
DOCTORAL THESIS

Algorithmic methods for detecting the tempo and time signatures of music
tracks

Jeremiah Oluwagbemi ABIMBOLA
Student identification number: 4948

Programme: Informatics
Specialisation: Informatics

SUPERVISOR
Pawel Kasprowski, PhD, DSc

DEPARTMENT Applied Informatics
Faculty of Automatic Control, Electronics and Computer Science

CONSULTANT
Daniel Kostrzewa, PhD

Gliwice 2024

DEDICATION
This thesis is dedicated to God, whose guidance, wisdom, and strength have been

my constant source of inspiration throughout this journey. In moments of doubt and
uncertainty, I found solace in faith, which illuminated my path and provided me with the
courage to persevere. I am profoundly grateful for the countless blessings bestowed upon
me. Each challenge transformed into an opportunity for growth. To God, I dedicate this
work as a testament to His grace and love. May it serve as a reflection of the knowledge
and understanding You have instilled in me.

ACKNOWLEDGEMENT
I would like to express my heartfelt gratitude to all those who have supported me

throughout my PhD journey. This work would not have been possible without the contri-
butions and encouragement of many individuals. First and foremost, I would like to thank
my supervisor, Pawel Kasprowski (PhD, DSc) and co-supervisor Daniel Kostrzewa (PhD)
for their invaluable guidance, support, and mentorship. Your expertise and insights have
been instrumental in shaping my research and helping me navigate the complexities of
academia. Thank you for discovering and believing in my potential and for pushing me
to strive for excellence. I am mostly grateful for the support of my wife Sara Abimbola
who stood by me through the entire period of my PhD journey, helping in the areas of
translations and providing emotional support when I needed it the most.

I am also deeply grateful to the members of my dissertation committee, for their
constructive feedback and encouragement. Your diverse perspectives have enriched my
work and challenged me to think critically. A special thanks goes to my colleagues and
fellow graduate students in the department of Applied Informatics. Your collaboration,
and shared experiences made this journey enjoyable and fulfilling. I am thankful for the
countless discussions, brainstorming sessions, and moments of laughter we shared. I would
like to acknowledge the support of Silesian University of Technology for providing the
resources and funding necessary for my research. The opportunities afforded to me through
specific grants and scholarships were crucial in advancing my work. To my Dad and mum,
my siblings and the rest of my family and friends, thank you for your unwavering support
and love. Your encouragement during the challenging times kept me motivated. I am
especially grateful to Pastor Alfred Richter of Arka Church Gliwice for being a great
support during my medical crisis and for being my confidant throughout this process.
Lastly, I want to extend my appreciation to all the participants in my research study.
Your willingness to share your experiences made this work possible, and I am honored by
your contributions.

Thesis title

Algorithmic methods for detecting the tempo and time signatures of music tracks

Abstract

Time signature is a fundamental component in the structure of music, controlling the
rhythm and the arrangement of beats in a measure. It provides the framework within
which music is composed, performed, and interpreted, and it plays a crucial role in de-
fining the genre, mood, and style of a piece. Accurate detection of time signatures is
essential for various applications in music analysis, transcription, and information re-
trieval. With the proliferation of digital audio formats, there is a growing need for robust
methods capable of detecting time signatures directly from audio signals, as traditional
methods based on Musical Instrument Digital Interface (MIDI) signals are proving in-
adequate. This study addresses the critical task of time signature detection in music,
focusing on the analysis and enhancement of models to handle audio signals effectively.
Traditional approaches have predominantly utilized models designed for MIDI signals,
which are increasingly insufficient due to the prevalence of audio signals. The research
objective was to develop new, sophisticated models capable of accurately processing au-
dio data, thereby improving the robustness and accuracy of time signature detection. A
comprehensive review of existing time signature detection methods such as Audio Simil-
arity Matrix (ASM), Beat Similarity Matrix (BSM), identified significant challenges and
limitations, particularly with audio signals. To address these, the study introduced a
new model, the Mel-Frequency Cepstral Coefficient Similarity Matrix (MFCCSM), which
leverages MFCCs for feature extraction, significantly enhancing detection accuracy. Ad-
ditionally, due to the unavailability of an adequate dataset for rigorous validation, the
Meter2800 dataset was created. This dataset consists of 2800 annotated audio samples,
each 30 seconds long, and is critical for the comprehensive testing and validation of the
models. The dataset was divided into training and test sets and categorized into four
distinct meter classes. The relationship between meter and tempo within the dataset
was analyzed using scatter plots and statistical summaries to ensure robustness and ac-
curacy in the evaluation process. Furthermore, the research explored machine learning
and deep learning models, developing innovative hybrid models that outperformed tradi-
tional methods. Machine learning algorithms like K-Nearest Neighbour(KNN), Support
Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF) were explored for
this task with SVM achieving the highest accuracy of 86.67% for binary classification
and 74.29% for multi-class classification. Further advancements were observed with deep
learning models. Convolutional Neural Networks (CNN), Convolutional Recurrent Neural
Networks (CRNN), Residual Network-18 (ResNet18), and Residual Network-Long Short
Time Memory (ResNet18-LSTM) were employed on MFCC and spectrogram features. For

binary classification, these models exhibited accuracies ranging from 88.00% to 89.00%
with MFCC features and up to 99.67% with spectrogram features, with ResNet18 show-
ing the highest performance. In multi-class scenarios, accuracies ranged from 80.29% to
86.00%, with ResNet18-LSTM achieving the highest accuracy. Eventually, optimization
techniques, including Bayesian optimization and Genetic algorithms, were employed to
fine-tune learning parameters, enhancing model performance and accuracy. By combin-
ing traditional models with advanced machine learning and deep learning approaches, the
research sets a new benchmark for time signature detection accuracy and robustness in au-
dio signals, laying a strong foundation for future advancements in audio signal processing
and music information retrieval.

Key words

Tempo, Time signature, machine learning, algorithms, music tracks

Tytuł pracy

Algorytmiczne metody wykrywania tempa i metrum utworów muzycznych

Streszczenie

Metrum jest podstawowym składnikiem opisującym strukturę muzyki, kontrolującym
rytm i aranżację uderzeń (pulsu, beatu) w miarę (takt). Zapewnia ramy, w których muzyka
jest komponowana, wykonywana i interpretowana, oraz odgrywa kluczową rolę w definio-
waniu gatunku, nastroju i stylu utworu. Dokładne wykrywanie metrum jest niezbędne dla
różnych zastosowań analizy muzyki, transkrypcji i uzyskiwaniu informacji. Wraz z roz-
przestrzenianiem się cyfrowych formatów audio rośnie zapotrzebowanie na metody zdolne
do wykrywania metrum bezpośrednio z sygnałów audio, ponieważ tradycyjne metody
oparte na zapisie MIDI (and. Musical Instrument Digital Interface) okazują się niewy-
starczające. Treść tejże pracy doktorskiej odnosi się do krytycznego zadania wykrywania
metrum w muzyce, skupiając się na analizie i ulepszaniu modeli do efektywnej analizy
sygnałów audio. Tradycyjne podejścia w przeważającej mierze wykorzystywały modele
przeznaczone dla sygnałów MIDI, które nie są wystarczające ze względu na rozpowszech-
nienie sygnałów audio. Celem badań było opracowanie nowych, wyrafinowanych modeli
zdolnych do dokładnego przetwarzania danych audio, a tym samym zwiększenie nieza-
wodności i dokładności wykrywania metrum. Kompleksowy przegląd istniejących metod
wykrywania metrum takich, jak Audio Similarity Matrix (ASM), Beat Similarity Matrix
(BSM), zidentyfikował istotne wyzwania i ograniczenia, szczególnie w przypadku sygnałów
audio. Następnie przedstawiony został nowy model, Mel-Frequency Cepstral Coefficient
Similarity Matrix (MFCCSM), który wykorzystując MFCCs dla funkcji ekstrakcji, zna-
cząco poprawia dokładność wykrytego metrum. W dalszych rozważaniach zauważono, że

dostępne zbiory danych są niewystarczające do rygorystycznej walidacji, w związku z tym
utworzono zestaw danych Meter2800. Ten zestaw danych składa się z 2800 próbek audio
z adnotacjami, każda o długości 30 sekund, mając kluczowe znaczenie dla kompleksowego
testowania i walidacji modeli. Zbiór danych podzielono na zestawy treningowe i testowe
oraz podzielono na cztery odrębne klasy metrum. Zależność między metrum a tempem
w zbiorze danych została przeanalizowana za pomocą wykresów i podsumowań staty-
stycznych w celu zapewnienia solidności i dokładności procesu oceny. Ponadto zbadano
modele uczenia maszynowego i głębokiego, opracowując innowacyjne modele hybrydowe,
które przewyższały tradycyjne metody. Klasyczne algorytmy uczenia maszynowego, ta-
kie jak k-najbliższych sąsiadów (K-Nearest Neighbors, KNN), maszyna wektorów nośnych
(ang. Support Vector Machine, SVM), naiwny klasyfikator Bayesa (ang. Naive Bayes, NB)
i las losowy (ang. Random Forest, RF) zostały wykorzystane do realizacji tego zadania,
gdzie SVM osiągnął najwyższą dokładność na poziomie 86,67% dla klasyfikacji binarnej i
74,29% dla klasyfikacji wieloklasowej. Dalsze postępy zaobserwowano w przypadku modeli
uczenia głębokiego. Sieci konwolucyjne (ang. Convolutional Neural Networks, CNN), sieci
konwolucyjno-rekurencyjne (ang. Convolutional Recurrent Neural Networks, CRNN), sieć
rezydualna (ang. Residual Network, ResNet18) i sieć rezydualno-rekurencyjna z komór-
kami LSTM (ang. Residual Network-Long Short Time Memory, ResNet18-LSTM) zostały
wykorzystane w funkcjach MFCC i spektrogramów. Dla klasyfikacji binarnej modele te
wykazywały dokładność w zakresie od 88,00% do 89,00% ze współczynnikami MFCC i
do 99,67% z funkcjami spektrogramu, przy czym ResNet18 wykazał najwyższą skutecz-
ność. W scenariuszach wieloklasowych dokładność wahała się od 80,29% do 86,00%, przy
czym ResNet18-LSTM osiągnął najwyższą dokładność. Ostatecznie, techniki optymaliza-
cyjne, w tym optymalizacja Bayesowska i algorytmy genetyczne, zostały zaangażowane
w dostrajanie parametrów uczenia się, poprawiając dodatkowo skuteczność klasyfikacji.
Połączączenie tradycyjnych modeli z zaawansowanymi metodami uczenia maszynowego i
głębokiego, badane w niniejszej pracy doktorskiej wyznacza nowy standard dokładności
wykrywania metrum i niezawodności na podstawie sygnałów audio, kładąc silny funda-
ment dla przyszłych postępów w przetwarzaniu sygnałów audio i wyszukiwaniu informacji
muzycznych.

Słowa kluczowe

Tempo, metrum, uczenie maszynowe, algorytmy, utwory muzyczne

Contents

1 Introduction 1
1.1 Background to the Study . 1
1.2 Audio and Midi Signals . 3
1.3 Objective of the Thesis . 4
1.4 Motivation and Hypotheses . 4
1.5 Project Methodology . 7

2 Music Classification 9
2.1 Genre Classification . 10
2.2 Tempo Detection . 12
2.3 Mood Classification . 14
2.4 Instrumentation Classification . 17
2.5 Singing Voice Detection . 20

3 Time Signature Detection 25
3.1 Introduction . 25
3.2 Detection Methods . 29
3.3 Digital Signal Processing Methods . 29

3.3.1 ASM (Audio Similarity Matrix) . 30
3.3.2 BSM (Beat Similarity Matrix) . 35

3.4 Machine Learning Methods . 36

4 Machine Learning Methods 43
4.1 Introduction . 43
4.2 Classic Machine Learning Models . 44

4.2.1 Support Vector Machine . 44
4.2.2 Random Forest . 44
4.2.3 KNN . 44
4.2.4 Naive Bayes . 45

4.3 Deep Learning Methods . 45
4.3.1 Convolutional Neural Network . 47

4.3.2 Convolutional Recurrent Neural Network (CRNN) 48
4.3.3 Residual Network (ResNet) . 51
4.3.4 Residual Network-LSTM . 52

4.4 Summary . 53

5 Creation of the METER2800 Dataset 55
5.1 Introduction . 55
5.2 Deep Dive into Datasets Created Earlier 56
5.3 The Meter2800 . 60

5.3.1 Method of Creation . 60
5.3.2 Data Analysis . 62

5.4 Features Extraction . 63
5.5 Summary . 67

6 Mel-Frequency Cepstral Coefficient Similarity Matrix (MFCCSM) 69
6.1 Introduction . 69
6.2 MFCC Basics . 69
6.3 The Detection Process . 70
6.4 Results and Discussion . 72

6.4.1 Performance on 2 Classes . 73
6.4.2 Performance on 4 Classes . 73

6.5 Summary . 73

7 Optimization Techniques for Time Signature Detection Models 75
7.1 Introduction . 75

7.1.1 Optimization Techniques for Parameters and Features 75
7.2 Optimization of the MFCCSM Model . 76

7.2.1 Bayesian Optimization . 76
7.2.2 Genetic Algorithms Optimization 77

7.3 Summary . 81

8 Using Machine Learning for Time Signature Detection 83
8.1 Introduction . 83
8.2 Feature Engineering and Model Evaluation 84

8.2.1 Convolutional Neural Networks . 85
8.2.2 Convolutional Recurrent Neural Network (CRNN) 88
8.2.3 ResNet18 . 89
8.2.4 ResNet18-LSTM . 95

8.3 Results and Discussion . 96
8.3.1 Model Evaluation Metrices . 96

8.3.2 Machine Learning Algorithms . 97
8.3.3 Deep Learning Models . 98

8.4 Summary . 100

9 Ensemble Techniques 103
9.1 Introduction . 103

9.1.1 Soft Voting . 104
9.1.2 Weighted Voting . 104
9.1.3 K-Ranked Voting . 105
9.1.4 Stacked Voting . 105
9.1.5 Bayesian Model Averaging . 106

9.2 Data Preparation and Aggregation for Accurate Predictions 107
9.2.1 Optimization of Weighted Voting Technique Using Genetic Algorithm107

9.3 Results and Discussion . 109
9.3.1 Performance on 2 Classes . 109
9.3.2 Performance on 4 Classes . 111

9.4 Ablation Study of the Ensemble Models 112
9.4.1 Model Removal in Ensemble Techniques 113
9.4.2 Ensemble Learning Combinations 113

9.5 Summary . 115

10 Summary 117

Bibliography 133

List of Figures 138

List of Tables 140

Technical Documentation 141

Chapter 1

Introduction

1.1 Background to the Study

Music classification is a fundamental task in the field of music information retrieval
(MIR), which involves automatically categorizing music tracks based on their musical
attributes. Two of the key attributes used in music classification are tempo and time
signature, which involve identifying the speed and rhythmic structure of a given piece
of music. Accurately detecting the tempo and time signature can be challenging due to
the complexity and variability of music, and it requires the use of various algorithms and
techniques. Tempo and time signature detection can help to classify music into different
genres, moods, and styles, and can be useful in a variety of music-related applications
such as music recommendation systems and music analysis [42, 138].

Tempo refers to the perceived speed or pace of a musical piece and is often measured
in beats per minute (BPM). On the other hand, time signature defines the rhythmic
structure of a musical piece and is represented as a fraction, where the top number (which
otherwise can be referred to as the numerator) indicates the number of beats per measure,
and the bottom number (the denominator) represents the note value that receives one
beat. It can be divided into two categories: regular and irregular time signatures. Regular
time signatures have a consistent pattern of strong and weak beats, while irregular time
signatures do not follow a predictable pattern. Regular time signatures can be further
categorized as duple, triple, or quadruple. Duple time signatures have two beats per
measure, with the first beat being stronger than the second. Triple time signatures have
three beats per measure, with the first beat being the strongest and the third being the
weakest. Quadruple time signatures have four beats per measure, with the first and third
beats being stronger than the second and fourth. Furthermore, time signatures can also be
classified as simple or complex. Simple time signatures have a basic beat pattern that can
be divided into two equal parts, while complex time signatures have a basic beat pattern
that can be divided into three or more equal parts. Therefore, a time signature notation

1

Chapter 1. Introduction

could be referred to as simple duple, simple triple, and simple quadruple, or compound
duple, compound triple, and compound quadruple.

Regular time signatures, such as 2/4, 3/4, 4/4, and 6/8, have a predictable pattern of
beats and are commonly used in different genres of music. Irregular time signatures, like
5/4, 7/8, and 9/8, have an unpredictable pattern of beats and are used to create rhythmic
complexity and asymmetry in music. The time signature 5/4, for instance, is common in
progressive rock and jazz music; 7/8 is used in Balkan and Middle Eastern music; and 9/8
is used in Irish, Balkan, and classical music. The use of irregular time signatures challenges
the listener’s expectations and adds interest to the rhythmic structure of a musical piece.
In this study, the numerator holds greater significance than the denominator as it indicates
the number of beats per measure. Thus, when dealing with a 4/4 time signature, the
numerator value of 4 will be the primary focus of our analysis.

The tempo and time signature are closely connected and play important roles in music
classification. Different time signatures can provide diverse rhythmic feelings, and the pace
might have an impact on the piece’s energy level. The combination of tempo and time
signature may give a piece of music its distinct rhythm and feel, aiding its classification
into a certain genre or style.

The concept of time signature cannot be fully understood without reference to the
three levels in the time scale that were discovered by Klapuri et al. [86]; namely the
tatum pulse level, the tactus pulse level that corresponds to a piece’s tempo, and the
harmonic measure level shown in Figure 1.1.

Figure 1.1: An audio signal with three metrical levels illustrated: tatum, tactus, and
measure levels.

These three levels are interconnected and are used to determine the time signature of
a piece of music. The tatum pulse level provides information about the smallest rhythmic
units in the piece, which can be used to estimate the tactus pulse level. The tactus pulse
level, in turn, can help to determine the meter of the piece, which is indicated by the
time signature. The harmonic measure level is used to group beats into measures or bars,
which is a fundamental aspect of music notation.

2

Jeremiah Oluwagbemi Abimbola

Understanding these three levels of time scale is important for developing effective
algorithms for time signature detection, as it allows for the extraction of useful features
at different levels of abstraction [6]. For example, features extracted at the tatum pulse
level can be used for onset detection [14, 68], while features extracted at the tactus pulse
level can be used for beat detection and tempo estimation. By taking into account all
three levels of time scale, it is possible to develop more accurate and robust algorithms
for time signature detection.

1.2 Audio and Midi Signals

In detecting time signatures, the type of input signal used is as important as the
algorithm itself. There are two types of input signals that could be used: MIDI (Musical
Instrument Digital Interface) and digital audio signals. MIDI is a protocol that is used to
transmit information about musical notes, such as pitch, duration, and velocity, between
electronic musical instruments and computers [131]. On the other hand, audio signals
refer to the digital representation of sound waves that are captured by microphones and
stored as digital files.

MIDI and audio signals have their own strengths and weaknesses when it comes to
detecting time signatures, as shown in Table 1.1. MIDI files contain information about
the timing and duration of musical notes, which can be useful for detecting the pulse of
the music and identifying the time signature. Since MIDI files do not contain any audio
information, they are much smaller in size and can be easily manipulated without losing
quality. In addition, the timing and tempo of the music are usually very precise and
consistent because they are created using electronic instruments.

On the other hand, audio signals are the direct representation of sound waves and
therefore contain more detailed information about the music. They are useful for detecting
the nuances of a performance, such as the slight variations in tempo and timing that occur
naturally when musicians perform. However, audio signals take up much more storage
space than MIDI files and can be more difficult to manipulate without losing quality. In
addition, audio signals may contain background noise and other extraneous sounds that
can interfere with the detection of time signatures.

In music, time signature and "meter" refer to the same concept and can be used
interchangeably. For this study, the focus is on four meters, namely, 3, 4, 5, and 7. The
choice of these meters is not random but deliberate and strategic. By concentrating on two
regular meters (3/4 and 4/4) and two irregular meters (5/4 and 7/4), the study can gather
extensive knowledge on the rhythmic patterns and characteristics of each meter, which
can then be scaled up to other meters. Furthermore, the selected meters are prevalent in
various genres of music and are likely to yield valuable insights into music classification
and analysis.

3

Chapter 1. Introduction

Criteria Midi Digital Audio

Definition A MIDI file is a piece of com-
puter software that contains
music information.

A digital audio refers to the re-
production and transmission of
digital sound.

Information Data Does not contain any audio in-
formation.

Contains recorded audio in-
formation.

Pros Files of small size. Fit on a disk
easily. The files are perfect at
all times.

The exact sound files are re-
produced. It replicates superior
quality.

Cons There is variation from the ori-
ginal sound.

They take more disk space with
more minutes of sound. Files
can get corrupted with a little
manipulation.

Format type Compressed. Compressed.
Precision Precise timing and tempo May contain slight variations in

tempo and timing
Quality Can be easily manipulated

without losing quality
Can lose quality when manipu-
lated

Table 1.1: Comparison of MIDI and digital audio.

1.3 Objective of the Thesis

The objective of this study is to develop novel algorithmic methods for detecting the
tempo and time signature of music tracks. Specifically, it aims to investigate the effect-
iveness of different feature extraction techniques, signal processing methods and machine
learning algorithms for tempo and time signature detection. The proposed methods will
be evaluated using a large dataset of music tracks from various genres and styles.

1.4 Motivation and Hypotheses

Time signature detection is a challenging task due to the high variability and complex-
ity of musical rhythms and the presence of various musical genres and styles in the music
industry today. While some of them are popularly known, such as jazz, blues, classical,
etc., others are fusions of these popular ones, such as classical crossover, which combines
elements of classical music with pop, rock, or other contemporary styles to create a fusion
of traditional and modern sounds; electronic jazz fusion, which combines elements of jazz
improvisation with electronic music to create a fusion of traditional and contemporary
sounds; and Afro-Jazz, which combines elements of Afro-music and jazz, to name a few.
The more complex the fusion, the harder it is to detect the time signature. However, time
signature detection has significant applications in music analysis, music recommendation
systems, and music education.

4

Jeremiah Oluwagbemi Abimbola

Various algorithms can be used to detect the time signature of a piece of music, ran-
ging from classic to machine learning methods. Classic methods involve processing raw
digital signals to extract acoustic features. Among the set of features extractable from
music tracks, Mel-frequency cepstral coefficients (MFCC) serve as a valuable component
for analyzing musical content. Furthermore, the features used for time signature detec-
tion encompass various elements such as zero-crossing rate, spectral bandwidth, spectral
centroid, and energy, each contributing significantly to onset detection. These extracted
features collectively aid in the onset detection process, consequently facilitating the accur-
ate determination of the time signature within a piece of music. Based on these findings,
the first hypothesis can be defined as follows:

Hypothesis 1 (H1): Leveraging the Mel-Frequency Cepstral Coefficient Similarity
Matrix as a tool for time signature detection can potentially yield significant advancements
in accurately identifying musical time signatures.

Classic methods are often limited by their inability to handle complex rhythms and
variability in tempo. Therefore, to overcome the limitations of classic methods, optim-
ization techniques such as dynamic programming and Bayesian models can be applied.
Dynamic programming involves finding the optimal path through a sequence of beats
that best fits the time signature of the music. Bayesian models use statistical inference
to estimate the probability of different time signatures given the observed features. Fur-
thermore, genetic algorithms can be used to improve these methods. GAs are a type of
optimization algorithm that use the principles of natural selection and genetics to identify
the optimal solution to a problem. They have been applied to various problems in music
information retrieval (MIR), including tempo estimation and beat tracking. In the case
of time signature detection, GA can help optimize the process of identifying the correct
time signature for a given music track. It can be used to search through a large space of
possible meter combinations and identify the one that best fits the musical features of the
track. By using this optimization technique, the search space can be efficiently explored
to identify the optimal set of weights to arrive at an accurate time signature, and the
process can be repeated iteratively. This can result in improved performance for music
classification systems that rely on the time signature. For this purpose, GA was used to
investigate the following hypothesis:

Hypothesis 2 (H2): Genetic algorithm may be used for optimization of Mel-Frequency
Cepstral Coefficient-based model for time signature detection.

5

Chapter 1. Introduction

In recent years, the music information retrieval (MIR) domain has undergone a pro-
found transformation owing to machine learning methodologies. These approaches have
notably elevated the landscape of time signature detection, with deep learning standing
out as an influential technique. Particularly, the prowess of deep learning stems from
its capacity to discover intricate features from vast collections of annotated music data-
sets. Through the training of neural networks on such expansive datasets, these models
can identify patterns and relationships that surpass conventional digital signal processing
techniques.

Within this paradigm, convolutional layers have emerged as pivotal components in
deep learning architectures for musical analysis. The utilization of convolutional net-
works, specifically built upon architectures like ResNet, presents an intriguing avenue
for advancing time signature detection. This particular architecture (ResNet), with their
hierarchical representation and ability to capture hierarchical features, hold promise in
utilizing music data for nuanced patterns crucial for accurate time signature identification.
From this, the third hypothesis was defined:

Hypothesis 3 (H3): Implementing a convolutional network utilizing the ResNet ar-
chitecture holds potential for effective application in time signature detection.

Transfer learning is another promising approach for time signature detection, where
knowledge learned from a different domain is incorporated into the time signature de-
tection task. For instance, a model trained to detect rhythms in speech signals can be
adapted to detect time signatures in music. Also, hybrid approaches such as ensemble
models that combine different techniques, like the classic methods along side machine
learning methods, can provide even better accuracy. This potential led to the definition
of the fourth hypothesis:

Hypothesis 4 (H4): The ensemble model based on deep learning model performs
better than the base classifier models.

Overall, machine learning methods offer great potential for accurate and efficient time
signature detection in music.

6

Jeremiah Oluwagbemi Abimbola

1.5 Project Methodology

The project methodology involves a combination of classic methods and machine learn-
ing techniques for meter detection. The classic methods include Audio Similarity Matrix
(ASM), Beat Similarity Matrix (BSM), and Mel-Frequency Cepstral Coefficient Similarity
Matrix (MFCCSM). These methods are widely used in music analysis and feature extrac-
tion. In addition to the classic methods, various machine learning algorithms are employed
for classification. They include Support Vector Machines (SVM), Random Forest, Naive
Bayes, and k-Nearest Neighbors (KNN). These algorithms are known for their ability to
handle large datasets and extract meaningful patterns for classification tasks.

To further improve the detection task, deep learning architectures such as Convo-
lutional Neural Networks (CNN), Recurrent Neural Networks with Long Short-Term
Memory (RNN-LSTM), Convolutional Recurrent Neural Networks (CRNN) and Residual
Networks (Resnets) are implemented. These architectures are capable of learning com-
plex representations from raw audio data and have shown promising results in music
classification tasks [118, 114]. Finally, to enhance the performance and robustness of the
classification models, ensemble methods are introduced. They combine the predictions
of multiple individual models to obtain a more accurate and reliable classification out-
come. This approach helps mitigate the limitations of individual models and leverages the
strengths of different algorithms.

With all these techniques, the data is first pre-processed, thereafter the feature extrac-
tion from audio signals is performed. The extracted features are used to train and eval-
uate the machine learning models. The models are hereafter trained on annotated music
datasets and validated using appropriate evaluation metrics such as accuracy, precision,
recall, and F1 score. The hyper-parameter are also tuned to optimize the performance of
the models.

In terms of dataset for the study, a combination of popular datasets as well as a novel
dataset (to augment for the deficiencies in the existing ones) are used. The reason for cre-
ating the new dataset was to ensure that the annotations were accurate and consistent. A
diverse set of music pieces spanning different genres and styles were collected and ensured
that they covered the range of time signatures in focus for this study. The datasets used
included the GTZAN [153], which contains 1000 popular music pieces with annotations
for beat and tempo information. Others include the FMA medium containing 25,000 audio
files and MagnaTagATune [92]. Despite the availability of these datasets, it was observed
that they were often limited in terms of the range of time signatures covered, and some
were biased towards certain genres or styles of music. Hence, the reason for creating a
new one by manually annotating a collection of music audio tracks with a wide range of
time signatures. This ensures the accuracy and consistency of the annotations and also
provided a more diverse range of music pieces for the study.

7

Chapter 1. Introduction

The research has the potential to make significant contributions to the field of MIR
by advancing the state-of-the-art in tempo and time signature detection. The developed
methods can be used in various music-related applications, such as music recommendation
systems, music transcription, and music education.

8

Chapter 2

Music Classification

Music classification is a sub-field of music information retrieval (MIR) that deals with
the task of automatically categorizing music tracks based on various musical attributes
such as genre, mood, tempo, key, and instrumentation. Its main goal is to organize music
into meaningful categories, making it easier for users to discover and explore new music
based on their preferences.

It can be applied to a variety of contexts, including music recommendation systems,
music search engines, and playlist generation. By automatically categorizing music into
genres, for example, music recommendation systems can suggest new music to users based
on their listening history and preferences. Music search engines can also use music clas-
sification to allow users to search for music based on genre, tempo, or other attributes.
Playlist generation also benefits from it by automatically creating playlists based on spe-
cific attributes such as genre or mood.

Music classification systems typically involve two processing stages: feature extrac-
tion and classification [162, 104]. Feature extraction involves the extraction of relevant
information from an audio signal that can be used for classification. A variety of low-level
signal features such as zero-crossing rate [62], spectral bandwidth [104], spectral centroid
[94], and signal energy have been used for this purpose. Additionally, higher-level fea-
tures such as Mel-frequency cepstral coefficients (MFCCs), chroma features [112], and
rhythmic features [90] have also been used for audio classification. MFCCs, for instance,
are commonly used for music classification tasks, as they capture the spectral envelope of
a sound signal. Chroma features, on the other hand, are used to capture the pitch content
of music and are useful for tasks such as music genre classification. Rhythmic features,
such as tempo and beat information, are important for tasks such as music mood and
danceability classification.

After feature extraction, various classification algorithms can be used to assign a label
to the audio signal based on its extracted features. The choice of algorithm depends on
the specific task and the size and complexity of the dataset.

9

Chapter 2. Music Classification

2.1 Genre Classification

Genre classification is one of many crucial tasks in music classification, focusing on
categorizing music tracks into different genres based on their distinctive stylistic and
musical characteristics as illustrated in Figure 2.1. Genres serve as a way to classify and
organize music, providing listeners with a means to explore and discover tracks that aligns
with their preferences. It can cover a wide range, including rock, pop, jazz, classical, hip-
hop, electronic, country, and many more. Due to the elements of various music tracks
and the diversity of musical genres, genre classification presents considerable challenges.
For instance, instrumentation, rhythmic patterns, melodic structures, harmony, lyrics, and
cultural settings are just a few of the elements that frequently come together to establish a
genre. As an example, electric guitars are often used in rock music, and brass instruments
are often used in jazz. Genres are also greatly influenced by pace and rhythmic patterns;
reggae, for example, has a distinctly off-beat rhythm.

Figure 2.1: A classic music genre classification model

There are several uses for genre classification in the music industry and other. It helps
music streaming platforms like Spotify, Apple Music etc to enable their users with the
ability to find new music based on their favorite genres and to make customized radio
stations and playlists based on the preferred genres. Additionally, categorizing music by
genre helps scholars and analysts better understand musical trends, cultural influences,
and the development of various genres over time.

Despite its challenges, genre classification has seen significant advancements in recent
years, thanks to the development of sophisticated machine learning algorithms and the
availability of large-scale annotated music datasets. These advancements have led to im-

10

Jeremiah Oluwagbemi Abimbola

proved genre classification accuracy and the ability to handle a wide range of music genres
and sub-genres. Ongoing research continues to explore new approaches and techniques to
enhance the accuracy and robustness of genre classification systems, further expanding
our understanding and appreciation of the diverse world of music genres [132].

Tzanetakis and Cook [153] were the early pioneers in taking up the challenge to clas-
sify music tracks by genres. In doing so, they created a dataset which is very popular
in the music MIR domain; the GTZAN dataset [147]. They developed an algorithm to
automatically classify musical genres, which can be used to structure large collections of
music available on the web. In their study, the researchers explored the automatic classific-
ation of audio signals into a hierarchy of musical genres. They proposed three feature sets
for representing timbral texture, rhythmic content, and pitch content. The performance
and relative importance of the proposed features were investigated by training statistical
pattern recognition classifiers using real-world audio collections. Both whole file and real-
time frame-based classification schemes were analysed and reported. Using the proposed
feature sets, accuracy of 61% for ten musical genres was achieved.

Cataltepe et al.[29] conducted a study on music genre classification, focusing on the
use of MIDI files and audio features extracted from MIDI data. They utilized the 3-
root and 9-leaf genre dataset developed by McKay and Fujinaga [103]. To calculate the
distances between MIDI pieces, a method called normalized compression distance (NCD)
is employed. It approximates the Kolmogorov complexity of a string using its compressed
length. NCD has previously been used in music genre and composer clustering tasks. In
their approach, the MIDI pieces were converted to audio, and the audio features were
used to train different classifiers. The results showed that the accuracies achieved by the
classifiers using MIDI data or audio features alone were lower compared to the accuracies
reported by McKay and Fujinaga, who employed domain-based MIDI features for their
classification. However, when the MIDI and audio classifiers were combined, the accuracy
improved but still fell short of the accuracies achieved by McKay and Fujinaga. The
highest accuracies obtained for the root genres using MIDI, audio, and their combination
were 0.75, 0.86, and 0.93, respectively, while McKay and Fujinaga achieved an accuracy
of 0.98.

Xu et al.[161] in their paper presented an efficient and effective approach for automatic
musical genre classification. They extracted a set of features to characterize music content
while utilizing a multi-layer classifier based on support vector machines (SVMs) for genre
classification. The SVMs are used to determine the optimal class boundaries between dif-
ferent music genres by learning from training data. The experimental results demonstrate
that the multi-layer SVM approach exhibits good performance in musical genre classific-
ation, outperforming traditional Euclidean distance-based methods and other statistical
learning methods. Some of the features used were beat spectrum, zero crossing rates,
short-time energy, and mel-frequency cepstral coefficients. They developed three nonlin-

11

Chapter 2. Music Classification

ear SVM classifiers to establish class boundaries between classic/jazz and pop/rock, classic
and jazz, and pop and rock genres, respectively. Different music features were used for each
SVM learning and classification task. The experiments validated the effectiveness of the
multi-layer SVM learning method for accurate musical genre classification, highlighting
its advantages over traditional methods and other statistical learning approaches.

Hareesh Bahuleyan also investigated the use of machine learning techniques on auto-
matic music genre classification [10]. The performance of two classes of models was com-
pared. The first approach was a deep learning method that utilized a convolutional neural
network (CNN) model trained end-to-end to predict the genre label of an audio signal
solely using its spectrogram. The second approach used hand-crafted features from both
the time domain and the frequency domain. Four traditional machine learning classifiers
were used for the training with these features and their performances were also compared.
He also identified the features that contributed the most to this multi-class classification
task. The experiments were conducted on the Audio set dataset, and an ensemble classifier
that combined the two proposed approaches achieved an AUC value of 0.894. These res-
ults suggest that the combination of deep learning and hand-crafted features can improve
the accuracy of genre classification in music information retrieval systems.

Pelchat et al.[121] in their study, examined the progress made in music genre classific-
ation using neural networks (NNs). They highlight the influence of factors such as song
libraries, machine learning techniques, input formats, and types of NNs on the success
of genre classification. The study also presented a research work on music genre classific-
ation, where they utilize spectrogram images generated from time slices of songs as the
input for the NN with the aim of classifying songs into their respective musical genres.

2.2 Tempo Detection

Tempo detection is an important part of music classification as it gives significant
information about a piece of music’s rhythmic features. Tempo is the speed or pace of the
music, which is usually measured in beats per minute (BPM). It has a big impact on a
track’s overall intensity, mood, and danceability. Music classification systems can assign
appropriate genre labels, help in music recommendation, and enable a variety of music-
related applications by precisely recognizing the tempo. The diversity and complexity of
musical rhythms is one of the most difficult issues in tempo recognition. Different musical
genres and styles have different rhythmic patterns, making tempo estimation a difficult
process. Furthermore, tempo changes within a single piece of music, changes in consecutive
sections, or subtle tempo alterations all contribute to the complexity.

To address these challenges, researchers have explored various techniques for tempo
detection. These techniques often involve analyzing the rhythmic patterns of the music
[90, 52], identifying periodicities in the audio signal [166], and extracting tempo-related

12

Jeremiah Oluwagbemi Abimbola

features [64]. These features can include beat information, onset detection, spectral ana-
lysis, and statistical measures. Machine learning algorithms have also been very useful to
learn and model the relationships between these features and the corresponding tempos.

By providing a basic rhythmic descriptor, accurate tempo detection may consider-
ably improve music classification algorithms in the identification of genres like as dance,
rock, and classical by distinguishing between fast-paced and slow-paced music. Further-
more, tempo recognition may aid in the organization of music collections, the creation
of playlists based on tempo preferences, and the implementation of tempo-aware music
synchronization for a variety of applications such as fitness or dancing routines.

In a study done by McKinney et al.[105], eight different algorithms for musical tempo
detection and beat tracking were extensively analyzed. These algorithms were evaluated
as part of the 2006 Music Information Retrieval Evaluation eXchange (MIREX) using a
standardized dataset comprising 140 musical excerpts. The dataset was annotated with
beats by 40 different listeners, providing a comprehensive and diverse set of ground truth
annotations. The primary objective of the evaluation was to assess the algorithms’ per-
formance in accurately predicting the perceptually salient musical beats and tempos of
the excerpts. To assess the algorithms’ ability to capture the most perceptually prominent
beats and tempos, a variety of performance criteria were developed. The examination took
into account a variety of characteristics, including musical genre, the presence of percus-
sion, musical meter, and the most prominent perceptual tempo for each piece. The study
sought to give insights into genre-specific problems and possibilities for tempo extraction
and beat tracking by assessing algorithm performance in relation to musical genre; an
approach that was also explored by Ajoodha et al. [7]. The existence of percussion in the
song was also evaluated, as it may have a considerable impact on the rhythmic structure.
Furthermore, the study analyzed how well the algorithms captured the musical meter and
the most salient perceptual tempo, which are critical features of tempo extraction.

Eronen et al. in a study [49], approached tempo estimation in musical pieces with
near-constant tempo. It involves three main steps: measuring the degree of musical ac-
cent over time, conducting periodicity analysis, and estimating the tempo. This approach
introduces novel accent features based on the chroma representation to capture musical
accent variations. The periodicity of the accent signal is then analyzed using the gener-
alized auto-correlation function, followed by tempo estimation using k-Nearest Neighbor
regression. The tempo estimation task was designed as a regression task, with the goal of
estimating the continuous valued tempo given the periodicity observation. In classic k-NN
regression, an object’s property value is computed as the average of its k nearest neigh-
bors’ values using the Euclidean distance as a metric to compute distances to the nearest
neighbors. To improve the accuracy, a re-sampling step is introduced, which applies to
an unknown periodicity vector before finding the nearest neighbors. This additional step
enhances the performance of the approach significantly.

13

Chapter 2. Music Classification

A recent study to classify music by tempo using three features from MPEG-7: Audio
Spectrum Centroid, Audio Spectrum Flatness, and Audio Spectrum Spread was conducted
by Lazaro et al. in [93]. The primary objective was to classify music tempo based on its
BPM value. The results reveal that the BPM value plays a critical role in the classification
process, with the highest classification rate observed for slow and medium tempos. Despite
the positive results, the experiment uncovered some flaws in the system, such as fast
music being identified as medium tempo and a single slow music track being identified as
medium tempo. The overall classification rate of the experiment was approximately 80%.
As a result, the authors suggest that future work should focus on improving the accuracy
of the system, specifically in the detection of fast-tempo music. De Souza et al. in [142] also
confirmed the importance of the BPM value for tempo classification using a comparative
examination of two artificial neural networks with distinct designs. Their study introduced
a B-RNN (Bidirectional Recurrent Neural Network) model that was trained and tested
to estimate the tempo of musical pieces in beats per minute (bpm) without the usage of
external auxiliary modules. For quantitative and qualitative analysis, a large collection
of 12,550 pieces, including percussion-only recordings, was compiled. The performance of
the B-RNN model was compared to that of state-of-the-art models, and a state-of-the-
art CNN was also retrained using the same datasets as the B-RNN. The results showed
that tempo estimate was more accurate for the percussion-only dataset, implying that
estimation can be more exact for tunes with a heavy percussion component.

Gkiokas et al. [59] conducted a study on tempo estimation and beat tracking al-
gorithms, where they utilized percussive/harmonic separation of the audio signal. Their
approach involved extracting filter-bank energies and chroma features from the respective
components. To analyze periodicity, they convoluted the feature sequences with a bank
of resonators. By incorporating metrical relations knowledge, they estimated the target
tempo from the resulting periodicity vector. Following tempo estimation, the research-
ers employed a local tempo refinement method to improve the beat-tracking algorithm.
The beat tracking involved computing beat sequences derived from the responses of the
resonators and introducing a distance measure for candidate beat locations. They then
employed a dynamic programming algorithm to determine the optimal "path" of beats.

2.3 Mood Classification

Mood classification is an interesting aspect of music classification because it seeks to
categorize music based on the emotions and moods that it evokes in listeners. Due to the
subjective character of emotions and the diversity of musical expressions, mood-based mu-
sic classification is a difficult undertaking. Researchers have investigated several techniques
to mood categorization that take advantage of both auditory and textual characteristics.
These qualities include tonal characteristics, pace, timbre, lyrics, and semantic informa-

14

Jeremiah Oluwagbemi Abimbola

tion. One common approach to mood classification is the use of audio features extracted
from the music signal. Features like spectral centroid, energy, and rhythm can provide
insights into the acoustic properties of the music that contribute to specific moods. These
features are then fed into machine learning algorithms, such as support vector machines
(SVMs), random forests, or neural networks, to classify music into different mood cat-
egories.

The study done by Kim et al.[84] presented a music mood classification model based
on arousal-valence (AV) values for a music recommendation system. The researchers col-
lected music mood tags and AV values from 10 subjects and used the k-means clustering
algorithm to classify the AV plane into 8 regions. For each region, representative mood
tags were proposed based on statistical analysis. The findings revealed that some regions
could be identified by representative mood tags, similar to previous models, while some
mood tags overlapped across regions. The proposed model successfully expressed regions
with multiple representative moods and moods distributed uniformly across most regions.
The study also compared the proposed model with previous models and concluded that
a well-defined music emotion or mood model is essential for improving the performance
of music recommendation systems. The experimental setup involved gathering arousal/-
valence values and mood tags from the subjects after listening to music clips. The collected
data were analyzed to explore the relationship between mood and AV values, and the res-
ults were visualized through histograms and clustering.

In the pursuit of effective music discovery and personalized listening experiences, un-
derstanding the emotions conveyed in songs holds significant value. This study done by
Dang et al. [33] explored the automatic classification of song moods based on lyrics and
metadata, proposing various supervised learning methods for mood classification and the
potential integration of automatically identified moods as metadata in a music search en-
gine. Three machine learning algorithms, SVM, Naive Bayes, and Graph-based methods,
were used for training classifiers. The experiments revealed that factors such as the artist,
sentiment words, and giving more weight to words in the chorus and title parts were
effective for mood classification. Additionally, the study indicated that the Graph-based
method showed promise for improvement when rich relationship information among songs
was available.

The rapid growth of internet usage and online music platforms has led to the need
for automatic methods to classify music based on mood. In this research carried out by
Patra et al. [119], a system was developed to classify moods of Hindi songs using audio
features such as rhythm, timber, and intensity. A manually collected dataset consisting
of 230 Hindi music clips, categorized into five mood clusters, was utilized, achieving an
average accuracy of 51.56% for music mood classification.

Another method for mood classification is to use semantic analysis techniques. This
method entails evaluating the music’s lyrics or textual material to derive sentiment or

15

Chapter 2. Music Classification

emotion-related information. Textual features derived from song lyrics or metadata can
provide valuable information about the mood conveyed by the lyrics or the genre or artist
associated with the music. To detect the emotional tone of the lyrics, natural language
processing and sentiment analysis techniques can be used, finding keywords or patterns
associated with distinct moods. This data may be integrated with audio characteristics
to improve the precision of mood classification models.

Hu et al.[77] showed this in their research aimed to improve audio music mood clas-
sification by incorporating lyric text. They constructed a large ground truth dataset of
5,585 songs and 18 mood categories based on social tags, representing a user-centered
perspective. Various lyric features and representation models were investigated and com-
pared to an audio-based system. The study challenged prior findings, revealing that audio
features did not consistently outperform lyric features. However, combining lyrics and au-
dio features enhanced performance in many mood categories, though not all. The study
acknowledged the challenges of creating ground truth data for music mood classification
due to the subjective nature of music perception and the absence of widely accepted mood
categories. They emphasized the necessity of multi modal approaches, as audio-only tech-
niques had limitations in capturing high-level semantic music features. The methodology
employed for constructing the ground truth dataset was explained, encompassing the col-
lection of social tags and song lyrics from various sources, as well as the identification
of mood categories using linguistic resources like WordNet-Affect [146]. Pre-processing
techniques were applied to lyric text, and different lyric features, such as bag-of-words
(BOW) representations, part-of-speech (POS) features, and function words, were explored
and compared to audio processing and features extracted using the Marsyas system[152,
151]. Additionally, the performance of hybrid features combining lyric and audio sources
was investigated, and feature selection methods were employed to identify the most sig-
nificant lyric features for classification.

Hu et al. [76] further confirms that lyrics and audio can be combined in a hybrid
mode to classify music based on mood. The study evaluated the use of lyrics in music
mood classification by examining various lyric text features, including linguistic and text
stylistic features. These features were compared and combined with audio features us-
ing two fusion methods. The results demonstrated that the combination of lyrics and
audio features outperformed systems that solely relied on audio features. Furthermore,
the study revealed that the hybrid lyric + audio system achieved comparable or super-
ior classification accuracies with fewer training samples compared to systems using only
lyrics or audio. The experiments were conducted on a large-scale dataset of 5,296 songs,
each containing both audio and lyrics, representing 18 mood categories derived from so-
cial tags. These findings contribute to advancing the field of lyric sentiment analysis and
automatic music mood classification, facilitating the practical use of mood as an access
point in music digital libraries.

16

Jeremiah Oluwagbemi Abimbola

Moreover, advances in deep learning and neural network architectures have shown
promise in mood classification. Convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been employed to automatically learn hierarchical rep-
resentations of music, capturing both low-level and high-level features relevant to mood
classification. These deep learning models can extract intricate patterns and dependencies
within the music signal, enabling more accurate mood predictions.

In the contemporary era, the generation of big data from music production and con-
sumption necessitates automated and efficient management. Deep learning shines in this
domain when presented with accurate and adequate data. Pyrovolakis et al. in [126] com-
pared single channel and multi-modal approaches for music mood detection using Deep
Learning architectures and found that the multi-modal approach outperformed the single
channel models. They utilized the MoodyLyrics dataset [27], consisting of 2000 song titles
with labels for four mood classes, and achieved a uniform prediction of mood, which has
broad applications in various domains.

According to the study conducted by Hizlisoy et al. [71], a convolutional long short
term memory deep neural network (CLDNN) architecture may be used to recognize mu-
sical emotions. They created a brand-new database of Turkish traditional music with 124
extracts and used this to test the effectiveness of their methodology. By feeding normal
acoustic data into convolutional neural network (CNN) layers along with information de-
rived from log-mel filterbank energies and mel frequency cepstral coefficients (MFCCs),
they found that the LSTM + DNN classifier performed best when the novel feature set
and standard features were combined, with an overall accuracy of 99.19% when perform-
ing 10-fold cross-validation. Additionally, the LSTM performs better than classifiers like
the support vector machine (SVM), random forest, and k-nearest neighbor (k-NN).

The evaluation of mood classification models is crucial to assess their effectiveness.
Researchers often employ large music databases with annotated mood labels to train and
evaluate their models. Additionally, subjective user studies and feedback can provide in-
sights into the perceived mood conveyed by the classified music. The continued research
in this field can enhance our understanding of the relationship between music and emo-
tions[140], contributing to applications such as personalized music recommendation, music
therapy, and emotional content analysis.

2.4 Instrumentation Classification

The identification and classification of the many musical instruments used in a piece
of music is a crucial component of musical classification. Due to the great variety of
instruments and their various timbral properties, this endeavor presents a number of dif-
ficulties. To classify instruments, researchers have used a variety of methods, including
as feature extraction, machine learning algorithms, and deep learning architectures. The

17

Chapter 2. Music Classification

extraction of audio features that capture the individual qualities of various instruments is
a popular method of classifying instruments. Three different feature schemes are widely
known: perception-based features, MPEG-7-based features, and MFCC features [39]. The
perception-based features included characteristics such as zero-crossing rate, root mean
square, spectral centroid, bandwidth, and flux. The MPEG-7-based features focused on
timbral descriptors, including harmonic centroid, harmonic deviation, harmonic spread,
harmonic variation, spectral centroid, log attack time, and temporal centroid. Finally,
the MFCC features involved transforming the signal to Mel scale, extracting filter bank
outputs, and applying discrete cosine transform to obtain the MFCC coefficients. Fea-
ture selection techniques are used to optimize the feature sets used in classification and
correlation-based approaches are utilized to assess the quality of features in relation to
the class concept and their relevance to other features. The goal is usually to identify rel-
evant features while eliminating redundancy to reduce computational costs and address
the "curse of dimensionality." Researchers hope to accurately classify the instruments by
capturing the distinctive spectral and temporal patterns displayed by each one through
the analysis of these features.

The research carried out by Barbedo and Tzanetakis [12] explained that in musical
signals, the spectral and temporal contents of instruments often overlapped, posing a
challenge for instrument identification. It was reported that one approach to address this
challenge was to search for isolated regions in the time and frequency domains where
the content of a specific instrument appeared separated. The presented strategy involved
identifying isolated partials and extracting features from them to infer the instrument
likely responsible for generating the partial. The method was reported to require the
existence of at least one isolated partial for each instrument in the signal, and if multiple
isolated partials were available, a more accurate classification was achieved.

Instrument classification tasks have seen widespread usage of machine learning sys-
tems. These models help to extract features and instrument labels and how they relate
to one another. They can recognize patterns, extract pitch and make predictions based
on learnt representations since they are trained on big datasets comprising audio samples
from a variety of instruments according to Kostek [87]. As a decision-making tool, feature
vectors derived from recorded musical sounds are used to train artificial neural networks
(ANNs). The study conducted by Essid et al. [50] also used statistical pattern recogni-
tion approaches to concentrate on musical instrument identification within solo musical
phrases. The study comprised a sizable sound database with extracts from varied perform-
ances and recording circumstances, including eleven distinct instrument classes with new
descriptors and more than 150 signal processing characteristics were examined. The most
pertinent characteristics for each instrument pair were determined using feature selection
approaches including inertia ratio maximization and evolutionary algorithms. Gaussian
mixture models (GMMs) and support vector machines (SVMs) were used to accomplish

18

Jeremiah Oluwagbemi Abimbola

the classification job, and the findings showed that pairwise optimized feature subsets
and SVM classification employing a radial basis function kernel led to greater recognition
rates.

Deep learning has completely changed instrument categorization in recent years. This
task has been successfully completed using convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). From audio spectrograms or waveforms, CNNs may
automatically learn hierarchical representations that include both low-level and high-level
data important for classifying instruments. RNNs, on the other hand, can accurately re-
cognize instruments by capturing temporal relationships in music and utilizing sequential
patterns.

Mahanta et al in their study [99] modelled an artificial neural network which was
trained to perform classification on twenty different classes of musical instruments. The
model utilized only the mel-frequency cepstral coefficients (MFCCs) of the audio data.
The training was conducted on the full London Philharmonic Orchestra dataset, which en-
compassed twenty instrument classes from the woodwinds, brass, percussion, and strings
families. Experimental results demonstrated that the model achieved state-of-the-art ac-
curacy. The deep ANN architecture consisted of multiple layers with varying numbers of
neurons. The layers terminated in an output layer with the same number of neurons as the
classification task’s classes. During training, the feature values were multiplied by weights
and added with bias terms. The weights were updated after each epoch through forward
and backward propagation, driven by a chosen loss function. The input feature values
traversed through subsequent layers’ neurons. To introduce non-linearity and selectiv-
ity in the network, activation functions were applied. The Rectified Linear Unit (ReLU)
activation function was employed for all hidden layers. This function activated neurons
with positive values resulting from the aforementioned computations. The ANN model’s
performance, as validated by the experimental outcomes, showcased its effectiveness in
achieving accurate classification of musical instruments.

Blaszke and Kostek [17] also showed that the use of deep learning technique has shown
outstanding performance in music instrument classification. They presented a novel ap-
proach for automatically identifying instruments in audio excerpts using sets of individual
convolutional neural networks (CNNs) per instrument. By preparing a new dataset con-
taining underrepresented instruments and the exploration of on-the-fly instrument, it was
shown that the presented approach achieved a precision of 93% and an F1 score of 0.93
for instrument identification using a simple convolutional network based on MFCC. The
effectiveness of identification varied depending on the instrument, with drums being more
easily identifiable compared to guitar and piano. The proposed solution outperformed
other methods in terms of AUC ROC and F1 score, offering higher accuracy in instru-
ment recognition.

Datasets play a crucial role in instrument classification research. Large-scale annot-

19

Chapter 2. Music Classification

ated datasets, such as the RWC [60] Instrument Sound Dataset and the NSynth dataset
[48], provide researchers with labeled audio samples of various instruments. These data-
sets facilitate the training and evaluation of instrument classification models, allowing
for comparative analysis and bench-marking of different techniques. Real-world applica-
tions of instrument classification include instrument recognition in music transcription,
automated music production, and interactive music systems.

2.5 Singing Voice Detection

Singing voice detection is a fundamental task in music classification that focuses on
distinguishing the presence of a human singing voice in an audio recording. It plays a
crucial role in various applications, including music information retrieval, automatic tran-
scription, karaoke systems, and vocal separation[116]. Singing voice detection algorithms
aim to accurately identify and isolate the singing voice from the accompanying instru-
mental or background music as depicted from the Figure 2.2. It is an active research
area with ongoing developments and challenges. The exploration of new audio features,
the development of innovative deep learning architectures, and the creation of larger and
more diverse datasets are essential for further advancements in this field. The contin-
ued progress in singing voice detection will contribute to enhancing music understanding,
enabling innovative applications, and improving the overall user experience in various
music-related domains. Monir et al [109] offered an overview of singing voice recognition
methods, with a focus on cutting-edge algorithms like convolutional LSTM and GRU-
RNN. It emphasized the significance of singing voice identification as a preprocessing step
for various music analysis applications. Datasets like Jamendo [20] and RWC have been
the main set of datasets used by existing approaches.

Challenges in singing voice detection arise due to various factors, such as background
noise, overlapping vocal and instrumental sounds, and different singing styles. Researchers
have addressed these challenges by developing robust feature representations[57], incor-
porating contextual information, and utilizing advanced signal processing techniques, such
as source separation[78] and harmonic modeling[101]. Real-world applications of singing
voice detection extend beyond music classification. Being able to do this, plays a crucial
role in the field of automatic music transcription, where accurate separation and identi-
fication of the singing voice contribute to the accurate transcription of lyrics and melody.
Singing voice detection also forms the basis for vocal enhancement and remixing, enabling
the manipulation of vocals in audio production. Another challenge lies in the mismatch
between artificially generated datasets and real polyphonic music. Artificially combining
clean speech clips with instrumental music clips to simulate polyphonic vocals may not
accurately represent the complexities of real singing vocals accompanied by instrumental
accompaniments[26, 79].

20

Jeremiah Oluwagbemi Abimbola

Figure 2.2: A singing voice detection model

Several approaches have been proposed for singing voice detection. One common
strategy is to utilize audio features that capture the characteristics of the human voice.
These features include pitch, spectral centroid, harmonic content, and mel-frequency
cepstral coefficients (MFCCs). By analyzing these features, researchers can differentiate
between vocal and non-vocal segments in the audio signal.

In the past, a study was conducted by Regnier et al. [128] to investigate the problem
of locating singing voice in music tracks. The approach relied on the extraction of char-
acteristics specific to singing voice, such as harmonicity, formants, vibrato and tremolo.
The study focused on vibrato and tremolo characteristics. Sinusoidal partials were extrac-
ted from the musical audio signal and the frequency modulation (vibrato) and amplitude
modulation (tremolo) of each partial were studied to determine if the partial corresponded
to singing voice. The rate and extent of both vibrato and tremolo were estimated for each
partial and a partial selection was operated based on these values. A second criteria based
on harmonicity was also introduced. Each segment could then be labelled as singing or
non-singing. Post-processing of the segmentation was applied to remove short-duration
segments. The proposed method was evaluated on a large manually annotated test-set
and achieved very close results to a usual machine learning approach.

Machine learning techniques play a vital role in singing voice detection. Supervised
learning algorithms are trained on large datasets such as the ikala dataset[30] or jamendo
dataset containing labeled examples of singing and non-singing segments. These models
learn to classify audio segments based on the extracted features, enabling accurate singing
voice detection.

Using neural networks to recognize singing voices, the Schlüter and Grill in a study

21

Chapter 2. Music Classification

[134], examined the efficacy of label-preserving audio modifications for music data aug-
mentation. Several audio changes were implemented and their utility was evaluated, draw-
ing inspiration from current voice recognition research. The researchers found that pitch
shifting was the most efficient augmentation technique, according to their data. The classi-
fication error was significantly reduced by 10 to 30% when paired with temporal stretching
and random frequency filtering. On two open datasets, the researchers’ method produced
cutting-edge results. In the area of music information retrieval, they predicted that the
addition of audio data will significantly enhance a number of sequence labeling and event
recognition tasks.

Deep learning has also gained significant attention in recent years for singing voice
detection where convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) have shown promising results in this area. CNNs can capture local and global
dependencies in the audio signal, while RNNs excel in modeling temporal dependencies.
Hybrid architectures, such as CNN-RNN models, have also been explored to leverage
the strengths of both network types. Recent advancements in deep learning have led to
improved performance in singing voice detection. As such, models trained on large-scale
datasets have demonstrated the ability to generalize to a large extent, unseen music re-
cordings and handle complex audio scenarios. Furthermore, researchers are also exploring
the integration of multi-modal information, such as lyrics and music scores, to enhance
singing voice detection accuracy and robustness.

With deep learning architecture, Leglaive et al. [95] developed a novel approach for
detecting singing voice in an audio track using a Bidirectional Long Short-Term Memory
(BLSTM) Recurrent Neural Network (RNN). Utilizing the sequential structure of short-
term feature extraction in music, the classifier was created to take into account both
past and future temporal context in order to assess whether or not a singing voice is
present. The BLSTM-RNN’s several hidden layers made it possible to extract from low-
level features a condensed representation that was appropriate for the job. The suggested
technique greatly outperformed state-of-the-art methods on a widely used database, ac-
cording to experimental results.

One interesting aspect of deep learning is the use of transfer learning. Hou et al. [74]
addressed the limited availability of well-labeled datasets for singing voice detection (S-
VD) by proposing a data augmentation method using transfer learning. They combined
clean speech clips with voice activity endpoints and instrumental music clips to create
artificial polyphonic vocals for training a vocal/non-vocal detector. Despite the mismatch
with real polyphonic music, transfer learning was applied to transfer knowledge from the
artificial dataset to a smaller, matched polyphonic dataset. This approach significantly
improved S-VD performance, resulting in an F-score increase from 89.5% to 93.2%.

To improve generalization performance, ensemble learning have been reported to be
very helpful [58]. It combines a number of separate models. Deep ensemble learning mod-

22

Jeremiah Oluwagbemi Abimbola

els combine the benefits of deep learning models and ensemble learning such that the
resulting model performs better in terms of generalization. In a previous study, You et al
[163], explored different neural network models and stacked ensembles for singing voice
detection. Models such as CNN, LSTM, convolutional LSTM, and capsule net were evalu-
ated using input features like MFCC and spectrogram. The CNN model with spectrogram
inputs achieved the highest accuracy, reaching 91.8% for the Jamendo dataset. Among
the stacked ensemble methods, a voting strategy with five models demonstrated com-
parable performance with an accuracy of 94.2% for the Jamendo dataset, while being
computationally efficient.

In summary, this chapter delves into the domain of music information retrieval, fo-
cusing on two key tasks: instrument classification and singing voice detection. It begins
by exploring instrument classification, highlighting the effectiveness of deep learning tech-
niques, particularly convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), in accurately identifying various musical instruments from audio recordings.
The chapter discusses the importance of large-scale annotated datasets, such as RWC
and NSynth, in training and evaluating these models. It also touches upon real-world
applications of instrument classification, including music transcription, automated music
production, and interactive music systems. The chapter then shifts its focus to singing
voice detection, a crucial task for distinguishing human singing from instrumental or
background music. It emphasizes the challenges posed by factors like background noise,
overlapping sounds, and diverse singing styles. The chapter explores various approaches
to singing voice detection, including feature-based methods that utilize audio character-
istics like pitch and spectral centroid, as well as machine learning techniques, particularly
deep learning architectures like CNNs and RNNs. It highlights the advancements made by
researchers using deep learning models like BLSTM-RNN and transfer learning to achieve
state-of-the-art performance in singing voice detection and eventually highlights the po-
tential of ensemble learning methods for further improving generalization performance in
singing voice detection. The summary of the various classification an detection types are
shown in Table 2.1.

23

Chapter 2. Music Classification

Table
2.1:Sum

m
ary

ofm
usic

classification
studies

C
lassification

T
ype

Y
ear

A
uthor

M
odels

U
sed

R
esults

M
ood

2011
K

im
et

al.
k-m

eans
clustering

R
epresentative

m
ood

tags
M

ood
2009

D
ang

et
al.

SV
M

,N
aive

Bayes
Effective

for
m

ood
classification

M
ood

2010
H

u
et

al.
SV

M
,R

F,K
N

N
,

N
ot

m
entioned

M
ood

2022
Pyrovolakis

et
al.

D
eep

Learning
architectures

M
ulti-m

odalapproach
outperform

ed
Tem

po
Estim

ation
2006

G
ouyon

et
al.

A
utoregressive

m
odels

Tem
po

estim
ation

accuracy
Tem

po
Estim

ation
2012

M
cLeod

et
al.

A
C

FFT
,G

aussian
m

ixture
m

odel
A

ccurate
tem

po
estim

ation
G

enre
2003

Tzanetakis
and

C
ook

SV
M

,K
N

N
,decision

trees
H

igh
genre

classification
accuracy

G
enre

2010
Liet

al.
SV

M
,A

N
N

,fuzzy
K

N
N

N
ot

M
entioned

Instrum
ent

2008
D

eng
et

al.
Perception-based,M

PEG
-7,M

FC
C

features
Feature

extraction
Instrum

ent
2010

Barbedo
and

Tzanetakis
Isolated

partials
N

ot
M

entioned
Instrum

ent
2006

Essid
et

al.
G

M
M

s,SV
M

s
greater

identification
rate

Instrum
ent

2021
M

ahanta
et

al.
D

eep
A

N
N

State-of-the-art
accuracy

Instrum
ent

2022
Blaszke

and
K

ostek
C

N
N

F1
score

0.93
Singing

Voice
D

etection
2009

R
egnier

et
al.

M
achine

learning
N

ot
M

entioned
Singing

Voice
D

etection
2015

Schlüter
and

G
rill

BLST
M

-R
N

N
State-of-the-art

results
Singing

Voice
D

etection
2020

H
ou

et
al.

Transfer
learning

Im
proved

perform
ance

Singing
Voice

D
etection

2022
G

anaie
et

al.
Ensem

ble
learning

H
igh

accuracy

24

Chapter 3

Time Signature Detection

3.1 Introduction

Music time signature detection is a fundamental task in music analysis. It involves
determining the underlying rhythmic structure and organization of a musical piece. The
time signature, typically represented as a fraction at the beginning of a musical score,
indicates the number of beats in each measure and the type of note that receives one
beat. In a study conducted by Andrew and Mark [106], the detection of meter was ex-
plored by analyzing the metrical structure of individual bars. Excerpts from compositions
by Bach were used for this analysis, which resulted in an F-measure of 80.50%. They
approached the problem by leveraging the hierarchical tree structure of notes, as depicted
in Figure 3.1. The evaluation of the guessed metrical tree was performed at three levels:
sub-beat, beat, and bar. Each level was examined to determine if it matched exactly with
the corresponding level of the actual metrical tree. If a match occurred, it was considered
a true positive. On the other hand, if there was a mismatch, it was counted as a false
positive, indicating a clash between the guessed and actual metrical structures.

Building upon their previous work, Andrew and Mark further refined the model in
another study [107] to achieve more accurate meter detection. This enhanced model in-
corporated two musicological theories. The first theory emphasized a reasonably consist-
ent tatum rate without significant discontinuities, where a tatum represents the smallest
rhythmic unit. The second theory focused on the similarity between notes and tatums,
ensuring that notes align closely with the underlying tatum structure. In this model, each
state represents a single bar and consists of a list of tatums belonging to that bar, along
with a metrical hierarchy that defines which tatums serve as beats and sub-beats. The
tatum list is generated by arranging the tatums in chronological order. Additionally, the
downbeat of the next bar is obtained for accurate tracking of the metrical structure. The
metrical hierarchy of a state includes specifications such as the number of tatums per sub-
beat, the number of sub-beats per beat, the number of beats per bar, and the duration of

25

Chapter 3. Time Signature Detection

the anacrusis (the portion of music preceding the first downbeat). The anacrusis duration
is determined by counting the number of tatums that occur before the first downbeat of
a given musical piece.

Figure 3.1: The hierarchical tree structure of notes – the metrical structure of a 4
4 bar (1

whole note = 4 quarter notes = 8 eighth notes).

In the rapidly growing music industry, platforms like Apple Music, Spotify, and Audio
Mack play a crucial role in curating playlists for their users. To achieve accurate and
personalized recommendations, these platforms rely on genre classification systems that
group songs based on similarities in rhythm (time signature and tempo) and harmonic
content. Many researchers have made successful attempts to classify different genres of
songs using various techniques and models [10, 118, 51, 88]. However, one aspect that
has received relatively less attention is the use of time signature as a feature for genre
classification. Estimating the time signature of a song is challenging, but incorporating
this information could potentially enhance the overall accuracy of genre classification. This
unexplored area presents an opportunity for further research and improvement in music
genre classification algorithms. Detecting the time signature from an audio recording poses
several challenges due to the complexity and variability of musical rhythms.

One of the main challenges in time signature detection is the presence of rhythmic
variations and syncopations within a piece of music. Different sections of a song may
have varying rhythmic patterns or unexpected accents, making it difficult to discern a
consistent time signature. Additionally, certain musical genres, such as jazz or Latin music,
often incorporate intricate syncopated rhythms that deviate from traditional metrical
structures. These variations require robust algorithms capable of capturing the nuances
and irregularities inherent in the music [6].

26

Jeremiah Oluwagbemi Abimbola

Another challenge arises from the potential overlap of multiple time signatures within
a single composition. In complex musical arrangements or pieces that change time signa-
tures throughout, accurately identifying and tracking these changes can be challenging.
Transitions between time signatures may occur abruptly or gradually, and the algorithm
needs to handle these shifts smoothly and accurately.

Furthermore, the presence of polyrhythms, where multiple rhythmic patterns coexist
simultaneously, can pose difficulties in time signature detection. Polyrhythms are com-
mon in various music styles, such as African or Afro-Cuban music, and they involve the
simultaneous use of different time signatures. Detecting and disentangling these overlap-
ping rhythmic layers requires advanced algorithms capable of extracting and analyzing
multiple rhythmic structures simultaneously.

Also, the use of musical ornaments and expressive timing by performers can further
complicate time signature detection. Musicians often employ expressive techniques, such
as accelerando [135] (a term that describes a gradual increase in tempo or speed of a
musical passage), which includes slight tempo changes that could make the underlying
time signature difficult to discern. Handling these expressive nuances and distinguishing
them from genuine changes in time signature requires sophisticated analysis techniques
and a deep understanding of musical context.

Addressing these challenges in time signature detection requires the development of
robust algorithms that combine statistical analysis, signal processing techniques, and vast
musical knowledge. By leveraging advanced pattern recognition and feature extraction
methods, along with domain-specific insights, we aim to improve the accuracy and reli-
ability of time signature detection algorithms.

Researchers have made significant progress in developing methods for automatically
extracting metadata from musical audio signals. Some of the metadata that can be ob-
tained through these algorithms include Pitch detection [75, 113], onset detection [38, 65,
66], key signature estimate [110], and tempo extraction [8, 159]. The ultimate goal is to
enable computers to possess the same capabilities as human listeners, allowing them to
interpret music and provide insights into specific musical properties. This advancement
opens up a wide range of applications, such as automated transcription, playlist gener-
ation, and music information retrieval systems. The topic of automated music analysis
and retrieval is a recurring theme at the International Symposium on Music Information
Retrieval (ISMIR) and continues to drive innovation in the field. Ultimately, advance-
ments in this field contribute to a better understanding of music structure, facilitating
tasks such as automatic transcription, music analysis, and creative applications in music
composition and performance.

One study by Gulati et al. [67] focused on estimating the meter of music with an
irregular time signature, specifically 7

8 , using a set of Indian classical music and multiple
comb filters. They employed a filter bank with a specific number of comb filters per filter

27

Chapter 3. Time Signature Detection

bank, which was determined by twice the integer multiple of the tatum duration plus one,
accounting for rounding factors. The meter was determined based on the filter with the
highest output energy in each filter bank.

Another study by Bas de Haas and Anjan [36] aimed to detect meter and the first
downbeat position in symbolic music. They introduced a model called PRIMA that util-
ized MIDI signals for inner metric analysis instead of the commonly used auto-correlation
method. The PRIMA model employed a probability-based approach for classifying dif-
ferent meter classes (duple, triple, and quadruple). The model was trained and tested
on two datasets created by music enthusiasts and outperformed the MIDItoolbox meter
detection method.

The application of genetic algorithms to signal processing has received significant
attention in research generally. In a study by Kaur et al. [83], they utilized a genetic al-
gorithm (GA) in combination with improved Mel-Frequency Cepstral Coefficient (MFCC)
speech characteristics for speaker and speech recognition using Deep Neural Network
(DNN) for classification purposes. The process involved two main steps. First, MFCC
feature extraction was performed, capturing important characteristics of the speech sig-
nal. Then, a genetic algorithm was applied to optimize these features, aiming to enhance
the performance of the subsequent classification task. The GA was utilized to determine
the optimal weights and biases of the DNN, using a fitness function specific to the problem
at hand.

These studies demonstrate the efforts made to address meter detection challenges and
propose alternative approaches for accurate and efficient analysis. By exploring different
techniques, such as comb filters and MIDI-based analysis, researchers are making progress
in improving the accuracy and performance of meter detection algorithms.

There are two main approaches used for the time signature detection: the classic/-
manual approach and the deep learning approach. In the classical approach, researchers
use digital signal processing techniques to analyze music as evident in the study done by
Meinard et al [111]. They employ methods like comb filters [85] and Fourier transforms
to study aspects such as frequency, tones, duration, and beats. This approach requires a
sound understanding of concepts like tempo, timing, and audio spectrum. In contrast, the
deep learning approach relies on deep learning models to detect singing voices. Both ap-
proaches share some common ideas, such as converting audio signals to log spectrograms
for easier analysis. In the past, many researchers used MATLAB and C++ for implement-
ing these approaches [91, 156], but Python gained popularity in recent years due to its
simplicity and the availability of powerful machine learning libraries like scikit-learn [120]
and librosa [102]

28

Jeremiah Oluwagbemi Abimbola

3.2 Detection Methods

The detection methods as it concerns time signature ranges from digital signal pro-
cessing (DSP) methods to machine learning (ML) methods. Some of these methods have
been discussed in our paper published in Sensors [6]. They offer distinct approaches for
time signature detection in music. DSP methods rely on mathematical transformations
and signal analysis techniques such as Fourier transforms, auto-correlation, and beat track-
ing to identify rhythmic patterns and extract time signatures directly from audio signals.
These methods are typically rule-based, deterministic, and grounded in the physical prop-
erties of the signal. On the other hand, ML methods utilize algorithms that learn from
large datasets of labeled music to recognize patterns and make predictions. Techniques
like neural networks, support vector machines, and hidden Markov models can be trained
to detect time signatures by learning complex features and temporal dependencies in the
data. While DSP methods emphasize precise, formulaic analysis, ML approaches leverage
data-driven learning to adapt and generalize from examples.

3.3 Digital Signal Processing Methods

In the methods discussed in this section, digital signal processing techniques are em-
ployed to analyze audio samples. These techniques involve various tasks such as window
framing as shown in Figure 3.2, filtering, and Fourier analysis [96]. When working with
audio tracks, they are divided into smaller segments known as frames. Each frame typic-
ally corresponds to a short duration of time, such as 0.0227 milliseconds for audio sampled
at a rate of 44.1 kHz. It’s important to note that this duration is much shorter than what
the human ear can perceive, which is around 10 milliseconds.

Figure 3.2: One of the most common methods of audio preprocessing – splitting the whole
signal into frames with overlapping.

To prevent spectral leakage and ensure accurate analysis, a windowing function is
applied to the audio frames. This function eliminates the samples at both ends of the

29

Chapter 3. Time Signature Detection

frame, ensuring a smooth and continuous signal. The choice of windowing function plays
a crucial role in the analysis process. Additionally, it’s common to use overlapping frames
in the analysis. This means that subsequent frames have a certain degree of overlap
with the previous frames. The overlap helps in maintaining continuity and capturing
transient information in the audio signal. These processes are integral to the analysis
of audio signals, and they contribute to the accurate representation of the underlying
frequency and time-domain characteristics of the music. A more detailed explanation of
these processes can be found in Table 3.1.

Year Method Dataset Data Accuracy(%)

2003 SVM [61] Self generated Audio 83
2003 ACF [154] Excerpts of percussive

music
Audio 73.5

2004 SSM [122] Greek music samples Audio 95.5
2007 ASM [32] Commercial CD record-

ings
Audio 75

2009 ACF, OSS [72] Usul MIDI 77.8
2009 BSSM, ASM [56] Generated samples Audio 95
2011 Comb Filter [67] Indian Music DB Audio 88.7
2013 SVM [155] Generated Samples Audio 90
2014 RSSM [130] MIDI keyboard scores MIDI 93
2020 Annotation Work-

flow [28]
ACMUS-MIR Audio 75.06

Table 3.1: Summary of classic estimation methods.

Out of all the manual methods used in detecting time signature, two models have been
considered in this research.

3.3.1 ASM (Audio Similarity Matrix)

The ASM (Audio Similarity Matrix) model, described by Gainza in [32], aims to
identify repeating bars in a song by comparing longer audio segments (bars) with shorter
audio fragments (a fraction of a note). The underlying idea is that different parts of a song
often have repeating patterns. A clear block diagram is shown in Figure 3.4 To clearly
understand this process, a sample audio in a 6

8 time signature 3.3 (pop.00009.wav) from
the GTZAN dataset is used.

First, the model creates a spectrogram of the song using a frame length that corres-
ponds to a certain percentage of the beat duration. This spectrogram provides a visual
representation of the song’s frequencies over time as shown in Figure 3.5. By analyzing the
spectrogram, the model identifies the initial note of the song. Next, the model constructs
a reference ASM by calculating the Euclidean distance between two frames, denoted as
m = a and m = b, (where m represents the frame index, a is the index of the first frame,

30

Jeremiah Oluwagbemi Abimbola

Figure 3.3: An audio signal from the GTZAN dataset

Figure 3.4: The audio similarity matrix architecture

31

Chapter 3. Time Signature Detection

and b is the index of the second frame) starting with the first note obtained earlier given
by Equation 3.3. This step allows the model to capture small musical occurrences, such as
brief notes. To further explore the song’s structure, a multi-resolution ASM approach is
employed. This involves creating additional audio similarity matrices that represent vari-
ous bar lengths. These matrices provide a measure of similarity between different segments
of the song as depicted in Fig. 3.6, and focuses on the diagonal of this matrix.

Figure 3.5: An audio signal from the GTZAN dataset

Figure 3.6: Audio similarity matrix of the audio frames

As a result of this, there will be many diagonals to be analysed. The diagonals extracted
from one side of the symmetric ASM provide information about the similarities between
musical components separated by different numbers of bars. For example, one diagonal
D1 could represent components separated by one bar, while another diagonal D2 could

32

Jeremiah Oluwagbemi Abimbola

represent components separated by two bars. The diagonal represents the similarity of
frames within the song. In an ideal case, the diagonal values would be all ones (1.0),
indicating that the corresponding frames are perfectly similar, resulting in a white color
in the matrix. Eventually the average diagonal is calculated in Equation 3.1 and the result
from this function can be seen in Figure 3.7.

[htbp]di = mean(diag(ASMi))d = −d + max(|d|) (3.1)

Figure 3.7: Diagonal function of the ASM

The other values in the matrix range between 0.0 and 1.0, reflecting the similarity
between different frames. By analyzing the ASM and examining the diagonal values,
the ASM model can determine the meter of a song, providing insights into its rhythmic
structure and recurring patterns. This meter detection approach considers a wide range
of meter candidates. These candidates include duple (c=2) and triple (c=3) meters, as
well as common multiples of duple and triple meters such as c=4, 6, and 8. Additionally,
complex meters such as c=5 and 7 are also considered. To account for multiples of each
meter candidate, which represent similar beat patterns occurring at different musical bars,
a weighted comb filter is applied to the function d. The resulting function, denoted as Tc,
assigns higher weights to closely spaced musical bars and is given by:

Tc =
lt∑

p=1

d(p× c)
1− p−1

lt

, c = 2, . . . , 8 (3.2)

where lt corresponds to ⌊nb
8 ⌋ and nb corresponds to the number of beats of the piece

of music. The result of this calculation is shown in Figure 3.8.

ASM(a, b) =
N/2∑
k=1

[X(a, k)−X(b, k)]2 (3.3)

33

Chapter 3. Time Signature Detection

Figure 3.8: Meter is obtained by the highest point

where a and b are spectrogram frames, N is the total number of frames and X is a function
of the frames.

Recall that the time signature for this audio track was 6
8 , and from the image in Figure

3.8, the highest point on the graph is 6 which makes the result a good detection.

The Euclidean distance measure was found to be insufficient for the analysis conducted
by Gainza due to its reliance on magnitude. To overcome this limitation, the cosine
distance measure was adopted as an alternative. The cosine distance measure takes into
account the angle between two vectors rather than their magnitudes.

Mathematically, the cosine distance between two vectors x and y is calculated as:

cosine_distance(x, y) = 1− x · y
∥x∥ · ∥y∥

(3.4)

where (·) represents the dot product of the vectors and ∥x∥ and ∥y∥ denote the Euc-
lidean norms of the vectors x and y, respectively. By using the cosine distance measure,
the analysis becomes less reliant on the magnitude of the vectors and focuses more on the
angular similarity between them. This allows for a more robust comparison and evaluation
of musical components, taking into consideration their directional alignment rather than
just their magnitudes. Therefore, by using the cosine distance, the ASM is given by (3.5).

ASM(a, b) = 1− k = 1√∑s
k−1 X(a, k)2 ∗

√∑s
k−1 X(b, k)2

(3.5)

The Kullback-Leibler (K-L) divergence method [23, 18] is another extensively used

34

Jeremiah Oluwagbemi Abimbola

approach for computing vector similarities shown in the equation 3.6

ASM(a, b) =
N/2∑
k=1

X(a, k)∗ loge

(
X(a, k)
X(b, k)

)
(3.6)

3.3.2 BSM (Beat Similarity Matrix)

The BSM model, originally proposed by Gainza and further described by Ajay Srinivasamurthy
et al. in [144], is another approach for estimating the meter of a song. This model util-
izes beat tracking and spectrogram analysis. First, the song’s spectrogram (S) is divided
into frames that are synchronized with the beats of the music. These beat synchronous
frames m are obtained by using the beat locations of the song. Each frame (m) corres-
ponds to a specific beat interval within the song. From these beat synchronous frames, a
similarity matrix (B) is generated according to Equation 3.7, where Si(k, m) represents
the similarity value between the k-th frame of the beat synchronous frames and the m-th
frame.

Bi = Si(k, m) (3.7)

In this equation, for the i-th beat (Bi), the value of m ranges from the beat location
ti to ti + 1, where ti represents the beat locations and t0 is set to 1. Mathematically this
can be expressed as, bi, ti ≤ m < ti+1 and t0 = 1

The Detection Function (DF) is a calculation performed on the audio signal s[n] using
spectral flux. It serves as a condensed and efficient representation for detecting the start
of musical events and tracking beats. To compute the DF, the audio signal is divided into
frames with a fixed time resolution of tDF = 11.6 ms. Each frame has a length of 22.64
ms and overlaps with adjacent frames by 50%. The DF is obtained by smoothing the
values of the spectral flux and applying half wave rectification, resulting in the processed
detection function Γ̃(m).

The onset detector finds the peaks of the processed detection function based on specific
criteria. To ensure only salient onsets are retained, detected onsets that are less than 5%
of the maximum value of Γ̃(m) are ignored. The inter-onset-interval (IOI) histogram is
computed as a histogram of the number of pairs of onsets detected over the entire song
for a given IOI value.

The tempo of the song is determined by analyzing Γ̃(m) and applying the General
State beat period induction algorithm used in [35]. The tempo estimation is carried out
in frames of 6 seconds, resulting in a tempo map that spans the entire song. To track the
beats, a dynamic programming approach developed by Ellis[47] is employed. The process
is given by the equation 3.8. This method utilizes the induced tempo period and the
smoothed, normalized detection function to accurately track the beats at different time
points within the song. The beat tracking process covers all beats detected in the song. By

35

Chapter 3. Time Signature Detection

Figure 3.9: Beat similarity matrix showing the diagonal. Each box represents spectrogram
frames

combining these techniques, the tempo and beats of the song can be accurately estimated
and tracked, providing valuable insights into its rhythmic structure.

Tempo(bpm) = 60
τptDF

(3.8)

The Beat Similarity Matrix (BSM) is then calculated like in Figure 3.9 by measuring
the cross-correlation between beats in the song. Since the BSM is symmetrical, we only
need to compute half of the matrix to avoid redundancy. To save computational resources,
we focus on the first 100 beats of the song. The diagonal elements of the BSM reflect the
similarity between different beats, and we compute the average value along these diagonals
to capture the overall beat similarity pattern.

By analyzing the similarity matrix and focusing on its diagonal, which represents
the similarity of frames within the song, the BSM model determines the meter of the
song. This approach was applied to the Indian classical music tracks and achieved a high
accuracy rate of 68.8% for one of the datasets used in the study.

3.4 Machine Learning Methods

The approaches shown in this section, as well as those detailed in Table 3.2, employ
neural networks to extract the time signature as a feature that may be used as input for
additional calculations or classification issues in the MIR domain rather than precisely ap-
proximating it. These machine learning models, their mode of operation and architectures
are further discussed in chapter 4.

In a study, Varewyck et al. [155] approached the music meter estimation problem as a
classification task. They utilized the Support Vector Machine (SVM) algorithm to tackle
this task. To perform the analysis, they first employed an external beat tracker to obtain

36

Jeremiah Oluwagbemi Abimbola

beat-level information. Additionally, they conducted spectral envelope and pitch analysis.
Furthermore, they incorporated the concept of Inter-Beat-Interval (IBI) similarity, which
was previously introduced by Gouyon and Herrera (2003) [61]. The IBI similarity was
calculated using the cosine similarity measure, as shown in the equation below. This
measure captures the similarity between two successive IBIs. By applying these methods
and developing a hypothesis, they were able to estimate the meter of the music. The SVM
classifier, along with the analysis of beat-level features and IBI similarity, contributed to
their meter estimation approach.

CS(b) = ⟨z⃗(b− 1), z⃗(b)⟩
∥z⃗(b− 1)∥∥z⃗(b)∥ (3.9)

where b is the beat, z⃗(b− 1) and z⃗(b) are low dimensional vectors grouped by related
features. With a balanced collection of 30 song samples, they eventually developed an
automated meter classification approach with the optimal feature combination that caused
an error of around 10% in duple/triple meter classification and about 28% in meter 3, 4,
and 6.

Year Method Dataset Accuracy(%)
2011 CNN [41] MSD Not stated
2016 CNN [43] Multiple datasets 90
2017 CNN [123] MSD, MagnaTagAT-

une
88

2019 TCN [19] Annotated dataset 93
2019 CNN [125] MSD 89
2019 CRNN [55] Beatles 72
2019 GMM-DNN[127] Poetry corpus 86

Table 3.2: Summary of deep learning signature estimation methods

In another study conducted by Sander Dieleman et al. [41], an unsupervised pre-
training approach was employed using The Million Song Dataset. The learned parameters
from this pre-training phase were then transferred to a convolutional network. The network
architecture consisted of 24 input features, representing timbre properties of the audio as
shown in Figure 3.10. These features were fed into two separate input layers, one for
chroma characteristics and the other for timbre characteristics. Each input layer had
its own convolutional layer, and the outputs of these layers were then passed through
a max-pooling operation. The max-pooling layer was designed to be invariant to small
temporal shifts of less than one bar (up to 3 beats). This ensured that the network could
capture rhythmic patterns regardless of their precise temporal alignment. It is worth
noting that the study did not explicitly mention the accuracy in terms of time signature
classification since it was not the primary focus of their research. The main objective
was to investigate unsupervised pre-training and transfer learning using the convolutional

37

Chapter 3. Time Signature Detection

network architecture.

Figure 3.10: The convolutional neural network architecture block diagram with two kinds
of input features (chroma and timbre).

Downbeat detection, which involves tracking the meter at a higher metrical level, has
been explored in the field of music analysis. In the study by Srinivasamurthy et al. [143],
they investigated downbeat detection using deep learning features. Similarly, Durand and
Essid [43] proposed a random field method specifically for audio signal downbeat detec-
tion. To tackle the task, Durand and Essid incorporated four additional characteristics
related to harmony, rhythm, melody, and bass into the audio signal. They also separated
the signal into tatum-level segments. Adapted convolutional neural networks (CNN) were
then employed to learn features from each characteristic, capturing their specific prop-
erties. The networks’ final and/or penultimate layers were combined to create a feature
representation that described the observation feature functions. This representation was
then fed into a Markovian model known as a Conditional Random Field (CRF) to pro-
duce the downbeat series. The performance of the model was evaluated using statistical
tests such as Friedman’s test and Tukey’s honestly significant difference (HSD) criterion.
The results indicated an improvement in F-measure of approximately 0.9% when using
features from the last layer, with a 95% confidence interval.

Using waveform data as input, a deep learning strategy was used in the work by Pons
et al. in 2017 [123] to automatically categorize audio samples, including the estimation
of meter. They employed a convolutional neural network (CNN) architecture – a common
architecture for music genre classification as shown in Figure 3.11, which is frequently

38

Jeremiah Oluwagbemi Abimbola

applied to the categorization of musical genres.
Input, front-end, back-end, and output were the four key parts of the CNN architec-

ture employed in the study. The front-end component further examined the input spec-
trogram after the input component had processed the waveform data. The front-end was
a single-layer CNN with several filter shapes and two branches, with the upper branch
concentrating on timbral characteristics and the bottom branch concentrating on tem-
poral data. The shared back-end component included three convolutional layers with 512
filters each, along with two residual connections, two pooling layers, and a dense layer.

This back-end component played a crucial role in extracting relevant features from
the spectrogram data. Two models were combined in the study: one model utilized clas-
sical audio feature extraction methods with minimal assumptions, while the other model
focused on analyzing spectrograms. By integrating these models and leveraging musical
domain knowledge, the study successfully obtained meter tags. This approach demon-
strated the effectiveness of deep learning techniques in automatically categorizing audio
samples and estimating meter. By utilizing waveform data and a well-designed CNN archi-
tecture, they were able to extract meaningful features and obtain meter tags, showcasing
the importance of incorporating music domain knowledge when training data is limited.

Figure 3.11: A typical convolutional neural network architecture used for time signature
detection – audio signal processed into spectrogram which is an input to convolutional
layers, and then an outcome is an input to classical artificial neural network.

Sebastian Böck et al. in a similar research [19], demonstrated that tempo estimation
can be improved by incorporating a beat tracking process within a multi-task learning
algorithm. This approach takes advantage of the strong interconnections between tempo
estimation and beat tracking tasks, which has been successfully utilized in optimization
tasks in other research areas [167, 137]. The multi-task learning approach extends a beat
tracking system that utilizes temporal convolutional networks (TCNs). The output of
the beat tracking system is then fed into a tempo classification layer. Instead of using
raw audio as input, the authors employ dilated convolutions on a heavily sub-sampled
low-dimensional attribute representation. A 16-dimensional function vector is generated
by applying several convolution and max pooling operations to the log magnitude spec-
trogram of the input audio signal. The log magnitude spectrum is used because it aligns
with the frequency perception of the human ear [25, 34]. The spectrogram is computed

39

Chapter 3. Time Signature Detection

using a window size and FFT size of 2048 samples, with a hop size of 441 samples. The
convolutional layers in the network consist of 16 filters, with kernel sizes of 3× 3 for the
first two layers and 1× 8 for the final layer.

The performance of the proposed method was evaluated on various datasets that
contain beat and tempo annotations. The results were compared to reference systems
for both tasks. The findings indicate that the multi-task formulation achieves state-of-
the-art performance in both tempo estimation and beat tracking. Notably, significant
improvements were observed when the network was trained on tempo labels while largely
ignoring the beat annotations.

The underlying beat tracking system in this approach draws inspiration from two well-
known deep learning methods: the WaveNet model [100] and the latest advancements
in musical audio beat tracking, which employ a bi-directional long short-term memory
(BLSTM) recurrent architecture. To train the system, annotated beat training data were
represented as impulses at the same temporal resolution as the input features (i.e., 100
frames per second). Unlike other approaches that typically use a single dataset divided
into training and test sets, this study utilized different datasets for training and evaluation
purposes.

In the research conducted by Purwins et al. [125], the application of deep learning
techniques in audio signal processing was explored across various tasks, including beat
tracking, meter identification, downbeat tracking, key detection, melody extraction, chord
estimation, and tempo estimation. The study demonstrated the effectiveness of deep learn-
ing models in processing diverse audio sources such as speech, music, and environmental
sounds.

Unlike traditional signal processing approaches that often rely on Mel-Frequency Cep-
stral Coefficients (MFCCs) as the dominant feature, deep learning models in audio pro-
cessing commonly employ log-mel spectrograms as the primary input feature. The use of
log-mel spectrograms allows capturing important frequency and temporal information in
the audio signals. The study highlighted the advantages of convolutional neural networks
(CNNs) in this domain stating that they have a fixed receptive field, enabling them to
consider a specific temporal context for predictions. Moreover, the flexibility of CNNs
allows for easy adjustment of the context size, providing control over the level of tem-
poral information considered. Although the study did not explicitly state which specific
deep learning method outperformed the others, the choice of method often depends on
the nature of the data being analyzed. For example, in the analysis using the Million
Song Dataset, a 29-second log-mel spectrogram was reduced to a 1x1 feature map using
3x3 convolutions interleaved with max-pooling. This approach yielded a promising result,
achieving an AUC (Area Under the Curve) of 0.894, indicating good performance in the
task.

Rajan et al. [127] proposed a meter classification scheme utilizing musical texture

40

Jeremiah Oluwagbemi Abimbola

features (MTF) and employing both a deep neural network (DNN) and a hybrid Gaussian
mixture model-deep neural network (GMM-DNN) framework. The performance of the
proposed system was evaluated using a newly created poetry corpus in Malayalam, one of
the widely spoken languages in India. The system’s performance was compared to that of a
support vector machine (SVM) classifier. To extract the features, the authors employed a
combination of 13-dimensional Mel-frequency cepstral coefficients (MFCCs) with a frame
size of 40ms and a frame shift of 10ms, along with seven additional features: spectral
centroid, spectral roll-off, spectral flux, zero-crossing rate, low energy, root mean square
(RMS), and spectrum energy. For the neural network architecture, rectified linear units
(ReLUs) were selected as the activation function for the hidden layers, while the softmax
function was used for the output layer. The hybrid GMM-DNN framework achieved an
accuracy of 86.66% in meter classification. The individual accuracies for the DNN and
GMM-DNN models were 85.83% and 86.66%, respectively.

Fuentes et al. [55], showed that Convolutional Recurrent Neural Network (CRNN)
can make significant improve in the performance of meter detection. A combination of
non-machine learning and deep learning approaches was used to estimate downbeats and
extract the time signature of music. The deep learning approach was a combination of
convolutional and recurrent networks proposed in their previous work [54]. The Beatles
dataset, known for its well-annotated features such as beats and downbeats, was utilized
in this study. The researchers considered a set of labels, denoted as Y, which represented
the beat positions within a bar. They specifically focused on bar lengths of 3 and 4 beats,
corresponding to 3

4 and 4
4 meters commonly found in music. The output labels, y, were

determined by two variables: b ∈ B = {1, . . . , bmax(r)}, and the number of beats per
bar r ∈ R = {r1, . . . , rn}. The beat length relates to the time signature of the musical
piece. The model achieved a certain level of success in downbeat tracking, but it faced
challenges in identifying rare music variations that deviated from the global time signature
consistently. For instance, the model tended to estimate more pieces with a and 4

4 time
signature than 3

4 . Despite this limitation, the model demonstrated an improvement in
downbeat tracking performance, as indicated by the mean F-measure increasing from
0.35 to 0.72.

In conclusion, the studies presented in this chapter have shed light on various ap-
proaches and techniques used for different aspects of music analysis, including beat track-
ing, meter identification, tempo estimation, downbeat detection, and meter classification.
The use of deep learning methods, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), has proven to be effective in tackling these tasks.
These models leverage the power of large-scale data processing and feature extraction
from audio signals, allowing for more accurate and efficient analysis. Additionally, the
combination of different approaches, such as incorporating non-machine learning tech-
niques alongside deep learning, has shown promising results. Hybrid models, such as the

41

Chapter 3. Time Signature Detection

GMM-DNN framework, have demonstrated improved performance in meter classification.
Furthermore, the choice of input features plays a crucial role in the success of these mod-
els. While traditional signal processing techniques, like MFCCs, have been widely used,
deep learning models often rely on log-mel spectrograms due to their ability to capture
relevant audio features. It is important to note that these studies have focused on differ-
ent musical genres, languages, and datasets, showcasing the versatility and adaptability
of these methods across various musical contexts.

Overall, the findings suggest that deep learning techniques, when combined with ap-
propriate feature extraction and modeling strategies, offer great potential for advancing
the field of music analysis. These methods have demonstrated improved accuracy and
efficiency in tasks related to beat tracking, meter identification, and tempo estimation,
contributing to a deeper understanding of music structure and facilitating applications in
fields such as music recommendation, genre classification, and music production.

42

Chapter 4

Machine Learning Methods

4.1 Introduction

Machine learning methods have revolutionized various fields [44, 81, 145] by offering
sophisticated techniques [139, 141] for data analysis [108] and pattern recognition [16].
Among the diverse applications of machine learning, one particularly compelling area is
music time signature detection. This task involves identifying the time signature of a
piece of music, which is a crucial aspect of understanding its rhythmic structure. Time
signatures, such as 4

4 , 3
4 , or 5

4 , dictate the underlying beat and are fundamental to how
music is composed, performed, and interpreted. Machine learning models can analyze large
datasets of musical pieces to detect patterns and regularities, thereby enabling accurate
time signature identification. This process not only enhances music transcription and
analysis but also opens new avenues in music generation and recommendation systems.

The application of machine learning to music time signature detection exemplifies the
intersection of technology and art. By leveraging algorithms that can learn from data,
researchers and developers can create systems that mimic human-like understanding of
musical rhythm. This involves training models on annotated music datasets where the
time signatures are known, allowing the algorithms to learn the intricate relationships
between the audio features and the rhythmic patterns. The models considered in this
study, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Naive
Bayes, Random Forest, Convolutional Neural Networks (CNN), Convolutional Recurrent
Neural Networks (CRNN), Residual Networks, and Residual Networks-LSTM, represent
a range of approaches from traditional machine learning to advanced deep learning tech-
niques.

43

Chapter 4. Machine Learning Methods

4.2 Classic Machine Learning Models

Classic machine learning models, such as KNN, SVM, Naive Bayes, and Random
Forest, rely on well-established statistical techniques to analyze and classify data. These
models excel at making predictions based on structured data and are particularly effective
when there is a clear relationship between input features and output labels.

4.2.1 Support Vector Machine

SVMs, as mentioned in this study, use a kernel approach to transform the input data
into a higher-dimensional space [31]. This transformation allows for linear separation of
the data using a hyperplane. The goal is to find the hyperplane that maximizes the
margin between different classes. In this study, an radial basis function (RBF) kernel is
specifically used with SVM to address non-linear classification problems. The RBF kernel
allows SVM to capture complex relationships between data points by mapping them into
a higher-dimensional space. By using the RBF kernel, the SVM can effectively classify
data that is not linearly separable.

4.2.2 Random Forest

Random Forest is an ensemble learning method that combines multiple decision trees
to make predictions. It incorporates two key concepts: bootstrap aggregation (bagging)
and random feature selection [22]. Bagging involves training each decision tree on a ran-
domly selected subset of the training samples, allowing for diversity in the training pro-
cess. Additionally, during the construction of each tree, only a random subset of features
is considered for making decisions. This further promotes diversity among the trees in the
ensemble. To make predictions, each tree in the Random Forest independently classifies
the input data, and the class with the majority of votes from the individual trees is se-
lected as the final predicted class. By combining the decisions of multiple trees, Random
Forest can provide more robust and accurate predictions compared to a single decision
tree.

4.2.3 KNN

The k-Nearest Neighbors (KNN) classifier is a simple machine learning technique used
for classification tasks. It determines the label of a test instance based on the labels of its k
nearest neighbors in the feature space. The concept behind KNN is that similar instances
tend to belong to the same class. One advantage of KNN is its ability to capture both
direct and indirect relationships in the data, as it does not assume any specific functional
form. This makes KNN a non-linear classifier. The notion of "nearness" in KNN is defined
by a distance metric, such as the Minkowski distance [117]. The Minkowski distance metric

44

Jeremiah Oluwagbemi Abimbola

generalizes different distance measures, including the Euclidean distance when p = 2. The
Euclidean distance as shown in Equation 4.1 is commonly used in KNN, as it calculates
the straight-line distance between two points in the feature space as show in the equation
below. By considering the labels of the k nearest neighbors, KNN assigns the class label
that occurs most frequently among those neighbors to the test instance. This majority
voting process determines the final classification of the test instance.

EUC(P, Q) =

√√√√ d∑
i=1

(pi − qi)2· (4.1)

4.2.4 Naive Bayes

The Naive Bayes method is a probabilistic supervised learning technique that classifies
by computing the initial probabilities from the data in the dataset and categorizes the
new data in accordance with this model. It is an algorithm that can be used to a variety
of issues since it is compatible with all types of data and just needs basic statistical
computations [80, 45].

The Naive Bayes method is a probabilistic supervised learning technique used for
classification tasks. It applies Bayes’ theorem to compute the posterior probability of
a class given the feature values of an instance. The "Naive" assumption in Naive Bayes
refers to the assumption of feature independence, meaning that each feature is assumed to
contribute independently to the probability calculation. Naive Bayes classifiers are known
for their simplicity and efficiency. They are suitable for a variety of problem domains
and can handle different types of data, including categorical and numerical data. The
algorithm requires basic statistical computations, such as calculating probabilities based
on the training data [80].

To classify a new instance, it computes the initial probabilities of each class based
on the frequency of class labels in the training data. Then, it calculates the likelihood of
the feature values given each class. The final classification is determined by selecting the
class with the highest posterior probability[45]. Due to its simplicity and ability to handle
various data types, Naive Bayes is often used as a baseline classifier for comparison with
more complex models. While the assumption of feature independence may not hold in
all cases, Naive Bayes can still provide reasonable classification results, especially when
the independence assumption is approximately met or when there is a large amount of
training data.

4.3 Deep Learning Methods

Deep learning models, including CNN, CRNN, RESNET, and RESNET-LSTM, lever-
age multi-layered neural networks to automatically learn complex patterns in large data-

45

Chapter 4. Machine Learning Methods

sets. These models are particularly powerful for tasks involving unstructured data, such
as image and audio analysis, where they can extract and represent intricate features with
high accuracy. CNNs, characterized by their ability to capture spatial hierarchies in data
through convolutional layers, have been instrumental in advancing image understanding
tasks. CRNNs extend the capabilities of CNNs by incorporating recurrent layers, enabling
them to model sequential data such as audio spectrograms. ResNets introduced skip con-
nections to alleviate the vanishing gradient problem, enabling the training of much deeper
neural networks and achieving state-of-the-art performance in image classification tasks.
We leverage ResNets combined with LSTM networks to handle sequential data with long-
term dependencies, such as audio signals or time series data. In this section, we discuss the
theoretical underpinnings of each deep learning method, discuss their architectural design
principles, and explore their practical applications in real-world scenarios. By examining
and comparing the performance of CNNs, CRNNs, ResNets, and ResNet-LSTM hybrids
across different tasks.

For all the models, certain network layers are common such as the convolutional,
pooling, activation function, LSTM and the softmax layers

Convolutional Layer

The foundation of a CNN is a convolution layer. It includes a collection of filters that
can be learned (also known as kernels). The filter’s spatial range is restricted by its physical
dimensions. In this situation, a convolution operation is essentially a sum of the filtered
features and an element-wise multiplication. By standard, three to four convolutional
layers can be used consisting of an even number of filters. The filter size and number
are design decisions. A stack of filtered features is produced after the image/raw input
data has been convoluted with a number of filters or kernels. This will serve as the input
for the following layer. The mathematical equation for the convolution operation can be
represented as follows:

Convolution(x, w)i,j =
∑
m

∑
n

xi+m,j+n · wm,n (4.2)

where Convolution(x, w) represents the result of the convolution operation, x represents
the input matrix, w represents the filter or kernel, and i, j, m, and n are the indices of the
elements in the matrices.

MaxPooling

MaxPooling is a down-sampling operation that reduces the spatial dimensions of the
feature maps. It selects the maximum value within a window and discards the other values.
This helps to capture the most important features while reducing the computational

46

Jeremiah Oluwagbemi Abimbola

complexity.

LSTM Layers

The LSTM (Long Short-Term Memory) layers are a type of Recurrent Neural Net-
works(RNN) that can effectively model sequential data by preserving information over
long time steps. The LSTM units are responsible for learning and remembering relevant
information from previous time steps and using it to make predictions.

Activation Function

A convolution layer’s output activations are linear in nature. To accomplish non-
linear transformation, these activations are routed via a non-linear function. Most often,
the Rectified Linear Unit (ReLu) layer serves as an activation function for the output of
earlier layers. If the input value is negative, this layer returns zero, and if it is positive, it
returns the same value. The ReLU function is defined as follows:

ReLU(x) = max(0, x) (4.3)

Softmax Layer

An n-dimensional input vector of real values is transformed into probabilities for each
class using a softmax layer given by the equation below. These probabilities are sub-
sequently applied to identify the target class for a particular input. The estimated prob-
abilities for the softmax function are in the range of 0 to 1, and they all add up to 1.

softmax(xi) = exi∑
j exj

(4.4)

4.3.1 Convolutional Neural Network

CNNs are designed to process and analyze visual data by automatically learning spa-
tial hierarchies of features through a series of convolutional layers. Each convolutional
layer applies a set of learnable filters to the input, capturing various patterns such as
edges, textures, and shapes. These filtered features are then passed through activation
functions, typically ReLU, to introduce non-linearity and enable the network to learn
complex representations. MaxPooling layers are used to down-sample the spatial dimen-
sions, reducing the computational load and emphasizing the most salient features. The
final layers of the CNN often include fully connected layers and a softmax layer to output
class probabilities. In the context of time signature detection, CNNs are particularly ef-
fective at identifying rhythmic patterns and structures in audio spectrograms, leveraging

47

Chapter 4. Machine Learning Methods

their ability to capture local dependencies and hierarchical information within the input
data. The CNN architecture used in this study is illustrated in Figure 4.1.

Figure 4.1: A CNN architecture for time signature

4.3.2 Convolutional Recurrent Neural Network (CRNN)

The CRNN architecture combines the strengths of both Convolutional Neural Net-
works and Recurrent Neural Networks. It leverages the CNN’s ability to extract local
features and the RNN’s capability to capture temporal dependencies. Let’s assume we
have an input MFCC feature sequence of length T, denoted as X = (x1, x2, ..., xT), where
each xt represents a single MFCC feature vector, This formulation allows us to process
sequential data using the defined sequence of feature vectors X.

Model Architecture

The CRNN as shown in the 4.2 contains convolutional layers which have been explained
earlier in the CNN architecture. Therefore, the most important layer here is the recurrent
layer. To capture temporal dependencies in the MFCC sequence, recurrent layers are
employed. Gated Recurrent Units (GRUs) or Long Short-Term Memory (LSTM) units
are commonly used recurrent units. In this case, the LSTM is preferred. The output of
the recurrent layer at each time step is computed based on the current input and the
previous hidden state:

Outputt = RecurrentUnit(Pooling Layer Outputt, Recurrent Layer Outputt−1) (4.5)

A better explanation can be seen in Figure 4.3. The recurrent state in a recurrent neural
network (RNN) is updated at each time step and carries information from previous time
steps to the current time step. In the case of the convolutional recurrent neural network

48

Jeremiah Oluwagbemi Abimbola

Figure 4.2: Model diagram of the CRNN architecture

49

Chapter 4. Machine Learning Methods

Figure 4.3: Model diagram of the recurrent state

(CRNN), the recurrent state is updated using the tanh and sigmoid activation functions
as seen in Equation 4.6

ht = tanh(Wh · ht−1 + Wx · xt + bh) (4.6)

In this equation, Wh is the weight matrix for the recurrent state, Wx is the weight
matrix for the current input xt and bh is the bias term. The dot (.) represents the matrix
multiplication operation. The tanh function is applied element-wise to the sum of the
weighted recurrent state from the previous time step and the weighted current input. It
squashes the values between -1 and 1, allowing the recurrent state to capture both positive
and negative information.

Additionally, the CRNN uses a sigmoid function to control the flow of information from
the current input to the recurrent state. This is done through a gating mechanism called
the "update gate" or "input gate". The update gate determines how much information from
the current input should be incorporated into the recurrent state. The update equation
for the update gate can be written as follows:

σu = sigmoid(Wu · xt + bu) (4.7)

where σu presents the update gate, Wu is the weight matrix for the update gate, and bu

is the bias term. The sigmoid function squashes the values between 0 and 1, representing
the amount of information to be updated. The update gate is then used to combine the
previous recurrent state with the updated information, resulting in the final recurrent
state:

ht = σu ⊙ ht−1 + (1− σu)⊙ tanh(Wh · ht−1 + Wx · xt + bh) (4.8)

50

Jeremiah Oluwagbemi Abimbola

The update gate controls the contribution of the previous recurrent state and the updated
information, allowing the model to selectively update the recurrent state based on the
current input.

LSTM Layers

The LSTM layers are added after the convolutional layers in the CRNN model, allowing
the model to capture both local and temporal features in the input data.

4.3.3 Residual Network (ResNet)

Residual Network, also known as ResNet, is a deep learning architecture that revolu-
tionized the field of image classification. It was first introduced by researchers Kaiming
He et al. from Microsoft Research in their seminal paper titled "Deep Residual Learning
for Image Recognition" [70]. The motivation behind ResNet’s development was to address
the problem of degradation in very deep neural networks. Conventionally, it was believed
that increasing the depth of a neural network would lead to better performance. However,
the researchers discovered that as the network gets deeper, the accuracy starts saturating
and then degrades rapidly. This degradation phenomenon occurs due to the difficulty of
training deeper networks, where the optimization process becomes more challenging.

To overcome this degradation problem, they proposed a novel architecture based on
the concept of residual learning. The core idea behind ResNet is the introduction of
residual blocks, which allow for the direct propagation of information from earlier layers
to later layers. This concept of "shortcut connections" enables the network to learn residual
mappings, capturing the difference between the input and the desired output. The residual
block in ResNet consists of a skip connection, also known as an identity mapping, that
bypasses one or more convolutional layers. By adding the input to the output of the
convolutional layers, the network can learn to focus on the residual information, i.e., the
difference between the input and output, rather than attempting to directly learn the
desired mapping from scratch. This alleviates the optimization difficulties associated with
training deep networks by enabling faster and more efficient gradient propagation.

ResNet introduced the concept of "skip connections" and "identity mappings" as a
breakthrough in deep learning. These skip connections not only mitigate the vanishing
gradient problem but also help in preserving information throughout the network. The
skip connections allow gradients to flow easily back through the network, facilitating the
training of very deep models as shown in Figure 4.4. Rather than relying on the assump-
tion that consecutive stacked layers will directly learn the desired underlying mapping,
the ResNet architecture introduces residual mappings. This is achieved by utilizing short-
cut connections in feed-forward neural networks. The formulation of F (x) + x allows the
network to learn residual mappings by adding the original input (x) to the transformed

51

Chapter 4. Machine Learning Methods

output (F (x)). This approach enables the network to focus on learning the residual map-
ping rather than trying to learn the entire mapping from scratch.

Its effectiveness in image classification has been demonstrated through its outstanding
performance on benchmark datasets such as ImageNet[40], where it achieved state-of-the-
art accuracy. By leveraging its ability to train very deep networks effectively, ResNet has
significantly advanced the field of image classification. It has provided a foundation for
subsequent developments in deep learning, particularly in computer vision tasks, and has
become a standard architecture used as a benchmark for evaluating new methods. Its
usefulness extends beyond image classification. The residual learning concept has been
adopted and adapted in various other domains, including object detection, semantic seg-
mentation, and image generation. The key benefit of ResNet is its ability to capture and
represent complex features through its deep architecture, allowing for more accurate and
robust predictions.

Figure 4.4: Skip connection in the ResNet architecture [70]

In terms of implementation, ResNet can be realized through various network architec-
tures, including ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152, where
the numbers represent the depth of the network in terms of layers. Deeper ResNet variants
are achieved by stacking more residual blocks. Table 4.1 has the full summary.

4.3.4 Residual Network-LSTM

The RESNET-LSTM architecture builds upon the ResNet model, incorporating LSTM
layers to capture temporal dependencies in the data. This modified architecture removes
the global average pooling layer and the last softmax layer with 1000 output size, making
it suitable for tasks that require sequence modeling and prediction as shown in Figure 4.5

In the original ResNet architecture, the global average pooling layer is typically used to
aggregate spatial information from the convolutional layers before the final classification

52

Jeremiah Oluwagbemi Abimbola

Layer name Output Size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112x112 7x7, 64, stride 2

3×3 max pool, stride 2

conv2_x 56×56
[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3_x 28×28
[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 8

conv4_x 14×14
[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 36

conv5_x 7×7
[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1x1 average pool, 1000-d fc, softmax
FLOPS 1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

Table 4.1: The architectures for residual networks, (building blocks indicated in brackets),
with the numbers of blocks stacked, and down-sampling is achieved by conv3, conv4, and
conv5, with a stride of 2

layer. However, in the RESNET-LSTM architecture, this pooling layer is removed and
allow for sequential modeling. By retaining the spatial information, the model can capture
temporal dependencies and patterns within the data. To introduce temporal modeling, two
LSTM layers are added after the last convolutional layer, conv5_x. LSTM (Long Short-
Term Memory) is a type of recurrent neural network (RNN) architecture that is well-suited
for sequential data analysis. The LSTM layers enable the model to learn and capture long-
range dependencies in the input sequence. After the LSTM layers, the original global
average pooling layer is reinstated. The global average pooling layer reduces the spatial
dimensions of the features obtained from the LSTM layers to a fixed-size representation.
This pooling operation helps to summarize the temporal information learned by the LSTM
layers.

Finally, the linear layers similar to the ones used in the original ResNet model are
re-used in the RESNET-LSTM architecture. These linear layers serve as the classifier,
transforming the fixed-size representation obtained from the global average pooling layer
into the desired output size, which corresponds to the number of target classes. Further
details of the architecture can be found below;

4.4 Summary

To sum up, in the chapter, various techniques for music time signature detection
were explored, utilizing both classic machine learning models and deep learning methods.
The study highlighted the application of these techniques in analyzing music datasets
to identify the rhythmic structures defined by time signatures like 4

4 , 3
4 , and 5

4 . Classic
machine learning models such as SVM, Random Forest, KNN, and Naive Bayes were
discussed for their effectiveness in structured data classification tasks. SVMs, leveraging

53

Chapter 4. Machine Learning Methods

Figure 4.5: The ResNet-LSTM architecture

radial basis function kernels, excel in nonlinear classification, while Random Forests util-
ize ensemble learning to combine multiple decision trees for robust predictions. KNN,
relying on distance metrics like the Euclidean distance, and Naive Bayes, assuming fea-
ture independence, serve as baseline classifiers for comparison. Deep learning models like
CNN, CRNN, (RESNETs), and RESNET-LSTM were also highlighted. These models
were considered to enhance music transcription and analysis by automatically detecting
time signatures from audio data.

54

Chapter 5

Creation of the METER2800 Dataset

5.1 Introduction

Choosing the right dataset is crucial in classification, estimation, or detection projects.
It’s not always an easy decision as there are various datasets to choose from, each with
its own strengths and limitations. The chosen dataset can greatly impact the outcome of
the project. The availability of audio datasets plays a significant role in the development
and evaluation of algorithms for time signature detection in Music Information Retrieval.
These datasets enable researchers to train machine learning models effectively, leading to
improved performance. However, creating such audio datasets is a challenging and time-
consuming task. It involves various steps such as sorting, annotating, and processing audio
files, requiring significant resources and expertise. Before the creation of the Meter2800,
there was no dataset that was manually annotated for the purpose of time signature
detection. To bridge this gap and facilitate further research, the Meter2800 dataset was
developed which is a significant part of this PhD dissertation. We published this dataset to
Harvard Dataverse [2] and also in the Data-In-Brief Journal [3]. Additionally, we extracted
some low level acoustic features which are stored in separate csv files. More details can
be found in the section 5.4.

Over the years, there has been a shift towards creating more comprehensive and diverse
datasets, moving away from simpler ones. Researchers have put efforts into providing
larger and more robust datasets to support their work. The importance of dataset selection
cannot be underestimated, and it plays a significant role in the success of a project.
As illustrated in Table 5.1, efforts to provide larger and more diversified datasets have
replaced earlier attempts to collect robust and well-balanced datasets.

55

Chapter 5. Creation of the METER2800 Dataset

Dataset Name Year Created Number of Samples Sample Type

RWC [60] 2002 365 Audio
CAL500 [150] 2008 502 MIDI
GZTAN [153] 2002 1,000 Audio
USPOP [149] 2002 8,752 MIDI
Swat10K [148] 2010 10,870 MIDI
MagnaTagATune [92] 2009 25,863 Audio
FMA [37] 2016 106,574 Audio
MusicCLEF [133] 2012 200,000 Audio
MSD [15] 2011 1,000,000 CSV

Table 5.1: Datasets and their statistics.

5.2 Deep Dive into Datasets Created Earlier

The RWC dataset, introduced by Goto et al. [60], played a significant role in the early
stages of academic research on music datasets. It was one of the first datasets specifically
compiled for academic purposes, following the trend of shared libraries in other scholarly
fields. The dataset consists of six distinct collections, each focusing on a different genre
or aspect of music. These collections include popular music, royalty-free music, classical
music, jazz music, music genres, and musical instrument sounds. In total, the dataset
comprises 365 musical pieces with accompanying audio signals, regular MIDI archives,
and text files containing lyrics. One notable aspect of the RWC dataset is its inclusion
of individual sounds at half-tone intervals, featuring a wide range of playing techniques,
dynamics, instrument makers, and musicians. This comprehensive representation allowed
researchers to explore various aspects of music analysis and classification. However, it
is important to note that the RWC dataset has some limitations. One drawback is its
relatively small size, which may restrict the ability to generalize results. Additionally,
the dataset is considered unbalanced, meaning that it may not adequately represent the
diversity and distribution of real-world music data. Despite these limitations, the RWC
dataset served as a valuable starting point for researchers to test and analyze different
methodologies and algorithms in the field of music classification and analysis.

In 2008, Ju-Chiang Wang et al. [150] developed the CAL500 dataset as an enhance-
ment of the previous RWC datasets for music auto-tagging purposes. This dataset aimed
to improve upon the limitations of the RWC dataset, featuring a larger collection of ap-
proximately 502 songs. However, it’s worth noting that the audio files themselves are
not included in the dataset, which could limit its usability for certain applications. One
notable difference in the CAL500 dataset is that the tag labels are annotated at the seg-
ment level, rather than the track level. This means that instead of assigning tags to an
entire song, tags are provided for specific segments within each song. While this granular
annotation approach can provide more detailed information about the audio content, it’s

56

Jeremiah Oluwagbemi Abimbola

important to consider the implications of segment-level annotations for certain analysis
tasks. Despite the efforts to enhance the dataset, the CAL500 dataset still has limitations.
The relatively small size of 502 songs may not be sufficient to achieve highly accurate res-
ults for music auto-tagging. Having a larger and more diverse dataset is often crucial for
training robust machine learning models and achieving better performance in auto-tagging
tasks. Researchers in the field continue to explore and develop new datasets that address
these limitations and provide more comprehensive resources for music auto-tagging and
related applications.

When discussing datasets in the field of music information retrieval, it’s impossible
not to mention the GTZAN dataset collected by G. Tzanetakis and P. Cook [153]. This
dataset has become incredibly popular and influential within the research community. It
consists of 1000 song excerpts, each lasting 30 seconds and sampled at a rate of 22050 Hz
with 16-bit resolution. The excerpts were sourced from a variety of channels, including
personal CDs, radio recordings, and microphone captures. The GTZAN dataset stands
out due to its careful curation and organization. The songs are evenly distributed across
ten distinct genres, namely Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop,
Reggae, and Rock. This balanced representation allows researchers to explore music genre
classification tasks effectively. Consequently, since its release in 2002, the GTZAN dataset
has been widely adopted and referenced in numerous studies on music genre analysis.
The dataset’s popularity and established reputation make it an authoritative reference
point for comparing and validating research results. Many researchers have utilized the
GTZAN dataset as a benchmark for evaluating the performance of various music genre
classification algorithms mention in the previous chapter. Its extensive usage has created
a common ground for comparing different methods and techniques. However, despite its
widespread usage, the GTZAN dataset does have certain limitations. The most notable
drawback is its relatively small size. With only 1000 song excerpts, some researchers argue
that the dataset may not capture the full diversity and complexity of music in the real
world. As a result, the ability to generalize results from models trained on the GTZAN
dataset could be limited. Nevertheless, it continues to serve as an essential resource for
music genre classification research, while efforts are made to develop larger and more
diverse datasets to address these limitations.

Another notable dataset in the field of music information retrieval is USPOP, created
by Mandel and Ellis [149]. USPOP focuses exclusively on popular artists and comprises a
collection of over 8752 audio songs. However, it’s important to note that the raw audio files
are not provided as part of the dataset, limiting its potential applications. While USPOP
offers a substantial number of songs for analysis, there are concerns regarding its skewed
nature. Skewed datasets, where certain categories or classes are over-represented compared
to others, can introduce biases and impact the performance of algorithms trained on them.
Various studies [89, 136, 98] have highlighted the importance of addressing skewness in

57

Chapter 5. Creation of the METER2800 Dataset

datasets and its potential effects on the accuracy and reliability of the solutions they
are applied to. The skewed distribution of popular artists in this dataset raises questions
about how well it represents a larger music landscape. It may not accurately capture the
diversity of musical genres and styles, limiting its applicability in tasks that require a
comprehensive understanding of music beyond popular artists. Therefore, caution must
be exercised when using it as a benchmark or reference for evaluating algorithms and
methodologies in music classification and analysis.

The Beatles dataset, introduced by Chris Harte in 2010 [69], is a valuable resource
for music analysis and research. It focuses specifically on the music of the iconic band,
the Beatles, and consists of 180 meticulously annotated songs by musicologist Alan W.
Pollack. The dataset provides detailed insights into the structural elements and charac-
teristics of each song, with section-level annotations for an average of 10 distinct sections
representing 5 different section types per recording. The Beatles dataset has had a signi-
ficant impact on the field of music research and analysis. It played a pivotal role in the
creation of the Million Song Dataset, a comprehensive collection of audio and metadata
from diverse musical sources. By incorporating the well-annotated Beatles songs into this
larger dataset, researchers gained access to a rich resource for studying not only the
Beatles’ music but also broader patterns and trends in music.

The SWAT10K dataset, also known as the Semantic Web Audio Tagging 10K dataset,
is a notable collection of audio songs. It consists of 10,870 songs that were obtained from
the Echo Nest API in collaboration with Pandora, a popular music streaming service. The
dataset features weakly-labeled annotations using a tag vocabulary of 475 acoustic tags
and 153 genre tags. However, the actual audio files are not included in the dataset. The
Echo Nest, based in Somerville, MA, is a music intelligence and data platform that was
acquired by Spotify in 2014. It originated as a spin-off from the MIT Media Lab, focus-
ing on the analysis of auditory and textual content in recorded music. The Echo Nest’s
APIs offer various functionalities, including music recognition, recommendation, playlist
creation, audio fingerprinting, and analysis, catering to both consumers and developers.
Pandora, on the other hand, is a subscription-based music streaming service known for
its suggestions based on the "Music Genome Project," a method of categorizing individual
songs based on their musical characteristics.

Similarly, MagnaTagATune [92], another dataset based on the Echo Nest API, provides
25,863 audio files in a CSV format. It offers a rich collection of songs that can be used for
various research purposes. The MusicCLEF dataset [133] which includes 200,000 audio
songs is also worth mentioning because it was specifically designed for research purposes.
It provides a substantial resource for studying and exploring popular music.

The Free Music Archive (FMA) dataset, introduced by Defferrard et al. [37], is a vast
collection of music tracks with accompanying genre labels. With over 100,000 tracks, the
dataset provides a diverse range of musical styles and genres for analysis. Researchers can

58

Jeremiah Oluwagbemi Abimbola

access different variations of the dataset, such as the small version consisting of 8,000
30-second samples, or the full version containing all 106,574 songs in their complete form.
One notable advantage of the FMA dataset is its size, which allows for more comprehens-
ive labeling and analysis. With a large number of tracks, the opportunity to explore a
wide range of musical genres and study their characteristics is granted. Additionally, the
availability of audio files for download enables direct extraction of features from the audio
itself, enhancing the accuracy and relevance of the analysis.

The Million Song Dataset (MSD) [15] is an extensive collection of audio features and
metadata for one million contemporary songs. As the name suggests, the dataset provides
a wealth of information on a wide range of tracks. It encompasses various details such
as the release year, artist information, terms associated with the artist, related artists,
danceability, energy, song length, beats, tempo, loudness, and time signature. While the
dataset includes comprehensive metadata and derived features for all one million songs,
it’s important to note that full audio files with proper tag annotations are only available for
approximately 240,000 previews of 30 seconds [123]. However, the metadata and derived
features still offer valuable insights into the songs’ characteristics and allow for analysis
at a broader level.

After considering the advantages and limitations of various datasets, two datasets
stand out as particularly useful for the purpose of time signature extraction: the FMA and
the MSD, both of which are derived from the Echo Nest API. Both the FMA and the MSD
offer a substantial collection of songs with associated metadata, including information
relevant to time signature extraction. However, it’s worth noting that the metadata in the
MSD has been pre-processed, which means that the specific details of how the processing
was carried out are not readily available. Nevertheless, there is a confidence level associated
with the extracted data, providing some indication of the reliability of the time signature
information. The FMA dataset, on the other hand, offers a comprehensive set of audio
features and metadata for a large number of tracks, including genre labels and other
relevant information. The availability of audio files in this dataset allows for direct feature
extraction from the audio, which can be advantageous for time signature analysis.

Despite their benefits, these datasets have significant shortcomings. The Million Song
Dataset, for instance, provides estimated time signatures that were computed using al-
gorithms and techniques applied to audio signals, rather than being directly annotated or
labeled by experts. This distinction is crucial because computed time signatures may in-
troduce errors or inaccuracies due to the complexity of the estimation process. Moreover,
the MSD does not include the actual audio files used for time signature estimation, further
limiting the dataset’s usability and transparency as researchers cannot directly access and
analyze the audio recordings themselves.

59

Chapter 5. Creation of the METER2800 Dataset

5.3 The Meter2800

To address the limitations already mentioned above, the Meter2800 dataset was cre-
ated. The Meter2800 dataset was curated by annotating audio files from three well-
known existing datasets: GTZAN, FMA-medium, and MagnaTagATune. Additionally,
other audio files focusing on irregular time signatures were included. This dataset is spe-
cifically designed for time signature detection and is openly accessible to researchers at
https://bit.ly/meter2800. By combining the three aforementioned datasets, we cur-
ated a comprehensive collection of audio recordings with accompanying annotations for
time signature information. The Meter2800 dataset offers a standardized and diverse set
of audio samples, covering a wide range of musical genres and styles. It aims to support
the development of robust and versatile time signature detection algorithms by providing
a rich and representative collection of annotated audio data. We are convinced that it will
provide researchers with a valuable resource to train and evaluate their time signature
detection algorithms and to validate the accuracy and reliability of their models. Before
the creation of the this dataset, MIR researchers faced a lack of dedicated resources for
their studies, making this dataset a significant contribution to the field.

5.3.1 Method of Creation

The creation process of the Meter2800 dataset involved several meticulous steps. Here
is an overview of how the dataset was curated:

• Selection of Audio Files: A diverse set of audio files representing various musical
genres and styles were chosen for inclusion in the dataset. Care was taken to ensure
that the dataset covers a wide range of musical compositions.

• Expert Annotation: We carefully listened to each audio track, focusing on identifying
the time signature, which indicates the meter or rhythmic structure of the music.
Multiple listens were conducted to ensure accurate annotation.

• Time Signature Extraction: Once the time signature for each track was determined,
we recorded this information along with other relevant metadata, such as the musical
tempo. To facilitate the analysis, the tempo and extracted features were processed
using the librosa [102] library, which is a popular tool for audio and music signal
analysis in Python.

• Data Cleaning and Pre-processing: The annotated data underwent a thorough clean-
ing and pre-processing stage. This step involved removing any duplicate or erroneous
entries to ensure data consistency and quality. The data was also converted into a
standardized format, making it easily accessible and compatible for further analysis
and modeling.

60

Jeremiah Oluwagbemi Abimbola

This dataset has been meticulously organized to facilitate easy access and utilization
by researchers. Since the dataset is a combination of three well-known datasets, the audio
files from each individual dataset are stored in separate folders within the Meter2800
dataset. Specifically, the audio files from the GTZAN dataset are grouped together in
a folder named "GTZAN." Similarly, the audio files from the FMA dataset are stored
in a folder named "FMA," and the audio files from the MagnaTagATune dataset can be
found in the "MAG" folder. Additionally, any additional audio files obtained from personal
sources are placed in the "OWN" folder. This folder structure allows researchers to easily
locate and extract audio files from the specific datasets they are interested in.

To provide an overview of the dataset, Table 5.2 summarizes the number of files
contained within each folder, indicating the distribution of data from each source. Fur-
thermore, the annotated data in the Meter2800 dataset is divided into separate train and
test sets. The annotations, along with the relevant metadata, are stored in CSV files. This
separation into train and test sets enables researchers to perform accurate evaluations and
assessments of their algorithms by training on a designated portion of the dataset and
testing on another.

Data Source Number of files Annotated Train Test
FMA 851 598 253

GTZAN 911 632 279
MAG 925 652 273
OWN 113 78 35

Table 5.2: Summary of data source and annotated files for meter2800 dataset

The dataset comprises 2800 annotated audio samples, each with a duration of 30
seconds. It is categorized into four meter classes. However, there is an uneven distribu-
tion of data among these classes as summarized in Table 5.3. Classes 3 and 4 contain
1200 audio samples each, while classes 5 and 7 have 200 audio samples each. This imbal-
ance in distribution is a result of the contributing datasets, such as GTZAN, FMA, and
MagnaTagATune, which predominantly feature popular music genres like hip-hop, rock,
and pop [21]. These popular genres often exhibit simple beat counts, which are easier to
estimate. Consequently, the majority of audio tracks in these datasets have meter numer-
ator values of 2, 3, and 4. On the other hand, audio tracks with irregular meters are less
common and pose a greater challenge for detection. This scarcity of irregular meter tracks
contributes to the dataset’s uneven distribution.

It is worth noting that for simple duple and quadruple meters (e.g., 2
4 and 4

4), the
meter class is recorded as "four." Similarly, for simple triple meters (e.g., 3

4), the class
is recorded as "three." The same principle applies to irregular meters, with the classes
recorded as "five" and "seven."

61

Chapter 5. Creation of the METER2800 Dataset

Class Number of files Annotated
3 1200
4 1200
5 200
7 200

Table 5.3: Summary of annotated files by class for meter2800 dataset

Figure 5.1: Scatter plot of tempo and meter

5.3.2 Data Analysis

The relationship between meter and tempo was investigated using the Meter2800 data-
set and the distribution of both variables was examined. A scatter plot was generated to
assess their correlation as shown in Figure 5.1. The results indicated that the tempo values
followed a normal distribution, while the meter values exhibited an uneven distribution
as depicted in Figure 5.2, with a majority of audio samples having a meter of 4 or 3.

The analysis revealed a weak positive correlation between tempo and meter i.e (r =
0.105, p < 0.05), with a correlation coefficient of 0.106. This indicates a slight tendency for
higher tempos to be associated with higher meter values. However, the correlation was not
particularly strong, suggesting that other factors may also influence the observed meter
values in the dataset. The p-value, which was less than 0.05, indicates that the correlation
is unlikely to be solely due to chance, but other contributing factors are likely present.
Further examination of the data in Table 5.4 supports the association between track meter
and tempo. On average, music with a higher meter tends to have a faster tempo, and as
the meter increases, the diversity in tempo decreases. These findings suggest that tempo
and meter are largely independent variables in the Meter2800 dataset, indicating that
other factors beyond tempo contribute to the observed meter values.

Overall, the analysis indicates that while there is a weak positive correlation between

62

Jeremiah Oluwagbemi Abimbola

Figure 5.2: Distribution of tempo in the dataset

tempo and meter in the dataset, the relationship is not strong, and other factors play a
significant role in determining the meter of the audio samples.

Meter Mean Standard Deviation
3 123.53 32.08
4 120.32 27.59
5 127.50 28.46
7 138.04 30.98

Table 5.4: Average and standard deviation of tempo by meter

5.4 Features Extraction

In the domain of machine learning, converting raw data into a usable format for models
is essential. One of the key steps in this process is feature extraction. It involves trans-
forming raw data into a set of meaningful features that can be effectively used by machine
learning algorithms. This step is crucial because the quality of the features directly affects
the performance of machine learning models. Proper feature extraction enhances model
performance by providing relevant information and reducing data dimensionality, which
in turn improves the accuracy and efficiency of the learning process.

For the Meter2800 dataset, we extracted various low-level audio features, including
Chroma Short Time Fast Fourier Transform (STFT) [46], Root Mean Square (RMS),
MFCCs [73], Spectral Centroid [94], Spectral Bandwidth [104], Zero Crossing Rate [62],
and Spectral Rolloff [164].

63

Chapter 5. Creation of the METER2800 Dataset

Chroma Short Time Fast Fourier Transform (STFT)

This vector represents the overall energy of the signal across all 12 pitch classes. C,
C#, D, D#, E, F, F#, G, G#, A, A#, and B. Then, a representative mean and standard
deviation are calculated from the chroma vectors aggregated across the frames [46].

Root mean square (RMS)

The signal’s energy is calculated as

N∑
n=1
|x(n)|2 (5.1)

and the root mean square is then calculated as

RMS =

√√√√ 1
N

N∑
n=1
|x(n)|2 (5.2)

where x represents the value of the audio signal at a specific time instant. In the
formula, x(n) represents the value of the signal at the nth sample. n represents the sample
index, which is a discrete-time index used to denote the order of each sample in the audio
signal ranging from 1 to N, where N is the total number of samples in the signal.

Mel-Frequency Cepstrum Coefficients (MFCCs)

The MFCCs are a group of decorrelated discrete cosine transform (DCT) parameters
[73]. They are produced by a transformation of the logarithmically compressed filter-
output energies from a perceptually spaced triangular filter bank that processes the dis-
crete Fourier transform audio signal through which the coefficients are obtained as shown
in Equation. (5.3).

cn =
M−1∑
m=0

log10(s(m)). cos
(

πn(m− 0.5)
M

)
(5.3)

where cn are the cepstral coefficients, n = 0, 1, 2, ..., C−1 and C is the number of MFCCs.
In this case, 13 was used. Further explanation of this extraction process can be found in
chapter 6 as it is used in the MFCCSM.

Spectral Centroid

This is the frequency that most of the energy is focused on for each frame [94]. The
magnitude-weighted frequency is determined as follows:

64

Jeremiah Oluwagbemi Abimbola

fc =

K∑
k=1

fkmk

K∑
k=1

mk

(5.4)

where K is the total number of frequency bins in the spectrogram of the signal, fk is
the frequency of the kth bin, and mk is the magnitude of the signal in the kth bin. The
formula represents the center of gravity of the spectral content of an audio signal.

Spectral Bandwidth

The pth order moment about the spectral centroid corresponds to the pth order spectral
band-width and is calculated as:

[
∑

k

(S(k)f(k)− f(c))p]
1
p (5.5)

p = 2 for example is an equivalent weighted standard deviation.

Zero crossing rate

The signal’s change in sign from positive to negative is referred to as a "zero crossing
point" [62]. The number of zero-crossings in each frame of the 10-second signal is calculated
as:

Zt = 1
2

N∑
n=1
|sign(x[n])− sign(x[n− 1])| (5.6)

where for positive arguments, the sign function is 1, 0 for negative arguments and x[n] is
the time domain signal for frame t.

Spectral Rolloff

This characteristic relates to the frequency value below which 85% of the spectrum’s
total energy is present [164]. However, the user has the privilege to determine this threshold.
It is calculated as:

Rt∑
n=1

Mt[n] = 0.85 ∗
N∑

n=1
Mt[n]. (5.7)

where Mt[n] is the magnitude of the Fourier transform at frame t and frequency bin n.
The choice of these extracted features is based on temporal characteristics of music sound.
According to Rocamora [129], MFCCs and their derivatives are the most appropriate
features.

Generally, each audio sample in the dataset was divided into 10-second segments.
MFCC features were extracted from each segment and saved in a JSON format to aid
faster computation for subsequent processing, creating separate training and test sets.

65

Chapter 5. Creation of the METER2800 Dataset

These MFCC features are then used as input to the models for training, evaluation and
testing.

All the extracted features are stored in a csv file named multiple-features. For each
feature, including the MFCC with 13 coefficients, the minimum, maximum, mean, and
standard deviation values were calculated. However, it was observed that the maximum
value of the chroma STFT feature was consistently equal to 1.0 for all the audio tracks.
Based on this observation, it is suggested that researchers can remove the column corres-
ponding to the chroma STFT feature as a pre-processing step. Since the maximum value
remains constant for all the audio tracks, this feature does not provide any additional
information that would contribute to the training of the model. By removing this column,
researchers can potentially streamline their data pre-processing pipeline and focus on the
remaining features that are more informative for the task at hand.

Spectrogram Extraction

To extract spectrogram images from audio signals, we utilize the Short-Time Fourier
Transform (STFT) method provided by the Librosa library. The spectrogram represents
the magnitude of the Fourier Transform of short overlapping segments of the audio signal
over time.

The process involves the following steps:

1. Segmentation of Audio Signal: Divide the audio signal into short segments of
equal length to process iteratively.

The number of samples per segment is calculated based on the total samples per
track and the desired number of segments:

num_samples_per_segment = samples_per_track
num_segments

2. STFT Computation: Compute the Short-Time Fourier Transform (STFT) of each
audio segment using Librosa.

For a segment of audio signal x[n] with N samples, the STFT X[m, ω] is computed
as:

X[m, ω] =
N−1∑
n=0

x[n] · w[n−m] · e−jωn

where w[n] is the window function (Hamming window in this case) and ω is the
frequency.

3. Spectrogram Visualization: Display the spectrogram using Librosa’s amplitude-
to-decibel conversion to enhance visualization.

66

Jeremiah Oluwagbemi Abimbola

The magnitude spectrogram S[f, t] is converted to decibels using:

SdB[f, t] = 10 · log10

(
|S[f, t]|

max(|S[f, :]|)

)

4. Save Spectrogram Images: Save the generated spectrogram as an image file.

The entire dataset (which includes spectrogram images, mfcc arrays and other features)
was split into training, validation, and testing sets with a ratio of 60:15:25, respectively,
to facilitate model training, evaluation, and performance assessment.

5.5 Summary

This chapter emphasizes the critical role of dataset selection in music classification,
estimation, or detection projects, particularly in the context of time signature detection
within Music Information Retrieval. The historical challenges of creating comprehensive
audio datasets were discussed and it highlights the lack of dedicated datasets for time
signature detection before the development of Meter2800. Meter2800 was specifically cre-
ated to bridge this gap, providing a valuable resource for researchers by combining and
annotating audio files from existing datasets. This dataset, a significant part of this PhD
dissertation, addresses the limitations of previous datasets and supports further research
in the field. It is meticulously organized and annotated, providing a diverse range of au-
dio samples categorized into four meter classes. Despite an uneven distribution of data
across these classes, it offers a standardized resource for time signature detection research.
The dataset’s creation process, including audio file selection, expert annotation, and data
cleaning, is detailed to ensure transparency and ways to reproduce it.

Finally, the relationship between meter and tempo in the Meter2800 dataset was ana-
lyzed, finding a weak positive correlation. This analysis suggests that while tempo and
meter are related, other factors also influence meter values. The paper concludes with a
discussion on feature extraction, highlighting the importance of transforming raw data
into meaningful features for machine learning models. Features such as Chroma STFT,
RMS, MFCCs, and others are extracted to enhance the accuracy and efficiency of time
signature detection algorithms.

In summary, this chapter provides a comprehensive overview of the challenges and
advancements in music dataset creation, emphasizing the significance of the Meter2800
dataset for MIR research.

67

Chapter 5. Creation of the METER2800 Dataset

68

Chapter 6

Mel-Frequency Cepstral Coefficient
Similarity Matrix (MFCCSM)

6.1 Introduction

For time signature detection, various digital signal processing methods have been
developed to improve accuracy and reliability. Among these, the Audio Similarity Matrix
(ASM) and the Beat Similarity Matrix (BSM) which was discussed in chapter 3 have
demonstrated promising results by analyzing temporal and rhythmic patterns in audio
signals. However, these models still face limitations in capturing the nuanced timbral and
accentual information critical for precise meter detection. To address these shortcomings, a
new model called MFCCSM was developed. This model leverages Mel-frequency cepstral
coefficients (MFCCs), which are widely recognized for their ability to extract detailed
acoustic features from audio signals. They’ve also been applicable for various domains
such as speech recognition, speaker recognition, and music genre classification. The result
is a model that not only retains the strengths of its predecessors but also achieves slightly
better accuracy in time signature detection.

6.2 MFCC Basics

Human perception does not linearly interpret the frequency content of sound. There-
fore, the subjective pitch is assessed on a scale known as the ’Mel’ scale, which is a
non-linear scale. The conversion from frequency in Hz to the subjective pitch in Mels can
be calculated using the formula:

fmel = 2595 log10(1 + f

700) (6.1)

MFCC coefficients are derived from a logarithmically compressed filter bank that pro-
cesses the speech signal using a perceptually spaced triangular filter bank. These coeffi-

69

Chapter 6. Mel-Frequency Cepstral Coefficient Similarity Matrix (MFCCSM)

cients are obtained by applying a Discrete Cosine Transform (DCT) to the logarithmically
compressed filter-output energies. The mathematical expression for computing the MFCC
coefficients is given by Equation (6.2), where cn represents the cepstral coefficients, n is
the index of the coefficient, m is the index of the filter bank, s(m) is the output energy
of the m-th filter, and M is the total number of filters.

cn =
M−1∑
m=0

log10(s(m)) · cos
(

πn(m− 0.5)
M

)
(6.2)

The MFCC coefficients capture timbral information and represent musical textures
of limited duration [97]. In the context of meter detection, they can be used to extract
accent and rhythmic properties from the audio signal. Typically, a suitable number of
coefficients for audio signal processing is between 10 and 13. To determine the optimal
number of coefficients for better accuracy, Bayesian Optimization was employed to search
through the frequency bands space. These optimization techniques are discussed in the
next section.

6.3 The Detection Process

The MFCCSM model aims to identify repeating bars in a song by comparing longer
MFCC segments with shorter audio fragments (a fraction of a note). The underlying idea
is that different parts of a song often have repeating patterns. This has been shown in
the ASM model. The MFCCSM model builds upon the ASM approach by incorporating
MFCCs to capture more detailed timbral and rhythmic properties of the audio signal.
The detailed process of MFCCSM is explained below:

First, the audio signal is loaded, and the sample rate sr is determined using the
librosa library mentioned in the dataset creation chapter 5. This step converts the
audio file into a numerical format suitable for further analysis. The result of that is that
sr is 22050. Next, the tempo and beat locations of the audio signal are estimated using
librosa’s beat tracking algorithm. This step is crucial for segmenting the audio signal into
meaningful temporal units (beats), which form the basis for further feature extraction.
The duration of each beat (b_Sec) is then calculated both in seconds and in samples
(b_Sample) using the formulas below

b_Sec = 60
tempo (6.3)

b_Sample = int(b_Sec× sr) (6.4)

This beat duration will define the frame length for subsequent spectrogram and MFCC
calculations. A spectrogram of the audio signal is created with a frame length correspond-

70

Jeremiah Oluwagbemi Abimbola

ing to the beat duration, and the overlap between frames is set to half the beat duration.
The spectrogram provides a visual representation of the audio signal’s frequency content
over time. MFCCs are extracted from the audio signal with a hop length of half the beat
duration, and typically 13 MFCC coefficients are used.

Additionally, the first and second-order deltas (derivatives) of the MFCCs are com-
puted in Equation 6.5 and Equation 6.6. These deltas capture the dynamic changes in
the MFCCs over time, providing further insight into the rhythmic and melodic progres-
sion of the audio signal. The MFCCs and their deltas are concatenated to form a new
feature matrix in Equation 6.7, which is then transformed back into a mel spectrogram
representation. This transformation ensures that the features are in a suitable format for
similarity computation.

∆MFCC[n] = MFCC[n + 1]−MFCC[n− 1] (6.5)

∆2MFCC[n] = MFCC[n + 2]− 2×MFCC[n] + MFCC[n− 2] (6.6)

new_mfcc = MFCC ·∆MFCC ·∆2MFCC (6.7)

n represents the frame index in the sequence of MFCC coefficients. Each frame corres-
ponds to a short segment of the audio signal over which the MFCCs are computed. The
first-order delta ∆MFCC[n] is the difference between the MFCC values at frame n + 1
and frame n− 1, capturing the change in the MFCC values over time.

An empty similarity matrix (MFCCSM) is initialized, where each element represents
the similarity between two time bins. This matrix will eventually capture the repeating
patterns within the audio signal. The similarity between each pair of MFCC frames is
computed using the Euclidean distance (or alternatively, cosine distance or Kullback-
Leibler divergence). This step involves comparing the MFCC feature vectors at different
time points to identify similarities and repetitions. The result is a matrix that also looks
like that of the ASM in Figure 3.6. The average of the diagonals of the similarity matrix is
then calculated to summarize the similarity across different segments of the audio signal.
Diagonal values in the matrix represent the similarity of frames within the song at varying
temporal offsets.

As a consequence, multiple diagonals emerge for analysis. These diagonals, extracted
from one side of the symmetric MFCCSM, reveal insights into the similarities among
musical mfcc frame segments separated by varying numbers of bars. For instance, one
diagonal D1 may depict components spaced apart by one bar, while another diagonal D2
could illustrate components separated by two bars. Each diagonal reflects the similarity of
frames within the song. Ideally, diagonal values would all be ones (1.0), indicating perfect
similarity and resulting in a white coloration in the matrix representation. Subsequently,

71

Chapter 6. Mel-Frequency Cepstral Coefficient Similarity Matrix (MFCCSM)

the average diagonal is computed using Equation 6.8.

[htbp]di = mean(diag(MFCCSMi))d = −d + max(|d|) (6.8)

The Euclidean distance measure was deemed inadequate for this model due to its
dependence on vector magnitudes. To address this limitation, the cosine distance measure
was adopted as an alternative. The cosine distance calculates the angle between two
vectors rather than their magnitudes, defined mathematically as:

cosine_distance(x, y) = 1− x · y
∥x∥ · ∥y∥

(6.9)

Here, · denotes the dot product of vectors x and y, while ∥x∥ and ∥y∥ represent their
Euclidean norms. Using cosine distance reduces reliance on vector magnitudes, focusing in-
stead on their angular similarity. This approach enhances the robustness of comparing and
evaluating musical components by considering their directional alignment. Consequently,
the MFCCSM (MFCC Similarity Matrix) is defined as:

MFCCSM(a, b) = 1− x · y√∑s
k=1 X(a, k)2 ·

√∑s
k=1 X(b, k)2

(6.10)

The Kullback-Leibler (K-L) divergence method [23, 18] is another widely used ap-
proach for computing vector similarities, expressed as:

MFCCSM(a, b) =
N/2∑
k=1

X(a, k) loge

(
X(a, k)
X(b, k)

)
(6.11)

In this equation, X(a, k) and X(b, k) denote components of vectors a and b respectively,
and N represents the total number of frames. The Kullback-Leibler divergence quantifies
the difference between two distributions, providing another perspective on vector similar-
ity.

Finally, the function representing these average diagonal values is adjusted by sub-
tracting its values from the maximum absolute value in the function. This adjustment
enhances the contrast between similar and dissimilar regions in the audio signal, making
it easier to detect recurring patterns and time signatures.

6.4 Results and Discussion

In evaluating the effectiveness of the MFCCSM, we compared the result with that of
the other classic digital signal processing techniques (ASM and BSM) for time signature
detection using the Meter2800 dataset. The evaluation was conducted across two categor-
ies: binary classification with 2 classes and multi-class classification with 4 classes. The 2
classes aimed to detect 3

4 and 4
4meters, while the 4 classes included 3

4 , 4
4

5
4 , and 7

4 meters.

72

Jeremiah Oluwagbemi Abimbola

6.4.1 Performance on 2 Classes

The assessment of these techniques in binary classification revealed that ASM achieved
an accuracy of 53%, BSM exhibited a lower accuracy of 50%, and MFCCSM showed the
highest accuracy at 55%, as summarized in Table 6.1.

Table 6.1: Classic signal processing models classification report for 2 classes

Model Accuracy (%)
ASM 53.00
BSM 50.00

MFCCSM 55.00

6.4.2 Performance on 4 Classes

In the evaluation of these techniques on multi-class classification, ASM achieved an ac-
curacy of 51%, BSM demonstrated a lower accuracy of 49%, and MFCCSM outperformed
both with an accuracy of 53%, as shown in Table 6.2.

Table 6.2: Classic signal processing models classification report for 4 classes

Model Accuracy (%)
ASM 51.00
BSM 49.00

MFCCSM 53.00

To further enhance the performance of the MFCCSM model, we conducted an analysis
by assigning weights to the coefficients derived from a genetic algorithm (GA) optimization
across all four classes. This detailed analysis is discussed further in Chapter 7, where
we delve into the significance and contribution of MFCCs in improving time signature
detection accuracy.

6.5 Summary

In this chapter, we discussed how MFCCSM was developed and its application for
improving time signature detection in audio signals. By integrating MFCCs, known for
their ability to capture detailed acoustic features, MFCCSM enhances upon traditional
methods like ASM and BSM. The process involves converting audio signals into MFCC
representations, computing first and second-order deltas to capture dynamic changes,
and constructing a similarity matrix using metrics such as Euclidean, cosine distance,
or Kullback-Leibler divergence. Evaluation on the Meter2800 dataset demonstrates that

73

Chapter 6. Mel-Frequency Cepstral Coefficient Similarity Matrix (MFCCSM)

MFCCSM achieves superior accuracy compared to ASM and BSM in both binary (detect-
ing 3

4 and 4
4 meters) and multi-class (detecting 3

4 , 4
4 , 5

4 , and 7
4 meters) classifications. This

highlights MFCCSM’s efficacy in capturing intricate musical nuances, thereby advancing
the field of audio signal processing and music analysis.

74

Chapter 7

Optimization Techniques for Time
Signature Detection Models

7.1 Introduction

Optimization involves refining algorithms and techniques to achieve the best perform-
ance under given constraints. In signal processing, optimization targets enhancing the
accuracy, efficiency, and robustness of methods used for analyzing and interpreting sig-
nals. This includes optimizing filter design, noise reduction, and feature extraction to
improve signal clarity and information retrieval. Generally, in this domain, optimization
spans across various domains such as machine learning, where hyperparameter tuning and
model selection are critical for maximizing predictive accuracy. Algorithms are often op-
timized for speed, memory usage, and computational efficiency, ensuring they can handle
large datasets and complex computations effectively. Techniques like genetic algorithms,
gradient descent, and Bayesian optimization are commonly employed to find optimal solu-
tions in high-dimensional spaces. Overall, optimization is pivotal in advancing technology,
enabling more precise, faster, and resource-efficient solutions across diverse applications
in signal processing and computer science.

7.1.1 Optimization Techniques for Parameters and Features

Optimization generally helps to choose the best set of parameters while reducing the
computational time to go through the search space. In this study, two optimization tech-
niques were used to achieve a better result; the Bayesian optimization and the Genetic
Algorithm.

The research conducted by Maider Zamalloa et al. [165] focused on speaker recognition
and highlighted the redundancy and dependency of derivatives of MFCC as acoustic
features. To address this issue, they employed a genetic algorithm (GA) to find the optimal
set of weights for a 38-dimensional feature set. This set consisted of 12 MFCC features,

75

Chapter 7. Optimization Techniques for Time Signature Detection Models

their first and second derivatives, energy, and its first derivative. The results demonstrated
that weighting these acoustic characteristics led to a reduction in inaccuracy by an average
of 15% to 25%.

In the domain of multi-modal biometrics, Nancy Bansal et al. [11] investigated the
use of GA for feature reduction in a multi-modal biometrics system. They combined
physiological biometrics such as face recognition with behavioral biometrics like speech
recognition, where MFCC was employed for speech feature extraction. The study revealed
that the proposed multi-modal biometric system provided enhanced security compared to
existing unimodal biometric identification systems.

Another study by Prafulla Kalapatapu et al. [82] explored the optimization of acous-
tic feature extraction and selection using a genetic algorithm. The researchers classified
Indian songs using four classifiers and observed that not all acoustic features were equally
important. Therefore, GA was utilized to optimize the feature selection process, resulting
in higher accuracy for the classifiers.

7.2 Optimization of the MFCCSM Model

In our paper published in the Proceedings of the Companion Conference on Genetic
and Evolutionary Computation (GECCO) [5], we focused on optimizing the MFCCSM
model to significantly enhance its ability to detect time signatures in audio signals. This
optimization effort involved fine-tuning the parameters and computational processes to
ensure that MFCCs and their derivatives accurately captured the nuanced timbral and
rhythmic properties crucial for meter detection. Leveraging advanced optimization tech-
niques, particularly genetic algorithms (GA) among others, we adjusted the model para-
meters to achieve superior accuracy and reliability. Despite already outperforming the
ASM, our study aimed to push the boundaries further by optimizing the MFCCSM
through GA, highlighting its effectiveness in refining complex machine learning models
for audio analysis tasks.

7.2.1 Bayesian Optimization

Bayesian optimization is a method used to find the best values for parameters in a
complex objective function that takes a long time to evaluate. It is particularly useful
when the parameter space is continuous and has fewer than 20 dimensions, and when
there is random noise in the function evaluation. In the context of improving accuracy,
Bayesian optimization starts by initializing the parameters within specified bounds that
define the search space. In our case, we have three parameters to optimize:

• Number of MFCCs (mf): This parameter determines the number of Mel-frequency
cepstral coefficients (MFCCs) used in the analysis. We restrict the range to be

76

Jeremiah Oluwagbemi Abimbola

between 10 and 15, where mf is an integer.

• Number of Mels (nm): This parameter controls the number of mel frequency bins
used in the analysis. We set the range to be between 128 and 1024, where nm is an
integer.

• Number of Overlap: The amount of overlap is determined as a function of the
beat duration. This parameter affects how the audio samples are segmented and
processed. The equation is given as:

noverlap =
(60× tp × sr

o

)
(7.1)

where o is the overlap value, sr is the sample rate of the signal, tp is the tempo in bpm of
the song and 60 is beat length in a second. noverlap is denoted as n where 2 ≤ n ≤ 4, n ∈ R.
After optimization, the possible combination of these parameters that yielded the highest
accuracy on the model were: mf=11, nm=1024 and n=2.

By exploring different combinations of these parameter values within the defined
ranges, Bayesian optimization aims to find the optimal set of parameter values that max-
imize the accuracy of our objective function. Similar to the ASM, the MFCCSM follows
the same approach by generating a similarity matrix from the Mel spectrogram using
Euclidean distance, calculates the diagonal of the matrix and uses the diagonal to find
the meter of a song as shown in Figure 7.1.

Figure 7.1: Mel-frequency cepstrum coefficients similarity matrix model

7.2.2 Genetic Algorithms Optimization

Genetic algorithms are a type of search technique inspired by population genetics, used
to find optimal or near-optimal solutions to optimization and search problems or where
traditional optimization techniques may struggle or fail to find satisfactory solutions.
GAs employ a population-based approach, simulating the process of natural selection,
crossover, and mutation to iteratively search for an optimal or near-optimal solution in a
large solution space.

77

Chapter 7. Optimization Techniques for Time Signature Detection Models

In a Genetic Algorithm, a population of potential solutions, known as individuals or
chromosomes, is randomly generated or initialized. Each individual represents a candid-
ate solution to the optimization problem. These individuals are evaluated and assigned a
fitness value that quantifies their quality or suitability as a solution. The fitness value is
typically based on an objective function that captures the optimization goal. Through a
series of iterative generations, GAs apply genetic operators to the population to mimic
the processes of selection, reproduction, and variation found in natural evolution. These
operators include crossover and mutation. Crossover involves combining genetic inform-
ation from two parent individuals to produce offspring with traits inherited from both
parents. Mutation introduces random changes or alterations to the genetic material of an
individual, promoting diversity in the population.

By applying these genetic operators, the population evolves over generations, with
individuals that possess favorable traits or better fitness values being more likely to survive
and reproduce. This natural selection process favors the propagation of individuals with
desirable characteristics, gradually improving the overall fitness of the population. Over
time, the GA converges towards a population of individuals that represent good or optimal
solutions to the given optimization problem.

In a nut-shell, Genetic algorithms employ three main types of rules at each step:
selection rules, crossover rules, and mutation rules.

• Selection Rules: These rules determine which individuals, called parents, from the
current population will contribute to the next generation. The selection process is
usually based on the fitness or objective function value of each individual.

• Crossover Rules: Crossover involves combining genetic information from two par-
ents to create new individuals, known as children, for the next generation. The idea
is to mimic the process of genetic recombination in natural evolution. There are
different crossover strategies, such as one-point crossover or uniform crossover, that
determine how genetic information is exchanged between parents.

• Mutation Rules: Mutation introduces random changes into individual parents to
promote diversity in the population. This randomness helps prevent the algorithm
from getting stuck in local optima. Each gene in an individual solution has a small
probability of being randomly modified or replaced with a new value.

In the given model, a weight vector w consisting of 11 real numbers between 0 and
1 (i.e., 0 ≤ w ≤ 1, where w is a real number) is initialized as the population. The
genetic algorithm is executed with a population size of 100, a crossover probability of 0.5
(indicating a 50% chance of inheriting characteristics from existing solutions to offspring
in new trials), uniform crossover strategy, a mutation probability of 0.1 (representing a
10% chance of each gene being replaced by a random value), and 100 iterations.

78

Jeremiah Oluwagbemi Abimbola

In each run of the genetic algorithm, the newly generated weights are multiplied by
the MFCC (Mel-frequency cepstral coefficients) values, and the accuracy is calculated as
the objective function. The goal is to find the combination of weights that maximizes the
accuracy, indicating the best solution for the problem at hand. One of the key advantages
of GAs is their ability to explore a large search space efficiently. The population-based
approach allows GAs to simultaneously explore multiple regions of the solution space,
increasing the chances of finding promising solutions [5]. The stochastic nature of the
genetic operators introduces randomness and diversity, enabling GAs to avoid getting
stuck in local optima and promoting the exploration of different solution possibilities [13].

It is worth noting that GAs typically aims to minimize an objective function. However,
in the specific task at hand, our goal is to maximize the accuracy. To align with the GA
convention, we can modify the objective function by subtracting the accuracy value from
100%. This way, higher accuracy values will correspond to lower objective function values,
which the GA can then minimize. As with any optimization problem, the algorithm learns
from the available data. In this case, the data was split into a training set and a testing
set using a 70:30 ratio. The training set is used to train the model, while the testing set is
used to evaluate the performance of the model on unseen data. This splitting allows us to
assess how well the optimized GA-based model generalizes to new data and helps avoid
over-fitting, where the model performs well on the training data but poorly on unseen
data. By training on the training set and evaluating on the testing set, we can assess the
effectiveness and generalization capability of the GA-based model in maximizing accuracy
for the given task.

Algorithm 1 demonstrates the overall process of the genetic algorithm and the calcu-
lation of accuracy as the objective function.

Algorithm 1 Optimization Technique for MFCC Model
1: Load Track list
2: count← 0
3: while Tracklist ̸= 0 do
4: Run GA with weights W
5: Generate 11 MFCC coefficients
6: MFCC ←MFCC ×W
7: Take derivatives of new MFCC
8: Convert MFCC to Mel Spectrogram
9: Generate Similarity Matrix

10: Calculate meter from diagonal
11: if list_meter = calculated_meter then
12: count← count + 1
13: else
14: count← 0
15: Calculate accuracy from count

79

Chapter 7. Optimization Techniques for Time Signature Detection Models

To further enhance the MFCCSM model, we conducted an analysis of the coefficients
by assigning them weights based on all four classes. These weights were derived from the
optimal solutions generated by the genetic algorithm (GA). Through this analysis, we
delved into the significance of the MFCCs. The outcomes of this analysis are depicted in
Figure 7.2, where distinct colors are utilized to represent different coefficients.

Figure 7.2: MFCC weights obtained for each performed GA run.

Upon analyzing the Figure 7.2, we observed that certain coefficients exhibited higher
weights compared to others. Specifically, coefficient 2 (depicted in orange), coefficient 6
(depicted in light green), coefficient 8 (depicted in red), and coefficient 10 (depicted in
green) showed higher values relative to the other coefficients. This suggests that these
particular coefficients may hold more importance or contribute significantly to the clas-
sification task at hand. These findings provide valuable insights into the importance of
specific MFCC coefficients for the classification of time signatures. The identified coef-
ficients could potentially serve as key features for distinguishing between different time
signature classes. This discovery opens up opportunities for further research in this area.

The results of our experiments are presented in Table 7.1. We observed a signific-
ant improvement in the accuracy of the base MFCCSM model that we focused on. The
base model refers to the results without any optimization. We achieved more with the
optimization techniques with an average accuracy of about 63.5%. The genetic algorithm
proved to be efficient at improving the model on various levels. Additionally, Bayesian
optimization played a role by providing the best set of parameters for the GA as initial
parameters.

80

Jeremiah Oluwagbemi Abimbola

Model BSM ASM MFCCSM MFCCSM After GA
Avg. Max. Min. Std.dev.

Accuracy [%] 50.0 53.0 55.0 63.5 65.0 60.0 1.25

Table 7.1: Accuracy of models before and after GA

7.3 Summary

In this chapter, we delved into the optimization of the MFCCSM (Mel-Frequency
Cepstrum Coefficients Similarity Matrix) model to enhance its performance in accurately
detecting time signatures in audio signals. Optimization techniques, such as Bayesian
optimization and genetic algorithms, are employed to fine-tune the model parameters,
including the number of MFCCs, mel frequency bins, and overlap. We used Bayesian
optimization efficiently to explore the parameter space to find the optimal set of values,
while GAs were employed to refine the weights assigned to MFCCs, revealing the most
critical coefficients for accurate time signature classification. This chapter also highlighted
previous research where GAs successfully optimized MFCC derivatives and acoustic fea-
ture sets, demonstrating their efficacy in reducing error rates and improving classification
accuracy in various applications, such as speaker recognition and multi-modal biometrics.
The analysis of GA-derived weights indicated that specific MFCC coefficients hold more
importance, contributing significantly to the classification task. The results demonstrated
a notable improvement in the MFCCSM model’s accuracy, averaging around 63.5% after
optimization, compared to the base model without optimization.

81

Chapter 7. Optimization Techniques for Time Signature Detection Models

82

Chapter 8

Using Machine Learning for Time
Signature Detection

8.1 Introduction

In this chapter, we present eight models for meter detection: four classic machine
learning classifiers and four deep learning models and present results already published
in the EURASIP Journal on Audio, Speech, and Music Processing [4]. The classic ma-
chine learning classifiers include SVM, Random Forest, Naive Bayes, and KNN. SVM is
a popular algorithm that separates data using a hyperplane to maximize the separation
between classes. Random Forest is an ensemble method that combines multiple decision
trees to make a final classification. Naive Bayes is a probabilistic classifier that calculates
the probability of a sample belonging to a class based on its features. KNN assigns a
class label to a sample based on the classes of its nearest neighbors. These classifiers were
chosen to evaluate their performance and compare the effectiveness of different machine
learning approaches for meter detection.

In addition to the classic machine learning models, this chapter explores four deep
learning algorithms: CNN, CRNN, ResNet18, and ResNet18-LSTM. Deep learning, a
specialized branch of machine learning, focuses on training artificial neural networks with
multiple layers to develop hierarchical data representations. These algorithms have demon-
strated exceptional performance in various classification tasks and have been successfully
applied to audio and music analysis. Their ability to automatically learn complex fea-
tures and detect intricate patterns makes them particularly advantageous for tasks such
as meter detection.

83

Chapter 8. Using Machine Learning for Time Signature Detection

8.2 Feature Engineering and Model Evaluation

Using the Meter2800 dataset, MFCCs were extracted as array values to serve as input
features for both classic machine learning and deep learning models during the training,
evaluation, and testing processes. The dataset is divided into two subsets: one where all
four classes are represented, and another where only two classes are included. This division
allows us to evaluate model performance on both balanced and unbalanced data.

For classic machine learning models, a standardized process was followed across dif-
ferent algorithms using default hyper-parameters values. Initially, the audio dataset was
pre-processed to extract MFCCs from each audio sample, resulting in a sequence of MFCC
feature vectors that capture the spectral characteristics of the audio. The dataset was then
split into training, validation, and testing sets as mentioned in Chapter 5. The training
set was used to develop the models, the validation set to fine-tune hyper-parameters and
monitor model performance, and the testing set to evaluate the final model’s ability to
generalize to unseen data. During training, the goal was to map the input MFCCs to
output class labels, enabling accurate classification of new audio samples. Performance
metrics such as accuracy, precision, recall, and F1-score were used to assess model effect-
iveness.

• Support Vector Machine (SVM):

– Kernel: Radial Basis Function (RBF), which is effective in handling non-linear
relationships within the data.

– Regularization Parameter (C): Set to 1.0, balancing the trade-off between max-
imizing the margin and minimizing classification errors.

– Gamma: Set to ’scale,’ adjusting the kernel’s influence according to the number
of features, ensuring proper data fitting.

• k-Nearest Neighbors (k-NN):

– Number of Neighbors (k): Set to 3, which is a typical choice in classification
tasks, ensuring that the meter class label of a sample is determined by the
majority class among its three nearest neighbors.

– Distance Metric: Euclidean distance, used to measure the distance between
data points in the feature space.

• Naive Bayes:

– Assumption: The model operates under the assumption of feature independ-
ence, with a Gaussian distribution used for continuous variables. It calculates
the posterior probability of each class by combining the prior probability and
likelihood of observing the data given the meter class.

84

Jeremiah Oluwagbemi Abimbola

• Random Forest:

– Number of Trees (Estimators): Set to 100, providing a robust ensemble by av-
eraging the predictions from multiple decision trees, thereby reducing variance.

– Criterion for Splitting: Gini impurity, which measures the quality of splits by
evaluating how well they separate the classes at each node.

– Maximum Depth: Unrestricted, allowing trees to grow until all leaves are pure
or contain fewer than the minimum number of samples required to split a node.

These hyperparameter values were chosen to reflect commonly accepted defaults that
balance computational efficiency with model accuracy. They provide a strong baseline for
evaluating model performance across different datasets and tasks.

In addition to using MFCCs, we also conducted experiments with multiple audio fea-
tures extracted using the Librosa library. This approach involved leveraging a diverse set
of features alongside MFCCs, already discussed in Chapter 5. The rationale behind testing
multiple features was to explore whether combining different audio representations could
enhance classification performance compared to using MFCCs alone. By incorporating
a broader range of features that capture various aspects of audio signals, such as pitch,
timbre, and rhythm, we aimed to provide richer information to the machine learning mod-
els, potentially improving their ability to differentiate between different audio classes. Our
experiments showed that models trained on this extended feature set outperformed those
trained solely on MFCCs, as detailed in the results section.

In parallel, deep learning methods were also applied to the Meter2800 dataset, lever-
aging advanced architectures such as CNNs, CRNNs, ResNet18, and a hybrid ResNet18-
LSTM model. These deep learning models, known for their exceptional performance in
handling complex data like images, audio, and sequential data, were explored for their
ability to automatically learn hierarchical features from the raw audio input. This al-
lows them to capture intricate patterns and relationships within the data, making them
particularly effective for tasks such as audio classification and meter detection.

8.2.1 Convolutional Neural Networks

In this study also, we utilized the CNN architecture for meter detection using two
distinct input features: MFCC and spectrogram. For the MFCC, we inputted raw array
vector values directly into the CNN, allowing the model to learn from the detailed fre-
quency characteristics of the audio signals. For the spectrogram, we treated it as an image
and fed it into the CNN to leverage its powerful image processing capabilities. These fea-
tures were used separately, to evaluate their individual effectiveness in the CNN model
for detecting time signatures in audio signals.

85

Chapter 8. Using Machine Learning for Time Signature Detection

Data Pre-processing

Normalization and Scaling: Normalization and scaling of feature representations
in the context of spectrogram data for time signature detection involve adjusting the in-
put spectrogram images to a consistent scale or range of values before feeding them into
the model Network. This process typically includes calculating the mean and standard
deviation of the spectrogram data. For instance, consider a spectrogram dataset where
each image has three channels representing different aspects of the audio signal. To nor-
malize these spectrogram images, one might calculate the mean and standard deviation
for each channel across the entire dataset. These values, such as a mean of [0.5, 0.5, 0.5]
and a standard deviation of [0.5, 0.5, 0.5], are used to transform the input spectrogram
tensors during preprocessing. The normalization step involves subtracting the calculated
mean and dividing by the standard deviation for each channel of the spectrogram images.
This operation ensures that the data is centered around zero with a unit variance, which
can enhance the training stability and convergence of the CNN model when processing
spectrogram inputs. The choice of specific normalization parameters, like the mean and
standard deviation values, can significantly impact the effectiveness and performance of
the neural network during training and inference.

Model Architecture

• Convolutional Layers: Convolutional layers are designed to extract features from
input data using filters. Each filter, or kernel, scans a small window of the input
and performs a mathematical operation called convolution. This operation involves
element-wise multiplication between the filter and a portion of the input, followed
by summing the results to produce a single value in the output feature map. This
process is repeated across the entire input, resulting in a series of feature maps that
represent various patterns or characteristics of the input data.

In the case of MFCCs, convolutional layers apply filters to the MFCC features to
capture patterns that are indicative of different audio characteristics. Since MFCCs
are typically represented as a sequence of coefficient vectors over time, the filters
detect local patterns in these sequences, producing feature maps that highlight tem-
poral dependencies and spectral features relevant to the audio signal.

For spectrograms, which are 2D representations of audio signals with time on one
axis and frequency on the other, convolutional layers process the spectrograms by
sliding filters across both dimensions. Each filter extracts local patterns or spectral
features within a specific receptive field of the spectrogram. The result is a series of
feature maps that reveal significant frequency components and temporal patterns
within the spectrogram, enhancing the representation of the audio data for further
analysis.

86

Jeremiah Oluwagbemi Abimbola

In this model, we have three convolutional layers. The filters used in each convo-
lutional layer have a size of 3x3. The first convolutional layer has 32 filters, the
second convolutional layer also has 32 filters, and the third convolutional layer has
64 filters. Each filter learns to extract different features from the input data.

• Activation Function (ReLU): Rectified Linear Unit is used as the activation
function after each convolutional layer. ReLU sets all negative values in the feature
maps to zero and keeps the positive values unchanged.

• Batch Normalization: Batch Normalization is applied after each convolutional
layer. It helps normalize the activation of the previous layer, making the training
process more stable.

• Pooling Layer: Max-Pooling is performed with a window size of 4x6 for the MFCC
data. The reason for this choice is in the number of MFCC; in this case, 13. With
a group of 3’s on the y-axis, 13 MFCCs can be max pooled and still leave some
room for the RNN to perform further operations in cases of adding LSTM. For the
spectrogram images, a window size of 2×2 was used. This choice is motivated by
the 2D structure of spectrograms. Each 2×2 pooling window scans over adjacent
regions of the spectrogram, selecting the maximum value within each window. This
operation reduces the spatial dimensions of the feature maps by selecting the max-
imum value within each window. The pooling operation is performed with "same"
padding, which means the spatial dimensions of the feature maps remain the same
after pooling.

• Flattening: After the convolutional and pooling layers, the feature maps are flattened
into a 1D vector. This is done to prepare the data for the fully connected layers.

• Dense Layers: The first Dense layer has 32 neurons, the second Dense layer has 16
neurons, and the third Dense layer has 8 neurons. These layers perform high-level
reasoning based on the extracted features. ReLU activation function is used in the
Dense layers to introduce non-linearity.

• Dropout Rate: Dropout is applied with a rate of 0.3 after the first Dense layer,
and with rates of 0.2 after the second and third Dense layers. Dropout randomly
sets a fraction of the input units to zero during training, preventing over-fitting.

• Output Layer: The output layer has 4 neurons, representing the four classes of
time signatures (e.g., 2/4, 3/4, 5/4, 7/4). Softmax activation function is applied to
the output layer, which converts the raw predictions into probabilities for each class.

87

Chapter 8. Using Machine Learning for Time Signature Detection

Training and Optimization

• Training Procedure: In this study, a batch size of 64 was employed for training
the CNN. The model was trained over 200 epochs on the MFCCs and 10 epochs
on the spectrograms to iteratively learn from the dataset. The varying number of
epochs for training on MFCCs (200 epochs) versus spectrograms (10 epochs) reflects
the different complexity and information content of the two feature representations,
requiring more iterations to learn from the MFCCs compared to the spectrograms.
During training, the Adam optimizer with a learning rate of 0.001 was utilized
to update the CNN’s parameters based on the computed gradients. This training
procedure allowed the model to optimize its weights and biases by minimizing the
loss function, ultimately enhancing its ability to make accurate predictions on the
training dataset.

• Hyper-parameter Tuning: was conducted to optimize the performance of the
model. The hyper-parameters considered for tuning included the learning rate, batch
size, number of epochs. A grid search approach was employed, where different com-
binations of hyper-parameter values were systematically evaluated to identify the
optimal settings. For instance, the learning rate was tested across a range of values
(e.g., 0.001, 0.01, 0.1) to determine its impact on model convergence and perform-
ance. Similarly, different batch sizes (e.g., 32, 64, 128) were explored to assess their
influence on training stability and generalization. The number of epochs was varied
(e.g., 50, 100, 150, 200) to find a balance between model convergence and over-fitting.

8.2.2 Convolutional Recurrent Neural Network (CRNN)

The CRNN architecture builds upon the CNN by incorporating recurrent layers to
capture temporal dependencies in the audio signals. Similar to the CNN, we used two
distinct input features: MFCC and spectrogram. The MFCC was inputted as raw array
vector values, and the spectrogram was treated as an image. These features were used
separately to evaluate their effectiveness in the CRNN model, allowing the recurrent
layers to exploit temporal patterns while the convolutional layers handled spatial feature
extraction for improved meter detection.

LSTM Layers

The LSTM (Long Short-Term Memory) layers are a type of recurrent neural network
layer that can effectively model sequential data by preserving information over long time
steps. The LSTM units are responsible for learning and remembering relevant information
from previous time steps and using it to make predictions. The first LSTM layer consists
of 64 LSTM units, which are responsible for capturing temporal dependencies in the input

88

Jeremiah Oluwagbemi Abimbola

data. The dropout parameter is set to 20%, which helps to regularize the layer and prevent
over-fitting. The layer returns the full sequence of hidden states as output. The second
LSTM layer is similar to the first, with 64 LSTM units and a 20% dropout. However, the
return sequences parameter is not specified, so the layer defaults to returning only the final
hidden state. These LSTM layers are added after the convolutional layers in the CRNN
model, allowing the model to capture both local and temporal features in the input data.
The LSTM layers contribute to the model’s ability to understand the sequential nature
of the input data and extract meaningful representations for time signature classification.

Training and Optimization

• Training Procedure: A batch size of 64 was utilized for training the CRNN. The
model was trained over 200 epochs on MFCCs and 30 epochs on spectrograms
to progressively learn from the dataset, reflecting the varying informational content
of these two feature representations. Throughout training, the Adam optimizer
with a learning rate of 0.001 was employed to adjust the CRNN’s parameters
based on calculated gradients. This method optimized the model’s weights and biases
by minimizing the loss function, improving its predictive accuracy on the training
dataset.

• Parameter Tuning: The model’s performance was refined through hyper-parameter
optimization. This process involved tuning essential parameters such as the learning
rate, batch size, and epochs. A grid search methodology was applied, systematically
examining various combinations of hyper-parameter values to identify the optimal
configurations. For example, the impact of different learning rates (e.g., 0.001, 0.01,
0.1) on model convergence and performance was thoroughly investigated. Similarly,
diverse batch sizes (e.g., 32, 64, 128) were explored to evaluate their effects on train-
ing stability and generalizability. Additionally, the number of training epochs was
adjusted (e.g., 50, 100, 150, 200) to strike a balance between model convergence and
mitigating over-fitting.

8.2.3 ResNet18

A significant aspect of our research, which was published [4], involved utilizing the Res-
Net18 architecture, as detailed in Figure 8.1. The choice to use ResNet18 was motivated
by the nature of the dataset used, specifically the Meter2800 dataset. Being a relatively
lightweight variant of the ResNet architecture, it was considered suitable for this dataset
due to its ability to handle smaller datasets while still capturing important features and
avoiding over-fitting. By leveraging ResNet18, the model can effectively learn from the
transformed audio data, enabling accurate classification and analysis of the meter in the
given dataset.

89

Chapter 8. Using Machine Learning for Time Signature Detection

It consists of 18 layers, including convolutional layers, batch normalization layers,
ReLU activation functions, and a fully connected layer. It incorporates residual connec-
tions, which are skip connections that allow the network to learn residual mappings rather
than explicit feature mappings. To fully understand its workings, the details of the layers
are as follows:

Model Architecture

• Convolutional Layer: The input data is initially passed through a convolutional
layer with a 7x7 kernel and a stride of 2. This layer performs a set of convolutions
to extract low-level features from the input data.

Using the MFCC array values, the model is slightly adjusted. It consists of an initial
Conv2d layer followed by the ResNet-18 base model with modified fully connected
layers. The first Conv2d layer takes the input MFCC, which is a 2D representation
of audio, with 1 channel (since they are not images) and outputs a tensor with 3
channels. The MFCCs were pre-processed and stored in array files (.npy) and this
step helped with faster data processing, so that the model can handle batches of
such files efficiently during training and inference. The purpose of this layer is to
transform the input to a suitable dimension for the subsequent layers. The output
from the first layer is passed to the ResNet-18 Base Model for further processing.
After the base model, we replace the original fully connected layer (the last layer
of ResNet-18) with our custom sequential layers. These fully connected layers are
responsible for mapping the learned features from the convolutional layers to the
desired number of output classes. In this case, the architecture includes four linear
layers with ReLU activation functions in between. The first linear layer takes 512
input features (output size of the last layer of ResNet-18) and outputs 128 features.
The subsequent linear layers reduce the dimensionality further, resulting in 32, 8,
and finally the number of output classes. The architecture can be found below;

1 s e l f . conv1 = t o r c h . nn . Conv2d (1 , 3 , k e r n e l _ s i z e =1)
2 s e l f . base_model = models . r e s n e t 1 8 (we i gh t s=None)
3 s e l f . base_model . f c = t o r c h . nn . S e q u e n t i a l (
4 t o r c h . nn . L i n e a r (512 , 128) ,
5 t o r c h . nn . ReLU () ,
6 t o r c h . nn . L i n e a r (128 , 32) ,
7 t o r c h . nn . ReLU () ,
8 t o r c h . nn . L i n e a r (32 , 8) ,
9 t o r c h . nn . ReLU () ,

10 t o r c h . nn . L i n e a r (8 , num_classes)
11)

90

Jeremiah Oluwagbemi Abimbola

• Max Pooling: A 3x3 max pooling operation with a stride of 2 is applied after the first
convolutional layer. It reduces the spatial dimensions of the feature maps, aiding in
down-sampling.

• Basic Blocks: The core building blocks of ResNet, known as Basic Blocks, are re-
peated throughout the network. Each Basic Block consists of two 3x3 convolutional
layers with a fixed number of filters followed by batch normalization and ReLU
activation. These convolutional layers learn to capture and enhance higher-level
features.

• Residual Connections: Residual connections, or skip connections, are introduced
between certain Basic Blocks. These connections allow the network to directly
propagate information from earlier layers to later layers. By preserving the ori-
ginal information, they facilitate the training of deeper networks by mitigating the
degradation problem.

• Down-sampling: Down-sampling is performed using convolutional layers with a stride
of 2 at specific stages in the network (conv3_1, conv4_1, and conv5_1). This down-
sampling reduces the spatial dimensions of the feature maps while increasing their
depth.

• Fully Connected Layer: At the end of the network, a fully connected layer is applied
to the extracted features. This layer aggregates the features and maps them to the
corresponding output classes. For the classification using the ImageNet dataset, the
output layer consists of 1000 neurons representing the 1000 classes.

In summary, these 18 layers include the initial convolutional layer which is counted as
one layer, four sets of Basic Blocks, each set containing two Basic Blocks. Therefore, there
are a total of 4 sets × 2 Basic Blocks which is 8 Basic Blocks. The max pooling layer is not
counted as a separate layer since it is a pooling operation applied after the convolutional
layer. The final fully connected layer, which maps the extracted features to the output
classes, is counted as one layer. However, the ResNet architecture also includes down-
sampling layers, which reduce the spatial dimensions of the feature maps. In ResNet18,
down-sampling occurs at specific stages in the network, namely conv3_1, conv4_1, and
conv5_1. These down-sampling layers are considered as separate layers, bringing the total
count to 18.

By utilizing both classic machine learning models and state-of-the-art deep learning
architectures, our goal was to comprehensively assess the performance of various ap-
proaches on the Meter2800 dataset. The insights gained from these experiments highlight
the strengths and limitations of each model and contribute to advancing the field of time
signature detection in music.

91

Chapter 8. Using Machine Learning for Time Signature Detection

Figure 8.1: The ResNet18 architecture

92

Jeremiah Oluwagbemi Abimbola

Training and Optimization

• Training Procedure: Using the Meter2800 dataset, two sets of data were prepared;
MFCC as array values and spectrogram as images. The MFCC representation of
audio signals can be used as raw values and could also be converted to "images" as
shown in 8.2 and used in a manner similar to image classification tasks. However, in
this case, it is used as raw values. A batch size of 32 was utilized for training the
RESNET on MFCC and batch size of 64 on spectrograms. The model was trained
over 50 epochs on MFCCs and 30 epochs on spectrograms to progressively
learn from the datasets.

• Parameter Tuning: The model’s performance was enhanced through hyper-parameter
optimization, which involved tuning critical parameters like learning rate, batch size,
and epochs. Using a systematic grid search approach, various combinations of hyper-
parameter values were evaluated to determine optimal configurations, considering
factors such as model convergence, training stability, and generalizability.

• Optimizer and Loss Function: Throughout training, the Adam optimizer with a
learning rate of 0.001 was used on both input features. The optimizer adjusts
the weights during back-propagation to minimize the defined loss function. In this
case, the CrossEntropyLoss function was used, which is suitable for multi-class
classification tasks. For binary classification (where the number of classes M equals
2 as in the case of 3

4 and 4
4 classes), cross-entropy is calculated as:

−(y log(p) + (1− y) log(1− p))

and in the case of M > 2 (i.e., multiclass classification), we calculate a separate loss
for each class label per observation and sum the result:

−
M∑

c=1
yo,c log(po,c)

where, y represents the true label, p is the predicted probability for the positive class
in binary classification, and yo,c and po,c are the true and predicted probabilities,
respectively, for each class c in multi-class classification for a specific observation o.

In summary, all the parameters used for both set of inputs are:

• Number of MFCC coefficients: 13

• Mean for normalization: [0.5, 0.5, 0.5]

• Standard deviation for normalization: [0.5, 0.5, 0.5]

93

Chapter 8. Using Machine Learning for Time Signature Detection

Figure 8.2: Sample MFCCs for one audio signal from each music meter class

94

Jeremiah Oluwagbemi Abimbola

• Batch size: 64 for spectrogram and 32 for MFCC

• Number of epochs: 30 for spectrogram and 50 for MFCC

• Optimizer: Adam

• Loss function: Cross Entropy Loss

8.2.4 ResNet18-LSTM

In our exploration of advanced architectures, we also integrated ResNet with LSTM
networks to leverage both spatial and temporal features of the audio data. The ResNet-
LSTM architecture combines the strengths of residual learning with the sequential mod-
eling capabilities of LSTM networks. The architecture is given below:

1 s e l f . base_model = models . r e s n e t 1 8 ()
2 s e l f . base_model . avgpoo l = nn . I d e n t i t y ()
3 s e l f . l s tm1 = nn .LSTM(512 , h i dd en_s i z e =128 , num_layers=2)
4 s e l f . l s tm2 = nn .LSTM(128 , h i dd en_s i z e =128 , num_layers=2)
5 s e l f . avgpoo l = nn . Adapt iveAvgPoo l1d (1)
6 s e l f . f c = nn . S e q u e n t i a l (
7 nn . L i n e a r (128 , 32) ,
8 nn . ReLU () ,
9 nn . L i n e a r (32 , 8) ,

10 nn . ReLU () ,
11 nn . L i n e a r (8 , num_classes)
12)

Training and Optimization

• Training Procedure: Two sets of data were also produced for this model: spectrogram
pictures and MFCC array values. The RESNET18-LSTM was trained on MFCC
with a batch size of 128 and spectrograms with a batch size of 64. To gradually
learn from the datasets, the model was trained over 150 epochs on MFCCs and
40 epochs on spectrograms.

• Parameter Tuning: Hyper-parameter optimization, which entailed adjusting crucial
parameters including learning rate, batch size, and epochs, improved the model’s
performance. To find the best configurations, a methodical grid search technique
was used to examine different hyper-parameter value combinations while taking
into account the convergence of the model and training stability.

95

Chapter 8. Using Machine Learning for Time Signature Detection

• Optimizer and Loss Function: Both input features were trained using the Adam
optimizer at a learning rate of 0.001. The CrossEntropyLoss function was
applied in this instance, and it works well for situations involving many classes of
categorization.

8.3 Results and Discussion

8.3.1 Model Evaluation Metrices

Each method was rigorously evaluated using several performance metrics to assess
their efficacy in detecting time signatures accurately. Accuracy, precision, recall, and F1-
score were calculated for comparative analysis across the algorithms. The accuracy metric
measures the overall correctness of the model predictions, while precision quantifies the
correctness of the positive predictions. Recall assesses the model’s ability to identify all
positive instances, and the F1-score balances precision and recall.

Accuracy

Accuracy measures the overall correctness of predictions made by a model. It is cal-
culated as the ratio of correctly predicted samples to the total number of samples:

Accuracy = True Positives + True Negatives
Total Samples

Recall

Recall, also known as sensitivity or true positive rate, assesses a model’s ability to
identify all positive instances correctly. It is calculated as the ratio of true positives to the
sum of true positives and false negatives:

Recall = True Positives
True Positives + False Negatives

Precision

Precision measures the correctness of positive predictions made by the model. It is
calculated as the ratio of true positives to the sum of true positives and false positives:

Precision = True Positives
True Positives + False Positives

96

Jeremiah Oluwagbemi Abimbola

F1-Score

F1-Score is the harmonic mean of precision and recall, providing a balance between
these two metrics. It is calculated as follows:

F1-Score = 2× Precision× Recall
Precision + Recall

Where: True Positives (TP) are the correctly predicted positive instances. True Neg-
atives (TN) are the correctly predicted negative instances. False Positives (FP) are the
instances incorrectly predicted as positive. False Negatives (FN) are the instances incor-
rectly predicted as negative.

8.3.2 Machine Learning Algorithms

Among the machine learning models, four methods were evaluated for their effect-
iveness in detecting time signatures in audio signals using the Meter2800 dataset: SVM,
KNN, Naive Bayes, and Random Forest. The results obtained from these methods are
shown below.

Performance on 2 Classes

From Table 8.1, it can be observed that SVM exhibits the highest accuracy (86.67%)
and F-score among the machine learning models, indicating its robust performance in
classifying time signatures. Naive Bayes demonstrates comparable performance (accuracy
of 84.50%) with slightly lower precision compared to SVM. KNN and Random Forest also
display competitive accuracy (84.83% and 86.00%, respectively) but show slightly lower
precision and recall (0.8484 and 0.8600, respectively) compared to SVM and Naive Bayes.

Table 8.1: Machine learning models classification report for 2 classes

Model Accuracy F-Score Recall Precision

SVM 0.8667 0.8661 0.8667 0.8733
KNN 0.8483 0.8483 0.8483 0.8484

Naive Bayes 0.8450 0.8440 0.8450 0.8537
Random Forest 0.8600 0.8592 0.8600 0.8679

Performance on 4 Classes

The results from Table 8.2 highlight that SVM achieves the highest accuracy (74.29%)
and F-score among the classical machine learning models. However, it’s noticeable that
Naïve Bayes falls slightly behind in accuracy (66.00%) but demonstrates competitive

97

Chapter 8. Using Machine Learning for Time Signature Detection

performance in precision. KNN and Random Forest show moderate accuracy (70.43%
and 72.57%, respectively), with Random Forest exhibiting the highest precision (77.42%)
among the models.

Table 8.2: Machine learning models classification report for 4 classes

Model Accuracy F-Score Recall Precision

SVM 0.7429 0.6957 0.7429 0.7684
KNN 0.7043 0.6972 0.7043 0.6932

Naïve Bayes 0.6600 0.6733 0.6600 0.6982
Random Forest 0.7257 0.6702 0.7257 0.7742

8.3.3 Deep Learning Models

The evaluation of deep learning models for time signature detection revealed significant
promise in their capability demonstrating high accuracy and robustness for this task.

Performance on 2 Classes

In the context of binary classification, the performance of these deep learning models is
captured in Table 8.3. It presents the classification report for deep learning models trained
on two different types of feature representations: MFCC and Spectrogram. For both fea-
ture types, four models were evaluated: CNN, CRNN, ResNet18, and ResNet18-LSTM.
In the case of MFCC features, all models achieved high accuracy ranging from 0.8800 to
0.8900. The F-scores, which balance precision and recall, were also consistently high, ran-
ging from 0.8795 to 0.8896. Also, ResNet18 and ResNet18-LSTM exhibited slightly lower
precision compared to CNN and CRNN. For Spectrogram features, the performance of
the models was even more impressive, with accuracy ranging from 0.9800 to 0.9967. Res-
Net18 achieved the highest accuracy of 0.9967, indicating its superior ability to classify
the data. Overall, the results demonstrate the effectiveness of deep learning models in
classifying data represented by both MFCC and Spectrogram features, with ResNet18
showing particularly promising performance across both feature types.

Performance on 4 Classes

Expanding the evaluation to a scenario involving multiple classes (4 classes) allowed
for a more comprehensive assessment of the deep learning models. Across the diverse
classification landscape, the performance of these models exhibited varying degrees of ef-
ficiency. Detailed insights into the performance of each deep learning model in the context
of the 4 classes can be found in Table 8.4

98

Jeremiah Oluwagbemi Abimbola

Table 8.3: Deep learning models classification report for 2 classes

Model Accuracy F-Score Recall Precision

Deep Learning Models with MFCC
CNN 0.8900 0.8896 0.8900 0.8964
CRNN 0.8800 0.8795 0.8800 0.8862
RESNET18 0.8850 0.8835 0.8837 0.8860
RESNET18-LSTM 0.8900 0.8896 0.8900 0.8957

Deep Learning Models with Spectrogram
CNN 0.9800 0.9800 0.9800 0.9808
CRNN 0.9883 0.9883 0.9886 0.9883
RESNET18 0.9967 0.9967 0.9967 0.9967
RESNET18-LSTM 0.9850 0.9850 0.9854 0.9850

Table 8.4: Deep learning models classification report for 4 classes

Model Accuracy F-Score Recall Precision

Deep Learning Models with MFCC
CNN 0.8129 0.8004 0.8129 0.8104
CRNN 0.8029 0.7914 0.8029 0.7973
RESNET18 0.8514 0.8502 0.8514 0.8537
RESNET18-LSTM 0.8600 0.8588 0.8600 0.8608

Deep Learning Models with Spectrogram
CNN 0.8286 0.7767 0.8286 0.8734
CRNN 0.8557 0.8076 0.8557 0.8460
RESNET18 0.9071 0.9003 0.9071 0.9023
RESNET18-LSTM 0.8557 0.8944 0.8557 0.8128

99

Chapter 8. Using Machine Learning for Time Signature Detection

The comparative analysis revealed a significant performance disparity between clas-
sical machine learning algorithms and deep learning models. While traditional methods
exhibited reasonable results, they notably lagged behind deep learning architectures, un-
derscoring their limitations in capturing intricate patterns essential for precise time sig-
nature detection. Particularly, ResNet18 consistently outperformed CNN and CRNN in
this context, highlighting the efficacy of its residual connections and skip connections.

ResNet18’s ability to robustly capture and preserve critical features within the Meter2800
dataset underscores its adaptability and reliability in discerning subtle patterns inherent
to time signature classification tasks. The obtained results affirm ResNet18’s proficiency
in tackling the challenging task of time signature detection, owing to its enhanced capacity
for learning and representation. Table 8.5 succinctly illustrates these findings, emphasiz-
ing ResNet18’s superior performance compared to other architectures in terms of model
complexity and computational efficiency.

Table 8.5: Trainable and non-trainable parameters for different deep learning models

Model Trainable params Non-trainable params
Using MFCC Input features

ResNet18 11,263,504 11,008
ResNet18-LSTM 13,679,888 9,728

CNN 35,196 256
CRNN 76,612 96

Using Spectrogram Input features
ResNet18 25,600,000 22,000

ResNet18-LSTM 28,000,000 20,000
CNN 75,000 500

CRNN 150,000 200

8.4 Summary

In this chapter, we explored the application of both classic machine learning algorithms
and deep learning models for time signature detection using the Meter2800 dataset. We
evaluated a range of models including SVM, Random Forest, Naive Bayes, KNN, CNN,
CRNN, ResNet18, and ResNet18-LSTM, analyzing their performance across different fea-
ture representations such as MFCC and spectrograms. The classic machine learning clas-
sifiers demonstrated reasonable performance but were outperformed by deep learning
architectures, particularly ResNet18, which consistently showed superior accuracy and
F1-scores in both binary and multi-class classification scenarios. The robustness of Res-
Net18 in capturing nuanced patterns within audio data highlights its efficacy for time

100

Jeremiah Oluwagbemi Abimbola

signature classification tasks, supported by its residual connections and skip connections
which enhance learning and representation capabilities.

Overall, the results showed the impact of deep learning in time signature detection,
showcasing ResNet18 as a leading model for accurate and reliable time signature detection
[4]. This chapter also provided comprehensive evaluation metrics to validate the effective-
ness of each approach, thus contributing valuable insights into advancing machine learning
applications in music analysis.

101

Chapter 8. Using Machine Learning for Time Signature Detection

102

Chapter 9

Ensemble Techniques

9.1 Introduction

In order to improve predictive performance and generate results that are more reli-
able and accurate than those produced by a single model, ensemble learning techniques
make use of the idea of merging many models. The "wisdom of the crowd" theory[158],
which holds that the combined decisions of various models often exceed those of a single
model, is the foundation for the reasoning behind ensemble approaches. These methods
are widely used in many different domains, including data mining[9], statistics, and ma-
chine learning[160]. Their adaptability and efficacy in enhancing prediction performance
are well-known. Compared to single models, they can handle complicated relationships
within data more efficiently, are less prone to over-fitting, and provide superior general-
isation. Although ensemble approaches have advantages, training numerous models may
make them computationally expensive and lower their interpretability when compared to
individual models.

The underlying principle of this method is building a collective model from several
base models, which may or may not be of the same kind. Typically, ensembles are made
up of a variety of models with varying algorithmic approaches, feature representations,
and training approaches. The goal of model diversity is to capture many facets of the data
and increase overall forecast accuracy.

In this chapter, we employed various ensemble techniques on various models using
MFCC and spectrograms. For each technique, we evaluated its effectiveness in improv-
ing the accuracy and robustness of time signature detection systems which are found in
result section of this chapter 9.3. For MFCCs, 8 models (SVM, KNN, Random Forest,
Naive Bayes, CNN, CRNN, RESNET18, RESNET18-LSTM) were considered and 4 mod-
els (CNN, CRNN, RESNET18, RESNET18-LSTM) for spectrogram. The reason for the
smaller number of models for spectrograms is that the data is image-based and cannot be
used with the other machine learning models. Some of the ensemble techniques are:

103

Chapter 9. Ensemble Techniques

9.1.1 Soft Voting

The ensemble employs soft voting to get a more accurate final prediction by averaging
the probability ratings of each class projected by several models. Taking into account
the levels of confidence associated with each conclusion results in a more probabilistic
decision-making process.

Let M be the ensemble of individual models, where mi represents an individual model
in the ensemble, and C be the set of possible classes for a given prediction task. The
output of each model mi for a particular input can be denoted as oi, where oi is in C.
Additionally, let P (oi = c) represent the probability score assigned by the i-th model to
the class c.

The soft voting mechanism computes the final probability distribution for each class
c as given in the equation below:

P (Vs = c) = 1
N

N∑
i=1

P (oi = c) (9.1)

Here, P (Vs = c) represents the final probability score for class c in the ensemble, and
N is the total number of individual models. The class with the highest final probability
is selected as the ensemble’s prediction.

9.1.2 Weighted Voting

Weighted voting is an approach that improves accuracy by using the collaborative
capabilities of different models. It accomplishes this by giving distinct weights to each
model prediction. These weights indicate each model’s confidence or credibility. For ex-
ample, a base model with 95% accuracy will be given more weight than another with
90% accuracy. The class or outcome is determined by the weighted sum of predictions.
This strategy enables a more detailed examination of the predictive powers of individual
models.

Let M be the ensemble of individual models, where mi represents an individual model
in the ensemble, and C be the set of possible classes for a given prediction task. The
output of each model mi for a particular input can be denoted as oi, where oi ∈ C.

Let Wi represent the weight assigned to the prediction of model mi, and N be the
total number of models in the ensemble.

The weighted vote, V , is determined by computing the weighted sum of individual
predictions:

V = argmaxc∈C

N∑
i=1

Wi · I(oi = c) (9.2)

Here, I(oi = c) is the indicator function that takes the value 1 if oi = c (i.e., the i-th

104

Jeremiah Oluwagbemi Abimbola

model predicts class c), and 0 otherwise. The weighted vote V corresponds to the class
with the highest weighted cumulative sum across all individual models in the ensemble.

9.1.3 K-Ranked Voting

This technique uses the idea of rank assignment to predict classes while taking into
consideration the probability predicted by each model. Each predicted class is given a
weight based on its rank, which is determined by the value of K. In this example, K = 3.
As a result, the class with the highest probability is assigned a weight of three, followed by
the second-highest class with a weight of two, and the third-highest with a weight of one.
These weighted predictions are then added across all individual models in the ensemble,
with an argmax operation used to choose the class with the largest cumulative sum, and
this eventually decides the result.

Let M be the ensemble of individual models, where mi represents an individual model
in the ensemble, and C be the set of possible classes for a given prediction task. The
output of each model mi for a particular input can be denoted as oi, where oi is in C.

The K-ranked vote, Vk, with k = 3, is determined by assigning weights to the predicted
classes based on their rank, considering the probabilities of each class predicted by the
individual models:

Vk = argmaxc∈C

N∑
i=1

Rank (oi, P(oi = c)) (9.3)

Here, Rank (oi, P(oi = c)) represents the rank assigned to the predicted class c by the
i-th model, considering the probability of class c predicted by that model. The K-Ranked
Vote Vk corresponds to the class with the highest cumulative sum across all individual
models in the ensemble, considering the top k-ranked classes.

9.1.4 Stacked Voting

Stacked voting, also known as stacking, entails developing a meta-model that combines
the predictions of numerous base models. Stacking, as opposed to standard weighted
voting, entails employing a higher-level model to learn how to optimally combine various
models’ predictions.

Let M be the ensemble of individual models, where mi represents an individual base
model in the ensemble, and C be the set of possible classes for a given prediction task.
The output of each base model mi for a particular input can be denoted as oi, where
oi ∈ C.

The stacked vote, V , is determined by training a meta-model (e.g., a classifier) on the
predictions of the individual models. Let S be the stacked model, and wi be the weight
assigned to the output of base model mi.

105

Chapter 9. Ensemble Techniques

V = argmaxc∈CS

(
N∑

i=1
wi · oi

)
(9.4)

Here, S is the function representing the meta-model, and ∑N
i=1 wi ·oi is the aggregated

input to the meta-model. The stacked vote V corresponds to the class with the highest
predicted probability or score from the meta-model.

Particularly, we implementing stacking with various base models, including:

• Stacking with Gradient Boosting (Stacking-GB): A meta-model that combines the
predictions of individual models using a Gradient Boosting classifier [53, 115] as the
base learner.

• Stacking with Extreme Gradient Boosting (Stacking-XGB): A stacking method
where the meta-model employs Extreme Gradient Boosting (XGBoost) [53] to learn
the optimal combination of base models’ predictions.

• Stacking with CatBoost (Stacking-CatB): A stacking technique that utilizes the
CatBoost algorithm [124], known for its efficiency and performance with categorical
features, as the meta-model.

• Stacking with Random Forest (Stacking-RF): This method involves using a Random
Forest classifier as the meta-model to combine the outputs of the base models.

Each stacking model (Stacking-GB, Stacking-XGB, Stacking-CatB, and Stacking-RF)
was trained to optimize the final prediction by learning the best way to combine the base
models’ outputs.

9.1.5 Bayesian Model Averaging

Bayesian Model Averaging (BMA) combines predictions from multiple models by tak-
ing into account their respective uncertainties. In BMA, each model contributes to the
final prediction with a weight proportional to its posterior model probability [157].

Mathematically, let M be the ensemble of individual models, where mi represents
an individual model in the ensemble, and C be the set of possible classes for a given
prediction task. The output of each model mi for a particular input can be denoted as oi,
where oi ∈ C.

Let P (mi|D) be the posterior probability of model mi given the observed data D.
The Bayesian Model Averaging vote, V , is determined by computing the weighted sum of
individual predictions based on their posterior probabilities:

V = argmaxc∈C

N∑
i=1

P (mi|D) · I(oi = c) (9.5)

106

Jeremiah Oluwagbemi Abimbola

Here, I(oi = c) is the indicator function that takes the value 1 if oi = c (i.e., the i-th
model predicts class c), and 0 otherwise. The BMA vote V corresponds to the class with
the highest weighted cumulative sum across all individual models in the ensemble.

In practice, the posterior probabilities P (mi|D) are typically estimated using Bayesian
inference methods such as Markov Chain Monte Carlo (MCMC[24] or Variational Infer-
ence [63]).

9.2 Data Preparation and Aggregation for Accurate
Predictions

The audio samples used for each of these models were segmented into 10 parts, resulting
in a total of 28000 samples as seen from the 5. This strategy provided more samples for
the models to train and increase their ability to capture temporal dependencies in the
audio data. However, it is essential to acknowledge that obtaining accurate time signatures
within a 3-second interval may not be realistic. Consequently, after processing, it becomes
essential to aggregate predictions on the test data.

This aggregation process consolidates predictions made by the model across all 10
segments of MFCCs for each audio sample. It entails obtaining the mode of all predictions
as the final prediction and computing the mean of all prediction probabilities as the final
probabilities as can be seen in Table 9.1.

The choice of aggregation method was determined based on the observations presented
in Table 9.2. This table highlights the variations in accuracy on the test set for four-class
meters, both before and after applying the aggregation process. Each individual model
underwent evaluation, contributing to a comprehensive understanding of its performance
before and after the aggregation.

9.2.1 Optimization of Weighted Voting Technique Using Ge-
netic Algorithm

In our previous investigation, we employed a weighted voting technique to combine the
predictions of multiple models. However, the assignment of weights was based solely on
our intuition, without any systematic optimization or empirical justification. Specifically,
we arbitrarily assigned weights to each model without exploring alternative weighting
schemes or evaluating the impact of weight selection on overall performance. This ap-
proach, while yielding promising results, highlights the need for a more rigorous and
data-driven approach to weight optimization in future studies.

The superior performance of RESNET18 and RESNET18-LSTM suggests that they
should be assigned the highest weights in the weighted voting technique, enabling them to

107

Chapter 9. Ensemble Techniques

Table 9.1: Aggregation of MFCCs in the test set

Filename Prediction Probabilities Prediction Class True Class
Before Aggregation

mfcc12-1 [0.0412 0.0408 0.3120 0.6059] 3 2
mfcc12-2 [0.0412 0.0407 0.3120 0.6059] 3 2
mfcc12-3 [0.0121 0.7090 0.2747 0.0040] 1 2
mfcc12-4 [0.0452 0.1336 0.4379 0.3831] 2 2
mfcc12-5 [0.0000 0.9999 0.0000 0.0000] 1 2
mfcc12-6 [0.0062 0.4020 0.5782 0.0135] 2 2
mfcc12-7 [0.0720 0.5561 0.3032 0.0687] 1 2
mfcc12-8 [0.0571 0.1101 0.3464 0.4863] 3 2
mfcc12-9 [0.3885 0.5660 0.0361 0.0092] 1 2
mfcc12-10 [0.0000 0.9999 0.0000 0.0000] 1 2

After Aggregation
mfcc12 [0.0074 0.3469 0.3410 0.3046] 1 2

Table 9.2: Comparison of model accuracy and aggregated accuracy on the test set using
MFCC

Model Accuracy Aggregated Accuracy
SVM 0.7374 0.7429
KNN 0.6527 0.7043
NAIVE BAYES 0.6317 0.6600
RANDOM-FOREST 0.7281 0.7257
CNN 0.7484 0.8129
CRNN 0.7464 0.8029
RESNET 0.7920 0.8514
RESNET-LSTM 0.7866 0.8600

Table 9.3: Comparison of model accuracy and aggregated accuracy on the test set using
spectrogram

Model Accuracy Aggregated Accuracy
CNN 0.7477 0.8286
CRNN 0.7434 0.8557
RESNET 0.7844 0.9071
RESNET-LSTM 0.7754 0.8557

108

Jeremiah Oluwagbemi Abimbola

exert the most significant influence on the ensemble’s decision-making process. However,
due to their closely comparable accuracies and F-score values, determining the optimal
weight assignments for these models becomes a complex optimization problem. This chal-
lenge necessitates the incorporation of a robust optimization technique, such as Genetic
Algorithm (GA), to systematically determine the ideal weight distributions and maximize
the ensemble’s overall performance.

In this optimization process, which we also published in the Proceedings of the Com-
panion Conference on Genetic and Evolutionary Computation (GECCO) [1], we initialized
a weight vector w consisting of 8 real numbers between 0 and 1 i.e. 0 ≤ w ≤ 1, w ∈ R for
MFCCs and 4 real numbers between 0 and 1 i.e. 0 ≤ w ≤ 1, w ∈ R for spectrograms. The
GA was executed with a population size of 100 individuals. The GA parameters were set
as follows: crossover was performed with a probability of 0.2 using a uniform crossover
technique, a mutation probability of 0.6 to introduce diversity into the population. The al-
gorithm iterated for a total of 100 generations and 50 multiple runs. In each iteration, the
newly generated weight vectors were multiplied by the probability values corresponding
to each model. Subsequently, predictions were obtained using the ensemble model based
on the weighted probabilities, and the accuracy of the predictions was calculated.

9.3 Results and Discussion

9.3.1 Performance on 2 Classes

The table 9.4 below presents a comprehensive comparison of various ensemble vot-
ing techniques applied to two-class classification problems using two distinct feature sets:
MFCC and spectrograms. The ensemble methods evaluated include all the learning tech-
niques already mentioned in the previous chapter under section 9

The evaluation of ensemble techniques using MFCC features indicates that Weighted
Voting achieved the highest performance, with an F-Score of 0.8543, Accuracy of 0.8571,
Recall of 0.8610, and Precision of 0.8571. BMA also performed well, with consistent scores
across all metrics (F-Score: 0.8256, Accuracy, Recall, Precision: 0.8343). Summed Voting
and Soft Voting showed comparable performance, while Majority Voting, although ef-
fective, had slightly lower scores (F-Score and Accuracy: 0.7793, Recall and Precision:
0.8000).

In contrast, the use of spectrogram features significantly enhanced the performance of
all ensemble techniques. Summed Voting, Soft Voting, and BMA achieved perfect scores
across all metrics (0.9983). Weighted Voting and Stacking-XGB also demonstrated excel-
lent performance, with scores of 0.9967. Stacking-GB, Stacking-CatB, and Stacking-RF
performed well but slightly below the top methods, with F-Scores, Accuracy, and Recall
at 0.9917 and Precision slightly higher at 0.9918.

109

Chapter 9. Ensemble Techniques

Table 9.4: Comparison of ensemble voting techniques for 2 classes

Model F-Score Accuracy Recall Precision
Ensemble Techniques with MFCC

Majority Voting 0.7793 0.8000 0.8239 0.8000
K-Ranked Voting 0.7973 0.8100 0.8151 0.8100
Summed Voting 0.8225 0.8329 0.8378 0.8329
Soft Voting 0.8225 0.8329 0.8378 0.8329
Stacking-GB 0.7793 0.7729 0.7902 0.7729
Stacking-XGB 0.8025 0.7943 0.8171 0.7943
Stacking-CatB 0.8045 0.7971 0.8175 0.7971
Stacking-RF 0.8118 0.8086 0.8179 0.8086
BMA 0.8256 0.8343 0.8348 0.8343
Weighted Voting 0.8543 0.8571 0.8610 0.8571

Ensemble Techniques with Spectrogram
Majority Voting 0.9883 0.9883 0.9883 0.9886
K-Ranked Voting 0.9917 0.9917 0.9917 0.9918
Summed Voting 0.9983 0.9983 0.9983 0.9983
Soft Voting 0.9983 0.9983 0.9983 0.9983
Stacking-GB 0.9917 0.9917 0.9917 0.9918
Stacking-XGB 0.9967 0.9967 0.9967 0.9967
Stacking-CatB 0.9917 0.9917 0.9917 0.9918
Stacking-RF 0.9917 0.9917 0.9917 0.9918
BMA 0.9983 0.9983 0.9983 0.9983
Weighted Voting 0.9967 0.9967 0.9967 0.9967

110

Jeremiah Oluwagbemi Abimbola

9.3.2 Performance on 4 Classes

The various ensemble voting techniques for time signature detection were evaluated,
comparing their performance across two different feature extraction methods: MFCC and
spectrograms. The table 9.5 below presents a comprehensive comparison of the F-Score,
Accuracy, Recall, and Precision metrics for each ensemble technique, highlighting the
effectiveness of each approach.

Table 9.5: Comparison of ensemble voting techniques for 4-classes

Model F-Score Accuracy Recall Precision
Ensemble Techniques with MFCC

Majority Voting 0.7793 0.8000 0.8239 0.8000
K-Ranked Voting 0.7973 0.8100 0.8151 0.8100
Summed Voting 0.8225 0.8329 0.8378 0.8329
Soft Voting 0.8225 0.8329 0.8378 0.8329
Stacking-GB 0.7793 0.7729 0.7902 0.7729
Stacking-XGB 0.8025 0.7943 0.8171 0.7943
Stacking-CatB 0.8045 0.7971 0.8175 0.7971
Stacking-RF 0.8118 0.8086 0.8179 0.8086
BMA 0.8256 0.8343 0.8348 0.8343
Weighted Voting 0.8543 0.8571 0.8610 0.8571

Ensemble Techniques with Spectrogram
Majority Voting 0.8586 0.8586 0.8233 0.8782
K-Ranked Voting 0.8729 0.8729 0.8311 0.8219
Summed Voting 0.8829 0.8829 0.8429 0.8281
Soft Voting 0.8829 0.8829 0.8429 0.8281
Stacking-GB 0.9114 0.9114 0.9055 0.9051
Stacking-XGB 0.9171 0.9171 0.9120 0.9109
Stacking-CatB 0.9071 0.9071 0.9011 0.8987
Stacking-RF 0.9200 0.9200 0.9147 0.9130
BMA 0.8871 0.8871 0.8486 0.8313
Weighted Voting 0.8857 0.8857 0.8474 0.8304

In the analysis of ensemble techniques with MFCC for 4 classes, Weighted Voting
emerges as the standout performer, achieving the highest F-Score, Accuracy, Recall, and
Precision. BMA also demonstrates strong reliability, with consistent scores across all met-
rics, showcasing its effectiveness in aggregating model predictions. Meanwhile, Summed
Voting and Soft Voting provide a good balance between simplicity and effectiveness, al-
beit with slightly lower performance compared to Weighted Voting and BMA. Majority
Voting, although straightforward, exhibits comparatively lower performance, suggesting
potential limitations in fully leveraging individual model strengths.

On the other hand, in the analysis of ensemble techniques with spectrogram for 4
classes, Stacking-RF emerges as the top-performing technique, showcasing superior per-

111

Chapter 9. Ensemble Techniques

Table 9.6: Comparison of ensemble accuracy with and without GA

Ensemble Ensemble with GA
w/o GA Avg. Max. Min. Std. dev.

Accuracy [%] 83.29 86.98 87.29 86.57 0.0014

formance across all metrics. This shows the effectiveness of stacking random forest models
in ensemble learning for spectrogram features. Stacking-XGB, Stacking-GB, and Stacking-
CatB also demonstrate strong performance, indicating the effectiveness of stacking models
based on gradient boosting and categorical boosting algorithms. However, traditional en-
semble methods like Majority Voting, K-Ranked Voting, Summed Voting, and Soft Voting
exhibit relatively lower performance compared to stacking techniques, suggesting poten-
tial limitations in fully leveraging the predictive power of individual models when applied
to spectrogram features.

It is important to highlight the impact of optimization techniques on ensemble mod-
els, particularly in enhancing predictive accuracy through refined parameter tuning and
weight optimization methods such as genetic algorithms. Table 9.6 presents a compar-
ison of ensemble models with 4 classes meters using summed voting (without GA) versus
weighted voting (with GA) using MFCC features. In summed voting, probabilities are
aggregated directly, whereas weighted voting involves multiplying probabilities by prede-
termined weights before aggregation. The results demonstrate a significant improvement
in accuracy following GA optimization. Post-optimization, the ensemble achieved an aver-
age accuracy of 86.98%, with a peak accuracy of 87.29% and a minimum of 86.57%. This
performance surpassed that of individual models like RESNET18 and RESNET18-LSTM,
as well as the summed voting approach alone. These findings underscore the efficacy of
GA in determining optimal weights for enhancing ensemble prediction accuracy.

9.4 Ablation Study of the Ensemble Models

In response to the varying performance of ensemble techniques, an exploratory analysis
was conducted to investigate the impact of different model combinations. This ablation
study aims to understand how the inclusion or exclusion of individual models affects
the overall effectiveness of ensemble methods. The goal is to assess the contribution of
each model within the ensemble framework and evaluate their influence on the ensemble’s
performance.

112

Jeremiah Oluwagbemi Abimbola

9.4.1 Model Removal in Ensemble Techniques

To assess the influence of each model on ensemble performance, we implemented a
structured model removal approach. This involved iteratively excluding one model at a
time, beginning with the weakest performer, to evaluate its impact on predictive accuracy.
Table 9.7 presents the outcomes of this iterative process, detailing the performance metrics
of different ensemble techniques as models are progressively removed. By systematically
evaluating the effect of model exclusion on ensemble performance, we gained insights into
the relative importance of individual models within the ensemble framework.

Models Removed: KNN KNN, Nayes KNN, Nayes, RF, KNN, Nayes, RF KNN, Nayes, RF, KNN, Nayes, RF,
SVM SVM, CNN SVM, CNN, CRNN

Majority 0.8029 0.8114 0.8286 0.8343 0.8557 0.8500
Ranked 0.8157 0.8286 0.8386 0.8414 0.8643 0.8571
Summed 0.8357 0.8414 0.8514 0.8543 0.8614 0.8700
BMA 0.8329 0.8500 0.8529 0.8557 0.8643 0.8743
Soft 0.8357 0.8414 0.8514 0.8543 0.8614 0.8700
GBoost 0.8057 0.8171 0.8400 0.8486 0.8543 0.8586
XGBoost 0.8271 0.8357 0.8486 0.8557 0.8586 0.8514
CatBoost 0.8143 0.8114 0.8400 0.8514 0.8414 0.8529
RF 0.8171 0.8186 0.8243 0.8514 0.8643 0.8671
Weighted 0.8657 0.8557 0.8571 0.8629 0.8643 0.8700

Table 9.7: Performance scores of various voting strategies for different models removed

Initially, with only KNN removed as the base model, all ensemble techniques exhibit
moderate performance, with Majority Voting yielding an F1 score of 0.8029. As additional
models are removed, the overall performance trend shows consistent improvement, indicat-
ing the robustness of the ensemble framework in accommodating diverse model combina-
tions. Additionally, the consistent superior performance of weighted voting across various
model combinations highlights its effectiveness in combining predictions from multiple
models. This shows its robustness and efficacy in ensemble voting strategies.

9.4.2 Ensemble Learning Combinations

The motivation behind combining different models lies in the pursuit of enhancing
predictive performance and robustness. Individual models, whether based on Machine
Learning (ML), Deep Learning (DL), or Classical (CL) techniques, each have their unique
strengths and weaknesses. By integrating these diverse approaches, we aim to leverage the
complementary strengths of each model type, thereby mitigating their individual limita-
tions. This ensemble strategy is particularly beneficial in complex classification tasks, as
it can lead to more accurate and reliable predictions through the aggregation of varied
perspectives and methodologies. The method of combining these models are shown in
Table 9.8.

The tables 9.9 and 9.10 compare the accuracies of various ensemble voting techniques
using combinations of machine learning, deep learning, and classical model for 4-class and

113

Chapter 9. Ensemble Techniques

Table 9.8: Ensemble learning combinations

Combination Models Included
Only 2 Only Machine Learning Methods
Only 3 Only Deep Learning Methods

1-2 Classic Methods + Machine Learning Methods
1-3 Classic Methods + Deep Learning Methods
2-3 Machine Learning Methods + Deep Learning Methods

1-2-3 Classic Methods + Machine Learning Methods + Deep Learning Methods

2-class classifications. DL models include CNN, CRNN, ResNet18, and ResNet18-LSTM,
while ML models comprise KNN, SVM, Naive Bayes, and Random Forest. CL model here
is the MFCCSM only as it is a slight improvement from the others (ASM and BSM).

Table 9.9: Comparison of ensemble voting techniques showing their accuracies using com-
bination of models for 2 classes

Model Type Majority Ranked Summed BMA Soft Weighted
ML 0.8567 0.8583 0.8617 0.8583 0.8617 0.8667
DL 0.8933 0.8883 0.9067 0.9083 0.9066 0.9100
CL_ML 0.8583 0.8650 0.8583 0.8600 0.8583 0.8533
CL_DL 0.8917 0.8900 0.8950 0.8917 0.8950 0.8700
ML_DL 0.8817 0.8917 0.8983 0.9017 0.8983 0.8850
ALL 0.8833 0.8883 0.8900 0.8883 0.8900 0.8783

Table 9.10: Comparison of ensemble voting techniques showing their accuracies using
combination of models for 4 classes

Model Type Majority Ranked Summed BMA Soft Weighted
ML 0.7271 0.7514 0.7571 0.74571 0.7571 0.7557
DL 0.8343 0.8414 0.8543 0.8557 0.8543 0.8686
CL_ML 0.7300 0.7429 0.7629 0.7412 0.7629 0.6914
CL_DL 0.8329 0.8371 0.8614 0.8443 0.8614 0.8214
ML_DL 0.8000 0.8100 0.8329 0.8343 0.8329 0.7943
ALL 0.8014 0.8114 0.8229 0.8274 0.8229 0.7943

The tables present the performance of different ensemble voting techniques when ap-
plied to various combinations of ML, DL, and CL models for 2-class and 4-class classific-
ation tasks respectively. Among all the model types, deep learning models (DL) consist-
ently show high performance across all ensemble techniques, indicating their robustness
and ability to handle complex classification tasks effectively while the machine learning
models (ML) demonstrate a moderate performance, performing well with certain ensemble
techniques but generally not matching the performance levels of deep learning models.

114

Jeremiah Oluwagbemi Abimbola

They however perform better in 2-class classification than in 4-class classification, indic-
ating that they are well-suited for simpler classification problems.

The classical models (CL) combined with machine learning or deep learning models
show mixed results. When combined with deep learning models, classical models exhibit
improved performance, while combinations with machine learning models show poorer res-
ults. Combining all model types provides a balanced approach, but does not always yield
the highest performance, suggesting that adding more diverse models does not necessarily
improve the overall accuracy.

9.5 Summary

To summarize this chapter, we explored various ensemble learning techniques aimed
at enhancing the accuracy and reliability of time signature detection systems using audio
features such as MFCCs and spectrograms. Ensemble methods capitalize on the diversity
of individual models to achieve superior predictive performance compared to single mod-
els. Techniques like Soft Voting, Weighted Voting, K-Ranked Voting, Stacked Voting,
and Bayesian Model Averaging were examined in detail, each leveraging the strengths of
multiple base models to make collective predictions. We evaluated these methods across
different classification tasks—2-class and 4-class—using a combination of machine learn-
ing (ML), deep learning (DL), and classical (CL) models, highlighting their effectiveness
and relative performance in each scenario.

The results demonstrated that ensemble techniques significantly improved prediction
accuracy, especially when integrating deep learning models like CNNs, CRNNs, ResNet18,
and ResNet18-LSTM. These DL models consistently outperformed ML and CL models,
particularly evident in spectrogram-based feature sets where complex image-like data
required sophisticated modeling approaches. Conversely, ML models like SVMs, KNN,
Naive Bayes, and Random Forests showed competitive performance in simpler classifica-
tion tasks or when combined effectively with DL models. Furthermore, our study showed
the importance of a good ensemble design, where model diversity and combination meth-
ods played crucial roles in achieving optimal performance across various classification
scenarios.

115

Chapter 9. Ensemble Techniques

116

Chapter 10

Summary

In this study, we began by addressing the crucial task of time signature detection in
music, an area that had traditionally been tackled using models adept at handling MIDI
signals. Initial investigations into past models highlighted their strengths and limitations,
particularly in the context of audio signals versus MIDI signals. However, with the in-
creasing prevalence of audio signals, the need for more sophisticated models capable of
accurately processing audio data became evident. Our research objectives were centered
around developing new models to bridge the gap left by traditional approaches, aiming
to enhance the accuracy and robustness of time signature detection in audio signals.

We provided an extensive overview of music classification, covering aspects such as
genre, tempo, mood, instrumentation, and singing voice detection. We reviewed existing
methods and their performance, highlighting the challenges and limitations inherent in
current techniques. This comprehensive review identified specific areas where traditional
methods fell short, particularly in handling the complexity and variability of audio signals,
thereby setting the stage for the subsequent development of improved models.

We also delved into the specifics of time signature detection, reviewing digital signal
processing methods and introducing various models used in this domain. Key concepts
such as the Audio Similarity Matrix (ASM) and Beat Similarity Matrix (BSM) were
explored, and the potential of machine learning models to enhance detection accuracy
was discussed. This theoretical foundation emphasized the need to address the shortcom-
ings of existing approaches to improve detection performance. This research has led to
the development of a new model, MFCCSM, which represents a significant enhancement
over the traditional models examined. By leveraging Mel Frequency Cepstral Coefficients
(MFCCs) for feature extraction, MFCCSM enhanced the detection accuracy of time sig-
natures in audio signals. This improvement in accuracy supports and confirms H1 1.4,
demonstrating that utilizing MFCCs as a tool for time signature detection can indeed
lead to significant advancements in accurately identifying musical time signatures.

To validate our models, we created the Meter2800 dataset, consisting of 2800 annotated
audio samples. Each sample was 30 seconds long, with annotations stored in CSV files to

117

Chapter 10. Summary

facilitate accurate algorithm evaluations. The dataset was divided into train and test sets,
categorized into four meter classes, and analyzed for its relationship between meter and
tempo using scatter plots and statistical summaries. This comprehensive dataset was a
critical contribution, enabling rigorous testing and validation of time signature detection
models.

The use of optimization techniques, including Bayesian optimization and Genetic Al-
gorithms, further enhanced model performance by fine-tuning learning parameters and
achieving higher accuracy. This improvement in model performance confirms H2 1.4,
demonstrating that Genetic Algorithms can indeed be effectively employed to optimize
Mel-Frequency Cepstral Coefficient-based models for time signature detection.

We took our analysis further by exploring machine learning and deep learning models
as alternatives to traditional approaches. This has led to the development of an array of in-
novative models that significantly outperform their predecessors in terms of accuracy and
robustness. By combining the strengths of both machine learning (ML) and deep learn-
ing (DL) techniques, we’ve created robust hybrid models that leverage ensemble learning
methods. Specifically, by integrating powerful algorithms like KNN, SVM, Naive Bayes,
and Random Forest with cutting-edge DL architectures such as CNN, CRNN, ResNet18,
and ResNet18-LSTM, we have confirmed H3 1.4. The application of the ResNet archi-
tecture within these models has proven effective for time signature detection, validating
its potential in this context.

Finally, we employed several deep learning architectures as components of our en-
semble approach. By aggregating the predictions from these advanced models, we created
a robust ensemble that integrates the strengths of deep learning techniques. This signi-
ficant improvement in accuracy and robustness confirms H4 1.4, demonstrating that the
ensemble model leveraging deep learning techniques indeed provides superior performance
compared to the base classifier models.

In summary, our research has made substantial contributions to the field of time
signature detection in audio signals. We have demonstrated that combining traditional
models with machine learning and deep learning approaches can significantly enhance
performance. The development and validation of our new model, MFCCSM, using the
Meter2800 dataset, alongside the application of advanced optimization techniques, have
collectively resulted in a suite of models that set a new benchmark for accuracy and
robustness. This work lays a strong foundation for future research and development in
audio signal processing and music information retrieval, offering promising avenues for
further advancements and applications.

118

Bibliography

[1] Jeremiah Abimbola, Daniel Kostrzewa and Pawel Kasprowski. ‘Genetic Algorithm-
Based Optimization ofWeighted Voting in Ensemble Models for Time Signature
Detection’. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion. ACM. Melbourne, VIC, Australia: ACM, 2024, pp. 73–74. doi:
10.1145/3638530.3664083.

[2] Jeremiah Abimbola, Daniel Kostrzewa and Pawel Kasprowski. Meter2800. Ver-
sion V1. UNF:6:VaIntn9/q2FHhMcPvRTXYA==. 2022. doi: 10.7910/DVN/0CLXBQ.
url: https://doi.org/10.7910/DVN/0CLXBQ.

[3] Jeremiah Abimbola, Daniel Kostrzewa and Paweł Kasprowski. ‘METER2800: A
novel dataset for music time signature detection’. In: Data in Brief 51 (2023),
p. 109736.

[4] Jeremiah Abimbola, Daniel Kostrzewa and Pawel Kasprowski. ‘Music time sig-
nature detection using ResNet18’. In: EURASIP Journal on Audio, Speech, and
Music Processing 2024.1 (2024), p. 30.

[5] Jeremiah Abimbola, Daniel Kostrzewa and Pawel Kasprowski. ‘Optimization of
MFCCs for Time Signature Detection Using Genetic Algorithm’. In: Proceedings
of the Companion Conference on Genetic and Evolutionary Computation. 2023,
pp. 459–462.

[6] Jeremiah Abimbola, Daniel Kostrzewa and Pawel Kasprowski. ‘Time signature
detection: a survey’. In: Sensors 21.19 (2021), p. 6494.

[7] Ritesh Ajoodha, Richard Klein and Benjamin Rosman. ‘Single-labelled music genre
classification using content-based features’. In: 2015 Pattern Recognition Associ-
ation of South Africa and Robotics and Mechatronics International Conference
(PRASA-RobMech). IEEE. 2015, pp. 66–71.

[8] M. Alonso, G. Richard and B. David. ‘Extracting note onsets from musical record-
ings’. In: 2005 IEEE International Conference on Multimedia and Expo. 2005, 4
pp. isbn: 1945–788X. doi: 10.1109/ICME.2005.1521568.

119

https://doi.org/10.1145/3638530.3664083
https://doi.org/10.7910/DVN/0CLXBQ
https://doi.org/10.7910/DVN/0CLXBQ
https://doi.org/10.1109/ICME.2005.1521568

Bibliography

[9] Yael Amsterdamer, Yael Grossman, Tova Milo and Pierre Senellart. ‘Crowd min-
ing’. In: Proceedings of the 2013 ACM SIGMOD international conference on Man-
agement of Data. 2013, pp. 241–252.

[10] Hareesh Bahuleyan. ‘Music genre classification using machine learning techniques’.
In: arXiv preprint arXiv:1804.01149 (2018).

[11] Nancy Bansal, Amit Verma, Iqbaldeep Kaur and Dolly Sharma. ‘Multimodal bio-
metrics by fusion for security using genetic algorithm’. In: 2017 4th International
Conference on Signal Processing, Computing and Control (ISPCC). IEEE. 2017,
pp. 159–162.

[12] Jayme Garcia Arnal Barbedo and George Tzanetakis. ‘Musical instrument classi-
fication using individual partials’. In: IEEE Transactions on Audio, Speech, and
Language Processing 19.1 (2010), pp. 111–122.

[13] Abul Hashem Beg and Md Zahidul Islam. ‘Advantages and limitations of genetic
algorithms for clustering records’. In: 2016 IEEE 11th Conference on Industrial
Electronics and Applications (ICIEA). IEEE. 2016, pp. 2478–2483.

[14] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike Davies
and Mark B Sandler. ‘A tutorial on onset detection in music signals’. In: IEEE
Transactions on speech and audio processing 13.5 (2005), pp. 1035–1047.

[15] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman and Paul Lamere. ‘The
million song dataset’. In: (2011). http://millionsongdataset.com/.

[16] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning. Vol. 4. 4. Springer, 2006.

[17] Maciej Blaszke and Bożena Kostek. ‘Musical instrument identification using deep
learning approach’. In: Sensors 22.8 (2022), p. 3033.

[18] Holger Boche and Sawomir Stanczak. ‘The Kullback–Leibler divergence and non-
negative matrices’. In: IEEE transactions on information theory 52.12 (2006),
pp. 5539–5545.

[19] Sebastian Böck, Matthew EP Davies and Peter Knees. ‘Multi-Task Learning of
Tempo and Beat: Learning One to Improve the Other.’ In: ISMIR. 2019, pp. 486–
493.

[20] Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter and Xavier Serra.
‘The MTG-Jamendo dataset for automatic music tagging’. In: ICML. 2019.

[21] Stuart Borthwick and Ron Moy. Popular music genres: An introduction. Routledge,
2020.

[22] Leo Breiman. ‘Bagging predictors’. In: Machine learning 24.2 (1996), pp. 123–140.

120

http://millionsongdataset.com/

Jeremiah Oluwagbemi Abimbola

[23] M Broniatowski. ‘Estimation of the Kullback-Leibler divergence’. In: Mathematical
Methods of Statistics 12.4 (2003), pp. 391–409.

[24] Stephen Brooks. ‘Markov chain Monte Carlo method and its application’. In:
Journal of the royal statistical society: series D (the Statistician) 47.1 (1998),
pp. 69–100.

[25] Christopher JC Burges, John C Platt and Soumya Jana. ‘Extracting noise-robust
features from audio data’. In: 2002 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Vol. 1. IEEE. 2002, pp. I–1021.

[26] Harshada Burute and PB Mane. ‘Separation of singing voice from music back-
ground’. In: International Journal of Computer Applications 129.4 (2015), pp. 22–
26.

[27] Erion Çano and Maurizio Morisio. ‘Moodylyrics: A sentiment annotated lyrics
dataset’. In: Proceedings of the 2017 international conference on intelligent sys-
tems, metaheuristics & swarm intelligence. 2017, pp. 118–124.

[28] Estefanía Cano, Fernando Mora-Ángel, Gustavo A López Gil, José R Zapata, Ant-
onio Escamilla, Juan F Alzate and Moisés Betancur. ‘Sesquialtera in the colombian
bambuco: Perception and estimation of beat and meter’. In: Proc. Int. Soc. Music
Inf. Retrieval Conf. 2020, pp. 409–415.

[29] Zehra Cataltepe, Yusuf Yaslan and Abdullah Sonmez. ‘Music genre classification
using MIDI and audio features’. In: EURASIP Journal on Advances in Signal
Processing 2007 (2007), pp. 1–8.

[30] Tak-Shing Chan, Tzu-Chun Yeh, Zhe-Cheng Fan, Hung-Wei Chen, Li Su, Yi-Hsuan
Yang and Roger Jang. ‘Vocal activity informed singing voice separation with the
iKala dataset’. In: 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2015, pp. 718–722.

[31] Corinna Cortes and Vladimir Vapnik. ‘Support-vector networks’. In: Machine learn-
ing 20.3 (1995), pp. 273–297.

[32] Eugene Coyle and Mikel Gainza. ‘Time signature detection by using a multi-
resolution audio similarity matrix’. In: Audio Engineering Society Convention 122.
Audio Engineering Society. 2007.

[33] Trung-Thanh Dang and Kiyoaki Shirai. ‘Machine learning approaches for mood
classification of songs toward music search engine’. In: 2009 International Confer-
ence on Knowledge and Systems Engineering. IEEE. 2009, pp. 144–149.

[34] Sneha Das, Tom Bäckström et al. ‘Postfiltering Using Log-Magnitude Spectrum
for Speech and Audio Coding.’ In: Interspeech. 2018, pp. 3543–3547.

121

Bibliography

[35] Matthew EP Davies and Mark D Plumbley. ‘Context-dependent beat tracking of
musical audio’. In: IEEE Transactions on Audio, Speech, and Language Processing
15.3 (2007), pp. 1009–1020.

[36] W Bas De Haas and Anja Volk. ‘Meter detection in symbolic music using inner
metric analysis’. In: International Society for Music Information Retrieval Confer-
ence. 2016, p. 441.

[37] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst and Xavier Bresson. ‘Fma:
A dataset for music analysis’. In: arXiv preprint arXiv:1612.01840 (2016). https:
//arxiv.org/abs/1612.01840.

[38] N. Degara, A. Pena, M. E. P. Davies and M. D. Plumbley. ‘Note onset detection
using rhythmic structure’. In: 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing. 2010, pp. 5526–5529. isbn: 2379–190X. doi: 10.
1109/ICASSP.2010.5495220.

[39] Jeremiah D Deng, Christian Simmermacher and Stephen Cranefield. ‘A study on
feature analysis for musical instrument classification’. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 38.2 (2008), pp. 429–438.

[40] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li Fei-Fei. ‘Imagenet:
A large-scale hierarchical image database’. In: 2009 IEEE conference on computer
vision and pattern recognition. Ieee. 2009, pp. 248–255.

[41] Sander Dieleman, Philémon Brakel and Benjamin Schrauwen. ‘Audio-based mu-
sic classification with a pretrained convolutional network’. In: 12th International
Society for Music Information Retrieval Conference (ISMIR-2011). University of
Miami. 2011, pp. 669–674.

[42] Simon Dixon, Elias Pampalk and Gerhard Widmer. ‘Classification of dance music
by periodicity patterns’. In: (2003).

[43] Simon Durand and Slim Essid. ‘Downbeat Detection with Conditional Random
Fields and Deep Learned Features.’ In: ISMIR. 2016, pp. 386–392.

[44] Issam El Naqa and Martin J Murphy. What is machine learning? Springer, 2015.

[45] Ahmet Elbir, Hilmi Bilal Çam, Mehmet Emre Iyican, Berkay Öztürk and Nizamet-
tin Aydin. ‘Music genre classification and recommendation by using machine learn-
ing techniques’. In: 2018 Innovations in Intelligent Systems and Applications Con-
ference (ASYU). IEEE. 2018, pp. 1–5.

[46] Dan Ellis. ‘Chroma feature analysis and synthesis’. In: Resources of laboratory for
the recognition and organization of speech and Audio-LabROSA 5 (2007).

122

https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://doi.org/10.1109/ICASSP.2010.5495220
https://doi.org/10.1109/ICASSP.2010.5495220

Jeremiah Oluwagbemi Abimbola

[47] Daniel PW Ellis and Graham E Poliner. ‘Identifyingcover songs’ with chroma fea-
tures and dynamic programming beat tracking’. In: 2007 IEEE International Con-
ference on Acoustics, Speech and Signal Processing-ICASSP’07. Vol. 4. IEEE. 2007,
pp. IV–1429.

[48] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Nor-
ouzi, Douglas Eck and Karen Simonyan. ‘Neural audio synthesis of musical notes
with wavenet autoencoders’. In: International Conference on Machine Learning.
PMLR. 2017, pp. 1068–1077.

[49] Antti J Eronen and Anssi P Klapuri. ‘Music Tempo Estimation With k-NN Re-
gression’. In: IEEE Transactions on Audio, Speech, and Language Processing 18.1
(2009), pp. 50–57.

[50] Slim Essid, Gaël Richard and Bertrand David. ‘Musical instrument recognition by
pairwise classification strategies’. In: IEEE Transactions on Audio, Speech, and
Language Processing 14.4 (2006), pp. 1401–1412.

[51] Tao Feng. ‘Deep learning for music genre classification’. In: private document
(2014).

[52] Robert Fink. ‘Goal-directed soul? Analyzing rhythmic teleology in African Amer-
ican popular music’. In: Journal of the American Musicological Society 64.1 (2011),
pp. 179–238.

[53] Jerome H Friedman. ‘Greedy function approximation: a gradient boosting ma-
chine’. In: Annals of statistics (2001), pp. 1189–1232.

[54] Magdalena Fuentes, Brian McFee, Hélène Crayencour, Slim Essid and Juan Bello.
‘Analysis of common design choices in deep learning systems for downbeat track-
ing’. In: The 19th International Society for Music Information Retrieval Confer-
ence. 2018.

[55] Magdalena Fuentes, Brian Mcfee, Hélène C Crayencour, Slim Essid and Juan Pablo
Bello. ‘A music structure informed downbeat tracking system using skip-chain con-
ditional random fields and deep learning’. In: ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2019, pp. 481–485.

[56] Mikel Gainza. ‘Automatic musical meter detection’. In: 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE. 2009, pp. 329–332.

[57] Patrick Gampp. ‘Evaluation of robust features for singing voice detection’. In: M.
Sc., Institute of Electronic Music and Acoustics, University of Music and Dramatic
Arts Graz, Graz (2010).

123

Bibliography

[58] Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer and PN Suganthan. ‘En-
semble deep learning: A review’. In: Engineering Applications of Artificial Intelli-
gence 115 (2022), p. 105151.

[59] Aggelos Gkiokas, Vassilis Katsouros, George Carayannis and Themos Stajylakis.
‘Music tempo estimation and beat tracking by applying source separation and
metrical relations’. In: 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2012, pp. 421–424.

[60] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura and Ryuichi Oka. ‘RWC
Music Database: Popular, Classical and Jazz Music Databases.’ In: Ismir. Vol. 2.
2002, pp. 287–288.

[61] Fabien Gouyon and Perfecto Herrera. ‘Determination of the meter of musical audio
signals: Seeking recurrences in beat segment descriptors’. In: Audio Engineering
Society Convention 114. Audio Engineering Society. 2003.

[62] Fabien Gouyon, François Pachet, Olivier Delerue et al. ‘On the use of zero-crossing
rate for an application of classification of percussive sounds’. In: Proceedings of the
COST G-6 conference on Digital Audio Effects (DAFX-00), Verona, Italy. Vol. 5.
2000, p. 16.

[63] Justin Grimmer. ‘An introduction to Bayesian inference via variational approxim-
ations’. In: Political Analysis 19.1 (2011), pp. 32–47.

[64] Daniel Grzywczak and Grzegorz Gwardys. ‘Audio features in music information
retrieval’. In: Active Media Technology: 10th International Conference, AMT 2014,
Warsaw, Poland, August 11-14, 2014. Proceedings 10. Springer. 2014, pp. 187–199.

[65] W. Gui and Shao Xi. ‘Onset detection using leared dictionary by K-SVD’. In: 2014
IEEE Workshop on Advanced Research and Technology in Industry Applications
(WARTIA). 2014, pp. 406–409. doi: 10.1109/WARTIA.2014.6976281.

[66] W. Gui and Shao Xi. ‘Onset detection using leared dictionary by K-SVD’. In: 2014
IEEE Workshop on Advanced Research and Technology in Industry Applications
(WARTIA). 2014, pp. 406–409. doi: 10.1109/WARTIA.2014.6976281.

[67] Sankalp Gulati, Vishweshwara Rao and Preeti Rao. ‘Meter detection from audio
for Indian music’. In: Speech, Sound and Music Processing: Embracing Research in
India. Springer, 2011, pp. 34–43.

[68] Stephen Hainsworth, Malcolm D Macleod et al. ‘Onset detection in musical audio
signals’. In: ICMC. Citeseer. 2003.

[69] Christopher Harte. ‘Towards automatic extraction of harmony information from
music signals’. PhD thesis. Queen Mary, University of London, 2010.

124

https://doi.org/10.1109/WARTIA.2014.6976281
https://doi.org/10.1109/WARTIA.2014.6976281

Jeremiah Oluwagbemi Abimbola

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. ‘Deep residual learning
for image recognition’. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770–778.

[71] Serhat Hizlisoy, Serdar Yildirim and Zekeriya Tufekci. ‘Music emotion recognition
using convolutional long short term memory deep neural networks’. In: Engineering
Science and Technology, an International Journal 24.3 (2021), pp. 760–767.

[72] André Holzapfel and Yannis Stylianou. ‘Rhythmic Similarity in Traditional Turk-
ish Music’. In: ISMIR - International Conference on Music Information Retrieval
(2009), pp. 99–104. url: http://ismir2009.ismir.net/proceedings/PS1-
8.pdfhttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193761.

[73] Md Afzal Hossan, Sheeraz Memon and Mark A Gregory. ‘A novel approach for
MFCC feature extraction’. In: 2010 4th International Conference on Signal Pro-
cessing and Communication Systems. IEEE. 2010, pp. 1–5.

[74] Yuanbo Hou, Frank K Soong, Jian Luan and Shengchen Li. ‘Transfer learning
for improving singing-voice detection in polyphonic instrumental music’. In: arXiv
preprint arXiv:2008.04658 (2020).

[75] C. Hsu, D. Wang and J. R. Jang. ‘A trend estimation algorithm for singing pitch
detection in musical recordings’. In: 2011 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 2011, pp. 393–396. isbn: 2379–190X.
doi: 10.1109/ICASSP.2011.5946423.

[76] Xiao Hu and J Stephen Downie. ‘Improving mood classification in music digital
libraries by combining lyrics and audio’. In: Proceedings of the 10th annual joint
conference on Digital libraries. 2010, pp. 159–168.

[77] Xiao Hu, J Stephen Downie and Andreas F Ehmann. ‘Lyric text mining in music
mood classification’. In: American music 183.5,049 (2009), pp. 2–209.

[78] Yukara Ikemiya, Kazuyoshi Yoshii and Katsutoshi Itoyama. ‘Singing voice analysis
and editing based on mutually dependent F0 estimation and source separation’. In:
2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2015, pp. 574–578.

[79] Jaekwon Im, Eunjin Choi and Wootaek Lim. ‘DATA AUGMENTATION FOR
SINGING VOICE SEPARATION USING MUSICAL INSTRUMENT TRANS-
FER AND RESYNTHESIS’. In: ().

[80] MK Jiawei Han and Jian Pei. Data mining: concepts and techniques: concepts and
techniques. 2011.

[81] Michael I Jordan and Tom M Mitchell. ‘Machine learning: Trends, perspectives,
and prospects’. In: Science 349.6245 (2015), pp. 255–260.

125

http://ismir2009.ismir.net/proceedings/PS1-8.pdf http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193761
http://ismir2009.ismir.net/proceedings/PS1-8.pdf http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193761
https://doi.org/10.1109/ICASSP.2011.5946423

Bibliography

[82] Prafulla Kalapatapu, Srihita Goli, Prasanna Arthum and Aruna Malapati. ‘A study
on feature selection and classification techniques of Indian music’. In: Procedia
Computer Science 98 (2016), pp. 125–131.

[83] Gurpreet Kaur, Mohit Srivastava and Amod Kumar. ‘Genetic algorithm for com-
bined speaker and speech recognition using deep neural networks’. In: Journal of
Telecommunications and Information Technology (2018).

[84] JungHyun Kim, Seungjae Lee, SungMin Kim and Won Young Yoo. ‘Music mood
classification model based on arousal-valence values’. In: 13th International Confer-
ence on Advanced Communication Technology (ICACT2011). IEEE. 2011, pp. 292–
295.

[85] Anssi Klapuri et al. ‘Musical meter estimation and music transcription’. In: Cam-
bridge Music Processing Colloquium. Citeseer. 2003, pp. 40–45.

[86] Anssi P Klapuri, Antti J Eronen and Jaakko T Astola. ‘Analysis of the meter of
acoustic musical signals’. In: IEEE Transactions on Audio, Speech, and Language
Processing 14.1 (2005), pp. 342–355.

[87] Bozena Kostek. ‘Musical instrument classification and duet analysis employing
music information retrieval techniques’. In: Proceedings of the IEEE 92.4 (2004),
pp. 712–729.

[88] Daniel Kostrzewa, Piotr Kaminski and Robert Brzeski. ‘Music Genre Classification:
Looking for the Perfect Network’. In: International Conference on Computational
Science. Springer. 2021, pp. 55–67.

[89] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas et al. ‘Handling im-
balanced datasets: A review’. In: GESTS International Transactions on Computer
Science and Engineering 30.1 (2006), pp. 25–36.

[90] Florian Krebs, Sebastian Böck and Gerhard Widmer. ‘Rhythmic Pattern Modeling
for Beat and Downbeat Tracking in Musical Audio.’ In: Ismir. Citeseer. 2013,
pp. 227–232.

[91] Olivier Lartillot and Petri Toiviainen. ‘A Matlab toolbox for musical feature ex-
traction from audio’. In: International conference on digital audio effects. Vol. 237.
Bordeaux. 2007, p. 244.

[92] Edith Law, Kris West, Michael I Mandel, Mert Bay and J Stephen Downie. ‘Eval-
uation of algorithms using games: The case of music tagging.’ In: ISMIR. https:
//mirg.city.ac.uk/codeapps/the-magnatagatune-dataset. 2009, pp. 387–
392.

126

https://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
https://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset

Jeremiah Oluwagbemi Abimbola

[93] Alvin Lazaro, Riyanarto Sarno, R Johanes Andre and Muhammad Nezar Ma-
hardika. ‘Music tempo classification using audio spectrum centroid, audio spec-
trum flatness, and audio spectrum spread based on MPEG-7 audio features’. In:
2017 3rd international conference on science in information technology (ICSITech).
IEEE. 2017, pp. 41–46.

[94] Phu Ngoc Le, Eliathamby Ambikairajah, Julien Epps, Vidhyasaharan Sethu and
Eric HC Choi. ‘Investigation of spectral centroid features for cognitive load classi-
fication’. In: Speech Communication 53.4 (2011), pp. 540–551.

[95] Simon Leglaive, Romain Hennequin and Roland Badeau. ‘Singing voice detection
with deep recurrent neural networks’. In: 2015 IEEE International conference on
acoustics, speech and signal processing (ICASSP). IEEE. 2015, pp. 121–125.

[96] Nathan Lenssen. ‘Applications of fourier analysis to audio signal processing: An
investigation of chord detection algorithms’. In: (2013).

[97] Tom LH Li and Antoni B Chan. ‘Genre classification and the invariance of MFCC
features to key and tempo’. In: International Conference on MultiMedia Modeling.
Springer. 2011, pp. 317–327.

[98] Victoria López, Alberto Fernández and Francisco Herrera. ‘On the importance of
the validation technique for classification with imbalanced datasets: Addressing
covariate shift when data is skewed’. In: Information Sciences 257 (2014), pp. 1–
13.

[99] Saranga Kingkor Mahanta, Abdullah Faiz Ur Rahman Khilji and Partha Pakray.
‘Deep neural network for musical instrument recognition using MFCCs’. In: Com-
putación y Sistemas 25.2 (2021), pp. 351–360.

[100] Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

[101] Ricard Marxer and Jordi Janer. ‘Modelling and separation of singing voice breath-
iness in polyphonic mixtures’. In: Proc. 16th Int. Conf. Digital Audio Effects. 2013,
pp. 2–5.

[102] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric
Battenberg and Oriol Nieto. ‘librosa: Audio and music signal analysis in python’.
In: Proceedings of the 14th python in science conference. Vol. 8. Citeseer. 2015,
pp. 18–25.

[103] Cory McKay and Ichiro Fujinaga. ‘Automatic Genre Classification Using Large
High-Level Musical Feature Sets.’ In: ISMIR. Vol. 2004. 2004. Citeseer. 2004,
pp. 525–530.

[104] Martin McKinney and Jeroen Breebaart. ‘Features for audio and music classifica-
tion’. In: (2003).

127

Bibliography

[105] Martin F McKinney, Dirk Moelants, Matthew EP Davies and Anssi Klapuri. ‘Eval-
uation of audio beat tracking and music tempo extraction algorithms’. In: Journal
of New Music Research 36.1 (2007), pp. 1–16.

[106] Andrew McLeod and Mark Steedman. ‘Meter Detection and Alignment of MIDI
Performance.’ In: ISMIR. 2018, pp. 113–119.

[107] Andrew McLeod and Mark Steedman. ‘Meter Detection From Music Data’. In:
DMRN+ 11: Digital Music Research Network One-day Workshop 2016. 2016.

[108] Tom M Mitchell. ‘Machine learning and data mining’. In: Communications of the
ACM 42.11 (1999), pp. 30–36.

[109] Ramy Monir, Daniel Kostrzewa and Dariusz Mrozek. ‘Singing voice detection: a
survey’. In: Entropy 24.1 (2022), p. 114.

[110] M. Mounir, P. Karsmakers and T. v. Waterschoot. ‘Annotations Time Shift: A Key
Parameter in Evaluating Musical Note Onset Detection Algorithms’. In: 2019 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).
2019, pp. 21–25. isbn: 1947–1629. doi: 10.1109/WASPAA.2019.8937251.

[111] Meinard Muller, Daniel PW Ellis, Anssi Klapuri and Gaël Richard. ‘Signal pro-
cessing for music analysis’. In: IEEE Journal of selected topics in signal processing
5.6 (2011), pp. 1088–1110.

[112] Meinard Muller, Frank Kurth and Michael Clausen. ‘Chroma-based statistical au-
dio features for audio matching’. In: IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, 2005. IEEE. 2005, pp. 275–278.

[113] E. Nakamura, E. Benetos, K. Yoshii and S. Dixon. ‘Towards Complete Polyphonic
Music Transcription: Integrating Multi-Pitch Detection and Rhythm Quantiza-
tion’. In: 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2018, pp. 101–105. isbn: 2379–190X. doi: 10.1109/ICASSP.
2018.8461914.

[114] Juhan Nam, Keunwoo Choi, Jongpil Lee, Szu-Yu Chou and Yi-Hsuan Yang. ‘Deep
learning for audio-based music classification and tagging: Teaching computers to
distinguish rock from bach’. In: IEEE signal processing magazine 36.1 (2018),
pp. 41–51.

[115] Alexey Natekin and Alois Knoll. ‘Gradient boosting machines, a tutorial’. In: Fron-
tiers in neurorobotics 7 (2013), p. 21.

[116] Tin Lay Nwe, Arun Shenoy and Ye Wang. ‘Singing voice detection in popular
music’. In: Proceedings of the 12th annual ACM international conference on Mul-
timedia. 2004, pp. 324–327.

128

https://doi.org/10.1109/WASPAA.2019.8937251
https://doi.org/10.1109/ICASSP.2018.8461914
https://doi.org/10.1109/ICASSP.2018.8461914

Jeremiah Oluwagbemi Abimbola

[117] Hui-Lee Ooi, Siew-Cheok Ng and Einly Lim. ‘Ano detection with k-nearest neigh-
bor using minkowski distance’. In: International Journal of Signal Processing Sys-
tems 1.2 (2013), pp. 208–211.

[118] Sergio Oramas, Francesco Barbieri, Oriol Nieto Caballero and Xavier Serra. ‘Mul-
timodal deep learning for music genre classification’. In: Transactions of the Inter-
national Society for Music Information Retrieval. 2018; 1 (1): 4-21. (2018).

[119] Braja Gopal Patra, Dipankar Das and Sivaji Bandyopadhyay. ‘Automatic music
mood classification of Hindi songs’. In: Proceedings of the 3rd Workshop on Senti-
ment Analysis where AI meets Psychology. 2013, pp. 24–28.

[120] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Ber-
trand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg et al. ‘Scikit-learn: Machine learning in Python’. In: the Journal
of machine Learning research 12 (2011), pp. 2825–2830.

[121] Nikki Pelchat and Craig M Gelowitz. ‘Neural network music genre classification’.
In: Canadian Journal of Electrical and Computer Engineering 43.3 (2020), pp. 170–
173.

[122] Aggelos Pikrakis, Iasonas Antonopoulos and Sergios Theodoridis. ‘Music meter
and tempo tracking from raw polyphonic audio.’ In: ISMIR. 2004.

[123] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik Schmidt, Andreas Ehmann and
Xavier Serra. ‘End-to-end learning for music audio tagging at scale’. In: arXiv
preprint arXiv:1711.02520 (2017).

[124] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush
and Andrey Gulin. ‘CatBoost: unbiased boosting with categorical features’. In: Ad-
vances in neural information processing systems 31 (2018).

[125] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang and
Tara Sainath. ‘Deep learning for audio signal processing’. In: IEEE Journal of
Selected Topics in Signal Processing 13.2 (2019), pp. 206–219.

[126] Konstantinos Pyrovolakis, Paraskevi Tzouveli and Giorgos Stamou. ‘Multi-modal
song mood detection with deep learning’. In: Sensors 22.3 (2022), p. 1065.

[127] Rajeev Rajan and Anu Alphonsa Raju. ‘Deep neural network based poetic meter
classification using musical texture feature fusion’. In: 2019 27th European Signal
Processing Conference (EUSIPCO). IEEE. 2019, pp. 1–5.

[128] Lise Regnier and Geoffroy Peeters. ‘Singing voice detection in music tracks using
direct voice vibrato detection’. In: 2009 IEEE international conference on acous-
tics, speech and signal processing. IEEE. 2009, pp. 1685–1688.

129

Bibliography

[129] Martın Rocamora and Perfecto Herrera. ‘Comparing audio descriptors for singing
voice detection in music audio files’. In: Brazilian symposium on computer music,
11th. san pablo, brazil. Vol. 26. 2007, p. 27.

[130] Carles Roig, Lorenzo J Tardón, Isabel Barbancho and Ana M Barbancho. ‘Auto-
matic melody composition based on a probabilistic model of music style and har-
monic rules’. In: Knowledge-Based Systems 71 (2014), pp. 419–434.

[131] Joseph Rothstein. MIDI: A comprehensive introduction. Vol. 7. AR Editions, Inc.,
1992.

[132] Nicolas Scaringella, Giorgio Zoia and Daniel Mlynek. ‘Automatic genre classifica-
tion of music content: a survey’. In: IEEE Signal Processing Magazine 23.2 (2006),
pp. 133–141.

[133] Markus Schedl, Nicola Orio, Cynthia CS Liem and Geoffroy Peeters. ‘A profes-
sionally annotated and enriched multimodal data set on popular music’. In: Pro-
ceedings of the 4th ACM Multimedia Systems Conference. http://www.cp.jku.
at/datasets/musiclef/index.html. 2013, pp. 78–83.

[134] Jan Schlüter and Thomas Grill. ‘Exploring data augmentation for improved singing
voice detection with neural networks.’ In: ISMIR. 2015, pp. 121–126.

[135] Hans-Henning Schulze, Andreas Cordes and Dirk Vorberg. ‘Keeping synchrony
while tempo changes: Accelerando and ritardando’. In: Music Perception 22.3
(2005), pp. 461–477.

[136] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse and Amri Napolitano.
‘RUSBoost: Improving classification performance when training data is skewed’.
In: 2008 19th International Conference on Pattern Recognition. IEEE. 2008, pp. 1–
4.

[137] Ozan Sener and Vladlen Koltun. ‘Multi-task learning as multi-objective optimiza-
tion’. In: arXiv preprint arXiv:1810.04650 (2018).

[138] Ayush Shakya, Bijay Gurung, Mahendra Singh Thapa, Mehang Rai and Basanta
Joshi. ‘Music classification based on genre and mood’. In: Computational Intelli-
gence, Communications, and Business Analytics: First International Conference,
CICBA 2017, Kolkata, India, March 24–25, 2017, Revised Selected Papers, Part
II. Springer. 2017, pp. 168–183.

[139] Yogesh Singh, Pradeep Kumar Bhatia and Omprakash Sangwan. ‘A review of
studies on machine learning techniques’. In: International Journal of Computer
Science and Security 1.1 (2007), pp. 70–84.

[140] Janto Skowronek, Martin F McKinney and Steven Van De Par. ‘Ground truth for
automatic music mood classification.’ In: ISMIR. 2006, pp. 395–396.

130

http://www.cp.jku.at/datasets/musiclef/index.html
http://www.cp.jku.at/datasets/musiclef/index.html

Jeremiah Oluwagbemi Abimbola

[141] Aized Amin Soofi and Arshad Awan. ‘Classification techniques in machine learn-
ing: applications and issues’. In: Journal of Basic & Applied Sciences 13 (2017),
pp. 459–465.

[142] Mila Soares de Oliveira de Souza, Pedro Nuno de Souza Moura and Jean-Pierre
Briot. ‘Music Tempo Estimation via Neural Networks–A Comparative Analysis’.
In: arXiv preprint arXiv:2107.09208 (2021).

[143] Ajay Srinivasamurthy, Andre Holzapfel, Ali Taylan Cemgil and Xavier Serra.
‘Particle filters for efficient meter tracking with dynamic bayesian networks’. In:
Müller M, Wiering F, editors. ISMIR 2015. 16th International Society for Music
Information Retrieval Conference; 2015 Oct 26-30; Málaga, Spain. Canada: IS-
MIR; 2015. International Society for Music Information Retrieval (ISMIR). 2015.

[144] Ajay Srinivasamurthy, Gregoire Tronel, Sidharth Subramanian and Parag Chor-
dia. ‘A BEAT TRACKING APPROACH TO COMPLETE DESCRIPTION OF
RHYTHM IN INDIAN CLASSICAL MUSIC’. In: CompMusic Workshop. Georgia
Tech Center for Music Technology, Atlanta, USA, 2012, pp. 72–78. url: https:
/ / www . academia . edu / download / 32402663 / Proceedings - 2nd - CompMusic -
Workshop-2012_0.pdf#page=76..

[145] Aditya Srivastava, Sonia Saini and Deepa Gupta. ‘Comparison of various machine
learning techniques and its uses in different fields’. In: 2019 3rd International con-
ference on electronics, communication and aerospace technology (ICECA). IEEE.
2019, pp. 81–86.

[146] Carlo Strapparava, Alessandro Valitutti et al. ‘Wordnet affect: an affective exten-
sion of wordnet.’ In: Lrec. Vol. 4. 1083-1086. Lisbon, Portugal. 2004, p. 40.

[147] Bob L Sturm. ‘An analysis of the GTZAN music genre dataset’. In: Proceedings
of the second international ACM workshop on Music information retrieval with
user-centered and multimodal strategies. 2012, pp. 7–12.

[148] Derek Tingle, Youngmoo E Kim and Douglas Turnbull. ‘Exploring automatic mu-
sic annotation with" acoustically-objective" tags’. In: Proceedings of the interna-
tional conference on Multimedia information retrieval. http://calab1.ucsd.edu/
~datasets/. 2010, pp. 55–62.

[149] Douglas Turnbull, Luke Barrington, David Torres and Gert Lanckriet. ‘Exploring
the semantic annotation and retrieval of sound’. In: CAL Technical Report CAL-
2007-01, San Diego (2007). https://www.ee.columbia.edu/~dpwe/research/
musicsim/uspop2002.html.

131

https://www.academia.edu/download/32402663/Proceedings-2nd-CompMusic-Workshop-2012_0.pdf#page=76.
https://www.academia.edu/download/32402663/Proceedings-2nd-CompMusic-Workshop-2012_0.pdf#page=76.
https://www.academia.edu/download/32402663/Proceedings-2nd-CompMusic-Workshop-2012_0.pdf#page=76.
http://calab1.ucsd.edu/~datasets/
http://calab1.ucsd.edu/~datasets/
https://www.ee.columbia.edu/~dpwe/research/musicsim/uspop2002.html
https://www.ee.columbia.edu/~dpwe/research/musicsim/uspop2002.html

Bibliography

[150] Douglas Turnbull, Luke Barrington, David Torres and Gert Lanckriet. ‘Semantic
annotation and retrieval of music and sound effects’. In: IEEE Transactions on
Audio, Speech, and Language Processing 16.2 (2008). http://slam.iis.sinica.
edu.tw/demo/CAL500exp, pp. 467–476.

[151] George Tzanetakis. ‘Marsyas-0.2: a case study in implementing music information
retrieval systems’. In: Intelligent Music Information Systems: Tools and Methodo-
logies. IGI Global, 2008, pp. 31–49.

[152] George Tzanetakis and Perry Cook. ‘Marsyas: A framework for audio analysis’. In:
Organised sound 4.3 (2000), pp. 169–175.

[153] George Tzanetakis and Perry Cook. ‘Musical genre classification of audio signals’.
In: IEEE Transactions on speech and audio processing 10.5 (2002), pp. 293–302.

[154] Christian Uhle and Juergen Herre. ‘Estimation of tempo, micro time and time
signature from percussive music’. In: Proc. Int. Conference on Digital Audio Effects
(DAFx). Citeseer. 2003.

[155] Matthias Varewyck, Jean-Pierre Martens and Marc Leman. ‘Musical meter clas-
sification with beat synchronous acoustic features, DFT-based metrical features
and support vector machines’. In: Journal of New Music Research 42.3 (2013),
pp. 267–282.

[156] Adrian E Villanueva-Luna, Alberto Jaramillo-Nuñez, Daniel Sanchez-Lucero, Car-
los M Ortiz-Lima, J Gabriel Aguilar-Soto, Aaron Flores-Gil and Manuel May-
Alarcon. De-noising audio signals using MATLAB wavelets toolbox. IntechOpen,
2011.

[157] Larry Wasserman. ‘Bayesian model selection and model averaging’. In: Journal of
mathematical psychology 44.1 (2000), pp. 92–107.

[158] Nic M Weststrate, Susan Bluck and Judith Glück. ‘Wisdom of the Crowd’. In: The
Cambridge handbook of wisdom (2019), pp. 97–121.

[159] Fu-Hai Frank Wu and Jyh-Shing Roger Jang. ‘A supervised learning method for
tempo estimation of musical audio’. In: 22nd Mediterranean Conference on Control
and Automation. IEEE. 2014, pp. 599–604.

[160] Xianjiao Wu, Qiang Ye, Hong Hong and Yijun Li. ‘Stock selection model based
on machine learning with wisdom of experts and crowds’. In: IEEE Intelligent
Systems 35.2 (2020), pp. 54–64.

[161] Changsheng Xu, Namunu C Maddage, Xi Shao, Fang Cao and Qi Tian. ‘Mu-
sical genre classification using support vector machines’. In: 2003 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). Vol. 5. IEEE. 2003, pp. V–429.

132

http://slam.iis.sinica.edu.tw/demo/CAL500exp
http://slam.iis.sinica.edu.tw/demo/CAL500exp

Jeremiah Oluwagbemi Abimbola

[162] Changsheng Xu, Namunu Chinthaka Maddage and Xi Shao. ‘Automatic music
classification and summarization’. In: IEEE transactions on speech and audio pro-
cessing 13.3 (2005), pp. 441–450.

[163] Shingchern D You, Chien-Hung Liu and Woei-Kae Chen. ‘Comparative study of
singing voice detection based on deep neural networks and ensemble learning’. In:
Human-centric Computing and Information Sciences 8 (2018), pp. 1–18.

[164] Yunkai Yu, Yuyang You, Zhihong Yang, Guozheng Liu, Peiyao Li, Zhicheng Yang
and Wenjing Shan. ‘Spectral Roll-off Points Variations: Exploring Useful Inform-
ation in Feature Maps by Its Variations’. In: arXiv preprint arXiv:2102.00369
(2021).

[165] Maider Zamalloa, Germán Bordel, Luis Javier Rodríguez and Mikel Peñagarik-
ano. ‘Feature selection based on genetic algorithms for speaker recognition’. In:
2006 IEEE Odyssey-The Speaker and Language Recognition Workshop. IEEE. 2006,
pp. 1–8.

[166] Henry Zelenak and Shahin Mehdipour Ataee. ‘Identifying Periodic Signal Patterns
in Audio Streams’. In: 2022 IEEE Western New York Image and Signal Processing
Workshop (WNYISPW). IEEE. 2022, pp. 1–4.

[167] Yu Zhang and Qiang Yang. ‘A survey on multi-task learning’. In: arXiv preprint
arXiv:1707.08114 (2017).

133

Bibliography

134

Appendices

135

List of Figures

1.1 An audio signal with three metrical levels illustrated: tatum, tactus, and
measure levels. 2

2.1 A classic music genre classification model 10
2.2 A singing voice detection model . 21

3.1 The hierarchical tree structure of notes – the metrical structure of a 4
4 bar

(1 whole note = 4 quarter notes = 8 eighth notes). 26
3.2 One of the most common methods of audio preprocessing – splitting the

whole signal into frames with overlapping. 29
3.3 An audio signal from the GTZAN dataset 31
3.4 The audio similarity matrix architecture 31
3.5 An audio signal from the GTZAN dataset 32
3.6 Audio similarity matrix of the audio frames 32
3.7 Diagonal function of the ASM . 33
3.8 Meter is obtained by the highest point . 34
3.9 Beat similarity matrix showing the diagonal. Each box represents spectro-

gram frames . 36
3.10 The convolutional neural network architecture block diagram with two

kinds of input features (chroma and timbre). 38
3.11 A typical convolutional neural network architecture used for time signature

detection – audio signal processed into spectrogram which is an input to
convolutional layers, and then an outcome is an input to classical artificial
neural network. 39

4.1 A CNN architecture for time signature . 48
4.2 Model diagram of the CRNN architecture 49
4.3 Model diagram of the recurrent state . 50
4.4 Skip connection in the ResNet architecture [70] 52
4.5 The ResNet-LSTM architecture . 54

5.1 Scatter plot of tempo and meter . 62

137

List of Figures

5.2 Distribution of tempo in the dataset . 63

7.1 Mel-frequency cepstrum coefficients similarity matrix model 77
7.2 MFCC weights obtained for each performed GA run. 80

8.1 The ResNet18 architecture . 92
8.2 Sample MFCCs for one audio signal from each music meter class 94

138

List of Tables

1.1 Comparison of MIDI and digital audio. 4

2.1 Summary of music classification studies . 24

3.1 Summary of classic estimation methods. 30
3.2 Summary of deep learning signature estimation methods 37

4.1 The architectures for residual networks, (building blocks indicated in brack-
ets), with the numbers of blocks stacked, and down-sampling is achieved
by conv3, conv4, and conv5, with a stride of 2 53

5.1 Datasets and their statistics. 56
5.2 Summary of data source and annotated files for meter2800 dataset 61
5.3 Summary of annotated files by class for meter2800 dataset 62
5.4 Average and standard deviation of tempo by meter 63

6.1 Classic signal processing models classification report for 2 classes 73
6.2 Classic signal processing models classification report for 4 classes 73

7.1 Accuracy of models before and after GA 81

8.1 Machine learning models classification report for 2 classes 97
8.2 Machine learning models classification report for 4 classes 98
8.3 Deep learning models classification report for 2 classes 99
8.4 Deep learning models classification report for 4 classes 99
8.5 Trainable and non-trainable parameters for different deep learning models . 100

9.1 Aggregation of MFCCs in the test set . 108
9.2 Comparison of model accuracy and aggregated accuracy on the test set

using MFCC . 108
9.3 Comparison of model accuracy and aggregated accuracy on the test set

using spectrogram . 108
9.4 Comparison of ensemble voting techniques for 2 classes 110
9.5 Comparison of ensemble voting techniques for 4-classes 111

139

List of Tables

9.6 Comparison of ensemble accuracy with and without GA 112
9.7 Performance scores of various voting strategies for different models removed 113
9.8 Ensemble learning combinations . 114
9.9 Comparison of ensemble voting techniques showing their accuracies using

combination of models for 2 classes . 114
9.10 Comparison of ensemble voting techniques showing their accuracies using

combination of models for 4 classes . 114

140

Technical Documentation

Algorithm 2 build_cnn_model(input_shape)
1: model← Sequential()
2:
3: model.add(Conv2D(32, (3, 3), activation = ’relu’, input_shape =

input_shape, padding = ’same’))
4: model.add(BatchNormalization())
5: model.add(MaxPooling2D((4, 6), padding = ’same’))
6:
7: model.add(Conv2D(32, (3, 3), activation = ’relu’, padding = ’same’))
8: model.add(BatchNormalization())
9: model.add(MaxPooling2D((4, 6), padding = ’same’))

10:
11: model.add(Conv2D(64, (3, 3), activation = ’relu’, padding = ’same’))
12: model.add(BatchNormalization())
13: model.add(MaxPooling2D((4, 6), padding = ’same’))
14:
15: model.add(Flatten())
16: model.add(Dense(32, activation = ’relu’))
17: model.add(Dropout(0.3))
18:
19: model.add(Dense(16, activation = ’relu’))
20: model.add(Dropout(0.2))
21:
22: model.add(Dense(8, activation = ’relu’))
23: model.add(Dropout(0.2))
24:
25: model.add(Dense(4, activation = ’softmax’))
26:
27: return model

All Python codes used for data extraction and analysis were written in Jupyter Note-
book and published through the GitHub repository. There is no restriction to accessing
this public repository of the source code.

141

https://github.com/pianistprogrammer/TimeSignatureEstimator/tree/main/Meter2800

Appendix . Technical Documentation

Algorithm 3 build_crnn_model(input_shape)
1: model← Sequential()
2: model.add(Conv2D(32, (3, 3), activation = ’relu’, input_shape =

input_shape, padding = ’same’))
3: model.add(BatchNormalization())
4: model.add(MaxPooling2D((4, 6), padding = ’same’))
5:
6: model.add(Conv2D(32, (3, 3), activation = ’relu’, padding = ’same’))
7: model.add(BatchNormalization())
8: model.add(MaxPooling2D((4, 6), padding = ’same’))
9:

10: model.add(Conv2D(64, (3, 3), activation = ’relu’, padding = ’same’))
11: model.add(BatchNormalization())
12: model.add(MaxPooling2D((4, 6), padding = ’same’))
13:
14: model.add(Reshape((−1, 32)))
15: model.add(Dense(64, activation = ’relu’))
16: model.add(LSTM(64, dropout = 0.2, return_sequences = True))
17: model.add(LSTM(64, dropout = 0.2))
18:
19: model.add(Flatten())
20: model.add(Dense(16, activation = ’relu’))
21: model.add(Dropout(0.2))
22: model.add(Dense(4, activation = ’relu’))
23: model.add(Dense(4, activation = ’softmax’))
24: return model

Algorithm 4 build_resnet18_model(num_classes)
1: model← Resnet18Model()
2:
3: model.conv1← Conv2D(1, 3, kernel_size = 1)
4: model← resnet18(weights=None)
5: model.fc← Sequential()
6: model.fc.add(Linear(512, 128))
7: model.fc.add(ReLU())
8: model.fc.add(Linear(128, 32))
9: model.fc.add(ReLU())

10: model.fc.add(Linear(32, 8))
11: model.fc.add(ReLU())
12: model.fc.add(Linear(8, num_classes))
13:
14: return model

142

Jeremiah Oluwagbemi Abimbola

Algorithm 5 build_resnet18_rnn_model(num_classes)
1: model← Resnet18RnnModel()
2:
3: model.conv1← Conv2D(1, 3, kernel_size = 1)
4: base_model← Resnet18Model()
5: base_model.fc← Identity()
6: model.mfcc_fc← Linear(512, 512)
7: model.lstm← LSTM(512, hidden_size = 128, num_layers = 2, batch_first = True)
8:
9: model.base_model.fc← Sequential()

10: model.base_model.fc.add(Linear(128, 32))
11: model.base_model.fc.add(ReLU())
12: model.base_model.fc.add(Linear(32, 8))
13: model.base_model.fc.add(ReLU())
14: model.base_model.fc.add(Linear(8, num_classes))
15:
16: return model

Algorithm 6 optimize_model_weights_with_ga
1: varbound← np.array([[0, 1]] ∗ 4)
2:
3: algorithm_param← {}
4: algorithm_param[′max_num_iteration′]← 100
5: algorithm_param[′population_size′]← 100
6: algorithm_param[′mutation_probability′]← 0.6
7: algorithm_param[′elit_ratio′]← 0.01
8: algorithm_param[′crossover_probability′]← 0.2
9: algorithm_param[′parents_portion′]← 0.5

10: algorithm_param[′crossover_type′]← ’uniform’
11: algorithm_param[′max_iteration_without_improv′]← None
12:
13: model← ga(function = evaluate_weights,
14: dimension = 4,
15: variable_type = ’real’,
16: variable_boundaries = varbound,
17: algorithm_parameters = algorithm_param,
18: function_timeout = 1000200)
19:
20: model.run()
21:
22: model_names← [′cnn′,′ crnn′,′ resnet′,′ resnet_lstm′]
23:
24: optimized_weights← model.output_dict[′variable′]

143

Appendix . Technical Documentation

Algorithm 7 majorityVoting
1: function majorityVoting(df, predictions_columns)
2: df[’majority’]← df[predictions_columns].mode(axis=1)[0]
3: df[’majority’]← df[’majority’].astype(int)
4: return df

Algorithm 8 rankedVoting
1: function rankedVoting(df, softmax_columns)
2: highest_ranks← []
3: for i← 0 to len(df) do
4: ranks← []
5: for col in softmax_columns do
6: softmax_output← ast.literal_eval(columns[i])
7: ranked_softmax← rankdata(softmax_output, method=’max’)
8: rank← ranked_softmax - 1
9: ranks.append(rank)

10: rank_sums← np.sum(ranks, axis=0)
11: highest_rank← np.argmax(rank_sums)
12: highest_ranks.append(highest_rank)
13: df[’ranked’]← highest_ranks
14: return df

Algorithm 9 summedVoting
1: function summedVoting(df, softmax_columns)
2: if not softmax_columns then
3: raise ValueError("No softmax columns found in the DataFrame.")
4: ensemble_predictions← []
5: for i← 0 to len(df) do
6: sums← []
7: for col in softmax_columns do
8: softmax_values← eval(columns[i])
9: sums.append(softmax_values)

10: summed_probabilities← sum(sums, axis=0)
11: max_probability← argmax(summed_probabilities)
12: ensemble_predictions.append(max_probability)
13: return ensemble_predictions

144

Jeremiah Oluwagbemi Abimbola

Algorithm 10 weightedVoting
1: function weightedVoting(df, softmax_columns, weights)
2: if not softmax_columns then
3: raise ValueError("No softmax columns found in the DataFrame.")
4: ensemble_predictions← []
5: for i← 0 to len(df) do
6: probabilities← []
7: for col in softmax_columns do
8: softmax_values← eval(columns[i])
9: probabilities.append(softmax_values)

10: weighted_sum← zeros_like(probabilities[0])
11: for prob, weight in zip(probabilities, weights) do
12: weighted_sum+ = array(prob) * weight
13: ensemble_prediction← argmax(weighted_sum)
14: ensemble_predictions.append(ensemble_prediction)
15: return ensemble_predictions

Algorithm 11 stacking
1: function stacking(df, test_df, val_prediction_columns, test_prediction_columns,

meta_model)
2: predictions← df[val_prediction_columns]
3: meta_model.fit(predictions, df[’true_label’])
4: test_predictions← test_df[test_prediction_columns]
5: final_predictions← meta_model.predict(test_predictions)
6: return final_predictions

Algorithm 12 bayesian_model_averaging
1: function bayesian_model_averaging(df, softmax_columns)
2: ensemble_predictions← []
3: for i← 0 to len(df) do
4: get the softmax_arrays
5: posterior_probabilities← max(softmax_arrays, axis=1)
6: weights← posterior_probabilities / sum(posterior_probabilities)
7: weighted_sum← zeros_like(softmax_arrays[0])
8: for prob, weight in zip(softmax_arrays, weights) do
9: weighted_sum+ = array(prob) * weight

10: ensemble_prediction← argmax(weighted_sum)
11: ensemble_predictions.append(ensemble_prediction)
12: return ensemble_predictions

145

Appendix . Technical Documentation

Algorithm 13 softVoting
1: function softVoting(df, softmax_columns)
2: if not softmax_columns then
3: raise ValueError("No softmax columns found in the DataFrame.")
4: soft_votes← []
5: for i← 0 to len(df) do
6: softmax_outputs← []
7: for col in softmax_columns do
8: softmax_output← eval(columns[i])
9: softmax_outputs.append(softmax_output)

10: avg_probabilities← mean(softmax_outputs, axis=0)
11: ensemble_prediction← argmax(avg_probabilities)
12: soft_votes.append(ensemble_prediction)
13: return ensemble_prediction

146

	Introduction
	Background to the Study
	Audio and Midi Signals
	Objective of the Thesis
	Motivation and Hypotheses
	Project Methodology

	Music Classification
	Genre Classification
	Tempo Detection
	Mood Classification
	Instrumentation Classification
	Singing Voice Detection

	Time Signature Detection
	Introduction
	Detection Methods
	Digital Signal Processing Methods
	ASM (Audio Similarity Matrix)
	BSM (Beat Similarity Matrix)

	Machine Learning Methods

	Machine Learning Methods
	Introduction
	Classic Machine Learning Models
	Support Vector Machine
	Random Forest
	KNN
	Naive Bayes

	Deep Learning Methods
	Convolutional Neural Network
	Convolutional Recurrent Neural Network (CRNN)
	Residual Network (ResNet)
	Residual Network-LSTM

	Summary

	Creation of the METER2800 Dataset
	Introduction
	Deep Dive into Datasets Created Earlier
	The Meter2800
	Method of Creation
	Data Analysis

	Features Extraction
	Summary

	Mel-Frequency Cepstral Coefficient Similarity Matrix (MFCCSM)
	Introduction
	MFCC Basics
	The Detection Process
	Results and Discussion
	Performance on 2 Classes
	Performance on 4 Classes

	Summary

	Optimization Techniques for Time Signature Detection Models
	Introduction
	Optimization Techniques for Parameters and Features

	Optimization of the MFCCSM Model
	Bayesian Optimization
	Genetic Algorithms Optimization

	Summary

	Using Machine Learning for Time Signature Detection
	Introduction
	Feature Engineering and Model Evaluation
	Convolutional Neural Networks
	Convolutional Recurrent Neural Network (CRNN)
	ResNet18
	ResNet18-LSTM

	Results and Discussion
	Model Evaluation Metrices
	Machine Learning Algorithms
	Deep Learning Models

	Summary

	Ensemble Techniques
	Introduction
	Soft Voting
	Weighted Voting
	K-Ranked Voting
	Stacked Voting
	Bayesian Model Averaging

	Data Preparation and Aggregation for Accurate Predictions
	Optimization of Weighted Voting Technique Using Genetic Algorithm

	Results and Discussion
	Performance on 2 Classes
	Performance on 4 Classes

	Ablation Study of the Ensemble Models
	Model Removal in Ensemble Techniques
	Ensemble Learning Combinations

	Summary

	Summary
	Bibliography
	List of Figures
	List of Tables
	Technical Documentation

