Silesian
University
of Technology

Silesian University of Technology

Faculty of Automatic Control, Electronics and Computer Science

Developing a system of automatic identification of cellular
subpopulations in data from single-cell mass cytometry with

the use of algorithms for grouping of high dimensional data

Doctoral Dissertation

by

Aleksandra Suwalska

Supervisor

Professor Joanna Polanska, PhD, DSc

2023

Gliwice, Poland






I would like to express my most profound appreciation to my supervisor,
Professor Joanna Polanska, for giving me this opportunity
and her patient guidance and advice for many years.

| also wish to thank my friends from the Department of Data Science and Engineering,
for the great atmosphere, for exchanging ideas, and for any help.

Special thanks to my colleague, Wojciech Prazuch, for all the conversations
in the most challenging moments at the University.

The work would not have been possible without the constant support of the closest to me,
my family, my best friends.






Content

LY 11 4 (o] SO
] Ly o701 1T TN
1 Introduction to the mass cytometry data analysis ......ccoococeieioeriiiiiecciieereeeee et e e e e e
T MOTIVATION ettt ettt ettt sttt a et 1
1.2 ATM OF TNE WOTK .ttt 2
1.3 CNAPEEr CONTENES .eitiitiieerercreere et sre ettt e st e s et e e s e s e sbe s e e e esesbessessesassessanseseeseans 3
1.4 BACKGIOUNT ...veveieieerierienieteesesieneeeesesteseeseeseesessessessesessessessessesessessessessesessensensessesessensessesens 4
1.4.1 TUBBICUIDSIS ..ttt sae e 4
1.4.2 Mass cytometry (CyTOF) teChNOIOGY .....c.eveuieeueiriieieirceie e 5
1.4.3 SAMPIE PrEPAratiON.....ceeieeirieieieeee ettt ettt sttt et be e e e 5
1.4.4 MASS CYTOMETET ...ttt ettt ettt ettt e naens 6
1.4.5 FCS FOMMAL ottt be e 7
1.4.6 Analysis pipeline for mass Cytometry data .......ccoevevereniennnnnrenienensresenesrssesesesneseeens 8
1.4.7 Data PrEPrOCESSING ceverreereerrrrrerreereertrnreseeseessessesesssessessesesssessessessesssessessessasssessessasssensens 9
1.4.8 Dimensionality reduction and SAMPING ......coecvveireereeenerneieeeereeneeeereeereeeaeneees ll
1.4.9 FUMNEE @NAIYSIS....ceeiriiieiiececc ettt 12
1.4.10 Clustering for the cell-type identification task ........ccccovevrverieninnnnrncnnnnnesenenneeenes 12
1.5 MALEIIAIS ..ot 14
1.5.1  Tuberculosis dataset from Stellenbosch UNIVErSity......cciivvevvevenienenennnienennennsenensesnenns 14
15.2  PUDIIC dAASELS ....eouieeieiricieeiceetctre ettt ettt ettt sae e 15
1.6 UMAP and mISO0 plots for visualization of high-dimensional data .........ccccceoeeveenevincnccnee 16
2 Pre-gating of Mass CYtOMETry data....... .ottt ettt ettt e e e e 19
2.1 INtrodUCtion t0 Pre=gatiNg ... iiirrreierericrerre e ste e se s e s e stesessasrastassesassaens 19
2.2 Materials and METhOGAS ..ot 19
2.2.1 ClUSTErING AlGOIItNM . ciiieieiircrtrrrercreree et e e s e e e ste e ssns e ssasaesnssaenas 21
222 Pre-gating filtration CrterioN......co.ccv et 22
2.3 RESUITS ..ttt ettt sttt s b e sttt e b skt e e st e be st et et e bt s be e e e e e eas 23
2.4 DiSCUSSION @NA CONCIUSIONS ...eveuvevierreirieiineereenieertertneereesteeseestseesesesseneseeseeesenessenesseseaesens 25
3 Batch effect COrreCtion @NalYSiS .......cuiececeeiececeeiieeceereeeceeeeeeceeeseesraeeseessneesessaeesessssnessesssneenas 29
3.1 INEFOTUCTION ..ttt b e 29

3.2 MaterialS aNd MELROAS ...coiveiieeeeee ettt ettt et es et e s et e satsssseessseesssesesanesseess 30



3.2.1 DL =TT =] SRR RRR RIS 30

3.2.2 Batch effeCt COMECTION.....c.ccceiirieciecrcc ettt 31
3.2.3 Cell subtypes identification after batch effect correction.......ccoevvvvvenenevnieneneneenens 31
3.2.4 Statistical comparison of batch effect correction methods.......coevvvenevvrniininiennenns 32
3.2.5 UMAP transformation.........ce i eesissssesenes 33
3.2.6 TeChNICal AETAIlS ....cveerieeiieierrertcce ettt s 33
3.3 RESUITS ..ttt ettt et et b ettt s b et eme e bt e e ene 34
3.4 DiSCUSSION @Nd CONCIUSIONS ....coveuerieirieiieereirieieereterestrre ettt e e sesaeseaee 37
4 Identification of Cell SUDPOPUIALIONS ......eeeeeeeiieeiieeeeceeeeeeeteeeeccceeeeeeteeeeeeesnnneeeeeeeeeessssnnnsessssnnns
4.1 INEFOTUCTION..c.ceiiiiiiiiiicici s 41
4.1.1 Limitations of the existing Methods ..o 42
4.2 Materials and METNOAS .....covecirieireiee ettt 44
4.2.1 EXPEIIMENTS .ttt ettt sttt ettt et et ne e 44
4.2.2 Characteristics of Samusik's dataset.......ccoeveivnniiinnniiiccceee 45
4.2.3 Data NELEIOGENEITY.cvvieiriirererercrrert st s e s s e s e s e s e e s e s e steseesnssassassansons 48
4.2.4 The idea behind the expanded fEatUre SPACE ...cccvvverirerrrenenerreresesesreese e sseneseenes 49
4.2.5 MemMbBErship TUNCTION ..ottt 50
4.2.6 Binary transformation of the expanded feature SPace ......ccoeveveevrenenerecnenceeene 54
4.2.7 Feature selection for the expanded dOmMaiN ..o b5
4.2.8 DIVISIVE QPPIOACH ...t ccteeeererterreeeesieseeesresiensesnesestestessssssessessessesessessensessessssessansensesees 56
4.2.9 Analysis of the dataset from Stellenbosch UnIVErSity.....cocevvevevivnnreneneneeresenieneeenne 57
4210 Evaluation of CIUSTENNG FESUILS ...vvvivieveecercrrrreerencrrrese e se e sr e seenens 57
4.3 Results for SAMUSIK'S AtaSET .......cvoveevreirieieecre ettt 62
4.3.1 Data heterogeneity - cell SUDPOPUIATIONS ......cvvvemieerreerieiieieec e 62
4.3.2 Comparison of existing solutions in the regular domMain.........cccoeeveeeeerecnccnerinennenes 63
4.3.3 Process of generating the expanded feature SPACE ....cvervverereererrnrnrenenreensrnvesessnens 66
4.3.4 Results for the dataset in the expanded dOMaAIN .....cccvveveevrnineniennnneneeneenesieseessenes 67
4.3.5 Comparison of UMAP ProjECHIONS.....cuvirerveverirenrnresisiernsnnseseniesnsssessessessesessensessenens 68
4.3.6 Comparison of existing solutions between expanded and reqular domains................. 70
4.3.7 Clustering results for expanded feature SPACE.....cocvvverieverereniererene et 72
4.3.8 Clustering results for expanded feature space with feature selection..........ccoceeveunene 73
4.3.9 Clustering results - diviSiVE @QPPrOACH .....cvevvirierrrreriserreeserereeseeesesse e seeessensesaenens 76

4.4 Results for the drug-resistant Tuberculosis dataset from Stellenbosch University ............. 79



5
6

4.4 Dataset Preparation ........cocoeverereeereneeeeeeeeeee ettt ettt 79

4.4.2 CIUSTEIING FBSUITS ..veiteieeiceetertctee ettt et ss 81

4.4.3 Cluster composition analysis with two-way ANOVA £eST....ccccvivervvnenenererreneneeennnes 84
4.5 Discussion and CONCIUSIONS ..c.uvviviiiiiiniiniiiiiieis it sresssasssssesens 87

Summary of the doCtoral tRESIS .......eeeiieeveeeiieeeteecreee ettt rnee e eessree s e e seneesessneessssannes

Supplementary MaAtErialS...... oo ittt ettt et et ettt s e ee e s e e ar e e e e s aee e s e aeeeas






Abstract

The development of single-cell technologies like mass cytometry allowed for an in-
depth understanding of cellular processes and the discovery of new cell subpopulations and
their roles in the organism. The knowledge can help invent new therapies, drugs, and disease
prevention methods. Mass cytometry enables the simultaneous measurement of dozens of
markers used for cell identification, resulting in a matrix of expression values for each cell
and feature. However, the high dimensionality of single-cell datasets makes the analysis

a challenge.

Tuberculosis, an infectious disease caused by the bacteria Mycobacterium
Tuberculosis, kills millions of people every year around the globe. The medications are
expensive, especially when the germs resist one or more primary drugs. The outbreak of the
COVID-19 pandemic has led to the loss of recent years' progress in combating the spread of
Tuberculosis. Scientists are trying to reduce the occurrence of newly diagnosed cases to
a minimum by working on new therapies and drugs using, among others, mass cytometry

technology.

The dissertation thesis focuses on the analysis of high-dimensional mass cytometry
datasets. Based on the publically available ones, the proposed analysis pipeline tries to solve
problems occurring with the existing methods. The implemented algorithms are used to
process the Tuberculosis dataset provided by partners from Stellenbosch University, RPA.
The analysis includes a new technique that is fully automated and reproducible for pre-gating
mass cytometry events. In addition, different methods for batch effect correction are
compared in terms of removing the technical variance and influencing the cell-type
identification results. The proposed machine learning technique of cell-type identification
considers the existence of heterogeneity of cell groups during model evaluation which is
a novel approach. Furthermore, introducing the expanded feature space and two-step

clustering technique allows for obtaining well-defined and separated clusters.

The analyzes carried out indicate the potential of the introduced methods in the

identification of cell types and the appropriate verification of their results.






Streszczenie

Rozwoj technologii badajacych pojedyncze komarki, jak cytometria masowa, pozwolit
na dogtebne zrozumienie procesow komadrkowych i odkrycie nowych subpopulacji oraz ich roli
w organizmie. Wiedza ta ma szanse przyczynic¢ sie do rozwoju nowych terapii, lekdw i metod
zapobiegania roznym chorobom. Cytometria masowa umozliwia jednoczesny pomiar
dziesigtek markerow wykorzystywanych do identyfikacji typow komorek czego wynikiem jest
macierz zawierajgca wartosci ekspresji dla kazdej komorki i markera. Jednakze wysoka

wymiarowo$¢ danych sprawia, Ze ich analiza jest wyzwaniem.

Gruzlica, czyli infekcja spowodowana przez bakterie Mycobacterium Tuberculosis,
kazdego roku zabija miliony ludzi na Swiecie. Leczenie jest drogie, zwtaszcza gdy bakterie
uodpornig sie na jeden lub wiecej gtownych lekéw. Wybuch pandemii COVID-19 doprowadzit do
regresji w postepach ostatnich lat w powstrzymywaniu roznoszenia sie gruzlicy. Naukowcy
probujg zmniejszy¢ wystepowanie nowo zdiagnozowanych przypadkow do minimalnego
poziomu poprzez prace nad nowymi terapiami i lekami, wykorzystujac, miedzy innymi,

cytometrie masowa.

Rozprawa doktorska skupia sie na analizie wysokowymiarowych danych z cytometrii
masowej. Publicznie dostepne zbiory danych postuzyty do zaproponowania schematu analizy,
ktory rozwigzuje problemy wystepujgce przy istniejacych rozwigzaniach. Zaimplementowane
metody zostaly wykorzystane do przetworzenia zbioru danych z badan nad gruzlica,
zapewnionego przez partneréw naukowych z Stellenbosch University, RPA. Analiza obejmuje
nowg, W petni automatyczng metode do wstepnego bramkowania danych z cytometrii
masowej. Dodatkowo, istniejgce rozwigzania do korekty efektu paczki zostaty poréwnane pod
wzgledem usuwania technicznej wariancji i wptywu na koncowe wyniki identyfikacji
subpopulacji. Zaproponowana technika do identyfikacji typow komdrek bierze pod uwage
istnienie heterogeniczno$ci grup komorek podczas ewaluacji modelu, co jest podejsciem
zupetnie nowym. Wprowadzenie rozszerzonej przestrzeni cech i dwukrokowej techniki

klasteryzacji pozwala uzyskac dobrze zdefiniowane i spojne populacje.

Przeprowadzone analizy wskazujg na potencjat wprowadzonych metod w identyfikacji

typow komorek i odpowiedniej weryfikacji ich wynikow.






1 Introduction to the mass cytometry data analysis

1.1 Motivation

With the increasing popularity and development of new single-cell technologies and
computational methods over recent years, it becomes possible to investigate the
heterogeneity of tissues and cell populations that may help understand better the
mechanisms leading to various diseases. The knowledge about the cell state, its dynamics,
and regulatory mechanisms is valuable during the invention of new treatments and the
improvement of the existing ones. Despite the wealth of information provided by high-
throughput technologies, analyzing the data is challenging [1]. The main characteristic
of single-cell datasets is big dimensionality that usually needs high-performance computing
clusters and adjusted algorithms. They are often compared to the reference proposed by
experts to evaluate the analysis results, but the annotations are manual and, therefore,
biased. Moreover, because many biological functions and compositions of cells are not yet
understood, there is a lack of consensus about rare cell subpopulations and their natural

meaning, especially in further subdivisions [1]-[3].

Tuberculosis, as one of the leading causes of death worldwide, is still a challenge and
a health security threat. Studies involving Tuberculosis patients' cells may help develop new
treatments and prevention methods. The scientific partners to the doctoral thesis provided
a high-dimensional mass cytometry dataset involving three patient groups and over ten min
cells. Such an extensive dataset makes the analysis difficult, even using the best and state-

of-the-art methods for similar problems.

Before identifying cell populations, which is the main interest in single-cell mass
cytometry data analysis, the data must be appropriately preprocessed. Data acquisition from
laboratory samples carries a lot of artifacts and unwanted records. The process of data
cleaning is usually performed manually, therefore, is prone to human error. Additionally,
preparing and processing samples without introducing technical variance to the data
requires well-planned experiments and much effort; still, success is not guaranteed. The

limited correction methods for the artificially introduced variance in mass cytometry datasets
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were imperfect for a long time. Recently some new techniques were proposed with different
requirements and conditions related to their use. However, it is unclear which of these
methods will be the best and whether the kind of correction impacts the further analysis

results.

Finally, the cell population identification task lacks the ability to discover rare cell
types (composed of less than 1% of the dataset cells). The existing solutions often depend on
the manual experts’ annotations to which the algorithms are compared. The knowledge about
the heterogeneity of cell types is rarely considered when evaluating the model's performance.
Together with the uncovered understanding of the biological functions and importance
of rare cell populations, the results are considered to be worse if they do not match the
known cell labels. It leads to underrated solutions that, in fact, capture the natural

heterogeneity of samples.

From a technical point of view, cell-type identification is an unsupervised task that
engages clustering techniques in searching for patterns and relationships within the data.
The main challenge in clustering methods is determining the optimal number of clusters and
scalability to big datasets. The best solution would be data-driven without the need for tuning
too many parameters and specifying the number of groups. Also, the algorithm should work

for high-dimensional datasets in a reasonable time.

Since our team has a successful experience with similar studies, we think we can

significantly contribute to solving the abovementioned problems.

1.2 Aim of the work

The main aim of the work was to propose a solution for the problem of clustering
high-dimensional datasets containing small populations of observations. The proposed
algorithm should be able to process datasets containing millions of cells and dozens
of markers with high sensitivity to rare cell types (small subpopulations). The method should
also consider the heterogeneity of biological data and potential problems resulting from the

sample preparation in a laboratory. Therefore, the subordinate goal of the doctoral thesis was
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to examine the data preprocessing steps dedicated to mass cytometry data and propose

improvements in the process.

The main focus of the data processing section was the pre-gating step and the
correction of the technical variance introduced to the samples. The pre-gating is a primary
data-cleaning step lacking accuracy and reproducibility, which may affect the cell-type
identification process. Therefore it was decided to propose a new and fully-automated
method. The batch effect (the technical variance) correction methods are compared in the
doctoral dissertation to indicate the most suitable technique and the influence of the

correction on the clustering results.

The pipeline is prepared using publically available high-dimensional datasets in order

to process Tuberculosis samples provided by the partners.
During the doctoral dissertation, the following theses were formulated:

1) The unsupervised machine learning methods allow data-driven identification of cell
subpopulations leading to a better description of the cell-type heterogeneity.

2) Transformation of data feature space into an expanded representation using
Gaussian Mixture Modelling allows for better separation and definition of the
identified cell populations.

3) A two-step clustering approach with local feature space optimization enables the

identification of rare cell populations.

1.3 Chapter contents

The doctoral thesis is organized into four main parts: an introduction to the mass
cytometry data analysis explaining the basic terms, data acquisition, and preprocessing

steps, and three specific topics that were the subject of detailed studies.

The first chapter concerns the implementation of an automatic solution for the mass
cytometry pre-gating step. The second chapter describes the statistical analysis of batch

effect removal methods and their influence on clustering results. The last chapter refers
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to the main goal of the thesis - cell subtypes identification. The third problem was the most
examined, occupying most of the doctoral dissertation. The last section includes the results

for the Tuberculosis dataset the scientific partners provided.

Each topic is described in detail and includes a brief introduction to the problem,
a literature review, a description of the datasets used, a results section, and a discussion

section with conclusions. The doctoral thesis is summarized at the end in a few sentences.

1.4 Background

1.4.1 Tuberculosis

Tuberculosis (TB) is caused by a bacteria called Mycobacterium Tuberculosis, that in
1882, when Dr. Koch discovered it, killed every seventh person in America and Europe [4].
Today, Tuberculosis is one of the leading causes of death and illness worldwide. Only in 2021,
the disease killed over 1.6 million people. The bacteria is spread through the air, making
Tuberculosis the second most infectious killer after COVID-19. In 2021 an estimated
10.6 million people fell ill with TB. The disease is present in each country but, when

appropriately treated, is curable [5].

Untreated Tuberculosis reaches a death rate of about 50%, but with currently
recommended treatment, about 85% of people with Tuberculosis can be cured. The
treatment lasts 6 to 12 months and must be strictly followed to prevent the disease's

recurrence and bacteria resistance to the drugs.

Not everyone exposed to Mycobacterium Tuberculosis will develop the disease. There
is also a latent TB infection when the germs are in the organism but are inactive. Such
a person does not have TB symptoms and cannot spread the bacteria to others. However, he
can develop the disease in the future. Therefore, it is essential to implement preventive
treatment. In addition, certain factors increase the likelihood of developing TB, like diabetes,
HIV infection, poverty, and smoking. The typical symptoms of Tuberculosis are weakness,

cough (also with blood), weight loss, chest pain, fever, and night sweats[5].



The drugs for TB are expensive, especially if the bacteria are resistant to the most
effective first-line drugs and sometimes even the second-line ones. The multidrug-resistant
TB is a public health crisis; in such cases, the medications are limited, expensive, toxic, and

require extensive chemotherapy [4].

Scientists from around the globe are involved in research into therapies, drugs, and
ways to prevent the spread of Tuberculosis, but their studies are costly. The studies involve
the examination of human cell populations in TB patients by applying the techniques of data
science and bioinformatics. A thorough understanding of how infection works, cellular

processes, and changes in the body can lead to better ways of dealing with the disease.

1.4.2 Mass cytometry (CyTOF) technology

One of the single-cell technologies is Mass Cytometry by Time-of-Flight (CyTOF). Mass
cytometry is an alternative to the older version of the technique, flow cytometry.
It overcomes most flow cytometry limitations, like spectra overlap [6], since it uses rare
stable isotopes instead of fluorophores to label the antibodies to identify cell types. However,
using isotopes also increased dimensionality - from tens to dozens of markers measured

simultaneously.

More parameters and millions of measured cells demand higher computational
resources and careful analysis. Additionally, because of the difference in technology used for
detection and quantification, that is, inductively-coupled plasma instead of photomultiplier
tubes, the prepared cells are buried in contrast to flow cytometry where the cells may be

sorted and further processed after the signal is recorded.

1.4.3 Sample preparation

Preparing samples for CyTOF involves several steps, but their order may differ
depending on the assay type. The first step is the choice of probes (usual antibodies) that will
bind and identify specific cell types of interest. The next step is panel design, in which the
probes are matched with isotopes. The staining stage allows the conjugation of the probes
to ions covalently attached to a metal-chelating polymer. Washing is made multiple times

at each step to remove unbound reagents and avoid contamination. Next, each sample cell



is covalently stained with a unique combination of barcoding isotopes (e.g., Palladium).
The steps allow for running all samples together on the CyTOF, reducing technical variation
that may be introduced to the data. After washing, the cells are resuspended in MilliQ

containing calibration beads [2], [7].

1.4.4 Mass cytometer

Seven steps of data acquisition from a mass cytometer can be distinguished (Figure
1.1.). The prepared samples with calibration beads are introduced to the mass cytometer,
where the nebulizer separates the cells into tiny, single droplets. Each droplet is evaporated
and buried at the inductively coupled plasma (ICP) torch at approximately 7,000 Kelvin, which
results in the ionization of the cell's metals. The cell is converted into a cloud of ions, but not
all of them are of analytical interest. The high-pass ion optic allows filtering out unwanted
ions (negatively charged, neutral elements, and positively charged with too small mass). The
remaining ions are introduced to the Time-of-flight (TOF) chamber, where they travel with the
speed appropriate to their masses - smaller ions travel faster, and heavier ions travel slower.
When the ions hit the detector, the signal is recorded as a digitized waveform that is further
converted into ion counts. The integrated information for each cell is stored in Flow
Cytometry Standard (FCS) file format [2]. Because each sample of cells also contains
calibration beads, each observation stored in the file (each row) is called an “event” (cell

or bead or contamination).
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Figure 1.1. Mass cytometer workflow.

1) The cells are labeled with antibodies stained with stable isotopes of rare metals and are separated in the
nebulizer. 2) ICP evaporates and ionizes the cells. 3) Resulting cloud of ions is filtered in the high-pass ion optic.
4)Remaining ions enter the time-of-flight detector, where they are separated based on their masses. 5) Each ion
hits the detector, and the signal is recorded and integrated for each cell. 6) The information is stored in an FCS
file. 7) FCS file is analyzed.

(Source: “Helios, a CyTOF system” by Fluidigm, https://www.fredhutch.org/content/dam/www/shared-
resources/fc-cytof/CyTOF-Helios-User-Guide.pdf).

1.45 FCS format

Measurements obtained from the mass cytometer are stored in the Flow Cytometry
Standard (FCS) file format (Figure 1.2.). The format is a binary data file standard containing
the ion count matrix and metadata like experiment information, used markers (antibodies)
names, and corresponding isotopes. Usually, for each sample, a separate FCS file is created

after the debarcoding step (see Section 1.4.7. Data preprocessing)[2].
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Figure 1.2. The process of storing ion count information in an FCS file.

(Source: [8]).

1.4.6  Analysis pipeline for mass cytometry data
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1.4.7 Data preprocessing

Before any exploratory analysis, the mass cytometry data must be preprocessed to
remove the errors and artifacts present after sample preparation in the laboratory. Another
critical issue is that the investigation should be performed on single, intact, and live cells.
Therefore, dublets and dead cells should be filtered out. For mass cytometry data
preprocessing, several different steps can be identified: bead normalization, counts

transformation, compensation, sample debarcoding, pre-gating, and batch effect correction.

Bead normalization uses the inserted beads [7] during sample preparation to correct
the signal intensity decay and limit the impact of technical variation on the analysis results.
The polystyrene beads are used as a reference for the normalization step since the
composition of isotopes is known. The two most popular methods can be used for this

purpose: the Fluidigm method or MATLAB bead normalization (Figure 1.4.)[9].
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Figure 1.4. Intensity correction with the calibration beads using MATLAB normalizer.
(Source:[9]).

The FCS files contain Di (dual instrument) or Dd (dual data) counts (raw integers
or non-zero integers randomized between ranges [x-1, x]. One cell type does not express all
of the markers used. Therefore there is a great number of zero values. The distribution of the
markers usually is strongly skewed. For better visualization, the ion counts are transformed

with ArcSinh or logicle functions (Figure 1.5.). However, the ArcSinh transformation is more
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often used, with a co-factor of 5 for the mass cytometry data (a co-factor of 150 is intended

for flow cytometry)[2].

Logicle transformation ArcSinh transformation
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-5 0 5 10 -100 -50 0 50 100

|

untransformed counts untransformed counts

Figure 1.5. Transformation functions for mass cytometry data.
(Source: "Data scientist's primer to analysis of mass cytometry data,” The Single Cells Omics Group,

https://biosurf.org/cytof_data_scientist.html, access: February 2023)

Compensation, if applicable, corrects so-called “spillover” between the channels,
which is usually the problem in flow cytometry cases. Still, studies show that it may also occur

in mass cytometry[2].

Different palladium isotope combinations attached to the cells during sample
preparation allow running all samples through a mass cytometer simultaneously, decreasing
the measurements' technical variation and batch effect. However, during the analysis, it is
desirable to separate the events into different FCS files, one per sample (for example,
separate cells from other patients). The step is called debarcoding and requires identifying

events expressing the appropriate combination of the isotopes [2].

At the beginning of cytometry data analysis, the cell subtypes identification was made
manually with a procedure called gating [10], [11]. Some experienced analytics view the
channels pairwisely, and on each of the bi-axial plots, they outlined cells of interest,
simultaneously excluding dead cells and any doublets. Although it is possible to find cell
subtypes in flow cytometry this way, because of the small number of markers, it would be

very time-consuming in mass cytometry. Therefore, instead of identifying the subgroups,
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in mass cytometry data, gating is used only for filtering out debris, dead cells, and doublets
(cell-cell, cell-bead, and bead-bead doublets) and is called pre-gating [2], [10]. More about

pre-gating can be found in Chapter 2.

The last step of data preprocessing is batch effect correction. The batch effect is
a technical variation introduced to the data during experimenting, and it makes it challenging
to find the natural biological relations [2], [12] [13]. Some tools are for determining the
presence of batch effect and removing it from the samples before analyzing. More about the

batch effect in mass cytometry data can be found in Chapter 3.

1.4.8 Dimensionality reduction and sampling

Because of the high-dimensional nature of single-cell data, the analysis
is complicated and requires high computation resources, which are expensive and not always
available. One solution to overcome the problem is dimensionality reduction techniques like
PCA, t-SNE [14] or UMAP [15]. These techniques allow the application of clustering methods
for cell types identification as well as the visualization of the dataset in two/three-
dimensional spaces by creating an embedding - low-dimensional representation of high-
dimensional information. In other words, these techniques modify the number and
presentation of the features (markers, matrix columns). However, the created embedding is
less accurate than the original feature space, which may influence the sensitivity of finding
rare cell subpopulations. PCA is a linear method that represents linear relationships. Still,
it has limitations in terms of variance explained in the first two-three dimensions (for mass
cytometry, the first two components capture around 40-50% of variance) that are
insufficient to visualize the clusters on two-dimensional plots [10]. In opposition to this,
t-SNE and UMAP, as non-linear methods with different approaches for measuring distances,
better reflect the relationships between points in 2D space than PCA. However, UMAP
projection better reflects the global structure of data than t-SNE, meaning that two clusters
of similar points will be placed closer to each other in the UMAP embedding. Still, it is not

guaranteed in t-SNE embedding [10], [14], [15].

In mass cytometry, the number of markers (features) is usually around 25-60, which

is not as problematic as in, for example, RNA-Seq data, where the number is in thousands.
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On the other hand, the number of observations (cells) may reach several million, making
it impossible to calculate distances between each pair of cells. Therefore, most of the
proposed solutions do not work for so many observations (or have a too long computation
time). To overcome the problem, some of them apply downsampling. Sampling (or
downsampling) reduces the number of observations, which may cause issues in the case of
millions of cells where rare subpopulations may be omitted or less represented in the
sampled subspace. As a result, they might be overlooked and never detected. Due to this,

in the doctoral dissertation, most of the algorithms do not use sampling if not necessary.

1.4.9 Further analysis

Which major processing steps will be used in mass cytometry analysis depends on the
problem and dataset. The clean dataset can be used for further investigation, like cell-type
identification or differential abundance. The doctoral thesis focuses on finding cell
populations and all the necessary steps that have to be taken in order to prepare the data for

clustering.

1.4.10 Clustering for the cell-type identification task

Cluster analysis is a machine learning technique that tries to find structures in data in
an unsupervised way - without annotations provided by the user. Usually, the task is
unsupervised if the labels are unavailable and hard to create. Clustering (or grouping) is more
complicated than classification tasks, where the model learns patterns in data with prior
knowledge about the expected outcome [16]. The clustering algorithm defines a set of rules
to group observations with similar characteristics. The perfect result is when each cluster
contains similar observations and is dissimilar to others [17], which means the groups are
homogeneous. Several families of grouping techniques can be distinguished: hierarchical,

partitional, probabilistic, and density-based [16].

The most popular and fundamental, but influential in its simplicity, partitional
clustering algorithm is k-Means. The idea behind k-Means is that each cluster can be
represented by a centroid, a point in the N-dimensional feature space created from the mean
feature values of the cluster members. The algorithm assigns each point in space to the

closest, based on Euclidean distance, initial centroids updated at each iteration with the help
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of an objective function. The model training stops when there is no significant improvement
in the position of the centroids. However, the algorithm has disadvantages - it requires the

user to specify the number of groups that must be found.

Moreover, the created clusters have regular shapes that may not suit the data
structure and lead to erroneous results. Finally, and most importantly, despite being one of
the fastest algorithms compared to others, it does not scale well to substantial volume
datasets since it iterates over all data points. Therefore, generating results may take a lot of

time [16].

The issue of the circular clusters can be fixed with Gaussian Mixture Model (GMM),
which assumes that the data points are Gaussian distributed. The two parameters: mean and
standard deviation values, determine the shape of the groups. GMM, as the name indicates,
contains from two to multiple Gaussians (components) in one or N-dimensional space. The
observations are assigned to the components based on probability - the closer the point is to
the particular Gaussian center, the more likely it is to belong to that cluster. The randomly
initialized parameters are updated with an optimization algorithm called Expectation-
Maximization (EM). However, GMM has more parameters than k-Means that have to be tuned.
Moreover, searching for the optimal number of components and their parameters for a high-

dimensional dataset may be time-consuming [18].

Another extensively used and simple technique is agglomerative clustering. In this
bottom-up approach, each data point is considered a single cluster. The clusters are merged
together based on the closest distance until one cluster containing all the data is formed [18].
The technique may also work as a top-bottom version, i.e., hierarchical clustering, that starts
treating all points as one cluster and successively divides them into smaller ones. The results
can be presented as a dendrogram - a tree diagram following the clustering steps. The
algorithms do not need the number of final clusters since it can be chosen as the best-split
step. The methods are suitable when the data is hierarchical; however, they suffer from low

efficiency.

Other types of popular algorithms are, among others, DBSCAN, Affinity Propagation,

MeanShift, and BIRCH and their modifications. In addition, traditional machine learning
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techniques are often used as a base algorithm for the more complex and advanced methods
[16],[18].

1.5 Materials

In the doctoral thesis, several mass cytometry datasets were used. The Tuberculosis
dataset was obtained from scientific partners from Stellenbosch University, RPA, and four
other datasets were publically available. Depending on the provided information by each
dataset, they were used for developing different algorithms. The public datasets are

described in detail in the doctoral thesis topics where they were used.

1.5.1  Tuberculosis dataset from Stellenbosch University

The dataset consisted of cells obtained from 21 patients belonging to three groups:
drug-resistant Tuberculosis (TB), Other Lung Diseases (OLD), and Healthy Donors (HD). Other
Lung Diseases included subjects with diseases like HIV, Hilar Lymphadenitis, Bronchiectasis,
SIADH, Asthma, and cancer and were recruited from the Pulmonology Division of Tygerberg
Academic Hospital. Healthy subjects were recruited from regions with high TB infection
pressure. The cells came from bronchoalveolar lavage fluid (BALF) obtained through
bronchoscopy in Tygerberg Hospital (TBH). Samples were prepared in three simulation
conditions: unstimulated (UNS), stimulated with Tuberculin purified protein derivative (PPD)
and with Phytohaemagglutinin (PHA). The dataset was measured in seven batches with the
CyTOF2 instrument in the SATVI institution (South African Tuberculosis Vaccine Initiative) at
the University of Cape Town [19]. The details of the gathered samples can be found in Table

1.1. The experts manually gated the dataset to remove debris, dead cells, and doublets.

Table 1.1. Details about the Tuberculosis dataset from Stellenbosch University.

Simulation conditions

Group of  No. of Smoking status
Agerange  Sex(M/F) UNS PPD  PHA
patients patients (Y/N)
B 7 53-53 6/1 7/0 7 7 2
OLD 7 27-78 1/6 34 7 7 2
HD 7 20-69 2/5 b/2 7 7 2




In total, there were 10,065,441 cells. The cells were stained with an antibody panel
containing 32 targets. Nineteen of the markers were extracellular, describing phenotypes of
the cells, and 13 were intracellular, telling the cell's functions. The panel is described

in Supplementary Table 6.1.

1.5.2 Public datasets

Four high-dimensional publically available datasets were used during the doctoral
studies. Three of the datasets were used for the pre-gating approach development and one

for the cell-type identification process. Table 1.2. summarizes the datasets.

Table 1.2. Summary of the public datasets used in the doctoral thesis.

Purpose in
No. of No. of
Dataset Annotated Description the doctoral
events markers

thesis
Leipold and 21 peripheral
Maecker (2015) 5,250,000 33 No mononuclear cell Pre-gating
[20] (PBMC)samples
24 peripheral
mononuclear cell
(PBMC) samples
Trussart et al.
8,817,845 31 No from patients with Pre-gating
(2020)[121]
chronic lymphocytic
leukemia (CLL) and
healthy donors
Simoni et al. Human innate
2,523,240 38 No Pre-gating
(2017)[21] lymphoid cells (ILC)
Ten mouse samples
Samusik et al. Cell-type
514,386 38 Yes with annotations for
(2016)[22] identification
24 cell types
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1.6  UMAP and mISO plots for visualization of high-dimensional data

Because of the high dimensionality of the datasets, it is a challenge to visualize the
results of clustering or other characteristics in an easy-to-interpret way. Therefore, the
UMAP dimensionality reduction technique was used to create a low-dimensional
representation for visualization purposes. UMAP in each case was created using the Python
package ‘umap-learn’, with the following parameters: n_neighbors=30, min_dist=0.2,

metric="euclidean’ or ‘hamming’ (for binary data).

However, indicating clusters with different colors on the UMAP plot when the number
of observations (cells) is over a million and they overlap in the embedding often results in
meaningless visualization. To overcome the problem, a visualization technique called median
isoline (mISQO) plot was proposed [19], which can be superimposed on UMAP plots. The density
of points is determined by isolines using parameter m (defaults to 0.5), which indicates the
density level above which the data will be shown. mISO plot presents the regions of the

highest concentration within a group of points, for example, clusters or samples (Figure 1.6.).
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Figure 1.6. Exemplary of mISO plots - proposition of high dimensionality data visualization method.

A) The scatterplot of a dataset in the UMAP space. Green points represent observations belonging to one cluster,
and gray points are other observations in the dataset. B) mISO plot with m parameter set to 0.25 showing a
region in the UMAP space above 25% quartile isoline. C) mISO plot showing region above 50% quartile isoline. D)
mISO plot showing region above 75% quartile isoline. {Source: [19]).
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2 Pre-gating of mass cytometry data

2.1 Introduction to pre-gating

In mass cytometry, pre-gating allows for the removal of debris, dead cells, and double
events. Firstly, pre-gating was done manually, making the process ineffective and prone to
errors. Also, the results were non-reproducible. Recently, with more automated solutions, the
user still has to set some parameters that may influence the results, like a gate shape [23].
Moreover, the proposed solutions are not appropriate for high-dimensional datasets with
millions of events. Therefore, as a part of the doctoral thesis, we proposed a new, fully-

automated solution to this problem. The analysis details and results were published in [24].

Some ready-to-use gating methods exist, like OpenCyto [25] or FlowCal [26].
However, they were developed primarily for cell subtypes identification in flow cytometry
data, and they do not perform well on mass cytometry data [27]. On the other hand,
GateFinder [28] Cluster-To-Gate [29] and HyperGate [30] are mass cytometry methods
intended for gating hierarchy generation given target cells to provide a better explanation of
results for non-technical experts like biologists. Another problem with the existing algorithms

is that they often use downsampling, which may lead to the omission of rare cell populations.

In [24], we proposed a method for mass cytometry data pre-gating that is based
on the Gaussian Mixture Model and clustering of its components. Because the technique
is automated, the results are reproducible. Moreover, it is independent of the sample size, so

appropriate for high-dimensional datasets.

2.2 Materials and methods

Five different markers are used in the pre-gating of mass cytometry data: DNAIT
(isotope Ir191Di), DNA2 (Ir193Di), Bead (Ce140Di), Dead (In115Di), and Event length. The event
length is a duration of a typical cell ion cloud measured in 200-300 microseconds [31]. With

the markers, four two-dimensional visualizations can be created:

e DNAT-DNA2 - to distinguish cellular events from debris and cell-cell doublets,
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e Bead-DNAT - to identify polystyrene beads added to the samples for normalization
purposes,

e Dead-DNAT-to identify dead cells,

e Eventlength-DNAT - to identify doublets (cell-cell, cell-bead) and beads.

However, not always all of the markers are available. Three publically available
datasets (Table 1.2.) were used for the experiments since the Tuberculosis dataset from
Stellenbosch University partners was received after the manual pre-gating by the experts.
The number of available pre-gating markers varied between the datasets and is summarized
in Table 2.1. Because the dataset from Leipold and Maecker (2015) had all the required pre-
gating markers (complete information), it was used as a training set - the proposed
algorithms were developed based on the dataset. The remaining two datasets were used to
validate the implemented algorithms. A visualization of the bi-axial plots for each of the data
is presented in Figure 2.1. The datasets and calibration beads were normalized and

transformed with the ArcSinh function.

Table 2.1. Details on the dataset used for the implementation of the pre-gating method.
(Source: [24])

Dataset Pre-gating markers Bi-axial plots (gates)

DNAT, DNA2, Bead, Dead, DNA1-DNA2, Bead-DNAT1,

Leipold and Maecker (2015)
Event length Dead-DNAT1, Event length-DNAT

Trussart et al. (2020) DNAT, DNAZ2, Event length  DNA1-DNAZ, Event length-DNAT

DNAT1, DNA2, Dead, DNAT-DNAZ2, Dead-DNA],
Simoni et al. (2017)
Event length Event length-DNAT
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Figure 2.1. Bi-axial plots were created with pre-gating markers for filtration purposes.

The observations are colored by density estimate, where yellow indicates regions of the highest concentration.
The first column shows DNAT-DNA2 channels bi-axial plot; the second column - Bead-DNAT; the third column
- Dead-DNA1 and the last column - Event_length-DNA1. A) Leipold and Maecker dataset. B) Trussart et al.
dataset. C) Simoni et al. dataset. (Source: [24]).

The proposed method is fully automated. Firstly, two-dimensional Gaussian Mixture
Model (GMM) decomposition [32] was performed on each bi-axial plot, and the resulting
components were clustered. The Expectation-Maximization algorithm and Bayes Factor [33]
as the stopping criterion found the optimal number of components. Usually, bigger
aggregates of cells are described as a mixture of Gaussian components. Therefore, they lie
close to each other in the feature space. Grouping the elements allows for finding the
aggregates and creating final clusters of events. The next step calculates a conditional
probability for each observation to assign it to the correct group. The filtration of unwanted

events is based on the final clusters.

2.2.1 Clustering algorithm

Components resulting from 2D GMM can be visualized as rotated ellipses in a 2D space
where the center of each ellipse is the mean value represented as a point (x,y), and

a covariance matrix determines the shape. Because of the high number of observations, the
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densest areas on the bi-axial plots result in many components describing one aggregate of
cells that should form one cluster. These aggregates are the most important for pre-gating

since they contain live, intact, single cells.

The proposed solution searches for so-called big seeds - the component mean
values. The component proportions are sorted in descending order and added successively

until 90% is reached. The rest of the components are called small seeds.

vector length
d = Lyector length] (2.1)
Js2pooled
a;s12+azsy?
s?pooled = 1 —22 (2.2)
al+a2

Between all the seeds, a distance measure is calculated. The distance measure is an
effect size (2.1) defined as the length of a vector between two seeds divided by their pooled
variance (2.2), where s?, s;* are new variances determined by the intersection of the ellipses
with the line (vector) connecting the seeds. And on and o, are components’ proportions. Using
1D GMM on the distribution of the distances, the lowest cut-off threshold was determined as
an intersection of two first conditional probability lines. The point defines the maximum
distance needed to merge two big seeds or two small into one cluster. In the opposite case,
the seed creates a new cluster. Then, the rest of the small seeds are joined to the created

clusters.

The result of the above step is a smaller number of groups of events. The conditional
probability lines determine the assignment of each event to the appropriate cluster - the

event belongs to the cluster for which the probability is the highest.

2.2.2 Pre-gating filtration criterion

If an event belongs to at least one cluster that contains less than 15% of data
is discarded from the analysis. The criterion was established after examining the percentage

of data in the training set clusters knowing which clusters probably contain unwanted events.
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2.5 Results

The 2D GMM was fitted to each pair of markers, constituting a 2D plot used for pre-
gating, and the resulting components were aggregated into final clusters. The number of
components varied between 13 and 15, and they were joined to create three to five clusters
depending on the feature space. A distance threshold was found for each pair of the pre-
gating markers based on the 1D GMM decomposition of the calculated effect sizes. The details
of the resulting number of components and clusters and distance thresholds are summarised
in Table 2.2.

Table 2.2. Pre-gating results for Leipold and Maecker's dataset.
{Source:[24])

Pre-gating plot No. of Distance No. of
components threshold clusters
DNAT-DNA2 15 4.82 3
Bead-DNAI1 13 5.64 5
Dead-DNAI1 15 6.97 4
Event length-DNAT1 14 5.49 4

Each event was assigned to the appropriate cluster by the highest conditional
probability. If an event was assigned to at least one cluster containing less than 15%
of observations, it was discarded from the analysis. The whole process constitutes the
proposed automatic pre-gating approach. Results for the training dataset (Leipold and
Maecker) are presented in Figure 2.2. After the automatic pre-gating, the observations
decreased from 5,250,000 to 4,170,565 live, intact, and single cells ready to be analyzed (red

dots in Figure 2.2., third column).
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Figure 2.2. Visualization of the results for Leipold and Maecker's dataset.

The first column shows the resulting 20 GMM components; the second column shows observations assigned
to the appropriate cluster based on the highest conditional probability; the third column - the final result of
pre-gating, red points indicating live, intact, single cells that remain in the further analysis. A) DNAT-DNA2
markers with 15 components organized into three clusters. B) Bead-DNAT markers with 13 components organized
into five clusters. C) Dead-DNAT markers with 15 components organized into four clusters. D) Event_length-DNA1
markers with 14 components organized in four clusters. (Source: [24]).

The training set's thresholds were applied to the validation datasets: Trussart et al.
and Simoni et al. to check the generalization abilities. The results are presented in Figure 2.3.

Details on the number of filtered events are contained in Table 2.3.
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Table 2.3. Pre-gating results. The number of removed and remaining events for each dataset.
{Source:[24])

No. of
No. of events
Dataset No. of events ) removed
after pre-gating

events
Ligg'cdkz'r‘d 5,250,000 4,170,565 1,079,435
Trussart et al. 8,817,845 8,059,990 757,855
Simoni et al. 2,523,240 1,666,255 856,985
AT ) e
a I “\iiuw'”
2 2 | -
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Figure 2.3. Pre-gating results for validation datasets.
The pre-gating was conducted using available pre-gating markers. A) Trussart's dataset. B) Simoni's dataset.
(Source: [24]).

2.4 Discussion and conclusions

In the study, a new and fully automated method for pre-gating for mass cytometry
was proposed that works for high-dimensional datasets without downsampling, which may
lead to removing rare cell subpopulations. In the doctoral dissertation, a rare subpopulation is
considered a small group containing less than 1% of all dataset cells. The algorithm makes
the results reproducible, which is impossible for manual pre-gating. Moreover, all parameters
are data-driven. However, the algorithm may work incorrectly if the dataset contains more
debris than intact cells because it depends on the density of observations in the two-

dimensional space.
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Results for the training set are satisfactory - the proposed clustering algorithm
merged the GMM components into bigger aggregates based on the density of events.
It resulted in clusters with either a large or a small number of observations. This step enabled
defining the filtration criterion based on the percentage of the dataset contained in the
clusters. It is known where areas on the two-dimensional plots of markers have unwanted
events; for example, the DNAT-DNA2 plot (Figure 2.2.A) bottom-left corner indicates debris.
After applying the proposed approach, it can be observed that this region is included in one
cluster containing approximately 5% of the data points. These events are probably assigned
to other unwanted clusters on other bi-axial plots. In the same graph, the top-right corner
usually contains cell-cell doublets. Although there is no separate cluster for the area, those
events are removed (Figure 2.2.A) with the help of the other cluster assignments on different

pairs of markers’ space.

After examining the resulting clusters in each 2D feature space, the filtration criterion
was defined as a threshold of at least 15% of dataset observations that must be contained in
a cluster. Otherwise, the cluster of events is discarded. This threshold may be too high or too
low in some cases, but the results for validation datasets show that it was suitable for them

to get good results (Figure 2.3.).

It can be concluded that the filtration criterion removes too many observations from
Leipold and Maecker's dataset, more than needed to be removed. On the other hand, a lower
filtering threshold resulted in the inaccurate removal of known unwanted observations. Some
of the cell-cell doublets and debris were left in the dataset. As mentioned before, the
particular observation is discarded from the analysis if it belongs to at least one cluster that
contains less than 15% of the data. It will be investigated in future work if the condition
should be modified to observations that belong to at least two or more such clusters, which

could preserve more live, intact cells.

The implemented clustering method gives satisfactory results when dealing with
different data distributions in the two-dimensional space of pre-gating markers (Figure 2.2.).

Cluster shapes are other than those defined in [11] since the method is based on the density
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of points. This makes the gates more accurate as the reqular shapes may include more

events that should be removed.

The proposed approach does not require all five pre-gating markers, which is its
advantage since some of the markers may not always be available, like in the validation
datasets. For example, datasets from Trussart et al. and Simoni et al. have different markers
available, but the results are still promising. However, with the smaller number of bi-axial
plots, the number of conditions is also smaller, and the result may be less accurate - fewer

events may be discarded from the analysis (Table 2.3.).

The existing solution presented in [33] is also based on GMM. However, the method is
intended to identify cell subtypes in flow cytometry. The first step is finding dead cells with
channels for forward and sideward scatter light not present in mass cytometry data. Then
they cluster the data to find the populations of cells. The proposed approach in the doctoral
thesis aims to filter out unwanted events rather than find cell populations. It enables the data

clean-up without user intervention since all the parameters are data-driven.

One drawback of the presented method is the computation time for finding the
optimal number of GMM components with the Expectation Maximization algorithm when the
dataset reaches millions of events. It took approximately 12-48 hours, depending on the
dataset. This is a trade-off between computation time and the accuracy of the pre-gating by
discarding the possibility of using downsampling. The computation time should be optimized
in future work. The calculations were done using MATLAB 2020a on GeCONil servers (AMD

CPU 256 threads, 2.6G, 2TB RAM).

In summary, the proposed method's results are satisfactory for high-dimensional
data. The pre-gating approach provides complete automation and, therefore, reproduction of
the results. It can be generalized to other datasets that contain fewer pre-gating markers
removing unwanted observations from the analysis. The solution does not apply
downsampling, preventing the removal of rare cell subpopulations. However, it can be
extended with additional filtration criteria to make the results more reliable and optimized to

reduce the computation time.
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5 Batch effect correction analysis

3.1 Introduction

One of the critical steps in mass cytometry data analysis is batch effect correction
[2]. The batch effect is a technical variance introduced to the data, making it difficult to find
real biological relationships. Therefore, much effort is put into implementing methods that
effectively remove technological artifacts. The batch effect can result from experimental
design, but it also occurs between datasets acquired from different experiments
or technologies (like single-cell RNA-Seq). It is possible to merge data from different
experimental techniques to gain more in-depth knowledge about the biological problem, and

the batch effect makes it almost impossible [13].

A few methods for batch effect removal are dedicated to mass cytometry data, like
CytofBatchAdjust, CytoNorm, CytofRUV, iMUBAC, and cyCombine. The first one,
CytofBatchAdjust [34] requires technical replicates to be included in each run that works as a
reference to which the samples are adjusted without manual intervention. Similarly
to CytofBatch Adjust, CytoNorm [35] depends on an identical control sample to be included in
each batch to apply the correction between sets. The algorithm uses FlowSOM [36] to find
cell subpopulations. For each cluster, quantiles are computed to determine goal distributions
to which the original values are translated, and then samples are normalized to remove
technical variation. CytofRUV [12] is based on the RUV-IIl method that was dedicated
to technologies like TNA-Seq or microarrays. It requires so-called pseudoreplicates
to estimate the variation introduced to the data. iIMUBAC [37] uses only healthy (control)
samples for batch effect correction. Firstly, the dataset is downsampled to a fixed number of
observations per batch, and then the sets are corrected with Harmony [38] with the default
parameters. The most recent method, cyCombine [13] is based on ComBat [39], which was
initially implemented for batch effect reduction in microarrays to remove the batch effect
from cell clusters resulting after using a self-organizing map. The method allows the
integration of data from different batches, experiments, and also different experimental

techniques.
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The mentioned approaches also offer a lot of diagnostic plots and measurements that
indicate the presence of batch effect and the effectiveness of the applied correction.
Examples of such diagnostic measures are Earth Mover's Distance (EMD) which compares
batches on different types of plots, the comparison of EMD values before and after correction
[40], and the marker's distribution in each batch. Other examples are multidimensional
scaling plots (MDS) and visualizations of the batches in 2D space after dimensionality
reduction. However, the mentioned techniques, especially the last one, are not accurate

indicators of the batch effect when millions of cells are given.

To examine the effectiveness of batch effect correction methods for high-
dimensional data, they were decided to be applied to the subset of the Tuberculosis dataset
obtained from Stellenbosch University (Chapter 1, Section 1.5.1.). Since the data does not
contain technical nor biological replicates that are required by three of the mentioned
methods (CytofBatchAdjust, CytoNorm, CytofRUV), only two methods were compared:
iMUBAC and cyCombine. Because each process works differently, there is a chance that the
corrections change expression values significantly, which will affect cell population
identification, like the number of found cell types. Therefore, PARC [40] algorithm was used
to determine the influence of batch effect correcting methods on identified cell groups.
Furthermore, since iIMUBAC only uses healthy samples for correction, cyCombine was also

applied to the same subset of data.

The analysis and results were described in [19] and presented during the international

conference IWBBIO 2022, Gran Canaria, Spain.

3.2 Materials and methods

3.2.1 Dataset

Data used in the analysis is a subset of the Tuberculosis dataset from Stellenbosch
University, restricted only to the healthy samples of bronchoalveolar lavage cells (BALC). The
dataset was normalized using MATLAB Normalizer v0.3 software, and the samples were

manually pre-gated by experts to exclude debris, dead cells, and beads. The expression
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values were ArcSinh transformed with a co-factor of 5. The total number of cells belonging
to the healthy subjects was 4,145,712. Table 3.1. presents details about the used dataset
subset.

Table 3.1. Number of cells in each batch from the subset of the dataset obtained from Stellenbosch

University.
(Source: [19]).

Batch number Number of cells in the batch
Batch 1 761,230
Batch 2 598,492
Batch 3 205,958
Batch 4 329,228
Batch5 341,007
Batch 6 1,449,084
Batch 7 480,713
Total 4,145,712

3.2.2 Batch effect correction

The dataset was corrected with iIMUBAC using most of the parameters with default
values except for the parameter “maxN” which was set to 300,000 (larger than the default
value). This parameter is used for downsampling the dataset - a maximum of 300,000
observations were randomly selected from each batch for the batch effect correction. The
downsampling resulted in a total of 2,005,958 cells, approximately 50% of the data. For a fair
comparison, the same observations were applied to cyCombine correction even though the
method has no restrictions on the dimensionality of the dataset and the patient’s status.

cyCombine was also used with default parameters[19].

3.2.3 Cell subtypes identification after batch effect correction

After the batch effect correction, cell populations were identified with PARC [40]

algorithm with default parameters. The method was chosen because of its scalability,
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satisfactory results reported, and consistency with the experts’ knowledge and because the
method does not require specifying the prior number of clusters. PARC constructs a nearest-
neighbor graph with a hierarchical navigable small world, and based on the distribution of
weights, it prunes the graph’s edges. The Leiden algorithm is used to find communities that
create the cell populations. The algorithm works fast and accurately for high-dimensional

data, effectively finding rare cell subpopulations.

The clustering algorithm was applied to the expression values of 32 markers after the
batch correction, and the resulting assignments were transferred to the corresponding

uncorrected observations for comparison purposes [19].

3.2.4 Statistical comparison of batch effect correction methods

With expression values before and after the batch effect correction and cell
populations found by PARC, the effect of IMUBAC and cyCombine on clustering results was
examined for each marker with the ANOVA post-hoc () Tukey test. The expression values of
markers between clusters were compared using an effect size measure (3.1) where mA and
mB are mean values of given marker expression in clusters A and B; N,sis a pooled sample
size (3.2); Na and Ng are the numbers of observations belonging to clusters A and B; N is a total

number of cells; SSvinn is a sum of squares within k clusters.

_ mA-mB _ mA-mB __ mA-mB
dap = G, Nps  [SSwithin, *, ;=  [SSwithin (31
N-k Nps ps N-k
2
Nps = (52)
Np N

The result of the pairwise comparison was a set of dag values for each marker. Each
marker's global effect size measure was calculated as a median value from the collected
pairwise measurements. Therefore, for each technique (iMUBAC, cyCombine), 64 values in
total were obtained - 32 values of global effect size before the correction and 32 values after
the modification. The global effect sizes were then compared with the Wilcovon signed-rank
test with the assumption that after the correction, the clusters returned by PARC should be
better separated, therefore, have a higher heterogeneity of marker expression between
clusters than before the modification. For the test, a significance level of 5% was assumed.

With the p-value, a median shift of values was also provided.
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Additionally, centroids of clusters after IMUBAC and cyCmbine batch effect correction
were grouped with an agglomerative clustering algorithm with Spearman’s rank correction
coefficient as the distance metric. The goal was to find pairs of equivalent cell types in both
approaches. If the cluster's expression profile from one method matches the cluster's
expression profile from the second method - the two groups probably contain the same cell

population[19].

3.2.5 UMAP transformation

For the analysis, the Uniform Manifold Approximation and Projection (UMAP) [15]
method was used to visualize the results. As mentioned in Section 1.4.2.2, UMAP is one of the
dimensionality reduction techniques used mainly for projecting high-dimensional data on
two-dimensional space, making the results more interpretable. The study generated UMAP
embedding for samples after batch effect correction, and then the same transformation was
applied to raw data. This technique was tested on different data types and presented in [41].
The assumption was that each cell would move from its position (x; y;) in the UMAP space
before correction to the new place (xz, y2) after the correction, which is caused by the change
of expression values. Thanks to that, the correction effect can be observed. A simple
regression neural network consisting of three fully-connected layers was proposed to apply
the same UMAP transformation to new data points. Each layer's neurons were 100, 50, and 25.
ReLU was used as an activation function. The network maps the 32 markers’ expression
values into the learned UMAP embedding described by two values. The performance of the

network was evaluated with the coefficient of determination[19].

3.2.6 Technical details

The comparison was conducted with three programming environments: Python, R,
and MATLAB 2020a. The calculations were carried out using the GeCONil server (Intel Xeon
Gold 6226R CPU 64 threads, 2.9GHz, GPU: 3x NVIDIA Tesla V100-PCIE with 1x 16GB and 2x
32GB).
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3.3 Results

Using default parameters, the same subset of cells from the Tuberculosis dataset
provided by Stellenbosch University was applied to batch effect correction with iMUBAC and
cyCombine. The result of the batch effect correction was presented on mISO plots in the
UMAP space. The effect of iIMUBAC modification is visualized in Figure 3.1. It can be noticed
that the uncorrected samples are located in different regions on the mISO plot (Figure 3.1.A),
while the corrected samples partially overlap (Figure 3.1.B). The samples show the same
behavior before and after cyCombine correction (Figure 3.2.). Despite differences in the point
locations that result from separate UMAP model (the same parameters but the corrected
values differ), each sample occupies a different space before the correction (Figure 3.2.A)
and share the area with other samples after the modification (Figure 3.2.B). It can also be
observed that the overlapping is more significant and more regular for cyCombine than

iMUBAC correction.

iIMUBAC - uncorrected iMUBAC - corrected
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Figure 3.1. mISO plots before and after iMUBAC correction.

Each color indicates one sample (one batch) of data (A-B) or one cluster (C-D). A) Samples before batch effect
correction. B) Samples after batch effect correction. C) Visualization of clusters found by the PARC algorithm on
the raw data. D) Visualization of clusters found by the PARC algorithm on the dataset with corrected expression
values. (Source: [19]).
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The PARC clustering algorithm was supposed to find cell types in the dataset after
each correction. Then the assignments of observations to appropriate clusters were
transferred to observations before the modification (raw expressions). The results are also
presented on the mISO plots to expose the effect of correction on each cell population
placement in the UMAP space. After iMUBAC correction, 22 clusters were found (Figure 3.1.D)
that overlapped when transferred to data before correction (Figure 3.1.C). After cyCombine

correction, 18 groups were found (Figure 3.2.C-D) with a similar impression to iMUBAC but

weaker.
cyCombine - uncorrected cyCombine - corrected
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Figure 3.2. mISO plots before and after cyCombine correction.

Each color indicates one sample (one batch) of data (A-B) or one cluster (C-D). A) Samples before batch effect
correction. B) Samples after batch effect correction. C) Visualization of clusters found by the PARC algorithm on
the raw data. D) Visualization of clusters found by the PARC algorithm on the dataset with corrected expression
values. {Source: [19]).

The PARC's cluster centroids were subjected to agglomerative clustering and
presented as a dendrogram (Figure 3.3). The goal was to find similar clusters (containing
probably the same cell type) between the two approaches. As seen on the plot, most of the

discovered groups (14 exactly) from one experiment have a pair of similar cells in the other
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experiment. The pairs are indicated with the same color on the dendrogram and miISO plots

(Figure 3.3). Clusters that do not have a similar pair are presented in gray.
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Figure 3.3. Comparison of the PARC clustering results after batch effect correction.

Similar clusters between the experiments (iMUBAC and cyCombine correction) share the same color. However,
if the cluster is shown in gray, it has no matching pair among the other experiment result. A) Dendrogram after
clustering of the clusters’ centroids. iM - centroid of a cluster created after iMUBAC batch effect correction;
cC - centroid of a cluster created after cyCombine batch effect correction. B} Result of PARC clustering on data
after iMUBAC correction. C) Result of PARC clustering on data after cyCombine correction. (Source: [19]).

To further examine the differences between the found clusters after each correction
method, marker expression values were compared among the groups using the ANOVA post-
hoc Q Tukey test and the calculated effect size measures. Figure 3.4. presents the median das
values for each marker before and after iMUBAC and cyCombine corrections. After applying
the iIMUBAC correction to the data, the effect size values changed slightly compared to those
calculated before the modification. On the other hand, after using the cyCombine correction,

the values increased noticeably. The Wilcoxon test verified the observation. For the iMUBAC
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approach, the p-value was equal to 0.4628, and the median shifted to 0.0011. For the

cyCombine method, the p-value and mean shift were 4.38e107 and 0.0961, respectively.
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Figure 3.4. Comparison of the median effect sizes from post-hoc ANOVA test.

Each graph shows median effect size values before and after batch effect correction with A) iMUAC and
B) cyCombine. (Source: [19]).

3.4 Discussion and conclusions

Several methods for batch effect correction in mass cytometry data have been
proposed, but the most popular ones are CytofBatchAdjust, CytoNorm, CytofRUV, iMUBAC,
and cyCombine. The first three algorithms require technical or biological replicates to be
included in the dataset, but it is not always possible. Someone may ask which of the method
to choose and how they impact the expression values and, consequently, the clustering
results. To address this question, a comparative analysis has been conducted that examines
the differences between groups of cells identified after batch effect correction with the use
of two of the methods: iIMUBAC and cyCombine. The same subset of cells from Healthy

Donors from the Stellenbosch University dataset and default parameters were used for each

algorithm to make a fair comparison.

Marker expression values after correction with each method were used to generate
UMAP embedding showing the two-dimensional representation of the data. The learned
transformation was then applied to raw expression values (before the correction) using
a simple neural network for the regression task. Since UMAP takes a vector (one observation)
of values and maps it into coordinates in the 2D space, the resulting coordinates will change

if the values are changed a bit. Therefore, observing the initial coordinates of the cells before
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the correction concerning the positions after the modification was possible. The effect of the
transformation can be noticed in Figure 3.1. and Figure 3.2. as some “blurring” occurring on
the plots on the left in the panels. When a batch effect is present in the data, it is assumed
that each sample (batch) will take a different place in the UMAP space because of the
technical variation that distinguishes them. Therefore, the samples should overlap after the
correction since the artificial differences are reduced. This behavior can be observed in

Figure 3.1.A-B and Figure 3.2.A-B.

The mISO plots show that the iIMUBAC correction had less impact on the expression
values than cyCombine, which is reflected in the points’ positions in the UMAP space. In the
cyCombine case, the samples overlap almost entirely after the correction. Therefore, it can

be concluded that cyCombine offers better correction than iMUBAC.

PARC clustering algorithm with default parameters was applied to the corrected
marker expression values to find cell populations. The algorithm works effectively for high-
dimensional data and automatically determines the optimal number of clusters. After the
iMUBAC and cyCombine correction, the method found 22 and 18 clusters, respectively. The
cluster assignments were also used with the uncorrected expression values to visualize the
difference in the placement of the cell groups. The results are presented in Figure 3.1.C-D and
Figure 3.2.C-D. As seen in the visualizations, the clusters before expression correction
overlap. Without the batch effect correction, PARC applied directly to the raw data would
instead join the groups together rather than find the separate clusters. As a result, some of
the cell types could not be discovered. It confirms the need for a good batch effect removal
technique. It is expected that after the correction, the clusters will be separated since the
technical variation will be reduced, and the biological variation will influence the points’
position in the UMAP space in a way that similar cells from all samples will lay close to each

other.

Visualization alone is not sufficient to determine which of the methods is better.
However, it can be interesting to find out which set of clusters that were found by the PARC
algorithm is better. The dendrogram (Figure 3.3.A) presents that 14 of the groups are similar

between the approaches. Moreover, there are similarities between the layout of the identified
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cell populations of each of the methods - for example, the blue cluster lay close to the purple
group on both mISO plots despite different UMAP transformations (Figure 3.3.B-C). Therefore,
the clusters of the same color probably contain the same cell types. On the other hand, eight

iIMUBAC and four cyCombine clusters do not have a pair of similar cell types.

The cluster labels were used for the expression values before the correction to
examine how each cluster's marker expression values changed after the batch effect
correction. The effect size was calculated in pairwise comparisons between found cell
populations for each experiment and marker. The median value of each marker's effect size
measures was considered as a global effect size for that marker. It resulted in 32 effect size
measures before and after the correction (64 values per experiment). The Wilcoxon signed-
rank test was used to determine if there were significant differences in the effect size
measures. For iIMUBAC correction, the difference was not significant with a p-value of 0.4628
which may indicate that the batch effect was not reduced effectively and the identified
clusters may contain a mixture of different cell types. It was also checked how many clusters
result from clustering uncorrected data directly, and PARC found 24 cell populations. After
the iIMUBAC correction, the number decreased to 22, a relatively small reduction compared
to cyCombine (18 clusters). This may indicate that the iIMUBAC correction is insufficient to

remove the batch effect from mass cytometry data.

Based on the mentioned observations and results, it can be concluded that
cyCombine is a better method for batch effect correction in mass cytometry data. It is not
limited to healthy samples and does not use downsampling - it works efficiently for high-
dimensional datasets. Also, after the correction, the homogeneity is significantly higher than

before the modification (p-value=4.38e107).

Nevertheless, the topic should be further analyzed and compared with other methods
for removing technical variance on different datasets. For example, the cyCombine technique

may be better for a certain dataset, not general.

In summary, in the study, two batch effect methods were compared - iMUBAC and
cyCombine, to examine their effectiveness in reducing technical variance introduced

artificially to the data and the impact of the correction on the clustering results. The cell type
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marker heterogeneity increased after cyCombine correction in contrast to the iIMUBAC
correction that did not end in significant improvement. The results indicate the superiority
of cyCombine over iMUBAC for the Tuberculosis dataset from Stellenbosch University limited

to the Healthy Donor samples [19].
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4 ldentification of cell subpopulations

4.1 Introduction

There are many clustering methods dedicated to cell-type identification in mass
cytometry data. Most of the solutions adapt classical machine learning clustering techniques
and some data preprocessing, like, for example, hierarchical clustering combined with
density-based downsampling of the observations. Currently, the best methods [3]in terms of
detection sensitivity, stability of the results, and time of computation are FlowSOM [36] and
PhenoGraph [42]. Another group of solutions is those dedicated to different biological
datasets, including mass cytometry, like PARC [40] or ClusterX [43]. A summary of the

existing methods is presented in Table 4.1.

SPADE [44] contains four main modules: data downsampling, clustering, creating
a minimal spanning tree to connect the clusters, and upsampling, where the remaining cells
are mapped into the found clusters. The method requires four input parameters: markers
used to build the tree - which relies on the knowledge of which features may be helpful; the
density of outliers and targets, which controls the downsampling process; and the number of
clusters. Another solution, DensVM [45] applies t-SNE dimensionality reduction, and the
resulting embedding is fed to the clustering and 2D peak-finding algorithms. Each peak
represents a cluster centroid to which cells are assigned based on the smallest distance.
Cluster assignments obtained from the clustering algorithm are used as labels in the Support
Vector Machine (SVM) model for classification. Cells the method fails to label are used as

a test set in SVM training.

Another algorithm is based on k-Nearest-Neighbor (k-NN): ClusterX [43] which works
with datasets with up to five features. If the dataset has many markers, ClusterX reduces the
dimensionality with t-SNE. For each point in the space, two measurements are calculated:
local density and the distance to points with higher local density. That way, the centroids are
determined, and the rest of the points are assigned to the closest one creating a cluster.
FlowSOM [36] is a method that is based on Self-Organizing Map (SOM). It can analyze flow and
mass cytometry data in a two-level clustering. The algorithm builds and trains SOM; the

resulting nodes are connected in a minimal spanning tree. The last step is meta-clustering
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with a known number of clusters. Alternatively, an “elbow” method can be applied to find the
optimal value. However, the authors advise setting the number of clusters as more than

expected.

In PhenoGraph [42] authors used a nearest-neighbor graph (k-NNG) where cells are
represented by nodes connected to other most similar cells. In the next step, community
detection is performed to find phenotypically similar cell subpopulations. immunoClust [46]
uses Finite Mixture Models to cluster cell events in the first step, and then the cell clusters are
grouped and merged across samples (meta clustering) to get the final results. X-Shift [22] is
an algorithm based on k-NN density estimation. For each point, a density estimate is
calculated, and the points are connected with the closest nearest neighbor that has a higher
density estimate. The point is considered a potential cluster centroid if no such neighbor
exists. In the end, some centroids are connected, and the resulting clusters are merged

iteratively based on Mahalanobis distance until a specified condition is reached.

PAC-MAN [47] divides the data space into smaller hyper-rectangles based on density.
Then it uses k-Means to round and merge the clusters. The method analyses each sample
separately and combines the results. PARC [40] constructs a nearest-neighbor graph with
a hierarchical navigable small world, and based on the distribution of weights, it prunes the
graph's edges. The Leiden algorithm is used to find communities that create the cell
populations. The algorithm works fast and accurately for high-dimensional data, effectively

finding rare cell subpopulations.

4.1.1 Limitations of the existing methods

Although many existing methods exist for identifying cell populations, none is perfect.
The first limitation is the number of observations that can be processed. Some of the
algorithms are not scalable. They calculate pairwise distances between the observations,
resulting in a huge matrix that can not fit in memory, or they use different computationally
expensive transformations. They may work well for datasets up to a few hundred thousand

cells, but most of the time, they are not able to process millions of cells.
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Table 4.1. Summary of the existing methods for cell population identification in mass cytometry data.

Needs the
Base Number of
Method Downsampling number
algorithm observations
of clusters
Agglomerative
SPADE, 2011[44] Thousands Yes Yes
clustering
DensVM, 2014 [45] SVM Thousands No No
ClusterX, 2014 [43] k-NN Thousands No No
FlowSOM, 2015 [36] SOM Millions No Yes
PhenoGraph, 2015 [42] k-NNG Millions Yes No
immunoClust, 2015 [46] FMM Thousands Yes No
X-Shift, 2016 [22] k-NN Millions No No
PAC-MAN, 2017 [47] k-Means Millions No Yes
PARC, 2020 [40] K-NNG Millions No No

The second limitation is downsampling. Some methods, like SPADE, reduce the
number of cells in order to apply an algorithm that does not scale for high-dimensional
datasets. As a result, some rare cell populations may never be detected, mainly if the dataset
contains millions of cells and a specific rare population has only dozens of cells. The
stochastic nature of downsampling in the SPADE algorithm also makes the results non-

reproducible, leading to different outcomes between iterations [48].

Moreover, many of the proposed visualizations of results and the clustering
techniques are meaningless regarding cluster positions relative to each other, which may

lead to wrong assumptions [48].

And finally, the knowledge about the expected number of cell populations in the data.
It is hard to estimate how many cell populations should be expected, particularly taking into
account the heterogeneity of data. The cells may be in a different cell cycle stage, switch
between states, and therefore exist in a continuum of development, which means that cell

types may overlap [2]. Experts try to annotate mass cytometry data through manual gating,
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plotting pairs of markers against each other, and highlighting regions of interest. This is done
using markers that are known to be related to specific cell types. However, this is only
a subset of all possible 2D bi-axial plots that can be created based on the markers. Some
relationships between other features and the cell types may not be well understood or
discovered. It is almost not possible to check all the possibilities; for example, if 38 markers
describe a set of cells, it will result in 706 bi-axial plots of each marker-vs-marker. It would
require a lot of hours of working or a team of experts, which also introduces bias to the result.
Therefore the manual gating is usually made by a few experts (for the comparison and finding
the consensus) on a known subset of the combinations, and the annotations may be less
accurate. This problem is highlighted by many authors [2], [44], [46] who point out that
relying on expert annotations to assess the quality of clustering approaches may not be the

best idea.

4.2 Materials and methods

4.2.1 Experiments

The doctoral thesis presents a set of experiments that explore the ideas described in
the section below. They include calculations on reqular and expanded feature domains and
the appropriateness of using subpopulations. All the analyses leading to the implementation
of the final pipeline for mass cytometry cell-type identification were conducted with the use

of Samusik's dataset:

e Comparison of existing solutions in the regular domain - this also includes the
comparison of model evaluation metrics before and after taking into account the cell
subpopulations,

e Impact of the expanded feature space on the existing solutions and comparison of
the results with the reqular domain,

e Comparison of different dataset transformations in the expanded domain,

e Comparison of the various dataset transformations in the expanded domain after

applying feature selection,
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e The proposition of a divisive approach.

The final approach with the parameters and criteria established with Samusik’s
dataset was then applied to the Tuberculosis mass cytometry dataset provided by partners
from Stellenbosch University. Because the dataset is unsupervised (in contrast to Samusik’s
dataset, the cell assignment is unknown), the results were presented in a slightly different

form, with additional statistical tests and plots.

4.2.72 Characteristics of Samusik's dataset

Because the Tuberculosis dataset provided by partners from Stellenbosch University
is not annotated, evaluating different methods for cell subtypes identification using the
dataset would be challenging. Therefore, a publicly available dataset from Samusik et al.[22]

was used to compare and develop different algorithms.

As it was presented in Table 1.2., the dataset consists of 514,386 cells categorized into
24 types. The cells were annotated by three experts in the manual gating process. The cells
come from 10 mouse samples labeled with 38 markers. The dataset was preprocessed and

corrected for batch effect.

To better understand the dataset, UMAP-based mISO visualization was generated

(Figure 4.1.). Appropriate cell-type names were written near each cluster on the visualization.

As can be noticed in Figure 4.1., in the UMAP space, cell types biologically similar are
placed closer than the rest of the cell groups. To further investigate the UMAP space, Figure
4.2. presents the distribution of expression values of exemplary markers. The lighter the color

(yellow), the higher the marker value for the cells (represented as points) in that UMAP area.
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Figure 4.1. mISO plot for Samusik's dataset.
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Figure 4.2. Distribution of exemplary marker values in the form of a heatmap.
The color indicates the expression of the marker from dark blue (regions of no/weak expression) to yellow (high
expression). (Source: personal collection).
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Figure 4.2. shows that even within one cell type, there are differences in marker
expression. For example, some pDCs cells have a deficient expression of the Scal marker,
while some are characterized by their high expression. These nuances result from the data
heterogeneity since the cells may be in different states [2]. Heterogeneity may significantly
impact the clustering results - clustering algorithms may find more groups of phenotypically
similar cells than the number identified by an expert. It is visible on a three-dimensional plot

describing the density of points in the UMAP space (Figure 4.3.C).
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Figure 4.3. Distribution of cells within two exemplary cell types caused by inter-cluster heterogeneity.

The grey color shows all cells in the dataset; colored points belong to the specific cell type. A) mISO plots for cell
type. mISO plot shows the area on the UMAP 2D plane that is the most densely occupied by the cells.
B) Scatterplot presenting all the cells that belong to the group. C) 3D density plot - each peak represents
a potentially different subpopulation of the cell type. (Source: personal collection).
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Without heterogeneity, it is expected to observe only one distinct peak since the point
should occupy the area almost uniformly. If there are more well-separated peaks, it can be
assumed that the differences in their marker profiles are high enough to identify the cell-type
subpopulations. That means the probability that the subpopulations will be assigned to one
cluster is low, and the identification process will result in overestimating the number

of groups.

4.2.3 Data heterogeneity

Each cell type was separately applied to Gaussian Mixture Model decomposition in
two-dimensional space to examine the data heterogeneity and how many subpopulations
a clustering algorithm may find in Samusik's dataset. The result of 2D GMM Is a set of
parameters for each found subpopulation: mean value as a point (x, y), which also determines
the centroid of a subpopulation, component proportion, and covariance matrix. The optimal
number of components included in the Gaussian Mixture Model was determined with Bayes
Factor [49]. As can be observed in Figure 4.3.B, some cells may be only outliers instead of
a group of cells that somehow behaves differently than the rest of the cells of their type. They

may overlap with another cell type, resulting in inaccurate manual gating (Chapter 2).

Therefore, it was decided to verify which of the resulting 2D GMM components should
be considered true subpopulations of a given cell type. The component proportion
parameters were collected for each cell type, and the cut-off threshold was found using the
one-dimensional GMM. Components with a proportion higher than the threshold were
considered potential subpopulations. The final number of the likely subpopulations was the

maximum expected number of clusters created from the cell type.

Given the set of defined cell subpopulations, the identified cell-type clusters were
assigned to the closest one. The assignment was done in the marker feature space - for each
group, a cluster centroid was computed and compared with the centroids of the found
subpopulations. Then, the cluster received a new label indicating the identified cell type, and

the evaluation metrics were calculated to score how good is the division.
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4.2.4 The idea behind the expanded feature space

The biggest challenge in mass cytometry cell-type identification problems
is identifying rare populations. The provided markers create an almost unique marker profile
for each of the types, depending on their low/high expression. While the large cell populations
with easily distinguishable marker profiles are relatively easy to identify, the rare ones may
have too weak marker profiles to be noticed. For example, they may express marker values in
the middle of the marker's range values, making the information harder to extract. Thus

the idea of expanded feature space was considered.

The idea has its roots in the assumption that if a particular cell's profile is somehow
hidden by another cell's profile, it can be extracted through the decomposition of the marker
values. Since the marker's distribution is a mixture of Gaussians, each Gaussian potentially
describes a different set of observations. Each marker value may be assigned to the
appropriate Gaussian Mixture Model component by calculating the conditional probability -
the cells that express a specific marker value belong to the component with the highest
conditional probability. It also belongs to other components with smaller probabilities.
Consequently, the calculated conditional probabilities create new features with values
bonded to arange [0, 1]. It was assumed that some components contain information primarily
for a rare cell population in that expanded feature space. The idea is visualized in Figure 4.4.

What can be noticed, the distribution of the features changes drastically.

The Gaussian Mixture Model for each marker was found using the Expectation
Maximization algorithm and Bayesian Information Criterion [50] for selecting the optimal
number of components to obtain the expanded feature space. Conditional probability was
computed for each marker's GMM. The expression values were translated to the conditional
probabilities for each cell to create new features. However, the conditional probability may
express some artifacts that must be corrected before using them as a new set of features.
The probabilities were converted with the approach described in Section 4.2.5. The final new

features after correction represent a membership function.
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Figure 4.4. The idea behind the expanded feature space.

The data distribution (each marker) is decomposed with GMM into a set of components that possibly describe
different groups of cells characterized by specific expression values. For each GMM model, conditional
probability is calculated and visualized in the form of lines. Therefore for each expression value, there
is information about the likelihood that the value comes from a given component. Each component is
transformed into a new feature that contains values between 0 and 1, indicating the belonging of each cell to
that component. The features have a different distribution, where the values near one stand for cells that
express the particular range of marker values. {(Source: personal collection).

4.2.5 Membership function

Some artifacts must be corrected to make the results reliable and use conditional
probabilities as new features. As it was mentioned, conditional probability is the likelihood
of a marker's expression value occurring given the distribution with specified parameters.
In other words, for each GMM component described by a set of parameters, the x expression
value has a different probability of belonging to the component, and the sum of the
components is equal to 1. It can be visualized as conditional probability lines indicating the
probabilities for each component and the whole marker expression range (Figure 4.5.).

Moreover, the first and last of the conditional probability lines should start and end at a level
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equal to one, respectively, since the points at both ends of the marker distribution have

the smallest distance to the first and last of the components (probability equal to 1).
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Figure 4.5. The main problem with conditional probabilities used to assign cells to GMM components.
Suppose one or more conditional probability lines dominate in more than one range of x-axis values. In that
case, it may happen that two cells with very similar values of the marker will belong to different GMM
components. At the same time, another cell with a higher difference in the expression value will belong to the
same component. In the presented example, a cell with marker value x; belongs to the same GMM component as
the cell with expression xs of the marker, but closer to the cell with marker value x, belongs to a completely
different component. (Source: personal collection).
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Figure 4.6. The source of the dominance of a component in different ranges of values. Example on CD45
marker from Samusik’s dataset.

The image shows the zoomed area at the beginning of the marker’s expression values distribution. As can be
observed, the first peak (dark red, left panel), the first component with the smallest mean value, is dominated by
light red and violet lines (right panel). As a result, the expression values from a range of approximately [0, 0.125]
will have a higher probability of belonging to the light red or violet components that describe Gaussian
distributions with higher mean values than dark red, which is the closest. The same problem may occur at the
end of the marker distribution. (Source: personal collection).

Because the conditional probability lines are calculated from GMM components, some
of them may have more than one peak (may dominate in more than one range of expression

values). This is a known artifact of the Gaussian probability density function used in mixture
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models. When two Gaussians partially overlap, which is determined by the mean and standard
deviation values, the one with a higher standard deviation will have a broader shape and
eventually higher values on its ends behind the other Gaussian (Figure 4.6). The effect is
visible on conditional probability lines in Figure 4.5. for example, the darker orange line has

two peaks: around the x-axis values of § and 4.5.
Several steps have to be applied to create the proper expanded feature space:

1) The conditional probability lines must be corrected to have only one maximum (one
peak) in the entire range of marker values.

2) The first and the last components’ lines should be identified, and their dominance
at the beginning and end of the distribution should be restored.

3) The first and the last conditional probability lines should start and end (respectively)
at a probability value equal to 1, therefore, have a different shape modeled than the
rest of the lines.

4) Some components may have too low component proportion (weight) and not
dominate at any range of marker values. Therefore, these components bring nothing
to the expanded feature space and should be identified and removed (Figure 4.7).

5) Correcting the conditional probability lines should not change the points
of intersection of the verified lines. Intersections are often used as thresholds in
various problems. Hence, the lines above the intersection points should be modeled

carefully to reflect their original shape best.

The proposed correction algorithm written in MATLAB2022b meets all the required
points outlined above, and it works directly on the conditional probability lines and their
shapes. However, because the lines are modified after the correction, and the probabilities
for each x-axis value do not sum up to 1, it cannot be further called “conditional probability.”
Therefore we proposed the name “membership function” since the values indicate the
membership of observation to the components. The main parts of the pipeline are presented

in Figure 4.8.
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Figure 4.7. The inactive component in the model is visible in the conditional probability lines plot.

The red arrow points at the inactive component in the Gaussian Mixture Model. The component has too small
a weight to dominate in any range of the marker values. Since the component brings nothing to the expanded
feature space, it should be removed from the set of components. (Source: personal collection).
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Figure 4.8. The pipeline of conditional probability lines correction.

Firstly, a GMM decomposition is performed for a given marker to get the mixture components. Based on the
components, a conditional probability is calculated that can be visualized as a set of lines. Each line represents
the probability for a given marker value that determines the assignment of the value to the component. Each
peak shows a region in which the component dominates, which means the range of marker values that belong
to that component. (Source: personal collection).
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Firstly, the algorithm verifies whether a component’s line has a peak near its mean
value parameter, which is recognized as the real one. Secondly, it checks whether each of the
components has a range of values in which it dominates the rest of the lines. Otherwise, the
component is inactive and is removed from the model, and the probabilities are recomputed,
to sum up to 1. In the next step, the line for the first component is corrected - the algorithm
changes the shape of the line to start at point (0, 1), which is the maximum membership value
for the marker expression of 0. It samples a set of points from the right side of the peak to
model the line behavior for the higher expression values end eventually ends the line with
a membership value of 0 for the maximum expression value. After the first component is
improved, the middle components are modeled similarly, except that the lines' beginning and
end have a membership level equal to 0. Finally, the last component is corrected to end at
a membership level of 1 for the maximum marker value. The modeling of the lines is
accomplished with pchip function and a set of points within the interval of m + 3s (where m -
mean value and s - standard deviation) as well as the maximum and minimum values of the

whole expression range.

The resulting membership function assigns each x-axis value (marker expression) to
one, the closest component (the highest membership value), and to the neighbor components
with smaller membership values. The values' distribution is drastically different from the
markers' original distributions (Figure 4.4.). Therefore, the existing identification approaches
are expected to generate worse results. To be able to use the expanded feature space
effectively, the algorithms have to be adapted to the characteristics of the domain. Thus,

an original approach for cell-type identification is proposed in the doctoral thesis.

4.2.6 Binary transformation of the expanded feature space

Because the expanded feature space is continuous and may include minimal values
that can influence the algorithms negatively regarding computation time, the binary

representation of expanded feature space was proposed to speed up the process.

The binary representation of the expanded domain is based on the fact that each
Gaussian Mixture Model component is described by mean and standard deviation values that

translate to the conditional probabilities. Cells that had expression values falling within the
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range of mean + 3 std for a given component of a given marker received a value of 1for that
component and 0 otherwise. Thus the result is a sparse matrix of 0 and 1 values indicating in

which components the cell expression for a given marker is included.

4.2.7 Feature selection for the expanded domain

Since it is unlikely for each new feature in the expanded domain to contribute to each
cell type profile that will distinguish them from others, the most important features should be
selected before clustering. Those features are the most distinguishing features between
groups of cells. But, because of the specific distribution of features in the expanded domain,

most known and basic feature selection methods are not applicable in this case.

To find out which characteristics of the features may be valuable for feature
selection, some of them were calculated using the original expanded domain and presented
in the form of a histogram: mean, variance, the Relative Diversity Index (RDI)(4.3), and a ratio
of the number of non-zero values to all values (NZR) (4.4). The best feature selection method

was chosen empirically after applying a proper threshold.

Thresholds for the computed statistics were determined with the Gaussian Mixture
Model decomposition of the distribution of each statistic into an optimal set of components
found with the Bayes Factor. The cut-off value was found as the intersection point between
the first and the second components. As a result of feature selection, features with a statistic

value greater than the threshold are preserved in the analysis.

H = Nlog(N)—z};Tlnilog (ny) (4.1)
Hox = VK (4.2)

RDI = : (4.3)

NZR = 2222 (4.4)

Where: N - the number of cells; n; - the number of cells in a category; k - the number of
categories; x - feature values; [x>min(x) - the number of values that are higher than zero (the

minimum value of the feature).
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The relative diversity index for binary transformation was calculated with two
categories, 0 and 1. On the other hand, the continuous values had to be discretized into five

categories defined by the uniform ranges of feature values.

After determining the best feature selection criterion, the same statistic was
calculated for the binary expanded domain since the distribution is different from the original

expanded domain. Therefore, applying the same threshold would not create accurate results.

4.2.8 Divisive approach

The feature space expansion and optimization through the feature selection may not
be sufficient to reveal rare cell subpopulations. Good evaluation metrics are insufficient to
conclude that the given model is the best if the number of found cell populations is lower than
expected (assuming high certainty that more cell types are present). A second division of the
clusters is proposed to prevent a situation when the number of identified cells is

underestimated.

The second division is based on the cluster labels obtained from the first division that
was performed with the PARC algorithm, using the expanded domain and feature selection. In
the next step, for each cluster, a GAP statistic [51] determines if the group should be further
divided. Two approaches are considered: the second division performed by PARC and the
k-Means algorithm. If the cluster should be further divided, the division is performed with
k-Means into the number of subclusters determined by GAP statistic or with PARC using its
built-in algorithm for finding the optimal number of clusters. The second division is made in
locally optimized space - before each division, a feature selection is conducted with the
threshold found through GMM decomposition. Therefore each further division is optimized

appropriately to the cluster content.

The PARC algorithm was run with the default parameters (the same as applied for the
first division), and the k-Means distance measure was set to ‘euclidean’ for the original
expanded domain, which is continuous, and ‘hamming’ for the binary expanded domain, which

is dedicated to this type of data.
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Because the k-Means algorithm is not able to process millions of cells that may
constitute a cluster, the sampling had to be applied during the second division. Ten thousand
randomly chosen cells were selected from each group and fed to the clustering algorithm.
The rest of the cells were assigned to the closest of the determined clusters based on

a distance metric (Euclidean or Hamming).

4.2.9 Analysis of the dataset from Stellenbosch University

All the proposed algorithms and transformations were applied to the dataset provided

by partners from Stellenbosch University in RPA.

The dataset was preprocessed the same way as Samusik's dataset - the expression
values were ArcSinh transformed using a co-factor of 5. The batch effect was corrected
using the cyCombine method. The dataset was analyzed using the divisive approach;
therefore, it was prepared in two variants: original expanded and binary expanded domains.
UMAP embedding was generated for each dataset transformation, and the main cell
populations were found using the PARC algorithm with the default parameters as the first
division. Then the resulting clusters were further divided using PARC and k-Means algorithms.

Finally, the best method was indicated and applied to the statistical analysis.

Since the annotations for the dataset are unknown, it is impossible to calculate all of
the evaluation metrics listed in Section 4.2.10. Therefore only the unsupervised scores were
used. The proportion of patient groups was calculated for each cluster and visualized in
boxplots. To verify the normality of the groups’ proportions in each cluster, a Kolmogorov-
Smirnov test was used. A two-way ANOVA test was applied to demonstrate the differences
between group proportions in each cluster. Together with p-values, an effect size was

computed.

4.2.10 Evaluation of clustering results

With the described idea of cell subpopulations and the present heterogeneity of data, the
clustering algorithm should not be “punished” for the overestimation of clusters. Therefore,
a novel approach was proposed to find concordant cell subpopulations among clusters for

intra-cluster heterogeneity credit and include it in evaluating clustering results. First, each
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cluster is identified as one of the defined cell subpopulations obtained after 2D GMM
decomposition (See Section 4.2.3.). Then, the evaluation metrics are calculated, including the

knowledge of the subpopulations.

For the model evaluation, various metrics were used. Six measures are supervised
(Adjusted Rand Index, Adjusted Mutual Information, Homogeneity, Completeness, V-measure,
and Fowlkes-Mallows Index), and two are unsupervised (Calinski-Harabasz Index and Davies-

Bouldin Index). The details about them are provided below.

The unsupervised metrics are used in the doctoral thesis as the most critical model
selection indicators. In the real-life problem of cell-type identification, expert annotations are
usually not known and are impossible to obtain. In that situation, the user may only evaluate
a model and score the clustering result with unsupervised metrics. Therefore the goal was to
maximize the Calinski-Harabasz Index and minimize the Davies-Bouldin Index at each analysis

step.

The rest of the metrics (supervised) are used to present the influence of including cell
subpopulations in the clustering evaluation. Since the expert annotations are biased, and
many authors suggested that the analysis should not rely on them too much, including
supervised metrics in the results would be misleading. The supervised metrics evaluate how
well the clusters match the manual labels, while the unsupervised ones measure how well the
clusters are separated and defined. Also, the unsupervised metrics are calculated based on
the original values of the dataset (regardless of the dataset transformation on which the
predicted labels were created) to measure the real impact of the result on similar cell

separation.

Calinski-Harabasz Index (CHI)

Calinski-Harabasz Index is also known as the Variance Ratio Criterion. The CHI is
a ratio of the sum of between-cluster and within-cluster dispersions. The advantage of this
metric is that it is unsupervised and fast to compute. The score is higher for dense, well-

separated, and convex clusters [52].

e Range of values: [0, +],
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e Interpretation: the higher the score, the better-defined clusters.

Davies-Bouldin Index (DBI)

DBI defines the average similarity of each cluster with the actual cluster that is the
most similar to it. The similarity is a ratio of within-cluster to between-cluster distances. The
measure is unsupervised with a minimum score of 0. The score tends to be higher for convex

clusters[53].

e Range of values: [0, +o),

e Interpretation: the lower the score, the better separation of clusters.
Adjusted Rand Index (ARI)

This is a measure of the similarity of two sets of clusterings: the ground truth and
prediction that is based on the Rand Index (RI) but adjusted for the chance grouping of
elements. The simplified version of calculating RI (4.1) and ARI (4.2) is presented below.
It considers all pairs of samples between the clusterings and count the number of pairs that
belong to the same or different cluster [54], [55]. The advantage of ARl is the interpretability
of the result and no assumption on the cluster structure, so it is suitable for different
clustering algorithms. On the other hand, as a supervised metric, it requires the knowledge of

ground true clusters.

e Range of values: [-1,1],
e Interpretation: -1 - especially discordant clusterings, 0 - random assignment;

1-identical clusters.

RI = __ TP+TN (4.1)

TP+TN+FP+FN

RI-E[RI]

ARl = max(RI)—E[RI]

(4.2)

Where:

TP - true positives; TN - true negatives; FP - false positives; FN - false negatives.
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Adjusted Mutual Information (AMI)

Mutual Information (MI) score measures the agreement of two assignments (4.3), and
the adjusted variant accounts for the chance. AMI solves the problem with Ml which returns
the higher value for a bigger number of clusters in the two clusterings regardless of whether
the division is better. It requires the knowledge of the true labels but is independent of the

absolute values of the labels [56].

e Range of values: [0, 1],

e Interpretation: 0 - random assignment; 1- identical clusters.

__ w|True| w|Pred| |TruejnPred;| N|True;nPred;|
MI = Zi:l Zj=1 N |True;||Pred;| (4.3)
AMI = MI-E[MI] (4 4)

mean([H(True),H(Pred)])—E[RI]
Where:

N - number of samples; [Truel - number of true clusters; |[Pred| - number of predicted clusters;
[Truel - number of samples in true cluster i; [Predj - number of samples in predicted cluster j;
[True: N Predjl - number of samples in true cluster i and predicted cluster j; H(True) - entropy

for true clustering; H(Pred) - entropy for predicted clustering.
Homogeneity metric (Homog)

The homogeneity metric measures if a given cluster contains only samples of a single

true class[57].

e Range of values: [0, 1],
e Interpretation: 0 - non-homogeneous assignment; 1 - perfectly homogeneous

assignment.
Completeness (Compl)

The completeness measures if all samples from a given class are assigned to the

same cluster [57].

e Range:[0,1]
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e Interpretation: 0 - non-complete assignment; 1- perfectly complete assignment.
V-measure (V-score)

V-measure is the harmonic mean of homogeneity and completeness. The advantage
of the measure is no assumption on the cluster structure. However, homogeneity,
completeness, and v-measure are not normalized concerning the random assignment,

therefore, may yield higher values when the number of clusters is large [57].

e Range of values: [0, 1],

e Interpretation: 0 - bad assignment; 1-a perfect score.

__ (1+PB) * homogeneity * completeness (4 5)

\Y

(B+homogeneity + completeness)
Where:
B - defaultsto 1.
Fowlkes-Mallows Index (FMI)

This is a geometric mean of precision and recall. In the case of a completely random
assignment, the FMI will be 0. No assumptions are made about the cluster structure. Requires

the knowledge of true labels [58].

e Range of values: [0, 1],

e Interpretation: 0 - bad, random assignment; 1- significant agreement of clusters.

FMI = P (4.6)
J(TP+FP)(TP+FN)

Where:

TP -true positives; FP - false positives; FN - false negatives.
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4.3 Results for Samusik’'s dataset

This section presents the results of the analysis of Samusik's dataset. The dataset
was preprocessed, the expression values were ArcSinh transformed with a co-factor of 5, and
the batch effect was corrected using the cyCombine method. In the next step, cell-type
subpopulations were determined to include the data heterogeneity during evaluation. The
most efficient and popular clustering methods, according to the literature, were applied for
cell population identification. A new approach was proposed that is based on creating
expanded feature space (called the expanded domain) with the different transformations of
the values and feature selection method. The modified data were applied to PARC clustering
for comparison. Finally, a new divisive approach was proposed that was tuned on Samusik’s
dataset in the chosen transformations of expanded feature space. The following subsections

describe the steps in detail.

4.3.1 Data heterogeneity - cell subpopulations

The decomposition of samples from each cluster of the Samusik dataset in UMAP
space with a two-dimensional Gaussian Mixture Model resulted in a set of potential

subpopulations that were further filtrated.
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Figure 4.9. Verification of subpopulations that resulted from Samusik’s cell types after 2D GMM.
Examples showing 2D GMM decomposition of Intermediate Monocytes and Eosinophils. Green components
indicate subpopulations that were considered authentic and red components were discarded from the analysis

because of too small component proportion. Side histograms show the distribution of the first and second UMAP
values and identify distant subpopulations with separate peaks. (Source: personal collection).

Figure 4.9. shows exemplary results of the decomposition of two different cell types.

The red ellipses represent components that were filtered out since their component
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proportion (weight) was too small. The threshold was found through 1D GMM decomposition of
weights belonging to all cluster components and was equal to 0.064. Therefore all
components containing less than 6,4% of the dataset were excluded, and the observations
were assigned to the next closest component in the feature space. The green ellipses
represent the subpopulations that remained in the analysis. Interestingly, most of the
subpopulations are created in the primary cluster location, but there are cases when a quite
representative subpopulation appears further in the UMAP space, like in the example of

Eosinophils (Figure 4.9.B). The side histograms also confirm this.

The verified final subpopulations are presented in Figure 4.10. with a color indicating
the parent cell population. The total number of subpopulations was 90. The way each cluster
is split into subpopulations is the assumed acceptable division. Thus the results from
clustering algorithms are compared to the subpopulations and identified as belonging to one
of them. This is a novel approach that tries to take into account the possibility of human
errors during the manual annotation of the data. During the model evaluation, the
subpopulation influences the calculated metrics. Therefore the model is not “punished” for
overestimating the number of clusters since the found clusters contain distinct cell

subpopulations.

The clusters are assigned to the closest subpopulation based on the smallest
Euclidean distance. The distance is measured between the clusters’ centroids and the
centroids of defined subpopulations in the marker space. Therefore the subpopulation

assignment is independent of the UMAP projection.

4.3.2 Comparison of existing solutions in the reqular domain

The preprocessed Samusik dataset was used to compare the existing methods for
cell-type identification. However, because of the large number of cells (514,386), it was not
possible to run all of the methods mentioned in the introduction. Therefore the three best
methods, according to the literature, were used: FlowSOM, ClusterX, and PARC. Unfortunately,
PhenoGraph, also considered one of the best clustering methods, failed to process the

dataset.
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Figure 4.10. Found subpopulations of the known cell types in data from Samusik et al.

Each subpopulation originating from the know cell types is represented as an ellipse with a shape determined by
the mean values (centroid) in the UMAP space and a covariance matrix. The color indicates the parent cell type.
(Source: personal collection).

For the model evaluation, the chosen metrics were calculated twice: in a traditional
manner and considering the found subpopulations of each cell type. The resulting cluster
assignment is presented in Figure 4.11. using mISO plots. Details and calculated metrics are

summarized in Table 4.2.

It can be observed (Figure 4.11.) that each clustering algorithm divides the cells
differently, although they identified almost the same number of clusters. It is visible looking
at the aggregate of cells containing the orange and red groups of cells or the one with the
dark red group of cells. However, none of them identified the rare subpopulations in the
middle of the UMAP plot. FlowSOM failed to identify a large group of cell population -
Intermediate Monocytes, the method joined them with Classical Monocytes. The results show
that the clustering algorithms are sensitive to the heterogeneity of data and consider the
differences of each cell population to be significant enough to create two separate clusters
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from one that an expert identified. On the other hand, the marker profiles of the rare cell
populations are not strong enough to be distinguished. Therefore further analysis tries to find
a solution for the rare cell subpopulations focusing on extracting more detailed marker
profiles.
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Figure 4.11. Results for the three existing cell-type identification approaches for a dataset in the reqular
domain.

Each cluster was compared to the found cell subpopulations to identify the cell types. The colors indicate the
parent cell type. A) True assignments provided by experts. B) 24 clusters identified by FlowSOM. C) 25 clusters
identified by CusterX. D) 24 clusters identified by PARC. (Source: personal collection).

Table 4.2. A detailed summary of the clustering results for a dataset in the regular domain.
The table presents calculated metrics for the chosen existing clustering methods and compares the scores
before and after taking into account the cell subpopulation.

Standard approach (without knowledge about cell subpopulations)

Algorithm  #clusters ARI AMI Homog Compl V-score FMI CHI DBI
FlowSOM 24 0.7030 0.83%0 0.7869  0.8985  0.8390  0.7691  62202.22 1.4728
ClusterX 25 0.8217 0.8749 09292 0.8265 0.8743  0.8504 68436.24 1.6724

PARC 24 0.8189 0.8944 0.9506 0.8447 0.8944 0.8493 77942.28 1.5263
Including cell subpopulations

Algorithm  #clusters ARI AMI Homog Compl V-score FMI CHI DBI
FlowSOM 24 0.7096  0.8473  0.7815  0.9252  0.8473  0.7767  73251.44  1.4552
ClusterX 25 0.9475  0.9197 0.9220 0.9176 0.9198  0.9547 7874218  1.4573

PARC 24 0.9646 09440 09438 0.9442 0.9440 0.9695 82305.73 1.4162
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After examination of the values from Table 4.2, it can be noticed that the score
increased after including the knowledge of cell subpopulations. The best scores in both
scenarios were obtained for the PARC clustering algorithm; therefore, only this method was
used in further analysis. Moreover, further analysis scores are presented for the case with
included cell subpopulations as the better measure for goodness of clustering, taking data

heterogeneity into account.

4.3.3 Process of generating the expanded feature space

Each marker was applied to Gaussian Mixture Model decomposition to create the
expanded feature space (dataset in the expanded domain). As a result, a set of optimal
components was established for each marker using BIC. The number of resulting components

varied from 2 to 13.
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Figure 4.12. Exemplary conditional probability lines before and after correction {(membership function).
Effect of conditional probability lines for A) CD4b marker. B) CD44 marker. C) NKp48 marker. (Source: personal
collection).
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In the next step, conditional probability lines were computed and corrected. The
conditional probability lines before and after correction are visualized in Figure 4.12. It can be
noticed that the correction algorithm meets the assumptions - it verifies the placement of
real peaks, finds the first and last component lines and corrects their shape to begin/end with
a y-axis value of 1. It resembles the top part of the middle conditional probability peaks very
well and preserves the intersection points of the verified lines. After the correction, the
values no longer represented probabilities, so the transformation was called the membership

function.

The new feature space consisted of 318 new features containing values from 0 to 1
that indicate the membership of a cell to a specific component in the marker's GMM model
based on the original expression value. The expanded data domain can help extract valuable
information about rare cell populations. This can be observed in Figure 4.13. that shows
a comparison of the Scal marker for each known cell type where the component filled with
color represents the assignment of the group of cells to the component based on the highest
membership values. As presented, most cell types either express high values or low values
for the marker and belong to the first and last of the component, except one cell type: HSC,

which belongs to the central component. The cell type is one of the rare populations.

A different marker profile can be observed comparing other markers between the cell
types, as presented in Figure 4.14. The figure contains chosen markers for five different cell
types (the number of presented cell groups and markers is limited by space). Since each
component is a separate feature in the expanded domain, different features contribute to the

cell type marker profile.

4.3.4 Results for the dataset in the expanded domain
The prepared and corrected expanded feature spaces representing each marker

component's membership values were applied to the existing solutions to see if the
expansion of dimensionality helped the cell identification process. Moreover, UMAP
transformation and PARC clustering were generated with original expanded domain values
and binary representation of the space. Despite the new UMAP projection, the results for
clustering methods are presented on the regular domain UMAP space for better comparison

purposes.
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Figure 4.13. Visualization of the expanded domain idea on the Scal marker example.

Each plot represents the component of the highest membership (90% percentile) for each cell type in Samusik's
dataset. Most cell types express values represented by the first or the last component (the highest and the
lowest marker expression values). Still, one cell type (third row and second column), also a rare population,
expresses values from the middle of the marker's range. In the expanded domain, the rare population has
a distinct feature that may help in the identification process. {Source: personal collection).

4.3.5 Comparison of UMAP projections
Figure 4.15. represents the dataset in the UMAP space, thus the influence of the

expanded domain on the data structure. In the visualization of UMAP embedding, the
placement of cells and clusters differ significantly. However, there are also similarities, like
two similar clusters being close to each other regardless of the transformation. Although the
original expanded feature space preserves the global dataset structure well, the small

subpopulations tend to overlap. As can also be observed, some of the clusters in expanded
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space and after binary transformation (Figure 4.15.B-C) have become more similar and lie

closer than in the regular space (Figure 4.15.A).

B220 CD44 IgM CD45

membership

membership

Figure 4.14. Comparison of five chosen cell types in the expanded domain.

Five cell types and four different markers. The highest membership value decides which of the marker's
components the cell type express (determined by the maximum value of 90% percentiles for each component).
Since each of the components creates a new feature in the expanded domain, they provide information about
different cell populations. A) NKT cells. B) Intermediate Monocytes. C) IgD+ gD+ B cells. D) Plasma Cells. E). GMP.
(Source: personal collection).
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Figure 4.15. UMAP projection for different dataset transformations.
A) Reqular domain of the dataset. B) Original expanded domain of the dataset. C) Binary representation
of the expanded domain. (Source: personal collection).
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Comparing the reqular to the original expanded feature domain, it is visible that in the
expanded space, the biologically similar cells are closer than in the reqular one. The effect is
clearly visible in Figure 4.16. Moreover, the groups of similar cells are more separated in the
expanded feature space. Other cell types are placed near the other types that are the most

similar in a biological context.
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Figure 4.16. UMAP projection of regular and expanded feature space and the influence on cell type's
position.

A) Regular feature space with the annotations provided by experts. B) Expanded feature space with the
annotations provided by experts. The position of the cell groups is different than in the reqular space, but the
similarities between the types are preserved. C) Main groups of similar cell types in the regular domain. D) Main
groups of similar cell types in the expanded domain. It is visible that the cell types within the groups are closer
than in the regular domain. The rest of the cell types are placed near similar cells in the biological context.
(Source: personal collection).

4.3.6 Comparison of existing solutions between expanded and reqular domains

The proposed original (without further transformations) expanded feature space was

applied to cell population identification with the selected existing methods: FlowSOM,
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ClusterX, and PARC. The results are presented in Figure 4.17. and summarized in Table 4.3,

along with the results for the reqgular domain of the dataset.

Using the expanded feature domain resulted in a better definition and separation of
the cell clusters based on the Calinski-Harabasz and Davies-Bouldin Indices. The results are
also visually compared with the regular domain; however, the number of found cell

populations is smaller.

Two aspects must be taken into account when analyzing the above results. First, the
existing solutions are not adapted to the data distribution characteristic of the proposed
expanded domain. Therefore they may not work optimally. Second, the clustering was
conducted on the entire dataset, meaning the complete feature set. Still, not all of them may
provide sufficient information to contribute to the separation decision. Therefore, although
the results are better regarding data structure and homogeneity, feature selection methods

may be beneficial.
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Figure 4.17. Results for the three existing cell-type identification approaches for a dataset in the expanded
domain.

A} True assignments provided by experts. B) 24 clusters identified by FlowSOM. C) 19 clusters identified
by CusterX. D) 20 clusters identified by PARC. (Source: personal collection).
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Table 4.3. Comparison of the results from chosen existing methods in reqular and expanded domains.

Regular domain Expanded domain

Algorithm #clusters CHI DBI CHI DBI
FlowSOM 24 7325144 1.4552 88863.82 1.3356
ClusterX 19 78742.18 1.4573 90746.60 1.3944
PARC 20 82305.73  1.4162 95594.57 1.3168

4.3.7 Clustering results for expanded feature space

The created and corrected expanded feature space, and its binary representation
were applied to PARC cell population identification. The model was run with the same
parameters each time. Results were visualized using the UMAP space for the appropriate

feature domain.

The clustering method found 20 and 14 populations for original expanded and binary
transformations of the expanded feature space, respectively. The evaluation metrics were
calculated considering the identified cell type subpopulations and are presented in Table 4.4.
The best results were obtained for the binary transformation of the expanded feature space.
However, based on the expert's annotations, the number of clusters was smaller than
expected. The visualizations (Figure 4.18.) reveal that the small subpopulations remained

unidentified, especially for the binary expanded feature space.

Table 4.4. A detailed summary of the clustering results for the dataset in the expanded domain.
The calculated evaluation metrics include information about cell subpopulations.

Transformation #clusters CHI DBI
Original 20 95594.567  1.3168
Binary 14 102633.50 1.2984

Since the higher number of features in the expanded domain may influence the
results, if not all of them contribute to the identification process, it was decided to apply the

feature selection method before feeding the data into the model.
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Figure 4.18. PARC clustering results for expanded feature domain in different data transformations.

The clustering results are presented in the UMAP projection of the appropriate feature space. A) True
assignments in the original expanded space {(membership values). B) Predicted clusters in the original expanded
domain. C) True assignments in the binary expanded feature space. D) Predicted assignments in the binary
expanded feature space. (Source: personal collection).

4.3.8 Clustering results for expanded feature space with feature selection

The feature filtration criterion was established using the original expanded feature

domain and adapted to the binary transformation.

For each feature, four statistics were calculated: mean, variance, Relative Diversity
Index (RDI), and a ratio of non-zero values to all values (Figure 4.19.). The characteristics were
used for feature selection with an appropriate cut-off value as a criterion for discarding

features. The best results were obtained using the relative diversity index (RDI).

A selection method was applied to the values in the expanded domain using the
threshold for RDI measure equal to 0.17. The goal of feature selection was to filter out
features that may negatively influence the results since not all of the markers’ components

may contribute to the expression profile of the cell populations.
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Figure 4.19. Characteristics of expanded feature domain.

The statistics were calculated for each feature in the expanded domain (without transformation). A) The number
of non-zero to all values. B) Mean values. C) Relative diversity index values. D) Variance values. (Source: personal
collection).

The Gaussian Mixture Decomposition established the threshold with Bayes Factor as
the stopping criterion. The decomposition of RDI values resulted in two components, and
their intersection indicated the cut-off value. For the binary expanded feature space, the
threshold was established based on RDI values calculated for features in that space in a

similar manner.
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Figure 4.20. Decomposition of Relative Diversity Index values for the expanded domain features and the
cut-off values.

A) Probability density functions for the two GMM components in the original expanded feature space. The blue
vertical line indicates the intersection point between the lines and the cut-off value of 0.17. B) The
decomposition of RDI values for the binary expanded domain with the vertical blue line representing the cut-off
value of 0.11 as the intersection between the first two components. {Source: personal collection).
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The PARC clustering algorithm was applied to each variant of the dataset with the
same parameters as before. Figure 4.21. presents the results on UMAP embedding in the

reqular feature domain for better comparison with other results.

The clustering algorithm was able to find 13 and 11 cell populations in the original
expanded and binary transformations of the expanded feature space after feature selection,

respectively. The summary of the results is presented in The clustering results are presented in

the UMAP projection of the appropriate feature space. A) True assignments in the original expanded space
(membership values). B) Predicted clusters in the original expanded space. C) True assignments in the binary
expanded feature space after feature selection. D) Predicted assignments in the binary expanded feature space

after feature selection. (Source: personal collection).

Table 4.5.
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Figure 4.21. PARC clustering results for expanded feature domain after feature selection.

The clustering results are presented in the UMAP projection of the appropriate feature space. A) True
assignments in the original expanded space (membership values). B) Predicted clusters in the original expanded
space. C) True assignments in the binary expanded feature space after feature selection. D) Predicted
assignments in the binary expanded feature space after feature selection. (Source: personal collection).
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Table 4.5. A detailed summary of the clustering results for the dataset in the expanded domain after
feature selection.
The calculated evaluation metrics include information about cell subpopulations.

Transformation #clusters CHI DBI
Original 13 105392.04 1.5606
Binary 14 103723.85  1.3079

The best metrics were obtained for the original expanded feature space in terms of
the Calinski-Harabasz Index and binary transformation in terms of the Davies-Bouldin Index.
However, all the DBI values are slightly lower than the results without feature selection for the
same dataset transformation. Feature selection caused the algorithm to find fewer clusters
for the original expanded space, but the result almost did not change for the binary expanded

domain.

Since the expanded feature space, applied transformation, and feature selection
method were not sufficient to identify the cell types defined by experts or their
subpopulations, it was decided to introduce another way for cell-type identification. This
divisive approach will examine each found cluster separately and determine if it should be

further divided.

4.3.9 Clustering results - divisive approach

The clustering results of the original and binary expanded domains (Table 4.5) are very
similar. Therefore it was decided to check the results for both dataset transformations after

the second division.

The divisive approach consisted of the PARC division and k-Means division or, again,
the PARC division of each cluster. The first PARC division was conducted using the locally
optimized expanded feature space, and the results were described in the previous section.
The resulting clusters were applied to the second division determined by the GAP statistic.
The GAP statistic also indicated how many groups should be created from the parent cluster
using the k-Means algorithm. Before any split, each cluster was applied to feature selection
with a threshold of 0.17 (original expanded domain) or 0.11 (binary expanded domain) (Figure
4.20.B). Therefore the feature space was optimized for each cluster before deciding if the

group should be split and into how many subclusters. The PARC algorithm was run with
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default parameters and ‘jac_weighted_edges’ set to False for speed up (recommended by the
authors). The k-Means method was run with distance metric set to ‘euclidean’ for continuous

variables and ‘hamming’ for binary.

The algorithm decided to divide almost all the clusters further. The divisions
produced 2 to 7 new subpopulations; therefore, the final number of groups was 27 to 41.
Figure 4.22 shows the second divisions of the algorithm, where the divisions are presented in
both the original and binary expanded domains. Table 4.6. presents a detailed summary of the

obtained results.
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Figure 4.22. Final results for Samusik's dataset cell-type identification.

The first row presents results for the original expanded space, and the second row for the binary expanded
feature space. A) True assignments provided by experts on UMAP projection of the original expanded domain. B)
Locally optimized second division in the original expanded domain using the k-Means algorithm. C) Locally
optimized second division in the original expanded domain using the PARC algorithm. D) True assignments
provided by experts on UMAP projection of the binary expanded domain. E} Locally optimized second division in
the binary expanded domain using the k-Means algorithm. F) Locally optimized second division in the binary
expanded domain using the PARC algorithm. (Source: personal collection).

Table 4.6. Results for different two-step clustering approaches for Samusik's dataset.

Transformation . ].St. _2‘nfi #clusters CHI DBI
division division
- PARC k-Means 27 9458171 1.4415
Original
PARC PARC 34 75348.24  2.1048
Binar PARC k-Means 28 89442.34  1.3957
y PARC PARC 4 82203.24  1.8460
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Table 4.7. presents the evaluation scores for all the steps leading to the final result in
the original expanded domain, which generated the best results. The Calinski-Harabasz Index
measure was the major score in the evaluation of the algorithms; the second most important
information was the number of clusters. Although the middle stages of analysis (PARC
clustering with and without feature selection) have a higher CHI than the final stage, the
number of identified cell populations is too low. After the second division, the metrics are still

better than the results for the regular domain.

Table 4.7. Final results for Samusik's dataset and comparison with previous steps for the original expanded
domain.

Original Second division
Full original expanded with original
Metric Regular domain expanded domain with expanded
domain feature domain
selection (k-Means)
CHI 82305.73 95594.57 105392.04 94581.7
DBI 1.4162 1.3168 1.5606 1.4415
#clusters 24 20 13 27

The generated visualizations of the clustering results (Figure 4.22.) reveal that the
final algorithm found additional subpopulations from the main cell types defined by experts
(for example, the yellow and green clusters). Still, some cell populations were not discovered,
like those overlapping in the original expanded feature space (in UMAP projection, Figure

4.22.D).

Using PARC as a second step resulted in many identified cell populations that tend to
overlap in the UMAP space and, overall, based on CHI and DBI scores, are worse than the
results obtained with k-Means. On the other hand, using PARC allowed for identifying gd T-
cells (dark pink color at the top part of Figure 4.22.C). The overlapping, however, is not a big
problem since it may result from the visualization of the labels in the UMAP projection that
was generated using all the features. In contrast, the clusters were developed in the

optimized feature space.
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The clustering in the original expanded feature space gave the best results for the
Samusik dataset regarding CHI. Still, it is worth noting that the k-Means results in the binary

expanded dataset also produced the second-best results in terms of DBI.

4.4 Results for the drug-resistant Tuberculosis dataset from Stellenbosch
University

This section presents the results for the dataset provided by Stellenbosch University
partners from studies on drug-resistant Tuberculosis. Since the annotations for the cell types
are unknown, the procedure was fully unsupervised. The dataset was applied to the
transformations and methods presented in the doctoral thesis. Moreover, the interesting
aspect was establishing the cluster composition in terms of the patient cells’ counts.
To accomplish this, the two-way ANOVA identified the factors significantly influencing cluster

formation.

4.4.1 Dataset preparation

The dataset contains over ten million cells and 32 markers (details were presented in
Section 1.5.1.) The dataset was ArcSinh transformed, and the batch effect was removed with

cyCombine.

GMM decomposition was applied to each marker to create the set of components that
were further used to get probabilities for each cell belonging to that component (Figure
4.23.). The GMM decomposition of all markers resulted in 314 new features. The binary

representation of the expanded feature space was also prepared.

anal probability
e )

Figure 4.23. Process of creating the expanded feature space for the dataset from scientific partners on
a CD45 marker example.

The marker expression values are decomposed into GMM components, and the conditional probability is
calculated. The conditional probability lines are further corrected into the membership function. {Source:
personal collection).
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UMAP projection was generated for the original (Figure 4.24.) and binary expanded
domain (Figure 4.25.). Additionally, some isolines are superimposed into the UMAP plot to
reveal dense areas of cells. The lighter the color, the more cells the region contains. The
visualization aimed to help evaluate the clustering results since the expert's labels are not
given. The clusters should more or less match the patterns visible in the UMAP projection.
Since the visible peaks are elongated, more groups should be expected in that region because

it is probably a mixture of multiple cell types.

UMAP, D
2 9 UMAP,

Figure 4.24. UMAP projection for the original expanded domain of the Tuberculosis dataset.

A) UMAP projection with contour plot showing the most densely occupied areas by cells from the dataset. Yellow
and white colors indicate the densest areas. B) The 3D surface plot shows the UMAP space's dense areas.
(Source: personal collection).
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Figure 4.25. UMAP projection for the binary expanded domain of the Tuberculosis dataset.

A) UMAP projection with contour plot showing the most densely occupied areas by cells from the dataset. Yellow
and white colors indicate the densest areas. B) The 3D surface plot shows the UMAP space's dense areas.
(Source: personal collection).
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4.4.2 Clustering results

The cell-type identification with PARC was conducted on the processed dataset
following the pipeline invented with Samusik's dataset. First, the algorithm with default
parameters and ‘jac_weighted_edges’ set to False identified the primary cell populations.
Then, the second division was applied to the results from the first division to get the final
number of subpopulations. The steps were performed in the locally optimized feature space

with the thresholds estimated during the analysis of Samusik’s dataset.

Figure 4.26. Identified primary cell populations in the Tuberculosis dataset after the first division with
PARC.

A) UMAP projection for the original expanded domain. B) First division (ten clusters) in the original expanded
domain. C) UMAP projection for the binary expanded domain. D) First division (ten clusters) in the binary
expanded domain. (Source: personal collection).
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Figure 4.27. Second division results for the Tuberculosis dataset.

A) UMAP projection for the original expanded domain. B) Second division with k-Means algorithm in the original
expanded domain. C) Second division with the PARC method in the original expanded domain. D) UMAP
projection for the binary expanded domain. E) Second division with k-Means algorithm in the binary expanded
domain. F) Second division with the PARC method in the binary expanded domain. (Source: personal collection).

The first division resulted in ten original and binary expanded domain clusters (Figure
4.26). The clusters were further divided with PARC and k-Means algorithms, and the details
are presented in Table 4.8. The best approach was combining PARC (first division) with
k-Means (second division) in the binary expanded domain, resulting in CHI equal to 279392.04
and DBI 3.8382, with 27 cell populations. The second best approach was PARC and k-Means in
the original expanded domain (CHI=184546.25).

Table 4.8. Clustering results for the Tuberculosis dataset.

Transformation . 1.St. .Z_nfi #clusters CHI DBI
division division
Original PARC k-Means 23 184546.25  7.1780
PARC PARC 50 118034.15  8.4905
Binary PARC k-Means 27 279392.04 3.8382
PARC PARC 75 137326.07 3.7878

Visually, the best approach generated well-separated clusters consistent with the

structure of UMAP projection, including small aggregates of cells and bigger cell populations.
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The second division using PARC usually generates more clusters than k-Means with GAP

statistics.

I:|0ther cells
[ Cluster no. 25

Expression
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Figure 4.28. Comparison of expression values between the chosen rare subpopulation of cells and others.
Gray color indicates all cells except those belonging to cluster number 25, which are presented in green.
For some markers, the expression differences between the two groups of cells are significant (CD19, CD172,
CD14, Mtb, IL4).

Among the resulting clusters, three contain less than 1% of all data (around 0.005%
each) and are considered rare subpopulations. One of the small clusters was compared to
other cells to investigate whether its marker profile differs significantly. For this purpose, the
small green group was chosen. The original marker expressions were compared between the
cluster and other cells in Figure 4.28. The dominant components in the expanded space were
also compared with five different clusters placed in various locations in the UMAP space, as
indicated in Figure 4.29. The figure presents four, the most relevant for the green cell group,

markers for simplicity.

Based on the expression values in Figure 4.28., it can be concluded that the rare
subpopulation is indeed distinct from other clusters. The marker profile for that group has

significant differences compared to others.

183



CD14 CD172 IL4 CD19

values values

Figure 4.29. Comparison of the dominant marker components for the chosen rare subpopulation and four
others.

The visualization presents four markers: CD14, CD172, IL4, and CD19. The color indicates the appropriate cluster.
For example, the green one is the rare subpopulation that contains about 0.005% of cells in the Tuberculosis
dataset. Other groups are placed in different locations in the UMAP projection.

4.4.3 Cluster composition analysis with two-way ANOVA test

The created clusters were analyzed with a two-way ANOVA test to determine if a
group of patients and treatment (stimulation conditions) impact the composition of each cell
population. In addition, a Kolmogorov-Smirnov test for normality determined that the patient
cell frequencies have a distribution different than Gaussian. Therefore the test was
performed on ranks. Results from the ANOVA test for each identified cell population are

presented in Table 4.9.
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The ANOVA results indicate no interaction between the patient group (Healthy Donors,
Other Lung Diseases, and Tuberculosis) and the treatment (Unstimulated, PPD, or PHA
stimulated). However, the significant impact (p-value<0.05) that is also confirmed with a large

effect size (>0.14) has the patient group on the composition of the cell populations.

Table 4.9. Two-way ANOVA results {p-value, effect size) for each cluster of the Tuberculosis dataset.

Group-
Treatment- Group-
Treatment- adjusted Group-
adjusted adjusted Interaction
No. adjusted ANOVA treatment
ANOVA group ANOVA effect size
ANOVA group treatment interaction
effect size treatment
effect size

1 0,0082 0,2791 0,0264 0,2048 0,4136 0,1037

2 0,0007 0,4544 0,1224 0,1137 0,9931 0,0061

3 0,0000 1,3149 0,7023 0,0183 0,9896 0,0076

4 0,9574 0,0022 0,3415 0,0566 0,9656 0,0145

5 0,0791 0,1389 0,6309 0,0239 0,9011 0,0268

6 0,2565 0,0723 0,8496 0,0084 0,6578 0,0626

7 0,0994 0,1257 0,0275 0,2024 0,9815 0,0103

8 0,3758 0,0515 0,0370 0,1841 0,9860 0,0089

9 0,2765 0,0681 0,5494 0,0312 0,9950 0,0052
10 0,1994 0,0862 0,1540 0,1007 0,9619 0,0154
11 0,0005 0,4792 0,6717 0,0206 0,4574 0,0952
12 0,6721 0,0206 0,2882 0,0659 0,8824 0,0298
13 0,0005 0,4778 0,6967 0,0187 0,8753 0,0309
14 0,0244 0,2098 0,2006 0,0859 0,8753 0,0309
15 0,0000 1,1773 0,8720 0,0070 0,5114 0,0856
16 0,0000 1,097 0,7369 0,0158 0,6174 0,0686
17 0,0001 0,5793 0,8472 0,0085 0,9979 0,0033
18 0,0010 0,4277 0,8680 0,0073 0,9954 0,0050
19 0,0004 0,5028 0,8121 0,0107 0,9511 0,0177
20 0,0022 0,3679 0,0034 0,3383 0,9680 0,0139
21 0,0300 0,1969 0,0285 0,2001 0,9715 0,0131
22 0,0016 0,3890 0,0758 0,1414 0,5682 0,0763
23 0,0283 0,2005 0,9268 0,0039 0,8875 0,0290
24 0,0627 0,1526 0,3603 0,0537 0,9623 0,0153
25 0,4908 0,0372 0,1019 0,1242 0,9208 0,0234
26 0,5202 0,0341 0,1446 0,1043 0,9543 0,0170
27 0,7715 0,0134 0,2110 0,0831 0,9119 0,0250
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To check whether some of the created clusters contain more cells from a particular

group of patients, boxplots of each patient group proportions (a portion of cells from the

sample that is present in a given cluster) are presented in Figure 4.30. Moreover, the

composition of each cluster is illustrated in Figure 4.31. in the form of a barplot showing the

contribution of each group of patients.
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Figure 4.30. The proportion of each patient group in each of the resulting clusters for the Tuberculosis

dataset.

A) Healthy Donors group proportions in each cluster. B} Other Lung Diseases group proportions in each cluster.
C) Tuberculosis group proportions in each cluster. (Source: personal collection).
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Figure 4.31. Composition of clusters in Tuberculosis dataset.

Red - Tuberculosis (TB) group, green - Other Lung Diseases (OLD) group, and blue - Healthy Donors (HD) group.
Each bar shows the contribution of the cells from each group of patients in the cluster. For example, cluster nr
22 contains mostly cells from the Tuberculosis group of patients. {(Source: personal collection).

Clusters 22 to 27 contain the smallest number of cells. While 22 to 24 have mostly
Tuberculosis cells, 25 to 27 are a mixture of Healthy Donors and OLD cells. Based on
Figure 4.31. and ANOVA results, seven clusters are composed of TB cells (1, 2, 3, 13, 14, 22, 23,
24). In addition, about seven groups contain mostly HD cells (11, 17, 18, 19), and about five have

more OLD cells than the others (7, 15, 16, 20, 21).

4.5 Discussion and conclusions

Analysis of single-cell mass cytometry data is challenging and requires careful
investigation and implementation of methods resulting from the high dimensional feature
space and the data heterogeneity. Data heterogeneity may significantly impact the clustering
results - algorithms may find more groups of phenotypically similar cells than the number
identified by an expert. Therefore it is underlined by authors of many publications in the field
[2] [44] [46] that depending on the expert annotations during clustering evaluation may not
be the best solution. High-dimensional data makes it difficult to find rare cell populations,

especially if the difference between the number of cells in specific and rare cell groups is
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significant. These challenges are still being investigated, and many researchers are trying to

find the optimal solution.

In the doctoral thesis, the problems regarding cell-type identification were examined
using Samusik's dataset [22]. Three main aspects were addressed that bring novelty to the
topic: an exploration of the data heterogeneity and identification of cell subpopulations that
were further included in the evaluation of clustering methods; generation of an expanded
domain where each feature brings potential information about rare subpopulations; and
proposition of cell identification approach with feature selection and step division in the

expanded domain.

Samusik's dataset was preprocessed and embedded into a two-dimensional UMAP
space for visualization. UMAP revealed dense areas containing aggregates of similar cells
that were further identified as cell subpopulations after 2D GMM decomposition in the UMAP
space. Bayes Factor determined the optimal number of components. However, the outliers
(single points scattered in the space) greatly influenced the results. The total number of
identified subpopulations was 90; each cell type was decomposed into 1-8 components after
filtration of the candidates with too low component proportions. The found subpopulations

were then included in the calculation of evaluation metrics.

For each resulting cluster, the centroid in the original feature space was computed
and compared to each centroid from the set of subpopulation candidates. The subpopulation
to which the distance was the smallest determined the new label - the parent cell type label
of the subpopulation was assigned as a new label for the cluster. This novel approach makes
the results more independent from the expert's annotations, still considering them. That
means if the clustering algorithm finds two subpopulations of the same cell type identified by
the expert, it shouldn't be “punished” for separating the cluster into two smaller ones since
the data heterogeneity is the cause of the decision. Expert annotations are burdened with
human errors because the accurate manual annotation of single-cell high-dimensional
datasets is impossible. The knowledge of cell subsets and their biological functions is not yet

fully understood.
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After preprocessing, the expanded domain was created and corrected, increasing
from 38 to 318 features. The proposed correction algorithm for conditional probability lines
works as intended, discarding inactive components, and fixing the lines to have the right
order and only one “peak.” However, the proposed algorithm has limitations and
disadvantages. It requires the knowledge of Gaussian Mixture Model components. Suppose
the dataset has a massive number of observations (like the Tuberculosis dataset from
Stellenbosch University with more than 10 million cells). In that case, the Gaussian Mixture
Decomposition may take a long time and result in a large number of components. The
parameters and criteria used in the algorithms should be adapted to overcome the problem,

for example, the minimal allowed sigma for a Gaussian component.

Moreover, normalization may distort the correction and therefore is impossible to
apply. The new lines no longer represent conditional probabilities; as a result, the
transformation was called a membership function. On the other hand, the lines preserve their
original shape at the top of the peaks and the points of intersection of the lines, so it still can
be used for determining cut-off values, which is a widely used approach in different fields.
Several improvements will be applied to the algorithm for faster and better results, like
correcting only those lines requiring this. The correction algorithm was
tested on different datasets and is publically available and updated reqularly.

(https://github.com/Aleksandra795/membership_function.git)

Usually, high-dimensional datasets are applied to downsampling and dimensionality
reduction to remove noninformative features, instead of expanding dimensions. Still, the new
features carry a subset of information derived from the origin marker expression values. By
assumption, such features should be more informative than the origin feature and help to find

even rare cell populations.

The unsupervised Calinski-Harabasz Index (CHI) and Davies-Bouldin Index (DBI) were
the most important scores for evaluating the results. The indices were calculated using
cluster labels returned by a model and the dataset in the regular domain in order to score the
model based on the information that is not transformed. The supervised metrics were used to

show how their values change when subpopulations are included, but the metrics are not an
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appropriate indicator of the clustering results since they measure the compatibility of the
results with the experts' annotations which may lead to misinterpretation. The unsupervised

metrics should be safer because they depend on the data and its hidden structure.

Moreover, the Calinski-Harabasz Index was the leading choice in deciding which
method was the best at each analysis step. The higher the values, the better defined and
separated, dense, convex clusters - as we could expect from the cell groups (which is
partially visible in the UMAP projection). On the other hand, the Davies-Bouldin Index
disadvantage is having higher values for convex clusters; therefore, it is possible to obtain
better results for Calinski-Harabasz Index and, at the same time, worse for Davies-Bouldin
Index. This situation took place a few times during the analysis. If the results were similar, the
second factor in deciding which method was better was the number of clusters. Therefore,
it was important that the proposed method for cell population identification had good metrics

and could find a reasonable number of populations.

Among the proposed methods for cell-type identification so far, only a few have the
potential to process big datasets and find rare subpopulations. The study compared three
methods using Samusik's dataset in the regular and expanded feature space domain. The
clustering of the dataset in the expanded domain resulted in better scores than the reqular
domain, confirming the dimensionality expansion's usefulness. The best results were
obtained for the PARC algorithm (both domains), with the best values of CHI=95594.57 and
DBI=1.3168 for the expanded feature domain. Therefore only PARC was used for further

comparisons of results.

The expanded feature space may influence the clustering results negatively due to
the possible course of dimensionality. The new features carry valuable information that can
distinguish various types of cells, but the model may lose this information when the decision
about creating a cluster is based on all available features. This may explain the smaller
number of identified cell populations using the expanded domain with PARC. Also, algorithms
may not work well for data distribution so far from Gaussian distribution. The expanded
feature space in the original form gathers the observations on two ends of the feature range:

near zero for the cells that do not express the particular feature and near one for those that
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express the feature. A small part of the dataset is placed somewhere in the middle of the
distribution (Figure 4.4.). The binary transformation directly shows if a cell expresses a given
feature instead of fuzzy membership and speeds up the computations. Therefore it was

decided to check its potential.

Finally, to address the mentioned problems with the impact of dimensionality on
model and clustering results, some feature selection criteria were proposed. The tested
possibilities were the filtration using mean values, variances, Relative Diversity Index, and the
ratio of non-zero (minimal) values to all values. The best method was found empirically after
numerous experiments - the Relative Diversity Index gave the best results. However, the
other transformations resulted in an overestimated number of clusters that reached even few
thousand, which indicated that the algorithm is not performing well and the result is not

optimal.

The threshold for feature selection was set to 0.17 based on the GMM decomposition
of the RDI distribution values for the original expanded domain and 0.11 for the binary
expanded domain. The same thresholds were further used for the Tuberculosis dataset. The
cut-off points discarded most features with a negligible impact on the clustering results;
however, the approach should be tested in more detail. Furthermore, the same cut-off value
may not be optimal for each dataset and algorithm. Therefore, a more data-driven approach
should be proposed in the future. Another interesting direction would be using the relative

diversity index combined with another feature selection method.

After applying the transformations and feature selection methods, the PARC results
were similar for the original and binary expanded feature space. Based on Calinski-Harabasz
Index, the original expanded domain was better. On the other hand, the number of clusters
was smaller than the results without the feature selection, and the Davies-Bouldin Index was
worse than for the binary expanded domain. The number of groups reached 13 and 14 for the
original and binary expanded domains, respectively, which may indicate that the populations
overall are well-defined, dense, and convex. Still, since it is known that there are more cell

types, it was decided to introduce the second division of the clusters.
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A few things may explain the results. First, although PARC is fast and one of the most
accurate methods, it may not be suitable for the expanded feature space. Secondly, the
filtration criterion may not be sufficient to preserve only those features that have a tangible
impact on cluster formation. Perhaps a completely different approach would select more
informative features than the checked statistics (mean, variance, Relative Diversity Index,
and non-zero values to all ratio). Finally, the expanded feature space is a complex concept
that has not been used before in such a way. It requires a lot of different kinds of experiments
to gain an understanding of the data structure and to be able to use it properly and take full
advantage of the information it carries. Nevertheless, the first impression (Figure 4.13.)

indicates that expanding the feature space with GMM components is beneficial.

For the second division, it was decided to perform the clustering using PARC and k-
Means algorithms on both dataset transformations with the proposed feature selection.
Several experiments were conducted to see which approach, dataset, and algorithm would
result in the best identification. In the end, a k-Means algorithm gave the best results. Each
cluster from the first division was considered for further subdivision with the GAP statistic,
which also determined the optimal number of groups making the whole algorithm

independent of the prior knowledge about cell types within the dataset.

The results were worse for PARC as the second division algorithm, and the number of
clusters was heavily overestimated. On the other hand, PARC can find relevant
subpopulations that were overlooked by k-Means. What is essential, because the k-Means
algorithm could not process a huge number of cells, sampling was introduced - from each
cluster, a sample of 10,000 cells was randomly selected and applied to clustering. Given the
cluster centroids, the rest of the cells were assigned to the closest one. Sampling may cause
some of the rare subpopulations to be unidentified. In the future, this step should be refined

to minimize the possibility of losing rare cell types.

Results from the second division were better than those obtained using the reqular
space regarding the Calinski-Harabasz Index. Although not all known cell populations were

found, and some of the bigger groups of cells were divided into smaller subpopulations, the
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metrics were calculated using the labels on the dataset in the regular domain. Therefore, the

CHI value increase indicates a real separation improvement.

The overlooked known cell populations might be the result of creating the expanded
feature space. In the UMAP projection, cell types representing a particular family of cells that
are phenotypically similar and perform similar functions are placed closer to each other than
in the regular domain. This is visible in Figure 4.16.C-D. Therefore some of the types of cells
started to overlap. It can be a UMAP artifact since it is a two-dimensional representation of
the high-dimensional dataset, but it also may be a symptom of what is happening with the

distances between cells in the expanded space.

Another thing worth noting is that when the division is performed in a locally
optimized feature space, the position of the data points in the space is different. Therefore,
the UMAP projection for the selected markers would also look different. Returning to the
UMAP space generated using the complete set of features could not correctly reflect the

subpopulations. As a result, some of them overlap in the visualization.

The proposed algorithms for cell-type identification were successfully applied to a
twenty times larger Tuberculosis dataset than the one used during implementation. In
addition, the two-step approach enabled labeling cell clusters in a very dense agglomerate of

cells.

Interestingly, the best results for the Tuberculosis dataset were obtained in the binary
expanded domain. The transformation also worked well for Samusik’s dataset, although the
original expanded did better. Nevertheless, the results point to a great potential for that kind
of transformation that may lead to a state-of-the-art approach when combined with a set of
adapted algorithms for processing and clustering binary data. This idea will be further

developed in future studies.

The two-step approach successfully identified three rare subpopulations of cells.
Investigation of the marker profiles for one of them revealed significant differences
compared to other cells. That subtype's dominant marker components are often placed in the
middle of the marker's range values. The proposed expanded feature domain allowed for

extracting the information during clustering.
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The two-way ANOVA test identified cell populations that significantly differ in the
number of cells from each patient group. A deeper investigation of the cells and their

processes may help understand Tuberculosis patients' drug resistance.

The high density of points in the UMAP projection of the Tuberculosis dataset is
independent of the UMAP parameters; therefore, the UMAP uses the same set of parameters
as the projections for other datasets. The visualization reveals the difficulty of finding cell
subpopulations in such an extensive dataset. There is also the possibility that the challenge is
a consequence of combining three groups of patients whose cells were subjected to three
other stimulation conditions. Cells may be in various states with varying degrees of response
to a given factor, causing them to stick together. Perhaps separating the groups of patients

and merging the resulting similar clusters between experiments would be a better approach.

The Tuberculosis dataset provided by partners from Stellenbosch University is
complex and should be further investigated. Furthermore, independently from the clustering
technique, the other ways of analysis should be checked, like the clustering of HD, OLD, and

TB patients separately or separating the samples based on stimulation conditions.

Another interesting future direction could be developing approaches that use deep
learning techniques for clustering. Deep learning tries to answer the problems of traditional
machine learning techniques. Neural networks can process massive amounts of data, making
them suitable for single-cell datasets. The learned data representation is usually more
informative and results in better clustering. These solutions comprise three main parts: the
feature extractor (usually an Autoencoder or Convolutional Neural Network and their
variations), network loss, and the clustering loss (principal loss + auxiliary loss)[59]. The field
of deep clustering is still evolving, some architectures have been proposed, but their training
is challenging; therefore, developing methods for clustering based on deep learning is an

exciting possibility for further analysis.
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b Summary of the doctoral thesis

The doctoral thesis aimed to propose new solutions for mass cytometry data analysis
of high-dimensional datasets to be able to process the samples provided by scientific
partners from Stellenbosch University. The Tuberculosis dataset consists of more than 10
million cells and 32 markers. A large number of observations is a challenge for most of the
existing solutions - some of the methods cannot fit the calculations in computer memory, or
the measures take several days. The results are often inaccurate even if an algorithm can
process such an extensive dataset. Another significant limitation of the existing solutions is
the manual gating performed for filtering unwanted events or identifying cell populations by
experts for model evaluation purposes. In the doctoral dissertation, we tried to address the
mentioned problems using high-dimensional public datasets. Because the data are usually
smaller than the Tuberculosis one, it was faster and easier to implement and test new
approaches. In addition, the data provided by partners were unsupervised and did not contain

all necessary markers or observations to perform all tasks.

Manual pre-gating, if performed inaccurately, may lead to removing cells and
contamination of the data with debris, beads, or double events. Moreover, the manual
approach makes it impossible to reproduce the results. More automated techniques
appeared to overcome this problem, but the user must still decide about various parameters
that may affect the final result. Therefore, a new data-driven pre-gating method was
proposed that can be used without predefining any parameters. While trained on one dataset,
it is easily generalizable to others and still works well even when some of the pre-gating

markers are missing.

Another topic discussed was batch effect correction. There was no robust and
accurate method for reducing the technical variance in the data introduced during an
experiment for a long time. In recent years some techniques have been proposed. Since there
is more than one method to choose from, someone may wonder which of them will fit the
best to a given dataset and how the choice may further influence the cell-type identification
results. The comparison analysis using a subset of the Tuberculosis dataset with the

following clustering allowed granting cyCombine as the superior method over others.
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Nevertheless, the essential part of the doctoral dissertation was Chapter 4, which
focuses on cell-type identification approaches. Some authors use manual assignments of
cells into the known types that experts prepared. However, following the predefined types of
cells while implementing new clustering techniques may lead to results that are not optimal.
Manual annotations lack the consensus between experts on the cell types and their “borders”
in feature space. The experts generate the annotations through gating on bi-axial plots of
pairs of markers known to be characteristic of certain types of cells. Such gating assumes
relationships between pairs of features, ignoring other relations. With the uncovered
knowledge about the tissue composition analyzed, the annotations are far from perfect and
may lead to misunderstanding of the found groups. The proposed novel approach for model
evaluation considers data heterogeneity that allows the model to find additional aggregates
of cells. The technique may be used to evaluate clustering model performance with a degree
of freedom for the model to decide whether the assumed cell types contain distinct groups of

observations that may differ significantly.

As mentioned above, existing solutions are limited to the number of observations -
the algorithms are not scalable or accurate enough to generate relevant results. In the study,
a new approach for the clustering of cells was proposed. One crucial observation from a
series of experiments during the research was separating the information about cell
populations from one feature to several new ones after decomposition with Gaussian Mixture
Model. Specific rare cell populations highly expressed some of the new features; therefore, it
was decided to examine the potential of the expanded dataset domain. The presented results
confirm the usefulness of data transformation in cell identification studies, but the nature of
new features is complex and needs more investigation to be fully appreciated. The first
experiments revealed the restraint of the group division algorithm, which may result from the
underlined similarity of the cell type origin in the expanded space; therefore, applying the

second division of the created clusters allowed for more in-depth identification.

Nevertheless, the mass cytometry data analysis of high-dimensional datasets is a
broad topic that can be investigated for many years. Despite the proposed solutions for many
problems the scientific community faces, the algorithms still can be improved in terms of

accuracy and computation time. The many possibilities and continuous technological
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development, including the rapid evolution of artificial intelligence systems, make the topic
exciting and worthy of further research. Such an interesting aspect may be the application of
deep clustering techniques to the cell-type identification task. Deep clustering combines
artificial intelligence power of learning patterns and processing high-dimensional datasets
with unsupervised statistical methods [59]. Therefore, in my opinion, it is a future direction

for mass cytometry and other single-cell technologies.
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6 Supplementary materials

Table 6.1. The panel used for staining the Tuberculosis dataset from Stellenbosch University.

Antibody target Isotope label Cell types
Extracellular Antibodies
CD3 Er70 T-cells
Monocytes/macrophages,
CD14 Eulb1
granulocytes
Dendritic cells,
CcD172 Lul75
monocytes/macrophages
CD19 Ho165 B-cells, dendritic cells
Dendritic cells,
CD33 Tm169 monocytes/macrophages,
granulocytes
CD45 Y89 Leukocytes
CD326 Pr141 Epithelial cells
T-cells, B-cells, dendritic cells, NK
cells,
CD11b Nd144
granulocytes,
monocytes/macrophages
CD4 Nd145 CD4 T-cells
Dendritic cells,
CD36 Gd155
monocytes/macrophages
CD56 Sm149 NK cells, T-cells
Cav-1 Nd146 Ubiquitous expression
B-cells, dendritic cells,
Lox-1 Gd156
macrophages, MDSC
Monocytes/macrophages,
CD15 Yb172
granulocytes
CD206 Er168 Alveolar macrophages
HLA-DR Yb174 Leukocytes
T-cells, B-cells, dendritic cells, NK
cells,
CD1lIc Tb159
granulocytes,
monocytes/macrophages
CDlc Dy161 T-cells, B-cells, dendritic cells,
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monocytes/macrophages

CD&7 Bi209 Ubiquitous expression

Intracellular Antibodies

INF-g Gd158
IL-17A Nd148
IL-4 Nd142
IL-10 Er166
IL-1b Yb176
IL-6 Sm147
iNOS Yb171
Arg-1 Dy164
TGF-b Dy163
IDO-1 Gd160
S100AB Yb173
TNF-a Sm152
Mtb (PPD) Eu153
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