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1
Introduction

1.1 Medical Background and contemporary method-
ologies

According to World Health Federation (WHF) 2023 Heart Report [1], Car-
diovacular Diseases (CVDs) are still the leading cause of death among hu-
mans. Cardiovascular Diseases are any diseases that are responsible for med-
ical pathologies related to the heart or blood vessels. CVDs are a class of
diseases and medical conditions themselves, which constitute f.ex. coronary
artery diseases, hypertensive heart diseases, ischemic cerebrovascular accident
(strokes) and many others [2]. In 2021, their death toll was estimated at 20.5
million, which constitutes a third of all deaths globally. Despite the growing
health awareness and slowly decreasing rates of CVD-related deaths in the re-
cent years, they still pose a substantial threat. Even though there are a lof of
treatments possible, unfortunately, there is no universal approach for (early)
detection and, sadly, it most often occurs after an cardiac episode has already
taken place. One of the steps toward raising a CVD-related concern in a patient
is the determination of their overall risk factor associated with CVDs, which
consists of many smaller factors contributing negatively to overall well-being:

1
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elevated LDL cholesterol, sodium intake, air pollution, high body-mass index,
tobacco use, low physical activity, elevated blood pressure (hypertension) and
others. Each of these factors can be determined through a thorough interview
conducted by a medical examiner. Although most of these factors are readily
available to physicians, they are not sufficient to constitute a basis for taking
a serious medical or surgical action. Furthermore, they do not explain the
underlying mechanism behind many of the reported CVDs, which is arterial
stiffness. [3] Arterial stiffening is a process of decreasing arterial compliance as
a result of various factors, primarily aging and arteriosclerosis [2]. This loss of
compliance has many negative outcomes. First, arteries serve as a secondary
pumping mechanism, i.e. when the heart ejects blood, the arteries expand and
gain elastic potential energy. After a second they bounce back to their original
shape, transforming the elastic energy into work, and pumping the accumulated
blood down along the arterial tree. An impediment to this mechanism leads,
for example, to left ventricular hypertrophy, left ventricular remodeling, and
ultimately to heart failure [4]. An increased workload on the heart often leads
to hypertension and strokes [4]. As demonstrated, arterial stiffness correlates
with many CVDs and thus it would be beneficial to have a way for physicians
to accurately estimate it so that appropriate treatment or lifestyle changes may
be recommended. The current gold standard of arterial stiffness measurement
is the Pulse Wave Velocity measurement. The mathematical formula itself has
many variants depending on the application, however the most widely known
version is the Moens-Korteweg relation: [3]

PWV =

√
E · h
2 · b · ρ

(1.1)

where ρ is the blood density, b is the blood vessel radius, h is the vessel wall
thickness and E is the Young’s modulus, defined as: [3]

E =
σ(ϵ)

ϵ
(1.2)

where σ is the stress tensor and ϵ is the strain tensor. The Pulse Wave Velocity
is obtained by measuring the Pulse Wave at two locations in the body, most
often carotid and femoral arteries, and the equation is reordered to obtain the
arterial stiffness, E. This is a so called ’regional’ or ’global’ method, as it esti-
mates arterial stiffness using data and measurements taken at different, distant
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regions within a human body, which increases the inaccuracy of estimation.
PWV-based methods generally are widespread and inexpensive, however they
are best suited for recovering the stiffness in larger vessels. [5] Furthermore,
PWV-based methods suffer from impaired diagnostic capabilities resulting from
the fact that they do not take into account local inhomogeneities in stiffness
within the arterial tree. This omission is crucial, as in the beginning stages of
various atherosclerotic and arteriosclerotic diseases, only the local elastic prop-
erties of the arterial walls are affected. Thus they may be easily missed by such
a regional approach. [6] Hence there exists a need for a framework that will
provide accurate, fast and local estimates of arterial stiffness for early detec-
tion of onset of arterial stiffening, so that CVD-preventative measures may be
advised before any real pathologies develop. This thesis proposes an alterna-
tive methodology relying on the techniques introduced in the following sections.
Once the methodology and objectives are introduced, the techniques are briefly
described.

1.2 Obejctives and Methodology

As mentioned in the previous section, there currently exists a gap in the litera-
ture, when it comes to an efficient method for reliably estimating local arterial
stiffness. The purpose of the ENTHRAL project ("Non-invasive in-vivo assess-
ment of local stiffness of human artery walls", see [7]) was to fill in the gap with
a new proposed methodology. Ideally, the method would rely on measuring the
arterial displacements using the ultrasound system by a physician. The mea-
sured displacements would be then processed on-the-fly and fed into an inverse
solver that would estimate the arterial stiffness and other related quantities
of interest. The solver, which most often is an optimization procedure or a
Markov Chain [8] requires a lot of evaluations to minimize the error function
with respect to estimated parameters and the measured/simulated data. Thus
it would need to rely on a fast-to-evaluate model, most likely a statistical one,
as using classical numerical models would be too time consuming. Such model
would, ideally, be optimal among other candidates and would be based on data
generated from a physical (most likely numerical) model of an actual artery.
The need for such a numerical model is straightforward: when it is validated
on experimental data it can ’replace’ the experiments, which are often very
expensive and time-consuming to carry out. To fully validate the model, the
experiment itself would also need to be assessed in terms of its reproducibil-
ity. Furthermore, the experiment would also itself serve as a validation of the
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use of ultrasound to reliably read off the displacements produced by an arte-
rial phantom. This work lays the groundwork for the above methodology, by
implementing each of the steps and testing them on an experimental phantom.

As mentioned, the main objective behind this work is the development of a
non-invasive methodology for local estimation of arterial stiffness. To achieve
this, a set of smaller steps is taken. These can be stated as a list to make them
more digestible:

• Development of an experimental rig to validate the ultrasound as a valid
technique for measuring arterial displacements

• Assessing the quality and reproducibility of the conducted experiments
experiments

• Development of a numerical model for simulation of arterial phantoms
and its validation

• Surrogate Model development for fast and accurate simulations

• Uncertainty Quantification and Sensitivity Analysis of the FSI model us-
ing the surrogate

• Inverse estimation of parameters; particularly arterial stiffness

Let’s start from the top of the list. It is a nice idea to use the ultrasound to read
off arterial displacements, but it needs to be confirmed experimentally. To that
end, first the experimental rig needs to be constructed and the experiments
planned. The rig will use two high-fidelity cameras to capture displacements
in two orthogonal directions. The used phantom is assumed to be relatively
symmetric, thus if the processed data from two cameras is very similar to each
other (within error bounds) the symmetry assumption will be confirmed. Then
one of the cameras (the top one) will be swapped with an ultrasound and the
results compared. To make any of that happen, first appropriate algorithms
need to be written that process the data coming from the cameras. The rig
will also include pressure and flow meters that allow one to measure the flow
conditions in the system and then correlate them with the measured displace-
ments. This allows to the use the data for camera-ultrasoud validation as well
as for Boundary and Initial Condition generation.

To make sure the data are not generated by random chance and can actually be
reproduced, they need to be statistically assessed: here we move to the second
item on the list. The assessment will proceed first by performing a preliminary
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statistical analysis on the data to get a ’feel’ for it. After this initial processing,
a model structure needs to be established that closely matches the experimental
procedure. Once such a structure is established, an appropriate model needs to
be chosen. When it is chosen, it needs to be compared with the one resulting
from the initial, basic preprocessing to prove that it actually is an improvement
when it comes to explaining the variance present in the experiment. Once this is
achieved, different models of various complexities shall be developed to capture
as much of the data as possible and the best one shall be chosen. Subsequently
all the cases need to be analyzed and the results need to be checked to see
whether they do not invalidate the model’s initial assumptions.

Having assessed the uncertainty present in the data, it is time to develop the
Fluid-Structure Interaction model. The inputs for it will come from processed
experimental data and processed material testing data (these experiments were
performed by an external party). Then, two FSI models will be developed: one
using the partitioned FSI approach embedded in the ANSYS package and one
using the monolithic FSI approach present in the FEBIO package. Mesh sensi-
tivity needs to be performed and models compared against each other. Given
that they produce similar results, the faster model needs to be chosen, validated
against experimental data and automated for the purposes of developing the
surrogate model.

For construction of the surrogate, which is the next item on the list, one needs
to choose variables of interest. Subsequently, an experimental design needs to
be performed by choosing an appropriate design or sampling scheme. Then, the
FSI solver needs to be embedded in a loop and evaluated a prescribed amount
of times. The results from these evaluations need to be checked, whether they
make physical sense. Then the results needs to be split into train and test sets to
allow for surrogate training and then predictive performance checks. Various
surrogates need to be trained, their sensitivity to input parameters assessed
and ultimately their predictive performance compared against each other. The
winning surrogate will be used for subsequent tasks.

The penultimate entry on the list is the UQSA of the FSI model. To do that,
first the appropriate method needs to be chosen. Having chosen, it needs to
be implemented and checked against the benchmark (e.g. Ishigami function).
Correlated parameters, if they exist, need to be treated specially. The conver-
gence of SA must be performed. From UQSA results one is now able to suggest
future directions of research when it comes to input parameters, quantify the
uncertainty present in the FSI model due to input parameters, and simplify the
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model of interest.

Finally, with the surrogate model, it is possible to estimate the parameters of
interest (e.g. arterial stiffness). The overarching methodology for the estima-
tion needs to be chosen. Subsequently, the estimation structure needs to be
proposed, developed, and the surrogate model embedded within it. The results
need to be checked for whether they do not defy the original assumptions of
the routine. The final results need to be discussed.

1.3 Fluid-Structure Interaction modeling

In cardiovascular biomechanics, where the solid body (artery or other) enclosing
the flowing blood is acted on by it, one needs to consider a joint response of these
both physical domains. Classically for separate numerical modeling of fluid and
solid domains, two methodologies have been developed; Computational Fluid
Dynamics (CFD) and Finite Element Analysis (FEA). FEA is a general frame-
work for analyzing solid dynamics subject to various constraints and forces,
employing the Finite Element Method to discretize the Cauchy equations of
motion over some arbitrary solid domain, Ωs, into a linear system of equations,
which are then numerically solved to obtain approximations of the considered
system [9]. On the other hand, CFD often applies the Finite Volume Method to
discretize the Navier-Stokes equations over an arbitrary fluid domain, Ωf , into
yet another system of linear equations [10], which is then solved. While both
methods have found wide applicability in engineering and science, they are not
sufficient to accurately model cardiovascular mechanics separately [11]. Thus
a coupling between these two methods is introduced, termed the Partitioned
Fluid-Structure Interaction. It is a method of simulating behaviour of coupled
fluid-solid systems. This is often achieved by enabling close communication
between the solid and fluid domains during problem setup and solution.

The implementation of Fluid-Structure Interaction can be broadly divided into
two approaches: monolithic and ,as desrbied above, partitioned. Within the
monolithic approach, the fluid and solid domains are discretized together (usu-
ally using the Finite Element Method) and subsequently solved together in one,
large linear system. This approach boasts very high accuracy while suffering
from very large computational costs. One of the software used for this work,
FEBio [12], employs such a monolithic approach. The partitioned approach,
on the other hand, works a bit differently. Here, both separate discretization
schemes and solvers are used for fluid and solid domains. Information transfer,
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instead of being ingrained in the model, like in the monolithic approach, hap-
pens at the coupling boundaries where physcial quantities like (for solid-fluid
couplings) forces and displacements are exchanged. Within a given time step,
convergence of the physical quantities is monitored, which when met allows
to proceed to the next time step upon completion of remeshing of both do-
mains. [13] This approach leverages the, separately developed, advanced CFD
and FEA algorithms for problem-solving, however it is prone to errors and
instability [11].

For the partitioned approach there further exists a distinct difference in domain
coupling strategies. When a transfer occurs only from one domain to the other,
e.g. pressures calculated within the fluid domain are transferred as forces for
the solid domain, one is working with One-Way FSI [14]. It is often applied in
cases when the coupling existing between the fluid and solid domains is not very
strong and the deformations of the solid body are very low to negligible during
the process [14]. Hence it is utilized to primarily estimate the stresses acting
on the solid due to the flow of the fluid. Thus One-Way coupling has found
many applications, particularly in durability tests of mechanical equipment,
i.e. marine propellers [15] or tests on butterfly valves [16], while also having a
limited success in medical applications [17, 18, 19, 20], However, when there is
a significant modification of the flow field due to non-negligible deformations
of the solid element that is either constraining the fluid domain or lies in its
path, one should use the Two-Way FSI approach. [14] Here, forces are passed
between both domains at the coupled surface(s) and the solution of the domain
proceeds as described above. Two-Way FSI has the advantage of producing
more realistic results at the cost of increased computational cost due to con-
stant remeshing of the domains and coupling iterations between two domains
[14, 11]. Unlike One-Way FSI, it has found wider but still limited applications
in biomedical research [19, 21, 22, 23, 24]. Other areas of implementation in-
clude ship design and modeling [25], ocean engineering [26] and many others
[27, 28, 29]. Recently more studies are being conducted regarding the effective-
ness of One-Way FSi vs Two-Way FSI but the conclusion is somewhat repeated:
while One-Way FSI tends to compute faster in comparison to Two-Way (usually
hours for the former and days, weeks for the latter), it is unrealistic for heavily
coupled flows. In a study conducted by Khe [30], it is demonstrated that for
coupled flow–vessel interactions, the absolute values of mechanical parameters
(such as pressure, stress, strain) tend to decrease. This results in a solution
of the hydroelastic problem, which is more detailed and more reflective of the
experiment. Thus it seems that the most reliable approach to model the be-
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haviour of an arterial phantom, would be to resort either to a monolithic FSI
approach or a partitioned one, with Two-Way Coupling.

1.4 Surrogate Modeling

The computational demand of the FSI solvers (both monolithic and partitioned)
described above is a big limitation, when one desires to apply the model to
something more than just one-off prediction. It is indeed problematic because
modern scientific and engineering analyses often demand far more than just
singular model evaluation to test some theory. Often many engineering ap-
plications such as shape optimization [31], parameter estimation [8], model
tuning [32], Uncertainty Quantification [33] or Sensitivity Analysis [34] require
that the model be evaluated a large number of times in order to obtain accurate
solutions. These approaches often need hundreds or hundreds of thousands of
evaluations to obtain a precise estimate, which seems impossible given that
for fairly uncomplicated problems and geometries, FSI calculations may take
from many hours to many days, weeks. It is thus obvious that in engineering
and medicine in particular, days or weeks may be the last straw between a
construction failure or patient’s death. Thus the limitation imposed by FSI in
medical context is a particularly severe one. However modern problems require
modern solutions - similarly to how one is able to ‘replace’ the experiment by
developing a numerical model, testing it and then using it to test for new (not
experimented) scenarios, it is also possible to develop a second, less involved,
statistical model (often called a surrogate) that will ‘replace’ the full FSI solver.
Such a model will naturally possess less resolution than a full order FSI model,
the same way an FSI model will possess less resolution than an actual exper-
iment. However using such a surrogate model will drastically accelerate the
evaluation process at a loss of a fraction of accuracy. It is often an accept-
able trade-off and thus in the engineering and sciences they have been widely
applied.

To create such a surrogate model, a more rigorous path is often followed. The
surrogate modeling framework can classically be divided into a four steps, often
followed (not necessarily rigorously) in this order: [35]

• Design of Experiments

• Variable Selection

• Creating a (surrogate) model
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• Model evaluation and selection

Each of these steps appears throughout this work (either explicitly or not) and
deserves attention. To have a better idea of methods used in contemporary
engineering, science and medicine that encompass either CFD, FEA or FSI
modeling on their own, a scoping review has been conducted. Its primary goal
was to inform and guide the creator of the thesis when performing and designing
analyses. It was carried out according to the procedure described in [36] and
its results are summarized in Figure 1.1.

Starting of with the first item on the list above, Design of Experiments (often
called Experimental design), is a methodology aimed at reducing the num-
ber of experimental evaluations, such as physical experiments or simulations,
required to obtain specific information about a process. Historically, Facto-
rial and Fractional Factorial designs were utilized, however, the less restrictive
characteristics of computer experiments have led to a preference for space-filling
designs like Latin-Hypercube Sampling and Uniform Sampling [37, 38]. This
should not be interpreted to mean that Factorial designs have been completely
supplanted by space-filling designs; instead, they are predominantly employed
in physical experiments rather than in numerical simulations [39]. This result
is corroborated by the summarized results in Figure 1.1.

Looking at the top-left part plot in Figure 1.1, it is visible that the Latin-
Hypercube Sampling (LHS) method for experimental design is by far the most
widely used in the reviewed literature, followed by Uniform and Sequence-based
sampling (all being space-filling designs). LHS is by far the most widely applied
technique due to its ease of application, straightforward interpretation, and
effectiveness [40, 41]. The second most applied scheme is the Uniform Sampling
[37, 39, 42], followed by random sequence-based sampling (e.g., Hammersley,
Sobol, Halton, Korbov) [38, 43] or Orthogonal Latin Hypercube [44].

A less applied technique that is gaining popularity (especially in the optimiza-
tion community) is variational (sequential) sampling (particularly prevalent
in the literature on Gaussian processes) [41, 45, 46]. There are other tech-
niques, far less present in the chosen literature, like Linear Nearest Neighbor
[41], greedy sampling on the output (or both on inputs and outputs) [47], Spa-
tial Simulated Annealing (particularly for working with spatially related data)
[48], Custom Sampling [49]. However, in engineering applications, it is also rel-
atively common to use domain knowledge to limit possible model evaluations
and limit explorations to a few design points [37, 50].



10 CHAPTER 1. INTRODUCTION

Figure 1.1: Summary of results of the literature review. Each of the four
graphs shows the frequency (prevalence) of appearance of methods in the re-
viewed papers. Shortcuts stand for: LHS - Latin Hypercube Sampling, U -
Uniform Sampling, Seqs - Sampling based on Random Sequences, Sequent -
Sequential Sampling, Fact - Factorial Design, Domain - physical or domain
knowledge, PCA - Principal Component Analysis, PCE - Polynomial Chaos
Expansion, GPR - Gaussian Process Regression, RSM - Response Surface Mod-
eling/Methodology, SVR - Support Vector Regression, ANN - Artificial Neural
Networks, KR - Kernel Regression, RMSE - Root Mean-Squared Error, MAE
- Mean Absolute Error
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The second plot, top-right, in Figure 1.1 represents the selection of variables
(first item on the list), that is, which variables are deemed "important enough"
for a surrogate model. Just as in experimental design, it is commonly predeter-
mined in engineering which variables are crucial for the modeling framework.
Often these variables are related either to the physical process that is being em-
ulated [37, 39, 45, 49],[51], [52], to the geometry of the object [40, 52, 53]. They
might also embody a parameterization of this geometry [42]. Variable selection
is frequently closely related to experimental design, as the techniques employed
to develop sampling strategies also yield insights that help distinguish critical
variables. For example, employing fractional factor designs can help reduce the
set of significant variables [52].

Often, the variables in question are either too abundant or fall outside of conven-
tional understanding. Under these circumstances, it is typical to utilize dimen-
sionality reduction methods such as Principal Component Analysis [38, 54, 55]
or to express the data in a different (usually orthogonal) framework, such as
through Polynomial Chaos Expansion (PCE) [56].

The third panel represents the surrogate model itself (third item on the list),
that is, the emulator chosen by the researchers for the given task. Gaussian
Process Regression (GPR, or more generally Gaussian Processes, GPs) has been
frequently selected as the go-to method, describing its flexibility, predictive ca-
pabilities, and mathematical tractability as the primary selling points [55, 57].
GPs are also applied due to their statistical setting and providing readily avail-
able and easy-to-understand uncertainty estimations [45]. The most prevalent
form of GPR features a zero-mean function [55] and a Squared Exponential
kernel (SE) [38, 43] [55] - [58]. However, researchers often employ non-SE ker-
nels or construct more sophisticated kernels (e.g., the combination of inputs of
linear order with interactions and SE kernel in [38] or polynomial combinations
[58]). Furthermore, some papers strayed from the pack in terms of mean func-
tions, making them nonzero in order to capture some trend [59, 60]. This was
notably interesting in [59] where a linear mean function was selected to mimic
the behavior of a hyperelastic material model. Alternatively, some researchers
apply Gaussian Processes within the Kriging framework solely to characterize
the noise component of a model [49] - [60].

Often Gaussian Process models are benchmarked against other, more standard
and well-described models such as Response Surface Models (Polynomial Re-
gression) or Artificial Neural Networks [47] or simply used as an explored (but
not taken) path in surrogate modeling [49]. Gaussian Processes are also widely
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used in problems related to numerical model calibration (or parameter estima-
tion or inverse problems) using the Bayesian Optimization framework, particu-
larly with the Expected Improvement method [58]. When the data fundamen-
tally do not follow a Gaussian distribution and could be better represented by a
different distribution, an alternative method can be employed. When the data
deviate from a Gaussian distribution, relying on existing analytical formulas to
train the GP model becomes impractical. Consequently, it becomes necessary
to employ optimization methods that utilize non-Gaussian likelihoods. These
methods, although they enhance the predictive capacity of the model, require
greater computational resources [59].

Another highly favored approach, particularly prominent in data science, that
is increasingly adopted in engineering disciplines is Artificial Neural Networks
(ANN). Currently, they are often called Deep Neural Networks, a name derived
from their use of numerous layers populated by a large number of neurons
[39, 50, 49, 61]. When the interpretability of the model (as in cases like Linear
Regression or SVM) or the statistical analysis of the outcomes (as seen in GPR)
is not a priority, simple ANNs prove to be effective in prediction [41]. Due to
the large number of model parameters and non-linear activation functions, they
can often approximate complex phenomena. The most common configurations
apply sigmoid [37, 50], hyperbolic tangent (tanh) [39], linear [50] or ReLU
[61] as layer activation functions. Since ANNs, like GPs, have begun to gain
widespread adoption only in the late 1990s, it is fairly common to compare them
with more traditional and well-established models such as linear or polynomial
regression (generally referred to as RSM). [39, 50].

One of the tried and tested techniques is the Response Surface Methodology,
which relates given response variables to a set of combinations of predictor
variables, usually representing powers of variables or variable-crossed products
up to a given power. Knowing the possible structure of the relationship that
produces the response, RSM has historically been widely used as the primary
surrogate model or a reference model [39, 40, 49, 62]. Beyond Gaussian Pro-
cesses, Artificial Neural Networks, and Response Surface Methodology, various
other well-known techniques exist that, although not highlighted extensively
in this discussion, are still mentioned and sometimes employed or evaluated.
Some of these methods are Random Forest Regression (also Decision Trees) [47],
Polynomial Chaos Expansions (particularly in Uncertainty Quantification and
Sensitivity Analysis, UQSA, context) [54, 63], Genetic Algorithms (particularly
in the Mulit-Objective Optimization setting) [60, 64], Support Vector Machines
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[41, 43, 53] (very often employing a kernel), kernel-based regression methods
(most often using the Radial Basis Function kernel) [42, 65], Radial Basis Func-
tional Networks [66],K-Nearest Neighbors [61] and others. Surrogate models are
frequently integrated into what are termed ’ensemble’ models, forming a ’super-
model’ that enhances predictive accuracy while preserving the adaptability of
its individual components [51, 62]. Such an ensemble is presented in [51] where
a combined model consisting of Gaussian Processes, Support Vector Regres-
sion, and Polynomial Chaos Expansions is created. Combining one or more
neural networks in a similar ’ensemble’ is also possible [50]. Furthermore, there
is a notable trend towards the adoption of gradient-enhanced surrogate mod-
els, leading to higher precision in surrogate models[43]. One of the interesting
applications of surrogate models is to train them to project the original data
onto some reduced basis obtained from a dimensionality order reduction pro-
cess (e.g. creating a Gaussian Process to project onto Principal Components
[38]) to emulate and speed-up the order reduction process itself. It is also com-
mon to project from the reduced basis to the original results (e.g. Principal
Component Regression, often uses an RSM surrogate) [48].

Once experiments have been designed and the surrogate model has been prop-
erly fitted, assessing its predictive performance (final item on the list) is crucial.
This is due to the fact, that if the primary goal of the model is to predict unob-
served responses of the system, it must be good at it. Another common tactic,
resulting from the model performance, is to compare the obtained model’s per-
formance against several other ones. This is done in order to determine the
most suitable model before committing to one or the other. To assess model
performance, one must look at performance metrics, also termed error met-
rics. They can be classified by error type or by particular metric. To define
the former, the two most common phrases in machine learning are ’train’ and
’test’ (or ’validation’) error. The first describes the discrepancy between the
model’s predictions and the training data on which it was developed. Testing
error, on the other hand, refers to the inaccuracies observed when the model
predicts outcomes for previously unobserved data. The literature defines many
common metrics for quantifying the error. The most prevalent metrics are the
Mean-Squared Error (MSE, or its counterpart the Root Mean-Squared Error,
RMSE) [41] - [45],[48]-[56], [65]. Metrics based on absolute differences are also
used, particularly when there is a suspicion of outliers, as absolute errors are
less prone to them [47, 49, 63]. Relative errors are employed when one wants
to compare the computed error (be it squared, absolute etc.) to the ’ground
truth values’ to better indicate the magnitude of the model’s departure from it
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[41, 47] Other metrics are also used [46, 51, 64]. Among other techniques used,
one can find Negative Log Predictive Density (NLPD) [38], Maximum Error
[44], Squared Sum of Errors (SSE) [58], Fractional Bias [55] and others. It is
important to note that many articles often report the R2 value (also called the
’coefficient of determination’) [50]-[55],[59], however it is only a goodness-of-fit
measure (indicates how much of the data variance is explained by the model)
and not a predictive assessment metric. [67]

The prevalence of surrogate models can only be corroborated by the variety
of domains of their application. They range from non-linear material model-
ing [59], fast parameter estimation of biomechanical material properties from
clinical and experimental data [61], determining device- and species-specific
hemolysis power law coefficients [45], urban atmospheric flows modeling [55],
structural stability and damage of engineering structures [40, 56, 57], design
exploration and shape optimization [43] - [49], [60, 64], structural [51] or soil
[54] reliability, full order model calibration [58], predicting possible failure in
manufacture processes [57], predicting fine flow-field details based on a robust
model trained on low-fidelity data [50], UQSA of Models (e.g. flow around a
ship in shallow water) [63] and many others. Over the last 20 years (approx-
imate time span considered in the review), there has been a wide variety of
surrogate modeling approaches used in Finite Element Analysis and Compu-
tational Fluid Dynamics. Each of the four paradigms of surrogate modeling
[35] has been extensively used in papers, each having a clear favorite method.
For the design of experiments, LHS is the go-to method due to its simplicity
and space-covering properties. For variable selection, however, statistical ap-
proaches have been replaced by experts’ domain knowledge. This makes sense
in the domain of engineering and sciences, as often there is a clear physical law
with identified inputs and outputs, that underlie the analysis. For the selection
of the surrogate model itself, Gaussian Process Regression is the clear winner.
Its flexibility, accessibility, and interpretability make it the most widely ap-
plied method. For model performance evaluation, the most popular choices are
RMSE or custom. The enduring popularity of RMSE, given its long-standing
and proven track record, contrasts with the equally favored custom methods.
It is logical that with the increasing complexity and specialization of topics,
priorities shift, rendering basic metrics such as RMSE and MAE insufficient
for the authors’ requirements. Additionally, it is important to acknowledge the
wide range of disciplines that employ CFD, FEA and FSI (although these are
few and far between) along with the SM framework. It ranges from material
modeling and biomechanics to structural stability or urban atmospheric flows.
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This proves that the Surrogate Modeling framework can be applied almost
anywhere, which makes it so popular among scientists and engineers.

1.5 Uncertainty Quantification & Sensitivity Analy-
sis

In reality each parameter that constitutes a numerical model built on top of
physical principles (like fluid viscosity, material stiffness, pressure) or a sta-
tistical one (built solely on data, e.g. dependence on carotid artery stiffness
on age, sex, ethnicity etc. [68]) is subject to some uncertainty. In general
the total uncertainty of a system is commonly defined to be built of two con-
stitutents: aleatoric uncertainty and epistemic uncertainty. [69] Aleatoric un-
certainty refers to the one, which has an inherently random origin. An ex-
ample may be equipment noise present in measurements. At some point it is
something that generally cannot be reduced any further, and remains in the
system’s measurement. This it the reason that aleatoric uncertainty is often
termed ’irreducible’ uncertainty. Epistemic uncertainty is the one resulting
from experimenter’s lack of knowledge and generally can be reduced with more
information. A simple example is measuring physical distances. The uncer-
tainty regarding the accuracy of the measurement can be driven down by using
more and more refined tools, e.g. going from ’eyeballing’ dimensions to us-
ing a laser rangefinder. Thus an alternative name for epistemic uncertainty is
the ’reducible’ uncertainty. [69] Thus typically the analyst is concerned with
both types of uncertainty: the irreducible part is usually quantified and theh
kept in the back of the mind as the inherent randomness of the system. The
reducible part is quantified in hope of reducing it to the smallest value possi-
ble. It is important to note, that the division of the total uncertainty in the
model, between the aleatoric and epistemic one is not known beforehand. This
is generally what Uncertainty Quantification is, and it is most often done by
calculating statistical moments with respect to the model output. What allows
one to reduce the epistemic uncertainty is variance-based Sensitivity Analysis,
SA (as opposed to other methods like e.g. derivative-based methods, which are
not used in this work). [70]

SA broadly refers to the practice of investigation of the contribution of various
changes in model assumptions, parameters, variables etc. to the final model
output resulting in uncertainty. In surrogate modeling and statistical modeling,
it primarily refers to the amount of variance stored in input parameters and
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variables and how much of an influence they have on the final output variance
[71]. Due to the fact that the parameters and variables may appear in various
relations (e.g. quadratics, logarithms) it is not so straightforward to claim
that a given parameter is the most influential simply because it has the largest
variance [72]. It is even more murky in situations where there is no analytical
or correlation-based expression for model response, which is most often the
case. Thus to be able to systematically carry out SA tasks, many approaches
have been developed. The primary categorization is the division into global
and local Sensitivity Analysis. Local sensitivity analysis focuses on providing
in-depth insights on how the parameters of a model affect its inputs at specific
points within the design space (such as through derivative-based methods) [73].
Although this method is attractive, it only measures the sensitivity within a
narrow local area, which can result in overlooking significant areas, especially
in non-linear and complicated models (or models when the structure is wholly
unknown) [72]. On the other hand, Global Sensitivity Analysis aims to capture
the general sensitivity of the model resulting from its inputs by distributing
the contribution of individual parameters (and their interactions) to the total
output variance [74]. This method inherently benefits from its ability to identify
global patterns in the model by generating an importance hierarchy for the
overall variable. In summary, the combination of UQ and global variance-
based SA allows one to quantify the total amount of variance present in the
model and apportion this variance among the inputs and parameters of interest.
Subsequently, SA also advises one where to take the analysis further. First, it
points one in the direction of non-influential inputs that can be fixed at their
reference (literature, experimental, etc.) values disregarding their randomness.
This allows one to simplify the model under consideration and either wholly
disregard certain parameters or keep them fixed. Secondly it directs one to
the least ’explored’ parameter, one whose further investigation and repeated
measurements, would allow to reduce the total output variance the most. [72].
Thus UQSA is a very useful tool for anyone developing models and looking to
gain insight from them.

1.6 Inverse Problems

It is often of interest to engineers and scientists to infer parameters present in
physical system. However it is not always easy to measure quantities like the
modulus of elasticity or thermal conductivity. However it is easier to measure
things they produce, e.g. amount of heat as a result of temperature differential
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or the stress produced as a result of imposed strain. Then the next thing to
do, is to estimate this physical property from the simple measurement. This
is generally called an Inverse Problem [8]. More generally, Inverse problems
are mathematical and computational approaches where the goal is to infer the
causes or parameters of a system under consideration, based on observations
of its effects or output. In other words, in an inverse problem, one seeks to
determine the inputs or parameters of a system that are consistent with ob-
served outputs or measurements. These problems are prevalent across various
scientific disciplines and engineering fields, including physics, engineering, geo-
sciences, medicine, finance, and many others. [8] The distinguishing feature of
inverse problems is their inherent ambiguity or ill-posedness, which arises due
to several factors: [8]

• Non-Uniqueness: There may be multiple solutions or sets of parameters
that could produce the observed data, leading to non-uniqueness in the
solution.

• Instability: Small errors or noise in the observed data can lead to sig-
nificant uncertainties or errors in the inferred parameters, making the
solution sensitive to measurement errors.

• Ill-Conditioning: The relationship between inputs and outputs of the sys-
tem may be ill-conditioned, meaning that small changes in the inputs
can result in large changes in the outputs, exacerbating the sensitivity to
noise or errors.

These challenges lead to the development of various methods for conducting
inverse analyses and interpreting the results. Inverse problems can be broadly
categorized into two types based on the nature of the relationship between in-
puts and outputs. The first category belongs to Deterministic Inverse Problem.
There, the relationship between inputs and outputs is governed by determinis-
tic mathematical equations or models. Examples include parameter estimation
in ordinary and partial differential equations, system identification, and inverse
modeling in engineering and physical sciences. [75] The employed methods
include (but are not limited to) Ordinary Least Squares (OLS), Tikhonov Reg-
ularization for OLS, Levenberg-Marquardt, Gauss-Newton method or Genetic
Algorithms. [8]

In statistical inverse problems, the relationship between inputs and outputs is
characterized by stochastic processes or random variables. The statistical ap-
proaches have a natural upperhand over the deterministic ones in the sense of
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providing some quantification of uncertainty related to the estimated quanti-
ties and/or possibly other things like the estimation procedure itself. Many
methods for statistical inverse problems are applied e.g.: Maximum Likelihood
Estimation, Generalized Method of Moments (and more generally frequentist
methods), bootstrapping techniques or Bayesian inference. [8] Due to its effi-
cient and robust way of quantifying uncertainty, Bayesian inference has found
wide applicability in the field of medicine, particularly, medical computer vision
tasks, material parameter estimation, disease modeling, Bayesian networks and
more [76]. In this work the statistical forumation is sought in order to not
only provide an estimate for artertial stiffness, but also simultaneously provide
uncertainty related with it, that can facilitate the decision making process on
the physician’s part. [77]

1.7 Thesis Outline

The thesis is divided into six main chapters, all revolving around the develop-
ment of a surrogate model useful for fast prediction of displacements, which can
be embedded into problems that require many evaluations, that are costly for a
regular FSI model. The Thesis begins with an Introduction which provides an
overview of the main topics contained within the thesis as well as results of a
scoping literature review that was conducted on surrogate modeling in contem-
porary engineering and scientific literature. The results of the literature review
served as guidepost for the researcher while conducting the analyses present in
the latter half of the thesis.

Second chapter, Mathematical and statistical methods, introduces methods that
facilitated the experimental data processing (e.g. image processing filters, Ham-
pel filter for outlier removal), statistical theoretical background to facilitate
experimental data analysis and modeling (e.g. statistical inference, ANOVA,
Linear Mixed-Effects Modeling) and finishes with the introduction of Governing
Equations that are used in the formulation of the Fluid-Structure Interaction
methodology.

Consequently, the third chapter, Surrogates, UQSA and Bayesian Inference
focuses on the theory behind the surrogate modeling methodology (e.g. exper-
imental design, model selection), describes the two models considered in the
work for FSI model emulation (Gaussian Process Regression, Data-driven Re-
duced Order Modeling). Further it develops concepts needed to understand and
perform Uncertainty Quantification and Sensitivity Analysis of the FSI model
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with the aid of the surrogate. Finally, it introduces Bayesian statistics and how
it can be used to inversely estimate the parameters of interest, e.g. the arterial
stiffness.

Next is the fourth chapter, Statistical analysis and FSI validation. It starts with
the overview and operation of the experimental rig with an arterial phantom.
Then the pressure, flow and image data processing is detailed. What follows
is the description and development of the Linear-Mixed Effects models that
were fitted to experimental data in order to assess the data’s (and by exten-
sion experiments) reproducibility and accuracy. A simpler statistical analysis is
applied to material testing data that was obtained from an external party. Sub-
sequently the flow, pressure, image (displacements) and material testing data
are used in FSI model development and the results from conducted statistical
analyses are used to validate its performance.

The penultimate chapter, Surrogate development and application describes how
the development of the surrogate model was effected and its applications. It
begins by first describing the design of the experimental space, which hinges
on results from the previous chapter and literature data. Next is the selection
of the appropriate sampling algorithm. Then the FSI model is automated and
evaluated N amount of times, the results are discussed and compared with lit-
erature data. What follows is the fitting of two models to this data. The models
considered in this work are: an SVD-based Reduced Order Model and (Sparse)
Gaussian Process Regression. The sensitivity of these models to correspond-
ing hyperparameters is explored and the better performing model selected for
the upcoming tasks. Next is the implementation of the Variance-Based SA
through Monte Carlo estimators of the Sobol Indices. Three various meth-
ods are implemented by the author and compared against analytical literature
benchmark data and against another method (Polynomial Chaos Expansion).
The results are discussed and model is tuned accordingly. The last application
of the model is the phantom stiffness estimation. The Gaussian Process sur-
rogate is embedded within a Hierarchical Bayesian framework and is used to
estimate parameter values at different levels (subject and group levels). The
results of the estimation, and the quality of the estimatation process itself, are
assessed and discussed.

The thesis finishes with the Conclusions drawn from the conducted analyses
and proposes many avenues for further research that could extend the methods
and topics applied within it.





2
Mathematical and statistical methods

In order to validate any model, be it numerical or statistical, its primary goal
is to be able to recreate some conditions of interest. [78] This often tends to
be a long and arduous process that begins in the laboratory and ends with
an analyst confirming that the model results mimic the physcial, experimen-
tal ones. The end goal of Chapter 4 is the assessment of reproducibility of
performed experiments and the validation of a FSI model on the experimental
data using the calculated data uncertainty. Thus the contents of this Chapter
consitute the theory of all the applied methods to achieve the aforementioned
goal. It begins with the basics of digital images and their processing as well
as the introduction of an outlier identifying filter for pressure and flow data.
It then proceeds to lay the groundwork for the method used in the statistical
assessment of experimental data - Linear Mixed-Effects Models. To do this, the
concepts of Statistical Inference, ANOVA, random and fixed effects need to be
fleshed out first. What follows is a brief discussion on the benefits of applying
Linear-Mixed Effects models to model experimental data. Finally the chapter
wraps up with the introduction of Governing Equations of the Fluid Structure
Interaction model.

21
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2.1 Images and Basic Image Processing Techniques

Usually when one thinks of an image, a photograph comes to mind (whether
taken with a professional camera or a phone). This implies that the image
under consideration is of the digital type. A basic building unit of a picture
is a pixel, which is a single value, usually between 0 and 255 (i.e. an 8-bit
representation) [79]. The image’s resolution is directly related to its pixel count.
For a grayscale image it represents the intensity of the image, 0 refers to an all
black image, while 255 refers to an all white picture. However usually one first
deals with color pictures. Such images leverage the simple 0-255 representation,
by using different arrays of pixels called channels. The most common channel
composition in usage is RGB - Red, Green and Blue. A color image is composed
of a sum of these channels; see Figure 2.1. Other channel representations exist
such as BGR (Blue Green Red - just a change in color ordering) or HSV (Hue,
Saturation, Value - this is an entirely different way of representing an image).

a) Color Image b) RGB channels

Figure 2.1: Decomposition of a color image into its three components: the
Red, Green and Blue (RGB) channels.

One of the most common types of operations to perform on an image is linear
filtering. It is a neighborhood-based operation (i.e. it uses a collection of pixels
near to a pixel to determine its output value). The linearity in the name comes
from the fact, that to produce new pixels it uses a linear weighted combination
of pixels that are close by. It can be mathematically written down as: [80]
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g(i, j) = Σk,lI(i+ k, j + l)h(k, l) (2.1)

where I is the original 2D image and h(k, l) is the so-called filter mask, whose
entries (weights) are called filter coefficients. This operation is called cross-
correlation and may be written as:

g = I ⊗ h (2.2)

However upon reversing the signs in I, one obtains an operation of convolution,
commonly written as:

g = I ∗ h (2.3)

Unlike convolution, cross-correlation produces a reflected version of an original
image, and thus is used more widely for basic image processing tasks. [80] The
convolution operation is visualized in Figure 2.2. As can be seen, a 3×3 filter is
passed through an image, producing an output. A common problem in filtering
is that images shrink, thus they need to be padded at the edges to avoid this
phenomenon. There is a wide range of various filters available for use with a
wide range of results that they produce.

Figure 2.2: Convolution operation on an image f(x,y). Reproduced from [80]

Gaussian Filter is used to blur images. It has the mathematical from similar
to an actual Gaussian Distribution (see section 2.3) [80]:
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h(x, y;σ) =
1

2σ2π
exp(−x2 + y2

2σ2
) (2.4)

the key difference between a standard formulation of the Gaussian distribution
and the Gaussian kernel is that in the argument of the exponent there is x2 +
y2 instead of (x − µ)2. x, y stand here for coordinates in the image (pixel
values).Gaussian Filters weights add up to 1 and for a 3x3 filter are [81]:

hG =

 1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 (2.5)

an example of a Gaussian filter application can be seen in Figure 2.3 c. Gaussian
Filters are often used to de-noise images and prepare them for edge detection.
Before applying a Gaussian Filter the image has to be converted to a Grayscale
Image (see Figure 2.3 b), which is a common practice in image processing.

A Sobel Filter or Sobel Operator is a mask used to find the differences between
neighbouring pixels. It has been widely used in edge detection, often as part
of edge detection algorithms. The Sobel Filter is an approximation to a First
Order Derivative in a given direction and it can be explicitly stated as [80, 82]:

HS,x =

−1 0 1
−2 0 2
−1 0 1



HS,y =

−1 −2 −1
0 0 0
1 2 1


(2.6)

Sobel Operator can act in X, Y or both directions. Its application to an image
in X-direction can be seen in Figure 2.3 d, demonstrating that some edges in
horizontal direction are starting to show. Generally, it is common to have the
X-Y directions combined to get the overall Gradient, G [80, 82]:

|G| =
√

HS,x(I)2 +HS,y(I)2 (2.7)

It is also possible to find the orientation of an edge [82]:
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∠G = arctan(
HS,x(I)

HS,y(I)
) (2.8)

Another useful processing technique is thresholding. Depending on the type,
it is done by suppressing parts of an image based on some cutoff value (i.e.
threshold), e.g. for a binary threshold [83]:

I∗(x, y) = maxval,∀I(x, y) > thresh (2.9)

It is a binarizing operation, that makes parts of the image that satisfy the
condition set to some maximum value (e.g. 255), while the rest is 0, resulting in
a truly black and white image (see Figure 2.3 e). Often images possess different
lighting in different regions, that’s where adaptive thresholding is used.

a) Original image b) Grayscale image c) Blurred image

d) Sobel Operator applied to 
image (x-direction)

e) Binary Threshold applied to 
image

f) Canny Edge Detection 
applied to image

Figure 2.3: Various image operations: a) Raw image. b) RGB image turned
to Grayscale. c) Image blurred with a Gaussian Filter. d) Sobol operator in
a horizontal (X) direction applied to an image. e) A binary threshold applied
to a picture, with a cutoff of 127 and maximum equal to 255. f) Canny Edge
Detection applied to an image

One of the fundamental tasks of image processing is edge detection and one
of the most popular algorithms used for edge detection is the Canny Edge
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Detection. It consists of a series of steps, some of which have already been
described and visualized [84, 81]:

• Image conversion to grayscale

• Gaussian Blur

• Determining the intensity gradients using the Sobel operator

• Non-max suppression

• Double Thresholding

• Edge tracking using hysteresis

So far, only the last three steps have not been described. Non-max suppression
utilizes the computed gradient magnitude and direction. It proceeds by doing
a full scan of the considered image in order to get rid of any pixels that most
likely do not make up an edge. To achieve this, each pixel in the direction of the
edge is compared to its neighbors (in the same direction), if it is indeed a local
maximum, it is considered an edge and the algorithm proceeds to the next
example. [81] The next operation, Double thresholding, is centered around
selecting two threshold values, let’s say t1 = 50 and t2 = 100. In this way,
anything that has lower pixel intensity than t1 is set to 0 (i.e. essentially
removed from the image). Values that lie between threshold values are set to
be ’weak edges’. Thus it follows that pixels above t2 are set to be ’strong edges’.
With this classification of pixels the last step is Edge Tracking using Hysteresis.
In this step an algorithm steps through the image and decides on edges: any
weak edges that are not attached to the strong edges are discarded, while ones
that are, are kept. The final result of Canny Edge detection applied to images
can be seen in Figures 2.3f and 4.4.

2.2 Hampel Filter

All experimental data tend to have some sort of outliers, which can be defined
as measurements straying too far from the bulk of the data, thus being an
unrepresentative part of it [85]. Thus often the first step of data processing is
the removal of any present outliers that may impede proper data analysis. One
of the methods appropriate for time-series data is the Hampel Filter, which is
based on the idea of using robust statistics to estimate the bulk of the data
[86]. One of such robust statistics is the median. Thus, Hampel Filter utilizes
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a multiple of the Median Absolute Deviation (MAD) to discriminate against
outliers. The purpose of its operation is as follows. First, a window is selected,
within which the calculations are performed, i.e. ⟨xi−w, xi+w⟩, where xi is a
datapoint and w is the window size. Within the window, a median of the values
is calculated:

X̃ = median(⟨xi−w, xi+w⟩) (2.10)

Then, Median Absolute Deviation is calculated for each of the datapoints within
the window:

MAD = median(|xi − X̃|) (2.11)

Basing on the calculated MAD value, a simple signal thresholding (for explana-
tion of thresholding see Section 2.1) principle is employed, where if a datapoint
exceeds some multiple, k, of the MAD it is treated as an outlier [86]:

Ioutlier =

{
0 |xi − X̃| ≤ k ×MAD

1 |xi − X̃| > k ×MAD
(2.12)

where Ioutlier is a binary indicator function. Subsequently if the datapoint is
deemed to be an outlier, it can be replaced with some other value, i.e. with
the median X̃. A good value for k is often somewhere between 2 and 3 and
the width of the window, w, determines how much the local data will influence
the detection of the outlier. [86] If still there were some residual high frequency
components in the data they were removed using a low-pass filter [87].

2.3 Gaussian distributions and their properties

The crux of the classical statistical inference and modeling (as well as other
methods used in this work, e.g. Gaussian Process Regression) is the Gaus-
sian (Normal) distribution. The Univariate (i.e. one dimensional) Gaussian
Distribution is defined as [67]:

p(x|µ, σ2) =
1

σ
√
2π

· e
(x−µ)2

σ2 (2.13)



28 CHAPTER 2. MATHEMATICAL AND STATISTICAL METHODS

i.e. it is parameterized by µ, which is the mean and σ2 which is the variance,
the affect the location and width of the Gaussian respectively, the distribution
of a variable X is written as X ∼ N(µ, σ). A Standard Normal variable, X is
defined as X ∼ N(0, 1) and obtained by: [67]

X⋆ =
X − µ

σ
(2.14)

where X is a random variable. It is important to note that this procedure is
applicable to any variable. In Figure 2.4 A one can see the probability density
function of the Standard Normal and how changing the parameters affects the
shape of the distribution. An extension of the univariate normal variable to
multiple dimensions (i.e. multiple random variables) is the Multivariate Nor-
mal. Some vector-valued random variable X = [X1, ..., Xn]

T has a multivariate
normal distribution when its probability density function is as follows [88]:

p(x;µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp(−1

2
(x− µ)TΣ−1(x− µ)) (2.15)

here µ is a (mean) vector, µ ∈ Rn and Σ is a covariance matrix, Σ ∈ Rnxn.
This means that a vector-valued random variable, can be thought of as a collec-
tion of random variables that are jointly distributed under a joint, multivariate
Gaussian distribution. The primary interest in this formulation is the covari-
ance matrix, Σ. For a pair of random variables Xi and Xj , the covariance is
defined as:

Cov[Xi, Xj ] = E[(Xi − E[Xi])(Xj − E[Xj ])]− E[Xi]E[Xj ] (2.16)

where E denotes the Expectation [67]. It provides a succinct way to describe
the linear dependence of two variables. The covariance matrix is constructed
as follows:

Σ =


X1,1 X1,2 ... X1,j

X2,1 X2,2 ... X2,j

... ... ... ...
Xi,1 Xi,2 ... Xi,j

 (2.17)

where Xi,j has been used to mean Cov[Xi, Xj ] to save space. In the covariance
matrix, the diagonal elements represent the variance of given random variables,
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Figure 2.4: Probability densities of Normal and Multivariate Normal Ran-
dom Variables. A: A probability density function of a univariate RV showing
the influence of parameters on curve location and shape. B: A multivariate
(bivariate) normal variable showing the changes in shape with changing mean
vector and covariance matrix.

while the off-diagonal terms represent their covariance. A bivariate Gaussian
distribution (i.e. jointly defined for two random variables, X and Y ) can be
seen in Figure 2.4B. Here the change in the mean vector moves the distribution
around the (X,Y ) space, while increasing the covariance (correlation) between
the variables makes the distribution increasingly elliptic reflecting their rela-
tionship , i.e. in Figure 2.4B blue contours higher positive correlation, while
the red contours have no correlation, i.e. X and Y are independent. To be
a covariance matrix, a given matrix must be positive semi-definite, symmetric
and invertible (full rank). The symmetry of the covariance matrix follows natu-
rally from the definition of covariance, where Cov[Xi, Xj ] = Cov[Xj , Xi]. The
positive semi-definiteness of the covariance matrix ensures that eigenvalues of
the covariance matrix are strictly positive or equal to zero. This can be nat-
urally understood as eigenvalues encode a lot of information about variability,
e.g. the variance along Principal Components, meaning they cannot be nega-
tive. [89, 90] Finally the invertibility is not a crucial demand for a matrix to
be a covariance matrix, however for the purposes of this work (particularly in
Gaussian Processes) there is a need to be able to calculate the inverse of the
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covariance matrix, Σ−1. One of the properties of primary use in this work is
the conditioning in Multivariate Gaussian distribution. By allowing X to be a
random vector distributed as a Multivariate Normal variable [90]:

X =

(
X1

X2

)
∼ MVN(

(
µ1

µ2

)
,

(
Σ11 Σ21

Σ12 Σ22

)
) (2.18)

where the vector and matrix in the MVN’s definition are the mean vector and
covariance matrix respectively. Following this set up, the conditional formula
is [90]:

X1|X2 ∼ N(µ1|2,Σ1|2) (2.19)

where the marginal conditional mean, µ1|2, is calculated as [90]:

µ1|2 = µ1 +Σ12Σ
−1
22 (X2 − µ2) (2.20)

and the marginal conditional covariance, Σ1|2, is [90]:

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (2.21)

This implies that even when one assumes that the mean value of variable X1

is 0 it can still come out to be non-zero when conditioned on X2, due to its
dependence on X2. This result and formulas in equations 2.20 and 2.21 are
crucial for the implementation of Gaussian Processes. For the proof of these
formulas and more in-depth description, the reader is referred to [90].

2.4 Statistical Inference in Linear Regression

To be able to statistically analyse the experimental data it is crucial to intro-
duce the basic notions of statistical inference. One of the goals of statistical
inference is to be able to reach conclusions with an adequate degree of certainty
based on a limited amount of data. [67]. In statistics, a clear distinction is made
between the population and (random) sample data. The basic assumption in
the frequentist statistics is that there exists some true, yet unknown, popula-
tion. It can be a tangible population, like population of people’s heights in
Poland, or some less tangible one like error distribution of various models given



2.4. STATISTICAL INFERENCE IN LINEAR REGRESSION 31

some data. Unfortunately one is unable to access the true population and is
restricted to relying on finite size samples that are usually a very small subset
of the true population. Such a subset is called a random sample and based on
this random sample, the goal is to be able to extract as many insights as pos-
sible. Often one assumes a given distributional form the data follows, e.g. the
Normal distribution, and then tries to estimate its parameters, i.e. the mean
µ and standard deviation, σ. This leads to obtaining estimators, commonly
denoted with a hat, i.e. µ̂ and σ̂. When only one value is sought to represent
the given parameters, it is called point estimation [67]. Although point estima-
tion is useful it never really tells anything about the range of variation of the
calculated values and thus interval estimates were introduced to provide the
uncertainty range.

2.4.1 Sampling distributions and Confidence Intervals

Applying the standarization procedure but for the case where the random vari-
able is the estimator of the mean, i.e. µ ≈ µ̂ = X̄ = 1

NΣN
i=0xi, that is the

sample mean (sample average), the standard normal for this RV can be written
[67]:

Z =
µ̂− µ

σ√
n

(2.22)

It is immediately obvious that there is something weird going on in the denom-
inator and the since theoretically both µ and σ are unknown, it is not trivial
to calculate Z. The denominator results from the fact that a variance of an
estimator that is normally distributed is different from a variance of a regular
normal random variable, i.e. V[X] ̸= V[X̄] and V[X̄] = σ√

n
where n is the

sample count. This immediately indicates that the variance of the estimator
is decreasing with increasing sample size, i.e. the more samples one gets the
more certain given statement is. With that, one can reach one of the most cru-
cial inventions of the frequentist statistics - sampling distributions. They are,
basically, distributions for a given calculated statistic (again: sample median,
sample mean, sample standard deviation etc.) that describe how they would
vary upon resampling. Thus a sampling distribution for a sample mean can be
written as X̄ ∼ N(µ̂, σ̂√

(n)
), which results in the form of the Standard Normal

calculated from it.
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Having introduced sampling distributions, it would be immensely practical to
be able to use them to make statements with a degree of certainty about the
possible values of the parameter. It is, after all, one of the primary goals of
inferential statistics. To this end, Confidence Intervals are utilized. To begin
to construct such interval one starts with a condition [91]:

P (−1.96 ≤ Z ≤ 1.96) = 0.95 (2.23)

The statement simply reads that between the values −1.96 and 1.96, for a
Standard Normal distribution, 95% of probability is accumulated. Upon sub-
stitution of the definition of the Standard Normal for the sample mean and
rearragnement [91]:

P (X̄ − 1.96 · σ√
(n)

≤ µ ≤ X̄ + 1.96 · σ√
(n)

) = 0.95 (2.24)

This is the definition of a 95% Frequentist Confidence Interval (FCI) on the
population mean [91]. This shows that by evaluating the insides of the probabil-
ity operator, one can obtain the range within which there is 95% of probability
placed on the mean. This requires careful interpretation: in frequentist ap-
proach this does not mean, that there is 95% certainty that the population
mean is located within the specified range. This specification means that upon
resampling, i.e. completing multiple experiments, 95% of the time the popu-
lation mean would be located inside the FCI. It can be calculated for other
confidence values, αFCI , by replacing the ±1.96 in the formula, by a quantile
from the Standard Normal distribution corresponding to a given confidence
level, zα

2
, when a two-sided FCI is sought after. [91] The FCI can be calculated

for other parameters than the mean and for parameters that represent other
distributions (e.g. Bernoulli). The definition in Eq. 2.24 makes two crucial
assumptions that are rarely met in reality: the sample size is large enough to
use the Standard Normal distribution quantiles and σ is assumed to be known.

Not knowing σ is not an obstacle when n is very large, then Z approximates the
true Standard Normal very well by assuming σ = S = σ̂, where S is the sample
standard deviation. Trouble starts when n drops, the approximation quickly
fails to be true. [67] To solve this issue a T random variable (as opposed to Z)
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is introduced and defined as [67]:

T =
X̄ − µ

S√
(n)

(2.25)

As opposed to Z being normally distributed, Z ∼ N(0, 1), T (called often the
t-statistic) is t-Student distributed, T ∼ t−Student(µ, S, ν), where ν = n−1 is
called the ’degrees of freedom’ often termed the ’normality parameter’ [67, 92],
as when ν → ∞, t− Student → Normal. Now, repeating the same operations
as above and allowing for an arbitrary confidence level, α:

µ ∈ X̄ ± tα
2
,n−1 ·

s√
n

(2.26)

2.4.2 Null Hypothesis Significance Testing

A statistical hypothesis is a statement made about a value of a (most often)
single parameter. [67]. Any hypothesis needs to be stated, investigated and
then - based on data - accepted or rejected. In Null Hypothesis Significance
Testing (NHST), there are usually two hypotheses that one cares about: H0 and
HA. The first one, H0, called the null hypothesis is the base hypothesis upon
which the current state-of-the-art knowledge is based. H0 is often established
through years of research in the classical sense, in other cases it may be a
personal choice about some assumption or underlying truth (e.g. in Regression
Analysis, on that later, see Section 2.4.3). HA is the alternative hypothesis, the
one which is compared against H0, and the one which leads to either rejection
or failure to reject H0 (using the correct statistical parlance). A example way
to pose a NHST problem mathematically may be seen as [91, 92]:

H0 : θ = θ0

HA : θ ̸= θ0
(2.27)

which can be interpreted as H0 states that some parameter θ (e.g. the pop-
ulation mean) is equal to some value, θ0 and the alternative hypothesis, HA

disagrees. There are two other commonly used settings, i.e. HA : θ > θ0 or
HA : θ < θ0. Having defined the types of hypotheses and statements made
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about them, it is important to now show a procedure to either proving or dis-
proving them. Going straight to a more general case, when sample count is not
necessarily large and one can’t rely on the Standard Normal approximation, the
t-Statistic from equation 2.25 is reused. Furthermore two errors are defined:

• Type I Error: H0 is rejected despite being true

• Type II Error: H0 is not rejected despite being false

NHST deals with the first error type. To evaluate the veracity of statements,
the following logic is assumed [91]:

P (type I error) = P (T ≥ talpha,n−1 when T ∼ t−Student(ν)) = 1−α (2.28)

P(type I error) is often called α. It is chosen by the experimenter before con-
ducting an experiment to prevent any foul play. For a given selected α, prob-
abilites resulting from the above equation are termed p-values. To calculate a
p-value for the two-tailed test (the current setting) first has to calculate the
t-Statistic from Equation 2.25. Then to calculate the p-value:

p− value = 2 · (1− F−1
tν (T )) (2.29)

where F−1
tnu

(T ) is the inverse Cumulative Distribution Function (CDF) of the
t-Student’s distribution at the t-Statistic value. When the calculated p-value
is lower than the assumed threshold (α, most often chosen to be 0.05) the null
hypothesis is rejected, otherwise a failure of rejection is reported. It is impor-
tant to note that when testing multiple hypotheses, the problem of multiple
comparisons arises and needs to be accounted for. [93]

2.4.3 Statistical inderence for Linear Regression

The goal of Standard Linear Regression (SLR, also termed Ordinary Least
Squares - OLS, here used interchangeably) is to be able to inter- and extrapolate
some response, Y , based on a chosen set of predictors, x, i.e. Y = f(x). From a
statistical perspective there is one additional thing - the error term, ϵ, resulting
in Y = f(x) + ϵ. The error term itself is normally distributed with a mean
equal to zero and constant variance, σ2, i.e. ϵ ∼ N(0, σ2). Such a construction
of Y induces a normal distribution :
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Y ∼ N(µ, σ2), (i.id.) (2.30)

where µ is the mean response and σ2 is the variance. One crucial detail is
that the data, Y are assumed to be "iid" (alternatively denoted i.id.) which
stands for ’independent and identically distributed’. This means, that each
datapoint is generated independently of another and that they follow a similar
distribution. It is a common and often implied assumption in statistical model-
ing, which applies also in context of statistical intervals and hypothesis testing
mentioned above. Going further,the mean response can be rewritten in terms
of x as:

µ = E[Y ] = E[f(x) + ϵ] = f(x) (2.31)

which is due to the fact that x’s are not treated as random variables and the
mean of ϵ is 0. Subsequently also the variance is:

σ2 = V[Y ] = V[f(x) + ϵ] = V[ϵ] = σ2 (2.32)

again due to the same reasons as above. In the context of Ordinary Least
Squares (OLS), f(x) is often rewritten in terms of a linear combination of the
predictors, x, and some paramerters, β, which are then found given x and Y :
[91]

f(x) = β0 +Σp
i=1βixi (2.33)

where p is the amount of predictors and β0 is the intercept term. The interpre-
tation of the parameters (in Multiple Linear Regression problems) is as follows:
[94]

• β0 average of all Y when all x are at their 0

• βj average change in Y associated with a unit increase in the value of x
assuming all other predictors are held constant (controlled for)

The parameters may be obtained through many ways: Maximum Likelihood
Estimation, usage of normal equations or other optimization procedures [8]. In
statistical inference for linear regression, the model parameters themselves are
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assumed to be random variables resulting in them having their own sampling
distribution: [94]

β̂ ∼ N(β, σ2(XTX)−1) (2.34)

First, one may perform hypothesis testing on βs to estimate whether they are
statistically significant using NHST. The hypothesis is posed as:

H0 : β = 0

HA : β ̸= 0
(2.35)

the t-Test statistic is defined as:

Ti =
β̂j√

[σ̂2(XTX)−1]jj
(2.36)

where σ̂2 is the estimator for the noise in the model and is defined as σ̂2 =
RSS

n−(p+1) . Using the t-statistic we may perform NHST to be able to tell which
model parameters are statistically significant (i.e. p-value < α) and which are
not. When many parameters are present in the model it is relatively easy to
inflate the type I error rate, as mentioned in previous sections, leading to in-
significant parameters being deemed significant. To solve this issue various ap-
proaches have been developed like conducting an F-test [91] or using Bootstrap
Inclusion Frequencies [95]. The former compares the full model’s explanatory
power to the one with only an intercept term, while the latter involves us-
ing resampling with replacement (bootstrapping) of the data and refitting the
model and subsequently tallying up the amount of times a given parameter was
deemed significant.

It is also possible to develop CIs for βs to be able to assess their variation. A
(1− α) · 100% Confidence Interval is defined as: [94]

βtrue ∈ β̂j ± tα
2
· (n− (p+ 1))

√
[σ̂2(XTX)−1] (2.37)

In statistical analyses it is also common to interpret and report Prediction
Intervals, PIs. As opposed to Confidence Intervals which are calculated for
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estimated parameters, PIs are calculated for actual, often, future data. A
(1− α) · 100% Prediction Interval for an unobserved predictor vector x∗ for an
OLS estimator is defined as: [94]

y∗i ± tα
2
· (n− (p+ 1))

√
[σ̂2x∗(XTX)−1](x∗)T (2.38)

where y∗i is some unobserved data point. The Prediction Intervals are always
wider or equal to Confidence Intervals.

2.4.4 Assumptions for valid inferences in SLR

To be able to make statistical statements about the prediction (its quality,
parameters etc.) it is crucial that a given SLR model meets the following
assumptions [67]:

• Linearity: model must be linear in parameters, β

• Independence: error terms, ϵ are independent of each other

• Homoscedasticity: error terms, ϵ, have constant variance σ2

• Normality: errors are normally distributed, ϵ ∼ N(0, σ2)

When any of the mentioned assumptions is not met, the fitted model may result
in a biased estimator for β which leads to poor explanatory power and wrong
inferences about both the model and the data. Moreover it is also possible that
the model’s predictions will be less accurate and misleading. The most imme-
diate and simple way to visualize these assumptions is to plot them, especially
to plot the examples of glaring violations of these principles as done in Figure
2.5. The methods present in the plots (along with some others recommended
by literature [67]) are listed and described below:

• Linearity: Fitted vs Observed Data plot - assesses the fit to the data and
informs whether the relation observed data is actually linear (see Figure
2.5, A)

• Independence:

– Residual vs Time Index plot - shows whether there is some unre-
solved structure in the residuals which potentially could mean that
they are dependent (see Figure 2.5, B)
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– Successive Residual Plot - plots residuals against each other if there
is some trend present it means that the residuals are in fact corre-
lated

– Durbin-Watson test - assesses successive correlations between resid-
uals

• Homoscedasticity: Residual vs Fitted Value Plot - if there is an increase
in dispersion of residuals for successive values it means that the variance
is not constant (see Figure 2.5, C)

• Normality:

– Quantile-Quantile plots - compare the quantiles of the residuals ver-
sus the quantiles of a similar normal distribution, if large discrepan-
cies are present it means that the normality assumption is violated
(see Figure 2.5, D)

– Shapiro-Wilk test for normality tests whether the given data do ac-
tually come from a normal distribution

2.4.5 Fit of statistical models

Having met all conditions for statistical inference, it is also very important that
the model is realistically a good representation of the data under consideration.
Many robust criteria have been developed assess the ’goodness of fit’ of the
obtained model. Akaike Information Criterion (AIC) and Baysian Information
Criterion (BIC) are one of the most popular ones as they also account for the
parameter count, which when very large, artificially inflates the fit quality. AIC
is defined as [96]:

AIC(η(X|β̂)) = 2 · (p+ 1)− 2logL(β̂) (2.39)

where η(X|β̂) is the fitted model, p is the parameter count and L(..) is the
likelihood function. The right hand side is a goodness of fit measure while the
left hand side is the complexity penalty. Similar to AIC is BIC, defined as [96]:

BIC(η(X|β̂)) = (p+ 1)log(n)− 2logL(β̂) (2.40)

it is obvious that it is analogous to AIC, however it differs in a penalty, here
it is much stricter. Generally AIC and BIC do not have an ’ideal’ set of values
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Figure 2.5: Exemplary plot showing violations and fulfillment of the four fun-
damental assumptions in classic OLS (red) along with what an ideal behaviour
of OLS would look like (green), generated using artificial data. A: Violation
of the linearity assumption. B: Violation of the independence assumption. C:
Violation of homoscedasticity assumption. D: Violation of the normality prin-
ciple.

for a model, it’s best when they are as small as possible and while comparing
multiple models, the one with the smallest AIC and BIC is possibly the best
one, meaning that it has the best trade-off between parameter count and ex-
planatory power (however it is not guaranteed that AIC and BIC will choose
the same models). One of the most robust tehcniques for model comparison is
the Likelihood-Ratio test (LRT). It is defined as: [91]

λLR = −2[logL(θ0)− logL(θ̂)] (2.41)
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where θ0 and θ represent some parameters of two different models (hypotheses).
λLR is asymptotically χ2 distributed if the Null is true. LRT is small when
the alternative model is better than the Null one. Moreover it is guaranteed
to be the most powerful test among all tests of α significance level by the
Neyman-Pearson Lemma. [97]

Aside for assessing model fit, it is important to keep in mind it’s performance
on new, unseen test data. Starting off with Root-mean Squared Error (RMSE),
the definition is: [98]

RMSE(y, ŷ) =

√
1

n
Σn
i=1(yi − ŷi)2 (2.42)

where y represents the column vector of observed data and ŷ represents the
column vector of predictions, with n being the number of samples. RMSE is
particularly sensitive to outliers because it involves squaring the differences and
then averaging them. The Mean Absolute Error (MAE) is computed as follows:
[98]

MAE(y, ŷ) =
1

n
Σn
i=1|yi − ŷi| (2.43)

where |..| represents the absolute value. MAE is generally more robust against
outliers. Median Absolute Error, also known as MEDS or MedAE, is described
as: [99]

MEDS(y, ŷ) = median(|y1 − ŷ1|, |y2 − ŷ2|, ..., |yn − ŷn|) (2.44)

The robustness of MEDS against outliers is enhanced by its use of the absolute
metric and the employment of the median rather than the mean of the errors
calculated. The Maximum Absolute Error (MaxErr) is characterized in: [100]

MaxErr(y, ŷ) = max(|y1 − ŷ1|, |y2 − ŷ2|, ..., |yn − ŷn|) (2.45)

This signifies the most unfavorable outcome in terms of the efficacy of the
model. The Mean Relative Error for RMSE is characterized as:

MRE =
RMSE(y, ŷ)

µ̂y
· 100% (2.46)
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where µ̂y represents the average of the variable in question. The RMSE metric
can be substituted with any suitable metric. Relative errors are given to offer
a scale of the error values relative to the values found in the test set.

2.5 ANOVA in linear regression perspective

2.5.1 One-Way ANOVA and the F-test

ANOVA stands for ANalysis Of VAriance. It’s primary goal is to find an answer
to the question "Are there differences with respect to the mean of a (continuous)
variable across treatments or groups?". In simple terms, the goal is to examine
whether there are some statistically significant differences between groups in
a given experiment [101]. A One-Way ANOVA takes a look at the difference
between a given factor across groups. Formally it can be written as an ANOVA
model [101]:

yij = µj + ϵij (2.47)

where yij is some i-th response of j-th group, µj is that group’s mean and ϵ is
the noise. Here the assumption is that a given yij ∼ N(µj , σ

2), i.e. individual
groups come from different distributions but all share the same variance [101].
This can be restated as an effects model:

yij = µ+ αj + ϵij (2.48)

here µ is sometimes called the ’grand’ or ’population’ mean and is shared across
all groups, while αj is the departure of group j from the overall mean, so
called effect. Both of these formulations assume that errors share the same,
constant variance across groups, i.e. ϵ ∼ N(0, σ2). The decomposition of
variance in ANOVA occurs by defining three measures: Total Sum of Squares
(TSS), Treatment Sum of Squares (SSTr) and the Residual Sum of Squares
(SSR). The TSS is defined as:

TSS = ΣJ
j=1Σ

ni
i=1(Yij − ȳ..)

2 (2.49)

where J is the group count, ni is the number of observations in each group and
ȳ.. is the Grand Mean, i.e.: the total mean over all samples and groups. It is
defined as:
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ȳ.. =
1

nj

1

nj
ΣΣ

nj

i=1Yij (2.50)

It is also useful to introduce the group mean as:

ȳ.j =
1

ni
Σni
i=1Yij (2.51)

Having a look at SSTr:

SSTr = ΣJ
j=1(ȳ.j − ȳ..)

2 (2.52)

one can see that it is the sum of squared deviations of the group level means
from the overall, grand mean. Finally SSR is defined as:

SSR = Σ
nj

j=1(Yij − ŷ.j)
2 (2.53)

Furthermore it can be shown ([101]) that:

TSS = SSTr + SSR (2.54)

i.e. the Total Sum Of Squares can be decomposed into the sum of individual-
level variations and group-level variations. Similar to OLS an F-test is applied,
which is a common test that allows to compare different models based on how
much of the variance they explain. [67] Unlike in OLS, itss definition of the
F-statistic is a little different:

FANOV A =
SSTr
J−1
SSR
n−J

(2.55)

this induces a an F distribution on the statistic, FANOV A ∼ F(J−1),(n−J). The
hypothesis tested here is as follows:

H0 : µj = µk, j ̸= k

HA : µj ̸= µk, j ̸= k
(2.56)
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i.e the Null Hypothesis states that there are no significant differences between
given groups, while H1 claims the converse. What follows is an F-test and upon
rejection of the Null, it is possible to further examine the data for pairwise
differences and other desired information. [67].

2.5.2 Two-way ANOVA

To further extend ANOVA to be able to compare data where more than one
factor are considered, Two-Way ANOVA was created. Again it can be stated
as the ’means’ and ’effects’ models, where the former is defined as [67, 101]:

Yijk = µjk + ϵijk (2.57)

where µjk are the means of intersecting groups and ϵijk ∼ N(0, σ2) is the error
term. The ’effects’ notation is much more transparent:

Yijk = µ+ τj + αk + ϵijk (2.58)

where both τ and α are effects. τj is interpreted as the deviation of the re-
sponse in the j-th level of the τ factor, while holding the α factor at its mean
value. [101] Due to the fact that this notation explicitly states the effects it is
much more common in the statistical literature, particularly concerning multi-
level (random/mixed effects) models [102]. Such explicit notation also makes
it easier to model possible interactions between different effects and impose a
hierarchical structure on data [102].

When designing an actual scientific study where the goal is to discriminate
against factors effects between groups (eg. A/B testing) it needs to be decided
how the factors relate to each other. There are many design approaches, but
the two particularly relevant for this work are crossed and nested designs. A
fully crossed design occurs when all factors are jointly represented at all levels
(i.e. all factor-level combinations are measured). This design can be presented
as a table, see 2.1. From the Table 2.1 (a) it is obvious to see that there are
all 6 possible measured combinations (indicated by ones) of the factor’s levels
((α1, τ1), (α1, τ2), (α2, τ2) and so on). A different kind of design, is one where
factors are nested within each other. Such kind of design is simply called nested
and it can be also presented as a table, see Table 2.1 (b). Here the τ1 level
of factor τ is nested inside α’s first level. This means that not all factor-level
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Table 2.1: Two fundamental design philosophies for two-way ANOVA for two
factors τ and α. a: crossed effects design, i.e. each factor-level combination is
present in the design. b: Nested design: some factors are nested within others,
preventing all factor-level combinations to be present.

Factor Levels α1 α2 α3

τ1 1 1 1
τ2 1 1 1
τ3 1 1 1
(a) Crossed design

Factor Levels α1 α2

τ1 1 0
τ2 1 0
τ3 0 1
τ4 0 1

(b) Nested design

combinations are present (i.e. there is no combination for the second level of α
with the τ ’s first level).

Although it may seem difficult to picture, both designs can be readily under-
standable. Crossed designs occur when all subjects are tested with all possible
factors. A relevant example, somewhat similar to [103], could be testing hu-
man subjects for impact of exercise on the measured arterial stiffness (through
PWV) where α could be distributed over levels corresponding to age brackets
(e.g. young, adult, middle-aged etc.) and τ could be the exercise type (e.g.
running, cycling etc.), where each person in each age bracket took part in each
of the exercises, thus exhausting all the factor-level combinations. Nested de-
signs occur when one factor is nested inside another (or some of factors levels
are nested in some). An example can be based on [104], where the response to
a given treatment is being sought and the nested factor (τ) is the treatment
itself and the nesting factor (α) is the country of origin or region of origin.
As a person cannot usually come from two countries at a time or at least be
measured in two different countries, their respective response to treatment is
forever nested in a country of origin factor. Nested designs can occur artificially
or naturally. Natural occurrence is when the physical processes that causes the
scientist to conduct experiments are implicitly nested (e.g. country of origin,
students nested within schools nested within regions [102] ), while artificial de-
signs arise when the nesting structure is constructed by the scientist during
experimental design.
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2.5.3 ANOVA recast as Linear Regression

Going straight to the two-way ANOVA it is possible to recast it as a linear
regression problem. The purpose for such an operation is obvious: having
developed a large body of techniques and assumptions for SLR it would be
beneficial to extend them to ANOVA to facilitate its application. To do this,
consider two factors, α and τ . Let’s say α is distributed over three levels and
τ is distributed over 2 levels, as before. The linear regression model for such a
case would be written as follows:

yi = β0 + β1τ2,i + β2τ3,i + β3α2,i + ϵi (2.59)

where the notation τj,i means the i-th observation of the j-th factor level. The
first thing to notice here is the absence of α1,i and τ1,j . It is not accidental - for
stability and well-posedness issues, both of these factor levels are absorbed into
the β0 coefficient serving as a baseline. The interpretation of β0 thus changes
from the one in OLS (see section 2.4.3) to be the average value of the response Y
at the first level of each of the factors. For this simple case, a full interpretation
of regression coefficients and how they relate to factors is presented in Table
2.2.

Table 2.2: The interpretation of linear regression coefficients in context of
effects in a two-way ANOVA regression framing.

Factor Levels α1 α2 α3

τ1 β0 β0 + β1 β0 + β2
τ2 β0 + β3 β0 + β1 + β3 β0 + β2 + β3

Here it can be seen that the baseline scenario is the level one of both τ and
α. In experimental setting it would often be the control group (i.e. no applied
treatment or a placebo pill etc.), whereas each subsequent entry in the Table
is the deviation from the baseline group. By framing ANOVA from the OLS
viewpoint, all the tests and methods that were discussed previously (see Section
2.4.3) now are also easily applied.
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2.6 Linear Mixed-Effects Modeling

Mixed-effects models are a statistical approach that combines random and fixed
effects. They are most often used to model hierarchical (or nested) data. Such
a hierarchical structure may arise in various ways e.g. through performing
multiple measurements on a repeated setup (or subject) but also from spatial
and/or temporal structure. [105] At the lowest rung of the hierarchy there
are individual observations, this is called the data or unit level [105]. Each
subsequent level above the lowest one may be modeled by fixed and/or random
factors. For models defined based on the effects approach, ’fixed and random
factors’ become ’fixed and random effects’ and that is the nomenclature that
will be followed for the rest of the work. Fixed effects have been used thus
far: they are regular factors that are treated at face value and no variation for
them is assumed. Random effects, on the other hand, assume that the currently
considered set of predictors is just a sample from some distribution and therefore
are prone to exhibit variation. The great thing about them is that, while using
fixed effects one is constrained to inferences regarding the measured levels,
for random effects it is possible to extend the inferences towards all possible,
unmeasured levels. [106] More formally random effects are effects that are
estimated at each factor level, but where the distribution of these estimates is
explicitly modeled by hyperparameters [105], i.e. parameters of the estimated
distribution from which they come. It can be easily visualized by having a look
at the simplest possible random-effects model, the random intercept model:

yij = β0j + ϵij (2.60)

where j is the group index and i the individual unit level index and ϵij ∼
N(0, σ2

R). Here β0j is the intercept, however it varies from group to group.
This means that each group has its own estimated β0j , but there is also an
overall mean. β0j may be deconstructed as [102]:

β0j = β0 + ρ0j + ϵij (2.61)

where β0 is the overall group-level mean nad ρ0j is the individuals groups devi-
ation from it, ρ0j ∼ N(0, σ2

j ). Thus the group-level mean comes from a distri-
bution β0j ∼ N(β0, σ

2
j ) [107] and its variance may be considered as explained

in the sense of the model (i.e. it takes away from the residual variance σ2
R), but

in the sense of a given level it is unexplained. [105] There are many possible
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basic mixed-effects models and their application and usefulness can be seen by
looking at Figure 2.6. Figure 2.6 A shows a cloud of data and immediately one
advantage of the grouping approach - having a look at it, no obvious trend can
be seen when the data is pooled and just an intercept model is fitted. However
having a look at Figure 2.6 B, individual groups indicate some patterns in the
data and by using a very basic mixed effects model (namely random intercept,
fixed slope model) one can see that the dependencies are somewhat resolved.
The formula present on the plot, i.e.:

yij = β0j + β1Xij + ϵij (2.62)

Figure 2.6: Example of various possible mixed effects models for a single data
cloud. A: a regular fixed-effects with an intercept misses any possible trend in
data. B: By enable a random intercept it is already possible to see some group
differences. C: Varying intercept model captures the trend well but not the
average value. D: a fully random-effects model manages to capture both group
averages and trends present in the data. Generated using artificial data.

models the intercept as a random effect coming from a distribution and β1, i.e.
the fixed effect, without estimating any hyperparameters related to it. Even
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though this approach is better, it is not the answer to the problem - while it
captures the differences in group means, it does not capture its trend. The
converse statement can be made about the varying slope model, i.e:

yij = β0 + βj1Xij + ϵij (2.63)

where this time the slope is a random effect and the intercept is fixed. Here the
average change in y with respect to X is captured very well, but not the average
group value. This problem is solved by considering a full random effects model.
This can be seen in the bottom right of Figure 2.6. It is a model with both a
varying intercept and a varying slope:

yij = β0j + β1jXij + ϵij (2.64)

For clarity, it is possible to completely unravel the fully random-effects model
by describing the coefficients:

β0j = β0 + γ0j

β1j = β1 + γ1j
(2.65)

where β0 and β1 are the fixed effects and γ0j and γ1j are the random effects.
All of the models with random-effects present were effectively two-level models,
where the lower level was the unit level and the higher level was the coefficients’
(’group’) level. It is possible to extend these models to many more levels and to
even model coefficients as themselves dependent on some measured predictor
Z (in an analogous manner to how Y is dependent on X). [102]

2.6.1 Benefits of using mixed-effects and multilevel models

As seen in Figure 2.6 the primary benefit of using linear mixed-effects models
(LMEs) is their ability to extract relationships and structure from data, that
would otherwise be missed had a pooled model been assumed. [103] Another
reason to use LMEs is when correlated errors are present. The assumption is
that the unit in group j would be more similar to another unit in that group,
than to a unit in a different group, i.e. more correlated. This breaks the in-
dependence assumption present in OLS and needs to be accounted for until
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one can again assume ϵji ∼iid N(0, σ2R). Omitting these effects could poten-
tially underestimate the standard error on the mean coefficient, inflate the test
statistic and lead to decreased p-values and committing a Type I error far more
often than the assumed rate. [102] Having a look at hierarchical (multilevel)
models, the primary benefit for using them is the phenomenon called ’variance
shrinkage’. It causes the group-level estimates to ’shrink’ towards the popu-
lation mean. It happens because the group-level estimates are now no longer
only influenced by their individual groups, but also by the population mean.
[105, 102] This is particularly pronounced for models where certain groups have
a very small amount of observations. In such cases the groups estimated are
’pulled’ towards higher level estimates, even when the sample count is dramati-
cally low (e.g. one or two datapoints). [105, 92] It is important to keep in mind,
that LMEs are not a panaceum for each dataset and they definitely need to
be carefully studied before applying.[103, 77, 102] Nevertheless, many scholars
strongly encourage to at least consider them before moving on to either tradi-
tional OLS or some other techniques (like Generalized Estimating Equations
[108]).

2.7 FSI Governing Equations

The governing equations for the Fluid-Structure interaction problem are cus-
tomarily derived from the Cauchy equation of motion. The dynamic mechanical
behavior of the fluid domain is governed by the Navier-Stokes equations, i.e.,
the conservation of momentum and mass equations. The conservation of mo-
mentum can be expressed as follows: [109]

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = −1

ρ
∇p+

µ

ρ
(∇2v⃗) +

1

ρ
(
µ

3
+ κ)∇(∇ · v⃗) + b⃗ (2.66)

where b⃗ are the body forces acting on a fluid (N), ρ is the density (kg/m3),
v⃗ is the velocity vector field (m/s), µ and κ are the first and second Lame
constants and ∇ is the nabla operator, i.e. ∇ = ΣN

i=0
∂
∂xi

e⃗i ( e⃗i being a general
unit vector). For incompressible fluids, the conservation of mass equation can
be written as [110]

∇ · v⃗ = 0 (2.67)

The solid domain is also modeled using Cauchy’s equation of motion: [9]
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ρs
∂U⃗s

∂t
−∇· ↔σ s = b⃗s (2.68a)

Where U⃗s is the displacement,
↔
σ s is the Cauchy Stress Tensor. For linearly

elastic bodies it is assumed that the tensor is solely dependent on the Green
strain tensor, which under small deformations, simplifies to.

σs,ij = 2µϵij + λϵkkδij (2.69)

where ϵij and σs,ij indicate the components of the strain and Cauchy stress
tensors, respectively, µ is the shear modulus (or viscosity), λ is Lame’s constant.
δij is the Kronecker delta and index repetition implies summation. The base
material used in ANSYS simulations is the linear elastic material with large
deflection turned on. It is the default and recommended material to use in
ANSYS documentations as it allows for actually displacing the mesh of the
solid body, thus in turn allowing to displace the fluid domain and complete the
Two-Way coupling. [13] In contrast to linearly elastic materials, in hyperelastic
materials, the imposed strain on the bodies can be stored in the form of energy
(the so-called ’deformation potential work’). One of the most commonly used
material definitions in hyperelasticity is the Neo-Hookean material, with its
strain energy density function defined as [109]:

Φ =
µ

2
(I1 − 3)− µlnJ +

λ

2
(lnJ)2, (2.70)

where I1 = tr (C) and J2 = |C| and C is the right Cauchy Deformation
Tensor. tr(...) stands for the trace operation which is summing the elements
on the matrix main diagonal, i.e. for some square matrix A, A ∈ Rkxk: tr(A) =
Σk
i=0Aii From it an expression for the Cauchy’s Stress Tensor is often described

in terms of the left Cauchy Deformation tensor, B, and may be derived from
the Second Piola-Kirchoff tensor [111] to be:

↔
σs=

µ

J
(
↔
B −

↔
I ) +

λ

J
(ln(J))

↔
I (2.71)
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where
↔
I s is the identity tensor. The discretization procedure of the equations

for coupled equations is described in detail e.g. in [12] Another commonly used
model is the Isotropic Elastic (IE) model, defined as [112]:

ϕ =
1

2
λ(tr

↔
E)2 + µ

↔
E:

↔
E (2.72)

where
↔
E is the Euler-Lagrange tensor. This material reduces to a regular linear

elastic model when small deformations are present, but is applicable to large
deformations and rotations. [12]





3
Surrogates, UQSA and Bayesian Inference

This Chapter covers the theory of approaches and techniques applied in Chap-
ter 5. It begins by describing the background behind experimental design and
its modern variant - sampling schemes. Then it moves on to describe one
of the two surrogates developed in the thesis - Gaussian Process Regression.
It describes in depth its roots, modeling approach and the way to perform
inference. It also tries to convey the intuition and logic behind GPR’s imple-
mentation of kernel functions (kernels). It then moves on to describe how the
kernel hyperparameters are optimized and finishes with a brief description of
GPR variants. Then the second of the developed models is described - Sin-
gular Value Decomposition-based (SVD) Reduced Order Model (ROM). The
theory behind SVD is introduced to help make sense of the data order reduc-
tion procedure. Further, one of the applications of the surrogates is described -
Uncertainty Quantification and Sensitivity Analysis. The variance-based meth-
ods are described in detail along with First Order and Total Sobol Indices and
their Monte Carlo estimates. Last, but not least, is the introduction of Bayesian
Statistics. There is a brief reminder of the Bayes Theorem. What follows is the
description of metrics used in Bayesian Statistics for describing uncertainty as
well as methods used for fitting Bayesian models. Finally, the diagnostics for
quality checking a Bayesian model are introduced.

53
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3.1 Design of physical and virtual experiments

In experimental design, the key thing is to learn as much as possible about the
system the researcher is trying to understand with the fewest possible number
of experiments run. A given experiment is often characterized in terms of
factors, i.e. variables one is interested in (e.g. pressure, temperature) and
levels, i.e. values these factors can assume (e.g. discrete "low and high" values
or a given discrete range). When one is interested in observing an effect, i.e.
the response of a system due to a stepwise change in a factor’s value [94], one
needs to perform an experiment when a given factor is varied, while all the
others stay fixed. This naturally leads to an explosion of measurements that
need to be carrried out, as for a very simple case of K factors distributed over 2
levels, i.e. assuming only two values, the number of experimental evaluations,
Nmeasurements, necessary to individuate all of the effects grows as:

Nmeasurements = 2K (3.1)

(and more generally as MK for K factors distributed over M levels). This is
termed the Full Factorial Design [94]. Sadly, when it comes to physical experi-
ments, various limitations to the amount of evaluations needed for the complete
picture (Factorial Design) may arise. Thus many schemes, such as Fractional
Factorial Design, Box-Benkhen Design etc. [94] were developed to alleviate
this problem. They trade off the ability to observe distinct effects (aliasing)
for the reduced amount of evaluations needed. The increase in computational
power over the last 40 years, has allowed scientists and engineers to use them
as tools for modeling of (among others) physical systems. Thus, such modeling
facilitated a new branch of Experimental Design called Virtual Experimental
Design or Sampling. Here with the increase of computational power, allowing
for multiple ’experiments’ (i.e. numerical models) to be evaluated, also came a
desire to increase precision and explanatory power. Thus, modern experimental
design is a bit different from the classical one. The two key differences are:

• The amount of factors under consideration: now models that depend on a
wide array of factors and factor combinations are present, which increases
the design space.

• Continuous parameter spaces: now instead of discretizing the parameters
into a set of ’high’ and ’low’ values it is often more common to apply a
certain range or a statistical distribution for a given parameter and then
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sample real valued samples from their distribution. This also increases
the cost of experimental design.

This two key differences facilitated a development in, what is broadly called,
Sampling Schemes. These schemes allow for efficient sampling of the (now
highly dimensional and continuous) factor spaces with relatively good cover-
age of the space. One section of such techniques are the widely applied Low-
Discrepancy Sequences.

3.1.1 Low-discrepancy Sequences

Discrepancy is a mathematical measure that serves as a foundation for a whole
new branch of sampling methods. Discrepancy, DN with respect to a sequence
(s1, s2...) and the interval [a, b] and some sub-equisize interval [c, d] is defined
as:

DN = supa≤c≤d≤b|
|s1, ...sN | ∩ [c, d]

N
− d− c

b− a
| (3.2)

Unpacking the definition one can see that it is the least upper bound on the
absolute difference between the fraction of the set of points present within a
chosen subinterval of the total sample size and the space that is occupied by
the subinterval in the relation to the total size of the domain. A sequence
would be equidistributed if discrepancy tends to zero and/or as N tends to
infinity. In other words, discrepancy can be characterized as "lumpiness" of
the sequence of points in a multidimensional space. The smaller the discrep-
ancy, the less lumpy and more covered the design space is. Regular random
sequences of k-dimensional points usually end up having very high discrepancy
(e.g. lumpiness, like in Simple Random Samling), but there are infinite se-
quences of k-dimensional points that have low discrepancy, hence the name
low-discrepancy sequence. [74]

One such sequence is the Halton Sequence. It works by first listing the amount
of samples as indices in order corresponding to the natural numbers, i.e. start-
ing from 1 and going to N (sample size). Then for each of the n factors, these
indices are expressed in a increasing base system (i.e. first factor in base-2, sec-
ond factor in base-3 etc.) where consecutive bases belong to the prime numbers.
Then the numbers are reversed and placed after a decimal and then converted
back to a decimal system. Samples from a Halton Sequence can be seen in Fig-
ure 3.1 which compares it against other techniques. Simple Random Sampling
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(3.1, top left) is a basic sampling technique that has no structure imposed on it
and simply uses the inverse transform sampling to produce new samples. This
leads to production of excessive clusters that do not cover the sampling space
properly. [71] A sampling scheme that imposes some structure on the sampling
process is the Latin Hypercube Sampling (most widely applied method as per
the Introduction), see 3.1 top right. Notwithstanding the imposed structure,
this sampling still produces clusters. Low Discrepancy Sequences depicted in
the lower half of Figure 3.1 produce less clusters than SRS or LHS. From the
Figure it is readily observable that the low discrepancy sequences are better at
covering the available experimental space than the LHS and especially better
than the cluster-prone SRS. Selecting between sequences is difficult as only for
very specific applications the differences come up, but a recommended tech-
nique for larger dimensional problems is the Hammersley sequence (it is an
extension of the Halton sequence) and thus it is used throughout this work.

One of the properties of such sequences is that the estimates for various statis-
tics, e.g. the mean, tend to more quickly approach the true values. For se-
quences the rate is of lnNn

N where N is the amount of samples and n is the
amount of dimensions. This is generally faster than the rate of 1√

N
for SRS

and LHS. [74] This is a very useful property as when faced with estimating ex-
pectations (means) for Monte Carlo based Sensitivity Analysis, the convergence
towards the true values is much faster. [74]

3.2 Gaussian Processes Regression

One of the two considered surrogates in this work is the Gaussian Process Re-
gression. It is based on the idea of Gaussian Processes. A Gaussian process
is a collection of random variables, any finite number of which have a joint
Gaussian distribution. [113] According to the definition, a Gaussian Process
(GP) is a stochastic process, that is, a collection of Random Variables (RVs).
Not just any random variables - normally distributed Random Variables. Such
a collection is called a Stochastic Process, they can be finite and infinite. Gaus-
sian Processes are typically defined as infinite collections of RVs. Most often,
however, we desire to observe the behaviour of a GP on (arbitrarily large) set
of discrete points. What allows one to jump between the possibly infinite def-
inition and finite application is the Marginalization Property of Multivariate
Gaussians. This propery can be mathematically shown for 2-D Gaussian as
[114]:
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Figure 3.1: Comparison of the samples drawn from four different sampling
schemes for a two-parameter design space, where both parameters are defined
on an interval Xi ∈ ⟨0, 1⟩ and the sample size is large (N=500). Generated
using artificial data.

p(X)dx =

∫
y
pX,Y (x, y)dy =

∫
y
p(X|Y )pY (y)dy (3.3)

The interpretation is the following: if we want to look at the smaller set of
variables than before, the larger set need not impact the results we observe.
In short it means we can "cherry pick" the set of RVs we care about and only
examine their co-dependence. Given that a Gaussian Process is a collection
of Normal RVs it inherits their property. Gaussian Process is specified by two
parameters. The first one is the mean function, m(x) and the second one is the
covariance function, k(x, x′) [113]:

m(x) = E[f(x)] (3.4)
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k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3.5)

Gaussian Process is then often written as:

f(x) ∼ GP (m(x), k(x, x′)) (3.6)

The above line states that some (usually latent) function is distributed as a
Guassian Process wit mean function m(x) and a covariance function k(x, x′).
Although Gaussian Processes themselves are interesting, the goal is applying
them in regression context, thus Gaussian Process Regression (GPR) has been
developed. There are a few key differences between standard, frequentist ap-
proach to regression and Gaussian Process Regression. The primary ones are:

1. GPR is a non-parametric regression model.

2. GPR is a Bayesian regression techniques

First of all GPRs are non-parametric. It means that unlike a typical SLR model
(see section 2.4.3), where one tries to relate the predictors to the data via some
parameters, Gaussian Processes essentially have ’infinite’ parameters, i.e. as
many parameters as datapoints or testing locations. This allows for the incred-
ible flexibility of Gaussian Processes, however it comes at a cost. In parametric
models, once the parameter values are learned, only their values need to be
stored in computer’s memory when one wants to evaluate the model. Unless
one is dealing with (Deep) Neural Networks (which typically have hundreads,
thousands or more parameters) it is a very convenient feature. However in non-
parametric models, there is a need to have access to all data at evaluation time.
[90] This is one of a few small hiccups to come regarding Gaussian Processes.

Secondly, GPR is a Bayesian regression technique. In Bayesian regression one
typically expresses initial belief (prior) about various model parameters (see
Section 3.5) and then the likelihood for the data generation (e.g. Gaussian,
Poisson etc.). The goal is to obtain the posterior distribution for the parame-
ters, however due to its analytical untractability one often resorts to sampling
methods (such as Markov Chain Monte Carlo or Gibbs Sampling). [92]. The
key difference between the common Bayesian framework and GPR is that in
GPR one expresses uncertainty not about the model parameters, but about
the function that generated the data itself. Such a method of expressing uncer-
tainty has been commonly termed Latent Function Inference [115]. The idea is
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that the process generating the data can be described by some function, f(x),
and based on the observed data we want to be able to emulate its behaviour.
Similarly to linear regression (see section 2.4.3), one can express the observed
data as:

y = f(x) + ϵ (3.7)

where ϵ ∼ N(0, σ2
n). Inference in Gaussian Process Regression works as follows.

A joint GP prior is put on training and testing values of the latent functions,
f and f∗ respectively. The joint prior can be presented as (mean function is
often assumed to be zero):

[
f
f∗

]
∼ N(0,

[
Kf,f K∗,f
Ff,∗ K∗,∗

]
) (3.8)

where KA,B refers to a covariance between two random variables A and B.
In this case Kf,f and K∗,∗ express the covariance between the training or the
testing values of the latent function. K∗,f describe the cross-covariance between
the training and testing values. Subsequently, using the Bayes Rule (see section
3.5) one combines these Random Variables with observations to obtain a joint
posterior distribution:

p(f, f∗|y) =
p(f, f∗)p(y|f)

p(y)
(3.9)

where the data likelihood can be written as:

p(y|f) = N(f, σ2
noiseI) (3.10)

Notice that in the likelihood, there is only explicit dependence on the underlying
latent function f due to the way y has been defined. In the end, one wants to
perform prediction at unseen locations, f∗. This is obtained by marginalization
of the posterior distribution to obtain the Gaussian predictive distribution:

p(f∗|y) =
∫

p(f, f∗|y)df =
1

p(y)

∫
p(y|f)p(f, f∗)df (3.11)
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This means that the predictive distribution is just a marginal distribution,
obtained by normalization of the multiplication of the joint prior and the data
likelihood. Due to the fact that the above formula contains only Gaussian
distributions, an analytical solution can be obtained using some linear algebra
operations on multivatiate Gaussians [90]. This leads to the analytical formula
for the marginal posterior distribution for the test locations [113, 115]:

p(f∗|y) = N(f̄∗, cov(f∗)) (3.12)

where:

f̄∗ = K(f∗, f)[K(f, f) + σ2
noiseI]

−1y (3.13)

and

cov(f∗) = K∗,∗ −K∗,f (Kf,f + σ2
noiseI)

−1Kf,∗ (3.14)

Immediately both of the mentioned features of GPR come into play. The non-
parametric nature of the GPR can be seen from equation 3.13, where the data,
y, is directly involved into prediction of unseen cases. Secondly the use of prior,
posterior and the likelihood show that GPR is an intrinsically Bayesian tech-
nique. Formula presented in equation 3.12 is used for carrrying out predictions
in Gaussian Process Regression, it is a multivariate probability distribution on
the test latent function conditioned on the observed data. [113]

Since Gaussian Processes are uniquely specified by the mean and covariance
functions it is important to have a look at them. While the mean function does
play a role, it is often assumed to be zero (a zero vector). It is done, because
the mean structure of the latent function is often not known beforehand (unless
it is a very specific case, e.g. tissue modeling see [59]). Moreover, the mean
function is learned through the marginalization formulas (i.e. even though the
explicit dependence on mean values for f and f∗ are omitted, the mean is
nevertheless updated with new data). In GPR the spotlight is definitely placed
on the covariance functions. When one assumes a linear form of the covariance
function, i.e.:

K(f, f) = K(f(X), f(X ′)) = K(X,X ′) = X ·X ′ + σ2
0 (3.15)
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one obtains a fit very similar to what standard Bayesian Linear Regression
would produce [113]. When one would like to reproduce more complicated
functions, there is a need to introduce more complicated dependencies. This is
done by introducing kernels, i.e. kernelizing the covariance.

3.2.1 Kernels in GPR

Kernels, K(x, x′) are generally functions that map a (often) vectorial set of
inputs to a real number, i.e. K : (x, x′) 7→ R. [116] One of the most widely
used and ’boiler plate’ kernels is the Squared Exponential (also called Radial
Basis Function, RBF) kernel. It can be written as:

k(x, x′) = σ2
fexp(−

1

2l2
(x− x′)2) (3.16)

where the difference, r = (x− x′) describes the distance between two different
points (or vectors). It is sometimes called a proximity or similarity metric
and that’s why kernels are often denoted as similarity measures [116]. l is
the kernel lengthscale and σ2

f is the kernel variance, these hyperparameters
control the smoothness and and the amplitude, or range of values, produced
by the kernel. The lengthscale itself describes how far does the kernel ’reach’,
i.e. small lengthscales will down-weigh points that are farther apart from our
point of interest. The effects of varying the hyperparameters can be seen in a
prepared example depicted in Fig 3.2. Figures 3.2 A and B show the effects
of varying the kernel lengthscale while keeping the variance constant. On the
other hand, Figures 3.2 C and D show the effects of changing the variance,
while keeping the lengthscale constant. To avoid clutter both parameters are
denoted by a placeholder parameter η and depending on the context it refers
to lengthscale (LS.) or the variance (σ2). Figures A and C show the situation
where we look at the kernel output for k(x, 0) while figures B and D show the
resulting GP fit under constant lengthscale or variance. Looking at the figures,
starting with the Figure 3.2 A, it is observed that as one keeps increasing
the lengthscale, the reach of the kernel increases, i.e points farther down still
have an impact on the kernel output. Figure 3.2 B shows how varying the
lengthscale impacts the GP fit for some synthetic data. When the lentghscale
is too short we essentially get a clump of Gaussians, each per one datapoint.
When one increases the lengthscale, more and more neighbours of a given point
are taken into consideration producing a smoother fit. When one goes too far
however, the fit stops trying to capture the data’s pattern. Similarly, Figure
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3.2 D changes the variance. Larger variances result in larger kernel outputs for
the same lengthscale. There, one can see that by increasing the variance it is
possible to better capture the overall trend of the data, unless we go too far
and get an overfit resulting in the curve going through each and every point.
[113]

Figure 3.2: Effects of various hyperparameters on kernel and GPR behaviour.
Figure shows the impact of varying parameters on kernel behaviour and re-
sulting mean of the predictive posterior distribution. Impact of varying the
lengthscale on kernel (A), impact of varying the lengthscale on the posterior
mean (B), impact of changing the variance on kernel output (C) and impact
of changing the variance on the posterior mean (D). η stands for a given pa-
rameter either lengthscale (LS.) or variance (σ2).

It is useful to be aware of rules that kernels employed in GPR should follow.
Since in GPR kernels are used to populate the covariance function, it is im-
portant that they follow its structure and properties. The most important
properties are positive semi-definiteness and symmetry. These two properties
arise from the structure of the covariance matrix, which the kernels are meant
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to fill. [117, 67] Some of the commonly used kernels in GPR are [113, 118]:

1. RBF kernel

2. Matern32 or Matern52

3. Brownian kernel

4. Cosine kernel

5. Rational Quadratic

6. Polynomial Kernel

7. Bias

8. Linear Kernel

The influence of the kernel choice on the resulting Gaussian Process Regression
fit is immense. It is easy to observe how the change of the kernels, that make
up the covariance matrix, impacts the shapes of samples from the Multivariate
Normal distribution depicted in Figure 3.3. There is no universal way to choose
a kernel and the choice is highly dependent on the data at hand. Each of the
kernels can contribute something to the overall shape of the function, e.g. the
cosine kernel encoding the periodicity (e.g. in time series or signal process-
ing applications), the linear kernel indicating a general linear trend (increase,
decrease) and the RBF kernel encoding the local variation of the function [118].

There are also situations where any single kernel cannot properly describe the
data, one of the possible solutions to such a problem is considering kernel
combinations. Given that a new kernel that emerges from such combinations
must preserve the properties of positive semi-definiteness and symmetry, the
combination possibilities are somewhat restricted. The three possibilities for
combinations of kernels, k1(x, x′) and k2(x, x

′) for GPs include [113, 118]:

• summation:
k1(x, x

′) + k2(x, x
′) = K(x, x′) (3.17)

• multiplication:
k1(x, x

′) · k2(x, x′) = K(x, x′) (3.18)

• functional composition:

k1(x, x
′) ⋆ g(x) = K(x, x′) (3.19)
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Figure 3.3: Samples drawn from a Multivariate Normal showing the impact
of various kernels for covariance matrix on the sample shape.

Figure 3.4: Effects of kernel combinations on resulting MVN samples. Top
row shows the draws from MVN with a covariance specified by linear and cosine
kernels respectively. Middle row shows the effect of adding and multiplying
these kernels together. Bottom row demonstrates the effect of composing these
two kernels with each other in different order.
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where g(x) is some function of x or another kernel. Each of the possible combi-
nations yielding valid kernels can be seen in Figure 3.4. The plots in the top row
correspond to MVN sample draws with a given covariance kernel. The middle
row shows the impact on the samples drawn from the MVN under addition
(middle row, left) and multiplication (middle row, right) of two kernels. For
addition one can observe that the result is just a superposition of the shapes
of two kernels, i.e. to a linear trend, periodic variation is added. For multi-
plication one can see that the linear signal attenuates the cosines when one
approaches zero and then the values increase outwardly. Bottom row of the
Figure shows the effect of the composition of two kernels. There the situation
does not look so straightforward. Bottom left shows the composition of the
linear kernel with the cosine kernel. Here one can observe that the trend of
the linear kernel directly scales the cosine kernel output. For the last case, the
composition order is reversed. This image further enforces the idea proposed
by [118, 90, 115, 113] that kernel choice is highly subjective and is itself an art
of sorts.

3.2.2 Hyperparameter Optimization

Once one sets up the kernels and Gaussian Process assumptions and update
formulas, it may seem all the work is done. However as demonstrated in the
previous section, varying hyperparameters has quite a big impact on the pos-
terior distribution of the Gasussian Process. Since manual tuning is out of the
question, closer attention needs to be paid towards doing it automatically. This
is done through a process called hyperparameter optimization. This is done by
optimizing the log marginal likelihood (also called the evidence). The likelihood
is a function of hyperparameters, conditioned on data, and the maximization
problem is set up the following way:

θ∗ = argmaxθ logp(θ|y) (3.20)

where p(θ|y) is the likelihood function

p(θ|y) = N(y|0, σ2
nI +Kf,f ) (3.21)

since it is often assumed that E(f) = 0. Upon plugging in the parameters to
the normal distribution and taking the natural logarithm:
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logp(θ|f, y) = −1

2
yTK−1

y y − 1

2
log|Ky| −

n

2
log2π (3.22)

where

Ky = Kf,f + σ2
nI (3.23)

is short-hand notation for the covariance for noisy targets. These terms in the
log likelihood have readily interpretable terms [113]: the first term directly in-
cludes data thus is termed the data-fit term, the second one is the complexity
penalty depending on the covariance matrix and the last one is a normaliza-
tion constant. Optimization itself may be carried out using gradient-based
algorithms, which should work well for simple cases. However when multiple
kernels and/or kernel combinations are applied, the likelihood surface becomes
highly nonlinear creating many possible local maxima and requiring a use of
more involved optimization algorithms. [119]

The above formula for the marginal log likelihood shows the biggest problem
with Gaussian Processes - scalability. Since there is an inverse of a matrix in
the formula, most of the optimization algorithms will have to evaluate it (most
often through Cholesky Decomposition), leading to a complexity of operations
of order O(N3), where N is the amount of datapoints. Not only that, but the
covariance matrix needs to be stored in memory, leading to memory scaling
of O(N2). [120] This seems to be very problematic, however there are a lot
of approximations that try to alleviate the problem. They often base on an
approximation to the covariance matrix. Sparse Variational Gaussian Process
is the method utilized in this work, for a detailed information on it, the reader
is referred to [120] and [115]. It is based on the idea of introducing ’inducing
variables’, whose goal is to approximate that training dataset with fewer ’key’
data points that best represent it. The more datapoints are chosen, the closer
the datapoints represent the data, with the limit being, that as the amount of
inducing variables approaches that training set size, it is wholly recreated. [120]
Inducing variables are trained alongside other parameters in the model (like
kernel hyperparameters) so that their representation of the dataset is optimal
[121].
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3.3 Data driven Reduced Order Modeling

Another avenue pursued in this work for model creation was the development
of a Reduced Order Model. Generally there are two ways to construct a Re-
duced Order Model, i.e. intrusive and non-intrusive approaches. The intrusive
approach relies on, for example, developing a POD-Galerkin projection that
serves as an approximation to a given field quantity of interest (e.g. velocity)
and then substituting the developed approximation straight into the Equations
of Motion (e.g. Navier-Stokes equations). Although such an approach is feasi-
ble for Fluid-Structure Interactions [122], it is very difficult to implement and
needs a lot of effort to reimplement when the model itself is subject to changes.
It is especially difficult for FSI given that it is a coupling of two different fields
(fluid and solid), which demands a large mathematical overhead. Non-intrusive
approaches often rely on development of a Reduced Basis [123]. Such a basis
is often obtained with a use of matrix decomposition techniques. There are
many existing matrix decompositions (Cholesky, QR, etc.) that serve varied
purposes. One that has enjoyed probably the widest application is the Singular
Value Decomposition. It can be stated mathematically as [124]:

A =

 | | ... |
a1 a2 ... am
| | ... |

 = USV ∗ (3.24)

where A can be some complex valued matrix, A ∈ Cn×m. n denotes here the
number of rows in a matrix and m the number of columns. U ∈ Cn×n are
called the Left Singular Vectors, V ∗ ∈ Cm×m are called the Right Singular
Vectors. U and V ∗ are unitary (orthogonal when real-valued) matrices, and
(...)∗ denotes the Hermitian conjugate (for real-valued matrices simply a trans-
pose). S ∈ Rn×m and is generally diagonal matrix, it contains the singular
values on the principal diagonal. The reason for such a widespread usage of
SVD in science in engineering are its properties and interpretation. Starting
with the latter, U and V ∗ matrices encode the most important features in the
matrix A (which most often is the dataset). U is in the column space of A,
it is the new basis in which the entries of A are embedded. It contains all of
the important patterns in the data, while V ∗ dictates what combination of U
vectors is needed for reconstructing the matrix A with S dictating their rel-
ative importance. Thus, considering the present work, U would contain the
time-dependent patterns in data, V ∗ would be responsible for putting them
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together to reconstruct the parameter dependent (column-wise) representation
in the data matrix (more on the problem set-up in section 5.4 ). Given that
the SVD is a matrix decomposition, i.e. a matrix can be re-built from it, it is
readily seen that the matrix S stores along its diagonal the relative importance
(i.e. weights) of the singular vectors that are needed to reconstruct it. Thus it
has been observed that it is possible approximate the given matrix with just a
fraction of its original content by truncating the full decomposition and keeping
just a small part of the original dataset. This leads to the following formulation
(often called the ’economy’ or ’truncated’ SVD) [124]:

A ≈ Â = Û ŜV ∗ (3.25)

where Û ∈ Cn×r and Ŝ ∈ Rr×m, where r is the truncation rank. Such an
approach leads to a possibility of reducing and summarizing the original data
by only losing a fraction of the accuracy. Not only the interpretation of the
SVD, but maybe most primarily its properties have led to its wide adoption.
First of all, by Eckart-Young theorem [124], it has been proven that given some
rank-r trunctation of the SVD it is the optimal approximation to the matrix
A in the least squares sense. Moreover, unlike many other decompositions,
SVD is always guaranteed to exist (for any rectangular matrix) and the only
hurdles in obtaining it may be its computation, where its time complexity tends
to be O(nm2) and space complexity is O(nm). In contrast to the Eigenvalue
decomposition, the singular vectors unlike the eigenvectors are guaranteed to
be unitary (orthogonal), which is important for creating an efficient reduced
basis. Moreover, unlike eigenvalues, singular values are always real valued and
positive. Among many other applications, SVD is used almost as a default for
matrix inversion (Moore-Penrose Pseudoinverse) and thus in Least Squares. It
is worth mentioning that SVD is also heavily related to Principal Component
Analysis, a widely applied statistical method for reducing the order of the
dataset by capturing the most pronounced correlations within the dataset. [124]

3.4 UQSA Theory

The broad strokes of UQSA have been described briefly in the Introduction.
To recap, Uncertainty Quantification is an umbrella term that refers to various
techniques applied to gauge the amount of uncertainty within a given model. It
stems from the assumption that a given model is dependent upon parameters
that are inherently uncertain, which leads to uncertainty present in the model
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response [71]. It often takes the approach of calculating various statistical
moments on the model response data to quantify how much variation is present.
First of the two metrics, given some model response y, is the estimator of the
mean model response, µ̂y:

µ̂y =
1

N
ΣN
i=0yi (3.26)

and the estimator of the model response variance:

σ̂2
y =

1

N − 1
ΣN
i=0(yi − µ̂y)

2 (3.27)

Typically (however not necessarily), UQ precedes SA as it is generally a good
practice to first know how much variance is present in the model before deciding
to implement decisions based on SA’s results.

3.4.1 Variance-Based Sensitivity Analysis

Variance-based methods have their roots in the High Dimensional Model Rep-
resentation (also known as Hoeffding decomposition), which, assuming inde-
pendent inputs, is written as [72]:

Y = f(X) = f0 +Σifi +ΣiΣi<jfij + ...+ f12...k (3.28)

where fi = f(xi), Y is random variable that is a function of other random vari-
ables, Xi. The decomposition has 2k terms and is neither unique nor infinite.
Moreover, Sobol proved that if each term in the decomposition has zero mean
[74]:

∫
f(xi)dxi = 0 (3.29)

then all the terms of the decomposition are orthogonal pair-wise. The following
dependencies based on output variance can be written: [125]
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f0 = E(Y )

fi = E(Y |Xi)− E(Y )

fij = E(Y |Xi, Xj)− fi − fj − E(Y )

(3.30)

By taking the variance of this decomposition one arrives at the ANOVA-HDMR
decomposition: [74]

V(Y ) = ΣiVi +ΣiΣi ̸=jVij + ...+ V12...k (3.31)

where k is the number of factors. Equation 3.31 fully decomposes the variance
present in the response into many components, where Vi = VXi(EX∼i(Y |Xi)
(and so on for higher order terms). This represents the variance across all Xi

of the conditional expectation of the response, Y , conditioned at a given Xi,
over all other variables than Xi, i.e. X ∼ i. This simply means that one takes
a given value of the considered variable, Xi, and conditions on it the response
subsequently averaging out all other variables. What follows is to calculate the
variance over all possible values of Xi rather than just the one, to get Vi. By
dividing the decomposition by the system response variance in Eq. 3.31, Sobol
indices may be derived:

1 = ΣiSi +ΣiΣi ̸=jSij + ...+ S12...k (3.32)

It can be seen that all Sobol indices must sum to 1. From the above decompo-
sition the First Order Sobol index is described as [74]:

Si =
VXi(EX∼i(Y |Xi)

V(Y )
(3.33)

with the higher order ones following the same general formula. Sobol indices
are simply a comparison of a given variance component (e.g. Vi) and the total
response variance, V(Y ) yielding a ratio indicating the relative ’importance’
of each considered factor or factor combination. To see the proportion of the
First Order effects contributed by variable, Xi, one refers to the First Order
Sobol Index. It is most often used in factor prioritization setting, i.e. when one
wants to seek out the most ’misbehaved’ factor, variance-wise, and reduce its
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assumed variability by further studying it. The Total Sobol index can readily
be derived from Eve’s Law (Law of Total Variance): [74]

EXi(VX∼i(Y |Xi) + VXi(EX∼i(Y |Xi) = V(Y ) (3.34)

where, by rearranging, one may obtain:

ST i = 1− VXi(EX∼i(Y |Xi)

V(Y )
=

EXi(VX∼i(Y |Xi)

V(Y )
(3.35)

Here, the numerator describes the conditional variance of the response, Y ,
conditioned on a given Xi, taken over all other variables than Xi, and then
summed over all possible Xi’s to condition on. This defines how much of the
total variance can be attributed to a given factor, which includes all possible
orders of variation and interaction. The Total Sobol index is commonly used
in factor fixing setting, i.e. observing the total contribution of a factor to the
total variance and deciding whether to downgrade it from a random variable
to a constant value. [74]. It is possible to calculate Higher Order indices
that yield more insight in variable interactions, however, this greatly increases
the computational burden and tends to grow as 2k−1 (where k is the parameter
count) when one wants to fully account for all possible interactions; it is further
stipulated in [74, 72] that the first and total Sobol indices constitute a sufficient
description of the model’s variance.

3.4.2 Monte Carlo Methods for UQSA

In the ANOVA-HDMR decomposition, each variance component is described as
an integral, i.e. by applying the fundamental relation V(Y ) = E(Y 2)−(E(Y ))2,
one may obtain for Vi: [72]

Vi = VXi(EX∼i(Y |Xi)) =

∫
E2

X∼i
(Y |Xi)dXi − (

∫
EX∼i(Y |Xi)dXi)

2 (3.36)

while the second integral is simply equal to f2
0 , the first one needs to be esti-

mated. The most widely used approach relies on Monte Carlo approximation
of the integral. However useful, Monte Carlo requires a lot of model evalua-
tions and is only applicable either for simple models or for surrogates of the
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Full Order Models. The latter setting is pursued within this work. The general
framework for Monte Carlo estimation of the integrals relies on first splitting
the evaluations of the model, Y, into 4 matrices: A,B,Ai

B and Bi
A. The A

matrix is built out of the first half of model evaluations, while matrix B is
built out of another half. The cross-matrices Ai

B and Bi
A are constructed by

replacing the i-th column of a given matrix, with a corresponding column for
the other one. Then the model is evaluated using these respective matrices,
giving e.g. yA = f(A). [74, 72, 126] In this work, both Total and First order
sensitivity indices are computed using three methods. For First Order indices:

SSobol
i =

1
NΣ(yA · yBi

A
)− f2

0

V(Y )
(Sobol [71])

SSaltelli
i =

Σ 1
N yB · (yAi

B
− yA)

V(Y )
(Saltelli [72])

SJansen
i = 1− 1

2N

(yB − yAi
B
)T · (yB − yAi

B
)

V(Y )
(Jansen [127])

(3.37)

and for Total Indices:

SHomma
T = 1−

(yB · yBi
A
)− f2

0

V(Y )
(Homma [128])

SSobol
T =

yA · (yA − yAi
B
)

V(Y )
(Sobol [129])

SJansen
T =

1
2N (yA − yAi

B
)T · (yA − yAi

B
)

V(Y )
(Jansen [127])

(3.38)

where here the · represents the dot product and f2
0 = ( 1

N [yA, yB])
2, i.e. basing

on both inputs from A and B matrices to increase precision [72].

3.5 Bayesian Statistics and Estimation

First it is crucial to remind the Bayes Theorem, which was developed by its
namesake, Thomas Bayes in the second half of the XVIII century and published
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posthumously [130]. Currently it constitutes one of the fundamental results of
probability theory. It is a simple mathematical statement relating the prob-
ability of one event, X, happening given some other event (e.g. data) y has
already happened:

P (X|y) = P (X
⋂
y)

P (y)
(3.39)

where P (X
⋂
y) is the joint probability of two events happening simultaneously.

Through another fundamental rule from probability, i.e. Multiplication Rule,
P (X ∩ y), can be rewritten as ([131]):

P (X ∩ y) = P (y|X)P (X) (3.40)

where P (y|X) is the conditional probability of y on X and P (X) is the marginal
probability of X happening. Using the above two formulas and employing the
Law of Total Probability, one may write: [131]

P (Xi|y) =
P (y|Xi)P (Xi)

ΣN
i=0P (y|Xi)P (Xi)

(3.41)

where P (Xi|y) is the posterior distribution of Xi given y, P (y|Xi) is the like-
lihood of the y given Xi, P (Xi) is the prior (marginal) distribution on Xi and
the denominator is simply a summation of all the possible states that Xi can
take. This discrete Bayes Rule may also be rewritten in continuous form [92]:

p(Xi|y) =
p(y|X)p(X)∫

...
∫
p(y|X1, X2, ...XN )p(X1, X2, ..XN )dX1dX2...dXN

(3.42)

The integral in the numerator is what immediately captures the attention: it is
multidimensional and contains multiple complicated (and often impossible to
derive) conditional probability distributions. Before computational advances
of the XX century, it was this that kept Bayesian inference limited to sim-
ple problems, with conjugate prior-posterior pairs (given a certain likelihood)
that produce neat analytical formulas for posterior probability calculation for
tractable problems [132] or grid approximation techniques whose need for dis-
cretizing the probability space produced an exponentially growing problem,
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computationally-wise. [132] The, already existing in mid-XX century, sam-
pling based approaches, which sidestep this integral altogether were similarly or
even more computationally prohibitive. Thus with more computational power,
Bayesian approaches came more into prominence.

Bayesian statistics contrasts the classical approach of frequentist statistics used
thus far. At the crux of the Bayesian-frequentist dichotomy lies the interpre-
tation of probability itself. In frequentist approach the probability is viewed
strictly as the relative frequency of an event occurring over an extensive series
of hypothetical (not necessarily possible or real) repetitions of an experiment
under identical conditions. Conversely, Bayesian statistics adopts a more sub-
jective interpretation of probability. Within the Bayesian framework, proba-
bility signifies a measure of belief or uncertainty regarding the likelihood of an
event, conditioned on available evidence or prior information.

Another fundamental distinction between Bayesian and frequentist statistics
pertains to the treatment of uncertainty quantification. Frequentist method-
ologies typically employ confidence intervals and hypothesis tests to quantify
and address uncertainty. They rely on the concept of a ’sampling distribution’
which in the rawest sense is an imaginary distribution of a given parameter upon
which conclusions and values for confidence intervals and p-values (and thus the
results of hypothesis tests) are drawn. [92] While mathematically proven and
widely applied, sampling distributions are not very convincing, especially to
non-statisticians. Although there are many alternatives (e.g. bootstrapping
[133]), Bayesian statistics provides one with an actual distribution, instead of
an imaginary or assumed one. Bayesian modeling proposes an alternative and
intuitive solution: draw samples from the actual distributions themselves, con-
ditioned on the data observed and in turn provide distributions on each of the
considered parameters. So unlike the classical approach of the sampling distri-
bution, it draws samples from an actual distribution instead of just assuming
one exists. An obvious elephant in the room is the fact that in Bayesian model-
ing, one needs to assume a lot of distributions - data likelihoods, priors (possibly
hyperpriors in hierarchical cases). However all the other approaches (i.e. clas-
sical frequentist approaches or bootstrapping) also rely on (often implied or
skipped over) assumptions of normality or some other distribution to facili-
tate inference (for non-normal frequentist approaches see robust statistics, e.g.
[134]). While Bayesian approaches seem like it should be the ’default’ method
for data analysis, things like mathematical complexity, computational costs, ex-
treme judgement when assuming distributions or limited software availability
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have contributed to them being less popular than the frequentist method. [92]

3.5.1 Bayesian metrics for uncertainty

The shift in the approach to handling the uncertainty also necessitates a shift
in the applied metrics and interpretations. The Confidence Interval common
in Frequentist analyses, in Bayesian ones is reinterpreted to be based on the
actual, and not sampling, distribution. It is termed a Credible Interval and has
a much more straightforward interpretation of highlighting a range of values
within which the true parameter value lies with a specified subjective prob-
ability, given both the observed data and prior beliefs. Again, unlike confi-
dence intervals, which hinge solely on sample data, credible intervals combine
prior knowledge with observed evidence, yielding a nuanced representation of
parameter uncertainty. Another common Bayesian approach for quantifying
uncertainty is the Highest Density Interval (HDI). The HDI is defined as the
narrowest interval containing a specified proportion of the posterior probability
density, i.e.:

HDI(α%) =< F−1
x,lower, F

−1
x,upper > (3.43)

where F−1
x,lower is the inverse Cumulative Distribution Function value of the sam-

pled posterior density that constitutes the lower bound of the α% HDI. Thus,
from the definition, the HDI captures the most credible range of values for a
considered parameter with a specified probability density, the most common
ones cover the 90%, 95% and 99% of most probable parameter values and pro-
vides the lower and upper bound of said interval. This interval is characterized
by its highest density region, distinguishing it from confidence intervals, which
rely on specific quantiles of a sampling distribution.

While Bayesian analyses often result in full probability distributions, what of-
ten is required is some representative value of the whole sampled set. Thus,
another common Bayesian term that is widely used is the Maximum A Poste-
riori estimate (MAP). MAP estimation is a method used in Bayesian statistics
to estimate the parameters of a statistical model. It seeks to find the parame-
ter values that maximize the posterior probability distribution given observed
data. It can be expressed as:

θ̂MAP = argmaxθ P (θ|y) (3.44)
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In simpler terms it can be termed the most ’likely’ value for a given parame-
ter given the data. MAP can be linked to a Maximum Likelihood Estimation.
MLE does not use any prior information and thus it is equivalent to performing
a MAP estimation with a uniform prior - in this situation the likelihood is the
most deciding factor in the MAP final estimate value, as it is in the MLE. How-
ever by incorporating some non-uniform and possibly informative priors, the
equivalence between the two methods is only ’conceptual’ and the superiority
of the MAP can be easily seen. [92]

Another fairly unique technique in Bayesian modeling are the prior and pos-
terior predictive checks. Since in this framework one must assume a lot of
distributions and their respective parameters it is often a good idea to do a
prior predictive check, which basically makes sure that the assumed quantities
are a reflection of the analysts’ intention. It proceeds by generating (hyper)prior
parameter values that are the propagated down the model until a synthetic dat-
apoint is obtained. A posterior predictive check works in a similar manner, the
difference is that it is utilized after the model had the chance of observing data
and drawing posterior samples. Thus both methods are useful - prior check
allows to validate the assumptions made by the analyst and posterior check al-
lows to test how well the obtained distribution would fare at generating future,
unobserved data (they are often compared with a test set withheld before the
analysis). [92]

3.6 Monte Carlo Methods for Bayesian Statistics

Markov Chain Monte Carlo (MCMC from now on) is a set of algorithms that
relies on Markov Chains to converge to some given target distribution from
which it aims at drawing representative samples. The sampling process itself is
the ’Monte Carlo’ part and its fundamental principle basically revolves around
the idea that with infinite amount of samples from some target distribution, the
distributional estimates under consideration tend to infinite precision. As men-
tioned, this method has been developed in mid XX-th century by Metropolis
and Ulam [135]. It is a very common technique in statistics but also in numeri-
cal integration and other areas of engineering and thus won’t be explained any
further. Markov Chains on the other hand are far less popular in engineering
circles and thus some background is required. Markov Chain is basically a con-
nected progression of states (or random variables) θt that are linked together by
some transition probability distribution, T (θt|θt−1). The fundamental property
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of a Markov Chain is that the current state is only dependent on the previous
one. While the proof of convergence of the Markov Chain to the target distri-
bution is beyond the scope of this work (see [77, 131]), it is worthwhile to have
a look at some properties a Markov Chain must satisfy to enable convergence.
The properties are: [70]

• Aperiodicity

• Irreducibiility

• Stationarity

The simplest one to explain is aperiodicity. It simply means that there should
exist no fixed period after which the chain repeats itself, i.e. returns to some
state which it already has visited. Irreducibility means that a chain must be
able to reach any existing state within a finite amount of steps. It basically
states that there should not exist some regions in the set of all possible states
that become impossible to reach. This ensures that the Markov Chain will
be, in fact, albe to possiibly explore all avalilable and defined states and not
produce biased estimates [131]. The final property is chain stationarity. This
property is known as the Law of Detailed balance: [70]

p(θt)T (θt+1|θt) = p(θt+1)T (θt|θt+1) (3.45)

where p(θt) is the probability of visiting some state t. If there exists such a
probability distribution p(...) that satisfies the above equation it means that
a Markov Chain is stationary and it is guaranteed that at some point it will
converge to some stationary distribution, which allows one to trust that after
some (however large) time, the stationary posterior distribution will be reached
and sampled from.

3.6.1 Metropolis-Hastings and Hamiltonian Monte Carlo

The goal of Bayesian modeling is to obtain a posterior distribution over pa-
rameters of interest upon seeing and analyzing some data. In applied Bayesian
statistics one obtains the posterior distribution directly from the Bayes Theo-
rem, as in section 3.5:

P (θ|y) = P (y|θ) · P (θ)

P (y)
(3.46)
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where previously X was a dummy variable denoting some event, now to align
with most statistical literature it has been replaced by θ. It denotes a given
parameter on which one wishes to perform inference. This formula is naturally
extended to the continuous version [92]:

p(θ1, θ2, ....θm|y) = p(y|θ1, θ2, ...θm)p(θ1, θ2, ...θm)∫
p(y|θ1, θ2, ...θm)p(θ1, θ2, ....θm)dθ

(3.47)

where θi denotes the i-th parameter, y denotes the observed data, and p(...|...)
denotes a conditional continuous probability distribution. As mentioned before,
the integral in the denominator is obviously problematic. It is common thus to
approximate the posterior by removing the integral altogether and setting the
posterior distribution proportional to the prior distribution multiplied by the
likelihood: [92]

P (θ|y) ∝ P (y|θ) · P (θ) (3.48)

While it is possible to estimate the distributional parameters using Variational
Inference, a more commonly applied method is Markov Chain Monte Carlo
(MCMC) Metropolis-Hastings algorithm. Extensive books and articles have
been written about the method (including seminal works of Metropolis [136]
and Hastings [137] themselves), thus here only a short discussion of the method
is provided. Having met the conditions of irreducibility, aperiodicity, and sta-
tionarity [77], a given Markov Chain is guaranteed to eventually converge to the
target, and stationary distribution of states (random variables), the posterior
distribution, given observed data y. MCMC M-H algorithm is one of the most
widely used in Bayesian inference and it starts from some initial guess, θ0. The
algorithm then proposes a new parameter value with probability q(θ1|θ0) =
N(θ0, σprop), where σprop is the variance of the proposal distribution. This pro-
posal is used by the Metropolis version, however the extension made by Hast-
ings generalized the proposal to any valid probability distribution (including
unsymmetrical, multimodal etc.), π(θi|η), where η is some specific parameter
set. Then for the M-H version, the algorithm evaluates whether to accept or
remain at a current state (thus counting the current sample again) with the
following decision rule [77]:

P (θt, θt+1) = min{1, p(θt+1|y)
p(θt|y)

q(θt+1|θt; ηt)
q(θt|θt+1; ηt+1)

} (3.49)
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where the first fraction is the ratio of the probability of the proposed sample
given the current state of the posterior distribution to the previous one. The
second fraction represents the ratio of the probability the current sample would
come from a proposal distribution given that it was parameterized by some
parameters, ηt, and the previous sample value. The denominator states the
reverse. When a symmetrical proposal distribution is considered and it does
not change over chain progression, the second fraction reduces to 1 and one
is back at the classic Metropolis decision rule and algorithm. The algorithm
then repeats the loop of proposal - decision rule - acceptance (or refusal) ad
infinitum. It is important to note that when a given proposal is rejected, the
current state (i.e. previous proposal) is ’accepted’ or counted again.

While MCMC M-H is a widely applied algorithm, its biggest flaw is its ineffi-
ciency in the exploration of the parameter space (i.e. everything that happens
before the decision rule). [138] To circumvent this shortcoming, Hamiltonian
Monte Carlo was introduced. It proceeds by introducing an auxiliary artifi-
cial variable, referred to as ’momentum’, r. This momentum variable is given
its own distribution, often r ∼ N(0,M) where M is the ’mass’ (correlation)
matrix. Statistically, the joint posterior distribution can be written as:

p(θ, r|y) = p(θ|r, y)p(r) = p(θ|y)p(r) (3.50)

where p(θ|y) is the posterior distribution of θ and p(r) is the marginal distribu-
tion of r. It is then assumed that the system’s ’potential energy’ (quotes apply
as the energy in question is used solely by the means of an analogy rather than
actual physical quantity) can be expressed as: [139]

E(θ) = − log(p(θ|y)) (3.51)

and the ’kinetic energy’ may in turn be written as: [139]

K(r) =
rTM−1r

2
(3.52)

By summing them together, one obtains a Hamiltonian: [138]

H(r, θ) = E(θ) +K(r) (3.53)
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which satisfies Hamilton’s equations:

dθi
dt

=
∂H

∂ri
;
dri
dt

= −∂H

∂θi
(3.54)

that leave the Hamiltonian invariant over time. The Hamiltonian is then inte-
grated with respect to time using a simplectic integrator to yield the phase space
trajectories. After completing such an integration step, a sample is proposed
and is either rejected or accepted. The acceptance criterion is: [138]

P (θt+1|θt) = min{1, exp(H(θt, rt|y)−H(θt+1, rt+1|y)} (3.55)

which means that if the intergrator does a good job (i.e. time step is small
enough and an appropriate number of steps is taken) the value of the Hamilto-
nian at the proposed parameter set will be very similar, |H(θt, rt|y)−H(θt+1, rt+1|y)| →
0 giving a very high acceptance probability. While for MCMC M-H a typical
acceptance is about ∼ 50% [92], for HMC it is straightforward to get acceptance
of 65% and above. [138] It is however not rare to see HMC and MCMC M-H
implemented together, particularly in Hierarchical Models, where the param-
eter space is a bit more involved and the correlations between variables may
impede the proper Hamiltonian parametrization [139].

3.6.2 MC-based model diagnostics

Naturally, as with every model, it is imperative to test its quality. Bayesian
diagnostics are somewhat different from the frequentist ones and thus necessi-
tate an introduction. There are many commonly employed diagnostics, but the
three most widely used (and most informative ones) are the Effective Sample
Size, R-hat (or R̂ also known as potential scale reduction factor), and Monte
Carlo Standard Deviation. R-hat starts by defining the within (W) and between
chain variances (B):[77]

W =
1

m

1

(n− 1)
Σm
j Σn

i (θij − µ̂j)
2

B =
n

(m− 1)
Σm
j=1(µ̂j − M̂2)

(3.56)
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where m refers to chain count, n sample count, µ̂j is the sample mean and M
is the grand mean (i.e. sample mean averaged across chains). Total variance is
the estimated as the weighted combination of the variances: [77, 140]

V+[θ|y] = n− 1

n
W +

1

n
B (3.57)

where V+[θ|y] tends to overestimate the variance when the chains are uncon-
verged and W tends to underestimate the Within sample variance for finite n.
R̂ has been defined to be: [77, 140]

R̂ =

√
V+[θ|y]

W
(3.58)

R-hat is a measure of how much the scale of M would reduce if the sampling
were to run indefinitely. As sample size tends to infinity, R̂ tends to 1, i.e. the
Within to Between chain variance is identical, i.e. all chains have converged at
a similar reasonable estimate. Another useful statistic is the Effective Sample
Size (ESS), which is responsible for tracking how many actual independent
samples are present within the chain. ESS measures the amount by which
autocorrelation within the chains leads to an increase in the uncertainty of the
estimates. It is defined as: [140]

ESS =
Ms ·Ns

1 + 2Σ2m+1
t=1 ρ̂ t

(3.59)

where Ms, Ns refer to chain and sample count respectively. ρ̂t is the combined
autocorrelation estimate, defined as: [140]

ρ̂t = 1−
W − 1

MΣM
m=1ρ̂m,t

V+[M |y]
(3.60)

where ρ̂m,t are the autocorrelation estimates at a given lag t from multiple con-
sidered chains m ∈ (1, ...,M). In the formula one can also see the (introduced
before) Within-sample variance estimate W and multi-chain variance estimate
V+[θ|y]. If the chains have not yet fully converged, the variance estimator
V+[θ|y] will, again, tend to overestimate the variance, leading to an overesti-
mate in autocorrelation and an underestimate of the ESS. [140] A low ESS is
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considered to be below 100 samples. When the ESS is very low, especially when
the amount of samples is large, it indicates some fundamental problem with the
structure of the model which needs to be resolved. Monte Carlo Standard Error
(MCSE) is simply a standard error applied to a given Monte Carlo Estimator,
i.e.: [140]

SE(θ̂) =
σ̂θ√
ESS

(3.61)

where SE is the Standard Error on the parameter and σ̂θ is just the standard
deviation of the pooled posterior draws of some parameter θ. The smaller the
estimated standard error, the closer the estimate is expected to be to the true
parameter value.



4
Statistical analysis and FSI validation

The purpose of this section is to go from the construction and design of the
experimental facility, through statistical analysis of the data, to ultimately
end up at the numerical model validation. As mentioned in the Introduction,
construction of the experimental rig is a crucial part in the development of
the new method for local arterial stiffness estimation. Rig’s purpose, itself, is
twofold. First, create a large amount of data that can be used for numerical
model validation. Second, to establish the ultrasound as a reliable method
for measuring arterial displacements, that can be later fed into the developed
algorithm. Having described the rig’s construction and the measurement pro-
cedure, the chapter moves on to rudimentary data analysis to get a ’feel’ for
the data, i.e. to understand the trends present within and process it. What
follows is a development of a more involved statistical model to better model
the uncertainty present in the data due to e.g. equipment noise. This whole
part of the chapter is based on author’s published work, [141]. The final part
is the numerical model development and validation. The validated numerical
model will be then used in the development of a statistical surrogate, used to
enable tasks such as parameter estimation.

83
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4.1 Description of the experimental rig

The goal for the experimental rig, was to faithfully simulate the behavior of the
Left Common Carotid Artery (LCCA) through the use of an arterial phantom
and to allow the direct monitoring of its deformation under simulated cardiac
pressure and flow cycle. The measured volumetric flow rate was kept at around
0.5 l/min in order to approximate physiological conditions in the LCCA of an
average adult male [142]. To obtain representative data while working with lim-
ited resources, experiments were planned over a series of four systole-to-diastole
pressure ratios, i.e. A) 110/70 mmHg, B) 120/80 mmHg, C) 135/95 mmHg
and D) 140/100 mmHg. These particular four ratios were selected as they cover
a wide range of physiological values and scenarios. They are often classified as
per the following: A - optimal, B - normal, C - high normal and D - Grade
1 hypertension [143]. Each of them were repeated 7 times, as this was the
amount of experiments at which the phantom still retained its original proper-
ties and was not extensively fatigued. These ratios were obtained by employing
the Harvard Apparatus Pulsatile Blood Pump designed for large animals [144].
The pump was used due to its ability to closely resemble the ventricular action
of the human heart. The setting of pump’s stroke volume was at 15 ml, the
stroke rate at 60 rpm, and the systole / diastole flow ratio at 35%: 65%. The
scheme of the experimental rig can be seen in Figure 4.1, and a photograph of
the physical facility itself, together with description of the most crucial com-
ponents, is presented in Figure 4.2. The operation of the rig can be thought of
as starting with the water reservoir which stores the water used in the experi-
ments, since it was the working fluid. Then it moves on to the aforementioned
pump. The path then proceeds into the elastic hydraulic accumulator, whose
role was to mimic the action of the aorta. After the accumulator, the path
diverges into two: one loops back to the water tank. The other fork in the path
leads straight into arterial phantom. There, the most important part of the
facility is located: a glass aquarium that holds the phantom, which simulates
the behaviour of the human body’s internals. It was filled with water to allow
a medium for Ultrasound Waves to propagate. Located at the aquarium are
the most important facilities used in the measurements: flow meters, pressure
transducers, high-speed cameras (later the ultrasound) and the backlights.

Starting off with the flowmeters, the ones used in the experiment were the
Endress + Hauser Dosimag electromagnetic flow meters [145]. Eight pres-
sure transducers (Harvard Apparatus Blood Pressure Transducers APT300)
together with Compact Transducer Amplifiers (Harvard Apparatus) were in-



4.1. DESCRIPTION OF THE EXPERIMENTAL RIG 85

Figure 4.1: Schematic representation of the testing rig used for measurements.
The scheme starts with the water reservoir from which water was drawn by the
pulsatile pump. Then the fluid was passed straight to a hydraulic accumulator
that mimicked the behaviour of the aorta. After this, the flowline was split into
two: the first one back to the reservoir imitating the recirculation of the blood
back to its source and to the carotid artery phantom, i.e. the testing location
with high-speed cameras / ultrasound. The flowline then comes back to the
reservoir creating a closed system. Figure reproduced from [141]

stalled to measure the pressure at several points proximal and distal to the
phantom. To confirm that the displacement of the tube could be determined
from the images of the phantom’s deformation, the change in external diameter
was monitored using two high-frequency cameras: a Phantom MIRO C110 and
a Phantom VEO 710 [146]. The Phantom MIRO C110 recorded 1000 frames
per second (FPS) at a resolution of 1280x900, which covered around 22% of
the entire phantom’s length. This was done using the irix lens [147] (150 mm
f/2.8 Macro 1:1) combined with a 20 mm extension apparatus. The second
camera, a Phantom VEO 710 was mounted with a NIKKOR 200 mm F/4.0
MACRO lens with another additional 68 mm extension apparatus. It recorded
1000 FPS of resolution 1280x800 while covering 30% of the phantom. The two
cameras were mounted perpendicularly to each other, so that they capture the
phantom’s deformations in two separate, orthogonal directions (refer to Figure
4.2). Lastly, in order to eliminate background artifacts and sharpen the edges
of the phantom in camera images, two backlights were installed.



86 CHAPTER 4. STATISTICAL ANALYSIS AND FSI VALIDATION

A

B

F

C

D

E

H
G

Figure 4.2: Photo of the configuration of the experimental rig, along with
devices used for data acquisition. Arrows indicate selected components of the
laboratory set-up. A - periodic pump, B - flowmeter, C - backlight, D - arterial
phantom, E - top camera (MIRO), F - reservoir tank, G - pressure transducers,
H - side camera (VEO). Reproduced from [141]

4.2 Measurement procedure

The data collection procedure implemented for the testing rig was controlled us-
ing an in-house program developed in LabVIEW (National Instruments Corp.,
USA) by Marek Rojczyk, PhD. This custom application allowed simultaneous
monitoring and acquisition of pressure and flow data from measurement de-
vices. These were gathered at 10 ms intervals (100 Hz), whereas image data
was collected at 1 ms intervals (1000 Hz, i.e. 1000 frames per second). The
high-speed camera recordings allowed precise tracking of the phantom’s defor-
mation. To facilitate simultaneous measurement of pressure and flow values
every 10 ms, the field-programmable gate array (FPGA) implemented in the
cRIO 9074 controller was used to read the values from the present measuring
devices (8 pressure transducers and 2 flowmeters). Once the data are collected
by the FPGA, each of the measured quantities was passed on to the real-time
(RT) as a vector, through direct memory access (DMA FIFO). The RT loop’s
purpose is to collect considered vectors as one big matrix and, at 500ms in-
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tervals, to send this matrix from RT to the application host (which here was
the laboratory’s PC). There the data is stored in a file. The whole process is
depicted schematically in Figure 4.3. The Dosimag flowmeters were calibrated
by the hardware suppliers, and subsequently checked by connecting the flowme-
ters in series with a turbine flowmeter (KOBOLD) [148]. Then, by imposing
various volumetric flow rates, the read outs were compared against each other
(and with the pump’s setting) to verify their consistency. The calibration of
pressure transducers and Compact Transducer Amplifiers (CTAs) was carried
out by first isolating the phantom region of the facility, where the transducers
were located, into a closed loop. To this closed system, a column of liquid was
connected. Consulting the manufacturer’s manual [149], two calibration points
were selected. The first being 0 mmHg gauge pressure (equal to 0 Volt signal
from the transducers). The second point was gauge pressure of 100 mmHg
(equal to 1V signal, thus giving a 100 mmHg / 1 Volt ratio). The pressure was
controlled by the height of a liquid column. At both endpoints (0 mmHg and
100 mmHg), the ’low’ and ’high’ values of the CTAs were adjusted to correctly
reflect the applied pressure. To ensure synchronization of the recorded images
with pressure and flow waveforms, a dedicated procedure was programmed into
the control application.

Only after the flow and pressure measuring devices were tuned to the desired
level, measurements could begin. The data recording was initiated manually
in the LabVIEW application and the and the control system triggered the
cameras to begin recording at detection of the first upcoming decreasing trend
in volumetric flow. Both cameras (VEO, MIRO) then recorded images for 5
seconds total. This made it possible to record a couple of pump cycles, which
in total produced around 5000 images (per camera). For each of the described
systole/diastole pressure ratios, the procedure was repeated 7 times each (see
the previous section).

4.3 Phantom Displacement Detection

In order to capture the displacements of the phantom from the recorded im-
ages, an automatic image-processing algorithm was developed using Python
3.9. Some of the applied libraries were: openCV [150], SciPy [151], Pandas[152]
and NumPy [153]. The functioning of the algorithm is depicted in Figure 4.4.
There, the left branch shows the way in which the lateral dimension (’diame-
ter’) of the phantom was determined from a recorded image. The right branch,
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Figure 4.3: The start and synchronization of data acquisition across the equip-
ment is depicted schematically. First, as the conditions stabilize, the system is
triggered manually sending a signal (red vertical line). Then the signal from
the flowmeter is closely monitored. Upon detecting a decreasing trend in flow
(black vertical line), data collection begins with a synchronization signal being
generated and sent to the ultrasound system. The inset with dashed lines il-
lustrates the programming of the FPGA to read pressure and flow data every
10 ms. These values are received by an RT loop in the controller and stored in
memory, and subsequently the values are read from this memory to the host
PC where they are collected in a data file. (reproduced from [141])

on the other hand, shows the procedure for determination of pixel dimension
for each of the cameras. The raw images from both cameras only record pixel
information, thus to extract distances and displacements in millimeters, the
linear dimensions of the pixel were determined for both cameras. As both cam-
eras have isotropic pixel dimensions, it is sufficient to determine the dimensions
along a single axis. A calibration procedure was carried out at the beginning
of each measurement. First, a linear scale suited for microscopy (for high pre-
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cision) was placed in the same position that the phantom would occupy, and
each camera recorded an image of this scale. The images of the scale were
filtered to detect edges (see the right branch of Figure 4.4). This resulted in a
filtered image with a strip of points located on each vertical edge corresponding
to the edges of the divisions of the linear scale. The thickness of a single ver-
tical division of the scale is defined by the two edge points Xi,left and Xi,right,
which are averaged to obtain the center Xi = (Xi,right −Xi,left)/2 (red dots
in the right branch of Figure.4.4). The length, ltrue, (in millimeters) between
the left-most and right-most lines was determined by the division of the micro-
scopic scale (0.5 mm) and the number of division lines captured in the image.
The length in pixels, lpixels, covered by the linear scale was calculated as the
difference between the average pixel coordinates of the left-most division line
and the average coordinates of the right-most division life. The linear dimen-
sion of the pixel was then obtained by dividing the calculated length, ltrue,
by the distance in pixels. Across all experiments and cases, the median scale
for the MIRO camera was 112.51 (interquartile range 0.19) pixels/mm while
for VEO the median scale was 76.75 (interquartile range 0.39) pixels/mm. To
verify the calibration procedure, the linear dimensions were also determined
with ImageJ (LOCI, University of Wisconsin, [154]) for several test cases and
identical results were found.

Displacements were then determined from each image of the phantom recorded
during each measurement. The first step was blurring of the image, followed
by applying a Canny detection filter (see left branch of 4.4) with high and low
thresholds of 100 and 200 to produce an image with pixel values of 0 everywhere
except at the edges of the tube [84]. The distance between the edges was
determined by traversing the image vertically at a given horizontal position, X,
and storing (X,Y ) coordinates of nonzero pixels (red dot in the left branch of
Figure 4.4). For a given horizontal position X1 there were two points, (X1, Y1)
and (X1, Y2), corresponding to opposite vertical position on the tube (Y1 and
Y2) at some fixed horizontal position (X1). Next, the diameter in pixels, d, was
calculated as the difference between these two Y coordinates. This process was
repeated in the horizontal direction (positive X direction) and for each image
yielding diameters at each horizontal location for each time, d(X, t). Then
a spatial average was computed d̄(t) = 1

N

∑
X d(X, t). Finally, as the main

quantity of interest is the displacement, the difference drel(t) = d̄(t)− d̄diastole is
computed and analyzed in the remainder of the work. The diastolic diameter,
d̄diastole was defined as the minimum d̄(t) determined over the entire recording.
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Figure 4.4: Image processing workflow. The left side depicts the determination of di-
ameters from a filtered image. At each column of pixels, X location, the filtered image
has two corresponding Y locations. The distance between them (after converting from
pixels to millimeters) corresponds to the phantom diameter in pixels. The right side
depicts the process of obtaining the conversion factor between pixels and millimeters.
Filtering the image of the linear scale yields left and right edges Xi,left and Xi,right at
each scale division. The positions of the first and last scale divisions are determined
by averaging the position of the divisions’ left and right edges, Xi =

Xi,right−Xi,left
2 .

Then the distance is calculated as lpixels = X2 − X1. Subsequently the pixel edge
length (millimeters per pixel) was obtained by dividing the true distance by the pixel
distance. Finally, the phantom diameter in millimeters is computed given the diameter
in pixels and the conversion factor. Reproduced from [141]
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4.4 Pressure And Flow Data Processing

It is often the case that the data resulting from measurements possess some
noise - i.e. something that is a part of the signal but does not reflect its
underlying structure. Although the noise is generally unwanted, some of it
can be often easily handled and interpreted. However, it becomes a burden
when the noise is so large that it produces outliers. Outliers are defined as
unrepresentative datapoints deviating very strongly from the bulk of the data -
there are many possible sources for outliers, e.g. they may be a result of some
equipment malfunctions (e.g. in engineering measurements) or small sample
size (e.g. in statistical polling). [67] In classical statistical approaches, outliers
are often a point of debate - whether to remove them or not is often the primary
question at hand, as any modeling or inference that includes them may produce
heavily biased and unrepresentative results. However, in the context of this
work, it is pretty clear what the pressure and flow curves should look like
and any outstanding outliers are a result of some equipment malfunction or
artifacts, rather that an actual sudden improbable spike in flow or pressure. In
the case of pressure and flow data, as well as for image data, it is necessary to
assess it’s reproducibility so that it is clear whether the experiments produce
desired results that can be reproduced by others and that they were actually
repeatable. In order to assess these qualities, first the data measured needed
to be processed correctly to remove any outliers and prepare them for a more
advanced statistical analysis that could produce a set of summary statistics
that would answer the reproducibility and repeatability question with actual,
quantitative results (see section 4.5). In Figure 4.5 the raw (flow transformed
to L/min from Hz and pressure to mmHg from V ) data from pressure and
flow transducers are presented, next to each other. In the Figure, it is obvious
that the data have some underlying noise present in them (small wiggles in the
general trend) but also some outliers are noticeable, particularly in the flow
data (see the red marker). This image reinforces the idea that outliers can be
removed as the measured rapid increase in the flow value is not accompanied
by any response from the measured pressure values, which would be generally
expected.

After initial pre-processing with the Hampel and low-pass filters, the data were
split into individual cycles in order to average each point of the cardiac cycle
over time. This was achieved by employing a simple, developed minima-seeking
algorithm to identify the start point of each cycle. Starting from the beginning
of the data, the algorithm would seek out minima by moving through the pres-
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Figure 4.5: Flow (blue) and pressure (green) raw data plotted next to each
other. Some underlying noise in the data can be seen and some outliers (red
circle) are also present indicating the need for processing.

sure and displacement data with a fixed step, tstep, and then looking for the
minimum in a fixed window, ( tstep−w, tstep+w), where w was a constant de-
termining window width and tstep is the expected cycle length. This algorithm
was quite robust for pressure and displacement data (the determination of dis-
placement data is described in Section 4.3), since their end-cycle minima were
clearly isolated, it was insufficient for the flow data that exhibited many low
amplitude oscillations at the tail end of each cycle. These impeded automatic
determination of the minima corresponding to the end of the cycle. Since pres-
sure and flow data were collected with the same frequency and were expected
to have the same duration, power spectrum density [155] of the pressure data
was computed to identify the dominant frequency corresponding to the cycle
length. This frequency was then used to determine tstep, and the width of the
window was reduced to avoid splitting cycles due to noise or flow oscillations
near the end of the cycle.
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Figure 4.6: Illustration of the cycle splitting algorithm on pressure curves. A:
The algorithm takes a step, tstep and the begins to look for a minimum within
a fixed window of width ±w, i.e. 2 · w. When a minimum is found, a split is
made. B: Visualization of the splitting performs when working on the larger
subset of the entire data series.

4.5 Modeling data with Linear Mixed-Effects

Equipped with all the statistical knowledge necessary from Chapter 2, one is
able now to appropriately model the measured data. As described in Section
4.1, the experimental procedure was repeated 7 times for each of the four sys-
tole/diastole pressure ratios, and a simple preliminary statistical procedure was
carried out to characterize the variability of the pressure and flow waveforms.
Figures 4.7 and 4.8 show the across-time and across-measurement averaged
waveforms for both pressure and flow data respectively. In both figures a 95%
confidence interval [91] was computed by:

µ ∈ x̄± tα/2,n−1
S2

√
n

(4.1)

where µ is the population mean (true value) for pressure (or flow) values, x̄
is the (sample) data mean first calculated across measurement series and then
within each averaged measurement, S2 is the (sample) data variance, tα/2,n−1

is the critical value for a two-sided confidence interval based on Student’s t-
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distribution and n is the amount of cycles within a measurement. The resulting
confidence intervals for the average waveforms suggest that both pressures and
flows were repeatable.

0.0 0.2 0.4 0.6 0.8 1.0

0.30

0.35

0.40

0.45

0.50 1

2 3

1

2 3

FM 1
FM 2

0.20 0.22 0.24 0.26 0.28
0.42

0.44

0.46

0.48

0.50
11

0.40 0.45 0.50 0.55
0.30

0.32

0.34

0.36
22

0.60 0.65 0.70 0.75
0.33

0.34

0.35

0.36 33

Time, s

Vo
lu

m
et

ric
 fl

ow
, L

/m
in

Figure 4.7: Time- and measurement-averaged representative flow curves for
both flow meters with 95% confidence intervals (top left figure) along with
zoomed-in regions, each indicated by a number corresponding to the region in
the overall plot. (reproduced from [141])

The experimental procedure was repeated for various experimental specimens
and conditions, and data was collected for many cycles in a given experiment.
A visualization of the data structure can be seen in Figure 4.9, clearly show-
ing a hierarchical, nested structure. Consequently, the measured data may
vary due to factors beyond equipment noise or sensor error. Cycle-to-cycle and
experiment-to-experiment variations could be attributed to various uncontrol-
lable factors during experimental set-up such as material fatigue, varied filling
of the reservoir or aquarium with artificial artery, etc. To assess the impact of
the aforementioned effects, a statistical analysis of the experimental data was
conducted. The variability of the data between cycles and experiments was
analysed with a linear mixed modelling approach to partition the variability of
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the data into components due to residual error, cycle-to-cycle variations and
experiment-to-experiment variations. This decomposition is illustrated concep-
tually in Figure 4.10. Pressure, flow or displacement cycles observed in a given
configuration are assumed to have essentially identical shapes but may vary up
or down from the mean pressure level. Cycles within a given experiment will
tend to be shifted similarly on average, but individual cycles will vary around
this shifted mean cycle. Finally, at an arbitrary time point, noise and sensor
error result in residual variations in the measured data.
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Figure 4.8: Time- and measurement-averaged representative pressure curves
for all 8 transducers with a 95% confidence interval (top left) along with
zoomed-in regions, each indicated by a number corresponding to the region
in the overall plot. (reproduced from [141])

To evaluate the statistical significance of experiment-to-experiment and cycle-
to-cycle variation, a series of models with varying complexity were compared.
The analyses were conducted using the R programming language (R 4.2.0)
and the lme4 package (version 1.1.30) [156]. To simplify the presentation,
the focus was put on a single pressure transducer, but the overall approach
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Figure 4.9: Schematic representation of data structure that resulted from
experiments. For each equipment, i.e. transducer, flowmeter etc., 7 experiments
were conducted, each with N measured cycles nested within. (reproduced from
[141])

was applied across all pressure transducers, flow meters and cameras. Let pijk
denote the measured value of pressure at position i in the k-th cycle from the j-
th experiment. The residuals ϵijk are assumed to be independently, identically
normally distributed (’iid’, see Section 2.4.2) with zero mean and standard
deviation σe. First, an ordinary linear regression model (Null) is fit to the
data:

pijk = µi + ϵijk (4.2)

where µi is the mean value of pressure at position i of the cycle. The first mixed
effects model (Exp. Effect) is:

pijk = µi + τj + ϵijk (4.3)

which introduces the shift τj for experiment j. Finally, the nested cycle effect
model:

pijk = µi + τj + αk(j) + ϵijk (4.4)

additionally introduces the shift αk(j) for cycle k of experiment j. Again, note
that τj and αk(j) are assumed to be independently, identically normally dis-
tributed (iid) with standard deviations σexp and σcycle respectively. Likelihood-
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Figure 4.10: Conceptual visualization of shifts in mean value due to experi-
mental and cycle effects as well as random unexplained variance. (reproduced
from [141])

ratios [157] and information criteria [96] were used to assess, whether the vari-
ance in the data actually could be better attributed to grouping effects than
residual variation (Table 4.1). Both assessments show that (4.4) better fits and
explains the data than (4.2) or (4.3), and we consequently focus on the results
for (4.4) in the following analysis.

Table 4.1: Reported values of model performance metrics (AIC, BIC) and
likelihood-ratio tests. The bottom row of Table 4.1 shows the value in compar-
ison to the previous model. The likelihood-ratio tests were in favor of existence
of grouping effects, giving pvalue ≈ 0. Further, information criteria (Akaike In-
formation Criterion, AIC, and Bayesian Information Criterion, BIC [96]) also
indicate the superiority of (4.4).

Test\Model Null Model Exp effect Nested cycle effect
AIC 277245.8 278164.1 253098.6
BIC 257486.4 258414 254035.7
LRT x p < 0.001 p < 0.001

To characterize the reproducibility of the shape of each sensor’s waveform, a
95% confidence interval (CI) for µi was computed, while a 95% prediction inter-
val (PI) for the mean of a new cycle, µi + αk(j), was computed to characterize
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the stability of the waveform level within a given experiment [91]. The CIs
were obtained using the reported standard errors of the estimated fixed effects
obtained from the model fit and using the formula [158]:

µ̂i ± z1−α
2

√
SE(µ̂i) (4.5)

for the CI of the mean cycle and

µ̂i ± z1−α
2

√
SE(µ̂i) + σ̂cyc (4.6)

for the PI for a new cycle mean. SE denotes the standard error of an esti-
mated parameter, and z1−α

2
is the 100 × (1 − α

2 )
th quantile of the Standard

Normal Distribution (here α = 2.5% to get 95% confidence [91]). The maxi-
mum CI and PI widths, and the estimates σ̂exp, σ̂cyc and σ̂resid are reported
for all equipment and cases in Tables 4.2, 4.3, 4.4 and 4.5 . The CI and PI
for the full waveforms are shown in Figure 4.11 for pressure transducer p1, the
inlet flowmeter, and the VEO camera in case B. The widths are 0.942 mmHg
and 1.476 mmHg for CI and PI respectively, while the estimated standard de-
viations are 0.623 mmHg, 0.282 mmHg and 1.026 mmHg for experiment, cycle
and residual variation respectively. The values for the flow waveform were
2.08E-03, 2.61E-03, 9.59E-04, 3.87E-04 and 6.77E-03 L/min, and for the VEO
camera 6.10E-03, 6.22E-03, 2.10E-03, 3.05E-04, 4.81E-03 mm. The magnitudes
are similar across the transducers and cases with the exception of case C for
which for nearly all sensors have the highest σ̂exp. The flow meters have higher
values in case C compared to cases A and B, while σ̂exp is highest for case D.
In general the widths of both PIs and CIs are narrow and confirm that the
experimental procedure is reproducible and consistent. The residual variation
tends to be larger than the experiment-to-experiment or cycle-to-cycle variation
and suggests that high frequency noise sources are more significant than sys-
tematic variations between experiments; however, even the estimated standard
deviations corresponding to these noise sources are very low compared to the
mean values. While the experiment-to-experiment variation is larger in Case C
compared to other estimates, some variability is to be expected in estimates of
σexp as there are only 7 experiments in each case.

4.5.1 Model checking

Similarly to OLS, in LMEs there also exists the need to check the assumptions
of the model so that one is sure that the inferences made are well grounded. The
checks were introduced in Section 2.4.3 for OLS and can be also applied here.
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Figure 4.11: Asymptotic prediction and confidence intervals for the models
fitted to pressure, flow and displacement data in Case B. The left panels show
the full waveform. The regions marked by dashed circles in the left panels are
shown at a higher zoom in the right panels.

First of all, the residuals of the fitted statistical model were analyzed to identify
if the assumptions of independence and normality are violated. The observed
residuals are defined as the difference between the predicted and measured
values given in terms of (4.4) as

ϵ̂ijk = pijk − µ̂i − τ̂j − α̂k(j). (4.7)

A Quantile-Quantile (QQ) plot [91], distribution fits [159], residual-by-experiment
vs index and a residuals-vs-cycle-time plot were used to assess the normality
and independence of residuals [160]. In the QQ-plot (Figure 4.12 right) the
tails of the curve stray from the Standard Normal quantiles indicating a non-
normal distribution of residuals. Moreover, the fitted normal distribution has
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Table 4.2: Summary of estimated cycle, experimental and residual standard
deviations, along with maximum width of prediction and confidence intervals
case A. Reported CI and PI widths are maximum ones (reproduced from [141])

Case A: 110/70
Equipment CI width PI width σ̂exp σ̂cyc σ̂resid
p1, mmHg 0.622 1.530 0.409 0.349 0.953
p2, mmHg 0.625 1.514 0.411 0.344 0.962
p3, mmHg 0.643 1.515 0.421 0.342 1.089
p4, mmHg 0.649 1.511 0.424 0.340 1.108
p5, mmHg 0.652 1.528 0.430 0.345 0.860
p6, mmHg 0.671 1.546 0.442 0.347 0.912
p7, mmHg 0.658 1.527 0.433 0.344 0.938
p8, mmHg 0.648 1.520 0.426 0.343 1.007

EH1, L/min 1.817E-03 1.836E-03 7.109E-04 5.322E-04 1.147E-02
EH2, L/min 1.854E-03 1.873E-03 8.109E-04 1.144E-09 1.010E-02
MIRO, mm 2.421E-02 2.448E-02 5.608E-03 9.247E-04 2.596E-02
VEO, mm 1.631E-02 1.660E-02 5.641E-03 7.844E-04 1.829E-02

a broader peak and smaller tails compared with the estimated residuals (Fig-
ure 4.12 left). A mixture of two normal distributions (N1(0.027, 0.733) and
N2(−0.112, 1.778)) [161] seems to fit the residuals well, and the plot of residu-
als vs cycle time (Figure 4.13) reveals that the first half of the cycle tends to
have more widely distributed residuals than the second half which is consistent
with such a distribution. As the residuals seem to be distributed symmet-
rically, the statistical inferences based on the linear mixed effects model are
likely unaffected [112].

Finally it is also worthwhile to have a look at Figure 4.15, which shows the
residuals of one case (A) plotted one after another for all experiments. The
top plot indicates that the Null model does not correctly explain some of the
variation in the data and it shows up in residuals. By accounting for the
cycle-to-cycle and experiment-to-experiment variation it is apparent that the
remaining variation in the data now is due to residual (equipment) variance.
To corroborate the interpretation of the residuals, ϵijk, as sensor error, the
distribution of the residuals was compared across equipment and cases. It is
expected that the same type of sensors will produce similar distributions of
residuals. The results are shown in a form of a probability density plot in
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Table 4.3: Continued summary of estimated cycle, experimental and residual
standard deviations, Case B) Reported CI and PI widths are maximum ones
(reproduced from [141])

Case B: 120/80
Equipment CI width PI width σ̂exp σ̂cyc σ̂resid
p1, mmHg 0.942 1.476 0.623 0.282 1.026
p2, mmHg 0.893 1.423 0.587 0.275 1.145
p3, mmHg 0.964 1.469 0.635 0.275 1.163
p4, mmHg 1.011 1.502 0.667 0.276 1.155
p5, mmHg 0.984 1.500 0.652 0.281 0.951
p6, mmHg 1.014 1.526 0.672 0.283 0.937
p7, mmHg 0.971 1.493 0.643 0.281 0.970
p8, mmHg 0.940 1.472 0.621 0.281 1.008

EH1, L/min 2.079E-03 2.609E-03 9.591E-04 3.874E-04 6.774E-03
EH2, L/min 2.079E-03 2.609E-03 9.591E-04 3.874E-04 6.774E-03
MIRO, mm 5.113E-03 5.316E-03 1.497E-03 3.682E-04 5.305E-03
VEO, mm 6.098E-03 6.217E-03 2.975E-03 3.048E-04 4.812E-03

Figure 4.14 and match this expectation, as the residuals are mostly clustered
around 0 and their shape is consistent across cases.

An example of simultaneous displacement values from both cameras are pre-
sented in Figure 4.16 with the uncertainties estimated by the mixed model
analysis. Displacement values from both cameras are generally close to each
other and mostly lie either within the range corresponding to the calculated
uncertainties, which demonstrates that the results are very similar across cam-
eras and that the phantom deforms similarly along its principal axes. Given
that, ultimately the goal is to apply this methodology to human subjects, it
was important to compare the camera-measured displacements, to those reg-
istered by some readily available and inexpensive medical imaging equipment.
Basing on nearly identical results from the two cameras, the top camera was
dismantled and an ultrasound probe was installed instead. A few of the exper-
iments were reproduced and, when overlaying one of them with the calculated
uncertainties (along with uncertainties provided for the ultrasound equipment),
it produces the results in Figure 4.17. It shows the displacements measured by
the ultrasound (measurements conducted and data provided by Jan Juszczyk,
PhD) and by the side camera, VEO, for case B. It can be seen that the mag-



102 CHAPTER 4. STATISTICAL ANALYSIS AND FSI VALIDATION

Table 4.4: Continued summary of estimated cycle, experimental and residual
standard deviations, Case C) Reported CI and PI widths are maximum ones
(reproduced from [141])

Case C: 130/90
Equipment CI width PI width σ̂exp σ̂cyc σ̂resid
p1, mmHg 4.577 4.826 3.056 0.346 1.373
p2, mmHg 4.562 4.810 3.046 0.345 1.443
p3, mmHg 4.583 4.828 3.060 0.342 1.506
p4, mmHg 4.581 4.825 3.058 0.342 1.493
p5, mmHg 4.569 4.822 3.051 0.349 1.301
p6, mmHg 4.593 4.846 3.067 0.351 1.290
p7, mmHg 4.579 4.832 3.057 0.349 1.303
p8, mmHg 4.566 4.816 3.049 0.347 1.305

EH1, L/min 1.178E-02 1.190E-02 7.089E-03 0.000E+00 1.356E-02
EH2, L/min 1.176E-02 1.188E-02 7.152E-03 0.000E+00 1.061E-02
MIRO, mm 2.448E-02 2.508E-02 1.220E-02 1.377E-03 2.012E-02
VEO, mm 2.123E-02 2.194E-02 1.059E-02 1.399E-03 1.777E-02

nitude of the displacement is almost the same for both devices. Curves seem
to overlap very well. Moreover, the measured US values lie comfortably within
the calculated camera’s uncertainty, indicating that a US can be used to detect
the displacements of a material with high accuracy.

This is further corroborated by numerical data in Table 4.6 which reports the
average difference of point-wise, ∆̄PW , cycle-average ∆̄CW , diastolic, ∆̄dias,
and systolic, ∆̄sys, displacements between the cameras (VEO vs MIRO) or
between the camera and ultrasound (VEO vs US). The difference is computed
as ∆[ ] = d[ ],VEO − d[ ],Y where Y is one of MIRO or US and d[ ] denotes
the displacement compared. For ∆̄CW , ∆̄dias and ∆̄sys the displacements are
computed for each cycle then the differences between synchronized cycles are
averaged. The averages include all measurements across all pressure levels. In
the table, one can see that the differences are small, on the order of 10% of the
measured values. The small magnitude of the differences is also apparent in
Figures 4.16 and 4.17 where the measurements are generally quite close. The
uncertainty arising from the ultrasound system was calculated and provided
by Jan Juszczyk, PhD and is described in more detail in [141]. On average,
both MIRO and US tend to produce larger displacement values than VEO,
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Table 4.5: Continued summary of estimated cycle, experimental and residual
standard deviations, Case D) Reported CI and PI widths are maximum ones
(reproduced from [141])

Case D: 140/100
Equipment CI width PI width σ̂exp σ̂cyc σ̂resid
p1, mmHg 0.497 1.557 0.343 0.369 1.056
p2, mmHg 0.481 1.557 0.335 0.370 0.889
p3, mmHg 0.471 1.556 0.327 0.370 0.943
p4, mmHg 0.475 1.534 0.326 0.364 1.137
p5, mmHg 0.459 1.518 0.316 0.361 1.042
p6, mmHg 0.471 1.542 0.326 0.367 1.018
p7, mmHg 0.471 1.543 0.325 0.367 0.999
p8, mmHg 0.493 1.550 0.341 0.367 1.031

EH1, L/min 3.196E-02 3.228E-02 2.123E-02 2.309E-03 2.053E-02
EH2, L/min 3.655E-02 3.825E-02 2.255E-02 2.502E-03 1.564E-02
MIRO, mm 1.119E-02 1.165E-02 2.064E-03 8.210E-04 1.409E-02
VEO, mm 1.069E-02 1.110E-02 6.064E-04 7.566E-04 1.395E-02

thus it seems that the phantom deforms slightly more in the horizontal plane
than in the vertical plane. To summarize, it has been proven that the camera
measurements of the phantom are reproducible, consistent between cameras
and with the ultrasound. This makes it possible to employ the ultrasound to
diagnostic arterial displacement detection without a significant loss of accuracy.

Table 4.6: Numerical summary of averaged differences calculated between
cameras (VEO vs MIRO) or camera and ultrasound (VEO vs US). The first
column, ∆̄PW , results from a point-wise comparison, the second, ∆̄CW , results
from comparison of cycle-average displacements, and the final two columns
result from comparison of the diastolic, ∆̄dias, and systolic, ∆̄sys, displacements.
(reproduced from [141])

Comparison\Type ∆̄PW , mm ∆̄CW , mm ∆̄dias, mm ∆̄sys, mm
VEO vs US -0.0188 -0.0139 -0.0067 -0.0124

VEO vs MIRO -0.0113 -0.0010 -0.0018 -0.0219
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Figure 4.12: Fitted residual distributions are shown on the left with an inset
showing the details of the peak. A QQ-Plot for the nested model residuals is
given on the right, indicating in the tails that the residuals stray very far from
theoretical quantiles. Gaussian mixture fit captures the overall distribution
pretty well, except at the very peak (zoomed). (reproduced from [141])
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plotted versus time. (reproduced from [141])
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Figure 4.14: Plot of the distribution of residuals across all pressure trans-
ducers for two cases (Case B: 120/80 and Case D: 140/100). (reproduced from
[141])

4.6 Analysis of Material Testing Data

To obtain data needed to verify and validate the numerical models against
experimental data, there was a need to perform material testing experiments for
the materials used in the experiment. Two material parameters were considered
of primary interest: Young’s Modulus and Poisson’s ratio. Material testing
experiments were performed by two independent researchers (prof. Grzegorz
Kokot and prof. Wojciech Wolański). Each experiment contained multiple
uniaxial tensile tests resulting in strain-stress data for tested specimen as well
as transverse recordings during these tests. For each of the specimens, strain-
stress curves were used to obtain Young’s moduli from experimental data, while
the transverse recordings were used to estimate Poisson’s Ratio. To each of the
strain-stress curves an intercept and slope was fitted through Ordinary Least
Squares. The fit was restricted only to the linear region of the strain-stress
curve. The slope of the curve was then interpreted as Young’s modulus. The
results from the experiments are summarized in Figure 4.18. Left side of the
Figure depicts four experiments performed with provided materials, showing
that the pooled mean for the Young’s modulus is around 1.36 MPa . Poissons’
ratios were measured only for 3 of 4 conducted experiments, they are depicted
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Figure 4.15: Residual vs index plot where different colors show different
considered experiments within a case. Top: One can see that a regular Null
model does not capture all of the variation present in the problem since the
residuals are skewed here and there. Bottom: The nested model seems to
capture all of the unresolved variance previously due to the fact that now the
residuals for all experiments are neatly oscillating around the 0. White line in
both images is the median.
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Figure 4.16: Comparison of displacements recorded by both cameras with
uncertainty represented by overlaid shaded areas. In both cases the uncertainty
is characterized as drel,cam ± σ̂res,cam (reproduced from [141])

Figure 4.17: Comparison of displacements recorded by the US and VEO cam-
era. VEO’s uncertainty is characterized as drel,veo±σ̂resid,veo, while US system’s
uncertainty is characterized drel,us ± precision. (reproduced from [141])
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on the right hand side in the Figure 4.18. Similarly a pooled mean estimate
was calculated and turned out to be 0.385.

Figure 4.18: Experimental data for Young’s modulus and Poisson’s ratio of
the arterial phantom. Left side shows a boxplot of measured Young’s moduli
across 4 performed experiments. Right side shows a histogram of the measured
Poisson’s Ratios (due to lower experiment count, a boxplot wasn’t used) Jitter
was applied to make points more easily distinguishable.

4.7 Problem set-up using ANSYS and mesh sensitiv-
ity

The meshed fluid domain for the phantom case can be seen in Fig 4.20. The ge-
ometry is a simple cylinder and consists of an inlet, outlet and a wall. The fluid
domain is modeled using ANSYS Fluent. For the wall a no-slip boundary condi-
tion is applied. For inlet, a time-varying velocity parabolic flow profile boundary
condition is applied. For outlet, a similar time-varying pressure boundary con-
dition is applied. Both of the boundary conditions that are applied, they are
reproducing the averaged flow and pressure data registered by the testing rig,
described in Section 4.1. Turbulence is modeled using the Reynolds Averaged
Navier-Stokes framework with the model for closure equations being k-omega
SST. Due to the fact that Two-Way FSI is considered, a dynamic mesh needs
to be utilized. First a coupling region was established at the domain’s walls
to enable data transfers between solvers. The dynamic mesh specified for the
entire fluid domain uses a smoothing approach implementing a Spring/Laplace
option, which treats the deforming domain as if it consisted of a series of springs
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Figure 4.19: ANSYS mesh sensitivity study results. Left plot shows the outer
displacement, the right plot shows inner displacements, both in mm. Data is
sampled at midpoint at the timestep that produced the biggest difference in
results. Blue curve shows the FSI sensitivity, red and black ones show FEA
only sensitivity.

connected together. The problem naturally is a time-dependent one and uses
a coupled pressure-based solver. Spatial discretization is Least Squares Cell
Bases for gradients. Second Order for pressure, Second Order Upwind for Mo-
mentum, Turbulent Kinetic Energy (k) and Specific Dissipation Rate (omega).
Transient formulation is Second Order Implicit. The model employs a standard
initialization with zero values for pressure and x-y-z velocities. Initial values
for k and omega are calculated by the software upon specifying boundary con-
ditions.

After confirming that the problem was symmetric in its results, one location
(the midpoint of the domain) was chosen for mesh sensitivity comparisons. The
parameters that were varied during the study was the amount of mesh elements
on various edges; edges contributing to the leading axial, radial and azimuthal
directions of the tube domain. [13] Mesh sensitivity study for ANSYS simula-
tions was performed in two parts. First 5 simulations were run. After observing
that the results were flattening out, a denser fluid mesh was used while keeping
the solid mesh constant. This did not change the predictions for outer displace-
ment, so in order to save wait times and computational resources, only the solid
mesh was tweaked onward. Upon performing simulation on mesh refinement #6
and observing that the values remained steady, a batch of FEA only simulations
with finer meshes was run. This resulted in steady, but different result. It was
noted that the difference between the finest FSI mesh and least fine FEA mesh
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for the time step producing the largest discrepancies was on the order of 0.006
mm (∼ 0.96%) for inner displacement and ∼ 0.0016 mm (∼ 0.29%) for the
outer displacement. The differences are lower than the resolution of ultrasound
and cameras used in the experiments [141], thus they were deemed acceptable
for validation purposes. These results can be seen in Figure 4.19. On the left,
one can see the outer displacement values and on the right side the inner dis-
placements. The blue curve corresponds to the FSI simulations, showing that
the curve starts to flatten after the 3rd mesh refinement. The red and black
curves correspond to checks done with FEA mesh only refinements for linear
(black) and quadratic (red) element orders. Moreover the a relevant summary
of details regarding the FSI and FEA meshes’ element and node counts, as
well as relevant quality metrics, may be seen in Tables 4.7 and 4.8. From the
tables it can be seen that even though the quality metrics were changing (and
mostly improving) with each mesh refinement, the improvements were not very
dramatic. After performing the study, it was decided to stick with FSI mesh
refinement #3 due to its relatively low cell and element counts but more than
acceptable quality of results. This mesh refinement can be seen in Figure 4.20
(showing the fluid mesh) and in Figure 4.21 (showing the solid mesh). Both
meshes use the same axial and radial spacing - this is done in order to mini-
mize the need for interpolation of values between non-conformal meshes in the
contact region. [13] As can be seen in Figure 4.20, the fluid mesh employs the
O-grid design in order to maximize its quality [162].
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FRONT ISO

SIDE SLICED SIDE

Figure 4.20: Various views for the fluid mesh (ANSYS). As can be seen an
O-grid was created for the fluid domain. Four pictures showing the final mesh
in various perspecitves are present (front view, isometric view, side view and a
side view of the sliced mesh).

4.8 Comparison of results between different models
and with phantom data

To develop a surrogate model one needs to start with experimental design. As
described in the Introduction (and in Chapter 3), to achieve this it is necessary
to carry out a plethora of simulations. Due to difficulty of automating the
ANSYS coupling, it was necessary to rethink its use for the problem at hand.
Another problem encountered while using the ANSYS software, is it became
very unstable with Young’s Moduli lower than 1.5 MPa and thus necessitated
a lot of manual control and tuning to make it work. This instability was
ascribed to the segregated approach as the results were demonstrated to be grid
independent and sufficiently small time steps and large iteration counts (both
within couplings and inbetween them, i.e. per time step) have been ensured
to make the exchanged forces stabilize within the timestep. The alternative
presented itself in the open-source package, Finite Elements for Biomechanics.
[12] Given that the ANSYS package is an industry standard it was decided
to compare the two approaches - FEBIO and ANSYS - against each other
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FRONT ISO

SIDE SLICED SIDE

Figure 4.21: Various views for the solid mesh (ANSYS). Four pictures showing
the final mesh in various perspecitves are present (front view, isometric view,
side view and a side view of the sliced mesh).

and if they produced similar response, move on with just FEBIO. The results
can be seen in Figures 4.23. Here, both models were evaluated at a relatively
stiff and ’safe’ Young’s Modulus value of 1.6 MPa and Poissons ratio from
Section 4.6. The image clearly shows that the Neo-Hookean model is a very
close approximation of the results produced by the ANSYS model at given
conditions. Isotropic Elastic seems to undepredict the displacements results,
but given that this is a theoretical exercise it was decided to also test the
model on actual laboratory data. The FEBIO mesh was set to reproduce the
mesh #3 in the ANSYS sensitivity study.

The domain, mesh and boundary conditions used in FEBIO (especially for
surrogate development) can be seen in Figure 4.22. Here, like with the ANSYS
problem set-up, the domain used in this work is was a cylinder approximating
the arterial phantom used in the laboratory rig. With the inner domain being
the fluid and the outer domain being the solid body. Volumetric flow inlet and
pressure outlet are assumed and a no-slip condition at the wall. Like in ANSYS
set-up, The solid domain assumes fixed ends, i.e. no displacements at the hollow
cylinder bases and the boundary conditions from inflow and outflow from the
experimental measurements were used. Later, to facilitate the evaluation of
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Figure 4.22: Summary image showing most relevant dimensions of the consid-
ered domain (black arrows), inlet and outlet boundary conditions (blue arrows)
and other conditions and regions (red arrows) of the FEBIO model.

the model for DOE purposes, the solid and the fluid domains were reduced to
a quarter of a cylinder, assuming symmetry. Both mesh and geometry were
regenerated at every viable parameter combination sampled (see next Chapter,
Section 5.1).

However, before proceeding with the FSI model automation it was still nec-
essary to test whether the model reproduces the experimental data. Thus in
total 4 simulations were run on the mean Young’s modulus (1.36 MPa) and
Poisson’s ratio (0.36) estimated from experimental data. The reason for using
mean values is due to the fact that the phantoms themselves were extensively
strained during measurements and they were needed in their entirety, thus it
was opted to measure a few other available phantoms and their scraps. These
representative values were fed into the FEBIO software model definitions. Hav-
ing run all four pressure ratios , 110/70 mmHg, 120/80 mmHg, 130/70 mmHg
and 140/100 mmHg, for many repeated cycles until the transient effects due
to simulation start and ramp up disappeared, the results can be seen in Figure
4.24. In the Figure one can see averaged displacement data measured by VEO
and MIRO cameras with overlayed 95% Confidence Intervals estimated and
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Figure 4.23: Comparison between the displacements produced by ANSYS
linear elastic large deformations (blue curve), FEBIO Neo-Hookean (orange
curve) and FEBIO Isotropic Elastic (green curve) for the same two experimen-
tal cases. A shows displacements produced for Experimental Case A: 110/70
pressure ratio and B shows results produced for Experimental Case D: 140/70.
Plots show very good agreement between FEBIO N-H and ANSYS’ LE LD
model, with FEBIO IE model underpredicting the displacements.

tabulated in Tables 4.2 - 4.5. Along with them, plotted one can see the dis-
placements produced by FEBIO’s Neo-Hookean and Isotropic Elastic models.
Having a look at Figures 4.24 A, C and D one can see that the Neo-Hookean
model is slightly better than the IE model at capturing the displacements pro-
duced by the curves. In Figure 4.24 B the produced displacements are less
than ideal for the Neo-Hookean model while being slighly better for the IE
one. In the end it was decided to stick to the Neo-Hookean model and use it
in the future simulations. The model delevoped here was subseuqnently used
for development of the automation code of the FEBIO solver for the purposes
of carrying out the Design of Experiments. The automation was achieved with
an in-house developed code employing Python version 3.9.
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Figure 4.24: Comparison of the displacements predicted by FEBIO Neo-
Hookean (blue) and Isotropic Elastic (crimson) for four experimentally tested
cases: Figures A, B, C, and D correspond to their laboratory tested con-
ditions of 110/70, 120/80, 130/90 and 140/100 respectively. The cycle- and
measurement-averaged displacements captured by cameras, along with their
95% confidence intervals indicate satisfying overlap between FEBIO N-H model
and Cases A,C, and D. Note : The color green results from overlap of exper-
imental data’s uncertainty intervals. The intervals were trimmed, such that
they start at 0 displacement.



5
Surrogate development and application

As mentioned in the Introduction, tasks such as Uncertainty Quantification,
Sensitivity Analysis or Parameter Estimation are very computationally de-
manding. The reason for that stems from their need for multiple model evalu-
ations in order to acquire converged and reasonable estimates of the response’s
moments, Sobol Indices [72] or desired parameters [92, 8]. This problem can
often be solved by developing a surrogate model that accelerates prediction.
The development of a surrogate begins with the design of the experimental
space. Once the relevant parameters and variables of interest (some correlated)
are identified, their uncertainty must be assumed, either from experiments,
experience or literature data. What proceeds is the sampling of the (often mul-
tidimensional) experimental space, i.e. multiple evaluations of the considered
Full Order Model (here FSI) at various parameter combinations, that build up
the space of solutions (so called ’response surface’ [94]). With this the develop-
ment of the surrogate can proceed by a proper selection of the emulator itself.
This work considers two of the most recently applied approaches [123], that is
Gaussian Process Regression [115] and an SVD-based Reduced Order Model.
[124] It is necessary to stress that even though surrogate models enable fast
prediction and facilitate the aforementioned tasks, they are not perfect. First
of all they are not free of the drawbacks common for other statistical, especially

117
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non-parametric, models. The primary drawback of both GPR and ROM devel-
oped in this Chapter, is that they do not recover the underlying phenomenon
that causes the predicted response. This means that there is no actual analyti-
cal or correlation formula that is recovered and can be then simply written in a
"y = ax+b" form, easy for interpretation and implementation. Secondly, often
surrogate models require a large number of evaluations. This is due to the fact
that for a model to learn the patterns in the data, it needs a lot of data and
this was also the case in this problem as data set generation is generally time
consuming.

After developing the models and determining the superior one, the model is
employed to tasks of UQSA and Parameter Estimation. Before implementing
the model within the UQSA framework, first the implementation of one of
the estimators is contrasted against a common benchmarking function used in
UQSA literature the Ishigami function [163]. Then it is also compared against
a different method altogether - Polynomial Chaos Expansion, sort of a double
check. What follows is an implementation of the surrogate model as a predictor
within the Sobol Index estimators in classical Monte Carlo-based Sensitivity
Analysis. This is done so that the non-influential parameters on the model
output variance can be fixed and the statistical treatment can be narrowed
down to only, hopefully, a handful of them. This leads to the reduction of
the model complexity and the estimation of parameters of interest embedded
within a Hierarchical Bayesian Parameter Estimation.

5.1 Design of the experimental space

The variables applied in the experimental design, were selected basing on physi-
cal quantities that govern a Fluid-Structure interaction problem. The boundary
conditions in an FSI problem consist of (depending on the specification) volu-
metric flow at the domain inlet, v̇, pressure at the outlet, P , and fluid material
properties, which were kept constant in this study. Behavior of the solid do-
main, when considering a Neo-Hookean material, as stated above, is primarily
dependent on Young’s modulus and Poisson’s Ratio. The deformations of the
body are also governed by the inner radius of the domain and its thickness and
length. [109] To better represent the variations in flow conditions, among hypo-
thetical patients, it was decided to also make the boundary conditions related
to flow, amenable to sampling. Thus a parameterization was chosen, basing
on [164]. Both pressure and flow curves were parameterized by 3 variables:
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the shift, the amplitude and the cycle time. Cycle time simply measures the
average cycle length of both pressure and flow curves, which is defined as the
time elapsed between successive diastoles within a given measurement series.
While the cycle parameter is shared between both flow and pressure, the shift
and amplitude ones are separate. In Figure 5.1 one can see what the shift and
amplitude mean; the former is synonymous with pavg, i.e. the average value
within the series, and the latter refers to the difference between the maximum
and minimum value. Mathematically:

Figure 5.1: Visualization of parameterization of fluid inlet and outlet bound-
ary conditions (here only the outlet, i.e. pressure is shown) (reproduced from
[141])

Pshift = Pavg =
1

N
ΣN
i Pi

Pamp = max(P )−min(P )

Pcyc = tcyc = tpdias,2 − tpdias,1

(5.1)

The same explanation holds for flow’s shift and amplitude. While for testing
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Table 5.1: Summary of the parameters and their distributions considered in
the study. All parameters have units given in their most widely used format
(presented in the table), they were recalculated to SI units for simulations.

Variable Mean SD Source
E,MPa 1.00 0.3 exp. data,[165],
ν,− 0.385 0.034 exp.data, [165]
tcyc, s 0.917 0.119 [164] , exp. data

v̇shift, L/min 0.375 0.0124 [164], exp. data
v̇amp, L/min 0.249 0.0383 [164], exp. data
Pshift,mmHg 102.237 13.494 exp. data [166]
Pamp,mmHg 40.896 1.609 exp.data, [166]

rin,mm 2.905 0.3013 [167]
d,mm 0.555 0.1225 exp. data [167]
L, cm 12.400 0.1250 exp. data [168]

purposes, initially all parameters were sampled independently, this naturally
led to numerical instability in the solver and some unreasonable variable com-
binations. In order to impose structure onto sampling procedure, there was
a need to induce correlations between variables that could naturally be con-
sidered to be co-dependent. Some were extracted from extensive experimental
data described in Chapter 4. They were compared with scarce literature data,
e.g.: the velocity and pressure shifts and the velocity and pressure amplitudes,
cycle lengths, geometry length. Other parameters such as the arterial radius,
rin, and arterial thickness, d were calculated basing on an extensive correlation
study [167]. In some cases where literature data was found and there were
not insignificant differences between them, a middle ground approach was cho-
sen by setting the sampling distribution with the median value and increasing
the variance to reflect the uncertainty. Such cases pertain mostly to Young’s
modulus and the artery and artery phantom thickness. For example when it
comes to Young’s modulus, primarily in considerations for the FSI simulations,
[165] used a value of around 1 MPa, while the stiffness of the arterial phantoms
that were estimated from material tests in Chapter 4 proved to be larger, see
Figure 4.18, and in some work values below 600 kPa [169] were reported. For
correlated variables, it should be noted that such transformations were possible
by employing the laws governing the multivariate distributions. Poisson’s ratio
was directly taken from the experiments as they gave very similar results to
articles that reported it [165]. Thus to be able to test the models against real
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experimental data this assumption needed to be made, nevertheless it is pos-
sible to easily extend the modeling framework to more human-like parameter
values (e.g. present in [59]) if needed. To be fully explicit, the parameters may
be presented in the distributional form in which they were directly fed to a
sampler (units are the same as in Table 5.1).

[
V̇shift

Pshift

]
∼ MVN(

[
0.375

102.237

]
,

[
1 −0.409

−0.409 1

]
)

[
V̇amp

Pamp

]
∼ MVN(

[
0.249
40.896

]
,

[
1 −0.145

−0.145 1

]
)

[
rin
d

]
∼ MVN(

[
2.905
0.555

]
,

[
1 0.17

0.17 1

]
)

E ∼ N(1, 0.3)

ν ∼ N(0.385, 0.034)

tcyc ∼ N(0.917, 0.119)

L ∼ N(12.4, 0.012)

(5.2)

In total, 460 data points were sampled and set for evaluation. The number
was restricted primarily by the evaluation time of the FSI model developed in
Section 4.8. The variable of interest used here is the same one as in previous
Chapter (4), i.e. the arterial phantom outer wall displacement. However to
make modeling more manageable here, instead of the average across all outer
wall displacements, now simply the maximum displacement of the wall is con-
sidered (which is located at the geometry midpoint). Given that Hammersley
sequences are space filling designs it is not uncommon for them to explore the
space relatively thoroughly. Thus, even though some of the variables were de-
signed to be correlated from the start, it was still possible for the sampler to
choose such an extreme combination of parameters that led to ’unphysical’ re-
sults. ’Unphysical’, in the context of current work, means that the produced FSI
results were highly unrealistic, either from the perspective of the human body
or from personal laboratory experience with arterial phantoms (see [141] and
Chapter 4). Thus, based on [170], the mean transverse arterial displacement
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(of the left common carotid artery) was estimated in more than 1000 subjects
as µ̂d = 0.35 mm with a standard deviation of σ̂d = 0.28 mm. Assuming the
normal distribution with N(µ̂d, σ̂d), the cut-off point for the simulation results
to qualify for the training procedure was relatively wide, around µ̂d + 2 · σ̂d
(not ± since displacements are generally not negative and the solver did not
produce such blatantly unphysical results). This relaxed criterion covers a bit
more than 95% of potential scenarios assuming normal distribution, a premise
also adopted by the authors [170]. From the generated data 14 cases needed to
be removed, resulting in a total of 446 used for surrogate model construction
(training and testing). They can be seen in Figure 5.2. Having a closer look the
cutoff can be visualized in the Fig 5.2 A, by the red horizontal line, anything
above it was removed from the train/test set as per rules described above. In
Fig 5.2 B one can see the proportion of the whole dataset that was taken to be
the test set, i.e. 25%. It is important to note that the test split was random
and the way it is presented in Fig 5.2 B is done solely for illustration purposes.
Of course, before the train-test split, the obtained FSI results needed to be
postprocessed to remove the ramp-up part (i.e. ramp-up from zero flow and
pressure to their sampled values), which was included for the sake of stability of
the numerical solver. Then they were split into individual cycles and averaged
to yield the training data for the Gaussian Process Regression. To avoid po-
tential underflow, the displacements were rescaled from meters to millimeters,
and the data were passed along the pipeline to the GPR. Finally in Fig 5.2 C
one can see an exemplary cycles used for model training and testing purposes.

5.2 Construction of the Gaussian Process Surrogate

The first choice to make in Gaussian Process is the choice of the kernel. By
first exploring a simpler model that very roughly approximates the full order
FSI model and trying multiple kernel combinations, it became apparent that
the kernel combination best capturing the data was:

K = k1,time · k2,time · k3,parameters (5.3)

the first two premultiplied kernels allow for highly nonlinear behaviour as time
progresses, while the last one jointly accounts for parameters. The simplest
and so far the best choice for kernels themselves was:
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Figure 5.2: Summary of all the displacements generated from the FEBIO
model through experimental design. A All of the results are plotted next to each
other irrespective of their time ordering with a cutoff (red) that was selected
to filter some outlying cases. B After the cutoff, displacements were split into
train and test sets with the test set constituting 25% of the original dataset.
NOTE: while the image may suggest that the data set was just arbitrarily
split at some point, a random train-test set split has been performed. C Plot
showing some example displacement curves produced. Again the X-axis reflects
the order of data, not the actual time corresponding to a given displacement.

K = kRatQuad(t) · kRBF1(t) · kRBF2,ARD(E, ν, ...) (5.4)

where kRatQuad(t) stands for a rational quadratic kernel, kRBF stand for a
Radial Basis Function kernel and kRBF2,ARD stands for Radial Basis Function
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Automatic Relevance Determination (ARD) kernel. While the first two have
been already described (section 3.2.1, the ARD kernel was not: its primary goal
is to use one large shared kernel for many parameters with separate lengthscales
for each of them:

kARD(x, x
′) = σ2

fexp(−Σn
k=1

(x− x′)2

2l2k
) (5.5)

where, as previously (see Section 3.2.1) σ2
f is the kernel variance and l is the

lengthscale. Such a formulation allows also for each of the parameters to have
their own contribution to the overall model performance. Moreover it is possible
to do a very ’rough’, preliminary sensitivity analysis/variable importance anal-
ysis of the Gaussian Process model based solely on the inverse of the lengthscale
values [171].

5.3 Sensitivity of Sparse GPs

As mentioned in Section 5.2, the key variable controlling the performance of
a Sparse Gaussian Process (while controlling for training set size and kernels’
hyperparameters) are its inducing variables. The sensitivity of the Sparse Gaus-
sian Process approximation was tested with 25, 50, 100 and 200 inducing set
sizes. The considered metrics were Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Median Absolute Error (MEDS) and Maximum Error
(MAXERR). As mentioned in Section 3.2.2, the inducing variables are fitted
alongside other hyperparameters thus in principle one could restart the op-
timization procedure many times and potentially obtain somewhat different
estimates for them. However due to the time consuming nature of optimiz-
ing the log-likelihood in the Gaussian process, instead of bootstrapping or re-
initializing the procedure hundreds of times, which was impossible due to time
constraints, the error metrics were averaged along across different sample re-
alizations and then a sampling distribution was sought for such an average.
Given that the amount of training and testing samples was greater than 50, it
was safe to assume that the Central Limit Theorem can be enforced and the
sampling distribution would be normally distributed [67]. Thus the confidence
intervals could be calculated according to the formula in Eq. 2.26, however
with the T-statistic replaced by the Z-score [67]:
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µ ∈ X̄ ± zα
2
· s√

n
(5.6)

The averaged metrics along with 95% Confidence Intervals can be seen in Figure
5.3. Left part of the Figure shows training set performance, while the right
shows the test set. In Figure 5.3 A and C the convergence is more than
satisfying for the train set (which is to be expected) with increasing sample size.
The metrics seem to stabilize at around ∼ 100 mark of inducing set size. The
confidence intervals are very narrow (there were about 300 samples for the train
size) indicating that upon repeating the fitting procedure and recalculating the
metrics on the test set, most of the times the results would stay within the CIs.
Looking at Figures 5.3 B and C one can see that for the test set the errors
are not as small as for the train set (f.ex. at 100 mark average MAE is about
three times larger for the test set than for the train set) which is normal. Also
past the 100 mark it can be observed that the performance on the test set gets
worse - this is a normal phenomenon and in the statistical and machine learning
circles is termed overfitting. At this point the model starts to adjust too much
to the training set, leading to worse generalization for unseen cases, i.e. the
test set [172]. Looking at the difference in performance between 50 and 100
samples, there is not much of improvement with almost twice the inducing set
size. Thus it was decided to use the model with 50 inducing variables as the go-
to emulator in the following analyses. The Full Gaussian Process was not fitted
for the current problem due to the fact that the size of the covariance matrix
that needed to be stored in computer’s RAM greatly exceeded the available
resources.

5.4 Development of the Reduced Basis model

In order to obtain a reduced basis model, first one needs to have the evaluations
of the Full Order Model (FOM). The considered results are the ones from
Section 5.1, i.e. midpoint displacements of the arterial phantom, registered over
time and for a given parameter combination. After running the FOM multiple
times and removing the outliers, the results are gathered in a large matrix,
often called the Snapshot Matrix and the SVD of the matrix is computed:

Y =

 | | ... |
yµ1 yµ2 ... yµm

| | ... |

 = USV T (5.7)
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Figure 5.3: Performance of the SGPR model with increasing inducing set size.
A and C show the performance of the SGPR model for the train set. It can be
seen that with increasing inducing variable set size the error decreases. B and
D show performance for the test set. Here it can be seen that with increasing
the inducing set size at some point the model ovefits to the training data.

where yµm is the solution vector of the m− th simulation corresponding to the
m − th parameter combination. The amount of columns in the matrix thus
corresponds to the amount of the amount of the distinct parameter combina-
tions and the row count corresponds to time time steps. In order to obtain
the reduced vector, one needs to truncate the SVD decomposition. The first
few singular vectors from U can be seen in Figure 5.4 C, which in the ROM
community is often referred to as an "L" curve, unsurprisingly due to its shape.
The optimal choice of the singular vectors to retain can thus be eye-balled from
the image, although a more systematic and quantitative approach is followed
in the next section. Given that one chooses to truncate the decomposition at
N, the reduced basis (RB) coefficients, q are obtained through a dot product
as follows:

q = ÛTY (5.8)
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where q ∈ Rr×m. RB coefficients can be interpreted as a measure of similarity
between the solution and the basis itself. The next step in the procedure is
the development of the mapping between the input parameters and the RB
coefficients. Once the data are mapped onto the coefficients, recovery of the
original displacements is trivial by left multiplying equation 5.8 by U . Since the
left Singular Vectors are unitary, the projection was done onto an orthogonal
basis and it is not necessary to take the possible covariance of the coefficients,
since there is none. This allows to fit N different full Gaussian Processes to the
RB coefficients, resulting in an ensemble model.

5.5 ROM performance

Before applying the reduced basis model, it is necessary to test its performance.
In order to do so bootstrapping has been employed. The same train-test sets
were employed here to directly compare this model’s perforamnce against the
SGPR one. The used performance metrics were Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and Median Absolute Error (MED).
100 bootstrap samples were used to fit 4 reduced basis models with increasing
complexity (i.e. retaining the first 1,2,5 and 10 singular vectors), the metrics
were then summarized across cases within one bootstrap sample using the sam-
ple quantiles. The summary of train and test set performance can be seen in
Figure 5.4. In 5.4 A and 5.4 B one can see a comparison between the train
and test set performance with increasing number of retained singular vectors.
For the train set naturally the error diminishes with more samples, however for
the test set it remains relatively the same for 100 bootstrap resamples. The
explanation can be understood by looking at 5.4 C: here the relative contribu-
tion of each singular vector is shown. It is immediately visible that the first
singular vector is the most significant one with having more than 80% of con-
tribution (93.5% to be exact). Thus, adding subsequent singular vectors is not
as informative and can even lead to overfitting and poorer model performance.
In 5.4 D one can see a reconstruction of the displacement curve using only one
singular vector. Although the reconstruction is not ideal it is still a very good
one.

5.6 Model comparison

Having a look at results presented in sections 5.3 and 5.5 it is apparent that
the performance of Sparse Gaussian Processes is better, on average they are 2-3
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Figure 5.4: Performance of the SVD-based Reduced Order Model. A and B
display the bootstrapped model performance with increasing amount of retained
singular vectors. C shows the relative contribution of the Singular Values to
the total ’energy’. D shows an exemplary curve reconstructed from the test set
predictions.

times less erroneous. Such a state of affairs can be explained by the fact that
SVD only captures linear relationships within the data [119] and the considered
problem is not as simple as that: there might be some nonlinear contributions
that twist and turn the displacement curves which SVD is completely missing.
In further work one could potentially have a look at other methods that extend
the SVD algorithm, f.ex. through kernelization techniques (e.g. kernel Principal
Component Analysis) or different methods altogether, e.g. Gaussian Process
Latent Variable Models (GPLVMs). One caveat is that while these methods
are better at capturing the nonlinear dependencies in the data, they lack the
ability to transform back and forth between the latent representation of data
and the actual one. This could pose a problem when one desires to re-obtain
the order reduced data in its original form. [119] Thus for the rest of the work
the model developed on the basis of Sparse Gaussian Process is used.
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5.7 UQSA Benchmark: The Ishigami Function

Next step was the application of the chosen Surrogate Model for performing
UQSA of the Full FSI model. It is important to first benchmark the imple-
mented methods, often using simpler and tested functions. One such common
function in the SA community is the Ishigami function [163]:

Y = sin(X1) + a · sin2(X2) + b ·X4
3sin(X1) (5.9)

where Xi are random variables and are all uniformly distributed, i.e. Xi ∼
U(−π,−π), a and b are arbitrary parameters, often chosen to be a = 7 and
b = 0.1 [163, 173]. The results of the benchmark can be seen in Figure 5.5. In
Figure 5.5 A First Order Sobol indices are displyed while in Figure 5.5 B Total
Sobol indices are shown. They are calculated for the Ishigami function, using
the Sobol [74] and Homma/Saltelli [74] methods, using N = 1000000 samples.
For completeness, they are contrasted with an entirely different method that is
not based on the Monte Carlo approach, the Polynomial Chaos Expansion. To
be specific the 8-th order Quadrature-based Sparse Polynomial Chaos Expan-
sion (PCE), using Nnodes = 840 sparsely generated nodes, has been employed.
Those interested in Polynomial Chaos are referred to [174]. In both cases the
implemented methods approximate the literature data pretty well and reflect
the actual importance of variables properly. Figure 5.5 C shows the histogram
of the Ishigami (N = 100000 samples) with characteristic ’devils horns’, which
also is a sanity check for its proper implementation. [173] Having benchmarked
the implemented methods, it is possible to move on to applying them on the
actual problem at hand, i.e. the full order Fluid-Structure Interaction model,
using its surrogate. It is important to note that while Polynomial Chaos Ex-
pansion is also a widely applicable method in the domains of UQSA, it is not as
widely used as a surrogate model per se and thus was only chosen as a refernce
point and not the main model used in the analyses. Moreover, PCE does not
support the construction of model with dependent inputs as it assumes each of
the random variables to be independent [174].

5.8 SA for correlated inputs

The assumption of correlated variables (e.g. v̇s and ps) in the design space
definition, introduces a violation of the assumptions of input independence
of the ANOVA-HDMR decomposition in Eq. 3.31. This can be handled by
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A

B

C

Figure 5.5: Ishigami function benchmark. A: First Order Sobol Indices. B:
Total Sobol Inidices. Both calculated using one of the implemented methods,
the Sobol method for First Order Indices and Saltelli/Homma method for Total
Order indices. They are compared against a different method, Polynomial
Chaos Expansion, and against data reported in the literature. C: Histogram of
the Ishigami function

decorrelation (or orthogonalization) of the dependent variables. A marginal
linear dependence between a (normal) set of random variables may be de-
scribed by a conditional expectation, E(xi|xj). If xi and xj were independent
E(xi|xj) = E(xi). Another way to describe the dependence is through the ap-
plication of the multiplication rule [131] on the joint probability distribution of
two variables p(x1, x2):

p(x1, x2) = p(x2|x1)p(x1) = p(x1|x2)p(x2) (5.10)

Given independence, the joint distribution could be factored into:

p(x1, x2) = p(x1)p(x2) (5.11)

Thus, using these two definitions and setting [126]:

x2−1 = x2 − E(x2|x1) (5.12)
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the result is:

p(x1, x2−1) = p(x1)p(x2−1) (5.13)

i.e. a decorrelation of variables and induced independence.

Figure 5.6: Illustration of the decorrelation procedure. By removing the linear
dependence of variable x2 on x1 one essentially creates a new, decorrelated
variable x2−1 on which the future inference is performed. Reproduced from
[126]

The decorrelation procedure can be visualized in Figure 5.6. There, from ran-
dom variable x2 the linear dependence on random variable x1 is subtracted.
This results in the creation of the new variable, x2−1, i.e. x2 with subtracted
x1 dependence. The relation between x2−1 and x1 now looks like an uncor-
related clump of points, which was the goal of the operation. Although this
decorrelation makes it possible to perform SA through ANOVA-HDMR, the
definitions of the Sobol indices are slightly different. In this setting, S1 is now
a full Sobol index of x1 containing its influence in all First Order (main) effects
where it is a contributing factor due to mutual dependence on other variables.
S2 = S2−1 is the marginal index of x2, with all of its correlations removed.
[126]. Similar interpretations hold for total indices. These revised interpreta-
tions only apply to the correlated variables in the set and the old interpretation
remains valid for all independent ones. [175] Using this approach, the total
number of samples for the Sobol index estimates to be relatively representative
is given by: [74]

N = n(k + 2) (5.14)
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where N is the number of evaluations required, n is some sufficiently large num-
ber (n ≥ 500 is often a safe bet as in [72]) and k is the number of parameters.
Given that in the current application the parameters are correlated this num-
ber needs to be multiplied by two, as for the correlated parameters both the
Full and Independent (marginal) Sobol Indices need to be estimated. A Sobol
index, e.g. SSobol

i is computed at a given time-step, i.e. SSobol
i = SSobol

i (t),
however for simplicity the former notation will be used. Moreover aggregated,
i.e. time-averaged, Sobol indices will be presented later and denoted e.g.:

S̄Sobol
i =

1

T
ΣT
t=0S

Sobol
i (t) (5.15)

5.9 UQSA using the Gaussian Process surrogate

The process for UQSA utilized the fitted Gaussian Process surrogate model
to enable Monte Carlo estimation of the integrals. The sampling algorithm
used was Hammersley sampling. The algorithm behind the UQSA began
with sampling one large, doubled parameter matrix, i.e. AB of dimension
N × (2K) where K is the number of parameters. After generating the sam-
ples the matrix was split into two sub-matrices, A and B. Subsequently the
samples were decorrelated using Equation 5.12, this was applied to the tuples
of (v̇shift, pshift), (v̇amp, pamp), (r, l). This split the actual Sobol indices into
Full and Marginal ones as described in Sec. 5.8. Subsequently, the Ai

B and
Bi

A matrices were populated. The surrogate model was then evaluated at the
parameter combinations arising in the matrices A,B, Ai

B, and Bi
A. These eval-

uations were then fed to the Sobol index estimators in Equations 3.37 and 3.38.
All these steps were then embedded into two different kinds of separate loops.
As mentioned previously, the implemented methods were validated against the
Ishigami function [74] and produced the same results.

The first loop tested the convergence of the Sobol index Monte Carlo estimators.
In total, according to formula 5.14, around N = 1000 · (10 + 2), where n was
chosen to be twice as usually chosen (1000 instead of 500) to be on the safe
side. Thus, it was estimated that at around 12 0000 samples the convergence
should be reached. The convergence was tested at 10, 50, 100, 500, 1000, 5000,
12 000, 15 000 and 20 000 samples, the convergence for two chosen parameters
(E, l) was presented in Figure 5.7. It can be seen From the plots that above
5000 samples the estimates do seem to stabilize and are relatively consistent
especially as one approaches 12 000 (the theoretically suggested amount), let
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Figure 5.7: Convergence of First order and Total Sobol Indices for Young’s
Modulus (E) and domain Length (L). A,C shows the convergence of First
and Total Sobol Indices respectively for E. Figures B,D show the same for
domain length L. It can be seen that the convergence is easily achieved using
theoretically calculated 12 000 samples, as the line corresponding to it overlaps
with estimates produced from 15 000 and 20 000 samples.

alone 15 000 or 20 000. Thus with 12 000 being a relatively good sample size
a different loop was employed.

The second loop relied on bootstrapping [133], i.e. resampling with replace-
ment, the Sobol indices to get some idea of the uncertainty that they possess
for the problem at hand. 100 bootstrap samples were taken in total. The me-
dian timewise Sobol indices can be seen in Figure 5.8 A,D,G for First Order
Indices and B,E,H for total indices. Each row of this Figure presents results
for applied methods (Sobol, Saltelli, Jansen). In Figure 5.8 C, F, I the time-
averaged median Sobol indices are presented with 0.5-th and 99.5-th quantiles
plotted as error bars. It can be gauged from the third column of the plot that
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Young’s modulus, E is the most influential parameter across all methods, which
is indicated by the relative size of its Total Sobol index. Similarly, the height
of its First Sobol index is dominant, indicating that this is the parameter con-
tributing the most variance among others. The variance seems to be distributed
relatively equally among the remaining parameters indicating that their overall
impact on it is somewhat similar. This does not mean that these parameters
should be removed - they still influence the output of the model, they are just
less influential on the output’s variance. While Sobol indices (both First Order
and Total) by definition cannot be lower than zero, when their value is relatively
close to zero it is possible to get negative values due to numerical issues, which
should not be treated as a violation of the assumptions [125]. The numerical
values of the estimated Sobol indices, along with their uncertainty intervals are
presented in Table 5.2.
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Figure 5.8: Results of the Sensitivity Analysis. Each of the rows corresponds
to one of the three implemented methods for First Order/Total Sobol Indices.
First row used the Sobol/Homma estimators, second row used the Saltelli/Sobol
estimators and the final row used the Jansen/Jansen estimators for First Order
and Total Indices respectively. Figures A, D and G depict the time-dependent
First Order Sobol index, as can be seen it varies somewhat over time but
consistently the Young’s modulus emerges as the most influential parameter,
meaning it should be prioritized in further research. Figures B,E,H show the
time-dependent Total Sobol Index, here again the Young’s modulus is clearly
most influential, meaning that it contributes the most amount of variance to
the model overall. In Figures C, F and I one can see the time-averaged First
Order and Total Sobol Indices with overlapped 99% bootstrapped Confidence
Intervals.
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Going back to Uncertainty Quantification itself, it was enough to gather all
the intermediate system evaluations done to estimate the Sobol Indices. A col-
lection of time-dependent responses (displacements) of the system. What was
next was to calculate the time-dependent mean output of the system, along
with a 99% Confidence Interval on it. The results are visualized in Figure 5.9.
It clearly demonstrates that the largest uncertainty due to the parameters is
present in the 0.2 - 0.4s time range which corresponds to the systole. This sim-
ulated result corroborates the experimental results from Chapter 4 where also
the largest uncertainty was found in the systole region. This clearly indicates
that it is worthwhile to more closely examine the systolic portion of the cycle
as, on average, it is the one most laden with uncertainty [67].

Figure 5.9: Mean response of the system along with 99% Confidence Interval
calculated using the Gaussian Surrogate.

5.10 Hierarchical Bayesian Parameter Estimation

As described in detail in Section 4.5, when performing experiments, some mea-
surements may become more similar, i.e. correlated, to each other than to other
measurements. This often occurs when considering data that has a hierarchi-
cal structure like multiple measurements (e.g. performed 5 times) performed
on different patients (e.g. 10 patients). Here multiple measurements will be
more similar for a given patient, i.e. one patient across many days, than across
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patients, i.e. one measurement compared across other patients. Similar hierar-
chical structures can be present in various measurement scenarios like multiple
measurements of an arterial phantom (see Section 4.5 and [141]). Omitting this
structure could lead to unrepresentative model predictions or inflated noise es-
timates. To be able to include the hierarchical information, one needs to attach
an additional level to the model, a level dealing directly with the next rung in
the hierarchy. It is readily understandable by observing the joint probability
distribution [77]:

p(Θ, θ) = p(θ|Θ)p(Θ) (5.16)

where, in the context of this hierarchical approach, θ will denote some lower
level parameter one tries to estimate (e.g. given patient’s arterial stiffness) and
Θ some upper level parameter (e.g. the arterial stiffness of the patient group
or patients from a given city, environment etc.). Now the prior distribution
has its own prior distribution, often called the hyperprior distribution [77, 92].
Moreover, a given subject-specific parameter vector (e.g. j amount of Young’s
moduli), θj , is dependent on the group level parameter (e.g. a group Young’s
modulus), Θi, such that each group level parameter is jointly distributed with
each subject parameter, p(θj ,Θ). The notation shows that the relationship
is induced through conditional probability. It is also obvious that the model
is extensible to include more hierarchies. Further assuming the property of
exchangeability [77], a general hierarchical specification of the posterior may
be written as follows:

p(θj ,Θ|y) ∝ p(yi,j |θj ,Θ) · p(θj ,Θ) = p(yi,j |θj) · p(θj |Θ) · p(Θ) (5.17)

where θ ∈ Rnx1, Θ ∈ Rmx1 are both vectors of parameters of the subject level
prior and group level prior (hyperprior) respectively. The whole model can be
best visualized graphically, using a Kruschke-style diagram [92], see Figure 5.10.
The dependencies present in the graph can also be expressed mathematically
as follows:
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yi|j ∼ N(µi|j , σn)

µi|j = GP (ti, Ej)

σn ∼ U(Ln, Hn)

Ej ∼ N(µE , σE)

µE ∼ N(ME , SE)

σE ∼ U(LE , HE)

(5.18)

For both the graph and the equations the interpretation is the same. Firstly,
the data are modeled as coming from a normal distribution, with a mean for
each time point, ti for a given subject j. It is important to note that variance
on the data level has no dependence on i or j, this explicitly means that the
same underlying variance, so-called noise variance, is applied for all the data
points. The mean, µi|j is calculated similarly to how one would do for Bayesian
Linear Regression: except for the (generalized) linear model, a Gaussian Process
is responsible for providing the predictions. This Gaussian Process further
depends on Ej , introduced in Section 5.1. Subsequently, an upper-level, group
prior (hyperprior) distribution is placed on this parameter. The hyperprior
is given fixed parameter values as inputs. The choice to set up the problem
to estimate Young’s modulus (and its related parameters) has already been
justified previously, see Section 5.9.

5.10.1 Parameter estimation using SGPR within MCMC

The whole Bayesian framework used within this work was developed within a
Bayesian modeling Python library PYMC, version 5.10.3 [176], while some of
the presented visualizations were facilitated using the Python library for (ex-
ploratory) Bayesian Analyses, Arviz version 0.17.0 [177]. The model structure
was the same as that provided in Equation 5.18 and image 5.10. The Gaussian
Process was defined in a separate custom operation and then called from within
the PYMC model definition. To make the high-dimensional parameter space
more amenable to exploration, the priors and hyperpriors were standardized.
[176] A regular Metropolis sampler was assigned for the individual Young’s
moduli, while the rest was explored using the No U-Turn Sampler (NUTS).
The analysis was set up to run on 4 chains with 3000 samples of burn-in and
10 000 samples of regular exploration (in total yielding 52 000 samples). The
burn-in period is necessary as it is the moment when the chain begins to explore
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y i / j

μi / j σn

μE σE

~      

~    
=     

GP (t i , E j)⏟
~j

μE σE H ELE

H nLn 

~    
~    

Figure 5.10: A Kruschke-style diagram [92] depicting the overall structure
of the hierarchical model. From the bottom up: datapoints, yi are nested
within a subject, j. The data are subject to normal likelihood with the subject
dependent mean µi|j and standard deviation σn. The noise is modeled as a
uniform random variable. The mean is modeled by a time-dependent Gaussian
Process, where Ej is parametrized to be subject specific the Young’s modulus.
It in turn has a prior distribution that is modeled by a normal distribution with
mean µE and standard deviation σE . They have their respective (normal and
uniform) hyperpriors.

the space and auto-tunes other hyperparameters related directly to sampling
(e.g. NUTS’ leapfrog step). [92] Large sampling sizes are the norm, not the
exception, for Bayesian modeling and would require large resources to evaluate
the full 3D FSI model around 52 000 times to complete the presented analysis.
Figure 5.11 presents the most important results. Figure 5.11 A depicts the es-
timated values of parameters, which are the MAP (MAP stands for maximum
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a posteriori estimate and is the mode of the posterior distribution, presented
with magenta circles) and the mean (green squares) along with 99% HDI of
the distribution. Highest Density Interval, HDI, is the region where most of
the probability density is concentrated, in this case, 99% of it. The narrower
it is the more certain the estimate. Given that, as opposed to frequentist sta-
tistical analyses, the Bayesian analysis yields full (sampled) distributions, the
distributional summaries tend to be more intuitive and robust. [92]. The esti-
mates (mean and MAP) are plotted next to the true values (red crosses) and
randomly initialized values (blue triangles). All estimates were obtained from
the pooled samples of the four chains. As can be seen most of the estimated
values are either very close to the true values or the true values are covered
by the uncertainties superimposed on the estimates. For individual level pa-
rameters (E[1] - E[10]) both of the estimates are very close to the true values
and the uncertainties represented by the 99% HDI are tight. For the group
level parameters, µE and σE the uncertainties are a bit wider, which is due to
relatively large uncertainty placed on the group mean and the low count of the
individuals representative of it and not due to the quality of the chain itself
(see the paragraph below). The exact values of all estimates, along with their
initialized values (again, which were randomized) and the true values based
on distributions derived from experimental and literature data are collected in
Table 5.4.

Figures 5.11 B and C show the 100 posterior predictions for the measured dis-
placements using the first and fifth estimates of the Young’s moduli (the choice
which to show was random). Such a posterior predictive check is carried out by
placing the posterior values of parameters as the new definitions of respective
distribution. In the next step, the data are sampled, and the model is run (in
this case Gaussian Process). The predicted displacements closely match the
true ones and the noise is filtered out. Figure 5.11 C shows that the calculated
error metrics for the predictive performance of the model (same as in section
5.3) are very low. The plotted error metrics are averaged first across a given
displacement curve (i.e. time wise) and then across 100 posterior predictions.
Root Mean Squared Error (RMSE) and Maximum Error (MaxErr) are consid-
ered to be ’worst case scenario’ metrics, as they tend to ascribe large weighting
to outliers or uncommon values (particularly maximum error), however here
can be seen that the two worst predictive performances are for ∆d(E[2]) at
about ∼ 0.004266 mm for RMSE and for ∆d(E[9]) at around ∼ 0.01255 mm
for MaxErr. Most of the time the metrics do not exceed 10% of the average
displacement and generally are very well below 5%. The numerical summary of
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Figure 5.11: Summary of the results of the Bayesian Analysis. Figure A
shows the inversely estimated parameters (MAP and mean, both averaged
across chains) with a 99% HDI superimposed against the true values and values
at which the chains were (randomly) initialized. Note: For readability the pa-
rameter estimates of an individual Young’s modulus are described generically
as E[x] rather than µ̂E[x] or Ê[x]MAP for mean and MAP respectively. Figures
B and C show the true data using which the Moduli were estimated along with
100 posterior predictions from estimated distributions. Figure D shows the
median Gaussian Process prediction errors calculated using RMSE, MAE, and
MED for each individual Young’s Modulus with a 99% HDI superimposed. On
average the relative errors are around 2.5%, going up to 10% when considering
the extreme edges of the HDIs (i.e. 0.0075mm and beyond).
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posterior model predictions along with error metrics and relative error metrics
is presented in Table 5.10.1. As can be seen, the errors do not tend to exceed
the 5% threshold (even for RMSE which tends to be very sensitive), but for
the Max Error metric which only once exceeds the 10% threshold (i.e. 11.183%
for ∆d(E[9])). The very narrow 99% Credible Interval estimates for errors also
demonstrate very low uncertainty present in the error estimates.
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Besides looking at the comparison of estimated and true values and assessing
the predictive performance of the model and its ability, the diagnostic metrics
that describe the inference itself should also be analyzed. Starting with R̂ (see
Section 3.6.2). It is recommended to keep its value below 1.05, otherwise, the
chains should be run for a longer time [77]. In Table 5.4 all of R̂ statistics lie
below 1.05, even below or on the level of the stricter condition of R̂ ≤ 1.01. This
indicates that any errors in estimation would most likely not be solved by run-
ning the simulations any longer (i.e. drawing more samples would not improve
the quality of estimates). Bayesian analyses, especially employing MCMC (and
some with HMC), tend to produce somewhat autocorrelated chains, rendering
the produced samples not quite independent and thus unsuited for inference.
Thus one of the most important diagnostics is the Effective Sample Size (ESS,
see section 3.6.2). Having a large ESS enables one to have a more robust and
trustworthy estimates of the parameters. The recommended value for ESS is
above 100, ideally above 200 [178, 179], however generally the larger ESS the
more trustworthy the estimates. In Table 5.4 there are two quantities related
to ESS, i.e. ESSbulk and ESStail. They originate from a similar principle of
ESS introduced in Section 3.6.2, but are responsible for ’enough samples’ of two
different estimates. Large ESSbulk serve as a basis for accurate group-tendency
estimates (i.e. mean, median, mode etc.), while large ESStail similarly are re-
sponsible for distribution-tail related summaries (quartiles, quantiles, intervals,
HDIs etc.). [178] Both of these statistics lie on the safe side, being well over
1000 for most of the parameters, over 10 000 for the group-level mean estimate
(for ESSbulk), and well above 100 for two of the parameters (E[7] and E[8]).
Finally for MCSE applied to means and variances, one can see that due to large
ESS they have been shrunk to small values, in some cases near zero (reported
as 0 in Table). These low values of this statistic indicate a relatively large cer-
tainty in the estimates produced by the chains, i.e. the standard error on the
mean and variance (standard deviation in this case) are low. [140] The quality
of the developed model along with the low error values produced by the model
with reference to test data, makes it evident that the whole procedure does a
very good job of estimating the arterial stiffness.
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Table 5.4: Summary table of statistics related to both Bayesian estimates as
well as the estimation procedure itself.

Param. µ̂ σ̂ MAPs θtrue Init. HDI 0.5%
µE 8.56E+05 5.82E+04 8.29E+05 1.00E+06 6.84E+05 7.06E+05
E[0] 1.02E+06 3.00E+03 1.02E+06 1.04E+06 9.95E+05 1.01E+06
E[1] 7.18E+05 1.40E+03 7.18E+05 7.34E+05 9.30E+05 7.15E+05
E[2] 3.39E+05 4.00E+02 3.39E+05 3.54E+05 8.593E+05 3.38E+05
E[3] 7.90E+05 1.80E+03 7.91E+05 8.12E+05 5.95E+05 7.87E+05
E[4] 1.26E+06 4.40E+03 1.26E+06 1.28E+06 3.34E+05 1.25E+06
E[5] 1.05E+06 3.00E+03 1.05E+06 1.08E+06 5.77E+05 1.05E+06
E[6] 4.67E+05 6.00E+02 4.62E+05 4.72E+05 7.86E+05 4.61E+05
E[7] 1.04E+06 3.00E+03 1.04E+06 1.07E+06 9.96E+05 1.04E+06
E[8] 9.85E+05 2.60E+03 9.85E+05 1.00E+06 4.50E+05 9.81E+05
E[9] 1.05E+06 3.00E+03 1.05E+06 1.07E+06 3.61E+05 1.04E+06
σE 1.88E+05 1.00E+04 1.76E+05 3.00E+05 2.44E+05 1.57E+05
σn 3.00E-03 0.00E+00 2.60E-03 2.50E-03 1.50E-03 2.50E-03

Param. HDI 99.5% MCSE[µ̂] MCSE[σ̂] ESSbulk ESStail R̂

µE 1.00E+06 6.00E+02 4.00E+02 1.05E+04 8.77E+03 1.00
E[0] 1.02E+06 0.00E+00 0.00E+00 1.27E+03 1.00E+03 1.01
E[1] 7.20E+05 0.00E+00 0.00E+00 1.07E+03 1.13E+03 1.01
E[2] 3.40E+05 0.00E+00 0.00E+00 1.45E+03 1.66E+03 1.00
E[3] 7.94E+05 0.00E+00 0.00E+00 1.45E+03 1.78E+03 1.00
E[4] 1.26E+06 2.00E+02 0.00E+00 1.34E+03 1.08E+03 1.00
E[5] 1.06E+06 0.00E+00 0.00E+00 1.65E+03 1.49E+03 1.01
E[6] 4.63E+05 0.00E+00 0.00E+00 1.27E+03 1.23E+03 1.00
E[7] 4.61E+05 0.00E+00 0.00E+00 1.01E+03 7.60E+02 1.00
E[8] 9.91E+05 0.00E+00 0.00E+00 9.81E+02 1.01E+03 1.00
E[9] 1.05E+06 0.00E+00 0.00E+00 1.05E+03 1.32E+03 1.01
σE 2.00E+05 2.00E+02 0.00E+00 5.93E+03 4.22E+03 1.00
σn 2.79E-03 0.00E+00 0.00E+00 9.43E+03 8.67E+03 1.00



6
Conclusions and further research

The primary motivation of this work was to develop a method that would be
an alternative to modern, mostly absent, approaches to local arterial stiffness
estimation. [5] The upper hand of this method over the others would come
into play in a few important aspects. First, the method would measure local
arterial stiffness, which is one of the best early indicators of the onset of arterial
pathologies [6]. Second, it would implement the ultrasound system which is
easy to operate by medical personnel and highly cost-effective. Third, the
method would provide uncertainty bands for the estimates, which would help
the physician’s decision making process. [1] The crucial part of the developed
method was the surrogate model for fast and accurate emulation of a verified
and validated Fluid-Structure Interaction model of a carotid artery phantom.
Without this surrogate, the most important task, i.e. parameter estimation,
would be impossible as computation times for Full Order Models, like FSI,
are too prohibitive. As stated in the Objectives and Methodology Section of
the Introduction, the development of this method is a fairly involved, multi-
step procedure. The results and insights gained from each of the taken steps,
are discussed briefly below, along with suggested possible avenues of future
research.
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The application sections of this work started by first constructing an experimen-
tal rig for carrying out pressure, flow, camera and ultrasound measurements.
The object of interest was a phantom model of the left common carotid artery.
The measurements were carried out to be able to generate Boundary and Initial
Conditions for the FSI model as well as to be able to validate the FSI model
itself. It was achieved by developing an in-house control application in Lab-
VIEW and subsequently constructing the post-processing algorithms employed
to analyze the pressure, flow and image raw data resulting from a series of
experiments over physiological ranges of pressures.

Another important step was a statistical analysis of measurement variability,
carried out in order to be able to accurately characterize the uncertainties about
the data, which was key to explain away the noise present due to various fac-
tors and leave only the variability present due to equipment construction and
operation. The method applied for modeling the data and its uncertainty, as
mentioned in section 4.5 was Mixed-Effects modeling. The hierarchy of this
model used, from bottom up, was: variation due to equipment noise, varia-
tion due to cycle to cycle variation (nested in experiments) and experiment to
experiment variation (belonging to a given equipment, i.e. flowmeter). The
results of this analysis proved the experiments to be highly reproducible. The
residual variation σresid seemed consistent with high frequency noise from un-
controllable sources (environmental and equipment noise). In comparison with
the data originating from the camera, the ultrasound derived displacements ex-
hibit good agreement (mean difference of 0.0113 mm), although slightly more
deviation on average between ultrasound and camera than between the two
cameras (see Table 4.6). The agreement of ultrasound derived displacements
with camera-measured displacements, supports further use of ultrasound as a
method for describing the displacement of arterial walls. The experimental
phantom and ultrasound measurement system have thus been confirmed to
provide a somewhat consistent experimental model for generating data for de-
veloping and testing new methods for non-invasive assessment of the common
carotid artery. There are a few possible extensions of this methodology that
could be researched further. First, the implemented hierarchy could be further
extended to treat the equipment itself (transducers, flowmeters, cameras) as
themselves being nested in a ’general’ transducer, which could more clearly
shed light on present equipment-to-equipment (e.g. transducer 1 to transducer
2) variation as well as on the variance of the product performance itself. Such
variation could arise due to different equipment being tuned slightly different,
their different spatial location, manufacturing variance and other factors. Such
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model was entertained, but due to time constraints and instability issues re-
mained only at a proposal stage. Furthermore the models could be rephrased
in a Bayesian context, which, as mentioned, in Section 3.5, is a far more inter-
pretable and robust framework for data analysis. However, the sheer volume
of data resulting from amount of equipment (2 cameras, 8 transducers and 2
flowmeters), measurements (4 series, 7 measurements each, hundreds of cycles
per measurement), when placed in a Hierarchical Bayesian context to reflect
the LME structure, yielded unreasonably long computational times and highly
autocorrelated chains. [92] Since such an approach could provide a lot more
insight into the data, it is heavily recommended to be explored in further re-
search. Naturally, application of other approaches and algorithms would be
welcome to carry out the error analysis. Gaussian Error Propagation is a very
commonly applied approach for analysing uncertainty present within physical
experiments [180]. Its primary drawback however is the fact that it assumes
a known functional form with which to calculate derivatives for variables of
interest. In the case of this work, coming up with such derivatives and their
form was unclear, and thus it was left out. However it would certainly be an
interesting way to quantify the uncertainty of the measurements, as the end
result would allow to properly describe the relationships present between the
system output (phantom displacements) and input variables (pressure, flow,
etc. and their measuring devices’ related uncertainties) analytically.

When it comes to the Fluid-Structure interaction models, the modeled bodies
were reflected well using the basic hyperelastic and, to some degree, linear
elastic models. One thing that could directly (but rather not dramatically)
improve the faithfulness model of the phantom would be to perform radial
tensile material tests on it. By placing it in the measuring site (the aquarium),
fixing it and slowly ramping up the pressure while measuring the displacements,
one could obtain a strain-stress curve. This would be a valuable resource, as
the literature is lacking in such a characteristic for most materials. This could
be taken further, as by having a much clearer characteristic of the material, one
could be tempted to use a bit more exact models like Mooney-Rivlin or even,
if real arteries were measured, Holzapfel-Ogden model. This, of course, raises
another possible extension of the model - extension to real human patient data
and not arterial phantoms. Although the groundwork for such an application
has been laid within this work, it was ultimately the lack of time and the ill
timing of the data from the first patients that led to them being not analyzed
and ultimately excluded from this work.
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This work also addresses the surrogate model development in-depth and de-
scribes the modern challenges of constructing such a model. From experimen-
tal design point of view, rather than employing conventional techniques, like
simple random sampling and Latin-Hypercube sampling, this study utilized
quasi-random sequences. Time and time again, they prove to be the superior
choice due to their better space coverage and faster asymptotic convergence of
estimated statistical moments [71, 74]. One interesting possible extension of
experimental design is Sequential Sampling. [181] There instead of generating
N amount of samples and then running the models, sequential sampling em-
ploys the minimization approach. Simply put, it works by looking for regions
in the experimental space, which when sampled, could reduce the uncertainty
about the model output the most. While this approach was implemented, due
to time constraints it has been dropped.

For the surrogate model itself, the two considered models were the (Sparse)
Gaussian Process surrogate and the SVD-based Reduced Order Model. Start-
ing with the latter, many other ideas were entertained such as a (kernelized)
Dynamic Mode Decomposition Model [182], Gaussian Process Latent Variable
Models [183] and others. They did not provide superior performance to the
ROM (developed in Section 5.4) and thus they have been dropped from this
work. However, it is almost certain that by further tuning them (and with more
data) they would be able to outperform the considered ROM. The former of
the two applied models, the Gaussian Process Regression surrogate (developed
in Section 5.2), was the choice for the following tasks, due to its superior pre-
dictive performance over the Reduced Order Model. This dissertation clearly
demonstrated that by replacing the FSI model with a non-parametric SGPR
surrogate, trained on a combination of experimental and literature data, it is
possible to approximate the FSI output fairly well and then apply the surrogate
with much shorter evaluation tasks. It has been mentioned in Section 3.2.1,
that Gaussian Process Regression models are highly sensitive towards kernel
choice. Thus, to gain optimal performance, they were tuned manually taking
into account the underlying overall shape of the model response and the be-
lieved interaction of input variables. However, when applying the methodology
in commercial setting, or in general for future research, it would be interesting
to see a development of a method for automatic kernel selection along with
its combination to best fit the data. Although such approaches have been at-
tempted recently [184], it is still a very active area of research in the Gaussian
Process community.
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Following from the Section Objectives and Methodology, next item on the to-
do list was the Uncertainty Quantification and Sensitivity Analysis of the Full
Order FSI model. This has been done for two reasons: first to indicate the
future areas of research when it comes to narrowing down the uncertainty on
the considered variables and parameters. Second, it allowed to fix some of the
considered variables with the lowest contribution to the overall model variance.
Within this work, the Monte Carlo-based Global Uncertainty Quantification
and Sensitivity Analysis (UQSA) have been applied. In this approach sensitiv-
ity is quantified using the Sobol Indices, which are approximated using Monte
Carlo estimators. These estimators need to converge, i.e. stabilize, which of-
ten requires numerous evaluations [71]. Without employing the GP emulator,
both stabilizing the indices and acquiring their uncertainty estimates (achieved
through bootstrapping, see [133]) would require considerable time. The con-
ducted analyses revealed that, given the existing assumptions, Young’s modulus
most significantly impacts the output variance of the FSI Neo-Hookean and lin-
ear elastic-based models, making it the most critical factor. Consequently, it
is essential to further explore Young’s modulus to refine its prior distribution
(marked by a high First Order index), while it may be appropriate to main-
tain all other variables at their standard levels for different model applications
(marked by a high Total Sobol index). Naturally, were the underlying material
model extended, its parameters may require a separate Sensitivity Analysis.
[174] It is important to note that some variables exhibited correlations and
therefore needed to be decorrelated during the analysis, leading to the creation
of both Full and Marginal Sobol indices. However, these factors still represented
a minor portion of the overall variance. This method could be adapted to en-
compass correlations among more than two variables and, by understanding
their interdependencies, potentially incorporate discrete (e.g. age) or binary
(e.g. gender) variables, thereby generating significantly more intricate relation-
ships (joint distribution) compared to (multivariate) normal distributions.

Finally, the surrogate was employed in another highly computationally intensive
context, specifically for parameter estimation via Hierarchical Bayesian Regres-
sion. The objective was to determine, from displacement data, the individual
levels of Young’s modulus and the overarching distribution at the group level
that controls the individual members. This approach concurrently estimates
characteristics specific to each subject while also inferring the parameters that
regulate entire groups or populations. Bayesian modeling, known for providing
extensive data for inference, is notably demanding in terms of computation.
In this study, approximately 50,000 samples were required to achieve reliable
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parameter distributions for more than ten subjects, distributed among four
chains. By embedding the Gaussian Process surrogate within the Bayesian in-
ference machine, it was possible to estimate the desired parameters with high
accuracy. As a result, the uncertainty associated with group-level parameters
could be estimated, which typically requires much more than 10 subjects. The
analysis is readily extensible to many more subjects (although at additional
computational cost), and more importantly, it is possible to extend the model
to many more parameters with possible correlations. Despite the efforts with
this concept, it resulted in unstable and highly correlated chains (even with
standardization and reparametrization [185]) and inaccurate estimates, likely
due to the negligible impact of the remaining parameters, pushing the entire es-
timation process towards non-identifiability. Despite these issues, this approach
remains a promising field for future investigation.

To summarize, this dissertation revolved primarily around the development of
a novel method for non-invasive estimation of local arterial stiffness and val-
idating its constitutents on arterial phantom data. The method development
was built out of a few components: development of the experimental rig served
to validate the ultrasound as a reliable instrument for accurate displacement
detection. The developed linear mixed-effects models served as a way to deter-
mine whether the experiments were reproducible by estimating the uncertainty
present within them. The experiments also doubled as a tool for dataset gener-
ation for the purposes of development of the Fluid-Structure Interaction model
and surrogate development. The FSI model was developed and validated, but
in itself proved to be prohibitive when it comes to implementing it in compu-
tationally demanding tasks, such as parameter estimation. Thus, the surrogate
was developed and would form the backbone of the developed method, whose
goal was to serve as an alternative for current arterial stiffness estimation pro-
cedures. The use of a Gaussian Process Regression surrogate was motivated by
an extensive literature review (see Introduction), but by no means is it the only
choice as among other popularly applied modes were Support Vector Machines,
Neural Networks, classical Multiple Linear Regression and many others. The
developed surrogate was applied to tasks of Uncertainty Quantification and
Sensitivity Analysis to allow to comment on the quality of the FSI model and
to suggest further research developments. The methodology loop is closed with
the application of the Gaussian surrogate to parameter estimation of the arterial
stiffness, which was done employing Hierarchical Bayesian estimation.
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Abstract

Integration of Statistical Data Analysis and
Surrogate Modeling for Uncertainty Quantification,
Sensitivity Analysis and Inverse Problems involving

Fluid-Structure Interaction models

Local arterial stiffness is a useful marker for early detection of cardiovascular
diseases. It is possible to estimate it inversely using non-invasive methods bas-
ing on measured arterial displacements. However, before implementing such
a methodology clinically, it should be validated and tested in laboratory con-
ditions. To achieve this, a testing rig for measuring arterial displacements
was developed, whose reproducibility was assessed using Linear Mixed Effects
Models. Basing on the test data, a Fluid-Structure Interaction model was de-
veloped, which was meant to be used in the inverse task. Ultimately, its com-
putational overhead was deemed too demanding and a Sparse Gaussian Process
Regression-based surrogate model was developed to allow for inverse estima-
tion. The model’s performance was tested and it was subsequently used in
Uncertainty Quantification and Sensitivity Analysis of the original FSI model.
The purpose was twofold: to gain information on the uncertainty present in the
FSI model due to input data and to estimate which factors were the most in-
fluential. This was achieved making it possible to simplify the surrogate model
even further and apply it in inverse estimation of the arterial stiffness based on
laboratory phantom displacement data. Resulting arterial stiffness estimates
proved to be very accurate. This research demonstrated the potential to apply
the whole methodology to human subject test data and possible subsequent
implementation of the methodology in clinical diagnostics.



Abstrakt

Integration of Statistical Data Analysis and
Surrogate Modeling for Uncertainty Quantification,
Sensitivity Analysis and Inverse Problems involving

Fluid-Structure Interaction models

Lokalna sztywność tętcnicza jest przydatnym znacznikiem używanym we wczes-
nej diagnostyce chorób układu krwionośnego. Możliwym jest jej odwrotne wyz-
naczenie z użyciem bezinwazyjnych metod w oparciu o zmierzone przemieszczenia
tętnicze. Jednakże zanim takowa metodologia zostanie zaimplementowana na
poziomie klinicznym, istotnym jest ją przetestować w warunkach laborato-
ryjnych. W tym celu powstało stanowisko pomiarowe mierzące odkształcenia
fantomów tętniczych, których powtarzalność została przeanalizowana z uży-
ciem narzędzi statystycznych. Na podstawie tych danych został skonstruowany
model Fluid-Structure Interaction, który miał zostać wykorzystany w problemie
odwrotnym. Jednakże jego kosztowność pod względem czasu obliczeniowego
okazała się ograniczająca i zdecydowano się wytrenować model zastępczy z
użyciem techniki Sparse Gaussian Process Regression. Taki model zastępczy
został następnie zastosowany do Kwantyfikacji Niepewności i Analizy Wrażli-
wości pełnego modelu FSI w celu eksploracji obecnej w nim niepewności oraz
wykryciu najbardziej wpływowych parametrów. Informacje te posłużyły do
dalszego uproszczenia modelu zastępczego, który następnie został zaimplemen-
towany w problemie odrwotnym. Wynikająca z tego estymacją sztywności
w oparciu o odkształcenia fantomów tętniczych przyniosła obiecujące wyniki,
umożliwiające rozważanie dalszego testowania metodogolii na ludziach oraz po-
tencjalnego zastosowania jej w praktyce diagnostycznej.
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