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Abstract

The complexities and challenges of patients’ treatment inherent in the current rehabil-

itation and physical therapy landscape, highlight the critical role of accurate assessment,

active patient participation, adherence to prescribed regimens, and continuous health

monitoring for optimal outcomes of theraphy. It underscores the heavy reliance on the

expertise of therapists and the challenges posed by patient engagement in repetitive exer-

cises. The motivation behind this research is the pressing need to address these challenges

amidst the growing demands on healthcare systems worldwide and the potential of ad-

vanced technologies, such as machine learning and robotics, to revolutionize diagnostics

and rehabilitation through automation. The expert systems powered by AI to automate

diagnostic and therapy parameters and the exploration of feedback loops within rehabil-

itation processes are highlighted as promising yet under-researched areas.

This dissertation tackled a significant scientific issue: the lack of conclus-

ive evidence supporting the effectiveness of methodologies, assessments, and

treatment protocols in robotic-assisted diagnostics and therapeutic interven-

tions. The primary goal is to lay down the methodological foundation for an automated

expert platform aimed at supporting, enhancing, and automating the diagnostic and re-

habilitation processes. Utilizing machine learning and robotic technologies, the research

develops a feedback mechanism that integrates electromyography (EMG), torque, and

limb position data. This integration facilitates a more objective, efficient, and personal-

ized approach to patient care. The study focuses on the analysis of upper limb movements,

specifically elbow flexion and extension, involving the biceps and triceps muscles during

isokinetic muscle force assessments, as well as tests for spasticity and muscle stiffness.

Furthermore, there were explored the application of EMG biofeedback for pelvic floor

muscles within a telerehabilitation framework and investigated EMG-triggered movement

for knee rehabilitation using a rehabilitation robot.

The methodology centers on selecting established bioelectrical and biomechanical para-

meters and verifying their effectiveness and objectivity in diagnostic and therapeutic ap-

plications through robot-assisted techniques. This research aims to bridge the gap in

evidence regarding the efficacy of robotic-assisted diagnostic and therapeutic interven-

tions, proposing a novel approach that combines technological advancements with clinical

practices to improve patient outcomes in rehabilitation. The research validates its hy-

potheses through extensive evaluations, comparing control and stroke groups for muscle

force tests, assessing muscle spasticity in healthy and stroke survivors, and exploring the



effectiveness of telemedicine in urinary incontinence rehabilitation and EMG-triggered

movement therapy for knee rehabilitation post-stroke. These researches focus on utiliz-

ing electromyography (EMG), torque, and positional data to derive biomechanical and

bioelectrical parameters. By applying machine learning algorithms, the research aims to

objectively evaluate and distinguish between healthy subjects and those with conditions,

and to tailor rehabilitation exercises based on a feedback loop mechanism.

This comprehensive approach not only confirms the potential of robotic-assisted meth-

ods based on analysis of biomechanical and bioelectrical parameters in automatic dia-

gnostic and therapeutic processes but also advances the field of biomedical engineering

by providing a methodological framework for future developments in automated patient

care.
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Tytuł pracy

Analiza parametrów biomechanicznych i bioelektrycznych na potrzeby automatyzacji

diagnostyki i rehabilitacji pacjentów

Streszczenie

Złożoność i wyzwania w procesie leczenie pacjentów, nieodłącznie związane z obecnym

stanem rehabilitacji i fizjoterapii, podkreślają kluczową rolę dokładnej oceny, aktywnego

udziału pacjenta, przestrzegania wyznaczonych schematów leczenia i ciągłego monitorowa-

nia stanu zdrowia w celu uzyskania optymalnych wyników terapii. Podkreśla to ogromną

zależność od wiedzy specjalistycznej terapeutów i wyzwania, jakie stwarza zaangażowanie

pacjenta w powtarzalne ćwiczenia. Motywacją badań zawartych w niniejszej rozprawie

doktorskiej jest pilna potrzeba sprostania tym wyzwaniom w obliczu rosnących wymagań

stawianych systemom opieki zdrowotnej na całym świecie oraz potencjałowi zaawansowa-

nych technologii, takich jak uczenie maszynowe i robotyka, w zakresie zrewolucjonizowa-

nia diagnostyki i rehabilitacji poprzez automatyzację. Systemy eksperckie, wykorzystujące

sztuczną inteligencję w celu automatyzacji procesów diagnostycznych i terapeutycznych,

oraz mechanizmy pętli sprzężenia zwrotnego do zastosowań w rehabilitacji są uznawane

za obiecujące, ale niedostatecznie zbadane obszary.

W niniejszej rozprawie doktorskiej poruszono istotny problem naukowy:

brak jednoznacznych dowodów potwierdzających skuteczność metodologii, ocen

i protokołów leczenia w diagnostyce i interwencjach terapeutycznych wspoma-

ganych robotami. Podstawowym celem jest stworzenie podstaw metodologicznych dla

zautomatyzowanej platformy eksperckiej, której zadaniem będzie wspieranie, doskonalenie

i automatyzacja procesów diagnostycznych i rehabilitacyjnych. Wykorzystując technolo-

gie uczenia maszynowego i robotykę, w trakcie badań opracowano mechanizm sprzężenia

zwrotnego, który integruje dane z elektromiografii (EMG), momentu obrotowego i po-

zycji kończyny. Integracja ta ułatwia bardziej obiektywne, skuteczne i spersonalizowane

podejście do opieki nad pacjentem. W rozprawie skupiono się na analizie ruchów kończyny

górnej, w szczególności zgięcia i wyprostu łokcia, angażujących mięśnie bicepsa i tricepsa,

podczas oceny izokinetycznej siły mięśniowej, a także testów spastyczności i sztywności

mięśni. Ponadto zbadano zastosowanie biofeedbacku EMG dla mięśni dna miednicy w

ramach telerehabilitacji oraz przeanalizowano skuteczność wykorzystania ruchu wyzwa-

lanego z poziomu sygnału EMG w rehabilitacji stawu kolanowego przy użyciu robota

rehabilitacyjnego.

Metodologia koncentruje się na wyborze znanych parametrów bioelektrycznych i bio-

mechanicznych oraz weryfikacji ich skuteczności i obiektywności w zastosowaniach dia-

gnostycznych i terapeutycznych za pomocą technik wspomaganych robotem. Celem tych

badań jest wypełnienie luki w dowodach dotyczących skuteczności interwencji diagno-



stycznych i terapeutycznych wspomaganych robotami, proponując nowatorskie podejście

łączące postęp technologiczny z praktykami klinicznymi w celu poprawy wyników rehabi-

litacji pacjentów. Rozprawa potwierdza swoje hipotezy poprzez szeroko zakrojone oceny,

porównanie grup kontrolnych i grup eksperymentalnych, pod kątem testów siły mięśni i

oceny spastyczności mięśni u osób zdrowych i osób po udarze mózgu, a także badanie sku-

teczności telemedycyny w rehabilitacji nietrzymania moczu i terapii ruchowej wyzwalanej

EMG w rehabilitacji stawu kolanowego po udarze. Badania te koncentrują się na wykorzy-

staniu danych elektromiograficznych (EMG), momentu obrotowego i położenia kończyny

w celu uzyskania parametrów biomechanicznych i bioelektrycznych dla obiektywizacji

diagnostyki. Zastosowanie algorytmów uczenia maszynowego, pozwoliło na obiektywną

ocenę i rozróżnienie osób zdrowych od osób chorych. Natomiast, dostosowanie ćwiczeń

rehabilitacyjnych w oparciu o mechanizm pętli sprzężenia zwrotnego pozwoliło uzyskać

statystycznie lepsze wyniki testów po przeprowadzonej terapii.

To kompleksowe podejście nie tylko potwierdza potencjał metod wspomaganych ro-

botem, opartych na analizie parametrów biomechanicznych i bioelektrycznych w auto-

matycznych procesach diagnostycznych i terapeutycznych, ale także rozwija dziedzinę

inżynierii biomedycznej, zapewniając ramy metodologiczne dla przyszłego rozwoju zauto-

matyzowanej opieki nad pacjentem.

Słowa kluczowe

analiza i przetwarzanie sygnałów EMG, robot rehabilitacyjny, neurorehabilitacja, au-

tomatyczna diagnostyka
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Chapter 1

Introduction

Optimal outcomes in rehabilitation and physical therapy are achieved when there is

an accurate assessment, active patient participation, adherence to the prescribed therapy

regimen, and continuous monitoring of the patient’s health state and progress. This in-

volves a series of processes including physical examination, evaluation of the patient’s con-

dition, therapeutic intervention, continuous monitoring, and adjustments to the therapy

plan aligned with the patient’s progress in recovery. The success of conventional therapy

largely hinges on the therapist’s expertise, prior experience with comparable cases, and

proficiency in devising effective rehabilitation strategies [62]. The rehabilitation process

is typically demanding, time-intensive, and heavily reliant on the therapist’s expertise. It

also requires patient cooperation, often involving repeated exercises at home without pro-

fessional supervision. The repetitiveness and lack of engagement in these tasks frequently

lead to diminished patient participation. This issue stems from several factors: exercises

not being tailored to individual capabilities, ineffective communication and interaction

strategies, patients not clearly noticing their progress, and the absence of guidance and

monitoring during home sessions. Tackling these challenges is crucial for enhancing thera-

peutic results and, notably, for minimizing the injury risk associated with incorrectly

performed exercises.

1.1 Motivation

The motivation behind this research stems from the ongoing challenges in the current

healthcare paradigm, particularly in diagnostics and rehabilitation. Traditional methods

often rely heavily on subjective assessments and the expertise of healthcare professionals,

which, while invaluable, can lead to variability in patient care. Moreover, the increasing

demand on healthcare systems globally calls for innovative approaches to alleviate the

burden on medical staff and resources. The integration of advanced technologies such as

machine learning and robotics into healthcare practices presents an opportunity to address

these challenges by automating and optimizing certain processes.

1
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Efficient management of chronic diseases is essential for enhancing health outcomes,

and quality of life, and ensuring cost-efficient healthcare. With the rising global pre-

valence of chronic conditions, the consequences of non-adherence to treatment regimens

are becoming increasingly significant. Telemedicine solutions are progressively employed

in healthcare and public health for patient communication, monitoring, education, and

promoting adherence to chronic disease management. While telehealth tools show prom-

ise in facilitating better adherence to chronic disease management, the current evidence

regarding their effectiveness is varied [49]. In the context of automating the diagnostic

and rehabilitation process, the objective is to reduce the reliance on human intervention,

specifically that of the rehabilitation professional, throughout the entire rehabilitation

program, encompassing the initial assessment and exercise selection phase through to

the meticulous monitoring of their execution and re-evaluation of the patient’s health

state. Hughes et al. [60] have emphasized the critical necessity for consensus on measure-

ment instruments and assessment protocols. Additionally, they note that newly developed

technology-based measurement tools possess the potential to complement clinical assess-

ments of impairment, activity, and participation. However, these tools require thorough

evaluation for their usability, validity, reliability, and responsiveness. Technologies are

capable of providing assessment tools that are valid, reliable, and sensitive. When in-

tegrated with clinical measures, they can enhance clinical decision-making processes and

contribute to a more detailed understanding of patient outcomes. Consequently, there

is an evident need for established guidelines to assist clinicians and researchers in max-

imizing the effectiveness of technology-based assessments and the application of clinical

metrics and procedures. The current technology requires the identification of a session or

patient-specific therapy strategy where healthcare professionals have to account for and

set several factors such as the physiological parameters, the daily condition of the patient,

the seating position, the electrode locations, or other factors that might change between

subjects and days, affecting the performance of the evaluation protocol and training. This

procedure is time-consuming and scarcely repeatable. For instance, FES-cycling train-

ing requires initial setting of different parameters as the stimulation strategy, i.e., the

on-off crank angular ranges of muscle stimulation, the pulse amplitude and duration of

each stimulated muscle, and the stimulation frequency. In clinics, these parameters are

usually identified manually through a time-consuming and scarcely repeatable procedure,

potentially resulting in a sub-optimal training performance [6].

The healthcare sector is grappling with persistent staff deficits and ingrained sys-

temic issues, further intensified by the COVID-19 pandemic. This situation has led to

escalating work demands and stress for healthcare workers, contributing to heightened

burnout levels and more frequent short- or long-term work absences. Elevated burnout

among clinicians and medical staff carries significant professional consequences, poten-

tially leading to increased medical errors and compromised patient care quality. Technical

2



Chapter 1. Introduction

and data-centric approaches can aid the healthcare workforce, yet their implementation

encounters numerous obstacles. These include insufficient integration into clinical work-

flows, inadequate incorporation of healthcare professionals’ feedback in their design, the

necessity to improve health professionals’ digital skills without increasing their workload,

the absence of substantial benefits in solving clinically important issues, and issues arising

from either too little or too much dependence on Artificial Intelligence(AI), potentially

affecting clinical results [28, 107, 121].

The therapy supported by expert systems using AI enables healthcare professionals to

automatically set every parameter for the patient’s needs without their involvement. The

exploration of automatization within rehabilitation processes through a feedback loop

remains an area with limited research. The substantial expansion in medical data and

advancements in data analytics hold the promise of enhanced care quality and improved

health outcomes for patients, while potentially reducing costs for health systems. How-

ever, this growth also adds to the workload of healthcare professionals, primarily due to

the significant training and documentation required for clinicians, among other factors.

Additionally, while robot-assisted and automation technologies can augment the safety,

quality, and efficiency of hospital workflows, including in surgical and other care settings,

the challenge of balancing standardization through automation with the inherently un-

predictable nature of healthcare work remains significant. Each patient may receive more

therapy time due to automation, which is crucial for recovery, especially for neurological

patients. Furthermore, although AI solutions are proposed for supporting clinical decision-

making, operational optimization, patient empowerment, healthy lifestyle maintenance,

and population health management, they still necessitate extensive testing and validation

for effective implementation. While the path toward the practical integration of auto-

mated analysis and decision-making in medicine is extensive, it is crucial to continue and

intensify research efforts at this stage to eventually realize their application in the future.

This dissertation represents a significant stride in this ongoing journey.

1.2 Thesis statement and scope

The scientific problem addressed in this thesis is the absence of conclusive evidence

validating the effectiveness of the methodologies and treatment protocols employed in

robotic-assisted diagnostics and therapeutic interventions. The central objective of the

research conducted in this dissertation is to establish the methodological essentials for

an automated expert platform designed to aid, enhance, and automate the diagnosis and

rehabilitation process.

The research utilized machine learning and robotic technologies to establish a feed-

back mechanism that integrates electromyography (EMG), torque, and limb position data,

thereby enabling a more objective, efficient, and tailored patient care strategy. The re-

3
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search primarily investigated upper limb movements, with a particular emphasis on elbow

flexion and extension actions involving the biceps and triceps muscles, during isokinetic

muscle force assessments and tests for spasticity and muscle stiffness. Additionally, an-

other study explored EMG biofeedback of pelvic floor muscles in the context of telerehab-

ilitation, employing a remotely conducted evaluation protocol. Furthermore, there was

research on EMG-triggered movement knee rehabilitation involving rectus femoris and

biceps femoris muscles with using of a rehabilitation robot.

To address the scientific issue, the approach involves choosing established bioelectrical

and biomechanical parameters and confirming their effectiveness and objectivity in dia-

gnostic and therapeutic processes through the use of robot-assisted methods.

Based on the motivation and the aim of this dissertation, the following hypotheses

have been formulated:

I. EMG signals complemented by torque and limb position, generated by

patients during machine-assisted diagnostic procedures allow to object-

ively assess the patient’s condition.

II. EMG, complemented by torque and position measurements, when ap-

plicable, provide a complete set of signals facilitating biofeedback-based

effective rehabilitation, also in telemedicine solutions.

The content of this thesis is structured as follows:

• Chapter 2 presents information about biomechanical and bioelectrical parameters

and state of art in automatization in diagnostics and rehabilitation,

• Chapter 3 details the solution proposed in this thesis,

• Chapter 4 presents the outcomes of clinical trials pertinent to the hypotheses posited

in this dissertation,

• Chapter 5 encompasses a comprehensive summary of the thesis and future work.

4



Chapter 2

Background and related work

This chapter provides a comprehensive overview of the existing body of knowledge

relevant to the analysis of biomechanical and bioelectric parameters for the automation

of diagnostics and rehabilitation.

2.1 Biomechanical and bioelectrical parameters in dia-

gnostic and rehabilitation

The section begins by examining the latest advancements in electromyography, torque,

and limb position assessments within the medical field, as well as their incorporation into

machine learning and robotic technologies for enhancing patient treatment.

2.1.1 Torque measurement in musculoskeletal assessment

The force produced by muscles plays a crucial role in generating joint torque, which is

essential for creating body movements, supporting joint stability, and maintaining posture.

Isokinetic assessments, characterized by constant-speed limb’s movement, are broadly ap-

plied in fields ranging from athletic performance to clinical rehabilitation and scientific

research. Their popularity stems from their ability to provide uniform, replicable bench-

marks, including controlled force-velocity factors of muscle performance, motion range,

and testing procedures, coupled with their relative safety [34]. Consequently, they are

often regarded as the definitive standard for strength evaluation [5, 139]. Strength, of-

ten measured as the peak (maximum) torque produced by a joint, is a key factor as-

sociated with human motion, as it represents the most straightforward, objective, and

accurate indicator of an individual’s maximum strength capacity, assessed in a practical

and controlled physiological setting. This metric is frequently evaluated for clinical, re-

habilitation, and research purposes to understand human performance. The maximum

torque produced at a joint results from a multifaceted combination of muscle fiber con-

5
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traction characteristics and the actual structure of numerous muscle fibers, connective

tissues, and neural signals in the body. Factors like diverse muscle properties, the angle

of muscle fibers, the effects of both series and parallel elasticity, variations in the moment

arm, and involuntary neural inhibition [103], all contribute significantly. These elements

lead to discrepancies between the overall joint torque-angle-angular velocity profile and

the specific force-length-velocity profiles of individual muscles. Introduced in the 1960s,

isokinetic dynamometry was developed to measure the torque or force moment produced

by muscle group contractions during circular movements. Dynamometer enables precise

evaluation of dynamic muscle contractions by strictly regulating the speed, resistance,

and joint angle [54]. The ability to safely exert maximal effort in a regulated setting has

established isokinetic dynamometry as the benchmark technique in research [82]. This

has promoted the application of isokinetic dynamometers in training, rehabilitation, and

assessment of musculoskeletal functions. The study by Ghroubi S et al. [41] demonstrated

that a dynamic-resistance muscle strength training regimen, utilizing an isokinetic dy-

namometer, can enhance muscle strength and maximal oxygen uptake (V O2max) in a

safe manner –without inducing clinical symptoms, ECG alterations, or changes in arterial

blood pressure—among patients recovering from coronary artery bypass grafting, without

posing significant risks. In the study of Carlyle et al. [24], the peak of the EMG-force cross-

correlation function and the peak latency were assessed for both limbs using root mean

square (RMS) of surface electromyography (EMGRMS) and isometric dynamometry, as

follows:

• Cross-correlation EMG Torque peak (CCpeak)

CCpeak = max
n

{ ∞
∑

m=−∞
Torque[m] · EMGRMS[n + m]

}

(2.1)

• Cross-correlation EMG Torque time (CCtime)

CCtime =
arg max

n

{

∑∞
m=−∞ Torque[m] · EMGRMS[n + m]

}

fs
(2.2)

where fs is the sampling frequency.

2.1.2 Position tracking in movement analysis

Research on tracking human movement for rehabilitative purposes has been a dynamic

area of study starting from the 1980s. In physical rehabilitation, measuring joint angles

is a standard practice for assessing joint functionality. Position measurement enables one

to set limb position in space, measure its velocity and range of motion, and mark events

in accordance with the joint range of movement. Human body joints are characterized by
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different structures, enabling a range of movement types and degrees of freedom (DOF).

Every joint’s DOF is associated with a specific range of motion (ROM), indicating the

extent of angular rotation possible within a given time frame. ROM is frequently employed

in physical rehabilitation to evaluate the functional capacity of a patient’s joints [106].

A variety of wearable sensors are available to track movement and alterations in the

position of limbs or the body. They encompass devices such as pedometers, goniometers,

electromechanical switches or pressure sensors, magnetometers, and inertial sensors.

Proprioception - Joint Position Sense

Proprioception, also refered to as position sense (JPS), is the ability to determine

body segment positions and movements in space and is based on sensory signals provided

to the brain from muscle, joint, and skin receptors. The proprioceptive feedback plays

also a crucial role in the reorganization and recovery of neuromotor systems [29]. This is

why it also gains attention of engineers and physiotherapists, who create innovative re-

habilitation devices for neurological patients. With technology, becoming more and more

advanced, we can provide objective data to clinicians, which can be a base for assessing and

planning the therapy process. One of the tests for proprioception, which gathered some

attention, is joint position matching or joint position reproduction (JPR). An individual

must replicate a reference joint angle with covered or closed eyes (ie, using propriocept-

ive information). The Goble at al. [45] point out however, that on the surface, this test

might seem straightforward, but there are multiple insights gained from a recent series

of position-matching studies that should be taken into consideration while implementing

the proprioception test into the rehabilitation tool. Some research [9, 73] claim that JPR

tests for proprioception have low testing validity because the proprioceptive information

available during target position generation and the proprioceptive information available

during target position reproduction are not the same. On the other hand, it is widely

accepted that large matching errors can be a useful indicator of proprioceptive deficiency

[45]. A recent survey reported that about 90% of occupational therapists and physiother-

apists routinely assess for sensory loss but over 70% of them do not use standardized

measures [111].

2.1.3 Electromyography

Electromyography (EMG), which involves the examination of muscle bioelectrical

activity, furnishes insights into neural function and the associated muscle coordination

patterns. The EMG signal is a representation of the electric potential field generated by

the depolarization of the outer muscle-fiber membrane (the sarcolemma)[88]. Investig-

ations into this domain commenced in the late 18th century, and it wasn’t until 1890

that Etienne Marey achieved the first recorded EMG readings. The breadth of EMG’s
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applicability extends beyond mere muscular conditions like weakness or tension; it has

been found to mirror changes across a spectrum of biological and physiological systems.

Furthermore, EMG readings have been associated with autonomic functions, including

the sympathetic nervous system, and cognitive processes like memory and emotion [66].

These findings suggest that EMG’s utility lies in its ability to reflect a comprehensive,

multi-level biopsychosocial response, positioning EMG data as a component of a broader,

interconnected system of physiological and psychological responses.

Signal processing

In the context of this scientific investigation, it is important to recognize that the EMG

signal exhibits characteristics of a non-stationary stochastic signal. Its specific attributes

are contingent upon factors including the magnitude and duration of muscle contraction,

the dynamic or static state of the muscles, their degree of fatigue, and the quality of

electrode-skin contact. Notably, approximately 95% of the power spectral density in the

surface EMG signal is ascribed to harmonics within the 0-400 Hz frequency range, with the

residual 5% being attributable to noise stemming from electrode-related artifacts and the

recording apparatus [151]. In accordance with the principles of the Kotelnikov-Shannon

sampling theorem, it is imperative to maintain a minimum sampling frequency of at least

twice the highest frequency present in the signal, a requirement that translates to a fre-

quency of no less than 1000 Hz. In the realm of medical device standards, particularly those

governing electromyographs, such as EN 60601-1 (Medical electrical equipment - General

requirements for basic safety and essential performance), EN 60601-1-2 (Collateral Stand-

ard: Electromagnetic disturbances - Requirements and tests), and EN 60601-2-40 (Par-

ticular requirements for the basic safety and essential performance of electromyographs

and evoked response equipment), there is an absence of specific directives pertaining to

signal processing methodologies, stringent filtration criteria, or amplification prerequisites

for surface electromyography. As a result, EMG signal processing predominantly relies on

the implementation of band-pass filters. The high-pass filter serves the purpose of attenu-

ating artifacts arising from patient movements and fluctuations in electrode-skin contact,

while the low-pass filter is instrumental in mitigating electromagnetic interference and

noise stemming from extraneous devices [151]. These artifacts typically fall within the

10-15Hz frequency range, with 10Hz representing artifacts caused by walking and 15Hz

corresponding to those from rapid movements [114, 132]. Furthermore, it is customary to

employ a filter operating at either 50 Hz or 60 Hz for the purpose of eliminating power

line interference, which is a well-established practice in this domain. A sample filtered

EMG signal is presented at Figure 2.1. To fully appreciate the capabilities and limitations

of the data derived from Pelvic Floor Muscle Surface Electromyography in the context

of The Glazer Protocol and biofeedback, clinicians must familiarize themselves with the

technical intricacies of the instrumentation [44]. This includes understanding differential

8



Chapter 2. Background and related work

Figure 2.1: Filtered EMG signal

amplification, the importance of common mode rejection sensitivity, impedance charac-

teristics, the process of rectification, the application of bandpass and notch filters, the

nuances of analog-to-digital conversion, the methodology behind power density spectral

frequency analysis through fast Fourier transformation, and the techniques for signal re-

integration. This foundational knowledge is crucial for interpreting sEMG data accurately

and effectively, as highlighted in Glazer’s study [44].

EMG signal parameters

In scientific literature, various parameters are commonly utilized for the analysis of

EMG signals. The primary parameters associated with surface EMG include aspects such

as the amplitude and duration of muscle contractions, as well as propagation velocity[32].

EMG serves the purpose of elucidating the behavior, or patterns of activity, of a specific

muscle, and can also be employed to assess the muscle’s condition, whether it is normal,

myopathic, or denervated/reinnervated [14]. Researches [2, 35, 59, 133, 147] reveal that

muscle contraction intensity and fatigue are marked by a shift in the median power density

spectral frequency towards lower frequencies is linked to subjective feelings of muscle

fatigue, hypoxia, diminished blood circulation, and local inflammation, characterized by

the release of various neurochemicals, which in turn heighten pain sensitivity. Parameters

for EMG signal analysis are typically from: time domain, frequency domain, and time-

frequency domain. The time domain is the most widely used category due to its simplicity,

rapid computational nature, and reliance on signal amplitude. Spectral signal analysis is

employed to investigate muscle contractions and infer alterations in the recruitment of

motor units [100].

During sustained contraction, there is an increase in the low-frequency elements of the

EMG, which isn’t evident in the time-domain waveform. This rise in low-frequency com-
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ponents signals muscle fatigue [80]. Mean frequency (MNF) and median frequency (MDF)

are widely recognized as key indicators of musculoskeletal health [40, 68, 119, 149]. These

parameters diminish in line with muscle strength, indicating muscle fatigue. Furthermore,

the MNF of the EMG signal reflects the muscle’s oxygen level, which decreases as muscle

fatigue sets in Taelman’s et al. study [135]. A representation in the time-frequency domain

provides the ability to pinpoint signal energy in both the time and frequency domains,

thereby offering a more precise description of the underlying physiological phenomena

[151].

Among the various time-frequency representations, researchers commonly favor three:

the Short-Time Fourier Transform (STFT), Wavelet Transform (WT), and Wavelet Packet

Transform (WPT).

Time domain parameters are defined as follows:

• Root Mean Square (RMS) - the square root of the average power of the sEMG

signals at a given analysis window, defined by the following:

RMSi(t) =

√

√

√

√

1

M

M
∑

k=1

sEMGt
i(k)2 (2.3)

Where:

i is the number of channels

t is the number of analysis windows

M is the number of all points in a window

k is the point currently in the analysis window

• Zero Crossing (ZC) - the number of times that the sEMG signal crosses the 0

axis. It can be formulated as:

ZC =
1

M − 1

M−1
∑

k=1

1(·) (sEMG(k) · sEMG(k − 1) < 0) (2.4)

where

M is the total number of samples in the signal.

sEMG(k) represents the kth sample of the signal

1(·) is an indicator function that returns 1 if the condition within the parentheses

is true (i.e., if there is a change in sign between consecutive samples) and 0

otherwise.
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• Window Length (WL) - the cumulative length of the sEMG signal over time. It

can be calculated as follows:

WLi(t) =
M
∑

k=1

∣

∣

∣sEMGt
i(k + 1) − sEMGt

i(k)
∣

∣

∣ (2.5)

Where:

i is the number of channels

t is the number of analysis windows

M is the number of all points in a window

k is the point currently in the analysis window

• Standard deviation (SD) - a measure used to quantify the amount of variation

or dispersion of a set of values, expressed as:

SD =

√

√

√

√

1

N

N
∑

i=1

(sEMGi − µsEMG)2 (2.6)

Where:

N denotes the total number of sEMG signal samples

sEMGi is the amplitude of each individual sEMG signal sample

µsEMG represents the mean amplitude of the sEMG signal across all samples.

• Coefficient of variability (CV) - the standardized measure of the dispersion of

a probability distribution or frequency distribution, expressed as:

CV =
SD

µsEMG

× 100% (2.7)

Where:

SD is standard deviation of sEMG signal

µsEMG represents the mean amplitude of the sEMG signal across all samples.

• Average peak amplitude [µV] — the mean value from peaks in the defined win-

dow.

• Average mean amplitude from rest phase [µV] — the mean value between

offset and onset.

• Time before peak [s] - the average duration from when the patient received the

instruction to contract the muscle to the point of reaching the peak during the

contraction phase.

11



Anna Roksela

• Time after peak [s] - the average duration from when the patient received the

instruction to relax the muscle to the point of reaching the threshold (50% of the

mean value of the signal).

• Onset [s] - the average duration from the point when the patient received the

instruction to contract the muscle to the point of crossing the threshold.

• Offset [s] - the average duration from the point when the patient received the

instruction to relax the muscle to the point of crossing the threshold.

• Time of amplitude increase (onset to peak) [s] — the average duration from

when the patient crosses the threshold before the contraction (onset) to the point

of reaching the peak during the contraction phase.

• Time of amplitude decrease (peak to offset) [s] — the average duration from

the point of reaching the peak during the contraction phase to when the patient

crosses the threshold after contraction (offset).

• Contraction duration (onset to offset) [s] — the mean value of time between

onset and offset from contractions.

• Average mean amplitude rest [µV] — the mean value from the rest phase based

on the onsets and offsets.

• Average mean amplitude work[µV] — the mean value from the work phase

based on the onsets and offsets.

Frequency domain parameters are defined as follows:

• Median Frequency - frequency value at which the EMG power spectrum is divided

into two regions with an equal integrated power [137], expressed as:

MDF
∑

j=1

Pj =
M
∑

j=MDF

Pj =
1

2

M
∑

j=1

(j − 1)Pj, (2.8)

where Pj is the EMG power spectrum at a frequency bin j and M is the length of

the frequency bin.

• Mean Frequency - average frequency value that is computed as a sum of the

product of the EMG power spectrum and frequency, divided by a total sum of

spectrum intensity [137]. It can be expressed as:

MNF =

∑M
j=1

fjPj
∑M

j=1
Pj

, (2.9)

where fj is a frequency value at a frequency bin j.
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Transformations within the time-frequency domain, which serve as the foundation for

calculating signal parameters, are characterized in the following manner:

• The spectrogram, which is derived from the Short-Time Fourier Transform, is

represented as follows:

STFT{x[n]}(m, ω) = X(m, ω) =
∞

∑

n=−∞
x[n]w[n − m]e−jωn (2.10)

where x[n] - signal, w[n] - window.

• The Wavelet Transform produces a scalogram, and a significant portion of re-

search indicates that the Daubechies wavelet family is particularly suitable for EMG

signal analysis. This can be presented as:

DWTx[n, a] =
N−1
∑

m=0

x[m] · Ψj[m − n] (2.11)

where Ψj[n] = 1√
a
Ψ

(

n
d

)

• The Wavelet Packet Transform offers an alternative approach to the time-

frequency representation of discrete signals, characterized by its dyadic decompos-

ition of both the approximation and detail subbands. This decomposition can be

executed across all levels, known as a full decomposition tree, or selectively at levels

dictated by entropy, resulting in an optimal decomposition tree. In the scenario of

optimal decomposition, the majority of the energy is concentrated in a minimal set of

relevant coefficients. However, unlike the uniform structure of a full decomposition,

the tree structure in optimal decomposition is irregular.

2.2 Automatization in diagnostic and rehabilitation

The introduction of automation into diagnostics and rehabilitation constitutes a pivotal

shift in the healthcare sector. This chapter explores the transformative impact of auto-

mation, driven by developments in artificial intelligence (AI), robotics, and information

technology, on the processes of diagnosis and the delivery of rehabilitation treatments. By

incorporating these advanced technologies, the precision and speed of medical services are

significantly improved, leading to better health results and expanded access to medical

care for patients.

2.2.1 Clinical scales and protocols for patient assessment

Clinical scales serve as fundamental instruments in the healthcare sector, facilitating

the assessment and quantification of diverse facets of a patient’s health status. These
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instruments offer a uniform approach to appraise the intensity of symptoms, functional

capacities, and the overall effect of medical conditions on an individual’s daily activities.

This chapter aims to explore the mechanisms, uses, and importance of these scales in the

context of patient management.

The Modified Ashworth Scale’s (MAS) purpose is to grade muscle spasticity. The scale

is defined in the following way [7]:

• 0: No increase in muscle tone

• 1: Slight increase in muscle tone, with a catch and release or minimal resistance

at the end of the range of motion when an affected part(s) is moved in flexion or

extension

• 1+: Slight increase in muscle tone, manifested as a catch, followed by minimal

resistance through the remainder (less than half) of the range of motion

• 2: A marked increase in muscle tone throughout most of the range of motion, but

affected part(s) are still easily moved

• 3: Considerable increase in muscle tone, passive movement difficult

• 4: Affected part(s) rigid in flexion or extension

The semi-quantitative characterizations within the MAS, such as "slight increase in muscle

tone" (MAS 1, MAS 1+) and "more marked increase in muscle tone" (MAS 2), may result

in potential ambiguities when distinguishing between "1 and 1+" and "1+ and 2," leading

to potential interpretation challenges [105]. In the primary findings of Abiglou et al.’s

study [3], it was observed that there is no substantial correlation between the quantitat-

ive evaluations of the impact of strokes on spastic joints and the clinical assessment of

muscle tone, as indicated by the Ashworth scores. Hence, clinical scale reliability among

different raters and within the same rater is a subject of debate, as these scores are de-

rived from the subjective judgments of the examiner, which involve elements like muscle

twitch observation, and heavily depend on the examiner’s level of expertise. The absence

of dependable and uniform subjective assessments highlights the necessity for an object-

ive measurement method grounded in quantitative principles to precisely gauge spasticity

[25]. Such objective measurements may prove more effective in evaluating and tracking

the progress of treatment and rehabilitation for this condition.

The Lovett Scale, commonly referred to as the manual muscle testing method, is

a clinical instrument designed for the evaluation of muscular strength. This technique

emphasizes the assessment of collective muscle groups as opposed to isolated muscles.

During the application of the Lovett Scale, a skilled examiner provides manual opposition

to each muscle group and assigns a strength grade according to the subject’s capacity to

resist this force. The scale is defined in the following way [94]:
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• Grade 0, LT: 0 (zero) - No evidence of contractility

• Grade 1, LT: T (trace) - Slight contractility, no movement

• Grade 2, LT: P (poor) - Full range of motion, gravity eliminated

• Grade 3, LT: F (fair) - Full range of motion with gravity

• Grade 4, LT: G (good) - Full range of motion against gravity, some resistance

• Grade 5, LT: N (normal) - Full range of motion against gravity, full resistance

The Brunnstrom Recovery Scale is a tool created to chronicle the progression of limb

motor recovery following a stroke, tracing the evolution from initial flaccidity through

to the resumption of almost typical movement patterns and coordination. Health profes-

sionals determine the patient’s recovery phase by observing the extent of spasticity and

movement. This scale encompasses three components that assess the arm, hand, and leg,

each rated on a scale from one to six. For upper and lower limbs, the recovery stages are

as follows [125]:

• Stage 1: The patient evidences flaccidity, with little or no resistance to passive

motion and no initiation of voluntary movement.

• Stage 2: Spasticity begins to develop, and initiation of synergies is possible on

voluntary effort or as an associated reaction.

• Stage 3: There is increased resistance due to spasticity, and limb synergies are

performed voluntarily.

• Stage 4: Spasticity is less evident than earlier, and movement combinations that

deviate from synergies are possible.

• Stage 5: There is minimal resistance from spasticity, and individual as well as

complex movement combinations are possible independent of synergy.

• Stage 6: Spasticity is difficult to demonstrate unless movements are performed with

rapidity, and synergies do not interfere with performance.

For hand, the stages are as follows [125]:

• Stage 1: Muscles are flaccid on the involved side.

• Stage 2: The patient evidences minimal spasticity, and little or no active finger

flexion is possible.

• Stage 3: The patient is able to hold on to a handle placed in the hand but unable

to release through voluntary finger extension. Reflex extension may be possible.
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• Stage 4: The patient is able to release by lateral thumb movement with minimal

finger extension or through normal functional synergy. That is, he or she is able to

grasp with the fingers while the wrist is extended and able to release the fingers

while the wrist is flexed.

• Stage 5: Voluntary mass extension of digits is possible, and the patient is able to

control cylindrical and spherical grasp with limited functional use.

• Stage 6: The patient demonstrates voluntary extension of fingers, lateral, palmar,

and three-point prehension and individual finger movements are possible.

The modified Rankin Scale score is recognized as the conventional metric for assessing

disability outcomes in the context of stroke patient management and research studies [15].

The scale is characterized as follows:

• 0 no symptoms

• 1 No significant disability. Able to carry out all usual activities, despite some symp-

toms.

• 2 Slight disability. Able to look after own affairs without assistance, but unable to

carry out all previous activities.

• 3 Moderate disability. Requires some help, but able to walk unassisted.

• 4 Moderately severe disability. Unable to attend to own bodily needs without as-

sistance, and unable to walk unassisted.

• 5 Severe disability. Requires constant nursing care and attention, bedridden, incon-

tinent.

• 6 Dead.

The Fugl-Meyer Assessment scale, a 226-point evaluative instrument, quantifies re-

covery stages post-hemiplegic stroke through a multi-item, ordinal scoring system across

five domains: motor and sensory functions, balance, range of motion, and pain. Each item

within these domains is rated on a scale from 0 to 2, reflecting the ability to perform

specific tasks. The motor domain, for example, spans a range of movements and accounts

for a substantial portion of the total score, with separate points allocated for the up-

per and lower extremities. This scale, requiring detailed assessment by a trained physical

therapist, offers a structured 30-minute evaluation of a patient’s functional capabilities

[43].

The Barthel Index is a tool for evaluating self-sufficiency in activities of daily living

(ADL), with the highest possible score being 100. It has been widely applied in studies
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concerning stroke, with Granger et al. [47] affirming its reliability and agreement with

other stroke assessments. The Index covers ten ADLs, as follows:

• FEEDING

0 = unable

5 = needs help cutting, spreading butter, etc., or requires modified diet

10 = independent

• BATHING

0 = dependent

5 = independent (or in shower)

• GROOMING

0 = needs to help with personal care

5 = independent (face/hair/teeth/shaving implements provided)

• DRESSING

0 = dependent

5 = needs help but can do about half unaided

10 = independent (including buttons, zips, laces, etc.)

BOWELS 0 = incontinent (or needs to be given enemas)

5 = occasional accident

10 = continent

• BLADDER

0 = incontinent, or catheterized and unable to manage alone

5 = occasional accident

10 = continent

• TOILET USE

0 = dependent

5 = needs some help, but can do something alone

10 = independent (on and off, dressing, wiping)

• TRANSFERS (BED TO CHAIR AND BACK)
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0 = unable, no sitting balance

5 = major help (one or two people, physical), can sit

10 = minor help (verbal or physical)

15 = independent

• MOBILITY (ON LEVEL SURFACES)

0 = immobile or < 50 yards

5 = wheelchair independent, including corners, > 50 yards

10 = walks with help of one person (verbal or physical) > 50 yards

15 = independent (but may use any aid; for example, stick) > 50 yards

• STAIRS

0 = unable

5 = needs help (verbal, physical, carrying aid)

10 = independent

The Frenchay Arm Test, which can be completed in under three minutes, involves

five tasks assessed on a pass/fail(score 1/0) basis, with the patient earning a point for

each task successfully performed. During the test, the patient begins each task seated at

a table, starting with their hands resting in their lap. The tasks, aimed at evaluating the

functionality of the affected arm or hand, include [50]:

• Stabilise a ruler, while drawing a line with a pencil held in the other hand. To pass,

the ruler must be held firmly.

• Grasp a cylinder (12mm diameter, 5cm long), set on its side approximately 15cm

from the table edge, lift it about 30cm and replace without dropping.

• Pick up a glass, half full of water positioned about 15 to 30cm from the edge of the

table, drink some water and replace without spilling.

• Remove and replace a sprung clothes peg from a 1Omm diameter dowel, 15 cm long

set in a 10 cm base, 15 to 30 cm from table edge. Not to drop peg or knock dowel

over.

• Comb hair (or imitate); must comb across top, down the back and down each side

of head.
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The effectiveness of treatment is highly contingent on an accurate diagnosis. In the

context of pelvic floor rehabilitation, it is imperative that women receive precise guidance

on executing proper pelvic muscle contractions. Previously, when a patient’s ability to con-

tract was not at least equivalent to a level 2 on the Oxford scale, the initial approach often

involved electric stimulation therapy. Upon achieving the Oxford level 2, the treatment

strategy shifted to active contractions coupled with biofeedback therapy[31]. However,

the International Continence Society currently endorses a revised, more straightforward

grading system that consists of four levels: absent, weak, normal (deemed as “moder-

ate”), and strong. This new modified scale aims to encapsulate the comprehensive action

of tightening, lifting, and squeezing [110]. Modified Oxford Scale for pelvic floor muscles

assessment is as follows [110]:

• 0/5 No discernible contraction of muscles

• 1/5 Flicker or pulsation is felt, no discernible lifting or tightening

• 2/5 Weak contraction, no discernible lifting or tightening

• 3/5 Moderate, some lifting of the posterior wall and some tightening around the

examiner’s finger, contraction is visible

• 4/5 Good, the elevation of the vaginal wall is felt against resistance, drawing in of

the perineum is felt, able to hold for 5 or more seconds

• 5/5 Strong resistance is felt, if 2 fingers are inserted, fingers will be approximated,

able to hold for 10 seconds

The Glazer protocol for pelvic floor muscle assessment with electromyography, as out-

lined in paper [16], involves the patient lying down with the trunk and lower limbs forming

an approximate angle of 135 degrees, and the feet turned outwards, leaving a small gap

between the heels. This positioning is critical as the EMG signal strength from pelvic floor

muscles varies with hip rotation. Such rotation activates the internal obturator muscles,

which are connected to the front part of the pubococcygeus muscle, potentially enhan-

cing the patient’s perception of pelvic floor muscle contractions and mistakenly raising

the baseline muscle tone. For a more comprehensive assessment, the patient’s position

may be switched to standing, offering better insights for stress incontinence and everyday

situations. The original Glazer protocol consists of the following phases [16]:

1. Pre-baseline rest - 60 seconds of rest, allows the diagnosis of hypertonus. It informs

about a lack of relaxation of the pelvic floor muscle while laying, reduced activation

in standing, or the reduced co-activation of the obliquus internus.

2. Phasic contractions - five quick flicks with a 10-second rest, allow the diagnosis of

muscular dysfunction or relaxation deficits. It informs about slow peak increase
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within quick-flick bursts, slow relaxation after quick activation, a reduced peak

activation level, the co-activation of the surrounding muscles, and the reduced co-

activation of the obliquus internus.

3. Tonic contractions - five 10-second tonic contractions with a 10-second rest after

each, allow muscular dysfunction, weakness, or relaxation deficits. It informs about

a reduced pelvic floor activation level, a steep decrease of activity within 10 seconds,

difficulty with contraction over 10 seconds, and a co-activation of the transverse

abdiminis or gluteus.

4. Endurance contraction - one 60-second endurance contraction, allows for diagnosis

of reduced endurance or innervation deficits. It informs about time domain changes

due to fatigue, the constancy of the contraction level and the co-activation of the

gluteus or rectus abdominal.

5. Post-baseline rest - 60-second rest, allows to diagnose hypertonus or relaxation de-

ficits. It informs about increased activity at the rest or late rest line level.

The Sorensen test, also known as the Biering-Sorensen test, is a widely recognized

method for assessing the endurance of the trunk extensor muscles, which are critical for

spinal stability and may play a role in low back pain (LBP) [33]. It involves measuring

the amount of time a person can maintain the upper body in a horizontal position while

lying prone on an examination table, with the lower body secured. This position specific-

ally targets the endurance of the trunk extensor muscles measured by EMG signal. In

the analysis of EMG data, several key metrics — Median Frequency (MDF), Averaged

EMG (AEMG), and Line Fit — are employed to assess muscle fatigue and recruitment

dynamics. Median Frequency is indicative of muscle fatigue, with a decrease in MDF val-

ues suggesting fatigue onset. Conversely, Averaged EMG is utilized to evaluate the level

of muscle recruitment during physical tasks. The Line Fit, represented by the slope of the

linear regression line applied to the MDF over time, provides a quantitative measure of

fatigue progression; a decreasing slope signifies muscle fatigue, while a slope that remains

constant or increases indicates the absence of fatigue. It has gained considerable popular-

ity for predicting low back pain within the next year in males and has become a reference

tool for evaluating muscle performance in patients with LBP, notably before and after

rehabilitation programs [33].

2.2.2 Rehabilitation robots

In recent years, there has been significant growth in the field of robotic technology

applied to rehabilitation. Robots have been widely employed in various physical rehab-

ilitation domains to aid in patient recovery. This includes assisting in the restoration of
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movement post-stroke [65, 85], enhancing or replacing diminished functions [83], and facil-

itating mobility support [53]. Robotic devices designed for neurorehabilitation primarily

leverage the principles of motor learning, which involve engaging patients in intensive,

repetitive, and task-specific motor activities [21, 22, 79]. These robot-assisted rehabil-

itation systems have demonstrated their effectiveness in promoting functional recovery,

including enhancements in gait and upper limb function, for individuals with conditions

such as traumatic brain injury (TBI), stroke, spinal cord injuries (SCI), cerebral palsy,

Parkinson’s disease, and multiple sclerosis (MS) [21]. Technological solutions offer cred-

ible, consistent, and acute evaluation instruments. These, when employed in conjunction

with clinical metrics, can enhance clinical judgment and yield more comprehensive data

regarding patient results[27].

Figure 2.2: Examples of rehabilitation robots on the market: A) Biodex System 4 Pro [13]
B) EGZOTech Sidra LEG [37] C) Hocoma Lokomat Pro 6 [92] D) Tyromotion Omego[141]

The Figure 2.2 presents rehabilitation robots available on the market. Presently, there

is underscored the necessity for established guidelines that will aid clinicians and research-

ers in enhancing the utilization of technology-driven evaluations, as well as the implement-

ation of clinical metrics and methodologies[122]. However, one of the primary barriers to

the widespread adoption of robotic technologies in neurorehabilitation is the issue of re-

imbursement for medical treatments that utilize advanced technology. In the realm of
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neurological rehabilitation, the choice of treatment and its duration is often influenced

not by the patient’s specific needs or medical requirements but by the reimbursement

rates established by insurance companies [22].

In a comprehensive review of the economic implications of robotic rehabilitation for

adult stroke patients conducted by Kenneth Lo et al.[79], it was found that robotic therapy

offers superior cost-effectiveness when compared to conventional therapy. Particularly for

individuals experiencing severe disability resulting from a significant stroke, the economic

advantage of robotic therapy was strongly evident. This advantage can be attributed to

the increased demand for one-on-one therapeutic intervention during conventional ther-

apy sessions, necessary to achieve comparable health benefits to those provided by robotic

therapy. Conventional therapy often involves physiotherapists manually assisting and ex-

ercising the impaired limbs of stroke patients, a physically demanding task, particularly

for those with substantial motor deficits. As a consequence, therapists must allocate more

time and effort towards limb exercises in conventional therapy to achieve the same number

of repetitions as robotic devices, ultimately leading to elevated therapy costs.

Robot-assisted neurorehabilitation of the upper limb, thanks to its capacity to deliver

high-intensity training protocols, has the potential for a greater impact on impairment

and motor function both in subacute and chronic stroke [70, 87], and many different

devices have been proposed for use in clinical and (optionally) home settings [83]. Sheng

B. et al.’s [126] comprehensive analysis indicates that individuals undergoing training with

robots designed for upper limb rehabilitation experience enhancements in their range of

motion, muscle strength, and overall physical capabilities. Among the studies reviewed,

only a few concluded that training both limbs simultaneously offers more benefits than

training one limb at a time. However, the review also emphasizes a crucial limitation in

the current body of research, which is the lack of definitive proof supporting the efficiency

of the methods and treatment plans used in these robotic-assisted therapies.

In a study examining the impact of Continuous Passive Motion (CPM) on individu-

als with post-stroke upper limb disabilities, Song et al. [129] investigated the outcomes

of robot-assisted wrist training using a one-degree-of-freedom rehabilitation robot, which

was EMG-controlled. The study found that the application of assistive torque, governed

by myoelectric signals, enabled stroke survivors to achieve an expanded range of motion

while also experiencing a marked reduction in EMG activity from the agonist muscles.

This approach allowed for targeted training within ranges previously unreachable, util-

izing the residual voluntary EMG activity on the affected side. Following a regimen of

20 rehabilitation sessions, there was an observable, though not statistically significant,

enhancement in the range of motion, accompanied by a notable decrease in the root mean

square error (RMSE) between the actual and targeted wrist angles. Additionally, signific-

ant gains were observed in muscle strength and clinical assessment scores. In their research,

Hu XL et al. [56] explored the impact of using an electromyography-driven robotic hand
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for upper-limb rehabilitation post-stroke. Their study focused on assessing motor recov-

ery and the effects of task-oriented training facilitated by the robotic hand (Figure 2.3).

The findings revealed that such training could enhance muscle coordination, particularly

Figure 2.3: The setup for the experiment involving EMG-controlled robotic hand-assisted
training of the upper limb, along with a diagram detailing the mechanical design of the
robotic hand [56]

between the antagonist muscles of the fingers, namely the flexor digitorum and extensor

digitorum. It was also found to decrease unnecessary muscle activity in the biceps brachii.

The study utilized EMG to track changes in muscle coordination throughout the training

sessions, offering a quantitative method to gauge training progress. Notably, a significant

reduction in EMG activity was observed in both the flexor digitorum and biceps brachii,

correlating with decreased spasticity in the finger and elbow joints. In a subsequent study

[55], demonstrated that EMG-driven robotic hands could deliver prolonged, consistent,

and precise therapy, aiding in fine motor control, such as finger movements. Improvements

were noted in muscle coordination, as evidenced by reduced co-contraction in EMG sig-

nals, and a decrease in unnecessary biceps brachii activity. A decrease in finger spasticity

was also recorded, and assessed using the Modified Ashworth Score, highlighting the

potential of EMG-driven robotic aids in enhancing post-stroke rehabilitation outcomes.

Trzmiel T. et al.’s research [140] showed the effectiveness of using EMG-driven robotic

systems in rehabilitating patients suffering from post-COVID-19 fatigue syndrome. Incor-

porating robotic rehabilitation into traditional therapy routines did not detract from the

overall outcomes. The findings suggest that integrating robotic rehabilitation into treat-

ment plans for individuals with post-coronavirus fatigue syndrome is a viable approach.

The clinical outcomes of robotic hand training in practical healthcare settings were found

to be on par with those observed in controlled research environments, despite the clinical

settings offering more flexible training schedules and less frequent sessions per week[57].

Additionally, patients undergoing treatment in the clinical setting experienced greater

improvements in daily living independence and more significant reductions in muscle tone

compared to those in the research lab setting.

In our study with Lewandowska-Sroka et al.[77], that is not an intefrated part of this

23



Anna Roksela

PhD research, the inclusion of the EMG-triggered neurorehabilitation robot in the pa-

tient’s daily rehabilitation plan has a positive effect on the outcomes of the treatment.

The study employed a prospective, randomized controlled trial with two distinct arms:

the first group received standard physiotherapy combined with robotic-assisted exercises,

while the second group was provided with standard physiotherapy alongside exercises

using a lower limb rotor for 6 weeks. In seven parameters, there was a significant rise

observed across successive measurements, while the Ashworth scale showed a notable de-

cline. The outcomes with the posterior predictive averages for each treatment condition

and observation are depicted in Figure 2.4. Initially, there was no significant difference

between the groups regarding the overall parameter means, as evidenced by the lack of sig-

nificant treatment effect parameters. Secondly, a significant weekly main effect was noted

across all parameters, signifying that for seven parameters, there was a credible increase

across successive observations. Conversely, for the Ashworth scale, there was a notable

decrease. The most substantial alterations were noted in the measurements obtained us-

ing the Lovett scale. The most substantial alterations were detected in the measurements

conducted using the Lovett scale. The mean circumference of the thigh, measured 5 and

15 cm above the knee, showed a more significant increase in the robot condition relative

to the control condition. Furthermore, the reduction in Ashworth scores over time was

statistically significant in both groups, but the decrease was more pronounced in the robot

condition.

Figure 2.4: Posterior predictive means for each treatment condition and measurement for
robot and control groups [77]
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In a systematic review conducted by Singh H. et al.[127], focusing on rehabilitation

through the use of robotic aids such as exoskeletons and end-effectors, it was concluded

that individuals with mild to moderate impairments exhibited significant enhancements

in both body structure/function and performance metrics. Initial findings indicate that

robot-assisted rehabilitation is safe and practicable, and has the potential to decrease the

level of active assistance required from therapists. In a prospective, randomized controlled

trial, Jansen H. et al.[64] assessed the impact of using a controlled active motion device

versus physiotherapy only in patients who underwent surgery for unstable ankle fractures.

The clinical outcomes were evaluated at 6 and 12 weeks post-operation by two examiners

who were aware of the patients’ treatment group assignments. Various clinical metrics to

evaluate foot and ankle, and dynamic pedography, were recorded. The findings indicated

that the incorporation of a controlled active motion device significantly enhanced clinical

results in patients with unstable ankle fractures who required partial weight-bearing.

In a randomized controlled trial conducted by Chen K. et al.[26], a comparison between

home-based rehabilitation and laboratory-based rehabilitation using a portable rehabil-

itation robot for the ankle was made. The study found notable enhancements in the

home-based group across all measured biomechanical and clinical parameters. These im-

provements included active dorsiflexion range of motion (identified as the primary out-

come), along with mobility (evidenced by the 6-minute walk test and the timed up and

go test), balance (assessed through the Pediatric Balance Scale), selective motor control

of the lower extremity (evaluated by the SCALE), muscle strength, and joint stiffness.

The only exceptions were passive range of motion and spasticity, which were measured by

the Modified Ashworth Scale and did not show significant changes. The study by Morito

K. et al.[89] investigated the effects of home training using a robotic device for ankle mo-

tion, supplemented by visual biofeedback, on two individuals with chronic hemiplegia. The

findings suggest that training that includes visual biofeedback of force information can en-

hance the reciprocal inhibition of the tibialis anterior muscle and diminish co-contraction.

2.2.3 EMG biofeedback and gamification in rehabilitation

EMG biofeedback was first used and researched in 1976 to treat a group of patients

with hemiparesis, torticollis, dystonia, and spinal cord or peripheral nerve injury [17]. The

study conducted by Govil K. et al.[46] found that targeted EMG Biofeedback therapy

on the gluteus maximus led to enhancements in EMG amplitude and several walking

metrics, such as velocity and cadence. Furthermore, individuals receiving neurofeedback

and EMG-biofeedback experienced improvements in hand function comparable to those

undergoing traditional occupational therapy[115]. Cordo P et al.’s study [30] suggests that

the combination of assisted movement and muscle vibration, accompanied by either EMG

or torque biofeedback, can diminish upper limb impairments, enhance voluntary activation
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of hand muscles, and partially restore hand functionality in individuals with significant

hand disabilities resulting from chronic stroke. Additionally, research by Dosen S. et al. [36]

illustrated that participants could effectively utilize real-time EMG biofeedback to monitor

and adjust their myoelectric signals, resulting in more stable commands for myoelectric

prosthetic devices. Yoo JW et al.’s study [146] represents the clinical trial to showcase the

enhanced advantages of integrating EMG biofeedback with virtual reality (VR) exercise

games for children diagnosed with spastic cerebral palsy. The findings from this study

revealed that the combined use of augmented EMG and VR feedback resulted in superior

neuromuscular balance control in the elbow joint compared to the use of EMG biofeedback

in isolation.

Biofeedback can motivate patients who are frustrated over the inability to isolate pel-

vic floor muscles (PFMs) or who lack the sensation of muscle contraction [93]. Learning to

properly engage pelvic floor muscles for effective outcomes can be challenging. In clinical

settings, supplementary techniques like vaginal cones and biofeedback are often employed

alongside exercises to enhance this process. Numerous research studies have confirmed the

efficacy of these combined approaches in managing incontinence issues. Numerous stud-

ies have proved biofeedback to be effective in the treatment of incontinence [1, 20, 58].

Rett et al.[117] found that a brief period of pelvic floor muscle training, augmented with

surface electromyography biofeedback, was effective in alleviating symptoms of stress urin-

ary incontinence (SUI) in premenopausal women, offering a viable option for conservative

treatment. However, the results of different studies and systematic reviews on whether

PFMs training with biofeedback is better than PFMT alone are conflicting. The research

[31] analyzed data from 390 female patients suffering from stress or mixed urinary incon-

tinence. These individuals were trained to swiftly and effectively engage their PFMs using

biofeedback guidance. They conducted one to two home-based training sessions lasting 10

minutes each, daily for a duration of 3 to 6 months. The training sessions were automat-

ically recorded by an EMG-biofeedback device each time the exercises were performed,

ensuring patient compliance was monitored. Follow-up consultations were scheduled every

4 to 12 weeks. The findings indicated a significant self-reported improvement rate (94%)

and high levels of patient satisfaction with the therapy outcomes. Additionally, there was

a notable enhancement in the strength of pelvic floor contractions, evidenced by an in-

crease in Oxford scores from 2.9 to 4.1, and the electrical EMG potentials nearly doubled,

rising from 11.3 µV to 21.5 µV, according to the data presented in [31]. In conclusion, the

application of sophisticated sEMG technology for visualizing muscle-related phenomena,

previously undetectable, exemplifies one of the ways in which biofeedback can integrate

evidence-based medicine practices. This approach not only aids in the precise definition

and management of disorders but also contributes substantial additional value to the field

[44].

The aim of the feedback is to provide the users with an instant numerical assess-
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ment of their performance in executing the movement as indicated for instance by the

Game Score, along with a descriptive insight into their muscle activity based on EMG

data. Additionally, EMG offers the practitioner a comprehensive view of the user’s ongo-

ing improvement in regaining mastery over their upper limb muscles. Interventions using

game-based approaches have effectively facilitated motor recovery in the treatment of

stroke [42, 116] and Parkinson’s disease [52]. The Hung’s et al. [61] study explores the

efficacy and challenges of game-based rehabilitation systems for stroke survivors. Despite

the proven benefits of repetitive rehabilitation exercises, patient adherence is low, primar-

ily due to the monotonous nature of traditional exercises and lack of professional oversight

in home settings. Game-based rehabilitation, while offering potential for greater engage-

ment through entertaining and diverse games, faces limitations such as a narrow selection

of games, lack of motivational elements, and high costs. Feedback from patients and occu-

pational therapists highlights the need for systems that are not only engaging and diverse

but also capable of providing therapeutic monitoring and feedback. The study suggests

that carefully selected and tailored games, which balance entertainment with therapeutic

objectives and include motivational features, could significantly improve patient adher-

ence and recovery outcomes. The study [109] evaluates the effectiveness of game-based

interventions in enhancing user control over standard myoelectric prostheses, comparing

genres such as racing and rhythm-based games. Patients found racing games more enjoy-

able, while rhythm games offered better challenges for electromyography control, crucial

for prosthesis manipulation. Key parameters for assessing control include muscle contrac-

tion strength and muscles activation capabilities. The study underscores the importance

of proportional control in myoelectric prostheses, where signal strength dictates move-

ment speed, necessitating varied muscle activation levels. EMG biofeedback, integral for

patient motivation and awareness of muscular activity, has been effectively utilized in

clinical settings. The racing game, with its simple controls and automatic acceleration,

was highly favored for its fun, affinity, and motivational aspects. Overall, engaging with

these games resulted in a more enjoyable and effortful experience compared to traditional

myoelectric rehabilitation tools, indicating the potential of tailored game mechanics in

prosthetic training and rehabilitation. Illustrations of rehabilitation games developed by

EGZOTech are presented in Figure 2.5.

2.2.4 Artificial Intelligence in Rehabilitation

Artificial Intelligence utilizes advanced computational and inferential techniques to

produce insights, allowing the system to engage in reasoning and learning, and enhances

clinician decision-making by providing augmented intelligence. Machine learning (ML), a

branch of artificial intelligence, allows healthcare professionals to utilize existing data to

forecast outcomes. Furthermore, ML facilitates automated decision-making and generates
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Figure 2.5: Example of rehabilitation games [37] A Slice and Dice, B Burger Mania C
Brick Pirates

predictions using patient data, serving as a means to offer immediate preventive meas-

ures for individuals with particular health conditions. Through the utilization of machine

learning algorithms, such systems acquire the capability to discern and adapt to the beha-

vioral patterns and traits of individuals over a period, thereby enhancing their efficiency

in minimizing the occurrence of false positives. In Alsobhi’s at al. study [4], a majority

(61.8%) of the investigated physical therapists reported being unaware of the use of AI in

rehabilitation contexts.

Table 2.1 presents the usage and accuracy of supervised machine learning techniques

for musculoskeletal applications [134]. In an investigation by Ye et al. [145], the efficacy

of a ML-derived tool designed to assess the fall risk in elderly individuals was examined.

The findings suggested that this ML-informed tool effectively generated early alerts, po-

tentially mitigating fall incidents among this demographic. Given that patients suffering

from orthopedic and neurological conditions often require prolonged and rigorous phys-

ical rehabilitation to ameliorate their functional impairments, physical therapists may

encounter difficulties in crafting therapeutic strategies that accurately reflect patient pro-

gress. In these instances, employing an AI-based decision support system, underpinned

by ML, could significantly aid PTs in diagnosing and tracking rehabilitation efforts. In
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Table 2.1: Accuracy of supervised machine learning techniques for musculoskeletal applic-
ations.[134]

Ref Classification Question Data Source Acc[%] Algorithm Used
[97] Is pathology present X-ray 83 16 layer CNN
[63] or not? MRI 70.4 CNN

75.4
95.4

[23] Can successful exercise fMRI 92 SLR
[81] performance be identified? 93 SVM, LR
[19] Inertial sensor 99.4 CNN k-NN

97.8 SVM
[67] Can risk of injury be Inertial sensor 94.1 10F-CV

classified based upon 72 10F-CV
movement quality? 90 LOSO-CV

60 LOSO-CV
[101] Can CLBP subgroups be EHR 71.05 DT

stratified accurately? 71.05 BT
10F-CV: 10-fold cross-validation.
BT-boosted tree.
CLBP- chronic low back pain.
CNN- convolutional neural network.
DT-decision tree.
EHR-electronic health records.
K-NN- k-nearest neighbour.
LOSO-CV- leave-one-subject-out cross-validation.
LR-logistical regression.
SVM-support vector machine.

a study conducted by Tageldeen et al.[136], a non-invasive human-machine interface was

created, utilizing sEMG signals and a neuro-fuzzy classification system to estimate joint

torques. The findings from this study highlighted that fuzzy logic inference systems have

proven to be highly effective in real-time EMG/Torque estimation, and the optimization

of membership functions through expert systems has led to reduced training durations

and enhanced results. In research [128], a hierarchical control approach was employed,

incorporating EMG data and wrist strength metrics. This control mechanism was real-

ized through a Backpropagation Artificial Neural Network (BP-ANN), which was trained

using data from exercises previously conducted with other patients. A key finding was

that the control system could predict human actions with a lead time of about 0.2 to

0.3 seconds, enhancing the fluidity of exoskeleton operation by generating personalized

maps for each patient. Notably, two studies by Wang et al. [144, 143] are prominent in

the review for their innovative control strategies, utilizing Kalman filters and self-learning

machines based on various neural network designs to identify patient intentions or abrupt

movement shifts during upper limb rehabilitation exercises. These methods proved to be
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effective in movement anticipation and learning rehabilitation paths for recurring ther-

apies. Similarly, studies [78, 120, 74] introduced smart approaches by integrating signal

processing of EMG and force-myographic data, among others. These studies proposed em-

ploying a straightforward ANN with a backpropagation learning algorithm, leading to the

creation of both discrete and continuous motor control models for exoskeleton movement.

The models were trained with labeled data in a supervised learning framework, and after

training, the BP-ANN made predictions using unlabelled test data. Although the out-

comes were promising, the potential for fuzzy systems to expedite the BP-ANN training

process was identified as an area for enhancement [78]. In Lambelet et al. study [71], an

adaptive position control system was developed, employing an admittance controller that

reacts to an input force. The study found that incorporating surface electromyographic

signals into the adaptive admittance control allows for the automatic modulation of as-

sistance based on the characteristics of the input signal.

Gathering physiological data from patients is crucial in the advancement of robotic

systems, as such information can significantly enhance robot control mechanisms [71,

120, 128, 136, 144, 143] or contribute to more accurate and objective evaluations that

reflect the rehabilitative process and its benefits for users [10]. When it comes to the

integration of data collection and fusion methodologies in the creation of exoskeletal

or rehabilitation robotic systems, the reliability of EMG-based technologies stands out,

making their integration a fundamental aspect in the evolution of forthcoming devices.

In Petersson et al.’s studies [107], healthcare leaders identify several challenges in im-

plementing AI both within the broader healthcare system and their specific organizations.

These challenges include external factors, internal capacity for strategic change, and the

transformation of healthcare professions and practices. The findings suggest a need for de-

veloping implementation strategies across healthcare organizations to enhance AI-specific

capabilities. Effective AI implementation also requires appropriate laws and policies. Fur-

thermore, investment in implementation processes is crucial, along with collaboration

between healthcare sectors, county councils, and industry partners.

30



Chapter 3

System design and implementation

This chapter outlines the system design and implementation framework developed

for the analysis of biomechanical and bioelectric parameters, aimed at enhancing the

automation of diagnostics and rehabilitation processes for patients. The integration of

advanced sensing technologies (an electromyograph, a dynamometer, and a goniometer),

data analysis methods, and machine learning algorithms forms the cornerstone of this

innovative system, enabling precise and real-time monitoring and assessment of patient

conditions.

3.1 General concept

The central aim of this dissertation is to explore and establish the foundational meth-

odology for an automated expert platform that leverages biomechanical and bioelectric

parameters for diagnosing and rehabilitating patients. By harnessing the power of machine

learning and robotic systems, this research seeks to create a feedback loop that incorpor-

ates EMG, torque, and limb position measurements to facilitate a more objective, efficient,

and personalized approach to patient care.

Drawing upon a comprehensive review of the literature, we formulated specifications

for diagnostic and rehabilitation protocols to be integrated into the Luna EMG and Stella

BIO devices. These protocols include but are not limited to, Force isometric test [5, 122],

Force isokinetic test [5, 34, 41, 54, 82, 38, 138, 139], Joint position sense evaluation [9, 45,

73], Muscle spasticity test [3, 24, 25, 142, 148], Maximum Voluntary Isometric Contraction

(MVIC) EMG test [35, 109], ROM measurement [106], the Glazer protocol [12, 16, 31,

44, 99], Muscle fatigue test [2, 27, 33, 35, 40, 59, 68, 119, 133, 135, 147, 149], and Luna

EMG initial evaluation [14, 27]. Each protocol has implemented a detailed procedure with

instructions about the used extension and muscle for EMG evaluation.

The Luna EMG initial evaluation constitutes an evaluation protocol designed for the

initial examination of new patients. There was created a decision tree diagram, illustrated

at Figure 3.1. This diagram was constructed based on the bioelectrical and biomechanical
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parameters that I identified through the analysis of data from the Luna EMG device,

outlining subsequent steps in patient rehabilitation. During, the Luna EMG initial eval-

Figure 3.1: Initial Evaluation Decision Tree

uation, participants are required to be in a relaxed state at the start of the test. Upon

hearing a "Contraction" audio cue, they must promptly execute the movement in the cor-

rect direction and maintain the contraction until the active phase concludes. Following a

"Relax" audio cue, they should return to a relaxed state, allowing the limb to passively re-

vert to its starting position. They must then await the signal to begin the next cycle. The

test comprises three such repetitions. This protocol facilitates a rapid appraisal based on

objective metrics, subsequently guiding the recommendation of tailored exercises utilizing

the Luna EMG rehabilitation robot. The methodology of this expert system is delineated

in Figure 3.1. The evaluation encompasses tests for muscle activation capability, the initi-

ation of movement in an unladen limb, and the capacity to generate muscular force. In the

context of biomechanical and bioelectrical analysis of the test, several key parameters are
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quantified to evaluate performance and physiological responses. These include positional

metrics such as the range of motion, and torque-related measurements encompassing the

average torque exerted during active phases, the mean torque during rest intervals, and

peak torque values. Additionally, electromyographic signals are researched, with emphasis

on the mean signal amplitude during both work and rest periods, the initiation and re-

laxation of muscle activation (onset and offset), and the variability in the duration of

activity and inactivity phases. The outcomes of the assessment provide insights into the

innervation status of muscles, the capacity for sustained contraction, the potential for act-

ive movement, the ability to move through the complete range of motion, and the overall

muscle strength.

To validate the hypotheses proposed in the doctoral dissertation, the ensuing eval-

uations of the formulated diagnostic and therapeutic procedures were conducted. The

Muscle Force Test, studied on both a control group and a stroke group targeting the up-

per limbs, involved EMG recordings from the biceps brachii and triceps brachii muscles.

This test is evaluated in the publication [118] and is elaborated upon in Section 4.1.

The evaluation of the Muscle Spasticity Test, conducted on 68 healthy individuals and

116 stroke survivors focusing on the upper limbs, involved EMG assessments of the bi-

ceps brachii and triceps brachii muscles. This is detailed in Section 4.2. The evaluation

of the Glazer Protocol was carried out on patients with stress urinary incontinence re-

motely using a telemedicine rehabilitation program. The patients after evaluation received

treatment plans with EMG biofeedback exercises in the Stella BIO application. Details

of the telemedicine-administered test and rehabilitation process are provided in Section

4.3. Additionally, Section 4.4presents research investigating the efficacy of EMG-triggered

movement therapy in knee rehabilitation for patients post-stroke.

In a study examining fatigue among individuals with post-viral fatigue syndrome fol-

lowing COVID-19, the Muscle fatigue test was employed in our study with Zasadzka et

al. [150]. The study confirms that the Application of an EMG-Rehabilitation Robot in

Patients with Post-Coronavirus Fatigue Syndrome (COVID-19) is feasible and safe. The

test protocol for muscle fatigue assessment with EMG from biceps brachii muscle was

established with the upper limb fixed at a 90-degree angle of elbow flexion. It involved an

initial 30-second period of relaxation, followed by a 30-second contraction phase, and con-

cluding with another 30-second relaxation phase. In instances where a patient could not

sustain a 30-second contraction, the algorithm was designed to determine the duration of

muscle contraction using only the EMG signal. The muscle fatigue was assessed based on

the Mean Frequency described in equation (2.9) and presented in Figure 3.2. In compar-

ing pre- and post-intervention outcomes, both the Intervention Group and Control Group

showed improvements across the majority of measured parameters. However, muscle fa-

tigue, as assessed by EMG, did not follow this trend. The Intervention Group demon-

strated non-significant enhancements, while the Control Group exhibited non-significant
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Figure 3.2: Example of median frequency of EMG signal from a patient with Post-
Coronavirus Fatigue Syndrome (COVID-19) before (with visible shift to lower frequency
due to fatigue) and after treatment

declines. The comparison of mean changes of measured parameters did not reveal any

statistically significant differences between the study groups (Table 3.1). Muscle fatigue

Table 3.1: Comparison of mean pre-post changes of outcomes between groups [150]

Outcome Measure Intervention Group Control Group p
FIM 26 (16–113) 23 (–27–54) 0.137
HGS 3 (0–10) 4 (–9–10) 0.367
BI 8 (4–14) 6 (–3–11) 0.233
FAS –2 (–11–0) –2 (–7–7) 0.412
Fatigue (EMG) 0 (–14.9–34.7) 2.80(–55.4–11.3) 0.909

FIM—Functional Independence Measure

HGS—Handgrip strength

BI—Barthel Index

FAS—Fatigue Assessment Scale

Fatigue (EMG)—muscle fatigue calculated from EMG measurement data, expressed as a percentage of the slope of
the mean frequency curve.
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dynamic test was described in the study [130]. The research confirms that the testing pro-

cedure with the rehabilitation robot can be a useful in the assessment of muscle fatigue,

strength, and muscle activation during exercises among patients with Multiple Sclerosis.

The main goal of the study was to create and test a special protocol, using Luna EMG,

to assess fatigue and other related factors among patients with multiple sclerosis. The ex-

periment was performed among 25 patients with multiple sclerosis on the elbow extension

with EMG signal collected from biceps brachii and triceps brachii. The study protocol

proceeded as follows: 2 minutes of passive motion exercise, 5 minutes of isokinetic exercise

of elbow flexion and extension, 2 minutes of break, and 2 minutes of isokinetic exercise of

the same joint 3.3. Data from the experiment shows that there is an average correlation

Figure 3.3: A EMG RMS signal of biceps and triceps muscles during 2 min isokinetic
exercise B Median Frequency of EMG signal of triceps with linear regression (red) [130]

between triceps muscle fatigue and the amount of repetition, both for 5 minutes and 2

minutes of exercise. This could indicate that biceps brachii, got more tired in the second

training, being followed by the exhausting first one. The high correlation between mean

torque in flexion and MDF slope of biceps brachii during the 2 minutes of exercise was

noted, higher mean force, correlated with higher fatigue.

Joint position sense evaluation was utilized in these researches [75, 76, 99]. Throughout

the procedure, the limb of the participant is secured to the robotic extension and unweight.

Subsequently, the researcher establishes the motion range, selecting between passive or

active modes, and determines whether the movement would involve flexion or extension.

Additionally, adjustments are made to the speed, force, and duration of the position held.
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The researcher then defined the target position, the robot moves to position and sustains

the participant’s limb in the designated posture. In the passive mode, the participant

notified the researcher upon the robot reaching the set position. Conversely, in the active

mode, the participants themselves maneuvered their limb to the specified position.

The results from our study with Oleksy et al. [98] demonstrate that the evaluation

performed on the rehabilitation robot is reliable for joint position sense assessment in

both knee flexion and extension, in active and passive modes as well on the right as on

the left sides. Twenty-four male students, in good health and aged between 18 and 30

years, participated in the study as volunteers. In the study, JPS tests for the right and

left knees were conducted using the Luna EMG rehabilitation robot during both flexion

and extension movements in active and passive modes. The assessment of JPS assessment

involved conducting four successive tests on each lower limb. For the active joint position

assessment, the knee under examination was passively guided to a specific target position.

This position was held for 5 seconds, allowing the participant to memorize it, before

being passively returned to the starting position. After a 3-second pause at the starting

position, the participant then actively moved their knee to align with the remembered

target position, signaling verbally when they believed the knee had reached the target, at

which point the device recorded the position. In the passive mode of JPS measurement,

the procedure began by passively moving the knee to a set target position for evaluation.

The knee was held at this target position for 5 seconds to enable the participant to

memorize the position. It was then passively returned to the starting position. Following

a 3-second hold at the starting position, the knee was again passively moved towards

the target position, and the movement was halted based on the participant’s indication

when they felt the knee had attained the target position. These tests were conducted in

two distinct sessions, spaced one week apart. The reliability of knee flexion and extension

measurements in both modes was high, with ICC values ranging from 0.866 to 0.982 and

Standard Error of Measurement (SEM) between 0.63 and 0.31. The average JPS angle

error showed no significant difference between the right and left limbs (p < 0.05), and there

was no notable correlation between the limbs (r = 0.21–0.34; p > 0.05). There were used

Bland–Altman plots, a statistical method used to visualize the agreement between two

quantitative measurements by plotting the differences between the measurements against

their averages. The plots indicated a minimal bias between limbs, albeit with relatively

large limits of agreement 3.4.

Consequently, the JPS test procedure and Luna EMG rehabilitation robot were deemed

a reliable instrument for assessing knee JPS in both active and passive modes. While the

JPS angle error did not show significant variance between the left and right sides in this

study, a slight asymmetry was noted, as evidenced by a broad level of agreement exceeding

5° in the Bland–Altman plots. This suggests that for healthy individuals, such as active

athletes, proprioception assessment should be conducted on both sides.
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Figure 3.4: Bland–Altman plot showing agreement between right and left sides for active
(a,b) and passive (c,d) modes of joint position sense [99]

Additionally, our other study [75] presents findings on the JPS test performed on

the rehabilitation robot, highlighting its capability to provide dependable assessments of

upper limb proprioception. Each upper extremity was subjected to four rounds of meas-

urements for the active mode in the group of 102 healthy young adults. For the assessment

of active joint flexion, the elbow under examination was passively maneuvered to a prede-

termined target position. This position was maintained for five seconds, allowing subjects

to memorize it, before being passively returned to the initial position. After holding the

initial position for three seconds, subjects were then instructed to actively move their

limb to achieve the target position. The study reveals a high degree of consistency in

measurements, as indicated by the interclass correlation coefficient (ICC) values ranging

from 0.969 to 0.997, underscoring the reliability of the agreement between the two assess-

ments. There was significant congruence between researchers for both upper limbs (right

limb: P=0.3484 [Exam 1]; P=1.0000 [Exam 2]; left limb: P=0.1092 [Exam 1]; P=0.7706

[Exam 2]), as well as across different examinations (right limb: P=0.1127 [Researcher 1];

P=0.2113 [Researcher 2]; left limb: P=0.0087 [Researcher 1]; P=0.1466 [Researcher 2]).

Furthermore, Bland-Altman analysis demonstrated minimal inter-rater variations, with

deviations around 0.05° in the initial examination for the left upper limb and 0.04° for the
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right upper limb, with the largest discrepancy observed in the left upper limb between

examinations being just 0.08°. Through the device’s application, evaluations conducted

on the proprioceptive senses of the upper limbs in a group of 102 healthy young adults

demonstrated notable consistency, both internally and externally. This consistency in

measurement underscores the device’s effectiveness and reliability in proprioceptive eval-

uation, suggesting its potential utility in clinical and research settings for assessing upper

limb sensory functions.

Moreover, the latest our research [76] was carried out with participants who were in the

late phase after stroke. A group of 126 individuals was involved, comprising 78 females and

48 males, with a median age of around 60. The methodology adopted in this study mirrors

that outlined in prior research [75]. Assessment of proprioception for both the left and right

upper limbs was conducted using the Luna EMG rehabilitation robot. The evaluation was

executed by two researchers in two sessions, spaced two weeks apart. Comparative analysis

of the data was done both inter-researcher and intra-research, presented in Table 3.2 and

Table 3.3. Results indicated a high degree of reliability in the measurements obtained for

the right hand, as evidenced by interclass correlation coefficients (ICC) ranging from 0.996

to 0.998, and for the left hand ranging from 0.994 to 0.999. Pearson’s linear correlation

also showed a consistently high level of agreement (R = 1.00) for both hands, across both

comparisons between the different examinations (Exam) and the researchers (Res) who

conducted the tests with the participants.

Table 3.2: Proprioception (right upper limb) [76]

Exam Res x̄ SD Diff x̄ SD p R ICC CV SEM

I 1 5.80 3.22
-0.04 0.18 0.0220 1.00

0.998 55.54 0.29
I 2 5.77 3.18 (0.998-0.999) 55.19 0.28
II 1 5.72 3.15

0.01 0.20 0.7921 1.00
0.998 55.18 0.28

II 2 5.72 3.18 (0.997-0.999) 55.56 0.28
I 1 5.80 3.22

-0.09 0.23 0.0001 1.00
0.997 55.54 0.29

II 1 5.72 3.15 (0.996-0.998) 55.18 0.28
I 2 5.77 3.18

-0.05 0.27 0.0578 1.00
0.996 55.19 0.28

II 2 5.72 3.18 (0.995-0.998) 55.56 0.28

x̄ - mean of the absolute difference between the target and replicated position

SD - standard deviation

Diff - difference between examination x̄

p - the dependent-samples t-test result

R - Pearson Correlation

ICC - Interclass correlation coefficients

CV - Coefficient of variable

SEM - Standard error of measurement
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Table 3.3: Proprioception (left upper limb) [76]

Exam Res x̄ SD Diff x̄ SD p R ICC CV SEM

I 1 6.65 3.52
0.02 0.25 0.4487 1.00

0.998 52.98 0.31
I 2 6.67 3.53 (0.997-0.998) 52.99 0.31
II 1 6.55 3.43

-0.01 0.18 0.4027 1.00
0.999 52.34 0.31

II 2 6.54 3.45 (0.998-0.999) 52.82 0.31
I 1 6.65 3.52

-0.10 0.28 0.0002 1.00
0.996 52.98 0.31

II 1 6.55 3.43 (0.995-0.997) 52.34 0.31
I 2 6.67 3.53

-0.13 0.35 0.0001 1.00
0.994 52.99 0.31

II 2 6.54 3.45 (0.992-0.996) 52.82 0.31

x̄ - mean of the absolute difference between the target and replicated position

SD - standard deviation

Diff - difference between examination x̄

p - the dependent-samples t-test result

R - Pearson Correlation

ICC - interclass correlation coefficients

CV - Coefficient of variable

SEM - Standard error of measurement

3.2 Research equipment

The research equipment employed in the design and implementation of the system

for analyzing biomechanical and bioelectric parameters is pivotal to the success of this

project. This section details the specialized hardware and software components selected

for data acquisition, processing, and analysis, ensuring the highest standards of precision,

reliability, and scalability in the study of patient diagnostics and rehabilitation.

3.2.1 Computer unit and software

The computer used to conduct the simulation ran on Microsoft Windows 11 x64.

Activities related to data processing and analysis, performing simulations, as well as

preparing materials for the dissertation were performed using software written in the

Python 3.11 programming language [112]. The numerical libraries NumPy v1.24.3 [95]

and pandas v2.0.1 [104] were used as the basis for handling numerical data, the SciPy

v1.10.1 library [124] as a tool for basic signal processing and statistical analysis, the

scikit-learn v1.2.2 library [123] providing machine learning methods, the pingouin v0.5.4

library [113] for statistical analysis, as well as the Matplotlib v3.7.1 library[86] as a tool

for performing graphical data analysis.
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3.2.2 Luna EMG

Luna EMG, manufactured by EGZOTech Sp. z o.o. (registration number/TNP/MDD

0373/4038/2021), is a multi-use rehabilitation robot - rehabilitation exercise device, in-

tended for medical purposes of rehabilitation, physiotherapy, and occupational therapy,

including both therapy and evaluation of the patient’s state. Luna EMG includes motor

and extension components, which are modular mechanical elements for upper and lower

limbs, including occupational therapy, or trunks. These parts are affixed to the patient

either through straps or grips. Luna EMG is equipped with a position sensor, a dynamo-

meter, and an electromyograph. The head’s rotation position accuracy is ±2° and the

maximal speed is 100°/s. Torque measurement has accuracy ±0.2Nm with maximal head

rotation 60 Nm. The presence of a negative sign in torque values indicates that the force

applied is in a counterclockwise direction. The electromyograph has 6 channels with sim-

ultaneous sampling of up to 1000 samples per second with 24-bit accuracy. Luna EMG

has a baseline noise is below 0.5µV RMS and an accuracy of electromyography of 1µV.

The device’s movement is programmable and guided by an array of sensors. Operational

control of Luna EMG is executed via a Windows-based application on a tablet, utilizing

a User Interface (UI). Luna EMG is engineered to support various fundamental control

algorithms, encompassing isokinetic movement, isotonic movement, and isometric exer-

cises. Study tests were performed using of Luna EMG rehabilitation robot with Upper

Limb Extension, presented in Figure 3.5. Luna EMG may operate in the following modes:

Figure 3.5: Luna EMG with Upper Limb Extension with Mezos SIT examination and
treatment chair [37]
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• Continuous passive motion - the robot moves the patient’s limb with constant velo-

city and limited resistance

• Isokinetic movement - the patient has to move the robot extension with constant

velocity but resistance is variable.

• Isotonic movement - the patient exercises with constant resistance

• Isometric movement - the robot extension is fixed in one position

• Electromyography measurement and biofeedback

• EMG triggered movement - trigger and hold, where the patient has to keep con-

traction with muscle activity above the threshold to robot movement; trigger and

release, where the patient only has to cross the threshold to robot movement in the

whole range of movement

• Proprioception - joint position reproduction for assessment and therapy

• Rehabilitation games - works with 3 operation modes as: isokinetic movement, EMG

triggered movement (trigger and hold) and EMG biofeedback.

3.2.3 Stella BIO

Stella BIO, manufactured by EGZOTech Sp. z o.o. (registration number TNP/MDD

0373/4038/2021), is indicated for assessing electromyography signals from the pelvic floor

and surface muscles and for providing EMG signals to be used in biofeedback. Addi-

tionally, that medical device is designated for the treatment of pelvic floor disorders and

is also a transcutaneous electrical nerve stimulator and external functional neuromuscu-

lar stimulator. That electromyography biofeedback device with electrical stimulation is a

battery-powered, mobile, and connected to the computer unit or smartphone via WiFi

(Figure 3.6). The software to control the device and collect the data is a web browser

application, available at https://app.egzotech.com/. The Stella BIO application enables

telerehabilitation processes by allowing specialists to establish evaluation protocols and

treatment exercises while providing them with continuous access to patient outcomes. A

patient employs the Stella BIO device through an application on their personal computer

or smartphone to conduct therapy sessions. The bioelectrical signal could be collected

from up to 8 channels at a simultaneous sampling rate of 1000Hz. The baseline noise is

below 0.5µV RMS and the measurement resolution ±6000 µV is 0.1 µV. Stella BIO is

may operate in the following modes:

• EMG biofeedback,

• electrical muscle stimulation,
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• functional electrical stimulation,

• EMG - triggered electrical muscle stimulation,

• transcutaneous Electrical Nerve Stimulation (TENS),

• rehabilitation games control with EMG signal.

Figure 3.6: Stella BIO device during pelvic floor muscle training [37]

3.3 Practical implementation in healthcare

In the research project of The National Centre for Research and Development (NCBR)

"Development of innovative methods of automatic diagnostic and rehabilitation using ro-

bots and bioelectric measurements" POIR.01.01.01-00-2077/15, I contributed as a Product

Engineer, overseeing the development of the Luna EMG rehabilitation robot, detailed

described in Section 3.2.2. My duties also encompassed the research, innovation, and de-

velopment of the Stella BIO electromyography biofeedback device, which incorporates

electrical stimulation elaborated in detaild in Section 3.2.3, and the Mezos SIT examina-

tion and treatment chair, presented in Figure 3.5. This work involved designing diagnostic

and therapeutic programs, data analysis techniques 3.7, and automation concepts in re-

habilitation 3.8. The NCBR acknowledged the successful completion of this project both

in terms of its objectives and financial management. The Stella BIO device received EC

certification as a medical device on July 27, 2020, with the registration number TN-

P/MDD 0373/4038/2021, and was granted an industrial pattern (Rp.26591) on January

25, 2021, followed by FDA approval under 510(k) (number K210002) on October 1, 2021.
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The Mezos SIT, categorized as a Class I medical device, was certified under the 2017/745

MDR (certification of free sale no 224/2022 dated April 25, 2022), Moreover, the techno-

logy developed in Mezos SIT has 2 application patents: P.440692 Chair to rehabilitation

exercises from 21.03.2022 and P.440693 Positioning mechanism for a chair to rehabilita-

tion exercises from 21.03.2022. Between 2019 and 2023, sales of the Luna EMG reached

338 units (Fig.3.9), Stella BIO saw 106 units sold from 2020 to 2023, and Mezos SIT

achieved 115 units sold from 2022 to 2023.

Figure 3.7: Part of EMG signal analysis in Stella’s BIO report after exercise

In another research project of the NCBR “Development of an innovative rehabilitation

splint for the lower limbs for neurological and orthopaedic patients using electromyography

and electrostimulation” POIR.01.01.01-00-0855/20, I held the roles of Research and De-

velopment Project Manager and Biomedical Engineer. The Sidra LEG, a lower limbs

rehabilitation robot, was certified under the EU Regulation 2017/745 MDR (TNP/M-

DR/0015/4038/2023) on November 28, 2023, and is subject to a patent application no

P.445951.

Furthermore, in the project of “Development of an innovative robot for automated

hand neurorehabilitation and occupational therapy using electromyography” POIR.01.01.01-

00-1859/20, where I served as a Biomedical Engineer, the Meissa OT, an upper limb

rehabilitation robot, obtained certification under the same EU regulation on November

28, 2023. This technology is also pending patent protection no P.445950. In 2023, sales

figures indicated that 87 units of Sidra LEG and 43 units of Meissa OT were distributed

to end-users.
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Figure 3.8: Initial Evaluation Test Report with exercise recommendations

Figure 3.9: Luna EMG with the patients in the clinical center [37]
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Automatization of diagnostics and

selected rehabilitation procedures

This chapter is dedicated to assessing the effectiveness of automated systems used for

diagnosing and rehabilitating patients with conditions such as urinary incontinence and

stroke-induced muscle stiffness and spasticity, alongside the utilization of force isokinetic

testing. The aim is to corroborate the proposed hypotheses that involve the employment

of electromyography signals, torque, and measurements of limb positions for the objective

evaluation of patient states, including within telemedicine frameworks, and to examine

how these metrics can be integrated into a biophysical feedback loop to improve the

outcomes of rehabilitation.

4.1 Automatisation in diagnostics - Force Isokinetic

Test

Motor skills are significantly impacted by stroke, underscoring the need for accurate

and sensitive methods to assess muscle strength and activity. The evaluation techniques

are crucial for understanding muscle function in individuals with neurological conditions

to prepare individual precise treatment plans. The objective of this research is to examine

the effects of impairments in individuals who have experienced a stroke and in healthy

participants on the outcomes of isokinetic dynamometry and surface electromyography

assessments. Furthermore, this section explores the effectiveness and reliability of the

prepared assessment procedure and rehabilitation robots in evaluating neurological con-

ditions.

45



Anna Roksela

4.1.1 Materials and methods

In this scientific investigation, an examination was conducted involving two groups

of participants: one comprising ten individuals afflicted by a neurological disorder due to

stroke (referred to as Group 1), and the other consisting of ten healthy subjects (referred

to as Group 2). The characteristics of both groups can be found in Table 4.1 and the

Histograms of Lovett Scale for patients with the neurological disorder is presented in

Figure 4.1. Group 1 participants had experienced a stroke ranging from 0.5 to 18 years

before the study. Owing to the relatively small size of this group, they were not subdivided

further, based on the time elapsed since their stroke.

Table 4.1: Subjects’ characteristic [118]

Group 1 Group 2
Number of subjects 10 10
Age (years) 55,50 ±16,42 52,40 ±10,62
Sex (male, female) 5 M 5 F 6 M 4 F
Handedness 9 right 1 left 9 right 1 left
Impaired upper limb 7 right 3 left - -

Figure 4.1: Histograms of Lovett Scale for the stroke survivors group

The exercise tests were divided into three distinct sessions, with two of them occurring

on the same day (S1 and S2), and the third session (S3) conducted several days later.

Importantly, all subjects were not concurrently engaged in any other forms of therapy or
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physical exercise, and their functional conditions remained stable throughout the study.

Each subject received a comprehensive briefing on the study’s objectives and procedures

and subsequently provided informed consent to participate. All testing procedures were

carried out at the "AMED" Rehabilitation Clinic in Katowice, Poland.

Measurements in the study were conducted using the Luna EMG rehabilitation ro-

bot, which is outfitted with both a dynamometer and a unit for acquiring surface elec-

tromyography (sEMG) data. The research equipment and Python software to analyze

data are detailed described in 3.2. During the entire testing process, the EMG signal was

captured using the Luna EMG system at a sampling rate of 500 Hz. To refine the signal,

both bandstop and bandpass filters were applied, with the bandstop filter having a cutoff

range of 48 to 52 Hz and the bandpass filter allowing frequencies between 28 to 138 Hz to

pass through. The root mean square (RMS) values of the electromyography signals were

calculated using a time window of 100 milliseconds (Equation 2.3). Participants were po-

sitioned in a seated posture, with their upper limbs securely attached to the apparatus (as

depicted at Figure 4.2). The robot was adjusted to either the left or right side, contingent

upon the limb undergoing evaluation. The elbow joint’s range of motion was configured

to span from 30 degrees to 150 degrees, resulting in a total ROM of 120 degrees. The bio-

electrical activity was monitored for the triceps brachii (CH1) and biceps brachii (CH2)

muscles in adherence to the SENIAM recommendations [51], utilizing surface electrodes

from Sorimex, based in Toruń, Poland. The testing protocol included three one-minute

Figure 4.2: Subject during the Force Isokinetic Test [118]

sessions of continuous passive motion exercises at velocities of 10°/s, 30°/s, and 50°/s

to facilitate participant warm-up, followed by a one-minute rest period. Subsequently,

an isokinetic assessment was performed, comprising five cycles of maximal flexions and

extensions at the elbow joint at a speed of 50°/s, interspersed with a one-minute rest
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period. The Luna EMG isokinetic test precisely measures the elbow joint’s angle and the

torque exerted by the participant, adjusting the dynamometer’s resistance to maintain

a constant velocity. Figures 4.3 and 4.4 showcase a data chart representing a patient’s

neurological condition and healthy subject, respectively.

Figure 4.3: Sample measurement results of an isokinetic test for a patient with neurological
disorder: Torque and Position (upper panel), EMG of triceps brachii and biceps brachii
and Position (lower panel) [118]

4.1.2 Results

For the dominant upper limb (Table 4.2), high reliability (ICC > 0.90) were observed

in EMG channel 1 triceps muscle during flexion, and mean torque for extension across S1

and S2 sessions, and in peak torque flexion measurements across all sessions. Moderate to

good reliability was noted in several other parameters, including EMG channel 2 extensor

and flexor muscles and torque extension measurements. In the non-dominant upper limb

(Table 4.3), high reliability was consistently observed in torque measurements, particularly

in mean torque extension and flexion across different sessions. EMG measurements showed

moderate to good reliability, with the highest ICC value noted in EMG channel 1 extensor

muscles between S1 and S3 sessions. In terms of statistical significance, the p-value analysis
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Figure 4.4: Sample measurement results of an isokinetic test for a healthy subject: Torque
and Position (upper panel), EMG of triceps brachii and biceps brachii and Position (lower
panel)

revealed varied outcomes across different parameters and sessions. Notably, EMG channel

1 during flexion movement between S1 and S2 sessions in the dominant upper limb showed

significant differences (p = 0.0273), indicating a potential influence of session variability

on these measurements. Conversely, several parameters, such as torque measurements in

both dominant and non-dominant limbs, demonstrated no significant differences between

sessions (p > 0.05), reinforcing the repeatability of these assessments.

In the healthy cohort, superior outcomes were observed across all measured paramet-

ers. However, no significant disparities were noted in the electromyography signal of the

triceps brachii (EMG CH1) during extension or the EMG recordings of the biceps brachii

(EMG CH2) in flexion when comparing the unaffected arm of subjects with neurological

disorders to the bilateral arms of the healthy subjects.

Moreover, the EMG readings of the biceps brachii (EMG CH2) during extension did

not exhibit notable differences between the impaired arm of neurological subjects and the

non-dominant arm of healthy individuals (as indicated in Table 4.4).

Significant disparities were observed in all metrics related to the affected limbs when

compared to the healthy group, besides EMG Ch1 in extension movement for dominant
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Table 4.2: Reliability and repeatability for the healthy group dominant upper limb

Parameters S Mean SD CV(%) SEM p Corr ICC3
EMG CH1 ext S1 146.54 97.28 66.39 30.76

0.2547 0.85 0.79
S2 210.28 141.01 67.06 44.59

EMG CH1 flex S1 79.90 63.42 79.37 20.05
0.0273 0.95 0.96

S2 96.20 75.72 78.70 23.94
EMG CH2 ext S1 60.98 42.40 69.53 13.41

0.0645 0.70 0.87
S2 79.30 57.60 72.63 18.21

EMG CH2 flex S1 204.15 84.92 41.60 26.86
0.3028 0.62 0.58

S2 254.98 125.50 49.22 39.69
Torque ext S1 11.07 4.37 39.48 1.38

0.1565 0.92 0.91
S2 14.14 4.93 34.82 1.56

Torque flex S1 -16.88 7.97 -47.24 2.52
0.3121 0.84 0.81

S2 -21.13 10.19 -48.21 3.22
Peak T ext S1 23.63 8.51 36.00 2.69

0.2531 0.82 0.81
S2 28.56 10.07 35.28 3.19

Peak T flex S1 -28.67 12.86 -44.86 4.07
0.3674 0.95 0.93

S2 -34.53 15.36 -44.50 4.86
EMG CH1 ext S1 146.54 97.28 66.39 30.76

0.016 0.93 0.77
S3 200.64 178.37 88.90 56.40

EMG CH1 flex S1 79.90 63.42 79.37 20.05
0.469 0.89 0.47

S3 56.87 27.42 48.22 8.67
EMG CH2 ext S1 60.98 42.40 69.53 13.41

0.031 1.00 0.84
S3 71.46 41.39 57.92 13.09

EMG CH2 flex S1 204.15 84.92 41.60 26.86
0.469 0.86 0.81

S3 222.51 132.02 59.33 41.75
Torque ext S1 11.07 4.37 39.48 1.38

0.156 0.86 0.75
S3 13.96 8.74 62.62 2.76

Torque flex S1 -16.88 7.97 -47.24 2.52
0.219 0.96 0.89

S3 -18.43 11.57 -62.79 3.66
Peak T ext S1 23.63 8.51 36.00 2.69

0.031 0.96 0.88
S3 27.42 13.91 50.71 4.40

Peak T flex S1 -28.67 12.86 -44.86 4.07
0.156 0.96 0.93

S3 -28.70 14.65 -51.03 4.63
EMG CH1 ext S2 210.28 141.01 67.06 44.59 0.156 0.93 0.77

S3 200.64 178.37 88.90 56.40
EMG CH1 flex S2 96.20 75.72 78.70 23.94 0.219 0.89 0.39

S3 56.87 27.42 48.22 8.67
EMG CH2 ext S2 79.30 57.60 72.63 18.21 0.297 0.82 0.76

S3 71.46 41.39 57.92 13.09
EMG CH2 flex S2 254.98 125.50 49.22 39.69 0.938 0.68 0.84

S3 222.51 132.02 59.33 41.75
Torque ext S2 14.14 4.93 34.82 1.56 0.938 0.89 0.79

S3 13.96 8.74 62.62 2.76
Torque flex S2 -21.13 10.19 -48.21 3.22 0.938 1.00 0.94

S3 -18.43 11.57 -62.79 3.66
Peak T ext S2 28.56 10.07 35.28 3.19 0.813 0.96 0.84

S3 27.42 13.91 50.71 4.40
Peak T flex S2 -34.53 15.36 -44.50 4.86 0.578 0.96 0.98

S3 -28.70 14.65 -51.03 4.63

extremity (refer to Table 4.6 and Table 4.7). Additionally, the performance metrics for

the affected arm were consistently lower than those for the unaffected arm, except for the

average EMG values of the triceps brachii during elbow extension and the peak torque

values for both flexion and extension (as shown in Table 4.8).

4.1.3 Discussion and conclusions

The results shown in Tables 4.2 and 4.3 underscores the potential benefits and obstacles

associated with employing isokinetic dynamometry and surface electromyography tests

for assessing muscle strength and activity. This clinical research aimed to assess neur-

ological deficits to elucidate the impact of such disorders the isokinetic test outcomes
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Table 4.3: Reliability and repeatability for the healthy group non-dominant upper limb

Parameters S Mean SD CV(%) SEM p Corr ICC3
EMG CH1 ext S1 187.17 132.80 70.95 41.99

0.625 0.83 0.64
S2 208.07 163.33 78.50 51.65

EMG CH1 flex S1 77.91 42.84 54.98 13.55
0.952* 0.60* 0.59

S2 79.02 38.87 49.19 12.29
EMG CH2 ext S1 57.92 39.72 68.57 12.56

0.770 0.45 0.60
S2 63.01 47.62 75.57 15.06

EMG CH2 flex S1 185.30 114.12 61.59 36.09
0.730* 0.69* 0.66

S2 201.05 84.53 42.05 26.73
Torque ext S1 -13.14 6.55 -49.85 2.07

0.638* 0.91* 0.91
S2 -14.58 6.96 -47.70 2.20

Torque flex S1 12.95 6.27 48.43 1.98
0.369* 0.95* 0.95

S2 15.64 6.80 43.51 2.15
Peak T ext S1 -23.40 10.69 -45.69 3.38

0.531* 0.95* 0.95
S2 -26.36 10.05 -38.12 3.18

Peak T flex S1 25.68 12.01 46.79 3.80
0.688* 0.83* 0.83

S2 27.87 12.03 43.15 3.80
EMG CH1 ext S1 187.17 132.80 70.95 41.99

0.156 0.93 0.95
S3 199.90 151.10 75.59 47.78

EMG CH1 flex S1 77.91 42.84 54.98 13.55
0.469 0.39 0.39

S3 60.16 21.36 35.51 6.76
EMG CH2 ext S1 57.92 39.72 68.57 12.56

0.469 0.89 0.86
S3 49.12 30.01 61.11 9.49

EMG CH2 flex S1 185.30 114.12 61.59 36.09
0.469 0.79 0.70

S3 177.57 111.17 62.61 35.16
Torque ext S1 -13.14 6.55 -49.85 2.07

0.375 0.71 0.86
S3 -14.19 8.31 -58.55 2.63

Torque flex S1 12.95 6.27 48.43 1.98
0.031 0.71 0.50

S3 15.42 7.83 50.79 2.48
Peak T ext S1 -23.40 10.69 -45.69 3.38

0.297 0.82 0.87
S3 -24.56 11.01 -44.86 3.48

Peak T flex S1 25.68 12.01 46.79 3.80
0.047 0.68 0.91

S3 25.97 10.98 42.29 3.47
EMG CH1 ext S2 208.07 163.33 78.50 51.65

0.156 0.86 0.70
S3 199.90 151.10 75.59 47.78

EMG CH1 flex S2 79.02 38.87 49.19 12.29
0.375 0.50 0.61

S3 60.16 21.36 35.51 6.76
EMG CH2 ext S2 63.01 47.62 75.57 15.06

0.469 0.57 0.44
S3 49.12 30.01 61.11 9.49

EMG CH2 flex S2 201.05 84.53 42.05 26.73
0.813 0.86 0.64

S3 177.57 111.17 62.61 35.16
Torque ext S2 -14.58 6.96 -47.70 2.20

0.469 0.86 0.83
S3 -14.19 8.31 -58.55 2.63

Torque flex S2 15.64 6.80 43.51 2.15
0.297 0.79 0.78

S3 15.42 7.83 50.79 2.48
Peak T ext S2 -26.36 10.05 -38.12 3.18

1.000 0.89 0.92
S3 -24.56 11.01 -44.86 3.48

Peak T flex S2 27.87 12.03 43.15 3.80
0.297 0.86 0.75

S3 25.97 10.98 42.29 3.47

Table 4.4: T student test results of the non-impaired limb of neurological patients G1 vs
non-dominant limb of healthy group G2

MEAN
t df p

N SD
G1 G2 G1 G2 G1 G2

EMG CH1
flex 45.54 73.72 -3.24 55 0.002 30 27 28.99 36.48
ext 148.69 198.21 -1.48 55 0.14524 30 27 108.27 143.85

EMG CH2
flex 177.88 189.13 -0.30 55 0.76630 30 27 171.21 99.65
ext 47.02 57.52 -1.03 55 0.30683 30 27 37.25 39.62

Torque
flex 10.99 14.59 -2.09 55 0.04153 30 27 6.26 6.74
ext 9.21 13.95 -2.94 55 0.00480 30 27 5.18 6.92

Peak T
flex 19.50 26.57 -2.53 55 0.0143 30 27 9.73 11.35
ext 18.15 24.80 -2.66 55 0.0102 30 27 8.65 10.21
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Table 4.5: T student test results of the non-impaired limb of neurological patients G1 vs
dominant limb of healthy group G2

MEAN
t df p

N SD
G1 G2 G1 G2 G1 G2

EMG CH1
flex 45.54 79.97 -2.74 55 0.008 30 27 28.99 61.61
ext 148.69 184.17 -1.10 55 0.278 30 27 108.27 135.57

EMG CH2
flex 177.88 227.73 -1.29 55 0.204 30 27 171.21 111.70
ext 47.02 70.48 -2.09 55 0.041 30 27 37.25 47.23

Torque
flex 10.99 18.86 -3.70 55 0.0005 30 27 6.26 9.61
ext 9.21 12.96 -2.55 55 0.014 30 27 5.18 5.90

Peak T
flex 19.50 30.85 -3.58 55 0.0007 30 27 9.73 14.03
ext 18.15 26.44 -3.27 55 0.0019 30 27 8.65 10.48

Table 4.6: T student test results of the impaired limb of neurological group G1 vs dominant
limb of healthy group G2

MEAN
t df p

N SD
G1 G2 G1 G2 G1 G2

EMG CH1
flex 31.5 79.97 -3.96 53 0.0002 28 27 18.25 61.61
ext 113.78 184.17 -1.95 53 0.0563 28 27 131.89 135.57

EMG CH2
flex 97.17 227.73 -5.19 54 0.000003 29 27 74.22 111.70
ext 30.69 70.48 -4.19 54 0.0001 29 27 19.08 47.23

Torque
flex 8.20 18.86 -5.02 54 0.000006 29 27 5.98 9.61
ext 6.50 12.96 -4.24 54 0.00009 29 27 5.47 5.90

Peak T
flex 14.71 30.85 -5.10 54 0.000005 29 27 9.35 14.03
ext 14.88 26.44 -4.23 54 0.00009 29 27 9.98 10.48

Table 4.7: T student test results of the impaired limb of neurological patients G1 vs
non-dominant limb of healthy group G2

MEAN
t df p

N SD
G1 G2 G1 G2 G1 G2

EMG CH1
flex 31.85 73.72 -5.41 53 0.000002 28 27 18.25 36.48
ext 113.78 198.21 -2.27 53 0.027 28 27 131.89 143.85

EMG CH2
flex 97.17 189.13 -3.93 54 0.0002 29 27 74.22 99.65
ext 30.69 57.52 -3.26 54 0.002 29 27 19.08 39.62

Torque
flex 8.20 14.59 -3.76 54 0.0004 29 27 5.98 6.74
ext 6.50 13.95 -4.48 54 0.00004 29 27 5.47 6.92

Peak T
flex 14.71 26.57 -4.28 54 0.00008 29 27 9.35 11.35
ext 14.88 24.80 -3.68 54 0.0005 29 27 9.98 10.21

and to determine how healthcare providers can track patient advancement throughout re-

habilitation. Notable disparities were observed between the performance of impaired and

unimpaired limbs, with the exception of the mean EMG RMS amplitude for the triceps

brachii during extension movements and the peak torque values. The compromised condi-

tion of the limb was found to affect the consistency of test results across different sessions,

particularly in terms of electromyography metrics. Moreover, when comparing the unaf-

fected arm in the neurological cohort with either arm in the healthy control group, across
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Table 4.8: T student test results of impaired limb (G1) vs non-impaired limb (G2) of
group with neurological disorder[118]

MEAN
t df p

N SD
G1 G2 G1 G2 G1 G2

EMG CH1
flex 31.85 45.54 -2.13 56 0.03720 28 30 18.25 28.99
ext 113.78 148.69 -1.11 56 0.27390 28 30 131.89 108.27

EMG CH2
flex 97.17 177.88 -2.34 57 0.02311 29 30 74.22 171.21
ext 30.69 47.02 -2.11 57 0.03944 29 30 19.08 37.25

Torque
flex -8.20 10.99 -12.040 57 2.71E-17 29 30 1.097 0.8092
ext 6.50 -9.21 11.328 57 3.20E-16 29 30 1.116 0.7707

Peak T
flex 14.71 19.50 -1.93 57 0.05893 29 30 9.35 9.73
ext -14.28 -18.15 1.52 57 0.13523 29 30 10.83 8.65

all evaluated parameters there were detected only a few significant differences. The isokin-

etic dynamometer stands as a tool for the precise quantification of muscle power, offering

an evaluation of dynamic muscle contractions with strict control over speed, resistance,

and joint positioning. Although it delivers accurate measurement data, its effectiveness

is limited when muscle activity falls below a certain threshold. To bridge this gap, sur-

face electromyography serves as a non-invasive alternative, capable of tracking muscle

status in individuals whose muscle activity might not be discernible through conventional

clinical evaluations [131]. Isokinetic testing techniques have proven to be reliable and sens-

itive, particularly for evaluating the lower extremities (knees and ankles) in patients with

orthopedic conditions [138]. The review by El Mhandi L et al. [38] highlights the signi-

ficance of isokinetic testing in the detailed evaluation and treatment of neuromuscular

disorders. However, the application of isokinetic assessments in patients with neurological

impairments has received less attention. Given its widespread use in health and athletic

settings, such evaluations could offer valuable insights for professionals in the field of re-

habilitation. This study has provided strong arguments for the utilization of isokinetic

assessments via rehabilitation robots that enable both measurements, offering valuable

metrics for monitoring the progression of neurological disorders, which is beneficial for

clinical practitioners. By integrating isokinetic testing with a comprehensive review of the

patient’s medical history, a physical examination, and an assessment of functional ability,

healthcare practitioners can significantly enhance the management, rehabilitation, and

patients’ functioning in daily life dealing with neuromuscular diseases.

4.2 Automatization of diagnostics of stroke patients

- Muscle stiffness and spasticity

Spasticity is a frequently encountered manifestation associated with upper motor

neuron lesions, characterized by augmented muscular tautness and rigidity, and heightened
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reflexive excitability leading to uncontrolled muscle contractions or abrupt motions. The

most often used definition of spasticity comes from Lance [72] and is formulated as follows:

“a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks, res-

ulting from hyper-excitability of the stretch reflexes”. Spasticity manifests across a spec-

trum of intensities, thereby impeding the daily functioning, locomotion, or vocalization of

an afflicted individual, often inducing discomfort or pain [91]. Although subjected to thor-

ough research, the etiological underpinnings of neuromuscular irregularities linked with

spasticity remain inadequately elucidated. The traditional approaches for assessing spasti-

city involve utilizing clinical scales or analyzing the biomechanical and neurophysiological

aspects of limb resistance during passive or voluntary motions.

Spasticity represents a common clinical manifestation observed in individuals who

have suffered a stroke[148]. Based on study [142], after a 6-month from the acute stage of

stroke reassessment of 211 patients. It was found that 42.6% (90 individuals) experienced

spasticity. Of the total patient group, 15.6% exhibited a more severe level of spasticity

(Modified Ashworth Scale 3). While the occurrence of spasticity was similar in both upper

and lower limbs, the upper limbs were more often (18.9%) affected by higher degrees of

spasticity compared to the lower limbs (5.5%). Furthermore, patients with spasticity had

lower scores on the Barthel Index.

This section aims to evaluate the system to automatically diagnose muscle stiffness

and spasticity based on a test procedure performed on the Luna EMG rehabilitation

robot. The first step was the pilot study of the muscle stiffness and spasticity test. The

second one was checking the reliability and repeatability of the prepared diagnostic test

improved based on the results and conclusions of the pilot study. The third one was to find

appropriable biomechanical and bioelectrical parameters and high-accuracy algorithms to

classify the subject as healthy subject or stroke survivor.

4.2.1 Pilot study

The pilot study results were presented during a poster session at the European Con-

gress of NeuroRehabilitation 2019 in Budapest [108]. The study aimed to establish a

protocol for assessing joint stiffness, employing a robotic device to measure torque in the

elbow joint during continuous passive motion of a patient’s limb. The evaluation involved

two distinct groups, each comprising ten individuals: one group consisted of neurological

patients who had experienced an ischemic stroke, and the other group was made up of

healthy individuals with no movement impairments related to central nervous system dis-

orders. The research was performed in the "AMED" Rehabilitation Clinic in Katowice,

Poland. Each participant was thoroughly informed about the aims and methodologies

of the study before giving their informed consent to take part. To ensure the test’s ef-

fectiveness as an assessment protocol and to gather accurate data for reliability testing,
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only patients without spasticity (Ashworth Scale = 0) were selected for this phase of the

research.

Participants from both groups underwent a test involving continuous passive motion

in the elbow joint at three different speeds: 10°/s, 30°/s, and 50°/s, with each speed

maintained for 60 seconds. The test was conducted twice in one day (S1 and S2) and then

once again the following day (S3), for both arms, specifically focusing on the elbow joint,

with the range of motion (ROM) set to 120 degrees.

In the study, correlations were observed within the healthy group across different

velocities — 10°/s for the right arm and 30°/s and 50°/s for both arms—concerning both

mean and maximum torque values during flexion and extension movements, as detailed

in Table 4.9. Among the neurological patients, the repeatability of the tests was primarily

noted in the maximum torque values at speeds of 30°/s and 50°/s for both the affected and

unaffected arms, covering both flexion and extension movements, as shown in Table 4.10.

However, for neurological patients, the mean torque values displayed variability across

nearly all tests.

Table 4.9: Stiffness and Spasticity Test Pearson R Correlation between sessions results for
healthy group [108]

Right Left
S1 vs S2 S1 vs S3 S2 vs S3 S1 vs S2 S1 vs S3 S2 vs S3

Velocity 10°/s

T Mean Extension 0.34 0.54 0.77 0.74 -0.92 -0.56

T Mean Flexion 0.91 0.96 0.90 0.68 -0.74 -0.37
T Peak Extension 0.84 0.95 0.82 0.62 -0.69 -0.54

T Peak Flexion 0.95 0.84 0.73 0.75 -0.64 -0.36

Velocity 30°/s

T Mean Extension 0.91 0.60 0.70 0.67 0.72 0.28
T Mean Flexion 0.83 0.83 0.81 0.90 0.82 0.88

T Peak Extension 0.82 0.69 0.69 0.84 0.72 0.61

T Peak Flexion 0.63 0.35 0.49 0.93 0.85 0.91

Velocity 50°/s

T Mean Extension 0.92 0.77 0.83 0.70 0.73 0.45
T Mean Flexion 0.90 0.69 0.84 0.90 0.87 0.89

T Peak Extension 0.68 0.94 0.68 0.87 0.81 0.86

T Peak Flexion 0.97 0.60 0.63 0.65 0.90 0.80

The proposed protocol was rigorously tested to confirm the reliability of the data

measured by the rehabilitation robot and test results to ensure its applicability in clinical

settings. The testing revealed consistent data among healthy participants, particularly in

terms of maximum and mean torque values, and among stroke patients regarding mean

torque values. Notably, even though the stroke group was clinically identified as free from

spasticity, the mean torque values frequently varied with each test, particularly at a speed

of 10°/s for both the affected and unaffected sides. This suggests that muscle stiffness

might change even during the 60-second test, potentially due to the muscles relaxing

55



Anna Roksela

Table 4.10: Stiffness and Spasticity Test Pearson R Correlation between sessions results
for stroke survivors [108]

Affected Unaffected
S1 vs S2 S1 vs S3 S2 vs S3 S1 vs S2 S1 vs S3 S2 vs S3

Velocity 10°/s

T Mean Extension 0.15 0.45 0.45 0.39 -0.31 -0.26
T Mean Flexion 0.27 -0.33 -0.24 0.47 0.04 0.42
T Peak Extension 0.57 0.49 0.48 0.51 0.24 0.63

T Peak Flexion 0.33 -0.07 0.72 0.36 0.32 0.59

Velocity 30°/s

T Mean Extension 0.06 0.39 0.41 0.04 0.50 0.17
T Mean Flexion -0.29 0.01 -0.24 0.60 0.42 0.44
T Peak Extension 0.59 0.77 0.61 0.77 0.83 0.75

T Peak Flexion 0.71 0.73 0.70 0.71 0.81 0.80

Velocity 50°/s

T Mean Extension 0.28 0.44 0.46 0.49 0.26 0.66

T Mean Flexion 0.12 0.00 -0.38 0.59 0.25 0.42
T Peak Extension 0.58 0.77 0.61 0.60 0.65 0.86

T Peak Flexion 0.84 0.79 0.49 0.83 0.64 0.74

from the passive motion, indicating a need for a shorter test duration. Alternatively, the

mean values in stroke patients might be affected by other factors not present in healthy

individuals. Further investigation and data collection, especially adding electromyography

measurements, are necessary to clarify these issues and optimize the protocol for clinical

use.

4.2.2 Materials and methods

The clinical study was carried out following the ethical rules of the Helsinki Declar-

ation, and approved by the Local Bioethics Commission of the University of Rzeszow

(consent no. 2022/036/W). The research was registered in the clinical trials register at

ClinicalTrials.gov (registration number NCT05486052). The study was performed in the

Spa and Rehabilitation Hospital "Excelsior" in Iwonicz-Zdroj, Poland and the Innovative

Biofeedback Methods Laboratory at the University of Rzeszów, Poland.

The study was run in a group of 116 post-stroke subjects (Group 1) around the age

of 60, including 76 women and 40 men, and a group of 68 healthy young adult subjects

(Group 2) - 47 women and 21 men. Inclusion Criteria for the stroke survivors were as fol-

lows: Participants eligible for this study must have experienced their first ischemic stroke

and provided informed and voluntary consent. Eligible individuals should possess basic

gripping ability and exhibit a degree of paresis of the upper limb and hand rated 4-5

on the Brunnström scale. Additionally, participants should have a disability degree of

3 on the Rankin scale, exhibit spastic tension in the upper limb, and have a paresis of

the hand rated no more than 3 on the modified Ashworth scale. Lastly, candidates must
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have a current health condition, as confirmed by a medical examination, that allows for

safe participation in tests and exercises. Exclusion Criteria for post-stroke patients were

as follows: This study precludes the participation of individuals who do not provide in-

formed and voluntary consent. Additional exclusion factors include individuals who have

experienced a second or subsequent stroke, hemorrhagic stroke, or strokes specifically af-

fecting the brainstem and cerebellum. Further criteria exclude participants with cognitive

impairments that hinder understanding and performance of exercise tasks, visual field

defects, mechanical or thermal injuries impairing hand function, and concurrent neurolo-

gical, rheumatological, and orthopedic conditions, such as permanent contractures, that

could impact grasping capabilities and mobility. For the control group, the study excluded

individuals presenting with upper limb impairments, such as those resulting from injuries

(e.g., dislocations, sprains, fractures), as well as participants with burns, contractures,

abnormal muscle tone, muscle wasting, and conditions related to neurology, orthopedics,

and rheumatology that compromise upper-limb functionality. Participants with unstable

medical conditions, metal or electronic implants, women during menstruation, and indi-

viduals with epilepsy are also excluded from this study. The results from the physical test

for Group 1 were presented in Table 4.11. The clinical scales and assessment were de-

scribed in detail in Section 2.2.1. Due to the ambiguity associated with the "1+" category

in the Modified Ashword Scale results, the score of "1+" was redefined as 1.5 to enhance

clarity and consistency.

Table 4.11: Clinical scales assessment measured by physical therapist in stroke survivors
group

Median SD MAX MIN
Burnnstrom 5 0.52 5 3
Rankin 2 0.50 3 2
Modified Ashword Scale 1.5 0.25 2 1.5
Barthel Index 75 4.24 85 65
Frenchay Arm Test 6 0.59 6 4
Fugl-Meyer Assessment Scale 8 0.86 10 6

Procedures

The procedure was performed with the Luna EMG rehabilitation robot, which en-

ables simultaneously measuring the kinematic, biomechanical, and electrophysiological

responses of spastic stretch reflexes. The participant was seated on a couch and securely

fastened to the apparatus via straps. The range of movement was fixed between around

90◦ and 180◦ of elbow flexion (Figure 4.5). Before the procedure, the rehabilitation ro-

bot weighs the upper limb to level its impact on torque measurements. The minus sign

in torque informs about the counterclockwise direction of the applied force. The EMG
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Figure 4.5: Subject during Spasticity Test

signals were measured from surface electrodes on Biceps Brachii – channel 1 and Triceps

Brachii – channel 2. The measurements adhere to the standards outlined in the SENIAM

guidelines [51]. Initially, the device sets the limb to a resting position depending on the

movement under examination (flexion or extension). Subsequently, it executes a singular

movement at a velocity of 10°/s and reverts to the resting position at an identical pace.

Following this operation, a resting interval of 60 seconds ensues. Analogous movements

are then carried out at speeds of 50°/s and 100°/s. Subjects were instructed to remain

relaxed during the test. Figure 4.7 and Figure 4.6 present examples of data acquisition

during the performed spasticity test by a stroke survivor and a healthy person. The as-

sessments were conducted for both the right and left upper extremities, involving motions

of elbow flexion and extension. The test of muscle spasticity and stiffness was performed

twice in one day. Additionally, for the healthy group, the study was repeated after two

week in the same condition to check the repeatability of the test.

Data Analysis

Data was analyzed with software in Python, described in Section 3.2 with the calcula-

tion based on the equations the Sections 2.1.1 and 2.1.3. The presented Tables in Section

4.2.3 consist of biomechanical and bioelectrical parameters: Torque (T), EMG RMS from

channel 1 (Ch1), and EMG RMS from channel 2 (Ch2), Positon (Pos) for Maximal or

Minimal Torque (T) and EMG RMS (CH1 or CH2), all parameters are displayed with

numbers 10,50, and 100 meaning velocity of movement.

Data on repeatability and reliability were evaluated using the Wilcoxon or t-student

test, with the latter applied to variables exhibiting a normal distribution (denoted by "*"
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Figure 4.6: Example of data from control group

Figure 4.7: Example of data from stroke

in the tables) and p-values exceeding 0.05 suggesting a lack of significant disparity, Spear-
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man Correlation or Pearson Correlation with the latter applied to variables exhibiting a

normal distribution (denoted by "*" in the tables) and Intraclass Correlation Coefficient

(ICC). The analysis of the ICC followed the guidelines proposed by Koo et al. [69], cat-

egorizing the ICC values as follows: less than 0.50 indicated poor reliability, 0.50 to 0.75

suggested moderate reliability, 0.75 to 0.90 denoted good reliability, and values greater

than 0.90 were considered to reflect high reliability. Data set variability was characterized

through the calculation of arithmetic means, standard deviations (SDs), and 95% confid-

ence intervals (CIs) for ICC value, along with the computation of coefficients of variation

(CVs) and the standard error of measurement (SEMs).

To assess differences between the post-stroke and healthy groups, the normality of the

distribution was first verified using the Shapiro-Wilk test, followed by the application of

either the Mann-Whitney U or t-student test with p-values indicating the level of sig-

nificance. All data were analyzed using software written in Python 3.11 including, but

not limited the scipy and pingouin libraries, ensuring rigorous examination of differences

between groups.

4.2.3 Results

Repetability and reliability of the test

The statistical test outcomes for repeatability and reliability with ICC3 from 0.50 are

presented in Tables 4.12, 4.13, 4.14, 4.15, and 4.16 for the control group, and in Tables

4.17, 4.18, 4.19, and 4.20 for the group of stroke survivors.

In the control group, a comprehensive analysis of limb movements was conducted to

establish a baseline for normal function and assess the repeatability and reliability of

machine-assisted diagnostics.

Right Limb Extension (Table 4.12): Analysis of the right limb extension revealed not-

able variability in torque measurements. Despite this, a moderate level of reliability was

observed in some variables, and the absence of significant differences between sessions

suggested good repeatability of these measurements. Several variables demonstrated high

reliability, with ICC values greater than 0.75, suggesting that measurements for these

variables are consistent across sessions. This includes T10 Min, Ch1 10 Zero Crossing,

Ch1 50 Mean, and Ch1 100 Mean. There were significant changes between sessions for

certain variables, with p-values less than 0.05. This includes variables such as T50 Posi-

tion Min (Pos Min), Ch1 50 Mean, and Ch1 50 Cross-correlation Torque EMG Peak (CC

Peak), indicating significant differences between sessions for these measures.

Right Limb Flexion (Table 4.15): High variability in some measurements, especially at

lower velocities, could challenge the reliability of using these variables for objective as-

sessments of patient conditions. The right limb flexion movements mirrored the extension
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Table 4.12: Control right limb extension movement

Parameters S Mean SD CV(%) SEM p Corr ICC3

T10 Min
1 -1.72 1.99 -116.07 0.30

0.31 0.76 0.84 (0.72-0.91)
2 -1.41 1.38 -97.79 0.21

T50 Min
1 -1.33 1.45 -108.77 0.22

0.49 0.63 0.54 (0.29-0.72)
2 -1.21 0.87 -71.23 0.13

T10 Pos Min
1 158.94 18.00 11.33 2.68

0.05 0.58 0.58 (0.34-0.74)
2 162.61 17.55 10.79 2.62

T100 Pos Min
1 123.62 36.86 29.82 5.50

0.11 0.50 0.54 (0.30-0.72)
2 133.74 38.01 28.42 5.67

T10 Min
1 7.53 1.84 24.38 0.27

0.87 0.63 0.57 (0.33-0.74)
2 7.39 1.80 24.37 0.27

Ch1 10 Mean
1 18.86 13.31 70.58 1.98

0.06 0.68 0.75 (0.59-0.86)
2 22.36 42.89 191.80 6.39

Ch1 10 Max
1 61.87 40.88 66.08 6.09

0.47 0.67 0.65 (0.44-0.79)
2 79.46 148.10 186.38 22.08

Ch1 10 ZC
1 2651.20 920.26 34.71 137.18

0.05 0.79 0.82 (0.69-0.90)
2 2751.07 808.01 29.37 120.45

Ch1 50 Mean
1 18.62 19.13 102.72 2.85

0.03 0.65 0.83 (0.72-0.90)
2 15.48 16.77 108.31 2.50

Ch1 50 Max
1 62.35 71.34 114.43 10.64

0.05 0.67 0.75 (0.59-0.86)
2 46.77 50.09 107.10 7.47

Ch1 50 MNF
1 277.61 9.06 3.27 1.35

0.20 0.49 0.66 (0.45-0.80)
2 278.30 8.00 2.87 1.19

Ch1 100 Mean
1 22.53 29.47 130.78 4.39

0.99 0.79 0.78 (0.63-0.87)
2 20.11 18.47 91.85 2.75

Ch1 100 Max
1 73.06 111.66 152.83 16.65

0.80 0.75 0.64 (0.42-0.79)
2 62.77 53.44 85.14 7.97

Ch1 100 CV
1 0.89 0.35 39.36 0.05

0.44* 0.64* 0.62 (0.40-0.77)
2 0.85 0.29 33.45 0.04

Ch1 100 Time Min
1 1.07 0.71 66.20 0.11

0.01 0.49 0.51 (0.26-0.70)
2 0.80 0.70 87.46 0.10

Ch1 100 MNF
1 277.88 9.52 3.43 1.42

0.91 0.53 0.66 (0.45-0.80)
2 278.77 9.27 3.33 1.38

Ch2 10 Mean
1 7.58 12.80 168.75 1.91

0.90 0.48 0.62 (0.39-0.78)
2 6.77 6.50 96.00 0.97

Ch2 10 Min
1 1.46 0.94 64.73 0.14

0.17 0.74 0.57 (0.32-0.75)
2 1.33 0.81 60.79 0.12

Ch2 50 Mean
1 8.97 10.47 116.71 1.56

0.29 0.63 0.53 (0.27-0.71)
2 8.20 7.04 85.88 1.05

Ch2 50 Pos Min
1 122.96 28.68 23.33 4.28

0.63 0.52 0.50 (0.24-0.69)
2 123.84 28.55 23.05 4.26

Ch2 50 MNF
1 293.07 13.76 4.69 2.05

0.75 0.60 0.65 (0.44-0.79)
2 293.72 14.20 4.83 2.12

Ch2 50 MDF
1 77.30 35.14 45.46 5.24

0.39 0.58 0.66 (0.45-0.80)
2 82.14 35.79 43.57 5.34

Ch2 100 Mean
1 10.19 9.85 96.73 1.47

0.19 0.73 0.51 (0.25-0.70)
2 9.96 9.15 91.91 1.36

Ch2 100 Min
1 1.85 1.19 64.62 0.18

0.62 0.56 0.72 (0.54-0.84)
2 1.86 1.18 63.13 0.18

Ch2 100 CV
1 0.74 0.33 44.94 0.05

0.77* 0.55* 0.54 (0.29-0.72)
2 0.72 0.36 49.50 0.05

Ch2 100 MNF
1 292.06 12.56 4.30 1.87

0.51 0.62 0.67 (0.47-0.81)
2 292.26 15.70 5.37 2.34

Ch2 100 MDF
1 75.04 32.67 43.54 4.87

0.18 0.67 0.71 (0.53-0.83)
2 78.30 38.89 49.67 5.80

Ch2 100 ZC
1 575.68 117.35 20.38 17.49

0.60* 0.69* 0.69 (0.50-0.82)
2 568.20 120.68 21.24 17.99

* means T-student test results for p-vaule and Pearson R Correlation for Corr

movements in terms of high variability. However, these movements also demonstrated

moderate reliability and repeatability across sessions, indicating a consistent performance

pattern. The moderate to high reliability of some variables, like Ch2 100 Zero Crossing

(ICC of 0.80), supports the potential for using EMG signals and torque measurements in

objective assessments, provided that variables with higher reliability are prioritized.

Left Limb Extension (Table 4.13 and 4.14): For left limb extension, the control group
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Table 4.13: Control group left limb extension movement

Parameters S Mean SD CV[%] SEM p Corr ICC3

T10 Min
1 -1.31 1.28 -97.82 0.19

0.31 0.48 0.66 (0.46-0.80)
2 -1.45 1.00 -68.86 0.15

T50 Min
1 -1.38 1.19 -86.42 0.18

0.60 0.51 0.57 (0.34-0.74)
2 -1.36 0.84 -61.41 0.12

T100 Min
1 -1.63 1.04 -63.94 0.15

0.28 0.50 0.50 (0.24-0.69)
2 -1.67 0.75 -44.55 0.11

T50 Pos Max
1 224.52 35.92 16.00 5.30

0.19 0.49 0.55 (0.32-0.73)
2 231.79 35.97 15.52 5.30

T50 Time Max
1 2.38 1.28 53.93 0.19

0.35 0.66 0.63 (0.42-0.78)
2 2.51 1.36 54.25 0.20

Ch1 10 Mean
1 32.88 43.67 132.83 6.44

0.07 0.81 0.66 (0.45-0.80)
2 24.88 31.59 126.98 4.66

Ch1 10 Max
1 94.11 118.51 125.92 17.47

0.55 0.70 0.69 (0.49-0.82)
2 84.91 107.92 127.10 15.91

Ch1 10 MNF
1 279.33 14.32 5.12 2.11

0.91 0.68 0.78 (0.64-0.88)
2 279.84 11.74 4.20 1.73

Ch1 10 MDF
1 51.11 35.61 69.68 5.25

0.84 0.65 0.77 (0.62-0.87)
2 50.78 26.15 51.49 3.86

Ch1 10 CC Peak
1 541878.80 1988098.25 366.89 293129.10

0.65 0.52 0.80 (0.67-0.89)
2 602070.40 3495951.01 580.65 515449.85

Ch1 10 ZC
1 2638.62 963.55 36.52 142.07

0.09 0.61 0.74 (0.57-0.85)
2 2812.33 1024.40 36.43 151.04

Ch1 50 Mean
1 23.14 21.38 92.41 3.15

0.03 0.75 0.68 (0.48-0.81)
2 19.10 17.69 92.62 2.61

Ch1 50 Max
1 68.64 52.22 76.08 7.70

0.08 0.68 0.53 (0.28-0.71)
2 62.98 57.22 90.85 8.44

Ch1 50 CV
1 0.87 0.33 37.42 0.05

0.09 0.37 0.55 (0.31-0.73)
2 0.96 0.39 41.05 0.06

Ch1 50 MNF
1 280.56 12.78 4.55 1.88

0.64 0.66 0.70 (0.52-0.82)
2 279.97 10.35 3.70 1.53

Ch1 50 ZC
1 736.51 239.06 32.46 35.25

0.002 0.79 0.76 (0.60-0.86)
2 776.57 211.41 27.22 31.17

Ch1 100 Mean
1 24.99 25.02 100.12 3.69

0.18 0.74 0.59 (0.36-0.75)
2 22.71 24.17 106.45 3.56

Ch1 100 MNF
1 280.65 12.49 4.45 1.84

0.75 0.75 0.72 (0.55-0.84)
2 280.25 11.33 4.04 1.67

Ch1 100 MDF
1 54.71 28.30 51.73 4.17

0.43 0.61 0.66 (0.46-0.80)
2 50.68 24.49 48.32 3.61

Ch1 100 ZC
1 454.46 147.57 32.47 21.76

0.14* 0.66* 0.66 (0.46-0.79)
2 481.93 150.69 31.27 22.22

* means T-student test results for p-vaule and Pearson R Correlation for Corr

exhibited consistent performance across sessions. Despite the variability, certain variables

showed moderate to high reliability, and the lack of significant session-to-session differ-

ences pointed to the movements’ good repeatability.

Left Limb Flexion (Table 4.16): The left limb flexion movements displayed a similar pat-

tern to the extension movements, with stable performance across sessions. High reliability

was noted in key variables, affirming the consistent measurements despite inherent assess-

ment variability.

The analysis extended to stroke survivors to evaluate the diagnostic procedures’ sens-

itivity and applicability in a rehabilitation context.

Right Limb Extension (Table 4.17): The lack of significant changes between sessions for

most variables suggests that the measurements are repeatable, which is crucial for as-

sessing the progression or improvement of stroke survivors’ conditions over time. The

variability in certain variables underscores the need for careful consideration when inter-

preting these measurements, as high variability could affect the reliability of assessments.
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Table 4.14: Control group left limb extension movement cont.

Parameters S Mean SD CV[%] SEM p Corr ICC3

Ch2 10 Mean
1 7.41 6.51 87.86 0.96

0.39 0.62 0.65 (0.44-0.79)
2 6.97 9.24 132.48 1.36

Ch2 10 MNF
1 291.18 15.93 5.47 2.35

0.25 0.69 0.69 (0.50-0.82)
2 292.21 13.72 4.69 2.02

Ch2 10 MDF
1 74.49 44.11 59.21 6.50

0.18 0.63 0.73 (0.57-0.84)
2 77.98 39.40 50.53 5.81

Ch2 10 CC Peak
1 101494.25 284086.89 279.90 41886.33

0.69 0.56 0.61 (0.39-0.77)
2 131470.69 682251.34 518.94 100592.47

Ch2 50 Mean
1 9.28 8.19 88.23 1.21

0.10 0.75 0.67 (0.47-0.80)
2 8.58 7.95 92.69 1.17

Ch2 50 Max
1 36.38 46.16 126.88 6.81

0.09 0.67 0.71 (0.53-0.83)
2 33.52 43.29 129.15 6.38

Ch2 50 CV
1 0.82 0.37 44.97 0.05

0.28 0.55 0.62 (0.41-0.77)
2 0.79 0.43 54.14 0.06

Ch2 50 Pos Min
1 224.56 30.64 13.64 4.52

0.07 0.49 0.52 (0.28-0.71)
2 234.30 29.88 12.75 4.41

Ch2 50 MNF
1 290.65 16.50 5.68 2.43

0.86 0.52 0.59 (0.36-0.75)
2 290.77 12.84 4.42 1.89

Ch2 50 MDF
1 75.41 47.10 62.47 6.95

0.77 0.50 0.56 (0.33-0.73)
2 72.05 31.81 44.15 4.69

Ch2 50 ZC
1 869.41 223.67 25.73 32.98

0.002 0.70 0.61 (0.38-0.76)
2 916.91 199.44 21.75 29.41

Ch2 100 Mean
1 9.71 8.48 87.27 1.25

0.17 0.82 0.70 (0.51-0.82)
2 9.48 8.94 94.27 1.32

Ch2 100 Max
1 30.47 31.68 103.98 4.67

0.53 0.78 0.61 (0.39-0.76)
2 33.65 41.61 123.65 6.14

Ch2 100 CV
1 0.73 0.30 41.18 0.04

0.18* 0.53* 0.53 (0.28-0.71)
2 0.80 0.34 42.39 0.05

Ch2 100 MNF
1 288.33 14.13 4.90 2.08

0.32 0.58 0.60 (0.38-0.76)
2 290.24 13.98 4.82 2.06

Ch2 100 MDF
1 66.55 34.46 51.77 5.08

0.56 0.53 0.56 (0.33-0.73)
2 73.05 35.81 49.01 5.28

Ch2 100 ZC
1 532.87 128.04 24.03 18.88

0.13* 0.53* 0.53 (0.28-0.71)
2 561.46 131.52 23.43 19.39

* means T-student test results for p-vaule and Pearson R Correlation for Corr

The moderate to high reliability of certain variables (e.g., T10 Max, Ch2 100 CC Time

with an ICC of 0.73) supports the use of these measurements in objectively assessing the

condition of the patient after stroke.

Right Limb Flexion (Table 4.19): A few variables, such as T10 Max, T50 Max, Ch1 10

CC Peak and Ch1 ZC showed statistically significant changes between sessions with p-

values of 0.04 or 0.02, suggesting significant differences in these measurements between

sessions. The Intraclass Correlation Coefficient (ICC) values vary across variables, with

some showing moderate to good reliability, such as Ch2 100 Zero Crossing with an ICC

of 0.86, indicating consistent measurements across sessions for these variables. Despite

the significant variability, certain variables exhibited high reliability, highlighting their

potential in reliably assessing condition changes over time.

Left Limb Extension (Table 4.20): Stroke survivors’ left limb extension movements demon-

strated stable performance across sessions based on the minimal changes in mean values

for most variables and the lack of significant differences between sessions for most para-

meters. The high reliability of certain variables, such as T10 Min, T50 Min, and T100

Min (ICC of 0.88, 0.89, and 0.87 respectively), underscores their potential usefulness in

objectively assessing and monitoring the condition of stroke survivors over time.

63



Anna Roksela

Table 4.15: Control group right limb flexion movement

Parameters S Mean SD CV[%] SEM p Corr ICC3

T50 Min
1 -1.22 1.25 -102.26 0.18

0.91 0.47 0.63 (0.41-0.77)
2 -1.10 1.04 -94.35 0.15

T10 Pos Min
1 153.38 24.42 15.92 3.60

0.24 0.64 0.55 (0.32-0.73)
2 156.82 22.95 14.63 3.38

Ch1 10 Mean
1 25.09 28.48 113.50 4.20

0.39 0.71 0.76 (0.60-0.86)
2 20.03 24.56 122.64 3.62

Ch1 10 Max
1 79.12 88.30 111.61 13.02

0.09 0.69 0.78 (0.63-0.87)
2 63.53 74.17 116.74 10.94

Ch1 10 Min
1 1.58 1.31 82.47 0.19

0.003 0.59 0.88 (0.80-0.93)
2 1.35 1.36 100.42 0.20

Ch1 10 CV
1 0.81 0.26 32.18 0.04

0.32* 0.53* 0.53 (0.28-0.71)
2 0.77 0.25 31.98 0.04

Ch1 10 MNF
1 277.22 5.83 2.10 0.86

0.78 0.57 0.63 (0.42-0.78)
2 278.33 7.21 2.59 1.06

Ch1 50 Mean
1 25.55 31.13 121.86 4.59

0.10 0.72 0.88 (0.79-0.93)
2 20.85 25.37 121.69 3.74

Ch1 50 Max
1 65.17 76.71 117.71 11.31

0.27 0.62 0.74 (0.58-0.85)
2 52.22 64.67 123.83 9.53

Ch1 50 Min
1 2.31 2.78 120.45 0.41

0.06 0.67 0.83 (0.71-0.90)
2 1.86 2.24 120.62 0.33

Ch1 50 MNF
1 277.04 5.74 2.07 0.85

0.71 0.57 0.58 (0.35-0.74)
2 277.96 7.77 2.79 1.15

Ch1 50 ZC
1 697.50 206.69 29.63 30.47

0.05 0.82 0.75 (0.59-0.85)
2 734.63 220.29 29.99 32.48

Ch1 100 Mean
1 26.77 39.51 147.62 5.83

0.01 0.81 0.81 (0.67-0.89)
2 20.25 23.80 117.51 3.51

Ch1 100 Max
1 63.08 117.86 186.85 17.38

0.23 0.75 0.66 (0.46-0.80)
2 47.67 55.35 116.12 8.16

Ch1 100 Min
1 2.61 3.22 123.70 0.48

0.01 0.59 0.62 (0.40-0.77)
2 1.64 1.79 108.84 0.26

Ch1 100 Time Max
1 1.39 0.55 39.54 0.08

0.74 0.39 0.52 (0.28-0.71)
2 1.41 0.55 39.02 0.08

Ch1 100 MNF
1 276.78 6.74 2.43 0.99

0.44 0.73 0.77 (0.62-0.87)
2 277.48 6.81 2.45 1.00

Ch1 100 MDF
1 44.86 11.61 25.88 1.71

0.49 0.66 0.61 (0.39-0.76)
2 46.11 17.73 38.45 2.61

Ch1 100 ZC
1 432.89 149.34 34.50 22.02

0.03 0.86 0.85 (0.74-0.91)
2 445.22 140.99 31.67 20.79

Ch2 10 Pos Max
1 142.43 27.08 19.01 3.99

0.18 0.72 0.67 (0.48-0.81)
2 138.45 31.48 22.74 4.64

Ch2 10 MNF
1 292.16 14.87 5.09 2.19

0.38* 0.74* 0.72 (0.55-0.84)
2 291.61 12.90 4.43 1.90

Ch2 10 MDF
1 78.19 37.91 48.49 5.59

0.68 0.66 0.63 (0.42-0.78)
2 74.09 33.12 44.70 4.88

Ch2 10 ZC
1 3108.64 836.42 26.91 123.32

0.46* 0.67* 0.63 (0.41-0.78)
2 3199.18 583.12 18.23 85.98

Ch2 50 Mean
1 6.99 6.75 96.50 0.99

0.49 0.47 0.63 (0.42-0.78)
2 7.44 9.01 121.19 1.33

Ch2 50 Min
1 1.86 1.27 68.45 0.19

0.01 0.69 0.59 (0.37-0.75)
2 1.47 0.90 60.97 0.13

Ch2 50 Pos Max
1 135.74 32.64 24.04 4.81

0.45 0.54 0.52 (0.27-0.70)
2 130.20 35.40 27.19 5.22

Ch2 50 MNF
1 286.72 10.29 3.59 1.52

0.34 0.66 0.53 (0.28-0.71)
2 286.97 9.23 3.22 1.36

Ch2 50 ZC
1 860.29 202.34 23.52 29.83

0.37 0.52 0.64 (0.42-0.78)
2 875.36 171.08 19.54 25.22

Ch2 100 Mean
1 8.23 8.77 106.56 1.29

0.11 0.68 0.67 (0.47-0.80)
2 7.30 9.25 126.66 1.36

Ch2 100 Pos Max
1 128.49 37.25 28.99 5.49

0.14 0.59 0.67 (0.48-0.81)
2 124.23 34.25 27.57 5.05

Ch2 100 MNF
1 284.75 10.57 3.71 1.56

0.14 0.59 0.58 (0.35-0.75)
2 287.31 11.73 4.08 1.73

Ch2 100 CC time
1 2.05 1.45 70.56 0.21

0.87 0.45 0.57 (0.33-0.74)
2 2.01 1.35 67.29 0.20

Ch2 100 ZC
1 535.62 134.41 25.09 19.82

0.02 0.69 0.80 (0.66-0.88)
2 555.33 146.41 26.36 21.59
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Table 4.16: Control left limb flexion movement

Parameters S Mean SD CV[%] SEM p Corr ICC3

T10 Min
1 -1.27 1.20 -95.05 0.18

0.50 0.47 0.60 (0.38-0.75)
2 -1.19 0.91 -76.27 0.13

T100 Min
1 -1.76 0.90 -51.13 0.13

0.90 0.59 0.51 (0.26-0.69)
2 -1.73 0.68 -39.20 0.10

T10 Pos Max
1 218.32 38.57 17.66 5.63

0.19 0.61 0.63 (0.42-0.78)
2 212.36 32.14 15.14 4.69

Ch1 10 Mean
1 23.17 15.72 67.85 2.29

0.98 0.68 0.69 (0.50-0.81)
2 22.21 17.87 80.46 2.61

Ch1 10 Max
1 71.40 47.78 66.92 6.97

0.98 0.53 0.56 (0.32-0.73)
2 71.37 59.29 83.07 8.65

Ch1 10 Min
1 1.48 1.79 120.76 0.26

6.31E-05 0.65 0.63 (0.42-0.78)
2 1.41 1.93 137.34 0.28

Ch1 10 MNF
1 278.64 11.53 4.14 1.68

0.46 0.71 0.85 (0.75-0.92)
2 278.63 13.98 5.02 2.04

Ch1 10 MDF
1 51.31 34.00 66.26 4.96

0.38 0.61 0.87 (0.77-0.92)
2 51.01 37.13 72.79 5.42

Ch1 10 ZC
1 2668.57 813.70 30.49 118.69

0.04 0.71 0.82 (0.69-0.90)
2 2793.94 929.05 33.25 135.52

Ch1 50 Mean
1 25.14 19.31 76.83 2.82

0.48 0.56 0.52 (0.27-0.70)
2 24.54 21.93 89.35 3.20

Ch1 50 Min
1 2.59 4.78 184.17 0.70

0.01 0.52 0.59 (0.36-0.75)
2 1.80 2.93 162.48 0.43

Ch1 50 ZC
1 674.57 191.80 28.43 27.98

0.07 0.67 0.69 (0.50-0.81)
2 730.13 240.70 32.97 35.11

Ch1 100 Mean
1 25.52 24.24 94.95 3.54

0.37 0.68 0.67 (0.47-0.80)
2 24.39 23.98 98.29 3.50

Ch1 100 MNF
1 277.60 9.97 3.59 1.45

0.27 0.53 0.64 (0.44-0.79)
2 278.15 10.32 3.71 1.51

Ch1 100 MDF
1 49.30 25.66 52.06 3.74

0.86 0.31 0.68 (0.49-0.81)
2 48.16 23.25 48.27 3.39

Ch1 100 ZC
1 429.78 137.02 31.88 19.99

0.16 0.73 0.70 (0.51-0.82)
2 457.64 152.09 33.23 22.19

Ch2 10 Mean
1 8.38 10.04 119.91 1.46

0.02 0.77 0.91 (0.84-0.95)
2 7.15 9.85 137.83 1.44

Ch2 10 Min
1 1.38 0.68 49.56 0.10

0.0001 0.73 0.61 (0.38-0.76)
2 1.21 0.77 63.69 0.11

Ch2 10 MNF
1 288.86 13.12 4.54 1.91

0.71 0.76 0.68 (0.49-0.81)
2 289.81 13.91 4.80 2.03

Ch2 10 ZC
1 3339.89 1721.69 51.55 251.13

0.01 0.81 0.61 (0.39-0.76)
2 3390.21 801.81 23.65 116.96

Ch2 50 MNF
1 286.67 12.83 4.47 1.87

0.94 0.60 0.66 (0.46-0.79)
2 286.25 11.45 4.00 1.67

Ch2 50 MDF
1 63.46 37.86 59.66 5.52

0.99 0.63 0.73 (0.56-0.84)
2 62.40 35.47 56.85 5.17

Ch2 50 ZC
1 868.36 239.91 27.63 34.99

0.28 0.63 0.63 (0.42-0.77)
2 890.28 196.56 22.08 28.67

Ch2 100 MNF
1 285.54 11.32 3.97 1.65

0.98 0.74 0.65 (0.45-0.79)
2 286.50 12.21 4.26 1.78

Ch2 100 ZC
1 540.49 123.90 22.92 18.07

0.07* 0.72* 0.72 (0.55-0.84)
2 566.26 133.59 23.59 19.49

* means T-student test results for p-vaule and Pearson R Correlation for Corr

Left Limb Flexion (Table 4.19): Similar to the extension movements, left limb flexion in

stroke survivors showed stable performance across sessions. High reliability in key vari-

ables, such as e.g. torque mean and maximal value for all velocities, was noted, suggesting

the consistency of these measurements amidst inherent variability.

Groups differences

The Table 4.21, Table 4.22, Table 4.23, and Table 4.24 referenced to detail the out-

comes from tests conducted on the flexion and extension movements of the left and right

upper limbs, respectively. There was a notable decrease in the coefficient of variation
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Table 4.17: Stroke right limb extension movement

Parameters S Mean SD CV[%] SEM p Corr ICC3

T10 Max
1 2.94 1.49 50.67 0.30

0.79 0.57 0.76 (0.53-0.89)
2 2.90 1.47 50.66 0.29

T100 Max
1 2.58 1.05 40.57 0.21

0.71 0.55 0.50 (0.14-0.74)
2 2.71 1.25 46.16 0.25

T10 Min
1 -2.55 3.79 -148.90 0.76

0.73 0.70 0.68 (0.40-0.85)
2 -2.03 2.33 -114.90 0.47

T50 Min
1 -1.58 2.27 -144.00 0.45

0.87 0.66 0.57 (0.23-0.78)
2 -1.51 1.79 -118.23 0.36

T100 Min
1 -1.86 2.57 -137.94 0.51

0.37 0.61 0.53 (0.18-0.76)
2 -1.29 1.44 -111.60 0.29

T50 Pos Max
1 124.09 28.98 23.35 5.80

0.94 0.47 0.53 (0.17-0.76)
2 125.87 33.35 26.49 6.67

T100 Pos Max
1 145.42 28.06 19.30 5.61

0.92 0.45 0.55 (0.21-0.77)
2 138.96 34.72 24.99 6.94

Ch1 10 Mean
1 26.15 23.32 89.18 4.66

0.11 0.85 0.84 (0.63-0.93)
2 31.02 40.75 131.40 8.15

Ch1 10 Max
1 112.88 141.86 125.67 28.37

0.35 0.81 0.78 (0.52-0.90)
2 106.51 173.05 162.48 34.61

Ch1 10 ZC
1 2784.67 723.22 25.97 144.64

0.87* 0.57* 0.56 (0.18-0.80)
2 2814.90 935.33 33.23 187.07

Ch1 50 Mean
1 21.11 17.28 81.85 3.46

0.02 0.84 0.83 (0.62-0.93)
2 24.82 23.75 95.70 4.75

Ch1 50 Max
1 60.13 54.28 90.26 10.86

0.01 0.79 0.72 (0.42-0.88)
2 76.52 75.21 98.28 15.04

Ch1 50 CC Peak
1 99437.66 113965.65 114.61 22793.13

0.06 0.57 0.53 (0.15-0.77)
2 177607.14 329691.52 185.63 65938.30

Ch1 50 CC Time
1 3.86 2.03 52.64 0.41

0.88 0.64 0.63 (0.29-0.83)
2 3.62 2.15 59.23 0.43

Ch1 100 Mean
1 22.05 17.83 80.86 3.57

0.14 0.56 0.62 (0.28-0.82)
2 25.06 16.75 66.85 3.35

Ch1 100 Max
1 61.28 46.91 76.56 9.38

0.05 0.61 0.59 (0.24-0.80)
2 76.26 58.59 76.84 11.72

Ch1 100 CC peak
1 66430.74 72495.46 109.13 14499.09

0.14 0.60 0.63 (0.32-0.82)
2 83547.74 74137.86 88.74 14827.57

Ch2 10 Mean
1 11.21 18.27 162.96 3.65

0.71 0.76 0.99 (0.96-1.00)
2 13.01 19.66 151.20 3.93

Ch2 10 Max
1 38.52 75.58 196.18 15.12

0.24 0.68 0.73 (0.34-0.90)
2 59.87 103.76 173.33 20.75

Ch2 10 CV
1 0.48 0.25 51.42 0.05

0.11* 0.80* 0.71 (0.30-0.89)
2 0.66 0.44 67.20 0.09

Ch2 10 MNF
1 290.62 11.86 4.08 2.37

0.99* 0.66* 0.62 (0.20-0.85)
2 288.64 19.66 6.81 3.93

Ch2 10 MDF
1 69.20 31.54 45.58 6.31

0.41* 0.63* 0.61 (0.20-0.84)
2 73.58 44.60 60.61 8.92

Ch2 10 CC Peak
1 226584.63 501100.38 221.15 100220.08

0.23 0.56 0.95 (0.87-0.98)
2 303423.90 696293.78 229.48 139258.76

Ch2 50 Mean
1 12.59 17.97 142.77 3.59

0.003 0.67 0.95 (0.89-0.98)
2 17.31 24.13 139.44 4.83

Ch2 50 Max
1 36.76 58.44 158.97 11.69

0.008 0.51 0.63 (0.28-0.83)
2 77.33 152.46 197.14 30.49

Ch2 50 Min
1 3.92 3.01 76.85 0.60

0.81 0.50 0.64 (0.30-0.84)
2 3.84 2.63 68.50 0.53

Ch2 50 CC Peak
1 76634.30 133078.40 173.65 26615.68

0.05 0.30 0.61 (0.26-0.82)
2 140664.77 292785.53 208.14 58557.11

Ch2 50 CC Time
1 4.14 1.96 47.31 0.39

0.06* 0.58* 0.58 (0.22-0.80)
2 4.40 1.81 41.08 0.36

Ch2 100 Mean
1 13.70 19.34 141.15 3.87

0.26 0.62 0.56 (0.21-0.79)
2 16.71 20.80 124.49 4.16

Ch2 100 Min
1 4.02 2.96 73.65 0.59

0.36 0.53 0.50 (0.12-0.75)
2 3.96 2.46 62.20 0.49

Ch2 100 Pos Min
1 131.37 26.54 20.21 5.31

0.01 0.53 0.56 (0.21-0.78)
2 114.28 30.08 26.32 6.02

Ch2 100 CC Time
1 2.69 0.97 36.20 0.19

0.02 0.69 0.73 (0.48-0.88)
2 2.97 0.92 30.89 0.18

* means T-student test results for p-vaule and Pearson R Correlation for Corr

(CV) for muscle activity (Ch1 CV and Ch2 CV) in stroke patients, indicating a more

uniform response compared to the more variable response in healthy individuals. Signi-
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Table 4.18: Stroke right limb flexion movement

Parameters S Mean SD CV[%] SEM p Corr ICC3

T10 Max
1 2.44 0.80 33.02 0.16

0.04* 0.59* 0.52 (0.16-0.75)
2 2.91 1.35 46.40 0.27

Ch1 10 Mean
1 26.59 18.23 68.56 3.65

0.85 0.77 0.76 (0.52-0.89)
2 25.68 17.54 68.29 3.51

Ch1 10 CV
1 0.72 0.24 33.10 0.05

0.75 0.61 0.50 (0.12-0.75)
2 0.69 0.27 39.47 0.05

Ch1 10 CC Peak
1 470112.45 434853.94 92.50 86970.79

0.04 0.45 0.62 (0.30-0.82)
2 705905.26 770123.07 109.10 154024.61

Ch1 10 CC Time
1 17.02 5.68 33.36 1.14

0.14* 0.65* 0.63 (0.32-0.82)
2 17.93 4.31 24.04 0.86

Ch1 10 ZC
1 2655.96 920.61 34.66 184.12

0.51 0.56 0.70 (0.41-0.86)
2 2809.12 878.31 31.27 175.66

Ch1 50 Mean
1 26.44 22.58 85.40 4.52

0.39 0.67 0.77 (0.55-0.90)
2 31.60 34.44 108.99 6.89

Ch1 50 Max
1 57.45 51.00 88.78 10.20

0.26 0.70 0.71 (0.43-0.86)
2 77.70 91.17 117.33 18.23

Ch1 50 Time Min
1 1.23 1.73 140.55 0.35

0.07 0.34 0.53 (0.18-0.77)
2 2.00 1.95 97.85 0.39

Ch1 50 CC Peak
1 123082.64 129662.76 105.35 25932.55

0.44 0.21 0.53 (0.17-0.77)
2 146887.56 148893.33 101.37 29778.67

Ch1 50 ZC
1 724.50 202.10 27.90 40.42

0.47* 0.57* 0.57 (0.22-0.79)
2 750.32 230.34 30.70 46.07

Ch1 100 Mean
1 30.78 24.77 80.47 4.95

0.73 0.61 0.71 (0.44-0.87)
2 32.28 26.98 83.58 5.40

Ch1 100 Max
1 69.38 60.96 87.86 12.19

0.83 0.58 0.61 (0.28-0.81)
2 76.59 72.36 94.48 14.47

Ch1 100 ZC
1 389.36 111.43 28.62 22.29

0.02* 0.65* 0.63 (0.32-0.82)
2 441.60 137.49 31.13 27.50

Ch2 10 Mean
1 9.79 10.39 106.20 2.08

0.28 0.75 0.64 (0.31-0.84)
2 9.01 8.80 97.67 1.76

Ch2 10 MNF
1 295.25 12.45 4.22 2.49

0.78* 0.67* 0.67 (0.35-0.85)
2 293.68 12.62 4.30 2.52

Ch2 10 MDF
1 81.32 28.58 35.14 5.72

0.87* 0.62* 0.62 (0.28-0.82)
2 80.74 29.56 36.61 5.91

Ch2 10 ZC
1 3510.86 947.18 26.98 189.44

0.61 0.73 0.83 (0.64-0.93)
2 3388.72 925.52 27.31 185.10

Ch2 50 Mean
1 8.07 9.90 122.62 1.98

1.00 0.59 0.60 (0.24-0.81)
2 8.46 7.83 92.50 1.57

Ch2 50 Pos Max
1 148.57 32.24 21.70 6.45

0.39 0.42 0.56 (0.21-0.78)
2 142.60 32.88 23.05 6.58

Ch2 50 MNF
1 292.09 11.46 3.92 2.29

0.42* 0.51* 0.51 (0.12-0.76)
2 291.02 10.37 3.56 2.07

Ch2 50 MDF
1 73.86 27.20 36.82 5.44

0.74* 0.54* 0.54 (0.16-0.78)
2 74.61 25.68 34.43 5.14

Ch2 50 ZC
1 945.27 234.83 24.84 46.97

0.89* 0.75* 0.75 (0.49-0.89)
2 954.92 214.10 22.42 42.82

Ch2 100 MNF
1 289.00 10.19 3.52 2.04

0.36* 0.58* 0.57 (0.21-0.80)
2 288.52 12.09 4.19 2.42

Ch2 100 MDF
1 68.45 24.05 35.13 4.81

0.31 0.40 0.50 (0.11-0.76)
2 67.07 28.56 42.59 5.71

Ch2 100 CC time
1 2.38 0.87 36.70 0.17

0.92* 0.55* 0.55 (0.17-0.78)
2 2.35 1.00 42.51 0.20

Ch2 100 ZC
1 551.41 134.75 24.44 26.95

0.69* 0.86* 0.86 (0.70-0.94)
2 568.20 135.27 23.81 27.05

* means T-student test results for p-vaule and Pearson R Correlation for Corr

ficant differences in torque values (left limb: T Mean and T Min, right limb: T Mean and

T Max) across all speeds were observed, indicating higher resistance encountered by the

robot from the limbs of stroke patients for flexion and extension movement. The minimum

torque values were notably lower in the healthy group for right limb flexion movement,

suggesting that these individuals were able to assist the robot. For extension movement

of both limbs, EMG measurements revealed a notable rise in muscle activation for both

biceps and triceps across all speeds, indicating increased activity in stroke patients com-
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Table 4.19: Stroke group left limb flexion movement

Parameters S Mean SD CV[%] SEM p Corr ICC3

T10 Mean
1 -0.38 2.17 -564.42 0.41

0.31 0.45 0.83 (0.67-0.92)
2 -0.67 1.75 -261.38 0.33

T50 Mean
1 -0.43 2.18 -506.96 0.41

0.85 0.36 0.83 (0.66-0.92)
2 -0.34 2.62 -763.02 0.49

T100 Mean
1 -0.37 2.19 -597.57 0.41

0.87 0.28 0.81 (0.63-0.91)
2 -0.36 2.95 -817.91 0.56

T10 Max
1 2.92 6.66 228.14 1.26

0.26 0.51 0.83 (0.67-0.92)
2 2.07 4.23 204.40 0.80

T50 Max
1 2.08 5.21 250.14 0.98

0.44 0.36 0.94 (0.88-0.97)
2 1.63 4.68 287.57 0.88

T100 Max
1 2.03 4.71 232.10 0.89

0.90 0.01 0.91 (0.81-0.96)
2 1.94 6.02 309.69 1.14

T50 Time Min
1 2.33 1.19 51.03 0.22

0.81* 0.62* 0.62 (0.32-0.80)
2 2.28 1.38 60.51 0.26

T100 Time Min
1 0.95 0.98 103.32 0.19

0.78 0.60 0.51 (0.18-0.74)
2 1.08 1.03 95.09 0.19

Ch1 10 Mean
1 27.27 26.39 96.79 4.99

0.90 0.65 0.85 (0.67-0.93)
2 30.91 33.86 109.54 6.40

Ch1 10 Max
1 71.42 67.58 94.63 12.77

0.90 0.76 0.87 (0.72-0.95)
2 91.40 109.71 120.03 20.73

Ch1 10 MNF
1 278.60 8.37 3.00 1.58

0.71 0.51 0.54 (0.17-0.77)
2 280.00 10.79 3.85 2.04

Ch1 10 MDF
1 50.50 21.11 41.80 3.99

0.74 0.61 0.59 (0.24-0.80)
2 50.43 17.50 34.70 3.31

Ch1 10 CC Peak
1 928374.95 4105501.67 442.22 775866.89

0.78 0.34 0.98 (0.95-0.99)
2 852986.63 3328661.84 390.24 629057.96

Ch1 50 Mean
1 33.12 37.34 112.73 7.06

0.70 0.69 0.75 (0.50-0.88)
2 34.68 34.73 100.13 6.56

Ch1 50 Max
1 77.92 106.76 137.01 20.18

0.64 0.71 0.64 (0.33-0.83)
2 77.61 76.61 98.71 14.48

Ch1 50 Pos Max
1 245.18 29.17 11.90 5.51

0.44 0.62 0.77 (0.55-0.89)
2 250.22 26.85 10.73 5.07

Ch1 50 Time Max
1 1.84 1.02 55.35 0.19

0.12* 0.82* 0.82 (0.64-0.92)
2 2.04 0.93 45.45 0.18

Ch1 50 Time Min
1 1.64 1.91 116.36 0.36

0.17 0.58 0.55 (0.21-0.77)
2 1.90 1.94 102.46 0.37

Ch1 50 MDF
1 50.39 15.59 30.95 2.95

0.94 0.42 0.54 (0.18-0.77)
2 52.38 18.84 35.96 3.56

Ch1 50 CC Peak
1 392587.98 1277760.26 325.47 241473.99

0.83 0.54 0.72 (0.45-0.87)
2 325201.51 1409828.96 433.52 266432.63

Ch1 100 Mean
1 36.42 44.08 121.04 8.33

0.90 0.71 0.58 (0.24-0.80)
2 33.44 35.15 105.12 6.64

Ch1 100 Max
1 80.93 113.19 139.86 21.39

0.88 0.71 0.57 (0.22-0.79)
2 69.78 66.10 94.73 12.49

Ch1 100 Min
1 4.72 4.27 90.47 0.81

0.79 0.40 0.60 (0.27-0.81)
2 4.69 3.39 72.36 0.64

Ch1 100 Pos Max
1 254.30 24.96 9.82 4.72

0.33 0.29 0.81 (0.62-0.91)
2 249.74 27.21 10.89 5.14

Ch1 100 Pos Min
1 197.96 16.24 8.20 3.07

0.86 0.36 0.60 (0.29-0.80)
2 200.21 18.52 9.25 3.50

Ch1 100 Time Max
1 1.27 0.55 43.25 0.10

0.07* 0.82* 0.81 (0.62-0.91)
2 1.42 0.63 44.54 0.12

Ch1 100 MNF
1 278.19 6.68 2.40 1.26

0.58 0.38 0.67 (0.38-0.84)
2 279.22 6.43 2.30 1.21

Ch1 100 MDF
1 48.63 13.78 28.34 2.60

0.23 0.47 0.75 (0.50-0.88)
2 51.05 14.09 27.59 2.66

Ch1 100 CC Peak
1 237056.06 760793.59 320.93 143776.47

0.33 0.37 0.62 (0.30-0.82)
2 283295.26 1358665.11 479.59 256763.57

Ch2 50 CC Peak
1 66621.13 209932.50 315.11 39673.51

0.99 0.45 0.70 (0.41-0.86)
2 46336.38 209723.51 452.61 39634.02

Ch2 100 CC Peak
1 27547.54 87881.52 319.02 16608.05

0.71 0.27 0.63 (0.33-0.81)
2 46214.29 212399.41 459.60 40139.72

* means T-student test results for p-vaule and Pearson R Correlation for Corr

pared to healthy individuals for both average and minimum values. However, for flexion

movement only electromyography of triceps muscle showed a significant increase in the

obtained values (greater activity) between groups for the mean, maximum, and minimum
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Table 4.20: Stroke left limb extension movement

Parameters S Mean SD CV[%] SEM p Corr ICC3

T10 Mean
1 -0.43 1.70 -393.43 0.30

0.43 0.46 0.68 (0.44-0.83)
2 -0.49 2.12 -434.22 0.38

T100 Mean
1 -1.05 1.77 -167.73 0.32

0.34 0.38 0.73 (0.51-0.86)
2 -1.40 2.76 -196.90 0.50

T10 Max
1 2.92 5.58 191.17 1.00

0.79 0.13 0.79 (0.61-0.89)
2 2.84 8.61 302.83 1.55

T10 Min
1 -3.16 3.71 -117.31 0.67

0.38 0.56 0.88 (0.76-0.94)
2 -3.31 4.73 -142.99 0.85

T50 Min
1 -2.93 3.03 -103.35 0.54

0.17 0.58 0.89 (0.79-0.95)
2 -3.16 3.13 -98.91 0.56

T100 Min
1 -2.87 2.94 -102.64 0.53

0.38 0.38 0.87 (0.76-0.94)
2 -3.19 3.56 -111.60 0.64

T100 Pos Max
1 237.72 36.74 15.45 6.60

0.72 0.41 0.54 (0.24-0.75)
2 242.77 35.88 14.78 6.44

T100 Time Min
1 1.52 0.80 52.41 0.14

0.62 0.57 0.62 (0.35-0.80)
2 1.48 0.69 46.35 0.12

Ch1 10 CV
1 0.77 0.29 38.05 0.05

0.83 0.54 0.67 (0.37-0.84)
2 0.78 0.40 51.29 0.07

Ch1 10 Pos Min
1 218.02 28.23 12.95 5.07

0.77 0.63 0.66 (0.38-0.83)
2 219.45 28.98 13.20 5.20

Ch1 10 CC Peak
1 1324067.85 4379136.19 330.73 786516.08

0.70 0.28 0.65 (0.35-0.83)
2 1322726.58 6403066.88 484.08 1150024.76

Ch1 100 CV
1 0.72 0.33 45.09 0.06

0.23 0.62 0.60 (0.29-0.80)
2 0.66 0.26 39.88 0.05

Ch2 10 Mean
1 14.25 18.62 130.67 3.34

0.39 0.51 0.94 (0.86-0.98)
2 12.85 21.74 169.10 3.90

Ch2 10 Max
1 75.57 137.36 181.76 24.67

0.35 0.40 0.84 (0.65-0.93)
2 62.14 160.92 258.95 28.90

Ch2 10 Min
1 3.55 2.20 62.05 0.40

0.02 0.27 0.51 (0.12-0.76)
2 2.45 1.80 73.35 0.32

Ch2 10 Time Min
1 5.03 4.39 87.36 0.79

0.29 0.65 0.63 (0.34-0.82)
2 5.87 5.24 89.33 0.94

Ch2 10 CC Peak
1 999847.88 4684645.89 468.54 841387.24

0.60 0.35 0.79 (0.57-0.90)
2 1834563.57 9349350.50 509.62 1679192.92

Ch2 50 Mean
1 18.94 29.80 157.37 5.35

0.24 0.62 0.86 (0.72-0.94)
2 15.06 21.32 141.61 3.83

Ch2 50 Max
1 58.48 101.38 173.37 18.21

0.57 0.49 0.92 (0.83-0.96)
2 52.34 108.76 207.78 19.53

Ch2 50 Pos Max
1 207.93 29.69 14.28 5.33

0.75 0.52 0.65 (0.38-0.82)
2 209.85 33.27 15.86 5.98

Ch2 100 Mean
1 20.39 24.42 119.78 4.39

0.69 0.46 0.63 (0.32-0.81)
2 24.50 52.41 213.94 9.41

Ch2 100 Max
1 63.10 86.16 136.55 15.48

0.53 0.37 0.64 (0.35-0.82)
2 71.62 156.41 218.41 28.09

* means T-student test results for p-vaule and Pearson R Correlation for Corr

values. Furthermore, the frequency parameter values for the EMG of the biceps (Ch1)

were found to be significantly different for the extension movement of both limbs.

Overall, the study results suggest that stroke patients exhibit higher resistance and

increased muscle activation during upper limb movements, with less variability in muscle

response, compared to healthy individuals. The results indicate marked differences in

muscle strength and control between stroke patients and healthy controls, with notable

variations between flexion and extension movements as well as between the left and right

upper limbs. The significant p-values across all performed tests underscore the statist-

ical relevance of these findings. These disparities could reflect the extent of neurological

and muscular impairment caused by stroke and underscore the importance of targeted

rehabilitation strategies to address specific deficits in muscle function and motor control.
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Table 4.21: Results from spasticity test of stroke survivors (G1) and control group (G2) for left limb flexion

Param
Velocity 10 Velocity 50 Velocity 100

x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value
T Mean -0.81±1.51 -0.36±1.01 7.81E-08 -0.60±1.79 -0.34±1.05 0.0002 -0.62±1.85 -0.34±1.03 8.47E-06

T Max 1.70±3.69 1.19±1.20 0.531 1.42±3.47 0.91±1.15 0.696 1.45 ± 3.61 1.25±1.18 0.044

T Min -2.65±1.98 -1.42±1.39 5.72E-16 -2.22±1.51 -1.38±1.22 4.00E-11 -2.50±1.31 -1.80±1.00 7.01E-09

T CV -1.76±7.51 -0.82±17.98 0.256 0.14±7.41 -0.45±3.53 0.095 1.83±31.02 -0.13±10.30 0.024

T Pos Max 204.67±31.07 204.77±37.20 0.152 215.08±38.10 226.50±43.91 0.006 238.91±38.33 236.19±43.60 0.363
T Pos Min 244.49±24.75 243.69±29.73 0.972 235.28±28.74 225.91±36.37 0.004 210.62±28.76 206.85±33.28 0.294
T Time Max 9.57±6.83 9.87±5.91 0.586 2.15±1.69 2.72±1.29 0.029 1.86±1.24 1.68±0.72 0.009

T Time Min 9.18±2.90 8.22±3.13 0.004 2.70±4.94 2.39±1.38 0.554 1.07±1.22 1.55±1.17 5.56E-05

Ch1 Mean 25.83±23.58 20.61±18.90 0.006 31.06±30.80 24.40±22.46 0.0006 32.82±33.07 23.90±22.93 0.0001

Ch1 Max 71.66±71.33 67.30±63.79 0.356 70.81±75.56 64.28±63.84 0.016 71.22±73.58 59.69±60.79 0.006

Ch1 Min 3.72±2.93 1.34±1.46 2.00E-24 5.23±5.86 2.08±4.00 3.02E-20 5.39±4.62 2.40±4.73 3.88E-19

Ch1 CV 0.65±0.24 0.83±0.35 3.61E-05 0.58±0.21 0.74±0.32 7.53E-06 0.58±0.20 0.75±0.32 9.77E-06

Ch1 Pos Max 241.51±26.93 235.77±37.25 0.170 246.18±30.34 241.93±37.85 0.318 248.70±29.50 245.07±39.26 0.691
Ch1 Pos Min 210.34±22.42 212.34±22.97 0.401 197.32±19.87 199.59±24.76 0.072 196.64±18.26 199.03±23.86 0.200
Ch1 Time Max 6.01±3.12 6.30±3.36 0.622 2.03±1.62 2.45±5.05 0.788 1.41±1.09 1.87±5.03 0.281
Ch1 Time Min 7.68±5.98 9.66±4.96 0.008 1.91±2.31 1.88±4.57 0.465 0.73±1.15 1.01±4.42 0.608
Ch1 MNF 279.27±8.03 278.20±10.77 2.48E-06 278.51±6.26 277.98±8.57 0.006 278.08±6.36 277.56±8.78 0.0002

Ch1 MDF 50.11±18.05 48.75±28.88 2.68E-06 49.06±15.06 47.08±17.77 0.001 48.37±13.72 47.25±20.26 0.0005

Ch1 CC Peak 433257±2350270 200473±1200595 0.076 251641±1070676 47248±125174 0.169 121967±695064 35424±82349 0.0007

Ch1 CC Time 19.68±11.32 18.16±9.97 0.034 4.38±3.52 5.03±2.89 0.302 4.38±2.62 3.72±1.44 0.001

Ch1 ZC 3031±3500 2808±1169 0.473 1167±5484 929±2039 0.887 437±261 665±2060 0.432
Ch2 Mean 11.18±10.20 6.87±8.70 2.87E-08 9.20±6.40 6.59±9.37 4.38E-07 9.67±7.19 7.06±9.12 2.47E-08

Ch2 Max 43.27±58.68 32.26±41.70 0.058 31.00±64.29 22.68±30.27 0.056 26.95±36.56 22.80±33.75 0.016

Ch2 Min 3.47±2.40 1.29±0.84 1.11E-23 3.57±2.44 1.49±1.07 6.91E-20 4.02±3.35 1.60±1.34 3.13E-19

Ch2 CV 0.61±0.34 0.77±0.45 0.0002 0.50±0.39 0.64±0.33 2.82E-06 0.48±0.28 0.65±0.34 1.45E-06

Ch2 Pos Max 206.34±27.97 210.83±32.84 0.032 213.69±32.83 220.74±37.82 0.009 220.06±36.41 230.61±38.87 0.013

Ch2 Pos Min 218.99±26.21 218.34±26.99 0.995 203.77±24.60 202.41±28.08 0.388 207.13±30.82 203.65±30.26 0.793
Ch2 Time Max 8.08±6.33 6.78±5.57 0.132 2.63±5.44 2.88±7.05 0.909 1.44±1.08 2.16±7.03 0.485
Ch2 Time Min 7.54±5.47 8.79±4.78 0.026 1.45±2.25 1.93±5.49 0.102 0.90±1.14 1.28±5.40 0.931
Ch2 MNF 291.94±12.70 289.21±12.19 0.008 287.67±10.22 285.94±10.74 0.066 285.84±9.59 286.04±10.86 0.340
Ch2 MDF 76.58±32.27 68.00±33.00 0.002 67.51±23.67 60.82±30.52 0.002 62.42±21.94 60.27±27.15 0.029

Ch2 CC Peak 166384±826665 56071±233942 0.610 36323±140738 16136±104234 0.552 32401±166197 11585±42749 0.005

Ch2 CC Time 17.69±12.85 17.09±11.12 0.183 4.66±3.57 5.24±3.04 0.421 4.57±2.55 3.91±1.34 0.0006

Ch2 ZC 3509±3513 3321±1084 0.789 937.85±1085.90 1104.67±2182.18 0.468 531.97±228.30 784.27±2209.72 0.093
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Table 4.22: Results from spasticity test of stroke survivors (G1) and control group (G2) for left limb extension

Parameters
Velocity 10 Velocity 50 Velocity 100

x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value
T Mean -0.54±1.44 -0.28±1.05 0.0001 -0.72±1.90 -0.29±0.97 3.68E-07 -0.94±1.70 -0.24±0.94 3.10E-09

T Max 2.06±4.88 1.32±1.46 0.343 1.57±4.84 1.07±1.18 0.351 1.06±1.45 1.32±1.34 0.082
T Min -2.81±3.03 -1.55±1.46 2.78E-12 -2.67±2.30 -1.49±1.38 1.84E-15 -2.67±2.33 -1.67±1.16 2.73E-12

T CV -0.80±4.95 -0.34±14.77 0.429 -0.09±4.13 -0.69±6.08 0.833 0.04±20.03 -0.43±8.92 0.158
T Pos Max 202.10±26.03 203.33±29.13 0.793 223.52±39.25 219.75±36.01 0.302 240.05±37.09 244.98±32.79 0.531
T Pos Min 245.98±28.02 247.12±28.41 0.706 233.89±31.89 236.98±33.02 0.723 213.73±34.24 215.61±35.28 0.351
T Time Max 9.10±12.11 7.26±2.98 7.49E-06 3.05±3.45 2.36±1.20 0.0002 1.83±3.45 1.48±1.03 0.198
T Time Min 7.57±10.03 9.01±5.84 0.016 1.80±1.73 1.88±1.45 0.623 1.54±0.73 1.44±0.72 0.036

Ch1 Mean 27.68±24.70 26.68±31.96 0.170 22.96±18.95 19.91±17.68 0.018 23.84±19.39 22.01±21.70 0.005

Ch1 Max 87.85±101.70 85.08±95.19 0.497 69.13±60.79 61.77±50.63 0.345 66.47±60.00 68.52±61.10 0.998
Ch1 Min 4.21±3.44 2.06±5.05 1.19E-21 4.73±3.52 1.75±1.86 2.28E-23 6.17±6.26 2.30±4.11 8.69E-24

Ch1 CV 0.73±0.29 0.81±0.34 0.010 0.73±0.33 0.88±0.33 5.55E-05 0.67±0.28 0.91±0.33 3.09E-09

Ch1 Pos Max 244.70±26.29 240.74±25.47 0.060 249.62±27.04 246.14±28.35 0.089 250.70±27.69 246.60±30.18 0.146
Ch1 Pos Min 216.16±28.69 210.77±23.02 0.645 222.87±33.19 217.07±30.17 0.192 223.71±35.48 226.07±33.98 0.957
Ch1 Time Max 10.28±8.90 8.50±5.31 0.013 3.33±5.95 2.92±1.37 0.688 2.14±5.88 1.80±0.92 0.778
Ch1 Time Min 5.85±7.97 5.64±2.74 0.631 1.97±4.47 1.48±0.92 0.519 1.36±4.29 0.93±0.74 0.636
Ch1 MNF 277.71±6.00 278.89±12.31 0.0003 280.07±8.37 279.23±10.78 0.0003 280.23±8.02 279.04±10.63 5.09E-05

Ch1 MDF 46.33±13.55 49.85±28.20 0.001 51.51±18.00 51.62±28.87 0.0006 51.87±16.76 49.87±23.83 1.51E-05

Ch1 CC Peak 846994±3945636 421543±2204449 0.090 182278±1337794 37745±109848 0.0006 51835±215134 29030±57289 0.002

Ch1 CC Time 15.08±11.39 12.49±8.48 0.009 6.96±6.95 4.70±2.56 2.70E-07 3.90±6.84 2.53±1.76 6.42E-05

Ch1 ZC 3955±13978 2742±954 0.200 868±1136 750±232 0.056 556±1122 460±143 0.446
Ch2 Mean 12.70±15.38 6.82±7.37 2.11E-09 16.37±20.32 8.74±9.31 7.11E-07 20.00±29.03 9.29±10.02 2.14E-09

Ch2 Max 55.16±106.95 29.57±35.49 0.006 51.38±80.82 32.43±44.29 0.001 59.29±93.44 30.67±39.51 1.53E-05

Ch2 Min 3.41±2.06 1.32±0.81 1.38E-21 3.93±2.63 1.56±0.86 1.06E-20 4.51±3.06 1.80±1.40 3.59E-20

Ch2 CV 0.62±0.45 0.78±0.49 0.006 0.62±0.30 0.74±0.39 0.036 0.63±0.32 0.73±0.34 0.015

Ch2 Pos Max 222.18±34.57 215.27±29.15 0.297 212.77±34.43 215.43±32.96 0.292 211.34±34.65 216.92±35.06 0.057
Ch2 Pos Min 229.93±30.44 218.18±25.55 0.001 237.90±29.89 228.46±31.29 0.002 244.83±30.84 236.47±32.23 0.004

Ch2 Time Max 6.78±4.63 7.21±3.91 0.245 1.96±1.28 2.27±1.06 0.025 1.36±0.96 1.60±0.65 0.006

Ch2 Time Min 5.31±4.56 5.44±3.27 0.215 1.97±5.90 1.32±1.09 0.807 1.33±5.74 0.76±0.75 0.801
Ch2 MNF 288.07±13.81 291.54±13.73 0.093 291.74±14.79 290.05±13.60 0.282 291.00±13.64 289.45±13.78 0.540
Ch2 MDF 67.82±32.19 75.60±37.36 0.101 76.76±34.33 71.54±35.89 0.161 77.18±32.49 70.17±34.29 0.213
Ch2 CC Peak 886401±5452861 90605±414372 0.070 109888±767820 18540±45953 0.001 45044±294069 13118±30723 0.002

Ch2 CC Time 15.84±13.69 13.66±9.80 0.041 6.63±7.09 4.85±2.57 4.09E-05 3.48±6.97 2.53±1.81 0.076
Ch2 ZC 4319±13949 3381±1316 0.044 982±1176 881±212 0.712 608±1080 550±135 0.013
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Table 4.23: Results from spasticity test of stroke survivors (G1) and control group (G2) for right limb flexion

Param
Velocity 10 Velocity 50 Velocity 100

x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value
T Mean 1.14±1.15 0.17±1.06 3.95E-15 1.16±1.16 0.17±1.03 5.18E-15 0.86±2.58 0.17±1.04 1.75E-12

T Max 2.85±1.57 1.56±1.45 2.74E-15 2.82±2.88 1.31±1.31 1.20E-16 2.85±1.80 1.49±1.20 1.21E-20

T Min -1.49±2.33 -1.67±1.71 0.015 -0.85±1.43 -1.20±1.09 0.0009 -1.37±4.32 -1.40±1.17 0.0008

T CV 1.28±7.19 1.46±10.88 0.874 5.28±57.17 0.03±8.03 0.508 0.05±4.73 -12.14±116.33 0.125
T Pos Max 113.74±23.45 103.25±20.49 1.01E-06 121.24±28.82 114.96±26.36 0.006 141.50±29.75 137.29±29.17 0.045

T Pos Min 158.73±25.45 156.39±22.16 0.003 153.19±32.15 142.67±32.68 3.18E-05 129.27±39.08 129.53±37.50 0.549
T Time Max 9.31±5.79 7.52±2.27 1.38E-08 2.28±1.25 2.12±0.97 0.143 1.03±0.91 1.46±0.89 2.89E-05

T Time Min 8.88±6.86 9.18±6.05 0.342 2.23±2.13 2.81±1.42 0.020 1.97±0.80 1.93±0.68 0.118
Ch1 Mean 23.37±17.68 19.93±26.89 0.0003 26.11±26.24 21.74±24.60 0.003 28.98±23.76 22.18±27.54 4.87E-05

Ch1 Max 73.37±66.15 64.98±78.33 0.029 64.17±70.15 56.33±62.38 0.023 63.17±57.61 53.14±74.72 0.004

Ch1 Min 3.36±2.23 1.34±1.15 3.36E-21 4.40±4.52 1.93±2.45 4.65E-18 4.74±4.47 1.89±2.23 1.31E-21

Ch1 CV 0.70±0.26 0.83±0.30 0.0005 0.61±0.25 0.69±0.23 0.002 0.58±0.20 0.68±0.22 0.0002

Ch1 Pos Max 118.45±25.31 115.40±23.50 0.574 110.88±24.43 110.33±25.14 0.507 110.90±24.65 106.49±25.77 0.002

Ch1 Pos Min 147.03±23.06 141.87±21.71 0.047 160.13±20.95 159.73±15.66 0.047 160.66±22.43 158.40±16.33 0.001

Ch1 Time Max 6.26±3.36 5.83±2.83 0.112 2.03±1.14 2.02±0.90 0.361 1.40±0.66 1.41±0.53 0.342
Ch1 Time Min 8.38±5.82 8.83±4.84 0.540 1.48±1.80 1.39±1.71 0.648 0.56±0.88 0.49±0.79 0.715
Ch1 MNF 279.69±7.32 278.27±7.94 0.002 279.00±6.44 277.46±6.85 0.0002 278.43±6.38 277.09±6.65 0.0001

Ch1 MDF 50.98±15.73 47.43±17.66 0.0003 49.94±13.69 45.67±13.11 2.50E-05 48.78±13.90 45.67±13.87 6.20E-05

Ch1 CC Peak 640559±1073860 221155±461566 1.26E-14 168290±389844 55125±125686 6.12E-15 96644±171066 33350±75766 5.77E-15

Ch1 CC Time 17.85±5.79 14.37±7.06 6.29E-06 4.85±1.84 4.73±2.12 0.270 2.36±1.02 2.02±1.31 0.011

Ch1 ZC 3254±5899 2815±1157 0.364 734±265 716±211 0.230 441±202 444±145 0.937
Ch2 Mean 9.99±8.48 7.40±7.99 6.60E-05 9.24±7.66 6.77±8.47 1.02E-05 10.65±13.28 7.57±10.53 1.15E-06

Ch2 Max 45.12±102.02 33.14±47.04 0.373 26.19±35.31 23.21±29.87 0.093 31.01±85.36 21.44±28.23 0.045

Ch2 Min 3.47±2.36 1.45±0.95 6.59E-18 3.78±3.06 1.55±0.99 2.22E-16 4.00±3.47 1.74±2.40 1.13E-18

Ch2 CV 0.57±0.40 0.73±0.42 0.0001 0.47±0.30 0.65±0.36 3.05E-06 0.45±0.32 0.60±0.31 3.93E-07

Ch2 Pos Max 148.91±29.00 140.52±28.75 0.010 145.92±31.26 135.05±33.28 0.005 136.39±31.51 127.62±35.07 0.001

Ch2 Pos Min 136.31±26.85 134.22±23.56 0.362 151.73±27.35 152.62±22.81 0.215 153.59±28.45 152.50±21.65 0.020

Ch2 Time Max 7.60±6.15 5.90±5.01 0.053 2.34±1.98 2.32±1.44 0.404 1.46±0.96 1.40±0.84 0.731
Ch2 Time Min 7.25±5.02 8.11±4.42 0.110 1.30±1.52 1.28±1.54 0.816 0.71±0.95 0.62±0.83 0.519
Ch2 MNF 292.96±13.54 291.16±14.36 0.021 288.85±11.35 286.82±10.50 0.030 286.62±11.12 285.40±11.03 0.068
Ch2 MDF 77.91±31.56 74.72±38.49 0.026 69.50±26.31 62.50±26.53 0.006 64.58±26.20 58.86±27.86 0.009

Ch2 CC Peak 233756±331731 68283±125371 9.77E-14 58045±88109 13094±22427 7.33E-16 41804±80371 9389±18103 2.56E-16

Ch2 CC Time 15.37±4.56 14.25±7.07 0.889 4.60±1.82 4.66±2.22 0.876 2.46±1.03 2.11±1.42 0.002

Ch2 ZC 3868±6006 3163±843 0.0008 893±289 886±331 0.061 529±150 554±220 0.851
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Table 4.24: Results from spasticity test of stroke survivors (G1) and control group (G2) for right limb extension

Param
Velocity 10 Velocity 50 Velocity 100

x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value x̄±SD G1 x̄±SD G2 p-value
T Mean 0.89±1.00 0.13±0.95 1.60E-15 1.08±1.08 0.25±0.95 2.28E-17 0.99±0.99 0.08±0.86 3.75E-20

T Max 3.03±2.45 1.68±1.72 2.07E-15 2.86±1.99 1.65±1.54 1.89E-14 2.81±1.35 1.63±1.25 1.92E-18

T Min -1.63±2.37 -1.60±1.43 0.03 -1.16±2.34 -1.26±1.05 0.0002 -1.27±1.82 -1.63±1.28 9.82E-05

T CV 0.92±3.26 -0.25±26.54 0.02 0.64±6.39 -3.11±30.68 0.19 0.42±26.66 0.65±10.26 5.05E-05

T Pos Max 111.88±23.19 106.61±26.02 0.002 122.86±31.19 112.08±31.63 8.89E-05 144.33±32.13 127.56±40.71 5.41E-07

T Pos Min 159.94±23.18 162.68±25.45 0.22 140.64±38.40 151.83±34.63 0.49 125.27±38.31 132.66±37.84 0.17
T Time Max 6.67±6.15 8.20±6.19 0.21 1.68±1.46 2.51±7.07 0.88 1.35±0.72 2.36±6.96 0.06
T Time Min 8.04±2.63 7.28±1.95 0.0004 2.67±1.27 2.57±2.34 0.004 1.59±0.98 2.24±7.06 0.05

Ch1 Mean 27.36±27.99 21.87±27.42 0.03 21.66±17.63 16.60±15.96 0.0006 23.26±17.65 21.04±21.12 0.03

Ch1 Max 95.78±121.12 78.63±98.99 0.24 60.49±51.46 54.44±53.96 0.11 65.97±55.27 67.66±72.48 0.997
Ch1 Min 4.49±5.73 1.46±1.43 3.26E-22 4.44±3.32 1.83±2.31 5.42E-20 5.17±3.27 2.34±2.61 3.13E-18

Ch1 CV 0.76±0.38 0.84±0.32 0.01 0.71±0.26 0.90±0.34 1.13E-05 0.69±0.31 0.91±0.36 2.73E-07

Ch1 Pos Max 110.30±20.92 115.28±31.77 0.45 106.73±21.28 111.96±32.05 0.20 108.60±22.70 117.06±34.19 0.02

Ch1 Pos Min 146.37±25.84 148.65±23.21 0.98 137.70±29.75 140.08±33.43 0.65 135.31±34.26 139.76±36.01 0.79
Ch1 Time Max 9.30±5.99 7.15±5.64 0.0003 2.86±1.73 3.27±3.57 0.46 1.81±1.07 2.60±6.96 0.16
Ch1 Time Min 6.20±3.49 5.20±2.42 0.06 1.53±1.09 2.28±6.35 0.90 1.05±0.79 1.66±6.10 0.66
Ch1 MNF 279.39±5.96 278.04±10.25 6.36E-06 279.58±7.71 277.77±8.49 8.33E-05 279.94±8.21 277.54±8.69 5.63E-05

Ch1 MDF 50.49±12.16 48.52±24.45 1.77E-05 49.92±15.34 47.66±20.52 6.86E-05 50.59±17.40 45.78±16.43 0.0003

Ch1 CC Peak 732004±1625995 250787±489479 1.25E-14 568625±4839900 66251±173069 5.19E-15 88708±129552 39292±89553 1.36E-14

Ch1 CC Time 11.45±6.06 13.52±8.69 0.44 3.77±1.76 4.59±12.01 0.03 2.57±1.13 2.89±1.54 0.17
Ch1 ZC 2755±707 2638±893 0.019 774±210 1087±2331 0.14 475±124 705±2128 0.040

Ch2 Mean 11.79±14.44 6.99±8.85 6.97E-06 14.15±15.29 8.53±9.53 2.85E-06 15.64±16.29 9.80±10.48 1.19E-05

Ch2 Max 43.13±75.38 27.69±37.67 0.017 44.47±74.64 28.47±35.76 0.004 42.65±70.59 32.01±42.48 0.018

Ch2 Min 3.63±2.44 1.40±0.84 1.40E-18 4.54±3.17 1.69±1.47 1.52E-21 5.08±3.56 1.84±1.34 9.99E-22

Ch2 CV 0.53±0.30 0.70±0.39 0.0003 0.59±0.36 0.73±0.35 0.0008 0.54±0.32 0.72±0.34 1.05E-05

Ch2 Pos Max 136.31±32.36 141.00±33.33 0.43 148.18±33.64 139.49±36.74 0.004 149.70±31.84 139.38±38.02 0.001

Ch2 Pos Min 131.66±29.46 139.32±26.76 0.054 124.99±27.87 127.27±33.88 0.57 118.68±29.43 119.32±35.48 0.86
Ch2 Time Max 6.30±4.43 7.27±4.07 0.021 2.07±1.12 2.95±5.63 0.055 1.30±0.67 1.62±0.70 0.0003

Ch2 Time Min 5.70±4.37 5.32±3.35 0.93 1.65±1.41 1.97±5.93 0.22 0.97±0.94 1.11±3.86 0.11
Ch2 MNF 290.16±14.82 293.54±14.13 0.29 293.62±14.60 292.69±14.71 0.26 293.40±14.31 291.57±13.86 0.19
Ch2 MDF 72.48±35.03 79.55±39.28 0.42 79.78±34.32 78.06±36.97 0.34 80.61±34.24 75.29±35.29 0.18
Ch2 CC Peak 258371±514724 57940±101545 8.52E-11 759498±7477994 41163±185168 3.60E-16 63319±88078 16677±33973 1.07E-14

Ch2 CC Time 13.38±5.29 14.60±8.94 0.46 4.18±1.51 4.02±5.19 0.009 2.79±0.89 2.94±1.45 0.94
Ch2 ZC 3229±1797 3383±1563 0.64 930±407 1232±2301 0.35 560±223 803±2046 0.83
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Automated recognition of health state

This study employed machine learning techniques to predict categorical outcomes for

post-stroke and healthy participants using classifiers from the scikit-learn library [123].

The objective was to define a set of parameters and a classification system capable of

distinguishing between participant groups based on outcomes from the muscle spasticity

assessment. The dataset consisted of various features related to torque, position, and

electromyography measurements. Feature selection was performed to include a wide array

of predictors such as ’Direction of movement’, and ’Side’, for each velocity: (10°/s, 50°/s,

and 100°/s): ’T Mean’, ’T Max’, ’T Min’, ’T CV’, ’T Pos Max’, ’T Pos Min’, ’T Time Max’,

’T Time Min’, and for each channel (Ch1 - Biceps Brachii, Ch2 - Triceps Brachii): ’EMG

RMS Mean’, ’EMG RMS Max’, ’EMG RMS CV’, ’EMG RMS Pos Max’, ’EMG RMS Pos

Min’, ’EMG MNF’, ’EMG MDF’. The dataset was preprocessed to handle missing values

using a SimpleImputer with a ’median’ strategy. Categorical variables were transformed

into numerical form through one-hot encoding. The data was then split into training and

testing sets, with a test size of 20%, and the random state set to 42 for reproducibility.

A Random Forest Classifier is used as the base model, and GridSearchCV is employed

to find the best hyperparameters from a defined grid. The best model from GridSearchCV

is then used for further training. The trained model’s performance is evaluated on the test

set using accuracy as the primary metric. A classification report providing detailed metrics

(precision, recall, f1-score) for each class and a confusion matrix for a visual represent-

ation of the model’s performance are also generated. The results indicate that the best

model achieved an accuracy of 58.78% on the test set. The classification report shows

that the model performs better in predicting the healthy class with a precision of 57%

and a recall of 97%, leading to a high f1-score of 72%. However, the model struggles with

the post-storke class, achieving only 13% recall. This suggests that while the model is

relatively effective at identifying the healthy group, it often misclassifies the post-stroke

group as healthy one. After that to find better accuracy, there were used Decision Tree

Classifier. Decision Trees are a type of supervised learning algorithm that is used for

classification and regression tasks. They are desirable due to their simplicity and inter-

pretability. The Decision Tree Classifier achieved an accuracy of 68.16% on the test data.

The classification report provides a more detailed insight into the model’s performance

across the different classes: For the ’post-stroke’ class, the model has a precision of 72%

and a recall of 49%, resulting in an f1-score of 58For the ’healthy’ class, the precision

is slightly lower at 66%, but the recall is higher at 84%, leading to a higher f1-score of

74%. These results suggest that the Decision Tree Classifier is more effective in correctly

identifying the healthy group compared to the post-stroke group, as indicated by the

higher recall and f1-score for the healthy class. The overall accuracy of 68.16% indicates

a moderate level of predictive power, but there might be room for improvement, possibly
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through hyperparameter tuning, feature engineering, or trying more complex models like

ensemble methods. Then, a grid search approach (GridSearchCV) was employed to op-

timize the hyperparameters of the HistGradientBoostingClassifier, considering ’learning

rate’ and ’max depth’ as the parameters to tune. This classifier is a variant of the tra-

ditional Gradient Boosting Machines (GBM) and part of the family of algorithms that

build an ensemble of decision trees in a sequential manner, where each subsequent tree

aims to correct the errors of the previous ones. This model achieved the best accuracy

of 92.24% on the test set. The classification report revealed a precision of 0.93 and 0.92

for the classes ’post-stroke’ and ’healthy’ respectively, with respective recalls of 0.90 and

0.94. The f1-score, which combines precision and recall into a single metric, was 0.91 for

’post-stroke’ and 0.93 for ’healthy’, indicating a robust performance of the model across

both classes. Further diagnostics included a confusion matrix, visualized as a heatmap to

better understand the classification errors in Figure 4.8. This allowed for the identification

of instances where the model’s predictions did not align with the actual values, providing

insights into the model’s performance and potential areas for improvement.

Figure 4.8: Confusion Matrix Mach

4.2.4 Discussion

This detailed summary shows that while some variables demonstrate moderate to good

reliability between sessions (indicated by ICC values), the high coefficients of variation

for some variables suggest considerable variability within the data. The p-values, pre-
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dominantly higher than 0.05, generally indicate a lack of significant differences between

sessions for most variables, supporting the repeatability aspect of the study hypothesis.

The comparison between control groups and stroke survivors highlighted the potential

of machine-assisted diagnostics in differentiating between healthy and affected limb func-

tions. The high reliability in specific variables, particularly in stroke survivors, suggests

that machine-assisted diagnostics can effectively monitor patient progress and condition

over time.

The observed differences in EMG signals and torque between stroke patients and

healthy controls substantiate the hypothesis that these measures can serve as objective

indicators of spasticity. The variations across different movements and velocities under-

score the complexity of spasticity as a multifaceted condition requiring personalized thera-

peutic approaches. The study’s findings advocate for the integration of EMG and torque

measurements in clinical practice, facilitating the objective assessment and monitoring of

spasticity in stroke rehabilitation.

This study highlights the potential of machine learning (ML) techniques in the rehab-

ilitation field, particularly in distinguishing between post-stroke and healthy individuals

based on muscle spasticity assessment outcomes. The application of various classifiers from

the scikit-learn library demonstrates the feasibility of predicting categorical outcomes us-

ing clinical measurement data. The progression from a Random Forest Classifier, through

a Decision Tree Classifier, to a HistGradientBoostingClassifier underscores a methodical

approach to enhancing model performance through algorithm selection and hyperpara-

meter optimization. The initial use of a Random Forest Classifier, although providing a

baseline accuracy of 58.78%, exhibited a significant imbalance in predictive performance

between the classes. Specifically, its high recall but low precision for the healthy class

indicated a tendency to misclassify post-stroke individuals as healthy, reflecting potential

limitations in the model’s ability to capture the nuances of the post-stroke condition.

The transition to a Decision Tree Classifier, which achieved a higher overall accuracy of

68.16%, demonstrates the impact of model choice on prediction outcomes. The improved

balance between precision and recall for both classes suggests that the simpler, more

interpretable structure of decision trees may offer advantages in certain clinical applica-

tions. However, the still moderate accuracy and the disparity in class performance hinted

at the need for further model refinement. The subsequent adoption of the HistGradient-

BoostingClassifier, achieving an impressive accuracy of 92.24%, represents a significant

advancement in the study’s objectives. The notable improvement in precision, recall, and

f1-scores for both classes illustrates the efficacy of gradient boosting methods in dealing

with complex, non-linear relationships in data. The model’s robust performance across

both post-stroke and healthy classes suggests that it effectively captures the underlying

patterns distinguishing these groups, likely benefiting from the sequential correction of

errors inherent in gradient boosting algorithms.
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4.2.5 Conclusion

The presence of variables with significant changes and high reliability supports the

thesis hypothesis (HI.) to some extent, suggesting that machine-assisted diagnostic pro-

cedures can provide objective assessments. The comparative analysis between the control

group and stroke survivors highlights the potential of robot-assisted diagnostics in dif-

ferentiating between healthy and affected limb functions. The control group’s consistent

performance across various limb movements provides a reliable baseline. In contrast, the

observed variability in stroke survivors’ measurements underscores the importance of se-

lecting reliable variables for accurate assessment. The variability in both mean values and

standard deviations across flexion and extension movements in both limbs suggests that

spasticity and motor control issues manifest differently depending on the movement and

the affected limb. This variability underscores the complexity of assessing and treating

post-stroke spasticity and the importance of objective, quantitative measures like EMG

and torque measurements. The data across all limbs and direction of movement, con-

sistently show that there are measurable differences in EMG signals and torque between

stroke patients and the control group, with stroke survivors generally exhibiting higher

mean values and a broad range of variability. The significant disparities observed between

stroke patients and healthy individuals across multiple movement parameters endorse the

clinical utility of these metrics, offering a pathway toward more tailored and effective

rehabilitation interventions. This comparative study confirms the effectiveness of EMG

and torque measurements in objectively quantifying spasticity in stroke survivors. This

study supports the hypothesis that EMG signals, torque, and limb position measurements

can provide an objective basis for assessing patient conditions through robot-assisted dia-

gnostics.

This research successfully demonstrates the application of machine learning techniques

to differentiate between post-stroke and healthy individuals using muscle spasticity assess-

ment data. The study’s findings underscore the importance of selecting appropriate ML

models and tuning their parameters to improve predictive accuracy in clinical settings.

The superior performance of the HistGradientBoostingClassifier, evidenced by its high

accuracy and balanced precision-recall across classes, highlights the potential of advanced

ensemble methods in enhancing diagnostic processes. Moreover, the study emphasizes the

role of feature selection and preprocessing in achieving optimal model performance. The

inclusion of a wide array of predictors and the careful handling of missing values and

categorical variables were critical in developing a reliable classification system.

The findings advocate for the judicious selection of reliable and repeatable biomech-

anical and bioelectrical parameters, considering the inherent variability in patient per-

formances. Future work should focus on refining diagnostic procedures to enhance the

reliability and objectivity of patient assessments, particularly in rehabilitation contexts.
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Also, there could be explored further optimization of the HistGradientBoostingClassifier,

experimentation with other advanced ML algorithms, and the integration of additional

clinical parameters to enhance predictive capabilities. Additionally, the deployment of

such models in real-world clinical environments could provide valuable insights into their

practical utility and impact on patient care. Overall, this study contributes to the grow-

ing body of evidence supporting the integration of machine learning into rehabilitation,

offering promising avenues for improving the accuracy and efficiency of medical diagnoses

and interventions.

4.3 Automatization of diagnostics and rehabilitation

of urinary incontinence patients

Urinary incontinence (UI) remains a largely unaddressed issue within the healthcare

community, often overlooked and not openly discussed among healthcare providers. This

condition adversely affects the daily life quality of individuals, although it is not considered

life-threatening or hazardous. The 2016 Periodic Report by the European Commission

CORDIS highlights that approximately 56 million individuals across Europe suffer from

UI. A European study revealed a prevalence of 35% in women aged 18 to 99 [39].

The majority of UI cases go untreated, largely due to unawareness about available

medical interventions and societal or cultural stigmas. Worldwide statistics from 2008

estimated 346 million people were living with some form of UI, a number projected to rise

to 420 million by 2018. Various treatment strategies exist for managing both urinary and

fecal incontinence, including pelvic floor muscle rehabilitation. This approach has shown

efficacy in managing incontinence by improving the support of the perineal muscles, which

is crucial for maintaining continence. In more severe instances, strengthening the pelvic

floor can significantly enhance the success rates of surgical interventions aimed at cor-

recting incontinence [18]. Additionally, biofeedback has emerged as a beneficial physical

therapy technique for treating pelvic floor dysfunction. It employs subconscious and con-

scious cues, such as visual, auditory, or tactile feedback, to provide patients and clinicians

with real-time information about physiological functions. This dual awareness facilitates

the patient’s ability to manage bodily responses previously outside their conscious control.

The pandemic, triggered by the coronavirus disease 2019 (COVID-19), has ushered

in a profound transformation in healthcare. It heightened our awareness of the need for

remote care and catalyzed significant efforts in harnessing information technologies to

provide that care. In the realm of clinical practice, there remains an ongoing uncertainty

regarding the methods healthcare professionals can employ to deliver remote rehabilitation

for female pelvic floor dysfunction using telehealth [84].

A solution to the problem of the pandemic, the increasing cost of healthcare, and
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the high number of patients falling within physiotherapy and exercises is the automation

of diagnostic procedures and treatment. It can be done by providing the patient with

the opportunity of remote exercises, consultation, and health status monitoring. The

purpose of this research is to assess the effectiveness of EMG biofeedback exercises for

telerehabilitation based on EMG biofeedback exercises with Stella BIO in stress urinary

incontinence (SUI) in perimenopausal women (HII.).

4.3.1 Materials and methods

The inclusion criteria were as follows: women, stress urinary incontinence grade I or

II, confirmed via USG examination, questionnaire of evaluation of frequency and intensity

of SUI symptoms, quality of life questionnaire, in aged 40 to 65 years old. The exclusion

criteria were pelvic organ prolapse, contraindication to use Stella BIO device or Perisphera

H endovaginal electrode (Fig. 4.9). The participants have to have Internet access at home.

Figure 4.9: Endovaginal electrode Perisphera H [37]

In this study, we included 20 women with SUI aged 52 ±6.83. The project was approved

by the Bioethics Committee KB-0012/22/2020 on 9 March 2020. Each participant was

recruited with informed consent to participate in the study.

Procedures

Prior to starting a pelvic floor muscle training program with Stella BIO, the pa-

tients were examined by the urogynecological physiotherapist and received instruction on

device usage. The participant completed the ICIQ-LUTSqol SF, a psychometrically ro-

bust patient-completed questionnaire evaluating the quality of life in urinary incontinent

patients for use in research and clinical practice. Afterward, each patient was provided
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with Stella BIO, along with an online training program for EMG biofeedback exercises

to be performed independently at home for approximately 8 weeks. The initial and final

exercises in the program involved the Glazer protocol, described in Section 2.2.1, to eval-

uate muscle health conditions. The EMG signal from the protocol was presented in Fig.

4.10.

Figure 4.10: Example of EMG signals from Glazer protocol

Data Analysis

The bioelectrical activity of pelvic floor muscle was collected using the Perisphera

H endovaginal electrode (BEACMED S.R.L., Italy) with Stella BIO (EGZOTech Sp. z

o.o., Poland). The data was collected from 4 channels for the muscles: right transverse

abdominal (ch 1), left transverse abdominal (ch 2), right pubococcygeal muscle (ch 7),

and left pubococcygeal muscle (ch 8). The example of results from the software developed

in Python (Sec. 3.2) was presented in Fig. 4.11. Statistical analysis was performed using

STATISTICA 13.3 software (StatSoft, Poland). The Wilcoxon Signed-Rank Test was used

to determine the significance of differences in the calculated parameters from the results

before and after telemedicine treatment, with p-values exceeding 0.05 suggesting a lack

of significant disparity.

The sEMG signal parameters, which are elaborated upon in Section 2.1.3, were com-

puted in the manner described below:

1. Pre-baseline Stage:

• Average mean amplitude [µV]—the value was calculated separately for the

whole of stage signal and each of the 3 intervals: I-5s, II-5s, III-50s.

• Mean amplitude variability [%]— the value was calculated based on standard

deviation and mean of the data, separately for the whole of stage signal and

each of the 3 intervals: I-5s, II-5s, III-50s.
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2. Phasic contractions Stage:

• Average peak amplitude [µV]

• Average mean amplitude from rest phase [µV]

• Time before peak [s]

• Time after peak [s]

• Time of amplitude increase (onset to peak) [s]

• Time of amplitude decrease (peak to offset) [s]

• Contraction duration (onset to offset) [s]

3. Tonic contractions Stage:

• Average mean amplitude contraction [µV] — the mean value from 5 contrac-

tions phase based on the patient’s instructions.

• Average mean amplitude rest [µV]

• Average mean amplitude work [µV]

• Average peak amplitude [µV]

• Mean amplitude variability [%]

• Onset [s]

• Offset [s]

• Time before peak [s]

• Time of amplitude increase (onset to peak) [s]

• Time of amplitude decrease (peak to offset) [s]

4. Endurance Stage:

• Average mean amplitude [µV] — the mean value from 6 intervals lasting 10 s

each.

• Mean amplitude variability [%]— the value was calculated based on the stand-

ard deviation and mean of the data from the whole contraction and 6 intervals

lasting 10 s each.

5. Post-baseline Stage:

• Average mean amplitude [µV] - the mean value of the whole stage signal

• Mean amplitude variability [%] - the value calculated based on the standard

deviation and mean of the whole signal
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Figure 4.11: Example of Phasic Contraction Stage with detected peaks, onsets and offsets

4.3.2 Results

The results of ICIQ-LUTSqol SF are presented as follows, before treatment 10,93±3,47

after 6,46±3,95 with statistically significant difference between them (p = 0.005). The res-

ults are demonstrated as the mean, standard deviation (SD), and p from the Wilcoxon test

pre-baseline stage in Tab. 4.25, phasic contraction stage in Tab. 4.26, tonic contraction

stage in Tab. 4.27, endurance stage in Tab. 4.28, and post-baseline stage in Tab. 4.29. In

the Tables, there were presented chosen parameters, especially with the significant changes

after treatment. The digit in the bracket designates the channel number corresponding to

the muscle. For the pre-baseline stage, there were significant improvements in the average

mean amplitude for 7 channel for all intervals and the whole signal, in the Average mean

amplitude for 8 channel only for II and III intervals, and the Mean amplitude variability II

interval for 7 channel. The reduced mean amplitude suggests an improvement in muscle

control and decreased involuntary muscle contraction. Improvements in parameters for

the phasic contraction like average mean amplitude from the rest phase (Ch7 p=0.005

and Ch8 p=0.001), and time before peak (Ch7 p=0.049 and Ch8 p=0.009) are expected to

reflect enhanced muscle function and control. Specifically, reductions in contraction dur-

ation and time of amplitude increase (Ch7 p=0.001 and Ch8 p=0.001), and shorter times

82



Chapter 4. Automatization of diagnostics and selected rehabilitation procedures

Table 4.25: Results of Pre-Baseline Stage

Parameter Name
Before

p
After

Mean SD Mean SD
Average mean amplitude [µV] (6) 2.77 2.58 0.001 1.29 0.86
Average mean amplitude [µV] (6) - I-5s 2.66 2.04 0.049 1.58 1.12
Average mean amplitude [µV] (6) - II-5s 2.33 1.90 0.004 1.21 0.93
Average mean amplitude [µV] (6) - III-50s 2.83 2.74 0.0003 1.26 0.87
Average mean amplitude [µV] (7) 3.28 3.62 0.006 1.38 1.07
Average mean amplitude [µV] (7) - I-5s 2.61 2.10 0.171 1.84 1.40
Average mean amplitude [µV] (7) - II-5s 3.06 3.30 0.030 1.49 1.22
Average mean amplitude [µV] (7) - III-50s 3.36 3.95 0.003 1.32 1.06
Mean amp variability [%] (6) - I-5s 18.45 15.28 0.376 29.10 35.15
Mean amp variability [%] (6) - II-5s 14.44 12.96 0.005 9.49 3.47
Mean amp variability [%] (6) - III-50s 54.17 111.42 0.658 24.16 22.06
Mean amp variability [%] (7) - I-5s 19.81 18.79 0.520 22.47 21.10
Mean amp variability [%] (7) - II-5s 19.81 33.18 0.841 11.28 6.77
Mean amp variability [%] (7) - III-50s 46.11 91.08 0.295 22.68 19.66

The digit in the bracket designates the channel number corresponding to the muscle.

for muscle relaxation (time after peak) would indicate more effective muscle control and

relaxation capabilities post-treatment. The mean peak amplitude observed in Channel

8 shows a notable decrease, while the post-treatment standard deviation is substantially

lower, possibly indicating improved muscle control. In the tonic contraction stage, average

Table 4.26: Results of Phasic Contraction Stage

Parameter Name
Before

p
After

Mean SD Mean SD

Average peak amplitude [µV](7) 11.67 10.68 0.053 30.62 62.41
Average peak amplitude [µV](8) 25.75 64.10 0.027 22.13 25.70
Average mean amp from rest phase[µV](7) 2.61 1.97 0.005 1.46 1.04
Average mean amp from rest phase[µV](8) 2.57 2.06 0.001 1.54 1.20
Time before peak[s] (7) 1.10 0.44 0.049 1.17 1.68
Time before peak[s] (8) 1.17 0.53 0.009 0.79 0.20
Time after peak[s] (7) 1.54 1.13 0.295 1.22 0.89
Time after peak[s] (8) 1.40 0.82 0.687 1.32 1.06
Time of amp increase (onset to peak)[s](7) 5.12 3.20 0.001 2.48 1.72
Time of amp increase (onset to peak)[s](8) 5.37 3.26 0.001 3.06 1.81
Contraction duration (onset to offset)[s](7) 6.49 4.15 0.064 4.21 2.26
Contraction duration (onset to offset)[s](8) 6.49 3.32 0.084 4.83 2.50
The digit in the bracket designates the channel number corresponding to the muscle.

mean amplitude work increased for the channels 7 and 8, although these changes were

not statistically significant (p = 0.421 and p = 0.391, respectively). The Average Peak

Amplitude of channel 7 saw an increase from 13.26 µV to 17.91 µV, and channel 8 from

15.88 µV to 16.91 µV, both indicating higher peak muscle contractions post-treatment.

These changes were not statistically significant. A significant increase in median frequency
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for channel 7 from 44.99 Hz to 72.85 Hz (p = 0.024), indicating potentially more efficient

muscle fiber recruitment post-treatment. Channel 8 also showed an improvement from

44.92 Hz to 61.91 Hz, though not statistically significant (p = 0.320). A significant im-

provement in onset time for channel 7, from -0.22 seconds to -0.03 seconds (p = 0.003),

suggesting faster muscle activation post-treatment. Offset time for channel 8 improved

significantly from 0.22 seconds to -0.11 seconds (p = 0.030), indicating quicker muscle

relaxation. Both channels showed a significant increase in the time from peak amplitude

to offset, with channel 7 increasing from 6.41 seconds to 7.58 seconds (p = 0.048) and

channel 8 from 6.27 seconds to 7.36 seconds (p = 0.017). This suggests a longer duration

of muscle contraction post-treatment, potentially indicating improved muscle endurance.

Table 4.27: Results of Tonic Contraction Stage

Parameter Name
Before

p
After

Mean SD Mean SD

Average mean amplitude work [µV] (7) 9.15 6.30 0.421 12.39 10.88
Average mean amplitude work [µV] (8) 10.94 10.47 0.391 11.23 7.81
Average peak amplitude [µV] (7) 13.26 9.11 0.277 17.91 13.87
Average peak amplitude [µV] (8) 15.88 14.64 0.241 16.91 10.60
Median frequency [Hz] (7) 44.99 18.04 0.024 72.85 36.81
Median frequency [Hz] (8) 44.92 17.25 0.320 61.91 30.81
Onset [s] (7) -0.22 0.41 0.003 -0.03 0.22
Onset [s] (8) -0.09 0.44 0.391 -0.003 0.41
Offset [s] (7) 0.03 1.66 0.639 -0.13 1.66
Offset [s] (8) 0.22 1.52 0.030 -0.11 2.23
Time of amp decrease (peak to offset)[s](7) 6.41 1.85 0.048 7.58 1.96
Time of amp decrease (peak to offset)[s](8) 6.27 2.27 0.017 7.36 2.34
The digit in the bracket designates the channel number corresponding to the muscle.

In the endurance stage, across all six intervals, both channels exhibited variations in

average mean amplitude, which indicates the muscle’s ability to maintain activity over

time. Notably, for channel 8, there was a statistically significant increase in average mean

amplitude in intervals 3, 4, and 5 (p-values of 0.020, 0.011, and 0.009, respectively),

suggesting an enhancement in muscle endurance post-treatment. Channel 7 did not show

statistically significant changes in amplitude, indicating possible variability in response

to treatment or inherent differences in muscle characteristics between the channels. For

both channels 7 and 8, there was a significant increase in mean amplitude variability (p-

values of 0.033 and 0.022, respectively), indicating a greater fluctuation in muscle activity

levels in the later stages of the endurance test. This could suggest adaptive responses in

muscle activity to maintain function over prolonged periods, possibly reflecting an increase

in neuromuscular control and endurance post-treatment. In interval 1, only channel 8

showed a significant increase in median frequency from 41.80 Hz to 73.12 Hz (p-value

of 0.012), suggesting a shift towards higher frequency muscle fiber recruitment, which

is often associated with improved muscle efficiency and endurance. In intervals 3 and
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5, channel 8 exhibited significant increases in median frequency (p-values of 0.004 and

0.048, respectively), further supporting the notion of enhanced muscle function. Channel

7 did not show significant changes in median frequency, which might indicate a differential

response to treatment or distinct physiological characteristics compared to channel 8.

Table 4.28: Results of Endurance Stage

Parameter Name
Before

p
After

Mean SD Mean SD

Average mean amplitude interval 1 [µV] (7) 12.02 16.60 0.573 9.17 8.91
Average mean amplitude interval 1 [µV] (7) 12.02 16.60 0.573 9.17 8.91
Average mean amplitude interval 1 [µV] (8) 11.35 14.29 0.904 9.57 10.79
Average mean amplitude interval 2 [µV] (7) 6.29 4.76 0.629 8.49 7.94
Average mean amplitude interval 2 [µV] (8) 5.81 4.74 0.126 8.55 9.21
Average mean amplitude interval 3 [µV] (7) 7.62 6.04 0.376 9.82 6.40
Average mean amplitude interval 3 [µV] (8) 6.74 4.51 0.020 10.39 8.16
Average mean amplitude interval 4 [µV] (7) 7.28 4.98 0.334 9.60 6.00
Average mean amplitude interval 4 [µV] (8) 6.43 4.26 0.011 9.82 6.81
Average mean amplitude interval 5 [µV] (7) 7.35 5.97 0.171 9.42 5.66
Average mean amplitude interval 5 [µV] (8) 6.38 4.44 0.009 9.63 7.19
Average mean amplitude interval 6 [µV] (7) 7.65 4.43 0.683 9.51 8.46
Average mean amplitude interval 6 [µV] (8) 8.44 8.14 0.517 8.17 5.38
Mean amplitude variability interval 5[%] (7) 15.21 6.94 0.033 20.80 11.28
Mean amplitude variability interval 5[%] (8) 14.39 6.29 0.022 20.56 11.04
Median frequency interval 1 [Hz] (7) 43.62 23.47 0.542 54.94 26.23
Median frequency interval 1 [Hz] (8) 41.80 21.10 0.012 73.12 40.91
Median frequency interval 2 [Hz] (7) 50.39 24.27 0.094 43.63 26.52
Median frequency interval 2 [Hz] (8) 53.39 28.34 0.791 60.29 37.24
Median frequency interval 3 [Hz] (7) 54.44 29.06 0.893 55.21 39.71
Median frequency interval 3 [Hz] (8) 43.26 21.14 0.004 72.26 52.98
Median frequency interval 4 [Hz] (7) 38.24 19.51 0.340 55.79 34.38
Median frequency interval 4 [Hz] (8) 39.28 21.14 0.380 54.96 33.62
Median frequency interval 5 [Hz] (7) 39.69 20.13 0.048 64.25 46.21
Median frequency interval 5 [Hz] (8) 43.36 27.80 0.151 63.34 36.21
The digit in the bracket designates the channel number corresponding to the muscle.

The data show a reduction in mean amplitude post-treatment across all channels,

suggesting a decrease in muscle activity at rest, although the changes were not statistic-

ally significant. This could indicate improved muscle relaxation and reduced involuntary

muscle contractions, which are beneficial outcomes for patients with conditions like stress

urinary incontinence.

4.3.3 Discussion

Bertotto et al. [12] and Hagen et al. [48] suggest that a program involving pelvic

floor muscle exercises, with or without biofeedback, might be recommended for postmen-

opausal women experiencing stress urinary incontinence. This program shows potential

in enhancing both the neurofunctional capacity of the pelvic floor and the overall quality
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Table 4.29: Results of Post-baseline Stage

Parameter Name
Before

p
After

Mean SD Mean SD

Average mean amplitude [µV] (1) 5.17 7.41 0.145 2.44 1.55
Average mean amplitude [µV] (2) 4.78 5.72 0.983 2.94 2.61
Average mean amplitude [µV] (7) 2.41 2.20 0.573 2.00 1.53
Average mean amplitude [µV] (8) 2.68 3.11 0.904 2.18 1.67

The digit in the bracket designates the channel number corresponding to the muscle.

of life in this demographic. Özlü et al. [102], in their study, found that both home exer-

cises combined with intravaginal pressure biofeedback and home exercises with perineal

EMG biofeedback are more effective than standalone home exercises in treating stress

urinary incontinence among women. These methods exhibit similar efficacy and can serve

as viable alternatives. In a randomized controlled trial, Aukee et al.[11] demonstrated

a significant success rate of 68.8% using the home biofeedback method for pelvic floor

training. The improvement in the leakage index after a 12-week training period was in-

dicative of the effectiveness of this conservative treatment approach. However, Nunes et

al.’s research [96] indicates that pelvic floor muscle training (PFMT) with biofeedback

does not offer therapeutic benefits compared to alternative interventions such as no train-

ing, PFMT alone, and vaginal electrical stimulation for treating female stress urinary

incontinence. Nevertheless, Arnouk et al.’s review [8] highlights the benefits of pelvic floor

muscle physiotherapy and biofeedback for patients dealing with various dysfunctions in-

cluding bladder issues (incontinence, overactive bladder), bowel problems (constipation -

pelvic floor dyssynergia, fecal incontinence), pelvic organ prolapse, and sexual dysfunction

(pelvic pain). Moreover, Moroni et al.’s research [90] combining biofeedback with PFMT

shows uncertain effects on Quality of Life but demonstrates improved results on the pad

test. Notably, group PFMT is as effective as individual treatment, and home PFMT does

not consistently perform worse than supervised PFMT.

The results from our study provide compelling evidence of the efficacy of the treatment

protocol on muscle control and function. The ICIQ-LUTSqol SF scores improved signi-

ficantly from a mean of 10.93 to 6.46 post-treatment, with a p-value of 0.005, indicating

a substantial enhancement in the quality of life related to lower urinary tract symptoms.

This improvement underscores the clinical relevance of our intervention, emphasizing its

potential to significantly ameliorate symptoms and improve patient outcomes. Moreover

based on the Glazer Protocol outcomes, the treatment with EMG biofeedback telerehab-

ilitation solutions has a impact on muscle control and function, as indicated by the im-

provements in various parameters measured across the pre-baseline, phasic contraction,

tonic contraction, endurance, and post-baseline stages. The statistical analyses, partic-

ularly the use of the Wilcoxon test, underscore the robustness of these findings, with

several parameters showing significant improvements post-treatment. In the pre-baseline
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stage, the significant improvements in average mean amplitude across multiple channels

and intervals suggest that the treatment effectively enhances muscle control. The re-

duction in mean amplitude is indicative of decreased involuntary muscle contractions,

pointing to improved neuromuscular coordination and control. This is further suppor-

ted by the changes in the mean amplitude variability in certain stage intervals, which

suggest enhanced muscle response consistency. During the phasic contraction stage, not-

able improvements were observed in parameters such as average mean amplitude from

the rest phase, time before peak, contraction duration, and time of amplitude increase.

These changes are indicative of enhanced muscle function, including faster muscle ac-

tivation (reduced time before peak), more efficient muscle control (reduced contraction

duration and time of amplitude increase), and improved muscle relaxation capabilities.

Such improvements are critical for the effective performance of daily activities and could

significantly impact the quality of life for individuals with SUI undergoing treatment. The

tonic contraction stage results, particularly the significant increase in median frequency

for one of the channels, suggest more efficient muscle fiber recruitment post-treatment.

This efficiency could translate into better muscle performance and endurance, essential

for sustained muscle activities. Although not all changes in this stage were statistically

significant, the trends observed indicate positive shifts towards improved muscle function.

In the endurance stage, the significant increase in the time from peak amplitude to offset

for both channels implies improved muscle endurance. This enhancement in endurance

is crucial for daily activities and indicates that the treatment not only improves muscle

control but also contributes to muscle endurance performance improvements. The consist-

ent improvements across different stages and parameters of muscle function underscore

the efficacy of EMG biofeedback in telemedicine in enhancing muscle control, reducing

involuntary contractions, and improving overall quality of life for patients.

4.3.4 Conclusion

This study has highlighted the promise and challenges of using telerehabilitation for

stress urinary incontinence treatment. The research demonstrates the effectiveness of the

treatment protocol in significantly improving muscle control, function, and endurance, as

evidenced by improvements in ICIQ-LUTSqol SF scores and various muscle performance

parameters across pre-baseline, phasic, tonic, endurance, and post-baseline stages. The

significant reductions in involuntary muscle contractions, enhanced muscle fiber recruit-

ment, faster activation and relaxation times, and improved endurance collectively suggest

that the treatment offers a promising approach to managing SUI patients’ conditions af-

fecting muscle control and function. Future research should aim to explore the long-term

effects of this treatment and its applicability to a broader range of muscle-related condi-

tions, with the ultimate goal of enhancing patient care and quality of life. Analyzing EMG
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signal from pelvic floor muscles across each stage allows to dissect the rehabilitation pro-

gram’s effects on the pelvic floor muscles’ endurance, rapid response capability, baseline

conditions, and ability to maintain tonic contractions. This detailed stage-by-stage ana-

lysis helps identify specific areas of improvement or where further intervention may be

needed, ultimately guiding more effective and targeted pelvic floor muscle rehabilitation

strategies.

4.4 Automatization of rehabilitation - EMG-triggered

movement exercises

This section aims to showcase the outcomes of therapy that utilized feedback exer-

cises incorporating electromyography (EMG), torque, and positional data, facilitated by

a rehabilitation robot (HII.).

4.4.1 Material and methods

The study received ethical clearance from the Bioethics Committee of the District Med-

ical Chamber in Cracow, under the approval number NR 10/KBL/OIL/2019, on January

22, 2019. The results presented below constitute only an analysis of some of the data ob-

tained in the research, as the pilot study. There was involved a research group comprising

7 individuals who had experienced an ischemic stroke. The study was performed in “Reh-

Stab” Rehabilitation Clinic in Limanowa, Poland. The subjects participated in a two-week

exercise regimen, engaging in sessions five times a week. Each session lasted between 90

to 120 minutes, tailored to the patient’s specific condition. The rehabilitation approach

combined personalized standard physiotherapy with sessions using rehabilitation robot.

Therapeutic procedures focusing on the lower limb using Luna EMG rehabilitation robot

consist of:

• A 5-minute session of Continuous Passive Movement (CPM) of the knee’s flexion

and extension movements.

• A 10-minute period of exercises initiated by electromyography, where the activity

of the rectus femoris muscle (CH1) triggered the device’s support for extension the

knee.

• Another 10-minute session of electromyography-induced exercises, this time utilizing

the biceps femoris muscle’s (CH2) activity to engage the device’s assistance for knee

flexion.

• The regimen concluded with a 5-minute CPM session for lower limb
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The testing protocol included a 1-minute EMG-triggered movement exercise for the rectus

femoris muscle (CH1) presented in Figure 4.12, preceded 3-minute CPM for the knee to

warm up the participant. The assessment was conducted upon admission (S1) and then

again after a period of 2 weeks of therapy(S2). The comparison of the data before and after

Figure 4.12: Example of EMG-triggered test results

treatment were assessed through the Wilcoxon or t-student test, with the t-test student

being utilized for variables that followed a normal distribution (indicated by "*" in the

tables). P-values greater than 0.05 indicated that there was no significant difference.

4.4.2 Results

The Table 4.30 summarizes the results of the test comparing measurements taken

before (S1) and after 2 weeks of treatment (S2) across various parameters. The parameter

calculation was separated on extension movement (ph1) and flexion movement (ph2) for

knee joint. The study revealed significant improvements in specific parameters following

two weeks of therapy utilizing feedback exercises with the Luna EMG rehabilitation robot.

Notable changes were observed in the EMG readings and repetition times, indicating

enhanced muscle activation and performance efficiency. Key findings include:
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• A significant increase in EMG CH2 mean and max during phase 2 (p=0.022), sug-

gesting improved activation of the biceps femoris muscle.

• Repetition (Rep) maximal time for both phases 1 and 2 showed significant reductions

(p=0.047 and p=0.011, respectively), indicating quicker muscle response times and

ability to hold the contraction.

• Repetition minimum in phase 2 also improved significantly (p=0.047), further sup-

porting the enhanced efficiency in muscle responses and sustaining the contraction.

Despite these positive outcomes, some parameters such as EMG CH1 mean in phase 1 and

Torque mean in both phases did not show significant changes, highlighting the variability

in response to the therapy.

4.4.3 Discusion and conclusion

The current advancements, methodologies, and results of treatment with rehabilitation

robots employing EMG-triggered movement are thoroughly detailed in the Section 2.2.2.

The results underscore the potential benefits of integrating electromyography, torque, and

positional feedback in rehabilitation exercises for stroke survivors. The significant im-

provements in EMG CH2 parameters and repetition times suggest that targeted exercises

with the Luna EMG rehabilitation robot can enhance muscle activation and efficiency,

which are crucial for the recovery of motor functions in post-stroke patients. The lack of

significant change in some parameters may indicate the need for a longer therapy dur-

ation or the use of a different evaluation protocol to optimize rehabilitation outcomes.

The findings also highlight the importance of incorporating technological advancements

in rehabilitation practices to achieve better patient outcomes.

This pilot study demonstrates that rehabilitation exercises incorporating feedback

mechanisms, facilitated by the Luna EMG rehabilitation robot, can lead to significant im-

provements in muscle activation and efficiency in individuals recovering from an ischemic

stroke. The results suggest that such an approach could be a valuable addition to tradi-

tional stroke rehabilitation strategies. Future studies with larger sample sizes and longer

therapy durations are recommended to further investigate the efficacy of this rehabilita-

tion approach and to explore the potential for personalized therapy protocols.
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Table 4.30: Results of test before (S1) and after 2 weeks of treatment (S2)

Parameters S Mean SD CV[%] SEM p-value

EMG CH1 mean ph1
S1 44.88 45.62 101.65 17.24

0.469
S2 31.04 23.56 75.91 8.91

EMG CH1 mean ph2
S1 35.64 13.76 38.63 5.20

0.882*
S2 33.88 27.29 80.55 10.31

EMG CH2 mean ph1
S1 12.88 4.19 32.54 1.58

0.219
S2 21.35 12.80 59.93 4.84

EMG CH2 mean ph2
S1 11.23 3.06 27.20 1.15

0.022*
S2 20.22 8.54 42.22 3.23

Torque mean ph1
S1 8.72 11.61 133.09 4.39

0.938
S2 8.02 6.02 75.03 2.27

Torque mean ph2
S1 -4.74 6.08 -128.13 2.30

0.376*
S2 -7.32 4.25 -58.03 1.61

Rep time mean ph1
S1 4.31 2.03 47.05 0.77

0.109
S2 3.22 0.34 10.55 0.13

Rep time mean ph2
S1 3.22 0.53 16.41 0.20

0.209*
S2 2.89 0.40 13.99 0.15

EMG CH1 max ph1
S1 203.07 182.77 90.00 69.08

0.578
S2 123.62 63.97 51.75 24.18

EMG CH1 max ph2
S1 179.11 138.77 77.48 52.45

0.253*
S2 111.66 53.61 48.01 20.26

EMG CH2 max ph1
S1 41.07 13.49 32.84 5.10

0.131*
S2 72.17 48.97 67.86 18.51

EMG CH2 max ph2
S1 35.99 15.42 42.85 5.83

0.022*
S2 74.64 35.53 47.60 13.43

Torque max ph1
S1 24.86 23.94 96.28 9.05

0.469
S2 20.66 15.48 74.90 5.85

Torque max ph2
S1 9.96 7.93 79.61 3.00

0.257*
S2 6.17 2.88 46.77 1.09

Rep time max ph1
S1 6.56 3.41 52.07 1.29

0.047
S2 3.91 0.69 17.60 0.26

Rep time max ph2
S1 5.95 1.93 32.52 0.73

0.011*
S2 3.55 0.82 23.09 0.31

Number of rep
S1 10.00 3.16 31.62 1.20

0.497*
S2 10.86 0.69 6.36 0.26

Rep time min ph1
S1 2.27 2.10 92.40 0.79

0.600
S2 2.38 1.07 44.82 0.40

Rep time min ph2
S1 0.93 1.31 140.95 0.50

0.047
S2 2.12 0.61 28.65 0.23

* means T-student test results
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Chapter 5

Conclusion and future work

This dissertation has addressed a critical scientific challenge: the absence of compre-

hensive evidence supporting the effectiveness of methodologies and treatment protocols

in robotic-assisted diagnostics and therapeutic interventions. The primary goal of this

research was to lay the foundational methodological principles for an automated expert

platform that aims to augment, improve, and automate the processes of diagnosis and

rehabilitation.

The distinctive contribution of the author primarily lies in the analysis of bioelectrical

and biomechanical parameters based on muscle activity (EMG), torque, and position

measurement and the application of machine learning for objective assessments: differ-

entiating between healthy and affected individuals, and tailoring exercises to suit the

patient’s capacity based on the feedback loop. This integration enables a more objective,

efficient, and personalized approach to patient care. The focus of the studies was primar-

ily on upper limb movements, emphasizing elbow flexion and extension, and examining

the roles of the biceps and triceps muscles in isokinetic muscle force assessments (Section

4.1), as well as in evaluating spasticity and muscle stiffness (Section 4.2). Furthermore,

an another investigation delved into the application of EMG biofeedback for pelvic floor

muscles within the scope of telerehabilitation, utilizing a protocol conducted remotely

(Section 4.3). Moreover, research was conducted on the rehabilitation of knee movement,

triggered by EMG, focusing on the rectus femoris and biceps femoris muscles through the

use of a rehabilitation robot (Section 4.4).

The chosen bioelectrical and biomechanical parameters were validated for their ef-

fectiveness and objectivity in diagnostic and therapeutic processes through robot-assisted

procedures. Table 5.1 displayed the parameters that demonstrated good reliability among

individuals post-stroke and healthy groups, across different limbs or types of movement.

Results shown for assessment procedures in Tables 4.2 and 4.3, and Tables 4.12-4.20 con-

firming the hipotesis HI., and treatment procedures in Tables 4.25 - 4.29 and Tables 4.30

confirming the hipotesis HII.. The findings from the adopted methodology indicate the

feasibility of creating a cohesive system for the initiation and oversight of rehabilitation
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Table 5.1: Biomechainal and bioelectrical parameters with good reliability

Test
Parameters Group

Limb Tables

and movement with results

Muscle Force
Torque mean

Healthy
Upper limb

4.2 and 4.3
Peak torque Ext and Flex

Muscle Spasticity
Ch1 10 MNF

Healthy Left Upper limb 4.13, 4.14, and 4.16
Ch1 10 MDF

Muscle Spasticity
Ch1 10 Mean

Healthy Right Upper limb 4.12 and 4.16
Ch1 50 Mean

Muscle Spasticity
Ch1 10 Mean

Post-stroke Right Upper limb 4.17 and 4.18Ch1 50 Mean
Ch2 10 Mean

Muscle Spasticity
T 10 Max

Post-stroke Left Upper limb 4.19 and 4.20
T 100 Peak*

Muscle Spasticity
Ch2 10 Mean

Post-stroke Upper limb Ext 4.17 and 4.20Ch2 10 CC Peak
Ch2 50 Mean

Muscle Spasticity
Ch1 10 Mean

Post-stroke Upper limb Flex 4.18 and 4.19
Ch1 50 Mean

*Torque Peak means T Min for extension and T Max for flexion

processes (automation). Before commencing exercises, individuals undergoing rehabilita-

tion can undergo diagnostic evaluations. Subsequently, during the exercises, their move-

ments can be scrutinized to ensure adherence to the prescribed exercise protocols (utilizing

the feedback loop). This observation lends substantial support to the hypothesis proposed

in the dissertation. This approach effectively addressed the outlined scientific problem by

demonstrating the practicality and applicability of these parameters in enhancing patient

care.

Based on the research conducted, the following hypotheses were confirmed:

I. EMG signals complemented by torque and limb position, generated by

patients during machine-assisted diagnostic procedures, allow to object-

ively assess the patient’s condition.

II. EMG, complemented by torque and position measurements, when ap-

plicable, provide a complete set of signals facilitating biofeedback-based

effective rehabilitation, also in telemedicine solutions.

As we look to the future, it is clear that further research is needed to expand upon these

findings, including larger scale clinical trials and the exploration of additional diagnostic

and treatment protocols and parameters that could enhance the effectiveness of robotic-

assisted interventions. Additionally, the potential for integrating these technologies into

wider healthcare systems presents a promising avenue for improving access to and the

quality of rehabilitation services.
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In conclusion, this dissertation not only addresses a significant gap in the existing lit-

erature but also lays the groundwork for future innovations in the field of robotic-assisted

healthcare and automatization. The methodologies and findings presented herein have

the potential to significantly impact the way we approach diagnosis and rehabilitation,

leading to more personalized, efficient, and effective patient care.
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