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Chapter 1

Introduction

Analysis of big -omics data provides unparalleled insights allowing us to
understand the reasons for local and organism-wide phenomena on a chemical
compound or gene level. Such insights allow hypothesizing about internal
tumor heterogeneity, tumor clones, or causes of its resistance to therapies.
However, the data is highly complex as it consists of tens of thousands of
features, and different physical phenomena appear during the acquisition.
Moreover, the techniques of big -omics data acquisition improve resolution
over time, hence the amount of data growing vastly.

The scientific community acknowledges the issue and tested numerous
approaches, but the gap between machine learning experts providing the tool
and biologists using the tool remains unacceptable. The scalability of these
tools is seriously limited, and often the explainability of the results provided
by the known approaches is poor. At the same time, it is hard to numerically
assess the quality of unsupervised methods.

The unsupervised analysis problem has two main components: feature
space adaptation and observation clustering. Most of the research focuses
either on one or another, while it is critical to match a clustering algorithm
to the specifics of the feature space. An example is the widely used k-means
clustering, which requires appropriate tuning to extract relevant detail. Ad-
ditionally, in the dimensionality of tens of thousands of features, a curse of
dimensionality occurs, which renders crucial nuances indistinguishable from
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2 Chapter 1. Introduction

the irrelevant data noise.
The most powerful feature engineering approaches aim to visualize the

data set structure, which is not necessarily optimal for reusing the obtained
feature space for clustering purposes. At the same time, it is hard to explain
the contribution of specific features in the final representation of the data set.

1.1 Aim and Theses of This Work

This work aims to provide a consistent and scalable framework for know-
ledge discovery in different kinds of big -omics data, with a specific focus on
Mass Spectrometry Imaging.

In order to create such a framework, this thesis is based on existing
research, combines, calibrates, and automates classical methods. Combination
of multiple existing methods allowed to achieve a more comprehensive result
than the original approaches. Calibration enabled sensitivity of the methods
for biological nuance recognition in a heavily multidimensional feature space.
Automation eliminated the need for a manual hyperparameter search and
evaluated numerous scenarios to select the optimal one.

Thanks to the accomplished work, an analytical methodology has been
created for unsupervised investigation of the big -omics data, which takes into
account the problem of feature engineering and clustering simultaneously. The
established methodology is flexible enough for a drop-in replacement of com-
ponents, which makes it incredibly easy to use with the newest computational
techniques.

The framework is benchmarked against state-of-the-art methods on two
different Mass Spectrometry Imaging data sets, covering a highly detailed 2D
whole-tissue sample and high-throughput 3D data. Based on the obtained
results, we have drawn a set of conclusions, which helped formulate the
following theses as the most important results of this dissertation:

1. A stepwise methodology applied to big -omics data clustering can provide
results comparable to the existing state-of-the-art one-step methods.
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2. Scalability is an essential aspect for analysis of big -omics data, as the
volume of the dataset grows in size both in the number of dimensions and
the number of observations. A combination of highly-scalable yet simple
methods provides superior scalability for the number of observations
without a significant loss of the discovered level of details.

3. Deep neural networks are an efficient and scalable tool for unsupervised
data analysis in big -omics. Nuances missed by the network trained on
the entire dataset also can be captured in a stepwise setup, similar to
one proposed for the classical feature engineering method. It is possible
to construct a flexible stepwise big -omics analytical methodology, easy
to update with the newest methods for increased fidelity.

1.2 Novel Aspect

The joint analysis of feature relevance and observations simultaneously is
nothing new. In the past, algorithms like High Dimensional Data Clustering
[10] were used but are inadequate for the amount of data today. The field of
Natural Language Processing is experiencing a renaissance after implementing
representation learning together with classification (and other tasks) in the
form of transformer neural networks [86], and biomedical research could
benefit from similar approaches.

Surprisingly, most of the known approaches to unsupervised knowledge
discovery in big -omics data still cover either feature engineering or observa-
tion grouping. This work is supposed to address the niche of joint feature
engineering and clustering.

The hierarchical clustering scheme inspires the approach proposed in this
work but flexibly adapts the number of clusters at each level of the hierarchy of
clusters. The feature space adaptation is embedded into the process, selecting
locally relevant features at each node of the clusters’ hierarchy.
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1.3 Thesis Structure

The thesis is structured in the following way:

• In Chapter 2 we explain the origin of the data used in this work for
benchmark purposes. It explains how biological information is acquired
in a digital form. Describes the consequences of the selected acquisition
procedure on the data quality and a preprocessing pipeline required to
mitigate these issues.

• In Chapter 3, we describe the current state of the art in big -omics data
clustering. The approaches are compared on a high level to provide the
reader with their principle of operation, strengths, the areas of their
application, and known limitations.

• In Chapter 4, we propose a robust and scalable method for big -omics
data clustering, called Divisive Intelligent K-Means (DiviK). Since it is
based on the K-Means algorithm, which is very sensitive to configuration,
we explain how it is calibrated to work well with the datasets used in
this study. We evaluate DiviK on the datasets introduced in Chapter 2
and discuss the results.

• In Chapter 5 a next step in the development of the DiviK framework is
demonstrated: Divisive clustering with Variational Autoencoders. We
combine the DiviK framework and the newest advances in deep learning
to overcome the limitations of both methods. At the end of the chapter,
we include the results of the numerical evaluation of the method.

• In Chapter 6, we summarize this work and indicate in which situations
Divisive Intelligent K-Means framework could be useful. The summary
is backed with a list of examples where DiviK was already successfully
applied.
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1.4 Software Implementation

For the purpose of reusability, the software implementation is conceptually
separated into two components.

First is a publicly available software library for Python programming
language. The library is distributed pre-compiled via Python Package Index
under name divik (https://pypi.org/project/divik/) and in source code
form via GitHub (https://github.com/gmrukwa/divik). The API of the
package follows the scikit-learn guidelines [27].

The second component consists of multiple private repositories specific
for conducting an initial exploration of a given data set and its further ana-
lysis using Divisive Intelligent K-Means. These repositories contain complete
configuration and package versions locked to keep all the computations fully
reproducible, thus will be shared online on demand and are attached physically
to the USB drive.

https://pypi.org/project/divik/
https://github.com/gmrukwa/divik
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Chapter 2

Material

2.1 Mass Spectrometry Imaging

Mass Spectrometry Imaging (MSI) is an emerging untargeted -omics
method for analyzing molecular profiles that generates big hyperspectral
imaging data. It provides an unparalleled insight into the metabolomics of the
tissue sample [83, 58, 8, 9]. The high volume of the MSI data already motivated
the development of dedicated computational methods, which address either
metabolome analysis [41, 3, 128], hyperspectral image analysis [135, 139], or
both [10, 12].

According to [9], the development of Mass Spectrometry Imaging was at
an over-exponential pace, similarly to the AI domain. However, since 2015,
the growth of AI has even accelerated, and a risk materializes that spatial
metabolomics will miss out on the occurring AI revolution.

At the same time, the development of spatial metabolomics is powered by
the urgent and increasing needs in biology and medicine to characterize the
role of metabolism in health and diseases. MSI promises answers to a range of
questions regarding tumor molecular profiling [132, 94, 71], immune system
cells function [26], microbiota contributions to inflammation [120], metabolic
dysregulations during the infection [49], and many more [51, 48, 77, 84, 111].

From the technological perspective, Mass Spectrometry Imaging is an
excellent example of biological big data, with the following characteristics:
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8 Chapter 2. Material

• Volume: the spatial resolution of a scan varies between 5−100µm, which
leads to 10,000 - 4,000,000 spectra potentially acquired from a 1cm2

tissue sample with the low-resolution ToF spectrometers, but becomes
even more severe for a 3D data set [130].

• Velocity: the last five years brought more than 6,000 MSI datasets
uploaded to the METABASE database [90, 1].

• Variety: a low-resolution dataset may consist of 200,000 mass channels
(features) describing a single spectrum (observation), representing pro-
teins, peptides, or metabolites. Even more channels are captured for
high-resolution scans.

• Veracity: information in MSI data is heavily duplicated, but the duplic-
ated patterns are often overlapping and hard to separate. Capturing the
most relevant nuances is complex, with dominating patterns amplified
during the data collection process [95]. Moreover, the feature importance
may vary across functional tissue regions.

The process of acquiring the metabolomic information in a digital form is
depicted in Figure 2.1. It explains the example of the Matrix-Assisted Laser
Desorption/Ionization (MALDI) Time-of-Flight (ToF) method. The tissue
sample is sliced into sections. Sections are coated with trypsin to split proteins
into smaller particles like peptides and lipids, and the matrix which causes the
particles to ionize. Then, the spectrometer applies a raster, and multiple laser
shots in each pixel of the raster release ions from the tissue surface. Note that
the laser beam destroys the tissue sample during the imaging process. The
released ions are directed into a vacuum tube and accelerate in the electric
field. Basic physics laws allow us to estimate the mass-to-charge ratio for each
ion based on the time of its flight through the vacuum tube of known size in
a fixed electric field. This way, for each pixel in the raster, we obtain a mass
spectrum – a signal representing how many ions of a specific mass-to-charge
ratio (m/z) were captured. An often simplification is to assume that all ions
were loaded with a unit charge.
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Figure 2.1: Mass Spectrometry Imaging data acquisition with MALDI-ToF.
The tissue sample is coated with a matrix and subject to laser desorption.
Released ions are directed to a vacuum tube and accelerated in the electric
field. Ions are captured at the output, and a mass spectrum is formed. After
normalization of the spectra to the common m/z axis, the spatial distribution
of ions with selected m/z can be investigated.

The acquired mass spectra are annotated with spatial coordinates of their
pixel in the raster. This spatial annotation leads to a dual interpretation
of the dataset: for each mass-to-charge value, one can create a distribution
map of the captured particle and visualize it across the entire tissue sample.
Of course, even for a low mass resolution of the aperture, ions reaching the
detector cannot be expected to perfectly align in time when they originate
from different points on the scanned tissue sample. Therefore an m/z axis may
vary between spectra, although similar in range. Varying m/z axis and many
more phenomena characteristic of such a data acquisition method require
careful handling during a dedicated dataset preprocessing pipeline.

Sample preprocessing pipeline may consist of [15, 79, 99]:

• Resampling: Each spectrum has its own m/z axis with slight variations,
yet analysis of the entire dataset at once requires a common m/z axis.
Spectra get resampled so that the m/z axis is exactly the same.
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• Spectrum Smoothing: Captured spectra are noisy, as visualized in Fig-
ure 2.2. Savitzky-Golay filter is one of the most popular methods for
smoothing the spectra to reduce the high-frequency noise [99].
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Figure 2.2: Sample noisy MSI spectrum.

• Baseline Removal: The matrix is a critical part of the Matrix-Assisted
Laser Desorption/Ionization experiment as it assists molecules that
otherwise cannot be easily ionized. However, matrix molecules can also
be ionized without actually being attached to any molecule of interest.
The second potential reason for baseline to occur is that the ion source
gets contaminated, especially towards the end of a single MALDI ToF
study [38]. Both potential causes lead to false-positive counts captured
by the detector and negatively impact the signal-to-noise ratio. Figure
2.3 presents the original spectrum and the same spectrum after a simple
baseline removal procedure.

• Outlier Detection (optional): Spectra with extremely low and extremely
high Total Ion Count (TIC) are removed from further analysis. The
spectra with extremely high TIC would strongly influence the later
stages of the processing, while the spectra with extremely low TIC
would have their noise amplified beyond any possible interpretation.
Figure 2.4 presents such sample outlier spectra.

• Peak Alignment: Peaks in the captured spectra are often desynchronized
on the m/z axis, but they still represent the same chemical compound.
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Figure 2.3: Spectra baseline removal effect. The original spectrum in blue,
spectrum after baseline removal in red.
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Figure 2.4: Outlier mass spectra from the same experiment with very low
(red) and very high (blue) TIC.

The dependency is non-linear, and the most basic translations and
scaling do not solve the issue. Figure 2.5 depicts such desynchronization.
Peak alignment based on Fast Fourier Transform is a commonly used
method for peak alignment, as it allows for non-linear relative peak
displacements [134].

• Spectrum Normalization: The reasons for spectrum normalization are
the same as for baseline removal. Baseline removal can correct the
signal-to-noise ratio; however, it does not directly influence the scale of
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Figure 2.5: Shifts in the same mass peak captured on different spectra are
often non-linear and decrease the effective mass resolution of the captured
data.

detected peaks so that they are comparable across the dataset [99]. For
this, we need spectrum normalization. Although outlying spectra are
removed already, the spectra of varying intensity require projection onto
a common intensity axis for an informative analysis. The projection
is often realized by normalizing the total ion count across the entire
dataset.

• Peak Picking: Captured spectra contain massively duplicated inform-
ation. Multiple peaks may represent a single chemical compound in
the MSI spectrum due to varying isotopes present in the tissue sample,
slight differences in cuts occurring with the help of trypsin, and imper-
fections in the data acquisition hardware. Moreover, a single peak in
the MSI spectrum is already characterized by numerous mass channels,
which collectively contain information about the peak shape. There
are many ways for picking and/or learning the peaks, starting from
simplest gradient methods [138], through signal compression methods
like wavelets [15] or Gaussian Mixture Model (GMM) [95], ending on
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the newest advances of deep learning [2].

Following the mentioned dataset preprocessing steps should reduce the
negative impact of data acquisition process limitations on the final result of
the numerical analyses. However, some researchers [2] claim to overcome the
issue without the classical approach explained above.

To verify the hypothesis stated in this work, we use two datasets: Oral
Squamous Cell Carcinoma 2D MSI dataset and Mouse Kidney 3D MSI dataset,
described in Section 2.2 and Section 2.3 respectively.

2.2 Oral Squamous Cell Carcinoma 2D MSI
Dataset

The first subject of our analysis is cancer located in the head and neck
region (HNC). Head and neck cancers were the seventh most common cancers
worldwide in 2018, with over 890,00 new cases and 450,000 deaths per annum
[25, 34]. In 2020, the number of new cases raised to almost 932,000 and the
number of deaths per annum to 467,000 [116]. It corresponds to 4.83% of all
new cancer cases and 4.69% cancer deaths in 2020 worldwide.

The vast majority of head and neck cancers (>95%) are squamous cell
carcinomas. They originate from stratified squamous epithelium lining mucosa
of an organ like tongue, mouth, larynx, pharynx, salivary glands, and others.
Despite significant improvements in treatment, oral squamous cell carcinoma
(OSCC) have a low average survival rate compared to other types of cancers
[113]. The major factors increasing OSCC risk have been linked to alcohol
consumption, tobacco smoking, and HPV infection in the oropharyngeal
region, while for lip cancer – ultraviolet radiation from sunlight exposure.

Today, the decision on the kind of treatment depends entirely on the
tumor’s location within the patient’s body and the stage of its progression.
However, as mentioned above, OSCC is a heterogeneous disease that may
affect different organs, despite visual similarities observed upon an initial
diagnosis or post-operational dissection. Uncompleted primary tumor resection
generates a massive risk of local recurrence and a failure of the entire treatment.
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Classical histopathological examination can miss out on sub-microscopic spots
and yield uncertainty in interpretation. Analysis of molecular factors behind
OSCC case, delineation of the tumor area, and the tissue of tumor origin
could improve the overall prognosis for a patient through personalized therapy
planning.

The dataset used in this work was first featured in [132]. For the tis-
sue sample’s biochemical preparation details, please refer to the original
publication, as this is out of the scope of this work.

The biological material was collected from five patients who underwent
surgery due to Oral Squamous Cell Carcinoma (OSCC). Tissue samples
contained both tumor and surrounding healthy tissue.

Each specimen was cut into 10µm sections in a cryostat. During the
sample preparation for the MS imaging, a high-resolution optical scan of each
section was captured (see Figure 2.6a).

Tissue sections were subjected to peptide imaging with the use of a
Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectro-
meter. Spectra were recorded within m/z range of 800 − 4, 000. A raster
width of 100µm was applied, and 400 shots were collected from each ablation
point. The obtained dataset consisted of 45,738 raw spectra with 109,568
mass channels.

An experienced pathologist analyzed the optical scan obtained during the
data acquisition process, and tissue regions were annotated (see Figure 2.6b).
For the highest confidence of the results obtained in this work, we will focus
on the two tissue samples out of the entire dataset (8,005 and 11,869 spectra),
which have the highest confidence labels, as explained by the pathologist.

The preprocessing of the spectra was conducted in MATLAB. Standard
preprocessing steps were applied to the spectra, following the process described
in Section 2.1. Spectra were resampled to unify the m/z axis across the
dataset. Baseline was removed with MATLAB procedure msbackadj() from
the Bioinformatics Toolbox. Peaks were aligned using Fast Fourier Transform-
based spectral alignment [134]. The TIC normalization ensured a similar
intensity level for all spectra. Finally, a GMM approach [95] was used to
model the spectra. GMM locates the peak but also estimates the peak area
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(a) Raw optical tissue scan for the OSCC dataset.

(b) The optical tissue scan annotated by an experienced pathologist. Red –
tumor, cyan – healthy epithelium, magenta – other healthy tissue.

Figure 2.6: Optical scan of the tissue for the OSCC dataset.
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instead of a raw magnitude provided by most methods. Note that the peaks in
MSI spectra are right-skewed, so the neighboring GMM components resulting
from that phenomenon were identified and merged to better correspond to
actual chemical compounds. The resulting dataset is characterized by 3,714
GMM components corresponding to MSI spectrum peaks.

2.3 Mouse Kidney 3D MSI Dataset

This dataset was first featured in [87], released as a part of [88] and is
reused in this work. For the tissue sample’s biochemical preparation details,
please refer to the original publication, as this is out of the scope of this work.

The biological material was collected from a wild-type mouse. The tissue
sample contained the entire kidney of a mouse. Magnetic resonance imaging
was conducted on the entire kidney within seven days after dissection, and
the sample was further prepared for the MSI study.

The kidney was cut into 122 3.5µm-thick serial sections on a microtome.
Tissue sections were subjected to Matrix-Assisted Laser Desorption/Ionization
imaging. Spectra were recorded within m/z range of 2, 000− 20, 000Da. A
raster width of 50µm was applied, and 250 shots were collected from each
ablation point. The obtained dataset consisted of 2,171,451 spectra with 7,680
mass channels each. The total size of such a dataset is 199 GB.

After MALDI imaging analysis, H&E-staining of sections was conducted;
however, such data was not released publicly.

Finally, registration of slices is required to construct a 3D MALDI-imaging
dataset from a set of numerous 2D serial sections. The registration was based
on the optical images and an enhancement of the procedure described in
[122]. Slices were translated and rotated first, but then an elastic registration
was applied to correct local deformations of the slices, which occur during
sectioning.

The original visualization of the registered dataset with annotated func-
tional regions based on spectra clustering can be found in Figure 2.7.

Note, that the dataset released in [88] contains a subset of 75 consecutive
slices (1,362,830 spectra). MRI and H&E images are unavailable.
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Figure 2.7: The original visualization of the mouse kidney 3D MSI dataset
[87]. Registered MRI images were imposed with the clustering results based
on the molecular information in the left upper part. Visualization of the
clusters across the entire 3D volume in the right upper part. Two rows at the
bottom feature the visualizations of the separate clusters (upper) and the
concentration maps of correlated m/z channels (lower).

Spectra smoothing was conducted with the Gaussian spectral smoothing
with a width of 2 within 4 cycles. Top Hat algorithm was used for baseline
reduction. Such prepared dataset was exposed in the imzML format.

Authors [88] clearly state that the purpose of this dataset is to benchmark
an algorithm for MSI data processing under the condition of high-volume
real data. No annotations are available, MRI and optical images have not
been released. Thus the visual comparison of the obtained tissue structure is
the only possible assessment. We will use this dataset to test the scalability
of algorithms and whether the obtained result could be associated with the
structure presented in Figure 2.7. Limited assessment opportunities seem
consistent with a recent remark that an appropriate niche for 3D MSI is yet
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to be found. However, the existing 3D datasets are challenging representatives
of high-scale molecular data, perfect for benchmarks [9].



Chapter 3

Methodology of Big -omics
Data Clustering

Efficient analysis of thousands of Mass Spectrometry Imaging spectra
requires adjustments to the feature space, regardless of the slight differences
in spectra preprocessing pipeline (see Chapter 2) [66, 117, 129, 128]. Despite
some variability in the process, the preprocessing pipelines address the same
physical phenomena and lead to a similar data representation: the number of
ions observed in a specific area of the investigated tissue.

3.1 Clustering Algorithms and Feature En-
gineering Methods

As we focus specifically on unsupervised knowledge discovery, only fully
unsupervised methods are within the area of interest of this work. Unsuper-
vised feature engineering methods can be divided into the following groups
[97, 14]:

• Filtering methods – they eliminate features based on some (usually
fixed) threshold, taking into account feature average value, signal-to-
noise ratio, variance, or other feature parameters.

• Linear feature transformations – they estimate a new set of features

19
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as a linear combination of the original features so that the reconstruc-
tion error is the smallest. Notable methods of this kind are Principal
Components Analysis and Linear Discriminant Analysis.

• Non-linear feature transformations – they estimate a new set of features
as a non-linear transformation of the original features. Most often, the
goal of such transformation is to achieve the smallest error on pairwise
dissimilarities between observations. Reconstruction capabilities are
not always guaranteed. Notable methods of this kind are Uniform
Manifold Approximation and Projection, t-Shaped Stochastic Neighbor
Embedding, and Non-Negative Matrix Factorization.

• Deep learning-based approaches – these are further discussed in the
Section 3.5, as they constitute an entirely new group of methods and a
new trend in big -omics data clustering.

Note that all these kinds of methods are applied to the dataset once
and globally, thus discarding nuances that could be relevant for hierarchical
analyzes.

Similarly, clustering methods also are divided into a few groups [44, 54,
104]:

• Centroid-based – a representative of each group is selected, and re-
definition of groups occurs for these representatives. Examples of such
algorithms are K-Means or K-Medoids (using medoid as a representative
instead of mean-based centroid).

• Connectivity-based – a rule is defined to select the next clusters to
merge. The most recognized example is hierarchical clustering.

• Distribution-based – a predefined distribution model is fit to the data.
One of the most popular is the expectation-maximization method fitting
a Gaussian Mixture Model to the data.

• Density-based – clusters are defined as the areas with a higher density
of points than the remaining dataset. They often introduce a notion
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of outliers – points that are located in low-density areas. DBSCAN is
an example of such an algorithm and requires an upfront definition of
expected density.

3.1.1 High-Dimensional Data Clustering

Subspace Clustering

In the domain of high-dimensional data clustering, combining a feature
filtering method and clustering algorithm is a special case of subspace clus-
tering. This combination would be one of the simplest yet efficient methods
widely used today. However, there exist more sophisticated methods.

One could bring the example of SUBCLU [67]. SUBCLU is an algorithm
that joins DBSCAN with a kind of forward feature selection. First, it starts
with a set of single-feature subspaces. DBSCAN partitions the data in such
subspaces, and candidate new features are added from subspaces that differ
by just a single feature. In such an extended subspace, SUBCLU identifies
clusters again, operating in the regions discovered in a less-dimensional
subspace. Unfortunately, the DBSCAN algorithm requires numerous ranged
queries to find a neighborhood. These are usually realized with a supporting
structure called k-d tree to avoid an exhaustive search when processing an
observation. As the subspace for DBSCAN clustering changes, the supporting
k-d tree needs to be recomputed. Such a recomputation vastly increases
computational complexity for datasets with the number of features of similar
magnitude to the number of observations (or higher), which is often the case
for biological data.

Another approach, CLIQUE [6], identifies high-density subspace regions
starting from a set of histograms in one-dimensional space. CLIQUE creates
candidate subspaces via merging subspaces that differ by a single dimension,
similarly to SUBCLU. Authors prove that a cluster in k dimensions must also
constitute a cluster in k − 1 dimensions. Hence, a candidate k-dimensional
subspace is discarded if it has a (k − 1)-dimensional subspace that was not
found dense previously. To further limit the number of candidate subspaces,
CLIQUE discards dense subregions with low coverage over the input dataset.
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In the next step, CLIQUE identifies which dense regions were spatially adja-
cent and merges them to form the clusters. Finally, the authors describe how
to obtain an expression that precisely describes the cluster limits. Included
experimental evaluation shows linear scalability with the number of observa-
tions but much worse with the number of dimensions (considered up to 100
dimensions). Additionally, increasing the target dimensionality prolongs the
experiment time non-linearly (the authors consider up to ten dimensions for
cluster construction).

In contrast to SUBCLU and CLIQUE, intelligent Minkowski metric
Weighted K-Means (iMWK-Means) [37], is a representative of soft subspace
clustering algorithms. It is basically a K-Means algorithm with few modifica-
tions. First, it uses weights to express the importance of dimensions in the
input dataset. As the weight assignment is a non-trivial task, the authors dis-
cuss a few variants, depending on the remaining modifications of the K-Means
algorithm. Secondly, the number of clusters and initial centroids are obtained
with so-called Anomalous Clustering [33]. Finally, the distance is captured
with the Minkowski metric, a known generalization of the Euclidean metric,
which could boost the effect of weighting in prioritizing the feature importance.
Authors outline that the mentioned set of modifications highly influences the
running time for K-Means, as cluster center recomputation requires a more
complicated process, more similar to K-Medoids [19] than classical K-Means.
The presented results indicate that iMWK-Means can achieve great accuracy
on the evaluated datasets. However, it requires tuning of the Minkowski metric
exponent, which may not be straightforward to calibrate in an unsupervised
setup, as it significantly varied between conducted experiments.

EBK-Modes [29] uses feature weighting and a well-known algorithm – K-
Modes, similarly to what iMWK-Means uses. The authors propose an entropy-
based approach for measuring the relevance of each categorical attribute in
discovered clusters. Although biological big data rarely is categorical, EBK-
Modes is worth mentioning due to its unsupervised assessment of the feature
importance. Experimental evaluation exhibits increased accuracy, adjusted
Rand index, and F-score obtained with EBK-Modes.

The newest methods for subspace clustering introduce neural networks,
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like Graph Regularized Residual Subspace Clustering Network (GR-RSCNet)
[28]. The authors proposed GR-RSCNet for the clustering of hyperspectral
images. At its core, one may find a convolutional autoencoder with residual
connections to improve the flow of the gradients. Training of the neural
network enforces sparse representation of the affinity matrix obtained for the
latent space as a part of the used loss function. Moreover, the affinity matrix
is regularized by the spatial coordinates between the hyperspectral image
pixels. Finally, the affinity matrix is segmented using spectral clustering
to generate the final clusters. Results attached by the authors indicate a
significant increase in accuracy and normalized mutual information, although
the comparison occurs mainly with more limited variants of the same method.

Projected Clustering

Another group of methods for high-dimensional data clustering is called
projected clustering. It operates with a classical clustering algorithm and a
custom metric through which clusters may be formed in different subspaces.
Such a formulation poses a severe constraint on which clustering algorithms
could be used. One of the most popular would be the K-Medoids algorithm
that minimizes the intra-cluster sum of distances. It could be combined with
distance measures like Gower distance, which is often applied to compare the
responses in the numeric and non-numeric data simultaneously, and also with
some parts of data missing.

The primary benefit of such an approach is explained in [5], where authors
indicate that traditional feature selection algorithms pick specific dimensions
before clustering and lead to a significant information loss. The featured
algorithm PROCLUS requires the number of clusters k as an input and
the average number of dimensions in which a cluster should be defined. It
estimates k clusters (plus a set of outliers) and k sets of dimensions, which
were used to obtain the related clusters. The idea behind the algorithm is to
find a set of medoids based on Manhattan segmental distance, which, similarly
to Gower distance, is relative to the current dimensionality of the dataset.
First, PROCLUS finds a superset of the medoids with many outliers, and
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then the set gets refined to obtain a robust set of clusters.

There are many issues characteristic of the projected clustering: a non-
determinate result, dependence on the order of processing, low robustness
against noise, multiple scans over the entire database, and non-linearity in
the number of dimensions. Authors of the PreDeCon (subspace PREference
weighted DEnsity CONnected clustering) approach [20] claim to address
these issues. The algorithm captures local directions of the increased density
in the data and extends classical DBSCAN for density-based clustering. It
uses a weighted Euclidean distance to compute smaller and more specific
clusters instead of trying to cluster all available points in the dataset. The
user selects the parameter λ specifying the threshold of local dimensionality
for the distance measure, in addition to the ε specifying the threshold of
distance. The PreDeCon method complexity is quadratic in the number of
observations.

A more recent method [140] uses a fuzzy K-Meansalgorithm with a flexible
manifold. Authors propose two algorithms: fuzzy K-Means with pattern
shrinking and projected fuzzy K-Means with pattern shrinking. The first
introduces the concept of joint clustering and pattern shrinking, which denoises
the original dataset based on currently known cluster membership information
during each iteration. The projected alternative additionally compresses
the dimensions irrelevant for currently known cluster membership. Authors
validate both methods via clustering RGB images. Although interesting, the
practical applications of the projected fuzzy K-Means with pattern shrinking
are severely limited due to high computational complexity – cubic in both
the number of observations and the number of dimensions.

Projected clustering seems much less popular nowadays, as its computa-
tional complexity is high, and the interpretation of clusters is complex (or
even impossible) due to unclear relations between input features and the
obtained clusters.
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Projection-Based Clustering

A linear or non-linear feature transformation combined with a clustering al-
gorithm is called projection-based clustering in the domain of high-dimensional
data clustering. This area covers all the approaches like Principal Components
Analysis, t-Shaped Stochastic Neighbor Embedding [124], Uniform Manifold
Approximation and Projection[82], and others, followed by a clustering method
of choice. The data is first reduced to a low dimensionality projection, and then
the projected observations are clustered with a classical clustering method
for low dimensionality.

This approach is probably the most popular, as it suffices that advance-
ments occur in the area of projection methods, not necessarily the clustering
algorithms. At the same time, it has a severe limitation of significant inform-
ation loss, regardless of the projection method [5].

3.2 Clustering Quality

Clustering quality can often be assessed with metrics like Dunn’s index
[47], or GAP statistic [119] in terms of cluster separability, and Adjusted
Rand Index [72] in terms of label relevance (if labels are available). Al-
though they were introduced for low-dimensional data, there are studies
[74, 102] that compare their usefulness for high-dimensional data and sub-
space clustering. Unfortunately, these studies consider hundreds of features a
high-dimensionality problem, while it is still at least an order of magnitude
less severe than for Mass Spectrometry Imaging data clustering. Hence, we
will focus on domain-related work [128].

3.3 Classical Approaches to MSI Data Clus-
tering

In this section, we will focus on the approaches which do not leverage any
aspects characteristic of MSI data despite that provided biologically relevant
results. A careful reader may realize that most of these methods are, in fact,
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projection-based clustering, which imposes substantial limitations on observed
the level of detail in the results.

The first MSI computational attempts relied primarily on linear dimen-
sionality reduction like Principal Components Analysis and simple clustering
algorithms like hierarchical clustering or K-Means. The study [39] evaluates
the usefulness of automated analyses of the entire dataset at once, as opposed
to the previous manual analyses of single selected ion maps or individual
spectra. Authors select ions correlated with the visual composition of the
tissue in the optical scan. Corresponding ion maps are used as red, green,
and blue channels of a reference image. This reference image is subsequently
compared to the spatial distribution of the three top components obtained via
PCA. Authors argue that the differences between histology and PCA scores
may be related to inhomogeneous sample preparation but also the presence of
molecular species which do not follow the histological features. Independently,
hierarchical clustering is conducted on a PCA representation reduced to 70%
explained variance. The clustering happens in an unsupervised way; however,
the number of clusters is semi-supervised. The threshold for the number of
clusters is selected arbitrarily to match the histology.

[65] provides a user guide to MSI data analysis. Authors describe much
more comprehensive data preprocessing methods than used in most studies,
including spatial smoothing methods from the image processing domain and
others. In terms of feature extraction, first, a strong limit on the number of
considered mass channels is imposed, and only then dimensionality reduction
method is applied. Therefore, the PCA or Non-Negative Matrix Factorization
(NNMF) they mention is used with up to a few dozens of mass channels. In
terms of histology-independent analysis, which is the subject of our study,
the authors indicate the usefulness of K-Means clustering and hierarchical
clustering.

Another study considers two datasets of spatial dimensions of 103x169
and 104x168 respectively and 8,000 m/z values each [106]. A matrix of
experiments is conducted, with PCA dimensionality reduction and without,
and five configurations of clustering methods. PCA was set to explain 90%
of the variance. The configurations of the clustering methods were: Fuzzy
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K-Means and K-Means with four different distance measures (Euclidean,
Manhattan, correlation, and cosine). Both clustering methods are used with
nine different values of the number of clusters k ∈ [2, 10]. The results from
the matrix of experiments were evaluated against the Calinski-Harabasz
index and manual annotations. Annotations were automatically constructed
from thresholding some preselected ion images, and the correlation between
thresholded images and the obtained clusters is compared. Authors indicate
that the Euclidean and correlation distance reveal finer structural details
than the Manhattan and cosine distance. An interesting observation made
in the publication is that configurations with Euclidean distance and other
distance measures tend to correlate highly with disjoint sets of m/z images.
Thus it may be valuable to identify distance metrics that yield complementary
results.

More recent work introduced a two-phase graph-based algorithm that
optimizes computer memory utilization [41]. It underlines the fact that K-
Means was sufficient for segmenting the matrix from the tissue or highly
differentiated tissues. However, it may provide unsatisfactory results for a
larger number of fairly similar anatomies. In response to that issue, the
authors propose using a more sophisticated clustering algorithm, which in
turn comes with an increased computational cost. The suggested solution is
to efficiently sample the dataset so that the batches of data analyzed at once
do not incur a significant penalty, with the benefit of potentially increased
clustering accuracy. First, the subsets are clustered independently, and then
cluster representatives from the compression set. Then, the compression set
is clustered to define a global partition for the entire original dataset. The
core of their algorithm is graph-based clustering, namely spectral clustering,
as it is a very effective method for classical image clustering. The method
is validated with real and synthetic data of the size up to 300,000 spectra
and subset sizes ranging from 17,000 to 25,000 spectra. The clustering was
conducted on the set of approximately 2% smallest eigenvectors, both in the
sample and in the compression set. In the results, the authors present that
the graph-cuts algorithm revealed a much more detailed molecular structure
of the tissue than the basic K-Means approach.
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The subject of non-linear dimensionality reduction for MSI data was
tackled by [3]. Authors proposed to use the Hierarchical Stochastic Neighbor
Embedding (HSNE) [93], an interactive extension of the popular visualization
method t-Shaped Stochastic Neighbor Embedding (t-SNE) [124]. The original
t-SNE method scales quadratically with the number of observations. Therefore,
it cannot be applied for a large-scale MSI dataset analysis. HSNE is based
on the concept Overview-First, Details-on-Demand. On a large scale, the
embedding shows dominant data structures (an overview). Then, it uses
landmarks from high-level structures to compute hierarchical local embeddings,
which refine the visualized information (the details). Such an approach keeps
the memory and computational complexity under control, even for massive
3D MSI datasets. The HSNE method was benchmarked on the mouse kidney
3D dataset [88] and allowed to identify the major functional structures in
the 3D volume. Note, however, that this approach is semi-supervised and
requires the user to manually digest the obtained embedding to define regions
of interest for a drill-down. A significant subset of the original dataset was
discarded in the visualization.

Both t-SNE and HSNE lack an essential property: it is impossible to
embed new data to a computed embedding with these methods. Uniform
Manifold Approximation and Projection (UMAP) algorithm was derived [82]
to respond to that need. One of its most relevant input parameters is the
distance measure. As we know from other studies, there was no clear distinction
on which distance would yield the best results consistently. Fortunately, this
was evaluated in the context of UMAP [114]. The authors assessed a few
distance measures: Euclidean, correlation, cosine, and Chebyshev distance.
Part of the evaluation is conducted with spatial autocorrelation – spatially
neighboring pixels are expected to embed into a similar area of the latent
space. Finally, the authors showed that UMAP yielded superior runtimes
compared to t-SNE and that correlation and cosine distances achieve the best
results for MSI data.
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3.4 Approaches Considering Spatial Informa-
tion

One of the first clustering approaches considering spatial information was
[10]. The authors explained that denoising each individualm/z image would be
more natural than post-processing the resulting classification maps. However,
the challenge was to propose a denoising method that would not erode the
molecular details at the boundary of two neighboring morphological regions.
Therefore, they suggested using an edge-preserving Chambolle algorithm [32]
with a Grasmair modification [53] that locally adjusts the denoising scale.
First, the peak picking was applied out of 5027 mass channels selected 110
peaks. Then, the ion map for each selected peak was smoothed with the
Chambolle algorithm. Finally, a high dimensional discriminant clustering
[23] was applied to obtain the partition of the dataset. They recommended
selecting the number of clusters manually, based on histology examination.
Upon visual inspection, the proposed method seemed to reveal structural
details consistent with the schematic of the anatomical structure of the rat
brain. The comparison with smoothing methods discarding information about
the image edges showed the superiority of the approach. Similar outcomes
were obtained with another dataset of the human brain.

The next step in the edge-preserving denoising was presented in [12].
Two clustering methods were presented, differing in the smoothing method:
spatially aware clustering and spatially aware structure-adaptive clustering.
Both start with the ion images denoising. Spatially aware clustering averages
the ion map values based on Gaussian weights defined using the spatial
distance between spectra. Spatially aware structure-adaptive clustering uses
a form of a bilateral filter, which compares spectra similarity based on the
molecular information but also includes a Gaussian weight dependent on
the spatial distance. To ensure the low computational complexity of both
methods, the authors proposed to project the spectra using the FastMap
algorithm and reduce the dimensionality of the dataset simultaneously. After
the embedding, they applied classical K-Means clustering. With the increasing
radius of the smoothing method, resulting segmentation maps were more
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spatially consistent, with less noise in the labels. Again, the evaluation was
conducted upon visual comparison with the rat brain atlas. Although, the
authors were able to identify tissue slice preparation defects and the artifact
caused by the non-edge-preserving spatially aware clustering. Once again, a
separate evaluation was conducted on an independent human tumor dataset
and revealed the molecular composition of the tissue.

An even more challenging area was tackled in [122] for 3D data. In contrast
to 2D MSI datasets, the registration of consecutive tissue sections does not
align the raster perfectly with each other. Moreover, the slice thickness differs
from the raster width. Hence, one cannot consider the spectrum a square
in a grid anymore but rather a point in a 3D point cloud. The authors
used the nearest neighbor search in a 3D space to generalize the Chambolle
algorithm from the usual grayscaled 2D raster. To scale well for 3D data,
bisecting K-Means was selected, which separated data until singleton clusters
were obtained. It generates a binary tree of the clusters but at the same
time does not require storing the pairwise distances between all the points.
The K-Means algorithm was used with correlation distance. Authors also
considered Manhattan and Euclidean distance, as well as agglomerative
hierarchical clustering with the average linkage and the correlation distance.
Algorithms were first evaluated with low-scale 2D datasets and confirmed
high reproducibility of histological and chemical spatial structure. For the
3D data, the segmentation was conducted to separate the spectra into three
segments, and correlated ion maps were investigated to confirm the relevance
of the results.

The following approach focuses much less on the individual spectra but
rather on ion maps representation of the MSI dataset [11]. The spatial segment-
ation discussed up to this point answered the question: which pixels in the MSI
dataset do have similar mass spectra? In the publication, the authors redirect
the focus onto another question: what do all m/z images of MSI dataset look
like? Therefore, the PCA decomposition presented in the cited work does not
represent a spectrum anymore but an ion image. Groups of similar ion images
were identified using the Gaussian Mixture Model. The results were validated
by analyzing the cluster distributions in the PCA decomposition (clusters
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obtained without embedding). Secondly, the intracluster variance was used
to estimate the compactness of the clusters. These two validation approaches
were summarized into a step-by-step instruction for a human-in-the-loop
approach, which should allow researchers less knowledgeable about machine
learning to take advantage of the method. The process was shown on the
example of two datasets: rat brain coronal section (compared to the rat brain
atlas) and human larynx carcinoma sample (compared to histological images).
Benefits of such an approach include the detection of artifacts missed in the
data preprocessing and data quality assurance.

The EXIMS method [133] addresses another area of exploiting spatial
information: estimating the biological relevance of the observed ion maps.
Authors categorized multiple m/z images into unstructured and structured,
with a clear distinction between four kinds of structures: regions, curves,
gradients, and islets. The following steps were proposed to leverage information
about potential patterns:

• First, apply median filtering with a 3x3 neighborhood to reduce the
technology-driven artifacts.

• Enhance the contrast of the grayscale ion map using histogram equal-
ization – this allows to reduce the number of hot spots in the m/z
images.

• Quantize ion map into eight levels of gray.

• Compute gray-level co-occurrence matrix.

• Multiply obtained co-occurrences matrix with a predefined weights
matrix.

The predefined weights appeared to be the most successful for structures cat-
egorized as regions and curves. The algorithm’s running time highly depends
on the bin size applied on the spectrum.

The recent work in spatial clustering featured the community detection
method GRINE (analysis of GRaph mapped Image data NEtworks) [135]. It
focused on grouping the molecules into communities. First, the interesting
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m/z values needed to be preselected from the entire dataset. Then, an affinity
matrix was computed using the Pearson correlation coefficient for a reduced
set of ion images. The matrix was transformed into an adjacency matrix, and
the connections were automatically pruned. Communities were detected in a
divisive manner with the leading eigenvector method. The authors present the
software implementation and the results based on simulated Gaussian peaks
and two MSI datasets with preselected peaks. Unfortunately, despite the
well-maintained open source implementation, we could not run the analysis
for the OSCC dataset introduced in Section 2.2. Authors suggested massive
manual preselection of peaks before applying this method.

3.5 Deep Learning Approaches

The first deep learning approach to MSI was presented in [117]. Autoen-
coder applied there is an alternative to Non-Negative Matrix Factorization
and PCA, which allows for the extraction of latent ion images with highly
detailed molecular structures. Although [114] indicates the benefit of speed
in UMAP compared to training an autoencoder, this work initiated a series
of auspicious deep learning efforts in the MSI field. The method is discussed
further in Section 5.2, after a brief introduction to variational autoencoders
in Chapter 5.

In Section 3.3 we discussed the limitations of t-SNE and HSNE, however
as has been pointed out [61], both these methods relied on the most basic
definition of t-SNE, while there was also available a parametric t-SNE [123]
alternative by the same author. It used a Restricted Boltzmann Machine
(RBM) to achieve the same results as t-SNE, with an additional benefit of
increased scalability. Neural network architecture is proposed that consists
of RBM blocks. They are first pretrained independently, then merged into a
single feed-forward network and fine-tuned, using the same Kullback-Leibler
divergence as the non-parametric t-SNE. Such an approach had two benefits:
increased stability of the results and an opportunity to embed new data as
they are captured. Additionally, the authors brought up an important aspect
of comparison of the parametric t-SNE to the competing autoencoders. There



3.5. Deep Learning Approaches 33

are a few differences worth considering when deciding between these methods:

• They optimize different cost functions. Parametric t-SNE aims to pre-
serve local neighborhoods, while autoencoders aim to minimize the
original data reconstruction error. These two goals may be correlated
to some extent but are not the same.

• Parametric t-SNE has a benefit of an architecture smaller by half, as it
does not require the decoding part – it is just an encoder. Therefore it
is more shallow, which can train faster and consume fewer resources.

• For a latent space not large enough to accommodate all properties of the
data (e.g., 2D space, which is convenient for visualization), parametric
t-SNE pushes the natural clusters in the data apart, which opposes the
embeddings provided by autoencoders, in which these natural clusters
partially overlap.

The authors concluded by comparing parametric t-SNE to an autoencoder
of a corresponding architecture: the exact size of the encoding part as the
parametric t-SNE and a mirrored architecture for a decoder.

Although we mainly discussed the unsupervised approaches up to this
point, the deep learning section will also tackle supervised learning, as the
architectural ideas often can easily be transferred between the methods.
The first example could be the application of convolutional neural networks
(CNN) to MSI data classification [17]. MSI data have the property that
consecutive mass channels in the spectrum should be correlated to some
extent, e.g., a ToF peak is spread over several m/z bins. Therefore they
seem a good target for applying a convolutional neural network directly
on the raw spectrum (without peak picking). Conceptually, the first layers
could learn peaks. However, the authors argued that the mid-level features
could represent isotope patterns from the data or adduct patterns of the
same peptide. Furthermore, the highest-level features could recognize tryptic-
digested proteins that contribute to patterns across the entire mass range. On
the architecture side, the authors applied convolutional transforms together
with a locally connected layer that has unshared weights and allows for learning



34 Chapter 3. Methodology of Big -omics Data Clustering

local characteristics of the spectrum across the entire m/z range. Additionally,
residual connections were introduced due to the inspiration of deep Residual
Network architecture. The method was compared to the IsotopeNet, which
outperforms it in classification metrics. However, the authors discussed that
a closer analysis revealed biological connections to known biomarkers for the
discrimination of adenocarcinoma and OSCC.

The idea of a convolutional neural network for classifying MSI data was
further developed with atrous convolutions [125]. Authors indicated that
cancer biomarkers might be more spread over the m/z axis. Thus it could
be beneficial to increase the receptive field of the neural network without
additionally increasing neural network depth. The dilation rate was increased
gradually with the depth of the network to prevent loss of the resolution of
the input signal. The architecture of the neural network used in the study is
based on the IsotopeNet. However, it replaces classical convolutional layers
with atrous convolutions. The method is validated with two datasets: lung
tissues sample from 12 patients representing two subtypes of lung cancer and
bladder tissue samples from 9 patients representing healthy and cancerous
tissue. With these datasets, the authors demonstrated an improvement in
balanced classification accuracy and F1 score.

For another kind of MSI (ToF-SIMS), a method based on self-organizing
maps was applied [52]. Output layer neurons were assigned a position on a
toroidal map, and a 2D color scale was created. As the self-organizing map
learned the data structure, each mass spectrum converged to a position on
the toroid based on the Euclidean distance between the neuron output and
the original spectrum values. The results were used to visualize the molecular
differences imposed on the histological images. Such visualization allowed
straightforward visual identification of an ROI in the collected data.

Supervised deep learning methods require high-quality annotations, which
are obtained in a time-consuming process engaging a medical expert. Thus,
they are often unavailable, especially when a sub-tissue-level classification is
required. Multiple instance learning was proposed [55] to address the issue.
The main difference was that instance-level (spectrum-level) predictions were
often avoided. Instead, a bag-level (e.g., tissue-level) prediction was made
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for a set of spectra. The authors built the method based on mi-SVM but
replaced the Support Vector Machine with a convolutional neural network.
The method was evaluated with simulated and real-life datasets and showed
superior performance compared to the mi-SVM and classical instance-level
predictors (SVM and CNN). The power of weak supervision was demonstrated:
a dataset without a complete annotation was exercised, and it was easy to
propagate the assumptions about the annotations into the training pipeline.

The similar issue is further addressed by cumulative learning [110]. Authors
argue that transfer learning is not entirely applicable to MSI datasets, as
there are major differences between a usual transfer learning scenario and
the limitations of using MSI data in biomedical research. Models dedicated
to transfer learning were trained to generalize for multiple (even thousands)
classes and sometimes even for multiple tasks. At the same time, MSI’s
reality is that there are up to a few classes and a single task. The amount
of data is severely limited, which also impacts the variability to which a
model could be exposed. Therefore, the authors train the model for several
tasks to converge to an optimal model. Besides the classification, the model
learns cross-instrument representations and addresses the fluctuations in the
instrument’s performance. Authors compare the performance of CNN trained
from scratch, transfer learning, and cumulative learning approaches. The
non-reproducible technical factors got filtered by the CNN and increased
the robustness of molecular pattern recognition. Cumulative CNN offered a
unified solution very robust towards the different sources of variance.

The other work builds on the success of UMAP and t-SNE as universal
dimensionality reduction methods [42]. Unlike most approaches, it does not
train the neural network with the cost function specified similarly to UMAP
or t-SNE. However, it learns the dimensionality reduction in a black-box
manner. The complexity of dataset embedding can easily be controlled at
the cost of including the nuances in the final embedding. However, there are
two more advantages: dimensionality reduction can be applied to unseen data
in an online manner, and a reverse transformation can be learned, which is
impossible for classical t-SNE.

One of the most recent spectrum-oriented deep learning approaches was



36 Chapter 3. Methodology of Big -omics Data Clustering

based on a Variational Autoencoder [2]. Authors evaluated the method with
the mouse kidney 3D dataset [88]. Precise details of the algorithm are featured
in Chapter 5.

The subsequent work introduced a transfer learning approach, benefiting
from well-known computer vision datasets like ImageNet [139]. Authors
suggest that the processing pipeline mimics a human reviewing manually the
ion images and looking for similar patterns. Therefore, a pretrained Xception
neural network was used to create embedding of the ion map patches. Patches
were constrained with a real-life size of 1− 2mm and the possible input size
to the Xception network. Too small patches needed to be upsampled prior
to the embedding. Max pooling of the patch-level embedding provided the
embedding for an entire m/z image. Ion maps of a similar embedding are
clustered together and merged into one. Further analysis was conducted with
such neural ion images after the deduplication of the molecular information.

3.6 Summary

Analysis of multiple approaches, both general and dedicated to Mass
Spectrometry Imaging data processing, leads to a surprising observation: the
vast majority of methods are based on the assumption that the descriptor
importance remains unchanged for the entire dataset. However, most of the
experimental setups focus on the discovery of the differences inter- and in-
tracluster at the same time, combining some of the following sample questions
(and other questions not mentioned here) into a single study:

• Are the tissue type differences dominating over inter-patient differences
or vice versa?

• What are the molecularly heterogeneous regions of the tissue?

• Is there any correlation between molecular biomarkers and the patholo-
gist delineation of the tumor?

• What are the differences between a tumor and healthy tissue?
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• Are there molecularly diverse subtypes of a tumor that differ in their
origin and preferred therapy?

• What are the differences between a tumor of one type and a tumor of
another type?

Reliable answers to even just some of these questions simultaneously
cannot be obtained with Principal Components Analysis, UMAP, or other
one-step methods, as the projection-based clustering approach by definition
discards the non-dominating variability.
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Chapter 4

Divisive Intelligent K-Means

4.1 Framework idea

The primary concern of the Divisive Intelligent K-Means (DiviK) frame-
work is to limit the negative impact caused by information loss when using
one-step methods. Therefore, it conducts the clustering procedure hierarch-
ically and adjusts the feature space locally for each discovered subregion.
Each subsequent local feature space optimization starts from the entire set of
features so that the original information is available regardless of the current
depth of the analysis. The idea is presented in Figure 4.1.

4.2 Methods

In this section, we will discuss three major components of the Divisive
Intelligent K-Means framework:

• feature engineering method;

• clustering method;

• stop condition.

The selection of the algorithms was inspired by the state of the art methods
but with a strong emphasis on model simplicity and explainability for the
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Figure 4.1: Flow diagram of the Divisive Intelligent K-Means algorithm.
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evaluation process. All three elements could be further modified or entirely
replaced without abuse of the initial Divisive Intelligent K-Means framework
concept to adjust the method for another kind of data or even another domain.

4.2.1 Feature Selection Through Intelligent Filtering

As described in Chapter 3, there are many approaches for feature engin-
eering in high-throughput biological data, which could be roughly separated
into the following buckets:

• filtering methods – like fixed threshold filtering;

• linear transformations – like Principal Components Analysisor Linear
Discriminant Analysis;

• non-linear transformations – like Uniform Manifold Approximation and
Projection or Non-Negative Matrix Factorization;

• deep learning methods – like Variational Autoencoders.

Each item on the above list is slightly more sophisticated than the preced-
ing one and usually provides a more comprehensive insight into the actual
data structure. Despite that fact, all these methods discard nuances by design.

To demonstrate the potential of the Divisive Intelligent K-Means frame-
work, we will start with the most basic group of methods – filtering. We will
show that the local optimization of the feature space can provide a benefit over
sophisticated scenarios applied once and dataset-wise, even when combined
with a relatively simple feature engineering method.

Numerous filtering methods are applicable for high-throughput biological
data [126, 136, 103, 80, 81, 60, 133]. Most of them are general enough to
be used with any tabular data. However, the most sophisticated filtering
procedures like [60, 133] rely intensively on spatial patterns in the Mass Spec-
trometry Imaging data and related domain knowledge. Unfortunately, the
spatial patterns may not be preserved for the subregions obtained in the clus-
tering process, as the subregion may be spatially discontinuous and scattered.
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Due to promising results of previous studies [94, 132], we will continue with
Gaussian Mixture Model (GMM) based method [80] to demonstrate the
benefits of local feature engineering.

The careful reader may notice that Figure 4.1 contains two kinds of blocks
influencing features: global noise filtering and local optimization of feature
space. Both processes follow a similar schema, presented in Figure 4.2.

For dataset-wide one-time global noise filtering, we use an average abund-
ance of the feature (top left panel of the Figure 4.2). We decompose the
histogram of the average feature abundance into a GMM, with the number of
components optimal in terms of the Bayesian Information Criterion (middle
left panel). For each observed value of the average abundance, we calculate
the conditional probability for each Gaussian component. Then we apply the
maximum classification rule, which leads to the interpretation that the cross-
ing points of the neighboring GMM components become filtering thresholds.
For the average abundance, we discard the peaks represented by the first
non-artificial GMM component as it is most likely noise-related (bottom left
panel). This procedure is conducted just a single time on the entire dataset.

For local optimization of the feature space, we use ion abundance variance
(top right panel of the Figure 4.2). The procedure follows similarly, but for
the abundance variance, we persist only the peaks represented by the topmost
GMM components, not less than 1% of all the peaks.

In-depth implementation details of the GMM-based filtering can be found
in the related literature [80, 95, 96, 81].

4.2.2 K-Means

K-Means problem [78] is a problem of partitioning n observations into k
clusters, in which each observation belongs to the cluster with the nearest
centroid – a representative of a cluster, defined as the mean of the observations
inside.

The globally optimal solution to K-Means problem partitions observations
in such a way that the sum of squared distances between respective centroids
and cluster members across all clusters is the lowest. However, solving the
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Figure 4.2: Visualization of the GMM-based feature filtering procedure.
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problem for global optimum is computationally difficult (NP-hard). Therefore,
we use a popular Lloyd’s algorithm [76], which is an efficient heuristic for
finding a maximum likelihood estimate of the parameters of the unsupervised
model (cluster assignments) and, in most cases, yields an acceptable solution.
Lloyd’s algorithm is one of the simplest yet one of the most efficient clustering
methods. For the sake of the reader’s convenience, later mentions of K-Means
will refer to the cited Lloyd’s heuristic.

First, some cluster representatives are proposed, often random ones. Then,
all the dataset points are assigned a cluster number corresponding to their
closest cluster representative. In the next step, cluster representatives are
redefined as the mean value of cluster members in each dimension. Since
K-Means is a variant of the expectation-maximization algorithm, the as-
signment step is often referred to as the expectation step, and the centroid
redefinition step is referred to as the maximization step. These expectation
and maximization steps are repeated until cluster centers converge to stable
values.

K-Means is a general-purpose clustering algorithm with wide possibilities
of adjustments to the data characteristics. The adjustments are possible in
(but are not limited to) the following areas:

• initialization – custom and deterministic, more and less stable;

• observation similarity – Euclidean, correlation, other custom metrics;

• stop condition – the number of iterations, fixed threshold of centroid
displacement, other.

Careful adaptation of the mentioned elements increases the domain relev-
ance of the obtained results compared to the default approach.

The concept of the K-Means algorithm inspired a few other approaches:

• K-Medians [64] – uses median across each dimension instead of mean
to compute cluster representatives, minimizes the dataset-wide sum of
distances instead of squared distances;
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• K-Medoids [68] – the representative is found within the group in a way
that minimizes the intra-cluster sum of dissimilarities, often used for
distance measures incompatible with classical K-Means algorithm;

• Fuzzy C-Means [46, 18] – cluster membership is expressed as a continu-
ous number from the range [0, 1] and a point may belong to more than
one cluster.

Initialization Method

The simplicity of the K-Means algorithm is also one of its most substantial
limitations. Similarly to the way other expectation-maximization algorithms
operate, it converges to a local optimum, highly dependent on the algorithm
initialization. Inappropriate selection of initial centroids will lead to a local
optimum, which does not approximate the true heterogeneity in the data but
is a numerical artifact.

Random Initialization The simplest methods for initializing K-Means
algorithm are Forgy, and Random Partition [57]. The Forgy initialization ran-
domly selects k observations from the dataset and makes them initial cluster
centers. The Random Partition initialization assigns a random cluster label to
each observation and computes centroids for such a partition. Unfortunately,
a comprehensive study of K-Means initialization methods [31] explains that
these solutions often perform poorly.

K-Means++ Initialization Assuming that it is possible to launch K-
Means clustering multiple times, K-Means++ [24] is a very robust stochastic
method for initialization. It randomly selects the first initial cluster center
from the observations in the dataset. Then, the remaining k− 1 initial cluster
centers are drawn sequentially at random from the set of observations. The
probability of choosing an observation is proportional to the distance between
that observation and the already known cluster center closest to it. Although
the idea seems worth considering, we did not decide to continue with K-
Means++ for Mass Spectrometry Imaging data in the original form due to
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following reasons:

• We aim to capture the molecular heterogeneity, and the K-Means++
only offers a chance that the initial cluster centers will be dissimilar
from each other.

• It requires multiple launches of the K-Means clustering, which would
significantly reduce the scalability of the DiviK framework.

We approached mentioned challenges iteratively with the methods de-
scribed in the following paragraphs. All the proposed approaches are determ-
inistic to avoid multiple launches.

Extreme Deterministic Initialization To ensure that the initial clusters
are highly dissimilar, we build a linear model of the dataset and select the
observation with the highest residual as the first initial cluster center. Then,
similarly to K-Means++ and approaches like [5], we choose the remaining
k − 1 initial cluster centers sequentially. Each time we select the observation,
which maximizes the distance between that observation and the already
known closest cluster center (see Figure 4.3). The Extreme Deterministic
Initialization has two drawbacks:

• low robustness – such a naive algorithm definition is very susceptible to
outliers (see Figure 4.5a);

• low scalability – instead of multiple launches of K-Means algorithm,
building a linear model increases computational complexity by orders
of magnitude.

Percentile Deterministic Initialization This initialization replicates the
schema of the Extreme Deterministic Initialization but replaces extreme values
with a fixed percentile to reduce susceptibility to outliers. We will assume
the 95th percentile used for this explanation. We build a linear model of the
dataset and select the observation with the residual closest to 95th percentile
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(a) First, we build a linear model. (b) The observation with the highest
residual is selected.

(c) We sequentially select observations
furthest from already known centers
(green, blue, brown, gray).

Figure 4.3: Demonstration of the Extreme Deterministic Initialization on a
synthetic dataset.
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as the first initial cluster center. Then, we choose the remaining k − 1 initial
cluster centers sequentially. Each time we select the observation closest to
the 95th percentile of the set of distances between observations and already
known cluster centers closest to them. Other percentiles could be used, but
we discourage using percentiles much lower than 90th as the dissimilarity of
initial centroids may not be sufficient. See Figure 4.4 for detailed diagram
flow and Figure 4.5 for demonstration of the algorithm result with synthetic
data.

k-d Tree Based Initialization To address the scalability issues of the
previously proposed methods, we applied the k-d tree structure. k-d tree is a
form of a binary tree that contains k-dimensional points and partitions the
space. We use an unbalanced variation that partitions the space around the
mean value in each consecutive dimension, and the dataset points are located
in leaves only. The parent nodes of leaves create point clouds which we use
instead of original points (observations). The process of constructing such a
k-d tree is presented in Figure 4.6.

Distance Measure

K-Means algorithm minimizes the sum of square Euclidean distances
between observations and their assigned cluster centers. Therefore it is crucial
that although K-Means is flexible concerning distance measure, one cannot
use K-Means with any distance measure. For such a purpose, one would
need to use the K-Medoids algorithm [19] instead. However, there are a few
distance measures with proven convergence for the K-Means algorithm. These
scenarios still minimize the sum of square Euclidean distances despite the
other distance measure being used.

Euclidean Distance Human perception of distance follows the Euclidean
distance. Therefore, it is intuitively understood for two and three dimensions.
Since the monotonicity of the Euclidean distance and Euclidean square
distance is preserved, the K-Means algorithm requires no modifications to
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(a) Result of extreme initialization for
noisy data.

(b) Result of percentile initialization
for noisy data. We are using 95th per-
centile for this example.

Figure 4.5: Demonstration of the proposed initialization methods on synthetic
datasets.

work with Euclidean distance. Euclidean distance can be computed for any
dimensionality with the following formula:

dE(p, q) =

√√√√ N∑
i=1

(pi − qi)2 (4.1)

where:

dE Euclidean distance function;

p, q points in N -dimensional space;

N number of dimensions;

pi, qi coordinates of points p and q in the i-th dimension.

Similar notation will be used for other distance measures.

Cosine Distance Cosine distance defines the dissimilarity of two points
using the angle between vectors connecting the origin of the coordinate system
with these points. The exact formula is given in the Equation 4.2:
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(a) We find a hyperplane that parti-
tions the dataset in the first dimen-
sion. Splits of consecutive obtained
half-spaces are continued until all of
them contain less than a fixed number
of points.

(b) The k-d tree algorithm identifies
the first point cloud that should be a
leaf node. To initialize K-Means clus-
tering, the obtained point cloud is fur-
ther represented by its centroid (red).

(c) Splits continue until all leaf nodes
are identified, and centroids of all
point clouds (red) are computed. Here
is the complete k-d tree built for the
synthetic dataset.

(d) One can decrease the size of the
point cloud constituting a leaf node.
Under such circumstances, centroids
of obtained point clouds (red) approx-
imate the original dataset much more
precisely.

Figure 4.6: Construction of a k-d tree on a synthetic dataset.
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dc(p, q) = 1− cosφ = 1−

N∑
i=1

piqi√
N∑
i=1

p2
i

N∑
i=1

q2
i

(4.2)

where dc is cosine distance function and φ is the angle between vectors.
A careful reader may notice that the cosine dissimilarity depends entirely

on the angle between the vectors, not their length. However, vector length
strongly influences the sum of squared Euclidean distances optimized by the
K-Means algorithm. Therefore, an additional step is necessary to ensure the
convergence of the K-Means algorithm.

To tackle the mentioned issue, one can consider a similar problem with
all vectors of unit length. Under such a condition:
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piqi√
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)

= 1
2
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i )

= 1
2

N∑
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(pi − qi)2

= 1
2d

2
E(p, q)

where d2
E is squared Euclidean distance. The above proves that for unit

length vectors, squared Euclidean distance and cosine distance are linearly
dependent. Moreover, the K-Means algorithm will be convergent under such
an assumption.

Concluding the above reasoning, scaling the original vectors to unit length



4.2. Methods 53

does not influence pairwise dissimilarities between vectors and is required for
convergence of K-Means clustering with cosine distance.

Pearson Correlation Distance Pearson correlation distance is concep-
tually similar to cosine distance. However, it uses the Pearson correlation
coefficient instead of the cosine of the angle between vectors. It is given by
the following formula:

dP (p, q) = 1−

N∑
i=1

(pi − p)(qi − q)√
N∑
i=1

(pi − p)2
N∑
i=1

(qi − q)2
(4.3)

where dP is Person correlation distance function and p is average of the values
in p.

Similarly to the case of cosine distance, it is important to ensure the
convergence of the K-Means algorithm. One can consider a similar problem
where p = 0 for all p in the dataset. Under such assumption, Equation 4.3
reduces to Equation 4.2 and the Pearson correlation distance is equivalent to
the cosine distance. As explained previously, that guarantees convergence of
the K-Means algorithm.

Concluding the above reasoning, subtracting the mean from each vector
does not influence pairwise dissimilarities between vectors and is required for
convergence of K-Means clustering with Pearson correlation distance. Then,
one needs to follow the normalization process for cosine distance and scale
obtained vectors to unit length.

Stop Condition

There are three most popular stop conditions for the K-Means algorithm:

• number of iterations – algorithm stops after a fixed number of centroid
re-computations;

• centroid displacement – algorithm stops if the difference between posi-
tions of centroids in consecutive iterations is not greater than a fixed
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threshold;

• cluster re-assignment rate – algorithm stops if the rate of cluster label
changes is not greater than a fixed threshold.

Calibration of the threshold for centroid displacement highly depends
on the feature space and is hard to specify for high-dimensional data. The
number of iterations is often used to ensure the end of computations after a
fixed time for pessimistic scenarios. In most cases, a few dozens of iterations
are sufficient for the K-Means algorithm to converge. Cluster re-assignment
rate is loosely connected to centroid displacement but a bit more explainable,
regardless of the data dimensionality.

Usually, more than one stop condition is used, especially since it may limit
the amount of unnecessary computations. An example of that may be a limit
of 100 iterations combined with 0% cluster re-assignment rate, which stops
computations right upon convergence.

Quality Measure

K-Means algorithm is an unsupervised method used for knowledge dis-
covery. Hence the real cluster labels are, in most cases, unknown. In general,
quality of the obtained partition may be evaluated via measures of compact-
ness and separation between clusters [56, 22], information criteria [92] or
other statistics [119]. However, the cluster definition itself is often arguable.
Especially when the clusters overlap and are not clearly separated, which is
usually the case for multidimensional data in biological sciences. Therefore,
beyond their mathematical definition, such studies are often supported with
results of the empirical evaluation, which is critical for real-life performance.

GAP Statistic GAP statistic [119] is proposed as a mathematical form-
alization of statistical folklore, selecting the ’elbow’ of the error plot as the
right number of clusters in the model. It is designed to apply to any cluster-
ing method. However, the authors discuss it mainly on the example of the
K-Means algorithm.
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At the core of the original formulation of the GAP statistic, there is a
sampling from a reference distribution. Given a dataset with n observations,
d dimensions, and partition into k clusters, we compute error measures
(dispersions) between points and corresponding cluster centers. In parallel, we
sampleN synthetic datasets with n observations each and uniform distribution
in each of d dimensions. The uniform distribution range for each dimension is
preserved from the input dataset. Further, each of the N synthetic datasets
is partitioned into k clusters to form a reference distribution of the error
measure. Finally, we compute the GAP statistic as a dispersion ratio between
the input dataset and the reference distribution. Please see Figure 4.7 for the
exact flow of the GAP statistic computation and the Equation 4.4 for the
definition:

Gapn(k) = E∗n{log (Wk)} − log (Wk) (4.4)

where:

Gapn(k) GAP index for n observations partitioned into k clusters;

Wk error measure, squared Euclidean distance between observa-
tions and their corresponding cluster centers for the K-Means
algorithm case;

E∗n expectation under a sample of size n from the reference
distribution.

To establish the most likely number of clusters in the input dataset,
E∗n{log (Wk)} is computed by averaging the N values of log (Wk) obtained
from clustering the synthetic datasets. As the number of samples N is finite,
simulation error is considered:

sk = sd(k)
√

1 + 1
N

where:

sk simulation error;
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Figure 4.7: Flow diagram explaining how to compute GAP statistic for a
dataset partition and a fixed number of clusters.

sd(k) standard deviation of log (Wk) values obtained from N syn-
thetic datasets.

Values of the GAP statistic and simulation errors are used to find the smallest
number of clusters k such that:

Gap(k) ≥ Gap(k + 1)− sk+1 (4.5)

For the K-Means algorithm case, the authors use the sum of squared
Euclidean distances as the dispersion measure. However, another error measure
may be more appropriate for other clustering methods.

GAP statistic is one of the very few quality measures which define any
value for a single cluster case and allows to decide of whether any split should
be conducted. The authors argue that an appropriate statistical estimation
of the expected value could be used to achieve similar outcomes for a single
cluster case with other quality measures. Although, such a definition often is
non-trivial or impossible, depending on the original definition of the clustering
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quality measure.
The authors discuss a few approaches to defining the reference distribution

required for sampling synthetic datasets:

• Uniform distribution – values in each dimension are drawn from the
uniform distribution in the same range as the input dataset. As per the
authors’ empirical study, such an approach appears to be surprisingly
effective, despite its apparent simplicity.

• Principal Components Analysis (PCA) – the input dataset is subject to
PCA decomposition to make the procedure rotationally invariant for the
rotationally invariant clustering methods. Uniform sampling happens in
the decomposed space, and the obtained sample is transformed back to
the original space of the input dataset. This approach appears to be the
most effective in the case of elongated clusters. However, it is slightly
less effective for the general case, as it underestimates the number of
clusters more often.

• Cluster-level sampling – authors propose two more sampling schemes,
based on the above procedures, but conducted separately for each cluster
of the input partition. While potentially more precise, unfortunately,
this approach has not been evaluated.

Finally, the authors evaluate the risk of recognizing overlapping clusters
as a single cluster. Empirical evaluation leads them to the observation that
for the overlap proportion of p, there is a probability of approximately p for
GAP statistic to indicate these clusters are a single cluster.

It must be noted, however, that despite the high relevance of the number
of clusters selected with the use of the GAP statistic, there are two major
disadvantages of this method:

• Huge computational cost – the number of synthetic datasetsN influences
the reliability of the obtained results, and values below N < 10 are
discouraged. This leads to a more than tenfold increased amount of
computations required to cluster the data and confirm the number of
clusters.
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Figure 4.8: Flow diagram explaining how to compute sampled GAP statistic.

• Poor scalability in the number of samples – strictly connected with the
above limitation. For a high number of observations n, the clustering of
N synthetic datasets may not be feasible.

Sampled GAP Statistic To overcome the computational issues related
to calculating the GAP statistic in a classical setting, we propose a sampled
GAP statistic. It reduces the computational effort by limiting the number of
observations used in the estimations. Instead of sampling only the reference
distribution, we sample both the reference distribution and the input data
set. We use stratified sampling with respect to cluster assignments obtained
with the K-Means algorithm to ensure the representation of each detected
substructure regardless of its size. The detailed flow diagram is presented in
Figure 4.8.

Since there are two independent sampling processes occurring in parallel,
the sampling error sk must be modified as compared to the original formulation
of the method. There are two random variables instead of one: clustering error
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measure for synthetic datasets Wk and, additionally, clustering error measure
for the sampled input data W ′

k. As the original sampling error sk was defined
based on standard deviation, we propose a similar solution. There are two
independent random variables and:

V ar[X + Y ] = V ar[X] + V ar[Y ]

E∗n{log (Wk)} is computed by averaging the N values of log (Wk) obtained
from clustering the synthetic datasets. Similarly for input dataset samples,
E∗n{log (W ′

k)} is computed by averaging the N values of log (W ′
k) obtained

from error calculation over the sampled input data. The variance of the
estimator defined as the sample mean is given by:

V ar[X] = σ2

N

Hence:

sk =
√
var(k) + var(k′)

N
(4.6)

where:

sk simulation error;

var(k) variance of log (Wk) values obtained from N synthetic data-
sets;

var(k′) variance of log (W ′
k) values obtained from N samples from

original dataset.

Such a sampled formulation of the GAP statistic allows scaling the compu-
tations for datasets with millions of observations if subsets of a few thousand
examples are drawn to approximate the classical GAP statistic.

Dunn’s Index The Dunn’s index [47] identifies sets of compact and well-
separated clusters. It measures the spatial dispersion of the obtained clusters
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and the distance between these clusters to compare which number of clusters
k leads to the optimal separation. The definition is given by the Equation 4.7:

D(U) = min
1≤i≤k
1≤j≤k
i 6=j

 δ(Xi, Xj)
max
1≤l≤k

{∆(Xl)}

 (4.7)

where:

D(U) Dunn’s index for partition U ;

i, j, l cluster indices;

k the number of clusters in the partition;

δ(Xi, Xj) intercluster distance between clusters Xi and Xj;

∆(Xl) intracluster distance within cluster Xl.

Underclustering will decrease the score as the intracluster distance in
the denominator will increase for spatially oversized clusters. Overclustering
will decrease the score as the intercluster distance in the numerator will
decrease for poorly separated clusters. Therefore, selecting the highest Dunn’s
index value should provide an acceptable trade-off between the under- and
overclustering of the dataset.

One of the advantages of Dunn’s index is that it is easy for intuitive
understanding and interpretation of the results. One could easily imagine
Dunn’s index threshold, which would lead to an ideal clustering, that should
provide an undeniable and clear separation of clusters. This is rarely the case
in real-life biological data, especially due to high dimensionality, but Dunn’s
index may still guide for selecting a non-ideal acceptable solution. Of course,
it comes with additional issues, which were mentioned by [56]:

• Dunn’s index introduces a considerable amount of time required for
computation;

• Dunn’s index is sensitive to noise in datasets since it highly influences
the intra-cluster distance.
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Fortunately, these issues are partly addressed by varying definitions of in-
tercluster and intracluster distance. [22] gathers six different intercluster
distances and three intracluster distances. Each of them comes with different
computational complexity and susceptibility to outliers. Please note that the
selection of the intercluster and intracluster distance highly influences the
geometrical interpretation of Dunn’s index.

Having scalability in mind, we rejected both intercluster and intracluster
distance measures, which require computation time quadratic (or higher)
in the number of observations. The rejection applies to three out of six
intercluster distance measures and two out of three intracluster distance
measures. For further considerations we selected centroid linkage (Equation
4.8) as the intercluster distance measure and centroid diameter (Equation 4.9)
as the intracluster distance measure. These measures utilize the information
gathered during the clustering process – the location of the cluster centers.

δcl(S, T ) = d(vs, vt) (4.8)

where:

δcl(S, T ) centroid linkage between clusters S and T from partition U
(intercluster distance);

vs the centroid of cluster S: vs = 1
|S|

∑
x∈S

x;

vt the centroid of cluster T : vt = 1
|T |

∑
y∈T

y;

|S|, |T | the number of elements in clusters S and T respectively;

d(vs, vt) the distance between centroids vs and vt.

∆cd(S) = 2

∑
x∈S

d(x, vs)

|S|

 (4.9)

where:

∆cd(S) centroid diameter in the cluster S from partition U (in-
tracluster distance);
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vs the centroid of cluster S: vs = 1
|S|

∑
x∈S

x;

|S| the number of elements in cluster S;

d(x, vs) the distance between member x of the cluster S and the
centroid vs of the cluster S.

Please note that we do not specify the distance measure between centroids
nor between cluster members and centroids. However, we must operate with
a normalized dataset to ensure convergence of the K-Means algorithm. Under
such circumstances, feasible metrics are linearly related to squared Euclidean
distance. Squared Euclidean distance does not satisfy the triangle inequality,
and it should be considered when interpreting Dunn’s index values with
related distances.

Sampled Dunn’s Index Even though Dunn’s index is much less compu-
tationally expensive than the GAP statistic, it still scales poorly for massive
amounts of observations. Therefore we propose an alternative that works with
samples of the input data set.

The original Dunn’s index computation can be decomposed into two separ-
ate problems: calculation of the smallest intercluster distance and calculation
of the biggest intracluster distance. We calculate these measures independ-
ently on N samples of n observations. Similarly to the sampled GAP index,
we use stratified sampling, as a representation of every cluster is necessary
for intercluster and intracluster distances to be defined.

We formulate sampled Dunn’s Index as:

Ds(U) =
min

1≤i≤N
{δi} − std(δ)

max
1≤j≤N

{∆j}+ std(∆)

where:

Ds(U) sampled Dunn’s index for partition U ;

δi minimal intercluster distance for the ith sample subset;
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std(δ) standard deviation of minimal intercluster distances over N
sample subsets;

∆j maximal intracluster distance for the jth sample subset;

std(∆) standard deviation of maximal intracluster distances over N
sample subsets.

Please note that for the centroid linkage which we use as a measure of
intercluster distance, std(δ) will always be 0 – we do not sample cluster
centers. This measure depends entirely on the parameters of the fitted K-
Means model. However, we introduce this component for compatibility with
other intercluster distances, which take into account observations directly.

Such a sampled formulation of Dunn’s index allows scaling the computa-
tions for datasets with millions of observations if subsets of a few thousand
examples (n) are drawn to approximate the original Dunn’s index.

4.2.3 Stop Condition

Agglomerative clustering algorithms usually stop when all observations
are merged into a single group, and a hierarchy of clusters is known. To
obtain a high-level structure of the dataset, it is required to follow the
process until the very end. Otherwise, only local similarities will be known.
However, Divisive Intelligent K-Means is a deglomerative (divisive) method,
and practical scenarios discourage analyses of a few dozens of observations
since the result would be dominated by numerical noise. Moreover, it would
be a waste of computational resources to produce artificial clustering results
without any purpose for further use. Finally, as the feature space changes
with each subregion, classical clustering quality measures cannot be applied
to assess the entire clustering tree.

There are few approaches in the literature to address the stop condition for
divisive clustering algorithms. The simplest ones, like ISODATA, require the
user to define a variance threshold that indicates whether a cluster should be
further divided. For massively multidimensional data like Mass Spectrometry
Imaging, this kind of threshold is hard to calibrate and interpret.
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Bisecting variant of the K-Means algorithm requires a predefined number
of clusters and splits the cluster with the highest variance. However, in the
knowledge discovery applications, the actual number of clusters is unknown
upfront and one of the subjects of investigation.

In [108] authors focus on two divisive clustering algorithms:

• the bisecting K-Means algorithm,

• the Principal Direction Divisive Partitioning (PDDP) algorithm [21] – a
non-iterative clustering method based on Singular Value Decomposition,

and propose a new method of selecting which cluster should be further divided.
The basic criteria – largest cluster size and highest cluster variance – can easily
lead to sub-optimal choice for an unbalanced variance of the real clusters and
generate numerical artifacts. To address this obstacle, the authors propose an
estimation of the cluster’s shape, which could be used in conjunction with
the aforementioned basic criteria. Computation of the shape measure requires
an additional step of splitting the cluster, thus is connected with increased
computational cost.

DIANA clustering [91] attempts a reversal of agglomerative hierarch-
ical clustering. Authors select the right number of clusters with the use
of the Silhouette index [105] but in the form of post-processing. They do
not stop computations until they operate with single-observation clusters.
Newer studies in Natural Language Processing for e-learning [89] benefit from
this research. Unfortunately, the Silhouette index is not applicable for the
assessment of clusters in multiple subspaces at the same time.

Recent research in the multi-criteria decision analysis discipline [63] ex-
tends a PROMETHEE clustering algorithm in the form of a divisive clustering
method. The stochastic multi-criteria divisive hierarchical clustering they
propose divides clusters into two new clusters until only one action exists
or the stopping condition is met. The action is an option in the decision
process, i.e., how the cluster should be further divided. The case of single
action is effectively a moment when a cluster reaches the size of two elements,
and there is no other way to split it but into singleton clusters. The other
stopping condition is based on a preference degree threshold. The preference
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degree may take values between 0 and 1, where 1 means that some action is
absolutely preferred over another action. This relation is not symmetric, and a
situation may occur where no action is preferred over a fixed threshold. Under
such circumstances, the algorithm would stop. The authors explain that the
preference threshold should be set based on domain knowledge. The method
is demonstrated to cluster U.S. banks based on financial and non-financial
(environmental, societal, governance) criteria of various characteristics and
types. The data itself has a hierarchical structure. A similar definition of
preference threshold may not yet be possible for Mass Spectrometry Imaging
data, as it would require an upfront assessment of thousands of purely nu-
merical features present in the collected data. Moreover, the feature set often
changes its meaning between datasets, and these intermediate results of such
analysis would not transfer to another study.

Another recent study comes from the domain of resource management
of wireless networks [69]. Non-independent and identically distributed data
degrade the accuracy of predictions in such domain, and at the same time, pri-
vacy concerns are serious. Therefore, even for clustering, a federated learning
scenario is employed together with a generative adversarial network. Authors
propose a unique divisive clustering algorithm that dynamically adapts the
number of clusters that are investigated in the distributed setup, along with
two stop conditions:

• all the clusters show a lower variance and mean than the two predefined
thresholds;

• the predefined number of iterations is exceeded.

As discussed previously, none of these methods is beneficial for clustering
Mass Spectrometry Imaging data.

A more sophisticated method for hierarchical clustering was presented in [7].
IDEA algorithm splits the input dataset into highly-connected chunks based
on the nearest neighbor graph. Then, the chunks are clustered hierarchically
with multiple linkages simultaneously. Alternative dendrograms are merged
in a way that optimizes Dasgupta’s cost function [36], and a clustering tree
is produced at the output. The obtained clustering tree is cut on the top
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level, and the original procedure is repeated until a predefined number of
subtrees is identified. These subtrees are connected into a final clustering tree
with average linkage. The flat clusters are obtained with the repeated cutting
of the final tree and elimination of the subtrees below the size threshold as
noise-related. The IDEA algorithm gathers different concepts of similarity
within a single framework, which provides both the clustering tree and the flat
clusters at the output. The computations could be stopped without building
the full clustering tree down to a single observation, as it operates with chunks
from the nearest neighbor graph throughout most operations. However, it
still requires the final number of clusters to be specified upfront.

For the stop condition of the Divisive Intelligent K-Means algorithm, we
will focus on two approaches discussed below.

Subregion Size

The cluster size is the most straightforward stop criterion for the Divis-
ive Intelligent K-Means algorithm. If the cluster size is below a predefined
threshold, the algorithm stops processing the corresponding branch of the
clustering tree. The stop criterion may consider the nominal cluster size or
the initial data set size percentage.

The stop condition based on the percentage of initial dataset size is vital
in biological sciences, as it may have understandable interpretation rooted
in the domain knowledge. Often a tiny cluster may be just a numerical
artifact rather than an actual substructure. Especially when processing an
Mass Spectrometry Imaging dataset of low spatial resolution, groups of a few
dozens of cells with a unique molecular pattern are unlikely to occur in reality
due to averaging effects of the data acquisition aperture.

GAP Statistic Based

The stop criterion based on GAP statistic follows the idea from [108].
Authors of [108] explain that the shape estimation they propose should work
for low dimensionality. However, Mass Spectrometry Imaging data is the
opposite – thousands of dimensions are standard. The GAP statistic does not
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directly estimate the shape of the cluster. However, it may indicate whether
there exists any heterogeneity in the cluster. It takes advantage of the fact
that the GAP statistic is one of the unique clustering quality measures defined
for a single cluster.

Similarly to [108], we first cluster a subset with K-Means algorithm into
k = {1, 2} clusters. This set of partitions is sufficient to use the Inequality 4.5
and verify whether a single cluster solution is the preferred one in terms of
the GAP statistic. We will most likely not obtain the information about the
right number of clusters in the subset. However, there is a chance to reject the
hypothesis of a single cluster solution and continue the evaluation. In case the
GAP statistic provides enough evidence to assume a single cluster solution
is valid, the Divisive Intelligent K-Means algorithm stops processing the
corresponding branch of the clustering tree. Figure 4.9 presents the detailed
flow diagram for this stop condition.

For the sake of scalability, the user may prefer the sampled GAP statistic
(see Section 4.2.2) instead of the original GAP statistic, especially for datasets
large in terms of the number of observations.

4.3 Scalability Considerations for Large Data

A few elements of the Divisive Intelligent K-Means framework contribute
to its scalability.

First, filtration-based feature engineering does not require conducting
time-consuming transformations like PCA or UMAP. GMM approach is
computationally efficient, as it only requires computing the within-cluster
variance of each feature. Then, it is followed by an automated data-driven
threshold selection, which decomposes the histogram in sub-linear time in the
number of samples.

We are using the K-Means algorithm at its core. It is one of the fastest
clustering algorithms known. Although in a naive scenario, it may provide
unsatisfactory results, in conjunction with local feature space adaptation
K-Means demonstrates high relevance of the obtained results.

To ensure the computational complexity of the K-Means algorithm ini-
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Figure 4.9: Flow diagram of the GAP statistic based stop condition for the
Divisive Intelligent K-Means algorithm.



4.4. Experimental Settings 69

tialization is linear in the number of samples, we developed a deterministic
initialization procedure based on k-d tree.

Automated quality assessment during the algorithm operation uses ap-
proximation with the sampled GAP statistic and the sampled Dunn’s index
to speed up computations. Sampled variants of quality measures provide the
auto-tuning capabilities without a significant penalty on the scalability.

Finally, we avoid unnecessary computations for homogeneous subregions.
The stop condition check with the GAP index provides a criterion to detect
such homogeneities and finishes the computations in the related branch of
the clustering tree.

Of course, there are more areas in which scalability could be further
improved, which are mentioned in Section 6.3.

4.4 Experimental Settings

In this work, we compare Divisive Intelligent K-Means to a set of state-of-
the-art methods for feature engineering and clustering of Mass Spectrometry
Imaging data in all possible pairwise combinations. We select one method
of each kind for the comparison. For example, the set of reference cluster-
ing methods consists of: K-Means (centroid-based), spectral clustering [41]
(density-based), spatial clustering [12] (MSI-dedicated). Similarly, for global
feature engineering we use: no global feature engineering (for demonstration
purposes), PCA with the knee-based selection of the number of components
[107] (linear method), PCA with components selected based on EXIMS-score
[133] (MSI-dedicated), UMAP [82] (nonlinear), and neural ion images ob-
tained with a pretrained Xception network (deep learning based) [139]. Along
with DiviK, this leads to 20 test combinations of global feature engineering
methods and clustering algorithms.

The experiment we conduct has two main areas of investigation:

• Biological relevance of obtained results – the results provided should
be at least comparable with other state-of-the-art methods so that we
confirm it is possible to discover the details of molecular heterogeneity
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with the use of the Divisive Intelligent K-Means algorithm.

• Scalability – Divisive Intelligent K-Means should accomplish computa-
tions for 3D data in feasible time and preserve the relevance of obtained
results for massive-volume 3D data.

We consider feasible time up to a few days, which poses a severe constraint
on the computational complexity with respect to the number of observations
in the input dataset. At the same time, such a definition already ensures
feasibility in real-life scenarios, as the proper biochemical preparation of
dozens of tissue slices for a 3D Mass Spectrometry Imaging experiment is
unlikely to span less than a few weeks.

To ensure the reproducibility of the obtained results, all the experiments
are conducted in the Polyaxon [85] environment, with source code version
control, input data checksum validation, and environment snapshots through
Docker.

4.4.1 Ground Truth Annotation Translation

The quality assessment for an unsupervised method is particularly com-
plex, as the obtained clusters consist of spectra that the pathologist previously
annotated to belong to different tissue regions. Moreover, in a fully unsu-
pervised setup, the number of discovered molecularly heterogeneous regions
may differ from the number of regions identified by the pathologist based
entirely on the tissue’s optical scan. Hence a procedure is required to translate
spectrum-level pathologist annotations into cluster-level annotations.

First, we sort clusters descending concerning the percentage of their area
covered by a specific Region of Interest (ROI), independently for each ROI
(i.e., tumor, healthy epithelium, other tissue). Having clusters organized with
such ordering, we approximate the specific ROI with a fixed percentage of
clusters and compute the Dice index for the corresponding cluster composition
(see Figure 4.10). Based on such a diagram, the composition optimal in terms
of the Dice index can be found quickly for each ROI (the red dot on the
diagram in Figure 4.10).
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Figure 4.10: ROI approximation process with the binary cluster assignment
optimization. We sort clusters descending concerning the percentage of their
area covered by a selected ROI. Then, we approximate the ROI with a fixed
percentage of clusters and compute the Dice index. The optimal composition
can be found in the diagram and is marked with a red dot. Compositions
with fewer clusters underestimate ROI (on the left, a region in red is false
negative). Compositions with more clusters overestimate ROI (on the right, a
region in yellow is false positive). The Dice index allows us to find the balance
between both (in the middle).

However, the above process is a greedy method for binary cluster compos-
ition optimization, while in most experimental scenarios, the ground truth
has more classes defined. Two ambiguous situations may occur:

• Assignment conflict – as a result of the binary optimization process
applied to each ROI separately, a cluster could have been selected as a
member of two or more ROIs simultaneously.

• No assignment – as a result of the binary optimization process applied
to each ROI separately, a cluster could have been selected as a member
of no ROI at all.

For the crisp clustering (all observations are assigned exactly one cluster)



72 Chapter 4. Divisive Intelligent K-Means

we are using, both cases require a disambiguation step. The annotation
translation process is not supposed to change the definition of the cluster,
i.e., clusters cannot become non-crisp. We resolve the issue in a brute-force
manner. For all identified ambiguities, we generate a full decision space with
different cluster assignment options:

• Assignment conflict – conflicting ROI labels are considered options for
a cluster in the generated decision space.

• No assignment – all possible ROI labels present in the ground truth are
considered options for a cluster in the generated decision space.

We traverse the decision space, and for each set of possible non-ambiguous
cluster assignments, we compute the Rand index with respect to the spectrum-
level pathologist annotations. Finally, we select the set of cluster annotations
that maximize the Rand index. The cluster interpretation obtained this way
is further used for the clustering quality evaluation.

We are aware that the exhaustive search through the full decision space
may not be a scalable process; however, it should not be an issue for real-life
applications due to the following reasons:

• The ground truth annotation translation is required only for quality
assessment of an algorithm if one wants to compute precise values of
quality metrics. It is not used as a part of the clustering algorithm.
This translation process will not be used for unsupervised knowledge
discovery and absent ground truth labels. We describe it for complete
clarity and transparency on the origin of the quality measures presented
further in this work.

• The first step of binary optimization with the use of the Dice index
already provides very efficient pruning of the decision space. We observed
the necessity to evaluate up to 30 disambiguation scenarios for the
partitions obtained in this work, which could be accomplished in up to
a minute.
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4.4.2 Evaluation Criteria

Biological Relevance

To assess the biological relevance of the obtained results, we must use a
dataset with ground truth labels provided by an experienced pathologist. The
OSCC dataset described in Section 2.2 fits that purpose.

There are different kinds of biological relevance considered in the literature
discussed in Chapter 3. We try to capture these ideas with the following
numerical metrics:

• Rand index – as a way to measure global multi-ROI reconstruction
capabilities;

• Dice index – as a way to measure tumor reconstruction capabilities of a
clustering algorithm;

• EXIMS score [133] – as a way to measure the spatial consistency of the
clusters and their biological likelihood.

The EXIMS score is a measure with unbounded value, valid for comparative
analyzes, but the magnitude alone is hard to interpret. To provide a point of
reference, we scale and clip values so that the highest relative EXIMS score
for the non-singleton partition can be 1.

Note that such a definition of relative EXIMS score enables a valid com-
parison of a few experiments conducted as a part of one study. However, any
comparison between studies would be unjustified. It is not impossible but
requires recalculation of relative EXIMS scores between the studies to use
consistent scales.

Additionally, we define two measures of overall quality as supportive
quantities to indicate the trade-off between the above scores. Each pair of
feature engineering and clustering methods evaluated with the OSCC data in
this work can be represented as a point in a three-dimensional space. The
coordinates of such a point are defined by Dice index, Rand index, and relative
EXIMS score.



74 Chapter 4. Divisive Intelligent K-Means

• The distance between the point representing the combination of methods
and the origin of the coordinate system is the overall quality d(0, 0, 0).

• The distance between the point representing the combination of methods
and the theoretical maximum of each score (1, 1, 1) is the overall quality
d(1, 1, 1).

Scalability

Two aspects are essential to claim that a clustering method is scalable:
the possibility to complete computations in a feasible time and no significant
degradation in the relevance of the obtained results for large-scale data.

Since the 3D benchmark datasets featured in the literature do not introduce
publicly available labels of functional regions of the tissue, biological relevance
for the 3D data cannot be numerically assessed as described in Section 4.4.2.
Therefore, in this area, we will follow other researchers and visually compare
the discovered tissue structure with other studies.

The aspect of possibility to complete computations in feasible time holds
requirements not only towards the time complexity of the method but also
space complexity. This observation can be used as a preliminary indication of
whether a method would fail to complete the computations within the impre-
cise limit of few days, as defined at the beginning of Section 4.4. Practically, if
an implementation of an algorithm attempts to allocate petabytes of memory
(or more), its memory and computational complexity are beyond scalability
limits.

4.4.3 Hyperparameter Settings

Oral Squamous Cell Carcinoma Dataset

We set the threshold for the minimal number of features to be preserved
during GMM-based filtering in DiviK to 1% (which corresponds to at least 37
locally most relevant features). K-Means algorithm in DiviK sweeps from 1
to 10 clusters on each level of the segmentation hierarchy tree. k-d tree based
initialization approximates the OSCC dataset with leaves of size not bigger
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than 1% of the initial dataset size (which corresponds to at most 198 spectra
averaged on the top level of the clustering tree). The algorithm starts from the
leaf containing 99th percentile of the distance. We use correlation distance, as
it is confirmed to provide meaningful results for Mass Spectrometry Imaging
data [41, 114]. To compute the sampled Dunn’s index and the sampled GAP
statistic, we sample 10 times 1,000 spectra each to keep the computational
complexity of quality estimation bounded. The stop condition related to
subregion size in DiviK ends the computations when 200 spectra or less are
present in a considered subregion.

We launch standalone K-Means clustering sweeping up to 50 clusters to
provide an additional margin for capturing molecular heterogeneity in the
data. Criteria for computing the sampled GAP statistic are identical to DiviK
ones. Spatial clustering also sweeps up to 50 clusters and is launched with
the bilateral filter of radius 7. Spectral clustering is used with cosine metric
during the embedding, precisely as described in the original publication [41].
The embedding generates the number of components equal to 1% of the initial
number of features to ensure information capacity comparable with filtering
in DiviK.

UMAP embedding uses 30 neighbors during graph construction and the
correlation distance. We increase the number of epochs to 500 for increased
precision (as compared to 200, which is the default) and a negative sample
rate of 70. At the output, we obtain three components. Note that in the
clustering scenarios operating with UMAP-embedded data, we switch to the
Euclidean distance. The correlation distance is already represented in the
embedding, and using it for clustering would be unjustified.

We use Xception neural network with a patch size of 71x71 pixels due
to the low spatial resolution in the OSCC dataset. Moreover, it requires an
upsample rate of 4 to obtain the patch edge length of 1.775mm, which lies in
the range recommended by the authors of the method [139]. The neural ion
images are generated from the U-D pipeline proposed by the authors.



76 Chapter 4. Divisive Intelligent K-Means

Mouse Kidney 3D Dataset

Due to the massive volume of the mouse kidney dataset in the number of
samples, minor modifications are applied as compared to the OSCC dataset.

DiviK is set to preserve at least 0.5% of initial features, corresponding to
38 locally most relevant features. k-d tree leaf size upper bound is set to 0.1%
of the subregion size (which corresponds to at most 1362 spectra averaged
on the top level of the clustering tree). The algorithm starts from the leaf
containing 95th percentile of the distance. To compute the sampled Dunn’s
index and the sampled GAP statistic, we sample 10 times 5,000 spectra each
to keep the computational complexity of quality estimation bounded. As the
tissue labels are missing in the dataset and the detailed tissue heterogeneity
cannot be confirmed, we stop computations for a subregion that contains
50,000 spectra or fewer out of the initial 1,362,830 (approximately 3.6% of
the total dataset size).

The neural ion images method for feature engineering [139] lacks general-
ization for 3D data at the moment and thus was omitted in the comparison.

The hyperparameters of other algorithms included in the comparison
remain unchanged.

4.5 Results and Discussion

4.5.1 Oral Squamous Cell Carcinoma Dataset

Visualization of clustering results for all combinations of feature engin-
eering and clustering methods is presented in Figure 4.11. As one can see,
algorithms exhibit varying capabilities to discover biologically relevant tissue
regions. Few combinations completely missed clusters related to the tumor,
i.e., Knee PCA combined with K-Means, UMAP combined with spatial clus-
tering, and neural ion images (Xception) combined with spectral clustering.
Due to the low medical relevancy of obtained results for these three cases, we
bind their relative EXIMS score at 1.00 for further consideration.

Such a result suggests an urgent need for careful design and throughout
validation of different combinations of methods since both UMAP and spatial



4.5. Results and Discussion 77

K-Means DiviK Spectral clustering Spatial clustering

N
o
fe
at
u
re

en
gi
n
ee
ri
n
g

K
n
ee

P
C
A

E
X
IM

S
U
M
A
P

X
ce
p
ti
on

tumor healthy epithelium other tissue

Figure 4.11: The partitions obtained with all combinations of selected feature
engineering and clustering methods for OSCC data. Feature engineering
methods in rows, clustering methods in columns. Presented regions correspond
to ROIs defined by pathologist: red – tumor, cyan – healthy epithelium, gray
– other tissue (compare Figure 2.6). The cluster annotations were obtained
with the label translation process described in Section 4.4.1. Additional frame
is applied around the partition with the top overall quality d(0, 0, 0).

clustering tend to exhibit the vast potential to capture all necessary details –
equally in this study and domain literature discussed in Chapter 3. One likely
explanation for such an invalid result could be the conceptual incompatibility
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of the two algorithms. UMAP reduces feature space to just three dimensions
through the embedding. While useful for data visualization and simpler
clustering algorithms, it discards most of the nuances in the dataset. At the
same time, these nuances could introduce additional sparsity to the data and
could be considered edges of the ion images by the bilateral filter, which is an
integral part of the spatial clustering method.

A similar observation can be made for the combination of neural ion
images (Xception) and spectral clustering. Neural ion images may change
the original distribution of the MSI data, which characteristic was one of the
assumptions for the spectral clustering as parameterized and described in
[41].

After visual inspection, much better effectiveness can be claimed for
EXIMS-based feature engineering combined with spatial clustering. This ef-
fectiveness can be confirmed with the exact values of quality measures, which
are gathered in Table 4.1 for all combinations of methods. For convenience, we
visualize the quality indices in Figure 4.12. EXIMS-based feature engineering
combined with spatial clustering yields the top Dice index and the top global
ROI composition as expressed with the Rand index. The strong synergy
between both approaches probably causes such a great result. EXIMS-based
feature engineering provides a set of 8 biologically plausible features, signi-
ficantly limiting the amount of noise at the same time. Spatial clustering
has enough sparsity in the data for finding the edges between molecularly
heterogeneous regions, but at the same time, the edges are less noisy than for
other scenarios.

The second-highest Dice index and the third-highest Rand index occur for
43 neural ion images obtained with the use of the Xception network, clustered
with spatial clustering. This result would support the above hypothesis about
the synergy between methods, as both pipelines with EXIMS-based feature
engineering and the neural ion images are conceptually very similar. However,
these are not the only evaluation criteria for medical experts interpreting the
results.

Table 4.2 gathers the ranks for the selected quality measures and presents
row-wise rank sums. As expected upon visual inspection, spatial clustering
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Table 4.1: Clustering quality measures computed for OSCC data. Zero Dice
index occurs for partitions with no tumor region separated (compare Figure
4.11).

clustering
algorithm

global
feature

engineering
method

adjusted
Rand
index

Dice
index

relative
EXIMS
score

Spectral UMAP 0.2792 0.4844 0.5891
Spatial UMAP 0.0000 0.0000 1.0000
Spectral Xception 0.0000 0.0000 1.0000
K-Means Knee PCA 0.2723 0.0000 1.0000
K-Means Xception 0.3098 0.4577 0.9197
K-Means EXIMS PCA 0.4827 0.5129 0.8323
Spectral EXIMS PCA 0.5447 0.7418 0.6449
K-Means none 0.3364 0.5043 0.9712
K-Means UMAP 0.5231 0.7238 0.7225
Spatial Knee PCA 0.4985 0.7065 0.7639
DiviK EXIMS PCA 0.6082 0.7765 0.6383
Spectral none 0.5906 0.7966 0.6520
DiviK Knee PCA 0.5567 0.7540 0.7289
DiviK Xception 0.4203 0.6429 0.9395
Spatial none 0.5617 0.7720 0.7587
DiviK UMAP 0.6534 0.8369 0.6568
Spatial Xception 0.6517 0.8465 0.6851
Spectral Knee PCA 0.4594 0.6897 0.9891
Spatial EXIMS PCA 0.7035 0.8672 0.6977
DiviK none 0.5433 0.7372 1.0000

with EXIMS and spatial clustering with Xception network yield the two best
results out of all combinations of methods. DiviK without feature engineering
provides the third best result due to the most biologically plausible structure
expressed with EXIMS score and relatively precise cluster delineation. One
can observe the sum of ranks ranging from 16 to 53. DiviK without feature
engineering was assigned a rank of 20.5, around 12% of the observed range.

Table 4.2 may lead to another observation that algorithms tend to perform
well either with Rand and Dice index simultaneously or EXIMS score. Spatial
clustering with PCA seems an exception to this rule (the rank of 11 for Rand
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Table 4.2: Quality measures ranked for OSCC data. Lower rank is better.

clustering
algorithm

global
feature

engineering
method

adjusted
Rand
index
rank

Dice
index
rank

relative
EXIMS
score
rank

sum of
ranks

Spectral UMAP 17 16 20 53
Spatial UMAP 19.5 19 2.5 41
Spectral Xception 19.5 19 2.5 41
K-Means Knee PCA 18 19 2.5 39.5
K-Means Xception 16 17 8 41
K-Means EXIMS PCA 12 14 9 35
Spectral EXIMS PCA 8 8 18 34
K-Means none 15 15 6 36
K-Means UMAP 10 10 13 33
Spatial Knee PCA 11 11 10 32
DiviK EXIMS PCA 4 5 19 28
Spectral none 5 4 17 26
DiviK Knee PCA 7 7 12 26
DiviK Xception 14 13 7 34
Spatial none 6 6 11 23
DiviK UMAP 2 3 16 21
Spatial Xception 3 2 15 20
Spectral Knee PCA 13 12 5 30
Spatial EXIMS PCA 1 1 14 16
DiviK none 9 9 2.5 20.5

and Dice indices, the rank of 10 for relative EXIMS score), with the sum of
ranks 32 (43% of the ranks range).

In terms of overall quality d(0, 0, 0) (see Table 4.3), the Divisive Intelligent
K-Means method combined with no additional feature engineering is the
top one. According to the purpose of the overall quality d(0, 0, 0) measure,
this means that DiviK provides a reasonable trade-off between absolute
ROI reconstruction capabilities from the molecular information and the
obtained spatial composition of the clusters. The obtained tumor region is
investigated in correlated ion images (see Figure 4.13), and the corresponding
ions are identified. These ions may signalize the energy production process
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Table 4.3: Overall quality describing trade-off between quality measures from
Table 4.1. Preferred values are marked with gray background.

clustering
algorithm

global
feature

engineering
method

overall
quality
d(0, 0, 0)

overall
quality
d(1, 1, 1)

Spectral UMAP 0.8122 0.9768
Spatial UMAP 1.0000 1.4142
Spectral Xception 1.0000 1.4142
K-Means Knee PCA 1.0364 1.2368
K-Means Xception 1.0730 0.8814
K-Means EXIMS PCA 1.0903 0.7300
Spectral EXIMS PCA 1.1237 0.6325
K-Means none 1.1449 0.8288
K-Means UMAP 1.1487 0.6170
Spatial Knee PCA 1.1537 0.6272
DiviK EXIMS PCA 1.1749 0.5782
Spectral none 1.1868 0.5745
DiviK Knee PCA 1.1873 0.5749
DiviK Xception 1.2136 0.6835
Spatial none 1.2195 0.5498
DiviK UMAP 1.2485 0.5143
Spatial Xception 1.2691 0.4940
Spectral Knee PCA 1.2904 0.6235
Spatial EXIMS PCA 1.3167 0.4438
DiviK none 1.3560 0.5269

characteristic for oncologic issues.

At the same time, the overall quality d(1, 1, 1) indicates Spatial clustering
with EXIMS PCA-based feature engineering as the top result. Spatial clus-
tering over Xception-generated features and DiviK clustering with UMAP
feature engineering yield the next two best scores. Overall quality d(1, 1, 1)
ranges from 0.4438 to 1.4142, and DiviK with UMAP feature engineering was
around 7% of the observed quality measure range.

Note that we do not aim to find the combination of methods top in terms
of any specific quality measure. The study is to verify if DiviK can provide a
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Figure 4.12: Graphical representation of clustering quality measures computed
for OSCC data presented in 3D space with coordinates given by Dice index,
Rand index and relative EXIMS score. All points are connected to the origin
of the coordinate system, and the length of this segment is the overall
quality d(0, 0, 0) for a given combination of methods. Arrow points the top
combination in terms of overall quality d(0, 0, 0).

similar level of insights compared to state-of-the-art methods and scales well
for massive data volumes simultaneously.

The Divisive Intelligent K-Means method seems to yield the most con-
sistent results regardless of the feature engineering method applied. This
statement is supported by visual comparison of clusters in Figure 4.11 with
ground truth from Figure 2.6. One could explain it with the fact that each of
the other algorithms missed the tumor once in our investigations. In Table
4.4 we summarize the quality measures of each clustering algorithm in our
evaluation and support that also claim numerically – DiviK yields the lowest
standard deviation in terms of Dice index and Rand index.

The results most visually similar to DiviK were obtained using spectral
clustering with no feature engineering or knee PCA. On the other hand,
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Figure 4.13: Sample upregulated peptides correlated with tumor region as
discovered via DiviK. In the figure, one can see peptides with 1142.5 m/z and
2175.1 m/z. They are putatively fragments of pyruvate kinase, an enzyme
involved in the Warburg effect.

Table 4.4: Clustering quality measures for OSCC data averaged by clustering
algorithm. Standard deviation in brackets.

clustering
algorithm

adjusted
Rand
index

Dice
index

relative
EXIMS
score

overall
quality
d(0, 0, 0)

overall
quality
d(1, 1, 1)

Spectral 0.375
(0.241)

0.543
(0.325)

0.775
(0.202)

1.083
(0.184)

0.844
(0.357)

K-Means 0.385
(0.111)

0.440
(0.266)

0.889
(0.113)

1.099
(0.048)

0.859
(0.234)

Spatial 0.483
(0.281)

0.638
(0.363)

0.781
(0.127)

1.192
(0.123)

0.706
(0.402)

DiviK 0.556
(0.088)

0.750
(0.071)

0.793
(0.167)

1.236
(0.073)

0.576
(0.067)

Xception-based feature engineering reduces the consistency of regions obtained
with K-Means and DiviK. Two hypotheses could lead to an explanation:

• Noise amplification – Xception neural network is used to group images
representing structures similar visually, but contrary to EXIMS, does
not validate whether the content provides any biologically plausible
structure. Such an approach, connected with the deduplication of ori-
ginal features, may cause relative amplification of noise compared to
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meaningful information.

• Insufficient ion image preprocessing – the authors propose ion image
winsorization and scaling. However, despite such efforts, the contrast of
the patches may be too low to obtain relevant embedding. The idea be-
hind neural ion images is to mimic a human reviewer manually grouping
the original ion maps. Applying the classical ion image normalization
schema [98] would probably be beneficial for the end results. A compar-
ison of both preprocessing methods on sample ion image is present in
Figure 4.14.

Figure 4.14: Comparison of ion map contrast enhancement methods. In the
figure one can see the peptide with 2175.1 m/z (like in Figure 4.13). In the
left panel, we apply winsorization and scaling as authors of [139], while in
the right panel, we apply histogram equalization as authors of [98].

In Table 4.5 we gather clustering quality measures averaged by the feature
engineering method. Scenarios with no feature engineering at all demon-
strate the highest overall quality d(0, 0, 0). This result may indicate that
most of the tested clustering methods are sufficiently suited for processing
high-dimensional Mass Spectrometry Imaging data to discard feature engin-
eering method unless explicitly required, e.g., due to the processing time.
Overall quality d(1, 1, 1) leads to similar conclusion for no feature engineering.
However, it also shows the increased performance of the EXIMS-based feature
engineering.
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Table 4.5: Clustering quality measures for OSCC data averaged by feature
engineering algorithm. Standard deviation in brackets.

global
feature

engineering
method

adjusted
Rand
index

Dice
index

relative
EXIMS
score

overall
quality
d(0, 0, 0)

overall
quality
d(1, 1, 1)

UMAP 0.364
(0.288)

0.511
(0.371)

0.742
(0.180)

1.052
(0.190)

0.881
(0.407)

Xception 0.346
(0.271)

0.487
(0.361)

0.886
(0.138)

1.139
(0.124)

0.868
(0.397)

Knee PCA 0.447
(0.123)

0.538
(0.359)

0.871
(0.144)

1.167
(0.105)

0.766
(0.315)

EXIMS PCA 0.585
(0.094)

0.725
(0.151)

0.703
(0.090)

1.176
(0.100)

0.596
(0.119)

none 0.508
(0.116)

0.703
(0.134)

0.846
(0.168)

1.227
(0.091)

0.620
(0.141)

Further investigation of the averaged results for feature engineering meth-
ods is much less conclusive than for clustering methods. A simple rule for
outstanding stability or effectiveness cannot be easily formulated. Note that
EXIMS PCA and no feature engineering provide increased biological relev-
ance of obtained results but at the same time provide a sub-optimal cluster
consistency at the output.

We conduct the effect size analysis to assess the impact of the feature
engineering method and clustering method on the quality measures qual-
itatively. Using the results from Table 4.1, we perform the Kruskal-Wallis
test (a non-parametric equivalent for analysis of variance). Results from the
test are used to calculate the partial η2 effect size. Partial η2 measures the
proportion of the variance explained by a given variable to the total variance
in the model, remaining after considering the variance explained by all other
variables. The obtained values for partial η2 are presented in the Table 4.6.
In statistics, partial η2 of 0.06 is assumed at least medium effect size, and
partial η2 of 0.14 or more is assumed large effect size. Except for the impact
of the clustering method on relative EXIMS score (medium effect size), all
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other obtained effect sizes are large.

Table 4.6: Effect size analysis for assessing the impact of feature engineering
and clustering methods on quality measure differences observed in Table 4.1.
We compute the partial η2 in the table with the results of the Kruskal-Wallis
test. Below, we present Kendall’s W concordance index for the same difference
rankings.

Quality
measure

Feature
engineering Clustering

Partial η2

Rand index 0.203 0.258
Dice index 0.161 0.293
EXIMS 0.262 0.095

Overall quality d(0, 0, 0) 0.141 0.345
Overall quality d(1, 1, 1) 0.122 0.309

Kendall’s W Concordance Index

Rand index 0.328 0.325
Dice index 0.328 0.325
EXIMS 0.136 0.375

Overall quality d(0, 0, 0) 0.424 0.138
Overall quality d(1, 1, 1) 0.472 0.138

Additionally, we support the effect size analysis with Kendall’s W concord-
ance index, which measures agreement among different raters as a value in the
range of [0, 1]. It is a non-parametric equivalent of the correlation coefficient.
The higher the value, the more agreement between raters; intermediate values
indicate greater or lesser consensus. We can observe the most consensus on
the overall quality, both d(0, 0, 0) and d(1, 1, 1), when using feature engineer-
ing methods as raters. The next highest consensus is on the cluster spatial
consistency expressed as relative EXIMS score when using clustering methods
as raters. These two observations may conclude that feature engineering has
a much lower impact on the overall quality than the clustering algorithm. On
the other hand, the selection of clustering algorithms has a limited impact
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on the spatial consistency of the clusters compared to feature engineering
methods.

4.5.2 Mouse Kidney 3D Dataset

The mouse kidney 3D Mass Spectrometry Imaging dataset is primarily
oriented on benchmarking methods towards high-volume scalability. It often
requires additional scalability-oriented modifications to the algorithms to
improve their computational complexity, like [41], yet these modifications
may still be insufficient.

Indeed, spectral clustering does not allow for enough scalability, as it
requires the construction of the affinity matrix describing the similarities
of spectra – its size is quadratic in the number of spectra. To provide a
benchmark despite this difficulty, we apply a two-step approach described by
[41]. Setting the number of considered subsets to

√
n where n is the number

of input samples,
√
n elements in each subset, a two-step approach allows to

effectively reduce computational complexity to O(n
√
n). Unfortunately, such

a large number of subsets (approximately 1,168) does not lead to convergence
of the two-step method. Note that the selection of another number of subsets
would reduce the constant in computational complexity, not the order. At
the same time, the purpose of the two-step method was to reduce the space
complexity with some benefits for the speed of computations, not the reduction
of the order of computational complexity. In the original work, the authors
evaluate the method with up to 400,625 pixels and up to 30 subsets as this
optimizes the algorithm for the space requirements.

Similarly, in the case of spatial clustering, a pairwise distance matrix is
constructed, with size quadratic in the number of spectra. Unfortunately,
the spatial properties of the dataset leveraged by the algorithm prohibit
the application of an approach similar to the two-step method mentioned
earlier. Therefore spatial clustering must be considered infeasible for the
mouse kidney 3D dataset or any dataset similarly massive in the number of
spectra. Moreover, it appears that the spatial clustering algorithm does not
take into account the different spatial strides in the third dimension, which
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is caused by the data acquisition process. The two primary dimensions are
constructed from a grid with 50µm-by-50µm adjacent squares by 200 averaged
measurements for each square on the grid. However, the third dimension is
constructed using serial tissue slices of 3.5µm thickness with multiple slices
missing between them.

Due to the above reasons, only two clustering algorithms can be further
evaluated: K-Means and Divisive Intelligent K-Means. In Figure 4.15 we
present partitions obtained in the considered combinations of feature engin-
eering and clustering methods. For additional clarity inspecting clusters in
a 3D volume, Figure 4.16 contains each 6th consecutive slice of the mouse
kidney dataset. It can be observed that the results are mostly consistent
between the computational scenarios. The most significant exception is the
K-Means algorithm applied to data with no feature engineering, which does
not discover any structures in the data.

No feature engineering Knee PCA EXIMS UMAP

K
-M

ea
n
s

D
iv
iK

Figure 4.15: The partitions obtained with the feasible combinations of selected
feature engineering and clustering methods for mouse kidney 3D data. Feature
engineering methods in columns, clustering methods in rows. Presented regions
were normalized in terms of colors, but no ground truth labels are propagated,
as they are unspecified.

As no ground truth labels are available, the obtained regions can only be
compared visually with the results already known in the literature [87, 99, 3, 2].
The detected regions share a common molecular signature across the entire
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Figure 4.16: Serial slices of the partitions obtained with the feasible combina-
tions of selected feature engineering and clustering methods for mouse kidney
3D data. Each 6th slice of the original result cube is included in the figure.
Presented regions were normalized in terms of colors, similarly to Figure 4.15.

3D volume and exhibit functional differences. Under such circumstances, we
assume that both K-Means and Divisive Intelligent K-Means can lead to
relevant results for high-volume data, with greater stability of the results
when DiviK is applied. Therefore, we can summarize the performance of
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algorithms across all evaluation criteria with ranks – see Table 4.7.

Table 4.7: Rank summary of the clustering algorithms. The higher the values
of a quality measure for an algorithm in Table 4.1, the lower its rank (lower
rank is preferable). Scalability was assessed with a criterion, whether the
algorithm accomplished computations for mouse kidney data or not.

Spectral
clustering K-Means Spatial

clustering DiviK

Rand
index
ranks

62.5 71 40.5 36

Dice
index
ranks

59 75 39 37

EXIMS
score
ranks

62.5 38.5 52.5 56.5

scalability
ranks 72.5 32.5 72.5 32.5

total
rank 256.5 217 204.5 162

K-Means algorithm exhibits high consistency of the obtained clusters
and allows for great scalability if configured carefully. Divisive Intelligent
K-Means algorithm provides high reconstruction capabilities for tumor tissue
and overall tissue structure, with stable results for high-scale data, regardless
of the feature engineering method. It also provides a convenient trade-off
between all considered quality measures. Finally, considering the same criteria,
the spatial clustering algorithm exhibits the second best total rank, probably
due to its substantial synergies with other methods. However, similarly to
K-Means, it requires a meticulous computational pipeline design.

Note that the DiviK approach does not require applying PCA or UMAP
globally for obtaining great results with massive data. It locally optimizes
feature space with GMM-based feature selection, and the hidden internal
structure of the tissue may be discovered in consecutive splits. PCA and
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UMAP are used in this study only as a reference. This distinction is an
essential factor for computation time. With the machine equipped with 48
CPU cores and 256 GB of RAM, we computed PCA in 23.8 minutes and
UMAP in 198.5 minutes. For the same dataset, the GMM-based feature
filtering completes within 8.66 seconds (156 ms standard deviation). Of
course, the deglomerative nature of DiviK requires multiple local filters. For
this specific dataset, DiviK conducted 60 splits preceded by the filtering
procedure. These repeated computations lead to 8.66 minutes of processing
related to feature engineering in total.

Table 4.8: Rank summary of the feature engineering algorithms. The higher
the values of a quality measure for an algorithm in Table 4.1, the lower its rank
(lower rank is preferable). Scalability was assessed with a criterion, whether
the algorithm accomplished computations for mouse kidney data or not.

UMAP Xception Knee PCA EXIMS PCA none
Rand
index
ranks

48.5 52.5 49 25 35

Dice
index
ranks

48 51 49 28 34

EXIMS
score
ranks

51.5 32.5 29.5 60 36.5

scalability
ranks 38 58 38 38 38

total
rank 186 194 165.5 151 143.5
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Chapter 5

Divisive Clustering via
Variational Autoencoders

5.1 Variational Autoencoders

Variational Autoencoders (VAE) [70] are generative deep learning models.
The two most popular applications of VAEs are:

• Generation of artificial samples from a distribution approximating the
distribution of the training data set.

• Low-dimensional embedding of a data set. As opposed to methods like
t-SNE [124], the obtained transformation can be applied to unseen data
and is reversible.

For this work, we will focus only on the capabilities of VAEs around latent
representation learning.

The main idea behind VAE is simple, although implementation details
may vary and strongly influence the capability of a neural network to effect-
ively capture all the details of training data distribution. The structure of
a VAE is based on two sub-networks: encoder and decoder. The encoder is
responsible for translation from original feature space to a low-dimensional
latent representation, while the decoder reverses the process, reconstructing

93
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input data. The differences between original and reconstructed samples are
used to update network weights.

For the latent representation to be robust, a so-called reparametrization
trick is applied. During model training, random samples from the Gaussian
noise distribution are imposed on the outputs of the encoder network before
the decoding process. Without the reparametrization trick, the latent space
lacks regularization, and the decoder model is prone to severe overfitting.
Thus, reparametrization trick is needed to avoid poor generalization for unseen
data. The architecture of such a network is presented in Figure 5.1.

3,714

input

512

5

latent µ

5

latent σ2

random
sampling

N (µ, σ2)

512

3,714

output

Figure 5.1: The architecture of the Variational Autoencoder used for processing
MSI data as proposed by [2]. The input size is fixed for a specific dataset
and the same as the output size. After the two non-linear dimensionality
reductions happen in the encoder part, a random sampling occurs – this is
the reparametrization trick (green box in the middle). The reparametrized
latent representation is then decoded back to the original feature space.

To proceed with fitting a VAE model to the data, one needs to define its
loss function. The original publication [70] introduces the variational lower
bound on the marginal likelihood of a VAE model, which could suggest what
kinds of loss functions would optimize the parameters of the two sub-networks.
In the Equation 5.1 one can see, how both the reparametrization trick and
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reconstruction effectiveness contribute to model relevance:

L(θ, φ; x(i)) = −DKL

(
qφ(z|x(i))||pθ(z)

)
+ Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
(5.1)

where:

φ encoder model parameters;

θ decoder model parameters;

z latent variable (in the encoded space);

x training data (in the decoded space);

L(θ, φ; x(i)) the variational lower bound on the marginal likelihood of a
VAE model;

qφ(z|x(i)) approximate distribution at the output of the encoder model;

pθ(z) (Gaussian) prior distribution of a latent variable z;

DKL Kullback-Leibler divergence – in this case between approx-
imate latent representation distribution and the standard
Gaussian distribution;

log pθ(x(i)|z) log likelihood of the conditional distribution of decoder out-
puts;

Eqφ(z|x(i)) expected value of the log likelihood of the decoder outputs
distribution – often expressed in terms of reconstruction
error and specifically the square Euclidean distance between
original and reconstructed vector.

The likelihood maximization problem expressed by Equation 5.1 can be
solved for parameters φ and θ using stochastic optimization methods like
SGD or Adagrad [45].
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There are variations of VAE which may take into account a target variable
when constructing the latent space (like conditional VAE [115]) or implement
more than one latent space [121, 101]. One can also find many domain-
optimized VAE implementations, e.g., VASC for single-cell RNA sequencing
(scRNA-Seq) [131] that uses an additional zero-inflated layer with Gumbel
distribution for the reconstruction of zeroes dominating scRNA-Seq datasets
or fully-connected VAE for MSI [2].

5.2 Autoencoders for Mass Spectrometry Ima-
ging Data

The trend for applying Variational Autoencoders for Mass Spectrometry
Imaging data is definitely rising, which could be observed with the number of
various preprints and other works appearing in the field. However, since they
have not yet been peer-reviewed, we will omit them in this dissertation and
focus on two reviewed approaches.

The first approach featuring an Autoencoder for Mass Spectrometry Ima-
ging data used a 2D (409x404) image of a mouse brain with 7036 intensities
each [117]. Note, that the reparametrization trick is missing as it is not a Vari-
ational Autoencoder. The authors applied a zero-filling procedure to create a
consistent m/z axis, a Savitzky-Golay filter to reduce the noise, and a peak-
picking method based on the noise level. After these steps, all spectra were
normalized to a consistent total ion count. The Autoencoder had 7036 input
nodes, 15 hidden nodes, and 7036 output nodes. The training was conducted
purely unsupervised and compared to PCA and Non-Negative Matrix Factor-
ization (NNMF). The authors presented that the 5th PCA component already
accounted for just 0.44% of the variance, yet the information loss across the
obtained 15 components was significant in biological relevancy. At the same
time, spatial maps of the representation constructed with NNMF provided a
very low contrast. Authors argued about the normalization opportunities but
indicated problems related to single-pixel noises dominating the image. They
indicated that by the definition of NNMF, many features obtained this way
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represent noise in the data. Similarly to NNMF, Autoencoder generated few
uninformative features from the data – which is natural for the non-variational
character of this method. However, the Autoencoder compressed much of the
molecular heterogeneity into a few informative features. These few informative
features capture almost all structural features and regions of the mouse brain.

Since that time, a new approach has been proposed by [2]. In Figure 5.1
we present the exact architecture of the network used. The method is shown
to work well for raw and unprocessed spectra, which are at its input. The
original spectrum is reduced through 512 fully connected hidden neurons
followed by batch normalization [62] and ReLU activation function. The latent
representation is obtained with the next layer of 5 fully connected neurons.
Then the random sampling occurs (Figure 5.1, in green), and the decoder
part of the network reconstructs the reparametrized spectrum. It consists
of 512 fully connected hidden neurons followed by batch normalization and
ReLU, and the fully connected layer with the number of neurons equal to the
number of input dimensions.

Such architecture has two remarkable properties:

• Fully connected neural network introduces a massive number of paramet-
ers. Thus the model needs to be relatively shallow and easily becomes
overparameterized. Although in traditional learning theory, this often
leads to overfitting, in neural networks, it may be beneficial for both
optimization, and generalization [13].

• To make transfer learning of the obtained embedding possible, two (or
more) MSI studies require the same mass-to-charge ratio axis. Although
useful for analysis of a single MSI dataset, possible reuse of the pretrained
encoder model would require dedicated experiment scenario planning far
ahead of data acquisition. Such long-term planning is unlikely for basic
real-life scenarios. However, it exhibits high potential when building an
extensive database focused on a specific biological phenomenon.

Recently, this work has been extended to a classification case as well [4].
Authors use pretrained VAE to provide a consistent embedding for a much
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larger set of data and train a classifier on top of the obtained embedding.
Despite providing better precision, recall, accuracy, and F1 score, the solution
was also approximately 174 times faster than the traditional Support Vector
Machine.

Interestingly, Figure 2 in the publication [4] indicates the application of
batch normalization together with dropout, which may often be a sub-optimal
approach [73]. However, from the discussion with the authors, we know that
they actually observed improved outcomes in this specific configuration.

5.3 Methods

Inspired by the promising results of [2] and further [4], we reuse the VAE
approach as a part of the DiviK framework. This combination leads us to
the DiVAE method: Divisive clustering with Variational Autoencoder, which
is further described below. Its formulation is consistent with the original
DiviK idea for clustering with local optimization of feature space, but the
components inside are redefined.

5.3.1 Local Feature Space Optimization

To obtain the locally optimized feature space for clustering purposes, we
apply Variational Autoencoder as described by [2]. The exact same architecture
is used (see Figure 5.1): 512 intermediate features and 5 latent ion images.

In our case, the difference is that the input features in the considered
dataset are already mathematically modeled and not a set of unprocessed
mass channels. Due to that fact, we can use a batch size of 8192 spectra for
training the VAE model.

The neural network is trained for 500 epochs with a learning rate schedule,
rising from 0.001 to 0.01 in the first half of the training and then decaying
back to 0.001.
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5.3.2 Clustering Method

The selection of a clustering method that supports the expected data
distribution is straightforward in the DiVAE algorithm. The Equation 5.1
imposes an optimization goal for the VAE to distribute encoder outputs in
a way that follows Gaussian distribution. Moreover, the sampling occurring
during the reparametrization trick also draws from the Gaussian distribution.
Therefore, Gaussian Mixture Model seems the best choice for clustering the
data embedded with the VAE.

Gaussian Mixture Model in a non-Bayesian formulation requires the
number of clusters specified upfront. We follow a similar procedure as with
the K-Means algorithm in DiviK: we sweep through the set of possible cluster
numbers and evaluate the obtained model based on some unsupervised quality
criteria. For that purpose, we use classical Bayesian Information Criterion
(BIC) [109]. We calculate Youden’s J statistic [137] to identify the number of
clusters good enough in terms of BIC.

5.3.3 Stop Condition

Stop condition does not require significant changes compared to Divisive
Intelligent K-Means, although confirmation of subregion heterogeneity can be
considerably simplified. With the K-Means algorithm, the research community
considers a single cluster case situation unusual enough for most clustering
quality indices to omit this case. Fortunately, with Gaussian Mixture Model,
a single-component case is taken into account, and heterogeneity confirmation
becomes just a part of the clustering process.

5.4 Experimental Settings

We reused the subset of experimental settings from Section 4.4, which was
relevant for the OSCC dataset. The original publication [2] already validated
scalability with the mouse kidney 3D dataset for all the algorithms we use as
components of the DiVAE algorithm. Repeating the computations multiple
times with the feasible order of computational complexity in each iteration
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does not affect the overall method feasibility. Hence, this work focuses mainly
on the biological relevance of obtained results for OSCC data.

To simplify the comparison, we selected the three top combinations of
feature engineering and clustering methods in terms of overall quality from the
study described in Chapter 4. Note that this also includes the top combinations
in terms of Dice index, relative EXIMS score, and adjusted Rand index.

The neural network is trained for 500 epochs with a learning rate schedule,
rising from 0.001 to 0.01 in the first half of the training and then decaying
back to 0.001.

Since the Variational Autoencoder operates with high dimensional data
or even unprocessed MSI spectra, we do not combine it with other feature
engineering methods, as it would lead to severe overfitting of the obtained
deep learning model.

To evaluate the results quantitatively, we are using the annotation trans-
lation process described in Section 4.4.1.

5.5 Results and Discussion

The clustering results of all considered configurations are presented in
Figure 5.2. DiVAE provides results visually consistent with a baseline obtained
with known approaches, although it covers the tumor region much more
precisely. This is confirmed with Dice index computed for tumor region (see
Table 5.1).

Spatial clustering with EXIMS PCA still provides the top Dice index and
adjusted Rand index. At the same time, the capability to reconstruct overall
tissue composition (expressed with Rand index) and tumor region (expressed
with Dice index) by the DiVAE algorithm is similar. It yields the second
top Dice index and the second top adjusted Rand index. In both cases, it
is substantially higher than the remaining algorithms’ results. Furthermore,
DiVAE yields the highest relative EXIMS score. Note that the relative EXIMS
score values differ from the ones presented in Section 4.5.1 and Table 4.1,
as the results from the DiVAE method yield a higher absolute value of the
EXIMS score than already observed. Finally, the overall quality d(0, 0, 0)
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(a) Knee PCA and Spectral clustering (b) EXIMS and Spatial clustering

(c) DiviK (d) DiVAE

Figure 5.2: The partitions obtained with the combinations of feature engin-
eering and clustering methods for OSCC data as described in Section 5.4.
Presented regions correspond to ROIs defined by pathologist: red – tumor,
cyan – healthy epithelium, gray – other tissue (compare Figure 2.6). The
cluster annotations were obtained with the label translation process described
in Section 4.4.1.

and overall quality d(1, 1, 1) of the DiVAE method is substantially improved
compared to the DiviK and other methods (see Table 5.2).

In Figure 5.3 we compare the partition obtained in the first step of
deglomerative approaches (DiviK and DiVAE). In the first step of DiviK,
the healthy epithelium is clustered together with the tumor on one sample
(Figure 5.3a). These regions get separated in further analysis. Conversely,
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Table 5.1: Basic clustering quality measures computed for OSCC data. The
preferred value in the column is bold.

clustering
algorithm

global
feature

engineering
method

adjusted
Rand
index

Dice
index

relative
EXIMS
score

Spectral Knee PCA 0.4594 0.6897 0.9422
Spatial EXIMS PCA 0.7035 0.8672 0.6646
DiviK none 0.5433 0.7372 0.9525
DiVAE none 0.6731 0.8505 1.0000

Table 5.2: Summarizing clustering quality measures computed for OSCC data.
The preferred value in the column is bold.

clustering
algorithm

global
feature

engineering
method

overall
quality
d(0, 0, 0)

overall
quality
d(1, 1, 1)

Spectral Knee PCA 1.2547 0.6260
Spatial EXIMS PCA 1.2995 0.4669
DiviK none 1.3213 0.5291
DiVAE none 1.4753 0.3595

the first step of DiVAE provides a distinction between tumor and epithelium
region. Therefore, DiVAE requires even fewer steps to achieve a similar result.
Moreover, upon visual comparison, the DiVAE clusters seem to correspond
more to the actual regions defined by the pathologist than the DiviK ones.

We analyze the latent space obtained from the OSCC dataset embedding
on the top level. As embedding each spectrum in the MSI dataset does not
change its dual nature, we visualize the spatial distribution of the latent
variables in Figure 5.4. We use the contrast enhancement method classical
for MSI data [98] to indicate the most vital differences. It is clearly visible
that the tumor region differentiates from healthy epithelium (Figure 5.4c
and 5.4e). At the same time, the epithelial origin of the OSCC tumor can be
spotted through the similarities in Figure 5.4b. Finally, some minor differences
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(a) DiviK (b) DiVAE

Figure 5.3: The partitions obtained in the first step with hierarchical methods
for OSCC data in DiVAE experiments. Presented regions correspond to ROIs
defined by pathologist: red – tumor, cyan – healthy epithelium, gray – other
tissue (compare Figure 2.6). The cluster annotations were obtained with the
label translation process described in Section 4.4.1, but separate clusters have
been marked with different shades for visual comparison.

between tumor tissue coming from different patients can be observed in Figure
5.4e and 5.4d.
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(a) (b)

(c) (d)

(e)

Figure 5.4: Latent ion images obtained for the OSCC dataset. One can observe
that the biological structures appear in this representation. The molecular
patterns characteristic of visible structures dominate the dataset and limit
the possibility of detailed analysis.



Chapter 6

Summary

6.1 Thesis Summary

The results presented in this dissertation justify the theses presented
in Section 1.1. Section 4.4.2 explains how the biological relevance of the
obtained results could be assessed numerically. A few classical quality measures
are presented, and a few more are derived from investigating the trade-off
between them. Sections 4.5.1 and 5.5 present results of two proposed stepwise
approaches using these numerical quality measures for obtained segmentations
of Oral Squamous Cell Carcinoma full-tissue with both DiviK and DiVAE.
These results confirm thesis 1. Thesis 2 was proven in Section 4.5.2, where
DiviK and K-Means algorithms were the only ones to accomplish the clustering
task for 3D mouse kidney MSI data. Finally, thesis 3 is confirmed in Chapter
5 that formulates and evaluates the DiVAE algorithm with the OSCC dataset
against the state-of-the-art methods in the domain.

We proposed the methodology that builds upon the experiences of nu-
merous data processing experts and the characteristics of big -omics data
gathered in Chapter 3. The stepwise approach is at the core of the framework
we propose, with feature engineering and clustering alternating when pro-
cessing finer and finer details. The classical K-Means algorithm was adjusted
for clustering MSI data and combined with the GMM-based feature selection
method. As the literature suggests, a dedicated calibration step was required
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to adjust the K-Means algorithm for the data characteristics. We analyzed
the quality of obtained segmentations numerically and provided a few kinds
of summaries that assess the trade-off between basic quality measures from
different perspectives, which was suggested by the experts in the field re-
viewing our journal contribution. We checked the relevance of the numerical
evaluation via effect size.

Furthermore, we ran large-scale computations with the DiviK framework
to ensure it could process high-volume data. Finally, this work presents the
DiviK framework as a flexible concept when introducing DiVAE. This allows
for taking advantage of DiviK’s stepwise approach and the newest techniques
in the field, like deep learning.

6.2 Potential Applications

Divisive Intelligent K-Means framework is not limited only to tumor
delineation in Mass Spectrometry Imaging data. There are a few more areas
in which its usefulness is investigated. As the purpose of this section is
primarily to show the opportunities (and opportunities as such may not be
fully validated yet), I will also refer to some unpublished work taking place
in our department.

One of the recent (unpublished) works based on single-cell RNA Sequencing
uses DiviK as an alternative clustering method capable of detecting small
clusters in the data. When applied to a well-known immunity-related dataset
[59], it provides high coverage in terms of weighted Dice index compared
to the original clustering by the Seurat algorithm – from 88.15% to 93.64%
(no ground-truth labels available). Obtained clusters are further used for
downstream analysis, including effect size profiling, biomarker identification,
and quantitative results processing,

Similarly, mass cytometry data analysis can be used to analyze antibodies
present in the organism and to figure out the background behind tuberculosis
drug resistance. Unfortunately, mass cytometry datasets often span millions of
observations, which makes most sophisticated clustering algorithms infeasible.
DiviK’s scalability can be used to identify small groups in a dataset of similar
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volume. Such groups could provide insights into the drug resistance antibody
signature for tuberculosis.

Another researcher uses DiviK to conduct quality control of the obtained
Mass Spectrometry Imaging dataset. The dataset consists of numerous small
circular tissue sections. The only annotations provided by the pathologist
were assigned to tissue samples, not individual mass spectra. DiviK is used
there for anomaly detection – to identify situations with conflicting molecular
information. These situations often translate to a discovery of tumor cells in
the sample annotated as healthy. Selected cases may be directed to review
and result in a curated label set. Other cases where the proportion between
healthy and tumorous areas is similar could be removed from the training
dataset. Beyond the fact that it can be used for training set selection, it
addresses a relatively trendy area nowadays: data-centric AI.

Therefore, DiviK could be applied for curating the labels obtained in the
classical annotation process. In biomedical data, this has a vast potential, as
most of the annotation is based on phenotype, while various -omics approaches
provide more detailed information. A great example is facioscapulohumeral
muscular dystrophy (FSHD), which may be caused by two different genetic
backgrounds (type I and II), and only a multi-step genomics data analysis (like
DiviK’s one) can discover the difference. A similar scenario occurs for thyroid
cancer [94]: some subtypes of thyroid cancer cannot be visually discerned
even upon resection. A multi-stage analysis with DiviK allows to compare
protein profiles and assess similarity across numerous tissue samples.

6.3 Future Directions

There are many ways this work could be continued, with two notable
directions being algorithm improvements and the spectrum of applications for
different kinds of data. As the latter was partly addressed in Section 6.2, here
I will focus only on the algorithmic frontiers potentially worth investigating.

An exciting opportunity would be to refine the definition of the GAP
index. The authors suggest a research direction by sampling the reference
dataset from the cluster limits instead of the entire dataset [119]. As this
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idea was not yet evaluated for MSI data, one could argue what would be
the influence of such a redefinition of the GAP index on the heterogeneity
confirmation. At the same time, it is a promising solution for speeding up
computations of the GAP index. On the implementation level, instead of using
uninitialized K-Means for computing the partition and dispersions afterward,
one could reuse the centroids of the obtained clusters. Hypothetically, this
would significantly decrease the time required for K-Means convergence over
the sample unless serious skewness is present in the real data distribution.
Since extensive time profiling indicated GAP index calculation as a primary
source of computation time, such modification could have a strong positive
effect on the overall algorithm performance.

Secondly, Chapter 5 shows the usefulness of applying Deep Neural Net-
works to MSI data. The Neural Network architecture used in this work is
exactly the same as in [2]. However, literature in the adjacent biological do-
mains like scRNA-Seq or mass cytometry shows us that there is a considerable
space for architectural optimizations [131, 118, 50]. Different architectures are
proposed to address numerous challenges in the scRNA-Seq data, like a high
proportion of zeros observed in the dataset. Such phenomena are addressed
with a dedicated architecture design, including elements like zero-inflation
layer, residual connections, atrous convolutions, and others, depending on
the details in the process of data acquisition. While this work demonstrated
the possibility of using Neural Networks and the DiviK framework in a single
processing pipeline, the area is heavily underutilized.

Another great inspiration could be the domain on Natural Language Pro-
cessing, with the attention mechanism proposed recently [127] and transformer
models [40, 75, 100, 35]. There are initial successes in applying transformer
models to other domains like computer vision [43, 30], or audio processing
[16]. One of the major advantages these solutions offer is the unsupervised
pre-training capability, which could use the massive MSI datasets without
annotation. Hypothetically, this could provide even better robustness against
most of the effects manually removed during the MSI dataset preprocessing
(see Chapter 2). Indeed, the first work already appeared in the area of Mass
Spectrometry [112] and presented the transformer method MassGenie as
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extremely effective in predicting the 2D structure of the molecule. Unfortu-
nately, this area has not yet been tackled in Mass Spectrometry Imaging data
analysis.
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BIC Bayesian Information Criterion

DiviK Divisive Intelligent K-Means

GMM Gaussian Mixture Model

MALDI Matrix-Assisted Laser Desorption/Ionization

MSI Mass Spectrometry Imaging

NNMF Non-Negative Matrix Factorization

OSCC Oral Squamous Cell Carcinoma

PAFFT Peak Alignment using Fast Fourier Transform

PCA Principal Components Analysis

ROI Region of Interest

TIC Total Ion Count

ToF Time-of-Flight

UMAP Uniform Manifold Approximation and Projection

VAE Variational Autoencoder
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• Jupyter Notebooks with partial summaries of carried out experiments,

• sample OSCC dataset used in this study.

Source code of the methods used here is available online through GitHub
platform (https://github.com/gmrukwa/divik).
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