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Abstract 

Fibroblast Growth Factor Receptor (FGFR) signaling constitutes one of the most prominent  

pathways involved in cell growth and development as well as cancer progression. All members of 

the FGFR family have oncogenic gene alterations involved in some human cancers. For instance, 

FGFR1 amplification is found in the bladder, gastric, breast, and lung cancers, while liver, uterine, 

lung, and gastric cancers may exhibit FGFR2 amplification, mutations, and fusions. Bladder and 

lung cancers frequently display FGFR3 mutations and fusions. This indicates that FGFR is a po-

tential target for the new anti-cancer treatment. 

This study was aimed at the identification of potential biomarkers indicating cancer cells’ 

sensitivity/resistance toward a novel small-molecule pan-FGFR inhibitor developed by Polish 

pharmaceutical company Celon Pharma S.A. Within previous project (CELONKO project; 

STRATEGMED II program financed by NCBR) RNA sequencing (RNA-seq) experiment was 

conducted on cell lines that were either resistant or sensitive to that inhibitor. Using the RNA-seq 

data, a comprehensive analysis of gene expression in cell lines from three different cancer types 

(lung, stomach, and bladder) was performed to identify potential predictive biomarkers related to 

mechanisms of FGFR tyrosine kinase inhibitors (FGFR-TKIs) resistance.  

To address the limitations of standard analytical methods in low sample size experiments, 

which often yield results that do not meet the requirements of clinically suitable biomarkers, the 

“Pipeline for Rapid Evaluation, and Discovery of Important biomarker CandidaTes” (PREDICT) 

was developed. Applying statistical properties implemented in the PREDICT pipeline, resulted in 

smaller numbers of candidate biomarkers, however, with more promising properties. Importantly, 

by removing numerous uncertain candidates, PREDICT pipeline application may reduce the num-

ber of entities entering the validation phase what could lead to cost- and effort reduction in bi-

omarker discovery. 

Based on signaling pathway analysis, combined with the use of PREDICT pipeline and 

literature search, it was possible to uncover the link with potential resistance mechanisms towards 

FGFR-TKIs for the majority of selected genes. These findings indicate that resistant tumor cells 

exhibit compensatory activation of pathways regulating cell proliferation, migration rate, survival, 

invasiveness, and antiapoptotic properties, in response to FGFR-TKIs treatment. 
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By comparing gene sets selected in three different cancer types, several potentially univer-

sal biomarkers of FGFR-TKIs resistance were identified, including SSRP1 (Structure Specific 

Recognition Protein 1), CCNB2 (Cyclin B2), CDT1 (Chromatin Licensing And DNA Replication 

Factor 1), and CENPO (Centromere Protein O). These genes were commonly dysregulated in both 

stomach and bladder cancer and showed the same direction of change in expression in these two 

cancer types. They may serve as universal biomarkers for predicting FGFR-TKIs resistance in 

patients with diagnosed stomach or bladder cancer. 

In conclusion, the use of the PREDICT pipeline led to the filtering out the unwanted results, 

and the selected biomarker candidates possess characteristics suitable for a biomarker that can be 

applied in clinical settings. An extensive literature search uncovered the link with potential re-

sistance mechanisms towards FGFR-TKIs for the majority of selected genes. The next step in 

biomarker development would be validation/qualification phase to confirm that the differential 

expression observed in the discovery phase can be seen using other methods and on the different 

biological material.
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Streszczenie 

Sygnalizacja poprzez receptory czynników wzrostu fibroblastów (ang. Fibroblast Growth 

Factor Receptor, FGFR) stanowi ważny mechanizm regulujący procesy proliferacji i różnicowa-

nia komórki. W wielu nowotworach mechanizm ten jest zaburzony, a główną przyczyną są róż-

nego typu nieprawidłowości genomowe. Na przykład amplifikacja FGFR1 występuje w raku pę-

cherza moczowego, żołądka, piersi i płuc, podczas gdy w raku wątroby, macicy, płuc i żołądka 

może wystąpić zarówno amplifikacja, jak i mutacje oraz fuzje FGFR2 z innymi genami. Mutacje 

i fuzje FGFR3 często występują w raku pęcherza moczowego i płuc. Dlatego hamowanie sygna-

lizacji FGFR jest przedmiotem badań i prób klinicznych w ramach rozwoju nowych terapii celo-

wanych. 

Celem niniejszej pracy było zidentyfikowanie potencjalnych biomarkerów związanych z 

wrażliwością/opornością komórek nowotworowych na nowy małocząsteczkowy inhibitor FGFR 

opracowany przez polską firmę farmaceutyczną Celon Pharma S.A. W ramach wcześniejszego 

projektu (projekt CELONKO, program STRATEGMED II sfinansowany przez NCBR) przepro-

wadzono eksperyment sekwencjonowania RNA (ang. RNA sequencing, RNA-seq) na liniach ko-

mórkowych opornych lub wrażliwych na ten inhibitor. Korzystając z danych z eksperymentu 

RNA-seq, przeprowadzono kompleksową analizę profilu ekspresji genów w liniach komórkowych 

z trzech różnych typów nowotworów (płuca, żołądka i pęcherza moczowego), aby zidentyfikować 

potencjalne biomarkery predykcyjne związane z mechanizmami oporności na inhibitor FGFR. 

Zestaw danych z sekwencjonowania DNA charakteryzował się niską liczebnością próbek, 

co jest typowym ograniczeniem wielu podobnych eksperymentów. Standardowe metody analizy 

nie radzą sobie dobrze z tym typem danych. Ponadto, brak odpowiednich filtrów sprawia, że wy-

niki mogą nie spełniać wymagań stawianych biomarkerom do zastosowań klinicznych. Dlatego, 

w ramach niniejszej pracy opracowano schemat obliczeniowy nazwany „Pipeline for Rapid Eval-

uation, and Discovery of Important biomarker CandidaTes” (PREDICT). Zastosowanie własności 

statystycznych zaimplementowanych w schemacie PREDICT pozwoliło wyselekcjonować mniej-

sze liczby potencjalnych biomarkerów, ale o bardziej obiecujących cechach. Eliminacja niepew-

nych kandydatów na etapie obliczeniowym, dzięki zastosowaniu schematu PREDICT, pozwoli na 

redukcję kosztów i wysiłku na etapie walidacji, który jest kolejną fazą rozwoju potencjalnego bio-

markera. 
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Na podstawie analizy szlaków sygnałowych, połączonej z użyciem schematu PREDICT 

oraz przeglądem literatury, odkryto związek z potencjalnymi mechanizmami oporności na inhibi-

tor FGFR dla większości wyselekcjonowanych genów. Otrzymane wyniki wskazują, że komórki 

uodpornione na działanie inhibitora FGFR wykształciły kompensacyjną aktywację szlaków regu-

lujących proliferację komórek, tempo migracji, przeżycie, inwazyjność i hamowanie apoptozy. 

Porównując zestawy genów wyselekcjonowane w trzech różnych typach raka, zidentyfi-

kowano kilka potencjalnie uniwersalnych biomarkerów oporności na inhibitory FGFR, a miano-

wicie SSRP1 (ang. Structure Specific Recognition Protein 1), CCNB2 (ang. Cyclin B2), CDT1 

(ang. Chromatin Licensing And DNA Replication Factor 1) i CENPO (ang. Centromere Protein 

O). Te geny miały zmienioną ekspresję zarówno w raku żołądka, jak i pęcherza moczowego i 

wykazywały ten sam kierunek zmiany ekspresji w obydwu typach raka. Dlatego mogą one służyć 

jako uniwersalne biomarkery do predykcji oporności na inhibitory FGFR u pacjentów ze zdiagno-

zowanym rakiem żołądka lub pęcherza moczowego. 

Podsumowując, użycie schematu PREDICT skutkuje odfiltrowaniem niepożądanych wy-

ników, a wyselekcjonowane geny kandydackie posiadają cechy odpowiednie dla biomarkera, 

który może znaleźć praktyczne zastosowanie kliniczne. Przegląd literatury pozwolił na określenie 

związku większości wyselekcjonowanych genów z potencjalnymi mechanizmami oporności na 

inhibitory FGFR. Wytypowani kandydaci w kolejnym kroku ich rozwoju jako biomarkera powinni 

być włączeni do fazy walidacji, z zastosowanie różnych metod i na różnym materiale biologicz-

nym. 
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 Introduction, hypothesis, aim 

Cancer is an increasingly prevalent disease that affects millions of people worldwide. The 

detection of cancer is carried out using various techniques such as imaging, tissue biopsies, and 

blood tests. These methods are essential in the early diagnosis of cancer, which is critical for suc-

cessful treatment and improving patient outcomes [1]. 

One of the elements of cancer diagnosis, monitoring, prognosis, and personalized treatment 

is the evaluation of different biomarkers. Biomarkers are measurable substances found in the 

blood, tissues, or other body fluids that indicate the presence of cancer or the risk for cancer de-

velopment. Biomarkers are also useful tools in the monitoring and treatment of the disease, as they 

provide valuable information on the biological behavior of cancer, its progression, and its response 

to treatment [2]. 

Over 25 different tumor markers have been approved so far and are routinely used in clin-

ical settings for both diagnosis and treatment monitoring [2, 3]. While some markers are cancer 

type-specific, others are linked to two or more cancer types. Even though any biological molecule 

has the potential to act as a tumor marker, most markers are either glycoproteins or proteins [2]. 

Initially, tumor markers were developed to test for cancer in asymptomatic people, but only 

a few markers have proven effective for this purpose. Presently, prostate-specific antigen (PSA) is 

the most commonly used tumor marker, although it has very low specificity. In fact, only a limited 

number of markers have clinically relevant predictive values for early-stage cancer diagnosis and 

are only effective when testing high-risk patients. Moreover, tumor markers are not the definitive 

method for diagnosing cancer. Tissue biopsy and histopathological evaluation is always required 

for definitive diagnosis. Alpha-fetoprotein (AFP) is another example of a tumor marker that can 

aid in the diagnosis of cancer, specifically hepatocellular carcinoma (HCC). However, AFP levels 

can also be increased in some liver diseases, although a certain threshold usually indicates HCC. 

Another example of a biomarker that has been extensively studied is the human epidermal growth 

factor receptor 2 (HER2). HER2 is overexpressed in some types of breast cancer and its expression 

indicates worse prognosis. However, HER2-targeted therapies have been developed, resulting in 

improved outcomes for patients with HER2-positive breast cancer [2]. 

In in-silico biomarker search studies that rely on data from high-throughput experiments, 

preselecting potential biomarkers can be accomplished using a variety of methods. Traditional 
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statistical techniques such as ANOVA or t-tests may be used, as well as more advanced techniques 

like uniform manifold approximation and projection (UMAP) and machine learning algorithms. 

However, due to the limitations of these methods, additional filtering methods are often necessary 

to identify biomarkers that will meet clinical requirements. These filters may include considera-

tions such as the biological relevance of the biomarker, its stability and reproducibility across dif-

ferent sample types, and its ability to provide accurate predictions of clinical outcomes to ensure 

that the most relevant and reliable biomarkers are identified. Despite a decade of intense effort and 

substantial investments of resources and labor, the number of biomarkers that have been clinically 

validated and approved by the regulatory agencies (e.g. Food and Drug Administration, FDA) is 

disappointingly small [4]. 

With the increasing availability of transcriptomic data, particularly from small sample size  

experiments, it has become increasingly important to develop robust and reliable methods for iden-

tifying biomarker candidates for further validation. The aim of my research was to develop a new 

pipeline specifically suited for selecting potential biomarker candidates based on data acquired 

from a small sample size RNA sequencing experiment. Statistical properties implemented in the 

pipeline developed in my research, were aimed at selection of smaller numbers of candidate bi-

omarkers, however, possessing better characteristics and suitable for a biomarker that can be ap-

plied in clinical settings. Moreover, removing numerous uncertain candidates, by applying this 

pipeline, may lead to cost- and effort-reduction at a validation phase which is further step required 

in biomarker discovery. Additionally, through pathway analysis there was undertaken attempt of 

in-silico validation of selected biomarker candidates, to ensure that they are biologically relevant  

and clinically useful. The ultimate goal of this research is to contribute to the ongoing efforts to 

improve cancer diagnosis and treatment by identifying more accurate and reliable biomarkers. 
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 Fibroblast Growth Factor Receptors (FGFRs) 

FGFRs are transmembrane proteins that belong to the subfamily of tyrosine kinase recep-

tors (RTK) which consist of five members (FGFR1-5) that have amino acid sequence homology 

[5]. These receptors possess three distinct regions: an extracellular domain, a hydrophobic trans-

membrane domain, and an intracellular tyrosine kinase domain [6, 7]. Unlike the other members, 

FGFR5, also known as FGFRL1, doesn’t has a tyrosine kinase domain, but it still participates in 

controlling the over-activation of the FGF/FGFR1 signaling pathway [8, 9]. FGFRs, by affecting 

signaling pathways like STAT, PI3K/AKT, and RAS/RAF/MAPK play a crucial role in the regu-

lation of migration, invasion, proliferation, and cell survival [10]. The FGF/FGFR signaling path-

way is crucial to various processes such as embryogenesis, angiogenesis, wound healing, and 

maintaining tissue homeostasis (Figure 1). It has a significant impact on differentiation and apop-

tosis as well [10]. 

The activation of FGFRs mainly occurs through the binding of fibroblast growth factors 

(FGFs), leading to the dimerization and intracellular kinase transautophosphorylation of the recep-

tors [11]. This process triggers intracellular signaling pathways [12]. In addition, FGFRs can be 

activated through chromosomal translocation, which results in gene fusion with other constantly 

expressed genes, leading to receptor activation without ligand binding [13]. In the gastric tissue, 

FGFR2 signaling triggered by FGF10 regulates the maintenance of stomach progenitor cells, mor-

phogenesis, and cellular differentiation during the early stages of epithelial growth, before differ-

entiation occurs [14, 15]. In lung development, FGFR signaling is essential as it increases lung 

epithelial cell growth and regulates mesenchymal cell proliferation and airway bud formation, as 

well as their branching [16, 17]. FGFR2 plays a crucial role in shaping bladder mesenchyme by 

influencing the sonic hedgehog (Shh) signaling pathway [18]. 

II.1. FGFR aberrations in human disease 

Dysregulation of FGFR signaling has been implicated in the development of several human 

diseases, including cancer, skeletal disorders, and developmental disorders (Figure 1). Abnormal 

FGFR signaling has been associated with various congenital disorders, such as craniosynostosis 

and Crouzon syndrome. Mutations in FGFR genes can cause various types of skeletal dysplasia, 

such as achondroplasia and thanatophoric dysplasia, leading to skeletal disorders [19]. FGFR mu-

tations have also been linked to the development of atopic dermatitis and other skin diseases [20]. 
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Figure 1. Summary of the role of FGF/FGFR signaling in various aspects of health and disease. This signaling path-

way is involved in the development of multiple organs including the lung, heart, urinary system, brain, skeleton, 

muscle, and skin. Additionally, it plays a role in tissue repair, regeneration, and inflammation. Endocrine FGFs reg-

ulate metabolism in various organs like the kidney, liver, brain, intestine, and adipose tissue. However, malfunctions 

of FGF/FGFR signaling can lead to diseases such as genetic conditions, cancer, chronic obstructive pulmonary dis-

ease (COPD), and chronic kidney disease (CKD) [19]. 

In a molecular profiling study performed by Next-Generation Sequencing on a large scale 

by Helsten et al. [21], it was found that 7% of cancers have aberrations of FGFRs. Genomic 

changes such as gain-of-function mutations, gene amplification, gene fusions, and chromosomal 

translocation can led to constitutive activation or increased signaling of FGF receptors [21, 22]. 
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The most frequent FGFR aberration in lung, stomach, and bladder cancer is gene amplification 

[21, 23]. 

FGFR2 amplification is associated with increased tumor cell proliferation in 1.2-9% of 

gastric cancer patients [24]. All members of the FGFR family have oncogenic gene alterations 

involved in some human cancers (Figure 2). For instance, FGFR1 amplification is found in the 

bladder, gastric, breast, and lung cancers [25-28], while liver, uterine, lung, and gastric cancers 

may exhibit FGFR2 amplification, mutations, and fusions [23, 29, 30]. Bladder and lung cancers 

frequently display FGFR3 mutations and fusions [23, 31, 32], whereas FGFR4 mutations are rare 

in cancers [33]. FGFR4 oncogenic mutations, N535K/D, and V550E/L, have been found in rhab-

domyosarcoma [16], while the G388C mutation may contribute to tumor progression, despite be-

ing a polymorphism [34]. 

 

Figure 2. Types of cancer with FGFR genomic changes [35]. 
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 Lung, stomach, and bladder cancers characteris-

tics 

Lung, stomach, and bladder cancer display FGFR aberrations most frequently as compared 

to other cancers. In addition, lung cancer is a leading cancer type according to overall cancer inci-

dence and mortality. Thus, elaboration of effective FGFR inhibitor would potentially help to save 

significant number of human lives.  

III.1. Lung cancer 

Lung cancer remains the leading type of cancer in both incidence and mortality worldwide, 

with 2,206,771 new cases and 1,796,144 deaths reported in 2020 (Figure 3). Approximately 18.4% 

of all cancer deaths are attributed to lung cancer [36]. 

Most new cases of lung cancer are diagnosed at an advanced stage due to the lack of symp-

toms in the early disease. Patients with advanced lung cancer have a poor prognosis, with a 5-year 

relative survival rate estimated at 5.2% [36]. 

Lung cancer is categorized based on its histological type. Typically, lung carcinomas are 

classified by their size and appearance. Non-small cell lung carcinoma (NSCLC), which makes up 

around 84% of all lung cancers, is further divided into adenocarcinoma (ADC, around 40-50% of 

cases), squamous cell carcinoma (SCC, approximately 20-30% of cases), and large cell carcinoma 

(LCC, 10% of cases) [37]. 

Various risk factors have been linked to and used as indicators of the likelihood of devel-

oping lung cancer. The most significant risk factors are smoking and age. Other factors that may 

contribute to the risk of lung cancer include sex, race/ethnicity, family history of lung cancer, 

COPD, emphysema, and exposure to asbestos and radon [38]. 

III.2. Stomach cancer 

In 2020, stomach cancer was the sixth most common type of cancer worldwide (Figure 3), 

with approximately 1.1 million new cases, and the fourth leading cause of cancer-related deaths, 

with roughly 800,000 fatalities [36, 39]. Men have a twofold higher incidence rate than women. 

In some South Central Asian countries such as Iran, Afghanistan, Turkmenistan, and Kyrgyzstan, 

it is the most commonly diagnosed cancer and the leading cause of cancer death in men. The 
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highest incidence rates are observed in Eastern Asia and Eastern Europe, particularly China, had 

the highest number of stomach cancer cases, with nearly 820,000 new cases and 580,000 deaths, 

whereas Northern America and Northern Europe tend to have lower rates [36, 39-41]. 

Stomach cancer has a poor prognosis with a five-year survival rate estimated at less than 

20% [39, 42-44] due to its asymptomatic early stage and the majority of cases being diagnosed at 

an advanced stage [45, 46]. 

Stomach cancer is rare in persons under 45 years of age, with the incidence and death toll 

from the disease rising with increasing age [39, 40]. The occurrence of stomach cancer is about 

twice as common in men as in women [36, 39, 41]. 

During the first half of the 20th century, stomach cancer was the top cause of death from 

cancer in the United States and Europe [47, 48]. However, in recent decades, the incidence and 

death rate from stomach cancer have significantly decreased in several countries [36, 39]. 

Stomach cancer is a complex disease with multiple factors contributing to its development, 

including lifestyle and environmental risks like obesity, low socioeconomic status, family history, 

smoking, inherited predisposition, low physical activity, Helicobacter pylori infection, radiation 

exposure, gastroesophageal reflux disease, poor diet, and alcohol use [46]. 

III.3. Bladder cancer 

Bladder cancer is the twelfth most common malignancy globally, with a reported 573,278 

new cases in 2020 (Figure 3) [36, 41]. It affects men more frequently than women, with a ratio of 

3 to 4, which is thought to be due to lifestyle and exposure differences, although a higher risk has 

also been linked to stasis of urine-contained carcinogens in men with prostate enlargement and 

urinary retention [49, 50]. 

The most significant risk factor for bladder cancer is advanced age, with the average age 

of diagnosis ranging from 70 to 84 years [51]. The increased risk of bladder cancer is attributed to 

a combination of factors including exposure to carcinogens such as tobacco smoke, benzene chem-

icals, and aromatic amines, along with a reduction in the DNA repair ability as a result of aging 

[49]. 
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Bladder cancer can present at a stage of non-muscle-invasive (NMIBC) disease, muscle-

invasive (MIBC), or metastatic disease [52], with 75% of patients diagnosed with NMIBC and 

50% of these being categorized as low-grade [53]. 

 

Figure 3. New cases and deaths from 36 types of cancers in 2020. Based on data published by GLOBOCAN [36]. 
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 Tyrosine kinase inhibitors (TKIs) 

FGFR belongs to the large family of tyrosine kinase inhibitors. In 2001, the United States 

Food and Drug Administration (FDA) approved the first tyrosine kinase inhibitor to be used in the 

clinics [54]. Imatinib targets the Abelson (ABL) tyrosine kinase expressed as a deregulated fusion 

protein (BCR–ABL) in chronic myeloid leukemia [55]. With the discovery of gene alterations and 

rearrangements in BRAF, NTRK, ROS1, ALK, and EGFR, the development of TKIs has rapidly 

progressed [56]. Today there are more than 20 TKIs approved by the FDA [57-63]. The infor-

mation on these drugs is summarized in Table 1. These drugs have been used mainly in combina-

tion (or in the sequence) with traditional chemotherapy and radiotherapy in the treatment of ad-

vanced cancers, including lung adenocarcinoma (ADC), stomach cancer, and bladder cancer, and 

have significantly improved patient outcomes [37, 64]. 

Table 1. TKIs approved by FDA [65]. 

TKIs Company 
Time of  

release 
Application of disease Target 

Imatinib Novartis 2001 CML, GIST Abl, PDGFR, SCFR 

Gefitinib AstraZeneca 2003 NSCLC EGFR 

Nilotinib Novartis 2004 CML Bcr-Abl, PDGFR 

Sorafenib Bayer 2005 Advanced RCC Raf, VEGFR, PDGER 

Sunitinib Pfizer 2006 GIST, Advanced RCC PDGFR, VEGFR, 

Dasatinib Bristol-Myers Squibb 2006 CML Bcr-Abl, SRC, PDGFR 

Lapatinib GlaxoSmithKline 2007 Breast cancer EGFR 

Pazopanib GlaxoSmithKline 2009 Advanced RCC,STS,NSCLC VEGFR, PDGFR 

Crizotinib Pfizer 2011 NSCLC ALK 

Ruxolitinib Novartis 2011 myelofibrosis JAK1, JAK2 

vandetanib AstraZeneca 2011 Advanced Thyroid cancer VEGFR, EGFR 

Axitinib Pfizer 2012 Advanced RCC VEGFR 

Bosutinib Wyeth 2012 CML Abl, SRC 

Afatinib Boehringer Ingelheim 2013 NSCLC EGFR 

Erlotinib Roche 2013 NSCLC EGFR 

Ceritinib Novartis 2014 NSCLC ALK 
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Osimertinib AstraZeneca 2015 NSCLC EGFR 

Lenvatinib Eisai 2015 DTC VEGFR 

Alectinib Roche 2015 NSCLC ALK 

Regorafenib Bayer 2017 HCC, CRC,GIST VEGFR, EGFR 

Neratinib Puma 2017 Breast cancer HER2 

Brigatinib Ariad 2017 NSCLC ALK 

 

IV.1. Clinical development of FGFR-TKIs 

Since the deregulation of FGFR signaling has been linked to the development and progres-

sion of cancer, FGFR has become exploited as potential therapeutic target [66]. Erdafitinib was 

first approved for metastatic urothelial carcinoma based on positive results from a phase II trial 

(Table 2, NCT02355597) [67, 68]. Currently, a phase III trial (NCT03390504) is underway to 

compare the efficacy of Erdafitinib versus Vinflunine or Docetaxel or Pembrolizumab in advanced 

urothelial cancer. Meanwhile, Pemigatinib was authorized as the first targeted therapy for ad-

vanced cholangiocarcinoma in 2020 [69, 70]. Both these drugs are undergoing multiple clinical 

trials for various indications, including non-small cell lung cancer, advanced solid tumors, breast 

cancer, liver cancer, castrated prostate cancer, and more. Many other FGFR tyrosine kinase inhib-

itors (FGFR-TKIs) candidates are in the early stages of clinical trials [71, 72]. More data about 

FGFR-TKIs that are already approved for clinical use, and others that are investigated in clinical 

trials for their effectiveness in treating tumors related to FGFR aberrations, is shown in Table 2. 

Table 2. FGFR-TKIs FDA approved and under development [71-73]. 

Drug Company Target 
Approved/ 

clinical trials 

Erdafitinib (JNJ-42756493) Janssen Pan-FGFR 

FDA approved 

Phase I/IIa 

NCT02421185 

NCT03473743 

Phase II 

NCT02365597 

NCT03210714 

NCT04083976 
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NCT02699606 

NCT03827850 

NCT02952573 

NCT03999515 

NCT04172675 

Phase III 

NCT03390504 

Pemigatinib (INCB054828) Incyte Pan-FGFR 

FDA approved 

Phase II 

NCT02924376 

NCT02872714  

NCT04003610 

NCT03914794 

NCT03822117  

NCT03011372 

NCT04256980 

NCT04003623 

Phase III 

NCT03656536 

Futibatinib (TAS-120) Taiho Pharm Pan-FGFR 

FDA approved 

Phase II 

NCT02052778 

NCT04024436 

CH5183284 (Debio-1347) Debio FGFR1/2/3 
Phase II 

NCT03834220 

ASP5878 Astellas Pan-FGFR 
Phase I 

NCT02038673 

Dovitinib (TKI258) Novartis FGFR1/2/3; KIT; VEGFR 

Phase II 

NCT01861197 

NCT01379534 

PRN1371 Principia Pan-FGFR 
Phase I 

NCT02608125 

LY2874455 Eli-Lilly Pan-FGFR; VEGFR2 
Phase I 

NCT01212107 
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Infigratinib (BGJ398) Novartis Pan-FGFR 

Phase II 

NCT02150967 

NCT02160041 

NCT04233567 

Phase III 

NCT03773302 

NCT04197986 

AZD4547 AstraZeneca Pan-FGFR 
Phase II 

NCT02465060 

Derazantinib (ARQ-087) Basilea 
Pan-FGFR; RET; DDR2; 

KIT;VEGFR; PDGFRβ 

Phase I/II 

NCT01752920 

NCT04045613 

Phase II 

NCT03230318 

E7090 Eisai FGFR1/2/3 
Phase II 

NCT04238715 

HMPL-453 Chi-Med FGFR1/2/3 
Phase II 

NCT04353375 

Rogaratinib (BAY-1163877) Bayer Pan-FGFR 
Phase III 

NCT03410693 

Roblitinib (FGF401) Novartis FGFR4 
Phase I/II 

NCT02325739 

ODM-203 Orion FGFR; VEGFR1/2/3 
Phase I/IIa 

NCT02264418 

ICP-192 InnoCare Pan-FGFR 
Phase II 

NCT04492293 

H3B-6527 Eisai /H3 FGFR4 
Phase I 

NCT02834780 

Fisogatinib (BLU-554) Blueprint FGFR4 
Phase I 

NCT02508467 

 



  

24 | P a g e  

 

IV.2. FGFR-TKIs resistance mechanisms 

The use of small-molecule inhibitors of FGFR activity as an anti-cancer strategy holds 

great promise. However, the development of resistance to these drugs is becoming a significant  

challenge. Several mechanisms of acquired resistance have been documented in the literature (Fig-

ure 4) [37]. 

 

Figure 4. Mechanisms of resistance to FGFR inhibitors: (A) gatekeeper mutations in the FGFR kinase domain, (B) 

activation of alternate signaling pathways like EGFR, ERBB3, or MET, (C) loss of PTEN leading to increased acti-

vation of PI3K-AKT, (D) the epithelial-mesenchymal transition (EMT) may lead to resistance to FGFR inhibitors, 

(E) drug efflux regulation by ABCG2, and (F) the inactivation of RAS by RASA1. Resistance to FGFR inhibitors 

can arise when RASA1 is inactivated [74]. 

The first significant mechanism of resistance to FGFR inhibitors is a mutation at the gate-

keeper residue of the protein. This residue is situated in the active site and regulates access to the 

FGFR hydrophobic pocket localized behind the ATP-binding pocket. Different mutations, such as 

FGFR1V561M and FGFR1N546K, have been linked to resistance to FGFR inhibitors [75, 76]. 

The FGFR1N546K mutation leads to increased ATP affinity and thus resistance to the drug, while 

FGFR1V561M reduces drug affinity [76]. The FGFR3V555M mutation is also linked to resistance 

to PD173074 and AZD4547 inhibitors [77]. FGFR2V564F was found to cause resistance to 
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BGJ398 in patients with cholangiocarcinoma as it creates a hindrance in the binding pocket of 

FGFR2 and BGJ398 [78]. RNA sequencing analysis and in vivo study on a mouse model revealed 

7 missense mutations in the FGFR2 kinase domain in breast cancer (I567S, N568H/T, V581L, 

E584G, S587L, K660R, and K678M). It was confirmed that the decrease in sensitivity to 

AZD4547 in breast cancer was caused by the presence of these mutations in FGFR2 [79]. 

Another significant factor contributing to resistance to FGFR inhibitors is the feedback 

activation of the survival loop due to FGFR inhibition (Table 3). This was demonstrated through 

a high-throughput proteomic study of DMS114 (SCLC cell line) and RT112 (urothelial carcinoma 

cell line) cells exposed to BGJ398, which showed increased activation of AKT and its target, 

GSK3 [80]. In urothelial carcinoma, it was revealed that the PI3K pathway can play a role in 

formation of resistance to FGFR inhibitors. This pathway can be activated by EGFR or ERBB3 

when FGFR is inhibited [81]. The role of EGFR in resistance to FGFR inhibition was confirmed 

in FGFR3 mutant cancer cells: the downregulation of MAPK signaling, may lead to the sustained 

activation of EGFR through a reduced ubiquitination [82]. In endometrial cancer cell lines PTEN 

loss has been implicated as a mechanism of resistance to FGFR inhibition [83]. In breast cancer, 

activation of the drug efflux protein ABCG2, inactivation of Ras p21 protein activator 1 (RASA1), 

and overexpression of MET have been linked to resistance to AZD4547 [79]. Additionally, epi-

thelial-mesenchymal transition (EMT) has been implicated in the resistance of gastric cancer cell 

lines to FGFR inhibitors [84]. 

Table 3. Signaling pathways involved in FGFR-TKIs resistance [75-84]. 

Cancer type Signaling pathway involved in resistance FGFR-TKIs  

Bladder cancer EGFR signaling pathway PD173074  

Breast cancer MET, inactivation of RASA1, drug-efflux AZD4547  

Endometrial cancer Loss of PTEN Ponatinib  

Gastric cancer EMT AZD4547  

Gastric cancer EMT BGJ398  

Gastric cancer EMT PD173074  

Lung cancer PI3K/AKT and GSK signaling pathway BGJ398  

Urothelial cancer PI3K/AKT and GSK signaling pathway BGJ398  

Urothelial cancer EGFR/ERBB3-AKT signaling pathway AZD4547  
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 Biomarker discovery 

The earliest recorded effort to identify markers for malignancy dates back 2000 years and 

is documented in an Egyptian papyrus, which described a distinction between breast cancer and 

mastitis [85]. In 1846, Henry Bence-Jones made the discovery of abnormal protein precipitate in 

urine of some patients. This was later identified as an immunoglobin light chain which may be 

overexpressed in multiple myeloma and Waldenström macroglobulinemia. This tumor marker is 

now called Bence-Jones protein and used in diagnostics and monitoring the disease [85]. In 1965, 

Gold and colleagues isolated a glycoprotein molecule from human colon cancer specimens and 

uncovered the first "tumor antigen," later known as carcinoembryonic antigen (CEA) [86]. 

Today there is a great effort and substantial investments of resources and labor devoted to 

discovery of new biomarkers, even though the number of biomarkers that have been clinically 

validated and approved by the FDA is rather small comparing to these efforts. Some markers are 

specific to a single type of cancer, while others are linked to multiple cancer types. However, 

majority of them have low sensitivity and specificity. Most markers are proteins or glycoproteins, 

but low molecular weight substances, such as vanillylmandelic acid and homovanillic acid, are 

used for diagnosing neuroblastoma. Additionally, DNA and RNA nucleic acids are being explored 

as potential tumor markers [87]. 

V.1. Definition of a biomarker 

In 2015 the FDA and the National Institutes of Health (NIH) at a joint leadership confer-

ence created a group, with the purpose of establishing common definitions and making them easily 

accessible through a regularly updated online document referred to as the "Biomarkers, Endpoints, 

and other Tools" (BEST) resource [88]. 

According to BEST, the basic definition of a biomarker is: “A defined characteristic that 

is measured as an indicator of normal biological processes, pathogenic processes or responses to 

an exposure or intervention.” [88]. The definition of biomarkers encompasses a wide range of 

characteristics, including radiographic, histologic, physiologic, and molecular attributes that can 

be used to assess the effectiveness of therapeutic interventions. These biomarkers should not be 

confused with clinical outcome assessments (COAs), which measure how a person feels, func-

tions, or survives and are directly important to patients. COAs can be used to establish regulatory 

approval standards for therapeutics, while biomarkers serve multiple purposes, one of which is to 
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predict COAs based on measurements [89]. Within this work I will discuss mostly cancer bi-

omarkers, applicable in cancer diagnosis, prognostication and prediction of the treatment response. 

V.2. Characteristics of an ideal biomarker  

In clinical application there are five main uses of tumor markers [86, 89, 92, 93]: 

• Screening for cancer in a healthy or high-risk population 

• Diagnosing cancer or its specific type 

• Assessing a patient's prognosis 

• Predicting a patient's response to a given therapy 

• Monitoring tumor response to the therapy and/or recurrence. 

The ideal diagnostic marker should possess three key features: (a) specificity to a particular 

disease, (b) early detection before clinical diagnosis, and (c) high sensitivity to minimize false 

positives. Furthermore, the marker's levels should closely match the extent of the tumor, showing 

any changes in its progression or regression, with a short half-life that allows for frequent moni-

toring. The screening test should be easy, cheap and reproducible (Table 4) [90]. 

Table 4. Features of an ideal tumor biomarker [90]. 

Features Description 

Highly specific Only detectable in a single type of tumor. 

Highly sensitive Not present in normal or non-malignant health conditions. 

Long lead-time Adequate time window to change the natural course of the disease. 

Levels correlate with tumor 

burden 

The ability of the tumor marker to predict the course of the disease 

and its future outcomes. 

Express early Should express early in the disease progression. 

Short half-life 
Relatively short half-life, reflecting temporal changes in tumor bur-

den and response to therapy. 

Simple and cheap test 
The ability to use the marker as a screening test; easy to assay, less 

expensive. 

Easily obtainable specimens Acceptability by target population. 
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Features Description 

Reproducible 
Give reproducible results and multiplexing is possible for screening 

purposes. 

Having a test that is highly sensitive and highly specific with all the ideal features is desir-

able, but often unattainable. Typically there is a trade-off. Clinical tests typically recognize “nor-

mal” and “abnormal” specimens, as well as those that fall into a gray area. Therefore, establishing 

the criteria for positive and negative results requires making choices [91]. 

For example, in situations where treatment is difficult, expensive, and harmful to the pa-

tient, but the condition itself has low transmissibility a diagnostic biomarker may need high spec-

ificity (low false positives), whereas highly infectious diseases may require diagnostic biomarkers 

with high sensitivity to prevent further spread of the disease and avoid false negatives during di-

agnosis [92]. In the case of monitoring biomarkers, it may be necessary for them to have higher 

sensitivity at the expense of specificity. This is because when used in patients with a diagnosed 

medical condition, there is no need to detect the disease, but rather to monitor its course [91, 92]. 

Greater sensitivity leads to a lower likelihood of having the disease if the test result is 

negative, resulting in a higher negative predictive value, whereas greater specificity leads to a 

lower probability of being disease-free if the test result is positive, resulting in a higher positive 

predictive value [91]. 

V.3. Clinically used biomarkers 

According to Wishart et al. [93] an author of the MarkerDB online database of molecular 

biomarkers there are 26,493 clinically approved biomarkers (by 2020), despite that only several 

dozen are used in a daily clinical practice [87]. Currently, the most commonly utilized tumor 

marker is Prostate-Specific Antigen (PSA). PSA is a protein that is overexpressed in prostate can-

cer patients. The biomarker is used for the early detection of prostate cancer, although it has low 

specificity, and to monitor disease progression (in this application it performs much better). An-

other example of a tumor marker used for diagnosing cancer, particularly hepatocellular carcinoma 

(HCC), is Alpha-fetoprotein (AFP). Although, elevated levels of AFP can also indicate some liver 

diseases, generally a threshold level is often considered a sign of HCC [87]. Some tumor markers 

commonly used in the clinical setting are presented in Table 5. 
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Table 5. Examples of commonly used tumor markers in the clinic [87]. 

Marker Application 

Prostatic-specific antigen 

(PSA) Prostate carcinoma  

Cancer antigen 125 

(CA 125) 
Ovarian and fallopian carcinoma 

Cancer antigen 15-3 

(CA 15-3) 
Breast cancer 

Cancer antigen 19-9 

(CA 19-9) 
Pancreatic and ovarian cancer 

CA-72-4 Colorectal cancer 

Alpha-fetoprotein 
Hepatoblastoma, hepatocellular carcinoma, and 

germ cell tumors 

Carcinoembryonic antigen 

(CEA) 

Colorectal, gastric, pancreatic, lung, and breast 

carcinomas 

Beta-2-microglobulin  

(B2M) 
Multiple myeloma and lymphoma 

Human chorionic gonadotropin 

(hCG) 
Choriocarcinoma and testicular carcinoma 

Thyroglobulin Thyroid cancer 

Other tumor markers include e.g. CYFRA 21-1 (a marker for lung cancer), HE4 (a marker 

for ovarian cancer), Squamous cell carcinoma antigen (a marker for squamous cell lung cancer), 

Neuron-specific enolase (a marker for lung cancer), Chromogranin A (a marker for neuroendo-

crine tumor), and Thymidine kinase (a marker for multiple myeloma and chronic lymphocytic 

leukemia) [87]. 

V.4. Predictive biomarker 

A biomarker that can predict the likelihood of experiencing a favorable or unfavorable 

effect from exposure to a medical product or environmental agent is called a predictive biomarker  

[88]. To prove the usefulness of a biomarker for this purpose, a rigorous approach to clinical stud-

ies is required. In an ideal study, patients with or without the biomarker, are randomly assigned to 

one of two or more treatments (or a placebo), and differences in outcome should be significantly 

related to the presence or absence (or the level) of the biomarker. Randomization to treatment 
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versus control groups is important because simply showing that positive biomarker patients re-

ceiving an investigational therapy fare better than negative biomarker patients, does not establish 

the biomarker's predictive value [88, 89]. 

Clinical studies aiming to assess the predictive ability of a biomarker should typically en-

roll patients with a range of biomarker values or include those who are either positive or negative 

for binary biomarkers. However, in certain cases where there is compelling evidence that an in-

vestigational therapy will not be effective or could even be harmful in a certain biomarker-defined 

subgroups, the exclusion of biomarker-negative patients from the trial may be necessary. On the 

other hand, when a biomarker identifies a subset of patients who are most likely to benefit from 

the therapy, enriching the trial with those patients can increase the statistical power and help detect 

a larger effect of the therapy. Additionally, the use of an enrichment strategy can affect the in-

tended population to receive the therapy after regulatory approval [88]. 

In the design and implementation of clinical trials, predictive biomarkers are crucial for 

enrichment strategies. By enrolling participants with high levels of a predictive biomarker, the 

treatment's actual effect can be more clearly demonstrated, especially during the pre-registration 

stage of drug development. Using predictive biomarkers for enrichment is a more focused ap-

proach than using prognostic biomarkers, which increase event rates but cannot select particular 

patients who are more likely to respond (or not) to therapy [89]. 

Much of the current consensus about treatment choice in clinical practice relies on the same 

principle. Elevated blood pressure is treated with antihypertensive medications, low Hb levels are 

treated with blood transfusions, and acute reperfusion is indicated for patients with ST-segment 

elevation on an electrocardiogram - all of which are examples of predictive biomarkers used to 

select patients who are likely to respond to therapy. In population health strategies, populations 

with high levels of predictive biomarkers are identified as needing additional intervention. For 

instance, patients with high HbA1C (hemoglobin A1C) levels benefit the most from aggressive 

diabetes treatment. The development of genetic and genomic markers for precision medicine is 

also a major growth area for predictive biomarkers, such as HER2 receptor-positive assays in can-

cer patients who are more likely to respond to treatment with Herceptin [89]. Some examples of 

prognostic biomarkers (currently used and potential) are shown in Table 6. 
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Table 6. Examples of prognostic tumor markers. 

Marker Application 

Thiopurine methyltransfer-

ase (TPMT) genotype or ac-

tivity 

When evaluating patients who may be treated with 6-mercapto-

purine or azathioprine, Thiopurine methyltransferase (TPMT) 

genotype or activity can be used as a predictive biomarker to 

identify individuals at risk for severe toxicity due to high drug 

concentrations [88]. 

BRCA1/2 gene mutations 

BRCA1/2 gene mutations may serve as predictive biomarkers for 

sensitivity to ionizing radiation, as they can hinder the ability of 

the genes’ protein products to repair double stranded DNA 

breaks, a form of damage induced by ionizing radiation [88]. 

Human leukocyte antigen 

allele (HLA)–B*5701 geno-

type 

Abacavir treatment in HIV patients can be assessed with HLA-

B*5701 genotype as a predictive biomarker to identify individu-

als with a high risk for severe skin reactions [88]. 

HER2 gene amplification 

The analysis of the HER2 gene amplification is the test used in 

cancer diagnostics for the evaluation of the eligibility of breast 

cancer patients for treatment with trastuzumab or lapatinib [94]. 

Somatic mutations in codon 

600 of the BRAF gene 

Assessment of somatic mutations in codon 600 of the BRAF 

gene in patients with advanced melanoma in order to administer 

treatment based on dacarbazine (DTIC), and vemurafenib [94]. 

Assessment of the fusion 

gene EML4-ALK 

Assessment of the EML4-ALK fusion gene is critical in predict-

ing a colorectal cancer patients's eligibility for treatment with cri-

zotinib [94]. 

Squamous differentiation in 

non-small cell lung cancer 

Scagliotti et al. have suggested that the presence of squamous 

differentiation in non-small cell lung cancer can serve as a pre-

dictive biomarker, indicating that patients who receive 
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pemetrexed are likely to experience worse survival or progres-

sion-free survival outcomes than those who receive other stand-

ard chemotherapies such as docetaxel or cisplatin in combination 

with gemcitabine [88]. 

Certain cystic fibrosis trans-

membrane conductance reg-

ulator (CFTR) mutations 

In clinical trials assessing cystic fibrosis treatment, specific mu-

tations in the cystic fibrosis transmembrane conductance regula-

tor (CFTR) gene can serve as predictive biomarkers to identify 

patients who are more likely to benefit from particular treatments 

[88]. 

BReast CAncer genes 1 and 

2 (BRCA1/2) mutations 

The presence of BRCA1/2 mutations can serve as predictive bi-

omarkers for identifying women with platinum-sensitive ovarian 

cancer who are likely to benefit from treatment with Poly (ADP-

ribose) polymerase (PARP) inhibitors [88]. 

Mutation status in codons 

12 and 13 of the KRAS 
gene 

To determine eligibility of advanced colorectal cancer patients 

for targeted therapy using monoclonal antibodies such as cetux-

imab or panitumumab, the mutation status in codons 12 and 13 

of the KRAS gene is a common predictive biomarker. 

 

V.5. Biomarker performance indices 

The performance of a biomarker is evaluated through its sensitivity and specificity. Sensi-

tivity refers to the ability to correctly detect disease in patients who have given condition (true 

positive), while specificity refers to the ability to correctly identify patients without given condi-

tion (true negative) [95]. In terms of predictive biomarker sensitivity refers to the likelihood of a 

positive biomarker test result for patients who will benefit from treatment compared to control, 

while specificity refers to the likelihood of a negative biomarker test result for patients who will 

not benefit from treatment compared to those who will [96].  
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KRAS is a gene biomarker that is mutated in approximately 35–45% of metastatic colo-

rectal cancers [97]. KRAS mutations may lead to resistance to anti-EGFR antibodies, thereby ne-

gating any potential benefits of antibody therapy and preventing its effectiveness. Thus, the pres-

ence of KRAS mutations could indicate a lack of response to anti-EGFR antibodies. KRAS gene 

is an example of a predictive biomarker with a specificity of 0.93 (CI, 0.87 to 0.97) and the sensi-

tivity of KRAS mutations for predicting lack of response is 0.49 (CI, 0.43 to 0.55), indicating that 

this biomarker is a highly accurate predictor of non-response to treatment [98]. 

To calculate sensitivity and specificity measures, a dichotomous prediction based on the 

biomarker and the patient's true disease status is used to create a 2x2 contingency table [95]. Table 

7 demonstrates how the frequency of predictions from a patient sample can be used to compute 

sensitivity and specificity. 

Table 7. Diagnostic matrix and their main parameters [95]. 

Disease 

Biomarker 
Present Absent 

Total 

Positive a (true positive) b (false positive) a + b 

Negative c (false negative) d (true negative) c + d 

Total a + c b + d a + b + c + d 

prevalence = (a + c)/a + b + c + d) 

sensitivity = a/(a + c) 

specificity = d/(b + d) 

positive predictive value = a/(a + b) 

Negative predictive value = (d/(c + d) 

Accuracy = (a + d)/(a + b + c + d) 

Youden index = sensitivity + specificity – 1 

While sensitivity and specificity are often reported in biomarker studies, they may not al-

ways be directly applicable to clinical practice. Instead, clinicians are often more interested in the 

probability of disease presence or absence given a positive or negative test result, which is reflected 

by the positive predictive value (PPV) and negative predictive value (NPV) (Table 7) [95]. 

A good example of a biomarker in terms of assessment of PPV and NPV performance 

indices is prostate-specific antigen (PSA). The PSA level at which there are justified indications 

for performing a prostate biopsy is still debatable. It is commonly practiced to perform the biopsy 

at a concentration higher than 4 ng/ml. For this value, the positive predictive value (PPV) of de-

tecting prostate cancer (PCa) is only 30%, but the negative predictive value (NPV) of the test is 

81%, indicating that this biomarker has very low performance as a diagnostic biomarker but is a 

highly accurate in the manner of disease monitoring [99, 100]. 
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The proportion of patients correctly classified by a test is referred to as predictive accuracy, 

which includes the sum of true positive and true negative tests. Although accuracy is occasionally 

reported as a global evaluation of the test, it is suggested that authors provide more than just an 

estimate of accuracy [95]. 

The Youden index, Y, is a measure of how well a test performs compared to the optimal 

performance. Y is defined as the sum of sensitivity and specificity minus one, and it is sometimes 

referred to as "regret," representing the utility loss due to uncertainty about the true state. Accu-

racy, on the other hand, is a weighted average of sensitivity and specificity, using disease preva-

lence as the weight. Since sensitivity, specificity, negative and positive predictive values, and ac-

curacy are interrelated, knowledge of any three of these measures is sufficient to calculate the 

remaining two [95]. 

Basics of ROC Curve 

The ROC (receiver operating characteristic) curve consists of a set of pairs of proportions, 

which represent true positive and false-positive results, or sensitivity and (1 - specificity). These 

pairs are obtained for various cutoff points and can be used to create an empirical ROC curve, or 

a smoothed curve can be generated through the fitting, typically using the binomial distribution 

(Figure 5) [95]. 

 

Figure 5. This graph demonstrates how the predictive value of Brain Natriuretic Pept ide (BNP) for cardiogenic pul-

monary edema in elderly patients (>65 yr) admitted to the emergency department for acute dyspnea is determined by 

the relationship between sensitivity (true positive) and 1 - specificity (true negative). (A) The ROC curve displays 

the empirical and continuous line, where the area under the empirical ROC curve was 0.87 0 (95% confidence inter-

val 0.800–0.910). (B) The optimal threshold was selected based on the mathematical distance (d) from the point 

where both sensitivity and specificity are equal to 1, which corresponds to a BNP concentration of 250 pg/ml, with a 

sensitivity = 0.780 and a specificity = 0.900. The best cutoff should be preferably chosen based on the Youden index 

(sensitivity + specificity − 1), which, in this case, provided the same cutoff value. However, the optimal cutoff 

should consider the prevalence and cost-benefit analysis. Data adapted from Ray et al. [95, 101]. 
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The AUCROC (area under the ROC curve), measures discrimination and is equivalent to the 

probability that a biomarker is higher for a diseased patient than a control. In other words in terms 

of predictive biomarker the area under the receiver operating characteristic (AUCROC) curve, which 

is a measure of how well the biomarker can distinguish between patients who will not respond to 

treatment and those who will. A biomarker is considered to have good discriminative properties 

when AUC is greater than 0.75 and excellent when it exceeds 0.90. The ROC curve, which pro-

vides a global assessment of test accuracy without any a priori hypothesis about the cutoff chosen, 

is relatively independent of prevalence and is a simple plot that can be easily understood visually 

[95]. 

ROC curves have three summary measures for accuracy: (1) sensitivity and specificity at 

a chosen cutoff point, (2) AUCROC, and (3) partial area under a portion of the curve for a prespec-

ified range of values. However, interpreting AUCROC can be problematic due to the influence of 

biomarker values of no clinical relevance, and comparing two ROC curves based on the entire area 

may lead to different conclusions. Therefore, it is recommended to examine ROC curves in the 

context of the partial area or average sensitivity over a range of clinically relevant false positive 

rates, in addition to AUCROC [95]. 

Epidermal growth factor receptor (EGFR) is an example of a predictive biomarker where 

AUCROC is used in performance assessment. EGFR is a protein biomarker that is overexpressed or 

mutated in a subset of non-small cell lung cancer patients. The biomarker predicts the response to 

treatment with EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib. The 

AUCROC for EGFR is approximately 0.7-0.8, indicating a moderately accurate predictor [102]. 

V.6. Validation methods for biomarkers 

Sophisticated methods are commonly used to test and validate the efficacy of biomarkers. 

These methods can include techniques such as liquid chromatography-mass spectrometry (LC-

MS), nuclear magnetic resonance (NMR) spectroscopy, and immunoassays, among others. These 

methods enable researchers to identify and quantify biomolecules with high specificity and sensi-

tivity, making them valuable tools in the development and validation of biomarkers [103]. 

A wide range of assays can be employed in the process of validating biomarker candidate, 

spanning from simple methods such as immunohistochemistry (IHC) and immunoassays to high 

technology platforms like genomics, proteomics, and multiplex ligand-binding assays [103]. 
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A genomics approach involves methods that measure global gene expression, such as mi-

croarrays which are commonly used for target identification and validation. Reverse transcription-

polymerase chain reaction is a highly sensitive, reproducible technology that is often used to val-

idate microarray-generated data. Comparative genomic hybridization can detect chromosomal al-

terations associated with certain diseases. Proteomics, on the other hand, involves global protein 

profiling to provide information about protein abundance, location, modification, and interactions. 

While proteomics is primarily a discovery technology, immunoassays are routinely used for pro-

tein biomarker assessments due to their straightforward clinical application and potential diagnos-

tic assay translation. Multiplexing protein assays can increase throughput for the simultaneous 

analysis of several proteins but has limitations, such as the need to standardize assay conditions, 

loss of sensitivity over single assays, and quality control of each analyte in the complete multiplex 

panel [103]. 

Metabolomics is the analysis of native metabolites present in biological fluids or tissues to 

characterize the metabolic phenotype. This is achieved through analytical platforms such as nu-

clear magnetic resonance spectroscopy and the combination of liquid chromatography with mass 

spectrometry. While primarily utilized for biomarker discovery, it represents the ultimate end -

point measurement of biological events. Nevertheless, the technology's lack of comprehensive 

metabolite databases and throughput limits data analysis and interpretation. The integration of 

these technologies in bioinformatics allows for linking expression data derived from ge-

nomics/proteomics to targeted biological pathways for a comprehensive understanding of disease 

biology, further validating the biomarker's application [103]. 

Biomarker development is significantly impacted by advancements in modern imaging 

techniques, which include molecular and functional imaging technologies. These approaches al-

low for the evaluation of cellular metabolism, cell proliferation and apoptosis, and angiogenesis 

and vascular dynamics using techniques such as 18F-fluorodeoxyglucose positron emission to-

mography, 18F-fluoro-L-thymidine and 99mTcannexin imaging, and dynamic contrast-enhanced 

computed tomography and magnetic resonance imaging [103]. 

Usually, these sophisticated methods are costly, requiring specialized equipment, advanced 

bioinformatics methods like the use of deep neural network (DNN) modeling, and highly trained 

personnel to operate and maintain them [104]. The cost of these methods can limit their accessi-

bility, particularly in resource-limited settings, and can be a significant barrier to the widespread 
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adoption of biomarker testing. To address this challenge, researchers are exploring the use of al-

ternative methods, such as point-of-care testing and wearable devices, that can provide rapid and 

low-cost biomarker testing [105]. As long as advanced biomarker testing methods are not widely 

used, many studies are being conducted to develop biomarkers for use in clinical daily practice 

using low-cost technologies such as immunohistochemistry (IHC) and immunoassays [92, 103]. 
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 The biomarker discovery pipeline 

The process of biomarker discovery can involve the use of model systems, like mouse 

models or cell lines, or a range of human biological samples. It typically involves a basic compar-

ison between healthy and diseased tissues (in case of diagnostic biomarkers) to eliminate contam-

ination by other diseases or factors. This leads to a list of potential biomarkers, referred to as 

"candidate biomarkers" (Figure 6), which have been found to be differently expressed between the 

normal and diseased states [106]. However, many of these candidates may not be differentially 

expressed upon further testing. To increase the accuracy of the list, it can be supplemented by 

information from other sources such as literature, alternative discovery methods, or expert 

knowledge [107]. 

The next stages in the biomarker development process, following the discovery (Figure 6), 

shift from a broad and unbiased approach to a more focused and quantitative one. This change 

allows for the use of more advanced analytical methods [108]. The qualification phase (Figure 6) 

is a crucial step in the process, which confirms that the differential expression observed in the 

discovery phase can be seen using other methods. The primary focus of discovery and qualification 

is to ensure consistency between the marker and disease, with a focus on marker sensitivity rather 

than specificity. 

In the verification phase (Figure 6), the analysis is expanded to a larger number of human 

samples, incorporating a wider range of cases and controls, which takes into account the variation 

in the population caused by environmental, biological, stochastic, and genetic factors. This phase 

confirms the sensitivity of the biomarker candidate and begins to evaluate its specificity [107]. 

The next stage of biomarker development is "assay optimization," in which the few candi-

date biomarkers that have shown strong performance in verification are further refined and tested. 

Finally, in the validation stage, a research-grade version of the final assay is tested on a large 

number of samples that represent the full range of variation within the target population [107]. 

The development of biomarkers goes through several stages, including verification and 

validation, before they are considered ready for commercialization. During this process, the re-

search-grade immunoassay is refined to meet the high standards required for clinical tests. All 

aspects of this pipeline must be carefully considered for a successful outcome [107]. 
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Figure 6. The presented biomarker identification pipeline consists of two main stages: discovery and valida-

tion/qualification. During the initial discovery phase, a  limited number of samples are analyzed, while a more sub-

stantial number of samples are used in the later validation phase to confirm potential biomarkers before they are put 

into clinical use [109]. 

VI.1. Clinical trial design 

Pre-clinical study 

In this stage (Figure 7), laboratory experiments on animals or cell models are conducted to 

determine the potential usefulness of a particular drug, biomarker, or procedure for a specific con-

dition. The new treatment's dosage and toxicity levels are also analyzed. It is crucial to obtain solid 

evidence of the safety and efficacy of the intervention before moving forward to human trials  

[110]. 

Phase 1 clinical trial designs 

The results from preclinical trials often do not accurately predict real-world outcomes. If 

the preclinical results are promising, the next step is to submit an investigational new drug or 

biomarker to the regulatory agency responsible for drug approval. The first stage of human testing, 

known as a phase 1 trial (Figure 7), is focused on evaluating the toxicity, and pharmacokinetics, 

and determining an appropriate dose for further testing. Efficacy is not the primary focus but is 



  

40 | P a g e  

 

monitored and reported. The maximum tolerated dose is usually used in later phases, but with new 

and diverse drugs, the dose-response curve may plateau and a minimally effective dose may be a 

better target [110]. 

Phase 2 clinical trial designs 

The purpose of a phase 2 study is to evaluate the efficacy and continued safety of a drug 

once its dose and safety have been established (Figure 7). This study is crucial in deciding whether 

the drug has enough clinical benefits to undergo a phase 3 study on a larger scale. The effectiveness 

of a drug is usually measured by its ability to decrease the cancer burden and is quantified by the 

response rate. In exceptional cases, if the drug shows significant efficacy in phase 2, the need for 

phase 3 testing may not be necessary. Phase 2 studies come in a variety of designs, including 

single-arm or randomized multiple-arm [110]. 

Single-arm phase 2 studies, which evaluate efficacy using historical controls, are the most 

common type [111]. A popular approach is Simon's two-stage design, where the enrollment pro-

cess is divided into two phases. The second stage only begins if a set response criterion is met 

during the first stage. This design minimizes participants' exposure to an ineffective treatment 

[112]. On the other hand, randomized phase 2 trials offer objective comparisons but require a 

larger sample size. These trials usually evaluate a high probability of effectiveness in phase 3 trials, 

rather than measuring definitive clinical benefit. After phases 1 and 2, the sponsor and investiga-

tors may meet with the FDA to review the IND (Investigational New Drug) and determine if it is 

viable to proceed to a phase 3 trial. In some cases, FDA-accelerated approval may occur based on 

phase 2 data. Erdafitinib is an example of FGFR-TKIs that was approved for metastatic urothelial 

carcinoma based on outstanding results from a phase II trial (NCT02355597) [72]. 

Phase 3 clinical trial designs 

Phase 3 clinical trials are the standard for determining the superiority of a new drug or 

combination, compared to the current standard of care (Figure 7). These trials compare the efficacy 

of the new treatment with the existing one, with improved overall survival often being the primary 

endpoint. In case a new drug is not worse than the standard of care in terms of efficacy, a phase 3 

noninferiority trial is conducted. These trials are used for drugs that may offer advantages such as 

reduced toxicity or cost. However, they are complex and have limitations [113]. Phase III cancer 

trial design in oncology drug development may integrate biomarker-based objectives. Such design 

helps improve development of more effective anticancer therapies. The results of phase 3 trials 
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serve as the basis for FDA approval, and if the new drug is found to be safe and effective, a new 

drug application is submitted to the FDA. Further safety and efficacy studies for the intended pop-

ulation are conducted in phase 4 trials after the final approval. 

Phase 4 clinical trial designs 

Once a drug has received regulatory approval, Phase 4 trials (Figure 7), also referred to as 

post-approval or post-marketing studies, are conducted to gather additional information about the 

longer-term effects, both positive and negative, as well as the optimal usage of the drug. These 

trials are necessary as even the most thorough Phase 3 trials may not uncover issues that become 

evident once the drug is widely used [110]. 

 

Figure 7. Phases of clinical trials. 

 

VI.2. Biomarker-based clinical trial design 

The optimal strategy for the simultaneous development of a drug and its accompanying 

diagnostic tool involves [114]: 

(I) identifying a predictive biomarker, which is a biological measurement that can in-

dicate a patient's likelihood of responding to the drug. This understanding is based 

on the mechanism of action of the drug and the role of its target in the disease's 
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pathophysiology. This biological knowledge is validated and improved through 

pre-clinical and early phase clinical trials. Most successful predictive biomarkers 

for cancer drugs have involved a single gene or protein, rather than a set of features. 

The latter type of biomarker is more commonly used as a prognostic indicator [5], 

reflecting the progression of the disease and the effect of standard therapy, but not 

as a predictive biomarker for response to specific drugs. 

(II) the development of an accurate and validated test to measure the biomarker is cru-

cial in the co-development process. 

(III) employ the validated test in designing a clinical trial that explores the efficacy of 

the experimental drug and the correlation between its efficacy and the biomarker 

measurement. 

Phase II trials 

The evaluation of potential predictive biomarkers is often carried out during phase II trials 

that include patients with tumors from a single primary source. The two-stage single arm phase II 

design, proposed by Simon, has been expanded by Pusztai and Hess [115] and Jones and Holmgren 

[116], to account for a single binary candidate marker. This design aims to ensure that the potential 

benefits of the drug are not missed if its effects are restricted to test-positive patients, and to avoid 

testing too many patients if its effects are broad enough to not require a marker. Freidlin et al. 

[117] have proposed a design for a randomized phase II trial, which uses a single binary biomarker 

to determine whether the drug should advance to a phase III enrichment trial, an all-comers trial, 

or if it should be discontinued. 

The evaluation of predictive biomarkers becomes more complex in certain phase II trials, 

where there isn't a known cut-point for the biomarker or multiple candidate biomarkers exist. A 

notable example of this is the BATTLE I trial for non-small cell lung cancer (NSCLC), which 

evaluated four different tests in the context of four drug regimens [118]. The trial assigned treat-

ment to the regimens randomly, however, the randomization weights were adjusted as the trial 

progressed based on the treatment that performed best within each biomarker strata. The two pri-

mary goals of the adaptive randomization were to efficiently screen the four treatments across four 

predetermined NSCLC patient strata and to provide patients with a trial that could adapt to assign 

the best drug regimen for their form of the disease. 
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Phase IIa basket discovery trials 

"Umbrella" discovery trials study advanced cancer patients with various primary disease 

sites that are unresponsive to typical treatments [119]. The patients undergo tumor DNA sequenc-

ing and, using a pre-determined algorithm, it is determined if there is a present "actionable" muta-

tion - meaning a drug is available with a range of molecular targets that align with the tumor's 

genomic alterations, suggesting the potential for therapeutic benefit. The level of evidence that a 

drug is actionable for a specific mutation is often based on pre-clinical or biological data or data 

from a different type of tumor. Basket trials have a single drug and aim to determine the types of 

patients for whom it should be further developed (Figure 8). In some instances, multiple drugs are 

available and the trial may randomly compare outcomes for drugs selected based on the actiona-

bility rules to those chosen by physicians without access to genomic data. 

 

Figure 8. Schematic diagram of umbrella and basket trials. 

 



  

44 | P a g e  

 

Phase III targeted (enrichment) designs 

Targeted or enrichment designs limit trial participation to patients believed to be most 

likely to respond to the experimental drug. This design employs a validated diagnostic test to de-

termine eligibility for a randomized clinical trial that compares the new drug regimen with a con-

trol. Such trials have been instrumental in the approval of several drugs that have a well-understood 

molecular target for the disease, including trastuzumab [120], vemerafinib [121], and crizotinib 

[122]. 

The use of an enrichment design is suitable when there is solid biological evidence indi-

cating that individuals who test negative are unlikely to see any improvement from the new med-

ication. In these situations, including test negative patients, raises ethical questions and can lead 

to misinterpretation of the trial results [114]. 

Phase III biomarker stratified design 

When a predictive biomarker has been identified, but there is not enough evidence to sug-

gest that patients with negative test results won't benefit from the experimental treatment, it is 

advisable to enroll both positive and negative test result patients in the phase III trial comparing 

the new treatment to the control. In this scenario, it's crucial to have a pre-defined analysis plan in 

the trial protocol, outlining how the predictive biomarker will be used in the analysis. The plan 

will typically outline the testing strategy for assessment of the treatment in the positive and nega-

tive test result patients and overall. This strategy must maintain the overall type I error rate of the 

trial and the trial must be designed to have enough statistical power to support these tests. By 

balancing the randomization, the trial assures that only patients with valid test results will be in-

cluded in the trial [114]. 

Karuri and Simon [123] proposed a phase III design for a single binary biomarker trial in 

which futility monitoring is done based on a joint prior distribution for the treatment effect in 

positive and negative patients. This design takes into account prior evidence of a reduced effect in 

negative patients and uses it in monitoring the trial. The design is Bayesian, but the rejection region 

based on posterior probability is calibrated to meet frequentist type I error requirements. This ap-

proach allows for earlier termination of accrual in negative patients compared to traditional futility 

analysis methods. 
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The authors’ Hong and Simon created a run-in design that utilizes a response endpoint, 

such as a pharmacodynamic or immunologic effect, measured after a brief run-in period on the 

experimental treatment, as the predictive biomarker [124]. Another approach, known as the pro-

spective-retrospective approach, was outlined by Simon et al. [125]. This method allows for a 

focused re-analysis of an already completed phase III trial using archived tumor specimens to 

determine the predictive value of a biomarker. The method necessitates that the majority of the 

specimens be stored and a single marker-focused analysis plan be formulated before the blinded 

assays take place. This method was applied to determine that K-RAS mutation was a negative 

predictive biomarker for the response of colorectal cancer patients to anti-EGFR antibodies. 

Phase III adaptive 

Jiang and colleagues [126] proposed a design known as the "Biomarker Adaptive Thresh-

old Design" for trials where a biomarker exists at the start, but a clear dividing line between posi-

tive and negative patients is not set. In this design, all patients have their tumor specimens collected 

upon enrollment, but the biomarker value is not used to determine eligibility. The analysis plan 

does not require the index measurement to be conducted in real-time. At the end of the trial, the 

optimal threshold for the biomarker is established through the use of a pre-determined metric. The 

optimal threshold can also be evaluated using bootstrap resampling, which provides confidence 

intervals. The confidence associated with a given biomarker value x can be interpreted as the prob-

ability that a patient with this value of x will benefit from the new treatment since the treatment is 

believed to only be effective for patients with a biomarker value above the threshold. 

The adaptive signature design approach is flexible when it comes to selecting the method 

for identifying a single candidate subset in which the treatment effect will be tested on the valida-

tion set. Many prediction methods can be applied using the training set, but it's important to note 

that the goal is not to develop a prognostic classifier but rather to classify patients based on their 

likelihood of benefiting from the new treatment. Matsui et al. [127] created a model that predicts 

a continuous score indicating the expected benefit of the new treatment compared to the control, 

rather than just dividing patients into two subsets. Gu et al. [128] created a two-step strategy for 

creating a model that predicts the outcome based on treatment and selected biomarkers. The bi-

omarkers are chosen through a group lasso approach, which groups the main effects of a biomarker 

with its interactions with treatments and can be applied to two or more treatments. 
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 Concept of Diversity 

The concept of diversity is widely used in various scientific fields, including ecology [129], 

biology [130], sociology [131], linguistics [132], and investment and portfolio theory [133]. Di-

versity refers to the range and distribution of specific characteristics in a given population, which 

can change due to intra-population interactions and environmental factors. This concept, variety, 

or heterogeneity can be applied to any population, including those that evolve based on their level 

of diversity. While diversity may seem straightforward, quantifying it can be complex, as it often 

requires a full distribution function, making it difficult to measure using a single metric [134, 135]. 

Figure 9 illustrates examples of biological population dynamics at different scales that are influ-

enced by diversity. 

 

Figure 9. The concept of diversity may be significant in various complex and multicomponent populations. For in-

stance, (A) in vertebrates, naive T cell generation takes place in the thymus, and each T cell has only one T cell re-

ceptor (TCR). Naive T cells can multiply and die in the peripheral blood, and though the number of possible T cell 

receptors that can be expressed is enormous (> 1015), only a few different TCRs (perhaps 106−108) exist in an or-

ganism. The diversity of the T cell receptor repertoire plays a crucial role in the organism's response to antigen s. (B) 

In the gut, microbes are ingested and create a form of the community by competing, proliferating, and dying. (C) 

Island ecology showcases a time-dependent pattern of species diversity when a large number of species migrate onto 

an island and organisms proliferate and die [136]. 

Different diversity indices and related concepts are widely used in various applications, 

including ecology, social sciences, economics, and medicine [130, 134, 135, 137-139]. From a 

broader perspective, diversity indices could be beneficial in creating stable energy distribution 
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systems [140]. Despite the ambiguity of diversity's definition, the concept holds relevance across 

various disciplines and areas of application. 

VII.1. Inter-tumor diversity 

The motivation for large-scale genomic analysis of tumors was to identify the "driver" mu-

tations that could serve as therapeutic targets. These mutations activate oncogenic signaling or 

deactivate tumor suppressor pathways, with few drivers present in any one tumor [141]. The suc-

cess of targeted therapies such as imatinib in treating CML and the promising results of early trials 

in other treatments [142, 143] suggested that discovering new driver genes could lead to the de-

velopment of therapies targeting these genes or the pathways they affect, potentially making the 

same kind of treatment useful in different types of tumors [144, 145]. 

In the early examples like ABL kinase activated by genomic translocation in CML, mutated 

BRAF in melanoma, EGFR mutation, or amplification in lung cancer, the driver mutation itself 

was targeted by the therapy [142]. The driver mutation may also make the tumor particularly sen-

sitive to inhibition of a specific cellular function, providing a window of opportunity for a targeted 

attack. For instance, BRCA-mutant tumors with DNA repair deficiencies may be highly sensitive 

to PARP inhibitors [146, 147]. By combining genomic analysis of thousands of tumors and cell 

lines with comprehensive cell-line testing, it is possible to create a broad catalog linking known 

mutations with drug sensitivity [148]. If the mutations driving a tumor and their impact on cellular 

pathways were known, then a more informed choice of patient-specific or combination therapy 

could be made [145].  

However, the identification of driver mutations through genomic analysis of solid tumors 

has proven to be challenging. Despite the discovery of numerous mutations, few are common 

enough to be considered major targets, appearing in more than 10% of cases for a single type of 

cancer, and even fewer are present in multiple cancer types. Some of the most frequent alterations 

involve losses of tumor suppressor genes, such as TP53, PTEN, and CDKN2A, which cannot be 

effectively targeted with current drugs [149]. 

The difficulty in crafting personalized cancer therapy is largely due to the diversity of 

driver mutations among tumors and the scarcity of targetable mutations in solid tumors. This can 

be seen in the NCI-MATCH trial, where alteration was found in 37.6% of the 5,954 patients and 

after applying clinical and molecular exclusion criteria only 17.8% of patients were assigned to 
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the treatment arm [150]. Thus, the tumor heterogeneity is the major obstacle to achieve the wide-

spread availability of personalized cancer therapy. 

The utilization of immunotherapy offers a solution to the difficulties posed by the genetic 

variability among patients' tumors. By harnessing a patient's immune system to fight cancer using 

tumor-specific neoantigens, the differences in tumors from other patients become irrelevant. How-

ever, even immunotherapy can be hindered by the diversity that occurs within a single patient's 

tumor [149]. 

VII.2. Inter-patient diversity 

The concept of diversity is a fundamental consideration in the assessment of inter-patient  

variability. Inter-patient variability refers to the range of different responses that individuals can 

exhibit in response to a given intervention, treatment, or exposure. This variability can be attributed 

to a variety of factors, including genetic variation, age, sex, environmental exposure, and overall 

health status. For example, individuals with different genetic backgrounds may exhibit differential 

responses to a particular medication due to differences in drug metabolism or sensitivity. Similarly, 

age-related changes in physiology can influence how patients respond to treatments, with older 

individuals often exhibiting slower or less robust responses compared to younger individuals [151, 

152]. 

To address this challenge, healthcare providers and researchers must take a multifaceted 

approach when designing and implementing treatment strategies. This approach requires a com-

prehensive understanding of the underlying mechanisms of disease, patient characteristics, and 

potential risk factors that may influence treatment outcomes. By adopting a more holistic perspec-

tive on patient care, clinicians can optimize treatment outcomes and improve overall health and 

well-being. Moreover, a more comprehensive understanding of inter-patient diversity has the po-

tential to drive advancements in personalized medicine. By tailoring treatments to the specific 

needs of individual patients, healthcare providers can improve treatment efficacy while minimiz-

ing the risk of adverse events [152-154]. 

VII.3. Intra-tumor diversity 

The obstacles presented by genetic diversity within an individual patient's tumor can be 

greater than those caused by diversity among different tumors. Intra-tumor genetic heterogeneity, 
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which refers to heritable differences in DNA, is the quantifiable form of diversity within a tumor 

that presents the biggest challenge to therapy [155, 156]. 

Over forty years ago, it was noted by Nowell that after tumor initiation, its evolution con-

tinues through mutation and selection [157]. This is because cancer cells have higher mutation 

rates compared to normal cells due to deficiencies in DNA repair. As a result, by the time a tumor 

becomes clinically detectable, it can become a genetically diverse group of subclones. 

Figure 10 depicts the process of intra-tumor evolution. The initial mutations in the cell that 

starts the tumor, are referred to as "truncal" [158] and are carried by all its descendants unless 

some cells lose the genomic locus (or reverse this mutation). Truncal mutations encompass “driv-

ers” that initiate the tumor as well as “passengers” that are mutated in the starting cell but don't 

play a role in tumor initiation [141]. Subsequent mutations that give a selective advantage for a 

clone, are also considered driver mutations. At the point of the presentation, the tumor may contain 

multiple subclones with different mutations [149]. 

 

Figure 10. The evolution of subclones in a tumor. On the left, the colored regions represent cancer cells and the 

white background represents cells with normal DNA. The tumor-initiating clone (clone 0) gives rise to new sub-

clones (represented by numbered triangles) that expand or die (diamonds) over time, each subclone containing all 

the mutations from its progenitors, as well as its own subclone-specific mutations. The mutant-allele fractions 

(MAF) on the right side of the diagram show the proportion of DNA in a sample with a tumor-specific mutation. 

These examples are based on heterozygous mutations in cancer cells and a tumor "purity" of 80%, meaning 20% of 

cells in the sample are normal DNA. If the mutation is heterozygous and the purity is 80%, the fraction of cells with 

the mutation (cancer cell fraction, CCF) is 2.5 times its MAF. The originating clone has higher MAF/CCF values 

compared to subclones, and mutations in subclones may go undetected either due to sampling (e.g. subclones 3 and 

6 in Sample 1; subclones 4 and 5 in Sample 2) or due to having MAF values too low to be detected (e.g. subclone 2 

in Sample 2) [149]. 
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Under Nowell's model of subclonal evolution, context can transform a previously consid-

ered passenger mutation into a driver. A mutation that was once considered a passenger can be-

come a driver in the context of tumor progression or treatment, providing resistance to a drug, 

independence from a primary driver mutation, or a higher likelihood of metastasis, which benefits 

certain subclones. Early studies of mouse cancer models support this theory [159-161].  

VII.4. Challenges to conventional and targeted therapy 

Two separate studies of nearly 400 head and neck squamous cell carcinoma patients [162, 

163] showed that a higher degree of mutant-allele tumor heterogeneity (MATH) was linked to 

increased mortality. Among 2,433 breast cancer patients, those whose tumors were in the highest 

quartile of MATH values had a shorter survival time specifically related to breast cancer compared 

to those in the lowest quartile [164]. 

To effectively cure cancer through targeted therapy in the presence of subclonal evolution 

(Figure 10), all subclones must have the target, and none can have any mutations or mechanisms 

that nullify the therapy. The presence of intra-tumor heterogeneity can also create additional chal-

lenges. If the target is present in a minor cancer cell fraction, the effectiveness of targeted therapy 

may be limited. In cases where the target is not a truncal mutation, the therapy will have no direct 

impact on cancer cells lacking it [149]. 

Having a target with a complete cancer cell fraction of 1 is not enough to guarantee success 

with targeted therapy. When a tumor reaches a size of 109 cells and becomes clinically detectable, 

it is highly likely that at least one subclone has already developed a resistance mutation. Studies 

by Bozic and Nowak [165] suggest that by this point, a radiographically detectable tumor may 

already have up to 10 resistant subclones, each with a unique mechanism of resistance. This means 

that even if targeted therapy leads to temporary remission, the growth of resistant subclones will 

eventually cause a relapse. This pattern of initial response followed by regrowth is a common 

outcome with targeted therapy and has been observed in various studies [144, 166, 167]. The ear-

lier progression of melanoma after targeted therapy is often seen in patients whose resistance mu-

tations have a high minor allele frequency and can be detected in pretreatment tumors [168]. 

The use of combination therapies to treat cancer is also hindered by genetic diversity. Di-

versity among tumors, with respect to driver mutations, is a major challenge, as less than 10% of 

patients can be treated with a single targeted therapy based on the existing list of driver mutations. 
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Additionally, the presence of heterogeneity within a tumor may hinder the efficacy of combination 

therapy, as certain subclones may not possess the required targets or harbor resistance mutations. 

Moreover, the timing of administration can also play a role in the failure of combination therapies, 

as the progeny of a subclone that is resistant to the first agent may develop resistance to the second 

agent before it is used [169]. 

Given the clear difficulties posed by genetic diversity in tumors, it is essential that this 

diversity be considered in oncology research and clinical practice. This requires a comprehensive 

approach that incorporates diverse elements such as clinical trials, genomic studies, and integration 

of clinical and genomic information. Further research aimed at uncovering the underlying mecha-

nisms of intra-tumor diversity may lead to innovative treatment options that make use of, rather 

than being limited by, this diversity [149]. 
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 Research project CELONKO 

The doctoral project was carried out as part of a study entitled “Development of novel 

biomarkes and innovative FGFR kinases inhibitor as an anti-cancer therapy” (CELONKO) funded 

by the National Centre for Research and Development (NCBR), under the STRATEGMED II 

program. The project was carried out by Celon Pharma S.A., the inventor of the novel FGFR in-

hibitor [170], in a scientific-business consortium with the Institute of Tuberculosis and Lung Dis-

eases in Warsaw, the Military Institute of Aviation Medicine in Warsaw, the Maria Sklodowska-

Curie National Research Institute of Oncology in Warsaw and Gliwice, and the Medical University 

of Gdańsk. 

The drug is intended to be used for treatment of stomach, bladder, and lung cancer. As part 

of the project, a diagnostic test was developed to identify patients with the known FGFR receptor 

aberrations. This will enable the selection of patients who will benefit the most from personalized  

therapy based on a novel FGFR inhibitor.  

Another goal of the CELONKO project was to identify potential new candidates for bi-

omarkers predictive of resistance to FGFR inhibitor-based therapy. Due to technical constraints it 

was rather impossible to search for indicators of tumor sensitivity to FGFR inhibitor. That’s why 

we were focused on the search for potential resistance mechanisms and biomarkers, exploring cell 

lines with acquired resistance to FGFR inhibitor. 

Initially, potential candidate selection was attempted by analyzing the signaling pathways 

involving FGFR receptors using the western blot technique. The results were not sufficient for 

selecting a biomarker, so it was decided to use an RNA sequencing (RNA-seq) experiment and 

subsequent data analysis to identify in-silico candidates for a predictive biomarker associated with 

a potential mechanism of resistance to FGFR inhibitors. 
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 Experimental design 

Considering the challenges presented by genetic heterogeneity in tumors, it is imperative 

to take into account this diversity in both oncology research and clinical practice [149]. Thus in 

the CELONKO project besides a typical clinical trial on the assessment of safety and effectiveness 

of pan-FGFR inhibitor CPL304110 (WO/2014/141015) [170] there was also a task devoted to 

finding potential predictive biomarkers related to resistance to FGFR inhibitors. 

In the experimental design covered in my doctoral dissertation, several types of cancer 

were selected, specifically lung, stomach, and bladder cancer (Figure 11). These three types of 

cancer were chosen because FGFR aberrations are most commonly observed in them [21, 23]. The 

selection of the type of cancer was also determined by the high incidence and death rate of these 

cancers, thus requiring new therapeutic solutions (more information is described in chapter III.1.-

III.3.). 

In order to address the diversity concept related to inter-tumor diversity in the experimental 

design covered in this doctoral dissertation, two different cell lines were chosen for each cancer 

type (Table 8, Figure 11). The selection was based on the presence of a molecular background that 

favors sensitivity to FGFR inhibitors, specifically amplification of one of the FGFR1-4 genes (Ta-

ble 8). Additionally, cell lines with the highest sensitivity to the tested inhibitor were selected, as 

well as those for which a resistant cell line could be derived (Figure 11). To mimic intra-patient 

diversity, two biological replicates were used for each cell line (Figure 11). 

In the scope of this experimental design, I was unable to address better the intra-tumor 

diversity problem. In order to do this, I would have to use samples collected from different areas 

of the tumor taken from one patient. Because the research work for this doctoral thesis preceded 

the clinical trial phases of the CELONKO project, I did not have direct access to patient -derived 

material. However, in an ongoing clinical trial led by Celon Pharma S.A. company various bio-

logical material is being collected which will allow us to continue research and take that aspect 

into consideration. 

My research aimed to develop a pipeline for selecting potential biomarker candidates based 

on data acquired from a small sample size RNA sequencing experiment conducted on genetic 

material collected from human cell lines. 
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For my study, it was crucial that the developed pipeline was based on statistical properties, 

and uncomplicated, while enabling fast analysis without heavy computational burdens, resulting 

in cost-effective implementation. It was also essential to select biomarkers that possess the neces-

sary characteristics of a good biomarker (described in chapters V.2. and XI.3.) and that can be 

used clinically in resource-limited settings, facilitating widespread adoption of proposed bi-

omarker/s testing, mainly using immunohistochemical (IHC) staining. 

The RNA-seq data obtained from the experiment (Figure 11) I have used as sample data to 

develop my pipeline (described in chapter XI.3. below). The inclusion of three cancer types in the 

experimental design (Figure 11) was done to develop a pipeline that could have a broad application 

for selecting biomarkers for different types of cancers, serving as a pan-cancer biomarker selection 

solution. Therefore, this pipeline has the potential to be applied not only for the selection of pre-

dictive biomarkers but also for other types of biomarkers and can be implemented on data from 

various types of cancer. 

IX.1. Cell Lines and Cell Culture Reagents 

SNU-16, KATO III, NCI-H1581, NCI-H1703, RT-112, and UM-UC-14 cell lines were 

obtained from ATCC (Table 8). NCI-H1581 cells were routinely maintained in DMEM/F12; UM-

UC-14 and RT-112 in Eagle's Minimum Essential Medium (EMEM); whereas NCI-H1703, SNU-

16 and KATO III were maintained in RPMI 1640 medium. All culture media contained 10% of 

FBS and penicillin/streptomycin (100 U/mL/100 µg/mL). Cells were grown at 37oC in a humidi-

fied atmosphere of 5% CO2. All culture media and corresponding supplements were purchased 

from Merck KGaA (Darmstadt, Germany) or Biowest (Riverside, MO, USA). CPL304110 

(WO/2014/141015) inhibitor was provided by Celon Pharma S.A., Poland  [170]. 

IX.2. Generation of CPL304110-Resistant Cell Lines 

To develop resistance to the FGFR inhibitor (CPL304110) cell lines (Table 8) were ex-

posed to increasing concentrations of CPL304110 (starting from 50 nM). Cells were maintained 

in a medium containing the inhibitor, which was replaced every three days. When the growth ki-

netics of treated cells were similar to wild-type cells, the concentration of CPL304110 was in-

creased until a final concentration of 0.7 µM for SNU-16, 0.35 µM for KATO III, 2.5 µM for 

NCIH1581, 5 µM for NCI-H1703, 1 µM for RT-112, and 0.1 µM for UM-UC-14 was achieved 
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(Table 8). After 4-6 months of such culture, resistant cells were established and termed L1R, L2R, 

S1R, S2R, B1R, and B2R (Table 8, Figure 11). 

Table 8. Cell lines used in the study. 
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Cell line 

symbol 
Disease 

Symbol of cell 

line variant 
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(IC50 [µM]) 
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 NCI-H1581 
Non-small cell lung can-

cer. Cell type: large cell 
L1 L1R FGFR 1 0.074 2.500 

NCI-H1703 

Non-small cell lung can-

cer. Cell type: squamous 

cell 

L2 L2R FGFR 1 1.300 5 

S
to

m
a

c
h

 SNU 16 

Gastric adenocarcinoma  

Derived from metastatic 

site: ascites. 

S1 S1R FGFR 2 0.005 0.700 

KATOIII 

Gastric signet ring cell 

adenocarcinoma. Derived 

from metastatic site: 

pleural effusion 

S2 S2R FGFR 2 0.040 0.350 

B
lu

d
d

e
r
 RT112/84 Bladder carcinoma B1 B1R FGFR 3 0.239 1 

UM-UC 14 Renal pelvis carcinoma  B2 B2R FGFR 3 0.031 0.100 

 

IX.3. Cell line variants used in experimental design 

For the experimental design, each mentioned cell line I had in two variants (Figure 11): 

• a derived cell line resistant to the investigated FGFR inhibitor, which is CPL304110 
(WO/2014/141015) [170], 

• an unmodified wild-type cell line, which is also sensitive to the FGFR inhibitor. 

 

Figure 11. The RNA-seq experimental setup utilized 6 cell lines (L1: NCI-H1581, L2: NCI-H1703, S1: SNU-16, 

S2: KATO III, B1: RT-112, and B2: UM-UC-14), each in two variants (wild type sensitive (S: L1S, L2S, S1S, S2S, 

B1S, B2S) to the FGFR inhibitor and resistant cell line (R: L1R, L2R, S1R, S2R, B1R, B2R)), and two biological 

replicates per variant, resulting in a total of 24 experimental samples. 
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IX.4. Transcriptome Sequencing (RNA-seq) 

For the RNA-seq experiment, SNU-16, KATO III, NCI-H1581, NCI-H1703, RT-112, and 

UM-UC-14 cells (sensitive and resistant cell line variants) were seeded onto 6 cm-diameter dishes. 

The next day, the medium was replaced with a fresh medium, and after 24 h, cells were harvested. 

This procedure was repeated to obtain a second biological replicate (Figure 11). Total RNA was 

extracted from the cells using RNeasy Plus Mini Kit, Qiagen (Hilden, Germany) with simultaneous 

DNase I digestion, according to the manufacturer’s instructions. RNA purity and concentration 

were estimated with a Nanodrop ND-2000 spectrophotometer, Thermo Fisher Scientific (Wal-

tham, MA, USA). RNA quality was assessed using the 2100 Bioanalyzer with the RNA 6000 Nano 

Kit, Agilent Technologies (Santa Clara, CA, USA). All the samples had an RNA integrity number 

(RIN) above 7.0. cDNA library preparation and transcriptome sequencing were completed by Ge-

nomed S.A., Warsaw, Poland. RNA-seq was performed using the Illumina HiSeq4000 Platform 

with the standard paired-end protocol (58 mln paired reads, 100 bp read length) (Figure 11). 
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 Transcriptomics 

In 1986, Dr. Thomas H. Roderick used for the first time the term "genomics" [171] and 

now the term "omics" informally encompasses various fields of biological research such as tran-

scriptomics, proteomics, metabolomics, etc. The aim of "omics" is to collectively measure and 

describe the pools of biomolecules that contribute to the structures, functions, and dynamics of 

one or more organisms [172]. 

The completion of the human genome project [173] has enabled significant advances in 

our understanding and control of our genetic information. Additionally, high-throughput sequenc-

ing (HTS) technologies have dramatically improved transcript detection. Transcriptomics, which 

focuses on the heterogeneity of cell transcriptomes in specific time and space, utilizes HTS plat-

forms such as gene expression microarrays [174], serial analysis of gene expression (SAGE) [175], 

massively parallel signature sequencing (MPSS) [176], RNA sequencing (RNA-seq) [177], single-

cell RNA sequencing (scRNA-seq) [178], and third-generation sequencing approaches like PacBio 

SMRT [179] and Oxford Nanopore MinION [180]. These technologies provide insight into gene 

transcription levels, regulation characteristics, and molecular mechanisms involved in disease pro-

cesses and regulated pathways affected by drug interventions, making them valuable tools for bi-

omarker discovery studies [172]. 

X.1. RNA-sequencing (RNA-seq) 

The advancements in next-generation sequencing technology have made it possible for re-

searchers to gather much larger amounts of data than before [181-185]. RNA-sequencing (RNA-

seq) in particular provides extensive insights into the gene expression levels of different organisms 

under different conditions with high resolution [177, 186, 187]. 

RNA-seq has established itself as a crucial assay for determining the relative abundance 

and diversity of transcripts and is widely utilized by the life sciences research community [188]. 

The process of RNA-seq involves extracting RNA from cells, converting it into complementary 

DNA (cDNA), sequencing it to produce millions of reads, and then aligning these reads to a ref-

erence genome. The number of reads mapped to a particular gene is then used as an indicator of 

that gene's expression level [189]. 
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Before analyzing the differences in gene expression, the collected feature counts must un-

dergo pre-processing, which involves trimming, filtering, and normalizing. RNA-seq gene differ-

ential expression analysis can be performed using either parametric or nonparametric methods. 

Parametric methods that are available in open-source packages are NBPSeq [190, 191], Voom/vst 

[191, 192], baySeq [193], DESeq [194], DESeq2 [195], EBSeq [196], TSPM [197], edgeR [198], 

ShrinkSeq [199], which can be found in R or Bioconductor. Cuffdiff2, which is part of the Cuf-

flinks package [200], is also a parametric method. On the other hand, nonparametric methods for 

RNA-seq gene differential expression analysis include NOIseq [201] and SAMseq [202], both of 

which can be found in R or Bioconductor. 

X.2. Differential analysis methods 

RNA-seq procedures gather extensive information on the gene expression levels of various 

organisms across different conditions [177, 186, 187]. From this information, the concept of dif-

ferentially expressed genes (DEGs) emerges, which are genes whose expression levels have been 

determined to be significantly different between two or more conditions [203, 204]. Tools have 

been designed to identify which genes are differentially expressed (Table 9). This differential gene 

expression (DGE) tools perform statistical tests on the quantification of  expressed genes that are 

computed from the raw RNA-seq reads through mapping [204-207] and assembly [204, 208-210]. 

This determines which genes exhibit a statistically significant difference and provides information 

on the expression level and the magnitude of the difference between each gene pair. DGE analysis 

provides valuable insights into the genetic processes contributing to phenotypic differences, in-

cluding plant growth patterns [211-213], tumor origin detection [214], and microbiome studies 

[215]. 

Table 9. Most commonly used DGE tools with their citation counts and year of release: Cuffd-

iff/Cuffdiff2 [200, 216], SAMseq [202], sleuth [217], baySeq [193], limma [218], NOIseq [219], 
DEGseq [220], edgeR [198] and DESeq2 [195]. All citations count were acquired from Google 

Scholar as of 9 February 2023. 

DGE Tool Citation Count Publish Year 

DESeq2 [195] 46,357 2014 

edgeR [198] 29,216 2010 

limma [218] 21,128 2015 

Cuffdiff/Cuffdiff2 [200, 216] 3,507/11,735 2013/2012 
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DGE Tool Citation Count Publish Year 

Voom [192] 4,440 2014 

DEGseq [220] 3,371 2010 

EBSeq [196] 1,196 2013 

sleuth [217] 1,148 2017 

baySeq [193] 941 2010 

SAMseq [202] 512 2013 

NOIseq [219] 145 2012 

edgeR 

The edgeR [198] method for differential analysis between two groups tests the hypothesis 

H0: pg1 = pg2 for each gene. This process involves using an empirical Bayes approach to regulate 

the degree of overdispersion among genes. The gene-wise dispersion is estimated using the con-

ditional maximum likelihood method, which takes into account the total count for each gene. 

Through the empirical Bayes procedure, the dispersions are consolidated towards a common value 

by borrowing information from other genes. The differential expression between groups is then 

evaluated through an exact test that takes into account the overdispersion and resembles Fisher's 

exact test. Additionally, edgeR can fit a negative binomial generalized log-linear model to the read 

counts for each gene and perform statistical tests using likelihood ratio tests. 

DESeq and DESeq2 

DESeq [194] was built upon the negative binomial model introduced by edgeR and estab-

lishes a more flexible and data-driven relationship between the variance and mean. The test for 

differential expression between two groups (H0: pg1 = pg2) for each gene is performed using an 

exact test similar to Fisher's exact test. The test statistic is based on the total count of each group 

and the combined total count of both groups. The serial analysis of gene expression (SAGE) value 

is obtained by summing the probabilities of observing a value for the total count in the treatment 

group as extreme or more extreme, given the fixed total count across groups. 

The DESeq2 method [195], an improvement on the DESeq approach, utilizes a Generalized  

Linear Model (GLM) for modeling the correlation between relative gene abundance and group 
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differences in a more complex manner. It employs a logarithmic connection between the relative 

gene abundance and a design matrix. The DESeq2 incorporates the fold change estimate and the 

dispersion estimate from an empirical Bayes approach and performs differential expression anal-

ysis using a Wald test. 

baySeq 

The baySeq method [193] determines differentially expressed genes by combining the em-

pirical Bayes approach with the observed data to calculate the posterior probability of a model. 

The method assumes a negative binomial distribution for the data and uses a prior distribution, 

determined from the whole dataset, to estimate the dispersion of the data using the maximum like-

lihood method. baySeq also generates a posterior probability of non-differential expression and a 

Bayesian FDR estimate to identify the significantly differentially expressed genes. 

EBSeq 

EBSeq [196], initially created for finding differentially expressed isoforms, has been 

demonstrated to be a strong method for identifying genes with different expression levels. For a 

comparison between two groups, EBSeq performs tests using the negative binomial-beta empirical 

Bayes model and calculates the posterior probability of differential expression through Bayes' rule 

using the EM algorithm. In addition, EBSeq provides a Bayesian FDR estimate to aid in the iden-

tification of significantly differentially expressed genes. 

Voom 

The voom method [192] is a linear modeling approach that models count data, differing 

from the negative binomial model approach. It transforms the count data into log-counts per mil-

lion (log-cpm) and uses moderated t-statistics for gene differential expression analysis. 

SAMseq 

The SAMseq method [202] is a nonparametric approach for differential analysis of RNA-

seq count data, which doesn't rely on Poisson or negative binomial models. SAMseq employs the 

two-sample Wilcoxon rank statistic for comparisons between two groups. According to simula-

tions, a sample size of 20 is considered ample for SAMseq. It adjusts for different sequencing 

depths by resampling from a Poisson distribution and uses permutation to generate the null distri-

bution of the Wilcoxon rank statistic and calculate the FDR. 
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NOIseq 

NOIseq [201] analyzes sequencing-depth corrected and normalized RNA-seq count data 

by comparing the logarithm of the fold change and absolute expression differences between groups 

to the noise distribution. If the logarithm of fold change and absolute expression differences have 

a probability higher than 0.8 of exceeding the noise values, the gene is considered differentially 

expressed. 

In a comparison study by Seyednasrollah et al. [221], eight software packages for RNA-

seq differential analysis were evaluated, including edgeR, DESeq2, baySeq, NOIseq, SAMseq, 

limma, and Cuffdiff2. The researchers used two public RNA-seq datasets to compare the number 

of rejections, and estimated proportion of false discoveries across the eight methods. The results 

of the comparison showed substantial differences between the methods, with limma, and DESeq2 

being recommended as the safest choice for small sample sizes (with fewer than 5 samples in each 

group). 
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 Pipeline 

XI.1. Dimensionality reduction techniques 

Despite avoiding the bias of using a predefined gene set, whole-transcriptome analyses are 

typically too complex for most modeling algorithms to process directly due to their high dimen-

sionality [222]. Furthermore, biological systems have lower intrinsic dimensionality. As an exam-

ple we have differentiating hematopoietic cells that can be represented by two or more dimensions, 

indicating its differentiation progress towards a particular cell type, and current cell-cycle stage 

[223]. 

Dimensionality reduction methods have a long history, for example, widely used principal 

component analysis (PCA) has been used since 1901. With the advent of RNA-seq technology, 

researchers favor this linear dimension-reduction method. Non-linear methods such as UMAP 

(uniform manifold approximation and projection), and t-SNE (t-distributed stochastic neighbor 

embedding) have also been used to reduce dimension. With the rise of neural networks, there are 

many dimensionality reduction methods based on neural networks, such as VAE (variational au-

toencoder). New theoretical frameworks such as SIMLR (single-cell interpretation via multi-ker-

nel learning) based on the above methods are being developed to handle increasingly diverse RNA-

seq data [223, 224].  

Dimensionality reduction techniques encompass two main approaches: Feature Selection 

and Feature Extraction. Feature selection involves selecting the most relevant features from a high-

dimensional dataset using objective measures, to remove irrelevant, redundant, and noisy data to 

reduce the number of features [225]. Feature extraction, on the other hand, is used to extract the 

most relevant information from the original data and represent it in a lower dimensional space. 

This approach selects a new set of features and transforms them into a linear or nonlinear combi-

nation of the original features [226]. These techniques are crucial for reducing the dimensionality 

of high-dimensional data while retaining the relevant information and can be used independently 

or in combination to enhance performance metrics like accuracy. 

Dimensionality reduction is particularly important when analyzing high-dimensional data, 

such as RNA-seq data [227]. Properly selected dimensionality reduction algorithms can help im-

prove the evaluation and classification performance of different approaches in terms of metrics 



  

65 | P a g e  

 

like accuracy, sensitivity, specificity, recall, computational scalability, computational cost, and 

more [228]. 

XI.1.1.Feature selection dimensionality reduction approach 

The approach of feature selection in dimensionality reduction is focused on reducing data 

by eliminating irrelevant and redundant features [229]. This technique can enhance the accuracy 

of predictions, improve the clarity of information, and facilitate the visualization of data. The fea-

ture selection technique comprises three variable selection categories: filter, wrapper, and embed-

ded methods [230]. With the abundance of irrelevant and redundant features in datasets, it is es-

sential to apply a proficient feature selection technique for the extraction of relevant features. 

These techniques are particularly important in selecting informative genes for RNA-seq data clas-

sification in the prediction and diagnosis of diseases, thus improving the accuracy of classification. 

In recent years, various feature selection approaches have been applied to medical datasets, par-

ticularly in the prediction of chronic diseases such as diabetes, hypertension, and heart diseases, 

among others. By applying efficient feature selection techniques, significant and  non-redundant 

attributes can be extracted from large medical datasets, resulting in more accurate results and fa-

cilitating efficient learning algorithms [223]. 

The filter-based feature selection method is a non-dependent approach that efficiently re-

duces the number of features in a dataset. This approach uses statistical procedures to score the 

features and is robust against over-fitting. It is computationally less expensive and provides fast 

and high-quality results, making it ideal for big databases. However, this approach has limitations 

as it does not consider feature dependencies and classifier interactions. Moreover, it may fail to 

select the most useful features. The filter algorithms are evaluated based on distance, information, 

dependency, and consistency. Some of the popular filter-based feature selection algorithms for 

RNA-seq include ANOVA, T-test, Information gain, Fisher score, Chi-squared test, and Correla-

tion-based Feature Selection (CBFS) [223]. 

Wrapper-based feature selection is a method of selecting relevant features by considering 

the performance of a learning algorithm. It searches for the optimal subset of features by using a 

specific classifier to evaluate the quality of the selected features. The classifier is run multiple 

times to assess the quality of each feature, and a score is assigned based on the accuracy of the 

model. This approach considers feature dependencies and has been shown to result in improved 

predictive metrics and classifier performance compared to filter-based methods. However, wrap-

per-based methods can be computationally expensive, requiring the use of an additional learning 
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algorithm, and may result in overfitting on small training datasets. Methods that can be applied to 

RNA-seq include Sequential Forward Selection (SFS), Genetic Algorithms (GA), Recursive Fea-

ture Elimination (RFE), and Backward Elimination Method, among others [223]. 

Embedded feature selection methods use the learning process to guide the feature selection 

process, often referred to as the nested subset method. They measure the usefulness of feature 

subsets during the training process, specifically to optimize the performance of the learning algo-

rithm. This approach is computationally inexpensive, less prone to over-fitting, and better captures 

dependencies between features, resulting in faster solutions and better classifiers. However, these 

methods have limitations such as taking dependent classification decisions, affecting the selected 

features, and being computationally costly. Embedded feature selection methods include Decision 

Trees, Support Vector Machines, Least Absolute Shrinkage and Selection Operator, Elastic Net, 

Ridge Regression, Artificial Neural Networks, and Sequential Forward Selection [223]. 

XI.1.2.Feature extraction dimensionality reduction approach 

The dimensionality reduction approach called feature extraction involves transforming a 

dataset into a simpler representation of features by creating new optimal component features. This 

approach is a general method that uses techniques such as Principal Component Analysis (PCA), 

Non-Linear PCA, Kernel-PCA, and Independent Component Analysis [230]. 

Principal component analysis (PCA) [231], is a widely used statistical technique for ana-

lyzing large, and complex datasets. The goal of PCA is to identify patterns and structures within 

the data that help explain the variability among the samples. PCA works by transforming the orig-

inal data into a new set of variables named principal components (PC), which are linear combina-

tions of the original features. These principal components are ordered in decreasing order of ex-

plained variance, meaning that the first principal component accounts for the largest amount of 

variability in the data, followed by the second, third, and so on. This iterative process is continued 

until the new component is almost ineffective or reaches the threshold set by users. By examining 

the loadings of each variable on each principal component, one can identify which variables con-

tribute the most to the variability observed in the data. 

Independent component analysis (ICA) [232], also known as blind source separation 

(BSS), is a statistical technique used to uncover the underlying factors of random variables, meas-
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ured signals, and values. It linearly transforms variables into independent components with mini-

mal statistical dependencies. ICA is different from PCA in that it requires source signals to meet 

two conditions: independence, and non-Gaussian distribution. 

RNA-seq data often experience dropout events, especially in single-cell RNA-seq (scRNA-

seq), which can render classic dimensionality reduction algorithms inappropriate. Pierson and Yau 

[233] proposed a modification of the factor analysis framework to address this issue, resulting in 

a method called zero-inflated factor analysis (ZIFA) that utilizes an additional zero-inflation mod-

ulation layer to reduce the dimension of scRNA-seq data. While ZIFA has more powerful projec-

tion capabilities than the above-mentioned linear methods, its use of the zero-inflation model 

comes at the cost of increased computational complexity. 

By utilizing the variational sparse approximation of the Bayesian Gaussian process latent 

variable model, GrandPrix [234] projects data into lower dimensional spaces with high efficiency 

using a small number of inducing points to produce a full posterior distribution. The algorithm 

optimizes the coordinate position in the latent space by maximizing the joint density of the obser-

vation data and subsequently establishes a mapping from the low-dimensional space to the high-

dimensional space. 

t-distributed stochastic neighbor embedding (t-SNE) is a cutting-edge technique for reduc-

ing the dimensionality of data with non-linear structure, creating a low-dimensional representation 

that retains local structure [235]. The algorithm is built on the foundation of SNE (Stochastic 

Neighbor Embedding by Hinton and Roweis [236]), which converts high-dimensional distances 

between points into conditional probabilities of similarities. The modifications to SNE in t -SNE 

include a symmetric version, and the use of a Student's t distribution to measure similarities in the 

low-dimensional space. 

Uniform manifold approximation and projection (UMAP) is a non-linear dimension reduc-

tion technique that outperforms t-SNE in both global structure preservation, and computational 

efficiency [237]. UMAP assumes that data are uniformly distributed on a locally connected Rie-

mannian manifold, and models the manifold's fuzzy topology to find a low-dimensional embed-

ding. The algorithm involves building a weighted k-neighbor graph using the nearest-neighbor 

descent algorithm [238] and computing a low-dimensional representation that preserves desired 

characteristics of this graph. 
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Deep count autoencoder (DCA), proposed by Eraslan et al. [239], is a deep learning method 

that performs denoising, and imputation of RNA-seq data in a single step. DCA uses an autoen-

coder with three hidden layers of 64, 32, and 64 neurons, respectively, and zero-inflated negative 

binomial (ZINB) loss functions [240] that learn three parameters (mean, dispersion, and dropout) 

of the negative binomial distribution. The primary output of DCA is the denoised reconstruction, 

which is represented by the mean parameter of the distribution. DCA is highly parallelizable using 

a graphics processing unit (GPU) for increased speed and can capture the complexity, and non-

linearity of RNA-seq data. 

Xiang et al. [224], to develop a strategy to evaluate the stability, accuracy, and computing  

cost of dimensionality reduction methods performed a comparison study of ten dimensionality 

reduction methods used for high-dimensional RNA-seq data. This study included among others 

comparison of methods like principal component analysis (PCA), t-distributed stochastic neighbor 

embedding (t-SNE), uniform manifold approximation and projection (UMAP), Single-cell inter-

pretation via multi-kernel learning (SIMLR), Independent component analysis (ICA), and deep 

count autoencoder (DCA). Their results overall showed that t-SNE had the highest accuracy, and 

computing cost, while UMAP was the most stable with moderate accuracy, and the second highest 

computing cost. However, the performance of each method varied across evaluation criteria. For 

example, SIMLR, and PCA outperformed UMAP in terms of accuracy, but SIMLR had weaker 

computing cost, and PCA had weaker stability. Despite being time-efficient, linear techniques like 

PCA, and ICA performed poorly in highly heterogeneous data. 

XI.2. RNA-seq data analysis using standard pipeline 

After standard quality control, the raw sequencing data I analyzed using the standard pipe-

line described in chapter X.1. This pipeline included quantifying using the Salmon tool against the 

reference genome GRCh38 (hg38) [241]. Quantified transcripts I have imported into the R envi-

ronment with a tximport v. 1.22.0 [242]. Low-abundance genes I have prefiltered, keeping only 

rows with at least 10 reads total. Gene counts I have normalized using the median-of-ratios method 

[195]. 

As described in chapter X.2. from a comparison study by Seyednasrollah et al. [221] on 

different software packages for RNA-seq differential analysis we know that DESeq2 is recom-

mended as the safest choice for small sample sizes. Thus considering the main limitation of the 

experimental design covered in my dissertation related to the small sample size (Figure 11) the 



  

69 | P a g e  

 

differentially expressed genes I have identified using the DESeq2 package [195] version 1.34.0, 

with FDR (false discovery rate) adjusted (Benjamini–Hochberg correction) P value (short: q value) 

cutoff 0.050 (cutoff was selected based on this literature position [243] and my own experience), 

and log2 fold change (log2FC) cutoff 0.500 (the choice of this cutoff threshold was arbitrary, as it 

is the most commonly used for log2FC and, at the same time, not the most rigorous). 192 differ-

entially expressed genes have been identified for lung cancer, while 1,109, and 552 differentially 

expressed genes were detected for stomach, and bladder cancer, respectively (Figure 16). 

Upon closer examination of the obtained results, I noticed that the standard method of se-

lecting DEGs produces many results that do not meet the requirements set for biomarkers (de-

scribed in chapter V.2.). For example, many results did not have a consistent direction of change 

but rather were random as shown example in Figure 12.A, which would indicate the potential low 

sensitivity of such a biomarker candidate, and low reproducibility of the testing result. A predictive 

biomarker at the time of testing in a patient with cancer that is not sensitive to e.g. FGFR inhibitor-

based therapies cannot at one time indicate the presence of a particular resistance mechanism, and 

at another time, its absence. Other results, despite a large fold change difference between the com-

pared R, and S variants (Figure 11), had a difference too small to reach the detectable threshold 

technics used in daily diagnostic clinical practice (Figure 12.B). Furthermore, some results, despite 

having a sufficiently large difference, had a small minimal fold change (minFC – explained more 

below in chapter XI.3.), and as a consequence, the biological effect could be undetectable for such 

a detected difference [195, 244] (Figure 12.C). Such a potential biomarker candidate would exhibit 

very low specificity and sensitivity if it were not possible to detect a difference in its level between 

healthy tissue and diseased tissue, and if its level were not disease-specific but varied depending 

on factors other than the presence or absence of the disease. 
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Figure 12. Examples of candidate biomarkers identified by the standard RNA-seq data analysis pipeline with signif-

icant q value (FDR) < 0.050, and proper fold change (log2FC) value > 0.500, but lacking the characteristics that a 

biomarker should possess: (A) LANCL1 is an example with no consistent direction of change, (B) STX1B is an ex-

ample that, despite a large fold change difference between the compared R, and S variants, has a very small differ-

ence between the extreme internal values of the R, and S sets (minR & maxS), (C) RAB40C is an example that, alt-

hough it exhibits the appropriate minimum difference between the extreme internal values of  the R, and S sets, the 

fold change between these values is very small, making it unlikely to detect such a difference using methods typi-

cally used in clinical practice. The designation  indicates a  desired result, while  indicates an undesired result. 
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Theoretically, one could try to remove such results by reducing the number of features 

through the adoption of a specific cutoff point for some significance parameter or effect size, such 

as q value or fold change, respectively. However, even after applying such a cutoff or by tightening 

the criteria for the threshold, not all results that do not meet the criteria of a valid biomarker are 

removed. 

The occurrence of such unwanted results is largely related to the limitation associated with 

a small number of samples covered in the experimental design. However, due to cost reasons, 

many studies are conducted with a small number of replicates, so solutions for this type of research 

are much needed. 

Another possibility to obtain discriminative features, one might suggest, is to apply other 

dimensionality reduction methods, among others, UMAP (Uniform Manifold Approximation and 

Projection) and PCA (Principal Component Analysis) (described more in chapter XI.1.). However, 

my research aims to develop a pipeline for selecting potential biomarker candidates possessing 

characteristics suitable for a clinical biomarker that can be applied in resource-limited settings, 

facilitating widespread adoption of proposed biomarker/s testing, mainly using immunohisto-

chemical (IHC) labeling. Therefore as those methods would indicate detecting biomarkers by some 

HTS technique, thus those methods were not in the line with my research. 
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XI.3. Pipeline development - PREDICT 

In order to address the objectives of this dissertation, in particular, to account for the char-

acteristics of a clinical biomarker, I developed a “Pipeline for Rapid Evaluation and Discovery of 

Important biomarker CandidaTes” (PREDICT) that allows selecting candidates with desired 

characteristics of a proper biomarker. 

XI.3.1. minFC & minDiff definitions 

The PREDICT pipeline includes two measures, namely the minimal Fold Change (minFC), 

and the minimal Difference (minDiff) (Figure 13. A, and B, respectively). 

minFC (minimal Fold Change) (Figure 13. A) – let X = {x1, x2, ..., xn} be a set of expression 

levels measurements of a particular gene for samples belonging to one group, and let Y = {y1, y2, 

..., ym} be a set of expression levels measurements of a particular gene for samples belonging to 

the other group. We define minFC as: 

𝑚𝑖𝑛𝐹𝐶 =

{
 
 

 
 
𝑚𝑖𝑛𝑋

𝑚𝑎𝑥𝑌
          𝑖𝑓 𝑋 > 𝑌

1                   𝑖𝑓 𝑋̅ = 𝑌
𝑚𝑖𝑛𝑌

𝑚𝑎𝑥𝑋
          𝑖𝑓 𝑋̅ < 𝑌

 

where minX and minY denote the lowest value in set X, and Y respectively, and maxX, and 

maxY denotes the highest value in set X, and Y respectively. 𝑋, and 𝑌 denotes the mean value for 

set X, and Y respectively. minFC > 1 (Log2minFC value > 0) shows that expression value intervals 

for the groups do not overlap, and minFC ≤ 1 (log2minFC value ≤ 0) shows that expression value 

intervals for the groups do overlap. 

I adopted a threshold of log2minFC = 0.100. This threshold was based on my expertise, 

and literature reports on the potential level of FC above which biologically meaningful results are 

considered to occur [195, 244]. Genes with the log2minFC value below the threshold are filtered 

out. 
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minDiff (minimal Difference) (Figure 13. B) – let X = {x1, x2, ..., xn} be a set of expression 

levels measurements of a particular gene for samples belonging to one group, and let Y = {y1, y2, 

..., ym} be a set of expression levels measurements of a particular gene for samples belonging to 

the other group. We define minDiff as: 

𝑚𝑖𝑛𝐷𝑖𝑓𝑓 = {
𝑚𝑖𝑛𝑋 − 𝑚𝑎𝑥𝑌          𝑖𝑓 𝑋̅ ≥ 𝑌

𝑚𝑖𝑛𝑌 − 𝑚𝑎𝑥𝑋          𝑖𝑓 𝑋̅ < 𝑌
 

where minX and minY denote the lowest value in set X, and Y respectively, and maxX, and 

maxY denotes the highest value in set X, and Y respectively. 𝑋, and 𝑌 denotes the mean value for 

set X, and Y respectively. minDiff value > 0 shows that expression value intervals for the groups 

do not overlap, and minDiff value ≤ 0 shows that expression value intervals for the groups do 

overlap. 

I adopted a threshold of minDiff = 100. When establishing this threshold, the possibility of 

detecting such a difference using methods used to test biomarkers in clinical practice, such as IHC, 

ELISA, and qPCR, as well as whether such a difference would be biologically meaningful, was 

evaluated. To do so, the level of normalized readings (mean readings for the Sensitive samples: 

LS, SS, and BS (Figure 11)) for proteins that are already recognized as specific to a given organ, 

in our case, the lung, stomach, and bladder (Table 10), was evaluated. Information about such 

proteins was obtained from the Human Protein Atlas [245-247], and in most cases additionally 

evaluated in GeneCards®: The Human Gene Database [248]. Since these are proteins with a char-

acterized biological function in a given organ, their expression levels must be detectable by the 

standard techniques mentioned above. Therefore, the presence of such a minimal difference be-

tween the test, and control samples will be detectable using the above-mentioned techniques. Thus, 

candidates for biomarkers meeting such criteria will also meet the condition of their applicability 

while maintaining low detection costs. Since 75% of the results were within the range of up to 86 

(Q3 = 86.107), a value of 100 I adopted as the minimal difference threshold (Table 10). Genes 

with the minDiff value below the threshold are filtered out. 
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Table 10. Normalized counts for genes/proteins specific to the lung or stomach or bladder. 

Categorie Gene Description 
Mean expression 

for sensitive cells 

stomach GAST gastrin 0.506 

lung SFTPA2 surfactant protein A2 0.589 

stomach PGA3 pepsinogen A3 0.850 

lung SFTPA1 surfactant protein A1 1.276 

stomach GKN2 gastrokine 2 1.393 

lung SFTPD surfactant protein D 2.020 

lung SLC34A2 solute carrier family 34 member 2 2.389 

lung SCGB3A2 secretoglobin family 3A member 2 2.592 

lung NAPSA napsin A aspartic peptidase 13.318 

lung 
MS4A15 

[249, 250] 
membrane spanning 4-domains A15 

24.137 

lung 
RTKN2 

[251, 252] 
rhotekin 2 

45.110 

lung SFTPB surfactant protein B 57.718 

bladder IL23A [253] interleukin 23 subunit alpha 68.238 

bladder 
MMP13 

[254, 255] 
matrix metallopeptidase 13 

139.716 

bladder UPK2 uroplakin 2 1486.626 

stomach MUC5AC [256] mucin 5AC, oligomeric mucus/gel-forming 2054.960 

stomach TFF1 trefoil factor 1 2889.759 
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Figure 13. Scheme of the (A) minFC, and (B) minDiff measures. 
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XI.3.2. Pipeline: PREDICT 

The PREDICT (Figure 14) is a pipeline that is applied to the results of standard RNA-seq 

data analysis as described in chapters X.1. and XI.2. Having DEGs identified using the DESeq2 

package [195] we calculate measures, namely minFC (minimal Fold Change), and minDiff (mini-

mal Difference) (Figure 13). Having such a list of DEGs with the fold change (FC) values, q val-

ues, minFC, and minDiff values we filter out DEGs with log2FC below threshold 0.500, and then 

we filter out DEGs with q value below threshold 0.050. Next for that list, we select results over 

the minFC threshold of 0.100, and then those that are over the minDiff threshold of 100 (Figure 

14).  

 

Figure 14. Scheme of the standard pipeline for RNA-seq data analysis, and scheme of Pipeline for Rapid Evaluation 

and Discovery of Important biomarker CandidaTes (PREDICT). 

When selecting a biomarker candidate, it is also important, as I mentioned earlier in chapter 

XI.2., that the direction of the detected change in the biomarker level is always the same, thus 
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enabling the reproducibility of testing results. Taking into account the measures minFC, and min-

Diff with their thresholds in the PREDICT pipeline it ensures that this condition is met. Addition-

ally, both these measures enable this pipeline to guarantee that the expression value intervals for 

the groups do not overlap. 

Simultaneous use of both minDiff, and minFC measures with their thresholds (sequentially 

after considering fold change, and q value threshold) is necessary because their single use does not 

allow filtering out all incorrect results (Figure 15). As we can see in the Venn diagram presented 

below (Figure 15) that for example in the case of stomach cancer if we would apply just the minFC 

threshold we would have 166 unwanted results (by results I mean DEGs), and in the case of the 

minDiff threshold we would have 9 undesirable results. The minFC measure ensures the retention 

of results with a greater log2minFC value than log2minFC = 0.100, but at the same time may pass, 

for example, biomarkers with a result of normalized reads as S: 0.01 vs R: 0.03, which are likely 

to be difficult to be applied in clinical practice, as it would be impossible to detect them. In the 

case of the minDiff measure alone, biomarkers with results such as S: 12,000 vs R: 12,120 may 

pass, for which such a difference may not have biological significance. Therefore, the incorpora-

tion of both measures in the pipeline allows for the removal of all unwanted results and the selec-

tion of candidates who are more likely to exhibit appropriately high sensitivity and specificity. 
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Figure 15. Venn diagram presenting a comparison of lists of DEGs selected with the standard method: with q value 

< 0.050 (FDR), or with log2 fold change (FC) < 0.500, or with applying single measure minFC or minDiff threshold 

in (A) lung, (B) stomach, and (C) bladder data set. 

By selecting a candidate biomarker while maintaining the conditions introduced in the 

PREDICT pipeline, it is possible to identify potential candidates that may have the appropriate 

level of specificity required for predictive biomarkers. With this pipeline by sequentially applying 

thresholds of log2FC > 0.500, q value < 0.050, log2minFC > 0.100, and minDiff > 100 to the 

results obtained from the standard differential analysis method, it led to filtering out the unwanted 

results, and the numbers of DEGs obtained by this method are presented in Figure 16. 
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Figure 16. Numbers of identified DEGs obtained by sequentially applying measures thresholds: log2 fold change 

(log2FC) < 0.500, q value (FDR) < 0.050, log2minFC > 0.100, and minDiff > 100. 

To evaluate inter-tumor diversity, Principal Component Analysis (PCA) (Figure 17) was 

applied to the regularized logarithm (rlog) transformed data. Based on this unsupervised analysis, 

we can see that the main sources of variability in the data are related to the cell lines, which mimic 

the inter-tumor diversity in my experimental design. The lung cancer cell lines exhibit the greatest 

difference, while the bladder cancer cell lines exhibit the smallest difference (Figure 17). This 

diversity and low sample size are the main reasons why so many DEGs lack proper biomarker 

features. By applying the PREDICT pipeline, we can address these imperfections, and select more 

suitable candidates for biomarkers. Additionally, by removing candidates with a lower probability 

of entering clinical practice, we reduce the number of potential candidates for the validation phase 

(described more in Chapter VI.). As this phase is costly, it is easier to decide which candidates to 

consider when the number of potential biomarkers is smaller and more suitable. 
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Figure 17. Principal Component Analysis (PCA) was carried out on three data sets: lung (A, B, C, D), stomach (E, 

F, G, H), and bladder (I, J, K, L). For each analysis, there is a  scree plot (lung: D, stomach: H, and bladder: L) repre-

senting the percentage contribution of principal components (PC) in explaining variability in the data . The dashed 

line on this plot marks a threshold of ~85 % of variability up to which I was assessing the acquired PC. There is four 

PC for each dataset, and they are presented on three plots PC1 versus PC2 or PC3, or PC4 accordingly (lung (A, B, 

C), stomach (E, F, G), and bladder (I, J, K)). 

To assess whether the observed inter-tumor diversity in the PCA analysis presented in Fig-

ure 17 is influenced by batch effects, I conducted a Principal Component Analysis using 15 house-

keeping genes (Table 11) as a control. This allowed me to distinguish between true biological 

variability and experimental artifacts. 
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Table 11. Housekeeping genes [257, 258]. 

Gene ID Gene symbol Gene name 

ENSG00000111640 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

ENSG00000075624 ACTB Beta-actin (β-actin) 

ENSG00000273686 B2M Beta-2-microglobulin 

ENSG00000112339 HBS1L HBS1-like protein 

ENSG00000165704 HPRT1 Hypoxanthine guanine phosphoribosyl transferase I 

ENSG00000073578 SDHA 
Succinate dehydrogenase complex, subunit A, flavopro-
tein 

ENSG00000196565 HBG2 Gamma globin (γ-globin) 

ENSG00000184009 ACTG1 Actin Gamma 1 

ENSG00000227794 RPS18 Ribosomal Protein S18 

ENSG00000272391 POM121C Nuclear Pore Membrane Protein 121-2 

ENSG00000112110 MRPL18 Mitochondrial Ribosomal Protein L18 

ENSG00000175768 TOMM5 Translocase Of Outer Mitochondrial Membrane 5 

ENSG00000149658 YTHDF1 
Dermatomyositis Associated With Cancer Putative Au-
toantigen 1  

ENSG00000133112 TPT1 Tumor Protein, Translationally-Controlled 1 

ENSG00000177954 RPS27 Ribosomal Protein S27 

With the results of this PCA analysis (Figure 18) based on the expression of housekeeping 

genes (Table 11), we can see that there is no significant difference between cell lines thus the 

observed diversity is not related to the batch effect. 
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Figure 18. Principal Component Analysis (PCA) was carried out on three data sets of housekeeping genes (Ta-

ble 11) from lung (A), stomach (B), and bladder (C). 
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Figure 19. Venn diagram presenting a comparison of lists of DEGs selected with the standard method : with q value 

< 0.050 (FDR), or with log2 fold change (FC) < 0.500, or with Cohen’s d > 0.300, or with applying single measure 

minFC or minDiff threshold in (A) lung, (B) stomach, and (C) bladder data set. 
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The fold change (FC) is a commonly used approach to detect differential gene expression, 

but it has limitations due to the lack of consideration of the uncertainty associated with gene ex-

pression measurements in different conditions. This is especially true for genes with low read 

counts, which tend to have less reliable fold changes than those with high read counts. Further-

more, it is not appropriate to compare fold changes based on read counts for genes that vary in 

expression levels or have different lengths [195, 259, 260]. Due to the limitations of the FC meas-

ure, I decided to assess whether replacing this measure with a more recommended measure of 

effect size, such as Cohen's d, could significantly improve the results obtained using the PREDICT 

pipeline. Cohen's d differs from FC in measuring effect size, such as by indicating that it takes into 

account the variance of each condition, which can provide a more robust measure of differential 

expression. 

When assessing the Venn diagram (Figure 19) in terms of replacing the FC measure with 

the Cohen's d measure in the PREDICT pipeline, we can see that for the lung dataset, the number 

of selected DEGs remains the same and for the stomach and bladder datasets, there would be an 

increase of 3 and 10 DEGs, respectively. Therefore, the replacement of FC with Cohen's d would 

not significantly alter the results. Moreover, FC is a widely used measure and in many cases pre-

ferred by scientists in the different fields of biology as well as it has utility for various downstream 

analysis tasks, such as prioritizing genes for further investigation and linking FC with other vari-

ables of interest. For all these reasons, I have decided not to replace FC in the PREDICT pipeline. 

Additionally, we can see that by using Cohen’s d instead of FC measure we would still 

receive some undesirable results (DEGs), thus minFC and minDiff measures are necessary to filter 

out all incorrect results. 
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 Assessment of biological context of genes selected 

with PREDICT 

XII.1. Three generations of pathway analysis 

In 2012, Khatri et al. propose a classification system for pathway analysis methods, which 

includes over-representation analysis (First Generation), functional class scoring (Second Gener-

ation), and pathway topology-based analysis (Third Generation). The classification is based on the 

specific type of analysis each method performs, and there are significant differences in the input 

datasets and computational analyses used between the different classes [261]. 

First Generation 

In the first generation of pathway analysis methods, Over-Representation Analysis (ORA) 

is based on the hypothesis that relevant pathways can be identified by detecting an over-represen-

tation of differentially expressed genes within a given pathway compared to what would be ex-

pected by chance. ORA methods evaluate the fraction of pathway components found within a user-

selected list of biological components based on certain criteria such as log fold change and statis-

tical significance. Statistical methods such as the hypergeometric distribution, chi-square, bino-

mial probability, or Fisher's exact test are used to calculate a confidence value and rank pathways. 

Multiple testing correction is performed to avoid false positives. The output from ORA methods 

is generally a list of relevant pathways ordered by their P value or multiple-hypothesis-test-cor-

rected P value. The advantage of ORA methodologies is that they provide Omic data with biolog-

ical context, facilitating hypothesis generation and subsequent experimental testing, which is in 

line with the Systems Biology approach [261]. 

ORA methods have some limitations, despite their ability to quickly identify significant  

biological meaning from large datasets. First, these methods often omit potentially important com-

ponents near the selected cut-off threshold, leading to reduced information and unstable results. 

Additionally, cut-off thresholds are arbitrarily selected, making it difficult to establish a standard 

threshold [262]. Second, ORA methods treat all components in a pathway equally, disregarding 

any inherent information about interactions between genes such as gene expression level or posi-

tion in the pathway [263]. Therefore, two pathways with the same genes but different topologies 

would yield the same result. Finally, ORA methods assume that pathways are independent of each 

other, ignoring the fact that pathways can interact and overlap with each other [264]. 
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Second Generation 

Functional Class Scoring (FCS) methods are the second generation of pathway analysis 

(PA) and operate under the hypothesis that even small but coordinated changes in gene expression 

can significantly affect a pathway's overall state. Unlike ORA methods, FCS methods use all avail-

able measurements in high-throughput biological data (HTBD) and do not have a cut-off threshold 

limitation. FCS methods still use pathways as gene sets to perform their computations. The work-

flow for FCS methods involves three steps: (1) calculating a basal-level statistic using all HTBD 

to compute differential expressions of individual components; (2) aggregating basal-level statistics 

from each pathway's components into a single pathway-level statistic; and (3) calculating the sta-

tistical significance of pathway-level statistics using methods such as the Kolmogorov-Smirnov 

statistic, Wilcoxon sum rank statistic, max-mean statistic, or chi-squared test [261]. 

FCS methods offer several advantages over ORA methods [261]: 

• FCS methods do not require an arbitrary cut-off threshold for differentially ex-

pressed genes because they utilize all available information. 

• They can identify variances between pathways that are only marginally passing the 

differentially expressed thresholds and those that are significantly passing them. 

• FCS methods can identify subtle but coordinated relations between gene-expression 

levels of molecules and their associated pathways. 

• Some FCS methods can detect the most significant genes in any given pathway, 

known as the core of the pathway, such as in the case of GSEA. 

Gene Set Enrichment Analysis (GSEA) is a widely used FCS method for analyzing gene 

expression data. The approach involves ranking genes based on their differential expression be-

tween two phenotypic classes, using the signal-to-noise ratio basal-level statistic. The ranked gene 

list is then evaluated against a pre-defined set of genes (e.g. gene sets from the MSigDB) to cal-

culate an enrichment score (ES) for each gene set, using a Kolmogorov-Smirnov pathway-level 

statistic. Finally, the significance of the ES is determined, and adjustments are made for multiple 

hypothesis testing [261]. 
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Although FCS methods address some of the limitations of ORA analyses, they still have 

some drawbacks, primarily because they use pathways as gene sets instead of networks. Some of 

these limitations include [261]: 

• Many FCS methods still assume that all components within a pathway have equal 

weight when determining the pathway statistic, regardless of prior knowledge about 

the pathway. This can result in inaccurate pathway rankings. 

• These methods often do not consider the relationships between components within 

pathways, leading to an underutilization of information from Pathway Databases 

(PDBs) and a decreased ability to identify important pathways. 

• FCS methods still analyze pathways independently of one another and do not con-

sider the overlap between pathways or the potential influence that one pathway may 

have on another. 

Third Generation 

Advancements in pathway annotation from Pathway Databases have led to the integration 

of pathway topology into pathway analysis (PA) methodologies, giving rise to the pathway topol-

ogy based (PTB) analysis. PTB analysis assumes that interactions in pathway topology contain 

information for interpreting correlated changes between pathway components. PTB methods ex-

tend ORA and FCS methods, by adding pathway topology for assessing the statistical relevance 

of the pathways. For ORA extended methods, user-selected genes are mapped onto the pathway 

topology, followed by network and statistical analyses. For FCS extended methods, the HTBD and 

topology are used to calculate basal-level statistics and continue further in an analogous way to an 

FCS approach [261]. 

Pathway topology-based (PTB) analysis can overcome the limitations of ORA and FCS 

methods in several ways [261]: 

• By considering the topology of pathways, PTB methods can assign different 

weights to pathway components based on their biological significance, resulting in 

more accurate pathway statistics. 

• PTB methods can also incorporate diverse topological information to analyze the 

same set of pathway components, providing a more refined analysis. 
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• PTB methods consider causal interactions within pathways, allowing for analysis 

of upstream and downstream effects, and identifying potential key drivers of path-

way behavior. 

PTB methodologies have limitations that are difficult to address as they challenge the cur-

rent paradigm in life sciences, which recognizes that life components work together as a dynamic, 

adaptable, and robust system. Despite this, some limitations can be identified that will likely be 

addressed in future methods as experimental and annotation barriers are overcome. These limita-

tions include [261]: 

• some PTB methods do not consider the direction of associations among pathway 

components, potentially missing chain effects of deregulation, 

• PTB methods do not account for interconnections between pathways, which may 

result in a failure to detect relevant pathways, 

• PTB methods do not consider the time and spatial distribution of pathway compo-

nents, which may be dependent on biomolecule compartmentalization, 

• moreover, molecular regulation in a time-scale manner is also important for under-

standing pathway mechanisms, and  

• most methods cannot distinguish the multiple states and variants that a pathway 

element can have, which may affect phenotype and pathway functioning, 

• the sample size must be sufficient to apply PTB methods. 
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XII.2. Biological context assessment 

As mentioned in earlier chapters the main limitation of the experimental design covered in 

my dissertation is related to the small sample size. Therefore, in this case analysis using third-

generation Pathway-Topology Based methods is not recommended [265, 266]. An attempt to con-

duct such an analysis was made using the hiPathia tool v 1.7.4 (HIgh throughput PATHway Inter-

pretation and Analysis) [267], but no significant results were obtained. Based on literature data 

[265, 266], a sample size of 10-15 repetitions per group would be needed for this type of analysis. 

In my case, there are only four repetitions per group. Therefore, due to the nature of the experi-

mental design of the data used as an example in my doctoral dissertation, the assessment of bio-

logical context was performed using first and second generation methods. 

Enrichment analysis was performed against Reactome pathways using the ReactomePA 

package v 1.16.2 [268]. Two methods were employed: over-representation analysis (ORA) with 

the gene list selected with the PREDICT pipeline, and gene set enrichment analysis (GSEA) with 

genes ranked according to the Wald test statistic. P values were adjusted for multiple testing with 

Benjamini-Hochberg correction (q value). 

Lung 

Using the ORA method on genes selected with the PREDICT pipeline for the lung DEGs 

data set, I have identified 37 significant pathways (q value < 0.050; see Table 12). Of these 37 

pathways, 9 may suggest a potential association with the mechanism of resistance to FGFR inhib-

itor (highlighted in blue in Table 12). Signaling pathways such as „ERK/MAPK targets”, „MAPK 

targets/ Nuclear events mediated by MAP kinases”, „Gastrin-CREB signaling pathway via PKC 

and MAPK”, and „TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 ac-

tivation” may indicate a potential resistance mechanism in the form of compensatory action. Since 

FGFR inhibition can result in the inhibition of proliferation (described more in chapters II. and 

IV.2.), a resistant cell may compensate for this event by activating the MAPK (Mitogen‑activated 

protein kinase) signaling pathway, which stimulates proliferation, among other [269]. Similarly, 

the increased activity of signaling pathways associated with RAS (Rat sarcoma virus) in my case 

indicated as the pathway of "CREB1 phosphorylation through NMDA receptor-mediated activa-

tion of RAS signaling" can be explained in the same way [270]. The "Glucuronidation" signaling 

pathway is associated with drug metabolism, so its increased activity may be related to a resistant 

cell's ability to cope with the presence of an FGFR-TKI [271]. The role of signaling pathways 



  

91 | P a g e  

 

associated with RND1 (Rho Family GTPase 1; our indicated pathway being "RND1 GTPase cy-

cle") is poorly understood. My analysis indicates a change in the activity of this signaling pathway 

due to altered regulation of the GRB7 (Growth Factor Receptor Bound Protein 7) protein. Most 

reports suggest that the GRB7 protein is associated with increased proliferation, among others 

[272-274]. However, there are also reports indicating inhibitory action in interaction with the 

RND1 protein [275]. In our case, the GRB7 gene, which was identified as downregulated in lung 

cancer cell lines resistant to FGFR inhibitor, may suggest that the lack of its interaction with the 

signaling pathway associated with RND1 reduces its activity, and in this way, we can observe a 

mechanism of compensatory activation of proliferation inhibited by FGFR inhibitor [276, 277]. 

Table 12. The list of significant pathways from ORA analysis performed based on the lung gene 
set selected with the PREDICT pipeline. 

No * Description * 
Gene . 

count * 
qvalue * 

1 Toll Like Receptor 10 (TLR10) Cascade 2 0.013 

2 Toll Like Receptor 5 (TLR5) Cascade 2 0.013 

3 MyD88 cascade initiated on plasma membrane 2 0.013 

4 
TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activa-

tion 
2 0.013 

5 MyD88 dependent cascade initiated on endosome 2 0.013 

6 Toll Like Receptor 7/8 (TLR7/8) Cascade 2 0.013 

7 Toll Like Receptor 9 (TLR9) Cascade 2 0.013 

8 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 2 0.013 

9 Toll Like Receptor TLR6:TLR2 Cascade 2 0.013 

10 Toll Like Receptor TLR1:TLR2 Cascade 2 0.013 

11 Toll Like Receptor 2 (TLR2) Cascade 2 0.013 

12 Toll Like Receptor 4 (TLR4) Cascade 2 0.019 

13 Toll-like Receptor Cascades 2 0.024 

14 Metallothioneins bind metals 1 0.029 

15 Response to metal ions 1 0.032 

16 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 1 0.032 
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17 Tie2 Signaling 1 0.034 

18 IRAK4 deficiency (TLR2/4) 1 0.034 

19 Gastrin-CREB signalling pathway via PKC and MAPK 1 0.034 

20 ERK/MAPK targets 1 0.040 

21 Telomere Extension By Telomerase 1 0.040 

22 Glucuronidation 1 0.040 

23 WNT ligand biogenesis and trafficking 1 0.040 

24 Downstream signal transduction 1 0.040 

25 
CREB1 phosphorylation through NMDA receptor-mediated activation of RAS 

signaling 
1 0.040 

26 MAPK targets/ Nuclear events mediated by MAP kinases 1 0.040 

27 Diseases of Immune System 1 0.040 

28 Diseases associated with the TLR signaling cascade 1 0.040 

29 Metabolic disorders of biological oxidation enzymes 1 0.042 

30 Synthesis of PA 1 0.047 

31 RET signaling 1 0.047 

32 RND1 GTPase cycle 1 0.047 

33 Signaling by SCF-KIT 1 0.047 

34 Transport of vitamins, nucleosides, and related molecules 1 0.047 

35 Recycling pathway of L1 1 0.048 

36 Signaling by ERBB2 1 0.050 

37 Extension of Telomeres 1 0.050 

* blue color indicates pathway potential association with the mechanism of resistance to FGFR inhibitor. 

A major limitation of this ORA analysis is the very small number of genes used, which is 

only 13. Only this many genes could be selected when applying the PREDICT pipeline. With such 

a small number of genes, the appearance of even one gene in the signaling pathway from the ana-

lyzed list can indicate the pathway as statistically significant. Therefore, in this particular situation, 

it is more beneficial to evaluate the available literature on these genes to assess their biological 
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context. Based on such an evaluation, using the MEDLINE (through PubMed) and Scopus repos-

itories, as well as GeneCards, I associated 11 out of 13 genes with a potential mechanism of re-

sistance to anti-FGFR treatment. For two genes, accounting for their direction of change, I could 

not link the protein's role to a potential resistance mechanism based on the available literature. 

This may be due to the different protein's tissue-specific activity (moonlighting proteins) [278, 

279]. Taking as an example from the list of genes selected using the PREDICT pipeline (Table 

13), the protein GRB7 (as described above) may indirectly stimulate proliferation, and in my case, 

its downregulation would indicate the opposite role in lung cancer. Therefore, we can assume that 

the role of the GRB7 protein may be tissue-specific. Another example of a moonlighting protein 

in my analysis is the WLS (Wnt Ligand Secretion Mediator) protein (Table 13), which interacts 

with the Wnt proteins and indirectly stimulates proliferation [280-283]. On the other hand, accord-

ing to Yang et al. [284], in melanoma, overexpression of WLS inhibits cell proliferation. Based on 

the literature review conducted for the mentioned 13 genes (Table 13), the proteins MT2A [285], 

GRB7 [275], CDC14B [286], RPS6KA3 [287], IRAK4 [288], ZCCHC14 [289], WLS [284], 

ANKRD28 [290], and LCLAT1 [291] may participate in a compensatory mechanism of prolifer-

ation induction. The SLC35D1 (Solute Carrier Family 35 Member D1) protein is associated with 

the glucuronidation mechanism, which as mentioned above, is related to drug metabolism. There-

fore, the cells may cope with the presence of the FGFR inhibitor by metabolizing it. 

Table 13. The list of the lung genes selected with the PREDICT pipeline. 

No 
* 

Gene . 

symbol * 
Gene name * 

Potential mechanism of 

resistance to FGFR inhibitor 

1 MT2A Metallothionein 2A 
Compensation mechanism: downregulation promotes 

proliferation and migration [285]. 

2 GRB7 

Growth Factor Re-
ceptor Bound Protein 

7 

Compensation mechanism: with downregulation of 
GRB7 there is no proliferation inhibitory effect mediated 
by interaction with Rnd1 [275]. 

3 CDC14B 
Cell Division Cycle 

14B 

Compensation mechanism: by role in cell cycle control 

affects cell proliferation [286]. 

4 CFAP36 

Cilia And Flagella 
Associated Protein 

36 

Compensation mechanism: CFAP36 directly interacts 
with ARL3, causing it to be blocked from its membrane 
localization and preventing ARL3 from performing its 
function. ARL3 is most likely a tumor suppressor by in-
ducing into tumor immune cell infiltration. Therefore, by 
blocking ARL3, CFAP36 promotes cell survival [292, 
293]. 
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5 RPS6KA3 
Ribosomal Protein 

S6 Kinase A3 
Compensation mechanism: by interacting with MAPK 
promotes proliferation and migration [287]. 

6 IRAK4 

Interleukin 1 Recep-
tor Associated Ki-

nase 4 

Compensation mechanism: by interacting with NF-kap-
paB promotes proliferation [288]. 

7 SLC35D1 
Solute Carrier Fam-
ily 35 Member D1 

Drug metabolism: participate in the glucuronidation pro-
cess that is involved in the metabolism of drugs [271]. 

8 CDCA7L 
Cell Division Cycle 

Associated 7 Like 

I found no evidence of a link to a potential mechanism of 

resistance to the FGFR inhibitor. The available literature 
reports that CDCA7L promotes cell proliferation, and in-
hibited cell apoptosis [294]. 

9 ISOC2 
Isochorismatase Do-
main Containing 2 

I found no evidence of a link to a potential mechanism of 
resistance to the FGFR inhibitor. The available literature 
reports that ISOC2 inhibits the expression of p16(INK4a). 
p16(INK4a) is a multiple tumor suppressor, playing an 
important role in proliferation and tumorigenesis [295]. 

10 ZCCHC14 
Zinc Finger CCHC-
Type Containing 14 

Compensation mechanism: downregulation promotes 
proliferation [289]. 

11 WLS 
Wnt Ligand Secre-

tion Mediator 

Compensation mechanism: downregulation promotes 

proliferation [284]. 

12 ANKRD28 
Ankyrin Repeat Do-

main 28 

Compensation mechanism: downregulation leads to a de-
crease in the inhibition of NFKBIE dephosphorylation, 
resulting in its direction towards ubiquitination pathway. 
As a result, the NFkB signaling pathway is not inhibited, 
which leads to the stimulation of proliferation [290]. 

13 LCLAT1 
Lysocardiolipin 

Acyltransferase 1 

Compensation mechanism: by interacting with EGF and 

AKT promotes proliferation [291]. 

* blue and red color indicates tha t this gene is downregulated or upregulated respectively. 

From the second-generation pathway analysis methods, the GSEA (Gene Set Enrichment 

Analysis) was selected as it is the most popular and can be used for small sample size data [296]. 

For the GSEA analysis, we use the entire list of genes ranked accordingly (in my case, genes 

ranked according to the Wald test statistic), so we no longer have information from the PREDICT 

pipeline. As a result of the GSEA analysis, we identified three statistically significant pathways 

presented in Table 14. Two of these pathways, "Metallothioneins bind metals" and "Response to 

metal ions," are consistent with the results of the ORA analysis. The protein MT2A, which gene 

expression is downregulated in my case, is associated with these pathways and has been docu-
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mented by Lui et al. [285] to inhibit proliferation when overexpressed. Therefore, it can be as-

sumed that its downregulation is associated with decreased activity of these signaling pathways 

and thus linked to the mechanism of resistance to FGFR inhibitor therapy through compensatory 

activation of proliferation. 

Table 14. The list of significant pathways from GSEA analysis performed based on the lung 
DEGs data set. 

No * Description * 
Gene . 

count * 
qvalue * 

1 Metallothioneins bind metals 6 0.018 

2 Response to metal ions 6 0.018 

3 Keratinization 16 0.040 

* blue color indicates pathway potential association with the mechanism of resistance to FGFR inhibitor. 
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Stomach 

Based on the data set selected with the PREDICT pipeline no significant pathways were 

identified with the over-representation analysis method. However, using the gene set enrichment 

analysis I have identified 220 significant pathways (q value < 0.050) (the list of significant path-

ways from GSEA analysis can be found in Table S3 in Supplementary Materials placed on CD-R 

attached at the back of the dissertation). Since with a closer look, it was possible to distinguish 

groups of similar pathways, thus using the enrichplot tool v 1.13.1.994 [297], pathways were clus-

tered (an arbitrary number of clusters was chosen) based on the Jaccard similarity coefficient. 

There was possible to distinguish 10 different groups of pathways (Figure 20), specifically related 

to: i) nuclear transport, ii) viral infection, iii) defective HDR, iv) DNA repair, v) m phase, kineto-

chores, vi) mismatch repair, telomeres, vii) cell cycle, viii) mitochondrial translation, ix) mRNA, 

and x) extracellular matrix organization. 

 

Figure 20. Hierarchical clustering of statistically significant (q value < 0.05) pathways identified with GSEA analy-

sis performed based on the stomach DEGs data set. The number of the stomach DEGs identified in the pathways is 

represented using the size of the circles as indicated in the right panel. 
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Since FGFR indirectly participate in regulating proliferation, and cell survival as well as 

maintaining tissue homeostasis, thus potential FGFR-TKIs resistant mechanism could lie in v, vi, 

vii, and x cluster (Figure 20). Therefore, in the gene set that came out related to these pathways I 

have selected genes that meet PREDICT statistical properties. As there were 57 identified genes I 

have assessed them based on available literature (Table 15) similar to the case of lung genes de-

scribed above. 

With the performed literature assessment I was able to connect 44 out of 57 genes with a 

potential mechanism of FGFR-TKIs resistance. Most genes might be related to a sort of compen-

satory activation of proliferation (32 genes), migration (15 genes), and invasion (5 genes) as a 

response to inhibition of these processes caused by blocking of FGF receptor/s signaling (Table 

15). This is potentially mainly mediated through MAPK and AKT signaling pathways but also like 

in the case of RHEB (Ras Homolog, MTORC1 Binding) protein by interacting with mTORC1 

pathway [298] or in the case of APOL1 (Apolipoprotein L1) protein by activating NOTCH1 (Neu-

rogenic locus notch homolog protein 1) signaling pathway [299]. 18 genes could be related to the 

antiapoptotic mechanism (Table 15). Like for example in the case of IQGAP2 (IQ Motif Contain-

ing GTPase Activating Protein 2) protein, Song et al. [300] report that it promotes apoptosis via 

activating the p38-p53 pathway, triggered by an increase in reactive oxygen species (ROS). Down-

regulation of this gene in my case may suggest a potential antiapoptotic protective mechanism. 

The rest of the genes are briefly described in Table 15 and more information can be found under 

provided citations. 

Table 15. The list of genes selected with the PREDICT pipeline from the stomach DEGs data set 

that came out related to the v or vi or vii or x cluster of pathways from GSEA analysis. 

No * 
Gene . 

symbol * 
Gene name * 

Potential mechanism of 

resistance to FGFR inhibitor 

1 TOM1 
Target Of Myb1 Mem-

brane Trafficking Protein 

Antiapoptotic mechanism: act as a negative regulator of IL-1beta 

and TNF-alpha-induced signaling pathways [301]. 

2 IFIT3 

Interferon Induced Protein 

With Tetratricopeptide Re-

peats 3 

Antiapoptotic mechanism: negative regulation of apoptotic process 

[302]. 

3 IFIT2 

Interferon Induced Protein 

With Tetratricopeptide Re-

peats 2 

Antiapoptotic mechanism: negative regulation of apoptotic process 

[302]. 

4 SSRP1 
Structure Specific Reco-

gnition Protein 1 

Antiapoptotic mechanism: when it is not downregulated like in our 

case it may potentiate cisplatin-induced cell death by blocking rep-

lication and repair of modified DNA [303]. 
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5 IFIT1 

Interferon Induced Protein 

With Tetratricopeptide Re-

peats 1 

Antiapoptotic mechanism: negative regulation of apoptot ic process 

[302]. 

6 TFDP1 Transcription Factor Dp-1 
Antiapoptotic mechanism: downregulation prevents from a ctivated 

E2F mediated apoptosis [304, 305]. 

7 CLCN7 
Chloride Voltage-Gated 

Channel 7 

Antiautophagy mechanism: CLCN7 promotes autophagy re-

sistance through TGFβ signaling [306]. 

8 APOL1 Apolipoprotein L1 

Compensation and antiapoptotic mechanism: promotes prolifera-

tion and inhibits apoptosis via activating NOTCH1 signaling path-

way [299]. 

9 RHEB 
Ras Homolog, MTORC1 

Binding 

Compensation and antiapoptotic mechanism: activation of cell 

growth through stimulation of mTORC1 activity, protecting cancer 

cells from apoptosis induced by metabolic or oxidative stress by 

reciprocal regulation between Rheb and AMPK [307]. 

10 UBC Ubiquitin C 
Compensation and antiapoptotic mechanism: promotes cell 

growth, cell survival, and antiapoptotic effects [308]. 

11 HSPB8 
Heat Shock Protein Family 

B (Small) Member 8 

Compensation and antiapoptotic mechanism: promotes cell 

growth, cell survival, antiapoptotic effects, and autophagy pro-sur-

vival [309]. 

12 BATF 

Basic Leucine Zipper 

ATF-Like Transcription 

Factor 

Compensation and antiapoptotic mechanism: promotes cell 

growth, cell survival, and antiapoptotic effects [310, 311]. 

13 IL17RC Interleukin 17 Receptor C 

Compensation and antiapoptotic mechanism: promotes cell 

growth, cell survival, and antiapoptotic effects by activation of NF-

kappa-B and MAPkinase pathways, and protecting from TNFα-in-

duced apoptosis [312]. 

14 C3 Complement C3 

Compensation and antiapoptotic mechanism: promotes cell 

growth, migration, cell survival, and antiapoptotic effects via acti-

vation of the PLC, MAPK and AKT signaling pathways [313-315]. 

15 IQGAP2 

IQ Motif Containing 

GTPase Activating Protein 

2 

Compensation and antiapoptotic mechanism: IQGAP2 acts as a tu-

mor-suppressor where with its downregulation it promotes cell 

growth, migration, cell survival and inhibit apoptosis by not dis-

rupting signaling pathways, such as the MAPK/ERK, receptor ty-

rosine kinase (RTK)-activated phosphatidylinositol 3-kinase/AKT 

(PI3K-AKT), transforming growth factor β (TGF-β), and Wnt/-

catenin pathways [300]. 

16 CD55 
CD55 Molecule (Cromer 

Blood Group) 

Compensation and antiapoptotic mechanism: promotes cell 

growth, metastasis, and antiapoptotic effects [316]. 

17 LAMTOR2 

Late Endosomal/Lysoso-

mal Adaptor, MAPK And 

MTOR Activator 2 

Compensation mechanism: promotes cell growth, migration, and 

cell survival as LAMTOR2 is an adapter protein that enhances the 

efficiency of the MAP kinase cascade facilitating the activation of 

MAPK2 [317]. 
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18 PDS5B 
PDS5 Cohesin Associated 

Factor B 

Compensation mechanism: This protein is a negative regulator of 

cell proliferation, migration, and inva sion via upregulation of 

LATS1 [318]. 

19 LGALS1 Galectin 1 

Compensation mechanism: promotes cell growth, cell migration, 

and cell invasion by interacting with MAPK and MMP-9 path ways 

[319]. 

20 ULK1 
Unc-51 Like Autophagy 

Activating Kinase 1 

Compensation mechanism: promotes cell survival, migration, and 

invasion as ULK1 is involved in autophagy in response to starva-

tion. It acts as a upstream of phosphatidylinositol 3-kinase PIK3C3 

to regulate the formation of autophagophores. Since the dual role 

of autophagy in cancers, ULK1 can promote cancer development 

and increase the survival, invasion, and metastasis of tumor cells 

[320]. 

21 CTSA Cathepsin A 
Compensation mechanism: play an important role in the growth 

and metastasis by promoting proliferation and migration [321]. 

22 DDX58 DExH-Box Helicase 58 

Compensation mechanism: DDX58 expression is significantly as-

sociated with immune cell infiltration. Evidence suggests that mon-

ocytes/macrophages are involved in tumor growth, metastasis, and 

tumor vascularization by regulating the tumor microenvironment 

[322]. 

23 MTA2 
Metastasis Associated 1 

Family Member 2 

Compensation mechanism: downregulation promotes proliferation 

and migration [285]. 

24 PSAP Prosaposin 

Compensation mechanism: PSAP promotes progression by de-

creasing tumor‐infiltrating lymphocytes [323] and also is involved 

in proliferation, tumorigenesis, and metastasis. PSAP regulates the 

invasion and migration through the TGF-β1/Smad signaling path-

way [324]. 

25 CDC37L1 

Cell Division Cycle 37 

Like 1, HSP90 Cochaper-

one 

Compensation mechanism: promotes cell growth, and cell survival 

by interacting with Hsp90 [325]. 

26 MCM3 

Minichromosome Mainte-

nance Complex Compo-

nent 3 

Compensation mechanism: This protein is a negative regulator of 

cell proliferation, by directly binding to the HIF-1α subunit and 

synergistically inhibit HIF-1 transcriptional activity via distinct 

O2-dependent mechanisms [326]. 

27 RAB9A 
RAB9A, Member RAS 

Oncogene Family 

Compensation mechanism: promotes cell growth by activating the 

AKT/mTOR signaling pathway [327]. 

28 TERF2 
Telomeric Repeat Binding 

Factor 2 

Compensation mechanism: its downregulation promotes cell 

growth by not inhibiting EGFR [328]. 

29 ATP6V1G1 
ATPase H+ Transporting 

V1 Subunit G1 

Compensation mechanism: promotes cell growth by probably in-

teracting with the MAPK/Erk pathway [329]. 

30 ACTR2 Actin Related Protein 2 
Compensation mechanism: its downregulation promotes cell 

growth by not interacting with MMD and CFL1 proteins [330]. 



  

100 | P a g e  

 

31 SLC15A4 
Solute Carrier Family 15 

Member 4 

Compensation mechanism: promotes cell growth through regulat-

ing cell cycle related pathway, mainly participate in the cell cycle 

and division [331]. 

32 CHEK1 Checkpoint Kinase 1 
Compensation mechanism: CHEK1 is essential component to de-

lay cell cycle progression [332]. 

33 ATP6V1C1 
ATPase H+ Transporting 

V1 Subunit C1 

Compensation mechanism: promotes cell growth by probably in-

teracting with the mTORC1 pathway [298]. 

34 TRIM68 
Tripartite Motif Contai-

ning 68 

Compensation mechanism: promotes cell growth as TRIM68 is co-

activator of androgen receptor [333]. 

35 HDAC2 Histone Deacetylase 2 
Compensation mechanism: acts as tumor-suppressor by inhibiting 

tumor cell growth [334]. 

36 BLM BLM RecQ Like Helicase 
Compensation mechanism: acts as tumor-suppressor by inhibiting 

tumor cell growth [335]. 

37 E2F4 E2F Transcription Factor 4 

Compensation mechanism: downregulation in E2F4 may be allow-

ing cells to progress through the cell cycle and escape quies-

cence/dormancy, and activation of cell cycle regulator CDK6, pro-

moting cell proliferation [336]. 

38 DCPS 
Decapping Enzyme, 

Scavenger 

Compensation mechanism: acts as tumor-suppressor by inhibiting 

tumor cell growth [337]. 

39 CFL1 Cofilin 1 
Compensation mechanism: downregulation of CFL1 is related with 

increase proliferation and invasion rate [338]. 

40 CYB5R1 
Cytochrome B5 Reductase 

1 

Drug metabolism: involved in oxidative stress protection and drug 

metabolism [339]. 

41 IFITM1 
Interferon Induced 

Transmembrane Protein 1 
Compensation mechanism: promotes distant metastasis [340]. 

42 KRT16 Keratin 16 Compensation mechanism: promotes migration [341]. 

43 ATP2B4 
ATPase Plasma Membrane 

Ca2+ Transporting 4 

Compensation and antiapoptotic mechanism: ATP2B4 promotes 

cell migration, and apoptotic resistance [342]. 

44 IDS Iduronate 2-Sulfatase 
Compensation mechanism: IDS enhances invasiveness through the 

ID2 – SNAIL axis [343]. 

45 TBC1D25 
TBC1 Domain Family 

Member 25 
TBC1D25 in cancer development have not been explored [344]. 

46 NDUFS1 

NADH:Ubiquinone Oxi-

doreductase Core Subunit 

S1 

No clear evidence about connecting this gene with potential re-

sistance mechanism to FGFR inhibitor there is only information 

that patients with low NDUFS1 levels had poor overall survival 

[345]. 
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47 DIS3 

DIS3 Homolog, Exosome 

Endoribonuclease And 3'-

5' Exoribonuclease 

No clear evidence about connecting this gene with potential re-

sistance mechanism to FGFR inhibitor there is only information 

that in myeloma DIS3 can be a driving force for tumorigenesis via 

DNA:RNA hybrid-dependent enhanced genome instability and in-

creased mutational ra te [346]. 

48 HJURP 
Holliday Junction Reco-

gnition Protein 

No clear evidence about connecting this gene with potential re-

sistance mechanism to FGFR inhibitor there is only information 

that in triple-negative breast cancer HJURP regulates cell prolifer-

ation and chemo-resistance via YAP1/NDRG1 transcriptional axis. 

However in our case we are dealing with downregulation of this 

gene so it might be a moonlighting protein but I don’t know in what 

this gene could be a negative regulator [347]. 

49 RORC 
RAR Related Orphan Re-

ceptor C 

No clear evidence about connecting this gene with potential re-

sistance mechanism to FGFR inhibitor there is only information 

that RORC upregulation correlates with a poor prognosis [348]. 

50 POLA2 
DNA Polymerase Alpha 2, 

Accessory Subunit 

I found no evidence of a link to a potential mechanism of resistance 

to the FGFR inhibitor. The available literature reports that POLA2 

promotes cell proliferation [349]. 

51 PSMD7 
Proteasome 26S Subunit, 

Non-ATPase 7 

I found no evidence of a link to a potential mechanism of resistance 

to the FGFR inhibitor. The available literature reports that  PSMD7 

promotes proliferation and apoptotic resistance by regulating the 

p53 pathway [350]. 

52 EXOSC8 Exosome Component 8 

I found no evidence of a link to a potential mecha nism of resistance 

to the FGFR inhibitor. The available literature reports that EX-

OSC8 promotes proliferation [351]. 

53 CENPO Centromere Protein O 

I found no evidence of a link to a potential mechanism of resistance 

to the FGFR inhibitor. The available literature reports that CENPO 

expression regulates gastric cancer cell proliferation [352]. 

54 CCNB2 Cyclin B2 

I found no evidence of a link to a potential mecha nism of resistance 

to the FGFR inhibitor. The available literature reports that CCNB2 

promotes invasion and metastasis [353]. 

55 CDT1 
Chromatin Licensing And 

DNA Replication Factor 1 

I found no evidence of a link to a potential mecha nism of resistance 

to the FGFR inhibitor. The available literature reports that Cdt1 

overexpression most likely contributes to tumorigenecity by caus-

ing genomic instability [354]. 

56 HIBCH 
3-Hydroxyisobutyryl-CoA 

Hydrolase 

I found no evidence of a link to a potential mecha nism of resistance 

to the FGFR inhibitor. The available literature reports that HIBCH 

promotes cell growth, resistant to apoptosis, and autophagy [355]. 

57 MVD 
Mevalonate Diphosphate 

Decarboxylase 
? 

* blue and red color indicates that this gene is downregulated or upregulated respectively. 
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Bladder 

Using the ORA method on genes selected with the PREDICT pipeline, I have identified 37 

significant pathways (q value < 0.050) (the list of significant pathways from ORA analysis can be 

found in Table S4 in Supplementary Materials placed on CD-R attached at the back of the disser-

tation). Similarly, in the case of the stomach pathways I have used the enrichplot tool v 1.13.1.994 

[297], to identify pathway clusters. There was possible to distinguish 10 different groups of path-

ways (Figure 21), specifically related to: i) chaperone and protein folding, ii) rRNA processing, 

iii) mitosis, iv) cell cycle, and v) cell cycle and nuclear envelope. 

 

Figure 21. Hierarchical clustering of statistically significant (q value < 0.05) pathways identified with ORA analysis 

performed based on genes selected with the PREDICT pipeline from the bladder DEGs data set. The number of 

bladder DEGs identified in the pathways is represented using the size of the circles as indicated in the right panel. 

As I mentioned earlier FGFR indirectly participate in regulating proliferation, and cell sur-

vival as well as maintaining tissue homeostasis, thus potential FGFR-TKIs resistant mechanism 

could lie in iii, iv, and v cluster (Figure 21). Therefore again as I did in the stomach case, in the 

gene set that came out related to these pathways I have selected genes that meet PREDICT statis-

tical properties. That provided me with 39 genes (Table 16). 

Based on the GSEA analysis I have identified 493 significant pathways (q value < 0.050) 

(the list of significant pathways from GSEA analysis can be found in Table S5 in Supplementary 

Materials placed on CD-R attached at the back of the dissertation). With enrichplot tool v 
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1.13.1.994 [297], there was possible to distinguish 10 different groups of pathways (Figure 22), 

specifically related to: i) NF-κB, MAPK, PTEN, migration, proliferation, apoptosis, ii) SUMOy-

lation of proteins interacting with DNA and RNA, viral infection, mRNA processing, iii) RNA 

Polymerase II, HIV, iv) translation, v) HDR and DNA repair, vi) DNA repair, telomeres, transla-

tion, vii) centrosome, viii) kinetochore, ix) RNA Polymerase I & III, rRNA expression, and x) 

mitosis regulation, protein folding, mitochondrial translation, metabolism. 

 

Figure 22. Hierarchical clustering of statistically significant (q value < 0.05) pathways identified with GSEA analy-

sis performed based on the bladder DEGs data set. The number of bladder DEGs identified in the pathways is repre-

sented using the size of the circles as indicated in the right panel. 

As I have described in chapter II. FGFR can indirectly affect migration, apoptosis, and 

proliferation, thus cluster i (Figure 22) may include pathways related to potential resistant mecha-

nisms toward FGFR inhibitors. Therefore, I selected genes that met the PREDICT statistical prop-

erties from the gene set related to these pathways. This allows the identification of 40 genes (Table 

16). 
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Since I have acquired a lot of common genes between gene sets identified based on this 

ORA and GSEA analysis (Figure 23), therefore for literature assessment I have extracted common 

genes (25 genes) between them and unique genes (14 and 15) at ORA and GSEA analysis respec-

tively (Table 16). 

 

Figure 23. Venn diagram presenting a comparison between the gene lists selected with the PREDICT pipeline from 

a particular cluster of signaling pathways that were identified with the ORA or GSEA analysis (ORA: iii, iv, and v; 

GSEA: i). 
 

Table 16. Common and unique lists of genes selected with the PREDICT pipeline from the blad-
der DEGs data set that came out related with the: iii or iv or v cluster of pathways from ORA 

analysis or i cluster of pathways from GSEA analysis. 

Common genes between the both gene sets acquired based on ORA and GSEA analysis 

No * Gene . 

symbol * 
Gene name * 

Potential mechanism of 

resistance to FGFR inhibitor 

1 FEN1 
Flap Structure-Specific 

Endonuclease 1 

Compensation mechanism: downregulation of this genes maintain cell 

survival by preventing from its tumor-suppressor effect [356]. 

2 AURKA Aurora Kinase A 

Compensation mechanism: Most research reports that this protein pro-

motes tumor progression when is upregulated [357]. In my case down-

regulation is difficult to explain. However there is report that reduced 

expression of AURKA is associated with increase invasiveness of 

breast cancer [358]. 

3 PLK1 Polo Like Kinase 1 

Compensation mechanism: downregulated PLK1 increases prolifera-

tion rate whereas its overexpression leads to cell proliferation defects 

at least partially due to aberrant mitosis and the activation of the spin-

dle assembly checkpoint [359]. 

4 TUBB4B 
Tubulin Beta 4B Class 

IVb 

Compensation mechanism: TUBB4B downregulation Is critical for in-

creasing migration [360]. 

5 UBE2C 
Ubiquitin Conjugating 

Enzyme E2 C 

Compensation and drug metabolism mechanism: downregulation of 

this genes prevents from blocking migration and invasion, and increase 

drug resistance with induction metabolism-related pathways [361]. 
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6 HAUS7 
HAUS Augmin Like 

Complex Subunit 7 

Antiapoptosis mechanism: p53 could be stabilized as a result of 

deubiquitination by HAUSP and suggested that HAUSP may thereby 

act as a tumour suppressor [362]. 

7 LMNB1 Lamin B1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

prevents senescence [363]. 

8 TUBG1 Tubulin Gamma 1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that TUBG1 pro-

motes cell proliferation, migration, and invasion and inhibited cell 

apoptosis [364]. 

9 RFC3 
Replication Factor C 

Subunit 3 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes cell proliferation, migration, and invasion [365]. 

10 KIF2C 
Kinesin Family Mem-

ber 2C 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

proliferation, migration, and invasion [366]. 

11 CDT1 

Chromatin Licensing 

And DNA Replication 

Factor 1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferation, migration, and invasion [367]. 

12 CCNA2 Cyclin A2 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes migration, and proliferation, and inhibited their apoptosis 

[368]. 

13 POLE3 

DNA Polymerase Epsi-

lon 3, Accessory Subu-

nit 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes migration, and proliferation, and inhibited their apoptosis 

[369]. 

14 TCP1 T-Complex 1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that downregula-

tion of TCP1 expression can significantly reduce cell viability, inhib-

ited cell proliferation, and migration [370]. 

15 ERCC6L 

ERCC Excision Repair 

6 Like, Spindle Assem-

bly Checkpoint Hel-

icase 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes cell growth and invasion [371]. 

16 PSMD12 
Proteasome 26S Subu-

nit, Non-ATPase 12 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferation and invasion by interacting with Nrf2 [372]. 

17 TPX2 
TPX2 Microtubule 

Nucleation Factor 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

increase proliferation and decrease the apoptosis [373]. 
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18 CDCA5 
Cell Division Cycle 

Associated 5 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferation, and inhibited their apoptosis [374]. 

19 CENPO Centromere Protein O 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that CENPO ex-

pression regulates gastric cancer cell proliferation [352]. 

20 EML4 EMAP Like 4 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

proliferation [375]. 

21 CCNB2 Cyclin B2 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferation [376]. 

22 TUBA1C Tubulin Alpha 1c 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferation [377]. 

23 CDK1 
Cyclin Dependent Ki-

nase 1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferation [378]. 

24 CENPM Centromere Protein M 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

increase migration and invasion [379]. 

25 RRM2 

Ribonucleotide Reduc-

tase Regulatory Subu-

nit M2 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

evokes cell invasion, migration and VEGF expression through the 

PI3K/AKT signaling pathway [380]. 

Unique genes for the gene set acquired based on ORA analysis 

No * 
Gene . 

symbol * 
Gene name * 

Potential mechanism of 

resistance to FGFR inhibitor 

1 RTEL1 
Regulator Of Telomere 

Elongation Helicase 1 

Compensation mechanism: depletion of RTEL1 leads to increased lev-

els of TERRA RNA which is essential for cell viability [381]. 

2 WRAP53 
WD Repeat Containing 

Antisense To TP53 

Compensation mechanism: downregulated WRAP53-1α increase the 

mRNA and protein levels of p53 and there is increased proliferation 

[382]. 

3 RBL2 
RB Transcriptional Co-

repressor Like 2 

Compensation and antiapoptotic mechanism: promotes proliferation 

and inhibits apoptosis via interacting with AKT signaling pathway 

[383]. 

4 PLK3 Polo Like Kinase 3 

Compensation and antiapoptotic mechanism: downregulation of this 

genes prevents from blocking cell proliferation and inducing apoptosis 

[384]. 
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5 PPP6C 
Protein Phosphatase 6 

Catalytic Subunit 

Compensation and antiapoptotic mechanism: PPP6C negatively regu-

lates oncogenic RAF-MEK-ERK signaling. With PPP6C downregula-

tion there is increased growth, prevention of apoptosis, and induction 

of drug resistance [385]. 

6 IFT140 
Intraflagellar Transport 

140 
Compensation mechanism: promotes migration [386]. 

7 SSRP1 
Structure Specific Re-

cognition Protein 1 

Antiapoptotic mechanism: when it is not downregulated it may poten-

tiate cisplatin-induced cell death by blocking replication and repair of 

modified DNA [303]. 

8 BBS2 
Bardet-Biedl Syndrome 

2 

No clear evidence about connecting this gene upregulation with poten-

tial resistance mechanism to FGFR inhibitor there is only information 

that patients with high BBS2 levels had poor survival in mesothelioma 

patients [387]. 

9 BANF1 
BAF Nuclear As-

sembly Factor 1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferative and migratory activity [388]. 

10 CCT4 
Chaperonin Containing 

TCP1 Subunit 4 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

increase proliferation and decrease the apoptosis [389]. 

11 NUP35 Nucleoporin 35 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes proliferation [390]. 

12 HMGA1 
High Mobility Group 

AT-Hook 1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that downregula-

tion of HMGA1 mediates autophagy and inhibits migration and inva-

sion in bladder cancer via  miRNA-221/TP53INP1/p-ERK Axis [391]. 

13 TP53INP1 

Tumor Protein P53 In-

ducible Nuclear Protein 

1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

negatively regulates the metastasis [392]. 

14 IST1 
IST1 Factor Associated 

With ESCRT-III 
? 

Unique genes for the gene set acquired based on GSEA analysis 

No * 
Gene . 

symbol * 
Gene name * 

Potential mechanism of 

resistance to FGFR inhibitor 

1 COPS2 
COP9 Signalosome Su-

bunit 2 

Compensation mechanism: downregulation of this genes maintain cell 

survival by preventing from its tumor-suppressor effect [393]. 

2 ERO1A 

Endoplasmic Reticu-

lum Oxidoreductase 1 

Alpha 

Compensation mechanism: ERO1A drives the production of tumor-

promoting myeloid-derived suppressor cells via oxidative protein fold-

ing [394]. 
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3 CCNF Cyclin F 
Probably compensation mechanism: lower expression is rela ted with 

worse survival [395]. 

4 CHUK 

Component Of Inhibi-

tor Of Nuclear Factor 

Kappa B Kinase Com-

plex 

Compensation mechanism: CHUK/IKK-α loss enhances growth asso-

ciated with HIF up-regulation [396]. 

5 RBM14 
RNA Binding Motif 

Protein 14 

Compensation mechanism: RBM14 loss enhances proliferation. This 

protein suppress cell growth in part by down-regulating c-myc and its 

downstream effectors ccnd1 and skp2 and causing accumulation of 

p27/Kip1 protein [397]. 

6 DUSP6 
Dual Specificity Pho-

sphatase 6 

Compensation mechanism: downregulation of this genes maintain cell 

growth and survival by preventing from its tumor-suppressor effect. 

This protein is negative regulator of kinase ERK1/2 and affects EGFR, 

TGF-β and WNT signaling pathways [398]. 

7 CYCS 
Cytochrome C, Soma-

tic 

Compensation and antiapoptotic mechanism: CYCS by interacting 

with USP53 inhibits proliferation, migration and invasion, and induced 

apoptosis [399]. 

8 SPRED1 
Sprouty Related EVH1 

Domain Containing 1 

Compensation and antiapoptotic mechanism: downregulation of 

SPRED1 is related with hyperactivation of the MAP/ERK pathway 

that augmented Bcl-2 expression and stability leading to increase of 

proliferation and apoptosis inhibition [400]. 

9 AMD1 
Adenosylmethionine 

Decarboxylase 1 

Antiapoptotic mechanism: downregulated AMD1 is related with lower 

apoptotic rate [401]. 

10 PTRH2 
Peptidyl-TRNA Hydro-

lase 2 

Antianoikis mechanism: PTRH2 by interacting with AES initiate anoi-

kis. Downregulation of PTRH2 acts as pro-survival mechanism [402]. 

11 SPRED2 
Sprouty Related EVH1 

Domain Containing 2 

Antiautophagy mechanism: Spred2 interaction with LC3 promotes au-

tophagosome maturation and induces autophagy-dependent cell death 

[403]. 

12 STAM 
Signal Transducing 

Adaptor Molecule 

Compensation mechanism: STAM inhibits cell viability, invasion, and 

migration [404]. 

13 NCBP1 
Nuclear Cap Binding 

Protein Subunit 1 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that this protein 

promotes cell growth, wound healing ability, migration and epithelial‐

mesenchymal transition [405]. 

14 ETV4 
ETS Variant Trans-

cription Factor 4 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that ETV4 pro-

motes metastasis in response to activation of PI3-kinase and Ras sig-

naling [406]. 

15 SRM Spermidine Synthase 

I found no evidence of a link to a potential mechanism of resistance to 

the FGFR inhibitor. The available literature reports that th is protein 

inhibit apoptosis [407]. 

* blue and red color indicates that this gene is downregulated or upregulated respectively. 
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Based on the performed literature assessment I was able to connect 25 out of 54 genes with 

a potential mechanism of FGFR-TKIs resistance. Similarly, in the case of the stomach most of the 

genes might be related with a sort of compensatory activation of proliferation (12 genes), migration 

(6 genes), cell survival (5 genes), and invasion (3 genes) as a response to inhibition of this pro-

cesses caused by blocking of FGF receptor/s signaling (Table 16). Here similarly to in the case of 

the stomach this is potentially mainly mediated through MAPK and AKT signaling pathways. 

However, in the case of this gene set presented in Table 16, we have much more examples that are 

tumor-suppressors like for example RBM14 (RNA Binding Motif Protein 14) gene where its loss 

expression enhances proliferation. This protein suppresses cell growth in part by down-regulating 

c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein 

[397]. Another example can be DUSP6 (Dual Specificity Phosphatase 6) gene. Where downregu-

lation of this gene maintains cell growth and survival by preventing its tumor-suppressor effect. 

This protein is a negative regulator of kinase ERK1/2 and affects EGFR, TGF-β, and WNT sig-

naling pathways [398]. The rest of the genes are briefly described in Table 16 and more infor-

mation can be found under provided citations. 

What is interesting is that there are 4 common genes between the stomach and bladder gene 

sets (Figure 24), specifically SSRP1 (Structure Specific Recognition Protein 1), CCNB2 (Cyclin 

B2), CDT1 (Chromatin Licensing And DNA Replication Factor 1), and CENPO (Centromere Pro-

tein O). Additionally what is more interesting is that both organs have the same direction of change 

which suggests that they are potential universal candidates for a predictive biomarker for both 

cancer types. Unfortunately, there is no common candidate with the lung gene set with PREDICT 

properties (Figure 24). 

 

Figure 24. Venn diagram presenting a comparison between the stomach, bladder, and lung gene sets selected with 

the PREDICT pipeline from a particular cluster of signaling pathways that were identified with the ORA and/or 

GSEA analysis. 
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 CONCLUSIONS 

Using the RNA sequencing (RNA-seq) data, a comprehensive analysis of gene expression 

in cell lines from three different cancer types (lung, stomach, and bladder) was performed  to iden-

tify potential predictive biomarker candidates related to mechanisms of FGFR tyrosine kinase in-

hibitors (FGFR-TKIs) resistance. 

The standard method of selecting DEGs (Differentially Expressed Genes) can produce er-

rors leading to potential biomarker candidates with an inconsistent direction of change which leads 

to a lack of reproducibility, as well as those with a small detectable difference, or a lack of biolog-

ical effect, which can contribute to reduced sensitivity and specificity. This is particularly relevant 

for experiments with low sample sizes. 

In order to overcome these limitations, the “Pipeline for Rapid Evaluation, and Discovery 

of Important biomarker CandidaTes” (PREDICT) was developed , based on sequentially applying 

thresholds of log2FC > 0.500, q value < 0.050, log2minFC > 0.100, and minDiff > 100 to the 

results obtained from the standard differential analysis method. 

Utilizing the statistical properties implemented in the PREDICT pipeline, led to filtering 

out the unwanted results. Thus, the numbers of DEGs obtained by this method were 13, 226, and 

301 for the lung, stomach, and bladder data set respectively. The selected biomarker candidates 

possessed characteristics suitable for a biomarker that can be applied in clinical settings. 

- Based on differential expression analysis performed by the DESeq2 tool, the statistically 

significant DEGs were identified. Adopted threshold of q value = 0.050. Genes with the 

q value below the threshold were filtered out. 

- The selected biomarker candidates were characterized by log2 fold change (log2FC) value 

> 0.500. 

- There was minimal Fold Change (minFC) between minimal and maximal values of a par-

ticular gene expression measurement between two non-overlapping groups of measure-

ments, respectively. Adopted threshold of log2minFC = 0.100. Genes with the log2minFC 

value below the threshold were filtered out. 

- There was minimal Difference (minDiff) between minimal and maximal values of a partic-

ular gene expression measurement between two non-overlapping groups of measurements, 
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respectively. Adopted threshold of minDiff = 100. Genes with the minDiff value below the 

threshold were filtered out. 

- By implementing minFC and minDiff measures, expression value intervals for the groups 

do not overlap. Therefore providing us with potential candidates with the desired repro-

ducibility characteristics. 

- By implementing adopted thresholds for log2FC, q value, minFC, and minDiff measures, 

enables the selection of potential candidates with the desired sensitivity and specificity 

characteristics. 

Due to the limitations of the fold change measure, it was assessed whether replacing this 

measure with a more recommended measure of effect size, such as Cohen's d, could significantly 

improve the results obtained using the PREDICT pipeline. However, as this replacement would 

not significantly alter the results (number of selected DEGs), and given that the fold change meas-

ure is widely used and in many cases preferred by scientists across various biological fields, as 

well as it has utility for various downstream analysis tasks, such as prioritizing genes for further 

investigation and linking it with other variables of interest, it was decided against replacing it 

within the PREDICT pipeline. 

The DEGs identified with the DESeq2 tool and followed PREDICT pipeline were further 

used to assess the biological context. The context was assessed by signaling pathway enrichment 

analysis, where two methods were employed: over-representation analysis (ORA) with the gene 

list selected with the PREDICT pipeline, and gene set enrichment analysis (GSEA) with genes 

ranked according to the Wald test statistic. In the stomach and bladder data set significant pathways 

were clustered to distinguish groups of similar pathways and to select groups that were potentially 

related to FGFR-TKIs resistant mechanism. Then, in the gene set that came out related to selected 

clusters of pathways, genes were selected that met PREDICT statistical properties. As 57 and 54 

genes were identified for the stomach and bladder, respectively, they were assessed based on the 

published literature. In the case of the lung data set, only 13 DEGs were selected with the PRE-

DICT pipeline, so a literature assessment was performed for all of these genes. 

Based on signaling pathway analysis, combined with the use of PREDICT pipeline and 

literature search, it was possible to uncover the link with potential resistance mechanisms towards 

FGFR-TKIs for majority of selected genes. These findings indicate that resistant tumors exhibit  

compensatory activation of pathways regulating cell proliferation, migration rate, survival, inva-

siveness, and antiapoptotic properties, in response to FGFR-TKIs treatment. 



  

112 | P a g e  

 

By comparing the selected gene sets between the three different cancer types, several po-

tential universal biomarkers of FGFR-TKIs resistance were identified, including SSRP1 (Structure 

Specific Recognition Protein 1), CCNB2 (Cyclin B2), CDT1 (Chromatin Licensing And DNA 

Replication Factor 1), and CENPO (Centromere Protein O). These genes were commonly dysreg-

ulated in both stomach and bladder cancer and showed the same direction of change in expression 

in these two cancer types. They may serve as universal biomarkers for predicting FGFR-TKIs 

resistance in patients with diagnosed stomach or bladder cancer. 

In conclusion, the use of the PREDICT pipeline led to the filtering out the unwanted results, 

and the selected biomarker candidates possess characteristics suitable for a biomarker that can be 

applied in clinical settings. An extensive literature search uncovered the link with potential re-

sistance mechanisms towards FGFR-TKIs for the majority of selected genes. The next step in bi-

omarker development would be validation/qualification phase to confirm that  the differential ex-

pression observed in the discovery phase can be seen using other methods and on the different bio-

logical material. 
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