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1
Introduction

1.1. Fluidization

Fluidization is a multiphase process, where solid material is transported by a flowing
gas. Over the past few decades, the fluidization process has garnered increasing attention.
It finds diverse uses in various industries, including chemical applications for re-drying
chemicals post-mechanical drying [43], pharmaceutical applications to enhance medication
mixing efficiency and achieve uniform material distribution [39], and in the food processing
industry, such as the operation of a popcorn popper [126]. Additionally, the technology
has numerous applications in the energy sector due to many advantages over traditional
boiler constructions. All this is mostly of increasing calculation resources which allows the
application of advance computer models to predict behavior of solid phase.

The last mentioned application is undergoing significant development. The key
attributes of this technology include intense heat transfer, effective mixing of solid
materials, extended fuel residence time, and uniform temperature distribution throughout
the combustion chamber that allows easier control of NOx emission and eliminates thermal
NOx generation due to elimination of local high temperature picks. Industrial boilers
utilizing fluidization techniques exhibit similar boiler efficiency, compared to pulverized
coal boilers but have an advantage in case of decreased harmful gases emissions [29]. This
is mainly attributed to the rapid mixing rate, which positively impacts all thermochemical
processes involved in coal combustion. One example is the amount of SOx emitted,
which is significantly reduced when using fluidized bed boilers, through direct limestone
injection [105].

In the fluidized bed, the combustion temperature typically falls within the range of
800�950�C [82], resulting in reduced NOx emissions and enabling the combustion of
fuels with lower heating values, including waste materials [125]. The lower temperature
prevents the ash from softening, preventing issues related to slag or coating formation on
chamber walls. At the same time it is possible to burn fuels with higher ash content [33].
As a result, the heat transfer rate between the heating surfaces and the heated medium
remains unaffected. Another advantage of using boilers with fluidized bed, is their minimal
sensitivity to fuel quality. A wide variety of fuel types, including waste materials, can be
easily burnt. In terms of the material proportions within the combustion chamber, only 1-
3% [82, 18] consists of coal fraction, while the majority comprises inert material, typically
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sand [32]. The inert material serves the purpose of transferring the heat released during
the combustion process [80].

Fluidization, as a basic process wherein the flow of gas through the chamber causes
solid particles to act like a fluid-like state. In simple laboratory construction the process
starts by placing the material on a porous plate. Subsequently, gas with a low flow rate
passes through the porous plate and the material. The minimal fluidization velocity of
the gas (umf ) is attained when the forces acting on the particles, including gravity,
are balanced, and they begin to move, as shown in Fig. 1.1A. With further increase
in velocity above the minimal fluidization velocity, smaller particles rise to the top of
the boiler, leading to the formation of gas bubbles, which can be seen in Fig. 1.1B.
When the velocity exceeds, so-called terminal velocity (utf ), the bubbles vanish, and
instead, turbulent motion of particles occurs, what is depicted in Fig. 1.1C. As the gas
velocity continues to rise, the turbulent bed transforms into a circulating fluidized bed.
Particles are removed through the top part of the chamber, and after passing over the
solid separator, they return to the chamber, as illustrated in Fig. 1.1D.

Fig. 1.1. Fluidization regimes, where A: Fixed bed, B: Bubbling bed, C: Turbulent bed,
D: Circulating Fluidized bed
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1.1.1. Fluidization regimes

In a fluidized bed boiler, three characteristics zones can be distinguished: the dense
zone, transition zone, and dilute zone (refer to Figure 1.2). The greater the distance
from the gas distributor the lower the concentration of particles. The dense zone marks
the initiation of fluidized bed formation. Due to high volume concentration, particles are
accumulating into so called clusters, where the interaction between solid material is an
effect of friction forces. The distance between particles is so small, therefore the particle
collisions are not significant in that zone. The clusters expand to the transition zone as a
result of friction and kinetic transport. When the distance between particles in the higher
part of a boiler increase, the collisions take over dominance. Kinetic transport starts to
dominate, when the distance between particles gets large. Particle size and density, as
well as overall mass of material in a boiler influences not only the minimum fluidization
velocity but also the size of particular zones. Particles with smaller diameter are easily
moving to the upper parts of a boiler.

Fig. 1.2. Fluidization zones
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1.1.2. Bubbling Fluidized Bed

Compared to Pulverized Coal Fired (PC) boilers, Bubbling Fluidized Bed (BFB)
boilers operate at lower temperatures ranging from 800°C to 950°C [114]. The combustion
chamber is the main part of the BFB boiler as it facilitates the conversion of fuel into
heat. Depending on the desired output, the boiler can produce hot water or steam. The
bed material consists of a mixture of fuel and inert material, a characteristic shared by all
fluidized beds. Additionally, limestone is commonly added to aid in sulphur capture. [64].

Prior to initiating combustion, the bed material must be mixed with the fuel. The bed
material is a mixture of fuel and inert material, which typically is a sand with the addition
of limestone. Within the BFB boiler, there are two points where air is supplied: at the
bottom of the chamber and in the upper part of combustion zone, marked on Figure 1.3.
Adequate mixing of the bed material in the bottom of the boiler, is ensured by supplying
primary air from the bottom of the chamber. The gas velocity constantly varies and is
maintained within a range between the minimum fluidization velocity and the entrainment
velocity [47]. Residues of burnt fuel in the form of small-diameter ash particles are removed
from the combustion chamber through orifices. The most significant heat fluxes in BFB
boilers are concentrated at the bottom. To protect bottom part from erosion and water
dry-out, the internal surface is coated with appropriate refractory material [138].

Fig. 1.3. Closure of the bottom of BFB boiler
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1.1.3. Circulating Fludized Bed

Currently, the most popular fluidization technology is the Circulating Fluidized Bed
(CFB). One of the main advantages of such boilers is their ability to handle various fuel
qualities. The CFB boiler can efficiently burn fuels with higher moisture content and
lower heating values, such as biomass or RDF (Refuse Derived Fuel) [115]. It becomes
particularly significant in addressing the increasing challenges of waste management.
CFB boilers are primarily utilized in high-power generating units. Several installed units,
for example, have electrical power capacities of 460 MWe (Łagisza, Poland), 330 MWe
(Novocherkasskaya, Russia), and 550 MWe (Samcheok, South Korea) [101].

The particle residence time in a closed loop is significantly longer in comparison to
traditional pulverized coal boilers. Instead of removing unburnt fuel particles, they are
separated from flue gases and returned to the combustion chamber through a separator
and loop seal. The high conversion rate of fuel contributes to higher boiler efficiency.
Furthermore, co-combustion of different types of fuels is feasible and can function
effectively. Adjusting the amount of oxidizer provided to the combustion chamber in
different zones is crucial and depends on the type of fuel, considering its size, density,
and moisture content. Among the operating conditions, maintaining the velocity above
the entrainment velocity, typically ranging from 4.5 to 6.7 m/s, is essential [127]. It
uplifts particles and ensures their uniform redistribution within the chamber. Particles
with smaller mass are raised, while heavier ones occupy the bottom part of the chamber
until they fragment into smaller particles during collision, particle swell, and breakage
processes. A typical CFB boiler configuration (visualization is presented on a Figure 1.4)
includes the combustion chamber, loop-seal, and drain section.

The primary air is supplied by the oxidizer distributor (separator). The combustion
chamber material is composed of fuel, solid material and sorbents. Injecting air at a
speed surpassing the terminal velocity results in a highly turbulent bed. Another factor
influencing turbulence is the shape of the boiler, often designed with a narrower lower part
and a wider upper part. This arrangement continuously carries particles from the bottom
to the top, and if they are still big and heavy enough are eventually returned to the boiler
through the loop seal and drain section. The height to which particles rise depends on
their mass. If gravitational force dominates, particles glide along the walls and fall back
down. The combustion temperature is uniform and lower (800 �C-950 �C [97]), along with
reduced heat fluxes to the boiler walls, thanks to the high heat transfer and mixing rates,
in comparison to PC boilers. Similar to BFB boilers, the internal surface of CFB boiler
walls is coated with refractory material to be shield from the high heat fluxes, occurring
inside the combustion chamber.
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Fig. 1.4. Simplified general scheme of CFB boiler with highlighted most important parts

1.1.4. The particle hydrodynamics

The complexity of flows with two phases present (solid and gas), is attributed to the
hydrodynamic interactions between those two. These interactions involve various forces,
which can be categorized into different groups. The gravitational force is counteracted
by the fluid drag and buoyancy forces, acting in opposite directions. When these forces
reach a pseudo-equilibrium state, the particle becomes suspended in the carrying gas. At
this point, the medium in the fluidized bed behaves as if it were a fluid, and it can be
described using mathematical tools developed for dealing with continuous phases:

• the static pressure at any height in the vessel is approximately equal to the weight
of the solid bed per unit of cross-sectional area, above the level, where the pressure
acts,
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• an object with higher density than the density of the bed sinks, while the lighter
objects float following Archimedes principle [119],

• the solids from the bed can be discharged, similar to a liquid, through an orifice
located either at the bottom or on the side of the container,

• the bed surface remains horizontal level, and the bed takes on the shape of the
vessel,

• for properly mixed material, the bed exhibits a nearly uniform temperature when
subjected to heating.

An illustrative example demonstrating the disparities between solid and fluid flow can
be observed in an hour-glass and a U-tube pipe. In the hour-glass, the particle flow rate
through the orifice at the bottom remains constant and is not influenced by the height of
the particle bed. It is in contrast to fluids, where the flow rate through the orifice depends
on the hydrostatic pressure. In the case of a U-tube filled with fluid, both arms contain
the same amount of water. However, if sand is used instead of fluid, only one arm of the
U-tube gets filled.

The pressure drop across the bed is caused by the drag forces acting on the particles
in the moving fluid. The pressure drop per unit height of a packed bed (�p/H) containing
uniformly sized particles can be described using the Ergun equation [54]

�p

H
=

"
150

(1� "f )2

"3
f

µf

(kvdp)2
+ 1.75

⇢f (1� "f )uf

"3
f
dpkv

#

| {z }
Kfs

uf (1.1)

where term Kfs stands for the interphase exchange coefficient between phases, "f stands
for the void fraction of the bed, dp is the diameter of the particles, uf determines the
superficial velocity of the gaseous phase, i.e., the velocity of the fluid through an empty
tube at the same volumetric flow rate, H defines the bed height and kv is the particle
sphericity which for ideal sphere is equal to ⇡/6.

As the pressure drop in the solid bed increases, the superficial gas velocity uf

approaches a critical value known as the minimum fluidization velocity umf . The pressure
drop for a bed at rest can be defined as follows [58]

�p = H(1� "f )(⇢p � ⇢f )g (1.2)

where H stands for the height of the bed, ⇢p is the particle density and g determines the
acceleration of gravity. The minimal value of fluid velocity umf , when the bed starts to
fluidize, can be determined by solving simultaneously equations (1.1) and (1.2) assuming
uf = umf .
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Two other significant velocities, which are important in particle transport phenomena
in a fluidized bed, are the terminal velocity utf and relative velocity ur. The terminal
velocity can be determined using the particle force balance equation (1.3), with the
assumption that the gas velocity uf is zero, and the particle velocity up is equal to the
terminal velocity utf . The particle balance equation (1.3) was derived for the movement
of a single particle under gravitational, buoyancy, and drag forces.

mpg|{z}
Gravity

= mp

⇢fg

⇢p| {z }
Buoyancy

+CD

⇡ (uf � up)
2 ⇢f

8
d2
p

| {z }
Drag

(1.3)

In equation (1.3), the term (uf � up) represents the relative velocity (or slip velocity,
ur), which accounts for the resistance of particles against falling, when the gas and particles
move upwards. The parameter CD stands for the drag coefficient.

In multiphase flows, where the solid phase is relatively diluted (1 � "f ) < 0.1, one-
and two-way coupling interactions between phases are involved [47]. If the interactions
between particles can be neglected, one-way coupling occurs, where the gaseous phase
affects the particle motion, but there is no reverse effect of the particle movement on the
fluid. In cases where both directions of influence are considered, the coupling is referred
to as two-way coupling.

1.2. Motivation and background

Whenever there is a need to construct new units or enhance existing ones, a significant
amount of engineering effort becomes necessary. Ongoing environmental regulations
consistently force the energy industry to innovate fresh methods, for transforming fossil
fuels into forms of high energy. The atmospheric CO2 concentration is continually
rising primarily as a result of fossil fuel combustion, resulting in a rise in the overall
temperature [51]. Therefore, it is necessary to look for alternative options. Fluidized beds
could serve as a complement to renewable energy sources like wind turbines, solar panels,
and hydropower stations, as these sources heavily rely on weather conditions. Despite
being environmentally friendly solutions, their effectiveness remains relatively modest,
ranging from 18% to 30.5% in efficiency [107, 79].

To avoid the need for conducting tests directly on site or in a laboratory environment,
numerical methods can be employed. The utilization of Computational Fluid Dynamics
(CFD) appears to be the most fitting choice. Fluidization is an example of a physical
process causing engineers considerable challenges.

Primarily, such complexity arises from the mathematical models developed to describe
phase interaction processes. To attain a high level of precision in the model, and to
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establish suitable coefficients, experimental data is essential. Prior to implementing
the model in large-scale boilers, preliminary experiments are necessary to validate the
submodels. Moreover, the extensive application of the fluidization process, owing to
its complexity, is regarded as one of the most demanding processes for mathematical
modeling.

Developing a reliable mathematical model for simulating the fluidization process is not
trivial, due to the involvement of chemical processes, varying spatial and temporal scales,
intricate connections between gaseous and solid phases, and interplay among particles. The
complexity is additionally, increased by the inclusion of combustion, gasification, particle
fragmentation, attrition, and agglomeration. A significant hurdle is the requirement for a
computing tool that’s precise, swift, reliable, and consistent in predicting and modeling
particle fluidization. The existing computational methods capable of addressing such
complicated process are categorized into four groups:

• microscale - discrete element model, discrete numerical simulation, etc.
• macroscale - empirical and semi-empirical models,
• meso- and macroscale - multifluid models like Euler–Euler models,
• macroscale - hybrid Euler–Lagrange (HEL) models (known also as the multiphase

particle-in-cell (MP-PIC) method)

As each of these methods has its own limitations, there is still a potential for
improvement, in existing approaches, through advancements in numerical modeling
capabilities. The field of engineering is poised to confront a significant challenge in the
upcoming years: the development of a dependable, foresighted, resilient, and multi-scale
modeling tool, able to enhance modeling capabilities, while minimizing computational
demands. Computational techniques present a significant opportunity for foreseeing and
comprehending the complex physical mechanisms, that underlie the fluidization process.

The accurate prediction of particle collisions enables the determination of optimal
material distribution within a bed, and precise evaluation of pressure profiles, drag forces,
and areas prone to erosion. A significant challenge in modeling the fluidization process
revolves around the requirement for a precise, resilient, rapid, and stable numerical
model to predict particle collisions within dense systems. Such systems are encountered
in applications like fluidized bed boilers (used in waste management, energy, and
environmental sectors) and pressurized solid gasifiers. Without such a model, achieving
reliable predictions of solid distribution within the system becomes hard to reach.
Consequently, it directly impacts projected pressure profiles, temperature distributions,
reductions in harmful species, projected solid separation efficiency, erosion predictions,
and more, as detailed in previous studies [42, 55, 13].
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The already available approaches such as, s Euler-Euler (EE), hybrid Euler-Lagrange
(HEL), and Discrete Element Model (DEM: Soft or Hard Sphere), encounter some main
challenges. The most noteworthy among these are:

• lengthy computation time, when using the DEM approach,
• difficulty in predicting Granular Temperature (GT - ⇥), a factor used in all closure

terms for collisional and phase interaction models, in both EE and HEL methods,
• difficulties in predicting particle size distribution, when using the EE approach, as

each particle size is represented by an additional solid phase,
• high instability in the solution, when the number of particles in the system is large

(over 3 million), with the HEL approach,
• issues with mass conservation during interpolation from discrete phase to Eulerian

grid when using HEL approach (partially addressed in the MP-PIC approach with
commercial CPFD Software, LLC Barracuda code), and more.

To tackle above mentioned challenges, the engineering community, focused on particle
transport modeling will require significant innovations in the coming years. These
innovations are necessary to establish modeling approaches, that can predict fluidization
with high accuracy, while maintaining reasonable computational efficiency, for resolving
particle-particle interactions. Developing such an accurate model necessitates the adoption
of a multiscale modeling strategy, for the fluidization process. It involves predicting
particle collisions at the micro-scale level, while modeling particle transport at the meso-
and macro-scales [95], as illustrated in Figure 1.5. As a solution, there is a room for a
dependable and adaptable Surrogate Model (SM) capable of predicting particle-particle
collisions and behavior. Such model would allow the application of numerical tools within
a realistic time frame, for large fluidized systems.

Fig. 1.5. Classification of multiphase models for fluidized systems [95]
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Usually two main approaches are used for simulating fluidization processes. The first
approach, is the Euler-Euler method, as described in [57, 58, 59]. In this technique, both
continuous and dispersed phases are treated as interpenetrating continua. This approach
was developed under the assumption, that the solid phase can be treated as a continuous
phase with representative properties as the fluid [57]. The initial derivation of equations
for two-phase systems can be found in the work of Anderson and Jackson [22]. When
applying a two-fluid model to simulate particle transport phenomena, it is necessary to
define closure models. These models serve the purpose of predicting particle collisions and
fluid-solid interactions. The prediction of particle interactions can be accomplished using
the principles of dense gases [38] and the kinetic theory of granular flow (KTGF) [124].
However, an additional drawback of the Eulerian model is the requirement for a fine
mesh, to accurately model cluster formation. It results in extended computational time
and influences the calculated pressure profile, along the combustion chamber.

An approach, commonly used to model particle interactions, involves the application
of discrete particle techniques. These discrete models, when employed in dense dispersed
phases within fluidized bed boilers, offer an accurate way of predicting interactions
between particles, as well as particle-fluid interactions and Particle Size Distribution
(PSD), within the dispersed phase. The Discrete Element Method (DEM) [47] is
particularly suited for achieving such goal. Both of these approaches, the hard-sphere
and soft-sphere collision models, are utilized to describe particle interactions. In the
hard-sphere model, particle interactions are assumed to be instantaneous [67]. The
effect of particle collisions is identified between each pair of particles, which can be
computationally intensive. The soft-sphere model employs Hertzian contact theory, which
models slight overlap between particles during contact [129]. However, due to the
substantial computational need, the practicality of using DEM is limited to smaller scale
problems. Certain applications of the hard-sphere DEM for modeling particle transport in
small-scale fluidized beds, can be found in [143]. In the work of Tsuji et al. [128], the soft-
sphere collision model was used, to simulate a bubbling fluidized bed, with 4.5 million
particles. Despite the increasing computational power, DEM remains too numerically
resource-expensive.

An alternative technique for modeling the fluidization process, which incorporates
realistic Particle Size Distribution (PSD), is the hybrid Euler-Lagrange approach. In
contrary to the Eulerian approach, it treats the fluid phase as a continuum, while the solid
phase is tracked in a Lagrangian reference frame. To speed up numerical simulations while
maintaining accuracy, a hybrid Euler-Lagrange approach was formulated by Andrews and
O’Rourke [23]. This approach was subsequently refined by Patankar [108, 109] and Snider
[122, 120, 121]. To simplify calculations, particles are packed into parcels with the same
physical properties as mass, diameter, and density, reflecting particle behavior.
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Particle-particle interactions are not directly simulated; instead, they are addressed
through the kinetic theory of granular flow (KTGF) within the Eulerian frame, where
the particles are projected [76].

Each of the above approaches has its drawbacks. Whether in the form of the time
required to obtain results, hardware requirements, stability of calculations, magnitudes
regarding the cases to be analyzed, etc., they all have their drawbacks. Therefore, there
is still room and opportunity to try to develop another approach to simulate multiphase
flows using new methods or other means. In this work, it was decided to use simplified
models to replace the expressions responsible for the collision members in the equations,
in the approaches already available. As a result, there is no significant decrease in the
accuracy of the simulation, for that the calculation time will be reduced.

1.3. Objectives

Recognizing both the benefits and drawbacks of the EE, HEL, and DEM models
for modeling granular flows, the concept emerged to combine two of them into a single
framework. In this research, the aim is to integrate a precise collision model based on
DEM as described in [135] with a straightforward HEL method.

The current study presents a streamlined collision model created within the context
of machine learning (ML), which can be seamlessly incorporated into the conventional
HEL approach, replacing the KTGF closure components. The resultant model decreases
computational requirements, while upholding the anticipated level of precision. In last
few years, and still today, ML gains more and more interest, as the tool to model or
optimize complex processes [145, 16, 90], or refining models through data-analysis [142],
and predicting and confirming signals [91]. Beyond its notable accuracy, the developed
simplified model also significantly trims computational time. For instance, the reduced
order model (ROM) technique has been employed to simulate furnace operations under
flameless conditions, aligning with the concept of a digital twin, as described in [27].
These mentioned studies effectively showcase the practicality of ML algorithms as potent
tools, holding substantial potential for curtailing the expenses associated with numerical
simulations.

In the first part of the work a surrogate collision model (SCM), created using, a
combination of available CFD approaches with ML algorithm. To be more precise, in this
part algorithms based on decision trees will be used. ML model will be built, using the
data gathered using DEM approach. To be more precise, the SCM was integrated into
the standard HEL technique, which is available in ANSYS®Fluent software, replacing
KTGF with a set of user-defined functions (UDFs). A comparison was made between the
outcomes of the Hybrid Euler-Lagrange Surrogate Collision Model (HELSCM) and the
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numerical results derived from both the standard HEL and DEM methods, as well as
the experimental measurements reflecting conditions in simulations. For the purpose of
comparing the experimental with simulation results, an in-house algorithm was created
for purposes of post-processing measurement data in LabView.

In the second part of the dissertation, the machine learning tools were also used to
predict particle interactions influencing their distribution in a boiler, but at a different
level and in a different way. Developed ML model was used to predict field values of the
pressures, velocities of gases and solids, based on high-level of CFD simulation applying
complex HEL approach. The main idea of this work, was to integrate hybrid modeling
system with the Łagisza Power Plant CFB’s 460 MWe boiler control system. Such
integration aims to establish an enhanced intelligent control setup, focusing on reducing
emissions and enhancing overall performance and support prediction and perspective
algorithms for boiler control and operation optimization. The main research question
concerns the development of a modeling system, that simulates the CFB furnace in
sufficient detail and speed, for use as a prediction and prescription system as mentioned.
This part of the work presents the development and validation of the hybrid modeling
approach, that integrates various modeling techniques. The approach uses neural networks
to improve the prediction of field values, based on collected results from digital twin model.
It makes it possible to bypass, performing full CFB calculations for the boiler, and thus
significantly speed up to obtain results that can be used in on-fly mode for boiler control.
It is worth to mention here that developed here methodology has been incorporated in
OPTI_AI_UNIT (08/060/FSB/1004) project.

1.4. Current status of the research

Numerous methods are presently being used for the modeling of multiphase flows.
It includes approaches, already existing for an extended period. It is important to
acknowledge that they were effectively utilized in numerous simulations. Additionally,
there are also emerging techniques that are unveiling their promise and are currently
undergoing developmental phases. Above mentioned approaches, which are included in
the current work, are utilized to model granular flows, characterized by high solid volume
fraction, where the number of interactions between particles is very large due to their
number. There are few commonly used commercial CFD software packages, such as
Fluent [34], ANSYS CFX [2], STAR-CD [5], which allows to introduce users changes
to the source code by externally written functions.

The standard EE approach was applied to model flows in a pipe in a thin bent pipe,
where suspended, plug and dense flows are distinguished [87]. Another paper presents
simulations of circulating fluidized bed in real scale boiler [9]. The EE approach was also
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used for simulations of the dilute phase pneumatic conveying in horizontal pipe [25]. In
that work, the dilute flow was analized, but even in such case only the monodispersed
particles were investigated instead of polidispersed. Another work presents usage of EE
method to simulate the dilute flow of glass particles, in a bend pipe [66].

Another work presents the usage of EE and HEL approach for the erosion detection
and influence. The mixing of approaches was based on assumption of using EE approach
in the subdomains, where the effect of particles on erosion was not that significant. In the
subdomains the most vulnerable to erosion the HEL approach was applied. It is worth
noting that this work only considered the effect of fluid on particles, but not particles on
fluid [88]. The same simulations were performed using only HEL model, and the simulation
times were compared. As the result model connection showed the decrease in time and
computational effort. The another article presents the comparison of HEL and multiphase
particle-in-cell (MP-PIC) technique, also in case of modeling fluidized bed [31]. The HEL
was validated, for the comparison of the results in case of particle collisions in configuration
one to one, and when they were grouped in parcels, for simplification.

The work of [144] presents the combination of of the open source code OpenFOAM [7]
with the PFC3D (Particle Flow Code). It investigates the characteristics of the particles
flow in a pipe. Proposed model serves as valuable benchmark for ex. solving the soil
erosion. Barasso et al. [28] proposed the combination of popoulation balance models
(PBM) with DEM results, using ROM models, built using Artificial Neural Networks
(ANN). Such combination, led to succesfully decrease the simulation time while keeping
the accuracy of DEM model. Interactions of particles in the rotating drums, are subjected
to careful analysis, because, as in the case of fluidized beds, they are characterized by
the multiplicity and complexity of collisions. Here, too, the classical DEM approach is
too time-consuming, so the work of Y. Li et al.[84] presents the use of Support Vector
Machine for Regression (SVR). SVR model predicts the angle of response, as well as
energy of collision. As variables determining the prediction result, the model takes into
account drum size, rotation speed, filling level. The accuracy of the model’s performance
was determined using coefficient of determination, where it was equal to 0.92 for the angle
and 0.86 for the collision energy. The paper also mentions that the model can be used for
other devices, where there is a multiplicity of collisions between particles. The analyze
of the movement of particles of different diameters under vibration is discussed in [24].
Here, instead of using the traditional DEM approach, machine learning models were used
to predict particle relocation. The influence of varying vibration amplitudes frequencies
on the percolation of particles, each with distinct size ratios, were examined concerning
both percolation velocity and radial dispersion.
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Another article utilizes ROCKY-DEM for the rotating drum particle simulations [92].
One-diameter particles got under consideration, whose simulations of mixing in the drum
showed agreement with experimental results. There is potential to extend the simulations
to different diameters. X. Ma et al. [86] took under consideration the motion of a single
particle in a rotating flow field. It is important issue, to understand the exact interaction
and behaviour of a single particle. Simulations were performed in EDEM software, which
is part of ANSYS®Fluent. The results of the simulations were compared with the
experimental results. The work, however, does not deal with inter-particle interactions, a
step that is yet to be taken. It focuses on the behavior of only one particle in a rotating
field is considered. Another proposal is the use of EDEM and LIGGGHTS [78] software
to simulate the charging system of a blast furnace for iron production [136]. The charging
system is designed to deliver the pellets to downstream parts of the system, through a
so-called chute. Simulation results from both approaches are compared with experimental
results. Both showed agreement in the results with the experimental measurements. The
use of LIGGGHTS software significantly reducing calculation time.

Article [41] presents the use of ANN to model CFB flow, focusing on local voidage
fluctuations being the part of a dynamic bed. To gather the data of the variations in
local voidage, for training of ANN, an optical transmittance probe at different axial
and radial locations. By utilizing this model, it became feasible to make forecasts for
both short-term and long-term dynamic features within the circulating fluidized bed. The
proposed approach by M. Nadda et al.[96] describes the use of results obtained from
CFD simulations of fluidized bed behavior, to train ANN to reliably forecast a wide
range of hydrodynamic characteristics within fluidized beds. The accuracy of the model
was determined using the mean squared error (MAE) between the prediction and the
expected value, derived from CFD simulations. Its value is in the range of 1.61- 5.5%.
The proposed approach is similar to the one described in this paper, although it employs
a 2D modeling approach.

1.5. Outline of the thesis

The Ph. D. thesis is divided into 7 main chapters. The dissertation is focused around
the topic of interparticle interactions, as a crucial aspect in the context of fluidization
processes.

The introductory chapter discusses the core aspect of the subject it is fludization
phenomena. The description of the technology itself is included, together with the bubbling
and circulating fluidized bed specifically. Additionally, the particle hydrodynamic is
introduced. This chapter presents valuable terminology and introduces references to other
relevant works, as well as the objectives of the dissertation.
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The mathematical models chapter is devoted to provide mathematical description of
the computer models used for modeling multiphase flows. The primary emphasis lies in
the models employed to simulate granular flow phenomena, as detailed in the paper.

The machine learning and neural networks chapter is dedicated to the machine
learning models used in the work, and a description of neural networks, which are part of
a group of artificial intelligence belonging to the machine learning family. In addition to
a general description of the issue, a mathematical description of the methods used is also
presented.

The experimental test-rig for tracking particle collisions chapter describes experimental
work, numerical model validation. Also it presents development of surrogate model in
terms of ML technique based on the DEM data, as well as the comparison of the simulation
results against the experimental measurements.

The development of simplified collision approach chapter discusses the surrogate model
in terms of machine learning technique based on the DEM data. It covers the stage of
data preparation, with the description of the approach. Also, the model building itself as
well as its implementation to commercial software is described. The comparison of the
simulation results against the experimental measurements are included in the chapter. In
addition, simulations of the fluidization phenomenon in a low-scale boiler are described,
allowing verification of the use of a simplified model to reflect this phenomenon.

The hybrid approach for modeling large scale CFD boiler chapter is devoted for
application of deep neural networks, as a method to support a modeling framework capable
of accurately representing and swiftly simulating the CFB furnace, designed for utilization
as a predictive and prescriptive system.

Finally, the last chapter discussion and conclusions concludes the thesis with summary
of the achievements and recommendations for future research.



2
Mathematical models

Modeling of the granular flows, e.g. fluidization, is one of the most challenging due to
the large number of particles, resulting in a large number of interactions between them.
An additional factor increasing the difficulty, is the size of the devices, in which the
phenomena are modeled. It directly affects the number of particles to be analyzed, as well
as introducing complications in the determination of fluid interactions.

The chapter provides a mathematical description of the available computational
models so that the next chapter can propose a surrogate approach based on combination
of available models. The main goal will be to speed up simulations, while maintaining the
accuracy of the results. These two factors are highly desirable, given the need to test new
technological solutions. The aim of this work is, to propose an alternative, or to make
small improvements to already existing and successfully applied computer methods, by
combining them with machine learning or artificial neural network algorithms.

2.1. Standard Euler-Euler approach

The most popular approach used to model granular flow is the multi fluid Euler-Euler
(EE), which found a lot of practical applications [112, 21]. This model is very stable,
and all his features are well recognized and studied. To describe the transport of the
particles in an isothermal flow, i.e. without mass exchange, in the EE approach, a set of
equations, including the conservation of mass and momentum are used. In this technique,
the gas, liquid and dispersed phases are treated as interpenetrating continua. Therefore,
the dispersed phase, is treated as it was possessing characteristics fluid properties.

The transport equations for each individual component are provided in an instan-
taneous format, excluding source part. Interested readers are referred to [57, 58, 70] for
details, about derivation of the below equations. Starting with mass conservation equation
for the continuous phase

@

@t
("f⇢f ) +r · ("f⇢fuf ) = 0 (2.1)

The mass conservation equation for the dispersed phase

@

@t
("s⇢s) +r · ("s⇢sus) = 0 (2.2)
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The equation of conservation of momentum for the continuous phase

@

@t
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The equation of conservation of momentum for the dispersed phase
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(2.4)
where g is the gravity, the subscripts f and s denote the gaseous and solid phases

respectively, " denotes the phase volume fraction, ⇢ is the density, u defines the velocity
vector, p is the pressure of gaseous phase, and K represents the interphase exchange
coefficients between phases, the subscript q stands for the q-th solid phase, Ns is the total
number of solid phases. The ⌧f is the fluid stress tensor which represents viscous forces.
The fluid stress tensor can be calculated as [3]

⌧f = "fµf
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3
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◆
r · uf Ī (2.5)

where �f is the bulk viscosity of fluid phase, Ī is the unit tensor, µf represents the fluid
dynamic viscosity. In case of an incompressible flow, the term ruf as well as the bulk
viscosity in Eq. 2.5 are equal to zero. To predict field variables, quantifying by the average
volume fraction occupied by each phase, the group of multiphase transport equations are
solved in Reynolds averaged form [47].

To calculate the solid stress tensor, denoted as �s, which represents particles
interactions, it is necessary to determine several closure terms. Such terms are used to
define the granular pressure, solid bulk viscosity and shear viscosities. The solid stress
tensor, is determined as [124]

�s = �psĪ+ "sµs

�
rus +ruT
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3
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◆
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where �s is the bulk viscosity, Ī is the unit tensor, ps is the granular pressure, µs stands
for the solid dynamic viscosity, and us for the average velocity vector of the solid phase
obtained at the particle location. The next step, in modeling granular phase is the
mathematical description of the dynamic and bulk viscosity, as well as the solid pressure.
The dispersed phase modelling, also understood as the momentum exchange occurring
between the solid phase, at different solid volume fractions, determines the flow regime in
the system. If, in the system, the solid volume fraction is low (less than 61 % [58]), the
particle collisions and kinetic transport are significant. Otherwise, when the solid volume
fraction is high, the particles are in contact, thus the collisions number decreases. As
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the effect, the transport is controlled by the friction between particles and the kinetic
transport. The dynamic viscosity of the solid phase, can be expressed as the sum of three
terms

µs = µs,kin + µs,col + µs,fric (2.7)

where µs,col, µs,kin, and µs,fric are the viscosity due to collisions, kinetic transport and
friction, respectively.

The correlations, between the viscosities resulting from kinetic transport [58] and
collisions [124] are applied

µs,kin =
"s⇢sds
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where ess stands for the inelasticity of particle collisions, also defined as the restitution
coefficient, and ⇥ is the granular temperature. The probability of particle collisions g0,ss
can be determined as [102]

g0,ss =
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(2.10)

where "⇤
s

represents the permissible limit of particle packing in the control volume, equals
to 63 % by volume of the solid phase [58]. While, the solid volume fraction exceeds the
defined friction limit value (equal to 0.61 %) "fr

s
, the model for dense regime (friction

regime) is activated. In such case, the term responsible for determination of the collisions,
in Eq. 2.7, aims for zero while taking into account friction µs,fric, defined as

µs,fric =
ps sin�

2
p
I2D

(2.11)

where I2D is the invariant of the stress tensor, � defines the angle of alignment of particles,
ps stands for the granular pressure. The granular pressure, likewise granular viscosity,
occurs as the sum of three terms, representing kinetic transport, collisions and friction.
The relationship for granular pressure, in the case of dilute flows, with a volume fraction
below the friction limit (61%), can be written as

ps = "s⇢s⇥| {z }
ps,kin

+2"2
s
⇢s(1 + ess)g0,ss⇥| {z }

ps,col

+ps,fric (2.12)

where the first term stands for kinetic transport, and the second defines the value of the
pressure, resulting from the collisions. The last term, is accounted for the dense flow,
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where "s, takes value higher than 61 % [58, 85]. In the dense regions, where the solid
volume fraction exceeds the solif volume fraction defined at the friction limit "fr

s
, the

collision term, as for granular viscosity, tends towards zero and the friction modelling
term becomes dominant ps,fric. The term is determied as [38, 123]

ps,fric = 0.1"s
("s � "s,min)

2

("s,max � "s)
5

(2.13)

The bulk viscosity, appearing in Eq. 2.6, describes the resistance of the solid phase to
a change in volume [85]
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The granular temperature cannot be unambiguously measured, as no specific
thermometer is known for such purpose. It can understood as kind of turbulent kinetic
energy or the energy of solid fluctuations, and be described as mean square value of the
random particle velocity fluctuations about the mean flow velocity [60]. A brief description
of characteristics concerning granular temperature, can be found in the research [61].
Granular temperature ⇥, present in the equations describing the granular pressure,
viscosity and drag force represents fluctuations of the velocity of the particles C
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where the granular temperature is determined each solid phase s as
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where �s is a dissipative term representing the rate of energy dissipation within the solid
phase due to particle interactions, ⌧s : rūs is the fluctuating energy due to the forces
between particles (viscous dissipation), r · (k⇥r⇥) represents the diffusion, 'fs is the
exchange term representing the kinetic energy transfer between phases [124], k⇥ is the
conductivity of the granular temperature and ps is the granular pressure. Due to high
instabilities in Eq. (2.16) the simplification was applied by omiiting the convection term.
As the result the differential equations are transformed to algebraic form [131, 124]. The
differential equation for the granular temperature is then simplified to

�rps + ⌧s : rus � �s + 'fs = 0 (2.17)

The energy dissipation from the particle interactions �s is calculated using the formula
proposed by Lun at al. [85]
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where g0,ss is the radial distribution function, d̄s is the average particle size in numerical
cell. If the restitution coefficient ess in Eq. (2.18) attends to unity, the dissipation of kinetic
energy within the solid phase becomes negligible �s ! 0.

One of the key parameters, responsible for the interactions between particles and the
fluid, is the drag exchange coefficient K between phases. The relationship, specified by the
drag coefficient is most frequently obtained experimentally, based on the pressure drop
in fluidized bed or settling tank. In the current work, the model described by was used
[58]. Such model, combines two separate into one: Ergun’s model, describing flow in the
packed bed (approximately where volume fraction is above 20%), and the Wen&Yu model
[137] dedicated for flows, where volume fraction is below 20%. Combinations of Ergun and
Wen&Yu models, are described using Eqs. 2.19 and 2.20 respectively

KErgun = 150
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⇢f"s |us � uf |
ds

(2.19)

KWen&Yu = 0.75CD
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where CD is the drag coefficient defined as

CD =
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"fRe

⇥
1 + 0.15("fRe)
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⇤

(2.21)

Above models, do not take into account the situation, where volume fraction is equal
to 20% [68]. To overcome such discontinuity, often a blending function is applied. The
drag coefficient is defined as [68]

K = �("s)KErgun + (1� �("s))KWen&Yu (2.22)

where �("s) is a blending function written as [146]:

�("s) = 0.5 +
arctan [262, 5("s � 0, 2)]

⇡
(2.23)

If two or more additional diffuse phases are modelled, an additional drag coefficient
between these phases must be calculated. For this purpose, the interphase symmetrical
drag coefficient proposed by Syamlal et al. [124] should be used
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where q stands for an additional dispersed phase, eqs is the coefficient of restitution, Cfric,qs

is the the friction between the q th and s th solid phase particles and g0,qs is the radial
distribution function.

2.2. Hybrid Euler-Lagrange approach

The main bottleneck of the EE technique is a problem with modeling a real particle
size distribution (PSD) of the fluidization material. Most of applications uses only two or
three additional solid phase to represents the real PSD. Even in such configuration, the
number of transport equation needed to be resolved can easily exceed twenty. To resolve
this problem, a Lagrangian technique was introduced [65, 30].

A commonly used alternative to the Euler-Euler is the Hybrid Euler-Lagrange
approach. Such approach is described by few mathematical models. The most frequently
used are the Dense Discrete Phase Model (DDPM) [3, 45] ot the Multiphase Particle in
Cell (MP-PIC) model [23, 108, 122]. The mutual basis of both models, mentioned above,
is the four-way coupling procedure [94] considering the interaction between phases, and
interactions occurring in the dispersed phase. In the HEL technique, collisions are modeled
in the basis of the Kinetic Theory of Granular Flow (KTGF) [69, 46, 58, 85], which takes
into account interactions based on primary interpretation, developed for kinetic molecular
theory of dense gases [38]. In the continuous phase, the influence of particle movement and
the energy exchange between them, are accounted by two additional and the fluid phase,
are included in terms in the conservation equations. The dispersed phase is treated both,
as continuum and as dispersed phase, where particles are tracked in Lagrangian frame
of reference. The particle properties, are interpolated to and from the Eulerian grid. The
interpolation operators [23, 120], transfer data between particle positions and Eulerian
grid. The interpolation method is used to resolve the stresses between particles in the
dispersed phase, which are difficult to calculate for each particle separately. It is presumed,
that the gradient of the stress, occurring in the dispersed phase, can be determined on the
Eulerian grid, and interpolate its value to the discrete particle position [122]. In case of
HEL approach, for simplification of calculations, the motion equation is solved for parcels
(containing multiple particles), instead of individual particles. Such particle parcels have
the same physical properties as density, mass, position, composition, etc. The number of
particles contained in a single parcel is determined from

np =
ṁparcel�t

mp

(2.25)

where �t is the time step in transient calculation, ṁparcel mass flow rate of single parcel
and mp is the mass of individual particle evaluated based on the particle diameter and
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density. The equation 2.26 determines the motion of a particle, resulting from the forces
acting on it [123]

dup

dt
= FD(uf � up) +

g(⇢p � ⇢f )

⇢p
� rp

⇢p
� r · �s

⇢p
(2.26)

where the subscript p denotes the particle data (using this approach, it is possible to
simulate different materials of patricles within separate dispersed phases). �s stands for
the granular stress tensor, which represents particles interactions calculated based on the
KTGF [58, 38, 85] in the Eulerian grid. ⇢p is the particle material density, FD(uf � us)

is the acceleration due to the drag. The term r�s
⇢p

is the velocity and position of particle,
determined based on solid volume fraction in computational cell. �rp/⇢p is the particle
acceleration, resulting from pressure difference at the particle location. Having the location
of a particle, its velocity can be determined by a relationship

dxp

dt
= up (2.27)

where xp is the particle position. Stepping further, the solid volume fraction in certain
cell, where the particle is positioned is calculated as

"s =

PNparcel

i=1
Vp,inp,i

Vc

(2.28)

where Vp and Vc are the volume of parcel and cell respectively. The volumetric share
is calculated and assigned to the analyzed cell, where the gas fraction is determined as
"g = 1�"s. By utilizing the KTGF and having determined the volume ratio between gases
and solids, one can establish the parameters required to compute the stresses, determined
by the formula 2.6.

Utilizing Hybrid Euler-Lagrange approach, similarly as in the Euler-Euler the
equations of mass, momentum and energy conservation are solved. For the first mention,
the equation follows as [45]:
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@t
("f⇢f ) +r · ("f⇢fuf ) = SDDPMm (2.29)

The momentum conservation equation is determined as
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(2.30)

where g is the gravity, the subscripts f and s denote the gaseous and solid phases
respectively, " denotes the phase volume fraction, ⇢ is the density, u defines the velocity
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vector, p is the pressure of gaseous phase, and K represents the interphase exchange
coefficients between phases, the subscript q stands for the q-th solid phase, Ns is the total
number of solid phases. The ⌧f is the fluid stress tensor which represents viscous forces,
SDDPMm denotes the mass exchange, and SDDPMu defines momentum exchange.

2.3. Discrete Element Method

Using above mentioned approaches, a user might encounter stabilization problems,
mass conservation problems and more briefly described in [55, 13]. Different model, offering
possibility to simulate granular flows is Discrete Element Method (DEM). There is no
change in solving the fluid flow, which is solved in Eulerian grid, and the particles are
tracked in the Lagrangian frame of reference (see equations 2.29 and 2.30). In contrary
to HEL approach, it allows collision detection, based on the common space position
of colliding particles and their velocity vectors [128]. However, at the same time, such
approach makes calculations drastically more expensive. Taking into account the change
in the way of collision detection, using the DEM model, the equation of motion of the
particle differs from the 2.26 equation. An additional terms appear, as well as the term
responsible for determining the force resulting from a collision between particles. After
modifications, the particle position is determined as [146]

dup

d⌧
= FD(uf � up) +

g(⇢p � ⇢f )

⇢f
+ Fother + Fcol + Ffric (2.31)

where Ffric denotes the forces occurring between the particles due to friction, which are
influenced by the material properties of the particles, Fother are the additional forces e.g.
rotational force. In case of DEM, two sub-models can be chosen for definition of the
collision forces acting on the interacting particles i.e. soft-sphere and hard-sphere [47].
In case of soft-sphere approach the deformations resulting from collisions are taken into
account. A visualization of such a collision, with its exaggerated effect, is presented on
the Fig. 2.1.

The force resulting from a collision is determined as [146]

Fcol = F1 = �F2 = (K� + �(up,12e12))e12 (2.32)

where K is the spring constant, � is the deformation, � is the damping coefficient,
up,12 defines relative velocity (v2 � v1) between particles, e12 is the unit vector between
particle 1 to 2, calculated as

e12 =
x2 � x1

||x2 � x1||
(2.33)
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Fig. 2.1. Exaggerated moment of collision of two particles, with marked occurring forces

where x1 and x1 are the positions of the particle 1 and 2 respectively. The damping
coefficient, included in the equation 2.32 is determined as

� = �2m12ln⌘

⌧col
(2.34)

where ⌧col stands for the collision time, defined as floss
p

m12
K

and floss is determined fromp
⇡2 + ln2⌘. The restitution coefficient takes value from 0 to 1, and influences the amount

of energy dissipated due to collision, both between particles and particles-wall. For ⌘ equal
to 0, the collision energy is fully dissipated, while for ⌘ equal to 1 the the impact is fully
elastic. The term, so-called ’reduced mass’ is determined as

m12 =
m1m2

m1 +m2

(2.35)

where m1 and m2 is the mass of particle 1 and 2 respectively. Additional force, resulting
from the friction between two colliding bodies is defined as [146]

Ffric = µfricFn (2.36)

where µt stands for friction coefficient, and Fn is the magnitude of the normal to the
surface force.

In case of using non-linear Hertzian sub-model, the collision force due to particle
contact is calculates as

F1 = F2 = KH�
3/2e12 (2.37)

where KH is the physical material property, determined from the respective Young’s
Moduli E1 and E2 of the two colliding particles and their Poisson’s ratios ⌫1 and ⌫2

KH =
4

3

E1E2

E2(1� ⌫2

1
)E1(1� ⌫2

2
)

r
r1r2

r1 + r2
(2.38)
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For more, detailed information and more possible configurations of the discrete model
DEM, the interested readers, are reffered to [129, 128, 143, 47]. When using the DEM
model, it is necessary to use a sufficiently small particle tracking time, which will not
allow a non-naturally large deformation of the particles due to the collision. The exact
methodology for selecting the appropriate value is briefly described in [148]. The final
time step for tracking particle parcel is selected based on relation

t = 0.2 ·min (tRaleigh, tHertz, tCundall) (2.39)

The Raleigh (Eq. 2.40) and Hertz (Eq. 2.41) time equation are calculated as [78]

tRaleigh =
⇡rsphere

0.1631(⌫ + 0.8766)

r
⇢p

E/[2(1 + ⌫)]
(2.40)

tHertz = 2.87


(⇢p(4/3)⇡rsphere3)2

rsphereE2Vmax

�0.2
(2.41)

For the Cundall model, used in the software LS-DYNA DEM [132], the time step is
determined as

tCundall =

s
⇢p(4/3)⇡rsphere2)

E

[3(1+⌫)]
NORMK

(2.42)

where NORMK is a stiffness penalty parameter, typically ranging between 0.1 and 0.001.
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Machine learning and neural networks

Both Machine Learning and Neural Network Models branch into two subtypes, ie.
supervised and unsupervised learning. In the first case, such models require human to
prepare the data accordingly beforehand. Such data are subjected to careful analysis.
Often, especially in the case of classification problems, pre-labeling of data is required. In
case of supervised learning, for the inputs a corresponding outputs must be assigned. Such
approach is widely used in various applications, such as image recognition [133], natural
language processing [83], spam detection [50], medical diagnosis [141, 118, 37], and many
other tasks where labeled data is available and predictions need to be made based on that
data. Widely used models for such purpose are ex. Linear Regression, Decision Trees,
Neural Networks, Random Forests, Ensembled Methods. In such work, last ones will be
described more briefly in next sections. On the other hand, unsupervised learning, does
not require humans interference. The algorithms, explores the data on its own, seeking for
patterns, structures within the data without any predefined guidance or target variable.
Due to an algorithm analyzing the data, it is possible to find hidden connections between
the data, not necessarily observable by humans. As only supervised models were utilized
in this study, no detailed explanation of any model from the second category is provided.
Depending on the problem to be solved, for both of the above groups, both of these groups
are categorized into either regression or classification. In case of classification problem, the
target values are usually integers, referring to a class. In the case of a single-class problem,
where the outputs are denoted as, for example, true/false, we are dealing with denotations
after preprocessing, most often the pair of 0 and 1. However, also occurring cases are multi-
class problems, where there are more possibilities than true/false, therefore, the target
integers are more diversified. For regression problems, the output or the target variable is
a continuous value, most frequently a float.

3.1. Decision trees

Decision Trees (DTs) are a part of a supervised learning method groups, used for both
classification and regression problems. As for all machine learning models, the goal is
to predict the target variable, based on some inputs, by learning simple decision rules.
Speaking further about decision trees, it is necessary to introduce some concepts related
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to them, concerning the processes occurring during learning, and the names of the various
elements of the tree.

• Root Node - represents the entire population or sample and this further gets divided
into two or more homogeneous sets,

• Splitting - a process of dividing a node into two or more sub-nodes,
• Decision Node - a split from previous node,
• Leaf / Terminal Node - the node without any further splits,
• Pruning - removal of sub-nodes of a decision node, is called pruning. In different

words it is an opposite process of splitting,
• Branch / Sub-Tree - a subsection of the entire tree,
• Parent and Child Node - a node, divided into sub-nodes is called a parent node of

sub-nodes whereas sub-nodes are the child of a parent node.

In reference to the name of the method itself, decision trees (both classification and
regression) are built based on a tree structure. The dataset brakes down into smaller
and smaller subsets, which in turn leads to an increase in the size of the tree itself, so
the development proceeds.The final result is a tree with decision nodes and leaf nodes.
A diagram of the resulting tree is presented in Fig. 3.1, along with a description of the
various elements.

Fig. 3.1. Scheme of simple decision tree, with marked main elements, as well as highlited branch,
parent and child nodes [72]

In general there are two types of decision trees with the categorical and continuous
output. The principle of operation is similar, but the difference lies in determining the
division of the data into smaller groups at the time of distribution to subsequent decision
nodes.
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3.1.1. Gini Impiurity

Proposed by [35], the gini index is the measure of non-homogenity. It is very popular,
and easiest method, used for classification trees, for splitting the nodes. It is calculated
by subtracting the sum of the squared probabilities of each class from one, the formula is
as follows

GiniIndex = 1�
nX

i=1

p2
i

(3.1)

where pi is the probability of the class i. In general, in case of a pure node, the Gini
Index would be equal to 0.

3.1.2. Enthropy

Entropy [117] is a measure of the orderliness of a system, or information. The higher
its value, the harder it is to find relationships between the data present. The formula for
an enthropy is

Entrophy = �
nX

i=1

pilog2pi (3.2)

To determine the root node, the entrophy is calculated for each variable and its
potential splits. Having this value, it is possible to determine a metric to measure the
reduction of a disorder in the target class. For such purpose the Information Gain is
calculated, using the formula:

InformationGain = Enthropyparent � Enthropychildren (3.3)

where index parent reflects to the parent node, while children represents the average
entropy of the child nodes.

3.1.3. Reduction in variance

Reduction in variance [110] is used to solve problems with, so called, continuous target.
It is also used to calculate the homogeneity of the node. To select the best split, the formula
for variance is applied

V ariance =

P
(y � µ)

n
(3.4)
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where µ is the mean value of the sample group. The higher the variance value, the greater
the purity of the node.

3.1.4. Pruning

When building decision trees, attention should be paid to their size. In order to prevent
trees from being too big, i.e. having too many nodes and leaves, a method called pruning
is used. In addition, preventing the tree from growing too large, has a direct impact on
its accuracy. In such case, it is very likely that overfitting will occur, i.e. the tree will be
learned so well on the training data set, that it will return a wrong response on unseen
new data. It is therefore important, that the tree generalizes the data well enough, to
return appropriate predictions even for completely new data. For this purpose, a method
called pruning is applied, which removes redundant subtree and useless split, and replace
it with a leaf node. In general, pruning itself, divides into two types: pre- and post-.

Another word for pre-pruning is the early stopping rule. It is applied at the subtree
construction stage, affecting its parameters such as the maximum depth or number of
leafs in particular node. Another possibility is to determine the cessation of tree growth,
based on the measures mentioned above. If the result does not improve, or the desired
value is reached, the tree stops growing. With this approach, however, there is a risk that
the tree will stop growing prematurely.

In contrary, post-pruning, allows the tree to fully grow without any restrictions. Just
after the whole process, the number of branches and nodes are decreased, which prevents
model from overfitting. The process starts with the bottom decision nodes, and based
on accuracy measures decides if it might be replaced with a leaf node or be completely
removed.

3.1.5. Model Ensembles

In the previous chapter, the concept of a single decision tree, or in other words a single
predictive model, was introduced. For not very complex data, this approach can work well
or very well. Nevertheless, there are situations where it is insufficient and it is important
to increase the accuracy of the results. Therefore, it is possible to combine individual
models into groups. Such connection is called model ensembles. The predictions of the
single models are then aggregating, and results in final prediction. The main assumption
is that each separate model performs a separate prediction, independently of the others.
With many unrelated models, an bucket might be highly accurate. In principle, there are
two characteristics of team building. The first creates models based on the same data,



Machine learning and neural networks 37

but in a modified version or combination. The second, on the other hand, makes a final
prediction based on the predictions of the set of models included in the ensemble. The
accuracy of the models is determined by appropriate metrics, depending on whether the
problem being solved is classification or regression.

Bootsrtap Aggregating

A bootsrtap aggregating (also known as bagging), introduced by J. Breiman in
1996 [36]. The basic principle of its working is to present the final result, based on
aggregating the predictions of groups of models in ensebmle. Various voting methods
are used depending on the prediction objective, which could be either classification or
regression. In the case of classification, measures of central tendency like mean or median
come into play. When using bagging, each tree is trained on random sample. Random
sample is some smaller part of data from the whole data set. In case of this method,
each smaller group is called bootstrap sample, an approximation for the actual data.
The individual samples must accurately represent the inherent complexity present in the
actual dataset. Each spread is used then for building separate decision trees in the random
forests. As the final result the mean value of predictions of all bootstraps is taken in case
of regression problem, and in case of classification problem the final prediction is made
based on voting. A scheme of bagging is presented at Figure 3.2.

Fig. 3.2. Bootstrap aggregation scheme [72]
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The final formula used to determine the final outcome of the model

f(x) =
1

n

nX

i=1

fn(x) (3.5)

where n stands for the number of models (also known as weak learners), and the expression
fn(x) is the result from each weak learner. In here, it is obligatory to explain what a weak
learner actually is. In different words, weak learners are machine learning models (Random
Forests, Decision Trees, etc.) but they are good on predicting only the trained data. They
do not generalize to predict accurately for all required cases. Each weak learner is built
based on some sample of data. The set of weak learners, leads to create the strong learner.
Strong learner is a model, that is a result of set of weak learners but with the difference,
that it generalizes well to a data, and can make a accurate predictions for the whole set.
The schematic working principle of the weak learners and the strong learner, which is the
effect of the weaker ones, is presented in Figure 3.3.

Fig. 3.3. Weak learners and strong learner visualization scheme [26]

Boosting

Boosting works similarly to bagging, on the principle of creating weak learners in order
to obtain one final strong learner. The difference is in the construction, following models
sequentially. Starting with building the first model, using all the data. The next step is to
build a model that will be an improvement of the previous one, that is, using information
about wrongly predicted samples, to improve overall performance of ensembles. The values
of the weights are modified. In case of correct predictions they are decreased, and in case
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of incorrect ones increased, so the more attention is paid to improve the predictions of
previously missed ones. In such way the next model will predict the previously wrong
samples - correctly. Each weak learner contributes to the final prediction based on its
individual performance and its associated weight. The overall scheme for the construction
of successive weak learners, is shown in Figure 3.4.

Fig. 3.4. Boosting scheme [72]

Another difference, in comparison to bagging, is the final prediction determination.
While building multiple weak learners, the model predictions are assigned specific weights,
and the ultimate prediction is obtained by taking their weighted average. According to
the formula 3.6, the bagging method relies on a simple average of all model predictions
without any weight. Therefore, the equation to determine the prediction result, using
boosting method

f(x) =

P
n

i=1
wifi(x)P
wi

(3.6)

where wi is the weight of the i-th weak learner. The weights are updated during the
boosting process, to put mode emphasis to the more accurate models.

3.2. Multilayer Perceptron

The foundation of any neural network is a single neuron, also known as a perceptron.
Before introducing deep networks, and the process of teaching them, it is necessary to
discuss the principle of operation of a single perceptron. For such purpose, the simpliest
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version is introduced, to provide solid background. The simplest neural network, is the
so-called perceptron. Its diagram is shown in Fig.3.5. It consists of one input layer and one
output node. The input layer, is formed by a matrix X={x1, x2, ..., xm}, where m is the
number of features, for a given case. For such simple architecture, a output is calculated
directly from the sum of the product of weights and corresponding inputs plus some bias.
Weights determines the influence of input feature to the output. Bias, is a constant, always
equal to 1. They are not influenced by the results of previous layer, but they have their
own output weights. This parameter guarantees, that even if all input values are equal to
0, a signal will be transmitted to activate the neuron.

Fig. 3.5. Single layer perceptron scheme [17]

The above diagram illustrating the operation of a single neuron is described by the
equation [17]

ŷ = g(w0 +
mX

j=1

xjwj) (3.7)

where ŷ is the output, g corresponds to activation function, w0 is the bias, xi and
wi are the inputs and their weights. In neural networks, a very important element is
the activation function, through which non-linearity is added. It allows, to solve much
more complex problems. Without this function, a neural network would work as a
simple linear regression. And with it, neural networks are capable of finding nonlinear
relationships between data. The activation functions used in model development are
presented below. The choice of a particular function depends on the problem being solved
and affects the results obtained. Graphs of some of the activation functions, namely
sigmoid, tanh, RELu are presented below on Figure 3.6. The sigmoid activation function is
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very popular, since its output lays between 0 and 1, and such feature is specially required
in probabilistic problems where it lays between 0 and 1, as well. The ReLU activation
function, characterized by picewise linearity, is especially efficient to calculate, both basic
version and derivative.

Fig. 3.6. Examples of activation functions: RELu, tanh, sigmoid [73]

Going one step further and connecting neurons together, it is possible to create a multi-
output perceptron. The principle of operation is identical to that of a single one. Each
output is connected directly to each input. The values of the outputs, are calculated as the
sum of multiplied weights and output values, and the total is the result of multiplication
with the activation function. For simplifications, the scheme was modified. The inputs
remained unchanged, but as the output node a dot product of weights and input appears,
and as the output of a node, we have an activation function in respect to dot product.
Introducing more outputs, provides with formulas for dot product, which multiplied by
activation function determines the required result

Fig. 3.7. The scheme of multioutput perceptron [17]
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zi = w0,i +
mX

j=1

xjwj,i (3.8)

Individual neurons, can be combined with each other and used to predict not just one
value, but several. The operation pattern of a multilayer perceptron will, in principle, not
differ from that of a single perceptron. Only its complexity will be increased. Each input
value will have a potential impact on the output. For the purpose of visualization, and
thus better understanding of the derived formulas, the above illustration was modified.

Fig. 3.8. Deep Neural Network general scheme [17]

zk,i = w0,i
k +

k�1X

j=1

g(zk�1,j)wj,i
k (3.9)

where k is the layer number. Desired outputs, are the dot products of the last layer of the
neural network multiplied by an activation function according to the fomula 3.7.

3.2.1. Gradient Descent

Gradient descent is an optimization algorithm used for training machine learning and
neural networks. As the goal of all ML or ANN models, such optimization, influences
directly final accuracy of the model. It’s main objective is to iteratively adjust the weights
and biases to decrease the expected error. Before digging into GD, there is necessary to
introduce an important terms like learning rate. In simple words are the steps made to
reach the minimum of the cost function. The cost function, also known as a loss function,
is a difference between prediction and the true value. It determined based on training
data. There are two types of them:
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• local minimum - the minimum parameter values within a specified range of the cost
function

• global minimum - the smallest parameter value within the entire cost function

For visualization purposes, Figure 3.9A, presents the influence of learning rate step
on the seeking the function minimum. The visualization presents small and big learning
rate values, so two extremes. The idea is to find the most optimal one, to perfectly fit
the functions minimum. In case of too small value, the calculation process might not
be efficient, since more iterations have to be done. Also, the required point might not
be reached before the end of calculations. However, with the bigger learning rate, there
is increased chance to overshoot the desired minimum of the cost function. It is also
important to adjust the learning rate, so it will not stuck in local minimum and will be
able to get as close as possible to the global minimum. Figure 3.9B presents both local
and global minima and maxima. It’s worth to mention here, that when referring to local
scenarios, it pertains to the segment of the function within the specified interval.

Fig. 3.9. A: Visualization of small and big learning rate. B: Visualization of a cost function,
with marked global minimum and maximum, as well as local ones in specified range

Finally, a general formula, determining the change of the gradient with the change of
the position along the cost function

w  w � ⌘
dJ

dw
(3.10)

where J defines the cost function, w is the weight, subscripts new and old denotes weights
after and before the update respectively, and ⌘ is the learning rate.
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3.2.2. Backpropagation

Backpropagation is an algorithm used for training of neural network. Backpropagation
carries the error backward and computes the gradient for every weight. This gradient is
subsequently used within the gradient descent process, which lets to update weights in
the process of learning. In case of the final layer (the output layer), determining the error
is relatively easy, since the final output is known. In case of hidden layers, the task is
not that trivial, since the target values in each neuron in hidden layers are not directly
known. In process of training neural networks, with gradient descent, the gradient of the
error function in respect to weights and biases has to be calculated. Each iteration of
gradient descent, changes their values. A back propagation algorithm for a multilayer
neural network will be presented below. For introductory purposes, the chosen error
function is the mean square error:

E(X,w) =
1

2N

NX

i=1

(ŷi � yi)
2 (3.11)

where yi is the true value and ŷi is the predicted value.
A backpropagation algorithm is based on chain rule, and product rule from differential

calculus. The effectiveness of applying these rules heavily relies on the choice of activation
functions. It it crucial for the selected activation functions to be differentiable. In the
deriving of equations, a bias will be taken into account, and as in previous sections it will
be denotes as wk

0i
with fixed output ok�1

0
= 1 in layer k�1. According to such assumption

wk

0i
= bk

i
(3.12)

Going forward, we reproduce equation 3.9 in form

zk
i
= bk

i
+

nkX

j

wk

ji
ok
j
� 1 (3.13)

The main goal, for using backpropagation is to minimize the cost function error with
respect to the network weights, by calculating the derivative. The error function can be
separated into sum over individual error terms for each pairs of inputs corresponding to
outputs. The derivative is calculated with respect to each pair. At the end, the sum of
derivatives of each functions is determined

@E(X,w)

@wk

ij

=
1

N

NX

i=1

@

@wk

ij

✓
1

2
(ŷi � yi)

2

◆
=

1

N

NX

i=1

@E

@wk

ji

(3.14)

The derivation of the backpropagation algorithm starts with applying the chain rule
to the error function partial derivative
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@E

@wk

ji

=
@E

@zk
j

@zk
j

@wk

ji

(3.15)

where zk
j

is the formula, before passing it through activation function. The first term, of
the above equation can be also denoted as

�k
j
⌘ @E

@zk
j

(3.16)

The second term from the equation 3.14 is determined as

@zk
j

@wk

ji

=
@

@wk

ij

 
nk�1X

l=0

wk

lj
ok�1

l

!
= ok�1

i
(3.17)

According to the above, the derivative of the error function to respect to a weight is

@E

@
wk

ji
= �k

j
ok
i
‘ (3.18)

The partial derivative is the of a weight is a product of the error term deltak
j

at node j in
layer k and the output ok�1

i
.

Moving towards the output layer, applying the partial derivative, and applying the
chain rule

�m
1
= (g0(z

m

1
)� y)g

0

0
(zm

1
) = (ŷ � y)g

0

0
(zm

1
) (3.19)

As the final, the partial derivative of the error function E withh respect to a weight
in the final layer wm

i1
is determined as

@E

@wm

i1

= �m
1
om�1

i
= (ŷ � y)g

0

0
(zm

1
)om�1

i
(3.20)

For hidden layers, the partial derivative of the error function E with respect to a weight
in the final layer wk

ij
, with an assumption that 1  k < m is formulated as

@E

@wk

ij

= �k
j
ok�1

i
= g

0
(zk

j
)ok�1

i

nk+1X

l=1

wk+1

jl
�k+1

l
(3.21)

To conclude the backpropagation involves computing the gradients of the cost function
concerning the weights. It is employed to enhance the outcomes of neural networks. It is
achieved by propagating the error in a reverse direction, determining the gradient of the
cost function for each weight. These gradients are then used in the gradient descent process
to refine the neural network’s performance.
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3.3. Metrics

One of the most important methods to determine whether a built model is reasonably
accurate, is to select a specific metric. This is a key element, which is most often, one
of the criteria for considering that a given prediction is accurate enough. The choice of
the appropriate metric, is dependent on the problem being solved, and should always be
selected individually. Nevertheless, it happens that several variants are checked to make
sure that the results obtained are reliable. The choice of metrics also depends on the
type of problem being solved. More specifically, whether it is a regression or classification
problem. In this work, problems in the first mentioned group are solved, so the metrics
corresponding to it, will receive more attention.

3.3.1. Mean Absolute Error

The mean absolute error is the average of the difference between true values and their
predictions, defined as [106]

MAE =

P
n

i=1
|yi � ŷi|
n

(3.22)

where y is the true value, ŷ is the prediction, n determines the number of values. MAE
metrics is easy to be understood, as it describes the mean value of the error (under or
over estimation) of the prediction.

3.3.2. Mean Squared Error

Mean squared error [71] is the average squared distance between the observed and
predicted values. Because of the square, the interpretation of the metric is less intuitive.
Also, it pelizes the single bigger over predictions. The MSE formula is determined by

MSE =
1

n

nX

i=1

(yi � ŷi)
2 (3.23)

Another interpretation of it, is the root of the resulting value referred to as RMSE (Root
Mean Squared Error)

RMSE =

vuut 1

n

nX

i=1

(yi � ŷi)2 (3.24)



Machine learning and neural networks 47

3.3.3. Coefficient of determination

In general the coefficient of determination, is in statistics, the portion of variation in
the dependent variable that is predictable due to independent variables. To determine its
value, first the mean value of observations has to be determined

ȳ =
1

n

nX

i=1

yi (3.25)

where ȳ denotes the mean of true values. Residual Sum of Squares (RSS) is a statistical
method, that might be used to determine the level of discrepancy in a dataset not predicted
by a regression model. It measures the variance in the observed data, compared to the
predicted values. RSS indicates, if the regression model fits the real dataset, and how well.

RSS =
nX

i=1

(yi � ŷi) (3.26)

The sum of squares total (SST), is the squared differences between the observed
dependent variable and its mean. In simple means it is the dispersion of the observed
variables around the mean. The formula is determined as follows

SST =
nX

i=1

(yi � ȳ)2 (3.27)

Combining the above equations leads to the final equation for R squared, which
indicates the correlation between the true and predicted values

R2 = 1� RSS

SST
(3.28)



4
Experimental test-rig for tracking particle collisions

4.1. Experimental test-rig

Whenever performing numerical simulations, it is crucial to compare the outcomes with
real-world measurements. It ensures that the calculations accurately represent reality, or
how far they deviate from it. They additionally provide the opportunity to fine-tune the
models to achieve results, that closely resemble reality. To validate the novel HELSCM
approach, an experimental setup was established to gather measurements, which were
subsequently incorporated into the simulations. It enables a comprehensive assessment
and comparison of the obtained results.

The experimental test rig used for measurements, is located at the Silesian University
of Technology in the Department of Thermal Engineering laboratory. Figure 4.1A, with
key components being identified and described for further clarity. It was designed and
produced, based on the numerical model discussed in [104], which was used to test the
effect of particle collisions, depending on the coefficients of the collision model. As these
were only numerical calculations, several corrections were made to the real device. The
construction was 3D-printed, which ensured a high degree of accuracy for the carefully
designed gas flow paths. The transparent core, i.e. the main particle collision region, was
made from the transparent polycarbonate.

The airflow was controlled by three precise Bronkhorst HIGH-TECH B.V. [4] mass
flow controllers. The two smaller units (BH1 and BH2), operating in the range of
1.2�60.0 ln/min (F-201AV-50K-VBD-00-V), were used to control the flow rate in the
side injection tubes (namely left and right tubes), marked at Fig 4.1B. The air flow
in the main tube, was controlled by the largest unit (BH3), operating in the range of
7.2�360.0 ln/min (F-203AV-M50-VBD-00-V) (Fig. 4.1B). The flow rate is determined
using the output unit on the controller, expressed in liters per cubic meter ( l

m3 ) under
standard conditions (ln/min determined at Tn = 273.15 K and pn = 101325 Pa).

To record the measurement, a high-speed camera was situated in front of the test-
rig. It was set up to record the particle flow in the core, where two streams of particles
collide. The high speed camera VEO 710L [8] was equipped with a NIKKOR 200 mm
F/4.0 MACRO lens. Particles were tracked with the resolution of 1280x720 and the frame
rate of recorded images was set to 8,300 frames per second (fps). Such camera set up,
allowed to capture the collision region at one image (without necessity to divide it in
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two), Such solution, allowed to avoid the inaccuracies associated with the final merging of
images, which was earlier problematic and discussed in paper [139]. To ensure sufficient
illumination for the camera, a back-light (LED Phlox HSC Phantom 10 x 10 cm) was
used with a luminance of �130,000 cd/m2, uniformity of � 95%, and light temperature of
5,700 K. In addition, a sample image, taken during the measurements, was superimposed
on the test-rig scheme (4.1). The sections, where the time-averaged particle velocities were
determined, are also marked on it. The entire procedure will be described in Section 4.2.

Fig. 4.1. A: The configuration and description of experimental test rig. B: Schematic overview
od the test-rig, with marked key elements, and the superimposed image from the
high-speed camera measurement recording

One of the key components of the test-rig are the particle containers, which are refilled
before the start of each measurement. It is the particles from the containers, that are
analyzed for collisions. The particle containers are ending right and left side inlets. Each
one, easily stores 15 g of material, which allows for approx. 3 s of testing. The air, to
the side tubes is delivered through five separate canals. One of them, is attached to the
particle holder itself, to ensure particle release, by creating excess pressure. The proportion
of introduced air is 10% of the total supplied to one of the sides.

The measurement procedure was automated and controlled using Siemens SIMATIC
S7�1200. The whole process started with the operator filling the holders, and turning on
the air flow. Next, few steps in sequence were automated:

– the core flow continued for 2�5 s, until it was stabilized,
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– the side inlets flow continued for 5�10 s, until it was stabilized,
– when each flow was stabilized, the plate blocking the particles from spilling out too

early was moved, thus allowing the particles to fall out of the container,
– the image recording started.

Once, the containers were completely emptied, the operator turned off the airflow. Each
of these steps was performed for each of the nine measurements taken.

The selected test material was gray polyethylene microsphere particles [6], with the
density equal to 1000 kg/m3. Such type of material is characterized by an almost perfectly
spherical shape. Table 4.1 contains the particle size data provided by the manufacturer.
The initial conditions for the cases under investigation were set as follows: a flow rate of
38.4 ln/min for the side tubes and 240.0 ln/min for the core tube.

Table 4.1
Particle size information of the polyethylene microspheres

300�355 425�500
Largest diameter, µm 354 520
Smallest diameter, µm 300 429
Mean diameter, µm 315 475

Median diameter, µm 314 473
Standard deviation, µm 8.2 22

Nine measurements were carried out for each diameter range, shown in the table 4.1.
The measurements were carried out several times, to ensure repeatability. Despite the
differences in diameter distribution, a common one was the velocity of the provided air.
This unit is the one used by the Bronkhorst devices in the test setup. In the subsequent
sections, these aforementioned values were converted to correspond to a gas velocity of
20 m/s, for main and side inlets.
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4.2. Image analysis

Granular flows, where the number of interactions between particles is really high, are
very demanding in terms of their tracking. For this purpose, a dedicated application was
created using the National Instruments LabVIEW software. In this case, the application,
allows the particle velocity to be analyzed efficiently and accurately, so it can be compared
with the results of numerical simulations in a subsequent step. The particle velocities are
determined within 10 frames (whose positions are well defined, and coincide both in the
experiment and the numerical calculations). The development of a program determining
the particle velocity was necessary, to analyze the large number of images from the
measurements. and to determine the average speed of the particles, in the sections of
interest. Additionally, the program allows to follow the same particle in successive steps.

The program converts grayscale image into a binary image with a defined threshold,
which can slightly differ for simulated and experimental data. The threshold, defined at
the beginning of the conversion procedure, remains constant for all analyzed cases. To
check the influence of the used threshold range, two configurations of its valued were
investigated. In the first step, two values (minimum and maximum) were chosen, when
the particles were seen without iterating with the background. The second step, was to
take the threshold value, from the middle of the set range. Checking for the effect of used
threshold, on changing camera position or backlight system, showed that the threshold
value range was negligible. However, it should be borne in mind, that every time the
settings or positions of the equipment are changed, it is necessary to carry out a check.
For the measurements carried out, in the current work, the settings and location of the
equipment were not changed. The position of detected particles were determined using
binary image. Searching for particles in an image is expensive, so in order to reduce
computation time and cost, the area was split so the search was restricted to a specific
frame. These, detected during one of the analyses, in the relevant sections and smaller
boxes, are highlighted in green in Figure 4.2. To ensure the clarity of the visualization, only
three sections where the average velocities were highlighted on the picture. For further
calculations, and result presentations ten were used.

The working principle of the program is illustrated in Figure 4.3. After the position
of the particle at a given time step is determined, the tracking procedure is activated.
The process begins with the determination of maximum and minimum distance, in
length (xmax) and height (ymax), that the analyzed particle can shift. Determining those
two values, consisted of manually observing the moving particles in successive images,
in defined frames. The vertical edge of first tracking box, a blue box, as marked on
Figure 4.3), starts in the middle of a particle.
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Fig. 4.2. Particles detected from the binary image highlighted in green with the analysis boxes
used for particle tracking

In the next step, in next tracking box (a red box) again the same particle is detected.
Determining, and being sure, whether it is exactly the same particle being analyzed can be
debated. There is no one hundred per cent certainty that in a particular box, there is not
a particle that travelled a much greater distance than assumed, or whether a particular
particle is exactly the one it was assumed. As a precaution against such a situation, a
maximum value was defined for the vertical and horizontal distance a particle can travel.
This is an issue that can be discussed and questioned. There are limitations, which were
made on the basis of manual observations of the particles. However, without these, it
would be impossible to analyze, several thousand consecutive, images to determine the
average velocity of the particles concerned. Another possible complication is, when more
than one particle appears in the box under investigation. It might increase the likelihood
of particles being mistaken for each other. The applied solution is, to count the number
of particles in each frame. If their number increased of more than 10%, the size of the
investigated frame is adjusted. In addition, the minimum path taken by the particles was
determined, during manual analysis, of several images. If one of the particles travels less
than minimal distance, it is eliminated from the analysis.

To determine the velocity profiles, each of the ten sections, was divided into a certain
number of boxes (see Fig. 4.2) at its height. The described tracking procedure, determines
the average particle velocity in particular box, and stores it in memory. Despite conducting
calculations in stabilized flow, particle velocities fluctuate over time a bit. To minimize
this effect, the time-averaged (TA) was used, to determine the time-averaged velocity in
particular boxes. Such velocity was determined as

�time,i+1 = �time,i + �i ·�⌧iuTA =
�time,i � �time,i�n

⌧i � ⌧i�n

(4.1)
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where � denotes the averaging variable — in this case, it is velocity — and uTA denotes
the time-averaged velocity. These equations allow the time-averaging of any variable
during simulation or post-processing. To verify whether the flow has stabilized, the average
particle velocity fluctuations were monitored over the given time steps.

Fig. 4.3. The procedure for determining the position of a given particle and its displacement
to determine the average velocity

4.3. Uncertainty analysis of the experimental data

When carrying out measurements, it is very important, to determine the uncertainty,
resulting from the uncertainty of the equipment used. It is also important, when such
results are compared with the results of numerical simulations. Without such data, it
is hard to fit numerical model into exactly the same results, as those coming from an
experiment. With a specified uncertainty, it is possible to determine, the error in the
measurement results. Such uncertainty is applied to the measurement points as error
bars. The superimposed results, from the numerical calculations, should be within the
specified range.
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One of the devices, causing some uncertainty is the high-speed digital camera. For the
used device, the factors affecting uncertainty are pixel size (ux = 0.02 mm) and image
acquisition rate, calculated as

u⌧ =
�uTA

�⌧TA

·�⌧ (4.2)

where �uTA is the maximal velocity change, during the period of time-averaging (TA)
calculated for �⌧TA equal to 0.0321 s, corresponding to 450 frames, �⌧ = 7.14286E�05 s
is the time step between subsequent frames. The uncertainties due to the measured
velocity depend on the accuracy of the mass flow controllers (FM) uFM , equal to �FM ±
0.5%. The uncertainty uFM can be calculated as

uu,min =
mmin

Atube · ⇢air
where mmin =

Vn,minpMair

RT

uu,max =
mmax

Atube · ⇢air
where mmax =

Vn,maxpMair

RT

uFM = uu,max � uu,min

(4.3)

where p is the pressure equal to 101.325 kPa; T is the temperature of gases within the
rig ⇠298 K, Mair is the atomic weight of air 28.84 kg/kmol, R is the universal gas constant
(8314 J/(kmol·K)), ⇢air is the air density under real conditions, and Vn,min and Vn,max are
the volumetric flow rates under normal conditions (pn = 101325 Pa, Tn = 273.15 K).
The methodology was applied to the mass flow controllers attached to the tube injectors
uFM,tube and core section uFM,core. The total uncertainty of the measured gas velocity uu

is the result of the law of error propagation, which is defined as [81]
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where subscript x, ⌧ , and l refer to pixel location, time, and length (in the x direction:
xdist) of the box used for the velocity calculation. The covariance cov maintains the
correlation between time and space. For the considered case, those quantities are not
correlated, so the covariance disappears and the equation simplifies to
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For two analyzed cases, the final error value for measurements of colliding particles
with mean diameter equal to 315 µm was 0.808 m

s
, and for mean particle diameter equal

to 475 µm error was 0.756 m

s
. The Table 4.2 presents the separate errors, which, when

combined, yield the final measurement uncertainty for both scenarios, i.e. for two different
particle sizes.

Table 4.2
Calculated uncertainties for investigated particles group, based on the law of

error propagation
Mean particle
diameter, µm

@u

@x
, 1

s

@u

@⌧
, m

s2
@u

@l
, 1

s
u⌧ , s uFM,tube, m

s
uFM,core, m

s
uu, m

s

315 4.679 13.067 6598.8 9.33E-04 0.199 0.434 0.808
475 3.565 9.955 4907.2 7.11E-04 0.199 0.434 0.756
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Development of simplified collision approach

Models such as the HEL or DEM have their advantages and disadvantages. In the
case of the former, the precision depends on the determined value of granular pressure.
Its determination often causes instabilities during simulation. Despite, above mentioned
point, an undeniable asset is the calculation time and the ability to simulate flows where
the particle diameter varies. It is an option used on a daily basis, to simulate flows in large
industrial facilities. The second approach considered, is the DEM model, which, despite
its accuracy in collision detection, is not widely used. This solution is time-consuming
and computationally demanding, making it an option only for simulating flows with small
numbers of particles, in geometries of small size. Knowing the capabilities and limitations
of both models, as well as observing the evolving world of machine learning and artificial
intelligence [62, 63, 74], the idea of using ML techniques to combine the advantages
of the approaches, and create an alternative approach was born. The main idea is to
create a simplified model (SM), using ML algorithms, and then apply the model to an
existing HEL approach, where the term Fcoll in equation (2.26) will be replaced. With this
combination, the problem of calculation stability, caused by the need to determine the
granular temperature will be eliminated. In addition, thanks to the speed of prediction of
new collision forces, the time of the simulations themselves will be significantly reduced.
The new approach is called Hybrid Euler-Lagrange Surrogate Collision Model (HELSCM).

5.1. Data set generation procedure

The key linking the two CFD models, i.e. HEL and DEM, is the machine learning
algorithm. Before building it itself, then important step is to collect a large amount of
data so specific inputs correspond to specific outputs. The validated DEM model [140]
was used for this purpose. The process of collecting the data is visualized in Figure 5.1.
The simulations took place in a domain, where only two particles collided at a time. At
the start of the simulation, particle information, the velocity vector components (u, v,
w) were saved to a file. After a certain number of time steps, the corresponding values of
the velocity vector components, were saved after the collision. In the presented solution,
additionally the model stores information about particles, i.e. diameter, density. To not
introduce too many complexities in single step expected of velocity components remaining
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data is only stored for future application. The data generation process is case-specific.
Therefore, it is built for specific considered conditions and cases, i.e. in this situation, the
model is built for combinations, as close as possible to those, occurring during carried
out experiment. A low-scale DEM model was used for data generation, to model particle
interactions, implemented in ANSYS®Fluent, the Cundall and Stack [48] approach was
used. Choosing the least complex approach, when carrying out simulations (i.e. small
domain, only two particles analyzed), reduces the likelihood of error, and gives much
more control over the process.

Before the data generation, the velocity range (Vmag), at which the particles can move
were determined. With regard to the experiment carried out and the results obtained, the
minimum value is 0 m/s, and the maximum is equal to 20 m/s (velocity calculated from
gaseous phase). The set of equations used for the calculation of the velocity components
vector for the defined angles ' and ✓ based on the velocity magnitude of the particle is
defined as

uA,B = Vmag · sin✓ · cos'
vA,B = Vmag · sin✓ · sin'

wA,B = Vmag · cos✓
(5.1)

where ' is the angle defined from the OX axis, and ✓ is the angle defined from the
OZ axis, as illustrated in Figure 5.2A. Figure 5.2B presents the distribution of particle
velocity configurations, after determining the components of the particle velocity vectors.
Each particle directs to the origin of the coordinate system. With this assumption, it is
certain that the particles are moving in the same direction, and will therefore collide. For
clarity of the diagram, the velocity vectors and the directions of the particles were not
marked.

Fig. 5.1. Configuration of the low-level collision model used for collecting data set for ML model
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Fig. 5.2. A: Visualization of the methodology used for the calculation of the velocity compo-
nents based on spatial particle location and its velocity magnitude, B: distribution of
the points that corresponds to particle position according the velocity vector configu-
rations pointed into the center of coordinate system

Based on the components of the velocity vectors, the positions of the particles were
determined. Recalling, the important assumption is the particles in each simulation, at the
beginning of the simulation, headed towards the centre of the coordinate system. In this
way, only the cases where a collision occurred were fed into the model, without introducing
additional, unnecessary data that could negatively affect the accuracy of the model. In
addition, the overall simulation time is significantly reduced. An additional factor that
may be undesirable, is an unnaturally large overlap of particles. When using a DEM
model, such a situation results in an unnaturally large deformation, which exaggerates
the velocity value resulting from the collision. Therefore, a default limitation of the post-
collision velocity was set, equal to 100 m/s.

The most important step, was to identify and generate collision cases so that possible
configurations would appear in the database. For visualization, a Figure 5.3 was created,
where possible collision configurations of two particles is presented. Three key moments
are presented, where the first is the initial position of the particles with velocity vectors
marked, the moment of collision, and the position of the particles after the collision,
also with velocity vectors marked. The particles pre- and post-collision position, as well
as velocity vectors values might be exaggerated. One possible case of collisions is when
the particles have the same turn, but differ or not in their velocities, as presented in
Figure 5.3A). Another possibility is parallel collisions, where particles move at different
speeds and have exactly the same returns. These are cases, where one particle hits the
other from behind, transferring some of its energy (refer to Figure 5.3B). There are no
cases where the particle behind has a lower velocity than the one in front of it. In such a
situation, the collision would not take place. Another configuration is the case when two
particles have opposite directions, these are so-called head-on collisions (Figure 5.3C).
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Fig. 5.3. Approximate visualization of possible collision configurations and the stage before, at
and after the collision. Column A shows a possible collision of particles moving in the
same direction, column B of particles moving in so-called parallel and column C of
head-on collisions

Due to the very large number of possible cases (approx. 60,000), the process of
data generation, was fully automated with a group of scripts, written in Python. The
simulations themselves, were performed in Ansys® Fluent software. Following the flow
chart 5.4, the process started with reading a file, with saved all possible collision
configuration. The information contained therein, is required to be given in exactly the
same form to the injection file acceptable by Ansys® Fluent. Then 100 collision cases
were selected, from which 200 injection files were created (two files, each corresponding
to one particle, were needed for one simulation). Once specific cases were selected, the
program created a journal file so that automatically when one simulation ended, another
one start with new initial conditions for subsequent particles. Such a step was necessary to
reduce the time needed to generate all the data. It would be too time-consuming to run the
Ansys® Fluent program from scratch each time, given such a large number of calculations
to be performed. Therefore, the decision was made to run the program from scratch only
once, for every 100 simulations. In addition, such a solution, provided a safeguard in
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case of unplanned failures in the operation of the program (caused by random situations,
such as power supply problems, etc.). Another important element, was to create a User
Defined Function (UDF), which at the end of each calculation, at the appropriate time
step (guaranteeing the moment after the collision) wrote post-collision information to a
file. This function also took care of saving the appropriate number of the calculated case.
With such a large amount of data, a huge emphasis had to be put and it was necessary
to make sure that the output would definitely correspond to specific inputs. Any mistake
at this stage, would generate false data, and thus inaccuracies would be introduced into
the future model.

Another of the speed-ups used, was to split the main configuration file into 10 smaller
ones. It allowed a separate Fluent to be run for each subgroup, making the calculations for
each subgroup run in parallel. Such solution, roughly speaking, reduced simulation time by
about 10 times. The division did not affect changes in the order of activities performed, for
each subgroup the process looked identical as presented in the flow chart 5.4. After many
attempts, the time required to generate data, for so many configurations, was reduced to
about a week. This is a big improvement, in case the need would arise to generate a new
set, for different data.

Fig. 5.4. Flow chart presenting automation of the data generation process
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5.2. Development of a Surrogate Model

When building any predictive model, the entire data set at one’s disposal must be
divided into essentially three subsets: train, validation and test. In the process of learning
and model building, only the first two of the aforementioned are involved. On the training
set, the model is learned. The validation set is used to determine whether the training
went satisfactorily or whether the learning process still needs to continue. In the case
described, 5% of the data was allocated to the test set, 25% of the rest to the validation
set, and 75% to the training set. Once the data was divided, it underwent a standardization
process [89]. In the data the values vary from 0, all the way up to 20, which affects the
large difference between the values that occur. Standardization is taken into account to
reduce the wide distribution of values, so that the contribution of each feature entering the
model is approximately proportional. To perform the standardization, the mean values
and standard deviations for each characteristic, and for the outputs, must be determined
according to the formula [93]. Here, it is important to remember that these values are
determined on the basis of the training set, and then to carry out the standardization for
training, validation and test sets.

Xsc =
X� µtrain

�train

(5.2)

where Xsc is the standardized value, X is the original value, µtrain stands for mean and
�train stands for standard deviation.

Each model that is built, is characterized by certain hyperparameters, the values
of which determine its accuracy of precision [44]. Hyperparameters, and their values,
strictly depend on the data with which the models are built. Searching for the best
hyperparameters can be done in various ways, e.g. manual space search (less optimal
solution, requiring users activity), grid search (automated version of manual search, works
on the same basis but the values of of hyperparameters are changed by the function),
grid search (the values to be tested are specified, the whole process is automated, but
still every configuration is checked), random search (similar to the grid search, with the
difference that not all possible configurations are checked but random ones), or used
in presented work Optuna [19]. Optuna formulates hyperparameters optimization as a
process of minimizing/maximizing an objective function, taking a set of hyperparameters
as input and returning with its (validation) score. The tool uses Bayesian optimization.
The algorithm searches for hyperparameters from the space, where they give the best
results, in case they are not satisfactory the space is not searched. With this approach, it
is quicker to give up on analyzing configurations that do not give promising results. During
the search for hyperparameters, pruning is also used, which is responsible for interrupting
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calculations when there is no improvement in accuracy. Such an approach reduces the
cost of computation, further reducing the search time.

The hyperparameters that were chosen to optimize, were below mentioned five

• n_estimator � number of gradient boosted trees, equivalent to the number of
boosting rounds,

• max_depth � maximum tree depth for base learners,
• learning_rate � boosting learning rate,
• colsample_bytree � defines what percentage of features is used for building each

tree,
• reg_alpha � L1 regularization term on weights.

Each model building 50 trials, using Optuna were performed to find the best
hyperparameters configuration. Each time, every parameter was changed, in given range,
and used for building model on training set. After model is built, the accuracy is
determined based on validation data. A program saves the best results, with the best
hyperparameters values configurations. When 50 trials, were done the parameters, for
the best trial (the one with the highest precision [40]), were used to build final model.
Additionally, they were saved to a separate file, in case it would be necessary to reproduce
models anytime.

The novel collision model is designed to predict the velocity vectors of particles
after a collision based on the velocity vectors of the colliding particles. Initially, it was
attempted to create a single model predicting all three velocity vectors components at
once. However, despite it seems to be the most intuitive solution, such approach did not
produce adequate results (in this particular case, the smallest MAE value). Therefore,
targets were split, i.e. separate models were created, each for one target variable. It allowed
for more accurate predictions of individual values, which is important in this context,
while not affecting the performance of the model during the solution process. The final
MAEs for the subsequent models used for both investigated particle sizes were equal to
MAEu,v,w =(0.5877;0.5802;0.5531) for µ = 315 µm and MAEu,v,w =(0.7078;0.7276;0.6078)
for µ = 475 µm.

An important element when building models, in addition to, of course, monitoring
the accuracy of the model itself, is the visualization of the results. With the graphs, the
modeler is able to confirm the results of the determined results, or to catch possible errors
that would not be visible without such visualization. Therefore, during these calculations,
graphs were made for the test set, with the true values on the X-axis and the predicted
values on the Y-axis. In addition, a red line marked the straight line created based on the
true values. Ideally, the true vs. predicted values would created that line. Unfortunately,
when building predictive models there is always a mistake made, so the points marked
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in blue should oscillate around the red line. The mentioned graphs are presented in
Figure 5.5, and were created only for the test data set. The predicted values oscillate
around the true values, and there are no outliers. The bar graph 5.6 shows that most of
the tested configurations return the predicted velocity with an error lower than 5%.

Fig. 5.5. The comparison of predicted and true values, for each of the three velocity components
(u, v, w) for models with particle mean diameter equal to 315µm and 475µm. The red
line represents only true values. The accuracy of the predictions is determined by the
mean absolute error (MAE) for the test set, and marked at the bottom right corner
of each graph respectively
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Fig. 5.6. Distribution of the calculated relative error between exact and predicted velocities for
both investigated particle sizes, i.e. µ = 315 µm (left) and µ = 475 µm (right)

5.2.1. Surrogate collision model implementation

After the surrogate model was created, it was necessary to integrate it into the
computational fluid dynamics (CFD) code. In the presented studies, the ANSYS®Fluent
CFD code was used, but the model can also be implemented into other open source CFD
software, like OpenFoam. As the result, the hybrid Eulerian-Lagrangian surrogate collision
model (HELSCM) is obtained by modification of the standard hybrid Eulerian-Lagrangian
(HEL), as was described in section 3. The general idea of the implementation is visualized
in Figure 5.7. In creating the new model, the inspiration was the approach used in the DEM
model. The reason is, the possibility of how to compare models similar to each other. Of
course, taking into account simplifications so as not to over complicate the whole process.
Collisions between particles are detected based on the distance of their particles from each
other, at the end of each time step. If the distance between the centers was less than the
sum of their radii (|PAPB| < rA + rB), the collision between the particles was detected.
Accordingly, their positions and components of velocity vectors were saved. These values
were stored, in case one particle was involved in more than one collision, at the end of
the search and collision detection, the sum of the velocity components was divided by
the number of collisions the particle was involved in. In this way, each interaction was
taken into account. After the determination of the average velocities (for pairs of colliding
particles), the surrogate regression model returns the values of the velocity components,
after the collision, as illustrated in Figure 5.7.
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Fig. 5.7. Integration of the Surrogate model developed in the CFD code, where P1 and P2 are
the particle centers, r1 and r2 the particle radii, and u, v, w are the velocity vector
components of particles A and B, before and after collision

5.3. Geometrical model and mesh of the experimental test-rig

Before proceeding with the simulations themselves, it is necessary to define certain
conditions, i.e. geometry, boundary conditions, initial state, and material properties, must
be known at the early stage. The 3d geometry was created based the experimental test-
rig, described in the section 4.1. Its main elements, i.e. the core and the side inlets, were
accurately reproduced. Significant simplification was applied by removing the particle
containers. To replace them, while keeping the geometry simple, the side arms were
lengthened. Before making the final decision of the lenght od the extension, four different
lengths of injection volumes 122 mm, 135 mm, 145 mm, and 160 mm were investigated.
For each simulation, the boundary conditions and the physical properties of the particles,
as well as their number, were kept the same. The average velocities of the particles at
specific locations in the computational domain, were then compared between the different
simulations. The results are presented in Figure 5.8. Except the extension equal to 122 mm,
there is no significant difference between the velocities of the particles. According to those
results, as the final length of extension, the 145 mm was chosen. The greater lengths
would increase the mesh element number, and as a result the computational time. With
the precised extension length, an additional volume was created, which made it possible
to determine where a certain number of particles, with certain physical properties were
injected.
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Fig. 5.8. Particle velocities determined in the three following sections, for different arm lengths
juxtaposed with the velocity values obtained from the experiment

The mass of the particles, as well as their number, is determined by the amount
of material involved in the experimental measurements. The position of the particles is
random, in a certain volume, with the assumption that the particles do not overlap,
when they enter the domain. Such way of introducing particles, allowed the best possible
representation of measurements. Since the air flow fed by the side arm, it was essentially
split into two parts (one flowing directly into the side channel and the other flowing
through the particle container) it was necessary, to determine the initial particle velocity
at the moment of injection. The air flowing through the tank impacted a velocity of the
particles, so it had to be accounted for in the channel. To determine this velocity, a separate
simulation of particle flow from the tank through the arm was performed. In this case,
the tank was mapped exactly, and the particle velocity was determined at the outlet of
the side arm. The value from simulations amounted to 3.4m /s. To perform simulations,
the computational domain was discretized, using 107,000, hexagonal elements with a
skewness coefficient of less than 0.22 (mean: 4.092·10�2), where the mesh resolution was
elements. To solve a set of transport equations, i.e. the mass, momentum and turbulent
transport equations, the phase-coupled SIMPLE solver [21] was used in simulations.
For the momentum equation, a second-order discretisation scheme was selected. For the
continuity equation, the QUICK scheme [49] and for time discretization, the first-order
implicit scheme was used. To quantitatively compare the results, ten sections, highlighted
in red (Figure 5.9), were designated. Their locations correspond exactly to those in the
main channel, in the experimental rig. In the given sections, particle velocities, averaged
over time, were determined along the length of the section. This allowed, to create velocity
profiles, which could then be quantitatively compared with each other. The boundary
conditions for the side and main inlets are velocity inlet, at the outlet the pressure outlet
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was set. Particles were introduced once, in the first step of the simulation at a velocity of
3.4 m/s, into the volume of the side arms. For clarity, all mentioned, boundary conditions
are marked on Figure 5.9.

Fig. 5.9. Geometry and mesh of the computational domain, with marked dimensions and
sections, where velocity profiles are determined to allow comparison of simulation
results with experimental measurements

5.3.1. Comparison of a simulation results using the DEM and
HEL approaches

Before comparing the functionality and determining the correctness of HELSCM, a
comparison of the simulation results using already available (i.e. DEM and HEL) was
made. To compare the two models, numerical simulations were performed for three
different time steps, i.e. �t = 10�3 s, 10�4 s and 7.14 · 10�5 s. The biggest time step
size is the one, most often used when applying the HEL approach [15], while the smallest
time step size corresponds to the frequency of recorded images, during experimental work
[140]. Three different time steps were chosen to analyze their effect on particle behavior
in both models. In addition, using the HEL model, two configurations of simulations
were performed. In first case, common for DEM and HEL, 12,000 particles (with a total
mass equal to 0.000196 kg), where one parcel corresponded to one particle, were injected.
In second configuration, only for HEL simulations, the mass of injected material was
increased to 0.0018 kg. Such modification meant that, while keeping the same number
of parcels introduced, the number of particles in them increased (up to 8), affecting the
diameter of the plots itself. The effect, was to increase the volume of the solid phase in
the computational cells.
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The purpose of these simulations was to check the impact of the time step on collision
detection by both models. To model the collision by application of the HEL approach,
using the KTGF set of closure terms that need to be modeled. The list of used submodels
is presented in Table 5.1.

Table 5.1
Closure models and parameters used in the simulations, where model names are

given as they appear in ANSYS®Fluent CFD code
Solid pressure, ps lun-et-al [85]

Radial distribution, g0,ss lun-et-al [103]
Granular viscosity, µs gidaspow [58]

Granular bulk viscosity, �s lun-et-al [85]
Frictional viscosity, µfric schaeffer [116]
Frictional pressure, pfric based-ktgf [124]

Granular temperature, ⇥ algebraic [124]
Drag model, Ksg gidaspow [58]

One key distinction between the DEM and the HEL is the way, in which they handle
interparticle collisions. To compare the results, the particle positions and the contours
of the volume solid fraction, in 0.03 s of the simulation were compared with each other,
as illustrated in Figure 5.10). Due to collision detection, based on their location in the
computational domain the DEM model is more effective, as the interactions between
particles are clearly visible. When the two streams meet in the main channel, they
interact with each other and their trajectories are altered. It results in stream mixing
and moving along the core of the channel. The HEL model, which uses information about
solid volume fraction in computational cell and calculated granular temperature, does not
precisely detects particle collisions. Two opposite streams, when meeting in the core of
the canal interpenetrate each other. Such issue is also similar, when the volume fraction
is increased (i.e. in case, where one parcel contains few particles). Precise detection of
collisions between particles in the computational domain is a very important aspect, in
simulations, where high computational accuracy, reliability, and in situations where reality
must be reproduced as accurately as possible. An attempt was therefore made, to develop
a model that, at best, combined the advantages of both models. And the result, would be
the ability to detect as many collisions as possible, in a reliable manner.
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Fig. 5.10. A qualitative comparison of the results of simulating the collision of two streams in a
main channel. The first three rows, show the positions of the particles, with the right
stream in red and the left stream in blue. The following three rows, show the solid
volume fraction in each computational cell. The HEL model was used to analyze two
different scenarios. In the first case, each parcel contained one particle, while in the
second case, each parcel contained n particles

One of the drawbacks, concerning the DEM model, is the calculation time, therefore
the comparison was made between the calculation time for the DEM and HEL models
using a chart, presented in Figure 5.11. Definitely using DEM, the time required for
simulations might be up to 28 times longer than for HEL. The simulations in this study,
involved a flow with 12,000 particles, but in industrial applications, the number of particles
can be up to several millions. It is the reason that precludes the use of the DEM model in
industrial calculations. The waiting time, could last for even years, which in a rapidly
developing world and technologies is an unacceptable period. Using the HEL model,
the calculation time is much shorter. However, a factor that is also a disadvantage
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is the omission of collisions that occur, in case the solid fraction is too small. Such
factor also makes the model sensitive to the mesh size, which further has the effect of
increasing volume fractions, which consequently leads to clustering of particles [134]. The
implementation of the HEL approach, for drag calculation in motion equation, uses the
diameter of the parcel instead of the diameter of the particles, which also affects the
sensitivity of the HEL approach. Therefore, to maintain the speed of the HEL, the new
approach will be developed. The working principle of the HEL approach will be preserved,
but the collision term, as well as the collision detection will be replaced with surrogate
collision model (SCM). Data collected, from particle collision simulations using the DEM
model, will be used as the basis for the SCM building.

Fig. 5.11. Comparison of DEM and HEL simulation times

5.4. HELSCM technique validation

Before testing on real objects with many interactions between particles, which can be
difficult to control, tests were first conducted on a small scale for two groups of colliding
particles, as illustrated in Figure 5.12. The physical properties of the particles, coincide
in those used in experimental measurements. An additional assumption was also made,
to determine the small volume fraction of the solid phase in computational cell, to verify
whether the most important disadvantage of the HEL model can be eliminated by using a
novel approach. Figure 5.12 The results from the three models, DEM, HEL and HELSCM,
were compared. Particles were introduced into the computational domain with an initial
velocity of 5 m/s, at an angle of 20 degrees. The chosen angle for low-level testing, results
from the angle of the arms to the main channel, in the final geometry. This angle, is marked
in Figure 5.9. Additionally, for clarity Figure 5.12, also has marked the collision angle with
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the direction of movement of particles. Their positions were captured before, at and after
the collision. The simulation time step was equal to 10�4 s. The initial positions of the
particles were accurately determined, according to the real trajectory of the particles, so
that at the fifth time step the particles did definitely collide with each other. Thus, the
behavior of particles on collision can be accurately observed. The HEL model did not
detect collisions between particles; at the time of the collision, the particles overlapped,
without interaction, as can be seen in the illustration showing the position of the particles
after the collision. The solid volume fraction was smaller than 0.06, which further proves
the model’s failure to detect collisions at low contribution. Using the DEM model, a
collision between two streams is detected. At the time of the collision, the particles do
not overlap, but after the collision, a change in the direction of the particles is observable.
Their trajectory changes, the particles bounce at the same angle at which they collided.
In the case of the HELSCM model, the particles overlap when they collide (similar to the
HEL model). However, at this point, a collision is detected (the distance between their
centers is less than the sum of their radii) so a simplified model is invoked, and returns
the particle velocity components after the collision. Consequently, the particles change
their trajectory.

Fig. 5.12. Comparison of collisions of two particle streams, for three different models, made for
small-scale simulations to confirm the functionality of the newly developed model.
Position of particles are captured before, at the moment and after the collision
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5.5. Lab-scale application of HELSCM collision model

The following step after introducing and verifying the accuracy of the HELSCM model
in micro scale, was to use it for simulations reflecting the particle flow in the experimental
test-rig. The results obtained were then compared with results from simulations, using
the DEM model and measurements. As in the case of calculations using, already
available models, exactly the same geometry was used, illustrated in Figure 5.3. Several
configurations of calculations were carried out. Collisions of two particle streams were
investigated, where their mean diameters were equal to 315µm and 475µm. In addition,
for each diameter, three different time steps were used, i.e. �t = 10�3 s, 10�4 s and
7.14 · 10�5 s. Particles were introduced in the first time step using volumetric injection;
the exact volumes into which the particles were introduced, are marked in Figure 5.9. For
simulations with an average particle diameter of 315µm, the number of particles injected
was 12,000, while for larger diameters it was 3600. The difference in the number of particles
injected is due to the constant mass of the material, which was equal to 0.000196 kg.

To compare the velocity profiles quantitatively, the velocity of particles was determined
measured at 10 sections along the length of the main channel. In addition, the sections were
divided lengthwise into 20, 85, 125 elements. The number of boxes, affects the accuracy of
the average velocity values and how closely the velocity profiles reflect the true shape. The
more elements there are, the more accurate the results are. Especially, in the first three
sections, where there is a so-called dead zone. It means that in the center of the main
core, in the first three sections, the particles only leave the side arms and there are no
collisions between opposite streams. This has a significant impact on the determination
of velocity profiles using 20 boxes, where the lack of collisions in the early stages of the
flow is imperceptible. For more boxes, the results are not significantly different.

As the simulation time step increases, the HELSCM model, deviates from the measured
results as well as the results from the DEM and HEL models. As the time step decreases,
more collisions are detected, significantly increasing the divergence and inter-particle
interactions (Figure 5.16). In addition, dispersion can be observed in the pictures at
the last rows (Figure 5.16), representing the volume share of the solid phase, where a
logarithmic scale was used to better illustrate small fractions. The results were presented
in 0.02 second of simulation. The current implementation of the SCM in the HEL approach
does not consider the duration of the particle collision. Using a small time step can result
in multiple detection of the same colliding particles, which can perturb their predicted
velocities and trajectories due to the repeated calls to the collision model. This can affect
the dispersion of the particles in the computational domain (Figure 5.16, images presenting
the position of particles).
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Fig. 5.13. A quantitative comparison of the DEM and HELSCM models, made based on the
calculated velocity profiles of particles mean diameter equal to 315 µm, at ten locations
set in the computational domain (Figure 5.3) after 0.02 seconds of simulation using
20 boxes for profile determination. The comparison was made for three different time
steps.
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Fig. 5.14. A quantitative comparison of the DEM and HELSCM models, made based on the
calculated velocity profiles of particles mean diameter equal to 315 µm, at ten locations
set in the computational domain (Figure 5.3) after 0.02 seconds of simulation using
88 boxes for profile determination. The comparison was made for three different time
steps.
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Fig. 5.15. A quantitative comparison of the DEM and HELSCM models, made based on the
calculated velocity profiles of particles mean diameter equal to 315 µm, at ten locations
set in the computational domain (Figure 5.3) after 0.02 seconds of simulation using
125 boxes for profile determination. The comparison was made for three different time
steps.
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Fig. 5.16. A qualitative comparison of the results of simulating the collision of two streams in a
main channel. The comparison is made between results of three models DEM, HEL
and HELSCM. The first three rows, show the positions of the particles, with the right
stream in red and the left stream in blue. The following three rows, show the solid
volume fraction in each computational cell

To optimize the performance of the HELSCM model, it would be beneficial to monitor
the rate at which particles collide with one another. However, doing so may slow down
the overall execution time of the model. Increasing the accuracy, by adding more elements
involved in the model’s operation, could lead to a definite increase in calculation time.
Such an effect, would make the newly created model temporally close to the DEM model.
During the development of the HELSCM model, one of the main objectives was to reduce
computation time. The minor differences between experimental and numerical results
are observed for simulation time step equal to 10�3 s. This pattern can be seen in the
results from both numerical models at all ten locations. Using DEM model, the impact
of particle collisions is reduced, causing particles to alter their path and continue moving
in the same direction along the channel rather than scattering after collision (presented
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in Figure 5.16). Therefore, particle velocity is higher in the center of the main channel,
which is proved on velocity profiles graphs in Figure 5.15.

To compare the results with each other qualitatively, the recorded results juxtaposed at
the same time (t=0.03 s) in Figure. 5.17. Using the smallest time step with both numerical
approaches, the experimental particle distribution falls between the results obtained with
the DEM and HELSCM models.

The most similar results, are those, where the largest time step was used in the
simulations (i.e. 0.001 s). The summary in Figure 5.15), includes the results of simulations
using the HEL approach, which, regardless of the time step used, does not detect collisions
between particles that are part of opposite streams. The particles penetrate each other.
Influencing it, is the low volumetric contribution of the solid phase to the cells volume, as
shown by its contours (Figure 5.16). That’s why, despite the visually strong similarities at
first glance, the HEL model does not meet expectations for collision detection. Comparing
the results obtained, both qualitative and quantitative, the assumption of the HELSCM
model was upheld. By replacing the component responsible for detecting collisions (based
on the determination of granular temperature) with a machine learning algorithm, the
number of collisions detected was increased, while keeping the execution time relatively
short. Relying on the Figure 5.21, it is clear that the simulation time using the HELSCM
model is significantly shorter compared to the DEM model. When compared to the
simulation time using the HEL model, the time is slightly longer. The situation repeats
for each of the three, analyzed time steps.

Fig. 5.17. Comparison of numerical results with experimental data based on particle dispersion
in the computational domain determined after 0.03 seconds of wall clock time of
numerical simulations using DEM and developed HELSCM approaches for particle
size 315 µm and marked locations used for the determination of particle velocity
profiles.
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For analysis of the simulations, with particles mean diameter diameter of 475µm,
the velocity profiles were compared only using the highest number of boxes, which was
125. The comparison was conducted at three different time steps, as in previous cases
(Figure 5.18).

The largest differences are most apparent in the final sections. The most similar results,
and preserved velocity profiles, are for the largest time step, which is similar behavior
to simulations using particles with smaller diameter (315µm). Shifting of two streams,
results in moving the collision region closer to the inlets. The effect is definitely greater
dispersion of particles just after the outlet of the side channels, which is noticeable in the
graphs of velocity profiles, for the first sections (Figure 5.18). Analyzing the records of
measurements, in the form of images, one by one, it was observed that there happen to be
single particles that, due to, for example, collisions with walls, change their trajectory to
perpendicular to the main channel axis, or move backwards. Both for the case analyzed,
where the average diameter was 315µm, and for the case with an average particle diameter
of 475µm, the determined Stokes number (St= tF/tRT ) for a given flow condition was
greater than the unit. The characteristic time of the flow field (tF ) was determined by
considering the dependency between the area of the channel cross section, its perimeter
and the mean velocity of an air. Response time (tRT ), strictly depends on the diameter of
the particles that are part of the flow, which for mean particle diameter equal to 475 µm
(tRT = 0.25 s) was almost twice as high compared to the response time calculated for
particle mean diameter 315 µm (tRT = 0.13 s) The mentioned particle response time,
was determined using the simplified equation of motion (2.26) for a single particle (the
terms r/⇢p and Fcoll are neglected). High values of the Stokes number (St) cause the time
required to stabilize the flow to increase, in case of sudden changes in the direction of
particle movement. The algorithm, used in presented work, described in subsection 4.2,
only tracks the movement of particles flowing downstream and having an impact on the
calculated velocity profiles.

Particle positions and contours of solid phase volume fraction, for calculations
performed with particles with an average diameter of 475 µm, are presented in 0.02 s
of calculations and summarized in Figure 5.19. In DEM application, the movement of
particles was mainly monitored in the center of the main channel and observed over the
course of the three time steps studied. Comparison the experimental results with the
simulation results, presented in Figure 5.20, using the DEM model, the particles in the
core itself are close to each other and move in one direction along the channel. Therefore,
for the largest time step, the HELSCM model, visually, is much closer to the experimental
measurements, which is influenced by the subtle dispersion of the particles before and after
the collision. For the smallest time step, the particles definitely interact more with each
other and propagate through the channel.
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Analyzing Figures 5.19, the conclusion is that for the specific configuration of the HEL
model and the solid volume fraction used, the collision effect was not visible for either
particle diameter. Additionally, the HEL approach is not affected by the size of the
particles.

Fig. 5.18. A quantitative comparison of the DEM and HELSCM models, made based on the
calculated velocity profiles of particles mean diameter equal to 475 µm, at ten locations
set in the computational domain (refer to Figure 5.3) after 0.02 seconds of simulation
using 125 boxes for profile determination. The comparison was made for three different
time steps.
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Fig. 5.19. Qualitative comparison of the results of simulating the collision of two streams in a
main channel. The comparison is made between results of three models DEM, HEL
and HELSCM, for particle mean diameter equal to 475 µm. The first three rows, show
the positions of the particles, with the right stream in red and the left stream in blue.
The following three rows, show the solid volume fraction in each computational cell

Fig. 5.20. Comparison of numerical results with experimental data based on particle dispersion
in the computational domain determined after 0.02 seconds of wall clock time of
numerical simulations using DEM and developed HELSCM approaches for particle size
475 µm and marked sections used for the determination of particle velocity profiles.
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For each of the cases discussed, i.e. for the two different mean particle diameters
(315 µm and 475 µm), the three numerical models used (DEM, HEL, HELSCM) and
the three different time steps (�t = 10�3 s, 10�4 s and 7.14 · 10�5 s), the time required
for the same number of iterations was measured, assuming the same initial conditions.
In addition, the calculations were performed on the same machine, using one core. The
results were collected in the form of a graph, presented in Figure 5.21. By comparing
the times, it is apparent that the time required, to perform the same simulations, is
significantly shorter than that required for the DEM model. This time is close to the time
that must be spent on calculations using the HEL model. The time for simulations, where
the average diameter was 475 µm was lower than for smaller diameters, due to the smaller
number of particles involved in the flow (it is the effect of maintaining the same mass of
material in the domain). During the simulation, not only time was measured, but also
the number of collisions detected, which directly correlates with the number of times the
simplified model was called. An additional factor contributing to the shorter time is the
fewer times the simplified model was called.

Fig. 5.21. Comparison of DEM and HELSCM execution times, carried out using a single process
at the same work station

Another point of comparison involved observing the frequency of collisions detected
during each time interval. The number of collisions was counted for simulations with
two different diameters and three different time steps. In both cases of diameter, the
highest frequency of collisions occurred when using the shortest time interval. Similarly,
when employing the longest time interval, the recorded instances of collisions were at their
lowest. This pattern aligns with the visual analysis of the results presented in Figures 5.17
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and 5.20. In instances of the shortest time interval, the scattering of particles within
the domain is most conspicuous due to the prevalent collisions that take place and are
identified. Conversely, the utilization of the longest time interval, resulting in the fewest
collisions, leads to minimal particle dispersion.

Fig. 5.22. Comparison of collision rates calculated for three investigated time steps of numerical
simulations and two used particle diameter

5.6. Testing developed collision approach for simplified CFB unit

Earlier tests, collisions between two streams of particles, were a prelude to testing the
feasibility of modeling the fluidization process. The smaller scale, and far fewer collisions,
allowed for a more accurate analysis of the collisions, using HELSCM. Therefore, this
step was necessary before, simulations in a flow, with more collisions were attempted.
The process is much more complex. A circulating fluidized bed boiler was chosen, as the
test model. In this process, the fluidization speed is adjusted, so that the layer at the
bottom of the boiler fluidizes, but is high enough that some of the material is returned
through cyclones, back into the boiler. Thus, the amount of mass in the boiler is preserved.
It is also worth noting, that the tests are carried out in the so-called cold state. Only the
flow of material is modeled, without taking into account the heat transfer and combustion
process. Modeling of these phenomena, is not the subject of this paper, but for the curious
reader, an example of the description of such simulations is the work of [14].

5.6.1. Simplified geometry of the circulating fluidized bed boiler
and recirculation procedure

The geometry of the boiler was imitated, in a very simplified manner. The main
reason was, as in the case of particle collisions in the canal, less particles facilitates to
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have a control over the process, and so that it would be easier to detect the reasons
for any inaccuracies. The shape of the numerical model used in calculations, closely
resembles the physical design of the boiler. The model has a rectangular top and sloping
walls at the bottom, with the base being smaller than the outlet. There are also two
inlets located on the sides. The geometrical mesh consists of 13,300 elements, with the
skewnees coefficient lower than 0.76606 (average value equals to 0.020583). To solve a
set of transport equations, i.e. the mass, momentum and turbulent transport equations,
the phase-coupled SIMPLE solver [21] was used in simulations. For the momentum
equation, a first-order discretisation scheme was selected. For the continuity equation,
the QUICK scheme [49] and for time discretization, the first-order implicit scheme was
used. Simulations were carried out using only the HEL and HELSCM models.

To compare the results quantitatively, 18 planes were created along the boiler height,
perpendicular to the geometry axis. The planes served as a location, determining time-
averaged pressure values. The geometry used, along with the marked grid elements and
applied boundary conditions, is presented in Figure 5.23A. In addition Figure 5.23A, the
volume in which the particles were introduced is marked. For readability, Figure 5.23B,
includes a schematic of the geometry with the dimensions marked, and an example of
one plane from which the pressures were read, in order to compare the results between
models. Due to the simplified geometry, but the need to replicate the circulation bed
as closely as possible, an important step was to ensure recirculation of the material. A
User Defined Function was used for this purpose. The principle of its operation is simple,
nevertheless the implementation was not one of the easiest tasks. The function’s duty is
to sum the mass and number of particles leaving the computational domain at the end
of a given time step. This value is retained in memory until the beginning of the next
time step. In the next step, the determined number of particles of a given diameter is
entered into the designated volume. Maintaining a certain number of particles leaving the
computational domain and returning was a challenge. But by keeping information about
the specific number of parcels leaving the domain, it was possible to set a specific number
to be returned. By default, the entire mass is divided by the number of cells present in
the given volume, and as many particles as elements are thrown in. Therefore, in each
iteration, the number of particles would increase as well as their diameter would decrease.
Which would not reflect the occurring process accurately enough. This is a solution that
worked very well in this case. However, one limitation should be mentioned, namely, the
number of cells in the given volume must be large enough to drop each particle (since only
one particle is dropped into one element). Otherwise, not all the mass will be returned.
In the case currently under discussion, i.e. simulation of particle collisions in a circulating
fluidized bed, the place of particle injection is the volume, nevertheless this choice is up
to the user and can also be, for example, the surface. The principle of operation is also
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illustrated in Figure 5.23C. Marked are the area, where the particles were caught, at the
end of a given time step, and some points, where they were returned in the next step.
Also marked are sample planes, in the cross section of the computational domain, where
average pressures were determined. The values, were used to compare the pressure drop
between models. The diagram only shows the cells present in an illustrative manner, and
their size is exaggerated for clarity.

Fig. 5.23. A: Geometry of a simplified CFB boiler with boundary conditions and injection
volume. B: Schematic of the boiler, with dimensions marked. C 3D diagram with
marked cells, particle capture location and their return point (in this case into the
certain computational cell) as well as the sample planes, where average pressure was
read

5.6.2. Recalibration of the surrogate model

The developed approach to data generation, used to create the simplified model is
universal. I.e., every effort was made to ensure, the algorithm for the generation of collision
configurations, covers them throughout 3d space, so collisions occur from every direction,
in a variety of possible arrangements. Nevertheless, it must be remembered that, like any
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model created or already available, it must be tailored to the case in which it is to be
used. In this particular case, the use of the HELSCM model, to model the fluidization
phenomenon, it was decided to recalibrate the model, used in the calculations of collisions
between two particle streams.

The velocities of the incoming air, as well as the velocities of the particles themselves in
the fluidized bed, are much smaller than in the previous experiment [111]. Consequently,
having a velocity range of 0 to 20 m/s, the model predicting low values made errors,
specially with lower velocities (see Fig. 5.6). Therefore, based on the approach already
used, a model was created, whose speed range, it was taught, covered speeds from 0
to 2 m/s. The learning data from the first iteration and the second iteration were not
combined, in order to build models (recalling, one model was built for each velocity
component). Combining data, does not always benefit its accuracy. Nevertheless, in this
case the goal was to best represent the low velocities that the particles have, especially
at the bottom of the boiler. Therefore, two separate groups of models were used. If the
components of the input velocity vectors were low (that is, they ranged from 0-2 m/s)
the model, for lower velocities, was called. On the other hand, when the velocities in the
input were higher, a primary model was called up, created on the basis of velocities in the
higher range.

Fig. 5.24. Distribution of the calculated relative error between exact and predicted velocities for
recalibrated model, with mean diameter equal to 315 µm
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5.6.3. Comparison of simulation results using HEL and HELSCM
approaches

Simulations, were performed for two models HEL and HELSCM. The models differ
from each other, only in the way they detect collisions. To compare the two models,
numerical simulations were performed for one time step, i.e. �t = 10�2 s. Simulations
were performed for only one time step, since the main purpose of these calculations was
to verify the feasibility of using a simplified model to model the fluidization phenomenon.
Further, more detailed studies will be carried out in future work to improve the model. To
model the collision by application of the HEL approach, using the KTGF set of closure
terms that need to be modeled. The list of used submodels is presented in Table 6.3. For
the main and side inlets, the discrete phase BC type was set to bounce, and for the outlet
the particles were trapped and processed using the User Defined Function (the operation
principle briefly described in subsection 5.6.1.

Table 5.2
Closure models and parameters used in the simulations, where model names are

given as they appear in ANSYS®Fluent CFD code
Solid pressure, ps lun-et-al [85]

Radial distribution, g0,ss lun-et-al [103]
Granular viscosity, µs gidaspow [58]

Granular bulk viscosity, �s lun-et-al [85]
Frictional viscosity, µfric schaeffer [116]
Frictional pressure, pfric based-ktgf [124]

Granular temperature, ⇥ algebraic [124]
Drag model, Ksg gidaspow [58]

Restitution coeff. in solid phase, ess 0.9
Friction packing limit, "fric

s
0.61

Packing limit, "pk
s

0.63
Transition factor of HEL 1.0

Particle-wall reflection coeff. enor.=0.8; etan.=0.8

Geometry used as a whole, essentially was divided into two volumes. One of them (the
smaller one, marked on red (refer to Figure 5.23A), was used to initialize the particles
in the first step of the calculation. To the cells in this part, particles, which left the
computational domain at the end of the time step, were returned. Such procedure was
used intentionally, because in a real boiler, particles that should be returned to the boiler
are introduced through the side inlets, located at the bottom. The total simulation time
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was 10 s. From the 5th second, time averaging of the instantaneous values and root-mean-
squares of the fluctuating values were sampled during the calculations. The above steps
are common to both models (HEL and HELSCM). After the simulations, the averaged
pressures, solid-phase volume contributions and particle velocities were compiled together
for the results of each model. The results were combined and presented in Figure 5.25).

Both models gives similar trends. For pressure, the value is highest at the bottom, and
decreases as the height increases. It aligns with reality, as there is the most of the material
at the bottom, which leads to a higher pressure. The HELSCM model, even though it
has a uniform distribution, has slightly higher pressure values, at the bottom, than the
HEL model. The distributions of volume solid fraction are also similar. For both cases,
the largest share is at the bottom of the boiler, confirming the results of the pressure.
Due to the particles being returned to a certain volume, there is a negligible contribution
in the side inlet channels. In HEL simulations, along the walls and in the channel core,
the distribution of particles is uniform. In the case of HELSCM simulations, on the other
hand, one notices a higher volume share of particles at the bottom of the boiler, especially
near the walls. In addition, the volume solid fraction is also bigger, in the higher parts near
the walls and lower in the core. Note that the scale determining the share is logarithmic.

The distribution of particles in the computational domain, as well as their velocities,
are also similar. The velocities do not deviate from each other, the particles are evenly
distributed around the boiler. Confirming the previously discussed results of pressure and
volume shares, the largest number of particles is at the bottom of the boiler, and their
number decreases with height. In addition, presented contours (4th column) shows the
velocity component along the height of the boiler (solid y-velocity component), with the
velocity restricted to a maximum value of 0. In this way, it can be clearly noticed for the
HELSCM model, at the walls of the computational domain, the velocity is less than zero,
meaning that the particles in the core rise and at the walls gravitate down. Such behaviour
is entirely natural within circulating and fluidized bed boilers. A layer of particles forms a
film on the boiler’s inner walls. These particles move down the walls towards the boiler’s
bottom and are subsequently lifted, primarily in the central region of the boiler. [130].



88 Agata Widuch

Fig. 5.25. Summary of simulation results in 10 s. The first row presents the results, derived from
the HEL model. The second row, on the other hand, shows results from the HELSCM
model. For comparison, the contours of the averaged pressure (1st column), the volume
contribution of the solid phase (2nd column), the distribution of the particles in the
computational domain, colored by their velocity (3rd column), and the solid y-velocity
component (4th column) are presented. In addition, the planes are marked, from which
the values for quantitative analysis were read
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To verify the velocity of the solids, not only visually but also quantitatively, a lines
in the cross-sections were created at four heights above the inlets (0.0215 m, 0.04875 m,
0.06825 m, 0.091625 m). For the comparison solid y-velocity component of the particle
velocities was compared. Graphs confirm the visual results, i.e. the particle velocities for
the HELSCM model are higher in the core and negative at the walls. In the case of the
HELSCM model, the velocities are more uniform.

Fig. 5.26. Time-average profiles of the vertical component of the solid phase calculated at four
horizontal cross section located at elevations, in two directions x and z determined
in post-processing mode using numerical results obtained from HEL and HELSCM
approaches

An additional comparison that was made was to measure the pressure drop along the
height of the boiler. The average pressures, determined on the corresponding 18 planes,
vary slightly. At the bottom of the boiler, the pressure is highest, and decreases with
height. The discrepancies in values between the two models, are smallest at the lowest
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parts, where there is the greatest accumulation of particles. Nevertheless, the differences
are not significant. In the upper parts, the pressures coincide.

Fig. 5.27. Comparison of pressure drop between HEL and HELSCM



6
Hybrid approach for modeling large scale CFD boiler

The following section is focused on development of hybrid modeling approach for large
scale CFB unit that will allows fast and robust calculation of the 3D model. This work
was done, as the part of the project OPTI_AI_UNIT [1], being a cooperation mainly
between Sumitomo SHI FW and Silesian University of Technology. The project concerns
the development of a prototype, modular system based on artificial intelligence algorithms
for increasing the reliability of the business. This was achieved by creating a hybrid
infrastructure, including the optimization algorithms together with the adaptive predictive
and prescriptive models working with control systems supported by the numerical models
of selected critical equipment. This was consolidated using databases and reduced order
models incorporated with algorithms monitoring the health of the power devices. The
tested unit is 460 MWe power Łagisza Power block in Będzin, included in the list
of International Energy Agency (IEA) reference facilities, as a reference object. The
preparation of the module, and its testing, is carried out on the energy facility, but the
use of the available techniques developed in this way can be applied to other types of
facilities to improve their operation and reduce costs.

Fig. 6.1. Overall scheme of the circulating fluidized bed boiler, before simplifications made to
the geometry used in the numerical simulations. A human figure has been marked in
red, to show the difference in height, compared to the boiler.
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The paper will not cover all the aspects of the complex project. It will primarily
concentrate on two main elements: the development of models, and the exchange of data
between fluidized bed boiler models, to enhance the overall system performance.

The components of the advanced intelligent control system, using machine learning
algorithms, are the numerical models, developed based on the power unit example (i.e.
Łagisza Power block). Those models are the digital equivalent of the analyzed device. The
main idea is the development of numerical models, explained more clearly in next sections
but listed below

• MEBal (Mass and Energy Balance) - mass and energy balance model of the boiler,
• SFW1D - one-dimensional model of the boiler,
• SFW3D - three-dimensional Euler-Euler model of the CFB boiler,
• EL3D - three-dimensional Eulerian-Lagrangian CFD model developed in ANSYS®

Fluent Software,
• ELROM - the artificial neural network model.

To integrate the developed numerical models with the predictive-prescriptive
algorithm, an algorithm will be proposed hybrid algorithm that allows synchronization of
numerical models and correct exchange of data between them. The boiled one-dimensional
zone model, hereinafter referred to as the SFW1D model, is developed to perform
numerical simulations almost in real time. The calculation results are the additional
information (input data) to the query coming from the control algorithm. The SW1D
model, is intended to simulate the heat exchange, the composition of the bed (coke, ash,
fractions of chemical compounds) and grain distribution. Despite many simplifications,
SW1D model is crucial for protection of chaotic and incorrect decision affecting the
stability of the operation of the power unit. To ensure it, an appropriate initialization
of numerical calculations is required. For such purpose, the necessary data, suitably
formatted and tailored to meet the requirements of the calculation code, will be sourced
from historical data repositories. These repositories will tap into the comprehensive
database of energy facilities managed by the Industry Partner Sumitomo SHI FW Energia
Polska Ltd. If necessary, data might also be extracted from the repository of the steady
state SFW3D.

Due to the number of cases analyzed, there might be situation, where SFW1D model is
not sufficient to analyze the operating condition of the boiler. For this purpose, the steady
state, three-dimensional SFW3D model was developed, to simulate the process of heat and
mass exchange between phases. The model takes into account the combustion process, SO2

and NOx formation and reduction, material recirculation, heat exchanges within external
heat exchangers, and various other physical phenomena. The main part of the model is
a three-dimensional combustion chamber. Material recirculation is possible with the help
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of sub-linked empirical models, coupled to the calculation procedure. Despite model’s
increased accuracy, and steady-state calculations, the extensive duration necessary for a
complete simulation remains a significant drawback. It is a common feature for three-
dimensional models, mentioned in this work. Therefore, those models cannot be directly
implemented, as the component of the boiler control system.

Due to the limitations of the SFW3D model, as well as the stability of numerical
calculations, it is necessary to support the operation of the model, the calculation
algorithm requires the definition of a correct and real starting point. The set of such
variables that are used to initialize the model are the velocity vector components for the
gas phase, the velocity vector components for the solid phase, the volume fraction of the
solid phase, pressures, and solid diameter.

To provide the required parameters to initialize the calculation, the Hybrid Euler-
Lagrange model is used. In this chapter, this model is referred to the abbreviation
EL3D. EL3D is the numerical model of CFB, developed in Ansys® FLUENT software.
The proposed approach, allows direct tracking of the particles trajectories and the
hydrodynamics of the bed. The complete and detailed model of the boiler includes
the combustion chamber, steam superheaters along with other elements affecting the
hydrodynamics of the bed. Due to the dimensions of the CFB boiler (27x10x48 m) and
the variation in the scales of the spatial and temporal scales present in the various zones
of the CFB boiler, the geometric model will be limited only to the combustion chamber.
To maintain the material recirculation with including the heat exchange, an external
mathematical model is utilized, and implemented using set of User Defined Functions.
Within the mathematical model, the crucial aspect is to define correctly the boundary
conditions, for boilers evaporators. For that purpose, these conditions are determined
using AMIGO software, which has been developed for 60 years by consortium member
Sumitomo SHI FW Energia Polska Ltd.

As with the SFW3D model, the EL3D model cannot be directly used to regulate boiler
operation, primarily due to calculation time. Nevertheless, performing calculations using it
improves the stability of the SFW3D model, as well as the accuracy of the results, when
initializing the SFW3D model with outputs from EL3D. Therefore, it is not desirable
to bypass this step. Struggling with long computation times, but unable to abandon
simulations using the EL3D model, the solution lies in adoption of neural networks. The
use of neural networks will allow the construction of a reduced model, that can return
data with sufficiently high accuracy, which will be used as an initialization set for the
SFW3D model.

The aforementioned models operate autonomously from one another. To integrate
them, a repository of a results, as well as input data was established for each analyzed
operating scenario of the boiler. In addition to the repository itself, it is important to



94 Agata Widuch

select the right tools to ensure that data is exchanged between the various models. It
guarantees error-free data exchange between models. An approach of data exchange, will
be covered in following subsections.

The subsequent chapter aims to describe the primary assumption of data exchange
among all the models and development reduced order model of the CFB boiler by
application of the Machine Learning algorithms. The main focus will be given on the
numerical models and simplified models development to support optimization models.

6.1. Data exchange between individual models and system
components

In connection with the use of simulation results from different models, executed in
different software, different programming languages, it is necessary to create a space,
which allows information to be stored and exchanged in a structured and easy way. A
database (DB) is a structured collection of data, allowing for efficient storage, retrieval,
and manipulation of the data. It is designed to manage large amounts of information and
allows users to access and update information in an easy way. Databases are used in a wide
variety of applications, including business, science, education, healthcare, etc. They can
be stored on a single computer or distributed across multiple computers in a network. In
the boiler module, five models were developed and applied for running hybrid approach:

To facilitate the utilization of simulation results from diverse models executed in
different software and programming languages, it becomes imperative to establish a
platform that enables structured and seamless storage and exchange of information. A
database (DB) serves as a systematic collection of data, enabling efficient storage, retrieval,
and manipulation of information. Its purpose is to handle extensive amounts of data and
provide users with easy access and updating capabilities. Databases find application in
various domains such as business, science, education, healthcare, among others. They
can be stored on a single computer or distributed across multiple computers within a
network. Within the context of the boiler module, a total of five models were created and
implemented as part of the hybrid approach.

Since each model operates independently of each other, in the described approach,
the calculations for each model are made on a separate virtual machines (VM). It is
determined also by several additional factors, such as different programming languages
used by the models, different software as well as different operators and preparers.

As calculations using individual models take place on separate VM’s, each of them has
oto be configured for the relevant model. In the case of ELROM, there are two machines.
One, where the Artificial Neural Network (ANN) is built and one, where the predictions
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are performed. Therefore, in order not to introduce too many complications, the name of
the model remains the same, but when referring to the machine where the model is built,
the build designation is in brackets. On the other hand, when referring to the machine
where the prediction is performed, there is the designation predict in brackets.

To provide connection between the data itself and a database, an Representational
State Transfer Application Programming Interface (RESTful API) was utilized. API
allows multiple software components to communicate with each other using a set of
definitions and protocols. RESTful API breakes the full transition into smaller modules,
which addresses an underlying part of transaction. To obtain resources certain specific
commands have to be used. It has to be noted, since the REST calls are stateless, nothing
can be saved or remembered from one transaction to another.

A very detailed description of the RESTful API is presented in the work [56]. It
ensures the security of data transmission, which is incredibly important for a system that
exchanges sensitive data - such as continuous data on boiler operating parameters. In such
industrial systems, it is necessary to ensure high security of the exchanged data and to
meet the requirements of the many IT standards and protocols. For each model, a specially
dedicated master codes responsible for communicating with the API, were also created.
It was necessary, since the models were created using different programming languages
and software, which prevents direct connection to DB. Additionally, the master codes,
are not only responsible for connection, but also it is important to establish protective
measures, in the event of failed connections or when attempting to call or return models
with erroneous data.

In the Figure 6.2A, a diagram of the data exchange between the different elements is
presented. Figure 6.2B, presents the exchange of data between the different models, this is
of course done using the API. With this visualization, the path of data exchange between
the different models is presented. Five models are used to provide a response characterizing
the operational state of the boiler to the external prediction and prescription system.
The execution time of the models is different, ranging from a couple of minutes to
approximately 23 hours. First the data, from the system are provided the MEBal model,
where with the important information (about the temperatures, pressures at specified
points and some mass flows) the user is able to obtain the rest of required mass flows,
needed as the input values to the SFW1D model. SFW1D is a zonal model, allowing
numerical simulations to be performed, almost in real time. It can be used to simulate the
heat transfer process in a bed, identify its composition including fractions of coke, ash,
and chemical compounds, as well as determine the distribution of its grains. Although the
model is highly simplified, it can help prevent control algorithms from making incorrect
decisions that may cause instability in the operation of a power unit. The output data
from SW1D is then used by SFW3D, but it is just a part of the input data. SFW3D, for
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more precise result requires also additional data. Here, it comes from EL3D (obtaining
results takes approx. 23 hours), or ELROM (predict) (prediction process with all the pre-
and post- processing of data takes around 1 minute). The decision which results to use,
is made on the basis of the input values. A more detailed description of the selection, is
presented and described in the sections below, together with a more detailed description of
the SFW3D, EL3D and ELROM model. Nevertheless, the data from SFW1D and ELROM
are the initialization data for the SFW3D model calculations, allowing heat flow in the
fluidised bed boiler to be modeled. The results obtained, are passed on to the prediction
and prescription models.

Great emphasis was put on ensuring, the boiler subsystem is running quickly and
efficiently at each stage. As a result, all subsequent models, as well as the API and
database, were optimized to ensure fast execution.

Fig. 6.2. A: Communication within boiler module - the IT infrastructure. B: Flow of data in
the boiler subsystem

6.2. MEBal process model

MEBal is a calculation tool, developed to calculate the energy and mass balances of
the boiler, over the specified control boundaries (Figure 6.3). The calculation relies on the
principles of mass and energy conservation, using the indirect approach outlined in the
established DIN 1942 standard [52]. The MEBal tool incorporates additional calculation
procedures for determining the heat requirements of individual heat exchangers, fuel
moisture and heat value, airflow rates, and fuel heat input. The developed tool returns
the information of the boiler efficiency. In addition, the calculation outputs include data
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on fuel and air flows, fuel heating value and moisture. These data are used as input values
for the SFW1D model.

Fig. 6.3. Boundary Conditions for the MEBal tool

6.3. SFW1D process model

Another calculation tool, developed for the prediction of the CFB process performance
is the SFW1D model. The model solves mass and energy balances for gas and solids. The
system includes incorporated components specifically designed for the CFB hot loop,
which encompasses the furnace, internal heat exchangers, solid separators, and external
heat exchangers. The model’s individual components, such as a furnace, were partitioned
into specific calculation units vertically. The model incorporates chemical reactions such
as combustion reactions of char and volatiles, as well as reactions involving limestone
components. All the balance equations are solved through iterative processes.

The solids balance calculation is a crucial component of the model and is conducted
in a 0D format for the entire CFB hot loop. The calculation involves determining the
fractional masses of solid materials within the system, and calculating the mass flows
of materials exiting the system. Each solid material is individually evaluated, and it is
further categorized into six different particle-size fractions. The substances considered
in the analysis consist of char derived from the fuel, fuel ash, make-up sand, and
components of limestone (CaCO3, CaO, CaSO4). The primary factors influencing the
solids balance are the particle sizes and comminution properties of the input materials,
the effectiveness of the separator, and the operational conditions including fluidization
velocity and bed pressure. To determine the vertical distributions of the solid materials,
empirical correlations are utilized, although there is also an option to provide a solids
density profile as input to the model, such as one based on the measured pressure profile.

The results from the SFW1D model calculation include the amounts of heat transferred
to various components within the CFB hot loop as the rates of mass flow, the compositions
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of the bed material, the particle-size distributions of the bed material, bottom ash, and fly
ash. Additionally, the concentration profiles of solids and the flow of circulating materials
through separators and INTREX units are also provided. The model’s code is composed of
numerous subroutines, each serving a specific purpose within the boiler process (see Figure
6.4). The predictive ability of the 1D model relies on empirically derived correlations,
which have been validated through extensive measurements conducted in commercial-
scale CFB units.

Fig. 6.4. Calculation flow sheet of the SFW1D model

6.4. Steady-sate 3D multiphase model

The main purpose of created numerical models is to support the development and
design of CFB boilers, optimize processes, detect or analyze failure or problematic cases.
This approach minimizes the operating costs of the real devices. In addition, modelling
allows individual cases to be analyzed without taking the unit out of service.
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Another of the mentioned models, important from the point of view of modeling and
combining them into a whole, is the SFW3D model. It is a specially tailored version of the
3D multiphase general-purpose model, developed by LUT University [95]. The schematic
working principle is presented in Figure 6.5.

Fig. 6.5. Simplified geometry with marked boundary conditions

In the SFW3D model, the furnace is modeled in 3D. The other connected
systems (i.e. separators, INTREX (superheaters) units, solids looping systems) are
models by black-box models, exchanging data with the furnace model. The variable
systems that have been resolved encompass various aspects such as the fluid dynamics
of solid and gas, heterogeneus fuel reactions (such as evaporation, devolatilization,
char combustion/gasification), reactions involving different types of sorbents (such as
calcination, sulfation, and desulfation), reactions occuring uniformly throughout the
system (such as combustion, shift conversion, and NOx reactions), as well as the transfer of
heat through convection and radiation within the fluidized bed and between surfaces. The
introduced approach utilizes a control volume method to address the diverse transport
equations under steady-state conditions. The furnace domain is discretized by a structural
body-fitted mesh with 55,440 calculation cells (20⇥40⇥66). The grid size was selected in
order to strike an optimal balance between the accuracy of the calculations conducted and
their computational time. The three-dimensional transport equations are resolved using
a first-order upwind differencing scheme and the Gauss-Seidel method with successive
overrelaxation. Alongside the fundamental transport equations for mass, energy, and
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momentum, the model incorporates empirical correlations to establish various governing
closure models. These closure models, such as those for solid concentration profiles and
heat transfer coefficients, are crucial components of the model. The input data is supplied
as a text file through the API, encompassing variable parameters such as feed rates and
compositions. On the other hand, the fixed model parameters like geometry and mesh are
hardcoded. The solver code is implemented as a dynamic link library and is invoked by
the master code. The solver operates in two distinct modes: within the SFW3D code, it
resolves the fluid dynamics of gas and solids with simplified flow fields, or it employs flow
fields generated by EL3D or ELROM for more intricate and detailed flow simulations.

Convergence is assessed based on several criteria, including the errors in mass and
energy balance (limited to less than 0.1%) and the absolute difference between consecutive
iterations of monitored parameters such as bed temperature, exit temperature, and exit
gas composition. If the code is called without externally determined flow fields, the
calculation time ranges from 4 to 7 minutes. However, if external flow fields are determined,
the calculation time increases to 5 to 9 minutes. The reason is due to the more complex
flow field, influencing the model’s convergence. Once calculations are done, the model
saves the overall results of the simulation, as well as cross-sectionally averaged 1D profiles
of various variables, in the form of text files. The 3D process data is stored in a binary
file for visualization purposes in ANSYS® Fluent.

For more details, please refer to earlier literature, where the theory behind the
operation of the model is described in detail [95, 99, 100, 98].

6.5. Geometry and mesh of the CFB boiler - EL3D

The presented geometry was created on the basis of an real scale boiler, located in
Będzin (Poland), which is part of the Łagisza power plant. The boiler has a capacity of
460 MW, the rectangular cross-section of the combustion chamber has dimensions of 10.6
x 27.6 m. The height of the combustion chamber is 47 m. The height of the cooling tower
is equal to 133.2 m [147]. In the real boiler, there are also 8 cyclones attached to the
combustion chamber, which role is to separate the flue gases from the particles and are
responsible for returning not burnt material, or inert material, back to the combustion
chamber. The boiler is symmetrical, which means that its left and right sides are the same
(the number of primary/secondary inlets, oxydixer inlets, recirculated material inlets and
fuel inlets are equal).

In order not to introduce too many complications to the numerical calculations, the
geometry was simplified by the elimination of the 8 separators and external superheaters.
However, to take into account their presence in real device, so to ensure recirculation of
the material, a UDF was used, the exact operating principle is described in 5.6.1. The
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recurirculated material is returned through the intrex recurculation inlets (visualized in
Figure 6.6). The difference is the injection type. Instead of returning particles do specified
cells in volume, the material was injected through the surface.

The numerical mesh and geometry were created using Ansys® Workbench. The used
mesh, in its final version, was created based on previous experience with the HEL
approach. A detailed description, summarizing the experience on grid selection and
geometry is in [55, 12, 10, 77]. A crucial condition for the numerical cells was to select the
suitable mesh resolution in order to prevent the solution from reaching the solid-packing
limit, which is utilized by the kinetic theory of granular flow (KTGF) [77] to simulate
interactions among solid particles. This matter was thoroughly explained in reference [11].
The numerical mesh, used for calculations, consists of 816,407 elements, with an average
element size of 0.252 m. The shared topology utility was employed to create continuous
and seamless grids with conformal properties. As the result, the following quality statistics
were obtained: element quality – average: 0.75 (min: 0.23 – max: 1.00), skewness – average:
0.05 (min: 0.0 – max: 0.73), aspect ratio – average: 2.15 (min: 1.00 – max: 6.60).

Fig. 6.6. Simplified geometry with marked boundary conditions
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The time needed for time averaged solution for the cold simulations (i.e. without
considering species transport and heat transfer), was approx. 23 h. The presented
simulations were carried using 1 PC, equipped with 48 cores, 96 logical cores and 96
GB operating memory. The set of closure models and parameters used in the numerical
simulations for are summarized in the table 6.3. Due to the simplifications in geometry
used, appropriate boundary conditions (see tab. 6.2), were assigned to individual surfaces
in the boiler to ensure conditions as close as possible to the operation of the complete
unit.

Table 6.1
Closure models and parameters used in the simulations, where model names are

given as they appear in ANSYS®Fluent CFD code
Solid pressure, ps lun-et-al [85]

Radial distribution, g0,ss lun-et-al [103]
Granular viscosity, µs gidaspow [58]

Angle of internal friction 30�

Granular bulk viscosity, �s lun-et-al [85]
Frictional viscosity, µfric schaeffer [116]
Frictional pressure, pfric based-ktgf [124]

Radial distribution lun [85]
Granular temperature, ⇥ algebraic [124]

Drag model, Ksg gidaspow [58]
Frictional modulus derived [146]
Elasticity modulus derived [146]

Restitution coeff. in solid phase, ess 0.9
Friction packing limit, "fric

s
0.61

Packing limit, "pk
s

0.63
Transition factor of HEL 1.0

Normal discrete phase reflection coefficient 0.8
Normal discrete phase reflection coefficient 0.5



Hybrid approach for modeling large scale CFD boiler 103

Table 6.2
EL3D boundary conditions

Boundary Number of inlets Boundary condition
Primary air 1 mass flow inlet

Secondary air 32 mass flow inlet
Oil burners 7 mass flow inlet

Fuel inlets 14
mass flow inlet for gas phase

flow rate (by injection) for solid phase

Recirculation inlets 24
mass flow inlet for gas phase

UDF for solid phase
Heat exchanger inlets 8 (multi surface) mass flow inlet

6.6. Field values determined using neural network models

To speed up the process of obtaining results, for the new boiler load conditions, it
was decided to use artificial neural network (ANN). Such solution, constantly growing
in popularity, offers high accuracy of results, obtained in a short time. Deep learning
regression [20] models, make it possible to achieve predicted results, in a several seconds,
which is considerably less time than a 23 hour full CFD calculation. The field values
to be calculated are 55 440 (resulting from 66 cells in height and 840 forming a single
horizontal plane in the boiler). The field values that must be returned, corresponding to
9 Fields, which are then saved in repository, are listed below

Table 6.3
Fields interpolated between models

Field type Field no.
x velocity component of solid phase based on favre averaging Field #1
y velocity component of solid phase based on favre averaging Field #2
z velocity component of solid phase based on favre averaging Field #3
x velocity component of fluid phase based on favre averaging Field #4
y velocity component of fluid phase based on favre averaging Field #5
z velocity component of fluid phase based on favre averaging Field #6

pressure averaged in time Field #7
solid diameter averaged in space and time Field #8

volume fraction covered by solid phase averaged in time Field #9
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It is important to map out the approach to solve the problem of predicting the field
values, i.e. what data to take as an input and as an output. One of the ideas, which is
very intuitive, was to take as input data the initial boundary conditions of the CFB boiler
and the position of a cells. In such way, for one case there would be 55,440 entries, each
with 28 features (26 corresponding to the BC’s and 2 corresponding to the position of
the cell). The expected total number of calculated cases reached 254. Therefore, using
the approach described above, there would ultimately be over 13 million entries, each
having 28 features. To reduce the amount of data entered into the model, another idea
was tested and then used in this work. It involves dividing the computational domain
into planes. Each plane, at the appropriate height, is given its own number (from 0 �
65). At each plane there is 840 cells. As a result, the number of records entered into the
each model is reduced to approximately 16,000. However, the prediction of 840 values at
once might decrease accuracy. The values in each cell can differ significantly from each
other, as a result, i.a. of the location in the computational domain (e.g. the Z-component
of the velocity along the height), where the gas/solid phase velocities are much higher in
the boiler core than at the walls. Thus the cells with similar value prediction errors were
grouped, to be the outputs to the sub-models.

To determine prediction errors for single cell and to be able to decide to which sub-
models assign individual cells, time- and computationally expensive models were made.
The data from 249 cases was divided into three subsets: train, valid, test (70%, 20%,
10% respectively). In such way, the input and output data for building single models was
prepared. For each model the hyperparameters used during training were set to default,
there was no optimization applied. For each cell, the model was built five times. After
each build, the MSE value for the test set was determined and it was saved to a file.
Afterwards, the process was repeated for the next cell. The above algorithm is illustrated
in Figure 6.7 presented on next page.
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Fig. 6.7. Algorithm describing the process of building predictive models for single cell

Once the data generation and collection process was complete, an additional script
was written, which had the task of finalizing the assignment of specific columns to the
individual sub-models for a given Field. The allocation criterion, to specific sub-model,
was determined by the error value, and are presented in the table 6.4 below

Table 6.4
Error ranges determining the submodel group

ELROM submodel no Error range
submodel 1 <0-0.1)
submodel 2 <0.1-0.2)
submodel 3 <0.2-0.3)
submodel 4 <0.3-0.5)
submodel 5 0.5

After reading the file containing the data with the error values, the average error of
the five determined was calculated. On this basis, the corresponding cell number was
assigned to the target group. The process was repeated, until all cells were grouped, for
a given scalar. The illustrative Figure 6.8, shows the cells from each subgroup as well
as the concept itself of predicting values for a given plane. Please note that it is only a
visualization of the idea. For each of the subgroups, the distribution of the cell groups, on
the plane, may differ significantly from each other.
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Fig. 6.8. Visualization of the division of the computational domain into slices, and the cells
making up the slices into appropriate subgroups

Once the appropriate cells were assigned to each subgroup, the construction of the
actual models began. At this stage, when the final number of models is lower, and also
the priority is not to determine the approximate prediction error, but the highest possible
accuracy, each model construction is preceded by a search in the space of hyperparameters,
to provide such accuracy. It is an important step that must be carried out for each sub-
model. Due to the different ranges of output values, as well as the different number
of outputs, each model architecture will differ. The hyperparameters, changed during
optimization were:

• learning_rate - determines the size of the adjustments made to weights at each
iteration of the algorithm

• n_layers - layers in between input and output layer, where neurons take in a set of
weighted inputs to give an output through an activation function

• n_units - low level features for every hidden layer
• batch_size - the total number of train samples in single batch

During the search for the best hyperparameters set, as well as at the stage of building
final models, some parameters were unchanged. For all configurations, the Adam estimator
was set, which is a relatively new estimator [75, 113, 53]. It uses first-order, gradient-based
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optimization of the stochastic objective functions, based on adaptive estimation of lower-
order moments. It is a recommended estimator for machine learning problems with large
datasets and many parameters [75]. Also an early stopping with restoring the best weights
was applied. It means that, if the result does not improve (the accuracy score does not
change), in subsequent steps the model-building process stops, and the best weights are
restored and applied to the final model. As the metrics, to determine the accuracy of the
model, mean squared error (MSE) was chosen.

To recall, the main idea is to create a group of models with which it will be possible to
predict field values, for a specific plane. The process of building models begins with the
preparation of the data, and dividing it into three appropriate subsets (train, valid, test).
Then the standardization technique is applied [89], which influences and leads to a stable
solution and high precision in predicting target parameters. It rescales the data relative
to their mean and standard deviation, according to formula [93]

Xsc =
X� µtrain

�train

(6.1)

where Xsc is the standardized value, X is the original value, µtrain and �train, respectively,
denote the mean and standard deviation determined for the training set. Then, using the
calculated µtrain and �train, the test and validation sets were standardized. The space was
then searched to find the best hyperparameters set. Once the best one was determined, it
was saved and then, five similar models were built. Each time, after the building process,
the MSE metrics were saved. Having five models, the final one from them, with the highest
accuracy was selected, and it was used for prediction purposes. By repeating the building
process five times, the stability of the model was tested, and it allowed to select the
best possible version. The whole process, was performed for each sub-model, for specific
field. Prediction, like model building, must be preceded by standardization of the input
data. Then, for a given FV subgroup, the corresponding model is called up, which returns
a prediction of the value, based on the input data. The methodology for both, model
building and prediction for each field is similar, and presented in Figure 6.9 (left and right
respectively).
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Fig. 6.9. Left: Training process, preceded by a search for hyperparameters set, depending on
field final number of models is from two to five (n). Right: Scheme pf prediction
procedure, to obtain all values for particular layer

6.6.1. SFW3D and ELROM models results

During a data connection and preparation, five cases were excluded from all available
recalculated cases at the simulation stage to determine the accuracy of the prediction.
In the following, results for only two cases (64% and 98% of boiler load respectively) are
presented. An important factor, when building predictors using ANNs, is the amount
of data used for training. The greater the amount, the better the accuracy of the
model. Therefore, the comparison will be made between the two configurations. The first
(ELROM v1), for which 83 cases were used for training, and the second (ELROM v2),
for which 249 cases were used.

A quantitative comparison, based on the mean square error, is presented on the next
page. The prediction errors, for two fields (Field #2 and Field #8), are juxtaposed. Both
for 64% and 98% boiler load. In the case of Field #2, and boiler load equals to 64%
the errors, are similar for both model variants. Significantly greater difference, and a
reduction in error for the v2 variant, can be seen for the volume fraction of the solid
phase (Field #8). The similar observation is made for a boiler load of 98%, where the
MSE drops significantly for submodels 1 and 2, variant V2. The differences in prediction
errors are similar, for Field #2, for boiler load 98%. There is no significant improvement,
for variant v2 with respect to v1. Additionally, further at the qualitative comparison stage,
the differences are not significantly noticeable.
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Fig. 6.10. Comparison of the MSE for prediction: left Field #2 (z - component of solid velocity),
right Field #8 (Volume of Fraction covered by solid phase averaged in time). The
top row indicates to the 64% load, and bottom row to 98% load. The model variant
ELROM v1 is marked with orange, and the variant ELROM v2 is marked with the
blueish color

One of the most important values when it comes to particles moving in a fluidized bed
boiler is their velocity, along the height of the boiler. In Figure 6.11, it can be noticed that
the greatest solid velocity is in the in the middle of the boiler height, while on the bottom
and at the top it decreases, for the boiler load equal to 64%. For the boiler load 98%, there
are local vortices at the bottom of the boiler which increase the solid velocity. However,
regardless of the use of the ELROM v1 or v2 model for particle velocity prediction, the
results are a good representation of the velocities present in the original simulations using
EL3D.
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Fig. 6.11. Comparison of the Field #2 (z - component of solid velocity): model EL3D (left side),
reduced model ELROM v1 (centre), reduced model ELROM v2 (right side). The upper
row presents result for the 64% boiled load, while bottom for the 98% boiled load

The solid volume fraction holds significant importance in the field, as it is a crucial
parameter characterized by a narrow range and the shape of the field. It reaches its
maximum value at the lower region of the calculation domain, gradually decreasing to
nearly 0 towards the upper region of the combustion chamber. This pattern is clearly
observed in the results obtained from the original EL3D simulations, where the highest
concentration of particles is found at the bottom of the boiler. As the height increases,
the contribution of these particles to the overall volume diminishes. In the case of the
ELROM v1 model, a similar variation in particle concentration with height is observed.
However, the highest concentration is primarily concentrated in the lower layers, while it
decreases in the higher layers. Nonetheless, the solid volume fraction remains relatively
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uniform in the remaining parts of the field. The ELROM v2 model, which predicts the
volume fraction, performs significantly better. Once again, the highest concentration is
observed at the bottom but decreases as the height increases, reaching its lowest point in
the uppermost regions. The qualitative results are presented and depicted in Figure 6.12.

Fig. 6.12. Comparison of the Field #8 (volume fraction covered by solid phase averaged in time):
model EL3D (left side), ELROM model v1 (centre), ELROM model v2 (right side).
The upper row presents result for the 64% boiled load, while bottom for the 98 %
boiled load

To compare the differences in the results of the SFW3D model, depending on the
start of calculations with and without specific initialization points derived from the EL3D
model, the results are presented at Figures 6.13 and 6.14 presents the flow fields affected
by externally solved flow field (images a). With original solver the filed was quite uniform
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in both cases. When the modifications were applied, i.e. the calculations were initialized
with outputs from EL3D, the SFW3D followed the externally solved fields (images c).
Without initialization using the results from the EL3D model, the results were more
uniform across boiler sections (images b).

Fig. 6.13. Effect of externally solved gas flow field for the vertical gas velocity a) solved by CFD,
b) SFW3D result without modification, c) SFW3D result with modification

Fig. 6.14. Effect of the externally solved solid flow field for the vertical solid velocity a) solved
by CFD, b) SFW3D result without modification, c) SFW3D result with modification



7
Summary and conclusions

In the presented dissertation, the main issue addressed is the use of computer fluid
mechanics, to model granular flows. Granular flows are characterized by high solid
volume fraction, where a very large number of particles, affects a significant number and
complexity of collisions between them. The work mainly focuses on description of three
already available approaches, used widely for modelling multiphase flows, i.e. Euler-Euler
(EE) approach, Hybrid Euler-Lagrange (HEL) approach and Discrete Element Method
(DEM). Of the three mentioned, the latter two were used to show the significant differences
between them, mainly in simulation time as well as the approach to collision detection, and
thus the behavior of the particles. Furthermore, machine learning algorithms are described,
specifically concentrating on techniques used in presented work, i.e. decision trees and
neural networks. Over past few years, machine learning has gained increasing attention
and is progressively being integrated into various industries, often in combination with
numerical computing approaches.

The work is essentially divided into two parts, where simulation results are compared
with experimental measurements. The first, covering chapters 4 and 5, describes the
approach of combining the HEL model and the DEM, which finally forms the Hybrid
Euler-Lagrange Surrogate Collision Model (HELSCM) model. The main idea is to combine
the advantages of the two models mentioned above. The HEL model, has proven effective
in simulating multiphase flows within industrial fluidized bed boilers, primarily attributed
to its relatively short computation times. However, it is not without disadvantages,
including issues concerning calculation stability and collision detection itself, which is
strongly dependent on the solid volume fraction in computational cell. On the other
hand, the DEM model, despite its enhanced precision in collision detection, based on
particles position, is not widely used in simulation of real-world objects of great size,
primarily due to extended computational time. To present, in a more visible way for
a better comparison, the differences in collision detection between the HEL model and
DEM, a set of low-level tests was conducted. One test involved collisions between two
streams of particles moving from opposite directions. The geometry consists of the main
channel with two side inlets attached to it, through which particles are supplied. To ensure
a valid comparison, identical boundary and initialization conditions were established for
both models. In case of HEL model, the opposite streams at the time of collision, barely
interacted with each other, due to the small volume fraction of the solids in the numerical
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cell. In contrast, the DEM model correctly detected collisions. The particles, visibly
interacted with each other in the center of the main channel, and then, as a result of the
collision, changed their trajectory and moved along the center of the channel. In addition
to the qualitative comparison, a quantitative comparison was made by determining the
sections, in which the average particle velocities were determined. These values allowed
to make their velocity profiles in the main channel. The aforementioned geometry was
simplified, but its fundamental components were still mapped to a specially built test-
rig. It features a transparent material of the main channel. With the test-rig, it was
possible to make measurements reflecting simulations to have a reference point for the
particles behaviour in reality. To ensure the repeatability of the measurements, they were
made nine times. Measurements were captured by placing a high-speed recording camera
in front of the test-rig. To determine the average particle velocity during the carried
out experiments, in the relevant sections, it was necessary to create custom algorithm,
developed in LabView software. The algorithm allowed to track particles based on the
subsequent images captured during the measurements.

The subsequent step, after defining the benchmark results, was to create new approach
for modelling multiphase flows. The main idea was to combine the strengths of the HEL
and DEM, i.e. short simulation time and the collision detection precision. For this purpose
the machine algorithms were used, which are characterized by the high accuracy and the
speed of obtained results. Using the DEM model, a series of simulations of two-particle
collisions were performed. Each time, the velocity components of both before and after
the collision were recorded. With the data collected in this way, a simplified model, able
to predict appropriate outputs based on the input data. In this case, the components of
velocity vectors served as inputs and outputs. The model thus built was implemented for
simulations using the HEL model, replacing the basic approach to collision detection, using
User Defined Functions (UDF). The first test to validate the newly created model, named
Hybrid Euler-Lagrange Surrogate Collision Model (HELSCM), was to make simulations
of few particles moving from opposite directions, to check if the collisions occur. For HEL
approach particles interpenetrated each other, while for DEM and HELSCM interacted,
and changed the directions. Another test, reflecting experimental measurements, was
performed, identical to simulations previously made with the HEL model and DEM, i.e.
collisions of two opposite streams in a channel. In this case, also in addition to qualitative
comparison, data was collected for quantitative comparison. For this purpose, average
particle velocities in specific sections along the main channel were determined. Then, the
results were gathered on a common graph in the form of velocity profiles, and compared
with each other. In terms of qualitative comparison, the particle streams for the HEL
model are interpenetrating, particle interactions are noticeable slightly. The DEM model
shows the greatest agreement with experimental results, that is, after the particle streams
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collide, they change their trajectory and move along the main channel. The HELSCM
model, also shows greater detection of particle collisions than the HEL model, however,
after collisions the particles are more dispersed in the channel.

The possibility of using the HELSCM model has also been tested in simulations of the
circulating fluidized bed simulation phenomenon, in a boiler of small size. For this purpose,
a simplified geometry of the fluidized bed boiler was created. Fluidization simulations
were carried out for two models HEL and HELSCM. In order to compare the results
with each other, results were collected from the volume shares of the solid phase in the
domain, particle velocities, and pressure profiles were made along the height of the boiler.
Particle velocities as well as volume solid fractions are similar. However, in the case of the
HELSCM model, particle velocities near the walls are negative (they move downward),
such phenomenon is desirable in fluidized bed boilers. The velocity profiles differ slightly
near the bottom of the boiler, nevertheless, they become similar together with height.

The second part of the work focuses on a slightly different approach to modeling
multiphase flows. In this case, as part of OPTI_AI_UNIT project, the goal was to map
field values in a real-size boiler in Lagisza power block in Bedzin. To help monitor the
help of power devices, as well as to prevent unplanned failures, several numerical models
have been created. One of them is the 1D (SFW1D) model and 3D models: steady state
(SFW3D) and the more complex EL3D (Hybrid Euler-Lagrange). SW1D model requires
data from SFW3D model. The SW3D model returns more exact results, if is initialized
with the data from EL3D model. The SFW3D model considers the process of the heat
and mass exchange, while EL3D allows to track particles and the hydrodynamics of the
bed. However, in case of 3D models the calculations are too expensive in terms of time,
to be used for real-time boiler control. Therefore, neural networks are used as the basis
for creating a simplified model, whereby results corresponding to those using the EL3D
model are obtained much faster. The complete procedure for creating a set of models to
reproduce the fields, for each of the required parameters, is described in detail. The set
of those models was names ELROM. The data used to train the model ELROM, came
from model EL3D. Based on the specified boiler operating parameters, they are able
to return the corresponding field values. These values, regardless of whether they come
from model EL3D or ELROM, are used to initialize the calculations of model SFW3D.
The collected results clearly show that more the data for learning neural networks, the
closer the obtained result is to the expected response. In addition, the initialization of
the calculation of SFW3D models, with data from the EL3D model or ELROM model
definitely increases its accuracy. It should be noted that the exchange of data between
the mentioned models is not trivial, due to the different languages in which the programs
are written and their different locations. Therefore, a special architecture for data storage
and exchange using databases was developed.
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7.0.1. Future research

The work described in the presented thesis is divided into two parts. The part on
the construction of neural networks to predict value fields has essentially been done and
completed. The next steps will be to deploy the developed models into production, to
continuously help optimize the performance of the predictive-prescriptive system. This
part, however, will be led inside Tauron Group.

The second part of the described work focused on development of the HELSCM model,
as a combination of the HEL model and the DEM model. In case of that model there is
still some room for improvement. According to that, the further work focus will be revolve
around striving to closely match the DEM model, not only in terms of velocities - which
at this moment are similar, but also in terms of particles trajectories themselves. It might
require to create the data set or just to update existing data set. the new model will have
to be built. In both cases, it will be necessary to update the existing model. If adequate
accuracy or satisfactory particle behavior will not obtained, an attempt will be made
to build a suitable dataset, based on other software used for particle collision modeling.
Available, for this purpose, are software such as EDEM supported by ANSYS®Fluent,
RockyDEM, or Altair® EDEM™. From an open source softwares, at least two are taken
into account, in which modelling of particle interactions is possible, i.e. LIGGGHTS or
OpenFOAM. Regardless of the alternative chosen, it will be necessary to gain knowledge
and some experience. Again to verify, the accuracy of the improved models, the same
experimental test-rig will be used, allowing to track the behavior of two colliding opposite
streams of particles.

Simultaneously, the work will be carried out to develop approach and to create a data
set to accurately reflect particle collisions of different diameters. In this case, also, the
already used experimental test-rig will be used to obtain measurements results, which
will be a benchmark case for simulations. The main assumption of the tests that will
be carried out is particle collisions, where opposite streams will have different particle
diameters. In parallel, work is underway to develop an approach to building a model
and a set of suitable datasets to reflect particle collisions of different diameters. In this
case, too, the experimental bench, whose measurement results were used in the target
simulations, will be used as a reference. The primary premise behind the forthcoming
tests is the examination of particle collisions in situations where opposing streams feature
particles of differing diameters.

After the tests of fluidized bed simulation in a small sized boiler are done, the next step
will be to improve the UDFs already written to simulate the fluidization phenomenon in
a boiler of real size. In this particular case, the focus will be on trying to simulate the bed
in a boiler geometry that mirrors the CFB boiler located at the Łagisza power plant, in
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Będzin. The work will require modifications to the code used in the UDF, mainly involving
parallelization. With it, it will be possible to simulate the several million particles involved
in fluidization in a real-sized boiler.



Abbreviations

2D two-dimensional 3D three-dimensional
ANN Artificial Neural Network API Application Programming

Interface
BFB Bubbling Fluidized Bed CFB Circulating Fluidized Bed
CFD Computational Fluid Dynamics DDPM Dense Discrete Phase

Method
DEM Disctrete Element Method UDF User Defined Function
HEL Hybrid Euler-Lagrange EE Euler-Euler
KTGF Kinetic Theory of Granular Flow MAE Mean Absolute Error
ML Machine Learning MSE Mean Squared Error
MP-PIC Multiphase Particle in Cell PC Pulverized Coal
PFC Particle Flow Code PSD Particle Size Distribution
RDF Refuse Derived Fuel REST REpresentational State

Transfer
RMSE Root Mean Squared Error ROM Reduced Order Model
SCM Surrogate Collision Model SM Surrogate Model
VM Virtual Machine HELSCM Hybrid Euler-Lagrange

Surrogate Collision Model
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Abstract

Development novel approaches for modeling dense granular flows

Keywords: multiphase flows, particle collisions, machine learning, neural networks,
circulating fluidized bed boiler, intelligent control, computational fluid dynamics,
experimental setup, simulation validation, novel approach, fluidization
Granular flows, are characterized by a high solid volume fraction of the solid phase. An
example of such a flow is the fluidization. Fluidization is a phenomenon where, under
the influence of a flowing gas, the solid particles undergo constant motion, and behave
like a fluid. The phenomena finds diverse applications, and gained popularity in recent
years. It finds it application in industries such as chemicals, pharmaceuticals, food, energy.
Especially in the latter example, the technology has numerous applications due to its
many advantages over traditional boiler designs. All this, is mainly due to the growing
computational resources that allow the use of advanced computer models, to predict the
behavior of the solid phase. Due to the large number of particles characterizing granular
flows, modeling them is not a trivial task. The large volume solid volume fraction affects
a very large number of complex interactions between particles. To reduce the financial
outlay accompanying attempts to improve existing technologies, it is necessary to use
accurate numerical models to map the phenomena occurring. Despite the computational
techniques that are already available, there is still room to try to improve them, or draw
advantages from them, to combine them into a new approach.
The dissertation presents two different approaches. One is the use of machine learning
techniques to improve collision detection. It is based on combining the Hybrid Euler-
Lagrange model with the Discrete Element Method model, through the use of a simplified
model. The simplified model will be integrated into simulations using the Hybrid model,
through User Defined Functions. When a collision is detected, it will be triggered,
thereby replacing the existing approach based on Kinetic Theory of Granular Flow. The
results of the calculations will be compared with experimental measurements, carried
out on a testing-rig replicating the conditions of the simulations carried out. The second
proposed approach uses neural networks to predict field values in a numerical model of
a circulating fluidized bed boiler. The approach is part of a prediction and prescriptive
system developed, to allow intelligent control of the boiler, located at the Lagisza power
plant in Będzin.



Abstrakt

Nowatorskie podejścia do modelowania przepływów granularnych

Słowa kluczowe: przepływy wielowfazowe, kolizje cząstek, uczenie maszynowe, sieci neu-
ronowe, kocioł z cyrkulacyjną warstwą fluidalną, inteligentne sterowanie, komputerowa
mechanika płynów, stanowisko eksperymentalne, walidacja symulacji, nowatorskie pode-
jście, fluidizacja
Przepływy granularne, cechują się dużym udziałem objętościowym fazy stałej. Jednym,
przykładów takiego przepływu jest zjawisko fluidyzacji. Fluidyzacja jest zjawiskiem, gdzie
pod wpływem przepływającego gazu, cząstki stałe są w ciągłym ruchu, co sprawia, iż
zachowują się jak płyn. Zastosowanie tego zjawiska jest dość szerokie, a w ostatnich
latach zyskuje na popularności. Zjawisto te wykorzystywane jest w przemysłach m.in.
chemicznym, farmaceutycznym, spożywczym, energetycznym. Szczególnie w ostatnim z
wymienionych przykładów, technologia ta ma liczne zastosowania ze względu na wiele za-
let w porównaniu z tradycyjnymi konstrukcjami kotłów. Wszystko to głównie dzięki ros-
nącym zasobom obliczeniowym, które pozwalają na zastosowanie zaawansowanych modeli
komputerowych do przewidywania zachowania fazy stałej.
W związku z dużą ilością cząstek charakteryzującą przepływy granularne, modelowanie
ich nie jest trywialnym zadaniem. Duży udział objętościowy wpływa na bardzo dużą
ilość złożonych oddziaływań między cząstkami. Aby zmniejszyć nakład finansowy to-
warzyszący podjętym próbom ulepszenia istniejących technologii, koniecznym jest wyko-
rzystanie dokładnych modeli numerycznych pozwalających na odwzorowanie zjawisk wys-
tępujących. Mimo dostępnych już technik obliczeniowych, nadal jest miejsce na próby
ulepszenia ich lub wyciągnięcia z nich zalet, w celu połączenia ich w nowe podejście.
W pracy doktorskiej zaprezentowane zostały dwa różne podejścia. Jednym z nich jest
wykorzystanie technik uczenia maszynowego, w celu usprawnienia wykrywania kolizji.
Bazuje ono na połączeniu modelu Hybrydowego Eulera-Lagrange’a z modelem Dis-
crete Element Method, poprzez zastosowanie modelu uproszczonego. Model uproszczony
zostanie zintegrowany w symulacjach z użuyciem modelu Hybrydowego, poprzez Funckje
Własne Użytkownika, aby w przypadku wykrycia kolizji został on wywołany, czym za-
stąpi dotychczasowe podejście oparte na kinetycznej Teorii Przepływów Granularnych.
Wyniki obliczeń porównane zostaną z pomiarami eksperymentalnymi, przeprowadzonymi
na stanowisku, które odwzorowuje warunki przeprowadzanych symulacji. Drugie zapro-
ponowane podejście wykorzystuje sieci neuronowe, w celu predykcji wartości polowych
w modelu numerycznym kotła z cyrkulacyjną warstwą fluidalną. Podejście te jest częścią
stworzonego systemu predykcji oraz preskrypcji, pozwalającego na inteligentne sterowanie
kotłem z znajdującym się w elektrowni Łagisza w Będzinie.


