192,193].  

For PUR degradation specifically, only limited engineering studies have been reported, 

mainly involving the fusion of enzymes with polymer-binding modules. For instance, 

a polyamidase from Nocardia farcinica was fused to a polymer-binding module derived from 

a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis. This fusion enzyme 

demonstrated up to four times greater activity on PUR than the native enzyme, indicating the 

significant role of enzyme adsorption to facilitate efficient hydrolysis [27]. These findings 

highlight the importance of the initial enzyme adsorption process in PUR degradation [176]. 
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Chapter 3: Theoretical background and 

methodology 

This chapter provides an overview of the computational and experimental 

methodologies applied in this dissertation, to provide the basic principles of the theoretical 

approaches. Details about the used methods will be provided within the results Chapters 4‑6, 

in the methods sections. 

 

3.1. Enzyme-catalysed reactions and kinetics 

Enzymes catalyse reactions by lowering the activation energy required 

for the conversion of substrates into products. The general reaction mechanism 

can be described by the Michaelis-Menten model [194]: 

𝐸 + 𝑆 ↔ 𝐸𝑆 → 𝐸 + 𝑃 

Where: 

• 𝐸 – enzyme 

• 𝑆 – substrate  

• 𝐸𝑆 – enzyme-substrate complex 

• 𝑃 – product 

This mechanism includes three individual reactions with three different rate constants: 

• 𝐸 + 𝑆 → 𝐸𝑆, formation of the enzyme-substrate complex, with the rate constant 𝑘1, 

• 𝐸𝑆 → 𝐸 + 𝑆, dissociation of the enzyme and the substrate, with the rate constant 𝑘−1, 

• 𝐸𝑆 → 𝐸 + 𝑃, dissociation of the enzyme and the product, with the rate constant 𝑘2. 

The reaction rate, 𝑣, represents the change in concentration over time and can 

be expressed as either the rate of product formation or substrate consumption: 

𝑣 =
𝑑[𝑃]

𝑑𝑡
= −

𝑑[𝑆]

𝑑𝑡
 

The catalytic efficiency of an enzyme is characterised by two key parameters: 

• 𝑘𝑐𝑎𝑡 (turnover number): The number of substrate molecules converted to product 

by a single enzyme molecule per unit of time under saturating substrate conditions. 

• 𝐾𝑚 (Michaelis constant): The substrate concentration at which the reaction rate is half 

of 𝑣max, reflecting the enzyme’s substrate affinity. 
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The Michaelis-Menten equation describes the relationship between the reaction rate 

and the substrate concentration: 

𝑣 =  
𝑣max[𝑆]

𝐾m + [𝑆]
 

Where 𝑣max is the maximum reaction rate at saturating substrate concentration. 

In the classical Michaelis-Menten model, it is assumed that the third reaction 

𝐸𝑆 →  𝐸 + 𝑃 is the rate-limiting step. In this case, 𝑘2, also referred to as 𝑘𝑐𝑎𝑡, defines 

the overall turnover number. However, for more complex reaction mechanisms, 𝑘𝑐𝑎𝑡 may 

depend on multiple rate constants. 

Heterogenous substrates and enzymatic kinetics 

Michaelis-Menten kinetics is not directly applicable to enzymatic reactions involving 

heterogeneous substrates [195]. Such reactions, including the enzymatic hydrolysis of synthetic 

and natural polymers, present unique challenges due to factors like substrate surface 

heterogeneity and complex structural compositions. 

In a study by Schmidt et al. [20], the degradation rates of Impranil DLN by cutinases 

TfCut2, LCC, Tcur1278, and Tcur0390 were analysed using a kinetic model proposed 

by Mukai et al. [195]. Schmidt et al. determined two key parameters for these enzymes: the rate 

constant of the surface reaction 𝑘𝑠 and the adsorption equilibrium constant 𝐾. The Mukai 

model, originally developed for poly[(R)-3-hydroxybutyrate] (P[(R)-3HB]) films, provides 

a framework for understanding enzymatic hydrolysis of polymer substrates. 

In Mukai’s study, the water-soluble degradation products of P[(R)-3HB] were 

quantified spectrophotometrically by monitoring the absorbance at 210 nm, corresponding 

to the carbonyl groups. Using the absorption coefficient of 3-hydroxybutyric acid, the authors 

estimated the amount of degradation products, assuming the absorption coefficient was 

independent of chain length. The kinetic model proposed for heterogeneous enzymatic 

hydrolysis is as follows: 

𝑅 =
𝑘𝑠𝐾[𝐸]

(1 + 𝐾[𝐸])2
 

Where: 

• 𝑅 – hydrolysis rate 

• [𝐸] – enzyme concentration 

• 𝑘𝑠 – rate constant of the surface reaction 

• 𝐾 – adsorption equilibrium constant 
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This model indicates that at low enzyme concentrations K[E] ≪ 1, the hydrolysis rate 

increases proportionally with enzyme concentration. At higher concentrations K[E] ≫ 1, 

the rate becomes inversely proportional to [𝐸], eventually approaching zero due to enzyme 

crowding, which can block access to cleavable bonds on the substrate surface. 

To estimate 𝑘𝑠 and 𝐾, the equation can be linearised as: 

(
[𝐸]

𝑅
)

1

2 =
𝐾[𝐸]

𝛼
+

1

𝛼
,  where  𝛼 = (𝑘𝑠𝐾)

1

2 

Plotting (
[𝐸]

𝑅
)

1

2 versus [𝐸] enables determination of the the 𝑘𝑠 and 𝐾 constants through 

linear regression. 

 

3.2. Investigation and analysis of protein structure, 

dynamics, and protein-ligand interactions 

3.2.1. Protein structure 

Proteins are fundamental macromolecules in living organisms, encoded by genes 

and assembled through translation of messenger RNA. These complex molecules are 

composed of amino acid residues linked by peptide bonds, and their function is intrinsically 

linked to their structure, which is organised into four hierarchical levels: primary, secondary, 

tertiary, and quaternary structures. 

Primary Structure 

The primary structure of a protein is its linear sequence of amino acids, joined 

by peptide bonds. This sequence is determined by the genetic code and dictates the protein's 

higher-order structures and function. Amino acids vary in their side chains, which exhibit 

different chemical properties—hydrophobic, polar, or charged—that influence how the protein 

folds and interacts with its environment. 

Secondary Structure 

The secondary structure of a protein refers to the regular, repeating patterns of hydrogen 

bonding between the backbone amide and carbonyl groups of the polypeptide chain. These 

interactions create distinct structural motifs, which serve as the foundation for further folding: 
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• Alpha helices: Right-handed coils stabilised by intra-chain hydrogen bonds, often 

providing flexibility and structural support. 

• Beta sheets: Extended polypeptide strands linked laterally by hydrogen bonds, forming 

stable, pleated sheet-like structures. 

In addition to these regular elements, loops are regions of the polypeptide chain that 

connect secondary structural elements. Unlike alpha helices and beta sheets, loops do not adopt 

regular patterns of hydrogen bonding and are therefore highly variable in structure. Despite 

their irregularity, loops often play critical roles in protein function. For example, in enzymes 

such as TfCut2, loops frequently form part of the active or binding site, influencing substrate 

specificity and catalytic efficiency. However, the structural variability of loops makes their 

prediction challenging, even with advanced computational methods. 

Tertiary Structure 

The tertiary structure describes the 3D conformation of a single polypeptide chain, 

encompassing the spatial arrangement of alpha helices, beta sheets, and other elements. 

This structure is stabilised by various interactions, including: 

• Hydrophobic interactions, which drive nonpolar side chains toward the protein interior. 

• Hydrogen bonds and ionic interactions, which stabilise polar and charged residues. 

• Covalent disulfide bonds formed between cysteine residues. 

The tertiary structure determines the functional regions of the protein, such as active 

sites, and allows for specific interactions with substrates or other biomolecules. 

Quaternary Structure 

Proteins that consist of more than one polypeptide chain exhibit a quaternary structure. 

This level of organisation describes how multiple subunits interact and assemble into functional 

complexes. Subunits may be identical (homomeric) or distinct (heteromeric), and their 

interactions are stabilised by similar forces as those in tertiary structure.  

Protein Folding  

Proteins fold into their native conformations based on the principle of energetic 

favourability, with the folded state being the most stable. This folding process is influenced 

by the sequence of amino acids, the aqueous cellular environment, and interactions with 

molecular chaperones. Fully folded proteins remain dynamic, allowing for conformational 
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changes critical to their function. Hydrophilic residues are often exposed to the solvent, while 

hydrophobic residues are buried in the protein core, stabilising the overall structure. 

 

3.2.2. Source of protein structures 

The 3D structure of a protein can be obtained either through experimental data 

or computational modelling techniques. 

Experimental Data 

The Protein Data Bank (PDB) is the primary repository for experimentally determined 

macromolecular structures, including proteins, nucleic acids, and their complexes [145]. 

Structures in the PDB are derived using techniques such as X-ray crystallography, nuclear 

magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM). Each 

PDB entry includes detailed atomic coordinates, secondary structure information, 

and bibliographic references. This database is continually updated, making it an invaluable 

resource for structural biology research. 

Protein structure prediction 

Homology modelling is a widely used computational method for predicting protein 

structures by leveraging sequence similarity with known structures. The process typically 

involves target-template identification, sequence alignment, model building, and refinement 

[196,197]. Tools such as Modeller [198], SWISS-MODEL [199], and I-TASSER [200] provide 

robust platforms for homology modelling and analysis. 

A major breakthrough in protein structure prediction came with the development 

of AlphaFold by DeepMind, introduced in 2021 [146]. AlphaFold employs artificial 

intelligence (AI) to predict protein structures from amino acid sequences, achieving accuracy 

comparable to experimental methods like X-ray crystallography. By 2022, AlphaFold had 

predicted structures for nearly all catalogued proteins, covering over 200 million entries in its 

AlphaFold Protein Structure Database (AlphaFold DB), created in collaboration with the 

European Molecular Biology Laboratory (EMBL). 

In 2024, the Nobel Prize in Chemistry was awarded to Demis Hassabis and John Jumper 

for their work on AlphaFold, recognising its transformative impact on biology, particularly 

in areas like drug discovery and disease research. David Baker also received a share of the 
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prize for his contributions to computational protein design, underscoring the growing 

importance of computational tools in structural biology. 

 

3.2.3. Molecular docking 

Molecular docking is a computational approach used to predict the binding interactions 

and conformations of two molecules, which may include small ligands and receptors, as well 

as larger biomolecular complexes such as protein-protein, protein-DNA, or protein-RNA 

interactions. This technique plays a critical role in various scientific fields, including 

structure‑based drug design, molecular biology, and biophysics, offering insights into the 

atomic-level interactions that govern binding specificity and affinity [197,201].  

The primary goal of molecular docking is to model the optimal binding arrangement 

between two molecules and estimate the strength of their interactions using computer-based 

methods [202]. While it is frequently employed to model small-molecule ligands 

with macromolecular targets, the versatility of molecular docking extends to studying complex 

biological interactions, such as protein assemblies or nucleic acid recognition [203–205]. 

Docking results often serve as a preliminary step for more detailed analyses, such as molecular 

dynamics simulations, which provide additional information on the stability and dynamics 

of the docked complexes. 

The docking process involves two main steps: sampling of the ligand and application 

of a scoring function. Sampling algorithms identify energetically favourable ligand 

conformations within the receptor’s active site, considering the binding mode. These 

conformations are then ranked using a scoring function [206,207]. Various scoring functions 

are employed, including force field-based, empirical functions (e.g., linear regression), 

knowledge-based, and consensus methods [201]. 

Molecular docking can be classified into two types: 1) rigid-body docking, where both 

the receptor and ligand are treated as rigid entities, or 2) flexible-body docking, where 

the receptor is rigid, but the ligand is flexible [197]. 

The search algorithm aims to explore all possible orientations and conformations of the 

ligand within the receptor. These algorithms can be classified into: 1) systematic or direct 

methods, such as conformational searches and fragmentation approaches, 2) stochastic 

or random methods, including Monte Carlo simulations, genetic algorithms, and Tabu searches 

[201]. 
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In this study, a flexible docking approach was employed due to the size and complexity 

of the modelled ligand, Impranil DLN, which has a high number of rotatable bonds and degrees 

of freedom. This approach allowed fragments of the ligand to be docked sequentially, starting 

with an anchor fragment and building outward. The flexible docking protocol in Rosetta [208] 

was used to model the binding of a single structural unit of Impranil DLN to TfCut2, providing 

initial binding poses and interactions that guided subsequent molecular dynamics simulations. 

Rosetta is a suite of tools widely used in protein modelling [209], including applications 

for protein structure prediction [210], protein-protein docking [211], protein design [212], 

and protein-ligand docking. Specifically, RosettaLigand, a tool within the Rosetta framework, 

was utilised to model protein-ligand interactions. It samples the rigid-body position 

and orientation of the ligand as well as side-chain conformations using Monte Carlo 

minimisation. To account for conformational flexibility, ensembles of ligand conformations 

and protein backbones were used. The models generated by RosettaLigand were evaluated with 

a scoring function that incorporates an electrostatics model, an orientation-dependent hydrogen 

bonding potential, an implicit solvation model and van der Waals interactions. This flexible 

docking approach provided crucial hypotheses for understanding the binding mechanisms 

of Impranil DLN to TfCut2 and guided further computational studies [208]. 

 

3.2.4. Molecular dynamics simulations 

Static models, such as those obtained from docking studies, often fall short in capturing 

the dynamic behaviour of molecular systems, particularly when flexibility plays a significant 

role, as in polymer chains or macromolecular interactions. Molecular dynamics (MD) 

simulations provide a powerful computational approach to address this limitation. 

By simulating the time-dependent movements and interactions of atoms over time, MD allows 

for the exploration of structural changes and dynamic processes in a wide range of systems, 

including isolated proteins, protein-ligand complexes, and other biomolecular assemblies. This 

technique provides valuable insights into molecular flexibility, stability, and interactions 

at an atomic level, revealing details that are often inaccessible through experimental methods 

alone [213,214]. 

MD simulations are based on classical mechanics, where atoms are treated as spheres 

connected by springs (representing covalent bonds). The motion of atoms is governed 

by Newton’s second law [215]: 
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F = ma 

Here, F represents the force acting on an atom, m its mass, and a its acceleration. Forces 

are derived from the potential energy 𝑉 of the system, calculated using a chosen force field. 

For a system of 𝑁 atoms, the force on each atom is: 

𝐹𝑖 = −
𝜕𝑉𝑡𝑜𝑡(𝑟1, 𝑟2, … , 𝑟𝑁)

𝜕𝑟𝑖
       (𝑖 = 1,2, … , 𝑁) 

where 𝑉𝑡𝑜𝑡 encompasses bonding potentials (bond lengths, angles, dihedrals) 

and non‑bonding interactions (van der Waals and electrostatic forces). 

To simulate atomic movements, numerical integration methods (e.g., Verlet or leapfrog 

algorithms) calculate new positions and velocities at discrete time steps (Δt). The simulation 

time step is constrained by the highest vibrational frequency in the system, typically around 

1‑2 femtoseconds. 

The accuracy of MD simulations depends heavily on the force field, which defines 

the interaction potentials. Commonly used force fields include AMBER and CHARMM 

for biological systems (proteins, nucleic acids, membranes) [216–218]; GAFF (General 

AMBER Force Field) for organic molecules [219]; and MMFF for small molecules 

and hydrocarbons [220,221]. 

Force field parameters, such as atomic radii, bond lengths, and angle values, are derived 

from experimental data and quantum mechanical calculations. To model realistic 

environments, MD simulations employ simplifications: 

• Periodic Boundary Conditions: To mimic an infinite system, the simulation box 

is surrounded by identical copies of itself, avoiding edge effects. 

• Cutoff Radii: Long-range non-bonding interactions are truncated beyond a set distance 

to reduce computational costs. 

• Exclusion of Quantum Effects: While MD captures atomic motion, it cannot simulate bond 

breaking or formation. Quantum mechanics-based methods are required for such studies. 

MD simulations provide dynamic insights into enzyme-ligand interactions. 

For example, they allow exploration of: 1) binding stability by monitoring the stability 

of a protein-ligand complex over time, 2) interaction patterns by identifying key residues 

involved in ligand binding, and 3) protein and ligand flexibility by assessing how 

conformational changes impact function. 

In this study, MD simulations refined the docking results of TfCut2 bound to Impranil 

DLN. Simulations were conducted using AMBER, with ligand parameterisation performed via 
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the Antechamber [222] module and GAFF [219]. The AM1-BCC charge model [223] was used 

for partial charge assignment, balancing computational efficiency with accuracy. 

MD simulations represent single-molecule behaviour, contrasting with experimental methods 

that capture ensemble averages. Additionally, simplifications like cutoff radii and classical 

mechanics can limit the accuracy of certain interactions. 

 

3.2.5. MM-GBSA calculations 

The Molecular Mechanics energies combined with Poisson–Boltzmann or Generalised 

Born and Surface Area continuum solvation (MM-PBSA and MM-GBSA) methods are widely 

used to estimate the free energy of ligand binding to biological macromolecules. These 

methods, based on molecular dynamics MD simulations, balance accuracy and computational 

efficiency, making them valuable for explaining experimental findings, improving virtual 

screening, and refining docking predictions [224]. 

The primary difference between MM-PBSA and MM-GBSA lies in the solvation model 

used for calculating polar solvation energy. MM-PBSA employs the Poisson–Boltzmann 

equation, which provides higher accuracy but is computationally intensive. MM-GBSA, on the 

other hand, uses the Generalised Born approximation, offering faster calculations suitable 

for large systems or high-throughput studies. Although MM-GBSA is slightly less precise than 

MM-PBSA, it remains highly effective for many applications such as to estimate protein–

ligand binding affinities [225,226], to find important residues for protein–protein interactions 

[227,228], and to study macromolecular stability [229,230] 

In this study, the MM-GBSA method was employed to estimate the contributions 

of individual residues to the binding of the polymer chain. The free energy of binding 

was calculated as [224,231]: 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝛥𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝛥𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝛥𝐺𝑙𝑖𝑔𝑎𝑛𝑑) 

where the free energy of each component is computed as: 

𝐺 =  𝐸𝑖𝑛𝑡 + 𝐸𝑒𝑙𝑒 + 𝐸𝑣𝑑𝑊 + 𝐺𝑝𝑜𝑙 + 𝐺𝑛𝑝 − 𝑇𝑆 

Here, 𝐸𝑖𝑛𝑡, 𝐸𝑒𝑙𝑒, and 𝐸𝑣𝑑𝑊 represent the internal, electrostatic, and van der Waals 

energies, respectively; 𝐺𝑝𝑜𝑙 and 𝐺𝑛𝑝 are the polar and non-polar solvation energies; and 𝑇𝑆 

is the entropy term. 

 



55 

 

 

3.3. Enzyme engineering 

Enzyme engineering offers promising solutions by enabling modifications to enhance 

the ability of enzymes to degrade non-natural substrates like plastics. This involves altering 

amino acid sequences to improve catalytic efficiency, substrate specificity, thermostability, and 

tolerance to environmental stresses [232–234]. Stability is a particularly critical aspect, 

as natural proteins are often marginally stable, making them susceptible to unfolding under 

environmental conditions such as increased temperature [235]. Since enzyme stability 

can directly impact catalytic performance, it is a key target in protein engineering. Thermal 

stability can be addressed through strategies such as rigidifying flexible protein regions, 

particularly loops, which are often implicated in thermal fluctuations [236]. However, this 

approach is complex for enzymes like cutinases, including TfCut2, which rely on the flexibility 

of their loop regions to accommodate large substrates [149]. Modifications to improve stability 

in these enzymes must balance rigidity with the functional dynamics essential for activity. 

Advances in enzyme engineering technologies have expanded their applications across 

diverse fields, driven by key approaches like directed evolution, rational design, 

and semi‑rational design. Mimicking natural selection in a laboratory setting, directed 

evolution involves iterative rounds of mutagenesis and screening to optimise enzyme functions. 

This method has revolutionised protein engineering by focusing on small, functionally enriched 

libraries rather than large, random ones, supported by computational tools for analysing protein 

datasets and conformational variations [237,238]. 

Rational design involves targeted mutations based on detailed knowledge of enzyme 

structure and mechanism, often aided by computational modeling to predict structure‑function 

relationships. Despite its precision, rational design relies heavily on available data, limiting its 

application to well-characterised systems [239,240]. 

Semi-Rational Design combines aspects of rational design and directed evolution. 

Semi-rational approaches use structural insights to create ‘smart’ libraries of mutations. These 

strategies effectively address limitations of both methods, enabling efficient exploration 

of beneficial mutations for enhanced enzyme performance [237,241]. 

Computational methods to guide (semi-)rational enzyme engineering 

Computational methods are central to guide rational enzyme engineering, particularly 

in designing enzymes for non-natural substrates like synthetic polymers. These approaches 
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provide detailed molecular-level insights into enzyme-substrate interactions, identify key 

residues, and predict binding poses and reaction mechanisms. Additionally, computational 

tools play a crucial role in constructing semi-rational libraries by guiding the design of small, 

focused libraries of mutants. Diversification or randomisation is introduced at targeted regions, 

often informed by computational analysis, to balance thorough exploration with experimental 

feasibility. By complementing experimental methods, computational tools significantly 

enhance the development of synthetic polymer-degrading enzymes, guiding and rationalising 

experiments while improving their success rates [242–245]. The computational approaches can 

be broadly classified into structure-based, sequence-based, and data-driven machine learning 

computational design [246]. 

Structure-based computational design requires accurate enzyme structures to identify 

critical residues in the active site, understand the chemical mechanism, and tailor interactions 

between amino acids and substrates. These methods allow precise adjustments to catalytic 

pockets and have even enabled de novo enzyme design. However, their effectiveness depends 

on the availability of high-quality structural data, which may not always be accessible, 

as obtaining crystal structures can be laborious and time-consuming [246]. Recently, 

an escalating number of researchers have recognised the significant implications 

of conformational dynamics for the catalytic promiscuity and evolution of enzymes [247–255]. 

Sequence-based design addresses some of these limitations by directly using protein 

sequences to infer evolutionary principles. With the growing availability of sequence data 

through next-generation sequencing, researchers can conduct phylogenetic analyses 

to understand enzyme evolution and identify key functional residues. These insights can 

be used to engineer enzymes without needing explicit structural information, thereby providing 

an alternative when structural data is incomplete or unavailable [256]. 

Data-driven methods, particularly those involving machine learning, are becoming 

increasingly influential in enzyme engineering. Machine learning algorithms such as random 

forests, support vector machines, and neural networks can model complex sequence-function 

and structure-function relationships. These methods have been applied to predict enzyme 

stability, solubility, and catalytic mechanisms after mutations [257–259]. Machine learning 

accelerates enzyme design by generating rapid predictions once trained on appropriate datasets, 

but its success depends on the quality of the training data and algorithmic efficiency. 

Limitations such as data standardisation issues, small homogeneous datasets, and the diversity 

of catalytic mechanisms still present challenges to its widespread adoption [260–263]. 
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An illustrative computational enzyme engineering pipeline, proposed by Scherer et al. 

[264], begins with structure-function analysis to identify target residues. Subsequent steps 

include building enzyme-substrate complexes, analysing interactions, and performing 

evolutionary conservation studies to pinpoint design positions. Enzyme sequence space is then 

modified for desired traits such as stability or substrate specificity. Finally, computational 

screening evaluates stability, affinity, and activity to identify promising variants 

for experimental validation. This workflow highlights the synergy between computational 

tools and experimental efforts. 

From the computational tools instrumental in advancing enzyme design, Rosetta 

[265,266] stands out as a foundational platform, offering physics-based energy functions 

and advanced sampling algorithms to model protein-ligand interactions and structural changes 

upon mutation. Its ability to predict the most energetically favourable protein conformations 

based on primary amino acid sequences makes it especially valuable in rational 

and semi‑rational enzyme engineering. Rosetta’s precision in guiding the generation 

and ranking of small, focused mutant libraries is pivotal, allowing for targeted modifications 

that balance experimental feasibility with functional improvement. 

Emerging techniques like RFdiffusion [267] and ProteinMPNN [268] have 

significantly expanded the possibilities of de novo protein design. RFdiffusion employs 

diffusion models to generate novel protein sequences by exploring sequence space with 

minimal reliance on pre-existing structural templates. ProteinMPNN, on the other hand, uses 

message-passing neural networks to predict amino acid sequences that will fold into a desired 

structure. Both methods improve predictions related to enzyme stability, function, and substrate 

specificity, enabling more precise enzyme designs. 

Moreover, AlphaFold [146], renowned for its high-accuracy protein structure 

predictions, complements these advanced tools by providing reliable structural models even 

in the absence of experimental data. AlphaFold's integration of evolutionary information 

and its capacity to model complex biomolecular systems further enhance the accuracy 

of computational designs.  

The continued development of these AI-driven tools, coupled with traditional 

computational methods, has established a robust foundation for the rational design of enzymes 

with specific functions, sizes, and binding characteristics, propelling the field towards 

the creation of tailored enzymes [269]. 
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Chapter 4: Characterisation of TfCut2 and 

modelling of its interactions with Impranil DLN 

4.1. Introduction 

In this chapter are described results obtained on the Characterisation of wild-type 

TfCut2 and identification of key molecular determinants involved in substrate binding using 

computational methods. More particularly, this chapter investigates the binding recognition 

of a model PUR substrate, Impranil DLN, by the TfCut2 enzyme.  

TfCut2 cutinase is a thermophilic enzyme originally produced by Thermobifida fusca, 

a bacterium that harbours two open reading frames for cutinases, namely Tfu_0882 (TfCut1) 

and Tfu_0883 (TfCut2) [270]. TfCut2 was isolated from Thermobifida fusca KW3 for its high 

hydrolytic activity towards PET plastic [271]. Interestingly, despite the high sequence identity 

of approximately 93% between TfCut1 and TfCut2, the latter exhibits roughly twice the activity 

towards PET compared to TfCut1 [272,273]. TfCut2 also demonstrates remarkable tolerance 

to various organic solvents, making it well-suited for industrial applications [272,273]. 

Its apparent melting temperature has been determined to be 70°C, however, activity 

measurements indicate a loss of function at temperatures as low as 61°C [149]. 

As a cutinase, TfCut2 naturally catalyses cutin hydrolysis [149,189,274] and also 

exhibits esterase activity towards p-nitrophenol-linked aliphatic esters (pNP-aliphatic esters) 

[149,188,189,274,275]. In addition, it hydrolyses triglycerides, including triacetin, tributyrin, 

tricaprin, and trilaurin, showing a preference for short-chain substrates [275]. TfCut2 also 

degrades the hemicellulose xylan [276] and several synthetic polyester polymers beyond PUR, 

such as poly(ethylene terephthalate) (PET), the most prevalent polyester plastic [48,188,189], 

poly(ε-caprolactone) (PCL), a synthetic aliphatic biodegradable polyester [275], 

and polyoxyethylenesorbate esters, with a preference for shorter chain lengths [276]. TfCut2 

also exhibited hydrolysis activity on a recently proposed model polyester PUR, the PBA-PUR, 

as indicated by transparent clear zones formation on agar plates [277]. 

The broad substrate range of TfCut2 highlights its notable substrate promiscuity, largely 

attributed to a hydrophobic binding site exposed on the enzyme’s surface [48,149,278]. Unlike 

enzymes with buried active sites, which constrain substrate size, shape, and volume, TfCut2’s 

accessible binding site allows it to interact with a variety of substrates, including bulky polymer 
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chains. TfCut2, classified as EC 3.1.1.74 (cutinase) within the carboxylic-ester hydrolases, 

can be activated by divalent metal ions such as Ca2+ and Mg2+ [188]. 

In computational studies, especially prior to advancements such as AlphaFold in 2021 

[146], obtaining a high-quality experimental structure was crucial. TfCut2 is well-characterised 

by multiple X-ray crystal structures available in the PDB database [145], with the structure 

deposited under the PDB code 4CG1 providing the highest resolution of 1.4 Å [149]. This 

structure reveals the classic catalytic triad of serine (S130), histidine (H208), and aspartic acid 

(D176), where serine serves as the nucleophile and histidine and aspartic acid form a charge 

relay system. The oxyanion hole, essential for stabilising transition states, is formed by 

the backbone nitrogens of M131 and Y60. The binding site also features an aromatic clamp 

formed by Y60 and W155, with I178 stabilising substrates via hydrophobic interactions [149]. 

TfCut2 has a highly flexible region around residues 245-247, which required the fitting 

of multiple conformations during ensemble refinement. Due to this flexibility, D246 was 

not resolved [149]. A disulfide bridge between C241 and C259, located near this flexible 

region, is believed to stabilise the structure and prevent denaturation at higher temperatures. 

The enzyme adopts a classical α/β-hydrolase fold, with a central nine-stranded β-sheet flanked 

by 11 α-helices on either side [149]. 

This dissertation focuses on Thermobifida fusca cutinase (TfCut2), a bacterial cutinase. 

At the time this dissertation began in October 2020, TfCut2 appeared to be the most promising 

enzyme for studying polyester PUR biodegradation. Schmidt et al. [20] tested TfCut2 along 

with three other bacterial cutinases—Leaf-branch compost cutinase (LCC), Thermomonspora 

curvata DSM43183 Tcur1278, and Tcur0390—on the hydrolysis of Impranil DLN and two 

other polyester PURs, Elastollan B85A-10 and C85A.  

In the study by Schmidt et al., the degradation kinetics of Impranil DLN (0.1%) 

was analysed using a turbidimetric assay, revealing a linear decrease in OD400 during the initial 

reaction phase. From this linear region, initial hydrolysis rates were calculated and used 

to determine kinetic parameters, such as the rate constant of the surface reaction 𝑘s and the 

adsorption equilibrium constant 𝐾, following the kinetic model by Mukai et al. [195]. TfCut2 

and Tcur0390 exhibited the highest hydrolysis rate constants for Impranil DLN (0.026 s−1), 

with TfCut2 also requiring the lowest enzyme concentration to achieve maximum initial 

hydrolysis rate. Notably, TfCut2 displayed the highest adsorption constant 𝐾, indicating 

a strong affinity for Impranil DLN [20]. These findings positioned TfCut2 as a promising 

candidate for further exploration. 
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In tests on other polyester PURs, TfCut2 and LCC achieved about 1% weight loss 

for Elastollan B85A-10 and C85A at 60 °C. At 70 °C, LCC demonstrated increased 

degradation, attributed to its higher thermostability [278]. FTIR analysis of the TfCut2 and 

Elastollan samples indicated ester bond cleavage, confirmed by shifts in carbonyl and C–O 

stretching peaks, verifying PUR degradation. [20]. 

The model PUR substrate, Impranil DLN (produced by Covestro, Germany), has been 

used in many experimental studies to screen for PUR-degrading activity [20,80,103–106]. 

It was thus decided to be used in the studies within this dissertation. However, although widely 

regarded as a PUR model substrate, its exact structure is proprietary. Initially, Biffinger et al. 

[3] proposed a structure for Impranil DLN (Fig. 8A), suggesting it comprised hexamethylene 

diisocyanate and polyhexane neopentyl adipate polyester (Fig. 8B). This model was 

subsequently adopted in several studies [58,161] and also served as the basis for the initial 

modelling work in this dissertation. 

However, in 2022 Fuentes-Jaime et al. [4] suggested that Impranil DLN is derived from 

hexamethylene diisocyanate, neopentyl glycol, adipic acid, and 1,6-hexanediol (Fig. 8 C-D), 

with added plasticizers and chain extenders. 

Overall, the two proposed structures of Impranil DLN single repeating unit are rather 

similar. They both contain ester and urethane bonds and are derived from hexamethylene 

diisocyanate. However, the structure proposed by Biffinger has longer carbon chains, 

and hydrolysable ester bonds are located further from each other. This property can cause this 

model to primarily interact via hydrophobic interactions, whereas in the case of Fuentes-Jaime 

et al.’s model, the more concentrated ester bonds may form hydrogen bonds with the surface 

of the receptor, and solvent. Also, Fuentes-Jaime et al.’s model features two types of alcohols 

in the soft polyol segment: neopentyl glycol and 1,6-hexanediol, which complicates 

the structure of a single repeating unit of Impranil DLN. 

Given the ambiguity regarding the Impranil DLN structure, together with NMR 

specialists, we have performed analysis of the Impranil DLN structure and products of its 

hydrolysis which will be described in details in the results section. The results were 

in agreement with findings and Impranil DLN structure proposed by Fuentes-Jaime et al [4]. 

As a result, the computational studies for modelling Impranil DLN with TfCut2 had 

to be restarted using the newly verified structure. The results presented in this chapter are based 

on Impranil DLN structure proposed by Fuentes-Jaime et al.; the initial results obtained using 

the structure of Impranil DLN proposed by Biffinger et al. are not included in this manuscript. 
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Fig. 8. Proposed structures of Impranil DLN single repeating unit. “X”-number of repeating 

units not known. The purple oval indicates the ester part of the repeating unit, formed by an acid 

substrate, and green rectangle informs about hard urethane segment formed by isocyanate 

substrate. A) Structure proposed by Biffinger et al. [3]. B) Substrates of Impranil DLN 

synthesis according to Biffinger et al. [3]. C) Structures proposed by Fuentes-Jaime et al. [4]. 

Due to multiple building blocks, several combinations exist. D) Substrates of Impranil DLN 

synthesis according to Fuentes-Jaime et al. [4]. 

To date, computational studies involving non-homogeneous polymers are limited, with 

most research focusing on small polymer fragments or homogeneous polymers, due 

to the structural complexity of the entire polymer chains. The presented study applies and 

adapts existing computational techniques to explore TfCut2 interactions with models built-in 

to describe in a simplified way the complexity of surroundings of hydrolysable bonds which 

can be attacked by the enzyme. The primary objective is to identify key molecular determinants 

in TfCut2 that contribute to PUR recognition and binding, consistent with its hydrolysis 

mechanism. To achieve this, a range of computational methods were employed, while 

characterising TfCut2 and its interactions with the selected regions of the model substrate, 

Impranil DLN, ensuring enzyme-ligand complexes adopted a “productive pose” where 

catalytic distances were favourable for the initial hydrolysis step. To achieve this, a specific 
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pipeline was developed to select MD simulation frames that capture productive configurations. 

These frames were then further analysed to identify key molecular interactions and amino acid 

residues within the TfCut2 binding site, focusing on their individual contributions to Impranil 

DLN binding. This analysis guided the selection of residues for mutation, providing grounds 

to guide the re-design of the active site to improve PUR degradation, which will be presented 

in Chapter 5. Schematic of computational studies performed on TfCut2 in interaction 

with Impranil DLN is presented in Figure 9. 

 

Fig. 9. Schematic of computational studies performed on TfCut2 in interaction with Impranil 

DLN, detailing the process of analysing enzyme-ligand interactions in productive poses 

to identify key amino acid residues that could be targeted by mutagenesis. 
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 4.2. Methodology 

4.2.1. Experimental methods 

Preparation of Impranil DLN for NMR structural analysis 

Impranil DLN, a 40% aqueous dispersion of polyester PUR, was supplied by Covestro 

(Germany). The Impranil DLN sample was lyophilised and then dissolved in chloroform 

or DMSO. 

NMR spectra 

To confirm the structure of the Impranil DLN, NMR spectroscopy was used: 

1H and 13C NMR. 1H and 13C NMR spectra were recorded on a Varian 600 MHz spectrometer, 

using the following deuterated solvents: DMSO and CDCl3. 

 

4.2.2. Computational methods 

Sequence analysis 

A Multiple Sequence Alignment (MSA) of four cutinases: TfCut2, LCC, Tcur1278 

and Tcur0390 was prepared to assess information about sequence identity between these 

enzymes, their conserved and variable regions and relations and to check how distant or similar 

TfCut2 is to them. 

The MAFFT webserver [133] was used with G-INS-1 progressive method. 

The alignment was visualised using the EsPript webserver [279] to highlight conserved and 

variable regions, accompanied by annotation of TfCut2’s secondary structure based 

on the 3D structure deposited in PDB under PDB ID: 4CG1 [149]. Pairwise sequence identity 

was calculated from this MSA using the Ident and Sim webserver [134] to assess the degree 

of similarity between each enzyme. 

Protein 3D models preparation 

The X-ray crystallographic structure of TfCut2 (PDB ID: 4CG1) [149] and LCC 

(PDB ID: 4EB0) [280] were downloaded from the Protein Data Bank [145]. All ligands were 

manually removed from the structure, while the crystallographic water molecules were 
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retained. The missing residue D246 in TfCut2 was added by performing homology modelling 

using SWISS-MODEL [281,282].  

The 3D structures of Tcur1278 and Tcur0390 were modelled using I-TASSER 

[200,283,284] based on the deposited amino acid sequences with Gene IDs HG939554 

and HG939555, respectively. 

The protonation states of titratable residues were determined using the H++ Server 

[285] at pH 8.0, ensuring that the catalytic residue H208 was correctly protonated as HIS-ε 

to correspond to the protonation state in the first stage of the hydrolysis mechanism of TfCut2 

[165,166]. 

Search for Ca2+ ion binding sites in TfCut2 

 The PDB database was searched for protein structures homologous to TfCut2, that 

contain divalent metals (Ca2+ or Mg2+) bound to their structure. The following structures were 

retrieved for further analysis: 3WYN, 5LUI, 4WFJ, 5ZNO, 5LUK, 6AID. The protein 

structures were downloaded and aligned in PyMOL [152]. After alignment, four divalent 

metal-binding sites could be observed indicated by presence of at least one divalent metal ions 

from the crystal structures. One Ca2+ ion from each of the four divalent-metal binding sites was 

copied to the 4CG1 structure. The crystal water was added to the system. LeaP from 

AmberTools18 suite [286] was used to add counterions and immerse all models in a TIP3P 

water molecules octahedral box of the size 12 Å.  

Molecular docking of model PUR fragments 

The molecular docking protocol was adapted from a previously published method [287] 

using Rosetta 3.13 [266] using ref2015 all-atom energy scoring function [288]. The ester and 

urethane moieties were constructed and minimised using Avogadro 1.2.0 [289]. These 

fragments, which include two ester or urethane groups each, were adjusted with terminal 

methylene groups to stabilise chemical charges. Ligand parameterisation was performed using 

the Antechamber module in Amber18 [222]. 

To explore diverse binding poses of the ligand, conformational sampling was carried 

out using the Confab package within Open Babel (1.1.0) [290]. In this study, 14 conformers 

of the ester moiety and 20 conformers of the urethane moiety were generated, with RMSD and 

energy cutoffs set at 1.3 Å and 50 kcal/mol, respectively, and a maximum limit of 10,000 
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conformers. The initial placement of the ligand in the complex was performed manually, 

ensuring that catalytic distances were maintained to facilitate accurate docking. 

To ensure the correct orientation of the docked ligand poses, the carbonyl oxygen 

of the ligand’s ester/urethane group was restrained to the catalytic S130 hydroxyl group 

γ‑oxygen. Simultaneously, the catalytic H208 ε-nitrogen was restrained to the S130 hydroxyl 

group γ‑hydrogen, using a flat harmonic potential with distances set to 1.5–3.5 Å and 1.5–2.5 

Å, respectively. Additionally, a flat harmonic potential was set to 100-110° for angle between 

S130 Oγ, the carbonyl carbon, and the carbonyl oxygen. 

Overall, four initial complexes were generated: ester P1, ester P2, urethane P1 

and urethane P2. Each of the complex was then relaxed using Rosetta 3.13 [291,292] using 

different standard deviation values and the lowest interface score relaxed complex was then 

used for flexible ligand docking. The docking calculations were run using a custom Rosetta3 

XML script enabling backbone and side-chain flexibility as previously described [208,293] 

including added Backrub module for backbone flexibility in the binding site region. In the 

calculations, 10 000 enzyme-ligand complex structures were generated. The lowest 10% 

interface scored complexes were clustered according to total score, interface score and ligand 

rms without superposition, and the lowest interface scored enzyme-ligand complex from 

the most populated cluster was further used. 

Preparation of TfCut2-Impranil DLN complexes for MD simulations 

The procedure of constructing the Impranil DLN unit on a docked ester/urethane moiety 

was as follows: 

1. Save the docked ligand (ester/urethane P1/P2 moiety) as a MOL2 file. 

2. Open the ligand pose in Avogadro 1.2.0 [289], attach the missing atoms of an Impranil 

DLN repeating unit, and save the structure;  

3. Align the constructed Impranil DLN repeating unit to the bound ligand moiety in the initial 

complex using atom pair fitting in PyMOL [152], and save the enzyme with the Impranil 

DLN repeating unit. 

4. Run the Rosetta relax module [291,292] to minimise the energy of the complex and remove 

atom clashes. The constructed repeating units of Impranil DLN were parameterised using 

the Antechamber module of Amber18 [222] along with the General AMBER force field 

[219] and the AM1-BCC charge model [223].  



67 

 

 

Crystallographic water molecules present in the 4CG1 structure were retained. 

Additionally, two Ca²⁺ ions were added to each divalent-metal binding site within the structure. 

To prepare the system for simulation, the LeaP tool from AmberTools18 [286] was employed. 

LeaP was used to add the necessary counterions to neutralise the system and immerse the model 

in a 20 Å octahedral box of TIP3P water molecules. The topology of the model and coordinates 

of atoms in space were generated using the LeaP tool. 

MD simulations  

Within the methods presented in this chapter, two types of MD simulations were carried 

out: 1) analysis of TfCut2 in the presence of four bound Ca2+ ions to identify potential divalent 

metal binding sites, and 2) analysis of TfCut2 in complex with Impranil DLN single repeating 

unit, in different poses, 8 systems overall. The procedures were the same for both systems 

and are described below. 

MD simulations were conducted using the AMBER 18 software package for the system, 

using the ff14SB protein force field [216]. For each simulated system, ten repetitions of 50 ns 

were performed, totalling 500 ns of MD simulations. The protocol consisted of three main 

stages: minimisation, equilibration, and production. 

Minimisation 

The minimisation procedure consisted of five steps, each with progressively decreasing 

constraints on the protein backbone. Initially, 1000 steps were performed with a restraint 

weight of 500 kcal/mol × Å², consisting of 500 steepest descent steps followed by 500 

conjugate gradient steps. This was repeated for the second stage, focusing on the backbone 

atoms. In the third stage, the restraint weight was reduced to 125 kcal/mol × Å², and the same 

minimisation steps were applied. The fourth stage used a restraint weight of 25 kcal/mol × Å², 

again focusing on the backbone atoms. Finally, a minimisation was performed without any 

restraints. 

Additionally, for the systems of TfCut2 with Impranil DLN, during minimisation, 

distance constraints were applied to ensure the correct binding of the ligand to the enzyme. 

Specifically, the carbonyl oxygen of the ester group was restrained to the S130 hydroxyl group 

γ-oxygen, and the H208 ε-nitrogen was restrained to the S130 hydroxyl group hydrogen, using 

a flat harmonic potential with distance ranges of 1.0-3.0 Å and 2.0-5.5 Å, respectively. 
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Equilibration 

Gradual heating from 0 K to 298 K was performed over 20 ps using a Langevin 

thermostat with a temperature coupling constant of 1 ps in a constant volume periodic box. 

This was followed by equilibration under constant pressure periodic boundary conditions 

for 2 ns with a 2 fs time step. Additionally, for the systems of TfCut2 with Impranil DLN, 

distance constraints applied during minimisation were maintained during equilibration 

to ensure correct ligand binding. 

Production 

Production MD simulations were conducted for 50 ns with a 2 fs time step under 

constant temperature conditions, maintained using the weak-coupling algorithm. 

A temperature coupling constant of 1.0 ps was used. Long-range electrostatic interactions were 

modelled using the Particle Mesh Ewald method [294] with a non-bonded cut-off of 10 Å. 

The SHAKE algorithm [295] was employed to maintain geometric constraints. Coordinates 

were saved at intervals of 2 ps. No distance constraints were applied during the production 

phase. 

Trajectories analysis 

The trajectories obtained from MD simulations were analysed using Cpptraj, a tool 

within the AMBER software suite [296,297]. Cpptraj was employed to perform a variety of 

post-simulation analyses, enabling the assessment of system stability and the preparation of 

data for subsequent analyses. Cpptraj was used for the calculation of the Root-Mean-Square 

Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), and calculating distances 

and contact numbers between specific atoms or residues within the system.  

Selection of productive MD simulations frames 

For each ligand pose, only frames where the ligand was productively bound within 

the hydrophobic groove of TfCut2 were selected for interaction analysis. To ensure accurate 

representation of the system's conformational diversity, ten representative snapshots were 

selected from the MD simulations using a pipeline of productive frames selection, followed 

by clustering technique.  

Filtering Based on Distance and Angle Criteria 

Frames were selected if they met the following criteria: 

• Distance between the γ-oxygen of S130 and the carbonyl carbon of the cleaved group 

≤ 3.5 Å. 
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• Distance between the γ-hydrogen of S130 and the ε-nitrogen of H208 ≤ 2.5 Å. 

• Angle for the nucleophilic attack between S130 Oγ – carbonyl carbon – carbonyl oxygen 

of the cleaved bond between 60° and 120°. 

Filtering Based on Ligand Pose Shape 

Frames were further filtered to ensure the ligand was in an extended pose along 

the TfCut2 binding groove. This involved: 

• Measuring the distance between the carbonyl carbons on both sides of the Impranil DLN 

repeating unit chain. 

• Assessing the angles between the carbonyl carbons. 

• Counting the number of residues within 6 Å of the ligand. 

• Maximising these values for each pose separately to ensure at least 15 frames were selected. 

Clustering to Ensure Diversification 

The remaining frames were clustered using the k-means method (n_clust = 10) 

in AMBER 18 [286] without ligand superimposition. This produced an artificial trajectory 

of ten frames for each binding pose, with the ligand bound in a nucleophilic attack position 

in an extended pose. 

MM-GBSA calculations 

Short ten-frame MD snapshots acquired in the previous step were used to calculate 

binding free energies using the MM-GBSA method as implemented in AMBER 18 [286]. 

Thismethod combines molecular mechanics energies with generalised Born solvation energies 

to estimate binding affinities [224,298]. The Generalised Born (GB) model was utilised 

for its computational efficiency and ability to handle large systems. 

 The calculations were performed using the Cpptraj module for trajectory 

analysis and the MMPBSA.py script for binding free energy calculations [297]. Using selected 

ten MD snapshots instead of single ones allowed to capture the conformational diversity 

of the system. 

ProLIF 

To analyse the interactions between TfCut2 and the ligand Impranil DLN, the ProLIF 

(Protein-Ligand Interaction Fingerprints) Python library, version 2.0.0 [299], was employed.  
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Visualisation 

This subsection describes the tools utilised to visualise the quantitative results as plots 

or visualise molecules in 3D. The techniques described here were used in the next 

Chapters 5 and 6 as well. 

For data analysis and visualisation in a form of plots, Python 3.9.5 [300] programming 

language was used together with libraries: Pandas 1.5.3 [301], Numpy 1.26.2 [302], Matplotlib 

3.8.2 [303], Seaborn 0.13.2 [304], Biopython 1.81 [305], Scipy 1.11.4 [306]. 

For 3D visualisation of proteins, PyMOL 2.5.4 software was used [152]. Additionally, 

python scripting language with library cmd (Support for line-oriented command interpreters.  

The chemical structures were drawn the author using Miscrosoft PowerPoint, or using 

ChemSpacE [101]. 

 

4.3. Results and discussion 

4.3.1. Investigation of the structure of Impranil DLN  

To characterise the structure and composition of Impranil DLN, nuclear magnetic 

resonance (NMR) spectroscopy was employed. Impranil DLN, a 40% aqueous dispersion 

of polyester PUR, was generously provided by Covestro (Germany). The NMR spectra were 

acquired in a solvent that prevents the exchange of labile protons, enabling the observation 

of functional groups such as carboxyl, hydroxyl, and amino groups formed during hydrolysis, 

therefore, deuterated dimethyl sulfoxide (DMSO) was used. Prior to analysis, the sample was 

lyophilised and subsequently dissolved. Comprehensive structural analysis of Impranil DLN 

requires advanced NMR techniques, particularly 2D NMR methods, including both 

homonuclear and heteronuclear approaches, to resolve its complex molecular features fully. 

To confirm the structure of Impranil DLN, a 13C NMR spectrum and a set 

of two‑dimensional (2D) NMR spectra (COSY, HSQC, and CIGAR) were recorded. The 2D 

spectra provided detailed insights: the COSY spectrum revealed directly coupled protons, 

the phase-sensitive HSQC spectrum allowed the assignment of carbons directly bonded 

to hydrogen atoms and distinguished carbon multiplicity, while the CIGAR spectrum enabled 

the identification of the carbon chain backbone by analysing proton-carbon couplings over two 

and three bonds, which helped locate quaternary carbon atoms. 
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The comprehensive information obtained from NMR spectroscopy enabled 

the proposal of Impranil DLN's chemical structure, shown in Fig. 10. Its composition includes 

the following components: 1,6-hexanediol, adipic acid, neopentyl glycol, 

and 1,6‑hexamethylene diisocyanate.  

 

Fig. 10. Proposed chemical structure of Impranil DLN based on NMR data. 

Figure 11 presents the NMR spectrum of Impranil DLN in deuterated DMSO. The 

following figures present the interpreted 13C NMR spectra with assigned carbon signals 

(Figs. 12-13). Significant fragments of 2D spectra, which enabled a complete characterisation 

of the structure of Impranil DLN are provided in Supplementary figures 4.1-4.4 at the end 

of Chapter 4. 

 

Fig. 11. 1H NMR spectrum of Impranil DLN in DMSO_d6 (600MHz), range 0-8.0 ppm. Above 

the picks, chemical structures containing proton groups responsible for signals are proposed 

(in green).  
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Fig. 12. 13C-NMR spectrum of Impranil DLN in DMSO_d6 (Varian 600MHz). 

 

Fig. 13. Fragment of the 13C-NMR spectrum of Impranil DLN (aliphatic carbon range) 

in DMSO_d6 (600MHz). 
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Quantitative analysis of the 1H NMR spectrum of Impranil DLN 

in deuterated chloroform 

As mentioned before, deuterated DMSO was chosen as a primary solvent because 

it prevents the exchange of labile protons, enabling the observation of functional groups such 

as carboxyl, hydroxyl, and amino groups formed during hydrolysis. However, since on 1H 

NMR spectrum of Impranil DLN in deuterated DMSO, the signals from ester groups 

in 1,6‑hexanediol and neopentyl glycol are bifurcated, for the quantitative analysis, the 1H 

NMR spectrum of Impranil DLN recorded in deuterated chloroform was used, to minimise 

bias. 

The 1H NMR spectrum of Impranil DLN (Fig. 14), recorded in deuterated chloroform, 

reveals characteristic signals corresponding to fragments present in its structure. At a chemical 

shift of 4.8 ppm, the spectrum shows a signal attributed to NH protons from the urethane group. 

In the range of 3.8–4.2 ppm, signals from ester fragments are observed: a triplet at 4.1 ppm 

corresponding to the CH2 group of the ester’s alcohol residue, and a singlet at 3.9 ppm 

attributed to the isolated CH2 group of neopentyl glycol. 

The signal at 3.2 ppm is characteristic of CH2 groups adjacent to nitrogen in the 

urethane system, while a multiplet at 2.3 ppm corresponds to CH2 protons in the α-position 

relative to the ester carbonyl group. Signals in the 1.2–1.8 ppm range originate from CH2 

groups in the β- and γ-positions of the 1,6-hexanediol chain and the β-position of adipic acid. 

The most shielded signal in the spectrum, a singlet at 1.0 ppm, corresponds to isolated CH3 

groups in the aliphatic structure of neopentyl glycol. 

A summary of the characteristic structures identified in Impranil DLN, based 

on the 1H NMR spectrum, is presented in Table 3. 
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Fig. 14. 1H NMR spectrum of Impranil DLN in chloroform, range 0-4.2 ppm. Above the picks, 

chemical structures containing proton groups responsible for signals are proposed (in green). 

The numbers in below correspond to rows in Table 3. 

Table 3. Summary of characteristic structures found in Impranil DLN. Detailed NMR results, 

specifying the range of chemical shifts (ppm), name of the found compound, its chemical 

structure and marked groups of protons giving the signals, signal types, integral values (signal 

intensities), the number of protons, and the integral-to-proton ratio. 
 Chem

ical 

shifts 

(ppm) 

Name of 

compound 

Chemical structure Signal 

types 

Integral 

value 

Numbe

r of 

protons 

integral-

to-proton 

ratio 

1 4.8 NH group in 

hexamethylene 

diisocyanate 
 

multip

let 

1.11 2 0.56 

2 4.1 Ester from 

1,6-hexanediol 

 

triplet 11.99 4 3.00 

3 3.9 Ester 

From neopentyl 

glycol 

 

singlet 6.87 4 1.72 
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4 3.2 Urethane 

hexamethylene 

diisocyanate 
 

multip

let 

3.33 4 0.83 

5 2.3 Adipic acid 

 

multip

let 

17.15 4 4.29 

6 1.2-

1.8 

-CH2- 

In chain 

 

 

multip

let  

29.53 

3.84 

15.89 

 

Sum: 

49.26 

  

7 1.0 Methyl group 

In neopentyl 

glycol 

 

singlet 10.29 6 1.72 

The correctness of the proposed structure of Impranil DLN can be checked by checking 

the value of the integrals and the number of protons for the peaks representing the same group: 

Protons in Neopentyl Glycol 

• Signal at 3.9 ppm: corresponds to CH₂ groups in the ester system (C=O)-O-CH₂-. The total 

integral is 6.87, with four protons in two CH₂ groups. The integral-to-proton ratio is 1.72. 

• Signal at 1.0 ppm: corresponds to CH₃ groups in neopentyl glycol. The integral is 10.29, 

with six protons in two CH₃ groups. The integral-to-proton ratio is also 1.72. 

-CH₂- Groups in the Polymer Chain 

Repeating -CH₂- groups originate from: 

• 1,6-Hexanediol: 8 protons from CH₂ groups. 

• Adipic Acid: 4 protons from CH₂ groups. 

• Hexamethylene Diisocyanate: 8 protons from CH₂ groups. 

Expected sum of integrals: 

• 1,6-Hexanediol: 3.00*8 = 2.00 

• Adipic Acid: 4.29*4 = 1.44 

• Hexamethylene Diisocyanate: 0.83*8 =0.56 
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The cumulative integral for signals in the 1.7-1.3 ppm range is 49.26, aligning with 

the expected sum of 47.8. Slight deviations may indicate the presence of additional minor 

chain‑extending groups. 

The values that do not correspond are the integral-to-proton ratio of NH group 

in hexamethylene diisocyanate (0.56) versus integral-to-proton ratio of CH2 groups adjacent 

to nitrogen in the urethane system of hexamethylene diisocyanate (0.83). However, the signal 

from of NH group in hexamethylene diisocyanate is weak and wide, therefore its integral value 

can have more bias. 

Molar ratio of structural units in Impranil DLN 

By assessing the value of the integral for one proton (Integral / no. of protons) 

for the specific structural units, their molar ratio can be estimated: 

• 1,6-Hexanediol: 30.5% 

• neopentyl glycol: 17.5% 

• Adipic acid: 43.6% 

• Hexamethylene diisocyanate: 8.4% 

These results are rational, as adipic acid should be present in the largest amounts, given 

its role in forming ester bonds with diols, while isocyanate is present in the smallest amounts, 

consistent with the structure of polyester PUR, which predominantly consists of long, soft 

polyol segments with relatively few hard segments. From the molar ratio of structural units 

in Impranil DLN, the ratio of urethane to ester bonds can be estimated. Taking into account 

that each mole of adipic acid reacts with diols to form ester bonds (43.60%), and each mole 

of diisocyanate hexamethylene diisocyanate reacts with diols to form urethane bonds (8.44%), 

the ratio of urethane to ester bonds is 
8.4

43.6
. Therefore, the ratio is approximately 1:5.2. 

Through detailed analysis of 1H and 13C NMR spectra, along with two-dimensional (2D) 

NMR spectra (COSY, HSQC, and CIGAR), it was possible to propose a composition 

for Impranil DLN, produced by Covestro. These findings are consistent with the structure 

of Impranil DLN proposed by Fuentes-Jaime et al. [4]. However, the precise composition, such 

as the lengths of individual polymer chains, incorporation of chain extenders, or plasticisers, 

remains unresolved. Further analysis could provide these insights, since the molar ratio 

of the structural units has been estimated. 
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4.3.2. Sequence and structure characteristics of TfCut2 

The enzyme selected for these studies, bacterial cutinase TfCut2 from Thermobifida 

fusca, shares 54.7-55.7% pairwise sequence identity with three other cutinases—LCC, 

Tcur0390, and Tcur1278 (Fig. 15A), which were experimentally analysed by Schmidt et al. 

and reported to degrade Impranil DLN and two other polyester PURs [20]. Structurally, all four 

cutinases are very similar. The structures feature nine beta-sheets surrounded by alpha helices 

[149]. All examined cutinases share the α/β-hydrolase fold, which includes the well-known 

GXSXG motif characteristic of the serine hydrolase family [307]. In TfCut2, this motif appears 

at positions 128-132 as GHSMG, featuring the catalytic serine (S130) within the sequence 

(Fig. 15C). Sequence alignment of these cutinases reveals that the many residues are indeed 

conserved (Fig. 15C). The catalytic triad is conserved, with a serine at position 130, an aspartic 

acid at 176, and a histidine at position 208 in TfCut2. Notably, one of the oxyanion hole residues 

varies at position 60, where TfCut2 and LCC have a tyrosine, while Tcur0390 and Tcur1278 

contain phenylalanine; the other oxyanion hole residue is conserved as methionine at position 

131. The oxyanion hole of cutinases is formed by the backbone amide groups of these residues, 

therefore variability is tolerated in these positions.  

Calcium ions are known to stabilise the structure of many cutinases [188,308–310]. To 

identify potential divalent metal-binding sites in TfCut2, 10 repetitions of 50 ns MD 

simulations at 298 K were conducted with a Ca²⁺ ion positioned in each of four putative sites 

identified in crystallographic data from homologous proteins (Fig. 16). One of these sites 

in TfCut2 contained three negatively charged amino acids: D174, D204, and E253, another site 

one only one: E72, and the last two (located near residues G38 and N160) did not contain any 

negative amino acids. Only one site—located near residues D174, D204, and E253—retained 

the Ca²⁺ ion consistently across all ten simulation replicates. The negatively charged 

environment created by D174, D204, and E253 effectively maintained the Ca²⁺ ion, forming 

a stable divalent metal-binding site. This site aligns with previously described metal binding 

sites in the literature, and studies have shown that substituting these residues with arginine 

in related enzymes increases thermal stability, underscoring its functional importance [188]. 

This divalent metal binding site is also conserved in other cutinases, such as LCC [48]. 

In the two other putative metal binding sites lacking negatively charged residues, 

the Ca²⁺ ions were found to dissociate into the solvent within the first ns of simulations. 
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An additional site near residue E72 retained the Ca²⁺ ion in only three out of the ten simulation 

replicates.  

 

Fig. 15. Sequence analysis of four cutinases: TfCut2, LCC, Tcur0390, and Tcur1278 

A) Pairwise sequence identity matrix. B) Hierarchical clustering dendrogram. C) MSA. 

Despite presented computational results showing a clear divalent metal binding site 

composed of D174, D204 and D253, it was reported, that no sign for a metal dependence was 

found for TfCut2, as shown on a comparative activity assay against pNPB with metal chelator 

EDTA or various metal ions [272]. In the 4CG1 X-ray structure of TfCut2 [149], the divalent 

metal ion is also absent. The likely explanations for this observation is that the predicted metal-
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binding site is an ancestral feature that has become non-essential due to evolutionary 

adaptations, allowing TfCut2 to function independently of divalent metal ions. Another 

possibility includes that the assay substrate, pNPB, may not require the functionality associated 

with the metal-binding site, as its role could be substrate-specific.  

 

Fig. 16. Structure of TfCut2 shown as a grey cartoon, with four Ca²⁺ ions. Negatively charged 

residues (glutamates and aspartates) within 5 Å of the ions are displayed as pink sticks, while 

the catalytic triad is shown as grey sticks. 

4.3.3. Investigation of the binding mode of Impranil DLN 

to TfCut2 

As shown on NMR analysis presented in Chapter 4.3.1 and also in a study 

by Fuentes‑Jaime et al. [4] Impranil's structure is complex, with two types of bonds: urethane 

and ester, in different chemical environments. Therefore, in order to investigate the different 

possibilities of substrate to bind enzyme (or enzyme to substrate), it was necessary to build 

a series of 3D models representing each bond type within distinct chemical contexts. Given the 

various building blocks constituting the soft segment—neopentyl glycol, adipic acid, 

and 1,6‑hexanediol—different configurations of a single repeating unit of Impranil DLN 

are possible.  
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To reduce the number of structures for modelling, Impranil DLN model structure was 

simplified to consist of hexamethylene diisocyanate (urethane moiety) and adipic acid (ester 

moiety), connected by either neopentyl glycol or 1,6-hexanediol (Fig. 17A). This approach 

lowered to some extent the complexity of the Impranil DLN structure while retaining both 

hydrolysable bonds—ester and urethane (Fig. 17A, C). 

Previous research has demonstrated that TfCut2 can degrade Impranil DLN by cleaving 

ester bonds, while urethane bonds remain resistant to enzymatic hydrolysis, as observed 

through FTIR spectroscopy [20]. However, TfCut2 belongs to serine hydrolase family, a highly 

promiscuous class of enzymes [311]. As the example of cutinase HiC, which was reported 

to degrade mainly ester bonds in PUR, and urethane bonds with low activity, it was shown 

in another study on HiC, that even a single mutation near the active site could shift enzyme 

activity from esterolytic (C-O bond hydrolysis) to amidolytic (C-N bond hydrolysis) ) [140]. 

This shift in activity is thought to result from the stabilisation of the leaving amine group 

in the tetrahedral intermediate formed during hydrolysis. 

Given the potential to alter an enzyme’s activity from esterase to amidase or urethanase, 

interactions with Impranil DLN were modelled with both ester and urethane bonds positioned 

in the active site, resulting in four potential binding modes (Fig. 17B). Consequently, four 

distinct models of the Impranil DLN moiety in complex with TfCut2 were built: ‘ester P1’ 

and ‘ester P2’ for poses where the ester bond is situated in the active site, and ‘urethane P1’ 

and ‘urethane P2’ for poses where the urethane bond is located in the active site (Fig. 17B). 

With two models of the Impranil DLN repeating unit, a total of eight possible poses of Impranil 

DLN bound to TfCut2 were modelled. 

Due to the large number of rotatable bonds in the single repeating units of Impranil 

DLN, generating diverse and computationally manageable conformers for the docking 

procedure proved challenging. Therefore, it was decided to focus the docking studies 

on specific fragments of the Impranil DLN repeating units, specifically the ester and urethane 

moieties, corresponding to the building blocks adipic acid and hexamethylene diisocyanate, 

respectively. These fragments are common to both the hexanediol and neopentyl repeating 

units of Impranil DLN and contain the cleaved ester or urethane bond, which is crucial for 

accurate positioning during nucleophilic attack. To ensure stability and neutralise terminal 

charges, -CH₃ (methyl) groups were added as capping groups on these fragments (Fig. 17C). 
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Fig. 17. Impranil DLN structures and poses for modelling studies. A) Structures of the Impranil 

DLN moiety used for modelling. B) Possible poses of Impranil DLN moiety bound to TfCut2. 

C) Ester (adipic acid) and urethane (hexamethylene diisocyanate) moieties used later for 

docking studies. 

Starting from these four poses (ester P1, ester P2, urethane P2 and urethane P2), 

conformational sampling of impranil DLN bound to TfCut2 was further investigated using 

the Rosetta software suite [266] with a flexible XML docking protocol [208,293]. The docking 

approach was adapted from a previously published study about molecular docking of PET 

dimers to binding site of the crystal structures of TfCut2, LCC, and IsPETase [287]. 
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The approach enabled to explore optimal binding poses for the ester and urethane moieties 

of Impranil DLN within the flexible active site of TfCut2. For each ligand, ester and urethane 

moieties, and each orientation (P1 and P2), 10,000 docking complexes were generated, 

resulting in a total of 40,000 potential enzyme-ligand complexes. The docking results were 

analysed by plotting interface score against total score, and interface score against ligand RMS. 

The poses were evaluated using the ref2015 all-atom energy scoring function [288] with scores 

expressed in Rosetta units (RU). For each ligand, one pose from a set of 10,000 complexes was 

selected for further analysis. Selected were the complexes with the lowest interface score 

among the complexes found within a ligand RMS cluster representing extended ligand poses. 

This way, the four complexes that were further selected (ester P1, ester P2, urethane P1, 

urethane P2) were characterised by low interface energies, and the ligands in these complexes 

adopted an extended conformation. Such extended conformation of a ligand facilitates the 

subsequent construction of the Impranil DLN repeating unit, ensuring proper positioning 

within the TfCut2 active site. The details of the selection of the complexes for further studies, 

together with their characteristics are described below.  

Plots of interface score vs. total score (Fig. 18) were used to identify poses with both 

low interface and total score, indicating stable and energetically favourable binding 

configurations. The selected complexes correspond to the lowest (Fig. 18B, “ester P1” 

and “urethane P2”) or near-lowest (Fig. 18B, “ester P2” and “urethane P1”) interface scores. 

Additionally, the generated docking complexes were distributed around the energy landscape 

of the initial TfCut2-ester/urethane moiety complexes used in the docking studies, as indicated 

by the central location of yellow dots in Figure 18A, which represent the initial complexes 

of TfCut2 and ligands placed manually that were used for the docking studies. 
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Fig. 18. Interface score vs. Total score for all complexes of ester and urethane moieties docked 

in TfCut2, in Rosetta units (RU). Selected complexes are marked with coloured green dots. 

The initial starting geometries are shown with yellow dots. A) All 10,000 docked complexes. 

B) 1,000 complexes with the lowest interface energies. 

The interface score vs. ligand RMS plots (Fig. 19) were used to assess 

the conformational variability of the ligand in the binding site and to distinguish energetically 

favourable conformations. In this context, RMS refers to the root mean square of the deviation 

in ligand position within the binding site, without superimposing the structure (Fig. 19B). 

Unlike RMSD, which is typically used for measuring the deviation of superimposed structures 

(Fig. 19A), RMS here provides insight into how the ligand conformation varies in terms 

of position within the binding site. 

The poses within the selected complexes had extended conformations, coinciding 

with the lowest interface energies (Fig. 19A, “ester P1” and “urethane P2”) or near-lowest 

(Fig. 19A, “ester P2” and “urethane P1”). Plots of ligand RMS without superimposition 

(Fig. 19B) confirmed that the chosen ligand pose within the TfCut2 active site corresponds 

to low-energy configurations, especially for ester P1. 
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Fig. 19. Interface score vs. Ligand RMS for all docking poses. Selected complexes are 

highlighted as in Fig. 18. A) Superimposed ligand RMS. B) Ligand RMS without 

superimposition. 

The selected complexes display favourable catalytic distances (Fig. 20, Table 4). 

However, the distances required for nucleophilic attack were initially quite large in some 

complexes (Table 4) but decreased during MD simulations, as discussed in later sections. 

 

Fig. 20. Snapshots of the selected docking poses for each ligand type: A) ester P1, B) ester P2, 

C) urethane P1, D) urethane P2, bound to TfCut2. Ligand shown as black sticks, catalytic triad 

as salmon sticks, and oxyanion hole residues as grey sticks, TfCut2 shown as white surface. 
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Among the complexes, TfCut2 with urethane P2 displayed the lowest interface score, 

while the complex with ester P2 showed the lowest total score (Table 4). Despite these findings, 

identifying a clearly preferred pose solely based on these docking studies remains challenging, 

as the ligand sizes differ between ester and urethane moieties, and the initial complex energies 

vary (Table 4). 

The distance flat harmonic potential constraints applied between the γ-oxygen of S130 

and the carbonyl carbon of the cleaved bond, set to 1.5–3.5 Å, were met only in the urethane 

P2 pose. The constraints between the γ-hydrogen of S130 and the ε-nitrogen of H208, set 

to 1.5–2.5 Å for proton transfer, were fulfilled in all selected poses except ester P1. However, 

the nucleophilic attack angle constraint between S130 Oγ, the carbonyl carbon, and 

the carbonyl oxygen, set to 100–110°, was unmet in any of the selected poses (Table 4). These 

results suggest that despite employing a flexible docking protocol in Rosetta and working with 

relatively small ligands, the sidechains and backbone of TfCut2 may not have adjusted 

sufficiently to position the ligand within the optimal range for nucleophilic attack (≤ 3.5 Å). 

Table 4. Calculated interface and total energies of selected poses for further studies. 
Pose Interface 

score [RU] 

Total 

score [RU] 

Distance for 

nucleophilic 

attack (Å) 

Distance for S130-

H208 proton 

transfer (Å) 

Angle for 

nucleophilic 

attack (°) 

Ester P1 -11.6 -777.4 4.4 2.9 77.9 

Ester P2 -9.6 -784.7 4.6 1.9 163.4 

Urethane P1 -11.8 -771.3 4.5 1.7 86.7 

Urethane P2 -14.0 -769.432 3.3 2.0 171.8 

MD simulation of TfCut2 and Impranil DLN complexes 

In the next step, for each of the four enzyme-ligand complexes, the full Impranil DLN 

repeating unit was constructed based on the ester or urethane moiety bound in the P1/P2 pose. 

Two types of Impranil DLN units were created to account for variability in building blocks, 

as shown previously in Figure 17:  

1. adipic acid (ester moiety), 1,6-hexanediol (chain extender), and hexamethylene 

diisocyanate (urethane moiety),  

2. adipic acid (ester moiety), neopentyl glycol (chain extender), and hexamethylene 

diisocyanate (urethane moiety).  

These units are designated as “hexamethylene” and “neopentyl,” respectively, based 

on the chain extender used. Each constructed Impranil DLN unit includes two ester bonds, two 

urethane bonds, and terminal methyl groups. 
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Before initiating MD simulations, proper solvation of the well-protonated system 

is a critical step. For the present study, crystallographic water molecules present in the 4CG1 

structure were kept. Additionally, two Ca²⁺ ions were added to each divalent-metal binding site 

within the structure. To prepare the system for simulation, necessary counterions to neutralise 

were added and the system was immersed in a 20 Å octahedral box of TIP3P water molecules. 

This solvation approach ensures that the system is fully solvated and capable of maintaining 

its structural integrity during subsequent MD simulations. The relatively large size of the water 

box was chosen to ensure proper periodic box conditions for the large ligand, such as Impranil 

DLN single repeating unit. 

MD simulations were performed using the AMBER 18 software package 

for the system, using the ff14SB protein force field [216]. AMBER 18 was selected due to its 

robustness and reliability in biomolecular simulations, providing accurate and reproducible 

results. The ff14SB force field was chosen for its validated parameters that are well-suited 

for proteins and peptides. For each simulated system, ten repetitions of 50 ns were performed, 

totalling 500 ns of MD simulations.  

RMSD and RMSF analysis 

RMSD measures the average deviation of the atomic positions in the simulated structure 

from a reference structure, typically the initial crystal structure. By tracking RMSD over the 

course of the simulation, the stability of the system can be assessed. A stable RMSD plot 

indicates that the system has equilibrated and remained structurally consistent throughout 

the simulation. In addition to RMSD, Root-Mean-Square Fluctuation (RMSF) enables analysis 

of the flexibility of individual residues within the protein. RMSF measures the average 

deviation of each residue’s position from its average position over time. High RMSF values 

indicate regions of the protein that are more flexible, while low RMSF values suggest more 

rigid, stable regions. This analysis is particularly useful for identifying flexible loops, binding 

sites, or regions involved in significant conformational changes during the simulation. 

RMSD and RMSF of the TfCut2 throughout the MD simulations of the protein-ligand 

complexes were calculated using Cpptraj, to analyse respectively the average deviations and 

the flexibility of individual residues within the protein. The RMSD analysis of the MD 

simulations indicated that the TfCut2 protein in complex with Impranil DLN repeating units 

remains stable across most simulations, with deviations consistently below 2 Å (Fig. 21). 

Of note, only the 9th replica of the MD simulation involving Neopentyl Impranil DLN 



87 

 

 

in the urethane P1 pose, showed a notable instability during the second half of the simulation 

(last 25 ns). This instability was further monitored using an RMSF (Root Mean Square 

Fluctuation) plot, which revealed that the elevated RMSD values were mainly due to significant 

fluctuations in the N-terminal region (residues 1-10) (Fig. 22B). 

Fig. 21. RMSD calculated for the C-alpha, C, and N atoms of TfCut2 during MD simulations 

of TfCut2 in complex with Impranil DLN repeating units. Different colors represent datasets 

from various MD simulation replicas 1-10. A) Hexanediol Impranil DLN; B) Neopentyl 

Impranil DLN. 

In addition to the N-terminal region, the RMSF analysis enabled to identify another 

highly fluctuating region, specifically the loop encompassing residues 241-251. This loop 

contains D246, a residue that was not resolved in the original crystal structure of TfCut2 



88 

 

 

(PDB ID: 4CG1) and its high flexibility was already reported before [149]. The flexibility of 

this loop may suggest a structural adaptability in this region that could be functionally relevant. 

Furthermore, the RMSF plots indicated that the binding region, highlighted in blue 

in Fig. 22, exhibits higher RMSF values, suggesting a degree of flexibility. This flexibility 

likely facilitates the enzyme's ability to accommodate large ligands, such as synthetic polymer 

chains, within its active site. 

 

Fig. 22. RMSF calculated for the C-alpha, C, and N atoms of TfCut2 during MD simulations 

of TfCut2 in complex with Impranil DLN repeating units. Different colors represent datasets 

from various MD simulation replicas 1-10. Blue regions indicate the binding site 

of the enzyme. The RMSF plots suggest that the binding region is flexible, which likely allows 
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the enzyme to incorporate large ligands such as synthetic polymer chains. A) Hexanediol 

Impranil DLN; B) Neopentyl Impranil DLN. 

Catalytic distances 

In the classical Ser-His-Asp catalytic triad of TfCut2, the catalytic serine (S130) 

is activated by proton transfer of its γ-hydrogen to the catalytic histidine’s (H208) ε-nitrogen, 

which acts as a general base. This activation allows the serine to perform a nucleophilic attack 

on the carbonyl carbon of the substrate's cleaved bond, representing the first step of the catalytic 

mechanism. The role of the catalytic aspartic acid (D176) is crucial in this process. Aspartic 

acid stabilises the protonated form of histidine by forming a hydrogen bond with it, between 

δ‑nitrogen of histidine and carboxylate oxygen of aspartic acid, ensuring that histidine can 

effectively act as a proton acceptor (Fig. 23). 

 

Fig. 23. Figure adapted from Raczyńska et al. [13] A) Schematic of first step of catalytic 

mechanism of ester bond hydrolysis by TfCut2: active site residues: S130-H208-D176 catalytic 

triad (salmon) with the oxyanion hole comprised of Y60 and M131 (purple). H208 acts 

as a general base, activating the S130’s hydroxyl group for nucleophilic attack on the carbonyl 

carbon of the ligand. D176 enhances the basicity of the H208. The oxyanion intermediate 

formed is stabilised by the backbone amide groups of the two oxyanion hole residues Y60 
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and M131. B) Active site of TfCut2 cutinase (productive frame exported from MD 

simualtions). The catalytic triad residues S130-H208-D176 are shown as salmon sticks. 

The oxyanion hole forming residues Y60 and M131 shown as purple sticks.  

In this study, key distances that are critical for catalysis of Impranil DLN by TfCut2 

were measured. Specifically, two distances were monitored: 

1. The distance between the γ-oxygen of the catalytic serine (S130) and the carbonyl carbon 

of the cleaved group of the Impranil DLN repeating unit, which is crucial for nucleophilic 

attack. 

2. The distance between the γ-hydrogen of S130 and the ε-nitrogen of the catalytic histidine 

(H208), which is essential for proton transfer and activation of the serine. 

The Cpptraj tool from AMBER 18 [286] as used to measure these distances, enabling 

insights into dynamic interactions between TfCut2 and Impranil DLN. Additionally, Cpptraj 

calculated contact numbers, which reflect the extent of specific interactions, such as hydrogen 

bonding and van der Waals contacts, providing a clearer picture of ligand stability 

and the enzyme’s conformational behavior.  

These distance measurements allowed to determine whether the ligand was bound 

in a productive pose conducive to catalysis. The following results were obtained from multiple 

MD simulation replicas, indicating how many times the Impranil DLN repeating unit remained 

bound in a productive pose (Fig. 24): 

• Hexanediol Impranil DLN Single Repeating Unit: 

o Ester P1: 7/10 replicas 

o Ester P2: 1/10 replicas 

o Urethane P1: 2/10 replicas 

o Urethane P2: 4/10 replicas 

• Neopentyl Impranil DLN Single Repeating Unit: 

o Ester P1: 1/10 replicas 

o Ester P2: 1/10 replicas 

o Urethane P1: 6/10 replicas 

o Urethane P2: 8/10 replicas 

In several cases, the ligand remained bound to TfCut2 in a productive pose throughout 

the simulation, with the cleaved bond maintained within catalytic distance of the serine. 

In other cases, the ligand fluctuated, and the cleaved bond drifted away from the catalytic 

serine, although the ligand did not completely exit the active site and remained bound. When 
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the ligand did not remain bound in the simulations, it either dissociated early, potentially 

reflecting inherent instability in the initial binding pose, or it gradually left the binding site 

of TfCut2 during the MD simulation. In some cases, the ligand could be seen to bind again 

in the productive pose (Fig. 24). 

 

Fig 24. Measured distances throughout the MD simulations of TfCut2 in complex with Impranil 

DLN repeating units. The colored datasets indicate the distance for nucleophilic attack between 

the γ-oxygen of catalytic S130 and the carbonyl carbon of the cleaved group in the ligand, 

while the grey datasets represent the distance between the γ-hydrogen of catalytic S130 

and the ε-nitrogen of H208; and the lightgrey the distance between the δ-nitrogen of H208 

and catalytic D176. The black horizontal line at y=3.5 Å indicates the cutoff 

for the nucleophilic attack distance to be considered “productive”. Different colors correspond 

to various MD simulation replicas (1-10). A) Hexanediol Impranil DLN; B) Neopentyl 

Impranil DLN. 

If the distances are too large for proton transfer via S130-H208-D176, such a situation 

might restrict its catalytic efficiency. It was observed that during the MD simulations, 
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the catalytic triad residues do not always maintain these hydrogen bond distances, and there 

are, in fact, four configurations by which their contacts can be described (Fig. 25): 

• S-H-D: All three residues are in hydrogen bond contact (Fig. 25A). 

• S-H: Only catalytic serine and histidine are interacting via hydrogen bonds (Fig. 25B). 

• H-D: Only catalytic histidine and aspartic acid are interacting via hydrogen bonds 

(Fig. 25C). 

• None: None of the catalytic residues are interacting, and H208 is "flipped" (Fig. 25D). 

 

Fig. 25. The possible configurations of catalytic triad residues with a fragment of Impranil 

DLN urethane bond (shown as black sticks) in distance for the nucleophilic attack by S130 

(≤4.0 Å). The figures were prepared by visualising selected frames of MD simulations 

of TfCut2 with hexanediol Impranil DLN repeating unit in pose urethane P1. The catalytic triad 

residues (S130, D176, H208) are shown as salmon sticks, and the oxyanion hole residues 

(Y60, M131) are shown as purple sticks. The measured distances between the catalytic triad 

residues are shown as yellow dashed lines with values (in Å) printed in black. A) "S-H-D" – 

all three residues are involved in hydrogen bond contacts; B) S-H – only catalytic serine and 

histidine are interacting via hydrogen bonds; C) H-D – only catalytic histidine and aspartic acid 

are interacting via hydrogen bonds; D) None of the catalytic residues are interacting, and H208 

is "flipped." 

The occurrences of these poses were investigated and compared to the occurrences 

in the MD simulations of the free enzyme as well (Fig. 26). In frames where the ligand was 

in a productive pose, with a distance for the nucleophilic attack ≤ 3.5 Å, most frames adopted 

the S-H-D configuration (Fig. 26A). A smaller proportion of frames represented the H-D 

configuration, and very few represented S-H and "None" (Fig. 26A). 

It appears that when the ligand was not in a productive pose, a greater proportion 

of frames represented the "H-D" configuration rather than "S-H-D," both in the case 

of unbound TfCut2 and TfCut2 in complex with the Impranil DLN repeating unit in any 
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of the poses (Fig. 26B). These findings suggest that either the bound ligand helps maintain the 

configuration of catalytic triad residues for effective proton transfer between all three catalytic 

triad residues, or fluctuations of H208 and its shift toward D176 may cause the ligand 

to destabilise and dissociate. In Figure 24, it is also visible how if ligand dissociates, the S-H 

distance (shown in grey) fluctuates strongly, indicating lack of stabilised interactions between 

S130 and H208.  

 

Fig. 26. Percentage of frames in which a given catalytic triad configuration is observed. 

The interaction between two catalytic triad residues is confirmed when the distance between 

the specific atoms for proton transfer is ≤ 2.5 Å. A) Frames in productive form, indicated 

by a distance for nucleophilic attack ≤ 3.5 Å. B) Frames in non-productive form, indicated 

by a distance for nucleophilic attack > 3.5 Å.  

Selection of MD simulation frames 

A previous study has shown that the active site residues exhibit greater deal of mobility 

when the hydrogen bonds connecting them in the starting conformation of MD simulations are 

broken [312]. In the presented case, when all the hydrogen bonds are disrupted, the catalytic 
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residues fluctuate to form hydrogen bonding interactions with other neighbouring atoms. 

Especially H208, which is a long amino acid side chain, can flip and adopt an altered 

conformation [313], and distance itself from S130 and D176, which could potentially inhibit 

catalysis (Fig. 25D). 

Interestingly, ‘S-H’ configuration in productive poses of Impranil DLN can be observed 

only for the ester P1, both hexanediol and neopentyl (Fig. 26A). The fact that in unproductive 

poses (Fig. 26B), the ratio of ‘H-D’ and ‘none’ occurrences is much higher, may suggest that 

a bound ligand stabilises hydrogen bond between S130 and H208, probably by stabilising S130 

via interactions of its Oγ with ligands carbonyl carbon. 

In the analysis of interactions between TfCut2 and a single Impranil DLN repeating 

unit, the focus was placed on identifying configurations where the ligand was bound 

in a productive conformation—corresponding to the first step of TfCut2’s catalytic 

mechanism—and tightly associated along the binding groove of TfCut2. A workflow consisting 

of three steps was developed (Fig. 27) to extract frames from the MD simulations where 

the ligand exhibited such productive conformation. 

Firstly, only frames where the ligand was productively bound within the TfCut2 

hydrophobic groove were selected, based on specific distance and angle criteria in accordance 

with the catalytic mechanism. Secondly, additional filtering was applied to ensure 

that the Impranil DLN ligand was in an extended pose along the binding groove by maximising 

distances and angles between the carbonyl carbons on either side of the repeating unit 

and maximising residue contacts. Finally, k-means clustering (n=10) in AMBER 18 [286] was 

applied to produce a trajectory of ten frames per binding pose, each reflecting the ligand bound 

in a catalytically productive position (Fig. 27). 

In the first step of the selection, a "productive" pose was defined based on specific 

geometric criteria: 

1. The distance between the γ-oxygen of S130 and the carbonyl carbon of the cleaved bond 

(either ester or urethane) should be ≤ 3.5 Å to allow for nucleophilic attack. 

2. The distance between the γ-hydrogen of S130 and the ε-nitrogen of H208 should be ≤ 2.5 

Å to facilitate proton transfer for catalytic serine activation. 

3. The angle between S130 Oγ, the carbonyl carbon, and the carbonyl oxygen should range 

between 60° and 120°, ensuring proper alignment for stabilisation by the oxyanion hole. 
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Fig. 27. Overview of the workflow for selecting productive frames from MD simulations 

of TfCut2 in complex with an Impranil DLN repeating unit. From MD simulations, 

“productive” frames are selected based on the distances and angle constraints 

for the nucleophilic attack. Then, MD frames are further filtered out for extended poses of 

Impranil DLN based on maximising internal distance and angles measurements of the ligand 

structure. In the end, k-means frames clustering is performed to obtain trajectory of ten 

representative frames of TfCut-Impranil DLN complexes.  

Applying these criteria, productive frames were filtered from the MD simulations 

for each system, resulting in a discrete set of productive poses. The number of frames that met 

these criteria for each system is shown in Table 5. 

Table 5. Number of frames selected from MD simulations of TfCut2 in complex with Impranil 

DLN repeating units based on productive pose criteria. 

 ester P1 ester P2 urethane P1 urethane P2 

Hexanediol 220 306 48 835 30 501 40 694 

Neopentyl 62 462 142 879 210 312 316 544 

Systems with the highest number of productive frames include: hexanediol ester P1 

and neopentyl ester P2, urethane P1, and urethane P2, with 220k, 143k, 210k, and 317k frames, 

respectively. These selected frames, based on distance and angle criteria, were generally 

distributed evenly throughout the MD simulations (Fig. 28). However, in certain cases, 

productive frames primarily appeared at the beginning of a given replica, followed by system 

destabilisation. The discrepancies between the number of productive frames extracted from 

these MD simulations with Impranil DLN in different poses, may suggest which pose allows 

for better binding to TfCut2. For the complexes with low number of frames, it can also indicate 

a not tightly bound Impranil DLN in the initial complex for MD simulations. For example, 

for hexanediol ester P2, on the distance plots in Figure 24, it is visible that Impranil DLN 

disassociates at the beginning each simulation replica. 
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Fig. 28. Measured distances between the γ-oxygen of S130 and the carbonyl carbon of the 

cleaved group (coloured points), and the distance between the γ-hydrogen of S130 and the 

ε‑nitrogen of H208 (grey points) in selected frames from MD simulations. Vertical lines 

separate ten replicas of MD simulations. A) Hexanediol Impranil DLN; B) Neopentyl 

Impranil DLN. 

In the docking studies, the angle between S130 Oγ, the carbonyl carbon, 

and the carbonyl oxygen was constrained to approximately 107°, based on the Bürgi–Dunitz 

angle for nucleophilic attack [314]. However, none of the docked poses met this angle 
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requirement. Subsequent productive frames in MD simulations suggested that the angle could 

be achieved within the range of approximately 70°–90°, as shown in Figure 29. 

Interestingly, for the P2 ester involving both hexanediol and neopentyl glycol, 

the median distance for nucleophilic attack and the S130-H208 proton transfer distance 

in the productive frames are the shortest among all positions examined (Fig. 29). Additionally, 

the median angles associated with these interactions are the largest. These observations suggest 

that the ligand in the P2 ester position may bind more tightly, facilitating closer interaction 

with the catalytic residues. Such reduced distances and optimised angles could enhance 

the efficiency of the catalytic process by promoting a more favourable geometry 

for the reaction. 

 

Fig. 29. Boxplots of catalytic distances and angles in the productive frames of MD simulations 

of TfCut2 in complex with Impranil DLN (first column: hexanediol, second column: 

neopentyl). In the first row, boxplots represent the distance between the γ-oxygen of S130 

and the carbonyl carbon of the cleaved bond (either ester or urethane); the second row shows 

the distance between the γ-hydrogen of S130 and the ε-nitrogen of H208; and the third row 

displays the nucleophilic attack angle of S130 toward the cleaved bond in Impranil DLN 
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(measured as the angle between S130 Oγ, the carbonyl carbon, and the carbonyl oxygen) across 

all poses of Impranil DLN. 

Upon further inspection, certain productive poses exhibited tangled Impranil DLN 

chains, which were not well associated with the surface of TfCut2. The modelled ligand 

is flexible and tends to fold back on itself. To refine the selection, additional criteria were 

introduced to identify "extended" poses, where the ligand was properly aligned along the 

enzyme's long and flexible binding groove. Maximising specific distances and angles between 

the ligand's atoms (detailed in the Methods section) enabled this refined selection. The number 

of well-bound productive poses for each system is summarised in Table 6. 

Table 6. Number of frames selected based on maximising distances and angles to identify 

extended poses. 

 ester P1 ester P2 urethane P1 urethane P2 

Hexanediol 3 099 18 615 559 

Neopentyl 569 83 1 179 4 041 

After this step of filtering frames with Impranil DLN in an extended pose, highly 

uneven trajectory lengths across different systems were obtained (Table 6). In this step, again, 

systems with the highest number of productive frames include: hexanediol ester P1 urethane 

P1, and urethane P2, except for neopentyl ester P2 which has low number of filtered frames 

(83). In this particular Impranil DLN pose, the ligand structure might have been folding 

on itself, not giving off many frames I which it would be in an extended pose. 

To address the issue of uneven number of frames of the poses and generate evenly 

representative trajectories, k-means clustering was applied to reduce the data to 10 clusters 

(i.e., 10 frames) per system. This ensured a more balanced and representative set of frames 

for further analysis. 

As a result of this frame-selection workflow, 10 frames of TfCut2 and Impranil DLN 

complexes were obtained for each of the eight systems. Each frame featured Impranil DLN 

well-bound within TfCut2's binding groove and in a productive pose consistent with the first 

step of TfCut2’s catalytic hydrolysis mechanism (Fig. 30). 
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Fig. 30. Representative first frames of the artificial 10-frame trajectories generated using 

the workflow presented in Figure 27, shown for each of the eight TfCut2-Impranil DLN 

repeating unit systems. The Impranil DLN repeating unit is depicted as black sticks, 

with the initially docked ester and urethane moieties highlighted by an orange brace. 

The catalytic triad residues (S130, D176, H208) are displayed as salmon-colored sticks, while 

the oxyanion hole residues (Y60, M131) are shown as purple sticks. Key catalytic and 

stabilisation distances are indicated by yellow dashed lines. A) Hexanediol Impranil DLN; 

B) Neopentyl Impranil DLN. 
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During the writing of this thesis manuscript, Świderek et al. published a study docking 

two orientations of an Impranil DLN repeating unit into the active site of lipase A from 

Pseudomonas chlororaphis (PueA), an enzyme with potential for synthetic polymer 

degradation [161]. These orientations, referred to as RC1 and RC2, are correspond to the ester 

P1 and ester P2 poses identified in the TfCut2 study. Both orientations position the cleaved 

ester bond near the catalytic triad, indicating similarities in the binding modes of Impranil DLN 

to PueA and TfCut2, despite structural differences between the enzymes (Fig. 31B). This 

observation suggests that, while originating from different organisms, these enzymes may 

share structural features that facilitate polymer substrate binding in an extended conformation.  

In that study, the authors showed that RC2 pose represents superior-protein-ligand 

interactions decomposed by ligand and activation free energy of the acylation step, which 

is around 10 kcal/mol lower than for RC1 starting structure. At the same time, the kinetics 

of activation of the catalytic serine is basically equivalent for both poses. This energetical 

difference may stem from the fact, that in pose RC2 the leaving alcohol group of the tetrahedral 

intermediate is better stabilised by deprotonated nitrogen of the catalytic histidine [107]. 

It seems, that in RC2 the catalytic histidine is closer to the leaving group oxygen and able 

to donate a proton to it more freely (Fig. 31B). What is more, in that study, the authors used 

a similar approach of measuring distance of terminal atoms in a model of Impranil DLN, 

to assess the extended poses (Fig. 31B). 

Further, the binding pose of a PET trimer within the active site of LCC reported 

by Tournier et al. [48] was examined (data not shown due to copyright issues). LCC cutinase 

shares 55.7% identity with TfCut2. The bound pose of the PET trimer to LCC strongly 

resembles in shape the binding mode of the Impranil DLN repeating unit in the hexanediol 

ester P2 pose within TfCut2. It is visible, that the bulky residues in LCC that are responsible 

for the binding: F243 and “aromatic clamp” formed by Y95 and W190 in LCC are mirrored 

by F209, and Y60 with W155, respectively, in TfCut2.  



101 

 

 

 

Fig. 31. A) Structure of PueA generated by AlphaFold2 with the Impranil DLN repeating unit 

docked in the active site in an extended conformation (RC1). Adapted from Świderek 

et al. [161] under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 

B) Two modelled orientations of the Impranil DLN repeating unit bound to PueA, with ester 

as the cleaved group, referred to as RC1 and RC2. The RC1 and RC2 poses correspond 

to the ester P1 and ester P2 poses, respectively. Adapted from Świderek et al. [161] under 

a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 

When the productive poses of Impranil DLN are overlaid, they show a clear alignment 

around the active site (highlighted by a green circle in Fig. 32A). As expected, these poses 

position the carbonyl group of the cleaved bond near S130 and the oxyanion hole residues, Y60 

and M131, ensuring productive interactions. Additionally, alignment occurs within 
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the "aromatic clamp" region formed by residues Y60 and W155 (Fig. 32B). These two bulky 

amino acid residues enforce a specific arrangement of the polymer chain within the binding 

groove, stabilising it close to the active site. Outside of these regions, the polymer chain adopts 

various conformations, binding flexibly across different areas of the binding surface. 

 

Fig. 32. Overlay of Impranil DLN poses from the first frames of representative artificial 

10‑frame trajectories shown in Figure 30. The protein structure from hexanediol ester P2 

is shown as a white surface for reference. The catalytic triad is shown as salmon sticks, 

and the aromatic clamp and oxyanion hole residues are depicted as blue sticks. A) Overview 

of the aligned poses. B) Zoomed view. 

The purpose of this workflow was to identify and analyse events when the ligand was 

tightly and specifically bound to TfCut2. This computational approach enabled 

the identification of key residues responsible for binding the polymer chain during enzymatic 

degradation. These amino acid contributions were critical for proposing substitutions 

to improve polymer chain binding, potentially addressing the rate-limiting step of the reaction. 

Similar approaches have been applied to model the productive pose of the first step of synthetic 

polymer degradation in an extended conformation, although different computational methods 

and enzyme-polymer systems were used [48,161]. The similarity indicates 

that polymer‑binding enzymes, such as TfCut2, may adopt common strategies for substrate 

positioning and stabilisation across different polyester-degrading enzymes. 
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4.3.4. Analysis of TfCut2-Impranil DLN interactions 

in productive poses 

 The interactions between TfCut2 and Impranil DLN were investigated using 

the ProLIF Python library [299]. The analysis focused on ten representative productive frames 

for each system, which were identified in the previous step. ProLIF enables the generation 

and visualisation of interaction fingerprints, detailing the specific amino acid residues 

that interact with particular ligand atoms. These interactions are visualised as dashed lines, 

colour‑coded according to the type of interaction, with the width of the lines reflecting 

the frequency of occurrence across the ten frames (with a maximum of 10 observations, 

as because of 10 frames). The results for Impranil DLN hexanediol and neopentyl poses are 

presented in Figures 33 and 34, respectively. 

The analysis highlights the strongest interactions occurring near the cleaved bond 

of the ligand, specifically between the carbonyl oxygen and the oxyanion hole residues Y60 

and M131, as well as between the carbonyl carbon and the catalytic residue S130. Additionally, 

frequent hydrophobic interactions are observed between the aromatic residues W155 and Y60 

and the polymer backbone carbons adjacent to the cleaved bond. Together, Y60 and W155 

form an "aromatic clamp" [149] that plays a crucial role in stabilising the ligand within 

the active site. Notably, Y60 also frequently engages in van der Waals interactions 

with the carbonyl carbon of the cleaved ester group (Fig. 33, 34). 

Further hydrophobic interactions are detected between the carbon atoms of the polymer chain 

and residues such as F209, I178, H129, and the catalytic residue H208. Other interactions 

are more variable, depending on the specific ligand pose and the location of the chain’s distal 

end. However, most of the interactions involving the ligand’s backbone carbons 

are hydrophobic in nature. Hydrogen bond donor/acceptor interactions are primarily observed 

for the atoms near the other ester and urethane bonds or for hydrogen atoms within the polymer 

backbone. Van der Waals interactions are also frequently observed throughout the ligand 

(Fig. 33, 34). 
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Fig. 33. Interaction fingerprints and visualisations of the binding site and Impranil DLN poses, 

with key residues from TfCut2 highlighted. Amino acids are colour-coded according 

to  the legend, and interactions are represented by dashed lines, with width proportional to 

the frequency of interaction. The cleaved bond is indicated by a transparent red circle. A) Ester 

P1 hexanediol Impranil DLN fingerprint. B) Ester P1 hexanediol Impranil DLN snapshot 

visualisation. C) Ester P2 hexanediol Impranil DLN fingerprint. D) Ester P2 hexanediol 

Impranil DLN snapshot visualisation. E) Urethane P1 hexanediol Impranil DLN fingerprint. 

F) Urethane P1 hexanediol Impranil DLN snapshot visualisation. G) Urethane P2 hexanediol 

Impranil DLN fingerprint. H) Urethane P2 hexanediol Impranil DLN snapshot visualisation. 
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Fig. 34. Interaction fingerprints and visualisations for neopentyl Impranil DLN poses 

with residues from TfCut2, formatted similarly to Figure 33. 

The integration fingerprints confirm the earlier findings, indicating that the catalytic 

residues, oxyanion hole, and aromatic clamp residues (S130, H208, Y60, M131, and W155) 

consistently interact with atoms (in the vicinity) of the cleaved bond. S130 in all poses interacts 

with carbonyl carbon of the cleaved bond, M131 and Y60 with carbonyl oxygen of that bond. 
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In contrast, the interactions involving the terminal regions of the Impranil DLN chain are less 

consistent, engaging variably with different amino acids in the binding site (Fig. 33, 34). This 

suggests that Impranil DLN (or similar polymer chains) can adopt multiple conformations 

when bound within TfCut2’s active site. The binding of the aliphatic polymer chain 

to the binding site surface appears relatively unrestricted, with no strong preference for specific 

conformation.  

When comparing the catalytic interactions of H208 between ester P1 and P2 poses, 

distinct patterns emerge. In the P1 pose of both hexanediol and neopentyl esters, H208 

primarily interacts with the α-carbon adjacent to the carbonyl group (Fig. 33A, 34A). 

In contrast, for the hexanediol ester P2 pose, H208 interacts with the β-carbon adjacent 

to the leaving oxygen (Fig. 33C), while in the neopentyl ester P2 pose, it interacts with the CH3 

group of neopentyl glycol (Fig. 34C). 

In the catalytic mechanism's second step, H208 typically donates a proton from its 

ε‑nitrogen to the leaving oxygen of the cleaved bond after forming the tetrahedral intermediate. 

However, this study models the first step of the reaction, where histidine in the δ-protonated 

state cannot directly interact with the leaving oxygen. Consequently, due to the hydrophobic 

nature of its side chain, H208 instead interacts with carbons in the ligand. Notably, in the P2 

ester poses, H208 engages with atoms closer to the leaving oxygen than in the P1 poses. In line 

with the findings of Świderek et al. [161], such proximity in P2 poses may favour more efficient 

proton transfer, suggesting a potential preference for P2 over P1 in catalytic efficiency. 

This pattern implies that for urethane bonds, the P2 pose could similarly be more 

favourable than the P1 pose, provided urethane bonds are cleavable. In the urethane P1 pose, 

where the NH group replaces the leaving oxygen, no interaction with H208 in the δ-protonated 

state is observed, despite the spatial proximity of H208's free ε-nitrogen to the NH group 

(Fig. 33E and 34E). This lack of interaction may indicate that the urethane P1 pose 

does not position the NH group optimally for proton transfer by H208. 

 

4.3.5. Estimated binding free energies via MM-GBSA 

approach 

To estimate the binding free energy of the TfCut2-Impranil DLN complex, MM-GBSA 

calculations were performed on a set of ten representative frames selected from molecular 

dynamics simulations for each ligand pose. By using multiple frames rather than a single 
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snapshot, the analysis captures a range of protein-ligand interactions across different 

conformational states, providing a more comprehensive view of the binding landscape 

and accounting for some of the dynamic fluctuations in the enzyme-ligand complex. 

It is crucial to note that MM-GBSA primarily reflects the enthalpic contribution to binding free 

energy. The MM component estimates interactions such as electrostatic forces and van der 

Waals contacts between the protein and ligand whereas the GBSA accounts for solvation free 

energy. Of note, it does not fully account for the entropic penalty associated with binding—

namely, the reduction in flexibility or disorder of both the ligand and protein upon complex 

formation. This entropic cost, often significant in flexible binding sites like that of TfCut2, can 

compensate the actual binding affinity. Therefore, without including the entropic component, 

the "total binding free energy" estimated by MM-GBSA may overestimate the true binding 

affinity, as it omits the energetic cost of the loss in flexibility. The presented results, therefore, 

represent an enthalpy-driven estimate of binding affinity rather than the full Gibbs free energy 

of binding. While it is possible to estimate the entropic contribution to binding using Normal 

Mode Analysis or Quasi-Harmonic analysis, such calculations are computationally expensive. 

Given the multiple modelled poses of Impranil DLN with TfCut2, these entropic estimations 

were omitted in this study to balance computational feasibility with the scope of the analysis. 

Estimation of total binding free energy of the complexes 

To assess the binding affinity of Impranil DLN to TfCut2, the MM-GBSA method was 

utilised. The total binding free energy, ΔG, was calculated as the energy difference between 

the complex, receptor, and ligand, according to the expression: 

𝛥𝐺𝑏𝑖𝑛𝑑 = 𝛥𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (𝛥𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝛥𝐺𝑙𝑖𝑔𝑎𝑛𝑑) 

The analysis indicated that the binding affinities of the complexes varied depending 

on the orientation of the ligand and the specific moieties within the Impranil DLN repeating 

unit. Complexes with the hexanediol moiety of Impranil DLN generally exhibited lower 

binding free energies, likely influenced by the slightly larger size or molecular weight of the 

ligand compared to neopentyl. However, the differences between the respective poses were 

minimal, with the lowest binding free energy calculated for hexanediol urethane P1, 

‑49.23 ± 5.23 kcal/mol, and the highest for neopentyl ester P2, -41.12 ± 3.05 kcal/mol. Table 7 

summarises the average binding free energy for each ligand pose of Impranil DLN, along with 

the corresponding standard deviation. The similar values of binding free energy suggest that 

the TfCut2 binding site accommodates the polymer chain in various configurations without 
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a strong preference for a particular pose. However, if ester P2 were truly the preferred pose for 

catalysis, the ΔGtotal values indicate suboptimal binding. Specifically, neopentyl ester P2 

exhibits the highest ΔGtotal of all poses, contradicting the idea of its preferential role in catalysis. 

In contrast, hexanediol ester P2 has the second-lowest ΔGtotal (after hexanediol urethane P2), 

which might support its binding preference despite not being the absolute lowest. 

Table 7. Calculated mean binding free energy differences of TfCut2-Impranil DLN complexes 

using the MM-GBSA method. The binding energy values represent the average 

ΔGtotal ± standard deviation across ten frames for each ligand pose. The energy difference was 

calculated as ΔG = (Complex - Receptor - Ligand) for each pose. 

Pose MM-GBSA ΔGtotal [kcal/mol] 

Hexanediol Neopentyl 

Ester P1 -45.83 ± 3.04 -44.59 ± 2.40 

Ester P2 -46.23 ± 2.92 -41.12 ± 3.05 

Urethane P1 -49.23 ± 5.23 -45.01 ± 2.91 

Urethane P2 -43.12 ± 2.81 -44.53 ± 2.09 

Estimation of per-residue binding free energy of the complexes 

In addition to calculating the total binding free energies of the TfCut2–Impranil DLN 

complexes, per-residue binding energy contributions were also evaluated to gain insights into 

the individual energy contributions of specific residues within the binding site of TfCut2. 

The binding site is composed of several loops and two helices, as illustrated in Fig. 35. This 

section provides an overview of the binding site architecture and composition, with details 

derived from the per-residue binding free energy results of the MM-GBSA analysis, which will 

be discussed in detail later. 

The binding site includes the following structural elements: 

• Loops: Residues 58–62, 129–131, 153–157, and 174–180 

• Helices: Residues 63–66 and 208–213 

• Strand: Residues 91–97 

This architecture, primarily composed of loops, provides the flexibility required to 

accommodate bulky substrates, such as polymer chains. Located on the surface of TfCut2, 

thebinding site offers easy access to large substrate molecules. Furthermore, the exposed nature 

of the active site likely contributes to TfCut2's substrate promiscuity, allowing interactions 

with diverse substrates without the constraints associated with internal protein cavities. 

However, it is important to note that MM-GBSA calculations do not explicitly consider 

entropic contributions, which can be a significant limitation, particularly for flexible regions 
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like loops. These regions often exhibit substantial conformational dynamics that can influence 

binding energetics, and neglecting entropy may lead to an incomplete representation of their 

role in substrate accommodation and stability. Addressing this limitation in future analyses 

could involve methods that incorporate entropic effects, such as quasi-harmonic analysis 

or advanced free energy simulations, to provide a more comprehensive view of the binding 

energetics. 

 

Fig. 35. Amino acid residues composing the binding site of TfCut2. Residues were identified 

based on per-residue binding free energy results from MM-GBSA calculations. Loops and 

helices are colour-coded, and the strongest binding residues are represented as sticks. 

The estimated per-residue binding free energies of the TfCut2–Impranil DLN 

complexes were derived from MM-GBSA calculations and structural information about 

binding regions within the sequence was integrated from the TfCut2 PDB structure 4CG1. 

Although several residues outside the defined binding site slightly contribute to ligand 

interactions, only those within the core binding site were considered here. The strongest 

binding residues were all located within the defined binding site. 

Figure 36 and 37 present the per-residue binding free energies (ΔΔG in kcal/mol) 

for each residue in the TfCut2 binding site, with separate plots for the hexanediol (Fig. 36) 

and neopentyl (Fig. 37) moieties of Impranil DLN. The contributions of individual residues 
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to binding were generally consistent across different ligand poses, as indicated by the similar 

bar lengths. Moreover, amino acid residues interacting with either hexanediol or neopentyl 

moieties followed similar binding trends. Notably, the residues constituting the binding site 

were distinguishable in these plots due to their strong binding free energy contributions. Most 

residues exhibit negative ΔΔG values, indicating that they strengthen ligand binding. 

 

Fig. 36. A) Mean per-residue binding free energies (ΔΔG in kcal/mol) for residues within 

the TfCut2 binding site, shown for hexanediol poses of Impranil DLN. Coloured blocks 

correspond to binding site compartments listed in Figure 35. B) Representative 

TfCut2‑Impranil DLN complexes, highlighting hexanediol poses. The protein is shown 

as a surface, with residues coloured by binding site compartment. 
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Fig. 37. A) Mean per-residue binding free energies (ΔΔG in kcal/mol) for residues within 

the TfCut2 binding site, shown for neopentyl poses of Impranil DLN. Coloured blocks 

correspond to binding site compartments listed in Figure 35. B) Representative 

TfCut2‑Impranil DLN complexes, highlighting neopentyl poses, shown as in fig. 36B. 

The specific binding site compartments for each Impranil DLN pose are examined 

in more detail below: 

• Loop 58–62 and Helix 63–66: This upper P1 region showed the strongest binding 

contributions from Y60 (oxyanion hole residue, from -2 up to -4.5 kcal/mol) and G59 (from 

-1 up to -1.8 kcal/mol). Other residues in this region bind weakly. Mutagenesis of residues 

61–66 could improve binding of Impranil DLN. 

• β-strand 91–97: In the upper P2 region, Q92 and P93 contribute the most to binding, 

but overall, none of the residues of this region contribute significantly. Q92, being 

solvent‑exposed, may be a good candidate for mutagenesis to enhance polymer chain 

interactions. R96 shows a positive ΔΔG, which suggests its destabilising role in the binding 
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of Impranil DLN. However, R96 is likely important for structural stability, as it forms salt 

bridges with the backbone carbonyl groups of neighbouring residues P58, T89, D91, 

and a crystal water molecule, as observed in the 4CG1 structure of TfCut2 (data not shown).  

• Loop 129–131: This central binding groove region is crucial, with S130 (catalytic residue) 

and M131 (oxyanion hole residue, from -2 up to -4.5 kcal/mol) showing strong binding 

contributions. H129 also binds relatively strongly. 

• Loop 153–157: The lower P2 region showed strong binding from W155 (“aromatic clamp” 

residue, from -2 up to -4.5 kcal/mol) and L157 with lower ΔΔG than W155. These 

hydrophobic residues leave limited room for improvement through mutagenesis, as they 

are already binding strongly. 

• Loop 174–180: Located centrally, this loop contains catalytic D176. I178 binds strongly 

(from -1 up to -1.8 kcal/mol) and is located in vicinity of the catalytic residues S130 

and H208 (Fig. 35). Other residues contribute less to the binding due to their distance 

from the active site and binding site groove. 

• Helix 209–213: This lower P1 region includes catalytic H208, which shows relatively 

strong binding contributions. F209, N212 and I213 also bind strongly and could 

be mutagenesis targets.  

Overall, the per-residue ΔΔG values were rather consistent across ligand poses, 

indicating that the Impranil DLN polymer chain can bind in various conformations without 

drastically altering individual residual contributions. 

The strongest binding residues—Y60, M131, and W155— play key roles in polymer 

anchoring. These residues are largely hydrophobic, facilitating interactions through 

hydrophobic forces. Y60 and W155, in particular, form an "aromatic clamp" that is essential 

for anchoring the polymer chain near the active site, consistent with previous findings [149]. 

These essential residues, along with the catalytic triad, were excluded from mutagenesis 

considerations due to their critical roles in enzyme function. 

The MM-GBSA results align with those obtained from ProLIF analysis, further 

confirming the contributions of key residues to Impranil DLN binding. Details of the protein 

design and proposed mutations are discussed in the following chapter. 
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4.4. Conclusions 

In this dissertation, Impranil DLN was chosen as a model PUR substrate because of its 

widespread use in studies on enzymatic PUR degradation. TfCut2 was selected as a model 

enzyme for this study based on its previously reported efficacy in polyester PUR degradation, 

as highlighted by Schmidt et al. [20]. At the time this study began in 2020, TfCut2 and Impranil 

DLN were optimal choices for examining polymer degradation mechanisms. Later reports 

(from 2022 onward) described PUR-degrading fungal cutinases [22–24] and urethanases 

[19,26]; however, such enzymes were not yet known in 2020 and thus could not be included 

in this work. 

The proprietary nature of Impranil DLN's structure has posed significant challenges 

for computational modelling. Literature sources report varying structural interpretations [3,4], 

contributing to uncertainty about its precise composition. To address this, extensive NMR 

analyses were conducted within this dissertation to characterise the structural features 

and repeating units of Impranil DLN. These efforts aimed to provide a robust foundation 

for constructing a reliable computational model to support subsequent studies.TfCut2’s ability 

to degrade Impranil DLN and other polyester-based PURs was confirmed through prior 

research by Schmidt et al. [20]. However, urethanase activity in TfCut2 was not reported. Given 

findings that single mutations can alter esterase activity to favour amidase activity [140], both 

ester and urethane orientations were examined in this study to assess potential activity across 

both bonds. 

The specific binding orientation of Impranil DLN or similar polymers in enzyme active 

sites remains unclear. Świderek et al. [161] addressed this question by modelling Impranil 

DLN’s binding in PueA and introduced two binding poses RC1 and RC2, with RC2 being more 

favourable by 10 kcal·mol−1 while exhibiting similar activation energy to RC1. Discussions 

at the 2024 Faraday Discussions conference suggested that RC2's preference might stem from 

easier stabilisation of the leaving group by catalytic histidine in the tetrahedral intermediate 

[107]. 

This dissertation did not investigate tetrahedral intermediate stabilisation or exact 

orientation effects through QM/MM methods. Instead, MD methods were used. Although MD 

simulations, Rosetta energy scores, and MM-GBSA calculations showed differences among 

the binding poses, distinguishing a preferred pose was challenging for the non-aromatic, 

aliphatic Impranil DLN. However, in line with findings of Świderek et al. [161] on Impranil 
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DLN enzymatic hydrolysis, the ester P2 pose could be the most optimal for catalysis, especially 

in case of hexanediol Impranil DLN moiety. In the hexanediol-based repeating units, 

orientation appeared less critical for binding. Only in the neopentyl-based repeating unit did 

the presence of methyl -CH3 groups cause minor interference due to steric clashes with active 

site residues, varying by orientation and local conformation. 

In general, TfCut2 likely recognises the polymer chain globally, and the binding 

orientation of the cleaved bond is crucial for achieving catalytic distances conducive 

to nucleophilic attack and oxyanion hole stabilisation. Key residues, such as W155 and Y60, 

form an "aromatic clamp" [149] that stabilises the polymer chain, with other residues 

(e.g. F209, I178, Q92) also contributing to binding but being less critical. The hydrophobic 

interactions in TfCut2’s groove offer flexibility in binding to the polymer chain, explaining the 

broad substrate promiscuity of cutinases. Although these enzymes naturally degrade 

the polyester cutin, they have been applied to Impranil DLN and polyester PURs [20,22–

24,128], PET [191,193,315,316], and polyamides [317]. 

In this study, productive binding poses were selected based on nucleophilic attack 

distances, proton transfer, and the Bürgi–Dunitz angle, aiming for ~107°. In practice, achieving 

this angle was difficult; initial inspections suggested a stable angle around 80°, which was used 

instead. Future work could benefit from additional constraints on oxyanion hole distances 

and possibly between H208 and D176 to avoid histidine flipping, which sometimes disrupted 

interactions with other catalytic triad residues. 

In this chapter, the first computational studies focused on Impranil DLN recognition 

by a cutinase has been presented, offering valuable insights into the specific amino acids 

in the binding site of TfCut2 and their contributions to effective ligand binding. This work has 

provided a detailed look into the binding modes of Impranil DLN fragments, demonstrating 

how TfCut2’s structural features accommodate such a complex substrate. These findings 

establish a strong foundation for future studies aiming to optimise cutinase enzymes for broader 

applications in polymer degradation.  
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4.5. Supplementary materials to Chapter 4 

 

Supplementary Fig. 4.1. COSY spectrum of Impranil DLN in DMSO_d6 (600MHz). 

 

Supplementary Fig. 4.2. Fragment of the phase-sensitive HSQC spectrum of Impranil DLN 

in DMSO_d6 (600MHz). 
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Supplementary Fig. 4.3. Fragment of the CIGAR spectrum of Impranil DLN (aliphatic carbon 

range) in DMSO_d6 (600MHz). 

 

Supplementary Fig. 4.4. Fragment of the CIGAR spectrum of Impranil DLN (carbonyl range) 

in DMSO_d6 (600MHz).  
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Chapter 5: Description of mutational landscape 

and design of TfCut2 mutants 

5.1. Introduction 

Protein engineering is a highly complex challenge, with 20𝑁 potential solutions, where 

𝑁 represents the protein sequence length or the number of candidate amino acids 

for substitution, given the 20 naturally occurring amino acids. To manage this vast search space 

and streamline the design process, researchers often rely on rational or semi-rational design 

approaches to narrow down possibilities and focus their efforts. 

In recent years, computational protein design and computer-aided engineering have 

transformed the field of catalysis and enzyme-driven processes, providing innovative 

approaches to tailor enzymes for specific reactions and substrates. These tools allow to analyse 

complex protein structures, predict interactions with substrates, and identify residues crucial 

for activity and binding. By using computational methods to design and optimise enzyme 

functions, scientists have achieved significant advances in the development of biocatalysts, 

impacting areas such as biotechnology and medicine [318–320]. 

In enzyme-based processes, computational protein design facilitates the rapid 

and cost‑effective generation of enzyme variants with enhanced catalytic efficiency, stability, 

and substrate specificity. These methods not only predict how mutations might affect binding 

affinity, structural stability, and overall reactivity, but also enable systematic sampling of 

sequence conformational space. Integrating methods like MD simulations, molecular docking, 

and energy calculations have proven especially powerful, allowing researchers to predict how 

mutations might affect binding affinity, structural stability, and overall reactivity. This strategic 

sampling reduces the size of mutant libraries for experimental evaluation, increases hit rates, 

and facilitates the identification of high-throughput variants. As a result, computational tools 

play a key role in making enzyme engineering efforts more efficient and focused. 

The primary objective of this dissertation is to investigate the molecular determinants 

involved in enzyme-based degradation of PUR and to optimise the degradation performance 

of the targeted enzyme, TfCut2. Building on insights from Chapter 4, which identified key 

binding residues involved in TfCut2's interaction with Impranil DLN, this chapter focuses 
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on the second objective: Re-designing the substrate binding site of TfCut2 to enhance its 

recognition and binding of Impranil DLN. 

The goal of this study was to propose mutations that would enhance the ∆G 

of protein‑ligand binding, and possibly also enhance rate of polymer degradation, without 

compromising the structural stability of TfCut2, in order to verify if the ligand binding 

is the rate limiting step in synthetic polymers enzymatic degradation. While improving 

the stability of the overall protein structure was not a primary objective, it was important 

to ensure that mutations did not destabilise the enzyme. Therefore, before proposing mutations 

to improve Impranil DLN binding to TfCut2, it was crucial to first investigate the legitimacy 

and feasibility of introducing mutations into the TfCut2 sequence, and then to identify 

functional hot spots whose modification could affect substrate binding and/or the rate 

of catalysis. The schematic illustration of approaches applied within the second objective 

of this dissertation, that are described in this chapter, is presented in Figure 38.  

The first step reduced the 293 amino acids in TfCut2 to only the binding site residues 

(Fig. 38A). Then, essential amino acids, whose substitution could impair TfCut2's enzymatic 

function, were excluded (Fig. 38B). In the next step, TfCut2’s structure and sequence 

were analysed to obtain information about the possibility of introducing mutations 

into the remaining amino acids of the binding site, without destabilising the protein’s structure 

and integrity (Fig. 38C).  

For this purpose, to evaluate the structural impact of potential mutations on the structure 

of TfCut2, systematic mutations were introduced within TfCut2’s binding site and the resulting 

changes in ∆G were calculated using FoldX [321]. This approach allowed to estimate free 

energy changes to assess the functional consequences of specific mutations. This analysis 

generated a substitution matrix, offering insights into the energetic consequences of each 

single-point mutation and aiding in the prioritisation of potential variants. Additionally, 

to analyse probability of successfully mutating the binding site residues, the evolutionary 

variabilities of each of the binding site amino acids were computed by analysing MSA 

of homologous proteins and mapping conservation and variability scores onto the protein 

structure to identify mutational targets that could enhance TfCut2’s characteristics. 

Combination of these two approaches provided essential insights for assessing and prioritising 

potential mutations (Fig. 38C). 

To pinpoint residues with the greatest potential to enhance substrate binding, functional 

hot spots were identified (Fig. 38D). For this, HotSpot Wizard was used, which identifies 
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functionally relevant residues for mutagenesis via evolutionary and structural analysis 

by combining sequence and structural analyses [322]. This information about functional hot 

spots helped to guide the selection of residues for mutation.  

 

Fig. 38. Schematic of approaches applied to propose mutations to TfCut2 to enhance its binding 

affinity and catalytic efficiency for the model PUR substrate Impranil DLN. A) Selection of 

binding site residues for mutagenesis. B) Exclusion of essential amino acids from the design 

process. C) Evaluation of mutation feasibility without structural destabilisation. 

D) Identification of functional hot spots likely to impact ligand binding. E) Integration of data 

to select residues for mutation. F) Computational protein design using Rosetta with an 

integrated genetic algorithm (GA) to improve protein-ligand binding; mutant libraries were 

generated for each Impranil DLN binding pose. G) Curation of a library of TfCut2 mutants for 

further evaluation. 

In the next step, information was integrated from three key areas: 1) protein-ligand 

interactions and residual binding contributions detailed in Chapter 4, 2) identified residues 

amenable to mutagenesis, and 3) functional hot spots critical for binding and activity 
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(Fig. 38E). In the process, nine positions in binding site were selected for mutation: T61, G62, 

A65, S66, Q92, I178, T207, F209, and N212. These residues were chosen based 

on the rationale that they could enhance binding to the Impranil DLN chain or they were 

proximal to the active site, potentially affecting catalytic efficiency. 

In the next step, a systematic protein design approach was employed to identify 

mutations that could enhance the interface ∆G scores and improve the binding of TfCut2 

to Impranil DLN. This approach considered all eight modelled TfCut2-Impranil DLN 

complexes, enabling the identification of pose-specific mutations. For this, a custom 

methodology incorporating Rosetta protein design and a genetic algorithm was used 

to substitute the selected nine amino acids (Fig. 38F). For each Impranil DLN pose, a library 

of mutant complexes was generated, resulting from the subsequent runs of the genetic 

algorithm. This approach moved beyond classical Rosetta protein design, which typically 

identifies a limited number of improved mutant complexes, by enabling the generation 

of diverse mutation sets with improved interface energetics. The sequences and scores of these 

mutants were then thoroughly analysed to select the most promising candidates 

for experimental validation. This approach facilitated the proposal of mutations aimed 

at improving ligand binding by optimising local interactions within each binding mode. 

The suggested substitutions varied by pose, reflecting differences in local interactions between 

Impranil DLN and the binding site. Several mutations that were beneficial for specific 

TfCut2‑Impranil DLN pose complexes were prioritised for further evaluation. 

This integrated approach led to the creation of a library of TfCut2 mutants (Fig. 38G): 

25 single-point mutants and five combined mutants for further evaluation. Experimental 

validation of these mutants (described in Chapter 6) will help determine which Impranil DLN 

pose is most relevant in solution, as if a given mutation that interferes with a given pose will 

cause loss of activity, it may indicate that this particular pose is preferable. This strategy 

not only optimised enzyme binding but also provided a framework for understanding substrate 

binding dynamics in enzymatic degradation of synthetic polymers. 

 

5.2. Methodology 

Selection of mutational hot spots 

To assess the potential for substituting individual amino acids within the TfCut2 

sequence, a comprehensive substitution matrix was generated using the FoldX [321] 
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programme. In this study, each amino acid in the TfCut2 sequence was iteratively substituted 

with the other 19 classical amino acids using FoldX. For each substitution, FoldX calculated 

the difference in energy (ΔΔG) between the mutant and the wild-type enzyme. These energy 

differences were then compiled into a substitution matrix, where each row corresponds 

to a specific position in the TfCut2 sequence, and the 20 columns represented all possible 

amino acid substitutions at that position. 

To identify key residues in TfCut2 for targeted mutagenesis aimed at improving binding 

affinity, catalytic activity, or substrate specificity, the HotSpot Wizard webserver [322] 

was used with default settings, using the PDB structure 4CG1 of TfCut2 as input.  

To further investigate the evolutionary variability and mutability of residues in TfCut2, 

the BALCONY R package [323] was utilised for a detailed analysis of the MSA generated 

by HotSpot Wizard. This MSA comprised homologous sequences of proteins related to TfCut2 

and was inspected to ensure that it contained appropriate homologous sequences. Schneider 

entropy [324] was calculated for each MSA position using BALCONY, and then the MSA 

positions were mapped.  

Computational protein design  

To enhance binding affinity of Impranil DLN by TfCut2, at nine positions: T61, G62, 

A65, S66, Q92, I178, T207, F209, and N212 a custom genetic algorithm was employed. This 

algorithm, developed in-house by Dr. Rajendra Sharma (former Post-Doc at Toulouse 

Biotechnology Institute), but not previously published, was integrated with the Rosetta 

[266,293] protein design module accessed via PyRosetta [325], and implemented in Python.  

The genetic algorithm followed these steps: 

1. Initialisation: Generation of initial mutant populations using specified seed sequences 

and the Rosetta protein design tool. 

2. Selection: Evaluation and selection of the best-performing sequences based 

on a defined fitness function. 

3. Crossover and Mutation: Creation of new mutants through crossover and mutation 

operations. 

4. Evaluation: Scoring and evaluation of each mutant using Rosetta's ref2015 [288] 

all‑atom scoring function and the custom genetic algorithm fitness function. 

5. Iteration: Repeating the crossover, mutation, and evaluation steps for a set number 

of generations to optimise the mutants. 
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For each of the eight TfCut2-Impranil DLN complexes, the first frame (most 

representative) of the 10-frames selected after kmeans clustering of MD simulations, was used 

to run the Rosetta Protein Design with genetic algorithm. For each complex, 50 generations 

of population size 100 were generated. 

The initial generation was generated uniformly. Based on initial test calculation rounds, 

the crossover probability was set to 0.8. The number of parents next generation was set to 50. 

The mutation probability was set to 0.5. 

 

5.3. Results and discussion 

5.3.1. Assessment of mutational potential and identification 

of hot spots in TfCut2 

This section evaluates TfCut2’s capacity to accommodate specific amino acid 

substitutions while maintaining structural integrity and stability. The analysis identifies 

mutational hot spots within the enzyme, focusing on positions with high potential 

for introducing beneficial changes. These insights are crucial for guiding modifications aimed 

at improving PUR degradation efficiency. By exploring mutability and evolutionary 

conservation, the study sets a foundation for rationally designed mutations that enhance 

enzyme performance. 

Mutation Feasibility of TfCut2: estimating free energy changes 

and evolutionary variability 

To estimate the predicted changes in stability (ΔΔG) of potential mutants, 

the systematic mutation within TfCut2’s binding site was carried out using FoldX [321]. 

A substitution matrix was generated, offering insights into the energetic consequences of each 

single-point mutation and aiding in the prioritisation of potential variants. The substitution 

matrix for the binding site residues of TfCut2 is presented in Figure 39. Negative ΔΔG values 

indicate that a mutation may stabilise the protein, while positive values suggest potential 

destabilisation. In the original FoldX publication, the authors warn that the empirical standard 

deviation of FoldX results is 0.46 kcal/mol, as measured between calculated and experimental 

ΔΔGs [321]. 
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To further refine the analysis from an evolutionary perspective, Schneider entropy [324] 

was calculated for each residue based on a MSA of homologous proteins, using BALCONY 

R package [323]. The entropy values were incorporated into the substitution matrix 

as an additional column (Figure 39). Schneider entropy, ranging from 0 to 1, serves as a metric 

for evolutionary conservation, where low values indicate conserved positions and high values 

suggest greater variability. Positions with higher entropy are more likely to tolerate 

substitutions without significantly destabilising the protein. 

 

Fig. 39. Substitution matrix of energy differences (ΔΔG) between the mutant and wild-type 

enzyme, calculated using FoldX for the binding site residues. Rows represent specific positions 

in the TfCut2 sequence, while the 20 columns represent possible amino acid substitutions. 

The column labeled ‘ent’ corresponds to the Schneider entropy calculated for each position. 

For the catalytic triad residues, S130, H208, and D176, the calculated Schneider entropy 

value is 0.1, indicating a high degree of conservation. This is consistent with their crucial role 

in the catalytic function of TfCut2 and homologous enzymes. Other residues with low entropy 

values of 0.1 include P58, G59, and R96. FoldX results suggest that P58 and G59 

are energetically unfavourable for substitution. Regarding R96, as noted in Chapter 4.3.5 

(per‑residue MM-GBSA results), this residue is relatively buried, and forms salt bridges 



124 

 

 

with backbone carbonyl groups of neighbouring residues P58, T89 and D91. Thus, substituting 

R96 could destabilise the protein, despite FoldX indicating that it could be replaced by leucine 

or methionine with ΔΔG values of -1.8 and -2.1 kcal/mol, respectively. 

The oxyanion residues Y60 and M131 also exhibit low entropy values (0.4 and 0.3, 

respectively), despite their side chains not being essential for catalysis. These residues stabilise 

the carbonyl oxygen of the cleaved bond via hydrogen bonds formed by their backbone NH 

groups. According to FoldX, favourable substitutions for these residues are limited. Notably, 

Y60 could potentially be replaced by phenylalanine with a ΔΔG of -0.5 kcal/mol, a plausible 

substitution given the structural similarity between tyrosine and phenylalanine, differing only 

by the hydroxyl group of tyrosine. A phenylalanine is also present at equivalent position 

in homologous cutinases Tcur1278 and Tcur0390, as mentioned in Chapter 4.3.2. 

Another critical residue involved in ligand binding, W155, has an entropy value of 0.5. 

However, FoldX results suggest that this residue cannot be favourably substituted. 

For other binding site residues, many positions show relatively high entropy values 

(>0.5), and several are predicted to tolerate multiple favourable substitutions according 

to FoldX ΔΔG results. These include residues such as T61, G62, A65, S66, Q92, S95, L157, 

D174, L175, T177, T207 and N212. 

In summary, the substitution matrix combined with evolution-based entropy values 

enabled the identification of positions within the TfCut2 sequence that are likely to tolerate 

substitutions without destabilising the protein structure. Furthermore, the matrix highlighted 

positions where multiple substitutions resulted in negative ΔΔG values, suggesting a higher 

tolerance for mutation and a greater likelihood of maintaining protein stability. This analysis 

not only helps identify possible sites for mutation but also specifies which amino acids could 

be introduced without compromising the structural integrity of TfCut2. The substitution matrix 

provides a valuable guide for future protein engineering efforts aimed at enhancing or altering 

enzyme function. 

Functional hot spots analysis using HotSpot Wizard 

To identify mutational hot spots within the TfCut2 sequence, the HotSpot Wizard web 

server [322] was utilised. After importing the TfCut2 structure from the PDB (PDB ID: 4CG1), 

HotSpot Wizard integrated information from SwissProt to identify essential amino acid 

residues for TfCut2 functionality: Y60, S130, M131, W155, D176, D204, and H208. These 

are the essential residues that form the catalytic triad (S130, D176, H208), the oxyanion hole 
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(Y60, M131), the "aromatic clamp" (Y60, W155), and the divalent metal-binding site 

(D204) [188]. 

HotSpot Wizard results highlighted several types of amino acid hot spots: functional 

hot spots, correlating hot spots, stability hot spots based on protein flexibility, and stability hot 

spots derived from sequence consensus. 

• Functional hot spots: The residues T61, G62, T63, A65, S66, F209, and N212 were 

identified, all of which are located in the binding site of TfCut2. 

• Correlating hotspots: Pairs of co-evolving residues identified as correlating hotspots were 

E64-T83, Q92-K159, L104-L124, N105-R143, R138-H156, L159-W161, and K186-E254. 

• Stability hotspots based on protein flexibility: The following residues were indicated: 

A1, L14, R18, R110, K216, R245, G247, L248, F249, and P263. 

• Stability hotspots based on sequence consensus: Residues L14, S19, R46, N48, N49, 

Y51, A65, E72, I72, I87, N101, N105, H106, M107, I108, A111, L139, N145, K216, 

and I217 were identified.  

Of particular interest for this project were the functional hot spots located within 

the binding site and especially in vicinity to the active site, as they can be critical 

for the protein’s performance. Mutating these residues could potentially improve or disrupt 

various functional properties, such as catalytic efficiency or substrate specificity. Additionally, 

HotSpot Wizard can provide predictions on the likelihood of preserving function for all amino 

acids in TfCut2, considering any of the 19 possible substitutions. Since the tool integrates 

methods such as MSA analysis, FoldX, and Rosetta calculations [322], that were 

also individually applied within this dissertation, the results of the webserver were not directly 

used for proposing substitutions. This decision ensures greater transparency and control 

over the mutation design process, as HotSpot Wizard operates as a somewhat opaque “black 

box,” limiting detailed insight into the origins of its predictions 

 

5.3.2. Selection of residues for mutation  

The next step involved selecting the most promising residues for mutation. The catalytic 

triad was excluded from consideration, as modifications to these residues could disrupt 

the enzyme's core catalytic mechanism, or even result in a complete loss of enzymatic activity. 

Key residues critical for polymer chain binding, located in the P2 region of the binding 

site, were also excluded from the mutational analysis. These included Y60 and M131, 
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which form the oxyanion hole, as well as the bulky hydrophobic W155. The proximity of these 

hydrophobic residues to the catalytic serine enables TfCut2 to stabilise the polymer chain 

in a conformation suitable for hydrolysis. Specifically, the NH backbone groups of Y60 

and M131 stabilise the carbonyl carbon of the hydrolysed groups, while Y60, M131, and W155 

collectively stabilise the aliphatic polymer chain via hydrophobic side-chain interactions. 

Previous studies have shown that substituting these residues often results in a significant loss 

of enzymatic activity. For example, the W155F variant of TfCut2, despite replacing tryptophan 

with another aromatic and hydrophobic residue, led to a complete loss of activity against PET 

[191]. Similarly, the M131A variant exhibited reduced hydrolytic activity on para-nitrophenyl 

butyrate (pNPB), highlighting M131's importance for catalytic efficiency. Interestingly, 

in the same study, the Y60A variant showed slightly enhanced relative activity on pNPB 

hydrolysis, with a neutral effect on tomato cutin degradation [192]. 

The final selection of residues for mutations was based on the following criteria:  

1. Contribution to substrate binding estimated using MM-GBSA calculations (Chapter 4.3.5). 

2. Possibility of introducing given substitutions without destabilising the overall structure, 

evaluated through FoldX ∆G calculations and positional entropy values derived from MSA. 

3. Identification of functional hot spots by the HotSpot Wizard webserver through structural 

and sequential analyses. 

Additionally, the residues were selected based on their location within the binding site, 

to provide feedback on their relevance for catalysis in case of residues in vicinity of the active 

site or provide verification of hypothesis of importance of P1 and P2 sites for binding.  

The region of TfCut2’s binding site with the greatest potential for optimisation lies 

predominantly in the P1 region. Aside from F209, this area lacks bulky hydrophobic residues 

that could facilitate strong interactions with the polymer chain. HotSpot Wizard further 

identified several residues within the P1 region as potential functional hot spots, including T61, 

G62, T63, A65, S66, F209, and N212. Consequently, the following residues within the P1 

region were selected for mutation: T61, G62, A65, S66, F209, and N212. 

In the P2 region, only Q92 was selected due to its quite significant role in binding 

according to MM-GBSA and ProLIF results, that could be ameliorated via substitution. 

This residue is highly solvent-exposed, and ∆G calculations, along with its high entropy value 

(0.8), suggest that it can be mutated without destabilising the overall structure. 

Additionally, two residues closely related to the active site, I178 and T207, were 

selected (Fig. 40B). I178, a hydrophobic residue, plays a significant role in binding the polymer 
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chain but may also restrict substrate and water access to the active site. Meanwhile, T207, 

a small polar residue, is directly linked to catalytic H208 via the backbone, and its mutation 

could influence catalysis, potentially improving flexibility through substitution to a smaller 

amino acid.  

In summary, residues contributing weakly to binding (such as the small and/or polar 

T61, G62, A65, S66, Q92, and N212) were selected for mutation, with the aim of enhancing 

binding via substitution to larger, more hydrophobic amino acids. Additionally, residues with 

strong binding contributions near the active site (I178 and F209) were selected to explore 

how different amino acids might impact enzyme performance. Lastly, residues near 

the catalytic triad, particularly near H208, were targeted for mutation: T207, I178, and F209, 

to modulate the chemical environment of the active site. Some residues were chosen based 

on multiple factors. The selected residues and the essential amino acids for TfCut2 functionality 

are visualised in Figure 40B, together with estimated per-residue MM-GBSA scores for each 

Impranil DLN pose (Fig. 40A). 

 

Fig. 40. A) Mean per-residue ΔG [kcal/mol] values for selected TfCut2 residues in complexes 

with hexanediol (first column) and neopentyl (second column) moieties of Impranil DLN. 

B) Snapshot from an MD simulation frame showing the TfCut2 complex with hexanediol 

Impranil DLN in the ester P2 pose, highlighting the location of key residues. Residues are 

colour-coded as follows: oxyanion hole and aromatic clamp (grey), catalytic triad residues 

(pink), and binding site residues selected for substitution (green). 
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5.3.3. Computational protein design of TfCut2 using a genetic 

algorithm 

The primary objective of this study was to propose mutations that enhance the binding 

of Impranil DLN to TfCut2. To achieve this, Rosetta suite [266,293], with its all-atom ref2015 

scoring function [288], was employed to evaluate both total and interface scores of TfCut2-

Impranil DLN complexes. To systematically explore potential mutations in the TfCut2 binding 

site and optimise its interaction with Impranil DLN, a custom genetic algorithm was applied. 

This algorithm was integrated with Rosetta’s protein design module via PyRosetta [325], 

a Python-based implementation of Rosetta functionalities. The selected in previous step nine 

residues of the TfCut2 binding site—T61, G62, A65, S66, Q92, I178, T207, F209, and N212, 

were targeted for mutation using this algorithm. 

In this approach, each mutant sequence was encoded as a “chromosome” within 

the genetic algorithm population, enabling systematic exploration of substitutions at these 

residues. The genetic algorithm was initialised with the wild-type TfCut2 sequence at these 

positions and incorporated sequences from a MSA to account for evolutionary favoured 

substitutions as input seed. Protein design was performed on eight different TfCut2-Impranil 

DLN models, each representing a single repeating unit of the polymer, enabling tailored 

optimisation for specific ligand poses. This strategy facilitated the identification of mutations 

aimed at improving the enzyme's binding affinity and catalytic efficiency, demonstrating 

a robust method for rational enzyme design using computational tools. 

The fitness function of the genetic algorithm was designed to optimise the binding 

affinity of TfCut2 for Impranil DLN. The function was defined as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  −1 × (𝑇𝑜𝑡𝑎𝑙𝑚𝑢𝑡 −  𝑇𝑜𝑡𝑎𝑙𝑊𝑇) − 50 × (𝐼𝑚𝑢𝑡 − 𝐼𝑊𝑇) 

Where: 

• 𝑇𝑜𝑡𝑎𝑙𝑚𝑢𝑡 - total score of the mutant protein-ligand complex 

• 𝑇𝑜𝑡𝑎𝑙𝑊𝑇 - total score of the wild-type complex 

• 𝐼𝑚𝑢𝑡 - interface score between the mutant protein and ligand 

• 𝐼𝑊𝑇- interface score of the wild-type complex 

The coefficient (50) in the fitness function highlights the significance of the interface 

score in evaluating the fitness of each mutant, as the function prioritised mutants with improved 

interface score. For each of the eight poses of Impranil DLN, the genetic algorithm ran for 50 
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generations with a population size of 100, yielding 5000 mutant complexes per pose. Each 

mutant complex was evaluated using both total and interface scores, as presented in Figure 41, 

which shows the generated mutants across each Impranil DLN pose. This genetic algorithm 

framework enabled an extensive exploration of the energetic landscape surrounding initial 

TfCut2-Impranil DLN poses, introducing mutations and repacking sidechains. Black stars 

in Figure 41 represent the initial wild-type complex poses as reference points; mutants 

positioned below these stars have lower interface scores, making them promising candidates 

for further analysis. The results from Rosetta protein design required evaluation based on both 

interface and total scores of the variants and prediction of structural adjustments that could 

improve polymer binding. Given that the primary goal of these mutations was to enhance 

TfCut2's binding affinity to the polymer chain, the genetic algorithm prioritised lower interface 

scores, even with a slight compromise in total score. This approach supports the identification 

of variants with potentially improved catalytic interactions with Impranil DLN. 

The distribution of data points in Fig. 41 reveals two clusters across all poses. 

The clusters on the right contain mutants with significantly higher total scores 

than the wild‑type, making them less favourable due to potential destabilisation. Consequently, 

mutations were selected from the clusters with lower total score and the lowest interface scores. 

 

Fig. 41. Scatter plot of scores (interface vs total) of generated mutant TfCut2-Impranil DLN 

complexes in the Rosetta combined with genetic algorithm approach. Each graph displays 5000 

mutants for a specific Impranil DLN pose. Black stars indicate the initial TfCut2 wild-type 

complex with Impranil DLN in the corresponding pose. The calculated scores are in Rosetta 

Units (RU). 
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To understand the bifurcation of data points, the 50 mutants with the lowest interface 

score from the high-total-score clusters (in the right clusters in plots Figure 41) were examined. 

These complexes, shown in Figure 42A, were identified as containing the T61P substitution, 

which contributed to the observed bifurcation in scores. Figure 42B presents a logo plot 

displaying the relative frequency of each amino acid substitution across these mutants, 

underscoring that the T61P mutation resulted in unfavourable total scores 

of the TfCut2‑Impranil DLN mutant complexes, despite low interface scores. According 

to FoldX calculations (Chapter 5.3.1), the ΔG of T61P mutant is 7.2 kcal/mol, indicating 

strongly destabilising effect. These findings suggest that T61P is not a favourable mutation 

and should be discarded.  

 

Fig. 42. A) Scatter plot of scores (interface vs total) of generated mutant TfCut2-Impranil DLN 

complexes in the Rosetta combined with genetic algorithm approach, displaying 5000 mutants 

for each Impranil DLN pose (grey points) with black stars representing the initial TfCut2 

wild‑type complex in each pose. Colourful points indicate the 50 lowest interface-score 

mutants from the higher-total-score clusters. B) Logo plot of selected mutants from each pose, 

showing amino acid frequency at each position. 
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To identify promising substitutions, the 50 mutants with the lowest interface scores 

(and lowest total scores) were selected for each pose of Impranil DLN (Fig. 43). These 400 

complexes (50 mutants across 8 poses) represent the best candidates for further analysis based 

on their sequences. 

 

Fig. 43. Scatter plot of scores (interface vs total) of generated mutant TfCut2-Impranil DLN 

complexes in the Rosetta combined with genetic algorithm approach. Each graph displays 5000 

mutants per Impranil DLN pose (grey points). Black stars represent the initial wild-type 

complex, and colourful points highlight the 50 mutants with the lowest interface scores from 

the clusters with lower total scores.  

Logo plots were generated to visualise the frequency of each amino acid substitution. 

Figure 43A presents a logo plot compiled from all 400 selected mutants, and Figure 43B 

provides logo plots for each pose individually. 

Rosetta frequently suggests introducing tryptophan to residues at positions G62, S66, 

Q92, I178, F209, and N212 (Fig. 44). At F209, the substitution to tryptophan (F209W) might 

not significantly impact enzyme properties, as it involves replacing one aromatic, hydrophobic, 

bulky amino acid with another of similar nature, though slightly larger. However, tryptophan 

substitutions at other positions could potentially destabilise the enzyme, restrict substrate 

access to the active site, or even reduce enzymatic activity. Such substitutions should 

be approached with caution, as Rosetta’s recommendations arise from its tendency to tightly 

fit amino acid side chains around the ligand to enhance binding [326], potentially at the expense 

of overall stability or accessibility. Selecting mutations from these data proved challenging, 

especially given that eight different Impranil DLN binding poses were considered, with Rosetta 
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genetic algorithm run for each complex separately. This workflow optimised mutants to best 

accommodate each specific pose of Impranil DLN. As a result, there is limited sequence 

consistency across poses and no consensus sequence can be selected. However, the results 

of experimental evaluation may indicate which pose of Impranil DLN is more probable 

in solution, as if a given mutation that interferes with a given pose will cause loss of activity, 

it may indicate that this particular pose is preferable. 

 

Fig. 44. Logo plots for the best mutant complexes: A) combined for all poses; B) individually 

per pose. 
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A more straightforward design workflow would ideally involve a single complex, 

allowing the binding site to be optimised specifically for one substrate pose. Impranil DLN 

binding exhibits a high degree of positional flexibility across the TfCut2 binding site, 

with the exception of regions near the catalytic residues and the aromatic clamp (Y60–W155). 

In these areas, the ligand consistently adopts specific binding poses, indicating a strong 

preference for these positions. However, beyond these regions, the polymer chain interacts 

variably with different residues in the binding site, adopting diverse conformations.  

The following chapter outlines the final selection of single-point mutants, integrating 

Rosetta results with additional software analysis. 

 

5.3.4. Rationale for proposed mutations and expected 

influence on TfCut2 performance  

Rosetta protein design with implemented genetic algorithm played a pivotal role 

in guiding the mutation selection process by identifying substitutions that could enhance ligand 

binding. Due to the variability among poses, identifying a single consensus sequence proved 

challenging. However, several promising mutations were identified for individual poses 

of the ligand. Since the fitness function of the genetic algorithm was focused on favouring 

mutants with improved interface scores, rather than total scores, to avoid proposing 

destabilising mutations, the information about ∆G calculated by FoldX in previous steps, 

was also incorporated.  

Additionally, occurrences of specific amino acids at target positions in the MSA were 

considered to prioritise evolutionarily viable substitutions (Fig. 45). For instance, mutations 

such as G62A, A65S, Q92Y, I178V, I178T, T207D, T207G, T207S, F209L, F209S, 

and N212M, which appear in the MSA, were deemed worth exploring. Many of these 

substitutions were also supported by Rosetta predictions, underscoring their potential 

to enhance binding affinity without compromising protein integrity. 
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Fig. 45. Sequence Logo Plot of amino acid probabilities in MSA positions mapped 

to the selected positions in TfCut2 sequence, generated by analysis with BALCONY R library.  

The selection process for identifying suitable mutations was complex and iterative, 

involving multiple computational evaluations. While it is challenging to provide a detailed 

step-by-step description within the scope of this dissertation, the key findings and the rationale 

behind the selected mutations are presented. 

The detailed summary of the rationale behind each substitution is listed in Table 8: 

Table 8. Detailed rationale behind each selected single-point mutation. The column “Proposed 

by Rosetta” indicates if a fiven mutation was proposed via Rosetta with genetic algorithm 

and for which Impranil DLN poses. Column “Observed in MSA” indicates if a given mutation 

could be found on this position within MSA within probability of at least 5%. 

Residue Mutation Rationale Proposed by Rosetta 
Observed 

in MSA 

T61 T61V 
Hydrophobic substitution 

for stronger substrate binding 

Hex: eP1 

Neo: eP2, uP1, uP2 
Yes 

G62 

G62A 
Enhances binding with slightly 

larger residue 

Hex: uP1, uP2 

Neo: eP2, uP1, uP2 
Yes 

G62Y 
Strengthens hydrophobic 

interactions 
No No 

A65 

A65L Improves hydrophobic binding 
Hex: eP1, eP2, uP1 

Neo: eP1 
No 

A65S 
Adds polar interactions along 

the binding groove 
Hex: eP2 Yes 

A65Y 
Larger residue with dual 

hydrophobic/polar properties 
Hex: eP1, uP1 No 
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S66 

S66F 
Larger hydrophobic residue 

for stronger binding 
Neo: eP1 No 

S66V 
Small hydrophobic substitution 

for enhanced interaction 
Hex: eP1 No 

S66Y 
Larger residue with dual 

hydrophobic/polar properties 

Hex: eP1 

Neo: uP1 
No 

Q92 

Q92Y 
Enhances substrate binding 

with hydrophobic property 
Neo: uP1 Yes, rare 

Q92W 
Bulky hydrophobic residue 

for strong interactions 

Hex: eP1, eP2 

Neo: eP1, eP2 
Yes, rare 

I178 

I178A 

Small residue to improve 

flexibility near the active site 

and access to it 

No No 

I178L 
Similar size for hydrophobic 

interactions 
Neo: uP1 Yes 

I178V 
Smaller hydrophobic residue 

for slight interaction shift 
No Yes 

I178T 
Polar residue to balance water 

access and binding 
Neo: eP1 Yes 

T207 

T207G 
Increases flexibility around 

H208 

Hex: uP1, uP2 

Neo: eP2 
Yes 

T207D 
Larger, acidic substitution 

for altered interactions 
Hex: eP2 Yes 

T207S 
Conserves existing interactions 

near catalytic histidine 

Hex: eP2 

Neo: uP1 
Yes 

F209 

F209L 
Reduces bulk while maintaining 

hydrophobicity 
Hex: uP2 Yes 

F209S 
Introduces polar element 

to facilitate product release 
No Yes 

F209W 
Bulkier aromatic for stronger 

binding 

Hex: eP1, eP2, uP2 

Neo: eP1, eP2 
No 

N212 

N212A 
Small hydrophobic residue 

for stable binding 
Neo: uP1 No 

N212M 
Larger residue to strengthen 

binding 

Hex: uP2 

Neo: eP2, uP1 
Yes 
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N212F 
Bulky hydrophobic residue 

for enhanced substrate binding 
Neo: eP2 No 

The 24 single-point mutations are strategically designed to enhance various aspects 

of TfCut2’s interaction with Impranil DLN. These selected mutations target specific functional 

goals to improve binding, stability, or catalytic efficiency. Below is a breakdown of each 

category along with individual mutations: 

• Enhancing Hydrophobic Interactions: Substitutions introducing larger or more 

hydrophobic residues are intended to strengthen contacts with the hydrophobic polymer 

chain of Impranil DLN. Notable mutations include G62Y, A65L, A65Y, S66V, and N212F, 

all of which aim to reinforce hydrophobic binding interactions. 

• Increasing Flexibility and Water Access: Smaller residues, such as I178A and T207G, 

are introduced near the active site to improve flexibility and potentially allow better water 

accessibility, which may facilitate substrate processing and product release. 

• Optimising Catalytic Efficiency: Mutations near catalytic residues, like F209L and T207S, 

were selected to either maintain or subtly modify binding interactions, potentially 

influencing the enzyme’s catalytic rate. 

In addition to the single-point mutants, several multi-point mutants were proposed 

based on favourable combinations of single substitutions that were identified in Rosetta’s 

mutant sets. These combined mutants include: 

• G62A/A65L/S66F/Q92W 

• G62A/A65L/S66F/Q92Y 

• G62A/A65L/S66Y 

• G62A/A65S/S66Y 

• I178T/T207G 
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5.4. Conclusions 

This dissertation aimed to re-design the substrate binding site of TfCut2 to enhance its 

interaction with Impranil DLN. Achieving this objective involved first modelling, 

investigating, and analysing protein-ligand interactions, as detailed in Chapter 4. Building 

on these insights, Chapter 5 focused on proposing specific mutations to improve ligand binding 

and catalytic efficiency. 

The mutability and suitability of introducing substitutions to TfCut2 were 

systematically evaluated using several computational tools. The impact of single mutations 

on protein stability was assessed using FoldX, evolutionary variability of each residue 

was verified by analysing MSA, and functional hot spots were identified using HotSpot 

Wizard. These analyses helped prioritise nine key positions in the binding site: T61, G62, A65, 

S66, Q92, I178, T207, F209, and N212. These residues were chosen for their potential 

to improve binding mainly through enhanced hydrophobic interactions or steric 

complementarity with the polymer chain, or their potential to ameliorate the catalytic efficiency 

of TfCut2 in Impranil DLN degradation. Subsequently, protein design focusing on improving 

the ligand binding was performed using Rosetta combined with genetic algorithm. Lastly, 

findings of all these approaches were analysed to propose a library of TfCut2 mutants. 

The mutation-selection process combined computational analyses with visual 

inspection to ensure the rational design of variants. As a result, 24 single-point mutants and 

10 multiple mutants were proposed for further evaluation. These mutants represent promising 

candidates for improving the enzyme’s affinity for Impranil DLN and catalytic performance. 

The detailed evaluation of these mutants is presented in Chapter 6. 
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Chapter 6: Evaluation of proposed TfCut2 

mutants 

6.1. Introduction 

Combining experimental validation with computational evaluation offers 

a comprehensive understanding of how specific mutations influence enzyme function. In this 

chapter, the focus is on evaluating TfCut2 mutants proposed in the previous chapter, addressing 

the third objective of this dissertation: Computational and experimental evaluation of TfCut2 

mutants.  

The proposed mutations are strategically located in the binding site of TfCut2, 

with the aim of improving ligand binding affinity and potentially enhancing catalytic 

efficiency. These mutations were selected based on their potential to optimise interactions 

between the enzyme and Impranil DLN, either by strengthening binding interactions 

or by influencing key residues involved in catalysis. By focusing on the enzyme’s binding site, 

we aim to achieve more efficient degradation of the polymer substrate. Additionally, 

characterising these modifications will deepen our understanding of how targeted mutations 

influence enzyme activity and stability, providing valuable insights for advancing enzymatic 

polymer degradation strategies. 

This evaluation seeks to address the broader challenge of enhancing enzymatic 

efficiency and stability for the degradation of complex polymers like Impranil DLN. This 

substrate presents unique difficulties due to its heterogeneous composition, mixed bond types 

(ester and urethane), and undefined structural properties. Effective degradation requires 

not only strong binding and catalytic activity but also a balance between structural stability 

and flexibility to accommodate large, dynamic polymer chains. Understanding how specific 

mutations affect these factors is crucial for designing more efficient polymer-degrading 

enzymes. To comprehensively evaluate the proposed mutations, this dissertation employs 

a combination of computational and experimental approaches to assess their effects on both 

enzyme structure and function. 

Additionally, the structure of Impranil DLN after hydrolysis by wild-type TfCut2 was 

analysed using NMR studies. This analysis complemented the structural study of Impranil 

DLN itself and helped confirm which bonds were hydrolysed by TfCut2. 
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To computationally assess the impact of mutations on the enzyme structure, 

the energetic effects of each mutation were evaluated by computing ΔG using Rosetta’s 

all‑atom scoring function. To complement the structural analysis, MD simulations were 

conducted to evaluate the structural stability and flexibility of TfCut2 mutants in their 

ligand‑free forms. These simulations focused on identifying any disruptions to the enzyme's 

tertiary structure or increased structural fluctuations introduced by the mutations. 

While improving thermal stability was not the primary objective of this study, 

experimentally verifying the structural integrity of the mutants was crucial. To ensure that the 

mutations did not destabilise the structure of the TfCut2 mutants, the melting temperature (Tm) 

was measured using nanoDSF, a differential scanning fluorimetry (DSF) technique. Tm value 

provides key insights into a protein’s structural stability and rigidity. A higher Tm value 

typically indicates a well-organised core with strong hydrogen bonds, hydrophobic 

interactions, and ionic forces, helping the protein maintain its folded, functional state 

at elevated temperatures [235,327]. Lower Tm values, on the other hand, suggest a protein 

is more prone to denaturation when temperature increases, which could compromise 

its function. Given that even few mutations can impact thermal stability [236], Tm value serves 

as an important indicator of whether proposed mutations affect structural integrity 

of the enzyme. Thermally stable proteins are valuable for several reasons, including their 

potential to enhance the efficiency of industrial processes and to provide insights into the 

mechanisms of protein folding and stabilisation [328]. However, in case of the 

polymer‑degrading cutinases, increasing rigidity is not always beneficial, as loss of flexibility 

in the binding site region could impede the incorporation and binding of large polymer 

substrates, a process that typically requires a dynamic binding site [235]. 

Subsequently, it was important to assess information about influence of the mutations 

on the binding of Impranil DLN in different poses. To evaluate the influence of mutations on 

the binding of Impranil DLN, mutations were inserted into all eight modelled TfCut2-Impranil 

DLN complexes containing different ligand poses that were selected through the pipeline 

described in Chapter 4. For this, Rosetta was used, which allowed to simultaneously score these 

constructs in terms of total and interface scores. The scores of the mutant-ligand complexes 

revealed information about both the ΔG of the total complex and the ΔG of the protein-polymer 

interface. The interface score specifically reflects the protein-ligand interaction energies, 

highlighting how each mutation may influence binding affinity and interaction quality. 
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For the experimental evaluation of Impranil DLN degradation by TfCut2 and its 

mutants, degradation was tracked by monitoring the reduction in turbidity, a simple 

and measurable indicator of enzymatic degradation progress. Schmidt et al. [20] utilised 

this property to compare the degradation efficiency of Impranil DLN by several cutinases 

(namely TfCut2, LCC, Tcur1278 and Tcur0390), applying a kinetic model proposed by Mukai 

et al. [195]. While this model provides a valuable framework for heterogeneous substrates, 

its applicability to Impranil DLN is limited due to significant differences in substrate 

composition and behaviour. The P[(R)-3HB] films studied by Mukai et al. consisted of uniform 

monomeric units, enabling assumptions like a constant absorption coefficient independent 

of chain length. In contrast, Impranil DLN poses several challenges [107] such as: 1) undefined 

composition: the precise chemical structure, proportions of structural units, and presence 

of additives (e.g., chain extenders or plasticisers) in Impranil DLN are not known; 2) mixed 

bond types: Impranil DLN contains both ester and urethane bonds, complicating 

the interpretation of degradation rates and spectrophotometric changes; and 3) uncertain 

absorption changes: it is unclear which specific bonds are cleaved during degradation 

and to what extent these cleavages influence the observed spectrophotometric changes. 

Given these limitations, the Mukai et al. [195] model cannot be directly applied 

to Impranil DLN. Instead, enzymatic activity in this study was evaluated using initial 

degradation rates to compare the activity of different TfCut2 variants. Although this approach 

does not yield kinetic constants like 𝑘𝑐𝑎𝑡 and 𝐾𝑚, it provides a practical means to assess relative 

enzymatic efficiencies under the constraints of an undefined and heterogeneous substrate. 

The initial degradation rates of TfCut2 mutants, relative to the wild-type enzyme, can provide 

insights into whether the mutations enhance or diminish catalytic efficiency. Turbidity 

reduction was monitored by measuring optical density at 400 nm (OD400) at regular time 

intervals. The hydrolysis rates were determined from the linear portion of the OD400 decrease 

over time. It is crucial to assess only the initial degradation rates, as enzyme activity may 

decline over time, potentially skewing the results. 

While this turbidimetric method is not ideal, it was chosen because of the challenges 

associated with the heterogeneity of the Impranil DLN structure. Hydrolysis of ester bonds 

alone can produce several products, including 1,6-hexanediol, neopentyl glycol, adipic acid, 

and partially degraded polymer fragments. Even if every ester and urethane bond were 

hydrolysed, the resulting mixture would still consist of four distinct product molecules: 

1,6‑hexanediol, neopentyl glycol, adipic acid, and hexamethylene diamine. Despite its 
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limitations, the turbidimetric assay is used in this dissertation as an effective indicator of initial 

degradation rates, which in turn serves as a comparable measure of the catalytic efficiency 

of TfCut2 mutants in Impranil DLN degradation. Lastly, this chapter summarises the effect 

of mutations on protein dynamics, stability, and binding to Impranil DLN, as assessed through 

computational and experimental approaches. By integrating these complementary methods, 

the study provides a holistic understanding of the molecular mechanisms at play. Although 

direct measurements of catalytic mechanisms were not performed, indirect insights 

into enzymatic efficiency were inferred from degradation rate comparisons. These findings 

highlight the value of combining predictive computational tools with experimental validation 

to evaluate TfCut2 mutants, particularly for improving the enzymatic degradation of synthetic 

polymers like Impranil DLN. 

 

6.2. Methodology 

6.2.1. Computational methods 

Generation of mutant structures and complexes with Impranil DLN  

To investigate the structural ligand binding impact of specific mutations on TfCut2, 

3D structures models of mutants were generated using PyRosetta [325], Python-based 

implementation of the functions from Rosetta [266,293]. For the mutants without the ligand, 

the native TfCut2 structure (prepared as described in Chapter 4.2.: Proteins preparation) served 

as a template, and mutations were introduced sequentially based on a predefined list. 

For the systems of TfCut2 in complex with Impranil DLN, the first of the 10-frames selected 

after k‑means clustering of MD simulations, as described in previous subsections, were used 

as TfCut2 wild-type with Impranil DLN in initial complexes. 

For each mutation, side-chain conformations were optimised using a TaskFactory 

paired with PackRotamersMover, maintaining the backbone configuration while 

accommodating new side-chain orientations. Following mutation introduction, the structures 

were refined using the FastRelax protocol, a PyRosetta method that minimises structural strain 

and optimises interatomic interactions within the modified regions. This relaxation step 

provided a stable conformation for each mutant by exploring local conformational space 

and minimising energy.  The all-atom energy scoring function ref2015 [288] was applied 

to evaluate the structures throughout the protocol. Monte Carlo minimisation was incorporated 



142 

 

 

to further refine the structures, enhancing stability by sampling various low-energy 

conformations. For mutants with anticipated interaction interfaces, such as those involving 

ligand binding, the InterfaceAnalyzerMover assessed changes in interaction energy, 

highlighting mutations’ potential effects on binding properties. The finalised mutant structures 

were saved as PDB files. This protocol allowed for the systematic generation of a library 

of mutant structures, preserving the structural integrity of TfCut2 while capturing the effects 

of targeted substitutions. 

MD simulations of unbound TfCut2 mutants 

The wild-type TfCut2 and mutant structures were prepared using a custom PyRosetta 

script [325] to insert mutations, as described in the previous subsection. Crystallographic water 

molecules from the 4CG1 structure were retained, ensuring that there were no atomic clashes 

due to slight conformational differences resulting from the packing and Rosetta FastRelax 

process. This also accounted for a potential overlap between substituted residues and the 

original placement of crystal water molecules. Additionally, two Ca²⁺ ions were incorporated 

at each divalent-metal binding site within the structure. 

To prepare the system for simulation, the LeaP tool from AmberTools18 [286] was 

employed. LeaP was used to add the necessary counterions to neutralise the system 

and to solvate the model in a 20 Å octahedral box of TIP3P water molecules. 

MD simulations of apo TfCut2 mutants were conducted following the same protocol 

outlined in Chapter 4.2: MD simulations. Each TfCut2 mutant and wild-type were simulated 

in 10 replicas for 50 ns. 

 

6.2.2. Experimental methods 

NMR spectra analysis of Impranil DLN samples after TfCut2 wild-type 

and HCl acidic hydrolysis 

Enzymatic hydrolysis was performed in 10 mL of M9 minimal salts (30 g/L Na2HPO4, 

15 g/L KH2PO4, 2.5 g/L NaCl, 5 g/L NH4Cl.) containing TfCut2 at a concentration of 4 µg/mL. 

Impranil concentration in the reaction mixture was 1%. The solution was incubated at 37 °C 

and 150 rpm for 24 hours, cooled and stored at 4°C until used for hydrolysis product extraction. 

For hydrolysis in acidic environment, 1ml of Impranil DLN suspensions were exposed 

to 3ml of 0.1 M HCl. The reaction was heated to 65 °C for 24 h and then allowed to cool 
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to room temperature. The reactions were centrifuged (14,000 rpm, 45 min) and the supernatants 

were separated from the Impranil pellets and used for further analytical characterisation.  

To confirm the structure of the Impranil DLN, NMR spectroscopy was used: 1H and 13C 

NMR. 1H and 13C NMR spectra were recorded on a Varian 600 MHz spectrometer, using 

the following deuterated DMSO. 

The spectra of Impranil DLN before hydrolysis were prepared as described 

in Chapter 4.2.2. 

Cloning of TfCut2 into pET-20b(+) for protein production  

The TfCut2.KW3 sequence (PDB: 4CG1_A) without the secretion signal peptide was 

converted to gene encoding sequence and adapted to the codon bias of E.coli using EMBOSS 

Backtranseq (https://www.ebi.ac.uk/jdispatcher). The resulting gene sequence was synthesised 

and ligated into the expression vector pET-20b(+) between NcoI and XhoI restriction sites 

by GenScript. The final pET-20b(+) construct containing the TfCut2.KW3 gene, the pelB 

leader sequence, a 6xHis tag, and the TEV protease cleavage site sequence was cloned 

into E.coli BL21(DE3).  

Mutagenesis of TfCut2-containing plasmid 

Site-directed mutagenesis of the TfCut2 was performed with Q5® Site-Directed 

Mutagenesis Kit (New England Biolabs) following manufacturer’s recommendations. 

I178T/T207G mutant was obtained using NEBuilder HiFi DNA Assembly Kit (New England 

Biolabs). The mutagenic primers were designed using NEBaseChanger®. The sequences 

of mutated plasmids were confirmed by DNA sequencing.  

Production of TfCut2 and mutants 

The cells containing the desired plasmids were grown individually in 50-100 mL 

of Lysogeny broth supplemented with 100 µg/mL ampicillin. When the absorbance 

of the culture at 600 nm reached 0.5-0.7, the protein production was induced by the addition 

of isopropyl‑1‑thio-β-D-galactopyranoside (IPTG) at a final concentration of 0.4 mM. After 

induction, the culture was grown at 37 °C for 2.5-3.5 hours, and cells were harvested 

by centrifugation and washed with phosphate-buffered saline.  

TfCut2 was purified from the periplasmic cell fraction separated by exploring 

the osmotic shock treatment. The periplasmic fraction was obtained as follows. The washed 

cell pellet was resuspended in the hypertonic solution (20 mM Tris-HCl buffer, pH 8.0, 25% 

https://www.ebi.ac.uk/jdispatcher
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(w/v) sucrose and 1 mM ethylenediaminetetraacetic acid (EDTA)) and incubated on ice 

for 30 min. Then, cells were centrifuged, resuspended in cold deionised water and incubated 

on ice for 30 min. After incubation, cells were harvested by centrifugation. The supernatant 

obtained was the periplasmic fraction. 1M Tris-HCl, pH 8.0, was added to the periplasmic 

fraction to a final concentration of 20 mM, and the resulting TfCut2-containing solution was 

kept at -20 °C until use.   

Purification of TfCut2 and mutants 

Purification of TfCut2 variants was performed by immobilised metal ion affinity 

chromatography (IMAC) using Protino® Ni-NTA slurry (Macherey-Nagel). The periplasmic 

cell fractions were thawed and supplemented with NaCl and imidazole to final concentrations 

of 300 mM and 5 mM, respectively. Then. 75 µL of pre-equilibrated Ni-NTA slurry 

were mixed with the protein solution at room temperature for 1-2 hours with gentle rotation.  

After binding, the resin was transferred to spin columns and washed four times with 750 

µL of binding buffer to remove nonspecifically bound contaminants. Proteins were then eluted 

with 30 µL of elution buffer (20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 250 mM imidazole). 

An aliquot of 100 µL of the eluate was used for imidazole removal and buffer exchange 

to 10 mM Tris-HCl, pH 7.4 using Bio-Spin® 6 columns (Bio-Rad). The purified proteins were 

analysed for activity in Impranil degradation assays and by SDS-PAGE to confirm purity. 

Protein concentrations were determined by Bradford assay. Purified proteins were aliquoted 

and stored at -20 °C until use. 

Primary screening for Impranil DLN hydrolysis activity 

To assess the Impranil DLN-degrading activity of TfCut2 and its mutants during protein 

extraction and purification, a primary screening was performed using agarose plates containing 

0.5% Impranil DLN in M9 minimal salts. 

Aliquots taken at different steps of the protein purification were spotted onto agarose 

gel and incubated at 37°C. Zones of clearance appeared at the applied fractions indicated 

enzymatic activity against Impranil DLN. This method enabled a rapid, qualitative assessment 

of hydrolytic activity under standard conditions. 

Thermostability assessment using nanoDSF technology 

Tfcut2 variants were tested for thermostability in 20 mM Tris-HCl buffer at pH 7.5 

using Prometheus NT.48 (Nano Temper Technologies). The total protein concentration 
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in the sample was 100 µg/mL. Each TfCut2 variant was tested in duplicate. The temperature 

change ranged from 20 to 95 C with a 1°C step. The thermal unfolding transition midpoint 

Tm (°C) was calculated from the ratio of tryptophan emission at 330 and 350 nm.   

Measurement of initial degradation rates of Impranil DLN  

TfCut2 variants were screened for activity in Impranil hydrolysis using a turbidimetric 

assay. The samples with a final volume of 200 µL were prepared in 96-well plates containing 

M9 minimal salts as a buffer and partially purified Tfcut2 at a concentration of 1.5 µg/mL. 

The reaction was started by the addition of Impranil at a final concentration of 0.1%. 

The decrease of the turbidity was monitored for 30 min by measuring the optical density at 400 

nm at constant time intervals of 30 s at room temperature. The hydrolysis rates were determined 

from the linear part of the graphs of the decreasing OD400 over time. All determinations were 

performed in at least two independent experiments.  

 

6.3. Results and discussion 

6.3.1. TfCut2 mutants structure and stability 

This section evaluates the stability, structure and dynamics of the proposed mutants 

and presents the findings from the computational and experimental approaches. The analysis 

includes: 1) computational assessments, comprising ∆∆G calculations of the mutants in their 

free form and MD simulations to evaluate dynamics and flexibility; and 2) experimental 

determination of Tm to assess structural stability. 

Unbound TfCut2 mutants ∆G 

To construct and evaluate the ∆G of 24 single-point and five combined mutants, 

a custom PyRosetta [266,293,325] script was employed. This script not only facilitated the 

creation and scoring of mutant structures but also generated initial structures for MD 

simulations, described in the subsequent section. Specifically, the script processed 

the wild‑type TfCut2 structure by performing an initial relaxation step, introducing 

the specified mutations, relaxing the mutants again, and finally scoring and saving the resulting 

structures. 
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While single-point mutants were previously constructed and scored using FoldX 

(Chapter 5.3.1) to generate a substitution matrix, the mutants in this analysis were generated 

using Rosetta to ensure consistency with the Rosetta combined with genetic algorithm protein 

design process employed throughout this dissertation. The results, summarised in Table 9, 

reveal that many of the constructed mutants exhibited higher total scores than the wild-type 

TfCut2. This outcome aligns with the design objective of optimising the interface score 

and improving ligand interactions, occasionally at the expense of a slight decrease in overall 

structural stability (as indicated by higher total scores). Among the single-point mutants, 

the most favourable total scores were observed for A65S, T207D, and N212F, with relative 

energy differences of -1.14 RU, -1.11 RU, and -1.42 RU, respectively, compared 

to the wild‑type. Conversely, the least favourable ∆G was calculated for the T61V mutant, with 

a relative total energy difference of +8.59 RU. All five combined mutants showed positive ∆G 

values, indicating reduced overall stability compared to the wild-type. 

Table 9. Rosetta-calculated total energies of TfCut2 mutants generated using a custom 

PyRosetta script, along with the relative total energies compared to the wild-type TfCut2 

(totalWT – totalmutant), expressed in Rosetta Units (RU). 

Mutant ∆G Rosetta score [RU] ∆∆G Rosetta Score [RU] 

wild-type -841.55 0 

T61V -832.95 8.59 

G62A -841.42 0.13 

G62Y -837.36 4.18 

A65S -842.69 -1.14 

A65L -842.31 -0.76 

A65Y -838.32 3.23 

S66V -838.5 3.04 

S66F -838.8 2.75 

S66Y -841.16 0.38 

Q92Y -838.89 2.65 

Q92W -837.91 3.63 

I178V -840.7 0.85 

I178A -838.98 2.57 

I178T -837.83 3.72 

I178L -841.65 -0.1 

T207S -841.03 0.52 

T207D -842.66 -1.11 

T207G -839.59 1.96 

F209L -840.89 0.65 

F209S -842.1 -0.56 
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F209W -839.35 2.19 

N212A -840.4 1.15 

N212M -839.8 1.75 

N212F -842.96 -1.42 

G62A/A65L/S66F/Q92W -837.36 4.19 

G62A/A65L/S66F/Q92Y -837.17 4.38 

G62A/A65L/S66Y -835.89 5.66 

G62A/A65S/S66Y -840.07 1.47 

I178T/T207G -836.62 4.92 

Legend:  

Evaluation of mutants dynamics through MD simulations 

To evaluate the structural integrity, flexibility and dynamics of the proposed TfCut2 

mutants, MD simulations were performed with the structures constructed in the previous 

subsection. The analysis of RMSD for the molecular dynamics (MD) simulations demonstrates 

that TfCut2 and its mutants generally maintain structural stability, with most systems exhibiting 

deviations below 2 Å (Fig. 46). 

 

Fig. 46. Superimposed RMSD plots calculated for the C-alpha, C, and N atoms of TfCut2 

and mutants during MD simulations of apo structures. To enhance readability, a moving 

window average was applied with a window size of 100 frames. 

For the wild-type TfCut2 and most of its mutants, RMSD values remain below 2 Å 

throughout the MD simulations (Fig. 46). However, certain mutants, including S66V, S66Y, 
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A65L, exhibit less stable behaviour, with RMSD values occasionally exceeding 2 Å. These 

observations suggest that specific mutants may exhibit increased structural flexibility 

and/or reduced stability. 

Overall, the fluctuations in mutant structures largely follow patterns observed 

for the wild-type enzyme. However, when examining the RMSF plots (Fig. 47), it is evident 

that the regions of TfCut2, in both the wild-type and mutant structures, exhibiting the greatest 

variability in RMSF values are: the N-terminal region, binding site regions including loops 

58‑62, 63‑66, 174‑180, and helix 209‑213, as well as loop 85‑92, loop 205‑210, and loop 

241‑251. Higher fluctuations, particularly in loop regions, suggest increased flexibility, 

which typically arises from weaker stabilising interactions (such as hydrogen bonds 

and hydrophobic contacts). This flexibility allows these regions to explore a broader range 

of conformations during the simulations. Consequently, the higher RMSD fluctuations 

in the binding site of certain mutants may indicate decreased structural stability but increased 

flexibility, which could potentially enhance their ability to accommodate larger substrates, such 

as polymer chains. 

The loop spanning residues 241‑251 exhibits the highest flexibility in the wild-type, 

apart from the N- and C-terminal regions. Notably, residue D246 is absent in the crystal 

structure, supporting the observed flexibility in this region [149]. Interestingly, mutant S66Y 

shows reduced flexibility in the 241‑251 region compared to the wild-type, while S66F exhibits 

increased flexibility in that region. This suggests that substitutions at residue S66 could 

influence the flexibility of loop 241‑251. Additionally, A65L shows increased RMSF values, 

particularly in binding site regions, including loops 58‑62 and 63‑66.  

Binding site region 58-66 is where high variability in fluctuations can be found, 

especially in case of the mutants with substitutions at positions: G62, A65 and S66, with A65L 

exhibiting the strongest fluctuations in that region (Fig. 47). Interestingly, residues 58-66 

are in the P1 region, where several functional hot spots have been identified by HotSpot 

Wizard.  
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Fig. 47. RMSF plots for C-alpha, C, and N atoms of TfCut2 and its mutants across 10 replicas 

of MD simulations. Mutants are grouped according to the substituted residue. Binding site 

regions are indicated in light blue. 

Protein variant production and yield analysis 

Protein yield and concentration can provide preliminary insights into the structural 

and solubility characteristics of the protein variants. Variants with higher yields are often 

indicative of properly folded and stable proteins during production, while lower yields may 

reflect challenges such as aggregation, improper folding, or instability during expression 

and purification. The details of variants’ expression, production yield, concentrations 

and purity are presented in Table 10. 

Among the proposed TfCut2 variants, three could not be successfully produced: S66Y, 

Q92W, and I178L. For S66Y and I178L, the elution fractions demonstrated very low yields, 

and protein concentrations were undetectable after desalting, as determined by the Bradford 

assay. In the case of Q92W, negligible expression was observed even under optimised 

conditions. Interestingly, freshly transformed cells expressing Q92W produced faint halos 

on Impranil agar plates, but induction in larger volumes (50 mL cultures) failed to produce 

detectable protein. Despite these challenges, Q92W was successfully expressed as part 
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of the combined mutant G62A/A65L/S66F/Q92W, suggesting potential stabilisation effects 

from other mutations in the combined construct (Table 10). 

Interestingly, computational stability predictions (e.g., ΔG values) did not consistently 

correlate with production outcomes. For instance, S66Y, which failed to be produced, did 

not show unfavourable computed ΔG values. The highest production yields were observed 

for T207D, followed by T207G. Notably, these were the only variants with yields exceeding 

that of the wild-type. 

Table 10. Characteristics of the TfCut2 mutants production process. 

TfCut2 Expression 

Culture 

volume 

[mL] 

Protein 

yield [µg] 

Total protein 

concentration in the 

sample (Bradford 

assay) [µg/mL] 

Protein 

purity 

(SDS-

PAGE) 

wild-type High 60 123 1230 High 

T61V High 50 26.8 268 High 

G62A High 50 8.3 83 High 

G62Y Moderate 100 33.5 335 Moderate 

A65L High 50 23.7 237 High 

A65S Moderate 100 13.1 131 Moderate 

A65Y High 50 32.0 320 Moderate 

S66F High 50 16.1 161 Moderate 

S66V High 50 7.2 72 Moderate 

S66Y Moderate 50 

Elution fraction demonstrates low yield, 

but after desalting, the protein concentration 

was not detectable by Bradford assay 

Q92Y High 50 19.2 192 Moderate 

Q92W 

Expression of the mutant is negligible (if any). Only freshly transformed 

cells demonstrated faint halos on Impranil plates. Being induced in 50 

mL of medium, cells did not demonstrate Q92W expression, 

and periplasmic proteins did not show halos on Impranil plates. 

I178A High 50 39.7 397 High 

I178L Moderate 100 

Elution fraction demonstrates low yield, 

but after desalting, the protein concentration 

was not detectable by Bradford assay  

I178T Moderate 50 34.9 349 High 

I178V High 50 15.7 157 Moderate 

T207D High 50 146.2 1462 

The 

highest 

among all 

TfCut2 

variants 

T207G High 50 143.3 1433 High 

T207S High 50 20 200 Low 
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F209L Moderate 50 1.7 17 Low 

N212A High 50 31.1 311 Moderate 

N212F High 50 16.8 168 Moderate 

N212M High 50 45.4 454 High 

G662A/A65L/S66

F/Q92Y Moderate 100 22 220 Low 

G62A/A65L/S66F

/Q92Y Moderate 50 22.5 225 Low 

G62A/A65L/S66

Y High 50 16.8 168 High 

G62A/A65S/S66Y High 50 20.2 202 Moderate 

I178T/T207G High 50 35.2 352 High 

Sustained enzymatic activity of TfCut2 variants on Impranil DLN plates 

Leveraging the property of Impranil DLN to become translucent as degradation 

progresses, 0.5% Impranil DLN agarose plates with M9 minimal salts were used for activity 

screening during protein production and purification. This assay provides qualitative rather 

than quantitative insights into enzymatic activity. 

Most mutants formed halos of similar sizes, indicating the presence of active TfCut2 

variants in the corresponding fractions (data not shown). The proteins were purified using 

His‑tag affinity chromatography, and activity was tested on fractions collected during elution. 

However, the T207D variant exhibited unexpected behaviour. Initially, its halo size was 

comparable to other variants after one day at 37 °C. Yet, unlike the others, the T207D halo 

continued to expand significantly over time. Remarkably, even after being left at room 

temperature for over 20 days, the halo around the T207D sample showed consistent growth, 

suggesting exceptional stability and prolonged activity for this variant (Fig. 48). 
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Fig. 48. Photos of 0.5% Impranil DLN agarose plates showing halos formed 

by the flow‑through fraction collected during elution (“FT Elut”) of TfCut2 mutants purified 

using His‑tag affinity chromatography. A) T61V and T207D variants. B) G62A and G62Y 

variants. The flow-through fraction of the T207D variant is indicated by a white arrow, 

demonstrating its sustained enzymatic activity over time. 

Evaluation of the thermal stability of mutants 

To evaluate how the proposed mutations affect the stability of TfCut2, nanoDSF 

technique was used. This method measures conformational protein stability by monitoring 

the intrinsic fluorescence of tryptophan or tyrosine residues, rather than relying on extrinsic 

fluorogenic dyes typically detected via qPCR instruments [329]. NanoDSF provides a precise 

and label-free approach to assess protein stability under thermal stress, offering insights into 

the relationship between structural changes and stability. 

To evaluate the thermostability of the proposed mutants, a nanoDSF experiment was 

conducted. NanoDSF leverages the intrinsic fluorescence of aromatic amino acids; 

as the protein unfolds with increasing temperature, the local environment surrounding these 

residues changes, resulting in alterations to their fluorescence emission. These changes 

are recorded, allowing for the determination of the protein's thermal stability through 

the measurement of the thermal unfolding transition midpoint (Tm), which is the temperature 
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at which half of the protein is unfolded. Supplementary figures 6.4 and 5.5 present the thermal 

unfolding curves of the wild-type TfCut2 and its mutants. 

The Tm value of wild-type TfCut2 was determined to be 71.31 °C, which corresponds 

to the melting temperature of 70°C reported in literature [149]. NanoDSF analysis of the S66Y, 

F209S, G62A/A65L/S66F/Q92W, and G62A/A65L/S66F/Q92Y mutants revealed two 

maxima in the first derivative of fluorescence. This suggests a two-step unfolding mechanism 

or the presence of impurities, such as residual E. coli proteins (Supplementary figs. 6.4, 6.5). 

Otherwise, the mutants demonstrated relatively high thermostability, with Tm values ranging 

from -6.39 to 3.33 °C compared to the wild-type. This indicates that, for most of the mutants, 

structural integrity was largely preserved. The measure Tm values for the TfCut2 mutants 

are presented in Table 11. 

Table 11. Determination of Tm values of TfCut2 and its mutants by nanoDSF. 

Mutant Tm 
relative Tm Δ 

(TmMUT-TmWT) 

WT 71.31 0 

T61V 71.08 -0.23 

G62A 72.18 0.87 

G62Y 71.18 -0.13 

A65S 71.54 0.23 

A65L 71.03 -0.28 

A65Y 70.75 -0.56 

S66V 68.26 -3.05 

S66F 64.92 -6.39 

S66Y 52.25, 66.7 -4.61 

Q92Y 71.5 0.19 

I178A 65.83 -5.48 

I178V 70.8 -0.51 

I178T 67.24 -4.07 

T207S 70.07 -1.24 

T207D 73.13 1.82 

T207G 70.80 -0.51 

F209S 53.43, 64.7 -6.61 

F209W 71.43 0.12 

N212A 72.58 1.27 

N212M 74.64 3.33 

N212F 71.83 0.52 

G62A/A65L/S66F/Q92W 52.72, 71.5 0.19 

G62A/A65L/S66F/Q92Y 53.16, 68.2 -3.11 

G62A/A65L/S66Y 68.95 -2.36 
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G62A/A65S/S66Y 68.90 -2.41 

I178T/T207G 67.31 -4.00 

Legend:  

The computational ΔG values from FoldX and Rosetta do not show a significant 

correlation with the experimentally determined Tm values of the mutants, as indicated 

by a non-parametric Spearman correlation test for non-normally distributed data (data not 

shown). This lack of correlation is expected, given that the introduced mutations were primarily 

located in flexible loop regions within the binding site, resulting in a dataset with limited 

structural variability. Nevertheless, it is notable that the use of FoldX and Rosetta as guides 

during protein design enabled the selection of mutations that, for most mutants, did 

not significantly destabilise the TfCut2 structure. 

 

6.3.2. Binding evaluation of TfCut2 mutants with Impranil 

DLN 

In this subsection, the impact of mutations on the binding of Impranil DLN to TfCut2 

is evaluated computationally. The goal is to identify which poses of Impranil DLN show 

improvements or declines in total and interface ∆G upon mutation. Many of the TfCut2 mutants 

were previously proposed using a genetic algorithm combined with Rosetta, to specifically 

enhance binding for particular poses of Impranil DLN. 

To directly assess the effects of the proposed mutations on all of the Impranil DLN 

poses, they were introduced into the eight productive complexes of wild-type protein-ligand 

identified in Chapter 4. Using Rosetta, the mutated complexes were constructed and scored 

to determine both total and interface ∆G. These scores provide insights into the overall stability 

of the complexes and the strength of protein-ligand interactions. Notably, most mutants 

demonstrated negative ∆∆G values for both total and interface scores, indicating potential 

improvements in binding stability (Table 9). 
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Table 12. Results of the ∆∆G (ScoreWT - Scoremut) total and interface scores of the mutated 

TfCut2 in complex with Impranil DLN in Rosetta Units (RU). 

 

Interestingly, the TfCut2 mutants in complex with Impranil DLN exhibit, in most cases, 

negative ΔΔG total scores (indicating improved stability or lower energy) as opposed 

to the Rosetta mutants in free form, presented in Chapter 6.3.1. This difference likely arises 

from the influence of the protein-ligand interface on the overall energy of the system, 

as the mutations were designed to enhance binding interactions with Impranil DLN, 

particularly by improving the interface score. These effects become apparent in the context 

of the complex, where favourable interactions such as hydrogen bonding, van der Waals forces, 

or hydrophobic packing stabilise the interface, leading to a more negative total ΔΔG score. 

In contrast, these mutations may destabilise the protein in the free form, as they were not 

optimised for standalone stability. 

Additionally, the energetic contributions of the interface play a significant role 

in the bound state. Mutations that improve interface interactions can offset destabilising effects 

observed in the free form, thereby enhancing the stability of the complex. The Rosetta scoring 

function accounts for these interactions, explaining why the mutants generally perform better 

energetically when evaluated in the presence of the ligand. 



156 

 

 

The results indicate that the T61V mutation worsens the total score but improves 

the interface score. The I178V mutation consistently resulted in better total scores across 

all Impranil poses compared to the corresponding wild-type complexes. Some mutations, such 

as S66F, S66Y, N212A, and N212M, enhanced the interface score for specific poses, notably 

for the hexanediol urethane P2 pose. 

Overall, the results demonstrate that each mutant managed to improve either the total 

or interface scores for at least some of the complexes with Impranil DLN poses. This outcome 

is in agreement with the predictions made during the design process, as Rosetta identified 

different mutations optimised for distinct poses of the substrate. Such diversity among 

the mutants reflects the potential adaptability of TfCut2 and provides valuable insights 

into its binding preferences for specific sites or bond types within Impranil DLN. By evaluating 

these different mutants, this study contributes to a better understanding of how TfCut2 interacts 

with complex polymer substrates like Impranil DLN. 

 

6.3.3. Degradation of Impranil DLN by TfCut2 and mutants 

This section evaluates the degradation of Impranil DLN by TfCut2 wild-type and its 

mutants through experimental methods. Two main aspects are addressed: 1) identifying 

the specific bonds in Impranil DLN hydrolysed by TfCut2, using NMR analysis of the substrate 

before and after hydrolysis by the wild-type enzyme and under acidic conditions 

(HCl hydrolysis); and 2) assessing the efficiency of the proposed mutants by measuring 

their initial degradation rates in a kinetic loop. 

Evaluation of hydrolysed bonds in Impranil DLN by TfCut2 wild-type 

To identify the primary bonds hydrolysed by TfCut2 wild-type in Impranil DLN, 

NMR in deuterated DMSO analysis was performed on the hydrolysed sample. The hydrolysis 

reaction was conducted in M9 minimal salts with TfCut2 at a concentration of 4 µg/mL and 1% 

Impranil DLN. The mixture was incubated at 37°C, with shaking at 150 rpm for 24 hours, 

then cooled and stored at 4°C until extraction. 

For comparison, an acidic hydrolysis control was prepared by incubating Impranil DLN 

with 0.1 M HCl at 65°C for 24 hours, following the procedure outlined by Biffinger et al. [3].  
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NMR spectra of Impranil DLN of the hydrolysed samples showed the expected ester 

and urethane functional groups in the polymer chain, but also, additional signals indicating 

products of ester bond hydrolysis, such as alcohol groups and carboxylic acids (Fig. 49). 

 

Fig. 49. 1H NMR spectra of A) Impranil DLN, B) Impranil DLN after enzymatic hydrolysis 

by TfCut2 wild-type, and C) Impranil DLN after enzymatic hydrolysis in HCl; in DMSO_d6 

(600MHz), range 0.7-4.0 ppm. Below the picks, chemical structures containing proton groups 

responsible for signals in degradation products are proposed (in green).  

The 1H NMR spectrum of Impranil DLN (Fig. 49), recorded in deuterated DMSO, 

shows characteristic signals corresponding to structural fragments in the polymer. In the range 

of 3.7–4.1 ppm, signals from ester fragments are observed, specifically the CH2 group 

of the alcohol residue in 1,6-hexanediol and neopentyl glycol. These signals decrease 

following hydrolysis by TfCut2 (Fig. 49B) and are even smaller after HCl hydrolysis 

(Fig. 49C). A new triplet at 3.4 ppm, absent in the unhydrolysed Impranil DLN (Fig. 49A), 

indicates the presence of 1,6-hexanediol, a product of ester bond hydrolysis. 

The signal at 3.0 ppm corresponds to CH2 groups adjacent to nitrogen in the urethane 

structure, while a multiplet at 2.3 ppm represents CH2 protons in the α-position relative 

to the ester carbonyl group. This signal is reduced in the spectra after hydrolysis. Additionally, 
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at 2.2 ppm, a triplet indicates adipic acid, a product of ester bond hydrolysis, which becomes 

more prominent after enzymatic (Fig. 49B) and acidic hydrolysis (Fig. 49C). 

The signals in the 1.2–1.6 ppm range originate from CH2 groups in the β- 

and γ‑positions of the 1,6-hexanediol chain, the β-position of adipic acid, and the β- 

and γ‑positions in hexamethylene diisocyanate. A singlet at 0.9 ppm corresponds to isolated 

CH3 groups in the aliphatic structure of neopentyl glycol, which disappears almost completely 

after HCl hydrolysis (Fig. 49C). After hydrolysis, new signals at 0.8 and 0.7 ppm correspond 

to isolated CH3 groups, indicating further degradation of ester bonds near neopentyl glycol 

in the HCl-treated sample. 

The signal at 7.0 ppm corresponds to NH group in urethane bond. This signals’ integral 

values increase following the hydrolysis by TfCut2 and HCl (Supplementary figs. 6.1-6.3). 

The absence of amine signals (‑NH2), after urethane bonds hydrolysis, in the spectra is likely 

due to overlapping chemical shifts with other components and potential reactions between 

amines and carboxylic acids formed during hydrolysis, leading to amide bond formation 

[330,331]. These interactions form a clathrate, which precipitates out of the solution as salts, 

making it difficult to detect amines. While it remains unclear whether TfCut2 hydrolyses 

urethane bonds urethane bonds should hydrolyse at least in HCl, however, it is challenging 

to assess the hydrolysis of urethane bonds in the HCl sample as well.  

The NMR spectra reveal that TfCut2 does not fully degrade Impranil DLN within 

24 hours, unlike HCl hydrolysis, which shows a greater extent of degradation. This is evident 

in the signal at 0.9 ppm, corresponding to CH₃ groups in neopentyl glycol within the polymer 

chain. In the spectrum after HCl hydrolysis, this signal is nearly absent, indicating extensive 

degradation, whereas it remains present, albeit reduced, in the spectrum following TfCut2 

hydrolysis (Fig. 49B, C). 

Additionally, the signal at 2.2 ppm, indicative of adipic acid as a hydrolysis product, 

is notably smaller after TfCut2 hydrolysis compared to HCl hydrolysis, further supporting the 

higher efficiency of HCl. Interestingly, the signal at 3.4 ppm, representing free 1,6-hexanediol, 

appears comparable between the two hydrolysis conditions. This suggests that TfCut2 

preferentially hydrolyses ester bonds adjacent to 1,6-hexanediol over those adjacent 

to neopentyl glycol (Fig. 49B, C). These findings highlight a selective catalytic activity 

of TfCut2 and its limited overall degradation efficiency under the experimental conditions. 

Quantitative comparison of the degradation extent between TfCut2 and HCl is difficult 

due to the unknown polymer chain lengths and the lack of a consistent reference signal, 
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as all signals shift upon degradation, including those from -CH3 groups. A summary 

of the characteristic structures identified in Impranil DLN based on the 1H NMR spectrum 

is presented in Table 10. The values of integrals of the signals are shown in Supplementary 

figures 6.1-6.3. 

Table 13. 1H NMR results of Impranil DLN before and after hydrolysis with HCl and enzyme 

TfCut2, in DMSO_d6. Products are marked in gray.  
Name of compound and chemical 

structure 

Chemical 

shifts 

(ppm) 

 

Impranil 

DLN 

Impranil 

DLN after 

TfCut2 

hydrolysis 

Impranil 

DLN after 

HCl 

hydrolysis 

NH group in hexamethylene diisocyanate

 

7.0 0.92 2.21 4.0 

Ester from 1,6-hexanediol 

 

4.0 

 

10.00 10.00 10.00 

3.9 1.04 2.58 3.23 

1,6-hexanediol 

 

3.4 0.37 18.29 29.68 

Ester from neopentyl glycol 

 

3.82 

 

5.08 6.01 1.61 

3.75 

 

1.02 1.88 3.5 

Methyl group 

N  

0.9 9.38 10.14 3.15 

Neopentyl glycol  

 

0.8 0 9.70 15.33 

Ester from adipic acid 

 

2.3 15.39 17.46 12.80 

Adipic acid 

 

2.2 0 10.82 54.28 

Urethane from hexamethylene diisocyatane 

 

2.95 4.04 9.75 33.25 
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The analysis of Impranil DLN NMR spectra before and after hydrolysis allowed 

to confirm ester bonds degradation by TfCut2 and release of 1,6-hexanediol, neopentyl glycol 

and adipic acid by TfCut2. However, the degradation of urethane bonds by TfCut2 could not be 

confirmed by this method. 

Degradation rate - kinetic loop 

To measure and compare the hydrolytic activity of TfCut2 and its mutants on Impranil 

DLN, initial degradation rates were determined using a kinetic loop experiment. Impranil DLN 

degradation was monitored over a 30-minute period by measuring spectrophotometric 

absorbance at 400 nm (Fig. 50A, B). A linear fit to the data enabled calculation of the initial 

degradation rate (v0), with the slope representing the degradation velocity (Fig. 50C, D). 

The mean and standard deviation of the degradation rates were calculated from three 

independent experiments (each performed in duplicate) for the TfCut2 wild-type and its 

mutants (Fig. 50C, D). Additionally, a statistical t-test was performed to assess the significance 

of differences between the mutants and WT (Table 14). In the case of some mutants with very 

low activity, such as N212F and S66V, it was not possible to obtain all three repetitions 

of the experiments. 

Due to the large number of proposed mutants, testing all of them simultaneously was 

not feasible. Mutants that were easier to produce were prioritised and tested first, while 

additional mutants were tested in a second batch. Because the two experimental batches were 

conducted at different times, with wild-type enzymes stored for varying durations, the initial 

degradation rates (v₀) are not directly comparable between the two batches. While testing 

the first batch, a gradual decline in enzymatic activity was observed in experiments 1‑3 

(Table 14), likely due to repeated freeze-thaw cycles. To address this issue, the experimental 

design was adjusted for the second batch. Instead of spreading the experiments across multiple 

days, all assays for the second batch were conducted on a single day using fresh aliquots of all 

variants (including wild-type). Enzyme aliquots were kept on ice between experiments 

to minimise activity loss. This revised approach aimed to ensure greater consistency 

and reliability in the measured degradation rates. 

Despite the differences in experimental conditions, meaningful comparisons were made 

within each batch, using the wild-type results from the same batch as internal controls. Mutants 

from the first batch included T61V, G62A, G62Y, A65L, A65S, A65Y, I178A, I178T, I178V, 

T207D, T207S, N212A, N212F, and N212M. The second batch included S66F, S66V, Q92Y, 
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T207G, T207D, F209S, F209W, G62A/A65L/S66F/Q92W, G62A/A65L/S66F/Q92Y, 

G62A/A65L/S66Y, G62A/A65S/S66Y, and I178T/T207G. Although the activity of wild-type 

enzyme from the first batch was reduced due to prolonged storage, comparative analysis within 

each batch still provided reliable insights into the effects of the mutations on hydrolytic activity. 

For clarity, the results of the two experiments are presented separately in Figure 50. It is 

important to note that these were preliminary screening experiments, designed primarily 

to evaluate the computationally proposed mutants and their relative activities. Screening 

procedures inherently exhibit variability, and the measured values should be interpreted 

as indicative rather than definitive. For mutants showing promising results, subsequent rounds 

of experiments involving scaled-up protein purification and more detailed characterisation 

would be necessary to obtain accurate enzymatic parameters. Nonetheless, this screening 

approach was well-suited to the primary aim of this study: providing experimental validation 

of computational predictions. In the context of this computationally focused dissertation, these 

results offer valuable insights into the relative performance of the proposed mutants and guide 

future directions for experimental optimisation. 

From the proposed set of 29 mutants (24 single-point and five combined mutants), 

25 mutants were deemed active. Unfortunately, most mutants (19 out of 25 tested) exhibited 

lower initial degradation rates (v₀) of Impranil DLN compared to wild-type TfCut2, while three 

showed similar initial activity (G62Y, A65Y and I178T) and three demonstrated an increased 

v₀: T61V, G62A, and T207D (but only in first batch, in the second it was similar to wild-type). 

Notably, the G62A mutant displayed more than a twofold increase in v₀ compared to wild-type, 

suggesting that the addition of a -CH₃ group at this position substantially enhances catalytic 

efficiency. The G62A had been previously reported as beneficial by relieving inhibition 

of reaction products by adding steric hindrance caused by the side chain of A62 [316], though 

tested on different substrates like PET and BHET [191,316]. The other two beneficial 

mutations, T61V and T207D have not been reported. Mutation T207D not only improved 

v₀ but also facilitated the highest production yields. 
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Fig. 50. A) Degradation rate of TfCut2 wild-type and mutants during the first 30 minutes. Data 

presented as the mean ± SD of three independent experiments, each performed in duplicate. 

B) Initial rate of Impranil DLN hydrolysis for TfCut2 variants. WT stands for wild-type. 

Due to its interesting properties such as prolonged activity and high production yield, 

the T207D mutant was evaluated in both experiments. Interestingly, in batch 1, it showed 

a higher degradation rate than the wild-type, whereas in the second batch experiment, its initial 

degradation rate was very similar to that of the wild-type, though slightly higher according 

to the calculated value of statistical t-test (Table 14). This discrepancy could stem from 

the unique stability of the T207D mutant, as demonstrated by its extended halo formation 

on Impranil DLN agarose plates, presented in Chapter 6.3.1: Sustained enzymatic activity 
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of TfCut2 variants on Impranil DLN plates. In batch 1, where proteins were stored frozen 

for a longer time before the degradation experiment, the activity of all proteins, including the 

wild-type, decreased. However, the activity of T207D might have decreased to a lesser extent, 

resulting in a higher observed degradation rate compared to the wild-type. This highlights a key 

feature of the T207D mutant: while its efficiency is comparable to the wild-type under standard 

conditions, it exhibits greater stability, maintaining its activity for a longer duration. This result 

aligns with the structural implications of the T207D mutation. Although this mutation 

is unlikely to directly enhance Impranil DLN binding due to its position not in direct contact 

with the ligand, it may influence catalytic efficiency. T207D is located adjacent to the catalytic 

residue H208, and the substitution of threonine with aspartic acid introduces a negatively 

charged residue in this region. This change could reduce inhibition by reaction products via 

electrostatic repulsion, while also altering the local protein surface properties, potentially 

facilitating more efficient catalysis under certain conditions. 

Three mutations—G62Y, A65Y, and I178T—had minimal impact on activity despite 

significantly altering residue properties, such as introducing bulkier or more polar amino acids. 

Additionally, A65Y exhibited OD400 readings comparable to wild-type, indicating a likely lack 

of significant difference in activity for this mutant (t-test p-value = 0.49). Mutations with 

a negative effect on v₀ included A65L, A65S, S66F, S66V, Q92Y, I178A, I178V, T207G, 

T207S, F209S, F209W, N212A, N212F and N212M, and all the combined mutants: 

G62A/A65L/S66F/Q92W, G62A/A65L/S66F/Q92Y, G62A/A65L/S66Y, G62A/A65S/S66Y, 

and I178T/T207G.  

Especially mutations S66F, S66V, F209S, and the two combined mutants 

(G62A/A65L/S66F/Q92W and G62A/A65L/S66F/Q92Y) resulted in a significant loss 

of activity, with (v0
mut/v0

WT=0.05). These findings suggest that S66 may not be an ideal 

candidate for mutation, or that the specific substitutions made were particularly detrimental. 

Notably, the combined mutants also include the S66F mutation, which likely contributed 

to their reduced activity. These results are surprising, as S66 is a solvent-exposed residue with 

high mutational potential, as indicated by FoldX predictions and entropy analysis (0.7). 

However, S66 forms part of a short helix 63–66, and substitutions at this position may disrupt 

the secondary structure of this region, leading to loss of activity. 

For F209S, the detrimental effect is also unexpected, as a serine is present 

at this position in IsPETase and in homologous sequences. The lack of a bulky hydrophobic 

residue at this position (in the P1 region) might destabilise the binding of Impranil DLN, 



164 

 

 

especially given that the P1 region is already less hydrophobic than the P2 region. 

This destabilisation could explain the observed decrease in degradation rates. 

As for the combined mutants, in addition to S66F, they also contain A65L, a mutation 

previously shown in RMSD and RMSF analyses to have destabilising effects on protein 

dynamics. These combined destabilising effects likely contribute to the significant loss 

of activity observed for these mutants. 

The detailed values of the assessed initial degradation rates, along with the results 

of the t-test statistics, are presented in Table 14. The t-test was conducted on the datasets 

of OD400 measurements over time. In some cases, such as T207D in batch 2, the calculated 

initial degradation rate appeared slightly lower than that of the wild-type (v0
mut/v0

WT=0.96), yet 

the t-test indicated a significantly higher activity. This discrepancy arises because the t-test 

considers all data points in the time series, which may exhibit curvature. In contrast, 

the v0 calculation relies on a linear fit to the initial phase of the data, potentially introducing 

bias when the data are non-linear. Such inconsistencies were observed only for mutants 

with activities close to that of the wild-type. Interestingly, for I178T, the opposite trend was 

observed. This reflects the subtle differences in how these statistical and analytical methods 

interpret the same dataset, particularly for mutants with marginally altered degradation rates. 

Table 14. Initial degradation rates (v₀) of Impranil DLN for TfCut2 wild-type and its mutants. 

‘Exp1’, 2, 3 indicate measured OD400 in separate experiments; ‘Mean’ and ‘Std’ indicate 

the mean of the measurements and standard deviation, respectively. ‘Statistic t-test’ shows the 

calculated t-test values (conducted after verifying data normality and variance similarity), and 

‘p-val’ represents the corresponding p-values. P-value < 0.05 denotes statistical significance. 

B
at

ch
 1

 

TfCut2 Exp 1 Exp 2 Exp 3 Mean Std v0
mut/v0

WT 
Statistic 

t-test 
p-val 

WT 7.12 5.82 4.63 5.86 1.25 1.00     

T61V 9.83 6.00 8.45 8.09 1.94 1.38 4.83 0.00 

G62A 12.17 15.28 12.38 13.28 1.74 2.27 11.36 0.00 

G62Y 6.84 5.71 4.50 5.68 1.17 0.97 -3.64 0.00 

A65L 7.00 2.24 0.74 3.33 3.27 0.57 -6.39 0.00 

A65S 3.69 1.82 0.69 2.07 1.52 0.35 -11.32 0.00 

A65Y 5.36 5.69 4.75 5.27 0.48 0.90 0.69 0.49 

I178A 3.36 2.44 1.98 2.59 0.70 0.44 -12.61 0.00 

I178T 7.95 5.49 5.02 6.15 1.57 1.05 -2.91 0.00 

I178V 2.23 2.10 1.67 2.00 0.29 0.34 -11.94 0.00 

T207D 12.87 6.54 5.33 8.25 4.05 1.41 6.10 0.00 

T207S 3.54 2.70 2.27 2.84 0.65 0.48 -7.94 0.00 

N212A 1.46 1.54 1.03 1.34 0.27 0.23 -15.90 0.00 
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N212F 2.07 0.76 -  1.42 0.93 0.24 -18.24 0.00 

N212M 3.02 1.13 1.00 1.72 1.13 0.29 -13.36 0.00 
B

at
ch

 2
 

WT 8.79 10.91 12.54 12.02 2.98 1.00     

S66F 0.57 0.70 0.37 0.65 0.24 0.05 -26.25 0.00 

S66V 0.15  -  - 0.61 0.64 0.05 -35.53 0.00 

Q92Y 8.14 10.12 10.80 9.39 1.28 0.78 -5.82 0.00 

T207G 6.23 4.53 5.29 5.35 0.85 0.45 -10.28 0.00 

T207D 0.12 10.09 12.27 11.58 1.00 0.96 1.03 0.00 

F209S 0.38 0.66 0.76 0.62 0.16 0.05 -26.30 0.00 

F209W 3.44 6.34 3.37 3.84 1.65 0.32 -14.95 0.00 

G62A/A65L/S6

6F/Q92W 
0.51 0.66 0.73 0.63 0.11 0.05 -25.99 0.00 

G62A/A65L/S6

6F/Q92Y 
0.42 0.71 0.59 0.57 0.15 0.05 -25.51 0.00 

G62A/A65L/S6

6Y 
1.88 2.61 2.91 2.47 0.53 0.21 -18.52 0.00 

G62A/A65S/S6

6Y 
1.29 1.54 1.31 1.38 0.14 0.11 -21.85 0.00 

I178T/T207G 
4.02 5.27 2.99 4.09 1.14 0.34 -16.28 0.00 

In summary, most of the tested mutants (19 out of 25) exhibited lower initial 

degradation rates compared to wild-type (TfCut2), while three had similar rates and three 

showed improved performance. Overall, this is not a highly successful outcome. The mutations 

were primarily designed to enhance ligand binding; however, these results suggest that ligand 

binding may not be the rate-limiting step, and other factors, such as stability or catalytic 

efficiency, could play more significant roles. 

Improved binding of the hydrophobic polymer chain often involves introducing larger 

hydrophobic residues (such as in case of essential for activity Y60, M131, W155 

in the wild‑type structure), but such substitutions may destabilise the enzyme's structure 

or negatively alter its surface properties. Modest changes, such as G62A and T61V, improved 

activity, while more disruptive mutations, such as A65L, F209W, and Q92Y, reduced 

efficiency. Similarly, although some stronger substitutions, like G62Y and A65Y, 

did not significantly impair activity, they also failed to enhance it. 

These findings suggest that while the expansive binding site of TfCut2 can tolerate 

certain structural changes, substitutions involving bulky hydrophobic residues may not be 

ideal. On the other hand, reducing bulk, as seen with mutations like I178A, I178V, and F209S, 

can disrupt critical interactions with the ligand. In some cases however, a substitution 
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of a hydrophobic amino acid to a smaller polar one, like in I178T, activity similar 

to the wild‑type can be maintained. 

A potentially promising strategy might involve introducing negatively charged residues 

near the active site, as demonstrated by T207D, which not only preserves activity but could 

also enhance catalytic rates by facilitating release of products of the ester hydrolysis 

(e.g. hydrolysed acids) from the binding site. 

In the next chapter, a more detailed structural analysis of selected mutants is presented. 

 

6.3.4 Selected TfCut2 mutants with improved properties 

for in-depth analysis 

This section provides a detailed analysis of the successful mutants T61V, G62A 

and T207D, focusing on the molecular factors that contribute to their improvements 

in degradation rates or stability. 

T61V 

Although the ΔΔG values predicted by FoldX and Rosetta for the T61V mutation are 

positive, suggesting a potential destabilisation, the experimental results do not fully support 

this conclusion. The marginal reduction in Tm observed for the T61V mutant does not indicate 

significant destabilisation. It is worth noting that although the production yield of T61V 

is lower than that of wild-type, this does not necessarily correlate with a significant decrease 

in functional stability or activity. The reduction in yield could be attributed to other factors, 

such as differences in solubility or expression efficiency, but it does not undermine the mutant’s 

improved binding and activity. 

The improved interface ΔΔG scores suggests that the mutation enhances ligand binding 

and observed increase in the rate of Impranil DLN degradation (v₀mut/v₀WT = 1.38) could suggest 

that in this case, the improvement of ligand binding truly improved the degradation. 

The positive ΔΔG from the computational models likely reflects the disruption 

of a hydrogen bond between the hydroxyl of T61 and the carbonyl of Y60 (Fig. 51 A). This 

bond disruption, while it could suggest destabilisation, does not appear to substantially affect 

the protein’s overall stability or catalytic activity. On the contrary, replacing T61 with valine 

introduces a more hydrophobic environment in the binding region, which seems to favour 

better interactions with the hydrophobic sections of Impranil DLN (Fig. 51 B). In all poses 
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of Impranil DLN, residue 61 interacts with these hydrophobic areas, as it is located near 

the cleaved bond. The “next” hydrolysable bond is further away, so the bound Impranil 

molecule is always positioned with its polymer chain (1,6-hexanediol or adipic acid) 

or, in the case of neopentyl glycol, CH₃ groups. 

 

Fig. 51. A) First representative frame from selected productive MD simulation frames 

showing wild-type TfCut2 in complex with the hexanediol ester P2. Catalytic residues are 

depicted as salmon-coloured sticks, aromatic clamp residues (Y60 and W155) as grey sticks, 

the substituted residue T61 as green sticks, and nearby residues within a 3 Å radius are shown 

in white sticks. A likely hydrogen bond between T61 and Y60 is indicated by a yellow dashed 

line. B) The same complex as in panel A, now with the T61V mutation introduced using 

Rosetta. Residues are represented similarly to panel A, with the Impranil DLN 

in the hexanediol ester P2 pose shown in black sticks. 

G62A 

Computational ΔΔG show very marginal destabilisation, in line with the slightly higher 

Tm of +0.87 °C compared to wild-type TfCut2, suggesting that the mutant maintains similar 

stability. Rosetta scores for the G62A mutant indicate comparable or improved energy scores 

across all ligand poses, and the rate of Impranil DLN degradation is over two-fold higher than 

the wild-type. Notably, G62A is an evolutionarily conserved mutation at this position, 

with a probability of over 30%. This highlights the importance of considering evolutionary 

acceptable substitutions even when designing catalysts for non-natural substrates. 

Overall, G62A enhances Impranil DLN degradation by improving ligand binding 

through hydrophobic interactions, without compromising the enzyme's structural integrity. 
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This mutation has also been shown to increase activity on PET and Bis(2-Hydroxyethyl) 

terephthalate (BHET), likely by relieving product inhibition through steric hindrance 

from the alanine side chain [191,316]. While the substitution was primarily designed 

to enhance polymer chain binding, the improved product release could also be a contributing 

factor. Additionally, glycine-to-alanine substitutions often improve protein stability 

by reducing chain entropy in the unfolded state, stabilising the folded structure [332]. 

T207D 

The T207D mutant demonstrates slight stabilisation, as evidenced by a Tm increase 

of +1.82°C and favourable computational ΔΔG predictions. This mutant also exhibits 

a modestly improved degradation rate for Impranil DLN and the highest production yield 

among all proposed mutants, even surpassing that of the wild-type. These findings suggest 

beneficial structural and functional effects resulting from this mutation. 

Residue T207 is not directly involved in ligand binding but is positioned adjacent 

to the catalytic H208, implying that its substitution could influence local stability, flexibility, 

and catalytic efficiency. In the wild-type structure, the hydroxyl group of T207 points towards 

the backbone carbonyl oxygen of L175 on a neighbouring loop (Fig. 52A). While the distance 

(2.8 Å) is too large for direct hydrogen bonding, this interaction may be mediated by a water 

molecule, contributing to local stabilisation. 

The T207D mutation replaces the threonine side chain with the negatively charged 

carboxyl group (-COO⁻) of aspartate. In the mutant structure, the carboxyl group forms 

a hydrogen bond with the backbone NH group of F209 (1.9 Å) (Fig. 52B), while disrupting 

interactions with L175 from the neighbouring loop. This alteration could increase local 

flexibility, particularly near catalytic residues D176 and H208, enhancing their mobility 

and interactions, which are essential for catalysis. 

Moreover, the introduction of aspartate’s negative charge modifies the local 

electrostatic environment, potentially influencing the protonation state and nucleophilicity 

of H208. This adjustment may optimise substrate interaction or stabilise reaction intermediates, 

indirectly enhancing catalytic efficiency. 

Additionally, the negatively charged carboxyl group of aspartate may promote faster 

product release by repelling carboxylate groups of hydrolysis products, particularly carboxylic 

acid. This electrostatic repulsion could facilitate product expulsion from the active site, 

improving turnover rates. 
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Overall, the T207D mutation likely enhances active site dynamics, increases catalytic 

flexibility, and accelerates product release, contributing to its observed improvements 

in activity and stability. 

 

Fig. 52. A) Structure of wild-type TfCut2 (PDB id: 4CG1). Catalytic residues are shown 

in salmon, T207 in green, and neighbouring residues in white. The measured distance 

is indicated by a yellow dashed line. B) Structure of TfCut2 T207D mutant, with a similar 

representation as in Fig. 52A, generated by introducing T207D mutation to 4CG1 wild-type 

TfCut2 structure. 

  

6.4. Conclusions 

This chapter presented the computational and experimental evaluation of the proposed 

TfCut2 mutants, addressing the third and final objective of this dissertation. 

All proposed mutants appeared to exhibit reasonable stability, with most showing only 

modest increases in ΔΔG as calculated by Rosetta. Additionally, the changes in flexibility 

by single-point mutations were generally minimal. Identifying the precise reasons behind 

the unsuccessful production of some variants would require a more in-depth and time-intensive 

analysis. Potential factors could include altered charge distribution, misfolding, or suboptimal 

heterologous expression levels. 

Overall, 24 single-point mutants and five multiple mutants were proposed. Among 

these, 20 single-point mutants and five combined mutants were successfully produced 
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and tested for thermostability and activity measurements. The evaluation prioritised 

successfully produced mutants, providing a detailed rationale for how each mutation influenced 

the variants’ Tm and activity towards Impranil DLN degradation. The produced and evaluated 

mutants generally exhibited thermostability comparable to the wild-type, indicating that the 

applied mutations avoided destabilising the protein while aiming to enhance Impranil DLN 

affinity or catalytic efficiency. 

In general, three successful mutations that render TfCut2 more efficient for Impranil 

DLN degradation were proposed: T61V, G62A and T207D. While G62A mutation to TfCut2 

was previously reported to be beneficial, albeit tested on different substrates, such as PET 

and BHET [191,316], the other two mutations, T61V and T207D have not been previously 

reported. Mutation T207D, apart from slightly improving the degradation rate of Impranil 

DLN, also helps to produce the mutant in much higher concentrations. Three other mutations 

did not alter the activity much: G62Y, A65Y and I178T and most of the mutations had negative 

effect on the degradation rates of Impranil DLN, namely: A65L, A65S, S66F, S66V, Q92Y, 

I178A, I178V, T207G, T207S, F209S, F209W, N212A, N212F and N212M, 

and all the combined mutants: G62A/A65L/S66F/Q92W, G62A/A65L/S66F/Q92Y, 

G62A/A65L/S66Y, G62A/A65S/S66Y, and I178T/T207G. 

Direct comparisons between computational predictions and experimental results were 

feasible only in terms of thermostability, using FoldX ΔΔG or Rosetta total score ΔΔG. 

However, no clear correlation between these computational metrics and experimental 

thermostability was observed, reflecting the inherent complexity of stability changes 

introduced by mutations. While degradation rates for Impranil DLN could not be directly 

compared to computational predictions, the analysis highlighted that many mutations designed 

to improve binding did not lead to increased catalytic efficiency. This suggests that ligand 

binding is not the rate-limiting step for Impranil DLN degradation. Instead, other factors, such 

as structural stability, surface properties, or the dynamics of the active site, may play more 

critical roles in determining enzyme efficiency. These findings underscore the importance 

of considering the broader context of enzymatic function when interpreting computational 

predictions and designing future experiments. 

Future work could focus on combining successful mutants to guide iterative rounds 

of enzyme engineering, progressively enhancing PUR degradation efficiency. Additionally, 

degradation experiments at higher temperatures could be conducted to assess the interplay 

between thermostability and catalytic performance under industrially relevant conditions. 
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6.5. Supplementary materials to Chapter 6 

Supplementary figure. 6.1. 1H NMR spectrum of Impranil DLN in DMSO_d6 (600MHz), 

range 0.6-4.0 ppm. 

 
Supplementary figure. 6.2. 1H NMR spectrum of Impranil DLN after enzymatic hydrolysis 

by TfCut2, in DMSO_d6 (600MHz), range 0.7-4.8 ppm. Above the picks, chemical structures 
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containing proton groups responsible for signals in degradation products are proposed (in 

green).  

 
Supplementary figure. 6.3. 1H NMR spectrum of Impranil DLN after hydrolysis in HCl, in 

DMSO_d6 (600MHz), range 0.7-4.0 ppm. Above the picks, chemical structures containing 

proton groups responsible for signals in degradation products are proposed (in green).  

 

Supplementary figure. 6.4. Results of thermostability as measured by nanoDSF: thermal 

unfolding curves and first derivative. 
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Supplementary figure. 6.5. Results of thermostability as measured by nanoDSF: thermal 

unfolding curves and first derivative.  
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Chapter 7: Conclusions and perspectives 

7.1. Summary of key findings 

This dissertation addresses the urgent need for effective enzymatic solutions to recycle 

synthetic polymers, focusing on PUR, one of the primary contributors to plastic waste. Despite 

significant advances in enzymatic degradation for other synthetic polymers, especially PET, 

research on PUR degradation remains in the lag phase, representing a substantial knowledge 

gap. This work is the first computational studies to explore the interaction between a model 

PUR, Impranil DLN, and Thermobifida fusca cutinase (TfCut2) and to introduce mutations 

aimed at enhancing enzymatic degradation of PUR. 

This dissertation is a comprehensive study, involving both computational analysis 

and experimental validation, to investigate the process of enzymatic degradation of PUR. First, 

NMR studies helped to shed light on the obscure chemical structure of Impranil DLN, 

a polyester PUR which was a model study in most of the PUR enzymatic degradation studies 

conducted so far. This approach allowed to model single repeating units of Impranil DLN 

computationally with more confidence. Subsequently, through a combination of computational 

chemistry tools, key molecular determinants responsible for PUR recognition and binding 

by TfCut2 were identified. The workflow enabled the reconstruction of TfCut2-Impranil DLN 

complex in productive modes, and evaluation of Impranil DLN binding to TfCut2’s surface 

active site. In the process, both ester and urethane bond cleavage sites were considered. 

By analysing protein-ligand interactions, the dissertation identified residues critical 

for substrate binding and catalysis, laying the groundwork for TfCut2 engineering. 

A combination of computational tools and evolutionary information was used 

to propose variants of TfCut2. These mutations were designed mainly to enhance Impranil 

DLN binding through hydrophobic interactions or stabilise binding poses or favour catalytic 

turnover. Experimental validation of proposed mutants provided valuable insights and revealed 

that most mutants retained thermostability comparable to the wild-type enzyme, suggesting 

that the mutations did not significantly disrupt the enzyme’s structure. Activity assays revealed 

that while eight out of fourteen mutants exhibited reduced degradation rates, three showed 

comparable activity, and three mutations—T61V, T207D, and G62A—demonstrated enhanced 

Impranil DLN degradation rates. In particular, the G62A mutant exhibited a more than twofold 
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increase in initial degradation rate, while T207D also facilitated higher protein production 

yields and long-lasting stability, underscoring its practical value. 

These findings underscore the complexity of optimising enzymatic degradation 

of polymers. While hydrophobic interactions at the binding site play a pivotal role 

in accommodating large polymer substrates, this study highlights that binding affinity alone 

may not be the rate-limiting step in polymer degradation. Additional factors, such as substrate 

positioning, active site accessibility, flexibility, and catalytic turnover, likely contribute to PUR 

degradation efficiency. This insight aligns with emerging research suggesting that enhancing 

enzyme performance for synthetic polymer degradation requires a multifaceted approach. 

 

7.2. Limitations of the study 

PUR present challenging substrates for enzymatic degradation due to their structural 

diversity and the variety of hydrolysable bonds they contain. Unlike unified synthetic polymers 

such as PET, where degradation can be monitored by quantifying specific degradation products 

like terephthalic acid (TPA), PUR are heterogeneous and lack coherent, standardised 

degradation markers. Even in cases where PUR are completely degraded, the resulting mixtures 

contain diverse products that must be further separated and analysed to assess degradation 

efficiency accurately. Likewise, this problem also severely limits the possibilities of recovering 

structural units in the recycling process. Consequently, it is inherently difficult to precisely 

evaluate an enzyme’s ability to degrade PUR substrates. 

Challenges with the model substrate, Impranil DLN 

Impranil DLN was chosen as a model PUR substrate because it becomes translucent 

upon degradation, providing a convenient method for initial activity testing. However, 

significant limitations are associated with its use. Its exact composition is proprietary, 

and reported initial attempts to characterise its structure were found to be incorrect. Even 

if its primary structural units could be described within this dissertation and confirmed 

by literature, it remains unclear whether the substrate contains chain extenders, plasticizers, 

or other additives, and to what extent these components influence degradation. 

Additionally, no standard methods exist to directly correlate the observed change 

in Impranil DLN’s translucency with the cleavage of specific bond types (e.g., ester 

or urethane) or the extent of bond cleavage. For instance, it is uncertain whether complete 
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translucency indicates the degradation of polymer chains into smaller polymer chain units 

or if only single monomeric units must remain in the reaction mixture. Furthermore, hydrolysis 

products are often not fully solubilised, complicating quantitative analysis of the extent 

of Impranil degradation. 

These uncertainties make it difficult to define standard kinetic parameters such 

as KM and kcat. The lack of solubility and visibility into reaction intermediates precludes 

techniques like stop-flow kinetics or measuring initial bursts of activity. This is because 

stop‑flow methods require accurate tracking of substrate and product concentrations over time, 

which is unfeasible for Impranil DLN due to the heterogeneous and poorly characterised nature 

of its degradation products. Consequently, the only viable approach was to measure initial 

degradation rates, which allowed for comparative evaluation between designed TfCut2 

variants. 

Limitations in computational modelling 

The computational modelling of PUR substrates also presented challenges. Even 

though the study modelled only a fragment of the PUR polymer (three structural units), 

the large number of rotatable bonds in these fragments made it computationally infeasible 

to generate a full set of conformers. As a result, only single structural units of Impranil DLN 

could be docked using flexible docking protocols, and the rest of the chain had to be 

reconstructed later. This approach in modelling only a small part of a polymer chain limits 

the representation of the true behaviour of PUR polymers, as full polymer chains likely exhibit 

lower flexibility, even in amorphous regions. 

The binding of a polymer ligand to the enzyme surface is also rather not specific, 

complicating the identification of preferential binding poses. Although several binding modes 

of Impranil DLN to TfCut2 were modelled, computational methods could not definitely 

distinguish which pose was most favourable. For example, binding energies for urethane bonds 

were often lower than those for ester bonds, despite the known preference of TfCut2 

for hydrolysing ester bonds. This limitation underscores the difficulty of accurately modelling 

and predicting polymer-enzyme interactions computationally. 

Challenges in enzyme engineering for PUR degradation 

The inability to determine the exact binding pose of the polymer substrate also 

complicates enzyme engineering. Without a clear understanding of the substrate’s binding 
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mode, it is challenging to design mutations that would optimise specific interactions or catalytic 

efficiency. Furthermore, the rate-limiting step in enzymatic degradation of PURs remains 

unclear. While substrate binding likely plays a significant role, the process involves complex 

dynamics. For instance, plastic-degrading enzymes need to balance thermostability 

with flexibility to accommodate large, amorphous substrates like PURs. 

These challenges are intrinsic to enzymatic catalysis, but the structure and composition 

of PURs present additional difficulties. The high energy of urethane bonds, 

which are inherently more resistant to cleavage, makes enzymatic hydrolysis difficult. 

Moreover, the crystallinity of the hard segments in PURs can limit enzyme accessibility. Most 

commercially produced PURs are thermosets with covalently crosslinked chains, which further 

hinder degradation due to their structural rigidity and reduced solubility. While Impranil DLN 

serves as a convenient model substrate for studying enzymatic degradation, it does not fully 

capture the complexity of real-world PURs, where these structural challenges significantly 

impact degradation potential. 

The inherent complexity of PURs, with their varied and incoherent structures, further 

complicates the development of universal enzymes for their degradation. Designing enzymes 

that are effective across different PUR formulations remains a significant challenge, requiring 

further investigation into substrate-specific binding and degradation mechanisms. 

General limitations  

This dissertation faced numerous challenges due to the lack of established knowledge 

and methodologies in the field of enzymatic PUR degradation. The structural 

and compositional complexity of PURs, coupled with the proprietary and poorly characterised 

nature of Impranil DLN, posed significant hurdles. Computational approaches were limited 

by the size and flexibility of the polymer fragments, while experimental methods struggled 

with the lack of standardised techniques for assessing degradation efficiency and kinetics. 

Nevertheless, within these constraints, the study successfully developed and applied 

innovative approaches to shed light on the enzymatic degradation of PURs. It provided new 

insights into the proprietary structure of Impranil DLN and identified promising mutations 

that enhance degradation efficiency. These findings lay the groundwork for future studies 

aimed at addressing the significant knowledge gaps in this field. 
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7.3. Future directions 

PUR degradation by enzymes remains an underexplored area, and this dissertation 

highlights the potential of computational and experimental approaches to address this critical 

gap. Immediate next steps should include combining the successful single-point mutations 

(G62A, T61V, T207D) to evaluate potential synergistic effects on catalytic efficiency and 

stability. Testing these mutants under diverse conditions, such as elevated temperatures or with 

alternative polymer substrates, could provide deeper insights into their performance 

and versatility. Furthermore, individual TfCut2 variants may exhibit distinct specificities 

for different bond types in PUR, suggesting that a combination or cocktail of enzymes might 

outperform a single enzyme. However, to achieve this, it is essential to determine which bonds 

in Impranil DLN (or other PUR substrates) are specifically targeted by each variant. 

Future computational studies should also investigate the interactions of enzymes 

with the surface of solid polymer matrices—a largely unexplored area, as most studies assume 

direct access to polymer chains. Expanding this work to other classes of PURs, as well 

as related synthetic polymers, is a promising avenue. The observed similarities in Impranil 

DLN and PET binding modes, along with the G62A variant’s enhanced activity 

for both substrates [191,316], suggest that findings from cutinase studies on one polymer type 

can potentially be applied to others. This raises the exciting possibility of engineering enzymes 

with promiscuous activity, capable of degrading polymer mixtures commonly found in plastic 

waste. Such enzymes could be invaluable for addressing the heterogeneous nature of real-world 

polymer waste streams.  

Future experimental work should also aim to refine the assessment of enzymatic activity 

by incorporating small model compounds that mimic PUR structural units. For example, 

a library of short compounds containing ester, urethane, and amide bonds could help evaluate 

substrate specificity of variants and provide mechanistic insights into TfCut2’s catalytic 

activity. A similar approach was effectively employed in studies on HiC cutinase [22], where 

enzymatic activity was assessed on substrates like pNPB, pNPC, pNPBC, and pNPA. Adopting 

such protocols could bridge the gap between simplified laboratory assays and the complex 

nature of polymer degradation. 

Another crucial direction is the development of standardised and cohesive protocols 

for assessing PUR degradation efficiency. Model substrates like Impranil DLN, while useful 

for initial testing, suffer from proprietary composition and lack of clear degradation metrics. 
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For PET, compounds like BHET correlate well with the degradation of PET films and provide 

a reliable estimate of enzymatic hydrolysis [333]. Establishing similar standards for PUR 

substrates would enable more consistent comparisons across studies and advance the field. 

In the long term, this research lays the groundwork for tailoring cutinases to degrade 

a broader range of synthetic polymers, addressing industrial needs for polymer recycling 

and environmental remediation. By improving enzyme efficiency and stability, this work 

contributes to the ongoing development of sustainable solutions for managing polymer waste. 

 

7.4. Broader impact 

The degradation of synthetic polymers represents one of the most pressing 

environmental challenges of our time. Enzymatic biodegradation offers a sustainable 

and eco‑friendly alternative to conventional methods like recycling or incineration. This work 

underscores the potential of computational and experimental protein engineering to develop 

enzymes with enhanced catalytic efficiencies and substrate specificities, enabling significant 

advances in tackling plastic waste. 

This research offers a framework for tailoring cutinases to degrade a broader range 

of synthetic polymers, with implications for industrial polymer recycling and environmental 

remediation. By enhancing enzyme efficiency and production yield, this work contributes 

to the development of sustainable solutions for polymer waste management. Overall, this work 

contributes valuable insights into the rational design of cutinases for polymer degradation, 

paving the way for future iterative enzyme engineering efforts. In the long run, this research 

can inform the development of integrated degradation pipelines, incorporating pretreatment 

processes, optimised reaction conditions, and tailored enzyme formulations for efficient PUR 

degradation. Furthermore, understanding the molecular mechanisms of polymer degradation 

could guide the design and production of polymer-based materials that are more easily 

biodegradable, fostering innovation in sustainable packaging. 

Overall, this work highlights the transformative potential of enzymatic solutions 

to address the global plastic recycling challenge. It provides a stepping stone for future research 

efforts aimed at creating a circular economy for plastics, particularly PUR, thereby contributing 

to a more sustainable and environmentally resilient future. 
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