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Abstract
Quality of Service (QoS), security, energy consumption, and cost (deployment and operational cost) are
key constraints in the design and provisioning of computer systems, networks. and ICT (Information and
Communication Technology) infrastructures. These metrics are tightly connected. Thus, modern computer
systems and networks should be designed and deployed in such a way as to find a reasonable tradeoff
between QoS, security. energy consumption, and cost. Queueing theory is a commonly used tool in such
studies. Queueing models based on Markov chains and diffusion approximation have been extensively used
to model problems in computer systems and networks. One such application of these models is to evaluate
the performance of queues (waiting lines of jobs. processes, data packets, energy packets, etc.) in computer
systems and networks. Diffusion approximation is well suited for the transient analysis of queueing systems
in computer systems and networks. It provides a methodology to perform a time-dependent analysis of the
performance metrics (queue size, waiting time, and probability of rejection when the storage memory is full
and subsequently arriving customers are rejected) as the parameters of the interarrival and service (process-
ing) times changes over time. Another advantage of the diffusion approximation modelling methodology is
the possibility of using realistic distributions of the interarrival and service times obtained from measured
data.

The packet sizes generated from access networks vary from a few bytes in IoT and wireless sensor net-
works to 1500 bytes in Internet Protocol (1P) networks. The transmission of massive amounts of small pack-
ets (sometimes with randomly varying sizes) generated by access networks through high-speed Internet core
networks to other access networks or cloud computing data centres has introduced several challenges such
as poor throughput, underutilisation of network resources, and higher energy consumption. Packet aggre-
gation mechanisms were developed to resolve these challenges. Packet aggregation mechanisms aggregate
smaller packets into a larger payload packet, and these groups of aggregated packets will share the same
header. hence increasing throughput, improving resource utilisation. and reduction in energy consumption.
In Chapter 2, we present a review of packet aggregation applications in access networks (IoT and 4G/5G
mobile networks), optical core networks. and cloud data centre networks. We also propose diffusion-based
analytical models that can be used to design and evaluate the performance of packet aggregation mecha-
nisms. We also demonstrated the use of measured traffic from real networks to evaluate the performance of
packet aggregation mechanisms using simulation and analytical models. Despite its benefits, packet aggre-
gation increases the packets’ delays and may not be suitable for traffic belonging to real-time applications.

Queues of packets or jobs are unavoidable in computer network devices (e.g., routers and switches) due
to the stochastic nature of the interarrival times of packets, processing and transmission times of packets, and
sizes of packets. Queueing also results from sharing limited computational and communication resources.
Queueing degrades the quality of service (QoS) experienced by users by increasing packet delays, packet
loss probability, and jittering experienced by multimedia traffic. Queueing theory models (e.g.., Markovian,
fluid flow, and diffusion approximation models) are very useful tools for the analysis of the performance of
computer systems and networks. In chapter 3. we present the architectures of hardware and software SDN
switches and model the flow matching (lookup) mechanisms used in these switches. We propose a tractable
diffusion approximation for both the transient and steady-state behaviour of a network router. Using these
results, we show that when SDN switches change the paths of flows frequently, the network’s behaviour

may often be far from its steady-state behaviour. In chapter 4, we present an overview of flexible routing
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in SDN-based networks. We extend the methodology developed in chapter 3 to the time-dependent analysis
of multiple SDN switches using diffusion approximations, which are very convenient to analyze in a time-
dependent regime.

Markovian, fluid flow, and diffusion approximation models have recently been adapted to model the
energy depletion process in battery energy storage systems for computer systems and ICT infrastructures.
One of the most important criteria is minimizing energy consumption in designing and deploying battery-
powered computer systems (e.g., [oT devices, mobile phones, UAVs). Energy consumption in battery-
powered computer systems and network devices can be reduced by using energy-efficient hardware. soft-
ware, and protocols. If the energy stored in the battery is completely drained, the computer system or network
device is shut down. Thus. modelling energy consumption in battery-powered computer systems and net-
works and modelling the energy depletion process in batteries is essential. In chapter 5. we apply a diffusion
or Brownian motion process to model the energy depletion process of a battery of an IoT device. We use the
model to obtain the probability density function, mean, variance, and probability of the lifetime of an ToT
device. Also, we study the influence of the active power consumption, sleep time, and battery capacity on
the probability density [unction, mean. and probability of the lifetime of an loT device. We use numerical
examples to study the influence of battery depletion attacks on the distribution of the lifetime of an loT de-
vice. We also introduce in our model an energy threshold after which the device’s battery should be replaced
to ensure that the battery is not completely drained before it is replaced.

The energy-harvesting technologies to harvest energy from external energy sources in the environment
such as solar, thermal, wind, and vibration to power computer systems or to replenish the energy drawn
from the batteries attached to these systems enable them to operate longer with minimal energy-related
interruptions. Thus, an effort to ensure higher efficiency of the harvesting and more economical performance
of these devices is necessary. In chapter 6, we present an architecture of a green base station site. We develop
Markovian and diffusion approximation models to analyze the steady-state and transient-state performance
of battery energy storage systems. We apply the Markovian and diffusion approximation model to derive the
time after which the battery energy storage system is completely discharged or fully charged. By assuming
that the energy harvesting and the energy consumption processes are exponentially distributed. we compare
the result obtained from the Markovian model to those from diffusion approximation models.

Therefore, diffusion approximation is a practical tool for analysing the performance of computer systems
and networks as it allows the use of measured packet interarrival times and packet service times (processing
and transmission times) distributions. Tt is useful for analysing the transient behaviour of QoS parameters
in SDN-based networks resulting in frequent changes in the flow forwarding rules in the SDN switches.
Transient Markovian and diffusion models are suitable for modelling the energy depletion process in battery
energy storage systems for computer networks and networks with stochastic energy harvesting and energy

CoNsSUMption processes.






Chapter 1

Introduction

The intensity of traffic transported by computer networks has complex stochastic nature. Since the in-
terarrival of packets into the buffers in network equipment and the time required to process or transmit
packets are random. packets are queued up in buffers before they are processed or transmitted. The time
that packets spend waiting in buffers and the time required to process or transmit the packets constitute the
delays experienced by he packet along the path from the source to the their destination. The formation of
queues degrades the Quality of Service (QoS) experienced by the users of the networks as it causes packets
to be delayed significantly from the time they are generated to the time that they are delivered to their des-
tination. When the delay experienced by the packets varies, it introduces a jitter, which degrades the QoS
experienced by users receiving multimedia traffic. Queueing also causes packet losses due to the dropping
of packets when the buffers are full or when packets are dropped earlier as an active queue management

mechanism to prevent buffer overflows.

Queueing theory is a valuable tool in the design of computer networks and their performance evaluation.
Usually, queueing models attempt to abstract the behaviour of a network of routers as a network of queues
and then use queueing theory to analyse the performance of a network device or a given network of devices.
They help to estimate the overall transmission time and quality of the transmission. They are still being
developed and applied to evaluate the performance of newly proposed network architectures and protocols,
e.g. Software Defined Networks. the Internet of Things, and Cloud computing. The majority of models are
limited to the analysis of steady states. It means that flows of packets considered in models are constant,
and the obtained solutions do not depend on time. It is in glaring contrast with the flows observed in real
networks where the perpetual changes of traffic intensities are due to the nature of users, sending variable
quantities of data, multimedia traffic, and also due to the performance of traffic control algorithms which are
trying to avoid congestion in networks, e.g. the algorithm of congestion window used in TCP protocol which
is adapting the rate of the sent traffic to the observed losses or transmission delays. However, the analysis of

transient states is much more difficult and complex.

Network planning and optimisation engineers often use queueing theory to enable them to select the
specifications for their hardware resources or upgrade the network resources to match the expected user
demand with an acceptable QoS and return on their investments. The models are also used to study the
influence of network or network device parameters on the QoS metrics of the network. The models may also

reflect the software feature of transmission protocols, congestion avoidance rules, and routers’ scheduling
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Figure 1.1: An architectural model consisting of access networks, Internet core networks and the cloud data

centre.

rules. Traditionally, steady-state queueing models have been used for network design and optimisation as
traffic changes in the network are not too frequent. After some time, the network attains a steady state.
With the recent introduction of the Software Defined Networking (SDN) paradigm in which the routing
decision is shifted from the router to a centralised server called the controller, the network may frequently
be in a transient state. The data plane devices constantly collect data about the network’s security, energy
consumption and QoS parameters and send it to the controller, which then uses this information to perform
route computations and update the packet forwarding rules in the routers. If this happens frequently, the

network will constantly be in a transient state.

In this dissertation, we abstract a computer/telecommunication network architecture into a simplified
architectural model shown in figure 1.1. It consists of the access, core, and data centre networks. Users
access the services of telecommunication operators or internet service providers through access networks
such as Digital Subscriber Line (DSL), Ethernet local area networks (LLANs), Fiber-to-the-Home (FTTX),
wireless LANs, mobile networks (e.g., 3G, 4G. and 5G), and the Internet of Things (IoT) access networks.
The traffic generated by users connected to a given access network is transported through the core networks
to users connected to other access networks or data centres (for users that want to access cloud services).
The sizes of packets generated by various access networks vary significantly from tiny packets generated by
ToT access networks (of just a few bytes) to TP packets (of more than a thousand bytes). The vast amounts
of packets generated by access networks are usually aggregated into larger packets to increase throughput
efficiency and reduce processing overhead.

Packet aggregation involves the assembly of smaller packets into larger ones. Packet aggregation provide
many benefits at the level of core netwarks, such as increased spectral efficiency, energy efficiency. optimal
resource utilisation [10], simplified traffic management, and significantly reduce protocol and signalling
overhead. Tt significantly influences the networks™ overall performance in terms of packet delay and packet
losses. Therefore, packet aggregation and transmission queue management mechanisms must be carefully

designed and parameterised.

Recently, queneing theory has been adapted to model battery energy storage systems for computer sys-



tems powered by batteries. e.g. [87, 88, 89, 100, 90, 95,91, 73, 72, 125, 83, 123, 243]. The energy consump-
tion of computer systems is not fixed. It varies with its computational demand and the number of packets
processed or transmitted. One of the sources of randomness in the energy consumption of some computer
systems is that users initiate computation, processing, or transmission of data at random times. Some com-
puter systems are powered by batteries continuously recharged by energy harvested from renewable energy
sources. The amount of energy generated by renewable energy sources sometimes fluctuates randomly with
random environmental changes. The random fluctuation in the amount of energy harvested and delivered
to the battery and the amount of energy drawn from the battery to power the computer system triggers the
need to use stochastic models to analyse the dynamic changes in the battery’s energy content. Stochastic
modelling of the battery makes it possible to size the battery and estimate the time after which the energy
stored in the battery could be completely depleted.

One of the approaches to analyse the dynamic changes in the amount of energy present in the battery at a
given time with randomly changing recharging and energy consumption processes is to represent the energy
present in the battery in discrete energy units, also called energy packets [87, 88, 89]. An energy packet is
the minimum amount of energy required to transmit a single data packet or process a single job by treating
the charging process as the delivery of energy packets into the battery and the energy consumption process
as the departure of energy packets from the battery. Traditional queueing theory models can therefore be
employed to estimate the battery’s energy content at a given time, to size the battery, estimate the probability
of completely draining or overcharging the battery. and the time required to drain the energy stored in the
battery completely. Since energy is a continuous quantity, the changes in the amount of energy in the battery
could be considered to be analogous to the changes of a fluid in a reservoir or can be approximated by

diffusion or the Brownian motion process, as discussed in Chapters 5 and 6.

1.1 Contribution and thesis

Markovian and diffusion approximation models are not new and have been well developed and applied
to model random processes in engineering, finance, physical science, and computer science. They are often
used for the performance analysis or evaluation of computer systems and networks. In this dissertation,
we adapt existing Markovian and diffusion approximation models to evalaute the performance of packet
aggregation algorithms, SDN switches. a network of SDN switches, and battery energy storage systems for
computer networks (with and without energy harvesting sources to replenish the energy drawn from the
battery).

Most of the research work in designing and optimising SDN networks was based on the assumption that
the network is always in a steady state. They are also based on the assumption that the interarrival time dis-
tribution follows a Poison process and that the service times are exponentially distributed. We analysed the
functional behaviour of SDN switches and abstracted them into simple queueing models. We then adapted
the G/G/1/N diffusion approximation model to evaluate the performance of the queues of packets in SDN
switches. Since there is no restriction on the distribution interarrival and service time distributions, we used
actual traffic data from the CAIDA data repository. The service time distribution was based on the SDN
packet processing models we developed. We modelled the mechanism of searching software, and hardware

flow tables in SDN switches to determine the service time distribution. We then extended the diffusion ap-
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proximation model of a single SDN switch that we proposed to model the transient-state behaviour of a
network of SDN switches (a queueing network of SDN switches).

We also applied the transient solution of diffusion or Brownian motion process to develop performance
evaluation models of packet aggregation mechanisms that improve bandwidth and energy efficiency in loT
over IP networks, IoT over mobile networks (3G/4G/5G), TP over optical networks. and in data centre
networks but introduces significant delays. We validated the accuracy of the proposed models using discrete
event simulations. Our models are more realistic because we used actual traffic data from the CAIDA data
repository to analyse the performance of the packet aggregation mechanism that has been implemented in
commercially available routers, swilches, and server machines.

We also applied the transient solution of Markovian and diffusion processes to develop models of the
energy depletion process of battery energy storage systems used to power computer network devices (e.g.,
10T devices, Fog computing nodes or access network nodes). Then, we used the models to estimate the
device’s lifetime (Time-To-Failure or Time-To-Shutdown) when all the stored energy is completely depleted.
We also demonstrated the application of these models to analyse battery depletion attacks. We also proposed
using these models to model battery energy storage systems in the presence of energy harvesting sources.
We derived the time after which the battery energy storage system is completely discharged or fully charged.
By assuming that the energy harvesting and the energy consumption processes are exponentially distributed,
we compared the result obtained from the Markovian model to those from diffusion approximation models.

The thesis of this study can be stated as [ollows:

The diffusion approximation modelling formalism is a realistic and data-driven modelling technique that
overcomes the limitations of other queueing theoretic techniques (e.g. Markov chains and fluid flow) for the
transient analysis of Quality of Service (QoS) metrics in networks with time-dependent dynamic routing
protocols (e.g., Software Defined Networking (SDN) core networks); and for the transient analysis of the

energy depletion process in energy storage systems (ESS) in computer network infrastructure,

1.2 The tradeoff between QoS, security, energy, and cost

Quality of Service (QoS), security, energy consumption, and cost (deployment and operational cost) are
key constraints in the design and provisioning of computer systems, networks, and ICT (Information and
Communication Technology) infrastructures. In the early stage of the design. deployment, and provisioning
of computer systems, networks. and ICT infrastructures. performance (QoS) and cost were the most critical
constraints. The main objective was to improve the QoS experienced by the users to satisfy the users at an
affordable cost.

Security became a significant problem as almost every computer system became connected through
large-scale computer and telecommunication networks or the global internet infrastructure. However, imple-
menting security mechanisms in designing and deploying computer systems and networks often limits QoS.
It is because security mechanisms involve computationally expensive operations and limit the resources
available for processing packets or user jobs [188]. Hence, the quality of service is degraded as reliable but
computationally expensive security mechanisms are implemented in computer systems, networks, and ICT
infrastructures.

Although security mechanisms protect computer systems, networks, and ICT infrastructures against se-
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curity breaches that could result in service interruptions, loss of confidentiality, malicious data manipulation.
information theft. and financial losses, the implementation of security mechanisms also increases capital or
operational expenditures (Capex/Opex) [226]. Therefore, when designing and deploying secure computer
systems, networks, and ICT infrastructures with acceptable QoS, we should consider the financial cost and
ensure a reasonable tradeoff between QoS, security, and cost.

Since the 1980s, there has been a large-scale adoption of 1CT technology to improve efficiency, QoS,
and productivity in every sector of the modem economy and society (e.g., governance, finance, manage-
ment, accounting, healthcare, manufacturing, telecommunication, retail, transportation, logistics, tourism,
agriculture, entertainment, research, and development, etc.). The emergence of the World Wide Web and the
modern Internet in the mid-1990s accelerated the digital revolution, with internet users increasing from 390
million in 2000 to 4.6 billion in 2021 [189]. Also, Internet of Things (10T) technologies, together with other
technological advances such as big data analytics, Artificial Intelligence (Al), automation, and unmanned
electrical vehicles (e.g., self-driving vehicles and drones), are currently being used to transform every sector
of the economy or society (e.g., agriculture, transportation, healthcare, manufacturing, security. etc.).

The increase in the number of computer networks and the size of networks (from access networks, core
networks, to data centre networks) have caused the amount of energy consumed by ICT systems to increase
significantly. In 2018, it was estimated in [71] that ICTs account for between 5% and 9% of the total elec-
tricity consumption and that by 2030, this figure could increase to between 10% and 20%. Mechanisms
implemented to improve QoS and security of computer systems and networks also increase the amount
of computation and communication; hence, the energy consumption of computer systems and networks
also increases. Using dedicated hardware modules like Binary or Ternary Content Addressable Memory
(BCAM/TCAM) to improve the processing speed of routers and switches significantly increased energy
consumption as BCAMs/TCAMs are power-hungry hardware modules. Also, it should be noted that as the
amount of computation and communication increases, the amount of heat generated by computer systems
also increases, and an additional amount of energy is required for cooling. The increase in energy consump-
tion often increases the energy bills incurred by ICT operators or service providers: hence, the operational
cost increases in the case of mobile network operators, 70% of their energy bills resulting from the massive
number of base stations deployed within the radio access networks[247].

In designing and deploying battery-powered computer systems (e.g., loT device, mobile phones, UAVs),
minimising energy consumption has been the most crucial design parameter. Because of the energy limi-
tation in the design and deployment of battery-powered computer systems and networks, energy-efficient
hardware, software, and protocols are used. Security mechanisms that provide an acceptable level of security
without sacrificing the QoS and quicking draining the battery are used. Also, the mechanisms implemented
to reasonably improve the QoS and security of computer systems and networks, and to minimise their en-
ergy consumption, should not drive up the cost or make the device unaffordable or less competitive. The
critical energy constraint in the design and deployment of battery-powered computer systems can be relaxed
by harvesting energy from the environment to replenish the energy drawn from the battery.

Figure 1.2 illustrates the relationship between QoS, security, energy consumption, and cost. These met-
rics are tightly connected. Modern computer systems and networks should be designed and deployed in such
a way as to find a reasonable tradeoff between QoS, security, energy consumption, and cost. Therefore, a

reasonable tradeoff should be maintained between QoS. security, energy consumption, and financial cost
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Figure 1.2: The QoS, security. energy. and cost tradeoff.

when designing and deploying computer systems and networks.

1.3 Background of performance modelling and motivation

Architects and designers of computer systems and networks often use experimental test beds, real com-
puter systems (or networks), simulations, or mathematical modelling for planning, dimensioning, optimi-
sation, and performance evaluations of their computer systems or networks. When studying or deploying
computer systems and networks, they must carefully select design parameters and understand their relation-
ship with the performance metrics of interest. Experimental testbeds are very costly and time-consuming (o
set up and conduct experiments. The difficulties of using experimental test beds can be overcome with com-
puter simulations and mathematical modelling. However, the results obtained from experimental test beds
are very realistic as simulations and mathematical models cannot reproduce or describe some behavioural
aspects of computer systems and networks.

Simulation is a software approach to create a virtual environment that emulates (reproduces the function
or action) the behaviour of a physical system to study its performance or properties. Computer simulations
enable the architect or designer to create an abstract model of the computer system or network under study to
emulate the interaction between the various relevant entities of the computer system or network. Mathemati-
cal modelling of computer systems and networks is the process of describing or analysing computer systems
and networks using mathematical concepts, equations, or language. It provides a rigorous understanding of
the relationship between the computer system'’s or network’s design parameters and the performance metrics
of interest.

Therefore. in situations where closed-form mathematical models can conveniently approximate the com-

puter system or network under consideration, it is preferable to analyse or estimate its performance using
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the closed-form analytical model without spending considerable time performing simulation studies or ex-
perimental setups. However, the limitation of closed-form mathematical models is that they are developed
using simplifying assumptions that may deviate from reality. Also, some mathematical models are very dif-
ficult to solve analytically and are solved numerically using sophisticated numerical algorithms, requiring
a significant amount of time. Thus, computer simulations are relatively time-consuming when compared to
mathematical modelling is only sometimes true. In practice, both simulation and mathematical modelling
are used for the analysis and evaluation of the performance of computer systems and networks. The accuracy
of mathematical models is often validated using computer simulations.

Most mathematical models used for analysing and evaluating computer networks were developed using
queueing theory. Queues are inevitable in computer systems and networks due to the occurrence of random
events (e.g., the arrival of packets or jobs at a random time and random times required to process packets
or jobs) and the sharing of scarce resources (e.g.. CPU, the Random Access Memory (RAM), the buffers,
the disk, the data bus, switching fabrics, and the ports) between the packets, jobs or processes. Queueing
theory has been the cornerstone of network performance analysis. Stll, network practitioners have always
avoided queueing theory analysis in favour of simulations because of the need to understand the complex
mathematics involved [16].

Queuing models were first proposed more than a hundred years ago by Agner Krarup Erlang for the
evaluation of the performance of the Copenhagen telephone exchange. Also, the traffic analyst and the then
director of Norwegian Televerket (now Telenor Group), Tore Olaus Engset, proposed queueing models for
the analysis and evaluation of the performance of telephone exchanges. Their analysis was based on Marko-
vian models. To apply Markovian models in the analysis of telephone exchanges, they assumed that the
request for new connections follows a Poisson process and the duration of the connections is exponentially
distributed. Many mathematicians, like Kolmogoroy, Khinchin, Crommelin, Palm, and Takécs. contributed
to the development of queuveing theory, and their models found many applications[48], one of them being the
performance evaluations of computer systems and networks. They were later adapted for analysing and eval-
uating the performance of computer systems and packet-based computer networks. There were also adapted
and used to analyse the transient behaviour of queunes in computer systems and networks, as the intensity
of traffic flows generated by users or applications (e.g. internet applications) is permanently changing [60].
Recently. Queueing models have been adapted for modelling battery energy storage systems for computer
systems and networks, as discussed in chapters 5 and 6.

To use Markovian models to analyse or evaluate the performance of computer systems or networks,
it is often assumed that the interarrival times ol packets, jobs, or processes to a queue to be processed by
a shared resource follows a Poison distributed and that the processing times are exponentially distributed.
Markovian processes are used to model systems with limited memory. Therefore, Markovian processes are
stochastic processes that have "memoryless" property in which the future of the process depends only on
the present state, regardless of its history. They are used to model systems in many fields, including com-
munication, transportation, image processing, bioinformatics, project management, mathematics. physics,

finance. etc.[119]. A Marlovian process satisfies the "memoryless" property often expressed as:

P X(ty) =an + X)) =20, X(ta-1) =20 — 1, +---+, X(11) = 2]
= P[‘X—(tN‘f’l = 'I'.ﬂ‘fl|‘-x—(tfi) = .T.‘”] (1.1)
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Where t; < fp < -++ < 1, < t,41 and z; is an element of discrete state space. It means that if the set of
random variables (X, ) form a Markov chain, then the probability that the next state is (X, 1) depends only
on the current state (X, ) and not on the previous state. Hence, the Markovian process is an evolutionary time
process in which the future states of the process depend entirely on the present state and are independent of
its history or past states.

Markovian processes can be broadly classified into Discrete Time Markov Chains (DTMC) and Contin-
uous Time Markov Chains (CTMC). In DTMC, the transitions from one state to another happen at fixed or
discrete time instances. In CTMC., the transitions from one state to another happen at random times chosen
from a continuous interval. There are two sources of randomness in CTMC: the first is an embedded discrete
time jump chain (that is, considering the Markov process at the moment at which a change of state takes
place) and exponentially distributed holding times (that is the sojourn which the Markov process spends at a
particular state follow distribution). In this dissertation, we considered CTMC. Consider a CTMC in which
a process can only jump forward to the next state or return to the previous state (from which it left): then,
the transition rate from state 7 to state j is given by:

F;;(At)

= iy 2 H 2
% = Jm, s 2

Pj(t) = P[Xp+s| = j|1Xs =]

Where P;;(t) is the state probability that the Markov Process will be in state j after the time interval 7,
given that it is currently at state 7 at time 5. Whenever a CTMC enters a state /, it spends an amount of time
called the dwell time or the holding time that is exponentially distributed. At the end of the expiration of the

holding time, the process makes a transition (jump) to another state j with a probability P;; [119] where
Y. By=1 (1.3)
]

Suppose that after a short time Af, the CTMC can make jumps into and out of the state 7 then the
probability that the chain will be in state 7 at timer is the sum of all flows into and out of the state i given by

Chapman-Kolmogorov equations for continuous time Markov chains as:

Pyt + At) = P(t)[L — D i At + > Py(t)gsudt

i it
Pi(t+ At) — Pi(t) = Pi(t) Y qiyAt+ Y Py(t)gjidt
JFi JF#
Pi(t + At) — Py(t
R D e
Ve J#i
. Bi(t+At) = B(t)  dR(t) : _
AL}EIU At T d Rt) Z i+ Z Py(6); A
J# J#i
(1.5)
Equation ((1.4)) can be wrillen in a compact form as
'ﬂjf” = P(HQ (1.6)
[#15
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where P(t) = [Pi(t), Pa(t). Ps3(t) - - Py(t)--] is the state probability vector, which in the context of

queueing systems represent the probability of having n number of customers in the queue at time £ and.

11 M2 q13 Q4.

g1 g2 g2o {24...
Q=

31 G332 434

is the rate transition matrix or the intensity matrix. In steady-state (i.e., as t — — > o0), ”i"m“ =0, P(t) =
[P (t), Polt), Ps(t) -+ Py - -] becomes P = [Py, Py, Py~ P, - -] the the system of equations in (1.4) and
(1.6) becomes a system of linear equations. Its transient solution can be expressed in the form
P(t) = P(0)e? = i ((i—'l)* (1.7)
k=1 '
Where P(0) is the initial condition.

The most simple Markovian queueing system is the infinite capacity queueing system written in
Kendell's notation as M/M/1. The first and second M in the notation means that the interarrival time of cus-
tomers (jobs) follows a Poison process, and service times are exponentially distributed. Notation | means
that only a single server is processing the jobs. M/M/1 model is straightforward and has been used to model
many queueing systems in many fields, including computer networks. In computer systems and networks,
packets, jobs, or processes waiting to be processed are stored in memory that is limited in capacity. Thus,
M/M/1/N queueing systems are preferable: [V is the size of the memory or buffer. The packets or jobs com-
ing when the system is full are dropped or lost. Markovian queueing systems with more than one server
can be wrilten in Kendall’s notation as M/M/c and M/M/c/N, where ¢ is the number of servers. Well-known
Markovian models like M/M/1, M/M/I/N, M/M/c, and M/M/c/N have closed-lorm steady-state solutions
and are widely used to model queueing-related problems.

For queueing models in computer systems and networks, the performance metrics that are often required
include the mean number of packets or jobs waiting in the queue to be processed (mean queue size), the time
that packets or jobs spend waiting in queues (waiting time), and the probability that the storage space will
be filled and newly arriving packets will be dropped (blocking probability). After determining the state
probabilities from the queueing model, the mean number of packets present in the queue can be determined.
The mean waiting can be determined using Little’s law (dividing the mean number of packets in the queue
by the mean arrival rates of packets). The blocking probability is the state probability Py (f) or Py (the
probability that there are N packets in the queue at time f or in steady-state). When the number of packets
waiting in the queuve reaches IV, then all the waiting space is occupied any subsequent packets or jobs that
attempts to join the queue will be dropped or rejected.

The main disadvantage of using Markov chains to model queueing-related problems and other problems
in computer systems and networks is the so-called "state explosion” problem, especially for complex systems
with large states. Each state of the Markov chain corresponds to one state of the system, and the number
ol equations cquals the number of states. As the number of states increases, the system of equations to
be solved significantly increases. The system of equations describing the Markov chain of the modelled

system can be solved using well-known numerical methods and software packages (e.g.. MATLAB). The
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steady-state solution of the Markov chains can be obtained using Markov solvers (QNAP [198]. XMARCA
[221], PRISM [152]). We used PRISM to solve a complex Markov chain (for a Markovian model) for
the aggregation of shorter packets into larger ones in [232]. A software package called Olymp [191] was
developed by some of our colleagues at the Institute of Theoretical and Applied Informatics, Polish Academy
of Sciences (IITiS-PAN) to solve Markov chains with a large number of states. The transient solution of
the Chapman-Kolmogorov equations describing the Markov chains can be solved using the Runge-Kutta
Method (e.g., [ 148, 151, 147].

Another drawback of using Markov chains to model queueing-related problems and other types of prob-
lems in computer systems is the assumption that the interarrival times of customers or jobs follow a Poisson
distribution and that their service times are exponentially distributed. In reality. these assumptions are not
always valid as real systems exhibit complex behaviour behaviours that make the distributions of the interar-
rival and service times deviate from exponential distributions. As a result, queueing models with general in-
terarrival and service time distributions were developed (e.g., G/G/1, G/G/1/N. G/G/c, and G/G/c/N), where
G in Kendell's notation means that the distributions of the interarrival and service times are not restricted o
any of the well-known distributions.

Since the assumption that the interarrival times follows a Poison distribution and that the service times
are exponentially distributed is not always true in reality, approximate queueing models have been proposed
to model queueing systems without any restrictions on the interarrival and service time distributions. For an
M/G/1 queue, the approximation for the mean queue size was by Pollazcek and Khintichine in the 1930s
(the so-called Pollazcek-Khintichine formula) [37]. Well-known approximations for the mean queue size
for G/G/1 queueing systems were proposed by William G. Marchal [171] and also by W. Kraemer and M.
Langenbach-Belz [142]. Approximate models also eliminate the "state explosion problem" as these models
are scalable for any number of states or number of customers present in the queue and for studying network
protocols (e.g.. TCP-IP protocols)[234].

Another modelling method often used to approximate queueing models is the fluid flow approximation.
Fluid flow approximation has been used in [48] to model queues in computer systems and networks. The
limitation of fluid flow approximation is that it can be used to estimate only the average queue size. Still,
information about the variance or the queue size distribution needs to be obtained. In modelling queues in
computer networks, information about the variation of the queue size is important as can provide information
about the maximum jitter (or peak-to-peak) jitter, which is an important performance metric for multime-
dia traffic. Fluid flow models are less complex and are, therefore, suitable for modelling large computer
networks.

A more complex approximation that caters for the limitations of fluid fiow approximation is diffusion
approximation. Diffusion approximation queueing models are based on the approximation of the changes in
the number of customers (packets or jobs) present in the queue by a Brownian motion or diffusion process. A
diffusion process is a strong Markov process with continuous time and continuous space (continuous sample
path), [106]. Unlike Markov processes discussed above, diffusion processes are stochastic processes whose
state space is the continuum of real numbers. and their state changes or transitions occur at all times. That is,
within a short time interval, a diffusion or Brownian motion process can only undergo a small displacement
or change of state. The occurrence of Brownian motion was first observed by Robert Brown in 1827 when

he observed that when pollen grains are suspended in a fluid, they undergo random displacements due to
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collision or bombardments with molecules of the fluid. 80 years later, in 1905, Albert Einstein developed
a satisfactory theory to explain the phenomenon of diffusion or Brownian motion. A rigorous theoretical
foundation of Brownian motion was developed by Norbert Wiener in 1923 and is sometimes referred to
as the Weiner process. Therefore, diffusion processes are Markov processes. The state space is continuous
[44].

Diffusion processes are frequently used to model or approximate more complex and analytically in-
tractable stochastic processes. Kobayashi proposed the use of diffusion approximation to solve non-product
form queueing networks: he obtained the equilibrium queue distribution [133] and the nonequilibrium (tran-
sient) queue distribution [134] for queues in a network. The use of reflecting barriers (the probability of
the empty queue is zero) limited the models to cases of heavy traffic. The introduction of the barriers with
instantaneous jumps by Gelenbe [85, 101, 86] enhanced the method's precision, which has been used in
this form since then. A proposition by Czachorski of an analytical-numerical algorithm to solve diffusion
equations ([48, 52, 60, 61]) made the approach relatively easy in the case of transient states analysis.

Consider a queueing system in which customers (e.g., jobs or packets in the case of a computer system
or network device) arrive with a mean rate A and are processed with a mean service rate of g Let A(t) be
the cumulative number of customers that have arrived at the queueing station up to the time ¢ and S(t) be
the cumulative number of customers that have been served up to time # (assuming that after a customer is
served. it immediately leaves the server). The number of customers present in the queueing station at time ¢
is

N(t) = A(t) — S(1) (1.8)

The changes in the number of customers present in the queuneing station within a small time interval [t -+ A]

is

N(t+A) —N({t) = A(t+A)—A(t)—S(t+ A)—S(t) (1.9)
AN(t) = AA(t) - AS(1)

If the interarrival time and service time processes are both independent and identically distributed and A
is sufficiently large such that many events (arrival of customers into the queue and departure of customers
from the server) occur between the time interval { and ¢ + A, then the changes in the queue size AN(f)
are approximately normally distributed with mean E[AN(1)] = (A — p)A and variance var[AN(t)] =
(C2N + CEu)A [133]. Where C% = 0%A? and '3 = o3 p” are the squared coefficients of variation of
the interarrival and service time distributions. The parameters a:‘i and o’f:‘ are the variance of the interarrival
time and service time distributions, respectively.

Therefore, to model a queueing station using diffusion approximation, the discrete-state process,
{N(t),t = 0}, of the number of customers in the queue is replaced by an appropriate continuous-state
diffusion process, { X (i}, ¢ > 0}, the changes of which d.X (1) = X (t +A)— X (¢) are normally distributed
with mean (#A) and variance («A), where [, and o are coefficients of the diffusion equation that describes
the dynamic evolution of the process. The stochastic partial differential equation that describes the dynamic

evolution of the diffusion process is given by [44]:

Af (e, lixg) % (@t 20) B ﬁ?),-"(.r. t:xp)

. 1.10
el 2 dw? du ( )

17



Its solution defines the conditional probability density function (PDF) f(w, t; a0} = Ple € X(t) < x +
dr | X(0) = x| of the process X(t), approximating the number of customers present in the queue at
time t. Both processes X (t) and N(t) have normally distributed changes with a mean (drift velocity or
mean changes in the queue size) 7 = A — p, and variance (variation of the changes in the queue size)o =
‘7?‘. A? a%;.{a = C"ﬁ.\ + C'%,{L where A is the arrival rate and g is the service rate, ensures the same ratio
of time-growth of mean and variance of these distributions (i.c.. the queue utilization, p = ﬁ). Since the
queue size must be positive, boundary conditions such as absorbing barrier [44]. reflecting barrier [40], or
elementary return boundary [85] are commonly used to constraint the diffusion process to the positive x-
axis. The diffusion approximation principle and its application in modelling computer networks and battery
energy storage systems for battery-powered computer network devices are discussed in chapters 2.3.4.5 and

6.

The features that are in favour of the diffusion approximation are:

+ Diffusion model of a single server assumes general interarrival and service time distributions going

beyond Markov models.

* Network models may have any topology. hierarchical, and having any number of nodes (easily scal-

able).

» The results are obtained in the form of queue distributions and waiting time distributions, making it
easier to analyse the QoS of paths, e.g. jitter. An alternative method, the fluid-flow approximation,
frequently used in large topologies and transient analysis, delivers only mean performance parameters

and introduces larger errors.

-

Easy separation (decomposability) of each node within a network model - the interactions among

nodes are reduced to the computation of the input low parameters at each node.

Model may include classes of packets, which makes it possible to model quencing systems of com-

puter systems and networks where the packets or jobs belong to different classes of service.
» Natural ease to analyse transient states based on the solution of diffusion equations.

» The transient state model is solved step-by-stem in short time intervals with parameters specific to
these intervals. making them suitable for the analysis of the transient behaviour of the performance

metrics (mean queue size. mean waiting time. or blocking probability).

Since dilfusion approximation uses the mean and variance (or squared coefficient of variation) of the in-
terarrival and service times distribution, they offer a more realistic approach to modelling practical queueing
systems. These parameters can be derived from historical measurements in real systems and used for theo-
retical analysis and evaluation of the performance of queueing systems. Despite the numerous advantages
of diffusion approximation models, they still have their limitations. One of the limitations of the diffusion
approximation modelling methodology is the complexity of the transient solutions. However, they are more

accurate than fluid flow approximations as demonstrated in [48] by Czachéski et. al.
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1.4 An overview of the content of the thesis

This doctoral dissertation contains seven chapters. The remaining six chapters are as follows:

In chapter 2, we review packet aggregation applications in access networks (IoT and 4G/5G mobile net-
works), optical core networks, and cloud computing data centre networks is presented. We also present
analytical models for designing and evaluating the performance ol packel aggregation mechanisms. We
demonstrate using measured traffic from real networks to evaluate the performance of packet aggregation
mechanisms in simulation and analytical models.

In chapter 3, we present the architectures of hardware and software SDN switches and model the flow
matching (lookup) mechanisms used in these switches. We propese a tractable diffusion approximation
for a network router’s transient and steady-state behaviour. In particular. we analysed the steady-state and
transient-state delay and packet loss probability as a function of traffic load and other characteristics. Using
these results, we show that when SDN switches change the paths of flows frequently, the network’s behaviour
may often be far from its steady-state behaviour. Therefore any network optimisation conducted with the
help of SDN should not be based on steady-state behaviour but rather on some metric related to the time-
dependent network behaviour. We determined a load threshold beyond which a slight increase in the load
results in a sharp increase in the queue size and packet delay.

Chapter 4 presents an overview of flexible routing in SDN-based networks. We extend the methodology
developed in chapter 3 to the time-dependent analysis of multiple SDN switches using diffusion approxi-
mations, which are very convenient to analyse in a time-dependent regime. Thus, we compute the transient
behaviour of each SDN switch after changes occur in its input traffic rate.

In chapter 5. we apply a diffusion or Brownian motion process to model the energy depletion process of
a battery of an IoT device. We use the model to obtain the probability density function, mean, variance, and
probability of the lifetime of an IoT device. Also, we study the influence of active power consumption, sleep
time, and battery capacity on the probability density function, mean. and probability of the lifetime of an
IoT device. We use numerical examples to study the influence of battery depletion attacks on the distribution
of the lifetime of an [oT device. We also introduce in our model an energy threshold after which the device's
battery should be replaced to ensure that the battery is not completely drained before it is replaced.

In chapter 6, we present an architecture of a green base station site. We develop Markovian and dif-
fusion approximation models to analyse battery energy storage systems’ steady-state and transient-state
performance. We apply Markovian and diffusion approximation models to derive the time after which the
battery energy storage system is completely discharged or fully charged. By assuming that the energy har-
vesting and the energy consumption processes are exponentially distributed, we compare the result obtained
from the Markovian model to those from diffusion approximation models.

In chapter 7, we conclude the dissertation.

1.4.1 Evaluation of the performance of packet aggregation mechanisms

The transmission of massive amounts of small packets generated by access networks through high-speed
Internet core networks to other access networks or cloud computing data centres has introduced challenges
such as poor throughput, underutilisation of network resources, and higher energy consumption. Therefore.

it is essential to develop strategies to deal with these challenges. One of them is to aggregate smaller packets
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into a larger payload packet. These aggregated packets will share the same header, increasing throughput,
improving resource utilisation, and reducing energy consumption.

The Maximum-Time (MT), the Maximum-Size (MS), and the Maximum-Time-Maximum-Size
(MTMS) packet aggregation schemes are the most popular packet aggregation schemes that have been im-
plemented in commercial network equipment. Recently, MT, MS, and MTMS packet aggregation schemes
have been implemented in the programming Protocol-independent Packet Processor (P4) [27] hardware
switches in [250, 169, 251, 163]. to exploit its programmability, hardware speed, and flexibility. In the
time-based or size-based, or hybrid (a combination of time threshold and size threshold criteria) packet ag-
gregation scheme, when packets arrive at the network node. they are classified based on their destination,
Class of Service (CoS) or Quality of Service (QoS) parameters, and queued up in the input buffer. The
smaller packets stored in the input buffer are aggregated into larger ones when the number of these packets
stored in the buffer is greater than or equal to a defined maximum value or when a defined time threshold
is reached. The main drawback of these packet aggregation mechanism is that in low traffic applications
like in the case of 10T, the maximum defined size threshold may rarely be reached, resulting in excessive
delays [250]. which could be mitigated by setting the maximum time threshold to be within the maximum
delay tolerance. Also, the MT packet aggregation scheme may result in large variation in the aggregated
packet sizes: hence, poor resource utilisation at the level of the core network [41]. A novel slot-based packet
aggregation scheme was recently proposed in [127, 126]. In this mechanism. the small packets stored at the
input buffers are aggregated into larger ones and scheduled for transmissions during preallocated time slots.

The performance evaluation of time-based, size-based, or hybrid packet aggregation schemes at the
edge node of IP over all-optical networks have been presented in [65, 183, 159, 114, 240, 145]. The major
drawback of these studies is the assumption that the interarrival times of IP packets into the aggregation
buffer follows a Poisson distribution, which is far from reality, as it differs significantly from the measured
interarrival times from the Center for Applied Internet Data Analysis (CAIDA) repository which we used
in [55, 57]. The authors in [163] used the Poisson assumption to analyse the performance of a time and
size based packet aggregation scheme for IoT traffic over Software Defined Network, but the measured
interarrival times for loT traffic reported in [224] significantly differs from Poisson distribution. Diffusion
approximation-based performance evaluations models which use measured interarrival times and sizes of
packets measured from real networks have been proposed in [143, 18]. and we extended these studies in
[144] which is present in chapter 2. Diffusion approximation is a well-established modelling approach used
to study non-Markovian queueing systems in which the arrival times and service times distributions are
general, which was proposed in the current form by Gelenbe in [85, 86].

The amount of traffic generated by various access networks such as Digital Subscriber Lines (DSLs),
ethernet Local Area Networks (LANSs), wireless LANSs, mobile networks (e.g. 3G, 4G, and 5G networks),
and recently. the Internet of Things (IoT) networks is increasing exponentially, and have likely increased sig-
nificantly since the beginning of the year 2020, The recent increase in the amount of traffic carried over the
Internet could be attributed to the global reaction to the outbreak of the COVID-19 pandemic by transferring
some key services (e.g. health care consultation, education, retail. entertainment. and business and work-
related activities), and the recent increase in the rate of adoption of IoT. The packet sizes generated from
these access networks vary from a few bytes in [oT and wireless sensor networks to 1500 bytes in Internet

Protocol (IP) networks. The transmission of massive amounts of smaller packets, broadband access net-
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works and high-speed core networks introduces some challenges such as bandwidth wastage due to protocol
overhead, inefficient use of network resources. and increased energy consumption. It is, therefore, essen-
tial to develop strategies 1o deal with the huge amounts of traffic generated by access networks, especially
IoT network [39]. One of the strategies to increase bandwidth efficiency, ensure efficient use of network
resources, and reduce the extra energy consumed due to the presence of huge amounts of small packets is to
incorporate packet aggregation modules in some nodes of the network. Despite its benefits, packet aggrega-
tion increases the packets’ delays [62] and may not be suitable for traffic belonging to real-time applications
[251].

The industry 4.0 trend is transforming every industry’s production capabilities. including health care,
energy, agriculture, food chains, logistics, retail, transportation and manufacturing, with IoT low power
connectivity as its driving force [25]. IoT devices are designed to minimise their energy consumption and
hence increase their battery life. The energy consumption in IoT devices is usually lowered by reducing its
computing power by using microcontrollers or microprocessors, minimising their storage capacity, reducing
the amount of energy consumed during communication with the use of low power communication proto-
cols, and implementing energy-efficient encryption schemes and security protocols. The low-power com-
munication protocols such as Constraint Application Protocol (CoAP) [35], Message Queueing Telemetry
Transport (MQTT) [22], Advanced Message Queueing Protocol (AMQP) [245], and Light Weight Machine-
to-Machine (LWM2M) |202] communication protocols that have been proposed are designed to deminish
energy consumption by reducing the size of the loT packet payload. The time required to receive or trans-
mit a packet depends largely on its size, which is directly correlated with the amount of energy required to
receive or transmit the packet. It implies that the smaller the packet’s size, the smaller the communication
duration, the smaller the amount of energy required to receive or transmit the packet, and hence, the longer
the battery lifetime. Therefore, low power communication protocols are designed to keep the packet size
as small as possible. However, with the recent large scale proliferation of IoT sensor devices that generate
massive amounts of relatively small packets, it is necessary to think about the various ways that packet ag-
gregation schemes can be deployed to deal with the challenges introduced at the level of access networks,

Internet core networks. and data centres.

The recent generations of mobile networks (e.g. 4G and 5G networks) are designed to support loT
devices and satisty the requirements of various loT applications. However, mobile networks were initially
designed to support user equipment (e.g. mobile phones, tablets). generating traffic where packet sizes are
larger than those from loT devices. The transmission of loT traffic directly over mobile networks results in
the inefficient utilisation of radio resources, The amount of loT data carried over mobile networks is expected
to increase significantly and poses challenges for service providers [130]. To ensure efficient utilisation of
radio resource for IoT aver mobile network deployment, a packet aggregation scheme can be implemented
at an intermediate node between the IoT devices and the radio access network [175]. In this case. multiple
[oT packets are aggregated into a larger packet whose size is almost equivalent to the maximum packet size
that can be transmitted over the mobile network to efficiently utilise the radio resources. Instead of wasting
resource blocks to handle individual small IoT packets, the 1oT packets are aggregated, and the aggregated
ToT packets share only one resource block. Also, the sizes of the packets from the user equipment in mobile
networks (e.g. 4G and 5G) are smaller than the IP packet sizes handled in its transport networks. The

aggregation and multiplexing of fronthaul and backhaul traffic into IP packets before transmission in the
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transport network of 3G Cloud Radio Access Network (C-RAN) was discussed in [194, 241, 109].

Similarly. the packets from access networks that are transported over optical networks are smaller than
standardised optical packets. Transporting smaller packets from the access networks directly over the optical
network results in bandwidth wastage due to protocol overhead and poor utilisation of network resources.
Also, at every node, the optical packet is converted from the optical domain to the electrical domain to
perform routing and regenerates the signals and is then converted back to the optical domain for transporta-
tion; this is the so-called electronic bottleneck [211]. that increases the energy consumption. The electronic
packets from the access networks are aggregated into larger optical packets to ensure efficient bandwidth
and resource utilisation in the optical core networks. The optical packets are transported purely in the op-
tical domain through the optical core network without being converted to the electrical domain. They are
transported transparently from the ingress edge nodes to the egress edge nodes and boosted using optical
amplifiers when the signal power falls below acceptable limits.

A review of the application of packet aggregation in computer and telecommunication networks. from
the access networks (e.g. IoT, wireless sensor. 4G/5G mobile networks), through Internet core networks
to cloud data centre networks is presented in chapter 2. In the next chapter we present a detailed review
of the recent application of packet aggregation in IoT and wireless sensor networks, IoT over SDN-based
networks, IoT over mobile networks, in 5G radio access networks (C-RAN), IP over all-optical networks,

and cloud computing data centre networks.

1.4.2 Evaluation of the performance of a Software Defined Networking Switch

In traditional networks. the routing protocols are proprietary and rigid, the routers are configured man-
ually, and each router is responsible for both making routing decisions and traffic forwarding. The manual
configurations of distributed proprietary network devices is very a cumbersome and error-prone process that
can underutilise network resources [258]. These shortcomings of the current traditional networks have been
addressed by introducing Software Defined Networking (SDN).

SDN is a dynamic, adaptable, and manageable paradigm that facilitates innovations in computer net-
works [253], together with the prototyping and deployment of flexible routing mechanisms [78]. An SDN
network consists of the data plane, the control plane, and the application plane. The data plane consists of
SDN switches or forwarding elements connected to the control plane through the OpenFlow protocol in the
southbound interface. The control plane consists of network controllers. each of which is connected to a
set of SDN switches. The controller is connected to the application servers in the application plane through
the northbound interface. In classical networks, the routing protocols are proprietary and rigid, the routers
are configured manually, and each router is responsible for both making routing decisions and forwarding
data traffic. However, SDN offers a programmable architecture where routing decisions are moved from the
data plane routers to centralised controllers. Therefore. instead of having a network of routers that perform
both routing and forwarding of data plane traffic, we have simple SDN switches or forwarding devices that
forward the data traffic depending on the controller’s flow forwarding rules and collect network information
and send it to the controller to optimise the routing decisions.

The stochastic nature of the interarrival times of packets into the input buffers in an SDN switch and

the non-deterministic processing times of packets, results in the formation of queues at the input buffers,
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which introduces significant delays and packet losses. Recent attempts have been made to develop perfor-
mance evaluation models for an SDN switch. The authors in [170, 16, 178, 228] applied queueing models to
evaluate the performance of an SDN switch. The authors evaluated that performance of the SDN switches
under steady-state conditions. Thus, a major challenge in the performance evaluation of SDN swilches is
the analysis of their transient behaviour, when traffic rates vary under the effect of the SDN controllers’
decisions and of the time-varying traffic peaks that travel through the network due to the intermittent or
periodic decisions that are notified to the switches by the SDN controllers. However, the transient analysis
of queueing networks that are usually used to model the performance of networks is particularly difficult,
and the discrete event simulation of such systems can be very time-consuming due to the large number of
samples needed to achieve a reasonable level of statistical accuracy.

The majority of the studies assumed that the interarrival process of packets into the buffer follows a
Poisson process and that service times are exponentially distributed. However, packet interarrival and ser-
vice times distributions do not precisely follow the usual "Poisson and exponential” assumptions, leading
to computationally efficient results concerning the system’s transient behaviour of the SDN switch. There-
fore. to meet the need for a time-dependent analysis, diffusion approximation models for the performance
modelling of a router or switch in an SDN network are proposed in this chapter. The diffusion approxi-
mation offers two important advantages: firstly, the packet arrival and service times distributions can be
time-varying, and these models do not depend on the usual "exponential and Poisson" assumptions regard-
ing service epochs in the queues and the arrival processes of packets. Additionally, the diffusion model only
requires the first two moments of the interarrival and service times so that relatively realistic parameters can
be based on measured traffic data, and it provides numerical results which are difficult to obtain with other

techniques [24].

1.4.3 Evaluation of the performance of a network of Software Defined Networking switches

Recent studies have analysed SDN networks to optimise steady-state performance using queueing theory
models of various complexity. Some of them represent the node as a single station. e.g. M/Geo/1 [228].
G/T/M/K [223], or M/G/1 station [260]. Others distinguish data node and controller, representing both
as a Jackson network [170] or introducing high (for packets coming from the controller), and low priority
queues in the data switch, including more complex input flows models based on Markov Modulated Poisson
Process, [178]. Some studies are based on network calculus [19, 30]. All these models present only the
steady-state analysis of SDN nodes.

The frequent changing of packet forwarding rules makes the analysis of the transient behaviour of the
performance parameters of the switch. such as the delay. jitter, and packet loss probability. The usual tools
for network performance analysis of computer networks are not well adapted for the performance analysis
of SDN networks with frequently changing packet forwarding rules. It is because the transient analysis of
queueing network models is particularly difficult. The discrete event simulation of the transient behaviour
of networks is very time-consuming due to the large number of randomised repetitions needed to achieve a
reasonable level of statistical accuracy.

Unfortunately. conventional queueing network models are difficult to use in the transient regime because

of the computational burden associated with their analysis; indeed, analysing transients, even in a simple
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single-server system with Poisson arrivals and exponential service times lead to the use of Bessel function
expansions, and interconnected systems are quite hard to analyse in the transient case [192, 193, 231]. The
analytical solution is known only in the case of single queues with Poisson input stream and exponentially
distributed service times; see [36] for infinite and [235, 14] for finite queues. The models use Markov
chains and solve Chapman—Kolmogorov equations (first-order linear differential equations), defining the
state probabilities of n customers present in the system at time f. The equations are solved analytically in
the Laplace domain, and then the original functions in the time domain are found. Even in these relatively
simple models, the solutions are quite complex—e.g., in the case of the infinite queue, the state probabilities
are given in the form of the infinite series of modified Bessel functions of the first type and various order; the
Bessel functions are themselves the infinite series. Some simplifications were proposed—e.g.. the generating
function of the distribution in the Laplace domain may be replaced by expressions with simpler original
functions in the time domain [141]. or Bessel functions may be replaced by easier-to-compute functions
[124].

These analytical results do not fit well with the problem of modelling computer networks, where the
streams incoming to swilches are not Poisson and the sizes of packets—and therefore also the service
times—are not exponentially distributed. We may introduce to Markov models interarrival and service times
distributions composed of exponentially distributed phases—e.g., Cox distributions or hyper-Erlang dis-
tributions; the state definition is extended to mclude the current phase. There are numerous tools—e.g.,
[205]—that can match a phase-type distribution to any empirical histogram. However, the initial number of
states should be multiplied—in this case. by the number of phases. This substantially increases the number
of equations to be solved numerically. The solution is usually obtained using an existing tool—e.g.. [2. 152].
We have appliced this approach in modelling the transient states of an IP router, [49]; to represent the service
time distribution, we needed a hyper-Erlang distribution with three parallel Erlang distributions with 21,
1387, and 2 phases. This could be conducted in the case of a single queue, as we are able to solve systems

of millions of equations numerically, but it is hard to use this approach in modelling a network of switches.

Although the assumption that the interarrival times of packets into the buffers of SDN switches and that
the processing times of packets are exponentially distributed makes the analysis of SDN networks tractable,
these assumptions deviate from reality. The typical method is to use either fluid flow approximation [181]
or diffusion approximation [133. 47]. The Auid flow approximation is much simpler. as it considers only the
time-dependent mean values of flows. queues. and delays. However, its errors are much larger than those of
diffusion approximation; see a comparison in [60]. On the other hand. discrete event simulations of transients
require many hundreds of independent repetitions of simulation runs to achieve sufficient statistical accuracy,
making the computation times of such simulations prohibitive [52]. More details on fluid flow approximation
and diffusion approximation and their application in the analysis of the performance of traditional computer

networks was presented in [190]

The accuracy of diffusion approximations has been validated in industry-based research over many
decades [207, 166, 172, 99], including for patented techniques | 173]. and also validated in many academic
papers [255, 132, 137]. Their advantage includes a more accurate representation of interarrival and service
processes, the ease of obtaining delay predictions from traffic measurements, and much faster numerics for

transients than discrete queueing models [24] or simulations.
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1.4.4 Modelling of a battery of a computer system without energy harvesting
Energy modelling for battery-powered loT devices

The Internet of Things (IoT) is a network of low-power computing devices (loT devices) that are
equipped with sensors to collect data from the physical environments and send it to a remote server (e.g..
a fog computing or cloud computing server). The remote server performs some processing, and the re-
sults are either sent to the operator for decision-making or sent back to the low-power computing devices
attached to an actuator capable of manipulating physical systems. The loT devices are often powered by
batteries [81, 212] with limited energy capacity. In the design and deployment of TIoT devices and networks,
the choice ol the communication protocol, the amount of processing that can be performed, and the secu-
rity mechanism that is implemented are constrained by the limited amount of energy present in the battery,
which determines the performance and the lifetime of loT devices and networks. The adoption of low-power
communication protocols in IoT networks to reduce the energy drawn from the battery to power loT devices
(to prolong battery life) makes them unsuitable for applications that require the generation and transmission
of multimedia data. Also, cyber security attacks can be conducted to quickly drain the battery of the loT
device and shorten the lifetime of the device [96].

Billions of wireless sensors devices are expected to be connected to the Internet through IoT access
networks, and small, cost-effective batteries will power a majority of these sensors with limited energy
capacity [117]. Recent advances in low-cost and low-power [oT technologies have enabled cost-effective,
energy-efficient, data-driven, and flexible automation of cyber-physical systems. However, when hundreds
of billions of 10T devices are connected to the Internet, the amount of energy required to power these systems
and related fractures will be enormous. To ensure that ToT devices are small and cheap for commercial de-
ployment in large numbers, they are generally designed to have limited battery capacity, low computational
power, limited memory. and use low-power communication protocols [204. 120]. Therefore. when choosing
batteries for [oT devices, it is essential to consider constraints such as cost, size, and capacity (energy rating
of the battery in Wh. which determines the lifetime of the [oT device).

Also, the limited computational. communication, and energy resources in loT devices, make it challeng-
ing to deploy complex security mechanisms and to implement traditional cryptographic algorithms as they
require non-constant execution time [177]. Some IoT manufacturers and service providers design or deploy
loT devices without appropriate security mechanisms, making them vulnerable to cyber-attacks. Some of
the possible cyberattacks that could be launched against an IoT device include identity theft, eavesdrop-
ping, man-in-the-middle attacks, and energy depletion attacks. One of the components of an IoT device that
malicious attackers often target is the small, limited-capacity battery used to power the IoT device [112].
This kind of attack is often called an energy depletion attack and is analysed in this paper. Therefore, the
key constraint in designing and deploying ToT devices and networks is to establish a reasonable tradeoff
between power consumption. throughput, security. coverage area, battery lifetime, and financial cost.

The design specifications of an IoT device and those of the battery used to power the [oT device should
be chosen in such a way as to ensure a longer lifetime: while ensuring acceptable QoS and security of
the device. The lifetime of an IoT device is the time required to deplete the bauery’s energy completely.
Mathematical modelling frameworks have been proposed to establish the relationship between the device

and battery parameters with the lifetime of an loT device. The authors in [215, 214] modelled the energy
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depletion process of the battery of an IoT device (without energy harvesting) as a pure death Markovian
process (since energy is drawn from the battery, and the battery is not recharged). They used their model
to the impact of energy depletion attacks on the lifetime of an IoT device. The limitation of their model is
limited by the assumption that the energy consumption process follows an exponential distribution, and they
address this limitation by proposing a model in which the energy consumption can follow any process (and

could even be deterministic).

Energy modelling for battery-powered UAVs

The recent advances in Unmanned Arial Vehicle (UAV) technologies (e.g., data collection, data storage,
data processing, data transmission, data security, delivery of loads) [217] have increased their adoption rate
for military and commercial applications. The fast adoption rate is partly driven by the decrease in the cost of
drones and granting licenses to commercial service providers and hobbyists. Some of the industries that are
being transformed through the application of drones include agriculture, environmental management, supply
chains, law enforcement, surveillance, and photography [ 138, 139, 140]. At the beginning of the COVID-19
pandemic, drones were used for deliveries [75] and to enforce restriction rules (social distancing, no mass
gatherings in open public spaces) designed to slow down the transmission of the virus.

It is essential to ensure that the batteries selected to supply an UAV is able to power it for the entire
duration of its mission. The duration of a done’s mission depends on the amount of energy required to
perform some manoeuvering actions (takeoff. level flight, hovering. and landing) [6] and the energy required
to power the ICT modules in the drone. The energy required to drive the drone depends on the manoeuvering
action taken, the drone’s speed, payload, and the wind. Although the amount of energy required to drive
the drone is often far greater than the energy required to power the ICT modules, the influence of ICT
energy consumption on the duration of the drone’s mission could become significant (especially for drones
that draw small amount of energy for flight but perform complex ICT functionalities). Also, cyber security
attacks designed to increase the amount of transmission or computations executed by the drone and deplete
its battery faster could rapidly deplete the energy stored in the battery.

Most drones are powered by batteries, making energy a critical resource that must be optimised during
the mission of the drone. One of the responsibilities of a drone pilot is to ensure that the drone returns with
enough energy in the battery that is sufficient for a safe landing after its mission. If the drone’s battery is
completely depleted during its mission, it will crash to the ground and could damage the drone or result in a
lawsuit if it damages properties or causes harm to human life. Even the most experienced drone pilots some-
times encounter drone crashes due to battery depletion. It is difficult to estimate how much time is required
to completely deplete the energy stored in the battery during flight because a complex interaction of mul-
tiple factors influences the battery energy depletion process in drones. These factors include weather (e.g.,
wind, temperature), drone speed, the ICT-related functionalities performed by the drone, and the weight of
the drone and the load carried by the drone (if any). The energy stored in the battery could also be rapidly
depleted due to cyber attacks, which are designed to induce the ICT systems of the drone to draw more
energy from the drone unnecessarily. Some drones are configured to return to the operator at predefined
battery levels and to land at 15% battery level automatically. Therefore. the drone operator should ensure

the safe landing of the drone while preventing any harm to human lives.
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To adapt a UAV to perform its functionalities for a given application, advanced on-board information
and communication technology significantly increase its energy needs during a mission [257] because of the
computationally intensive visual information processing before transmission or storage [45]. Using multiple
cooperating UAVs (o conduct a mission [ 118] also increases the computational burden and energy consump-
tion of each UAV, in order to coordinate movements and create a consistent view of the events or scenes that
are monitored [102]. also leading to additional on-board energy consumption from communications [103].
and more on-board software [195]. On-board computing and communication equipment cannot easily be put
to sleep to save energy, to avoid compromising the real-time needs which would be impaired by "wake-up"
delays [94].

Since careful usage of the UAVs energy budget is needed to achieve the best possible mission output
from the battery storage and possible other on-board energy sources such as phtovoltaic and fuel cells, the
optimisation of the power consumption of an UAV via its speed was studied in [239, 21, 38]. However, the
energy used to perform functions such as encryption, compression of multimedia data, and communications
is significant. In addition, the interplay of multiple factors influencing energy consumption implies that the
energy drawn from the battery is not deterministic. Models that adequately capture the influence of some of

the design parameters of drones that determine the flight duration of a UAV are important.

1.4.5 Modelling of a battery energy storage system of a computer system with energy har-
vesting

The adoption of renewable energy is driven by decarbonisation, digitisation, and grid decentralisation
trends. Decarbonisation is the progressive reduction in carbon emission from energy generation and energy
consumption systems. A decentralised energy system is one in which the energy production facilities are
located closer to the consumers or energy consumption facilities [42]. The simplicity and the low cost of
installing and maintaining renewable energy sources make them suitable for decentralised energy systems.
They are increasingly being adopted as an energy source to power mobile network base stations located in
challenging environments where conventional power sources are not available or expensive to operate.

Energy storage Systems (ESS) are systems that convert energy generated from various energy sources
into energy forms that can be stored and used in the future. Battery energy storage systems are rechargeable
battery systems that store electrical energy from renewable or traditional energy grids using electrochemical
solutions for use at a later time. Other types of energy storage systems include pumped hydro, compressed
air storage. and mechanical flywheels.

In an IoT network with hundreds, thousands, or millions of loT devices, having too many device energy-
related Failures resulting from completely drained batteries increases the complexity and maintenance cost.
These abrupt failures could lead to financial losses and loss of human lives. IoT devices are sometimes
deployed in areas that are not easily accessible to change or recharge their batteries. The energy limitation in
[oT networks is being addressed using energy harvesting [220]. It is the process of capturing or harvesting
energy from one or more renewable energy sources and converting it into electrical energy that can be used
to power IoT devices [81]. Energy harvesting is a sustainable and convenient way to ensure the continuous
operation of IoT devices [69] without energy-related interruptions. The energy can be harvested and stored in

the battery and drawn to power the loT device [15], or the IoT device can be powered directly by a renewable

27



energy source, provided it is reliable enough. The authors in [13] presented a state-of-the-art review of
sustainable green strategies in IoT networks, including energy harvesting and energy-saving practices.

Recently, some of the functionality (e.g.. computation, communication, storage, and security) have been
shifted from the cloud computing servers to the fog/edge computing servers, located closer to the end-users
or data sources. It is to ensure acceptable quality of service (QoS). especially for real-time loT applications
and to reduce the energy consumption in the Internet core networks. For IoT network deployment in remote
arcas (c.g., farms located in remote areas not covered by the grid), a renewable energy source could supply
the fog computing node. Also, renewable energy sources have been adopted to power ICT infrastructures
with the persistent global agenda to adopt decentralised energy systems to supplement existing fossil fuel-
based centralised energy systems to reduce carbon emissions. A decentralised energy system is one in which
the energy production facilities are located closer to the consumers or energy consumption facilities [42].
The simplicity and the low cost of installing and maintaining renewable energy sources make them suitable
for decentralised energy systems.

Green energy sources (e.g. solar and wind) present some challenges due to their intermittent power out-
put [110]. Sull, energy storage systems (e.g. batteries) are used to ensure a smooth supply of energy to the
consumers. The amount of energy produced by green energy sources depends on the energy conversion effi-
ciency. geographical location. time of day. season of the year. topography, and weather conditions. Also. the
energy demands of fog computing nodes vary over time, depending on the computing, storage, communi-
cation, and security processes being handled by the fog node. Therefore, the amount of energy stored in the
battery at a given time and the battery lifetime can be predicted using stochastic modelling techniques such
as Markov models (e.g. in [46, 219, 17]) and diffusion approximation models (e.g. [4. 257]). If the battery’s
charging rate is far less than its discharging rate, then the battery could be completely discharged. In that
case, the device supplied by the batter will be shut down, leading to a service outage. The authors in [43]
proposed a reinforcement learning approach for battery management in a green fog computing node.

For UAVs that require long flight duration. constant manoeuvring. and carry heavy loads (like those
designed for transportation), energy harvesting sources can be used to harvest energy from the environ-
ment to replenish the energy drawn from its battery during flight. The energy harvesting mechanisms are
incorporated into drones to harvest energy [rom the environment and store it in the battery. Some of the
energy harvesting mechanisms incorporated into drones include solar [206], and dynamic soaring [26]. En-
ergy harvesting is environmentally dependent, and therefore, it is possible to use hybrid energy sources such
as solar energy and hydrogen energy to ensure a continuous supply of energy for applications that require
long flights [157]. Energy is drawn from the battery to drive the drone and to power its ICT systems. The
optimisation of the power consumption of an UAV by choice of its speed was studied in [239]. However.
the amount of energy used to perform ICT-related functions such as encryption, compression of multime-
dia data, and communication is becoming significant with the increasing complexity of electronic systems
installed on the drone, which justify the need to consider [CT-related energy optimisation in drones during
flight. Any energy harvesting mechanism used on-board is also influenced by the environment. Therefore.
both the energy generation and consumption processes need to be modelled as stochastic processes.

The use of renewable energy system to power base stations in mobile cellular networks have been widely
adopted as a promising solution to reduce the carbon footprint and operational expenditures by mobile

operators. Mobile communications have contributed enormously to the social and economic development
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of every society throughout the world, including the less developed or the remote parts of the world [92].
The authors in [92] proposed an energy packet-based Markovian model to analyse battery energy storage
systems required (o store energy in green base station sites supplied by renewable energy sources.

The interplay of multiple factors influencing energy consumption implies that the energy generated
from the battery is not deterministic. The environment also influences the energy harvesting mechanism.
Therefore, both processes are modelled as stochastic processes. Markovian stochastic models have been
applied to model the changes in the energy content of a battery, e.g. in [46, 219, 17] However. the energy
Poisson assumption in the arrival of energy packets into the battery and the removal of energy packets from
the battery may deviate from reality.

This is why we apply here a diffusion model where the interarrival times and interdeparture times may
follow any distribution, as already proposed in [4, 257]. An overview of the stochastic modelling of battery

energy storage systems is presented in chapter 5.
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Chapter 2

Design and Performance Modelling of
Packet Aggregation Mechanisms and their
Applications

The transmission of massive amounts of small packets generated by access networks through high-speed
Internet core networks to other access networks or cloud computing data centres has introduced several
challenges such as poor throughput, underutilisation of network resources, and higher energy consumption.
Therefore, it is essential to develop strategies to deal with these challenges. One of them is to aggregate
smaller packets into a larger payload packet, and these groups of aggregated packets will share the same
header, hence increasing throughput. improved resource utilisation, and reduction in energy consumption.

In this chapter, a review of packet aggregation applications in access networks (IoT and 4G/5G mo-
bile networks), optical core networks, and cloud computing data centre networks is presented. We also
analytical models for the design and evaluation of the performance of packet aggregation mechanisms are
presented. We demonstrate the use of measured traffic from real networks to evaluate the performance of
packet aggregation mechanisms using simulation and anlytical models is demonstrated. The use of diffusion
approximation allows us to consider time-dependent queueing models with general interarrival and service
time distributions. Therefore these models are more general than others presented till now. This chapter
is adapted from [145, 143, 18, 144, 59], which are the article that author published on the performance

evaluation of packet aggregation algorithms.

2.1 Applications of packet aggregation

This section presents a review of the recent application of packet aggregation in computer and telecom-
munication networks, from the access networks (e.g. IoT, wireless sensor, 4G/5G mobile networks), through
Internet core networks to cloud data centre networks. We present in Fig. 1.1 an abstract architecture of a net-
work in which the IoT and wireless sensor networks. the cellular networks (3G/4G/5G). the Internet Service
Provider (ISP) access networks, enterprise access networks, and data centre networks are connected by a
high-speed internet core network. Many papers have been published on the application of packet aggre-

gation to improve throughput efficiency, improve resource utilization, and reduce energy consumption in

31



computer networks, but this subsection is limited to the review of recent works on packet aggregation.

2.1.1 Packet aggregation in IoT and wireless sensor networks

A simplified architecture for [oT applications consists of the IoT layer. the fog layer (if fog computing is
supported), and the cloud layer. The [oT sensors measure relevant data from the environment, securely trans-
fer the data through an access point to the fog nodes for lightweight processing or the cloud data centre for
advanced data analytics. The feedback from the data analytics platforms (fog and data centre applications)
is sent back to perform appropriate actions to control some loT actuators or to provide information to users
for decision making. Well-known low power. reliable wireless access communication technologies such as
LoRaWAN [74], Sigfox [155] have been widely adopted for the communication between the sensor devices
and the access point. The sizes of the IoT packets generated are very small and result in spectral inefficiency,
poor resource utilisation, and high energy consumption. Therefore, the IoT packets can be aggregated at the
level of the access point or fog node (because they have higher computing resources than the 10T devices
and do have energy limitations as they are continuously powered by a reliable energy source) before being
transmitted through the Internet core network to the cloud computing data centres.

The authors in [136] proposed a packet aggregation scheme for the aggregation of ToT packets in wide
area networks. In their proposed scheme, when packets arrive at the access point, they are classified based on
their destination, and packets that belong to non-real-time applications are aggregated, but those that belong
to delay-sensitive real-time applications are transmitted immediately to their destination. A "flag" field is
added to the packets. Tt is checked by every node Lo determine whether the packet should be aggregated (if it
does not belong 1o a real-time application) or not. They assumed that not every node in the network should
possess the ability to aggregate and disaggregate packets. which should be considered when choosing the
next node during packet forwarding. A similar dynamic mechanism for the aggregation of packets in IoT
and Low power and Lossy Networks (LLNs) to decrease energy consumption and increase battery life was
proposed in [116]. In the proposed scheme, each node is equipped with a Learning Automata [208], which
grants permission to the node to aggregate small packets that need to be aggregated into a larger one, and
denies aggregation permission for some packets that need to be transmitted immediately.

The packet aggregation and disaggregation process introduces an additional delay to both real-time and
non-real-time packets. In the packet ageregation scheme proposed in [165] to reduce delays and energy con-
sumption in body sensor networks. the IoT packets are stored in local buffers and aggregated into larger ones
before forwarding them. When the number of packets stored in the buffer is greater or equal to the packet
aggregation threshold or when the first packet’s waiting time is greater than the waiting time aggregation
threshold. the stored packets are aggregated into a larger one and sent to the forwarder node. The forwarder
node is selected based on the expected queue size and waiting time to ensure the acceptable quality of
service.

In the packet aggregation schemes proposed in [136. 116, 165]. the authors classified the packets into
packets that belong to real-time applications and those that belong to non-real-time applications. However,
the authors did not clarify whether the packets that belong to real-time applications and those that belong
to non-real-time applications share the same buffer or not. If they share the same buffer. then the QoS

experienced by packets that belong to real-time applications may be degraded as the packet aggregation
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Figure 2.1: Architecture of a demonstration of [oT packet aggregation and disagreggation using P4 switches
[250].

mechanism may introduce additional delays. The authors in [23] proposed priority-based channel access
and data aggregation scheme to reduce packet delays in clustered Industrial loT networks. When the [oT
packets arrive at the access point or fog node, they are classified into high priority (that is, packets that
belong to real-time applications) and low priority packets (those that belong to non-real-time applications).
The high priority packets are stored in a high priority queue and transmitted without aggregation, but the

low priority packets are stored in a low priority queue and aggregated into larger ones before transmission.

2.1.2 Packet aggregation in IoT over SDN-based network networks

The packet aggregation and disaggregation mechanisms implemented in most traditional network de-
vices (servers, switches and routers) are performed by the Central Processing Unit (CPU), which execute
software programs to perform packet aggregation and packet disaggregation operations in the control plane.
The throughput rates achieved with CPU-based packet aggregation and disaggregation operations are lower
than those obtained by using hardware ASIC switches. It is because software execution speeds are lower
than those of hardware switching ASICs [251]. The authors in [250, 169, 251, 163] have demonstrated an
SDN approach in which the data plane pipelines of P4 hardware switches can be programmed to perform
packet aggregation and disaggregation operations at high speed. The authors conducted experiments using
ToT wraffic, which makes P4 SDN-based data plane switches a good choice for deploying networks that carry
loT traffic.

The recent introduction of the software defined networking paradigm has given network operators and
service providers programmatic control over the networking equipment in their networks’ data planes. The
development of P4 technology has provided hardware leverage for manufacturers of network equipment and
network operators. The P4 language is a high-level programming language used to program the data plane
of hardware switches based on the SDN networking paradigm. It is used to program hardware switches
similarly to Verilog. and VHDL (Very high-speed Hardware Description Language) hardware description
languages are used to program FPGA(Field Programmable Gate Arrays)-based hardware. However, the
P4 language does not require a detailed understanding of the underlying electronic design as in the case
with VHDL, and Verilog [169]. Therefore. the ability to programmatically manipulate packet payload in P4

switches enables flexible and faster (higher throughputs) packet aggregation and disaggregation operations
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than those obtained when using traditional (non-programable) network devices.

The implementation of packet aggregation of [oT wraffic on P4 switches was first proposed in [163]
as shown in Figure 2.1. The authors discussed its feasibility, presented performance evaluations models to
evaluate the performance of packet aggregation and disaggregation operations. The first design and imple-
mentation of packet aggregation and disaggregation in P4 switched was presented in [251]. In their im-
plementation. the packet aggregation and disaggregation operations are performed purely in the hardware
switching ASIC pipelines. and the authors achieved a 100 Gbps packet aggregation throughput which is the
highest so far reported. The limitation of these studies is that their implementation could only aggregate
fixed-sized 10T packets, but we may have traffic from different sources with different packet sizes in a real
network. The authors addressed this limitation in their recent implementation in [250], where they designed
and implemented packet aggregation and packet disaggregation operations in P4 SDN data plane switches
that enable the aggregation and disaggregation of loT packets of different payload sizes with a throughput
of 100 Gbps. Recently, the authors in [169] proposed a P4 implementation of an [oT protocol designed to
ensure an adaptable aggregation of packets to reduce the number of packets sent over the network with an

acceptable delay.

2.1.3 Packet aggregation in IoT over mobile networks (4G/5G)

With the widespread adoption of Low Power Wide Area (LPWA) technologies to enable long-range
communication for loT devices, NB-loT (NarrowBand-1oT) [184] has been introduced and can coexist
with existing mobile networks (e.g. 2G/3G/4G/5G). Existing mobile networks may be overwhelmed in the
future by the massive growth in IoT traffic [210] when hundreds of billions of 10T devices are connected
to the Internet via mobile networks. Allocating radio resources for each 10T packet will result in spectral
inefficiency and inefficient radio resources utilisation. Multiples small IoT packets can be aggregated into
larger ones so that a group of aggregated [oT packets can share the same radio resource. It will improve
spectral efficiency and radio resource utilisation.

The authors in [210] proposed introducing a Relay Node (RN) between the IoT devices and the 5G
radio access network. It receives small loT packets, stores them in a buffer and then aggregates them into
larger packets that are transmitted to the cellular radio access network through a wireless connection. The
introduction of the Relay node to aggregate the small IoT packets into larger ones improve spectral efficiency
and radio resource utilisation, but it also introduces a significant delay. In this case, packets from real-time
IoT applications should not be aggregated. A similar approach was proposed in [131] for LTE-A(Long Term
Evolution Advanced) mobile network in which an intermediate node is placed between the loT devices and
the 4G radio access network. It receives small 1oT packets, store them temporally and then aggregate them
into a larger packet when the queue size of packelts in the buffer reaches a defined maximum threshold or
when a defined waiting time threshold is reached. The authors concluded that their approach guarantees
enhanced spectral efficiency. increase the capacity of the radio access network, and ensure an acceptable
delay. The drawback of the approach proposed in [210] and [131] is that both real-time and non-real-time
traffic share the same buffer, which causes real-time traffic to suffer from excessive delays due to the packet
aggregation. Priority queueing should be considered. Real-time packets should be placed in high priority

queues and relayed directly to the radio access network without aggregation. or traffic from real-time IoT
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Figure 2.2: A Cloud Radio Access Network (C-RAN) architecture with packet aggregation at the fronthaul
network [194].

applications should be transmitted directly to the radio access network.

2.1.4 Packet aggregation in 5G Radio Access Networks (C-RAN)

A 3G Cloud Radio Access Network (C-RAN) consists of a set of Remote Radio Heads (RRHs), a
fronthaul network and a pool of shared Broadband Units (BBUs) as shown Fig. 2.2. The C-RAN paradigm
is based on splitting functionalities by shifting complex signal processing from the RRHs to the BBUs. It
leverages on the benefits provided by Network Function Virtualization (NFV) and SDN technologies to add
flexibility and adaptability to fronthaul and transport networks of 5G mobile networks [241]. The RRHs
receives the radio signals, digitise them and then transmit them to a pool of BBUs through the fronthaul
network. The packets that belong to the flows coming from the RRHs are smaller than those in the backhaul
network (packets from fronthaul networks are smaller than IP packets in the backhaul networks). An ethernet
switch is deployed to aggregate packet flows from the fronthaul network and then multiplex them with those
from the backhaul networks and transported through optical links to a pool of BBUs.

The authors in [194] proposed a C-RAN architecture shown in Fig. 2.2 in which an ethernet switch
connected to the RRHs aggregates fronthaul traffic and forward the aggregated traffic to the cloud. The
authors in [241] discussed the problem of multiplexing and aggregating fronthaul and backhaul traffic on C-
RAN optical ethernet link. A strategy to aggregate fronthaul packet frames to improve throughput efficiency
of the transport network of a 5G cloud radio access network was discussed in [109]. The analysis of the delay
introduced by packet aggregation in 5G C-RAN has not been discussed so far. [t will require the modelling

of the packet aggregation process and considering the characteristics of 5G traffic and packet sizes.

2.1.5 Packet aggregation in IP over all-optical networks

The continuous rapid growth in the traffic generated by access networks and transported over long haul
transport networks have led to the development and deployment of high-speed all-optical transport core
networks. Transporting individual small packets from the access network over the optical network will
result in poor throughput. Therefore. aggregating small packets from the access network into larger ones

which are converted into optical packets and transported transparently across the optical transport networks.
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Figure 2.3: An architecture of an OBS network.

Due to the challenges in developing optical switches with optical memory, Optical Burst Switching (OBS)
networks architectures (e.g. see Fig, 2.3) have been adopted as networking solution for optical networks.

In an OBS network. packets from the source access networks are aggregated into larger ones at the
ingress node. The aggregated packet is converted from the electrical domain to the optical domain to form
an optical packet and then transported across the optical network in the optical domain. At the aggress edge
node, the optical packet is converted from the optical to the electrical domain. The larger packet is then
disaggregated into smaller packets that are delivered to the destination access networks. Packel aggregation

in optical networks have been discussed in [65, 164, 183, 114, 159, 182. 240, 146].

2.1.6 Packet aggregation in Cloud computing data centre networks

Cloud computing is a well-known dynamic, cost-elfective and scalable computing paradigm that enables
on-demand remote access of computing resources such as software. infrastructure. and platform over the
internet. The large scale adoption of cloud computing is due to the introduction of virtualization technology
which makes cloud computing scalable. Virtualization refers to the hardware or software methods that enable
the partitioning of a physical machine into multiple instances that run concurrently and share the underlying
physical resources, and devices. A Virtual machine monitor (VMM), also called a hypervisor, is used to
manage the VMs and enable them to share the underlying physical resources including the network devices
[28]. Some of the tools that enable the deployment of virtualization in cloud computing data centres include
KVM, UMLinux, VMware, VirtualBox and Xen. [238].

In a virtualization environment like in the Xen environment, the driver domain hosts the physical device
drivers, and network virtualisation is therefore essential to provide connectivity between the driver domain
and the virtual machines (VMs) as seen in Figure 2.4. The 1/O channel that transfers packets between the
driver domain and the virtual machines creates a bottleneck due to its poor throughput [29, 238]. Packet
aggregation has been proposed as a strategy to increase the communication throughput between the driver

domain and the virtual machines by 700% in [29, 28, 238]. The packets to be transfered from the driver
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domain to the virtual machines are classified based on their destination Mac addresses, aggregated and
placed in containers which are transfered through the 1/0 channel to the virtual machines. At the virtual
machine domain, the packets are dissggregated back into the small packets and relayed to the upper layers
for processing. After processing, the packets are aggregated again. placed into containers and send back to

the driver domain through the same channel.

2.2 Traffic Models: theoretical and measured traffic models

To design and evaluate the performance of packet aggregation algorithms, network equipment designers
and network operators often use discrete event simulation and mathematical modelling. Mathematical mod-
els make it possible to develop mathematical relationships between the design parameters of the algorithm
and its performance parameters. The limitation of most of the proposed mathematical models for packet
aggregation algorithms (e.g.[65, 164, 183. 114, 159, 182, 240, 146]) is that they are based on the assumption
that the distribution of the interarrival times of packets into the buffer follows a Poisson distribution, It is
often assumed that the distribution of the packet sizes is fixed or exponentially distributed.

Figure 2.5 shows a comparison of theoretical distribution of the interarrival times of packet based on the
Poisson arrival process assumption and the distribution of measured interarrival times from the CAIDA traf-
fic data repository [3]. CAIDA routinely collects traces on several backbone links and make them available
for research purposes. The data sets contain timestamps provided with up to nanosecond precision but trun-
cated and stored in pecap (traffic capture) format with microsecond timescale. They also provide a dataset
of the packet sizes. It can be observed in Fig. 2.5 that for the values of the interarrival time that are less
than 0.002 seconds, the distribution of the probability density of the interarrival time from the CAIDA data
sets significantly differs from the theoretical one obtained using the Poisson assumption. However, for the
values of the interarrival times that are greater than (1.002, the distributions from the CAIDA data sets and
that from the Poisson traffic are the same. The authors in [82] performed a statistical study of the interarrival
times of measure IP traffic to determine from among theoretic traffic models (such as Weibull, Pareto 2,
Gamma. exponential, and lognormal). The authors realised that the best theoretical traffic model that best

fits the distribution of the interarrival times is the Pareto 2 distribution. Therefore, even though assuming
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Figure 2.5; Interarrival time distribution f4(t,), from the CAIDA measurement of the Equinix Chicago link.

that the interarrival times of packets follow a Poisson process facilitates performance analysis. the limitation
of this assumption should be noted. Fig 2.6 shows the distribution of the packet sizes, with a sharp spike at
about 64 bytes (for signalling packets) and another spike at about 1500 bytes (the maximum IP packet size).
The average IP packet size from the presented dataset is 698 bytes. The distribution of the packet sizes is
completely different from the usual assumption that it is exponentially distributed (e.g see [159]) The dataset
present in Figures 2.5 and 2.6 are datasets of IP v4 packet sizes and their interarrival times from the Equinix
Chicago link collected during one hour on 18 February 2016, having 22 644 654 packets belonging to 1 174
515 IPv4 flows (see [3]).

However, the coefficient of variation of the distribution of the interarrival times of the CAIDA traffic
shown in figure 2.5 is 1.02, which is closer to that of a Poison distribution, which could justify the use of the
Poisson assumption. The authors in [163] evaluated the performance of a packet aggregation mechanism for
[oT traffic over SDN data plane made up of P4 switches. They assumed that the distribution of the interarrival
time of ToT packets into the aggregation buffer follows a Poisson process but the measured distribution of
the arrival times of IoT packet into a buffer in an access point is shown in Figure 2.7. The IoT traffic trace in
Figure 2.7 was generated from a smart IoT environment with 28 different ToT devices such as cameras, light
bulbs, motion sensors, health monitors etc. It was collected for six months [224]. It can be observed that the
characteristics of IoT traffic are completely different from that of IP traffic. The IoT traffic is made of few
spikes because the measurements from a group of 10T sensors for a given loT application are updated at a
predefined time simultaneously. At some time instants, there is heavy traffic from the sensors followed by
prolonged silence. Therefore, analysing the performance of network devices carrying loT traffic using the
Poisson arrival assumption will yield inaccurate results.

It can be observed from Figures 2.5, 2.6 that the distribution of the interarrival times and packet sizes
of traffic from real networks differ from usual Poisson assumptions. In [143, 18], the authors used diffusion
approximation, which uses real traffic distributions. Diffusion approximation requires the mean and variance

of the real traffic traces collected from a real network, which are used to estimate the diffusion approximation
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process parameters that model the packet aggregation process.

2.3 Performance analysis of time-based and size-based packet aggregation

mechanisms

In this section, we present diffusion approximation models for the time-based and size-based packet
aggregation mechanism. When small packets that need to be aggregated into larger ones arrive in a network
node that supports time-based or size-based packet aggregation mechanism, they are stored in an aggregation
buffer and then aggregated into a larger packet when the size of the buffer content is greater than a defined
maximum threshold or when a defined waiting time threshold is reached. When the first packet arrives, the
byte counter and time counter are initialized. The byte counter tracks the number of bytes accumulated in
the buffer, and when the amount of bytes accumulated in the buffer is greater than or equal to the defined
threshold, then the content of the buffer is aggregated into a larger packet and sent to the transmission module
for transmission. The timer tracks the waiting time of the first packet in the buffer to ensure that packets do
not wait for too long in the buffer during a low traffic period and when it reaches a predefined waiting time
threshold, the content of the buffer is aggregated and sent to the transmission module for transmission.

We propose analytical models for the evaluation of the time-based, size-based and hybrid packet ag-
gregation mechanism. We compare the results of the analytical models with simulations. A simulation is
a technique in which a virtual environment that emulates the behaviour of a physical system is created in
software. A very popular type of simulation used in the performance evaluation of computer systems and
networks is called discrete event simulation. We used a discrete event simulator that was programmed us-
ing the Java programming language. The simulator consists of a traffic generator created using the CAIDA
traffic data sets and a buffer which represents the buffer at the input port of the node where the aggregation
is performed. The MT, MS and MTMS packet aggregation mechanism is programmed in the simulator. At
each simulation run, we collect the data on the aggregated packet sizes. and the interarrival times are col-
lected and plotted together with the distributions from the analytical models using Matplotlib (a plotting
library based on the python programming language). For both modelling and simulation, we use the datasets
of TP v4 packet sizes and their interarrival times from the Equinix Chicago link collected during one hour
on 18 February 2016, having 22 644 654 packets belonging to | 174 515 IPv4 flows (see [3]). The traffic

parameters are: m = 698 bytes. o3, = 449361. A = 70 packets per second, 02 = 4.9358¢ 7.

2.3.1 Diffusion approximation of the packet aggregation process

When packets arrive in the buffer, the number of bytes in the buffer increases and the buffer content
continues to grow until the maximum defined size threshold or the waiting time threshold is reached. We
represent the growth process of the content of the buffer by a diffusion approximation [85]. [135], [86]
process. Suppose that a diffusion approximation process X (#) represent the number of bytes stored in the
buffer at time f, then the dynamic changes in the number of bytes accumulated in the buffer can be modelled
by diffusion equation (which is a parabolic partial differential equation describing Brownian motion of tiny

particles)[44].
(2.1)

af(a.tiarg) ﬂ(’)“.f’(.:.',!.:;rn) B ‘_j?)f(:r.l:_:rn)
ot 2 A2 ' da
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where di and adt represent the mean and variance of the changes of the diffusion process at di. The

equation defines the conditional probability density function (pdf) of the diffusion process X ()
fla tiap)de = Ple < X(t) < o+ da | X(0) = xq.

The diffusion approximation applied to queueing systems is based on the assumption that the number
ol arrivals of customers joining the queue during a random time 7" has a distribution that is close to normal
and does not depend on the distribution of interarrival times but only on its two first moments. The mean
and variance of this normal distribution are AT and ,\RKJ‘%T where 1/\ and rri, are mean and variance
of interarrival times, [85]. Here. the position « of the process X (t) corresponds to the number of bytes
currently in the buffer. The number of bytes received at a unit of time is a product of two independent
random variables: X' — the number of packets and Y — the size of packets. The mean of a product variable
XY is E(XY) = E(X)E(Y) and the variance is

Var(XY) = E(X?Y?%) — (B(XY))?
= Var(X)Var(Y) + Vﬂ.r'(X)(E(')")}Q
+ Var(Y)(E(X))2.

the mean number of arrived at a time unit packets is £(X) = A and the variance is Var(X) = Ao¥, and
]

=, the variance of its size, therefore the mean

we denote by m the mean size of a packet (in bytes) and by o
number of arrived at a time unit bytes is

3= Am
and the variance of number of arrived at a time unit bytes defining «v in Eq. (2.3 is
a=Xa%02 + Xaim? + el )2 (2.2)

We consider the unlimited queue; therefore, the diffusion process is limited only by a reflecting barrier
at . = () (the queue is never negative).

Without any barrier. the density of the unrestricted process defined by Eq. (2.3) and started at xq is

Flz, b ag) =

(& —mp— »“51}2:| ) (2.3)

1
exp | —
V2ot g [ Zal
It is the solution of the solution of the parabolic partial differential equation (equation 2.1) the describe the

dynamics of the diffusion process.

2.3.2 Modelling of the time-based packet aggregation process

For a time-based packet aggregation mechanism, when the first small packet arrive into the packet ag-
gregation buffer. the time is activated to start tracking the waiting time of the first packet in the buffer. When
the value of waiting time of the first packet in the buffer reaches a defined maximum waiting time threshold,
then the content of the buffer is aggregated into a larger packet and the time is reset to zero. The growth
process of the number of bytes accumulated after time #. can be approximated by a diffusion process that

starts at = = () at time f = () and with an absorbing barrier at ¥ = N (the maximum defined size threshold,
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Figure 2.8: The distribution of the sizes of the aggregated packet in Bytes for a time-based packet aggregation
mechanism.

and for a time-based packet aggregation mechanism, this value is set large enough that the time threshold is
always reached). A diffusion process that starts at 2 = ( and is absorbed at x = N is [44]

1 x — [t)?
L [ o)
vV 2mod 2at

28N (¢ —2N — Bt)? }
exp —= ¥
I o 20t

dlx, t) =

(2.4)

Since after a defined maximum waiting time threshold 7', the content of the buffer is aggregated into a larger
packet. the probability density function (PDF) of the diffusion process after time 7" is

e N 1 B (@ — 3T)%
{..'.7(.!., T) = W{(kp —T} =
928N (z —2N — Bt)? .
- _ ! 2.5
i [ o 2aT } K2:3)

When the content of the buffer is aggregated into a larger packet, the timer is reset to ¢ = 0 and is activated
again when a new small packet arrives into the packet buffer, and the accumulation process starts again (ill
the waiting time threshold is reached. Suppose that the first packet that arrives into the buffer to trigger the
accumulation process is of random size M, with PDF fy,(m). and that the number of bytes accumulated
after time 7" is X (X is a random variable). then the actual number of the aggregated packet (the larger
packet) is X = X + M, and its PDF is

fxg =2, T) * far(m) (2.6)

and its mean and variance respectively is jix,, = py + ft,, and rr:‘l\.u = f)":\ *+ (r'i.,
Figure 2.8 shows the distribution of the sizes of the aggregated packets in bytes. We set the size threshold
or buffer size as N = 100000 bytes to ensure that only the maximum waiting time threshold criteria is

satisfied. The value of the maximum waiting time threshold is T" = 0.02 seconds. The value of T" should be
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Figure 2.9: The distribution of the interdeparture times for a time-based packet aggregation mechanism,

carefully chosen to ensure that the sizes of the aggregated packets should not exit the maximum transmission
unit of the target network, whose throughout efficiency is improved by the packet aggregation. For example,
in aggregating voice or loT packets to be transmitted over IP network, the value of T should ensure that
the sizes of the aggregated packets should not exceed 1500 bytes. We compare the result from the analytical
model of equation 2.6 with the results from the simulation. Since the small packets accumulated in the buffer
are aggregated into a larger packet when the waiting time threshold is reached. regardless of the number of
bytes present in the buffer, the sizes of the aggregated packets dispatched varies. The sizes of the aggregated
packets depend on the rate at which the packets are arriving into the buffer, the sizes of the arriving packets
and the value of the waiting time threshold, T". If the sizes of the aggregated packets are small, we have low
throughput, and when they are too large, we have high throughput, but very large sizes of aggregated packets
could lead to packet losses in the core network.

Since the content of the buffer is aggregated into a larger packet only when the waiting time threshold is
reached, then the time from when the current threshold is reached, and the buffer content is aggregated to the
moment when the next one occurs (the interdeparture time) is £, + T where £, is the interarrival time. The
accumulation time T is constant, but the interdeparture time is random because it depends on the interarrival
time. since the timer is triggered only when the first packet arrives. The PDF of the interdeparture times is
folt) = falty — T), where [4(f,) is the PDF of the interarrival times. Suppose that the interarrival time
is exponentially distributed then, the interdepature times are exponentially distributed but shifted by T as in
[159], e.g.

fp(t) = AeXt==T) 2.7)

Figure 2.9 shows the distribution of the interdeparture times for a time-based packet aggregation mecha-
nism. The analytical results are obtained by shifting the distribution of the interarrival times from CAIDA by
1I". We compare the interdeparture times {rom the analytical model with those measured from the simulation
in Figure 2.9. Since the content of the buffer is aggregated when the waiting time threshold is reached, the

delay experienced by the packet is fixed, and its value is equal to the value of the waiting time threshold 7.
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Since when the buffer is emptied. the next accumulation process starts when the first packet arrives into the
buffer, the interdepapature times distribution is similar to the distribution of the interarrival times but shifted

by T as shown in Fig 2.9 (e.g.. T = 0.02).

2.3.3 Modelling of the size-based packet aggregation process

For a size-based packet aggregation mechanism. the content of the buffer is aggregated into an aggre-
gated (larger) packet when the maximum size threshold NV is reached. When a small packet arrives. its size
is compared to the difference between the maximum size threshold and the number of bytes accumulated.
It is to ensure that after adding the arrived packet to the buffer. the number of bytes accumulated should
not exceed the defined maximum size threshold. Therefore, the sizes of the aggregated packets are almost
constant as the content of the buffer is aggregated into a larger packet when the size threshold is reached.

The times after which the maximum size threshold is reached varies since the interarrival times of
packets into the buffer and the sizes of packets are random. The time from when the first packet arrives in
the buffer to when the maximum size threshold is reached and the content of the buffer is aggregated into a
larger packet can be considered as the first passage time ol the diffusion process [rom x = 0to x = N. The
first passage time of the diffusion process from & = 0 to «x = x is [44]

o af(x, l:ag)

Pall) =l 5, Al
x i B (.'I'H — 331)2 5
ml[ 20 } !

Therefore interdeparture time which the first passage time of the diffusion process that started from 2 = 0

and end at 2 = N (when the maximum size threshold is reached). Hence, the PDF of the interdeparture time

is
. _ Z 8l (?_f{'.l.‘.. i .J.'n}l A .
In(t) = }iln\ la === B f(a, t;ag)]
N (VB2
a V2rald =P [ 2ol ' (29)

Figure 2.10 shows a comparison of the interdeparture times from the diffusion approximation model
and the ones obtained using a discrete-event simulator. The value of the size threshold should be carefully
chosen to ensure that the delay experienced by the first packet that arrived into the buffer should not be too
high. When the packets are aggregated, overhead bytes are added to them before sending the entire packet
to the transmission module. Therefore, when choosing the value of N, the designer should bear in mind
the value of the maximum transmission unit for the network over which the aggregated packet needs to be
transmitted. The results presented in Figure 2.10 was obtained for N = 10000 bytes. When aggregating
the voice traffic from mobile networks or smaller packets from loT and wireless sensor networks, the value
of N can be 1497 bytes, since the Ethernel maximum (ransmission unit is 1500 bytes (the rest is used
for overhead bytes) [250]. Since the content of the buffer is emptied when the maximum size threshold is
reached, regardless of the waiting time of the packets in the buffer, the waiting times of the packets in the
buffer vary and are distributed as shown in Fig. 2.10. The waiting time experienced by the first packet that
arrives into the buffer depends on the interarrival times of packets into the buffer, the packet sizes, and the
value of the maximum size threshold N. If larger packets arrive at a faster rate (very short interarrival times),

then the waiting time threshold will be reached very fast, accounting for the sharp spike in Fig. 2.10,
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Figure 2.10: The distribution of the interdeparture times for a size-based packet aggregation mechanism.

2.3.4 Modelling of hybride packet aggregation process

For a hybrid packet aggregation mechanism, the content of the buffer is aggregated into a larger packet
when either the number of bytes in the buffer is greater than or equal to the maximum size threshold or when
the waiting time of the first packet in the huffer reaches the maximum waiting time threshold. Therefore,
the values of N and T can be selected in such a way as (o ensure any of the aggregation criteria is reached.
Figure 2.7 shows a comparism of the analytical and the simulation results of the interdeparture times for a
hybrid packet aggregation mechanism.

The sharp spike at the start of the interdeparture time distribution in Figure 2.11 is due to the frequent
attainment of the maximum size threshold (perhaps due to fast arrivals or arrivals of packets with larger
sizes). These spikes are very visible in the distribution from the simulation but analytically is approximated

as the probability that the first passage time is less than or equal to the minimum filling time ?,,;,, e.g

f\'“(JI
FDU < tmf.n_) = / fD(f)dr‘
Ja
Where t < L},{'Jﬂﬂi , where M, is the maximum size of the arrival packets. The sharp spike at the end
of the distribution is due to the frequent attainment of the maximum time threshold. This is the probability

density that the diffusion process will end exactly when the deadline T is reached and is given by:

x N-T8
von ()t = N{2 — ke Al
[r o (t)dt = N { erfc( NG )
avg . AN =Tp
e o erfc (7_2_% )} (2.10)
where
7 ]

erfe(t) = 1 — erf(t), erf(t) (ffzdﬁ‘

VAR

In the case of the hybrid algorithm, the design parameters are the maximum burst size and the maximum
time or deadline. Some design criteria such as the probability that the maximum burst size threshold is

reached and the probability that the maximum time threshold is reached could be used to choose the design
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Figure 2.11: The distribution of the interdeparture times for a hybrid packet aggregation mechanism.

parameters, N and 7. The probability of that time threshold will be reached. and the probability that the

maximum burst size threshold will be reached respectively are

Fp(t<T) = /Uf;.'_a(f)fﬁ-

N
Fx,(xs < N) /U Ixg(zn)des @.11)

If the value of the parameters N and T are chosen such that the probability that the time threshold is reached
is 0.99, then the assembler is an MT assembler and if they are chosen such that the probability that the
maximum burst size is reached is 0.99, then the assembler is an MS assembler [159]. The proposed diffu-
sion approximation based performance analysis models for the time-based, size-based, and hybrid packet
aggregation mechanism do not make any assumption about the distribution of the interarrival times of pack-
ets into the buffer and the distribution of the packet sizes as in most of the existing studies. Therefore. the
distribution of the interarrival times and that of packet sizes is general; that is. any distribution can be used,

including the distribution from traffic measurements such as those used in this studies,

2.4 Performance analysis of slot-based packet aggregation mechanisms

For a slot-based packet aggregation mechanism, the arriving small packets to be aggregated are stored
in an over-dimensioned input buffer (a bulfer with a large memory size that is sufficient to store the arriving
packets). At each defined time slot A, small packets stored in the buffer are aggregated into a larger packet
and then scheduled for transmission. It is a suitable packet aggregation mechanism in a wireless network en-
vironment in which access to the channel is shared by multiple devices, and each device is assigned a defined
timeslot for transmission. A slot-based packet aggregation mechanism for enhancing VoIP performance on
1IEEE 802.11 wireless mesh networks was discussed in [160]. A novel slot-based packet aggregation scheme

for the aggregation IP packets in Next Generation of Routers for Energy Efficiency Networks (N-GREEN)
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Figure 2.12: The N-GREEN packet aggregation system.

optical metro networks was proposed in [127, 126]. In this section. we present the performance evaluation

models for a slot-based packet aggregation scheme in an N-GREEN network as we presented in [18],

2.4.1 The slot-based packet aggregation mechanism

In the slot-based packet aggregation mechanism that we modelled in [18], when the small packets arrive
at each buffer, they are stored temporally. During a defined time slot, part of the content of the buffer (some
small packets) are aggregated to a larger packet of size L and scheduled for transmission provided that the
transmission channel is free. In the context of the N-GREEN slot-based packet aggregation that we modelled
in [18], smaller electronic packets called Service Data Units (SDUs) from access networks (e.g. DSL. wired
and wireless LANs, 2G/3G/4G/5G mobile networks, and IoT networks), are stored following a First-in-
First-out (FiFo) queueing discipline. At every time slot allocated to the buffer, the SDUs are aggregated into
larger packets called Packet Data Units (PDUs) that are converted into optical packets and then inserted into
the optical transmission system. provided that the optical transmission channel is not occupied. Figure 2.12
illustrates the slot-based packet aggregation mechanism for an N-GREEN (Next Generation of Routers for
Energy Efficiency Networks) in which at every time slot A, SDUs are aggregated into a PDU of size L
and then inserted into any of the empty containers (of the same size) circulating in a ring so that it can be
converted into an optical packet and transmitting through an N-GREEN metro network to its destination.
If at each time slot the available container is empty. then the PDU is inserted into it with a probability p.
Otherwise, the PDU will not be inserted and waits for the next time slot to try again.

The containers are circulating a ring, and each buffer expects the arrival of a container after every A
seconds, and in a system with multiple buffers, a container can be empty or occupied with PDU loaded by
another buffer. Therefore the PDUs are loaded or inserted by the buffers and they are converted into optical
packets and then they are unloaded and transmitted by the transmission unit. Consider the following cases

of aggregating the SDUs into a PDU and inserting the PDU into the containers at each time slot:

1. First case: At every time slot, the SDUSs are aggregated and inserted into an empty container. If the
number of bytes stored in the buffer is less than L bytes, all of its content is aggregated into a PDU
and inserted into the container. However, if the number of bytes stored in the buffer is larger than L
bytes. then the SDUs are aggregated into a PDU of size L bytes and inserted into the container, and

the rest of the SDUs in the buffer waits for the next available container in the next time slot,

t-J

. Second case: At every time slot, the SDUs are aggregated into a PDU and inserted into a container

only when the number of bytes stored in the buffer is greater than or equal to L bytes
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We modeled the packet aggregation mechanism for a single buffer and assumed that the behaviour is the
same for all the buffers. We present a diffusion approximation based performance evaluation model for a

slot-based packet aggregation mechanism.

2.4.2 Diffusion approximation model for a slot-based packet aggregation mechanism

As the SDUs arrive into the buffer. the number of bytes grow continuously. We represent the dynamic
changes in the number of bytes stored in the buffer by a diffusion process. At each time slot, when the
SDUs are aggregated into a PDU and inserted into a container, and the number ol bytes in the buffer reduces
instantaneously by an amount equivalent to the size of the SDU. The number of bytes present in the buffer
at time ¢ can be represented by a diffusion process whose dynamics is approximated by the parabolic partial
differential equation (equation 2.1) in section 4 above. Since when the number of bytes present in the bufter
is greater than L bytes, the SDUs are aggregated into a PDU of L bytes, we model the changes in the number
of bytes stored in the buffer by a diffusion process jumps. We approximate the growth of the number of bytes
in the buffer by a reflecting barrier at # = 0 (as the number of bytes stored in the buffer must be positive),
whose PDF is [44]

fla.timg) = \/% [a(t) — exp(28z/a)b(t)] . -
where -
a(t) = exp [_W]
and - R
b(t) = exp [_ %}

After the PDU is inserted into the container at each time slot, the diffusion process jumps back and starts
to increase again from the new initial point as the number of bytes stored in the buffer increases as the SDUs
arrive into the buffer. We may also define the initial condition in a more general way. the starting point is

not only at g, but it is at any point £ given by a distribution 1»(£) , in this case
e o
fla, b 9b) = / Sl t; E)p(E)dE. (2.13)
S0

It should be noted. when the PDU is inserted into the container, the decrease in the number of bytes in the
buffer corresponds to an instantancous jump back of the diffusion process X (). Therefore we concentrate
on the diffusion description during constant intervals A and the definition of immediate changes of the
process between these intervals. Next, we consider the two cases of aggregating SDUs into a PDU which is

inserted into the container.

Case 1

At each time slot, if the number of bytes x present in the buffer is less than or equal L bytes (that is
@ < L), then all of the content of the buffer is aggregated into a PDU and inserted into the container with
a probability p, otherwise, it is inserted during the next time slot. Therefore, for # < L. the entire content
of the buffer is aggregated and inserted into the container, corresponding to a jump back of the diffusion
process to z = 0, and continue to increase again as the queue of SDUs grows with the arrival of more SDUs

into the buffer. However, if the number of bytes in the buffer is greater than . bytes (that is = > I.), then the
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SDUs are aggregated into a PDU of size L and inserted into the container, and the number of bytes in the
buffer will decrease by L bytes, corresponding to a jump back of the diffusion process to ¥ = » — L, and
starts to increase again as the number of bytes in the buffer grows with the arrival of new SDUs. We treat the
diffusion process from a given starting point till the point when it jumps back after the insertion of a PDU
into the container during the next timeslot; that is we study the dynamic changes in the number of bytes in
the buffer during the time interval A between timeslots. When the diffusion process jumps back to a given
point after the insertion of the PDU into the container, that point becomes the starting the diffusion process
that approximates the growth of number of bytes in the buffer.

Denote by [ (x, A;4\*)) the PDF of the process during ith interval A. At the beginning of each inter-
val. the time is set to zero, hence always ¢ € |0, A]. The distribution of the number of bytes in the buffer at
the end of each A, after the jump. if it occurs, defines the initial distribution of the number of bytes stored in
the buffer for the next timeslot. Assume that the initial value of the process is xp = 0, i.e. the buffer is empty.
At the end of the first interval, the position of the process, before a possible jump. is given by ff Wia, A 0).

The jump occurs with probability p giving the initial distribution for the next interval
o .L
w2 (0) = / F Wz Az (2.14)

and for £ > 0
@) = fOE + L, 5;0) (2.15)

or with probability 1 — p there is no jump and the new initial condition is given by the position of the

process at the end of previous time-slot
¢ (&) = FDE A50). 216)
Therefore, the complete initial condition for the second time slot is defined as
2 o
HEH0) = p ), Asm)da,

(2 (€)

pfY(E+ L, A;0) @.17)
(1-p) e A50), €>0

_|_

and these initial conditions determine the movement of the process during the second time slot and its
position at the end of it, f2)(&, A; ().
In the same way for the next slots,
L

O = p f(”)(.r.'!A:-r,-‘!{”])dﬂr.
Jo

p g} = pfe + LA™ 2.18)
+ (1=-p)fPE M), €30

until the convergence, when ("1 () = ¢+l (g) and fO D (£ D) = f00 (2 ¢; (")), This con-
vergence is illustrated later in Figs. 2.13-2.4.4 for various valuess of p.

Since when the time slot occurs, and the number of bytes stored in the buffer is less than L bytes,
the content of the buffer should be aggregated and inserted into the container, the sizes of the PDU may

be less than L. Smaller PDU (aggregated packet) sizes result in lower aggregation throughput efficiency.
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as the objective is to have more SDUs aggregated into a larger PDU and share the same header bytes
during transmission, hence reducing protocol overheads. The probability of inserting a PDU of size L is
S fla. A;0)de, but the probability of inserting a PDU of size « < L is f(x. A: ). Therefore, the mean

effective size of the packet is

OO L
L,p=1L flr, As)da + fle, A )ade. (2.19)
eff — ", 0

The aggregation ratio is

E= . (2.20)

where 1 is the mean size of an SDU,

Case 2

At the occurrence of the time slot after the time interval A, the SDUs are aggregated into a PDU of size
L bytes and inserted into the container only is the number of bytes in the buffer is greater than or equal to L
bytes (that is & > L). The equations of Case | are adapted in the following way. As previously. at the end
of the first interval A the PDF of the number of bytes stored in the buffer is f'V)(x, A;0), and for any slot
nzl

t;f*(”"'”({) = f(”'){f.A: u‘,{rr.))' £ <L,
LII.J(” } ”(E) - ,Uj(n}(E + L‘ A -(‘-fg(:r’))_ (221)
+ (1=-p)f™MEAy™), €>L.

When the steady state is reached. the initial distribution ¢» = lim,, . #™) and the density of the number of
bytes stored in the buffer at the end of A is the same e.g. f(2, Aywr) = ¢ (x).
The aggregation ratio is

- (2.22)
i

Since the SDUs are aggregated into a PDU only when the number of bytes in the queue is greater than or
equal to L bytes, the sizes of the PDUs that are converted into optical packets and transmitted are fixed. This
ensures that the sizes of the PDU can be chosen by the designer such that it does not exceed the maximum
transmission unit and the small PDUs that create throughput inefficiency in the transmission core network
is avoided. Therefore. the designer or the network operator has control over the throughput, but in case one
the throughput varies slightly as the size of the PDU can be less than L (when the time slot arrives and the

number of bytes in the buffer is less than L bytes, the content of the buffer is aggregated into a PDU).

24.3 Queueing Delay

One of the major aims of packet aggregation is to improve throughput efficiency by reducing protocol
overhead. The advantage of slot-based packet aggregation mechanism over other packet aggregation mech-
anism is that it produces higher throughput as the designer has control over the size of the PDU, L. That
is, when the value of L is larger, more SDUs can be aggregated into a PDU and transported with just one
header. which ensure that a large payload is transported with a relatively small overhead. However, high

throughput is achieved at the cost of longer delays as some packets may wait for too long in the buffer. The
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major parameters that influence the delay are the time interval between time slots (the time from when a
buffer tries to insert the PDU into the container and the next trial), A and the channel availability probability
(the probability of inserting the PDU into the container at a given time slot). p.

When an incoming SDU arrives into the bulfer in which other SDUs that arrived earlier have been stored,
it joins the queue at the tail end. We assume that all SDU (small packets) are treated the same without any
prioritisation: when a SDU arrives it joins the queue at the tail end (SDUs join the queue sequentially). It
should be noted that in some real implementation of this mechanism, the SDUs could be queued up based on
their time sensitivity such that SDUs belong to real-time applications can be shuffled to the front (head) of
the queue, aggregated, and inserted into the queue to ensure that they are transported immediately to satisty
their quality of service (QoS) requirements. However. to keep our analysis tractable, we have assumed that
all SDUs have the same priority.

Suppose that an arriving SDU that arrives at time ¢ € (f, A) sees the queue distribution f(x, #:¢/). With
the probability

L= [IL flat.y)dx
the number of bytes in the buffer is less than L. After the time interval A, the SDUs are aggregated into a
PDU and inserted into the container with a probability p (if the container is empty), otherwise, it waits for the
next time slot after the same time interval (e.g. A). Therefore. its waiting time will be A — ¢ with probability
por A — ¢+ A with probability (1 — p)p, or A — 1 + 2A with probability (1 — p)?p. ...A — I + nA
with probability (1 — p)"p depending on the earliest arrival of a time slot with an empty container. This

probability follows a geometric distributed, and its distribution density function is denoted as
fwr(w,t) = pd(w— (A=) + (1 - p)ps(w — (24 — 1)
+(1 - p)*pd(w — (3A — 1)) +
+(1 = p)'pd(w — ((n+ 1)A — 1)) +
(2.23)
where 4 () is Dirac delta function.
Assuming that the SDU arrival may happen at any moment ¢ of the time slot with the same density 1/A,

we determine fyy(w) as

fw(w) / S (w. t)dt. (2.24)
Similarily, if the queue size is between L and 2L which will happen with probability
2L

po = Sl t)de
JL
then we should have two empty containers to insert two PDU in two consecutive time slots. It means that
we add the delay incured by waiting for the arrival of the second empty container in second time slot to the
waiting time (for the first time slot) defined above, This delay is equal to A with probability p if just the
next container is empty. 2A if the next container is occupied but the one after it is empty — with probability
(1 — p)p, etc. The distribution of this additional delay fa (w) is
falw) = pd(w—A4A)+ (1 —p)pd(w—24) +
+(1 — p)?ps(w — 3A) +
+H(l—p)"pd(w—(n+ 1)A)+ ... (2.25)
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Therefore, the waiting time for a SDU that arrives at time f and seeing the queue size between L and 2L is

determined by the convolution
fwalw) = furi(w) = falw)

and the waiting time for the arriving SDU that sees the queue size between 2L and 3L is determined by
Jwalw) = fur(w) * fa(w) * fa(w)

and the waiting time for an arriving SDU that sees the queue size between (n — 1)L and nL (i.e. the SDU

is loaded at the n'" timeslot) is
Fwn(w) = fwr(w) * fa(w) " (2.26)

The probabilities p,,. n = 1,... that an arriving SDU joins the queue and sees the queue size between
€ [(n—1)L,nL]is

nl
Py = / fla, tap)da (2.27)
Jin-n)L

Therefore, an SDU that arrives and joins a queue that is longer will wait longer. and its waiting time also

thi

depends on the probability that the circulating container that arrives to its buffer at the ' timeslot is empty

as shown in Figs 2.18 and 2.19 in the next section below.

2.44 Numerical examples

In numerical examples we use PDUs of length L = 12.5 KB (12500 bytes) and the time slots A = 10
pisec at 10 Gb/sec, the same realistic parameters as considered in [127. 126]. The interarrival times have
a general distribution with mean 1/\, variance o3, and the size of electronic packets is determined by a

2

general distribution having density with mean s» and variance ;..

Assume A = 1 packet/usec. the average
packet size m = 700 bytes, squared coefficients of variation C% = 0%)? = L and C2, = o2 /m? = L. It
means that the parameters of the diffusion equation are: arrival rate 7 = A = (.7 kB/usec and v = 1.47,
as defined by Eq. (2.2)

Naturally, the variances C 'i (2, may be different and represent any distribution, it is the advantage of
diffusion approximation. Note that the squared coefficient of variation close to one does not mean necessarily
that a distribution is resembling the exponential one. When analysing the distributions of packet sizes and
times between packets given by CAIDA (Center for Applied Internet Data Analysis) repositories, we met
distributions that are far away from exponential ones, but with C'? & 1. The results presented are based on
the PDU insertion mechanism in case 1.

Figs. 2.13-2.4 4 illustrate the convergence of the solution formulated in Eq. (2.19) for various values of
. it is visible that at each case, 25 iterations give satisfactory results.

Fig. 2.13 shows the distribution of the number of bytes in the aggregation bulfer. Initially. the buffer is
zero, and after the accumulation time A, the distribution of the number of bytes in the buffer is represented
by a diffusion process that starts at » = () and grows as more packets arrive into the buffer( see the blue
curve for 7 = 1) in Fig. 2.13. At the occurrence of the first timeslot, small packets in are aggregated into a
larger packet of size L and inserted into the container with a probability p = 0.25, which shifts the diffusion
process backwards by » = L to a random point £ which becomes the new initial point for the diffusion that

represent the process that represents the distribution of the number of bytes in the buffer after the shift. At
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Figure 2.13: The distribution of the aggregation queue size, f(x.1; ) if p = 0.25 for consecutive iterations
asin Eq. (2.19)i =1...25

the occurrence of the timeslot, the PDU of size [ may not be inserted into the container with a probability of
1 — p. The distribution of the number of bytes in the buffer after the occurrence of the second timeslot can
be represented by a diffusion process that starts at a random point £ and grows as more packets arrives in
the buffer (see the green cure for i = 2 in Fig. 2.13). After the 25 timeslots. the distribution obtained after
the occurrence of the 25" timeslot is similar to that obtained from the 24'" timeslot, which is some form of

steady-state convergence behaviour of the distribution of the number of bytes in the buffer.

Figs. 2.14 and 2.15 show the distributed of the number of bytes in the buffer for various timeslots, and
for p = 0.5 and p = 0.75 respectively. Similar to Fig.2.13, the distributions for higher timeslots is shifted
to the right as the starting point of the diffusion process for higher timeslot may be slightly larger. After 25
timeslots, the distributions converge into a steady-state as in Fig.2.13. Unlike in Fig. 2.13, the distributions
for p = 0.5 and p = 0.75 respectively are relatively shifted to the left because the probability of loading the

PDU from the buffer to the container is larger.

Fig. 2.4.4 shows the distribution of the number of bytes in the buffer for p = 1. Tt can be observed that
there is no significant shift of the distributions after the occurrence of various timeslots. For p = 1, it is
certain that at the occurrence of a timeslot, SDUs are aggregated into a PDU and inserted into the container.
The queue size for p = 1 is not as large as the case for p = 0.75. p = 0.5, and p = (.25 as the PDU
is loaded into the container at the occurrence ol every timeslot when p = 1. Steady-state convergence is

achieved after the 8t timeslot.

Fig. 2.17 presents the impact of probability p (probability that at each timeslot, the circulating container
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Figure 2.14: The distribution of the aggregation queue size, f(x,t:4) if p = 0.5 for consecutive iterations
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Figure 2.16: The distribution of the aggregation queue size, f(xr,f:4) if p = 1 for consecutive iterations as
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Figure 2.18: fyr,(uw) as defined in Eq. (2.26) — the influence of the number of empty optical packets n

needed to complete the transfer on the waiting time distribution, p = 0.25

that arrives at the buffer is empty) on the final distribution f(u, ;) of the queue length in bytes. If the
container is not empty at a given timeslot, we try to load the PDU at the next timeslot. Fig. 2.17 shows that
as p increases, the queue size in the packet aggregation buffer decreases. because as PDUs are inserted into

the container at each timeslot, the queue size decreases. If the probaility p (that the circulating containers

that arrive at the buffer at each timeslot are empty) decreases, then the PDUs are not inserted into the
containers frequently. and the queue size of SDUs in the aggregation increases, and could likely lead to a

buffer overflow, even though the aggregation buffer is over-dimensioned.

Pu p=025 | p=05 | p=0.75 p=1
n=10.000422 | 0.011993 | 0.085542 | 0.5581957
n=2 1| 0.004069 | 0.066236 | 0.287785 | 0.430287
n =23 0016506 | 0.130243 | 0.276826 | 0.011427
n=4| 0049166 | 0.183986 | 0.185722 | 8.86 1077

n=>5 | 0.119076 | 0.210541 | 0.100210 | 3.66 + 10~7

5 that arriving SDU joins the queue before the interval & € [(n —

Table 2.1: Probabilities py,. n = 1,..

1)L.nL]. as in Eq. (2.27)
Table 2.1 presents probabilities p,, that that arriving SDU joins the queue before the interval # € [(n —

1)L, nL] and will be aggregated and inserted into the container after 7 time slots,
Fig. 2.18 shows the influence of the number of timeslots n on the waiting time of an arriving SDU that
arrives and sees the queue size between (n — 1)L and nnL. When an SDU arrives and sees a queue size
of about n L, it waits for n timeslots, and at each timeslot, SDUs are aggregated to a PDU of size L and
inserted into the container, provided that the container is empty. The distribution in figure 2.18 ( fyy,, (w)) is
obtained from Eq. (2.26). It is described as the waiting time distributions for packets that waits for n empty
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Figure 2.19: fiys(w) as defined in Eq. (2.26) — the influence of the probability p of the empty optical packet

on the distribution of waiting time if n = 5

optical packets because the containers that the PDUs are inserted are similar to optical packets in size, and

their content is converted to an optical packel and transmitted. The parameter n can also be understood as
the number of timeslots that will occur for n PDUs that contain SDU that arrived earlier to be inserted into
available containers before the container that contains the arriving PDU is inserted. Fig 2.18 shows that
as n increases, the mean waiting time experienced by arriving SDU increases and can be abserved by the

distributions” shifts to the right as n increases.
Fig. 2.19 illustrates the influence of the probability p that the circulating container that arrives at buffer is
empty at each timeslot. If the container that arrives at the buffer in each timeslot and the container that arrives

is not empty. the PDU is lot inserted into the container, and it waits for the nexi timeslot. Fig. 2.19 shows
that as the probability p that the container is available (i.e. the container is empty) at each timeslot increases,

the waiting time experienced by the SDUs decreases, and if p is small (the container is not empty) then the
waiting time experienced by the SDUSs increases. The distribution in figure 2.19 ( fy,, (1)) is obtained from

Eq. (2.26) for n = b and p is varied from 0.25 to 1.

2.5 The Tradeoff Between Throughput, Energy Consumption, and Delay

The main goal of sustainable network design 1s to achieve high throughput and minimise energy con-

sumption with an acceptable QoS (delay, packet losses, and jitter). In this section, we discuss the network
performance and energy consumption metrics and how they influence one another in the context of packet

aggregation.

2.5.1 The Throughput Efficiency at the Core Network
Generally, the structure of a packet contains three main parts such as the header, the payload. and the

trailer. The header contains information required to process a packet (e.g. packet length. synchronisation,

57



protocol. packet identification number, source address, destination address information). the payload con-
tains the actual data delivered from a source user to a destination user, and the trailer which contains infor-
mation which enables the receiving device to identify the end of the packet and to perform error checking.
Since the header and the trailer part of the packet only carries information required to process the packet and
not the user data intended to be delivered between two communicating devices, they constitute an overhead
to the network and hence. termed overhead bytes. Transporting packets in which a significant proportion
(percentage) of the total packet is occupied by overhead bytes results in bandwidth wastage. Suppose that
the size of the overhead byte is Oy and the average size of the payload is L, then the percentage of the

bandwidth wasted due to overhead per packet is

O{p

go=———r100 2.28
()b+LpL 0 ( )

Consider a packet with a header (Ethernet, IPv4. and UDP headers) of 42 bytes, if its payload is 8 bytes (e.g.
like the case of 10T packet), then the percentage of the bandwidth consumed by the header (percentage of
bandwidth wasted) is 84%. If 100 of such packets are aggregated to share the same header. then the payload
size of the aggregated packet is 800 bytes, and the percentage of the bandwidth consumed by the header
becomes 5%. It shows that aggregation significantly reduces the percentage of the bandwidth consumed by

the headers or overhead bytes. The bandwidth efficiency per packet is

L,
100 (2.29)

Ep = =
Ob+L])

Therefore, aggregating the smaller packets at the edge ol the network significantly improves the throughput
in the core networks. The more the number of bytes of smaller packets aggregated into larger packets, the

higher the bandwidth efficiency.

2.5.2 The Core Network Energy Efficiency

One of the essential benefits of packet aggregation at the edge node is reducing energy consumption
in the core network. The energy consumption of the core routers depends on both the number of packets
received, processed, and transmitted and on the packet sizes. Packet aggregation reduces the number of
packets handled by the core routers, but it increases the packet sizes making the energy benefits offered by
packet aggregation not intuitive. It has been shown theoretically and practically in [246, 115, 105] that the
power consumption of a core router or switch consists of a fixed baseline power Py and a dynamic power
Pp. The baseline power is the power consumed by some components such as the cooling Fans, routing
engine cards (e.g., during signalling and updating of the routing tables) and other electronic components
when they are idle. The dynamic power is the power consumed by the data plane (the line cards and the
switching fabric) when it is receiving, processing, and transmitting data packets. Therefore. the power profile

of a network router or switch is [225, 246, 115, 105]
P=Pg+Pp (2.30)

Fig. 2.20 shows a simplified router or switch structure considered for theoretical analysis of the power

consumption budget of a router or switch. The baseline power is fixed but the dynamic power varies with
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Figure 2.20: A structure of a Core Router or Switch [246]

the number of packets processed per second and on the sizes of packets. The power consumption budget for

the n'”* port of a high speed router or switch is

Pn — PEn + R?‘J?.(E‘.r‘x.n -+ E)‘S.ﬂ) = /\p.nEp o Rn.n(Ets.n i Em:,n} (23 l)

th

Where PE, is the power consumed by the n*" ethernet port when iddle (when there is no traffic on it), R, ,,

is the number of bytes received per seconds at the n'"

th

port, F. . is the energy required to receive a byte

on the ingress Ethernet interface of the n
th

port. E,,, is the energy required to process and store a byte

th

on the ingress Ethernet interface of the n'" port, Ay, is the number of packets from the n*" port processed

per second, £, is the energy required to process each packet (parsing, route lookup, and forwarding), and
it is the same for all packels irrespective of their sizes. R, is the number of bytes transmitted per second

through the egress Ethernet interface of the nt* port. Eys , is the energy required to process and slore a byte

th

on the egress Ethernet interface of the n™ port, and Ey,. , is the energy required to transmit a byte on the

th

ingress Ethernet interface of the »™" port. If the mean packet sizes at the ingress and egress interfaces of

the " port are are m;,, and m,,, (in bytes) respectively, then the number of packets received per second

. Rin . .
th portis A;,, = — and the number of packets transmitted

My n
th Ran
Mo,n

through the ingress Ethernet interface of the n

per second through the egress Ethernet interface of the n*" portis Ay, = and equation 2.3] becomes

PH = PE'N + ”'fi.n)\i,n(.Er;r.n + Ers"ﬂ) + /\p.nEp Tt 'f“-o,'n}\o,n.(Er.s.u = Em'_.u) (232)

Taking the partial dericatives of equation 2.32 with respect to the number of packets received, processed,

and transmitted per second, we obtain the energy per packet. The energy per packet for the ingress Ethernet

interface of the n'" port is
P, ; y
(')/\_'” = "'”i.u(Er:r.n + b'r»-'.n)
in
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the energy required to process a packet is

P,
A

It is independent of the packet size as the energy required to process (parsing, route lookup, and forwarding)

=B,

a small packet and a large packet are the same. The energy per packet for the egress Ethernet interface of

the n'" port is

aP,
== 1,11 E.S n E..’E i
S = Mon(Eisin + Eien)
The energy per packet for the n port is
j{‘:111.;1;1 = 'f”z.?r(Ev'.r:,n + E‘!'h‘.'l'l') + E_n + 'm-o.n(Et-s.ﬂ. + Et::.n) (233)

For 111 o = My = iy, then the energy consumption per packet is
En.p — TH‘HEJNJ‘. + Ep (2.34)

where B,y = Eyp oy + Even + Eisn + Ergn. Equation 2.34 shows that energy per varies linearly with the
packet size as demonstrated in [225, 246, 115] using measurements. Therefore, aggregating smaller packets
(e.g each of size m) into larger packets (e.g each of size L = Zf;l m;) increases the energy consumption
per packet in the core network. It means that by increasing the throughput (increasing the length of the
aggregated packet, L), the energy consumption per packet at the core network also increases. For a core
router or switch with /; idle ports and K, active ports the power consumption budget is
K Ka
P=Pg-+ Z PE, Z[FEH i+ ?n‘!_.?l"\'f'.ﬂ(EJ".'f!_J'? - Er'u,u) &+ A]J.."F-E]J - 'r”u.rr.'\r.l_.n(E-‘S.-n =+ Eu‘:l:.rr)] (2.35)

n=l1 n=l1

The power consumption at the core router and switches increases with an increased number of packets
received, processed and transmitted as in equation 2.35 which was demonstrated in [225, 246, 115] using
measurements. In order to increase the routing or switching speeds. some core routers and switches contain
Ternary Content Addressable Memories (TCAMs) in their hardware which are power-hungry electronic
modules, and hence higher energy is required to process a single packet. If the core switches are SDN-based
switches, then the power consumption budget considers the power consumed in searching the flow tables,
installing the flow rules by the controller, and the communication between the switch and the controller
[105]. Therefore, by aggregating a sufficiently large number of small packets into larger packets. the power
consumption of the core routers and switches can be significantly reduced compared to increased energy
consumption due to an increase in packet size. The core network energy efficiency is [242]

total useful traffic delivered
Network energy efficiency = ot dseTy Tra e derivere (2.36)
total energy consumed

The objective is deliver more useful traffic (high throughput) with minimum amount of energy possible.
Therefore, packet aggregation increases the throughput and reduces the energy consumption in the core

network.

2.5.3 Network Delay

When a packet travels through a router or switch, it experiences a delay due to the time required to

receive a packet, and the time spent waiting in the input buffer, the required to process the packet (parsing,
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route lookup, and forwarding). the time spent waiting in the output buffers, and the time required to transmit
the packet. The delay budget is
D = tpp + iy + t,n + tob + tis (2.37)

where ;. is the time required to receive a packet, t;; is the waiting time of the packet in the input buffer if it
arrives and joins a queue, 1, is the time required to process a packet, 1, is the waiting time of the packet in
the output buffers, and ¢, is the time required to transmit a packet. For high-speed core routers, t,., and #;,
are very small and could be ignored. A detailed analysis of the delay of a network of routers and switches is
beyond the scope of this work but have been presented in [57, 57, 50].

If a port of an edge router is configured to support packet aggregation. then when the first small packet
that needs to be aggregated arrives, it has to wait in the input buffer to be aggregated with other smaller pack-
ets into a larger packet. The delay introduced by the aggregation process is significantly larger than the delay
experienced by a packet that joins a regular queue and is processed following a defined service discipline

(e.g. first-come-[irst-serve or a priority-based service discipline). Therefore, equation 2.37 becomes
D= T'L'.t_(} + tin + Tp + ton + tiw (2.38)

where t,,, is the aggregation delay discussed in sections 4 and 5 above. The aggregation delay depends on the
parameters of the aggregation mechanism deployed. which also influence the throughput and energy con-
sumption. Therefore, a reasonable tradeoff between the throughput, energy consumption, and delay should
be made. A recent proposal to attain a reasonable tradeoff between QoS (high throughput and minimum
delay) and energy consumption has been presented in [80]. The authors are proposing an SDN approach in
which the QoS and energy consumption metrics are estimated and sent to a centralised controller that deter-

mines forwarding paths that minimise a goal function consisting of QoS and energy consumption metrics.

2.6 Conclusion

Packet aggregation is a useful strategy to increase throughput, improve resource utilisation, and reduce
energy consumption in access networks, high-speed Internet core networks, and cloud computing data centre
networks. The recent increase in the amounts of small packets generated by IoT networks, wireless sensor
networks, and 4G/5G mobile networks has increased the need for more research on how to efficiently im-
plement packet aggregation to meet the specific needs of these networks. The major drawback of packet
aggregation mechanisms is the significant amount of delay that it introduces, making it unsuitable for pack-
ets that belong to real-time applications.

We have presented a detailed review of packet aggregation applications in access networks (ToT and
4G/5G mobile networks), optical core networks, and cloud computing data centre networks. We have also
proposed diffusion approximation-based analytical models for the evaluation of the performance of packet
aggregation mechanisms. We have demonstrated the use of measured traffic from real networks to evaluate
analytically the performance of packet aggregation mechanisms. It is important to carefully tune the design
parameters of the packet aggregation mechanism to obtain a reasonable tradeoff between throughput and
energy consumption in the core routers or switches. and delay introduced at the edge router or switch by the

packet aggregation process.
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Chapter 3

Performance Evaluation Modelling of a
Software Defined Networking (SDN) Switch

In traditional networks, each network device (e.g.. router or switch) is fully or partially autonomous
with respect to making routing decisions and fordwarding of packets. However, in SDN, a controller in the
control plane makes routing or forwarding decisions and the data plane (which consist of SDN switches) is
responsible for the forwarding of packets [213]. The SDN switches process and forward packet according

to the rules stored and managed its flow tables [113].

When packets arrive at an SDN switch, they are received, processed, and transmitted. Packets can be
queued up at the input and output ports they arrive and meet other packets waiting to be transmitted or
processed. A packet, therefore, experiences delays at an SDN switch due to the time required to receive,
process, and transmit it and the time spent waiting in queues. The queueing and processing delays signif-
icantly degrades the performance of SDN switches. The processing delay experienced by a packet results
from the time required to search the flow tables (to find the flow rule that matches the content of the packet
header) and apply the flow rule (either forward the packet to the output port for transmission or drop the
packet).

The modelling of the flow martching process in hardware SDN switch is presented and the modelling of
the flow matching process in a software SDN switch. The flow matching process is the searching the flow
tables to determine the flow table entry or enteries whose matching field matches with the header fields of the
packet. After matching the packet, the actions defined in the action field are applied (e.g.. forward modify.
or drop the packet). The majority of the research studies that have attempted to develop performance models
for an SDN switch often assume that the packet processing times are exponentially distributed, which is not
the case in reality. Realistic models of the packet processing process are developed and used as an input to
the diffusion approximation model to obtain an analytical relationship between the SDN switch parameters
and the some performance metrics, The performance of an SDN switch (especially a software SDN switch)
significantly depends on the flow matching or flow lookup mechanism, which should be considered when
analysing the performance of an SDN switch.

The broader use of Software Defined Network (SDN) controllers to create periodic changes in the net-
work's topology sometimes lead to changes in traffic intensities at the various switches. Thus the transient

behaviour of network components, particularly data switches, is becoming of great interest. Since standard
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queueing models are difficult to analyze under time-varying conditions, we propose a tractable diffusion
approximation for both the transient and steady-state behaviour of a network router. In particular, the anal-
ysis provides the steady-state and transient delay and packet loss probability as a function of traffic load
and other characteristics. Using these results, we show that when SDN routers change the paths of flows
frequently, the network’s behaviour may often be far from its steady-state behaviour. Therefore any network
optimization conducted with the help of SDN should not be based on steady-state behaviour, but rather on
some metric related to the time-dependent network behaviour. A significant portion of the material presented
in this chapter was published in [55. 57]. This chapter is focused on the performance modelling of an SDN

switch.

3.1 Modelling of a hardware SDN switch

Hardware switches are often designed to process packets are lines rates using dedicated hardware re-
sources. Software switches are designed to process packets using software programs deployed on general-
purpose comodity hardware. Although software switches provide greater flexibility, they are very slow and
introduces significant delays. The authors in [67] demonstrated emperically that the mean and variance
of the delay experienced by packet in a hardware SDN switch is far smaller than that in a sofware SDN
switch. Hardware switches are relatively fast compared to software switches, but their processing speeds or

throughput still needs to be improved.

3.1.1 The architecture of a hardware SDN switch

Figure 3.1.1 describes the basic system architecture of a hardware SDN switch proposed in [253]. Ar-
riving packets are temporarily queued at the input buffers and are then removed by the Arbiter and placed
scheduled into the Packet Buffer. A copy of the packet header 1s forwarded to the Parser. The Parser parses
the packet header to extract the header fields and then creates a tuple with the extracted information and
forwards it to the Flow Match Unit. In the Flow Match Unit. the tuple is matched against existing flow rules
stored in Flow Tables’ flow entries. The flow entries in the Flow Tables are maintained under the controller’s
guidance and are updated when the controller installs new flow rules. The Flow Match Unit determines
whether the packet is associated with a known flow and hence a known path.

In case of success (that is, the flow rule that matches the header fields of the packet is found in one
of the flow table entries), the packet is then forwarded via the backplane. In case of failure (no flow table
entry matches the packet header), a packet-in message will be sent by the SDN switch to the corresponding
SDN controller [260] to notify the controller about the absence of a flow rule for the packet. The packet-in
message contains either the packet or the packet’s ID. The controller decides the correct action for the packet
and then installs appropriate data in the flow table of the switch so that packets belonging to that particular
flow can be forwarded subsequently. If there is no corresponding response from the controller. the packet
will be dropped.

The flow table matching process involves searching the flow tables to find the entries containing cor-
responding action sets—i.e.. flow rules that match the header of the packets of the input flows that pass

through the Parser. If there is more than one flow table, the flow match process starts from the first flow
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Figure 3.1: The architecture of an SDNswilch [253].

table, searches all of its entries, and jumps to the next flow table. The search process continues till an entry
that matches the packet header is found. Otherwise, a “packet-in” message is generated.

In some SDN switch designs, an internal buffer or packet buffer can be implemented for the internal
buffering of packets. In this case. when there is no matching flow entry for a data packet, it is internally
buffered [222]. The packet ID is sent to the controller within a "packet-in" message. When the controller
determines the flow rule for the packet and sends it to the switch within a "packet-out” message to update the
flow tables of the switch. When the flow table is updated, the packet can then be removed from the internal
buffer and processed. Then. subsequent packets that belong to the same flow can be processed according to

the newly installed flow rule.

3.1.2 Modelling the flow matching process in hardware SDN switches

In a hardware SDN switch, packet processing function is embedded in a specialised hardware [222].
The layer two forwarding tables are implemented using Binary Content Addressable Memories (BCAMS).
However, the layer three flow forwarding tables are implemented using Ternary Content Addressable Mem-
ories (TCAMSs). The switching fabric of the a hardware SDN switch swiltch is often implemented using
Application-Specific Integrated Circuits (ASICs). The flow tables of hardware switches are implemented
using CAM and TCAM modules. The flow rules are stored in CAM and TCAM-based memory, and the
packets are processed by ASICs at line speed. Making hardware SDN switches the preferred choice for
high-speed or delay-sensitive networks compared to software SDN switches. The ASICs process the packets
based on the flow rule.

CAM and TCAM memories are random memories. In a typical hardware network equipment, the MAC
addresses used for flow lookup by the forwarding engine and TCAM stores [P addresses and subnet masks
used for longest match lookups. They support read and write (update) operations and also supports parrell
search operation in which the entire memory locations are searched within a single clock cycle, In each
search operation, each bit of the search data (e.g.. packet header) is compared with bits of the information
store in the entry or memory location of the CAM (e.g.. flow rules). The bits of the searched data are
fed through the sclect lines and then compared with all the bits in the CAM cells. For a Binary Content
Addressable Memory (BCAM), all the entries or memory locations are searched in parallel and all the

outputs in the matched lines are passed through an encoder to obtain the matched location. Similarly, all the
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entries of the tables stored in TCAM memories can also be simultaneously searched in a single clock cycle.

A TCAM memory differ from the BCAM memory in that it includes wildecard bits which will match
both zero and one. That is, when searching the entries of TCAM based tables, some of the bits are don't
cares and are not used in determine the matched entry. Because of the use of don’t care bits in the searched
data and on the content of the TCAM memory location, multiple matches may be obtained for a complete
search of all the entries. In this case, the match with the highest priority is selected using a priority encoder,
TCAM is also suitable for other high-speed networking applications such as packet clssification, access list
control, and pattern matching detect intrusions in the network [7]. The architecture of a TCAM memory is
shown in figure 3.1.2.

Packet processing consist of protocol analysis, extraction of the packet header. matching of the header
fields with the flow table entries. and the execution of actions specified by the flow rules. Thus. when an
SDN switch receives a packet. it needs to search or lookup flow tables to obtain the specifies how the packet
should be processed. The flow table matching or lookup operation is the most slow and energy consuming
packet processing operation in a TCAM-based hardware switch or router [261]. The performance of the flow
matching process depends on the organisation of the flow entry data structures and on the execution of the
flow lookup algorithms [70].

In practice, the flow tables are often very large, and therefore. the flow matching process could be longest
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prefix matching, exact matching, or range matching. The flow matching process involves searching all the
flow flow table entries to determine the flow entries that contains the flow rule that specifies the actions that
should be performed on the packet. If the flow tables are searched sequentially, the time required to find
the entry that matched the packet field wil be longer. For flow tables implemented using TCAMs; the flow
match process can be performed within one clock cycle, with parallel access to all the entries of the flow
table. resulting in a constant access time. That is. a fully parallel search of all the entries of the flow tables
is performed within a single clock cyele to determine the flow entry that match the packet fields. If more
than one match is found, the one with the highest prioty is considered. The structure of a flow table and flow
matching fields is shown in figure 3.3.

The performance of a TCAM-based matching engine depends on the access time of the precharging
circuit. matchlines. and the search line. Since all the entries of the TCAM are searched in parallel within
a single clock cycle, the delay due to flow matching depends on the access time of the precharging cir-
cuit, matchlines, and the search line. It was estimated by the authors in [8] by adapting the Horowitz's
approximation developed in [254]. The authors transformed the circuit of a typical TCAM cell structure
with matchlines and searchlines shown in figure 3.1.2 (left figure) into simple RC circuit and then use the
Horowitz's approximation to estimate the delay of the circuit. Assuming a rising input with a rise time. 1,4,

the TCAM access delay is (see [8])

7 f..q. — Vth
(I \/U”ghjm”z 4 2triseb(1 — vin) (3.1)
: T

where 1 is the switching vollage, the constant b is the fraction of the input swing in which the output
changes, and 7 = R, * Cy, is the output time constant assuming a step input. The parameters ., and
(", are respective the equivalence resistance and the equivalence capacitance of RC circuit representing
a typical TCAM cell structure with matchlines and searchlines. The estimation of R, and C,, a typical
TCAM cell structure with matchlines and searchlines shown in figure 3.1.2 (left figure) was demonstrated

in [7, 8]. Assuming a falling input with fall time 4y, the TCAM access delay is (see [8])

2t panbuyy,

Ty=1x \/(:’og[l — vp])2 + (3.2)

T

TCAMSs do not only perform flow matching, they also perform other functions such as packet classifica-
tion. Thus, the whole TCAM accessing bandwitch may not be available for flow matching. In some switch
implementation, multiple line-cards may share the same TCAM-based matching mechanism to save cost.
For large matching fields like the case with IPv6, longer flow table may be required due to distinctly in-
creased key length. All these performance limitations result in the need for more powerful flow matching
engines with scalable throughput that can ensure acceptable performance for next generation terabit routers
[263].

The search operation is the most crutial operation in networking applications such as packet classifica-
tion, matching the flow tables, and string matching for intrusion detection [8]. Although the search operation
is performed at high speed using TCAM tables, a significant amount of energy is consumed. Also, TCAM
memory is very expensive, which make the price of hardware SDN switches to be very expensive. Because
of the expensive and power hungry nature of TCAMs, the capacity of flow tables implemented in TCAM
is very limited. To cope with the issue of limited BCAM or TCAM-based hardware flow tables, the flow
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rules that do not fit in the hardware flow tables are in a software flow table implemented in an SDRAM
[209]. A high throughput but low energy consuption flow matching can be realised by storing table lookup
results in an SRAM-based cach memory. Subsequent packets belonging to the flow can then be processed by
the cach memory at a high throughput with low energy consumption. More sophisticated hardware means
may also be designed to improve this performance (e.g.. P4 switches [27]) but are not considered in this
work. Therefore, throughput, energy. cost are important metrics to consider when designing TCAM-based

hardware switches.

3.2 Modelling of a software SDN switch

Unlike hardware SDN switches that uses dedicated hardware resources (e.g., BCAM, TCAM, ASICs,
and others) to process packets at line speed, software switches run on a general-purpose processor (e.g.,
CPU). Because of the expensive and power-hungry nature of BCAM and TCAM-based memories in hard-
ware switches, the size of their flow tables are limited. Software-based switches are becoming an attractive
alternative for certain types of networks (e.g., virtual networks at the data centre). The major limitation of
software switches is that they are very slow in performance packet processing operations such as packet clas-
sification, flow matching, and intrusion detection. However, several algorithms and mechanisms are being
developed to improve the packet processing speed of SDN-based software switches e.g., [113. 196].

In data centres, software SDN switches are used to provide flexible network services and on-demand
resource provisioning. The most popular software SDN switch that is often implemented in servers to pro-
vide virtual switching services between virtual machines is the Open vSwitch (OVS). The Open vSwitch is

a modular. open source, multi-platform, and OpenFlow compliant virtual switch.

3.2.1 Packet processing in a software SDN switch

To study the functional mechanism of an SDN software switch, we consider an Open vSwiich imple-
mented on server machine and designed for flexibility and general purpose usage. An Open vSwitch consist
of a userspace daemon (e.g.., OVS-vswitchd) and a datapath kernel module. When a packet arrives at the
physical or virtual port of the switch. it is sent the kernel datapath module.

The kernel datapath module matches the header fields of the packet with the flow table entries and then
apply the actions corresponding the matched flow table entry. The action contained in the flow rule could
be to forward the packet to the appropriate output port, modify the packet, or drop the packet. If no match
is found. the packet is sent to the ovs-vswitchd in the userspace. The packet header fields are matched with
the flow table entries in the ovs-vswitchd. If a match is found at the ovs-vswitchd, it updates the flow tables
entries in the kernel datapath module. The packet and subsequent packes belonging to this flow are processed
based on the updated flow rules.

If no match was found at the ovs-vswitchd, the a packet-in message is send to the controller through the
OpenFlow protocol. The controller then determine the flow forwarding rule for the packet. The controller
updates the flow tables stored in the ovs-vswitchd with the flow rules contained in the packet-in message
that it sends to the Open vswitch through the OpenFlow protocol. The ovs-vswitchd then updates the flow
tables stored in the kernel datapath modul. The packet and subsequent packets belonging to the flow are

processed based on the flow rules stored in the kernel datapath module.
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The controller only have access to manipulate (add, remove, update, search etc.) the flow tables stored
in the ovs-vswitchd module. The kernel datapath module only processes that data packets based on the flow
rules cached in it and is unaware of the internal details of the OpenFlow wire protocol. Thus, the seperation
of the switch into the userspace and kernel datapath modules is invisible to the controller. From the point
of view of the controller, the switch contains flow tables that are searched each time a packet arrives into it

[196].

3.2.2 Modelling the flow matching precess in software SDN switches

In a SDN software switch, the flow table entries are stored in a Synchronous Dynamic Random Access
Memory (SDRAM). The packet processing locgic of a software switch is often implemented in software.
One of the most popular software switch is the Open vSwitch installed in a commodity hardware such as a
desktop or a Raspery Pi. When a new packet arrives, the content of its header is matched against the flow
rules stored in flow tables entries in the SDRAM. If there is no matching flow table entry for the header of
the packet, the packet is buffered internally and a packet-in message is generated and sent to the controller
or the packet and its ID are encapsulated and sent to the controller with the packet-in message [222].

The flow matching process in a software SDN switch is performed by the CPU. The CPU can find the
flow table entry that matches the content of the packet header by searching each entry of the flow table. If
the flow rule for the packet is found in one of the flow entries, the actions contained in the flow rules are
applied to the packet. The sequential search algorithm could be used to sequentially search through all the
flow table entries or the binary search algorithm could be used.

Other sophisticated flow table search algorithms with lower time complexity implemented to improve
the performance of the software switch may be considered considered. For a software switch with a small
sized flow table (few hundreds). the sequential search algorithm may be consider due to its simplicity in
implementation and the search time is better than that could be obtain using binary search algorithm or other
sophisticated search algorithms which are complicated to implement. Software switches are cheaper as they
can be implemented in a simple desktop computer or in a Raspery Pi, making them affordable. However,

one of the disadvantage of using a software switch is that they are very slow and are not suitable for high
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speed core networks or high speed data centre networks.
We consider the worst scenario where the flow tables are searched sequentially. Denote by p the proba-
bility that the flow rule of the arriving packet is not installed. The switch knows it after the examination of all
K entries stored in the Flow Match Unit—i.e., time K7T—where the examination of each entry requires time
T'. As a consequence, p is the probability that the service time is a constant KT, representing the case when
all the flow entries in the table are examined without success. while with probability (1 — p) the packet’s
flow match is found in a time that is uniformly distributed in [T", K'T]—i.e., on average in time (K + 1)7'/2
and variance (K — 1)7%/12. Therefore. the mean time required to search the flow tables sequentially is
(K +1)T

BT =pKT+(1—-p) 7

(3.3)

The the most popular software flow tables implemented using SRAM or SDRAM could be either hash-
based flow table or wildcard-based flow table. In a hash-based flow tables, the match field information stored
in the flow table entries are used as the input of a hash function. The hash function computes hash values
which are used to store the information to be matched in the flow tables. Since the process of searching a
hash-based flow table involves a single hash operation. its matching process is faster with cost of O(1). The
drawback of the hash-based flow table is that it requires larger memory capcity [113] because the larger the
malch fields, the more flow table entries are required in the hash tables.

In wildcard-based flow tables. the flow entries are stored using wildcards. In wildcard based flow tables;
some of the match fields are stored using wildeards. Some of the match fields are wildcard fields and are
treated as "don't care" and are not considered during the matching process. It implies that packets belong to
different flows could have the same matching rules. Thus, wildcard based flow table require fewer memory
to store the flow table entries when compared to hash-based flow table. The draw back of wildcard-based
flow table is that in the worst case (without any search optimization mechanism). all the flow table entries
are searched sequencially.

To make a reasonable tradeofT between faster hash-based flow tables and slower wildcard based flow
tables, both hash-based and wildcard-based flow tables are sometimes implemented in the kernel datapath
module. The hash-based flow tables are implemented in a microflow cache but the wildcard-based flow
tables are implemented in the megaflow cache. The microflow cache is implemented as a simple hash table.
When a packet is received by the kernel datapath module, the packet header fields are hashed and exact
matched with the match fields stored a hash value.

If no match is found in the microflow table, then the megaflow tables are searched. If a match is found
at the megaflow table, then the packet is processed according the flow rules stored in the matched entry. The
microflow cache is updated with the found rule so that subsequent packets of the same flow can be handle by
the faster microflow cache. If no match is found, the packet or the packet 1D is forwarded to the userspace
module. The flow (ables in the userspace module are searched. If a matched is found, then, the flow tables
in the kernel datapath module are updated otherwise, the a packet-in message is sent to the controller. The
controller determines the appropriate flow rule for the packet and then updates the flow table in the userspace
module. The userspace module then updates the flow tables in the kernel datapath module.

The advantage of implementing the microflow cache and megaflow cache at the kernel datapath module
is that it reduces the probability of a packet being sent to the userspace for flow table lookup to obtain

appropriate flow rules. When the first packet of a flow enters the userspace and the appropriate flow rule is
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determined. the found flow rule is cached in the microflow cache and megaflow cache. Subsequent packets
will hit the microflow cache or the microflow cache in the kernel datapath module. Thus, speeding up the
flow table matching speed.

Suppose that the time required to perform the hash peration to exact match the packet header fields with
the flow information stored in the hash-based flow table is T and the probability of hitting a table is pj.
Also, let us suppose that the time required to match a single flow entry of the tables at the megaflow cache
and in the userspace is T5 and T, respectively. The probability of hitting a table at the megaflow cache is p2
and the probability of hitting a table at the userspace is p3. If the flow tables at the megaflow cache and at

the userspace are searched sequentially, then the average time required to find a match is

(K + 1T,
2

(£ +1)T
2

where, p1 +ps+p3 = 1. K2 and Ky is the total number of flow entries in the megaflow cache and userspace

E[Tl =k T + po + (_I — ?JQ)I\.'QTQ + Py T (1 = p;-;)ff_';j—}; 3.4)

module respectively. The time required to find the table entry that matched the hash-based flow table in the
microflow cache is independ of its number of entries, /'y becase it is performed with a single hash operation.

The performance of flow matching process mechanism at the megaflow cache and userspace module can
be improved using other sophisticated algorithms. To improve the lookup performance of the flow tables in
the megaflow cache and in the userspace, the authors in [196] implemented a Tupple Space Search (TSS)
packet classification and lookup algorithm. The authors argued that the TSS algorithm is preferable for Open
vSwitches deployed in data centres because it supports efficient constant-time table entry updates. In data
centres, new services are often added and deleted, neccessitating frequent updates of the flow tables. If each
tupple or hash table is equally likely to contain a match, then finding a match requires searching %
tables on average. In case there is no match, all the K tables must be searched. Although decision tree-based
algorithms provide better lookup performance, TSS-based algorithm are still preferable in Open vSwitches

[158], especially those used in data centres.

3.3 Queueing model of an SDN switch

The delay that can be experienced by packets consists of the queueing delay in the input buffer, the
processing delay in the input buffer, queueing delay at the output buffers. and transmission delay. When the
output ports’ processing and line speeds are significantly greater than the Openflow processing time, which
includes the time required to parse the packet, check the flow tables to find matching entries, and execute
the flow rule actions, the switch can be represented by a single server queueing as in several recent papers
[170. 16,223, 153, 76, 178, 228]. Since the size of the input buffer is limited, we represent the SDN switch
as a single server queueing model with finite capacity N.

A majority of previous papers model the packel processing time as an exponentially distributed random
variable [170, 16, 223, 153, 76, 178]. The use of a diffusion process allows to use realistic packet processing
models that consider practical flow table lookup mechanisms such as those discussed in the previous section.
Also, diffusion approximation does not place any restriction on the distribution of the interarrival time of
packets the queue. Real or measured data of the interarrival times on packels into the switch can be used.
Therefore, an SDN switch with high speed transmission ports can be represented as queueing model with

general interarrival and general service times.
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Since the time required to check the flow tables and to forward the packets in hardware SDN switch
is constant, theie input queues should be modelled as a queueing system with deterministic service times
(e.g G/D/1/N), contrary to the popularly used markovian models. A software switch with any implemented
flow lookup algorithm (including other packet processing algorithms) could be represented as a G/G/1/N

queueing system.

3.4 Diffusion Model of an SDN Switch

To analyze this system, we use a continuous state space and continuous time diffusion process
{X(t).t = 0} to replace the discrete state-space buffer queue, where the increments d.X (t) = X (t 4 dt) —
X (1) are normally distributed, with mean /di and variance evdl, which appear in the diffusion Equation (1).

Assuming an arrival rate A and average service time ;2 ', the changes in a small time interval AT tend to
anormal distribution with mean (A— ) AT and variance (Vo +uto ) AT = (ACF+pCE)AT, where 03
and o3, are the variances of the interarrival and service times, and C'3 and C7, are the corresponding squared
coefficients of variation. Therefore, for the diffusion process we have 3 = A — pand o« = AC3 + uC% [85].

The buffer’s size is limited to N packets, therefore the diffusion process resides in the interval [0, V],
and we use a diffusion process with returns from the barriers at @ = 0 and & = N to represent the jumps
that occur when the buffer queue is empty and a packet arrives, and when the queue is full and a service

occurs as in [86], leading to the equations:

”,l"(-g;,-m) = %fj fg:l_.-;-.lnll — .-[3”1(:5;”--1?”) + Apo(t)d(z — 1) + pupy (£)8(z — N + 1),

d;u:ﬂ;rftl - li.l.'l'l;.-_.[]!% r;ff[-:}i:,.::!'u] B jf(!. £ RFU)] - ;\}-‘(](f') (3.5)
dpar( . a o f{etx y.

% = lmll,._,\,'[g% — B[ (@ tyxo)] — ppn (L),

where f(z.t;xp) is the probability density function (pdf) of the diffusion process; py(t) and py(t) are,
respectively, the probabilities that the process is at the barrier at & = 0 or # = N at time {, corresponding to
probabilities that the system is empty or saturated; and Jd(ir) is the Dirac delta function.

The first of the above equations defines the pdf of the diffusion process with jumps from = = 0 to
x = 1 (arrival of the first customer after the idle period) with intensity A and fromz = Ntoxr = N — 1
(departure of a customer ending the saturation period) with intensity t. The next two equations represent

the probability balance of the barriers.

34.1 Steady-state analysis of the performance a SDN switch

In steady state, when lity_.oc po(t) = po. limy o py(8) = pw, iy f (2. t; 20) = f(), Equation

(3.5) becomes an ordinary differential one and its solution, for p = A/, p < 1, can be expressed as [85]:

Apo

_;3(1 — &™) for D<e<1,

flx) = ’\“L'f;(rﬁf- —1)e* for 1<xr<N-—1, (3.6)
—
%(Ez(:ﬂ—j\-’] —1) for N—1<z<N,
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Figure 3.5: Steady-state pdf f(x) of the diffusion process as an approximation of the queue distribution:

illustration of the solution in Equation (3.6).

a?

where z and due to normalization:

0

14V =

Py [1 o E:(;’V—l!]}—l ‘ (37)

pyv = opoe Y.
In this way, f(n), given by Equations (3.6) and (3.8), approximates the steady-state distribution p(n) in

i.e., the utilization of

the Packet Buffer queue. A few examples of the curve f(x) depending on p = A/ p
the system—are presented in Figure 3.4.1. The next figure presents py (o), which is the loss probability due
to the buffer overflow.

The steady-state queueing delay can be modelled by the time it takes the diffusion process to drift from
the point & = g, corresponding to the queue length at the moment of the packet arrival, to 2 = () when the
packet is already on the head of the queue (its distance to the transmitter is equal to zero), and is removed
to be forwarded. The density of the diffusion process f(x) given by Equation (3.6) determines the queue
distribution and, at the same time, the density of the initial point 2y at Equation (3.12).

The density ¢(x, {:xy) of the diffusion process starting at g and ending at the absorbing barrier at the
origin is given in [44]. The method of images, usually applied to heat conduction problems, is used. We may
imagine the barrier as a mirror with an image source placed at & = 2aq, and the solution is a superposition
of a source of unit strength, placed at the origin and a source of strength — exp(gﬁ?i} placed at # = 2uy:

S e—a0)—f3t

¢
V2mat

da, t;xg) =
The density function 4, o(t) of the first passage time from & = xg to @ = 0, i.e.. probability density

(=g 2 (=4 '.ro_l‘!

¢ Zat  —¢  Zat . (3.8)

that the process enters the barrier at time #, is equal to the probability density that the process is leaving the
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Figure 3.6: Probability pa of the buffer overflow; illustration of the solution given by Equation (3.8).

diffusion interval (x > 0):

o a =, _ Lo D " _ o0 _trg+an?
Yeo0lf) = 5 A-«- (s, b awg)dr __llﬂh[aatp(.r., t:xg) — (e, wg)] = Wr ot (3.9)

This density should be normalized to include only the cases when the process ends at the barrier, which
is certain for (3 < (. Therefore:
[ Vao,0(E)dt = 7o . (3.10)
Jo

The first passage time of the diffusion process from the point =z = =z to the barrier at 22 = 0 becomes:

_ ['.-x;;l,.-j L lg=m?]

o ot | (3.11)

Yo 0(t) = NI

Suppose that a newly arrived packet joins the queue when the switch already contains x packets. As-
suming the first-in-first-out service, the packet will be forwarded out from the switch after all the packets
that arrived earlier have been forwarded, so that if the queue length probability density function is f{x), the

probability density function of the packet’s queueing delay is:

t = — o =14 : d.'. 3.l2
fatt)= [ | o l”‘r“ .

Figure 3.4.1 illustrates this result with a few curves of f(t) for different values of the traffic intensity p,
and with the parameters: '3 = O} = 1. which have been used in all the examples of Figures 3.4.1-3.4.1.

The mean delay experienced by a packet whose flow rule is contained in the flow table will be the sum
of the queueing delay and processing time. If the mean queueing delay is I, and the processing time is f,,

then the mean packet delay at the switch D is:
B = Dytiy= [ tFr(t)dt + = (3.13)
Ja 1
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Figure 3.7: Density fr(t) of the queueing time; see Equation (3.12).

However, if a flow entry for an arriving packet is not found, then the packet is encapsulated and sent
to the controller, which determines the flow rules, installs the flow entry for the packet, and sends back the
packet in the packet-out message. In that case. the delay experienced by the packet, 2 is the sum of the
delay in the switch and the delay at the controller D, [170, 16, 223, 153, 76, 178]:

D=1(1-p)D:+ pD,. (3.14)

The modelling of the controller’s working mechanism to determine [, is beyond the scope of this work and

will be considered in future works. and in our numerical examples all the flows are known. i.e.. p = 0.

3.4.2 Transient-state analysis of the performance a SDN switch

In the case of steady-state analysis, the first two moments of the interarrival and service times used to
calculate the diffusion parameters are constant. However, due to the unpredictable characteristics of user
traffic and the use of adaptive routing protocols such as the self-aware routing protocol used in SerfoT SDN
core network, the characteristics of the traffic arriving at the input and output buffers are dynamic. It requires
the transient delay analysis within short time intervals, where the diffusion parameters are constant only with
these interval time interval.

Consider a diffusion process with two absorbing barriers at x = 0 and = = N, that started at £ = 0 from

& = ap and that its probability density function ¢ (. f: xp) has the following form [44]

o~ for t=0,
Qﬁ'(i‘_t: .I'U}I = 1 ~ . (3]5)
— {a(t) +b(t)} for £ 0.
m H:Z—rx.
where
a(t) = exp Bl (E—m0—a, —B)°

& 2ot
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Ball  (x — xq — ! — Bt)?

T
20t

b(i) = exp [J— -
I

and z, = 2nN, 2l = —2z¢ — 2, .
Suppose that the diffusion process starts at point & with PDF (&), £ € (0.N), lime ge(§) =
limg_. (&) = 0. then the PDF of the process has the form

N
s tiv) = [ plo,tiev(es (3.16)
(
The Laplace transform of ¢(x, t; ) can be expressed as
=)
. expl———" :
Bl gy = —1[4—{:)—1 3.17)
~ s o i
: z {exp [——‘JI T4 "IA(..‘-)]
o o
e — g — 2|
—exp |[-——A(s) } (3.18)
a

where A(s) = /3% + 2as.

Since the transient solution of equation (3.5) is not analytically tractable, the probability density function
fla, t:48) of the diffusion approximation process with elementary returns boundaries can be obtained nu-
merically. It is composed of the function ¢ (=, : '), which is the probability density function of the diffusion
process with absorbing barriers at & = 0 and 2 = N and the functions ¢{z,t — 73 1) and ¢(a,t — 71 N — 1)
which are probability density functions of the diffusion processes that started at time 7 < f at points # = 1
and 2 = N — 1 with densities g1 (7) and gy _1(7) with instantaneous jumps [61][48][60]

t
flx ts) = (o, by 20) + / n(T)p(e, t —m: )dr (3.19)
Jo
i
—0—] gn_1(T)d(@ t — T N — Ddr .
0

The densities g () and gy (t) may be expressed with the use of functions y(t) and y():

n(r) = ﬁ'}u(tqu(T—t)nft
T
gn-1(r) = fu N ()N (T — t)dt (3.20)

where lo(x), [x(x) are the densities of sojourn times at x = 0 and # = N respectively. while 7,(t) and

~n (1) are the probability densities that at time # the process enters to & = 0 or & = N are

w(t) = po(0)a(E) + [1 — pa(0) — pa(0)]7u0(t)
+/” gi{r)yolt —r)dr

)
+ [ il = )dr

n(t) = pa(0)6(t) + [1 = po(0) — p (0)] vy, n(t)

f

+ /” gi(m)yn(t—T1)dr
ot

+ jl sl ym—iilt — 7)dr 321)
1
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Figure 3.8: The effect of abrupt changes the traffic arrival rate A on the time dependent behaviour of the

expected packet delay at the router.

where 1 0(t), vi.x (), 7v—1.0(t). 74—1.x5 (1) arc densities of the first passage time between corresponding

points, e.g.
a dofr, 1, 1)

— — e . 2
F— o Bz, t:1)] (3.22)

J10(t) = lim|

and for absorbing barriers,

lim ¢, tzg) = lim a(a, trag) =0,
r—l) a—N

hence 41 (1) = limn, g %M . The functions o (t): v~ (1) denote the probability densities that the
initial process that started at £ = () at the point £ with density /(£) will end at time { by entering respectively
z=0o0rz=N.

The Laplace transform of the density function f(a, f;4)) is

f(;-,-. R ‘t;"r) = .«1‘3(“‘;. sith) + g (S}fE{L s;1) g
+§;\-‘—](3)QTJ{:J',‘5;AT =Y

and the densities §1(s). gy—1(s) are obtained from (3.20), (3.21), (3.22) after their Laplace transform. The

probabilities that at time ¢ the process has the value x = Oor z = N are

pols) = %[3’0(5) — g1(s)]. (3.24)
.
pa(s) = =l (s) — av-1(s)].

The above solution gives the transient distribution of the queue length and the transient probability of
packet losses when the buffer is full, The original functions of the Laplace transforms can be obtained
numerically using Stehfest’s algorithm [230]. valid for constant diffusion parameters, i.e. constant traffic
intensity A. Therefore it is used for time intervals within which parameters are constant and the solution at
the end of such interval serves as the initial condition, i.c. function (&) in (3.16) in the next interval with
different parameters. The mean queueing delay was determined with the use of Little’s formula but the first

passage time approach is also possible.
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Figure 3.10: The effect of abrupt changes in the packet arrival rate on the time-dependent behaviour of the

expected queue length.
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Based on the previous analysis. we have examined the effect of changes in the levels of arriving traffic
rates to a router which may result from path changes created by SDN controllers. We have assumed that the
router’s packet buffer is partitioned into N = 100 packet sections where each section is reserved for a given
active packet flow. When a packet arrives at the bufTer, the time it takes to scan the table that contains the list
of flows is assumed to be uniformly distributed with average value S = 0.038ms and squared coefficient
of variation is 00.33; though these values vary with the router hardware, they are compatible with those of
existing equipment.

In Fig. 3.4.2 the arriving traffic rates of a given flow vary in the range of 500 to 2500 packets per second,
and the traffic level A changes approximately every 100ms reflecting relatively frequent path changes. We
notice that, while at low traffic values the mean delay of a packet closely matches the steady-state value
which is reached rapidly. at high values the mean delay always remains in its transient state so that the
steady-state value is a poor predictor of the actual delay experienced by packets. Similar results, for another
sequence of changes in the traffic arrival rate are shown in Fig. 3.4.2, where the time-dependent mean packet
delay is plotted against the queue utilization p = AS. Confirming the results of the previous figure, we see
here too that as p increases, the mean packet delay through the router never actually attains its steady-state
value. Fig. 3.4.2 displays the changes of mean queue length together with changes of traffic intensity A. The
errors of the method of diffusion approximation were studied numerically in detail several times, e.g. in [61]
and were found acceptable, therefore we do not here present any comparison of the diffusion results with

discrete event simulation,

3.5 Performance threshold and load control

We have shown that the delay and packet loss probability increases slowly with the load parameter, p
and then at a certain value of p. a slight increase in p will cause corresponding sharp increase in the delay
or response time and packet loss probability. These performance thresholds values can then be used in the
goal function in a self-aware route computation mechanism to ensure that the installation of new flow rules
will not result in worst performance on some network paths.Therefore, the design of the SerloT data plane
and the SerloT route computation mechanism must guarantee that the performance of any of the data plane
forwarding devices does enter into regimes where a small increase in the load will lead to a large increase in
the delay and packet loss and it becomes a bottleneck in the network.

If we take the parameter p, defined from the drift § = A—pp = —p(1—p), so that p = l—}—:—? , considering
that we can easily monitor the parameter by = [1 — pgl, it would be useful to study the sensitivity of b, on
the load factor p, i.e. %%

Consider a single service system with arrival rate A, service rate y, so that p = ﬁ In the simplest case
we can assume Poisson arrival rates and exponentially distributed service times so that the average queue
length in steady-state N and the average response time 1} are:

7] 1

W = (3.25)

N = ,
1—p (1l —p)

and:
(N - 1

dp  (1—p)*
so that IV is obviously an increasing function of p.

(3.26)
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Figure 3.11: Load characteristics for an M/M/1 model

We can say that we wish W (o be less than some value Tff for some constant B > 1, in which case we
have:
1

=]1== 3.27
P B ( )

This gives us the value that p should not exceed.
We are also trying to characterize those values of p for which the queue length NV is very sensitive to
small changes in p, because we do not wish the system to enter into regimes where a small increase in the

load will lead to a large increase in the response time. We can state this as looking for those values of p for

which:
. dN o
N{p+A)= N(p)+ A._l— = N(p) + K.N(p), (3.28)
dp
for some value K > (), or
A
= p(L—p). (3.29)
- A
2 _p+—=0, 3.30
PPt (3.30)

I 4A
=—[l4+y/1-—]. 331
p 2] =t K] (3.31)

For instance, if we set A' = 1, it means that we are seeking the value of p for which an increase of p by
an amount A results in an approximate 100% increase in N. If we set A = ().1 we see that we obtain the
approximate value p = (0.887 as shown in figure 3.5.

If we choose K = 0.5 or a 50% increase in queue length, we will have the approximale value p = 0.724,
Of course, similar calculations can be conducted for the average response time. and the calculations can be

more accurate we do not limit ourselves to the first order approximation (3.28) but also use higher orders.
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3.6 Conclusions

Netwaorks that are controlled by SDN are subject to frequent changes in network state as the SDN
controller modifies paths in the network to optimize Quality of Service, Security or Energy Consumption.
These frequent changes may imply that rather than running at a steady-state regime, the network will mostly
find itself in transitory states. Diffusions approximations are far more convenient for the transient analysis
of service systems, rather than queueing networks and discrete event simulation. Therefore we examine the
transient behaviour of a network router with a diffusion approximation model to evaluate both the transient
and steady-state performance of a network router, in order to predict packet delay through the router, and its
packet loss probability.

The diffusion approximation shows that the transitory behaviour of each router depends on the load,
which results from the arrival rate of packets and the service process for each packet leaving the router. The
service process . in turn, depends on the number of flows that the router handles because a possibly large
flow table has to be searched to determine each incoming packet’s outgoing link [228]. Thus our model also
takes into account the dependence of the service time for each outgoing packet on the size of the flow table.

Our analysis we have presented in this chapter allows the prediction of the time-dependent behaviour
of important performance metrics such as the mean delay experienced by a packet at the router, the packet
queue length for each flow, and the packet loss probability. It also showed that the time-dependent behaviour
tends much more slowly to its steady-state when the system is more heavily loaded. Numerical examples
based on the analysis are also presented to illustrate these insights.

As a consequence of our analysis, we have seen that future work should consider SDN based network
optimization techniques that focus both on the transient and steady-state behaviour. because the steady-
state may not be attained in many cases. Future work should also compare these theoretical results with
measurements and investigate the performance implications of the detailed interaction of SDN controllers
with their connected routers. Also. we hope to use diffusion approximations to evaluate the performance of

networks or systems where the objective of the controls is to optimize the performance of the system |249].
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Chapter 4

Performance Evaluation Modelling of a
Network of SDN Data Plane Switches

It has been recently observed that Software Defined Networks (SDN) can change the paths of differ-
ent connections in the network at a relatively frequent pace to improve the overall network performance,
including delay and packet loss, or to respond to other needs such as security. These changes mean that a
network that SDN controls will seldom operate in steady state: rather, the network may often be in transient
mode. especially when the network is heavily loaded and path changes are critically important. Hence, we
propose a transient analysis of such networks to better understand how frequent changes in paths and the
switches” workloads may affect multi-hop networks’ performance. Since conventional queueing models are
difficult to solve for transient behaviour and simulations take excessive computation time due to the need
for statistical accuracy, we use a diffusion approximation to study a multi-hop network controlled by SDN.
The results show that network optimization should consider the transient effects of SDN and that transients
need to be included in the design of algorithms for SDN controllers that optimize network performance.

In this chapter we extend the approach we developed in [51] to the time-dependent analysis of multiple
SDN switches using diffusion approximations , which are very convenient to analyze in a time-dependent
regime. Thus, we compute the transient behaviour of each SPN switch after changes occur in its input traffic
rate. Packet loss probabilities can also be computed even when they are “tiny™ and impossible to estimate
by conventional means. The analysis we undertake considers both single SDN switch and multiple intercon-
nected SDN swilches controlled by an SDN controller. A significant portion of the material presented in this

chapter were published in [54, 57].

4.1 Flexible routing in SDN networks

Routing algorithms are implemented and communicated by each SDN controller to the SDN switches,
which follow its instructions. Metrics such as hub count, delay. packet loss, bandwidth. jitter, and power
consumption can be measured by SDN switches and sent to the controllers. which may use these metrics to
determine the best routing paths and then install the flow forwarding rules in the data plane SDN switches.
Indeed, the [oT[156] interacting Cloud Services [32] for the decision and control of the cyber-physical world

create challenges for networks that achieve a better quality of service (QoS) and security and less energy
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consumption, and can exploit the opportunities offered by machine learning [64, 98, 97]. These challenges
can be met by SDN networks [176, 97]. which offer greater flexibility and ease of implementation [78, 108].

These developments suggest that SDN is likely to become the preferred networking approach not only
in core networks because of the centralized network intelligence and management that it enables but also
for sub-networks of ToT devices and edge devices with specific QoS needs that can benefit from SDN
programmability and flexibility. Thus, in [107], conventional routing protocols such as RIP, OSPF. EIGRP.
and BGP, are compared with SDN with respect to convergence times after link failures, showing that SDN
routing is better than conventional [P networks. Considerable work has also shown that SDN can select
routing paths based on criteria such as quality of service (QoS) [161, 122, 68, 162, 79], while energy-aware
SDN routing has also been discussed in several papers [168. 185, 11].

The scalability of SDN routers that conduct QoS routing has been studied in [128]. where the authors
proposc an SDN-based scalable QoS routing scheme between autonomous systems. In [129], a survey of
the scalability issues that arise when SDN's centralized scheme deals with relatively frequent path updates
is conducted. Both hierarchical and concurrent (distributed) approaches are investigated to alleviate SDN
controllers’ additional workload. In recent work, [216] SDN is discussed as a means to choose the best
paths based on a function of time-varying traffic in order to optimize the QoS metrics of interest. Other
work [111] examines a broad class of QoS-based algorithms to assign paths to flows in SDN and analyzes
the resulting performance. In addition, the work in [121] discusses the implementation of SDN based real-
time QoS in industrial settings with mobile robots or palets, where motion and reliability requirements
impose changes in paths to constantly meet real-time requirements. In [93], the use of Al-driven dynamic
QoS routing in SDN is used to optimize QoS. reduce energy consumption, and improve security based on
Autonomic Communications [64] and the Cognitive Packet Network algorithm [173].

However, in addition to scalability issues, QoS-driven SDN routing can create traffic and time-dependent
changes in network topology and in the load and paths that are serviced by SDN switches. SDN network
performance has been analyzed using queueing theory [170. 16, 178, 228] and network calculus [20, 19, 30],
but these performance evaluations are based on the assumption that the network is in steady state—i.e., after
a sufficiently long time—so that network metrics such as queueing delays, the length of packet queue buffers
of SDN switches, and packet losses become stable (or time-independent). On the other hand, it is important
to understand the time-dependent behaviour of SDN switches affected by changes in paths notified by the
SDN controller. The controller can suddenly change the flows that an SDN switch receives, changing its
input traffic. Furthermore, for a given switch some flows may be moved from ene output port to another to
comply with the new path that they must follow. These sudden changes will have performance consequences,
including queueing delays and packet losses, which can only be understood via time-dependent transient

analysis.

4.2 Time-dependent Modelling of a network of SDN switches

Consider a network of M stations with an arbitrary topology with routing probabilities ; (#). We follow
the approach of [101] developed for the steady-state network model then adapted to transient analysis in [66].
Additionally, we introduce time-dependent routing to model an SDN network.

The first step to solve the network model is to decompose the network—i.e., to determine the input
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traffic parameters A;, C%, at every station i and then apply the single server model of the previous section to
each station separately.

In the transient state, we should distinguish at any station i the input traffic A; -, (¢) and the output traffic
intensities A; g (f):

Ai—out(t) = [1 — poilt)] st

which are different; py; (1) denotes the probability that the station i is idle at time . i.e., the diffusion process
related to this station is inside the barrier at & = 0, The term 1 — py; (1) = p; () presents probability that the
station 7 is busy and customers are leaving it with the rate j1;.

The traffic equations balancing the flows of stations are:

M
Xicin(t) = Xoi(t) + D Xjour(D)r5ilt) i=1,...,M, 4.1)

=
where the first term Ag; represents the traffic flows coming from the outside of the network directly to station
£

The routing probabilities 7;;(f) change each interval A following the decisions of the controler, remain-
ing constant inside the interval, and the flow parameters may change every interval § < A; we assume
A = né. in numerical examples below i = 10. This way all model parameters are constant witin intervals
& when the solution (3.20) is computed.

Denote by fa;(x,t) and fg,;(x,t) the density (unctions of the interarrival and service times distributions
at station j at time ¢. The pdf fp;(x, f) of the interdeparture times from this node at time ¢ may be expressed
as:

foi(x,t) = oj()fri(x,t) + [1 — o; ()] faj (2. t) * fui(x,t), F=1,....M, (4.2)
where * denotes the convolution with respect to x. The first term of the right side in (4.2) represents the
interdepature times of packets when the node j is working, and the second term gives the interdeparture
times when it is idle. The formula (4.2). known as Burke’s theorem [31]. is exact for Poisson input (the pdf
of the idle period distribution that should be used in the second term of (4.2) is the same as [4;(x. 1)) and

approximate in other cases. From (4.2), we receive:
Ch;(t) = of()CE; (1) + CF; (1)(1 — ¢j(1)) + 2; (1)1 — o5(1)] - 4.3)

where .%_J (). C% ;(t), and c ,(t) are time-dependent square coefficients of the variation in interdeparture,
service, and interarrival times. respectively. Packets leaving the node j according to the distribution fp;(a, t)
choose any node i with probability r;;(#) and the times between two packets routed from node j to i has pdf
il 1)
fiile, ) = fpj(@, Orsi(t) + foi(z,t)* fpjle,t)[1 — r(H)]r;it) +
fojla.t)* fpjla,t) = fpia )1 — i) v+ (4.4)

For example. a packet leaving station j goes to station i with probability r;;(¢) or with probability
1 —rj;(t) it goes elswhere but the second packet goes to i with probability -j;(#), hence the gap has has pdf
Joj(x, t) * fp;(z, t) with probability [1 — r;;(¢)]r;i(t), ete., or, after Laplace transform:

fii(s,t) = Fpj(sit)ru(t) + Foj(s,0)[1 = rji(®)]rsi + Foj(s, )* (L = ryi(@))*rji + - -
rgilt) fi(s. 1)

1— I]. = ‘J"j,'(f)]fj(-h'.f)
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Then we compute the squared coefficient of variation:
Ci(t) = ru(t)[Ch;(t) —1]+1,

Hence:

r), ff))\m (f)

Cﬁa(!j - 1\; m“ Z Uz J UJJIU)[ (Yf_h 1},'““) & j] /\;_—m“)

where the parameters \g; and C'3, refer to the flows coming to station i from outside of the network.

The parameters of the input flow at station 7 are given by (4.1) and (4.5). Equations (4.3) and (4.5) form
a system of linear equations yielding C'3, () and also the diffusion parameters (3, (%), c; () for every node
i. At each interval 4, the functions f;(w, #:¢);) providing the queue length distributions at every station i for
€ § are computed. Their values at the end of the interval yield, among others, the current utilizations p;
used to determine the flow parameters and diffusion parameters for the next interval d.

The pdf fri(x.t) of the time-dependant response time (waiting time plus service) is determined using
the first passage time from the end of the gueue to zero, as defined by Equation (3.12). If fg;(x. 1) is the

response time pdf at node 4, then the response time pdf fr(x,t) for the path 1,. ... 1 of 1 stations is:

fr(x,t) = fri(z.t) * fra(m,t) * frale,t) - frau(x.t),

or:

n
TRz, 8) = 1__[ Jri(z,s).
i=1
The loss probability pj,.(f) for same entire path may be computed from:

1 — pross(t) = (1 — pwi(£)) (1 — pa2(£))(1 — paalt)) ... (1 — paalt)) (4.6)

where py;(1) is the probability that the queue at station i is saturated at time {—i.e., the diffusion process

for this station is at time ¢ at the barrier & = N.

4.3 Transient analysis of the influence of changing forwarding flow rules on
the SDN data plane

Consider a network composed of four SDN switches, S1-54; see Figure 4.1. Their parameters are
the same as the switch in Example 1. except for the SDN switch 54, which is twice as fast. Therefore
[ = po = py = 2628.8 packets/sec while gy = 5257.6 packets/sec. At all the switches, the squared
coefficient of variation of service time is identical to the value CF; = 0.33.

Similarly to Example 1. the network’s performance is investigated during | second. Host 1 is sending
packet flows of intensity Ay; to Host 2, and the traffic rate is changing in the range 500-2500 packets/sec,
as shown in Figure 4.2. Host 4 generates traffic at rate Ago. as shown in Figure 4.2, which is forwarded to
Host 2 via the SDN switches $2 and S4.

As in Example 1, the squared coefficient of variation of interarrival times in the flows Ay is O3, =
C3 = 1.02, or C4, = 4.08 or C4, = 8.16. The second input traffic Ay at S2 has only one parameter

25— Ca—1102,
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Figure 4.1: The example network being considered.

The SDN controller alters—if needed—the routing Lo balance the load of nodes every 100 msec: in this

example, it refers to the routing probabilities ry» and r3; see Figure 4.3.

Figures 4.4 and 4.5 illustrate the decomposition of the network model. They present the flows A;(#)
given by Equation (4.1) and the squared coefficients of variation C'%,(1) received from Equations (4.3) and
(4.5). The service times at the stations have relatively small squared coefficients of variation C‘:E,,- = 0.33.
Therefore, the important variability of the first flow entering the network is reduced at the network interior,

as defined by Equation (4.3); see Figure 4.5.

The transient solution of diffusion equations is computed in intervals of the length § = 10 msec—i.e.,
we have 100 intervals with fixed diffusion parameters; at the end of each 4, the Equations (4.1) and (4.5)
are solved to determine the new parameters of flow for the single-station models in the next interval. The
diffusion density function obtained for any station 7 at the end of an interval gives the initial conditions for

the diffusion equation at the next one.

The curves in Figure 4.6 compare the loss probability (note here the minimal values computed by the
model), and, in Figure 4.7, the mean queues for all four stations, in case of C' :'-!\1 = 1.04. We may observe the
changes in mean queues in 52 and 53 due to load balancing after the second flow becomes active. Observing
the mean queues at S1 and 52, we can see that the transient periods may be longer than the time between
the controller’s decisions. As noted carlier, the length of the transient time increases with a load of a station
and the variability of the input flow. For greater variabilities of the first flow. the path S1— .53 — 5S4 becomes

saturated; see Figure 4.8. This happens due to saturation in 54, as shown in Figure 4.9.
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Figure 4.2: Input flows Apy (#), Apz(#). time in seconds.
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Figure 4.3: Routing probabilities r2(t), r153(f), r1a(t).
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4.4 A simplified route optimisation example

Let us also consider a simple example of optimization. Suppose, as previously, that station S1 is for-
warding a flow Ay packets to nodes S2 and S3. Station S2 is additionally receiving from Host4 a flow of
A}]g’” packets. The controller is changing routing every A = 100 msec and needs to determine the routing
probabilities for the nearest A, knowing the current parameters of flows at the beginning of the interval, as
well as the current queue distributions at 81, S2, and S3 representing previous behaviour of the network.

The goal is to minimize the mean backlog W at S2 and S3 during A:

. 1 g4 . Far
min {‘-I’ St /u [E[Ny(t)] + E[Na(t)]] df} ;

L b5 )

We compute E[Na(t)], E[Ny(t)] for ¢ € A and minimize W by the choice of rys, 115 = 1 —rys; see
Figure 4.10.

4.5 Conclusions

The advent of SDN allows the implementation of smart adaptive routing [ 104]. which changes network
paths so that new connections may be established and inactive may be removed, as well as to deal with
changes in traffic loads and incidents that affect network security, This leads to an interesting paradigm
shift in network modelling, which has traditionally addressed “long term” behaviours and computational
methods which are appropriate for steady-state analysis. However, when SDN intervenes dynamically to
change paths and traffic levels, the network is seldom at a steady state, and optimization must take transients
into account.

Therefore in this chapter we have used diffusion approximation modelling for the performance evalua-

tion of a network of SDN switches. that considers both steady-state and transient analysis. We have shown
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how changes in routing or forwarding decisions by the SDN controller can influence performance parame-
ters such as delay, queue size, and packet loss probability in the transient state. Our results indicate that this
method is computationally operational and can provide useful quantitative results for models with realistic
parameter values.

Our analysis captured the interactions among the main parameters of the network, and numerical exam-
ples display the dependence of the queune lengths, queueing delays and their dynamics as a function of the
changing flow intensity and variance of interarrival times. Our approach also confirms that transient periods
play a significant role in the performance of SDN networks, and that they will be useful to analyze much
larger networks in future work.

While the performance evaluations performed in this chapter are purely numerical, and based on diffu-
sion approximations models that have been widely validated by simulations [48. 60, 61]. in future work we
intend to use network emulation tools such as Mininet with real traffic, as well as experiments on a SDN
test-bed, to study the influence of time dependent forwarding decisions on the main performance metrics of

large SDN networks.



94



Chapter 5

Modelling of the Energy Depletion Process
and Battery Depletion Attacks for
Battery-Powered Internet of Things (IoT)

Devices

The complexity of battery-powered autonomous devices such as Internet of Things (IoT) Sensor Nodes
or Unmanned Aerial Vehicles (UAV) and the necessity they ensure an acceptable quality of service, reliabil-
ity, and security, have significantly increased their energy demand. These devices are often powered by small
batteries with limited energy content. These devices are vulnerable to battery depletion attacks designed to
completely deplete the energy stored in the battery and eventually shut down the device. Thus, battery and
energy consumption models are required when designing these systems to ensure that they operate within a
reasonable time before requiring battery replacement.

In this chapter, we apply a diffusion or Brownian motion process to model the energy depletion process
of a battery of an 10T device. We use the model to obtain the probability density function, mean, variance,
and probability of the lifetime of an [oT device. Also, we study the influence of the active power consump-
tion, sleep time, battery capacity on the probability density function, mean, and probability of the lifetime
of an ToT device. We use numerical examples to study the influence of battery depletion attacks on the dis-
tribution of the lifetime of an [oT device. We also introduce in our model an energy threshold after which
the battery of the device should be replaced to ensure that the battery is not completely drained before it is

replaced. A portion of the material presented in this chapter was published in [58. 53].

5.1 Energy consumption models for IoT devices

An IoT device consists of the sensing (data acquisition unit), the actuator unit, processing, and storage
unit, the communication module, the security module, the power supply unit. and the energy storage system.
The sensors capture the desired physical data from the environment translate it into digital information,
which may be partially processed by the loT device or transmitted to fog computing servers for lightweight

analysis or to a cloud computing data centre for advanced analysis. The analysis results could be sent back
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Figure 5.1: The architecture of an loT device.

to the IoT devices attached to actuators to control cyber-physical systems. Actuators receive digital signals
translate them into physical actions to drive or manipulate cyber-physical systems. A simplified architectural

model of an ToT deployment is shown in figure 1.1.

5.1.1 Power consumption of an IoT device

A simplified abstract architecture of an loT device is shown in figure 5.1. The total power consumption
of an [0T device is the sum of the power consumption of various loT components, including the sensing
units, the actuator unit, the microcontroller units, the communication unit, the communication unit, and the

security unit. The average total power consumed by an loT device is

Py = Racr-(Psav + Pucv + Poomm + Psec) + BsLppp Psreep (5.1

where Pg s is the average power consumed by the sensing and actuation units, Py;eqr is the average
power consumed by the microcontroller unit, Pe,,,,, is the average power consumed by the communication
module, Pgpe is the average power consumed by the security module, Psy i p is the average power con-
sumption ol the consumption ol the ToT device in the sleep mode. Also, R 4¢-7 is the fraction of time that an
10T device spends in the active mode. Rgr pep is the fraction of time the device spend in the sleep mode.
Racr + Rspeep = 1.

The authors in [203] modelled the energy consumption of an 10T node. The authors modelled the energy
consumed during the sensing, processing, and communication processes in an loT device. A significant
proportion of the energy is used for the transmission and reception of IoT packets, and it depends on the
10T packet size, channel capacity. and the environmental factors that influence signal propagation through

wireless transmission media. The authors in [117] proposed an analytical framework for modeling the energy
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consumption of an [oT device for a cellular IoT network (e.g.. NB-1oT) and determined the lower bound for
the energy consumption of the [oT device.

The most important requirements to consider when designing and planning IoT devices and networks
include cost, lifetime [174], and reliability. The lifetime of an IoT device depends on the capacity of the
battery used to power the IoT device and on the energy drawn from the battery to power the IoT device.
The capacity of the battery increases with cost. and some IoT applications require the deployment of tens.
hundreds, or even thousands of battery-powered loT devices, making cost a very important constraint to
consider when designing and deploying ToT devices and networks. The lifetime of the device is the time
required to completely deplete the energy stored in the battery and shut down the device. It could be in-
creased by either increasing the battery’s capacity or by reducing the power consumed by the loT device.
The energy consumption of the [oT devices is kept at a minimum level by using an energy-efficient mi-
crocontroller, using a low-power communication protocol that keeps the device in the sleep mode (energy
saving state) most of the time, and by using lightweight energy-efficient security mechanisms. The authors
in [179] conducted a comprehensive measurement study of the energy consumption of NB-IoT devices to
determine the factors that influence energy consumption and battery energy depletion. The authors found
out that NB-IoT’s energy consumption largely depends on the communication model, signal quality. use of

energy-saving enhancements, and packet size.

5.1.2 Modelling of the expected lifetime of an IoT device

The lifetime of an IoT device can be estimated using empirical methods or using mathematical mod-
elling. Empirical approaches require time and resources to set the testbed for experiments. The authors
in [154] presented the first attempt to empirically estimate the lifetime of a battery-powered NB-loT de-
vice using power consumption measurements. The authors in [229] proposed a modelling and experimental
framework for the estimation of the lifetime of battery-powered NB-IoT and LTE-M devices using energy
consumption profiles for these devices. The expected lifetime of an loT device is [229].

o B-Sﬁmr
Pp

L (5.2)

SFj, is the battery safty factor which account for self-discharging and B is the energy rating of the battery
(in Wh). The average power Pp is required to power all the components of an 10T device could be estimated
emperically or using theoretical power profile models for [oT. Since the IoT device can either be in the active
mode (data acquisition, processing, security, and communication) or in the sleep mode (energy saving state
with the radio transceiver turned off). the expected lifetime of the 10T device is

_ B.SFyq
Racr.Pacr + Bspeep-Psieep

(5.3)

where Paey = Psav + Pycu + Foonm + Psge is the average power consumed by the IoT in the
active mode. By reducing the fraction of time spent by the device in the active mode or by increasing the
fraction of time spent by the device in the sleep mode, the device lifetime can be prolonged. If the fraction
of time that an ToT device spends in the active mode is Racm = Tﬁ,ﬁfﬂ and the fraction of time spend in the

1 :“,.’-.,‘f,"* £ then equation (5.4) becomes:

sleepmode is Rgrppp =1 — Racr =

Tp.B. SJFM?

fi=—
Lacr.Pacr + Tsnpep PsrLeep

(5.4)

97



Where. Ty is the total time spent by the IoT device in the active mode, Tsy,ggp is the total time spent in
the active mode by the device, and Ty = Thcr + Tspprp. If the battery safty factor, SFj, = 1, then the
expected lifetime of the 10T device given in equations (5.2-5.4) becomes

Tp.B

L= -
Tacr-Pact +Tseeep-PsLeep

(5.5)

which is the well-known formula for expected lifetime of an IoT device e.g., see [154, 179].
We know that the average total power delivered to the ToT device from the battery. Pp = Pacr + Pspeer
can be expresses in terms of the average total current drawn from the battery, 7 and the battery output
voltage, v, as Pp = I.v,. Also, the energy rating, BB (in Wh) of the battery can also be expressed in terms
of the charge rating, ¢ (in Ah) of the battery and the battery output voltage. v, as B = Q.v,. Therefore, by
dividing the numerator and denominator of equation (5.2-5.5) by the output voltage v,, the lifetime of the
IoT device in terms of the charge rating and the total average current delivered to the loT from the battery is
TpQ-5 Fhat for SFyy > 1,

L—={ Tacrdlacr trgfégh'.v-fsww (5.6)

for SFp, =1

Tacrdacr +TsieerIsLeer

Where I = Racpdacr + Rspppplsipep, Lacr is the average current delivered to the 1oT device
from the battery in the active mode, and [gpppp is the average current delivered to the IoT device from
the battery in the sleep mode. One of the misconceptions when choosing batteries for IoT devices is the
assumption that batteries with a higher charge rating (in mAh) will guarantee a long lifetime for the IoT
device. For alkaline batteries, which are the most cost-effective and commonly available batteries used to
power electronics devices, the output voltage v, degrades very quickly. shortening the time required to drain
the battery completely or the lifetime of the IoT device [259]. The authors in [9] highlighted the difference
between the battery capacity, () in Ah, and the battery capacity, B in Wh. The battery capacity @ is the total
amount of electricity generated due to electrochemical reactions in the battery. while B is the total energy
that the battery can deliver during the discharge process. The relationship between the bauery capacity, Q.
and the discharge current may not be linear as shown in equation (5.6), but is exponential according to
Peukert law [262]. The relationship between battery capacity in Ah () and the average discharge current I,
and the battery discharge time (which is equivalent to the lifetime of the loT device, L) can be deduced from
the Peukert law [262, 9] as

L

@i (5.7)
Q

[Racr dact + Rsperplsieer)

where £ is Peukert constant, and its value lies between 1.1 and 1.3. Therefore, it is preferable estimate the
expected lifetime of the [oT device using the energy rating (in Wh) (e.g., (5.2-5.5)), rather than the charge
rating as in equation (5.6).

Therefore to estimate the expected lifetime of an IoT device is required to estimate the average power
consumption of the device (the rate at which energy is drawn from the battery), and the battery rating or
the initial amount of energy in the battery (initially the battery should be charged to full capacity). Using
measurements to benchmark the energy consumption of 10T devices before they are used to estimate the
lifetime of an loT device is important. Any hardware and software implementation changes or energy deple-

tion attacks that alter the supposed sleep time of the device may significantly reduce the expected lifetime
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of the IoT device determined during IoT network design and deployment.

On the other hand, mathematical modelling provides a faster technique of understanding the relationship
between the battery parameters, the power consumption model of the [oT device, and the lifetime of the
[oT device. Since it is possible that the energy drawn from the battery could vary stochastically, stochastics
models such as Markovian models, fluid low models. and diffusion approximation models have been used

to estimate the model of the battery of sensor devices and to estimate their lifetime.

5.1.3 An overview of stochastic modelling of the battery of computer systems

A useful but seldom used approach in the analysis and optimization of energy. and more broadly for
the joint optimizaton of energy and quality of service in computer systems and networks, named “energy
packets” was introduced by Gelenbe in 2011 and 2012 [87, 88, 89]. It conveniently represents energy in
discrete units. where an energy packet is the minimum amount of energy required to transmit a single data
packet or process a single job. This approach was initial applied to the optimization of power flow in multiple
node computer networks [100] and joint work and energy in computer systems [90], and then to study the
effects of energy leakage in battery powered devices [95]. The model was applied to the study of sensor
nodes [91], and also to battery attacks in [73, 72].

when the energy is quantised, Markovian stochastic models can be used to model the energy storage
and consumption process. In this case, the state probabilities at time ¢ represent the amount of energy stored
present in the battery at time £. The authors in [125] developed a mathematical framework for modelling
the charging and discharging of the battery of a nanosensor device. The authors represented the dynamic
changes in the battery’s energy content using a Markovian process and then computed the state probabilities
of the amount of energy present in the battery (the energy state of the battery). One of the limitations of
Markovian models is the assumption that the rate at which energy is drawn from the battery is exponentially
distributed. which is not a realistic assumption of the ToT energy consumption patterns.

Since energy is a continuous quantity, the changes in the amount of energy in the battery could be
considered to be analogous to the changes of a fluid in a reservoir, and hence modelled using fluid flow
models. The authors in [83] proposed an analytical model of a battery based on the fluid flow queueing
model. The authors modelled the battery as a charge or energy reservoir where the charge gets accumulated
or depleted over time. By considering that the charge available in the battery at time # is analogous (o the
fluid available in a reservoir, the authors used fluid flow analytical methods to determine the cumulative
distribution function and the mean of the time required for the battery to be completely discharged. The
authors in [123] proposed a fluid queue model for the representation of the dynamic changes in the energy
content of a battery and then used it to determine the time required to completely depletes the the energy
of the battery. The authors in [243] proposed a Markov fluid queue model for the battery of an energy
harvesting ToT device. The authors used their model to compute the probability that the battery’s energy
level hits zero for the first time within a given finite time horizon. Fluid flow models capture the mean
changes in the amount of energy present in the battery but not the variance.

Recently, diffusion models have been proposed as a stochastic model for the battery of an 10T device.
The advantage of using diffusion models the time evolution of the energy stored in the battery traditional

queueing theoretic models and fluid low models is that it takes into account fluctuations in the amount of
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energy harvested from the environment and the fuctuations in the amount of energy drawn from the battery
(energy consumed). The authors in [S] proposed a diffusion process to model the process of energy supply
from energy sources, storage, and consumption for a battery of a sensor node. The authors derived some
performance metrics such as the average time until the node is shut down when the energy stored in the
battery is completely depleted, for a given workload and energy harvesting characteristics, battery capacity.
The authors in [4] proposed a pure diffusion model to represent the time evolution of the discharging and
charging process of the battery of a wireless sensor node. The authors derived some performance metrics
such as the average amount of energy present in the battery at time t and the failure rate of the wireless
sensor node when the battery is completely discharged. They also presented the steady-state solution of the
model that they proposed. It is sometimes important to obtain the transient distribution of the amount of
energy stored in the battery at time t and the distribution of the discharging time, which the authors in [5, 4]
did not consider. The authors in [33] applied diffusion approximation to analyse the transient evolution of
the charging and discharging process of the battery that is supplied by renewable energy and then used to

supply network nodes in a wireless mesh network.

5.2 Energy depletion attacks in IoT networks

Energy depletion attacks are attacks that are designed to exhaust the energy stored in the battery of
an loT device. Reliable security mechanisms are complex and require reasonable computing resources,
memory, and energy. The limited resources (e.g., memory. processing power, bandwidth, and battery) in
IoT devices make it challenging to implement reliable security mechanisms in devices and IoT networks.
Also, some [oT device manufacturers do not implement security futures in their devices to keep the cost low
(to be competitive in the market) and to speed up their manufacturing process. However, much effort has
been made to implement lightweight security mechanisms that optimise the limited IoT resources while still
providing the required security for IoT devices.

Energy depletion attacks are designed to increase the energy consumption of ToT devices, which rapidly
depletes the energy stored in the battery and eventually shuts down the ToT device. The authors in [112]
presented types of battery deletion attacks which include: service request power attacks and benign power
attacks. In the service request power attack, the attacker continuously sends service requests to the target
device, which keeps the 10T device awake for longer periods and rapidly depletes the battery energy. In a
benign power attack, an attacker forces a compromised 0T device to execute energy-demanding tasks which
rapidly depletes the battery energy continuously. The authors also proposed a network-based intrusion de-
tection and prevention technique to detect and prevent battery depletion attacks. Therefore, energy depletion
attacks are designed to increase the fraction of time that an [oT device spends in the active mode or reduce
the fraction of time that the device spends in the sleep mode.

The secure communication process is the most energy-demanding process in an IoT device. To reduce
the energy consumption of IoT devices. low power communication protocols that keep the IoT packet size
as small as possible and keep the device in sleep mode for as long as possible are used. Some energy
depletion attacks are designed to reduce the sleeping time of the 10T device. Adjusting some of the network
parameters, such as the duty cycle, data rates, and the packet size can significantly reduce rapidly depletes

the battery of an loT device and reduce its lifetime [187, 180]. Also, by inducing the device to transmit
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useless packets repeatedly. the device rapidly depletes the energy of the battery [200]. A malicious attacker
could prevent an loT device from entering sleep mode by manipulating its contention window size [34],
sending massive amounts of packets to create more collisions (o the ongoing transmissions [12]. and by
overwhelming the ToT device by flooding it with packets without payload.

Energy depletion attacks could reduce the lifetime of IoT devices from years to days [204]. could also
result in the shutting down of an entire loT network. The authors in [227] studied the impact of battery
training attacks such as "hello” flooding, stretch attacks, and versioning on the energy consumption of loT
devices. The authors found out that versioning is the most severe as it draws a lot of energy from the battery,
followed by packet flooding and "hello” attacks. The authors in [120] analysed the impact of battery drain or
energy depletion attacks on loT devices. The authors designed and conducted DoS service attacks such as
"hello” flooding and version number modification to demonstrate the impact of these attacks on the energy
consumption of the [oT devices and rendered some of them unreachable. A similar demonstration was
shown in [200], where the authors configured some malicious nodes to intentionally generate and send large
amounts of packets Lo legitimate nodes fo excessively consuming the energy resources of the nodes found
along the forwarding path.

Unmanned Arial Vehicles (UAVs) are increasingly being adopted for commercial applications [244]
such as agriculture, environmental management, supply chains, law enforcement, surveillance, photography
[138, 139, 140], and were recently used for deliveries during the COVID-19 Pandemic [75] and to enforce
the restrictions designed to slow the spread of the COVID-19 virus. A UAV could be considered an [oT
system, especially when connected to the internet (e.g., used as an access point in some loT deployment
requiring a temporary sensor network for a few hours). Like traditional wireless sensor devices, UAVs are
powered by batteries, making it difficult to implement sophisticated, reliable security mechanisms. AS a
result, the security mechanisms implemented in UAVs are relatively weak and could be easily compromised.
One such possible attack is the energy depletion attack designed to take control of the UAV and cause it to
perform manoeuvres that consume more energy and, therefore, rapidly drain the drone’s battery. Although
most UAVs have battery monitoring and management systems that ensure that the drone does not crash
due to energy outages by initiating a return-to-home (RTH) mechanism. The RTH mechanism ensures that
the drone returns home with a reasonable amount of energy to ensure a safe landing. However. battery
depletion attacks could still cause the drone to crash while still executing the RTH procedure, which could
be catastrophic and could result in a lawsuit. The authors in [63] presented a framework for the simulation
and assessment of battery depletion attacks on UAVSs in crisis management systems.

It is important to have techniques to detect energy depletion attacks and mitigate their impact. The
majority of attack detection systems used to detect energy depletion attacks in lIoT networks are based on
monitoring traffic characteristics and QoS metrics. The authors in [120] proposed an Intrusion Detection
System (IDS) that detects the presence of energy depletion attacks in loT networks by monitoring by mon-
itoring packet characteristics and QoS metrics such as packet sending rate, packet interval, and the Receive
Signal Strength (RSS). They also demonstrated the use of firewalls to detect traffic coming from intrusions.
[t should be noted that not all energy depletion attacks degrade the quality of service. Some energy depletion
attacks may trigger an increase in the quality of service while gradually increasing the rate at which energy is
drawn from the battery until the battery becomes empty and the device(s) are shut down [215]. The authors

in [199] proposed a lightweight anomaly detection model against energy depletion attacks on loT networks.
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The model proposed by the authors is based on the analysis of statistical distance metrics to differentiate
between the normal and abnormal energy consumption in loT devices.

Some attempts have been made to model the impact of energy depletion attacks on the performance
and safety of battery-powered IoT devices. The authors in [215, 214] modelled the impact of energy de-
pletion attacks on the performance of loT devices. They investigated the impact of increasing the energy
consumption due to energy depletion attacks on the system survivability metric for an loT device under an
energy depletion attack. They considered the survivability metric the Mean Time To Failure (MTTF). The
authors discussed the impact of energy depletion attacks which do not degrade the QoS or may improve the
QoS while gradually draining the battery of the ToT device. The maodel proposed by the authors is based
on the pure death Markovian process, which assumes that there is no continuous supply of energy into the
battery, but the energy consumption process is exponentially distributed. The proposed model is limited
by the Markov assumption as realistic energy consumption distribution for IoT devices deviates from the

Markovian distribution.

5.3 Analysis of Ghost Energy Depletion Attack on an IoT Network

A ghost energy depletion attack (GEDA) is one in which an adversary masquerades as a trusted device
and compels other ToT devices within the network to perform unnecessary computational and communica-
tion operations to quickly deplete the energy stored in the battery of the victim devices and eventually shut
down the devices. There are two main forms of ghost energy depletion attacks which are the high computa-
tional load on device GEDA and the MAC misbehaviour GEDA. In the high computational load GEDA, the
adversary overwhelms its victims with bogus messages to quickly drain the energy stored in their batteries.
Even though it is easier to detect these kinds of attacks with attack detectors, a ghost attacker may cleverly
conduct such an attack by sending the messages at different times or by sending them at different addresses
to a subset of victim devices in its range [34]. In a MAC misbehaviour GEDA, a ghost attacker deliberately
abuses the MAC protocol (e.g.. CSMA/CA protocol) to create collisions on the shared wireless channel to
cause other devices within its interference range to consume more energy (quickly draining their batteries)
and to deprive them of accessing the channel. To analyse GEDAs, it is essential to take note of the factors

that influence such attacks which include:

1. The energy consumption of the various hardware components of the IoT device (e.g.. microcontrollers,
radio transceivers, sensors, actuators, and other electronic components). Energy-demanding micro-
controllers and radio transceivers will consume more energy than energy-efficient ones and will drain

the energy stored in the battery of the IoT device quickly during a battery depletion attack.

=1

The energy capacity of the [oT battery. For a given [oT device, the lifetime of an loT device depends
largely on the energy capacity of its battery. With a high-capacity battery, the lifetime of the device
could be longer. A device with a small battery capacity will easily be shut down by a ghost energy

depletion attack.

3. Frequency of data collection (sensing), actuation (where necessary), processing, and communication
(reception and transmission of information). The more frequent. the device sensing. processing, ac-

tuation, processing, and communication operations, the higher the energy consumption of the device.
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A ghost attacker could compel victim IoT devices to perform such operations more frequently than

during normal operations.

4. The MAC protocol in the link layer. A ghost attacker can abuse the MAC protocol in the link layer to
create collisions, thus, increasing the energy consumption of the devices sharing the channel with it.

Using a collision-free protocol at the link layer could reduce this kind of attack.

5. The cryptographic algorithm is implemented on the ToT device to encrypt and decrypt information.
The energy required to encrypt or decrypt a packet depends on the number of microcontroller clock
cycles required to execute the algorithm (encryption or decryption) and on the average current drawn
by each cycle. Therefore, with information about the number of cycles required to execute the algo-
rithm, the current drawn in each cycle, the clock frequency of the microcontroller, and the operating
voltage of the microcontroller, the energy required to execute an encryption or decryption algorithm
on an loT device can be estimated. The more sophisticated or computationally intensive the crypto-
graphic algorithm, the more quickly it can be leveraged by an attacker to drain the energy of an [oT

device.

6. The packet sizes. The longer the packet size. the more energy is required to transmit the packet and
the longer the time required to transmit the packet. A ghost attacker could decide to be created longer
packets that take too long to transmit, causing other ToT devices sharing the channel with it to experi-

ence more collisions.

5.3.1 Analysis of high computational load ghost energy depletion attack

Consider an IoT device, i in an ToT network with /N nodes. Suppose that the device is working in a duty-
cycling mode with a duty cycle of D = =, where is the duration of the active period and T is the length
of the cycle. Within the active period. the device can receive and decrypt a packet or encrypt and transmit
a packet. If the device completes the reception or transmission of packets and the active period is not yet
finished, the radio and the microcontrollers could be switched to a low-power mode. If no packet arrives or
there is no packet to transmit, the radio is turned off and the microcontrollers are switched to a deep sleep
mode (where it consumes a very small amount of power). After a period 7%, the device wakes up again to
either receive or transmit packets.

Suppose that a ghost attacker crafts bogus packets and send them to the victim device to force it to
spend energy to receive and perform security checks (e.g., access control, message integrity checks, and
decryption). The access control mechanism is based on the principle that after receiving a packet, the de-
vice compares its source address with a list of valid addresses. If there is a match, the packel is accessed;
otherwise, it is rejected. If the ghost attacker can masquerade as a legitimate device, its packets might be
accepted by the victim device but after performing a message integrity check or decrypting the message,
it will realise that it will fail. Although the security checks eventually failed and the packet from the ghost
attacker dropped. the device must have spent a significant amount of energy performing some computation.

Suppose that a ghost attacker sends bogus packets to the victim device at a mean rate of x and the mean
arrival rate of packets to the victim device from both attack and legitimate sources is v = w + v, where

1 is the mean arrival rate of normal packets from legitimate sources. If within a given active period, the
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device receives IV, packets (both attack and normal ones) and performs security checks for these packets,
then the energy consumed by the microcontroller during the process of receiving the packet and executing
the security algorithms to perform the security checks is [34]:

Elmp = Ne(TaecPiicw + TrePhicy) 68

comp

Where T}, is the time required to perform the security checks (access control, decryption, and integrity
verification) for a given packet. which depends on the security mechanism that is implemented, T}, is the
time required to receive a packet (which depends on the size or length of the packet), Pf;; is the power
drawn by a microcontroller unit (MCU) when it is in the active mode, and the power drawn by the MCU
when it is in the idle mode. The energy required to execute the algorithms required to perform the security

checks (including decryption and MIC verification) after receiving the packet can be given by

-N-r' l{-‘i i 3 L’; ec
f

where N, is the number of clock eycles required to perform the security checks, /.. is the average current

Ege = (5.9)

drawn by each clock cycle, Vg, is the operating voltage of the MCU. and f is the clock frequency of the
MCU. Therefore, the more attack packets that are successfully received by the victim device, the higher the
amount of energy wasted executing the security check algorithms (wasting MCU clock cycles to perform
security computations). The energy consumed by the radio module in receiving both the attack and normal
packets within a given active period is

E,. - Ne(Thee + Trx)Pra for Np(Thea+ Tra) 2 1, (5.10)

TP for otherwise

where P, is the power required (o receive a single packet.

Suppose that an attacker compromises an loT device, and then reconfigures it to perform more sensing
(measurement) operations more frequently than required. The packets that belong to the extra measurement
can be considered attack packets because the device spends energy 1o sense. encrypt and transmit the packets.
Suppose that the victim device perform /N; number of transmission (including the transmission of packets
from necessary and unneccessary measurements), then the energy consumed by the MCU in performing

cryptographic operations (including encryption of the packets) and transmitting the packets is given by
E:?;;TJ!J'J = Jvf(TC"-(‘P;:\l..'C'{-’ + Tta I'},?‘:.;’(_'U) (5.11)

Where T, is the time required to encrypt a packet and Tj, is the time required to transmit a packet.
The energy required to perform the cryptographic operations (including encryption) before transmitting the
packet is similar to equation (5.9). The energy consumed by the radio module in the transmission of both
attack and normal packets within an active period, assuming that there are no collisions are

E Nﬁ(ﬂﬂ -+ R:}{T‘d-nr' + Tr‘.:i:) for A'I" {T;-m- + ]-}.i) 27, (5.12)

b = R
(nPy + Po)r for otherwise

Where 7) is the conversion factor of the power amplifier from electric power to RF power. P, is the electronic

power consumption overhead.



5.3.2 Analysis of MAC misbehaviour ghost energy depletion attack

Compromised 10T devices could be exploited to create and generate attack packets and to cause colli-
sions in the shared channel. An increase in the number of collisions in the channel will lead to an increase
in energy consumption of the loT devices in the network. The mean total effective traffic intensity in the

channel is

A= NXg Yot (5.13)

1
1— P,
where F, is the probability that a device experiences a collision when it tries to transmit a packet and
Ap is the mean arrival rate of packets at the output transmission queue of an IoT device. The first term
is equation (5.13) is the effective normal traffic intensity created in the channel by ToT devices that are
behaving normally and the last term A 4 is the additional mean traffic intensity created by compromised loT

devices (we also refer to it as the attack traffic intensify).

v
A

Figure 5.2: Channe] access behavioral model of the IoT device.

All the IoT devices are listening to the channel to sense when the channel is free so that they can
transmit their packets. Whenever the channel is free, an loT device can transmit its packet normally within
the timeframe of Tj,, as shown in figure 5.2. If a device transmits all its packets and its buffer is empty. it
switches to a low-power mode until the next that it will wake up to either receive messages from the lToT
gateway or take measurements and transmit them to the gateway. The more time a device spends in the
low-power mode. the longer its lifetime. However, if a device detects a collision, it will try to access them
again after a backoff time or retransmission time 7., which is proportional to i\ The probability that there

is a collision in the channel is

P.=1—¢ D (5.14)

where D is the propagation delay of the wireless communication channel between the IoT device and the

[oT gateway. By substituting P in equation (5.13) and simplifying we have

J2AD A—Aa _ A B A (5.15)
I A‘Y/\n .ﬂ'\‘r/\[] i\?f\[] o

shown in figure 5.3
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Figure 5.3: Ay = 5. Ao = 1. D = 0.001, N =50, A € [0 2000]

The mean number of transmission attempts including successful transmissions is

20

| [ . Ti—1 _

Ny = ZILPC I-P)=1—F
ri=1

and the mean number of collisions in the channel is

1 F.
j\TF =l ]_ == —{
1—-PF. 1-P,
Therefore, the service time at the output queue of the IoT device is

1 P,
LN i B A
; 1—P,_‘( +1)+T

I(,'a,\n — (e +T) + Tie

The mean time required to transmit an IoT packet of size i is

Thy = %’é

Where (' is the Shanon capacity of the loT wireless channel given by

C=Wioga(1+ SNR)

2000

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

where TV are the channel bandwidth, SN R = ﬁ is the signal-to-noise ratio, and F,., P;, Py are the

received power, the interference power, and the noise power respectively. The power level of the signal

transmitted by the loT device is attenuated by the channel and the power that is received by the IoT wircless

access point is
I
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where, F; is the transmit power and the path loss PL is given by
PL = Lohd™ (5.22)

where d is the distance between the IoT device and the wireless access or gateway, h is a random variable
that represents the fading in the channel. « is the path-loss exponent, and L is a constant determined by
the antenna gain, radio frequency, and the propagation environment. More advanced radio network planning
models could be used to determine the path loss to account for possible environmental obstacles which cause
radio signal degradation or fading. The retransmission delay is assumed to be exponentially distributed with
parameter A, and the mean retransmission delay T, is. therefore, proportional to % Also, we assume that
the collision time is uniformly distributed between () and D, and the mean collision time T, is. therefore, %

Thus, equation (5.19) becomes
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Figure 5.4: D = 0.00L. T, = 0.001, T}, = 0.1, T}, = 0.01, A € [0 2000]

From the Shanon information and communication theoretic limit to estimate the amount of energy re-

quired to transmit an IoT message is [117]
€ = (NP + Pt (5.24)

which can also be expressed in terms of the channel and other transmission paramelers as

" m
i poy oy 525
d (PLP r ) Wioga(1 + SNR) )

For most loT device majority of the communication is in the uplink (from the IoT device to the access

point), especially for loT devices whose function is to take measurements (sensing) and send them to the fog
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or cloud servers. Since most of the communication is in the uplink, an attacker can easily conduct energy
depletion attacks by causing the IoT device to increase its transmit power, increasing the time required
to transmit a packet (by increasing packet sizes m or creating interference in the wireless channel) or by
creating collisions in the shared wireless channel.

It should be noted that by deciding to generate or create packets with larger sizes, the ghost attacker
increases the transmission times, thereby increasing the likelihood of collisions in the channels. Also, by
increasing its traffic (by increasing its measurement frequency), the ghost attacker triggers an increase in
A which increase the likelihood of collisions in the channel and compels other devices sharing the channel

with it to consume more energy. Hence. quickly draining their batteries.

Increasing the number of collisions in the shared wireless channel will increase the mean active time
of the transmitter. The relationship between the mean active time of the transmitter and the mean total
effective traffic intensity in the channel, A is shown in figure 5.4. The mean total effective traffic intensity
in the channel, A can be increased by increasing the attack traffic. The main objective of the attacker is to
maximise the active period, that is, to increase the time that the microcontroller unit and the radio unit spend
performing computation and reception or transmission operations respectively. By maximising the active
period of the MCU and radio unit, more energy is drained from the battery, and quickly depletes its energy

content.

5.4 Modelling the energy depletion process for Battery of IoT devices

In this section, we present stochastic models that are useful for the analysis of the energy depletion pro-
cess of the battery of an 10T device. We present Markovian model of the battery of an IoT device developed
and used to analysed battery depletion attacks in [214, 215]. We propose a similar diffusion-based model of

the battery of an loT device. The diffusion model is also compared with the Markovian model.

5.4.1 Markovian model of the battery for IoT devices

Suppose that initially, the battery is fully charged to its full capacity B. Also, suppose that the energy
stored in the battery is quantised, and that fixed-sized energy units are drawn from the battery to power the
IoT devices. It is assumed that the energy consumption process is exponentially distributed. Let N (£).£ = 0
be a random process that represents the number of energy units present in the battery at time £, and the
probability that there are n energy units in the battery be P{N(t) = n} = F,(t). where, F, is the state
probability of having n energy units in the battery. The time evolution of the discharging process of the

battery can be described by a pure death Markovian process as

1Pg(t \
dPg(t) — —Py(t)Pp (5.26)
dt
Pt ;
dE‘) = P aPp+PaPp 0<n<B
dPy(1)
= Py(t)P
5 ol(t) Pp
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Figure 5.5: The distribution P, (), of the amount of energy n in Wh present in the battery at time ¢ during
the blackout period, forf € (0 10],n € [0 10}, B = 100, and Pp = 1.

The solution of the set of equations in (5.27) gives the state probability of the amount of energy present in

the battery at time 1, and it is given by [214, 215]

(Ppt)® " _py
(B—n)!

i Pu(t)+Fu(t) = 1. the probability that the battery is empty at time { (service

Pi(t) = 0O<n>DB (5.27)

B

n—=

Using the normalisation. Y
outage probability) during the backout period is

B E B—n
Ppt
H]‘(l‘) =1- E {(BD%N.)!P_P”‘ (528)

n=1

Figures 5.8 and 5.5 shows the density of the number of energy units 7. present in the battery at time f.
It starts with a sharp spike and then gradually decreases to zero. It is because. initially (at time ¢ = (), we
start with a fully charged battery to its capacity 5. The battery’s energy content gradually decreases with
time and eventually reaches zero when all the energy stored in the battery is completely depleted. A similar
probability density can be obtained by modelling the battery using a diffusion process, as shown in this
study.

The time required to completely deplete the energy stored in the batlery is the first passage time of the
Markov process from the state n = B at time ¢ = 0 to the state n = 0 at time #; when the energy stored in
the battery is completely depleted. Tt is the lifetime of the ToT device. Let the random variable 7' represent
the time required to completely deplete the energy stored in the battery, where the first passage time process
is T =dnf{t > 0: N(t) = 0}. The distribution of the first passage time from a defined point n = B to
n=~0is

=([3—
] L (5.29)

o(t) = [Ppe"™"
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Figure 5.6; The distribution £, (t), of the amount of energy n in Wh present in the battery at time £ during
the blackout period, for t € (0 100}, n € [0 100}, B = 100, and Py = 1.

where (3 — 1) is (B-1)-fold concolution of a function with itself. The mean of the distribution (5.29) gives

the mean of the time required completely deplates the amount of energy present in the battery and is given

by
B B

Bt =2 =
7l Pp  Racr.Pacr + Rsieep.PsLeep

(5.30)

Despile the assumption that the energy consumption process is exponentially distributed. the mean lifetime
of the 10T device given in 5.30 is the same as the well-known expression for the lifetime of an 10T device
given in equation 5.2, for SFj,,; = 1. The same expression can be derived using a diffusion approximation-
based model. The diffusion approximation modeling approach removes the assumption that the energy con-
sumption process should be exponentially distributed. It is also unnecessary to discretise the battery's energy

as the diffusion process is a continuous stochastic process.

5.4.2 Diffusion approximation model of the battery for IoT devices

Suppose that initially, the battery is fully charged to its full capacity B. Suppose that the cumulative
amount of energy drawn from the battery to power the ToT device up to time ¢ is Ep (7). then the amount of

energy present in the battery at time ¢ is
E(t) =B — Ep(t) (5.31)
The change in the amount of energy in the battery between time f and ¢ + A is
E(t+A)— E(t)={Ep(t +A)— Ep(t)} (5.32)
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If we assume that as energy is drawn from the battery. the changes in the energy content of the battery
AF(t) = E(t + A) — E(t) are normally distributed, then we can approximate the discharging process of
the battery by a diffusion or Brownian motion process X (#) whose changes AX(t) = X (t + A) — X (1)

are normally distributed with mean At and variance a At where:

E[X(t + At) — X(1)]

r? — o
b = Jm =g
Var| X (1 — X{t
o0 = Tm ar[ X (L + At) X(!}]‘
Al—0 At

We represent the discharging process of the battery by a diffusion process that starts at X(0) = B
(battery is fully charged at the beginning) and ends at X (¢) = 0 (when the battery is fully discharged). The
dynamic changes in the energy content of the battery (during the discharging process) can then be described

by the second order partial differential equation of a diffusion process, e.g. [44],

O(x.t: B)  ad*y(x.t: B) Baw(J-_::B)

= ‘ 5.33
o 2 o2 7 or B=2)
subject to the conditions
Ww(B.0;B) = 4&(B) (5.34)
(0,5 8B) = 0 for t>10

where ¢/(, £, B) is the Probability Density Function (PDF) that we have & amount of energy in the
battery at time £. given that the discharging process started with + = B amount of energy in the battery. The
boundary condition, ¢ (x, 0; B) = 4(B) in (5.35) is the initial condition that the battery is fully charged at the
beginning, that is, with a probability of 1, the amount of energy present in the battery at time ¢ = () is B (the
probability density in infinite for = () and @ = B). The boundary condition ¢»(0.#; B) =0 for t >0
is the final condition that at time time #, the energy stored in the battery is completely depleted. The solution

of (5.33) with the conditions in (5.35) gives the PDF of the diffusion process that starts at .z = I3 and ends

atr = 01s
pg(”'_"j)_%; —f)? (e H)2
Plo,t;B) = ———— | Tt —e et (5.35)
vV 2mexd

The PDF given in equation (5.35) satisfies the partial difference equation in (5.33) and the conditions in
(5.35, that is,

W(B,0;B) = }il_l{l,‘t,{l(B.{:_B)
= 4(B)
and

e, : B) = lim U(x, : B)

= 0 for >0 and ©=0

, which implies that the distribution ¢'(x, #; B) converges to 0 within a finite time horizon ¢ > 0, for any

value of z = 0.
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The lifetime of the IoT device is the time required to completely deplete the energy stored in the battery
and is the first passage time from » = I (when the battery is fully charged) to = = 0 (when the energy
stored in the battery is completely depleted). Let the random variable 7" represent the lifetime of the lIoT
device, where the process is represented by the random process T = inf{t > 0 : X(#) = 0} is the first
passage time of the diffusion process from » = B to x = (. The PDF of the first passage time of the

diffusion process from x = Btox = (is

a p(x, t; B)

1B0(t) = ‘}:12}][54&_ — B(z,t; B (5.36)
B _ iBan®
= ——¢p P
V2rath
The mean lifetime of the loT device (or the mean time to failure) is
oo
Hr = / veo(t)dt (5.37)
Jo
B
8
and the variance of the lifetime of the [oT device is
2 R 2 o
ar = / typolt)dt — pp (5.38)
Jo
Ba
- -5

If we consider a battery in which energy is stored in it at a mean rate of Pg and energy is drawn from it at
a mean rate Pp, then the energy in the battery changes at a mean rate 3 = Pg — Pp [243]. The variance
of these changes is a = C% Ps + C} Pp. where €% and C'% are the coefficients of variation of the process
supplying energy to the battery and the process of drawing energy from the battery, respectively. However, in
this paper. we assumed that energy is not supplied to the battery of the loT device: that is. we assume that the
device depends only on the energy stored in the battery during the deployment of the loT device (i.e., Py = 0
and '3 = 0). Therefore, the parameters of the diffusion process can be defined as 3 = —(Racr.Pact +
Rspepp.Psppep) and o = CE;(R_.}(_'T.HM"T + Rereep. Psreep) respectively. The diffusion parameter
# = —(Racr-Pacr + Rspeep.Psppep) and o = C3(Racr.Pacr + Rspeep-Pspepp). Therefore,
the expected lifetime of the loT device or the Mean-Time-To-Failure (MTTF) becomes:

B

= (5.39)
Racr-Pacr + Rsippp-PsLepp

K
which is the well-known results for the expected lifetime of an LoT device. Also, the variance of the lifetime
of the ToT device becomes:

By
[Racr-Pacr + RsLeep-PsieEP)

o = 5 (5.40)

Figure 5.4.2 shows the comparison of the probability density of the lifetime of the IoT device vz ;(t)
for B = 100 Wh and P, = 0.21. For the diffusion model. we use (_"% = 1 to ensure that the energy
consumption process is exponentially distributed to compare the Markovian and the diffusion approximation
models. It can be observed that the probability density function of the lifetime of the IoT device obtained
using the proposed diffusion model is the same as that obtained using the pure death Markovian model used

in [214, 215] to model the battery of an loT device.
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Figure 5.7: Comparing the probability density of the lifetime of the loT device yg (#) for B = 100 Wh and
Pp=0.2W,

The probability that the energy stored in the battery is completely depleted after time £ is

!
Tpolt) = A vB,0(&)dE (5.41)

1 ( _aBg f {B - dt} 5 [B + f’itD
= {54 a erfec erje
2 ' 2ot V2at

erfc(t) =1 —erf(t), and erf(t) = 72_ﬁ /.: e de.
J0

Let us suppose that during the deployment of the IoT device, it is desired to predict the time after which

where

the energy level of the battery should have decreased to a predefined threshold so that the operator could
consider changing the battery or charging it. Suppose that this threshold is @ = 7B, where n = (0 1), then
the time £, after which the energy level of the battery decreased to the defined threshold is the first passage

time from x = B at time # = 0 to = = 153 at time ¢, and it's distribution is

Bl —un) _wsti—g+s0?
2ot

VE4B(l) = —F/——¢ (5.42)
? V27 at?
with mean
DO .
i = ] tyg e (t)di (5:43)
0
_ B(l—un)
N 3



and variance

op = A .05 (t)dt — pif (5.44)
B (1—=mn)a

{d‘."i
The probability that after time ¢, the energy level of the battery should have decreased to reach the defined
threshold is

t
Coun(t) = | vman(€)ds (5.45)
_ 1 (P_mun—um i [B(l —n)— Ul] ferfe {B{I —n)+ ﬁt])

2 Devt 2ad

5.5 Numerical examples

This section presents some numerical examples to study the dynamics of the energy depletion process
in a small-sized battery used to power IoT devices. We present the influence of design parameters that can
be selected during the design and deployment of the ToT devices on the time it takes to drain all the energy
stored in the battery completely. This time gives the lifetime of the [oT device from the time the device is

deployed to when the energy stored in its battery is completely drained and the device is shut down.

Figure 5.8: The distribution «(a:, f; B), of the amount of energy x in Wh present in the battery at time £, for
te (0 200]and z € [0 100].

Fig. 5.8 shows the probability density of having = amounts of energy in the battery at time £ given that
the discharging process started with &+ = I3 amounts of energy in the battery. After a certain time £, the

distribution of the amount of energy present in the decreases to 2 = (), which happens when the energy
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Figure 5.9: The distribution v(x, 1; I3}, of the amount of energy x in Wh present in the battery at time #, for
t € (0 2000] and x € [0 100].

stored in the battery is completely depleted. The time axis gives the distribution of time required for the
amount of energy present in the battery to decrease from # = B to a give amount . To clearly observe how
the distribution of the amount of in battery varies over time, we increased the time axis as shown in Fig. 5.5,
For the results presented in Figures 5.8 and 5.5, Py = 0.12471 W, Ps = 0.090 W, and Rgpprp = 0.95,
and Raor = 0.05, CB% =1, and B = 100.

Figure 5.5 shows the influence of the average power consumed by the device when it is in the active
mode. P47 on the distribution of the lifetime of the device. It can be observed that a very small increase
in the average power consumed by an [oT device in active mode can significantly reduce the lifetime of the
loT device. In battery depletion attacks, an attacker could cause the 10T device to increase its transmission
power, increasing the power consumed by the ToT device in the active mode. There are various ways in
which the power consumed by the device when it is in the active mode can be increased. For the Plot in Fig,
5.5, B =100, Pg = 0.090 W, and Rsrppp = 0.95, and R o1 = 0.05. CB%=1. Figure 5.5 shows the
influence of the proportion of sleep time, Ag7,prp on the distribution of the lifetime of an loT device. The
distribution is shifted to the right as R gpp increases. It is because increasing the sleep time reduces the
energy consumed by the [oT device and hence, increases its lifetime. The most popular energy depletion
attacks designed to completely drain the energy of the battery of the IoT device are denial of sleep and
various types of vampire attacks. They are conducted by manipulating some device or network parameters
to reduce the sleep time (and hence, Rgy ppp) of the device. Fig. 5.5 shows the influence of the proportion
of sleep ime, gz ppp on the probability that the energy stored in the battery is completely depleted before
a given time f. It shows that as the proportion of sleep time increases. the higher the probability that the

energy stored in the battery will be completely depleted before a defined time ¢. Figure 5.5 influence of the
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Figure 5.10: The influence of the active mode power, P40 on the distribution of the lifetime of the ToT

device.
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IoT device.
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Figure 5.12: The influence of the proportion of sleep time, R/ g p on the probability that the energy stored
in the battery is completely depleted.

Coefficient of variance of the energy consumption C'%, on the distribution of the lifetime of the IoT device. It
shows that large variations in the energy consumption of the IoT also result in a large variation in the lifetime
of the IoT devices and makes it difficult to predict the lifetime of the loT device or the expected time to
change the battery of the device. Usually, the energy consumption of the IoT devices may vary very slightly,
but the variations could be significant if the device experiences energy depletion attacks at random times.
Some energy depletion attacks that do not degrade the QoS (some improve QoS by increasing the transmit
power when the noise or interference level is high while draining more energy from the battery) make them
difficult to detect using the traditional QoS-based attack detection mechanisms. In this case, it could be
preferable to monitor both the QoS and the energy consumption metrics and use them for attack detection.
Figure 5.5 shows the influence of the battery capacity on the probability that before time {, the energy stored
in the battery is completely depleted. The loT devices that require a long life include those used in industries
such as oil and gas, agriculture, health care, wildlife conservation, forestry, and water monitoring [186]. The
use of batteries with small energy storage capacity results in frequent battery replacements, which increase
maintenance costs. However, the choice of battery capacity for an IoT device depends on the battery’s cost,
size, weight, and energy density. Therefore, based on the power consumption budget of the loT device, the
battery specifications should be selected in such a way as to have a long lifetime. Figure 5.5 shows the

relationship between the battery capacity and the mean lifetime of the device.

When deploying an IoT device in an IoT network. it is possible that the probability of the time after
the energy stored in the battery should have decreased to a defined percentage (%) of its initial amount. It
enables the operator to estimate the time after which the battery of the 10T device should be replaced without
waiting until the energy stored in the battery is completely depleted before the battery is replaced. It is to
ensure that the device is not shut down due to the complete depletion of the energy stored in the battery.
Figure 5.5 shows the influence of the energy threshold percentage & = 7, on the probability density function

(PDF). 4,5 (1). It is the PDF that after time £, the amount of energy present in the battery is = = B, that
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Figure 5.13: The influence of the Coefficient of varience of the energy consumption C'% on the distribution
of the lifetime of the ToT device.
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Figure 5.14: The influence of the battery capacity B on the probability that the energy stored in the battery
is completely depleted.
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is, the battery must have discharged o 1 — # percent of its initial amount of energy. Figure 5.5 shows the
influence of the energy threshold percentage @ = 7). probability ['g ,5(t) that after time ¢, the amount of
energy present in the battery is # = 13 that is. the battery must have discharged to 1 — » percent of it’s

initial amount of energy.

5.6 Conclusion

During the development and deployment of loT devices and networks, making reasonable tradeoffs be-
tween Qo0S, security. and the energy consumption is essential to ensure reliability. security. and a longer
lifetime of the IoT devices. It is important to prioritize power consumption when designing and deploying
[oT devices and networks. Some of the ways to reduce power consumption include the implementation of
sleep mode (which could reduce up to 90% of the energy consumption), avoiding excessive push notifi-
cations, choosing when and how to transmit information, selecting the most appropriate wireless protocol
[186], and implementation of energy depletion attack systems to prevent attacks that are aimed at rapidly
draining the battery of the device. To prolong the lifetime of IoT devices and to minimise the impact of
battery depletion, energy harvesting has been used where possible to recharge the battery with energy har-
vested from the environment. Our study was limited to developing the diffusion approximation for a battery
witheut any renewable energy source.

We have applied a diffusion or Brownian motion process to model the energy depletion process of a
battery of an loT device. We used the model to obtain the probability density function, mean, variance, and
probability of the lifetime of an [oT device. Also, we studied the influence of the active power consumption,
sleep time, battery capacity on the probability density function, mean, and probability of the lifetime of
an IoT device. Since battery depletion attacks are always aimed at manipulating the IoT device to increase

its energy consumption significantly, the numerical examples enabled us to study the influence of battery
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depletion attacks on the distribution of the lifetime of an IoT device. We also introduced in our model
the energy threshold after which the battery of the device should be replaced to ensure that the battery
is not completely drained before it is replaced. The time after which the battery should be replaced can
be obtained from our model. Therefore, the diffusion approximation can be used to conveniently model
the energy depletion process of the battery of an IoT device, and with knowledge of the battery capacity,
the average power consumption. and the variance of energy consumption (if any). the probability density

function, the mean, variance, and probability of the lifetime of an IoT device can be obtained.
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Chapter 6

Performance Modelling of the Battery
Energy Storage System (BESS) for a Green
Mobile Network Base Station (e.g
BTS,NodeB,eNodeB or gNodeB) Site

In the previous chapter, we discussed modelling the energy depletion process used to supply computer
systems (e.g.. IoT devices, drones. mobile phones. etc.). Some of these battery-powered computer systems
can be deployed alongside energy harvesting systems. The energy harvesting systems can harvest energy
from environmental energy sources such as solar. thermal. wind. and vibrations. The harvested energy can
be used to supply the computer systems or stored in a Battery Energy Storage System (BESS). The energy
stored in the BESS can then be drawn to power the compuler systems.

The use of energy harvesting systems to replenish the energy depleted from the battery of battery-
powered computer systems to operate for a long time without human intervention to recharge or replace the
battery. In battery-powered computer systems (e.g., [0T devices, drones, etc.), their lifetime (the required to
drain the energy stored in the battery) is very important. Deploying energy harvesting systems (o continu-
ously recharge the battery significantly extends the lifetime of the computer system. hence improving the
QoS.

Also, using renewable energy sources to power computer systems and Information and Communication
Technology (ICT) infrastructures is a sustainable way to reduce ICT-related carbon emissions. In off-grid
rural environments. renewable energy may be a cheaper solution to power computer systems or ICT infras-
tructures. Electricity supply in sub-Saharan Africa is subject to frequent outages due to insufficient energy
generation and/or poor transmission distribution infrastructure [77]. Also, many rural communities in these
regions are not yet connected to the grid. Thus, ICT infrastructures (e.g.. base stations. network access points.
transmission systems) deployed in off-grid environments can be reliably powered using energy harvesting
and storage infrastructures.

There is increasing use of renewable energy to power base station sites to reduce carbon footprint and
operational expenditures (OPEX) [248]. With the recent increase in energy prices, the cost of energy has

become the dominating operational cost for mobile network operators [197]. Although the base stations of
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Figure 6.1: The architecture of a green base station site.

next-generation mobile networks (5G/6G mobile networks) are designed to be energy efficient, the dense
and large-scale deployment of these base stations will increase the energy demands of mobile networks.
Therefore, increasing the energy mix of mobile networks to include renewable energy sources and energy
storage systems could reduce the carbon emission and operation of mobile networks.

Because of the transient fluctuations in the supply of energy from renewable energy sources [201] and
the fluctuation in the energy demand of some computer systems and ICT infrastructure. BESS is essential
Lo absorb the energy harvesting intermittency and demand fluctuations. The harvested energy is tlemporarily
buffered in the BESS and then drawn to power computer systems or ICT infrastructure. In this chapter. we
apply Markovian and diffusion approximation models to analyse the performance of BESS for a green base
station site. We compared the results obtained from the two modelling approaches.

In this chapter, we present an architecture of a green base station site. We develop Markovian and
diffusion approximation models for the analysis of steady-state and transient-state performance of battery
energy storage systems. We apply Markovian and diffusion approximation model to derive the time after
which the battery energy storage system is completely discharged or fully charged. By assuming that the
energy harvesting and the energy consumption processes are exponentially distributed. we compare the
result obtained from the Markovian model to those from diffusion approximation models. A portion of the

material presented in this chapter was published in [58, 53].

6.1 The architecture of battery energy storage systems for a base station

The architecture of a green base station site consists of renewable energy sources (e.g., wind or solar),
an energy storage system (e.g., battery bank), a battery management system. and the base station system

with other hardware infrastructure. Renewable energy sources generate energy that is stored in the battery
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energy storage system. The stored energy is drawn and transferred to the base station power system and used
to power the base station.

Consider a base station that is located in a remote area without access to an electricity grid, as shown in
figure 6. Renewable energy sources such as photovoltaic or wind are installed o generate enough electrical
energy to power the base station, the transmission systems, and all the other electrical infrastructure installed
on the base station site. Since the energy gencrated by renewable energy sources may fluctuate depending on
the weather conditions, a battery energy storage system is installed between the renewable energy sources
and the base station to store the excess energy generated and smoothen the output power delivered to the
base station.

The battery management system performs supervisory control and data acquisition. The data about the
state of charge and state of health of the BESS. the average energy generation rate, and the average energy
consumption rate is collected. The data collected can be used for local supervisory and control and sent to
the operation. maintenance. administration (OMA) centre of the mobile operator for further processing and
optimization. If the energy stored in the BESS is depleted below a defined energy threshold. the battery
management system should switch the base station from the battery to the backup generator to ensure that
the base is not shut down when the battery is fully drained. A shut down of a base station results in significant
losses for the mobile operator.

Suppose the weather condition or the deployed renewable energy resources is able to generate sufficient
amounts of energy that can supply the base station with little or no Auctuations. In that case, the supervisory
control should be configured so that the energy infrastructure can supply the base station directly and charge
the BESS simultaneously. In this case, when the weather condition is not sufficient for generating enough
energy to supply the base station directly, the base station is powered through the BESS. When the energy
stored in the BESS decreases below a defined threshold, and the renewable energy sources are not sufficient

to power the base station, it is switched from the BESS to a backup generator to avoid service interruption.

6.2 Stochastic model for a battery energy storage systems

The amount of energy generated by the PV systems or Wind turbine is non-deterministic because it
depends on variable environmental factors such as intensity of the sunlight, duration of the sunlight. tem-
perature, humidity, and win speed. The energy drawn from the battery to power the base station is non-
deterministic because it depends on the service traffic which is random [167]. Therefore, since the energy
generation and energy consumption processes are non-deterministic, the dynamic changes in the amount of
energy present in the battery at time / can be modelled using stochastic processes e.g., Markovian models
and diffusion approximation models.

The metric that is used to represent the available storage capacity of a battery energy storage system is
the state-of-charge (SoC)[256]. It provides information about the relative amount of energy remaining in the

batter. It can be estimated using the Coulomb counting (Ampere-hour integral) as [237]

9 b <
SoC(t) = |1+ u'gﬂ} +100 6.1)

where 7). is the battery’s coulombic efficiency, 7 is the battery terminal current, and @ is the rated capacity

of the battery (in Ah), and assuming that the battery is full initially at time { = 0. The use of state-of-charge
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metric is sometimes preferable because it is can be expressed in terms of the battery voltage which is in-
flunced by by environmental factors and battery parameters such as discharging rate, ambebient temperature,
and battery aging. It provides information about the residual energy of the battery and is defined as the ratio

of the remaining energy to the total energy [252]. It can be expressed as

o EE
SoE(t) = 1+M

e J P(f)de] © 160

} x 100 (6.2)

= [1l+ B

a5

+ 100

= 1+
Where V' is the battery voltage, P is the power, B is the energy rating of the battery (in Wh), and The energy
present in the battery at time . The changes in SoC or SoE indicates changes in the energy content of the

battery e.g.,

T W e B el e Rl (6.3)

The amount of energy present in the battery at time £ is
E(t) = Eu(t) — Epl(f) (6.4)

where Eg(f) is the cummulative amount of energy harvested and stored in the battery and Ep(#) up to time
t is the cummulative amount of energy drawn from the battery to supply the load up to time . The change

in the amount of energy in the queue between time ¢ and f 4 A is
E(t+A) - E(t) = {Ex(t+A) — Ex(t)} — {Ep(t+ A) — Ep(t)} (6.5)

For small energy changes (A— > (), the energy present in the battery at any given time { satisfies the

following differential equation: _
dE(t) _ dEn(t) " dEp(t)
dt il ot

The differential equation in 6.6 is difficult to solve because the function E(?) is not differentiable at some

(6.6)

points [233]. Also, it is difficult to express Ey (f) and Ep(f) as continuous functions, instead what is often
available is the data of the power generated by the photovoltaic systems and the data of the energy con-
sumption of the base station. Since the rate at which the energy is generated and stored into the battery and
the rate at which energy is drawn from the battery to supply the base station are non-deterministic, then. the
SoC. SoE, or the amount of energy present in the battery at any given time is also non-deterministic, and

can be modelled as a stochastic process.

6.3 Markovian model of the BESS for a base station site

To apply Markovian models to model the battery energy storage system of a base station site of a mobile
network, we suppose that the energy generated by the photovoltaic system is stored into the battery energy
storage system in discrete amounts called energy units or energy packets. Also, we discretise the energy
drawn from the battery to power the base station into energy units. Since the amount of energy generated

and the amount of energy drawn from the battery varies randomly over time, we assume that the arrival
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process of energy packets into the battery follows a Poison process with mean rate P (in W) and that the
discretised energy consumption process is exponentially distributed with mean rate Pp (in W),

The discretization and these assumptions are used for mathematical convenience to treat the battery
energy storage system as an energy buffer that is continuously supplied with random amounts of energy
and random amounts of energy is drawn from it to power the basse station. It enables the application of
well-known Markovian models developed for the analysis of queueing systems in computer systems and
networks, manufacturing, and the service industry. When the battery is charged to full capacity, additional
amounts of energy generated is not added to the battery (it is either redirected to another energy storage
system or wasted). Therefore, we model the battery as an M/M/1/B Markovian model, which is simple
and its results are well-known in the queueing theory literature. The symbol A represents the the energy
generation and consumptions processes, B is the capacity of the battery, 1 indicates that we have a single
load (base station) that is supplied by the batery.

A Markovian process is a stochastic process that possess the "memoryless" property in which the future
of the process depends only only on its present state (regardless of its past states); that is, the knowledge
about the future states of the process, depends entirely on the present states. Let N(#),1 > 0 be a random
process that represents the number of energy units present in the batter at time £, and the probability that
there are n energy units in the battery be P{N(t) = n} = P, (t). where. P, is the state probability of
having n energy units in the battery. If the process is at state n (that is 7z energy units in the battery), and
with the arrival of an energy unit the process jumps to the state n + 1. The difference-differential equations

for the time-dependent evolution of the process is

N A .
d!(?{(i) = —Py(l)Py+ P (t)Pp 67
i ¥ > 3 -~ -
Pa’fg ) = PH_J'('MPH - P“'(”{PH i PDJ + Pn.-w-.l(f-)PD D<n<B
Py (t o i
(”‘:i( ) - Pp_y(t)Py — Pp(t)Pp

Where F(t) and Pg(t) is the probability that the battery is empty (that is, the energy stored in the battery is
completely depleted) at time ¢ and the probability that the battery is fully charged to its maximum capacity

at time {.

6.3.1 Transient-sate analysis

We use the method developed by Sharma and Gupta [218] for the transient analysis of an M/M/1/k
queueing model to analyse the transient behaviour of the BESS. Suppose that (0) = 1 and P,(0) = 0, for

n # 0 (that the BESS is initially empty), and taking the Laplace transform of the equations in (6.8) we have

(P +35)Po(s) = 1+Pi(s)Pp (6.8)
(P-” -+ pp + 5)Pls) = }:’,,_1(5)1511 -+ }_7-,,4_1(5)}5;} D<n< B

(Pp+35)Py(s) = Pg-1(s)Py

where,

Pu(s) = ]“' e P, (t)dt
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and.
Pt -
Y :a(rj} = sPu(s) = Pu(0)
Also, suppose that Py(0) = 0 and P,(0) = 1, for n # 0 (that the BESS is not empty initially), then the

Laplace transtform of the equations in (6.8) becomes

1+ 157,_71(-‘1‘)155 + f’,,+1(.‘i)PD O<n< B
1+ pg,l(s)}jy

(ﬁ” -+ ﬁ)f_’g(‘i)
(P + Pp + 5)Pa(s)
(Pp it R)pg(.ﬁ‘)

The set of equations in 6.9 and 6.10 can be solved using any linear solver to obtain the state probabilities.
The solution to the equations in (6.9) were developed by the authors in [218]. Therefore, the transient-state

probability of having n energy packets in the BESS is given by

) ,"h))” .__.B—-H--I—l _ wB—ll—-‘-l . ;_w):.'--l-l ._B_“ _ LJB_“
Fals) = L Sh,zull_ uf.z\sﬂ] [\ | (6.10)

where,
) s+ FH -+ F;D + \/(s + 15,1’{ + ﬁn)g - 4}53150
x(s) = = :
2Pp
and
(5) s+ Py + Pp — \/(‘- + Py + Pp)? — 4Py Pp
wls) = 1

2Py,
The transient state probability of having 7 = 0 energy units in the BESS is
B B — ok ® —wP)

Py(s) = S BH_ wBH] (6.11)

and the transient state probability of having n = B energy units in the BESS is

(xw)Fx = o]
Pg(s) = ST — o B] (6.12)
For large capacity of the BESS, which is possible if the BESS is oversized,
. 1—w)p"
lim Py(s) = L —2)e" (6.13)
B—oo sx™

We consider some numerical examples to study the transient state probabilities and the influence of en-
ergy supply-demand ratio, p on the transient state probability. We mvert the Laplace transform in (6.10)
numerically using the Stehfest algorithm [230].

In Figure 6.3.1, it can be seen that the probability that energy stored in the battery will be completely
depleted, Fy(t) decreases with time and then attains steady-state. The observed decrease is because, we
assumed that the BESS is empty at ime + = 0 (e.g, £;(0) = 1). It can also be seen that for small values
of p. the decrease is very rapid. while for larger values of p the decrease is very gradual. After some time,
Py(1) attains steady-state, and the steady-state value attained decreases with increasing value of o as shown
in Figure 6.3.2 in the next subsection below.

Fig. 6.3.1 shows the transient behaviour of the state probabilities of having n energy packets in the

BESS. The state probabilities increase for n > () and then attain a steady state. In this case, it is assumed

128



B

Figure 6.2: The influence of p on the transient-state probability that the energy stored in the BESS is com-

pletely depleted.

P

Figure 6.3: The transient-state probabilities for the BESS, for o = 0.60.
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Figure 6.5: The influence of g on the transient-state probability that the energy stored in the BESS is fully

charged.
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Figure 6.4: The influence of ¢ on the transient-state probability for n = 10.
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Figure 6.6: The variation of Py and Py with the energy generation to demand ratio, o,

that at ¢ = 0, the BESS is empty and P,,{0) = 0 for n > (). For small values of n, the increase is rapid. and
for larger values of n, the increase is gradual.

Figure 6.3.1 shows the influence of ¢ on the lransient-state probability for n = 10. As p increases, it
takes longer to attain steady-state. A similar observation can be seen in figure 6.3.1 on the influence of o
on the transient-state probability, Pg(t) that the energy stored in the BESS is fully charged. When Pg(1)
attains steady-state. its steady-state value increases with increasing o as shown in Figure 6.3.2 in the next

subsection below.

6.3.2 Steady-state analysis

In steady-state, the equations in (6.8) becomes linear equations, and the steady-state probability distri-

bution of the number of energy units in the battery is given by

Pyo" for p#1,
Py 1 . (6.14)
B—~+—|. for o= i}
where p = ’ is the energy generation to demand ratio. The probability that the energy stored in the
h f; h t demand Tl bability that th din tl

battery is completely depleted 1s an important performance metrics because when there is no energy in the
battery, the base station will be shutdown, resulting in service outage which is undesirable for users and
results in financial loses for the operator. The steady-state probability that the energy stored in the battery is

completely depleted is given by

1-p
—2_ for p#1,
— B+l
B=q 150 (6.15)
Byl o o=l

The probability that the battery is fully charged is important because when the battery is fully charged.

additional energy generated could be wasted. The photovoltaic resourse should be provisioned in such as
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Figure 6.7: The variation of battery depletion probability, I’y with the energy generation to demand ratio, o
and BESS capacity B.

way as to ensure that it generates sufficient amount of energy to ensure that the battery does not become
empty. However, the capacity of the battery is limited (due to cost and technological limitations), and it
is unneccessary to deploy more sources to generate more energy in which a majority of it is wasted. The

steady-state probability that the battery is fully charged is

Pyo” for o#1,

Pp = 1 . i (6.16)
_ or =
B+4-1 ¢

Figure 6.3.2 shows that the probability that the energy stored in the battery is completely depleted, Fy
decreases as the energy generation to demand ratio, o increases. For p < 1 (ﬁH < 15(_;). the battery is
discharging and there is a higher probability that the battery will be completely drained. Also, for p > 1
(Py > Pp), the probability that the battery will be completely drained is low but the probability that the
battery will become fully charged is higher. Therefore, the resources of the photovoltaic system should be
determined in such a way as to ensure that value of p is as high as possible, but reasonable enough as to keep
the probability of overcharging the battery within reasonable limits. By selecting desirable or target values

of Py and p. the capacity of the battery can be determined as

log |1 — %,ﬂ{l - g}]
— ¥ £
B = _ log(p) for ¢#1, (6.17)
4 — 4"y
Fy

for p=1

The capacity of the battery should be a large as possible to ensure that enough energy is stored during
the periods where a lot of energy is generated and then used when little or no energy is generated. The
capacity should be large enough to ensure that energy generated is not wasted to due to battery overcharging.
However, the capacity of the battery that can be selected is limited cost, size, energy density of the material,

and the battery technology.
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Figure 6.8: The variation of energy wastage probability, Py with the energy generation to demand ratio, ¢
and BESS capacity B.

Figure 6.3.2 shows the variation of energy depletion probability, P, with the energy generation to de-
mand ratio, ¢ and BESS capacity B. Based on the energy demands on the base station site, the renewable
energy generation system should be designed in such a way as to ensure that the energy depletion proba-
bility. Fy is as low as possible. Figure 6.3.2 shows the variation of energy energy wastage probability, Pg
with the energy generation to demand ratio, ¢ and BESS capacity B. It is desirable that ¢ > 1, to reduce
the probability of completely draining the battery, but it increases the probability of overcharging the battery
Py, which damages the battery and also waste excess energy. The energy capacity of the BESS decreases
over time, and sharply increases the probability of battery overcharging FPpr. Therefore. The probability of
battery overcharging increases sharply with decreasing battery capacity B and also increases sharply with

increasing energy generation to demand ratio, 0.

6.4 Markovian models for the analysis of the time required to completely
discharge or fully charge the BESS

6.4.1 The time after which the energy stored in the BESS is completely depleted

Suppose that initially. we have i energy packets (for i € [1 B]) in the battery at time ¢ = (. Also, let the
random variable T' represents the time after which the battery becomes empty which is the first passage time
of the process from N(0) = 7to N(f) = 0 (when all the energy stored in the battery is completely depleted).
that is T = inf{t > 0: N(¥) = 0 | N(0) = i}. This time is a very important parameter because when
the energy stored in the battery is deleted. a more expensive backup energy source is activated. otherwise,
the base station and all the other transmission equipments on the site will be shutdown resulting in financial
loses for the mobile network operator. It is equivalent to the duration or the length of the busy period of an
M/M/1/B Markovian process that started from NV (0) = i and ends at N(#) = 0. Therefore, PDF of the first

passage time of a Markovian "birth-death" process in (6.8) from N(0) = ¢ to N(#) = 0 (duration of the
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busy period), with a reflecting barrier at 5 can be expressed in the Laplace domain as [236]:

g [n()]5~In(s) — 1] + [€(s)]P~1€(s) — 1]

hiols) = : 6.18
0(s) n(sBln(s) — 1] + (€GP — 1] O
where,
s+ Py + Pp— \/(1"‘ + Py + Pp)? — 4Py Pp
5) = = :
2Py
and
s+ Py + Pp + \/ (8 + Py + Pp)? — 4Py Pp
n(s) = - ;
2Py
Its mean is ) )
SR S UB"LJ"'lAl_iQI for o #1
E[T] = .ﬁ%fﬁ 1 Pp(l - o) (6.19)
b oS AR for p=1
QPD
and variance
var(T) = E[T? — E[T) (6.20)
where,
=2 o B—itl 9,8+
E[17] = — ; i :(1 +p+ Q + 207
Pol—op Pp'(1- o)
298—=+1(1 g"[2+4+2B(1—g)+0" ")
Pp’(1 - o)*
for o # 1 and
d(i +1) (i — 1)(i — 2) + ¢ 2+3B+2—4
E[Tg] _ d(i+1)0i— 1) )+ }1’5?;(23 +3B+2—47)]
12Pp
forp = 1.

Figure 6.4.1 shows the influence of i on the probability density of the time after which the energy stored
in the BESS is completely depleted. It can be seen that as initial amount of energy stored in the BESS i
increases, the probability of the time after which the energy stored in it is completely depleted decreases,
Figure 6.4.1 shows the influence of g on the probability density of the time after which the energy stored in
the BESS is completely depleted. It can be seen that as the probability of the time after which the energy
stored in the BESS is completly depleted decreases with increasing ratio of the energy supplied to the BESS

to the energy drawn, 0. For very large battery capacity,

Jim_Fio(s) = [6(s)] (6.21)
and .
1
ET|=———— for p<1 and B— >
(T] By -y 0

Assuming that the BESS is initially empty and that the arrival of one unit of energy starts that charging

process. then, the busy period of the BESS is

el o) 1+ O et
(TP (s) — 1]+ [€(3)|PTe(s) — 1]

Also, assuming that initially, the BESS is fully Lhargcd (i = B). then, the f1rst passage time from N(0) = B

to N(t) =0is

(6.22)

haols) =

o In(s) =11+ [e(s) - ]
P ) — 1]+ [€G)PEE) — 1]
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Figure 6.9: The influence of ¢ on the probability density of the time after which the energy stored in the
BESS is completely depleted, h; o(t), for o = 0.60.
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6.4.2 The time after which the BESS is fully charged

It is the time required for the energy stored in the battery to increase from its initial amount of ¢ €
[0 B — 1] to the the full capacity of the BESS B. Tt is important to know the time required for the energy
stored in the BESS to increase to its full capacity, 3, for a given supply to demand ratio, o. When the BESS
is fully charged. if the base station cannot be supplied directed with the harvested energy, then it is will be
wasted which is not desirable. It can be obtained by deriving the first passage time of the Markovian process
from N(0) =i to N(f) = B. with a reflecting barrier at 0. The time required for the energy stored in the

BESS to increase from 7 to 5 is given in the Laplace domain can be adapted from equation (6.18) as:

. (B ()] — (€)™} — {In(s)]" — [€(s))'}
Rigls) = (B—1) {["n‘("”. LS < (6.24)
nB) = € BT TP — ()P — [€G)IPT |
with mean,
—# e
P"B ;) —;; ( gl}“ for p#£1,
AT = D — 1t ple— 1)° 25
BI=1 B=(B+it+1) o2
= for p=1
2Pp
and variance
var(T) = E[T?) — E|[T) (6.26)
where,
. —1)? —g)( 20 +2p7F
B[T?] = ({-’5’ i) i (B—1)(1 +f+ 0 ,+ 0")
Ep (g— 1) Fple—1)F
207 (1 —p—(B— ))[20+2B(e— 1) + p—B]
Pp'(e—1)*
for p # 1 and
g = B NEB it VE—i—1(Bi-2)
12Pp
(B—i){4B(B%+ (3 +2()B + 2 —i*)}
125"
for o = 1. For very large battery capacity.
Jim hin(s) = [&(s)] 7 (6.27)
and
B =% .
Py — Pp

Figure 6.4.2 shows the influence of the capacity of the BESS B, on the probability density of the time
after which the BESS is fully charged. It can be observed that the mean time required to charge from i to its
full capacity, decreases with decreasing value of B. When the BESS is full, any additional energy harvested
is wasted. Figure 6.4.2 shows the influence of ¢ on the probability density of the time after which the BESS is
fully charged. It can be seen that the probability of the time after which the BESS is fully charged increases
with increasing ratio of the energy supplied to the BESS to the energy drawn o. The energy harvesting

resources should be provisionsed in such a way as to avoid quicktly over charging of the BESS.
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6.5 Diffusion model of the BESS for a base station site

The assumption that the energy generation process follows the Poison process and that the energy con-
sumption process is exponentially distributed is not exactly true in reality. Other alternative approaches to
realistically model the stochastic and continuous nature of energy is the use of fluid flow models [83] and
diffusion approximation models [5]. In applying fluid flow models to model the time evolution of the energy
stored in the battery, the changes in the amount of energy present in the battery at time { are considered
to be analogous to the changes of a fluid in a reservoir. With diffusion approximation. the changes in the
energy content of the buffer are modelled using diffusion or Brownian motion process, which is a continu-
ous stochastic process. The advantage of using the diffusion approximation model is that it requires realistic
distributions of the energy generation and consumption processes, which gives room for the use of historical
data collected over time in the design and dimensioning of base station sites powered by renewable energy
sources,

If we assume that the changes in the energy content of the battery AE(/) = E(l + A) — E(l) are
normally distributed, then we can approximate the energy changing process of the battery by a diffusion or
Brownian motion process X (1) whose changes AX (/) = X (f + A) — X({) are normally distributed with

mean JA! and variance aAt where:

Yo E[X(t + At) — X ()]

g = 2
¢ At—0 At ©.28)
o = i Var[X(t + At) — X(1)] .

Al—0 At

The dynamic changes in the energy content of the battery (during charging and discharging) can then be

described by the second order partial differential equation of a diffusion process [44]

Af(x,tixg) 2{")2_}'(;:', L xn) _3
ot T2 B2 !

af(x,t; xg)
S L 0) (6.29)
The Diftuson process X(t) on the interval [(), 3| represents the amount of energy present in the battery at
time . Its probability density function f(a, f:2y) gives probability that the amount of the energy present in
the battery at time £ is &, given that the initial amount of energy in the battery was x. The model is equivelent
to G/G/1/B queueing model, where the symbol G means that the distribution of the energy generation and
and energy consumption are general (not limited to any particular distribution). By restricted the diffusion
process, X(t) within the interval [0, B], the diffusion equations describing the energy changes in the battery
becomes [84]
Af (. tiag) a0 f (.t xp) O (et )
ot 5 di? =4 dr *
+Prpo(t)d(x — 1) + Pppp(t)é(c — B +1)

Ipo(t o df (et .
"!’;;t L - b %dﬂTiﬂ) — 81 (@, t:20)] = Prpo(t) .
dps(t) ..o df(x tag) ) z
apert) g g @ OTAE LT T B .
di xh_"b L 2 I tBf(w, b x0)] — Popa(t) (6.30)

where d(a) is the Dirac delta function, py(t), pp(t) are probabilitics that the process is at the barriers at
# = 0orax = B, (battery is empty or fully charged). If the battery is charged at the beginning, then
pe(0)=1.



6.5.1 The transient analysis

The transient solution of (6.30) may be computationaly obtained with the approach of [47]. [56] pre-
sented in chapter three. In this chapter, we adapt the method to the analysis of the transient state probabilities
of having 7 amount of energy in the BESS at time £. In the first step we consider a diffusion process with
two absorbing barriers at * = 0 and x = B, that started at t = 0 from = = . Its probability density

function ¢, t; 29) has for t > 0 the following form [44]

¢, txg) =
1 = ,3;}':; (x —xp—a), — at)?
2t z {exp] 2at ] wat)

I}

Bzl (:r -z — i — Bt)?

oy 20t

where z], = 2n.B, ], = —2xy —
The Laplace transform of & (x, t: z) is

Pz, s:09) =
(’)L])[ﬂ =) 1

A(ﬁ) Z {exp[- #A(-‘*H (6.32)

fi==—0C
|z — 20 — 2] ,

—exp[— A(s)]}.

a
with A(s) = /3% + 2as.

The probability density function f{(w, ¢; B) of the diffusion process with jumps from the boundaries is
composed of a spectrum of functions ¢(x, t — 7: 1), é(x, t — 7: B — 1) representing diffusion processes with
absorbing barriers at & = () and » = B, that started with densities ¢ (7) and gp_ (7) at time 7 < { at points

z=1and r = B — 1 due to jumps from the barriers:

flo.t: B) = /-r qiit)e(a,t — m 1)dr
Jo

t
+ / gp—1(T)d(a,t — 7 B = 1)dr

Ju
gi(t) = d(a t: 1)+ gp_ 1 (t) * dlx. t;: B—1)

(6.33)

where * denotes convolution, and densities g (t), gp—1 (1), as well as py(t) and pg(t). are obtained from the

probability balance equations at the barriers.

The densities v,(#), vz(1) of probability that at time ¢ the process enters a barrierat z = 0 or 2 = B are
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'
Tolt) = [)HI(T.]'}'I.(](r_T}dT

ol
- / g8-1(T)yB-10(t = T)dT
8]
= gilt) *vi0(t) + g1 (t) * vE_1,0(1),

i
v8(t) pa(0)a(t) + ﬁ g1 (T) 7Bt — 7)dr

Il

)
4 £st—l('f‘}'m—m(!if’r)rf-’r=
= pg(0)a(t) + gi(t) * 7.5(t)
+ gp-1(t) * yp-1.8(t). (6.34)

where v1,0(t). v1.8(1). yB—1.0(t). Yp—1.B(1) are densities of the first passage times between the correspond-
ing points. The density of the first passage time of the diffusion process from the point r = ryto = 0 is
the first passage time distribution for a diffusion process that starts from the point # = 2 and is absorbed at

r=1>0is

% af(x,t20). ,
/0+ 5 da
_ ]-.x [(T 32}"(;7'. t;ag) _J_af(it‘ t:1q)
04 2 da? : dx
adf(x,trg)

}’IHIIJ[E T — fjf(l t; .T{]]

T . (wp—A1)2

=t WE (6.35)
Vv oTlat?

Yarg0 (1)

\dix

[l

with the Laplace transform
B4y A% 520

:}‘.‘J‘HJ.}(S) =e o . (6.36)
Eg. (6.35) presents a probability density function in case of 4 < (), when probability that the process
will reach the barrier equals 1, and [~ 7y,.0(f)dl = 1. Otherwise, for 3 > 1, the probability that the
process ends at the barrier is ¢~ *7%0/® and the conditional pdf is 7, (t) = 7,,.0(t)e*™ 0/ and 77 4(s) =

2

w0 (5)E 0/ The same refers to the case [ < 0 with the initial point g placed left to the absorbing

barrier. The first passage time of the diffusion process from the point xy to another point . ) < &g is

&g —ry  _ (rg—wy—an?
== 7].(‘. 2at (637)

Yor,aa(t) = :
! V2Tl et
and its corresponsing Laplace transform is

-0/ 52+ Zoxy

T (6.38)

The densitics of jumps in Eq. (6.33) depend on ~q(#), v (t) in the following way:

Q) = /nf ot — T)lo(T)dT = 0(t) * lo(t).

o
g-1(t) = /” ve(t — T)lg(r)dr = v5(t) = (1),
(6.39)
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Figure 6.13: The influence of C'3. on the transient mean energy content of the BESS, A = 0.5.

where [y(1), | g(t) are the densities of sojourn times in & = 0 and » = B (they have means 1/A and 1/ but
are of general type).

With the use of (6.34) and (6.39) we obtain all information needed in the solution (6.33). To simplify
the task, we use these equations in Laplace domain where the transform of the convolution of functions
becomes a prodact of the transforms of these functions and at the end we seek numerically the original of
the obtained transform of f(x,t: B).

Probabilities that the proces is at barriers are
t
po(t) = /!: [vo(7) = g1 (7)]dT

t
pu(t) = /ﬂ[“;’B(T}—.f).*.;—J(T_)]ffT- (6.40)

Figure 6.5.1 shows the influence of C'4 on the transient mean energy content of the BESS. It was assumed
that at time # = (), the BESS is not empty. Since ¢ < 1, the energy content of the BESS decreases with with
time and then attains steady state. For small values of C'5. the crease is rapid. and as €% increases. the
decrease becomes slower.

Figures 6.5.1 shows the influence p = % on the transient mean energy content of the BESS. For small
values of p, the crease is rapid, and as p increases, the decrease becomes slower

The probaility that a BESS that started with ay amount of energy will never become empty is /7 is

(6.41)

1=e¢g

6.5.2 The steady analysis

Suppose that the battery is supplied by energy cnergy generated from a solar energy system, which
converts solar energy directly into electrical energy. then the battery energy storage system is supplied by

the photovoltaic output power. The output power of the photovoltaic system is given by:
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In steady-state. the partial differential equations in (6.30) become ordinary differential equations and
the state probabilities for the amount of energy present in the battery are independent of time, e.g.,
limy . polt) = po. iy pp(t) = pe. limy_o fx.ti2g) = flr). The steady-state distribution of

the amount of energy present in the buffer is

P ;
2P0 (1 — %) for 0<a<l,
8
; Pyp < -
fla)=q 22 —1e™  for 1<z<B-1, (6.42)
.
PD}’B 2He—B3)
7{3((’ *.l) for B*l%.r—(B,
=TA
where z = ‘}r—’: and py 1s the probability that the battery is empty (that the energy stored in the battery is

completely depleted), and py; is the probability that the battery is fully charged. py and pp are obtained

through normalization, py + f(x) + pp = 1. as:

{1 i 9(_::(3—1] 4 1 :‘_.J' Q[l . C:{B’—l}]}_-l for o 7§ i
Po = 1 " { (6.43)
- or p=
21+ (B —1)Py/al
and
epoe™B~1) for o # 1,
PR = 1 forg =1 (6.44)

2[1 + (B - 1)Py/a]

For a given probability of completely depleting the amount of energy stored in the BESS, py and the energy

supply to load ration p, the capacity of the BESS can be selected using the diffusion model as

Iog(% {1— 1__ QDH for o#1,

B= ~ (6.45)
¢ T P
* fpa [ o for o—1

2P | Po

Figure 6.5.2 shows the influence of p on the steady state probability density of the amount of energy
present in the BESS. For small values of p << 1 the probability of having larger amounts of energy stored
in the BESS is smaller and as p increase the probability of having larger amounts of energy stored in the
BESS in creases. For larger values of o0 > 1, the probability of having smaller amount of energy stored in

the BESS is smaller while the probability of having larger amounts of energy stored in the BESS increases.

The probability of having » = () amount of energy in the BESS, j; and the probability of having » = B
amount of energy in the BESS, pj are also computed using the diffusion approximation model. The variation
ol pg and pg with o shown in 6.5.2 computed using the diffusion approximation model, and it is similar to
the results obtained using the Markovian model shown in figure 6.3.2. A comparison of pp and pg from the

Markovian model and diffusion approximation is shown in figure 6.5.2.

143



0.05

fla)
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Figure 6.17: The variation of Py and Pp with the energy generation to demand ratio, p: diffusion model.
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Figure 6.18: The variation of I}y and Pp; with the energy generation to demand ratio, g: comparison of
diffusion and Markov models model.

6.6 Diffusion models for the analysis of the time required to completely dis-

charge or fully charge the BESS

6.6.1 The time after which the energy stored in the BESS is completely depleted

We use diffusion approximation to derive the time after which the energy stored in the BESS is com-
pletely depleted and then compare the results obtained using diffusion approximation with those obtained
using Markovian model. Suppose that the random variable T represent the first passage time of the diffusion
process from X (0) = i (fori > 0) o X(¢) = 0; thatis, T = inf{t > 0 : X(t) = 0|X(0) = i}. The
time after which the energy stored in the BESS is completely depleted. h; () is a combinations of the first
passage time of a G/G/1/B diffusion process from # = ¢ to & = ( or the duration of the busy period of a
G/G/1/B diffusion process. The process may start at « = i and moves directly to .» = 0 or the process starts
at o = i and moves to & = B, stays there for a time that is exponentially distributed with mean . and then
jumps tox = B — 1. From z = B — 1, the process can move to = () and is absorbed or it can jump back

to & = B, stays there for a time that is exponentially distributed and then jumps back to @ = B.

To determine the probabilities of the possible sequence of movement of the diffusion process (e.g.,
whether a diffusion process that started at & = ¢ will move from i = itox = O orit willmove tox = B
and if the process is at # = B — 1, the probaility that it will either move to r = O or to ¥ = B). Let us

consider a diffusion process that started at » = 2 and is absorbed at x = (), then the probability that the
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process does not reach a certain &, for x,, > xq. is given as

H(zp,an) = /ra g(L, s wo)dt
= 1im[To(s) — Tao,en (5)7e0,0(5)]
= 1= l_illill:};m,u:,.(s)

1 — (“.XD[%(‘T‘H — 1)

T (6.46)
1= exp[:)(;—j:z.‘.,,]

where
To determine the probabilities of all these sequences, assume at first a diffusion process having an
absorbing barrier at = 0, started at * = 7 and compute the probability that it does not go beyond a

certain x;, before ending at the origin. The pdf that the process is ended at { may be written as

00 = 60t 20520 + [ Ve (7l = 7)dr
where g(t,z,;xg) is the probability density that the process will finish its motion at time { without
reaching the point @, > &, Ya,.r, (7) is the probability that the process that started at x = 0 will reach the
point r;, for the first time at within the time 7, for 7 < ¢, and =, o(f — 7) is the probability density that
the process will pass from x,, to & = 0 during the time, + — 7. The density that the process is ended at the
barrier at = 0, at time ¢ is given as
1

Yo(t) = g(t, xnizg) + ./u Yig.wn (T ) Va0t — T)dr
It should be noted that for a function f(x), and its Laplace transform f(s) we have f(0) = [° f(x)dx, and
if f(x) is a probability density function defined for == > 0, f(0) = 1. The duration of the busy period of
a G/G/1/B diffusion process that starts at X (0) = 7 and is absorbed at X (#) = 0 which represent the time
after which the energy stored in the BESS is completely depleted is given by

hio(t) = H(i,B)yo(t)+[L— H(i, B)[{H(B — 1, B)v 5(t) = lg(t) v, 0(t) (6.47)
+ [ -H(B-1,B)|H(B-1,B)y g(t)* 53(*)2*’):{;—1.3(1) *Yp-10(t)
+ [1-H(B—-1,B)PH(B —1,B)v (1) ¥ la(t)**v5_1,5(0)* * v5_1,0(t) +.. .}

with the Laplace transform

hio(s) = H(i, B)yjo(t) + [L — H(i, BJ{H(B — 1, B}y, g(t) * Ip(t) # 71 o(t) +
+ [ —H(B-1,B)H(B—1,B)yg(t) «lp(t)*¥5_1.5(t) xv5_10(t) +
+ [1—-H(B-1,B)2H(B - 1,B)y, g(t) * ls(t)*75_; g(t)** *vs_10(t) + ...}

H(B-1B)iss)
1—-H(B-1,B)5_, p(s)ls(s)

(6.48)

H(i, BY3}o(s) + [1 ~ H(i. BY5, n(s)3p-10(5)7 =

where * denotes i-fold convolution, with its Laplace transform h; o(s) (we denote the Laplace transform of
any function f(t) by f(s))
Figure 6.6.1 shows the comparison of the Markovian and Diffusion models of the probability density of

the time required to completely deplete the energy stored in the BESS, /1, (#). The comparison is done for
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different values of o and it can be seen that the densities from the two models are exactly the same. In order
to compare these two models, we assume that C3 = ('3 = 1. Figure 6.6.1 shows the influence of 7 on the
density of the time required to completely deplete the energy stored in the BESS. The pattern is exactly the
same as (hat obtained using Markovian models as shown in Figure 6.4.1. That is, for larger 7, the average
time required to completely deplete the energy stored in the BESS increases.

For very large battery capacity, limg ... H(:. B) = 1 and
lim hyo(s) = v, (s) (6.49)
B—oo |

The average duration of the busy period E[T7. for very large B, is the same as that obtained using Markovian
model in the previous section and is given by

E[T] = —— ' for p<1l and B— >
Py — Pp

6.6.2 The time after which the BESS is fully charged

We use diffusion approximation to determine the time required to charge the BESS to its full energy
capacity. Suppose that at time ¢ = (). we have have + amount of energy in the BESS, then. the time required
to charge the BESS to its full capacity is the first passage time of the G/G/1/B diffusion process from the
point ;v = ¢ to @ = [3. The process starts at & = 4, at time ¢ = 0, and moves to & = I3 and is absorbed
with probability /. 0, or the process moves to @ = 0, stays there for a time exponentially distributed with
mean rate A, and then jumps to =z = 1. At x = 1, process can move to X' = 3, with probability 1 — H(1,z)
and is absorbed or it moves to x = () with probability H (L, ), stays there for a time that is exponentially
distributed with mean rate A, and the movements of the process are repeated until the process is absorbed at
@ = B. The time required for the process to move from = = i to » = [3, taking into consideration all the

movements is

hig(t) = H(i,0) p(t) + [1 — H(i, ){H (1, i) o(t) * lo(t) * 7 5(t) (6.50)
+ L= HO)H L)y o(t) * lo(8)* 41,0(t) + 1 5(1)
+ [1 = HLPH(L i)0(t) * () Yo (0)* %1150 + ..}

with the Laplace transform

hip(s) = H(i0)yp(t) + [1 — H(i, 0){H(L,1)v/o(t) » lu(i) *91,8(t) +

+  [L—H(L)H(L i) o(t) * lo(t)** 1 0(t) = 4] 5(1) +
+ [B— H(l-‘-"-NZH(L"')‘T:.U(*}*fn(-“-}:'{““ri‘u{f)g** n.p(t)+ ..}
= H(i,0)% 5(s) +[1 - HU‘U)]"}’E,(:(SH{‘B(SM - ( L {li o) AP

(6.51)

Figure 6.6.2 shows the comparison of the Markovian and Diffusion models of the probability density
of the time required to charge the BESS to its full capacity, h; (7). It can be observed that the probability
densities obtained using both models at exactly the same assuming that the energy supply and energy con-

sumption processes are exponentially distributed (e.g., €4 = 4 = 1). Figure 6.6.2 shows the influence of
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o on the probability density of the time required to charge the BESS to its full capacity. h; g(t). It can be
observed that as p increases, density of the time required to charge the BESS to its full capacity increases.

Figure 6.6.2 shows the influence of i on the probability density of the time required to charge the BESS
to its full capacity, h; g(t). It can be seen that as ¢ increases, the probability density of the time required to
charge the BESS to its full capacity decreases. That is, for larger i, the average time required to charg the
BESS to its full capacity decreases. Figure 6.6.2 shows the influence of B on the probability density of time
required to charge the BESS to its full capacity, ii; 5(#). It can be observed that for a fixed #, the mean time
required to charge the BESS from i to its full capacity, 3. decreases with decreasing value of 3.

For very large capacity of the BESS,
Jim By p(s) = 7 p(s) (6.52)

The average duration of the busy period E|[T. for very large B, is the same as that obtained using Markovian

model in the previous section and is given by

B =it fof g I i@ B—5 60
1 — Pp

6.7 Conclusion

We have analysed the performance of BESS that is continuously charged by renewable energy sources
and discharged to supply base station. We have presented an architecture of a green base station site. We
developed Markovian and diffusion approximation models for the analysis of steady-state and transient-state
performance of battery energy storage systems. We applied Markovian and diffusion approximation model
to derive the time after which the battery energy storage system is completely discharged or fully charged.
By assuming that the energy harvesting and the energy consumption processes are exponentially distributed,

we compared the result obtained from the Markovian model to those from diffusion approximation models.
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Chapter 7

Conclusion

When studying, designing, or deploying computer systems and networks, researchers, systems archi-
tects, and designers are often required to understand the relationship between the design parameters and the
performance metrics of the systems. That is, they seek to understand how the design parameters influence
the performance of the various parts of the computer system or network and the performance of the computer
system or network as a whole. The most popular methods used for planning, dimensioning. optimization,
and performance evaluation of computer systems and networks are experimental test beds, real computer
systems (or networks). simulations, or mathematical modelling.

Mathethical modelling together with computer simulations is the most commonly used method in the
analysis and performance evaluations of computer systems and networks, although they have their limita-
tions, One of the limitations of mathematical modelling and computer simulations is the assumptions that
are often made which are usually different from reality. For example, Markovian models are often used for
mathematical modelling and simulation of computer systems and networks due to their simplicity but the
assumption that the jobs or packets arrive into queues in computer systems and network equipment follow-
ing a Poison process and that the service times are exponentially distributed is sometimes far from reality.
Thus, mathematical and simulation models are valid provided the assumptions are true which are sometimes

far from reality.

7.1 Design and performance modelling of the packet aggregation algorithms

and their applications

One of the problems addressed in this dissertation is the design and performance modelling of the packet
aggregation algorithms and their applications in access (IoT and mobile networks), Core, and data center
networks. A detailed review of packet aggregation algorithms implemented in IoT access networks, loT
over SDN netwaorks, [oT over mobile radio networks, Cloud Radio Access networks, IP over all-optical net-
works; and cloud computing servers (to transfer data between driver domains and the virtual machine) was
performed. The existing mathematical models for the design. analysis and evaluation of packet algorithms
were based on the assumption that the interarrival of packets into the aggregation buffers follows a Poison
process and that the packet sizes are exponentially distributed. These assumptions are not true in reality

as revealed by the traffic datasets (of the interarrival times and packet sizes) that we downloaded from the
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repository of the Center for Applied Internet Data Analysis (CAIDA) based at the University of California’s
San Diego Supercomputer Center. We also looked at the dataset of the arrival times of IoT traffic and it
showed that the interarrival times of [oT packets are far from being Poison distributed. Thus, Poison-based
packel aggregation performance evaluation models are far from reality and are likely to be less accurate.
We proposed a Brownian motion or diffusion-based performance evaluation model for the evaluation of
packet aggregation algorithms. The novelty of our proposed models is that they can take real (measured)
traffic parameters such as the mean arrival rate of packets, the mean of the packet sizes, the variance of
the interarrival times of packets into the aggregation buffer, and the variance of the packet sizes as inputs
and then the distribution of the performance metrics like the sizes of the aggregated packets and the in-
terdeparture times (or the delays experienced by the packets in the aggregation buffer). We validated our
proposed mathematical models with discrete event simulations. Despite the benefits of packet aggregation,
they introduce the problem of delays which degrade the Quality of service (which is a problem for real-time
traffic. especially in Industry 4.0 applications). We modelled the trade-off between throughput efficiency.
energy consumption, and delays, As a continuation of this study, we intend to conduct empirical studies and
mathematical modelling to evaluate the impact of packet aggregation on quality of service parameters like
delays, packet dropping, and jitter in [oT traffic over [P networks (implementing priority-based mechanisms

to sort and aggregate only non-real-time traffic).

7.2 Performance modelling of a Software Defined Networking (SDN)

Switches and Network

Another problem that was adressed as part of the dissertation is the modelling of the performance of a
Software Defined Networking (SDN) switch. Software defined networking (SDN) is a dynamic, adaptable.
and manageable paradigm that facilitates innovations and rapid prototyping and deployment of flexible rout-
ing mechanisms in computer networks. Unlike traditional networking which involves manual configurations
of distributed proprietary network devices, a cumbersome and error-prone process that can underutilize net-
work resources, SDN offers a programmable architecture where routing decisions are moved to centralized
controllers. The SDN data plane switches are simple forwarding devices that forward the data traffic de-
pending on the controller’s flow forwarding rules.

At the time of our study. most of the models for the design. analysis. and evaluation of the perfor-
mance of SDN switches and networks were based on the assumption that the arrival of packets into an SDN
switch follows a Poison process and that the packet processing times of an SDN switch are exponentially
distributed. It was shown that these assumptions are inaccurate, therefore, better performance evaluation
models are required. We proposed diffusion approximation models for the evaluation of the performance of
an SDN switch. One of our key contribution was the modelling of the flow matching process or the process
of searching the flow tables to find the appropriate flow rules required to process the packet (both in the
case of hardware and software switches). We then used the mean packet arrival rate and the variance of the
interarrival times from the CAIDA datasets together with the mean packet processing rate and the variance
of the processing times (from our proposed packet processing model in an SDN switch) as an input to the
diffusion models to estimate the performance metrics (delays and tail dropping of packets when the buffer
is full).
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In existing studies, it is assumed that the network is always in a steady state but in SDN networks
where the controller may frequently change the routing decisions (like those developed during the SerloT
project for SDN core networks designed to be resilient, secure, ensure acceptable QoS, and to optimise the
energy consumption), the network may frequently enter into transient states. The broader use of Software
Defined Network (SDN) controllers to create periodic changes in the network’s topology sometimes lead to
changes in traffic intensities at the various switches. Thus. the SDN network constantly enters into transient
states and the transient behaviour of network components, particularly data switches, is becoming of great
interest. We extended the model for an SDN switch to a network model of SDN switches and investigated the
influence of constantly changing traffic intensities resulting from changes logical topology of the network
as the controller updates the routing tables of the switches with new flow rules.

The modelling of the performance of the controller was out of the scope of this study. although it could be
a performance bottleneck. Packets whose flow rules are not found on the SDN switch have to ensure delays
due to packet processing at the SDN switch and waiting for the controller to determine the flow rule for the
packet and update the switches. A single controller serves multiple switches and could be a performance
bottleneck. The performance modelling of an SDN switch was out of the scope of this dissertation. Future
studies could model the processing mechanism of the controller and then apply the diffusion approximation
models discussed in this study to evaluate the performance of an SDN controller.

7.3 Performance modelling of battery energy storage systems

We adapted Markovian and diffusion approximation models that we applied to the modelling of QoS in
a compuler network to the modelling of the energy depletion process in battery energy storage systems. We
proposed a Brownian motion or diffusion-based model for the energy depletion process in an energy storage
system without the presence of energy harvesting sources, We applied our model to study the problem
of energy depletion attacks in IoT networks. We modelled ghost energy depletion attacks (GEDA) in [oT
networks. The two main ghost energy depletion attacks in [oT networks that were modelled are the high
computational load on device GEDA and the MAC misbehaviour GEDA. With high computational load
GEDA. the adversary overwhelms its victims with bogus messages to quickly drain the energy stored in their
batteries. While for a MAC misbehaviour GEDA, the ghost attacker deliberately abuses the MAC protocol
(e.g.. CSMA/CA protocol) to create collisions on the shared wireless channel, thus, forcing other devices
within its interference range to consume more energy (quickly draining their batteries) and to deprive them
of accessing the channel.

We used the diffusion-based model for the energy depletion process of a battery energy storage system
to estimate the life of an 10T device that is powered by a battery (without any harvesting source). We then
used the data on the energy consumption of an IoT device as the input to the diffusion model and estimate the
impact of active power and the sleep time of the [oT device on its lifetime. It was shown that an attack model
that is aimed at manipulating the sleep time (increasing the active power of the [0oT) or manipulating transmit
power of the device will quickly drain energy stored in the battery of the device and reduces its lifetime
significantly. The sleep time of the device could be manipulated through high computational attacks (sending
bogus messages and forcing the device to perform unnecessary energy-demanding security computations),

creating collisions in the channel, and reconfiguring the device to generate more data for transmission than
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necessary (increasing the sensing or measuring frequency).

We extended the model for the modelling of a battery energy storage system (in the absence of an
energy harvesting source) to incorporate the presence of an energy harvesting source. We investigated the
impact of the ratio of the mean energy harvesting rate to the energy consumption rate on the time required
to completely drain the energy stored in the battery and on the time required to fully charge the battery. It
was shown that as this ratio increases the time required to completely drain the battery increases while the
time required to fully charge the battery decreases. Thus, when sizing the energy harvesting system it is
important to ensure that this ratio is not far less to increase the time required to drain the battery (lifetime of
the device) and reduce the time required to charge the battery to its full capacity.

We compared the results obtained using diffusion approximation to those obtained using the Markovian
model. The comparisons showed an almost perfect match. The advantage of using diffusion models for
the time evolution of the energy stored in the battery traditional queueing theoretic models and fluid flow
models is that it takes into account fluctuations in the amount of energy harvested from the environment and
the fluctuations in the amount of energy drawn from the battery (energy consumed). Another advantage of
using diffusion approximation to other methods is that energy can be treated as a continuous quantity. The
changes in the amount of energy in the battery could be considered to be analogous to the changes of a fluid
in a reservoir (modelled using fluid flow differential equations). The changes in the amount of energy in the
battery can also be modelled as a Brownian motion or diffusion process which is a continuous process and
is suitable for modelling energy changes in the battery because energy is a continuous quantity. With data
about the mean and variance of the energy harvesting or energy consumption process, the diffusion-based
model of the battery can conveniently predict the lifetime of a computer system device (10T device or drone).

The limitation of performance evaluation modelling is that the systems are often studied in isolation.
It should be noted that improving the performance of a part of a computer system or network, does not
guarantee the improvement of the performance of the computer system or network as a whole. That is. the
performance of computer systems and networks is often influenced by a combination of multiple factors
and by the performance of the various subsystems that constitute the computer system or networks, Thus,
improving the performance of a computer system or network does not guarantee that performance of the
computer system or network as a whole will be improved (some unintended problems may be created).
Performance evaluation studies that treat the system as a whole and investigate the influence of queueing on

the performance of the computer system and network as a whole may be more useful.

7.4 Future research direction

As a continuation of this study, we intend to apply diffusion approximation to study the problem of
reneging and correlated reneging (impatience) in the performance evaluation of queues in computer systems,
One of the significant challenges in cloud computing is the impact of impatient users or request (task)
reneging. When a request has been compromised, missed its execution deadline, or depends on other rejected
ones, it must be removed from the queue without being processed. The reneging or removal of tasks from
queues may trigger the reneging or removal of other tasks that depend on them. We refer to this reneging of
requests from the load balancing or computing queues as correlated reneging. Existing studies on reneging

tasks from cloud computing servers did not take into account the possibility of correlated reneging (or
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dropping of tasks without processing them). All of the studies that modelled the reneging or dropping of
tasks from the cloud computing queues did not consider the possibility that the reneging of tasks could be
correlated.

In [150, 151, 149], we developed queueing models for the evaluation of cloud computing queues with
correlated reneging (sometimes with resubmission of reneged tasks) and used them to propose a framework
for evaluating cloud computing infrastructures. Existing models on the modelling of reneging in cloud com-
puting queues are based on the assumption that the arrival rates of tasks into the cloud computing buffers
follow a Poison a Poisson process and that the processing times are exponentially distributed. It is also as-
sumed that the reneging times are exponentially distributed. We intend to use diffusion approximation to
study the problem of task reneging in cloud computing queues.

We adopted the queueing model with correlated reneging to model the problem of patient balking and
reneging (impatience) in the health care management system in [147]. In a recent paper that was recently
accepted in the International Journal of Services, Economics, and Management. we introduced a mechanism
of customer retention (through incentives that motivate the customer to wait long and don’t leave the queue)
and adaptively decrease or increase the service time (by increasing or reducing the processing or service
resources) depending on the queue size. We intend to conduct similar studies using diffusion approximation
given its advantages in evaluating queues with real data. Diffusion approximation offers an effective mod-
elling methodology for the time evolution of the waiting time or probability of rejection (for limited capacity

queues).
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