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Abstract
In recent years, deep learning has achieved undisputed success in many domains,
including the classification of hyperspectral images. These images are acquired by
hyperspectral sensors that capture data in hundreds or thousands of narrow chan-
nels per pixel from various ranges of the electromagnetic spectrum. They measure
energy from the region of visible light, the near-infrared, the short-wave infrared
or even the long-wave infrared. Hyperspectral images have various applications
in non-invasive substance classification, including geology, precision agriculture,
environmental monitoring, hydrology and military science.

In this work, we focus on the problem of optimization of deep neural networks
applied to the classification of hyperspectral data. Due to the variety and com-
plexity of neural architectures, the network configuration for a particular problem
poses a challenge. We chose the classification of blood and blood-like substances on
a dataset of hyperspectral images as an experimental setting for the neural network
optimization task. We applied several state-of-the-art architectures, i.e. one-, two-
and three-dimensional convolutional neural networks, a recurrent network based
on GRU units and a multilayer perceptron. We designed two different scenarios
of experiments, i.e. a commonly used Hyperspectral Transductive Classification
(HTC) scenario in which samples from both a training set and a test set come
from one image and a more realistic Hyperspectral Inductive Classification (HIC)
scenario in which a test set comes from a different source than a training set. In
the HIC scenario, we also evaluated the influence of diverse background substances
and varying days of image capture on network performance. We observed that for
the HTC scenario, the classification accuracy of all methods tested exceeded 90%,
while for the HIC scenario, the performance was much lower and varied between
57.2 and 99.5%. Furthermore, in some cases, more sophisticated methods such
as convolutional neural networks were less efficient than the simplest feedforward
architecture. We also identified a problem with the network stability for one of
the architectures used in the experiments. The problem was more investigated in
the following chapters and led to the study about vanishing gradients and, finally,
to network reinitialization methods.

One of the main limitations of network performance in the HIC scenario is the
presence of pixels containing a mixture of spectra of several substances. Therefore,
for further studies, we selected a branch of neural network architectures, i.e. linear
autoencoders. They are trained without labels, and, despite the simplicity, they
can achieve competitive results. We conducted a series of hyperspectral unmixing
experiments in which original spectra of mixed pixels are being reconstructed. We
observed that, in some cases, trained networks with a given set of hyperparameters
achieve different levels of performance. We prepared an extensive statistical study
that confirmed the important impact of weight initialization on the final network
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reconstruction error. Furthermore, we identified a problem of dead activations
in networks using the ReLU activation function, related to the large number of
inactive neurons. This phenomenon makes in some situations training of such
networks difficult or even impossible. We proposed three network reinitialization
methods that alleviate the negative consequences of dead activations. Based on
the threshold for ratios of dead activations, we reinitialize a subset or all net-
work weights, depending on the selected reinitialization method. We confirm that
for experiments with hyperspectral data, the proposed methods increase network
performance. Finally, we evaluated the robustness of these approaches using the
MNIST dataset. The observed results lead to the conclusion that network reini-
tialization methods are an effective solution and reduce network error, especially
for suboptimal sets of hyperparameters.

The following dissertation contributes to the problem of optimization of deep
learning networks for hyperspectral data classification through an extensive study
of different architectures. Furthermore, the problem of network stability was dis-
cussed and three network reinitialization methods were proposed to mitigate the
identified dead activation phenomenon.
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Notations
For convenience, the notation used in the following chapters of the dissertation
will be presented:

Notations used in Chapter 1
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a number of spectral bands
a width of the hyperspectral image
a length of the hyperspectral image
input data space
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the parameters of the i–th layer of the neural network
a mapping function: X → Y
a mapping function in the i–th layer of the neural network
the output of the network
a number of neurons in the i–th network layer
the weights in the i–th network layer
the output data of the i–th network layer
the bias vector of the i–th network layer
an activation function
a convolution operation
a two-dimensional kernel (filter)
the output of the convolution operation (a feature map)
the value at position (l,m, s) of the k–th feature map of the
i–th network layer
the value at position (l′,m′, s′) of the k–th kernel of the i–th
network layer connected to the c–th feature map of the
(i− 1)–th network layer
the bias of the k–th feature map of the i–th network layer
a height of the feature maps of the i–th network layer
a width of the feature maps of the i–th network layer
a depth of the feature maps of the i–th network layer
a number of kernels in the i–th network layer
an input data sample for RNNs at time t ≥ 0
a weight matrix for the input data in RNNs
a weight matrix for the output data from the previous time
step in RNNs
a hidden state at time t ≥ 0
an input-hidden matrix of weights in RNNs
a hidden-hidden matrix of weights in RNNs
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a hidden-output matrix of weights in RNNs
a size of the input data sample in RNNs
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an update gate
a reset gate
an activation gate
a matrix of weights for connections between the input and
the update gate
a matrix of weights for connections between the hidden state
and the update gate
a matrix of weights for connections between the input and
the reset gate
a matrix of weights for connections between the hidden state
and the reset gate
a matrix of weights for connections between the input and
the activation gate
a matrix of weights for connections between the hidden state
and the activation gate
the bias of the update gate
the bias of the reset gate
the bias of the activation gate
the Hadamard product
a hidden representation of the autoencoder
a decoder
a loss function
a size of the input data sample in autoencoders

xix



Notations used in Chapter 2

C
γ
B

Xvar

c
p
fj
f̃j

F(i)
E(i)

Xtrain
Xtest

N
nminsamples

ntrain
OA
AA
κ

a regularization parameter in SVMs
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a number of the spectral bands
a variance of the dataset
a size of the convolution matrix in 1D CNN [65]
a size of the pooling matrix in 1D CNN [65]
the activation value of the j–th filter in 2D CNN [83]
a local response normalization of the j–th filter in 2D
CNN [83]
a frame scene from the i–th day
a comparison scene from the i–th day
a training set
a test set
a total number of classes in the training set
a number of samples from the least numerous class in the
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a variance of the random variable
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a probability density function of the random variable yj
the rearranged matrix of the network weights
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layer
a number of spectral bands
a number of endmembers
a number of hyperspectral pixels
a hyperspectral pixel
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the fractional abundance vector
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P pixels
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Chapter 1

Introduction

Artificial intelligence (AI) is an rapidly developing research field [51]. Intelligence
systems are aimed at industry process automatization, object detection or classi-
fication in images, etc. Due to the fact that it is not easy to precisely describe
processes taking place in the world, one can create machine learning systems that
gain own knowledge based on patterns from raw data. The efficiency of such
systems is, however, related to the data representation and its features. In the ap-
proach called representation learning, algorithms not only map the representation
to output but also learn the intrinsic data representation [51].

The important aspect of this dissertation is deep learning (DL), which is a
class of methods that enables machines to discover the representation of data [81]
and to express it using a series of simpler representations [51]. It is a subfield
of machine learning inspired by neuroscience [51, 118]. The basic DL models are
feedforward neural networks, also called multilayer perceptrons (MLPs). Through
the composition of multiple non-linear modules, they create a more abstract data
representation in consecutive hidden layers. The weights (parameters) of hid-
den layers are not directly given in the input data, but they are learned during
the training procedure. The observed data values are provided to the DL model
through the input layer.

DL algorithms are efficient in discovering complex features in high-dimensional
datasets which make them useful in many research areas. They achieved successes
in many domains, such as image classification, which aims at assigning one of
the several defined classes to the given image [77] or object detection [10, 129]
which relies on the detection of all instances of objects among one or more classes
in images and finding their exact locations [3]. Another task for DL methods is
image segmentation, i.e. pixel classification or individual object partitioning [105].
In recent years, deep learning architectures have also proven to be efficient in
natural language processing (NLP) tasks [165] including sentiment analysis [170],
speech recognition [52] or language modeling [146].
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Various DL applications are connected with medicine, i.e. tumor identifi-
cation [126], prevention of neurological diseases, e.g. Alzheimer’s disease [164],
cardiovascular issues such as heart attacks [21], lung diseases [12], celiac disease
detection [155], etc. They are also used for the analysis of biosignals like electro-
cardiograms (ECG, [30]) or encephalograms (EEG, [64]) and in biomedicine, i.e.
for the prediction of missing values of DNA structure [45] or drug discovery [162].

Another important part of this dissertation is hyperspectral imaging (HSI) [118],
also called imaging spectroscopy. In HSI sensors collect hundreds or thousands of
narrow, neighboring bands per pixel [19, 139]. Hyperspectral data samples are
high-dimensional vectors, that is a single spectral vector x ∈ RB is an element in
the B-dimensional space, where B is a number of spectral bands, B � 1. Hyper-
spectral sensors differ from multispectral sensors in that the number of spectral
bands is higher and they are contiguous [140]. The result of the hyperspectral data
capture (the acquisition) is a hyperspectral image. They are three-dimensional ar-
rays (cubes) of w × l×B size in which the width w and the length l of the image
correspond to its spatial dimensions while B is the spectral dimension. The illus-
tration of a sample hyperspectral dataset is presented in Figure 1.1. This picture
shows the scheme of a three-dimensional cube, a false-color RGB image and a
spectrum of an exemplary pixel of this dataset.

0 25 50 75

0

20

40

60

80

False-color image

0 50 100 150 200
Spectral band

0.0

0.1

0.2

0.3

Re
fle

ct
an

ce

A spectrum of the selected pixel of the hyperspectral image

Figure 1.1: The visualization of an exemplary hyperspectral dataset. On the left
side, a three-dimensional cube of the Jasper Ridge dataset with the reflectance of
edge pixels is presented. The lowest reflectance values are marked in blue while
the highest are in red. In the middle, a false-color RGB composite is depicted
while on the right side a spectrum of the selected pixel is shown.

In the case of remote sensing applications, hyperspectral data usually come
from satellites or airborne platforms [140]. They can be used for environmen-
tal [141] or agricultural monitoring [95], terrain classification [118], food safety [123],
forensic [133] or biomedical applications [56] and others. Recently, DL architec-
tures have been successfully applied for HSI processing, e.g. for hyperspectral data
classification [13], semantic segmentation [149] or hyperspectral unmixing [16].
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However, hyperspectral data are associated with various difficulties like spectral
mixing of pixels, noise and atmospheric effects related to the acquisition process
as well as high-dimensionality of the images. In the case of mixed pixels, spectral
unmixing algorithms are applied which aim to decompose such pixels into a set of
pure spectra, i.e. endmembers, and a set of coefficients indicating the proportions
of consecutive endmembers in a given pixel, i.e. fractional abundances [140].

1.0.1 Thesis
In this dissertation, we1 worked on the optimization of deep learning network archi-
tectures for hyperspectral data classification and unmixing. We analyzed several
architectures, including multilayer perceptrons and autoencoders as well as more
sophisticated ones like convolutional neural networks. We performed the optimiza-
tion using various datasets, including a dataset for blood stain classification and
datasets for unmixing. Furthermore, after the observation of some undesirable
states of selected networks, we proposed three network reinitialization methods.
They prepare the reinitialization of some or all network weights to improve the
selected network training run. We also studied their impact on the performance of
neural networks, focusing mainly on autoencoders. We stated the following thesis:

Thesis statement: Optimization of deep learning network architectures
and weight reinitialization methods improve the performance of neural networks
for hyperspectral data.

We will discuss the dissertation thesis in the next chapters.

1.0.2 Overview of the work
We started the analysis with the issue of the selection of neural network archi-
tecture in hyperspectral data classification. We chose a dataset with blood and
blood-like substances as an environment for experiments with the use of several
deep learning architectures designed for HSI classification. We studied different
scenarios of data representation in training sets: transductive and inductive. In
the first case, the training set came from the same dataset as the test set while
in the second case, the training and the test samples were from different images;
thus this scenario was more challenging. The conclusions from this part of the
research prompted us to study the spectral mixing phenomenon, which made the
classification task more difficult. We decided to tackle this problem through the
use of a special type of neural network, i.e. autoencoders. Their design enables

1From that moment on, the first-person plural will be used.
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the extraction of endmembers and fractional abundances in an unsupervised way,
i.e. without pixel labels.

During the experiments, we noticed problems with the training stability of the
selected autoencoder models. We decided to investigate them in more detail. We
performed a series of experiments for different autoencoder setups, including net-
work hyperparameters, weight initialization approaches, datasets, loss functions,
etc. Through statistical tests, we verified that the initial state of the network, i.e.
set of initial weights, has an influence on the further network performance. More-
over, we observed some models that performed poorly, despite using the same set
of hyperparameters as in the remaining cases. After an in-depth analysis, which
was confirmed by the results of the Spearman’s rank correlation coefficient, we
identified the dead activations phenomenon for a subset of DL architectures. It
relies on the loss of importance of certain neurons expressed in zero contribution
of selected network weights to further calculations. We pointed out why it is not
desirable during the network training and we tried to find methods of mitigating
the negative impact of this phenomenon. Therefore, we proposed three network
reinitialization methods that aim to detect its occurrence and reinitialize some or
all weights of the network. We evaluated the methods through comparisons of the
network performance without and with the application of the proposed algorithms.
We conducted the study focusing on hyperspectral datasets but we also extended
the experiments to the well-known MNIST dataset [82].

The next sections will introduce the types of neural network used in further
chapters, i.e. multilayer perceptrons, convolutional and recurrent neural networks,
as well as autoencoders. Furthermore, the basic concepts of hyperspectral imaging
will be discussed and the outline of all subsequent chapters of the dissertation.

1.1 Neural networks

1.1.1 Multilayer perceptrons
Multilayer perceptrons are directed acyclic graphs, which means that they have
connections between units (called also nodes or neurons) only in one direction [134].
The sign and strength of the connection are defined by the value of the weight
assigned to it. In the case of MLPs, there are no loops between connections.

The main goal of these architectures is the approximation of the function f̃ to
solve a classification or regression problem. Let us suppose that f is a mapping
function, f : X → Y , where x ∈ X is an input data sample and y ∈ Y is a
category or a continuous value, depending on the defined problem. The network
produces an output ŷ = f(x,θ) where its parameters are defined by θ to minimize
a difference between the obtained and the desired value. The output can also be
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expressed in terms of sub-mapping functions, i.e.:

ŷ = f(x,θ) = f̄

(
f (n)

(
f (n−1)

(
· · ·

(
f (1)(x,θ(1)) · · ·

)
,θ(n−1)

)
,θ(n)

))
. (1.1)

For i ∈ {1, ..., n}, f (i) is the i–th network layer while θ(i) represents the parameters
of this layer. Each layer consists of neurons and the number of neurons in the
i–th layer, ni, is its width. The output layer f̄ prepares the final classification or
regression step. The total number of layers is denoted as the network depth. A
single neuron of a selected layer receives values from the units of the previous layer
units and applies an activation function. A general form of the i–th layer response
is as follows:

X(i) = f (i)(X(i−1),W(i),b(i)) = φ
(
(W(i))> ·X(i−1) + b(i)

)
, (1.2)

where W(i) ∈ Rni−1×ni denotes the weights and b(i) ∈ Rni represents a bias vec-
tor of the i–th layer. X(i−1) ∈ Rni−1 is the output data of the (i − 1)–th layer
which is also an input into the i–th network layer while φ(·) is the activation
function applied element-wise. The weights W(i) and the biases b(i) together are
the parameters of the i–th layer, θ(i). In recent years, the activation function
most frequently used in DL has become the Rectifier Linear Unit (ReLU) [125],
which is expressed by the formula φ(x) = max(0, x), and its generalizations, for
example, leaky or parametric ReLU [51]. The layer presented in MLPs is called
fully-connected because all neurons in the (i − 1)–th layer are connected to all
neurons in the i–th layer which means that there are ni−1 ·ni +ni parameters that
have to be optimized.

Generally in images, including HSI, two adjacent pixels are strongly corre-
lated [38, 101]. Therefore, the use of spatial dependencies can improve the effi-
ciency of feature extraction. In MLPs these relationships are lost because the input
of the network is a one-dimensional vector and networks cannot gain benefits from
relative pixel positions.

General remarks

During the training phase, the activations propagate from the input through hid-
den layers to the network output ŷ. This process is called forward propagation [51].
In the next step, the back-propagation algorithm is responsible for computing the
error with respect to each network parameter. Then, the learning algorithm, e.g.
stochastic gradient descent or Adam optimizer [72] modifies network weights, ac-
cording to the calculated errors. DL models act as feature extractors in which
various sub-mapping functions learn different input characteristics [118]. Neural
networks are able to extract non-linear data features.
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1.1.2 Convolutional neural networks
Convolutional neural networks (CNNs) are a special kind of neural network archi-
tectures designed to process multidimensional data like 2D images or 3D hyper-
spectral images, as well as one-dimensional time series or other data types. In the
case of CNNs, a matrix multiplication in at least one layer is replaced by a special
linear operation called convolution [51]. The pattern for convolution (∗) between
a two-dimensional kernel (also called filter) K and a two-dimensional image X is
expressed as follows [27]:

C(p, q) = (K ∗X)(p, q) =
∑

(i,j)∈KI

X(p− i, q − j)K(i, j), (1.3)

where KI is a set of coordinates of the filter K. The set of indices KI is dependent
on the width and length of the kernel. For example, when K ∈ R5×5, Equation 1.3
can be rewritten in the following way:

C(p, q) = (K ∗X)(p, q) =
2∑

i=−2

2∑
j=−2

X(p− i, q − j)K(i, j). (1.4)

According to the CNNs terminology, the output of a convolution is called a feature
map.

Unlike MLPs, CNNs do not have connections between all neurons of the current
layer and all neurons of the preceding layer, but they have sparse connectivity [51].
More specifically, it means that a block of neurons, i.e. a kernel, that is smaller
than the input image, is applied over small regions of the input data. The same
kernel can be used for different regions of the image. It is not necessary to create
separate filters having the same function (e.g. detecting the horizontal edges) for
various places of the image. Due to this property, we can reduce both the memory
complexity and perform fewer operations.

Not only is it possible to detect small but important data features, like edges,
but the same kernel can be used for other regions of the image.

In the most general considered case, i.e. 3D CNNs, consecutive values of feature
maps can be calculated in the following way [68, 91, 118, 137]:

x
(i,k)
l,m,s = φ

(∑C(i−1)

c=1

∑h(i)

l′=1

∑w(i)

m′=1

∑d(i)

s′=1 w
(i,k,c)
l′,m′,s′ · x

(i−1,c)
l+l′,m+m′,s+s′ + b(i,k)

)
, (1.5)

where C(i−1) is the number of feature maps (cubes) in the preceding layer, x(i,k)
l,m,s

is the value at position (l,m, s) of the k–th feature map of the i–th network layer,
w

(i,k,c)
l′,m′,s′ is the value at position (l′,m′, s′) of the k–th kernel of the i–th layer con-

nected to the c–th feature map of the previous layer, b(i,k) is the bias for the
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corresponding feature map, (h(i), w(i), d(i)) are height, width and depth of the fea-
ture maps of the i–th layer, respectively, while φ(·) is the activation function, for
example ReLU. Generally, we can express the output of the i–th convolutional
layer as follows:

X(i) = φ
(
W(i) ∗X(i−1) + b(i)

)
C(i)×h(i)×w(i)×d(i)

, (1.6)

where X(i) is the output of the i–th layer, W(i) is the weight matrix and b(i) is
the bias of this layer, respectively. C(i) denotes the number of kernels in the i–th
layer while ∗ is a convolution operation. This approach allows extracting both
spectral and spatial relationships from the input data (in the case of 2D or 3D
CNNs). The convolution operation schemes in 2D and 3D CNNs are presented
in Figures 1.2–1.3, respectively. In the first case, the result of this operation is
two-dimensional while in the second case it is three-dimensional. A single network
layer usually consists of multiple feature maps.
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Figure 1.2: The scheme of the two-dimensional convolution (based on Figure 2
in [118]).

Another important layer in CNNs is connected to a pooling function [51]. It
works in such a way that for a given location a selected statistic is calculated based
on values from its neighborhood. Two popular pooling functions calculate either
a maximum within a rectangular neighborhood (max pooling [173]) or an average
value of adjacent outputs (average pooling), but usually a maximum operation is
selected. It helps the network remain invariant to small input data translations,
rotations and scaling.

Deep neural networks learn more general data features in the first layers while
the further ones try to find more sophisticated and abstract features, more de-
pendent on the current application. In the case of images and CNNs, the first
convolutional layers learn basic features like edges or simple patterns [107]. Along

7



x
141

(i−1 )
x
151

( i−1 )

Feature map of the (i-1)th layer

Feature map of the ith layer

Kernel

x
111

( i−1 )
x
121

( i−1 )
x
131

( i−1 )
x
161

(i−1 )
x
171

(i−1 )

x
241

(i−1 )
x
251

( i−1 )
x
211

( i−1 )
x
221

( i−1 )
x
231

( i−1 )
x
261

(i−1 )
x
271

(i−1 )

x
341

(i−1 )
x
351

( i−1 )
x
311

( i−1 )
x
321

( i−1 )
x
331

( i−1 )
x
361

(i−1 )
x
371

(i−1 )

x
441

(i−1 )
x
451

( i−1 )
x
411

( i−1 )
x
421

( i−1 )
x
431

( i−1 )
x
461

(i−1 )
x
471

(i−1 )

x
541

( i−1 )
x
551

(i−1 )
x
511

( i−1 )
x
521

( i−1 )
x
531

( i−1 )
x
561

( i−1 )
x
571

(i−1 )

x
641

(i−1 )
x
651

( i−1 )
x
611

( i−1 )
x
621

( i−1 )
x
631

( i−1 )
x
661

(i−1 )
x
671

(i−1 )

x
741

(i−1 )
x
751

( i−1 )
x
711

( i−1 )
x
721

( i−1 )
x
731

( i−1 )
x
761

(i−1 )
x
771

(i−1 )

w
111

(i )
w
121

(i )
w
131

(i )

w
211

(i )
w
221

(i )
w
231

(i )

w
311

(i )
w
321

(i )
w
331

(i )

x
141

(i )
x
151

( i )
x
111

( i )
x
121

( i )
x
131

( i )

x
241

(i )
x
251

( i )
x
211

( i )
x
221

( i )
x
231

( i )

x
341

( i )
x
351

( i )
x
311

( i )
x
321

( i )
x
331

( i )

x
441

(i )
x
451

( i )
x
411

( i )
x
421

( i )
x
431

( i )

x
541

( i )
x
551

( i )
x
511

( i )
x
521

( i )
x
531

( i )

Figure 1.3: The scheme of the three-dimensional convolution (based on Figure 2
in [169]).

with successive convolutional layers, networks develop more complex patterns up
to the last layers where whole or parts of objects are formed. It means that the
level of abstraction increases with the depth of a given network [75]. Finally, fully-
connected layers, which are typically the last step of the CNNs pipeline, perform
a prediction based on the extracted high-level features.

1.1.3 Recurrent neural networks
Recurrent neural networks (RNNs) create output at a given time step using input
data from this time step and the output from the preceding one, which means that
the network directly uses the context information. This construction advantages
the application of RNNs for time series, sequences and the prediction of future
events based on the previous ones [118].

Let us suppose that xt ∈ Rp is an input data sample at time t ≥ 0, Wx ∈ Rp×q

is a weight matrix for the input data, q is the number of neurons, while Wy ∈ Rq×q

is a weight matrix for the output data from the previous time step. Furthermore,
b ∈ Rq is a bias vector. Then, the output of the RNN cell at time step t can be
expressed by the following equation:

yt =
{

0 t = 0,
φ(W>

x · xt + W>
y · yt−1 + b) t > 0. (1.7)

φ(·) is the activation function, yt ∈ Rp. One of the most commonly used activation
functions in RNNs is the hyperbolic tangent [48]. In such simple situations, we
say that the output of the network is also the hidden state, ht = yt, but in more
complicated cases the output of a cell is a function of the hidden state of the
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previous time step and a current input vector, ht = g(ht−1,xt) [6, 48]. It means
that the hidden state of a given cell can be different from the output of this cell,
i.e.:

ht = φ(W>
xh · xt + Whh · ht−1),

yt = W>
hy · ht,

(1.8)

where Wxh ∈ Rp×q is an input-hidden matrix, Whh ∈ Rq×q is a hidden-hidden
matrix and Why ∈ Rq×p is a hidden-output matrix.

The basic RNN architectures suffer from the problem of vanishing or exploding
gradients. Furthermore, in the case of high-dimensional data, they have difficulties
learning long-term dependencies. Solutions to these problems are gated RNNs
with internal recurrence connections like long short-term memory (LSTM, [61])
and gated recurrent units (GRUs, [31]). They have units controlling the flow of
information like hidden and cell states as well as input, output and forget gates.
They allow the network to forget old information and remember new ones as
necessary. GRUs networks are considered simplified LSTMs because the number
of units is reduced, which translates into fewer parameters. Regardless of reducing
the gates, the performance of GRUs is comparable to basic LSTMs [53]. In GRUs,
a single unit controls the update and the reset gate and there is no output gate.
The calculations for GRU cells are performed as follows [1, 32, 48]:

ut = σ(W>
xu · xt + W>

hu · ht−1 + bu), (1.9)
rt = σ(W>

xr · xt + W>
hr · ht−1 + br), (1.10)

at = tanh
(
W>

xa · xt + W>
ha · (rt ⊗ ht−1) + ba

)
, (1.11)

ht =
{

0 t = 0,
ut ⊗ ht−1 + (1− ut)⊗ at t > 0, (1.12)

where xt ∈ Rp is an input data sample of p features, ut is the update gate, rt is the
reset gate, at is the candidate activation gate, Wxu,Wxr,Wxa ∈ Rp×h are weight
matrices for connections between input and update, reset and activation gates,
respectively; h is the number of features in the hidden state, Whu,Whr,Wha ∈
Rh×h are weight matrices for connections between the previous hidden state and the
update gate, the reset gate and the candidate activation, respectively. bu,br,ba ∈
Rh are biases, σ(·) is a logistic sigmoid function while ⊗ is the Hadamard product.
Finally, yt = ht. The symbolic representation of a GRU cell is presented in
Figure 1.4.
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Figure 1.4: The scheme of the Gated Recurrent Unit cell (based on [48]). xt and
yt denote input and output data at time t ≥ 0, respectively, while ht is hidden
state at time t. ⊗ is the Hadamard product, ⊕ is addition and 1- in a circle means
the subtraction the preceding vector from one, according to Equation 1.12.

1.1.4 Autoencoders
An autoencoder is a neural network which aims at the reconstruction of selected
input points [51], first reduced to a hidden representation, called also a latent space
or code. The output layer of the autoencoder is the same dimension as the input
layer. A model learns a hidden representation of input data and reconstructs the
original points based on model output from hidden layers. It is an unsupervised
learning algorithm because no labels are needed in the input data [48]. Basically,
an autoencoder consists of two main parts: an encoder h = fenc(x) ∈ Rh which
transforms the input vector x ∈ Rn into a hidden representation h and a decoder
d = fdec(h) ∈ Rn which creates an output based on the transformed data from hid-
den layers. Finally, the reconstruction vector y = fdec(fenc(x)) ∈ Rn is compared
to the original vector x using a loss function L:

L(x, fdec(fenc(x))).

L checks a similarity between the input vector x and their reconstruction y.
One of the loss functions used for the training of autoencoders is mean squared
error (MSE) which is defined as follows:

MSE(x,y) = 1
n

n∑
i=1

(xi − yi)2, (1.13)
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where x = [x1, ..., xn] is an n–dimensional input vector and y = [y1, ..., yn] is an
n–dimensional output vector.

We define an autoencoder as undercomplete [51] if dimension of a hidden data
representation is smaller than the dimension of the input. Such a construction
makes it impossible to use the identity function, which would return the input
data without additional constraints. In this case, the autoencoder has to find de-
pendencies between the data and code them in a latent space with fewer dimensions
than the input, which will prevent the autoencoder from simply copying the input
to the output. It should learn data distribution and leave noise, through learning
the structure of a lower-dimensional data manifold, i.e. the internal data represen-
tation. As in the case of multilayer perceptrons, autoencoders can be trained using
a back-propagation algorithm. The general scheme of the autoencoder architecture
with hidden layers is presented in Figure 1.5.

Hidden layers     Output
reconstruction

ENCODER DECODER

Input

Latent 
space

Figure 1.5: The scheme of the autoencoder architecture.

The universal approximation theorem guarantees that a multilayer perceptron
with at least one hidden layer with enough neurons can approximate any function
arbitrarily well [63]. Thus, the autoencoder with at least one hidden layer and
with a sufficiently large number of units can reconstruct original data with any
non-zero error value [51].

Autoencoders have various applications, e.g. dimensionality reduction or visu-
alization of complex data in the Cartesian coordinate system [6]. They can reduce
the dimension of nonlinear data through the mapping of the data manifold into
a simpler representation. If one of the innermost hidden layers has two or three
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neurons then the autoencoder can be used for visualization of the dataset, often
with data separated into clusters according to the different classes. This can be
achieved by extracting neuron activation values from this layer during inference.
Autoencoders can be used for outlier detection because some important details
of outliers are lost during their encoding and reconstruction [6]. Points with the
biggest differences between input and reconstruction can be considered outliers.
Furthermore, these architectures are used for data denoising. This task is accom-
plished by adding artificial noise to the training data and calculating the loss L
between the reconstruction and the original points, not the distorted ones. Au-
toencoders are also one of the pretraining methods for initializing the weights of
the target neural network [112].

1.2 Hyperspectral images
Hyperspectral cameras take advantage of the fact that different materials emit,
absorb and reflect electromagnetic energy, for given wavelengths, according to the
chemical composition of a substance [99]. Many hyperspectral sensors like HY-
DICE, AVIRIS, HYPERION, EnMAP or PRISMA capture spectral information
from the visible light and near-infrared (VNIR) range [19], i.e. specified in the
wavelength range between 0.4 and 1 µm, as well as in the short-wave infrared
(SWIR) region which ranges from 1 to 2.5 µm [19]. Some sensors also make mea-
surements of bands from the long-wave infrared (LWIR), i.e. within the range 2.5
and 7 µm. For example, the AVIRIS sensor, which produced one of the datasets
presented in Chapter 3.5.1, has a wavelength range of 0.4 to 2.5 µm. Furthermore,
it has a spatial resolution of 20 meters, a spectral resolution of 10 nanometers and
creates data cubes of size 512× 614× 224.

The sensors measure the radiance intensity that characterizes the photon flux
incident at the specified location of a reflecting surface in the direction defined
relative to this surface [136]. Reflected sunlight is partially absorbed or scattered
by the atmosphere and this process has an important impact on spectral values [19].
When considering the illumination effects, as well as the surface properties and the
viewing angle, we can obtain the reflectance values. The spectral reflectance defines
the ratio of reflected energy to the incident one and it is an intrinsic property of
materials. For many substances, the reflectance values differ at various wavelengths
because the energy at different wavelengths can be absorbed or scattered in a
different way for specific materials [139]. On the basis of these quantities it is
possible to create a reflectance curve as a function of wavelength and use it to
identify substances visible in the image. A plot of reflectance curves for several
substances from the dataset described in Section 2.5.1 is depicted in Figure 1.6.

The classification of hyperspectral pixels can be burdened by atmospheric ef-
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Figure 1.6: The reflectance of several substances based on a sample image from
the dataset presented in Section 2.5.1.

fects [139]. The amount of solar energy which goes to the surface is reduced by
absorption or scattering the flux by some gas molecules. As an example of the
effect of these disturbances, water vapor and carbon dioxide almost completely
reduce energy near 1.4 and 1.9 µm. In many cases, adjacent spectral bands are
removed. Furthermore, other spectral values should also be corrected to receive
proper radiance or reflectance values [19]. We call this process atmospheric calibra-
tion. It is also necessary to take into account cloud cover, illumination geometry
and shadows. Additional perturbations may be caused by sensor effects related
to its detector variations [139, 140]. Most of the work on HSI is focused on the
remote sensing approach in which images are typically collected with the use of
satellites or aircraft. In the local sensing, the impact of a transmission medium,
like the atmosphere, can be neglected. An exemplary picture of the stand for local
sensing is presented in Figure 1.7. It is related to the preparation of the dataset for
blood and blood-like substances classification experiments, which will be discussed
in Chapter 2.

Another important obstacle is that the spectra of pixels can represent a mix-
ture of different substances. This phenomenon is called spectral mixing [70]. It
can occur when the spatial resolution of a sensor is low and different materials
are present in a single pixel. Furthermore, substances can create a homogeneous
mixture that is independent of the sensor’s spatial resolution. In the first case,
called the linear one, the reflected energy is combined additively, which means
that the contribution of consecutive substances is proportional to the area they
occupy in a given pixel [139]. In the latter case, the components are in an intimate
mixture, which means that light interacts with more components and is multiply
scattered [70]. This mixing systematic is called non-linear. The resulting spectrum
will be a composite of pure substances called endmembers, whereas the fractions
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Figure 1.7: The picture of the local sensing stand with a hyperspectral camera and
several halogen lamps.

which indicate their proportion in a given pixel are called abundances. Exemplary
sets of endmembers can be water, trees and soil, vegetables and soil, etc. The
inverse problem, which relies on the determination of the original spectra from the
mixture pixels (endmembers) and fractional abundances, is called spectral unmix-
ing. It is often solved in an unsupervised way [19]. In Section 3.4.1 we present in
detail the Linear Mixing Model which is very common in spectral unmixing [19],
despite its simplicity.

In recent years, many deep learning models have achieved state-of-the-art per-
formance in HSI applications. In a hyperspectral classification problem, DL ar-
chitectures, especially convolutional neural networks, were the most efficient in
classification of well-known HSI datasets like Indian Pines, University of Pavia
or Salinas [91, 118]. They were also successfully applied in unsupervised prob-
lems connected with HSI, e.g. spectral unmixing [113, 114] or anomaly detec-
tion [163, 172]. Recent successes justify the selection of deep neural networks as a
subject of further research related to hyperspectral imaging.

1.3 Outline of the dissertation
The following four chapters present the results of our research related to neural
networks and hyperspectral images. The structure of Chapters 2–4 is as follows:
they start with an introduction and the presentation of related works. Then,
we describe the necessary definitions and experiment scenarios. Each chapter is
summarized by the results and their discussion.
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Chapter 2: Blood stain classification with hyperspectral imaging and
deep learning architectures
In this chapter, we perform a classification of hyperspectral pixels. As an environ-
ment for experiments, we select a dataset designed for the classification of stains
of blood and other visually similar substances [133] such as artificial blood, paints,
tomato concentrate, etc. We treat this classification scheme as a starting point
for the optimization of deep learning architectures in terms of the selection of the
neural network type and its individual components. We choose several deep learn-
ing architectures, i.e. multilayer perceptron, 1D, 2D and 3D convolutional neural
networks as well as a recurrent architecture based on GRU cells. We consider two
classification scenarios, i.e. Hyperspectral Transductive Classification (HTC) and
Hyperspectral Inductive Classification (HIC). In the first case, the test set is made
up of pixels of the same image as the training set, while in the second, a more
demanding scenario, the test set come from a different image than the training
pixels. We perform experiments using various scenes in both scenarios and we
evaluate diverse deep learning models.

Chapter 3: Investigation of weight initialization methods for autoen-
coders
In the previous chapter, we identified that a part of the problems with HSI classi-
fication, and thus architecture optimization, is related to mixed pixels. Therefore,
our goal was to prepare spectral unmixing which can improve the results of hy-
perspectral classification experiments, especially for the HIC scenario. We focused
on neural networks designed for hyperspectral unmixing, i.e. specially prepared
autoencoders. During the study, we discovered a problem with networks’ stability
connected with weight initialization. It means that some neural network runs are
low-performing and lead to weak reconstruction errors as well as other unmixing
scores like abundance or endmember errors. This is consistent with observations
from the previous chapter, where we spotted an architecture that in some runs
achieved worse results than in the others, even with the same set of hyperpa-
rameters. In this chapter, as a result of the above premises, we conduct several
unmixing experiments on two different datasets and architectures, four weight ini-
tialization methods and various sets of network hyperparameters. We perform
statistical tests to thoroughly investigate the impact of weight initialization on the
final network result. We conclude that the initialization of network parameters
has indeed a significant impact on network performance, i.e. the pixel reconstruc-
tion error. Furthermore, we identify a vanishing gradient problem related to the
architecture with the ReLU activation function.

Chapter 4: Network reinitialization methods for improving the autoen-
coders’ performance
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In the previous chapter, we identified problems connected with the stability of
neural networks thus we decided to study some problems in detail. In this chap-
ter, we present an in-depth analysis of selected models trained in experiments from
Chapter 3. We identified the dying ReLU neurons phenomenon for a subset of low-
performing models. We propose three network reinitialization methods that aim to
mitigate the negative effects that occur during the training process. We test their
efficiency for selected hyperspectral unmixing experiments and compare the results
with the baseline, i.e. scores for models from the previous chapter, without reini-
tialization techniques. We conclude that in many cases reinitialization methods
statistically significantly improve baseline results. Furthermore, we try to general-
ize the results through the application of proposed methods for larger autoencoder
architectures, using the MNIST dataset. We also observe improvement with the
use of reinitialization methods, especially for selected network hyperparameters.
In many real-world applications, we cannot perform a full hyperparameter opti-
mization due to the high calculation costs, so weight reinitialization methods can
minimize the negative impact of dying neurons on network performance and avoid
wasting computational time on failed training runs.

Chapter 5: Conclusions
In the last chapter, we briefly summarize the results of the dissertation. We
describe the studies presented in consecutive chapters with the corresponding ex-
periments and the conclusions drawn from them. We emphasize which parts of
the research confirm the thesis statement. Finally, we present some propositions
and ideas for improving the work. They can be used for further research and more
detailed investigations in selected areas.
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Chapter 2

Blood stain classification with
hyperspectral imaging and deep
learning architectures

2.1 Introduction

One of the main challenges in applying deep learning is the choice of the appro-
priate network architecture. We can distinguish several different types of layers
which are the main components of deep learning architectures. The linear or fully-
connected layer is the most common in neural networks and is the main part of
multilayer perceptrons. The convolutional and max pooling layers are used in
convolutional neural networks, while LSTM and GRU cells are parts of recurrent
networks. Their details were discussed in Section 1.1. Furthermore, not only the
architecture selection, but even the choice of the number of neurons in consecutive
layers and their order, is a non-trivial task and it has a significant impact on net-
work performance. The problem of hyperparameter optimization or methods like
transfer learning, while important for overall network effectiveness, we do not treat
it as a part of architecture optimization. We consider architecture optimization
as a process of the choice of the neural network type (e.g. linear, convolutional,
recurrent ones) and its individual elements, i.e. the number, type and order of
layers, etc. Thus, we have to select a reference experiment that allows us to evalu-
ate deep learning architectures, as well as a set of reference architectures that will
be reliable representatives of different neural network types. Our considerations
are focused on hyperspectral data whose most basic definitions were discussed in
Section 1.2.

As an experimental setting for the neural network optimization task, we se-
lected the blood stain classification problem using hyperspectral data. Hyper-
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spectral imaging allows for the non-invasive classification of materials present in
a scene. This property is especially important when dealing with a crime scene
where interference during evidence collection may have a negative impact on the
investigation.

We conducted the study using a dataset from ITAI PAS [133] which was pre-
pared as a part of the project founded by The Polish National Centre for Research
and Development1. It aimed at the development of methods to support the inves-
tigation of the crime scene through the use of laser scanners and satellite measure-
ment techniques. One of the results of the work was a publication dealing with
the detection of gunshot residue patterns using machine learning algorithms and
hyperspectral analysis [57].

The dataset was created to evaluate blood detection algorithms. It was pre-
pared to emphasize various difficulties to face in real crime scenes, i.e. different
sizes of blood stains, diverse composition of backgrounds, the presence of other
substances similar to the blood, various acquisition days, etc. The dataset con-
sists of several hyperspectral images of scenes acquisited on different hours and
days after substance pouring. The first subgroup with so-called frame scenes is
composed of large stains of substances spilled on a piece of white fabric while the
second one contains more challenging comparison images with smaller stains of
substances poured on darker materials. In addition, single images of another type
can be found, for instance with blood ”splashed” on a fabric. Most of the scenes
include stains of blood and other red substances: artificial blood, tomato concen-
trate, ketchup, acrylic and poster paint, as well as beetroot juice. The reality of
the evaluation scenario as well as the diversity of the dataset makes it a good
environment for architecture optimization.

We performed experiments according to the two scenarios: Hyperspectral Trans-
ductive Classification (HTC) and Hyperspectral Inductive Classification (HIC).
The HTC approach is typical in pixel classification in HSI [118], i.e. the train-
ing and the test set come from the same image. It is assumed that the training
samples are a good representation of the data distribution. In the field of classi-
fication of RGB images, labels are usually assigned to whole images [77] while in
the case of hyperspectral images individual pixels are classified. In the HIC sce-
nario, the test set is selected from another image (or images) but contains objects
of the same classes. Due to the potential differences in lighting conditions and
various chemical and physical properties of background materials, the spectra of

1The project no. DOB-BIO6/18/102/2014 entitled Development of system solutions support-
ing the analysis of crime and accident scenes on the basis of the data acquired by laser scanning
and satellite measurement techniques was founded by The Polish National Centre for Research
and Development. It was realized between 2014 and 2017 in consortium of Silesian University of
Technology, Institute of Theoretical and Applied Informatics of Polish Academy of Sciences and
others.
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pixels containing the corresponding classes in the test set may vary compared to
those in the training set. It leads to difficulties in material recognition because
machine learning algorithms learn patterns from training samples and new pat-
terns in test samples may lead to misclassification. Furthermore, it violates the
i.i.d. assumption [51], which is basic in machine learning. It assumes that the data
samples in the training and test set are independent of each other and that they
are identically distributed. In the HIC scenario, the second condition may not be
fulfilled. This scenario is related to the crime scene investigation where a classifier
can be trained in laboratory conditions in a mock-up scene and tested at the crime
scene. The HIC scenario is rarely considered by researchers in HSI but has practi-
cal applications, e.g. in forensic sciences. These two experimental scenarios are an
additional argument for using this schema for architecture optimization because
networks will be tested in various cases.

As the network architecture optimization we are faced with an exceedingly
large set of possible combinations of candidate architectures, as a first step we se-
lect a number of representative architectures from different domains, by which we
understand 6 state-of-the-art deep learning methods: a multilayer perceptron, a re-
current neural network consisting of GRU units [109] as well as architectures based
on one-[65], two-[83] and three-dimensional [15, 91] convolutions. This choice pro-
vides a variety of models used for HSI classification, starting from straightforward
architectures like multilayer perceptron up to more complicated 3D convolutional
neural networks. Furthermore, some networks take into account only spectral
patterns (MLPs, 1D CNN and RNN), while others (2D and 3D CNNs) capture
both spectral and spatial dependencies. We additionally selected Support Vec-
tor Machines as a baseline algorithm. In our research, we modified and adapted
the DeepHyperX library to our requirements. The previous work [13] has tested
those architectures in a different hyperspectral setting, so we build on that, as
this gives us the additional advantage of comparing the performance with original
DeepHyperX experiments.

The foregoing chapter is based on the work Blood Stain Classification with
Hyperspectral Imaging and Deep Neural Networks [80] published in the Sensors
journal (MDPI). According to the Authors’ knowledge, it was the first paper that
considered the classification of blood stains with HSI and a deep learning approach.
In this chapter, the following topics will be discussed:

1. We describe the process of hemoglobin degradation from a chemical point of
view which is crucial in hyperspectral imaging. We also present a dataset,
including the spectra characteristics, RGB images and ground truth classes.
Furthermore, we formally define two scenarios of experiments: the transduc-
tive and the inductive one.

2. We introduce a method of the training/test set selection without knowledge
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leaks, i.e. unaware use of test samples in the training set as neighbors of
center pixels in patches. We also describe all of the network architectures
used in the further experiments as well as their evaluation metrics and details
connected with the code implementation.

3. We present the results of experiments in two main categories: 9 HTC and
8 HIC setups. We evaluate methods using basic classification metrics (such
as overall accuracy) as well as per-class percentage errors. We compare the
performance of algorithms in different scenarios. We also depict exemplary
classification maps and we analyze calculation times of the considered meth-
ods. Finally, we discuss the results obtained, with particular attention to
each individual neural network and its advantages and disadvantages. We
conclude that the choice of the proper network architecture has a significant
impact on the classification results.

As explained in Section 1.2 most of the works on HSI are focused on the remote
sensing approach [118] while we concentrate on local sensing.

2.2 Related works
The literature review can be divided into several parts. Section 2.2.1 describes
machine learning methods applied for hyperspectral data classification, including
both the deep learning approach and the classical approach. Section 2.2.2 is fo-
cused on previous approaches to the blood stain identification problem, which has
become our platform for the optimization of deep learning architectures. Sec-
tion 2.2.3 describes works related to the HIC scenario in which the distribution of
test samples differs from that of the training set. Finally, Section 2.2.4 discusses
methods of optimization of neural networks.

2.2.1 Hyperspectral data classification
The key aspects of hyperspectral data classification are widely discussed in [49].
The Authors describe important factors which make difficult a correct classifi-
cation, like the curse of dimensionality, uncertainties due to e.g. atmospheric
conditions; the dependence of spatial resolution on the mixed pixels, etc. They
discuss different methods designed for classification: Support Vector Machines,
decision trees, ensemble methods and a deep learning approach. A method com-
bining SVMs with a spectral gradient and a spatial random forest is presented
in [33]. Another ensemble mechanism, called AdaBoost composite kernel extreme
learning machines, is described in [87]. The Authors also examine their algorithm
on a very limited number of training samples.
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In recent years, due to the rapid development of deep neural networks, this
approach in many cases outperformed classic machine learning algorithms. Re-
searchers presented several efficient neural methods designed for hyperspectral
data classification, including a dual-channel convolutional neural network [168]. It
uses one- and two-dimensional convolutional layers to extract both spectral and
spatial information. Another model based on two- and three-dimensional con-
volutions is presented in [106]. Furthermore, the initial step of the pipeline is
dimensionality reduction using a Gaussian random projection and kernel principal
component analysis. In [117] the Authors proposed a method called MugNet which
comprises of two branches of networks extracting spectral and spatial information
from data, respectively. An interesting approach that combines deep learning with
SVMs is described in [111]. The deep support vector machine consists of a neural
network where weights are dependent on some SVM functions.

Some researchers prepared broad reviews of state-of-the-art classification meth-
ods for HSI. In the article [118] some learning strategies and architectures are
widely described. The Authors discussed not only individual models but also
deep learning limitations, i.e. susceptibility to overfitting, vanishing gradients,
etc. Furthermore, a series of experiments using various datasets and complex ar-
chitectures is performed and then, the results of applied methods are compared.
Other overviews of hyperspectral classification approaches are presented in [7, 88]
and [13]. We followed the study from [13] and extended the DeepHyperX library
that has implemented different deep learning architectures, including multilayer
perceptrons, a recurrent and convolutional neural networks. Due to the fact that
we would like to optimize architectures, we selected a set of diverse neural net-
works which were previously studied in remote sensing applications and applied
them for local sensing in the case of the blood and blood-like substances dataset.

2.2.2 Blood stain identification
Hyperspectral imaging has various applications in medicine [96], including disease
detection: segmentation of pathological white blood cells [54] or cancer detection
through measurement of blood oxygenation and blood volume of tissues, etc. The
high capabilities of HSI open the door to application to the problem of detec-
tion and identification of crime evidence by investigators in a non-destructive way.
In the review paper [43], the Authors are concerned with using HSI in forensic
sciences. They list various subfields of this domain and point to the useful wave-
length range. They consider treated and untreated fingermarks, blood stains and
other traces. In [85] the Authors present a work connected with the identification
of blood stains using HSI. They describe trials with different materials similar in
color to blood, such as a red T-shirt, dark blue card, etc. The paper shows the
results of experiments discriminating blood from other substances, as well as the
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detection of latent blood stains, even invisible to the naked eye. Another work [28]
is devoted to the identification of blood-stained fingerprints on various porous and
non-porous substances as well as on tiles of different colors, both light and dark
ones. Furthermore, experiments are performed for dry and wet stains.

Hyperspectral images can also be used for the estimation of blood age. The
Authors of [44] estimate the actual age of blood stains from samples 0.1 to 200
days old using the clustering approach. Their method is also based on splitting
the pixel spectra into chemical components. In the publication [5] a discussion is
made about different methods for estimating blood age; invasive and non-invasive
techniques are compared, including Raman spectroscopy [40] and hyperspectral
imaging. Authors notice that one of the main HSI limitations, i.e. hardware
complexity, was reduced in recent years since the rapid development of devices.
They conclude that, together with advanced signal processing methods, HSI is the
most efficient technology allowing for non-invasive blood stain age estimation.

2.2.3 Changes in distribution between the training set and
the test set

In the presented HIC scenario, test samples come from an image different from the
training set. In most cases, this phenomenon is connected with the change in data
distribution between the training and test data. Therefore, the works associated
with this topic can be found in various terms.

The HIC scenario is related to the covariate shift [143] in which even though the
distribution of training points is different from the test samples, the conditional
distribution of the output for the given input remains the same. The Authors
proposed an improvement of the cross-validation approach in which the validation
error of samples is weighted by the ratio of test and training distributions. A
modification of this method is proposed in [150] where the aforementioned ratio
is estimated through the Kullback-Leibler divergence, while a linear importance
model is replaced by the log-linear model. In the work [69] the Authors described
methods based on transfer learning in which a target problem is solved through a
model trained on a slightly different source problem and its retraining (this process
is called fine-tuning). They consider both unsupervised and supervised learning
paradigms. In the second scenario, they transfer one or more network layers from
the source problem and retrain the model on a target problem. They test the
presented idea with different configurations on stacked denoising autoencoders
and convolutional neural networks.
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2.2.4 Architecture optimization

In this subsection, different approaches for network architecture optimization will
be presented, including the choice of network layers, their hyperparameters and
more general techniques like Neural Architecture Search (NAS). The Authors
in [83] optimized their architecture in such a way that they evaluated different
settings of the network, including the number of filters in the multi-scale filter
bank, the use of residual learning connections and the determination of the train-
ing set size. In the work [15] the Authors considered several convolutional neural
networks and they selected one of their propositions making a compromise between
high classification accuracy and relatively low calculation time. Another aspect is
hyperparameter optimization, which, as we explicitly stated in the introduction to
this chapter, is not a part of our approach to network architecture optimization.
The choice of hyperparameter values can be performed through libraries such as
RayTune [92] or Optuna [8]. This process is related to the adjustment of batch
size, learning rate, number of training epochs and other hyperparameters specified
for the selected architecture. In the publication [98] Neural Architecture Opti-
mization framework is presented. In this approach, the design of optimal network
is determined through the encoder, the performance predictor and the decoder.
In the first part, the sequence that describes the architecture is encoded in a con-
tinuous representation. The predictor assesses the performance of the encoded
architecture while the decoder recovers the input architecture. However, in this
work, we consider the architecture optimization similarly to the Authors in [118]
and [13] where various neural networks, e.g. multilayer perceptrons or different
variants of CNNs, are compared in hyperspectral classification tasks.

Another approach related to architecture optimization is Neural Architecture
Search (NAS) which is focused on automatizing the neural network selection
process with a limited need for human intervention [130]. There can be distin-
guished three categories of NAS algorithms [94]: based on reinforcement learning
(RL) [177], gradient optimization [135] and evolutionary computation. However,
in the case of RL-based algorithms, a huge calculation time is needed, requiring
even thousands of GPU cards [94]. In the exemplary gradient-based approach, like
DARTS [93], a directed acyclic graph is created. Then, a gradient optimization
technique is possible due to the so-called continuous relaxation of the representa-
tion of architectures. For evolutionary computation methods, different heuristic
algorithms simulating nature behavior are applied, like genetic algorithms [145] or
based on swarm intelligence, like particle swarm optimization [144].
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2.3 Blood stains
Hemoglobin is a protein that constitutes the vast majority (nearly 90%) of the
dry weight of red blood cells [26]. Two species of hemoglobin can be detected in
a healthy person’s bloodstream: deoxyhemoglobin (deoxyHb) and oxyhemoglobin
(oxyHb) [166]. Although oxyhemoglobin is a stable protein, due to auto-oxidation
it is transformed into methemoglobin (metHb) and superoxide radical [151]. Spe-
cial enzymes in erythrocytes, i.e. glutathione peroxidase and methemoglobin re-
ductase, cause a reverse conversion of metHb to oxyHb [14], therefore, the ratio
of metHb in blood exiting the human body should not exceed 1% [71]. At this
point, various physicochemical processes begin [166]. As a result of saturation,
deoxyHb is transformed into oxyHb, and, as the next step, oxyHb degrades to
metHb in auto-oxidation. Due to the fact that the antioxidant defense mecha-
nism of red blood cells is no longer available, metHb does not convert back into
oxyHb [26, 39]. Then, through the denaturation process, hemi- and hemochromes
(HC) are formed.

Figure 2.1: The hemoglobin degradation depending on the age of the blood stains
(plot from [25] used with permission). In this picture met-Hb means methe-
moglobin, HbO2 denotes oxyhemoglobin while HC is hemichrome.

Some factors may lead to hemoglobin distortions and difficulties in blood age
estimation. One can mention differences between individuals such as various ages,
genders, races, diets, taking medicines (especially aspirin) and the carboxyhe-
moglobin level, which can be abnormally changed due to smoking or exposure of
a given person to fire. Other important factors are related to environmental con-
ditions in which blood was stored, i.e. temperature, humidity or light exposure,
both natural and man-made.
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The hemoglobin degradation process in an exemplary dataset described in [25]
is depicted in Figure 2.1. The presented values are averaged over 20 blood stains.
One can notice a rapid decrease in the oxyhemoglobin ratio in the considered blood
stains from almost 100% at the beginning to about 40% on the tenth day. Then,
the decline slows down, and on the seventieth day, oxyhemoglobin achieves a ratio
slightly less than 30%. In the meantime, we observe growth of hemichrome and
methemoglobin fractions as a result of auto-oxidation and denaturation processes.
In the first case, we notice an increase from 0% for fresh blood to about 45% on
the tenth day. Then, the hemichrome fraction still grows but not as rapidly as
before and is equal to about 65% on the seventieth day. The methemoglobin ratio
in the blood reaches a peak just after the tenth day and is slightly less than 20%.
We notice a slight decline later. Finally, the metHb ratio is approximately 10% on
the last day of measurements.

The spectral characteristics of blood, especially in the visible light
spectrum [166], make hyperspectral imaging a suitable tool for the analysis of
blood. This range of the electromagnetic spectrum is predominated by erythro-
cytes [103]. We can specify several absorption bands of oxyhemoglobin, namely
Soret or γ band about 414 nm, α band ∼542 nm and β band ∼576 nm [176]. An
illustrative plot with the blood spectrum and three absorption bands emphasized
is presented in Figure 2.2.
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Figure 2.2: The mean spectrum of blood with highlighted three absorption bands:
Soret band (414 nm), α band (542 nm) and β band (576 nm). The values of ab-
sorbance were calculated as log( 1

R
), where R is reflectance. The depicted spectrum

is based on a subset of blood pixels from the dataset described in [133].
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2.4 Candidate architectures description
In this study, we used six deep learning architectures designed for hyperspectral
classification: a multilayer perceptron, a recurrent neural network [109], as well
as 1D [65], 2D [83] and 3D [15, 91] convolutional neural networks. We followed
the implementation from the DeepHyperX library [13] and created its modified
version designed for blood stain classification, named DeepHyperBlood [80]. The
modifications include but are not limited to implementing a new way of a train-
ing and test set selection, different kinds of data preprocessing, modifications of
functions calling network training and inference, a different set of functions for
SVM classification, plots designed for our datasets and removal of some redundant
function from the blood stain classification point of view.

The network hyperparameters, except for a few cases, were taken directly from
DeepHyperX. We did not perform additional hyperparameter optimization to en-
sure the possibility of comparing the results with remote sensing datasets described
in [13]. In this way, we also tested the robustness of the default hyperparameters’
choice prepared by the authors of architectures and assessed their generalization
possibility.

As a reference algorithm, we selected Support Vector Machines (SVMs) [36].
We performed hyperparameter optimization using the grid search technique with
the radial basis function kernel. The regularization parameter C was selected from
the following set: {10−3, 102, ..., 102, 103} while the kernel coefficient γ was chosen
among the values: {σ · 10−3, σ · 10−2, ..., σ · 102, σ · 103}, where σ = (Xvar · B)−1,
Xvar is the variance of the dataset while B is the number of spectral bands.

For all network architectures, we applied a reduction in the learning rate by an
order of magnitude when the training process gets stuck. In all considered cases,
classification layers are followed by softmax activation and a cross-entropy loss
function is used. Moreover, during network learning, 5% of the samples from each
class are selected for the validation set.

2.4.1 Multilayer perceptron
We selected multilayer perceptron (MLP), which is the simplest neural network
architecture in terms of its construction and it is often used as a reference algorithm
for more sophisticated ones [13]. It uses only spectral information of a given pixel
and it does not take into account its spatial neighbors. It is composed of three
hidden layers with 2048, 4096 and 2048 neurons, respectively. The weights are
initialized according to the He approach with normal distribution [60] and all biases
are initially set to zero. The activation function is ReLU and the batch size is set
to 100. The network is trained through 100 epochs with the Adam optimizer [72]

26



and a learning rate equal to 10−4. The illustration of this architecture is shown in
Figure 2.3.

Input

Hidden layers

   Output
classification

Figure 2.3: The scheme of the MLP architecture for HSI classification.

2.4.2 1D convolutional neural network
One of the convolutional neural networks that we used in our experiments is the
architecture of [65] based on one-dimensional layers, presented schematically in
Figure 2.4. Similarly, as in the case of MLP, spatial information is not used during
training or inference. The first layer after the input prepares one-dimensional
convolution and consists of 20 kernels of size c =

⌈
B
9

⌉
, where B is the number of

spectral bands. In this case, stride is set to 1 while padding equals 0. Then, a 1D
max pooling layer is applied with the kernel size p =

⌈
c
5

⌉
is applied. In this layer,

no padding is added but stride is set to p. In the subsequent step, all features are
flattened and the pipeline ends in two fully-connected layers. The first has 100
neurons, while the size of the second one corresponds to the number of classes in
the dataset. The Authors in [65] suggest that despite the proposed numbers of
channels/neurons being effective for different hyperspectral datasets, they can be
suboptimal for individual cases.

As an activation function, the hyperbolic tangent was selected. Weights were
initialized from the uniform distribution within the range −0.05 and 0.05 while
all biases were initialized by zeros. The batch size was set to 50 and the number
of learning epochs was 400. Furthermore, the network was trained using SGD
optimizer with learning rate 0.01.

2.4.3 2D convolutional neural network
The following architecture is based on the article [83] and takes into account both
spectral and spatial relationships in the analyzed data. Its depth is larger than in

27



Max pooling

Input

1D convolution
        20 kernels

Fully-connected layers

  Output
classification

Figure 2.4: The scheme of the 1D CNN architecture [65] for HSI classification.

the case of previously presented networks and it consists of 9 layers.
The network starts with a multi-scale filter bank which consists in simultaneous

application of different filters on the input and combining their outputs before
passing to the subsequent network layer. In this case, these are 1 × 1 × B and
3 × 3 × B convolution filters, where B is the number of spectral bands. The
first one is responsible for capturing spectral dependencies, while the second filter
exploits primarily spatial relationships. In the original article [83], the authors
also included a 5 × 5 × B filter in the bank, but we followed the implementation
from [13] which uses only two filters. The concept of the multi-scale filter bank is
similar to the Inception module from [147] which aims to facilitate the extraction
of local data structures. The multi-scale filter bank is applied at the first phase of
the pipeline to directly analyze the input image.

After processing the input data through the filter bank, local response normal-
ization (LRN) is applied twice and it is intertwined by a convolutional layer. The
goal of LRN is to normalize the filter response for selected pixel coordinates (x, y)
based on values of m neighboring filters for the same coordinates (x, y) [2, 83],
that is:

f̃j = fj(
k + α

m

∑min{C,j+m
2 }

i=max{1,j−m2 }
f 2
i

)β , (2.1)

where fj is the activation value of the j–th filter for the coordinates (x, y), while
k, α, β and m are hyperparameters and C is the total number of channels.

Then, as the next step in forward propagation, the data is passed to two con-
secutive blocks of layers, each of which consists of two convolutional layers and a
residual connection. In the penultimate step, two additional convolutional layers
with dropout with a threshold of 0.05 are applied. The pipeline is finished by
the eighth convolutional layer without activation function. For each convolutional
layer except the last one and at the end of the filter bank, the ReLU activation
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function is used.
In the code implementation that we followed, the initial learning rate was equal

to 0.001 and gradually decreased. The network was trained through 200 epochs,
the batch size was set to 100 and the patch size was equal to 5. All weights were
initialized according to the He approach with a uniform distribution [60] while
biases of the bank layers were initialized to zero.

In this architecture, no dimensionality reduction is performed. Furthermore,
for each layer, the number of output channels is equal to 128. We did not use
any data augmentation method as the Authors suggest in [83] because we wanted
to ensure the same conditions for all algorithms. An overview of the architecture
described above is presented in Figure 2.5.

Multi-scale filter bank

3x3

1x1

+ +

Number
of kernels: 256              128          128          128            128          128         128            128         128          128

Residual blocks    2D convolutions
Output

classification
Input

Figure 2.5: The scheme of the 2D CNN architecture [83] for HSI classification.

2.4.4 3D convolutional neural network
We used two 3D convolutional neural networks [15, 91] which can capture both
spectral and spatial dependencies between pixels, similarly as architectures based
on 2D convolutions.

The first architecture [91], shown illustratively in Figure 2.6, consists of two
3D convolutional layers, having 16 and 32 channels, respectively, and ending with
the ReLU activation function. In both layers, small receptive fields are used, i.e.
kernel sizes (width × height × depth) of (3×3×7) and (3×3×3). The padding is
set to (0, 0, 1) in two cases. In this network, there are no pooling or dropout layers.
The pipeline is finished by a single fully-connected layer which is responsible for
classification. All weights are initialized according to the Glorot approach [50]
with uniform distribution, while biases are set to zero. The network is trained
through 200 epochs with batch size 100 and stochastic gradient descent optimizer
(SGD) with momentum set to 0.9 while the initial value of learning rate is 0.01.
Furthermore, the size of a single patch is equal to 5.

The second architecture [15], depicted in Figure 2.7, is more sophisticated and
is composed of two 3D convolutional layers with 20 and 35 feature maps. After each
convolutional layer, a pooling layer is applied. The kernel sizes of the convolutional
layers are (3 × 3 × 3) while the kernel sizes of the pooling layers are (1 × 1 × 3).

29



     16                               32  

Input

    Output
classification

3D convolutions

Fully-connected
         layer

Number
of kernels:

Figure 2.6: The scheme of the 3D CNN architecture [91] for HSI classification.

Furthermore, for convolutions, stride is set to (1×1×1) while in the case of pooling
layers it is (1×1×2) to reduce the spectral dimension of the sample. Then, two 1D
convolutions with kernel sizes 3 and 2, as well as with strides 1 and 2, respectively,
are applied. Finally, a fully-connected layer performs a classification. Similarly
to the previously described networks, the ReLU activation function is applied.
Moreover, in our implementation, for each layer except the first one, one-pixel
padding is added for the spectral dimension. The number of network training
epochs and batch size are set to 100. The remaining hyperparameters are similar
to those from the first 3D convolutional architecture, except the momentum in
SGD which is set to 0.

Input
    Output
 classification

3D 
     convolution

Fully-connected
         layer
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of kernels: 20               20              35            35           35            35

1D 
convolution

3D 
     convolution

1D convolutions

Figure 2.7: The scheme of the 3D CNN architecture [15] for HSI classification.

2.4.5 Recurrent neural network
Except for multilayer perceptron and various convolutional neural networks, we
also selected a recurrent network architecture based on gated recurrent units
(GRUs). As discussed in Section 1.1.3, GRU cells have fewer parameters than
LSTM units and can efficiently extract long-term dependencies from spectral se-
quences [109]. In this case, a hyperspectral pixel is treated as a sequence and
consecutive spectral bands are its successive values. This network, similarly to
MLP and 1D CNN, uses only spectral information and does not benefit from the
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spatial relationships of a selected pixel. The pipeline of this network starts from a
single layer of the gated recurrent unit with 64 features in its hidden state. Then,
the batch normalization layer and hyperbolic tangent as an activation function are
applied. The authors of this architecture designed their own activation function
called a parametric rectified hyperbolic tangent (PRetanh) that allows the use of
high values of learning rates while minimizing the risk of convergence [109]. How-
ever, we followed the implementation of [13] in which PRetanh is replaced by a
hyperbolic tangent. In the last step, a linear layer predicts the label for a selected
data sample. The overall scheme of this architecture is shown in Figure 2.8. Net-
work training is performed through 100 epochs with batch size 100 and Adadelta
optimizer [167] with a learning rate set to 1.0. All network parameters, including
biases, are initialized according to the uniform distribution between -0.1 and 0.1.
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Figure 2.8: The scheme of the RNN architecture [109] for HSI classification.

2.5 Experiments

2.5.1 Dataset
The dataset which we used in the research contains several scenes with blood and
substances visually similar to blood, i.e. artificial blood, ketchup, tomato concen-
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trate, beetroot juice as well as poster and acrylic paints. It was prepared in ITAI
PAS and was described in detail in the paper [133]. It is also publicly available in
the Zenodo repository [132].

We selected several images to perform classification experiments, i.e. frame and
comparison scenes. Frame scenes simulate image acquisition in laboratory condi-
tions. In this case, the substances were spilled onto a white fabric that covered
a wooden frame. Comparison scenes correspond to real crime scenes because the
background is dark and diverse. It is composed of metal, plastic, wood and several
fabrics of different dark colors, including red. Furthermore, the substances’ stains
are smaller than in the case of frame images and they are vertically arranged. An
additional difficulty can be the spectral mixing of spilled substances with the back-
ground materials. Because beetroot juice was present only in frames, we excluded
it from the experiments.

In two presented scenarios, for the purpose of reflectance corrections, the Mun-
sell Color calibration panel was placed on the left side. 8 out of 9 images were
performed using the Surface Optics SOC710 hyperspectral camera covering the
wavelength range between 377 and 1046 nm. The spatial resolution of the output
images is 696 × 520 while the number of spectral bands is equal to 128. Accord-
ing to suggestions from [133], some spectral bands, i.e. 0-4, 48-50 and 122-128,
were removed due to noise, and finally, 113 bands were left. One of the images
was made with different equipment, i.e. Specim hyperspectral camera. In this
case, the number of spectral bands exceeded 1000, so to ensure the consistency
between images, we downsampled it using linear interpolation. We also corrected
the reflectance values because we detected artefacts connected with the SOC710
equipment [133].

Both frame and comparison scenes were captured on different days after the
spilling of the substances: from the same day until the twenty-first day after the
scene preparation. The detailed description of the images with abbreviations used
in further experiments is presented in Table 2.1 while RGB images of consid-
ered scenes with corresponding ground truth of class annotations are presented in
Figure 2.9. The spectra of substances from six different images are depicted in
Figure 2.10. For each substance and image, the spectra were averaged over all pix-
els in the given class. It can be seen that the drying out of the substances affects
the spectra shapes. An example of such a phenomenon is blood class in which the
reflectance peak at about 700 nm in the F(1) image disappears during further days
in F(7) and F(21). Furthermore, one can observe differences in spectra between
frame and comparison scenes coming from the same day. This observation will
be important for the interpretation of one of the experimental scenarios presented
here.
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Table 2.1: Summary of images from the dataset [132] used in the study.

abbreviation scene type day remarks

F(1) frame 1 −
F(1a) frame 1 acquisition about 7 hours after F(1)
F(2) frame 2 −
F(2k) frame 2 different hyperspectral cameras
F(7) frame 7 −
F(21) frame 21 −
E(1) comparison 1 −
E(7) comparison 7 −
E(21) comparison 21 −

(a) RGB image of F(1) scene.

background
blood
ketchup
artificial blood
beetroot juice
poster paint
tomato concentrate
acrylic paint

(b) Ground truth classes of F(1) scene.

(c) RGB image of E(1) scene.

background
blood
ketchup
artificial blood
poster paint
tomato concentrate
acrylic paint

(d) Ground truth classes of E(1) scene.

Figure 2.9: RGB images with corresponding ground truth classes of two selected
scenes from the dataset.
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Figure 2.10: Mean spectra of substances in frame images and comparison scenes
from different days after substances’ spilling.

2.5.2 Scenarios
We designed two different experimental scenarios:

• The Hyperspectral Transductive Classification (HTC) scenario is a typically
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considered situation for classifiers. HSI pixels from the training set Xtrain
come from the same image X as the test set Xtest, i.e. Xtrain ⊂ X, Xtest ⊂ X
and Xtrain ∩Xtest = ∅ [47]. The intersection of the training and the test set
is empty, which means that there are no common samples in these sets.

• The Hyperspectral Inductive Classification (HIC) scenario is less common but
more challenging for classifiers. In this case, two different images, X1,X2,
X1 ∩X2 = ∅, are selected. A subset of pixels from one of these images, X1,
is selected for the training set, that is Xtrain ⊂ X1, while the test set Xtest is
an improper subset of pixels from the second image, X2, that is Xtest ⊆ X2.
In this scenario, the typical machine learning assumption of independent and
identically distributed samples in both sets is most likely violated.

The HIC scenario can be especially useful from the point of view of forensic
science. Samples of blood or other substances may be prepared under laboratory
conditions and can be selected for training a classifier, while samples from the real
crime scene may be used as a test set. In the most favorable case, the traces of the
crime are judged in place. There is a need for non-invasive methods for substance
identification to avoid the violation of samples. Currently, chemical methods are
applied, but they result in e.g. substance color changes [24].

We performed experiments according to the HTC scenario for all presented
images, that is, frame scenes F(1), F(1a), F(2), F(2k), F(7), F(21) and comparison
scenes E(1), E(7), E(21). We also prepared a series of experiments in the HIC
scenario, for example F(1) → E(1), where F(1) is a source image, while E(1) is
a target image. The rest of inductive classification experiments were as follows:
F(1a) → E(1), F(2) → E(7), F(2k) → E(7), F(7) → E(7) and F(21) → E(21).
Among these pairs, we have images with the corresponding acquisition times,
e.g. F(1) → E(1) as well as with different acquisition hours, like F(1a) → E(1),
or days, as in F(2) → E(7). Furthermore, we performed two additional HIC
experiments between images from two hyperspectral cameras to study the impact
of the difference in equipment: F(2) → F(2k) and F(2k) → F(2).

2.5.3 The selection of training and test set
In the HTC scenario, when we randomly choose indices for training and test sets,
there is a risk that patches from the training set will have a non-empty intersection
with patches from the test set. All architectures which take into account neighbors
of a given pixel are susceptible to information leakage. Two- and three-dimensional
convolution networks in which input consists of patches of pixels may covertly use
the knowledge from the test set during the training process. It happens when a
pixel from the test set is included in the patch of the adjacent pixel that was se-
lected for the training set. To prevent this phenomenon, we designed an algorithm
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for the division of images into fully separate training and test sets. In the HIC
scenario, its application is not necessary because the test set comes from another
image, thus there is no threat of information leakage. However, to ensure that
the results from HTC and HIC scenarios can be accurately compared, the same
training sets were used in both cases for the corresponding images.

We set the number of samples in the training set as ntrain = N · 5% · nminsamples,
where nminsamples is the number of samples from the least numerous class and N is the
total number of classes in the training set. At the beginning, we determine which
class is the least frequent in the training set and we set the number of correspond-
ing samples to nminsamples. Finally, other pixels that are not within k-neighborhood
of pixels chosen for the training set or near the image borders, are assigned to
the test set. We assumed that k = 2 because the maximum patch size for the
architectures used is equal to 5 × 5. In our experiments, all background pixels
were ignored. Exemplary applications of this method are depicted in Figure 2.11.
There are presented randomly chosen training and test sets for scenes F(1) and
E(1). In the case of Figures 2.11a-2.11d yellow represents selected pixels, while
black corresponds to the background which was excluded from the experiments.
The combined training and test set pixels with unused parts of the images are
shown in Figures 2.11e-2.11f.

To ensure high reliability of the results, we prepared 10 training sets for each
image. The results presented further are averaged over 10 runs per individual
scenario.

2.5.4 Evaluation metrics
Overall accuracy

Overall accuracy (OA) is one of the most basic metrics in classification problems.
It calculates the proportion of properly classified samples (T ) to the total number
of data samples (S), which can be delivered in the following way:

OA = T

S
· 100%. (2.2)

Average accuracy

Average accuracy (AA) indicates the mean classification accuracy over all classes
in the dataset. It can be expressed as the following formula:

AA = 1
N

N∑
i=1

Ti
Si
· 100%, (2.3)
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where Ti is the number of correctly classified samples belonging to the i–th class, Si
is the total number of samples of the i–th class and N is the total number of classes
in the considered dataset. Average accuracy can indicate disproportions among
ratios of correct predictions for consecutive classes when a significant difference
can be observed between its value and overall accuracy.

Cohen’s κ coefficient

Cohen’s κ coefficient [34] was designed to test the agreement between a pair of
variables, most often judges’ ratings on a nominal scale. This measure compares
the probability of judgments’ agreement to the expected one when judges’ ratings
are independent. Let us assume that p0 is the ratio of cases in which the judges’
ratings are consistent, while pc is the ratio of cases for which the agreement between
judges was only random. κ coefficient can be calculated as follows:

κ = p0 − pc
1− pc

. (2.4)

Therefore, it measures the judges’ agreement when the impact of random agree-
ment between judges is removed. The difference p0 − pc indicates the scale of the
non-random agreement due to the fact that the impact of the random agreement
was subtracted from the coefficient of the agreement between judges. The denom-
inator 1 − pc refers to the cases for which the statement about no dependence in
data will be indicated differently by the judges. It means that random agreements
are subtracted from all possible cases.

In the presented case, κ coefficient was used for the comparison of ground truth
classes with label predictions. κ achieves values in the range [−1, 1] while 1 means
full agreement between judges and 0 refers to the amount of agreement that can
occur randomly [102, 160]. However, some disadvantages of this coefficient for
multi-class classification are considered in the work [37] in which the Authors
compared Cohen’s κ with Matthews Correlation Coefficient. In some cases of
unbalanced datasets, higher κ scores are obtained by worse performing models
which yields that κ coefficient should be used carefully.

2.5.5 Implementation details
The source code for the described experiments was written in Python 3.7.6 (64-
bit) and is publicly available at our GitHub repository: https://github.com/
iitis/DeepHyperBlood. We modified the DeepHyperX [13] library with several
deep learning architectures. The training of neural networks was carried out using
PyTorch 1.5.0 [119] and CUDA Toolkit 10.2.89 while Support Vector Machines
were learned by using scikit-learn 0.22.1 [120]. Other libraries applied in the study
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were, e.g.: matplotlib 3.1.2 [29], numpy 1.18.1 [59], scipy 1.4.1 [154], spectral 0.21,
torchsummary 1.5.1 and a package management system, conda 4.8.2.

2.6 Results
Upon preliminary analysis of the results, we have discovered individual degener-
ate cases of 11 training runs. As they represent an utter failure of the learning
process, we excluded them from further consideration. These cases are related
to the assignment of all (or almost all) image pixels to one class, which signifi-
cantly disturbs the evaluation metric scores. Such individual failures obscure the
real potential of a given network, especially when most of the training session is
successful. Therefore, these cases should be identified and excluded from the set
of results. Moreover, this phenomenon makes the hyperparameter optimization
difficult when sometimes only one network run per each set of hyperparameters is
performed. This phenomenon was subsequently investigated in detail, leading to
the observation of the degenerate behavior of individual networks. Further analysis
leads to conclusions about dead activations and input points and the proposition
of reinitialization methods, described in Chapters 3 and 4.

All results that were deemed worthy are presented in Tables 2.2–2.3. They
include classification results for all considered architectures and datasets, for two
scenarios: HTC and HIC, respectively. The results presented for the transductive
classification experiments confirm that comparison scenes were more challenging
than frame images. It is understandable because frame images have a white,
uniform background while comparison scenes are definitely more complex, with
different, darker materials than in the aforementioned case and pixel spectra are
possibly mixed [70]. For frame images, all architectures achieved high efficiency, i.e.
between 96.8% and 99.9%. The bigger differences can be noticed in the case of com-
parison scenes. The mean classification accuracy for most effective methods varies
between 90.6% and 94.5%, while differences between low- and high-performing al-
gorithms amount to 20%. For three datasets, i.e. F(2k), E(1) and E(7) scenes, the
SVM achieved the highest results. In five other images (F(1), F(1a), F(7), F(21)
and E(21)) 3D convolutional neural networks were the most efficient while in the
remaining case, the recurrent neural network obtained slightly better results than
the other architectures. We can conclude that all classes were predicted compara-
bly well because overall accuracy scores were similar to the corresponding average
accuracy. We also observe that in the case of more challenging comparison scenes,
the MLP and SVMs were one of the best architectures. This phenomenon occurred
despite the fact that they do not take into account the spatial neighborhood of
given pixels. It may be related to the complexity of the images and the small size
of substance stains. For comparison scenes with dried substances, i.e. E(7) and
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E(21), the 1D CNN achieved the lowest performance when compared to the other
architectures. Moreover, it should be mentioned that the HTC scenario is typical
in hyperspectral imaging and a general look at the results leads to the conclusion
that the task was done correctly.

In the case of the inductive scenario, the classification metrics are significantly
lower than those for transductive experiments. The highest performance was
achieved for pairs of images in which acquisition was made with different cam-
eras, that is F(2) and F(2k). For these datasets, both the overall and average
accuracy exceeded 97% for the most efficient architecture. The scenarios, in which
the frames were in the training set and the comparison scenes in the test set, were
the most challenging for the classifiers. The overall accuracy ranged between 57%
in the case of F(21)→E(21) and 72% for the pair F(1a)→E(1). It looks like the
change in equipment while preserving other scene conditions, i.e. days of acqui-
sition, background materials, etc., is not as harmful to classifiers as differences in
the above-mentioned conditions. It is worth emphasizing that inductive scenar-
ios are not typical from the classifiers’ point of view, but they are important for
forensic sciences. They correspond to the situation where the real crime scene
is investigated, while the classification of substances is performed on the basis of
scenes taken under laboratory conditions. In 4 out of 8 cases the recurrent neu-
ral network achieved the highest accuracy. The high performance of this method
was best demonstrated for the pair F(1)→E(1) where the advantage over other
algorithms exceeded 8%, in terms of OA. For two other cases, one of the 3D convo-
lutional neural networks was the most efficient while for pairs of images prepared
with different equipment, Support Vector Machines achieved the highest scores.
The most difficult pair was connected with dried images from the twenty-first day
after the substances were spilled, while the least problematic was using pixels from
the F(1a) as training and pixels from E(1) image as a test set. The least efficient
architecture for scenarios in which frames were training images while comparison
scenes were test datasets was the 1D convolutional neural network [65] while in
the case of F(2)↔F(2k) pairs its two-dimensional counterpart achieved the lowest
scores.

Tables 2.4-2.7 indicate the percentages of classification errors for consecutive
classes. They are broken down into different scenarios. In the case of HTC exper-
iments on frame images, mean errors are low and do not exceed 2%. The lowest
error values are obtained by Support Vector Machines while the highest ratio of
misclassification can be noticed for the RNN [109]. The toughest class was tomato
concentrate, but even in this situation, the mean error was only 1.7%. Impor-
tantly from the point of view of forensic science, errors for the blood were very
small and did not exceed 0.5%. For the analogous study with comparison scenes,
the per-class errors are significantly higher than in the previous case. It is interest-
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ing that both poster and acrylic paints were definitely easier to predict than the
remaining classes. It suggests that they differ significantly from the others, which
is confirmed by the mean substance spectra depicted in Figure 2.10. The most
challenging class was artificial blood, especially for the 1D CNN [65]. In the case
of inductive scenarios, the scores are slightly different. For results aggregated over
frame images, poster paint and blood were classified with the highest efficiency,
while tomato concentrate caused the most problems. One of the considered archi-
tectures, i.e. the 3D CNN [91], obtained definitely worse results than the others
and the mean error exceeds 20%. The lowest performance was achieved in the
HIC scenario where comparison scenes were used as test sets. In such a situation
results form two groups: the first of them is created by classes with errors between
18 and 38%, i.e. tomato concentrate, poster and acrylic paints as well as blood.
The second, more challenging group, whose errors range from 65 to even 81%, is
made up of ketchup and artificial blood. Similarly, as in the case of full results, the
most successful architecture was the RNN [109].

Exemplary classification maps with ground truth and corresponding confu-
sion matrices for selected HTC and HIC scenarios are presented in Figures 2.12
and 2.13, respectively. Figures 2.12a–2.12c present a sample run of the MLP on the
F(1) image. In this case, classification was performed almost perfectly, although
at the bottom edge of the blood stain some pixels were recognized as artificial
blood. Figures 2.12d–2.12f depict an exemplary transductive training run of the
RNN [109] architecture on the E(1) image. We can conclude that most misclas-
sified pixels are located near the edges of substances. Possibly in such locations,
substance spectra are mixed with background pixels’ spectra. About 20% of the
ketchup and artificial blood pixels were labeled as tomato concentrate. Further-
more, for almost 10% of cases, blood and poster paint pixels were assigned to the
artificial blood class. An interesting phenomenon is presented in Figures 2.12g–
2.12i where the 3D CNN [91] network predicted a single class for all pixels of
the image. It proves that individual training sessions with this architecture and
the selected set of hyperparameters can diverge and lead to degenerate results.
Although it was not the only situation in which such a phenomenon occurred,
most runs lead to high-performing results. A more detailed analysis of the sta-
bility of neural networks with solutions alleviating the described state will be
presented in the following chapters. For the HIC scenario, in test sets were all non-
background pixels because in training sets, samples were used from other datasets.
Figures 2.13a–2.13c compare the prediction of the exemplary RNN [109] run for
the pair F(1a)→E(1) with its ground truth counterpart. It can be noticed that
only 16.1% of the artificial blood pixels were correctly classified. Furthermore, the
fourth row of substance stains was probably the most challenging for the network.
Most of the pixels were assigned as tomato concentrate. Problems can be caused
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by the dark color of the background material which is presented in Figure 2.9c. For
an exemplary prediction of the 1D CNN [65] for the pair F(2k)→F(2), the clas-
sification metrics were significantly higher than in the previous considered case.
The largest level of misclassification was between ketchup and tomato concentrate.
Other classes were labeled with high accuracy.

2.7 Discussion

2.7.1 General remarks
An observation common to all tested methods is that the HTC scenario, which is
more often considered in hyperspectral imaging, is definitely easier for classifiers
than the HIC scenario. On the basis of the performed inductive experiments, we
noticed that different background colors, materials and various acquisition times
are more challenging than changes in equipment. Moreover, the substances do not
necessarily fully cover the background materials, which can lead to creating a ho-
mogeneous mixture of several substances and, consequently, spectral mixing [70].
Thus, the shape of substance spectra will be distorted and the retrieval of origi-
nal spectra shapes may facilitate the classification process. In the next chapter,
we consider spectral unmixing through the application of autoencoders. Further-
more, in the case of changes in acquisition time, the spectra of substances can be
reshaped due to their drying, which is harmful to machine learning models trained
on samples with slightly different properties. However, we claim that from the
point of view of forensic science, the HIC scenario is very important. We would
like to prepare models that would be useful for investigators to detect and classify
blood stains. In such a case, it is necessary to prepare a picture in laboratory con-
ditions, train the model and use it in a real crime scene. This scenario is definitely
more challenging and requires further studies.

We also experienced that neural networks can be unstable and one set of hy-
perparameters can lead to both high-performing and degenerate results, such as
assigning all pixels to one class. While this was not the goal of this study, ex-
tensive hyperparameter optimization could improve the results. We will discuss
neural network stability and methods of improving wrong training sessions in the
next chapters.

2.7.2 Computational times
Table 2.8 describes averaged computational times with standard deviations (given
in seconds) for different architectures, datasets and two experimental scenarios if
both were used. For all neural networks, experiments were performed with GPU
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acceleration, which means that SVM is the only architecture trained fully on CPU.
The lowest training times were obtained for the MLP and the 3D CNN [15] and
they did not exceed half a minute for all cases. Slightly higher values were achieved
for the RNN [109]. The training times were by far the longest for the 2D CNN [83]
architecture and they were taking more than 4 minutes. It is worth noticing
that SVMs need considerably less time for inference than for training. Their
calculation time would be reduced if they used the GPU. Another observation is
that both training and test times are significantly lower for comparison scenes than
for frame images, because in those cases the number of training pixels is lower due
to small stain sizes compared to the background shapes, which is clearly visible in
Figure 2.9.

2.7.3 Individual methods evaluation
We also watched all the methods used in the experiments and observed some
features related to various training approaches.

• Support Vector Machines: This method was used as a baseline for deep
learning architectures, but it achieved high classification accuracy for most
of the performed experiments. In 3 out of 8 transductive scenarios, including
two comparison scenes, and in 2 out of 8 inductive scenarios, the Support
Vector Machines were the most accurate among the compared algorithms.
However, the results obtained for the hardest experiments, i.e. between
frames and comparison scenes, were definitely lower than for more sophis-
ticated neural network architectures. The SVMs also reached the lowest
per-class errors for the HTC scenario with frame images and for the HIC
scenario with datasets made with different equipment.

• Multilayer perceptron: Multilayer perceptron, i.e. the simplest feedfor-
ward architecture, achieved very competitive results, in some cases better
than convolutional neural networks. This corresponds to the conclusions
of [13]. In the most demanding transductive experiments on comparison
scenes, its per-class errors were the lowest. The advantage of MLP is the rel-
atively low calculation time compared to some more sophisticated methods.

• 1D convolutional neural network [65]: The simplest convolutional neu-
ral network among the presented ones was efficient for most transductive
experiments, excluding E(7) and E(21). However, it achieved high errors
per-class in all cases where pixels from comparison scenes were in the test
set. Although the performance was high for inductive scenarios using frame
datasets, for other, more demanding HIC scenarios, its classification scores
were very low. We think that this architecture may be too simple for
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more complicated cases. One can notice that it was efficient in experiments
carried out by the authors of the DeepHyperX library [13] but they cor-
respond to transductive experiments on other hyperspectral datasets like
Indian Pines [100].

• 2D convolutional neural network [83]: The results of the only
two-dimensional convolutional neural network are rather mediocre in both
classification scenarios. In none of the cases considered, this method was
the most efficient. Furthermore, both the training of the models and the
inference lasted the longest among the tested approaches.

• 3D convolutional neural network [91]: This method obtained the high-
est accuracy in 3 of 8 transductive classification experiments, including E(21).
On the other hand, the scores for E(1) and E(7), as well as inductive ex-
periments for datasets from different cameras, are the weakest among other
architectures, largely due to the high standard deviation. However, this net-
work has the potential to make high-quality predictions because in [13] for
two hyperspectral datasets it was the most efficient. We also observed some
under-performing models, which predicted one class for all image’s pixels.

• 3D convolutional neural network [15]: Another architecture that uses
three-dimensional layers was very competitive. For this method, we noticed
the highest overall accuracy for two transductive and two inductive scenar-
ios, including pairs F(2)→E(7) and F(21)→E(21). Its relatively low training
costs, the smallest blood class error in inductive experiments and quite aus-
picious results in [13] confirm that it is an efficient architecture. Results for
this approach and the previously described 3D CNN [91] indicate that such
a network design can efficiently use both spectral and spatial dependencies
between HSI pixels.

• Recurrent neural network [109]: This method, although it used only
spectral information and neglected spatial relationships between pixels,
proved to be one of the most efficient in the research. Surprisingly, in 4
out of 8 inductive cases its overall accuracy was the best compared to the
other methods. Also, in one transductive experiment, this architecture was
top-ranked. Furthermore, the RNN [109] obtained the lowest mean per-class
errors in the most demanding inductive scenarios. Results presented in [13]
were not as promising as in our case, but this may be due to the fact that
they rather correspond to transductive scenarios, while we observed some
advantages mainly in inductive experiments.
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2.8 Conclusions
We prepared an optimization of deep neural networks for hyperspectral data clas-
sification based on a representative experiment with different state-of-the-art ar-
chitectures and a dataset with blood and blood-like substances. They are visually
similar but have different chemical properties and can be distinguished using ma-
chine learning algorithms that work on data from HSI cameras. We tested several
deep learning methods, including one-, two- and three-dimensional convolutional
neural networks, a recurrent neural network and a multilayer perceptron. For
comparison purposes, we used Support Vector Machines.

We observed that complex architectures are not necessarily the best solution.
For example, a recurrent neural network [109] achieved the best scores in 4 out
of 8 HIC experiments, while for comparison scenes, in the HTC scenario, the
classification accuracy was lower than for some simpler architectures. One of
the 3D convolutional neural networks outperformed other architectures for the
demanding E(21) scene while it was not as effective for other images. Furthermore,
one concept of the network may lead to various scores, which can be noticed for
two evaluated 3D CNNs ([91] and [15]). The difference was particularly noticeable
in the case of inductive scenarios for images acquisited using various equipment.
Generally, it is not possible to identify an obvious winner because the overall scores
among the networks are diverse. However, multilayer perceptron, i.e. the simplest
feedforward architecture, achieved very competitive results.

We can also compare our observations with results presented by the Authors of
the DeepHyperX library [13]. Similarly, as in our case, the multilayer perceptron
was one of the most efficient architectures and achieved the highest performance
in one of the presented scenarios. Opposite to our results, 1D CNN [65] was
very competitive in the article [13] but in our experiments was one of the weakest
architectures. In the blood stain classification RNN [109] distinguished itself from
others in the HIC scenarios, while its results were not spectacular in [13]. Two
three-dimensional convolutional neural networks were highly effective in [13]. In
our experiments, one of these architectures [91] achieved the highest classification
accuracy in two HIC and three HTC scenarios. However, this is the network for
which we identified a stability problem. The second 3D CNN [15] was comparable
to the other evaluated architecture in [13] while in our case the differences between
the two 3D CNNs were higher.

Based on the results of experiments for the HIC scenario, we can conclude that
the spectral mixing of pixels affects network performance. Therefore, networks
should be able to perform unmixing. An example of such architecture is autoen-
coders, which can be trained without labels. This is an important advantage be-
cause pixel labeling is very time-consuming. Furthermore, the learned weights can
be applied in further classification experiments using transfer learning techniques.
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We also identified a network stability problem, i.e. some model training runs
with a particular set of hyperparameters led to underperformed models compared
to others. Due to the fact that the costs of training complex architectures may
be very high, it is very undesirable to waste calculation time on failed training
sessions. Thus, network stability analysis is an integrated part of architecture
optimization and will be the subject of further consideration.

We argue that an initial point of further studies is autoencoders for hyperspec-
tral unmixing. Furthermore, we decided to focus on simple linear architectures
because, based on the results from this chapter, we can conclude that they may
achieve high performance. Their analysis should be simpler than in the case of
architectures with many linear or convolutional layers. We also want to verify the
stability of autoencoders to avoid underperformed models. Based on these conclu-
sions, we prepared a series of experiments with linear autoencoders which will be
presented in Chapter 3.
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(a) An exemplary training set for the F(1)
image.

(b) An exemplary test set for the F(1) im-
age.

(c) An exemplary training set for the E(1)
image.

(d) An exemplary test set for the E(1) im-
age.

background
training set
test set
unused

(e) An exemplary division into the train-
ing and the test set for the F(1) image,
presented separately in 2.11a and 2.11b.

background
training set
test set
unused

(f) An exemplary division into the train-
ing and the test set for the E(1) image,
presented separately in 2.11c and 2.11d.

Figure 2.11: A sample of the method used in HTC scenarios that divides images
into the training and test set.
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(a) Ground truth of the F(1). (b) Prediction of the MLP.
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(c) Confusion matrix.

(d) Ground truth of the E(1). (e) Prediction of the RNN [109].
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(f) Confusion matrix.

(g) Ground truth of the F(2k). (h) Prediction of the 3D CNN [91].

B K AB PP TC AP
Predicted label

B
K

AB
PP

TC
AP

Tr
ue

 la
be

l

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
0.0

0.2

0.4

0.6

0.8

1.0

(i) Confusion matrix.

Figure 2.12: Exemplary classification maps of HTC experiments for selected runs
of neural networks. The training and test set selection was performed according to
the procedure described in Section 2.5.3, which explains the ”holes” in the stains.
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(a) Ground truth of the E(1). (b) Prediction of the RNN [109].

B K AB PP TC AP
Predicted label

B
K

AB
PP

TC
AP

Tr
ue

 la
be

l

57.3% 1.6% 2.7% 1.4% 22.8% 14.1%

0.1% 87.2% 0.0% 2.6% 10.0% 0.1%

1.0% 1.3% 16.1% 13.7% 55.5% 12.4%

1.5% 1.0% 0.0% 93.8% 3.8% 0.0%

0.5% 2.5% 1.8% 1.4% 93.7% 0.1%

2.3% 0.0% 2.6% 8.6% 8.5% 78.1%
0.0

0.2

0.4

0.6

0.8

(c) Confusion matrix.

(d) Ground truth of the F(2). (e) Prediction of the 1D CNN [65].
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(f) Confusion matrix.

Figure 2.13: Exemplary classification maps of HIC experiments for selected runs
of neural networks.
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Table 2.2: The results of the Hyperspectral Transductive Classification (HTC) scenario
in terms of overall accuracy (OA), average accuracy (AA) and Cohen’s κ coefficient.
Consecutive rows represent tested images while columns correspond to mean metrics
scores (with standard deviations) for different architectures.

SVM MLP
1D CNN

[65]
2D CNN

[83]
3D CNN

[91]
3D CNN

[15]
RNN
[109]

OA: 99.7± 0.1 99.7± 0.1 99.2± 0.3 98.9± 0.8 99.4± 0.5 99.8 ± 0.2 98.6± 3.0
F(1) AA: 99.8± 0.1 99.7± 0.2 99.5± 0.1 99.2± 0.7 99.3± 0.8 99.9 ± 0.1 97.7± 5.5

κ: 1.00± 0.0 1.00± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 1.00 ± 0.0 0.98± 0.0

OA: 99.7± 0.1 99.6± 0.3 99.1± 0.2 99.3± 0.6 99.8± 0.2 99.9 ± 0.1 99.7± 0.1
F(1a) AA: 99.7± 0.1 99.4± 0.5 99.0± 0.2 99.4± 0.4 99.8± 0.4 99.8 ± 0.2 99.7± 0.1

κ: 1.00± 0.0 0.99± 0.0 0.99± 0.0 0.99± 0.0 1.00± 0.0 1.00 ± 0.0 1.00± 0.0

OA: 99.8± 0.1 99.7± 0.2 99.3± 0.2 99.7± 0.1 99.7± 0.3 99.8± 0.1 99.9 ± 0.1
F(2) AA: 99.7± 0.1 99.4± 0.7 98.8± 0.3 99.4± 0.4 99.4± 0.5 99.6± 0.2 99.8 ± 0.1

κ: 1.00± 0.0 1.00± 0.0 0.99± 0.0 0.99± 0.0 1.00± 0.0 1.00± 0.0 1.00 ± 0.0

OA: 99.9 ± 0.1 99.7± 0.1 99.2± 0.2 98.9± 0.5 99.2± 1.7 99.8± 0.1 96.8± 6.2
F(2k) AA: 99.8 ± 0.1 99.5± 0.1 98.8± 0.3 98.6± 0.8 98.7± 2.8 99.7± 0.2 95.9± 7.5

κ: 1.00 ± 0.0 1.00± 0.0 0.99± 0.0 0.98± 0.0 0.99± 0.0 1.00± 0.0 0.95± 0.1

OA: 99.8± 0.1 99.7± 0.1 99.1± 0.2 99.4± 0.2 99.9 ± 0.1 99.4± 1.4 98.9± 1.0
F(7) AA: 99.7± 0.1 99.5± 0.1 98.6± 0.2 99.3± 0.3 99.9 ± 0.2 98.9± 2.7 98.1± 2.1

κ: 1.00± 0.0 0.99± 0.0 0.99± 0.0 0.99± 0.0 1.00 ± 0.0 0.99± 0.0 0.98± 0.0

OA: 99.8± 0.0 99.8± 0.0 99.4± 0.1 99.6± 0.3 99.9 ± 0.1 99.7± 0.2 98.7± 2.2
F(21) AA: 99.7± 0.1 99.6± 0.2 99.0± 0.2 99.4± 0.5 99.8 ± 0.3 99.5± 0.3 96.9± 5.8

κ: 1.00± 0.0 1.00± 0.0 0.99± 0.0 0.99± 0.0 1.00 ± 0.0 1.00± 0.0 0.98± 0.0

OA: 94.5 ± 0.7 93.5± 1.7 89.8± 0.9 93.4± 0.8 86.4± 8.2 90.8± 4.5 85.1± 8.3
E(1) AA: 93.7 ± 0.8 93.1± 1.3 89.4± 0.6 92.7± 1.0 84.8± 9.3 89.9± 3.7 85.8± 6.0

κ: 0.93 ± 0.0 0.92± 0.0 0.87± 0.0 0.92± 0.0 0.83± 0.1 0.89± 0.1 0.82± 0.1

OA: 90.6 ± 1.7 90.1± 1.9 75.2± 1.0 85.5± 1.9 80.7± 11.3 81.2± 9.5 85.3± 4.4
E(7) AA: 88.9 ± 1.6 89.1± 1.2 74.2± 1.0 84.2± 2.3 78.2± 13.5 79.5± 7.7 83.0± 6.1

κ: 0.88 ± 0.0 0.87± 0.0 0.69± 0.0 0.81± 0.0 0.76± 0.1 0.76± 0.1 0.81± 0.1

OA: 87.8± 1.7 89.4± 1.6 74.0± 2.4 83.3± 3.5 94.3 ± 1.8 87.4± 3.5 85.0± 4.1
E(21) AA: 86.1± 1.6 88.1± 1.5 72.3± 2.3 82.9± 2.8 93.3 ± 2.4 86.9± 3.4 83.0± 3.7

κ: 0.85± 0.0 0.87± 0.0 0.67± 0.0 0.79± 0.0 0.93 ± 0.0 0.84± 0.0 0.81± 0.1
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Table 2.3: The results of the Hyperspectral Inductive Classification (HIC) scenario in terms
of overall accuracy (OA), average accuracy (AA) and Cohen’s κ coefficient. Consecutive rows
represent pairs of training / test images (for example F(1)→E(1) means that pixels from the
F(1) scene are in a training set and pixels from the E(1) scene form a test set), while columns
correspond to mean metrics scores (with standard deviations) for different architectures.

SVM MLP
1D CNN

[65]
2D CNN

[83]
3D CNN

[91]
3D CNN

[15]
RNN
[109]

OA: 55.9± 2.9 57.8± 3.6 46.4± 2.3 48.5± 5.4 58.1± 2.8 53.8± 3.2 66.8 ± 3.4
F(1)→E(1) AA: 58.6± 3.1 60.3± 3.3 48.4± 2.4 50.6± 5.4 55.2± 3.6 54.6± 2.9 68.2 ± 3.7

κ: 0.48± 0.0 0.50± 0.0 0.36± 0.0 0.39± 0.1 0.49± 0.0 0.45± 0.0 0.60 ± 0.0

OA: 60.7± 2.6 64.8± 2.0 52.1± 1.5 59.0± 4.9 59.3± 4.4 66.6± 2.1 71.8 ± 0.9
F(1a)→E(1) AA: 62.0± 3.1 66.0± 1.9 53.1± 1.5 60.1± 4.7 58.2± 4.4 67.6± 1.7 71.6 ± 1.2

κ: 0.53± 0.0 0.58± 0.0 0.43± 0.0 0.51± 0.1 0.51± 0.1 0.60± 0.0 0.66 ± 0.0

OA: 56.5± 5.0 58.7± 2.0 49.7± 1.0 57.0± 2.3 55.3± 5.0 63.0 ± 2.9 62.2± 1.2
F(2)→E(7) AA: 58.7± 6.0 61.3± 2.2 52.1± 0.9 59.1± 1.9 53.6± 6.9 65.1 ± 3.2 61.7± 1.7

κ: 0.48± 0.1 0.50± 0.0 0.40± 0.0 0.48± 0.0 0.45± 0.1 0.55 ± 0.0 0.54± 0.0

OA: 52.9± 2.6 58.8± 1.2 45.7± 0.9 51.2± 7.1 52.4± 7.7 57.3± 2.7 59.6 ± 4.7
F(2k)→E(7) AA: 54.9± 3.1 60.9± 1.3 47.1± 1.0 52.4± 5.8 52.7± 6.9 59.0± 3.2 57.4 ± 4.5

κ: 0.43± 0.0 0.50± 0.0 0.35± 0.0 0.41± 0.1 0.43± 0.1 0.48± 0.0 0.51 ± 0.1

OA: 54.7± 2.1 57.2± 2.0 47.2± 0.8 54.3± 2.0 60.3± 3.5 59.8± 2.6 63.6 ± 3.8
F(7)→E(7) AA: 59.4± 2.0 60.2± 2.2 50.8± 0.7 56.1± 2.3 57.8± 5.0 62.9± 2.5 65.3 ± 3.7

κ: 0.46± 0.0 0.48± 0.0 0.37± 0.0 0.45± 0.0 0.52± 0.0 0.52± 0.0 0.56 ± 0.0

OA: 45.4± 1.7 49.7± 2.4 44.0± 1.4 49.2± 1.6 54.4± 3.4 57.2 ± 1.3 56.3± 3.1
F(21)→E(21) AA: 48.3± 2.4 51.9± 1.9 45.7± 1.7 51.0± 1.3 51.4± 3.6 59.1 ± 1.4 55.0± 2.0

κ: 0.35± 0.0 0.40± 0.0 0.33± 0.0 0.39± 0.0 0.45± 0.0 0.49 ± 0.0 0.47± 0.0

OA: 98.2 ± 0.5 97.5± 0.6 97.0± 0.3 96.9± 0.5 80.0± 12.1 98.1± 0.5 90.4± 2.0
F(2)→F(2k) AA: 97.7 ± 0.6 96.7± 0.8 95.8± 0.5 95.6± 0.8 77.4± 12.1 97.2± 0.6 87.2± 2.5

κ: 0.98 ± 0.0 0.97± 0.0 0.96± 0.0 0.96± 0.0 0.75± 0.1 0.97± 0.0 0.88± 0.0

OA: 99.5 ± 0.2 99.2± 0.3 98.8± 0.3 96.5± 2.1 85.9± 10.6 99.2± 1.0 93.0± 6.0
F(2k)→F(2) AA: 99.4 ± 0.3 98.8± 0.5 98.5± 0.2 96.6± 1.9 82.5± 13.9 99.2± 0.9 93.2± 6.2

κ: 0.99 ± 0.0 0.99± 0.0 0.98± 0.0 0.96± 0.0 0.82± 0.1 0.99± 0.0 0.91± 0.1
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Table 2.4: Percentages of errors for different classes and architectures in the
HTC scenario aggregated over experiments on frame images, i.e. F (i), i ∈
{1, 1a, 2, 2k, 7, 21}.

class SVM MLP
1D CNN

[65]
2D CNN

[83]
3D CNN

[91]
3D CNN

[15]
RNN
[109] mean

blood 0.1 0.1 0.3 0.5 0.1 0.1 0.5 0.3
ketchup 0.5 0.7 1.7 1.1 0.4 0.6 1.2 0.9
artif. blood 0.2 0.3 1.2 0.9 0.5 0.2 3.7 1.0
poster paint 0.1 0.4 0.3 0.4 0.4 0.3 0.4 0.3
tomato conc. 0.5 1.1 2.2 1.4 0.6 0.9 5.4 1.7
acrylic paint 0.1 0.2 0.6 0.5 0.9 0.5 0.2 0.4

mean 0.2 0.5 1.0 0.8 0.5 0.4 1.9 0.8

Table 2.5: Percentages of errors for different classes and architectures in the
HTC scenario aggregated over experiments on comparison images, i.e. E(i),
i ∈ {1, 7, 21}.

class SVM MLP
1D CNN

[65]
2D CNN

[83]
3D CNN

[91]
3D CNN

[15]
RNN
[109] mean

blood 9.7 7.9 12.6 10.5 15.6 9.9 12.0 11.2
ketchup 10.2 8.9 26.0 16.2 17.6 15.8 12.9 15.4
artif. blood 18.3 17.7 43.1 21.4 24.6 22.2 37.5 26.4
poster paint 1.5 1.2 2.3 2.5 1.8 1.9 2.0 1.9
tomato conc. 15.3 15.1 26.4 16.4 18.7 22.0 20.8 19.2
acrylic paint 4.8 6.4 10.9 9.4 7.1 11.1 8.1 8.3

mean 10.0 9.5 20.2 12.7 14.2 13.8 15.6 13.7

Table 2.6: Percentages of errors for different classes and architectures in the
HIC scenario aggregated over experiments on frame images, i.e. F(2)↔F(2k).

class SVM MLP
1D CNN

[65]
2D CNN

[83]
3D CNN

[91]
3D CNN

[15]
RNN
[109] mean

blood 0.1 0.1 0.1 1.7 10.6 0.0 2.4 2.1
ketchup 1.8 2.4 2.9 4.0 17.0 2.6 8.8 5.6
artif. blood 0.5 0.8 1.7 3.2 16.1 1.3 38.1 8.8
poster paint 0.9 1.0 1.6 1.9 3.9 0.8 0.3 1.5
tomato conc. 4.8 8.1 9.2 11.2 43.4 4.6 8.6 12.8
acrylic paint 0.8 1.1 1.7 1.7 32.4 1.5 0.4 5.6

mean 1.5 2.2 2.9 3.9 20.6 1.8 9.8 6.1
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Table 2.7: Percentages of errors for different classes and architectures in the
HIC scenario aggregated over experiments on pixels from frame images in train-
ing sets and pixels from comparison scenes in test sets.

class SVM MLP
1D CNN

[65]
2D CNN

[83]
3D CNN

[91]
3D CNN

[15]
RNN
[109] mean

blood 35.3 30.4 43.8 39.8 44.8 29.4 42.1 38.0
ketchup 48.4 55.1 84.6 73.8 80.8 72.2 42.7 65.4
artif. blood 83.6 82.2 83.4 81.6 77.3 76.7 85.3 81.4
poster paint 32.0 29.6 38.8 34.0 5.7 16.9 9.0 23.7
tomato conc. 20.2 13.9 16.3 13.3 39.3 13.2 14.7 18.7
acrylic paint 36.7 26.0 34.4 27.5 21.1 23.3 20.1 27.0

mean 42.7 39.5 50.2 45.0 44.9 38.6 35.6 42.4
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Table 2.8: The mean calculation times with standard deviations (in seconds) of the
complete runs for different architectures, datasets and classification scenarios.

SVM MLP
1D CNN

[65]
2D CNN

[83]
3D CNN

[91]
3D CNN

[15]
RNN
[109]

F(1) training: 72.2± 0.8 27.6± 0.5 69.4± 1.1 251.7± 1.9 44.1± 1.6 24.4± 0.7 32.7± 0.9
test: 4.2± 0.8 10.9± 0.3 9.3± 0.5 76.4± 1.6 11.0± 0.0 11.7± 0.5 14.1± 0.3

F(1a) training: 65.8± 0.7 25.3± 0.5 65.3± 2.7 241.3± 0.5 41.0± 0.5 24.9± 1.1 32.0± 1.1
test: 4.1± 0.8 12.2± 0.8 10.8± 0.4 76.3± 2.0 11.0± 0.0 11.3± 0.5 13.7± 0.5

training: 60.4± 0.8 25.4± 0.5 63.0± 1.3 234.6± 0.5 39.7± 0.8 23.4± 0.5 29.7± 0.5
F(2) test (HTC): 4.1± 0.8 11.4± 1.0 9.6± 0.5 76.1± 1.6 10.9± 0.3 11.3± 0.5 14.2± 0.6

test (HIC): 9.4± 1.5 12.0± 0.0 10.6± 0.5 76.9± 0.7 10.9± 0.3 11.4± 0.5 14.1± 0.3

training: 53.1± 0.8 26.0± 0.5 62.1± 1.3 251.0± 0.7 44.0± 1.8 24.3± 0.5 32.1± 0.3
F(2k) test (HTC): 4.1± 0.9 13.1± 0.3 12.2± 0.4 98.8± 0.6 14.2± 0.4 13.8± 0.4 16.7± 0.5

test (HIC): 9.6± 1.9 13.7± 0.7 12.7± 0.5 98.9± 0.7 13.4± 0.5 14.2± 0.4 17.3± 0.5

F(7) training: 73.5± 1.2 27.7± 0.5 70.6± 1.1 251.3± 0.5 43.0± 0.5 25.7± 0.9 33.1± 1.3
test: 4.6± 0.9 11.1± 0.6 10.6± 1.3 77.3± 0.5 11.0± 0.5 11.0± 0.5 13.7± 0.7

F(21) training: 55.6± 0.7 24.4± 0.5 60.8± 0.8 226.0± 0.0 40.0± 1.8 24.7± 0.5 31.8± 1.8
test: 4.2± 0.7 11.3± 0.5 9.3± 0.5 76.7± 0.5 10.9± 0.3 11.3± 0.5 13.8± 0.4

training: 15.3± 0.7 12.9± 0.3 27.3± 0.8 132.6± 0.5 18.9± 0.3 13.1± 0.6 18.9± 0.7
E(1) test (HTC): 4.1± 0.7 12.0± 1.2 10.7± 0.5 76.8± 0.6 10.8± 0.4 11.3± 0.5 13.9± 0.3

test (HIC): 8.5± 1.6 10.3± 0.5 8.9± 0.3 74.5± 2.8 10.8± 0.4 11.1± 0.3 13.4± 0.5

training: 7.1± 0.6 9.0± 0.0 15.6± 0.5 101.7± 0.5 12.8± 0.4 9.0± 0.0 14.1± 0.9
E(7) test (HTC): 3.9± 0.6 11.9± 0.6 10.6± 0.5 77.0± 1.2 10.8± 0.4 11.2± 0.4 14.1± 0.6

test (HTC): 8.4± 1.6 10.3± 0.5 9.3± 0.7 75.4± 1.9 10.8± 0.5 11.1± 0.6 13.5± 0.8

training: 9.9± 0.7 10.0± 0.0 20.0± 0.0 114.1± 0.7 15.1± 0.3 10.1± 0.3 13.8± 0.4
E(21) test (HTC): 4.0± 0.6 11.4± 0.7 10.9± 0.3 73.9± 2.2 10.7± 0.5 11.1± 0.3 13.4± 0.5

test (HIC): 8.7± 1.4 10.2± 0.4 8.9± 0.3 77.1± 1.0 10.6± 0.5 11.1± 0.3 13.7± 0.5
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Chapter 3

Investigation of weight
initialization methods for
autoencoders

3.1 Introduction

In the previous chapter, we have prepared an optimization of deep learning archi-
tectures for hyperspectral data classification. Among the two main experiments,
in the HIC scenario, the classification accuracy was significantly lower than in the
HTC scenario. We concluded that one of the main reasons for such a difference is
the spectral mixing of pixels related to e.g. various background materials in the
considered images. Therefore, we decided to study the problem of hyperspectral
unmixing. Due to the fact that autoencoders are state-of-the-art architectures in
the field of unmixing, we focused on this type of neural network in our research.
Furthermore, during the experiments with autoencoders, we identified a problem
of network instability in terms of high variations of its performance, resulting in
different data reconstruction errors. This means that a subset of trained network
models has a lower performance than other models, despite using the same set
of hyperparameters and data samples. This discovery led us to study the impact
of weight initialization on the data reconstruction error. We consider well-known
weight initialization methods such as He [60] and Glorot [50] approaches. We con-
duct an analysis of the network stability for various sets of hyperparameters and
randomly generated weights according to given scenarios in a hyperspectral un-
mixing task. We perform statistical tests to check the impact of initial parameters
on the final network reconstruction error.
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3.1.1 The impact of mixed pixels
The classification of hyperspectral pixels can be more difficult because of the pres-
ence of mixed pixels in an image. The spectrum observed in a given pixel may be
a mixture of several substance spectra due, for instance, to the low sensor reso-
lution [70]. This phenomenon was discussed in more detail in Section 1.2 and it
can decrease the classification accuracy, especially for the HIC scenario where a
training and a test set come from different images [80]. Due to the mixed pixels, we
often cannot observe spectra of original substances but only their mixture. In the
case of the HIC scenario, the same basic substances can be present in the images,
but because of potentially distinct background materials, we observe diverse pixel
mixtures. Therefore, the spectra of the foreground substances can be different in
the training and the test set. To minimize the negative consequences of spectral
mixing, in some publications classification methods are combined with spectral
unmixing approaches [55, 153], including autoencoders. Therefore, autoencoders
for unmixing have become the main subject of our further research.

3.1.2 Network initialization bias
In Chapter 2 we presented the classification of blood stains using several deep
learning architectures, including the convolutional and recurrent ones. We noticed
that one of the 3D CNN [91] architectures was unstable, that is, for some runs,
the classification accuracy was significantly worse than for others with the same
network hyperparameters and dataset. Such a network instability decreased its
mean performance and increased the standard deviation. Leaving such results
without additional remarks may lead to a distortion of the real capabilities of
this architecture and its premature rejection. The detection of this phenomenon
and the elimination of underperforming models can improve mean classification
accuracy. Moreover, the optimization of deep learning architectures or their hy-
perparameters assumes that obtained scores are representative, i.e. higher results
for a selected network setting (i.e. the selected architecture, batch size, learning
rate, etc.) are due to the advantage of this adjustment and not due to the bias of
selected training sessions. An example of underperformed models is presented in
Figure 3.1 where 2 out of 10 runs achieved significantly lower classification accu-
racy than the other 8 runs. The lowest score is equal to ≈ 7% while the highest
accuracy is almost 100%. The mean classification accuracy with all the presented
cases is about 80.85% while after removing the two low-performing training runs
it is about 99.19%.

We noticed a similar phenomenon of undertrained models in the case of au-
toencoders for hyperspectral unmixing. Therefore, in this chapter, we present a
more detailed analysis of the network stability on the example of autoencoders.
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We consider different weight initialization methods, experiment scenarios, datasets
and architectures. We verify whether the initial set of network weights has a sta-
tistically significant influence on network performance.
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Sample runs of 3D CNN architecture on F(2k) image, HTC scenario

Figure 3.1: Results of sample training runs of the 3D CNN architecture [91] on
the F(2k) dataset in the HTC scenario.

3.1.3 The further content
This chapter relates to the first part of the paper entitled Improving Autoen-
coder Training Performance for Hyperspectral Unmixing with Network Reinitiali-
sation [79] published in the proceedings of the 21st International Conference on
Image Analysis and Processing – ICIAP 2022 in Lecce. In this chapter, the fol-
lowing topics are presented:

1. We discuss the principles behind two widely used weight initialization meth-
ods in neural networks: He [60] and Glorot [50] approaches.

2. We describe the Linear Mixing Model (LMM) of the pixel spectra, definitions
of endmembers and fractional abundances and necessary conditions which
they must fulfill.

3. We present in detail the architectures selected for further experiments, i.e.
autoencoder neural networks and the basic definitions related to them.

4. We introduce datasets and error metrics used for the model evaluation dur-
ing the study. Furthermore, we present 10 experiment scenarios with the
description of selected hyperparameters.

57



5. We perform experiments for 10 settings and 4 weight initialization methods,
creating a total of 100, 000 trained model instances. We analyze the sta-
bility of the neural networks and unmixing scores, i.e. the reconstruction
of fractional abundances and endmembers for consecutive image pixels. We
present the summary of results in tables and plots. We depict errors for
input reconstruction and endmembers, as well as results of statistical tests.
Additionally, abundance and endmember reconstructions for selected models
are compared with their ground truth counterparts.

6. Finally, we discuss the results, emphasize the differences between various
experiments and present conclusions after research.

3.2 Related works
Hyperspectral unmixing algorithms can be assigned to different categories depend-
ing on how they tackle the problem [20]. Among them, methods based on the pure
pixel assumption can be mentioned, i.e. the presence of at least one pure pixel per
each endmember in the considered dataset. One of these algorithms is the Pixel
Purity Index (PPI) [22] which initially transforms the data using the Minimum
Noise Fraction (MNF) approach and then tries to find extreme vectors after data
projection in different directions. Another algorithm, called N-FINDR [159], is
based on the geometric property that the volume of the simplex constructed by
the purest pixels is greater than the volumes of simplexes created by any other
pixel combination. The Authors in [110] presented the Vertex Component Analy-
sis (VCA) for the linear unmixing problem. The main idea of this approach relies
on the iterative projection of data in a direction that is orthogonal to the subspace
determined by the former endmembers.

Another category of unmixing algorithms is based on minimization of the vol-
ume of simplex containing pixels of the hyperspectral image. Two main approaches
which realize this concept relax the abundance nonnegativity constraint, presented
in detail in Equation 3.16. This soft constraint improves resistance to noise and
outliers, as well as to weak initializations. In the case of SISAL [17], the unmix-
ing task is done by solving a sequence of convex optimization problems via the
augmented Lagrangian method. A similar approach is fulfilled by the Minimum
Volume Simplex Analysis (MVSA) [86] in which the quadratic optimization prob-
lem is solved by the predictor-corrector interior point algorithm. Furthermore, for
both SISAL and MVSA, the initialization step is performed by the VCA. In [104]
the Authors proposed a method called the minimum transform volume-nonnegative
matrix factorization (MVC-NMF), which relies on the two-component optimiza-
tion problem. The first element of the sum is the square of the Frobenius norm of
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the difference between the input and the reconstructed pixel. The second compo-
nent is a penalty function connected with the volume of the simplex determined by
reconstructed endmembers. Similarly, in [121] the objective function is composed
of two terms. The first of them measures the reconstruction error through the cal-
culation of the Euclidean distance, while the second one, called L1/2 regularizer,
promotes the sparsity of fractional abundances.

In recent years, researchers proposed some deep learning-based approaches for
hyperspectral unmixing. In [114] the Authors designed an autoencoder architec-
ture for blind hyperspectral unmixing, i.e. without using ground truth data. The
reconstructed pixels are linear combinations of the encoder output, corresponding
to fractional abundances, and the weights of the decoder, which are considered
as endmembers. The Authors compared different architectures and loss functions.
They also presented a convolutional autoencoder architecture for the unmixing
task [116]. Another architecture based on autoencoders, called EndNet, is pro-
posed in [113]. The Authors designed a special objective function that measures
not only the Euclidean distance between original pixels and their reconstructions
but also, e.g. a Kullback-Leibler divergence in terms of the Spectral Angle Dis-
tance score between vectors. Authors in [41] described a dual branch autoencoder
architecture for both linear and non-linear mixing models. Their objective function
has some regularization components, such as an orthogonal sparse prior term. It
is based on the assumption that abundance maps are nearly orthogonal. A similar
approach presented by the same Authors in [42] is relied on a single autoencoder
and the hyper-Laplacian loss function. Another autoencoder architecture, called
DAEN, is presented in [142]. It is composed of several stacked autoencoders and
a variational autoencoder which finally prepares the unmixing. Similar to the
previous cases, the objective function minimizes not only the reconstruction error
(in terms of the Frobenius norm for differences between input and output pixels),
but also the volume of the simplex containing vectors of the mixing matrix. An
additional regularization term forces abundance constraints. The Authors in [23]
prepared a model based on a variational autoencoder. However, in this approach,
they need to extract pure pixels from a given hyperspectral image. The deep learn-
ing approach was also used, e.g. in the iterative shrinkage-thresholding algorithm
(ISTA) [122] with two neural networks and in the untied denoising autoencoder
with sparsity (uDAS) [124]. A broad comparison of autoencoders dedicated to
unmixing with discussion and results for different datasets is presented in [115].
Another review of deep learning-based methods for the unmixing task was done
in [16].

Some researchers combine spectral unmixing with pixel classification methods.
In [55] the Authors proposed an algorithm in which first a deep autoencoder for
spectral unmixing is trained and then a convolutional neural network performs
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a classification task. In this approach, many datasets are merged into one bigger
dataset. The Authors in [153] present an algorithm that consists of several classic
methods like Support Vector Machine for classification or Fully Constrained Least
Square for unmixing. The above sample publications show that spectral unmixing
can be a useful step before the final pixel classification and is an important research
problem in the field of hyperspectral imaging.

3.3 Weight initialization methods

Let us assume that U is a neural network with n hidden layers. A vector u =
[u0, u1, ..., un, un+1] represents the numbers of neurons in consecutive layers, u0 is
the input size while un+1 is the output layer size. Let yj be a response of the j–th
layer, j ∈ {1, ..., n, n+ 1}:

yj = xj−1 ·Pj + bj, (3.1)

where Pj ∈ Ruj−1×uj is a matrix of the weights of the network, bj ∈ Ruj is a
bias vector and xj ∈ Ruj . For i ≥ 1, xi = g(yi), where g(·) is an activation
function, while for i = 0, x0 ∈ Ru0 is input. We will present two well-known
weight initialization methods: He [60] and Glorot [50] techniques.

He initialization [60]

He approach for weights’ initialization is based on the variance control for con-
secutive network layers [60] and it is an extension of the work [50]. Its main goal
is to avert the exponential growth or reduction of the input signals through the
forward or backward propagation. Let us suppose that consecutive elements of Pj
and xj are independent and identically distributed. Furthermore, they have to be
independent of each other. In such a situation, yj, pj and xj are random variables
corresponding to elements of yj, Pj and xj, respectively, and the mean of pj is
equal to 0. Thus, we can state that:

V ar(yj) = uj−1 · V ar(pj · xj−1). (3.2)

If X1 and X2 are independent random variables, then:

V ar(X1 ·X2) =
(
V ar(X1) + (E(X1))2

) (
V ar(X2) + (E(X2))2

)
− (E(X1))2(E(X2))2.
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Based on the above property, we can write that:

V ar(pj · xj−1) =
(
V ar(pj) + (

=0︷ ︸︸ ︷
E(pj))2

) (
V ar(xj−1) + (E(xj−1))2

)

−
=0︷ ︸︸ ︷

(E(pj))2(E(xj−1))2 = V ar(pj)
(
V ar(xj−1) + E(xj−1)2

)
= V ar(pj)

(
E(x2

j−1)− (E(xj−1))2 + (E(xj−1))2
)

= V ar(pj) · E(x2
j−1). (3.3)

Taking into account Equation 3.3 it is possible to rewrite Equation 3.2 in the
following way:

V ar(yj) = uj−1 · V ar(pj) · E(x2
j−1). (3.4)

If we assume that the distribution of pj−1 is symmetric around zero and all
biases are zero, then also the distribution of yj−1 is symmetric around zero and
its mean is equal to zero. Based on these conditions, we can conclude that if only
g(·) is ReLU, i.e.: xj = max(0, yj), then E(x2

j−1) = 1
2 · V ar(yj−1).

By definition of the expected value of a random variable [62]:

E(x2
j−1) =

∫ +∞

−∞
max(0, yj−1)2 · f(yj−1)dy,

where f(yj−1) is the probability density function of the random variable yj−1.
Since the negative values of yj−1 do not change the result of the above integral, it
is possible to state that:

E(x2
j−1) =

∫ +∞

0
y2
j−1 · f(yj−1)dy.

Based on the fact that y2
j−1 and f(yj−1) are symmetric around 0, we can write:

E(x2
j−1) = 1

2

∫ +∞

−∞
y2
j−1 · f(yj−1)dy.

We also know that E(yj−1) = 0, therefore:

E(x2
j−1) = 1

2

∫ +∞

−∞

(
yj−1 − E(yj−1)

)2
· f(yj−1)dy.

By definition, the above equation is half the expected value of
(
yj−1 − E(yj−1)

)2
:

E(x2
j−1) = 1

2 · E
((
yj−1 − E(yj−1)

)2
)
.
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Finally, using the definition of a variance:

E(x2
j−1) = 1

2 · V ar(yj−1). (3.5)

By applying Equation 3.5 in Equation 3.4, we get the following expression:

V ar(yj) = 1
2 · uj−1 · V ar(pj) · V ar(yj−1). (3.6)

We can calculate the variance of the (n+ 1)–th layer:

V ar(yn+1) = V ar(y1)
(
n+1∏
j=2

1
2 · uj−1 · V ar(pj)

)
. (3.7)

Equation 3.7 is crucial to ensure that the input signals would not increase or
decrease exponentially. We demand that

∀j ∈ {2, ..., n+ 1} 1
2 · uj−1 · V ar(pj) = 1. (3.8)

For simplicity we neglect the fact that for j = 1 we have u0 · V ar(p1) = 1 because
the activation function is not used for the input layer [60]. Thus, we also apply
Equation 3.8 for the first layer. To fulfill the condition of Equation 3.8 we can
initialize weights of the j–th layer, j ∈ {1, ..., n+ 1}, from a Gaussian distribution
with zero mean and standard deviation equal to

√
2
uj
. Furthermore, all biases are

initialized with zeros.
We can perform similar considerations for the backward propagation case. Let

P̃j ∈ Ruj×uj−1 be the rearranged matrix of the network weights. ∆xj ∈ Ruj

represents the values of the gradients in neurons of the j–th layer while ∆yj ∈ Ruj

denotes the gradients in the outputs of neurons of the j–th layer. Similarly to
previously, p̃j is a random variable of an element of the matrix P̃j. Analogical
inference as in the case of forward propagation leads to the following equation:

V ar(∆x1) = V ar(∆xn+1)
(

n∏
j=1

1
2 · uj · V ar(p̃j)

)
. (3.9)

A requirement to keep the gradient stable is that the above product is equal to 1:

∀j ∈ {1, ..., n} 1
2 · uj · V ar(p̃j) = 1. (3.10)

It is not necessary to calculate the gradient for the input signal (∆x1) but for
simplicity we can also apply Equation 3.10 for the first layer. During the network
initialization, it is enough to apply only one of the conditions from Equations 3.8
and 3.10 which was confirmed by the Authors in [60].
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Glorot initialization [50]

Similar derivations were performed by the authors in [50] but they considered only
the linear case, while ReLU is a non-linear function. After some derivations, they
concluded that it is necessary to meet the following conditions:

∀j ∈ {1, ..., n+ 1} uj−1 · V ar(pj) = 1, (3.11)

∀j ∈ {1, ..., n+ 1} uj · V ar(pj) = 1. (3.12)
To take into account the above conditions, for networks with all layers of the same
width, we may require the following:

∀j ∈ {1, ..., n+ 1} V ar(pj) = 2
uj−1 + uj

. (3.13)

Including an additional property from Equation 15 in [50], we can finally present
the Glorot weight initialization method:

∀j ∈ {1, ..., n+ 1} pj ∼ U

[
−
√

6
uj−1 + uj

,

√
6

uj−1 + uj

]
. (3.14)

This approach can also be adopted for the Gaussian distribution with zero mean.

3.4 Methods for spectral unmixing

3.4.1 Linear Mixing Model
Spectral unmixing is a procedure of decomposition of a mixed pixel into a set of dis-
tinct pure spectra called endmembers and a set of fractional abundances indicating
the proportion of consecutive endmembers in a given pixel [70, 139]. In the Linear
Mixing Model (LMM) we assume that the surface area is divided proportionally
between multiple components having consistent spectral properties [20, 70]. In
this case, the spectra of pixels are a linear combination of such endmembers, while
the coefficients are fractional abundances.

Let us suppose that x = [x1, x2, ..., xB]> is a hyperspectral pixel of B spectral
bands having S endmembers which can be expressed as follows:

x =
S∑
i=1

ai · ei + w. (3.15)

The vector ei = [e1, e2, ..., eB]> represents the i–th endmember, i ∈ {1, 2, ..., S}, the
value ai is the i–th fractional abundance, a = [a1, a2, ..., aS]>, while
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w = [w1, w2, ..., wB]> is the noise vector. We require the physical properties of
the abundances vector to be met:

∀i ∈ {1, 2, ..., S} ai ≥ 0 (nonnegativity constraint), (3.16)∑S

i=1 ai = 1 (sum to one constraint). (3.17)

It is possible to rewrite Equation 3.15 for P pixels. Let X ∈ RB×P be the matrix
where columns contain the spectra of P pixels in the image, E ∈ RB×S denotes the
matrix of S endmembers, A ∈ RS×P represents the matrix of fractional abundances
corresponding to proportions of endmembers in P pixels and W ∈ RB×P means
the noise matrix for the considered image. Then, LMM can be expressed as follows:

X = EA + W. (3.18)
Our goal is to reconstruct the endmember matrix E and the matrix of fractional

abundances A based on the spectra of mixed pixels of the image.

3.4.2 Autoencoder architectures
For the hyperspectral unmixing task we selected autoencoders, i.e. neural net-
work architectures described in Section 1.1.4. Autoencoders consist of an encoder
and a decoder part. Their construction favors expressing consecutive pixels of
the image as a product of fractional abundances and endmembers, according to
Equation 3.18. Such networks learn data representation and create a latent space
through data downscaling. The last encoder layer has the same size as the num-
ber of endmembers in a given dataset. Thus, the values of neurons in this layer
represent fractional abundances for the input pixels. Finally, the decoder layer
consists of one layer that creates a reconstruction. The weights of this layer cor-
respond to endmembers. Then, the output of the autoencoder is a product of
neurons in the last encoder layer and the weights of the decoder part. Such a
reconstruction should be similar to input data and the loss function L assesses the
distance between input and its reconstruction. It is a fully unsupervised approach
because we need neither the ground truth of endmembers nor abundances during
the learning process. The minor disadvantage is that the number of endmembers
has to be known a priori, but it can be determined using, for instance, HySime
algorithm [18].

We selected two linear autoencoder architectures for hyperspectral unmixing
experiments:

1. original: the most efficient architecture from [114], depicted in Figure 3.2,

2. basic: the proposed simplified version of the original, depicted in Figure 3.3.
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The encoder part of original consists of four hidden layers which have 9S,
6S, 3S and S neurons, respectively. For all encoder layers, the sigmoid activa-
tion function is used. During the next steps, four additional layers are applied:
batch normalization, dynamical soft thresholding, sum-to-one constraint layer and
Gaussian Dropout. Below, they will be described in detail.

Input

Hidden layers       

Output

BATCH NORMALISATION

DYNAMICAL SOFT
 THRESHOLDING

SUM TO ONE CONSTRAINT

ENCODER DECODER

endmembers

GAUSSIAN DROPOUT abundances

Figure 3.2: The scheme of the original architecture described in [114].

Let us suppose that B = {x1,x2, ...,xbs} is a batch of B–dimensional vectors,
i.e. xi = [x1

i , x
2
i , ..., x

B
i ], where i ∈ {1, ..., bs}. The batch normalization transform is

performed over bs elements of the batch B [67]. After forward propagation through
some layers with batch B we have a set of bs activation values for the k–th neuron:
Bkact = {gk1 , gk2 , ..., gkbs}, k ∈ {1, 2, ...,M}, where M is the number of neurons in a
given network layer. During the batch normalization step, consecutive activation
values are independently scaled and shifted according to learned parameters γ and
β. Furthermore, the mean and variance of batch activations are calculated:

g̃i
k = gki − µkB√

(σkB)2 + ε
. (3.19)

In Equation 3.19, µkB = 1
bs

∑bs

i=1 g
k
i is a mean while (σkB)2 = 1

bs

∑bs

i=1

(
gki − µkB

)2
is

a variance calculated over batch activations and ε > 0 is a constant value. Finally,
the rescaled i–th activation value for the k–th neuron, (BN)g̃i

k, where i ∈ {1, ..., bs},
can be expressed as follows:

(BN)g̃i
k = γ · g̃ik + β. (3.20)
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After the applying batch normalization, a soft thresholding ReLU with a learn-
able α is used. Let us denote by (BN)g̃i a vector of transformed neurons values for
the i–th batch sample: (BN)g̃i = [(BN)g̃i

1, (BN)g̃i
2, ..., (BN)g̃i

M ]. Then

(ST )g̃i = max
(
0, (BN)g̃i −α

)
, (3.21)

where 0 is a zero vector while α = [α1, α2, ..., αM ] is a vector of trainable param-
eters. In the next step, to ensure that the sum-to-one constraint for abundances
will be met (Equation 3.17), a normalization is performed:

∀j ∈ {1, 2, ...,M} (norm)g̃i
j = (ST )g̃i

j

M∑
m=1

(ST )g̃i
m

. (3.22)

We assume that such normalized values represent fractional abundances for the
i–th pixel from batch B. They are further multiplied by Gaussian noise [90], but
only during the training phase:

∀j ∈ {1, 2, ...,M} (GD)g̃i
j = (norm)g̃i

j ·N(1, α2), (3.23)
where N(1, α2) is a pseudorandom value of a normal distribution with mean
equal to 1 and variance equal to α2 while α > 0 is a hyperparameter, (GD)g̃i =
[(GD)g̃i

1, (GD)g̃i
2, ..., (GD)g̃i

M ] .
Finally, in the decoder part, there is only one linear layer. Multiplication of

(GD)g̃i with the weights of the layer represents the reconstruction of the i–th pixel
while the weights are considered as endmembers.

We also prepared a simplified version of the original architecture called basic,
which is presented in Figure 3.3. The encoder part of this network has only two
hidden layers, where the first one has p · S neurons and p is a hyperparameter,
while the second one has exactly S neurons, which correspond to the number of
endmembers in a given dataset. In both layers, the ReLU activation function is
used. From among the additional layers, we have only left the normalization layer.
The output of this layer is an estimation of abundance values and it is multiplied
by the weights of the single decoder layer. As previously, such a product is a pixel
reconstruction.

3.5 Stability analysis of networks for unmixing

3.5.1 Datasets
We selected two datasets for hyperspectral unmixing – the Samson and the Jasper
Ridge [174]. We could not choose a dataset discussed in Chapter 2 because we do
not have ground truth labeling for mixed pixels.
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Figure 3.3: The scheme of the basic autoencoder architecture.

The Samson image was captured by the SAMSON (Spectroscopic Aerial Map-
ping System with On-board Navigation) sensor and has spatial resolution 95× 95
pixels. Each pixel has 156 spectral bands ranging from 401 to 889 nm. This means
that the spectral resolution is about 3.13 nm. It is a subimage of a larger dataset
(952 × 952 pixels) so it is less computationally expensive and is used as a bench-
mark in many articles. The Samson dataset contains three endmembers: water,
tree and soil. The ground truth of the endmember spectra with a false-color image
of the analyzed area is presented in Figure 3.4.

(a) False-color image
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(b) Ground truth of endmembers

Figure 3.4: The presentation of the Samson dataset with the corresponding ground
truth of the endmember spectra.
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The Jasper Ridge is a second well-known hyperspectral dataset. Its acquisition
was performed with the AVIRIS sensor (Airborne Visible/Infrared Imaging Spec-
trometer). The spatial resolution of this image is equal to 100×100 pixels and is a
subimage of the dataset with 512× 614 pixels. It covers the electromagnetic spec-
trum from 380 to 2500 nm. Originally, the dataset has 224 spectral bands which
correspond to a spectral resolution of about 9.46 nm but 1-3, 108-112, 154-166
and 220-224 bands were dropped. This is a common practice due to water vapor
absorption and atmospheric effects [113, 174, 175]. Four endmembers are present
in the dataset: tree, water, soil and road. Their ground truth with a false-color
image of the area considered is depicted in Figure 3.5.

(a) False-color image
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(b) Ground truth of endmembers

Figure 3.5: The presentation of the Jasper Ridge dataset with the corresponding
ground truth of the endmember spectra.

3.5.2 Schema of experiments
Let us suppose that K is a given architecture of the autoencoder designated for
hyperspectral unmixing with a given set of hyperparameters. We have to check
whether there is a statistically significant difference among results obtained by dif-
ferent weight initializations of models, i.e. sets of initial parameters of all network
layers. We prepared 10 different experiment scenarios, including various architec-
tures, datasets and sets of hyperparameters. Let us denote byKi

j the j–th model of
the i–th weight initialization in a given experiment scenario, where i ∈ {1, 2, ..., N}
and j ∈ {1, 2, ..., R}. N is a number of different initial sets of weight values for
a given scenario and R is a number of training runs. A single model Ki

j repre-
sents the model after j–th training when the i–th set of initial values of weights
was taken. This means that for each model initialization R different models are
trained. In our experiments for each scenario, we generated N = 50 random ini-
tializations and performed R = 50 training runs to verify whether various initial
sets of weights lead to significantly different results. Therefore, we received 2500
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individual models. Several runs per each set of weights were performed due to ran-
domness during the training process resulting from various orders of data batches.
This leads to different weights’ values after a backpropagation. We also applied
four weight initialization methods and tested all approaches for each experimental
setup. It leads to 10, 000 various models per scenario. In total, we conducted
100, 000 single experiment runs.

3.5.3 Metrics
Let us denote a hyperspectral dataset by a matrix X ∈ RP×B, where P is the
number of pixels and B is the number of spectral bands. Each pixel of X is a
B–element vector xp =

[
x1
p, x

2
p, ..., x

B
p

]
, where p ∈ {1, ..., P}. Similarly, Y ∈ RP×B

is a matrix of the reconstructed image, where each element is a B–dimensional
vector, yp =

[
y1
p, y

2
p, ..., y

B
p

]
and also p ∈ {1, ..., P}. We define the Root Mean

Squared Error (RMSE) between X and Y for the model Ki
j as follows:

RMSE(Ki
j; X,Y) = 1

P

P∑
p=1

√√√√ 1
B

B∑
l=1

(xpl − y
p
l )

2. (3.24)

For the calculation of endmember error, we use the Spectral Angle Distance
(SAD) measure. Let us assume that the image X has S

endmembers defined in the ground truth matrix EGT =
[
e1

GT, e2
GT, ..., eS

GT

]>
.

A vector ek
GT =

[
ek,1GT , e

k,2
GT , ..., e

k,B
GT

]
represents k–th endmember, i.e. k ∈ {1, 2, ..., S}.

A matrix Erec expresses the endmembers reconstructed by the model Ki
j, Erec =[

e1
rec, e2

rec, ..., eS
rec

]>
. As previously, consecutive vectors are reconstructed end-

members, ek
rec =

[
ek,1rec, e

k,2
rec, ..., e

k,B
rec

]
. Finally, the endmember error is defined in

the following way:

SAD(Ki
j; EGT,Erec) = 1

S

S∑
s=1

arccos
(

es
GT · es

rec
‖esGT‖2 · ‖esrec‖2

)
, (3.25)

where es
GT ·es

rec denotes a scalar product of the s–th reconstructed endmember and
its corresponding ground truth vector. Furthermore, a symbol ‖·‖2 is an Euclidean
norm of a given vector.

We also calculate the abundance error between a reconstructed abundance
matrix Arec ∈ RP×B and a ground truth matrix AGT ∈ RP×B using the Root
Mean Square Error:

RMSE(Ki
j; AGT,Arec) = 1

P

P∑
p=1

√√√√ 1
S

S∑
l=1

(
ap,lGT − a

p,l
rec

)2
, (3.26)

69



where ap
GT =

[
ap,1GT , a

p,2
GT , ..., a

p,S
GT

]
is an abundance ground truth for the p–th vec-

tor of AGT and a vector ap
rec =

[
ap,1rec, a

p,2
rec, ..., a

p,S
rec

]
expresses the reconstructed

abundance coefficients for the p–th pixel.

3.5.4 Scenarios
We prepared 10 experiment scenarios for two autoencoder architectures: original
and basic, two datasets: the Samson and the Jasper Ridge two loss functions:
mean squared error (MSE, Equation 1.13) and Spectral Angle Distance (SAD,
Equation 3.25). Moreover, experiments were performed for different sets of hyper-
parameters. Most of them were selected using the Ray Tune optimizer [92] while
in a few cases they were chosen according to the Authors of the original architec-
ture [114]. If the hyperparameters optimization procedure was performed, optimal
values of batch size and learning rate were sought. Additionally, we searched for a
number of neurons in the first encoder layer for the basic network and the Gaus-
sian Dropout value for the original network. Detailed information on selected
hyperparameters is presented in Table 3.1. Furthermore, in each experiment, four
weight initialization methods have been applied: He [60] with a uniform / normal
distribution (KHU / KHN) and Glorot [50] with a uniform / normal distribution
(XGU / XGN)1. All training sessions were performed using the Adam optimizer.
The source code for experiments was written in Python 3.7.6 and libraries like
PyTorch [119], SciPy [154], Ray Tune [92], scikit-posthocs [148], NumPy [59],
Pandas [128], Matplotlib [66], Seaborn [157] and others.

3.5.5 Statistical tests
We decided to perform statistical tests to check whether there exist statistically
significant differences between various models trained on the same set of hyperpa-
rameters. We could not use ANOVA analysis due to failure to meet the assump-
tions about equality of variance in all model populations, according to the results
of Levene’s test [84, 108]. Instead, we selected Kruskal-Wallis H-test [78] for sev-
eral independent samples which checks whether the expected value of at least one
data sample (i.e. single population of models) is significantly different than the
expected value of at least one other sample. If we reject the null hypothesis of the
H-test we only know that there exists at least one pair of samples different from
the others but we do not exactly know which one. It is possible to specify it by
performing pairwise comparisons using the Conover-Iman post-hoc test [35, 156].
Both tests are described in detail in the Appendix.

1In the case of KHU approach we used a default PyTorch initialization. The main difference
is that biases were not initialized with zero values.
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Table 3.1: The list of experiments performed with selected hyperparameters. The
column titled ”encoder” is related to the basic architecture and contains information
about the number of neurons in the first encoder layer. S denotes the number of
endmembers in a given dataset. GD is an abbreviation of Gaussian Dropout and is
only used in the original architecture.

exp. ID architecture hyperparameters loss dataset encoder batch size learning rate GD

1 original Ray Tune MSE Samson − 100 0.01 0.
2 original Ray Tune SAD Samson − 100 0.01 0.
3 original article [114] SAD Samson − 20 0.01 0.1
4 basic Ray Tune MSE Samson 10S 4 0.0001 −
5 basic Ray Tune SAD Samson 20S 4 0.0001 −
6 original Ray Tune MSE Jasper Ridge − 100 0.01 0.
7 original Ray Tune SAD Jasper Ridge − 100 0.01 0.
8 original article [114] MSE Jasper Ridge − 5 0.01 0.1
9 original article [114] SAD Jasper Ridge − 5 0.01 0.1
10 basic Ray Tune MSE Jasper Ridge 10S 20 0.001 −

3.6 Results
The main results of this chapter are related to the study on the impact of weights
initialization on network performance in the case of autoencoders for hyperspectral
unmixing. They were provided by two statistical tests: the Kruskal-Wallis H-test
and the Conover-Iman post-hoc test. The results of the experiments described in
Section 3.5.4 are presented in Table 3.2. Each row corresponds to a single experi-
ment scenario, while columns show scores for various weight initialization methods
and the Kruskal Wallis H-test. Moreover, values of the ph metric are presented. ph
can be expressed as the ratio of pairs that are statistically significantly different (in
terms of the Conover-Iman test) to the total number of pairs that were compared.
The lower the coefficient, the more consistent the results among different model
populations.

It can be seen that in all except two cases (Experiment 9 with KHU and XGU
initialization methods) the H0 hypothesis of the Kruskal-Wallis H-test was re-
jected. This means that for almost all experimental setups statistically significant
differences were noted between populations of model training results. On the basis
of this observation, it is possible to conclude that weight initialization in the pre-
sented autoencoder networks has an important impact on the final reconstruction
error. Despite the fact that in a given scenario, all models were trained using the
same hyperparameters, various sets of initial weights lead to different results.

In addition to the results of statistical tests, we demonstrate box and whisker
plots for all model reconstruction errors in terms of RMSE (Figures 3.6–3.7) and
endmember errors in terms of the SAD function (Figures 3.8–3.9). A single plot ag-
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Table 3.2: Results of experiments described in detail in Table 3.1. H-stat denotes
the statistic of the Kruskal Wallis H-test while log p-val is the logarithm of the corre-
sponding p-value. The significance level was set to 0.05. Cases where the p-value was
greater than 0.05 were marked in bold. Very small p-values are replaced by ’− inf’.
The ph values represent the ratio of pairs that are statistically significantly different
from the total number of pairs compared.

init. He normal (KHN) He uniform (KHU) Glorot normal (XGN) Glorot uniform (XGU)

exp. ID H-stat log p-val ph H-stat log p-val ph H-stat log p-val ph H-stat log p-val ph

1 200.9 −45.07 0.33 243.2 −61.76 0.42 78.8 −5.41 0.12 70.4 −3.72 0.10
2 891.2 −355.38 0.70 443.2 −147.76 0.56 625.9 −231.04 0.64 660.3 −246.96 0.66
3 763.8 −295.33 0.67 267.8 −71.82 0.41 239.1 −60.11 0.39 180.9 −37.49 0.33
4 2185.8 − inf 0.88 2025.3 − inf 0.72 1997.6 − inf 0.75 2141.5 − inf 0.76
5 1954.3 − inf 0.88 2093.4 − inf 0.90 1840.8 − inf 0.87 1777.2 − inf 0.85
6 134.0 −20.95 0.24 75.8 −4.79 0.11 76.3 −4.90 0.12 98.8 −10.32 0.16
7 903.8 −361.36 0.71 761.1 −294.07 0.67 953.8 −385.10 0.70 871.0 −345.85 0.69
8 77.3 −5.09 0.12 75.4 −4.71 0.11 78.4 −5.33 0.12 93.3 −8.88 0.16
9 69.2 −3.50 0.10 66.2 −2.98 − 74.2 −4.46 0.11 47.9 −0.65 −
10 1767.3 − inf 0.85 2041.9 − inf 0.82 1344.6 −572.45 0.70 1155.1 −481.29 0.73

gregates results from 10, 000 model instances, 2500 per each initialization approach.
The box covers the area between the 25th (Q1) and 75th (Q3) percentile of the data
and a horizontal line marks the 50th percentile. The whiskers contain observations
from the range [Q1 − 1.5 · IQR,Q3 + 1.5 · IQR], where IQR = Q3 − Q1 [73, 4].
Other samples are marked separately as gray diamonds. One can see differences
between the results from different weight initialization methods.

We notice a high variability in reconstruction errors in terms of RMSE, espe-
cially in the case of Experiments 2, 3 and 7. Furthermore, for these scenarios,
the KHN method achieved not only the largest errors values but also the highest
variance of RMSE scores. The most stable reconstructions were performed by au-
toencoders in Experiments 1, 6, 8 and 9 which coincide with corresponding low ph
coefficient values. Similarly for the endmember reconstruction metric, in the case
of some scenarios, especially for Experiments 1, 4 and 7, there are important dif-
ferences between results for various initialization techniques. The plots presented
indicate that the most consistent SAD metric values are achieved in Experiments
8 and 9. Furthermore, in the case of Experiment 3, for all methods, endmem-
ber errors are minor and only outlying results exceed 0.01. It should be noted
that Experiments 1–5 concern the same dataset while consequently the models
of Experiment 3 significantly minimized the SAD metric values, unlike the other
scenarios. It means that network hyperparameters, as well as architectures and
loss functions, have a substantial impact on the quality of pixel reconstruction and
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variance of results. The differences are noticed even in situations where only the
loss function has changed as in Experiments 1–2.

We also prepared a post-hoc analysis for reconstruction errors using
the Conover-Iman test in the cases for which the H0 hypothesis of the Kruskal-
Wallis H-test was rejected, i.e. for all scenarios except KHU and XGU in Experi-
ment 9. The results of the statistical tests for models pairs from different scenarios
and initialization methods are depicted in Figures 3.10–3.12. In each plot, consec-
utive squares represent the results of a single Conover-Iman comparison between
given pairs of models (from 1 to 50). Moreover, it is a symmetric matrix. A light
yellow square means that the difference between the selected model populations is
not statistically significant. Blue squares denote cases in which the H0 hypothesis
was rejected in favor of the alternative hypothesis that a given pair of model pop-
ulations is different, in terms of the Conover-Iman test (the darker the blue, the
lower p-value of the performed post-hoc test). Furthermore, these plots correspond
to the ph scores in Table 3.2. It can be noticed that the most consistent results
come from Experiments 6, 8 and 9. In these cases, models were trained on the
Jasper Ridge dataset using the original architecture. In Experiment 1, a major dif-
ference can be seen between the He and Glorot initialization methods. The values
of ph coefficient are around 0.1 for the Glorot approach, while they achieve 0.33
and even 0.42 in the case of the He technique. The largest number of differences
among models can be observed in Experiments 4 and 5 which were made using
the Samson dataset and the basic architecture. In these scenarios ph scores range
between 0.72 and 0.9 which proves the great diversity of results. Large ph values
were also achieved in Experiment 10 which means that the basic architecture leads
to the highest variations in results. On the other hand, the original architecture,
especially with the MSE loss function, yields the most stable results.

In addition to the autoencoder stability analysis, we also present the results of
hyperspectral unmixing for all the experiments performed. Table 3.3 shows mean
abundance and endmember errors, according to Equations 3.26, 3.25, respectively.
The lowest values of errors were achieved mainly by the Glorot initialization ap-
proach, especially with a uniform distribution. For both Samson and Jasper Ridge
datasets, the best setup from the unmixing results’ point of view was the original
architecture with the SAD loss function (Experiments 3 and 7). We demonstrate
the reconstruction of abundance maps and endmember spectra for two exemplary
models. Figure 3.14 depicts a comparison of reproduced abundance maps with
ground truth for a single model from Experiment 3 while Figure 3.15 presents
normalized spectra of reconstructed endmembers (blue) with their ground truth
counterparts (red). Generally, consecutive endmembers and abundance maps were
reproduced similarly good. Analogous conclusions can be drawn on the basis of
Figures 3.16–3.17 prepared for a model selected from Experiment 9. The biggest
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(f) Experiment 6.

Figure 3.6: Box and whisker plots for Root Mean Square Error (RMSE) of the
input reconstruction for Experiments 1-6.
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(d) Experiment 10.

Figure 3.7: Box and whisker plots for Root Mean Square Error (RMSE) of the
input reconstruction for Experiments 7-10.
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Figure 3.8: Box and whisker plots for Spectral Angle Distance (SAD) of endmem-
ber error compared to the ground truth for Experiments 1-6.
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Figure 3.9: Box and whisker plots for Spectral Angle Distance (SAD) of endmem-
bers error compared to the ground truth for Experiments 7-10.
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Figure 3.10: Results of Conover-Iman post-hoc test for consecutive pairs of models
from Experiments 1–3.

differences between the spectra are visible for the soil endmember but the SAD
error, similarly to other endmembers, does not exceed 0.008. It is due to the fact
that the SAD metric is scale invariant because it only measures the spectral angle
between the reconstructed and the real endmember. Thus, one does not have to
reduce the Euclidean distance between spectra.

3.7 Discussion
Based on the results of the experiments, we indicate that initial values of weights
in presented autoencoder networks have a significant impact on the final recon-
struction error. Unfavorable sets of weights can lead to lower-performing models.
The dependency between the initial model parameters and the quality of the pixel
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(n) KHN, Exp. 7
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Figure 3.11: Results of Conover-Iman post-hoc test for consecutive pairs of models
from Experiments 4–7.

reconstruction after training has been statistically confirmed. This phenomenon
may have a negative influence on the optimization of network hyperparameters.
There is a possibility that a good set of hyperparameters will be rejected because
the weights drawn are unfortunate. It can be misleading for such algorithms as
grid search, which can select a suboptimal solution.
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(b) KHN, Exp. 8
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(i) KHU, Exp. 10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

p < 0.001

p < 0.01

p < 0.05

NS

Post-hoc analysis of Conover-Iman test for F010_KHN_04022021
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(k) XGU, Exp. 10
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(l) XGN, Exp. 10

Figure 3.12: Results of Conover-Iman post-hoc test for consecutive pairs of models
from Experiments 8–10.

We can compare the results of hyperspectral unmixing for corresponding pairs
of experimental settings, i.e. with the same dataset, architecture and hyperparam-
eters except for loss function (MSE or SAD were selected). For Experiments 1 and
2, performed on the Samson dataset, the original architecture and hyperparam-
eters optimized using Ray Tune, the SAD loss function led to considerably lower
values of both abundance and endmember errors. A similar situation is related
to Experiments 6 and 7, where hyperparameters were prepared as previously, but
the dataset was Jasper Ridge. In the case of Experiments 8 and 9, in which net-
work settings came from the article [114], also the SAD function achieved better
results, but the differences in results were lower, especially for abundance errors.
Furthermore, one can notice that standard deviations in endmember errors for
results with MSE loss were very high and almost equal to the mean values. The
situation is different for Experiments 4 and 5 on the Samson dataset and the basic
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Table 3.3: Results of mean endmember error in terms of SAD (Equation 3.25) and
mean abundance error in terms of RMSE (Equation 3.26) with standard deviations
for different experiment scenarios and weight initialization approaches: He [60] and
Glorot [50] with normal or uniform distribution. The results with the smallest error
are shown in bold.

init. He normal (KHN) He uniform (KHU) Glorot normal (XGN) Glorot uniform (XGU)

Exp. ID abundances endmembers abundances endmembers abundances endmembers abundances endmembers

1 0.34± 0.0 0.84± 0.2 0.36± 0.0 0.68± 0.2 0.32± 0.0 0.36± 0.3 0.33± 0.1 0.43± 0.3
2 0.19± 0.1 0.23± 0.1 0.13± 0.1 0.13± 0.1 0.10± 0.1 0.10± 0.1 0.10± 0.1 0.10± 0.1
3 0.06± 0.1 0.05± 0.1 0.07± 0.1 0.04± 0.1 0.07± 0.1 0.05± 0.1 0.07± 0.1 0.04± 0.1
4 0.36± 0.0 1.17± 0.1 0.36± 0.0 0.76± 0.2 0.35± 0.0 0.75± 0.1 0.34± 0.0 0.73± 0.1
5 0.35± 0.0 0.95± 0.1 0.35± 0.0 0.97± 0.2 0.34± 0.0 0.88± 0.2 0.34± 0.0 0.87± 0.1
6 0.29± 0.0 0.80± 0.1 0.24± 0.1 0.58± 0.2 0.22± 0.0 0.51± 0.2 0.22± 0.0 0.50± 0.2
7 0.20± 0.0 0.42± 0.1 0.17± 0.0 0.31± 0.1 0.16± 0.0 0.28± 0.1 0.16± 0.0 0.28± 0.1
8 0.29± 0.1 0.51± 0.4 0.29± 0.1 0.49± 0.4 0.29± 0.1 0.48± 0.3 0.29± 0.1 0.48± 0.4
9 0.27± 0.1 0.30± 0.1 0.27± 0.1 0.29± 0.1 0.27± 0.1 0.28± 0.1 0.26± 0.1 0.28± 0.1
10 0.30± 0.0 1.04± 0.1 0.27± 0.0 0.89± 0.1 0.29± 0.0 0.89± 0.1 0.28± 0.0 0.89± 0.1

architecture. In this case, the abundance error values were very similar for both
loss functions. Moreover, for KHU, XGN and XGU initialization approaches, the
reconstruction of endmembers was done better for the MSE loss function. De-
spite the fact that, in general, models trained with SAD loss were more efficient in
the unmixing task than those with MSE, the SAD function has some undesirable
properties. One has to remember that after training with this function, all or
almost reconstructed points lie outside of the simplex whose vertices are defined
by endmembers. We also do not know exact reflectance values because only the
spectral angle between vectors is minimized, so, in this case, we rather focus on
the normalized reflectance. Furthermore, optimization using the MSE function
also reduces the reconstruction error in terms of the SAD loss, but the opposite
statement is not true due to the scale invariance of the SAD function.

In general, results for unmixing metrics show a slight advantage of Glorot
initialization techniques over He methods, both in terms of abundance and end-
member errors. This conclusion can be drawn on the basis of an overall view of
the 10 experiments carried out. In the case of the reconstruction of fractional
abundances, Glorot approaches achieved the lowest mean errors in 7 out of 10
experiment scenarios while for endmembers, they were the most competitive in 9
out of 10 settings.

3.7.1 Vanishing gradient

After conducting the experiments, we tried to understand why some models per-
form worse than others. We focused on the simpler architecture (basic) and the
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Samson dataset; thus we decided to get an insight into networks from Experiment
4. We observed that during the backpropagation process for some low-performing
models, gradients vanished, even during the first iterations of training. Figure 3.13
depicts the gradient values during initial learning iterations of two exemplary mod-
els. In this experimental setup, one epoch corresponds to 2257 iterations; therefore
the plots present the initial part of the first training epoch. One can observe a
vanishing gradient problem in two encoder layers for the model with a higher value
of the reconstruction error. The decoder layer gradients values are very similar for
the two compared models. Furthermore, in the case of the low-performing model,
even during the first iteration, some neurons in the encoder part are not active. We
decided to investigate this phenomenon in more detail. The results of the study,
as well as network reinitialization methods for improving bad-performing models,
will be presented in Section 4.
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Figure 3.13: Mean gradient values with standard deviations for two exemplary
models of the basic autoencoder, trained in Experiment 4, using KHU initializa-
tion. Model (a) achieved RMSE of 0.0067 while model (b) achieved RSME equal
to 0.1244.
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3.8 Conclusions
In Chapter 2 we performed the optimization of deep learning networks in terms of
various architectures for hyperspectral data classification. We identified a prob-
lem with the spectral mixing of pixels. Therefore, as a continuation of research, in
this chapter, we considered autoencoder networks which are state-of-the-art archi-
tectures for hyperspectral unmixing [113, 114, 142]. We evaluated 10 experiment
scenarios using different sets of hyperparameters, including diverse architectures,
weight initialization methods and loss functions. The remaining hyperparame-
ters, like batch size, learning rate, the number of neurons in the first layer of the
basic architecture and the parameter of Gaussian Dropout for the original were
optimized using Ray Tune. They were also compared with the hyperparameters
from Palsson’s article [114]. Totally, we trained 100, 000 individual models for two
well-known datasets for hyperspectral unmixing: Samson and Jasper Ridge. In
the example of the spectral unmixing problem, we showed that the choice of ar-
chitectures and hyperparameters used for model training has an important impact
on network performance, which partially confirms the dissertation thesis.

We identified a problem with the stability of autoencoders, i.e. for the same
set of hyperparameters some models achieved lower performance compared to the
other ones. We performed the Kruskal-Wallis H-test to verify whether there ex-
ists a dependency between weights initialization and the final reconstruction error
of a neural network, on the example of autoencoders for hyperspectral unmixing.
For cases in which a difference between model populations has been confirmed, we
included the Conover-Iman post-hoc test to check which pairs of models are statis-
tically significantly different. We proved that for almost all considered scenarios,
weight initialization has a significant impact on the further network performance,
despite the differences in the severity of this phenomenon. For some experiments,
only a few model populations were outlying while for another subset of scenarios,
especially related to the basic architecture, most pairs of models were different,
according to the results of the Conover-Iman test.

Finally, in some autoencoder models, we found a problem with vanishing gra-
dients. We noticed that in some of the models, gradients were not propagated
starting from the first training iterations. We will continue the investigation in
the next chapter and we will propose network reinitialization methods that can
alleviate the negative impact of this phenomenon.
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Abundances for endmember no. 1,
 exp. 3, arch.: original, KHU, RMSE: 0.018

Abundances for endmember no. 2,
 exp. 3, arch.: original, KHU, RMSE: 0.047

Abundances for endmember no. 3,
 exp. 3, arch.: original, KHU, RMSE: 0.051

Abundances GT for endmember no. 1 Abundances GT for endmember no. 2 Abundances GT for endmember no. 3

Figure 3.14: Reconstruction of fractional abundances (with ground truth) for a
model with the lowest value of endmember error in terms of SAD metric for Ex-
periment 3 with the Samson dataset. The subsequent plots represent abundance
coefficients for water, tree and soil.
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Figure 3.15: Reconstruction of endmembers (with ground truth) for a model with
the lowest value of SAD error for Experiment 3 with the Samson dataset. Plots
depict normalized reflectance for consecutive spectral bands, i.e. each vector was
divided by the value of its Euclidean norm. The subsequent endmembers represent
water, tree and soil.
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Abundances for endmember no. 1,
 exp. 9, arch.: original, KHN, RMSE: 0.042

Abundances for endmember no. 2,
 exp. 9, arch.: original, KHN, RMSE: 0.024

Abundances for endmember no. 3,
 exp. 9, arch.: original, KHN, RMSE: 0.064

Abundances for endmember no. 4,
 exp. 9, arch.: original, KHN, RMSE: 0.054

Abundances GT for endmember no. 1 Abundances GT for endmember no. 2 Abundances GT for endmember no. 3 Abundances GT for endmember no. 4

Figure 3.16: Reconstruction of fractional abundances (with ground truth) for a
model with the lowest value of abundance error in terms of RMSE metric for
Experiment 9 with the Jasper Ridge dataset. The subsequent plots represent
abundance coefficients for tree, water, soil and road.
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Figure 3.17: Reconstruction of endmembers (with ground truth) for a model with
the lowest value of abundance error in terms of RMSE for Experiment 9 with the
Jasper Ridge dataset. Plots depict normalized reflectance for consecutive spectral
bands, i.e. each vector was divided by the value of its Euclidean norm. The
subsequent endmembers represent tree, water, soil and road.
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Chapter 4

Network reinitialization methods
for improving the autoencoders’
performance

4.1 Introduction

In this chapter, we try to find a solution of problems with selected models trained in
hyperspectral unmixing experiments described in Chapter 3. We propose network
reinitialization methods intended to minimize the risk of a failed training session.
In Chapter 3 we empirically proved that weight initialization in autoencoders has
a significant influence on network training, which can result in performance degra-
dation in a pessimistic case. For further investigation, we selected a subset of
experiments from Chapter 3 to make their detailed analysis. Despite the fact that
in a given scenario, models were trained with the same hyperparameters set, a part
of training runs was underperformed based on others. We identified that for some
models the gradient has vanished during the first iterations of the training session.
This was due to the dead activations’ and dead neurons’ phenomena which are re-
lated to the ReLU activation function [97, 131]. In such cases, the output of some
neurons is zero for some or all of the input data. If it occurs for many neurons and
many (or all) input values, the network learning process may be inhibited or even
stopped. As a consequence, the output of the network can degenerate. The results
of the analysis of the chosen autoencoder models prompted us to propose several
network reinitialization methods designed for architectures with ReLU activation
function. The presented methods help to reduce the negative effect of the dead
activations’ phenomenon.

This chapter contains and extends the work presented in the paper Improv-
ing Autoencoder Training Performance for Hyperspectral Unmixing with Network
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Reinitialisation [79] published in the proceedings of the 21st International Con-
ference on Image Analysis and Processing – ICIAP 2022 in Lecce. The following
topics are covered in the chapter:

1. We present definitions related to dead activations and dead neurons in net-
works with the ReLU activation function. To measure the scale of this phe-
nomenon in a given neural network model, we introduce dead activations’
coefficients.

2. We investigate a relationship between the number of dead activations and
the reconstruction error for a subset of experiments from Chapter 3.

3. Based on conclusions from the previous point, we introduce three network
reinitialization techniques which are presented in the Algorithm 1. They
work by replacing all or some weights of a given model. Their purpose is to
alleviate the negative impact of dead activations on network performance.

4. The proposed network reinitialization methods are evaluated in three exper-
iment scenarios for hyperspectral unmixing, using different datasets and loss
functions. We perform a comparison between the baseline from Chapter 3
and results obtained from the proposed techniques.

5. Finally, we test our approaches using deeper and wider autoencoders with
different hyperparameter values on the well-known MNIST dataset which
generalizes the topic beyond the scope of hyperspectral unmixing.

4.2 Definitions
Let U be a neural network of n hidden layers for which the number of neurons
in consecutive layers is defined by a vector u = [u0, u1, u2, ..., un, un+1]. For each
j ∈ {1, 2, ..., n + 1}, uj is the number of neurons in the j–th layer of the network
U while u0 represents the input size. Let us assume that Pj is a matrix of network
parameters (weights of neurons), while bj is a bias vector of the j–th network layer
where j ≥ 1, i.e. Pj ∈ Ruj−1×uj , bj ∈ Ruj .

Let gj(x) be a vector of values of the ReLU activation function for the j–th
layer, j ≥ 1. Its values are calculated as follows:

gj(x) = max{x ·Pj + bj,0}, (4.1)

where x ∈ Ru0 for j = 1 and x = gj−1 ◦ gj−2 ◦ ... ◦ g1(x) for j ≥ 2. We call
the consecutive values of the vector gj(x) = [gj,1, gj,2, ..., gj,uj ] as neurons values of
the j-th layer of U. The maximum in Eq. 4.1 is calculated element-wise. Let us
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also define a matrix of neurons activations from the whole network for an input x,
that is G(x) = [g0,g1(x),g2(x), ...,gn+1(x)], where for each i ∈ {0, 1, 2, ..., n+ 1},
gi ∈ Rui . For the clarity of the description, we assume that g0 = x because
in the case of input values no activation function is applied. We also denote by
gj,i the i–th element of the vector gj(x), that is, the activation value of the i–th
neuron of the j–th layer of U for x as an input vector, where j ∈ {1, ..., n+ 1} and
i ∈ {1, ..., uj}.

Definition 4.2.1. The i–th neuron of the j–th layer is called ’dead for given input
data’ x ∈ D, x 6= 0, if for x as input to the network gj,i = 0.

We call such an inactive neuron for a given input data as dead activation.

Definition 4.2.2. [11] Let x = [x1, x2, ..., xm] and y = [y1, y2, ..., ym] be nonzero
vectors in Rm, that is x 6= 0 and y 6= 0. The angle θ between x and y, denoted as
^(x,y), is expressed by the following formula:

^(x,y) = arccos
(

x · y
‖x‖ · ‖y‖

)
, (4.2)

where x · y is a scalar product between x and y.

Proposition 4.2.3. Let the bias vector of the j–th network layer be the zero vec-
tor, that is bj = 0. Assume also that the weights matrix of the j–th layer, Pj,
is nonzero, that is Pj 6= 0, as well as the activation vector gj−1(x) is nonzero,
gj−1(x) 6= 0. Then, the i–th neuron of the j–th layer is dead for a given input
data x ∈ D,x 6= 0, if

^(gj−1,P>j [·, i]) ≥ π

2 , (4.3)

where
gj−1(x) = [gj−1,1, gj−1,2, ..., gj−1,uj−1 ],

Pj =


pj1,1 pj1,2 ... pj1,uj
pj2,1 pj2,2 ... pj2,uj
... ... . . . ...

pjuj−1,1 pjuj−1,2 ... pjuj−1,uj


and

Pj[·, i] = [pj1,i, p
j
2,i, ..., p

j
uj−1,i]

>.

Pj[·, i] represents the weights (parameters) between all neurons in the (j − 1)–th
layer and the i–th neuron of the j–th layer.
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Proof. By the definition of the ReLU activation function, if the argument of this
function is less than or equal to zero, the result will be zero. It means that such a
neuron is dead for given input data. It follows that if this neuron is alive, the value
of gj−1(x) · P>j [·, i] has to be positive. Using the definition of the dot product:

gj−1(x) · P>j [·, i] = ‖gj−1(x)‖ · ‖P>j [·, i]‖ · cos^(gj−1(x),P>j [·, i]).

By the definition of the norm and the assumptions of this proposition, the norms of
the vectors gj−1(x) and P>j [·, i] are positive numbers. The angle between these two
vectors is a number from the interval [0, π). The value of cos^(gj−1(x),P>j [·, i])
within this range is less than or equal to zero only when ^(gj−1(x),P>j [·, i]) ≥ π

2
which ends the proof.

Definition 4.2.4. The i–th neuron of the j–th layer is called ’dead’ if for each
x ∈ D as input of the network, x 6= 0, gj,i = 0.

Definition 4.2.5. The input vector x ∈ D is called dead in layer j, where
j ∈ {1, 2, ..., n + 1}, if gj(x) = 0. It also means that if j < n + 1, then x is
dead for all subsequent layers, that is, for the (j + 1)–th, the (j + 2)–th, ..., and
the (n+ 1)–th layer.

Definition 4.2.6. The network parameters of the i–th neuron of the j–th layer,
Pj[·, i], where j ∈ {1, 2, ..., n + 1} and i ∈ {1, 2, ..., ui}, are within a functionally
dead zone if for any input vector x ∈ D, gj,i = 0.

From Definition 4.2.6 it follows that if network parameters lie inside a func-
tionally dead zone, their product with previous neurons’ values will always lead
to dead activations in the next layer. Furthermore, if the angle between all the
neurons’ output vectors of the previous layer and the parameters of the subsequent
layer is less than π

2 , all the neurons of the next layer will be alive, according to
the Proposition 4.2.3. In intermediate states, some activations are dead while the
remaining ones are alive.

Proposition 4.2.7. For the j–th layer of the network U, j ≥ 1, the maximum
area of the functionally dead zone is 2−uj−1 where uj−1 is the number of neurons
in the (j − 1)–th layer of U.

Because we require that each coordinate be within the range [0, 1], if a given
dataset D has no vectors lying on the boundaries of the domain (for example
x = [1, 1, ..., 1]), the area of the functionally dead zone is smaller. Therefore,
Proposition 4.2.7 expresses the upper bound of the zone.

Definition 4.2.8. The network U is called ’dead’ if there exists a layer
i ∈ {1, 2, ..., n+ 1} such that all neurons in the i–th layer are dead [131].
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The dead network is not trainable because the gradient cannot be back-propagated.
We assume that D is a P–element dataset of B–dimensional vectors xi ∈ D,

i ∈ {1, ..., P}. All elements of D can be written as a matrix X ∈ RP×B. Let G be
an array of network activations for P input vectors, that is
G = [G(x1),G(x2), ...,G(xP)]. Furthermore, we denote by Gj a matrix of ac-
tivations of the j–th layer for all input instances, that is Gj = [gj(x1), ...,gj(xP)].
For all i ∈ {1, ..., P}, gj(xi) ∈ Ruj . This means that after a given training epoch,
we have uj · P neuron activations for the j–th layer.

Based on the above notation, one can determine some coefficients connected
with the rate of dead activations for a given layer or for consecutive neurons of the
layer. They will allow one to determine a ’vitality’ of a given network element.

Definition 4.2.9. A dead activations’ coefficient for the j–th network layer, djdead,
is the ratio of a number of zero activations for this layer, denoted by N j

0 , to the
number of neurons’ activations in a given training epoch (uj · P ):

djdead = N j
0

uj · P
∈ [0, 1]. (4.4)

N j
0 is counted on all neurons in the j–th network layer in a given training epoch.

Definition 4.2.10. A dead activations’ coefficient for the i–th neuron of the j–
th network layer, dj,idead, where i ∈ {1, ..., uj}, is the ratio of a number of zero
activations of this neuron to the number of training points in a given training
epoch:

dj,idead = N
j,i
0
P
∈ [0, 1]. (4.5)

In addition, assume that all the vectors in the dataset D have values of their
coordinates within the range [0, 1]. It means that

∀p ∈ {1, 2, ..., P} ∀b ∈ {1, 2, ..., B} xp,b ∈ [0, 1], (4.6)
where xp,b is the b–th coordinate of the vector xp ∈ D.

4.3 Related works
In recent years, some theorems, propositions and algorithms have been proposed
on the topic of dying ReLU networks, i.e. dying networks with the ReLU activation
function. The Authors in [131] designate lower and upper bounds of the probability
of the network death, i.e. mapping all input data points to a constant function.
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Furthermore, they propose a method called sign-flipping which aims to prevent the
network death. It is based on the calculation of the number of dead points layer by
layer. However, the authors do not perform an analysis of how this approach affects
the classification accuracy or the regression error. In [97] the Authors conduct
a theoretical analysis of dying ReLU networks; they prove that the probability
of the ReLU network death increases as its depth goes to infinity. They also
present other theoretical properties; e.g. they show why deep and narrow networks
are not efficient in practice. Furthermore, they indicate obstacles related to the
training of very deep networks. The Authors propose a randomized asymmetric
initialization of neural network weights which aims to minimize the risk of network
death. They perform basic experiments comparing their idea with the well-known
He initialization approach [60].

Some Authors suggest network reinitialization methods to improve network
training, but in many cases, existing solutions are designed for convolutional neu-
ral networks or they are connected with a transfer learning approach. The Authors
in [58] demonstrate DSD, i.e. a dense-sparse-dense training pipeline. It consists
of three parts: during the first phase, a network is trained as usual. In the second
step, pruning is performed, which removes unimportant model weights. Then, a
training of a sparse network is conducted. During the final phase, all previously
removed connections are restored and initialized to zero. Furthermore, a dense
network is fine-tuned with a smaller learning rate. The performance of this ap-
proach is verified on different datasets and CNN, LSTM and RNN networks. The
authors in [9] propose a reinitialization method for convolutional neural networks.
They rescale convolutional blocks and add a normalization layer. They study the
performance of this approach on 12 image classification datasets and claim that
the presented approach gives an advantage for small datasets. In [89] the Au-
thors present a method called RIFLE designed for fine-tuning CNNs in a transfer
learning scenario. They propose a cyclic reinitialization of fully-connected layers.
Furthermore, in [171] a method based on ensemble learning and multiple reinitial-
ization of the last layer of consecutive networks is presented. A simple approach
based on weight reinitialization of randomly selected neurons is described in [152].
The probability of choice a given neuron is independent of the other neurons.

The current works on dying ReLU neurons are, in our opinion, incomplete. We
know that the dead neurons phenomenon may lead to weak performance or even
network death. Nevertheless, the relationships between dead activations, neurons,
weight reinitialization and their impact on network performance are not clear.
It is not obvious how many dead activations or neurons significantly affect the
classification accuracy or the regression error. An in-depth understanding of the
dying ReLU networks will make it easier to gather a solution aimed at solving
this problem. Later, in this chapter, we present the analysis of the occurrence
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of dead activations and dead neurons in the example of selected network models
described in Chapter 3 and its impact on network performance. Moreover, we
propose network reinitialization methods to mitigate the negative effects of dead
activations.

4.4 Network activations analysis

4.4.1 Rank correlation test
In further analysis we will use a Spearman’s rank correlation coefficient which
is described in more detail in the Appendix. It can be applied to verify a null
hypothesis H0 claiming that random variables X and Y are independent against
an alternative hypothesis H1 which states that there is a positive or negative
dependence between X and Y . In our case, we will check whether the occurrences
of dead activations or dead input points before or after the training and values of
the final reconstruction error are independent (a null hypothesis H0) or if there
exists a relationship between them (an alternative hypothesis H1).

4.4.2 Correlational study
In Section 3.7.1 we performed a detailed analysis of selected autoencoder mod-
els from Experiment 4 described in Section 3.5.4. We focused on models which
achieved the highest and the lowest values of the reconstruction error, claiming
that we should observe key differences leading to understanding problems in low-
performance models. The crucial observation was related to the vanishing gradient
in low-performing models from the first training iterations. It was briefly described
in Section 3.7.1. Furthermore, we found out that a subset of neurons is constantly
not active, i.e. always returns zero values. This discovery prompted us to look at
the magnitude of this phenomenon and investigate the impact of dead neurons’ on
network performance what we analyze in this chapter. It turns out that in neural
networks with the ReLU activation function the number of dead neurons can be so
large that the network will stop working properly, i.e. the forward and backward
propagation will be disturbed. In extreme cases, a whole network layer can be
dead, and, consequently, all subsequent layers will also be dead. It leads to the
degenerated models, i.e. returning a constant value for all data samples. Similar
topics were also recently raised in some papers, e.g. in [97] and [131]. The Authors
derived there the estimation of the probability of the network death dependent on
the number of layers and the number of neurons in consecutive layers. However,
they did not study deeply the impact of dead neurons on network performance,
i.e. they did not consider a relationship between the number of dead neurons and
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classification accuracy or regression error. We derive such a study on the basis of
autoencoders for hyperspectral unmixing.

Based on the definitions from Section 4.2 we proposed experiments which were
supposed to investigate a relationship between the number of dead activations (or
dead points) and a reconstruction error of the autoencoder network, according
to Definitions 4.2.1 and 4.2.5. We wanted to verify whether any of the following
hypotheses is true:

1. The number of dead activations or dead input points just after initialization
of all network weights (before training) is related to the reconstruction error
at the end of the training.

2. The number of dead activations or dead input points at the end of the train-
ing is related to the final reconstruction error.

If any of these hypotheses are confirmed, the way of decreasing the network
reconstruction error should be more clear because we would know which coeffi-
cient informs the potential of a current training run. Therefore, we could prepare
a method which modifies the network state in a way that the value of such a co-
efficient will be more advantageous and, in consequence, the final reconstruction
error will be minimized. Calculations to verify the above hypotheses were made
for three experiments on basic architecture: Experiment 4 (Samson, MSE loss),
Experiment 5 (Samson, SAD loss) and Experiment 10 (Jasper Ridge, MSE loss);
see Table 3.1. We selected these experiments because in the basic architecture
the ReLU activation function was used. For each model tested, all elements of the
dataset were propagated forward through the network to obtain the output values.
During this process, the number of dead activations and the number of dead input
points were calculated for each of the two encoder layers.

By model, we understand a set of network weights. First, all parameters were
randomly initialized and in the next step, during the training process, weights were
optimized to minimize a loss function. In experiments described in Section 3.5.4
we randomly generated 50 models and each model was separately trained 50 times
for each scenario and weight initialization approach.

To check the first hypothesis, for each of the 50 initialized models in a given
scenario:

I. The number of dead activations and the number of dead input points before
the start of the training were calculated.

II. The reconstruction error was averaged over 50 training runs. More specifi-
cally, the mean RMSE for the i–th model (RMSEi), where i ∈ {1, 2, ..., 50},
was calculated in the following way:
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RMSEi =
∑50

j=1 RMSEi,j(X, X̃).

X represents the input vectors, X̃ their reconstructions, while RMSEi,j(·, ·)
denotes the mean reconstruction error for the j–th training run of the i–
th model, calculated at the end of the training session of the j–th run.
After the calculations were completed, there were 50 mean RMSE values for
consecutive models.

III. The Spearman’s rank correlation coefficient between 50 pairs of numbers
(separately per each experiment setup) was designated in two cases, i.e.
between the number of dead activations just after initialization and the mean
final reconstruction error as well as between the number of dead points before
the start of the training and the mean final reconstruction error.

To verify the second hypothesis, for each of the 50 models:

I. One out of 50 training runs was selected.

II. At the end of the learning process of a given run, the numbers of dead
activations and dead input points were calculated.

III. Similarly as previously, Spearman’s rank correlation coefficient between the
collected numbers and the final reconstruction error for corresponding net-
work runs was computed.

Table 4.1 presents correlation coefficients for models just after weights initial-
ization, while Table 4.2 shows results for trained autoencoders, in both cases for
dead activations. Furthermore, Table 4.3 contains statistics for dead input points
for the same models as presented in Tables 4.1–4.2 but only in the case of the
second encoder layer. The values of the Spearman’s rank correlation coefficient
were calculated separately for each initialization method (KHN and KHU denote
the Kaiming He technique [60] with normal or uniform distribution, respectively,
while XGN and XGU mean the Xavier Glorot approach [50], also with normal or
uniform distribution). An analysis of the results presented in Tables 4.1–4.3 leads
to the conclusion that for Experiments 4 and 10 there is a strong or very strong
correlation between the number of dead activations in the second encoder layer at
the end of the training process and the network reconstruction error. This relation-
ship is much more visible in the case of trained models than for models just after
initialization. It means that neurons die during training and this phenomenon has
an important impact on the final network score. This dependency is not observable
for Experiment 5 (with SAD loss function). Furthermore, one can conclude that
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Table 4.1: Results of Spearman’s rank correlation coefficient (with p-value) be-
tween the number of dead activations for models after initialization and the mean
final reconstruction error. Correlation values above 0.7 are shown in bold.

first encoder layer second encoder layer

exp. ID init. method correlation p-value correlation p-value

4 KHN -0.065 0.654 0.698 1.80e-08
4 KHU -0.008 0.958 0.796 5.01e-12
4 XGN 0.019 0.897 0.693 2.50e-08
4 XGU 0.362 0.010 0.783 1.79e-11
5 KHN 0.147 0.309 0.032 0.825
5 KHU -0.144 0.319 -0.090 0.535
5 XGN -0.082 0.571 0.402 0.004
5 XGU -0.105 0.470 0.090 0.532
10 KHN 0.234 0.102 0.578 1.33e-05
10 KHU 0.083 0.567 0.870 2.57e-16
10 XGN 0.106 0.463 0.578 1.12e-05
10 XGU -0.160 0.266 0.607 2.92e-06

the second encoder layer is crucial in terms of the training success because similar
reasoning done for the first encoder layer leads to weak correlation values. It is
probably due to the fact that the second encoder layer is a ”bottleneck” because
it has only 3 or 4 neurons (3 for Samson and 4 for Jasper Ridge dataset), so the
death of each particular neuron can be costly. It is a known fact from the liter-
ature that the longer and narrower the network, the more likely neurons will die
[97, 131]. Our networks are not so long (only a few layers), but narrow, especially
in the last encoder layer. Furthermore, correlations between dead input points
and reconstruction errors are not as significant as for dead activations. One can
conclude that a weak performing network run may be easier detected using dead
activations’ statistics than the dead input points’ metric. It can be surprising,
but one possible reason is that the input data point may not die but be ”barely
alive” which has a negative impact on further reconstruction. In such a case, it
will not be counted as a dead input point but still, it contributes to the number
of individual dead activations.

4.5 Network reinitialization methods
Based on conclusions presented in Section 4.4 we prepared several network reinitial-
ization methods which take into account the numbers of dead activations. When
a weak performing model is identified, some or all network weights are changed,
depending on the adopted strategy. The Algorithm 1 introduces a general descrip-
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Algorithm 1: Network reinitialization methods.
Input: n–hidden layer neural network U, numbers of neurons in

consecutive layers: [u0, u1, u2, ..., un, un+1], a batch of input data:
X, X ∈ Rbs×B, bs: a batch size, B: a number of dimensions of a
single data point, t ∈ (0, 1): threshold, method: a selected
reinitialization method (whole network, single layer or
partial reinitialization)

Output: n–hidden layer neural network U
1 Perform a forward propagation and calculate G(X);
2 for i← 1 to n+ 1 do
3 if method = whole network or single layer then
4 Calculate didead based on G(X);
5 if didead > t then
6 if method = whole network then
7 Reinitialize all weights of the network U.
8 end
9 else

10 Reinitialize all weights of the i–th layer of the network U.
11 end
12 Interrupt the calculations and return the reinitialized network

U.
13 end
14 end
15 else if method = partial reinitialization then
16 Calculate di,1dead, d

i,2
dead, ..., d

i,ui
dead based on G(X);

17 for j ← 1 to ui do
18 if di,jdead > t then
19 Reinitialize all weights connected with the j–th neuron of

the i–th layer of the network U.
20 end
21 end

/* Only neurons of one layer can be reinitialized in a single
iteration. If at least once a threshold has been exceeded,
some weights were reinitialized, further calculations of dead
activations’ statistics are interrupted and the training is
continued. */

22 if max
j∈{1,...,ui}

di,jdead > t then

23 Interrupt the calculations and return the reinitialized network
U.

24 end
25 end
26 end
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Table 4.2: Results of Spearman’s rank correlation coefficient (with p-value) be-
tween the number of dead activations for a selected run of trained models and the
final reconstruction error. Correlation values above 0.7 are shown in bold.

first encoder layer second encoder layer

exp. ID init. method correlation p-value correlation p-value

4 KHN -0.171 0.236 0.893 2.72e-18
4 KHU -0.046 0.750 0.859 1.49e-15
4 XGN -0.125 0.389 0.847 8.79e-15
4 XGU 0.239 0.095 0.889 7.33e-18
5 KHN 0.142 0.325 -0.270 0.058
5 KHU 0.019 0.897 -0.251 0.078
5 XGN -0.211 0.141 0.174 0.226
5 XGU 0.038 0.795 0.029 0.840
10 KHN 0.049 0.736 0.762 1.27e-10
10 KHU 0.089 0.541 0.887 9.50e-18
10 XGN 0.068 0.640 0.774 4.38e-11
10 XGU -0.010 0.947 0.813 7.46e-13

tion of the proposed methods. A reinitialization method is run during a forward
propagation, after each processed batch of data. Let us suppose that we have a
network U where a vector u = [u0, u1, u2, ..., un, un+1] represents numbers of neu-
rons in consecutive layers. We start the network analysis from the first hidden
layer, u1 (u0 is an input). One of the three approaches is applied:

• Whole network reinitialization: if there exists a layer i ∈ {1, ..., n + 1} such
that didead > t then all the weights of the network are drawn randomly ac-
cording to the given initialization scenario (e.g. KHU, XGU, etc.). It is
similar to the situation before the training of the model, when all network
weights are randomly generated.

• Single layer reinitialization: if there exists a layer i ∈ {1, ..., n+ 1} such that
didead > t then all weights of the i–th layer are drawn randomly according to
the given initialization scenario, while other weights of the network remain
unchanged.

• Partial network reinitialization: if there exists a layer i ∈ {1, ..., n + 1}
and a neuron j ∈ {1, ..., ui} (or more neurons) such that di,jdead > t then all
weights connected to the j–th neuron of the i–th layer are drawn randomly
according to the given initialization scenario. Reinitialization concerns only
neurons of one layer selected in a current iteration (single or more neurons,
up to ui) while other weights remain the same.
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Table 4.3: Results of Spearman’s rank correlation coefficient (with p-value) be-
tween the number of dead input points and the final reconstruction error for the
second encoder layer in two scenarios. Correlation values above 0.7 are shown in
bold.

initialized models trained models

exp. ID init. method correlation p-value correlation p-value

4 KHN 0.323 0.022 0.693 2.45e-08
4 KHU 0.593 5.69e-06 0.794 6.08e-12
4 XGN 0.246 0.085 0.635 7.27e-07
4 XGU 0.695 2.11e-08 0.808 1.30e-12
5 KHN -0.005 0.975 -0.441 0.001
5 KHU 0.010 0.491 -0.246 0.085
5 XGN 0.383 0.006 0.300 0.035
5 XGU 0.286 0.044 0.028 0.847
10 KHN 0.291 0.040 0.339 0.016
10 KHU 0.338 0.016 0.563 2.08e-05
10 XGN 0.299 0.035 0.339 0.016
10 XGU 0.431 0.002 0.339 0.016

For each of the presented methods, calculations of dead activations’ coefficients
were performed in the order from the first to the last layer and possibly can be
omitted for the last layer. It is due to the fact that this is often a classification
or regression layer and zero activations are in many cases desired there. The final
decision can be made by the network designer. If a threshold for the dead activa-
tions’ coefficient is exceeded, calculations for the following layers are abandoned.
It means that single layer reinitialization method can change weights of only one
selected layer while partial reinitialization approach only affects one or more neu-
rons of the selected network layer. Dead activations of the i–th layer contribute to
the death of neurons in subsequent layers of the network (i+ 1, i+ 2, ..., n+ 1). It
means that preventing neurons from dying in earlier layers has a positive effect on
the next layers. It is also consistent with conclusions from the paper [131] in which
authors claim that a probability of the network death increases as the number of
network layers is getting higher.
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4.6 Reinitialization of autoencoders for hyper-
spectral unmixing

4.6.1 Experiments’ scenario

The methods described in Section 4.5 were applied to improve the performance of
autoencoders for hyperspectral unmixing. Models’ reinitialization was performed
for Experiments 4, 5 and 10 from Section 3.5, i.e. for all experiments in which the
basic architecture with the ReLU activation function was used. In the case of Ex-
periments 4 and 5, unmixing was made on the Samson dataset for the architecture
with (156, 30, 3, 156) neurons in consecutive layers. 30 neurons in the first hidden
layer were chosen during hyperparameter optimization using Ray Tune [92], as pre-
sented in Section 3.5.4. 156 is a number of spectral bands, while 3 is a number of
endmembers in the Samson dataset. For Experiment 10, the Jasper Ridge dataset
and the architecture with (198, 40, 4, 198) neurons in the following layers was used.
Similarly as before, 198 is a number of spectral bands, 40 was chosen with Ray
Tune while 4 is a number of endmembers in the dataset. In both cases, bias was
only attached to two hidden layers of the networks. Furthermore, for Experiments
4 and 10, the MSE loss function was selected, while for Experiment 5 the SAD loss
function was chosen. Detail information about the rest of the hyperparameters is
contained in Table 3.1.

In each scenario, 200 models generated in experiments described in Section 3.5
were used. As previously, per each weights initialization scenario (KHU, KHN,
XGU and XGN), 50 models were prepared. In Chapter 3, for each model, 50
separate training sessions were performed while in this case, for simplicity, one
training run per model with a selected setting was carried out. Such a setup
should still be sufficient to reliably assess the differences between methods.

The main difference between the previous and the current series of experiments
is that for each model one training run with a selected setting was carried out (not
50 runs for each model, as in the former case).

For each of the 200 models, four independent training sessions with differ-
ent scenarios were performed: using a standard training technique (denoted as
baseline), whole network reinitialization approach, single layer reinitialization and
partial reinitialization. The Algorithm 1, which presented three network reinitial-
ization methods, was adapted to the basic architecture. It means that, according
to the results presented in Section 4.4, calculations of dead activations coefficients’
were performed only for the second encoder layer, i.e. for a layer with 3 neurons
in the case of Experiments 4 and 5, or for a layer with 4 neurons for Experiment
10. It is due to the fact that such a layer is a ”bottleneck” of this architecture
and Spearman’s rank correlation coefficients between the number of dead activa-
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tions and reconstruction errors were the highest for this layer. In all experiments
a threshold t was set using a rule of thumb to 0.6 (i.e. at least 60% of dead ac-
tivations is necessary for reinitialization). In the case of the Samson dataset, the
threshold set implies that in some cases, all 3 neurons’ activations in the second
encoder layer had to be zero, while for the Jasper Ridge dead should be at least 3
from 4 activations.

4.6.2 Wilcoxon signed-rank test
We would like to verify whether a reconstruction error has decreased significantly
after the application of the network reinitialization method compared to the orig-
inal approach. Therefore, we selected the Wilcoxon signed-rank test (see the Ap-
pendix for more details). We could not use a parametric t-test for paired samples
due to failure to meet the condition of the normality of the data, according to re-
sults of the Shapiro-Wilk test. We have a set ofM pairs of the form (xi, yi), where
i ∈ {1, 2, ...,M}, M is the number of models. In our case, the first coordinate of
pairs represents a reconstruction error for the baseline approach, while the second
coordinate is a reconstruction error for a training run starting from the same set of
initial weights, with the application of one of the presented reinitialization meth-
ods. In our experiments M = 200. We expect that yi’s will be generally lower
than xi’s, i.e. reinitialization methods improve network performance. In such a
case, the null hypothesis of the Wilcoxon test should be rejected in favor of the
alternative hypothesis.

4.6.3 Results
Table 4.4 presents results of weight reinitialization experiments for the Samson
dataset with the reconstruction and abundance errors in terms of RMSE and
endmember errors in terms of the SAD function as well. Table 4.5 shows analogous
results for the Jasper Ridge dataset.

In the case of Experiment 4 using the Samson dataset and the MSE loss
function, differences between model performances for Glorot and He initializa-
tion methods can be observed. In the first situation, whole network reinitialization
technique achieved the lowest reconstruction and abundance errors while partial
reinitialization was the most promising in terms of endmembers’ spectra repro-
duction. Furthermore, differences between baseline (i.e. models without weight
reinitialization during the training) and proposed reinitialization methods were
statistically significant, according to the Wilcoxon signed-rank test with a p-value
threshold of 0.05. In the He scenario, partial reinitialization approach was the most
effective in almost all cases, except for the endmember error for KHU technique.
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In this situation the improvements were also statistically significant. Looking at
the average scores, the lowest error values were achieved with XGU approach.

Regarding Experiment 5, in which a loss function has been changed from MSE
to SAD, single layer and partial reinitialization were the most efficient methods.
They statistically outperformed the baseline scores for abundance and endmember
errors. The results for these metrics seem to be more stable than for Experiment 4
but still the lowest mean scores were achieved for the MSE loss function. However,
the reconstruction of individual pixels is burdened with a greater error than in the
case of Experiment 4. Furthermore, for almost all setups, the differences in this
case were not statistically significant. It should be mentioned that the whole
network approach also surpassed baseline scores, but generally, it was not the best
solution.

For the Jasper Ridge dataset, for which calculations were performed in Exper-
iment 10, the lowest error values were achieved by models initialized according to
XGU approach. In all cases but one, single layer reinitialization approach led to
the smallest abundance and endmember errors. The reconstruction of individual
pixels was best prepared by partial reinitialization method. It can be seen that the
improvements compared to the baseline results were statistically significant for a
lower number of cases than for experiments on the Samson dataset.

4.6.4 Discussion
A more detailed analysis of the results for the basic architecture presented in
Chapter 3 uncovered the problem with dead activations. Its investigation by the
use of dead activations’ coefficients (Definitions 4.2.9–4.2.10) and a Spearman’s
rank correlation measure led to three methods aimed at improving training of the
network models. There were proposed solutions customized to this architecture
that minimize the negative impact of the dead activations’ phenomenon on training
performance. Furthermore, the presented methods can easily be generalized. The
results contained in Tables 4.4–4.5 clearly indicate that the scores of the baseline
approach had improved. This applies both for unmixing metrics (i.e. endmember
and abundance errors) and the reconstruction error. In many cases, new results
statistically outperformed the initial approach, in terms of the Wilcoxon signed-
rank test. The p-value significance threshold was set to 0.05.

It is also interesting that despite the fact that for models from Experiment 5
(i.e. trained using the SAD function) there was no significant correlation between
numbers of dead activations and the network reconstruction error in terms of
RMSE, proposed reinitialization approaches still reduced values of endmember and
abundance errors. It is probably due to the fact that the SAD function is scale
invariant. This means that it does not necessarily minimize the reconstruction
error in terms of mean or root mean squared error.
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Comparing the results in Tables 3.3 and 4.4-4.5 it can be noticed that errors
achieved by the original architecture are lower than in the case of the basic autoen-
coder, even after the application of reinitialization methods. The most favorable
autoencoder’s settings, by the endmember or abundance errors’ point of view,
were achieved for Experiments 3 and 7, for the Samson and the Jasper Ridge,
respectively. The basic architecture applies only the most common components
of neural networks, i.e. linear layers, the ReLU activation function and a nor-
malization layer to fulfill the abundance requirements. The original architecture
is more sophisticated than the basic: it has more layers in the encoder part, an-
other activation function and additional layers like Gaussian Dropout. However,
we do not always want to use complicated architectures due, e.g. the increase in
computational costs. Furthermore, it is natural to start from simpler networks.
The problem in the basic architecture has been identified and its significance has
been diminished thanks to the proposed weights reinitialization methods. In the
next section, the performance of these solutions will be evaluated for both other
architectures and datasets, not related to the hyperspectral unmixing task.

4.7 Generalization of results beyond the scope
of hyperspectral images

4.7.1 MNIST dataset
To verify the performance of network reinitialization methods beyond the scope
of hyperspectral images, a MNIST handwritten digits dataset [82] was chosen. It
consists of thousands of gray scale images of size 28× 28 which depict digits 0, 1,
2, ..., 9. The samples were prepared by Census Bureau employees and high-school
students. The dataset was divided into a training part containing 60,000 examples
and a test part with 10,000 digits’ samples. This collection has achieved great
popularity and it is one of the basic datasets for testing the performance of new
architectures and methods of deep learning, like in [46], [127] or [138]. Selected
images from the MNIST dataset are presented in Figure 4.1.

4.7.2 Experiments
We carried out experiments using the MNIST dataset on several different autoen-
coder architectures and sets of hyperparameters with a grid search technique. It
means that we tested each combination of the following hyperparameters:

1. Network architecture:

arch ∈ {[500, 500], [100, 100], [100, 100, 100, 100], [100, 100, 100, 100, 100, 100]}
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Exemplary images of the MNIST dataset

Figure 4.1: A presentation of selected images of the MNIST handwritten digits
dataset.

neurons, both for the encoder and the decoder part of the network; an au-
toencoder had a total of 4, 4, 8 or 12 hidden layers, respectively.

2. Learning rate:
lr ∈ {0.0001, 0.001, 0.01, 0.1}.

3. Batch size:
bs ∈ {4, 16, 32, 64, 128}.

For each set of hyperparameters {arch, lr, bs} experiments were repeated 5 times,
for different seed values. A validation set was also separated, which represented
10% of the training set. The maximum number of training epochs has been set
to 50 but a training run was early stopped if a validation loss did not decrease
below the minimum achieved so far through 5 consecutive epochs. As a weight
initialization method, KHU (Kaiming He with uniform distribution) was selected
because that it was the default approach in the PyTorch library for linear layers.
We carried out experiments for several reinitialization scenarios:

• Whole network reinitialization with thresholds t ∈ {0.75, 0.9, 0.95}.

• Single layer reinitialization with thresholds t ∈ {0.75, 0.9, 0.95}.

• Partial network reinitialization with threshold t = 0.99.

The threshold values were selected as a rule of thumb. For comparison purposes,
we also prepared baseline experiments, i.e. without weight reinitialization during
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the training. It means that for each of the 8 network training approaches we have
400 model instances.

4.7.3 Results
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Figure 4.2: Comparison of test reconstruction errors (in terms of RMSE) between
baseline and reinitialization methods for consecutive models (starting from the
left side: whole network reinit. method with thresholds t ∈ {0.75, 0.9, 0.95} and
partial reinit. method with t = 0.99). Each line represents one training run. Green
means that RMSE decreased after the application of reinit. method, red indicates
increasing of RMSE while gray marks models whose RMSE has not changed.

Figures 4.2–4.3 depict slope charts that compare test reconstruction errors
between baseline models (i.e. without reinitializations) and networks after the
application of reinitialization methods. Results are presented for all training runs.
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Figure 4.3: Comparison of test reconstruction errors (in terms of RMSE) between
baseline and single layer reinitialization method for consecutive models and thresh-
olds t ∈ {0.75, 0.9, 0.95}. Each line represents one training run. Green means that
RMSE decreased after the application of reinit. method, red indicates increasing
of RMSE while gray marks models whose RMSE has not changed.

Green denotes the cases where the test reconstruction error has decreased after
using a reinitialization approach. The red color means the opposite case, while
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gray color is related to the models whose error has not changed. It can be seen
that for whole network and single layer reinitialization approach with threshold t =
0.75 the results form two groups. Models that initially were low-performing have
improved, while models that originally had smaller error values have deteriorated.
The situation changes with the increase of the dead activations’ threshold value.
Models that initially had small RMSE slightly changed or remained the same,
while in most cases low-performing models have improved. For both whole network
method and for single layer reinitialization technique the number of deteriorated
models for t = 0.95 decreased compared to t = 0.9 and t = 0.75. The results
for partial reinitialization method are slightly different than for other approaches.
The weakest models continued to deteriorate, while in most cases mid-range and
high-performing models have improved. Furthermore, the best individual result
was achieved with this approach.

We also present results for the best 3 out of the 80 trained models for each of
the network reinitialization methods and we compare them with baseline. Model
selection was carried out based on RMSE on the validation set. Results for such
models are presented in Table 4.6 with corresponding network hyperparameters.
We can observe that the three best individual results have been achieved by par-
tial reinitialization method. The next few high-performing models included in
Table 4.6 did not need weight reinitializations, but they were not harmed by ap-
plied techniques. The weakest results have been achieved by whole network and
single layer methods with threshold t = 0.75. In these cases, the test recon-
struction errors were almost 2 times higher than in the case of the best models
(0.085 for the best individual) and they exceeded 0.155. Also, the slope charts
depicted in Figures 4.2–4.3 indicate that high-performance models in the baseline
approach were spoiled by reinitialization methods with the lowest threshold. This
observation confirms that t = 0.75 is not a good option for calculations on this
dataset. However, to fully understand their potential, it is worth performing a
more in-depth analysis of the results.

4.7.4 Discussion
Due to the fact that experiments were prepared for different sets of network hy-
perparameters, we can analyze their impact on network performance, i.e. the
reconstruction error. Figure 4.5 depicts results of network reconstruction in terms
of RMSE depending on the values of learning rate, batch size and type of ar-
chitectures, i.e. number of hidden layers and number of neurons in consecutive
layers. The influence of the learning rate on the final results appears to be sig-
nificant. Models with the highest reconstruction error had a value of 0.01 or 0.1
while well-performing models had lower learning rate’s values like 0.0001 or 0.001.
This phenomenon occurred despite different architectures and batch sizes. The
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Figure 4.4: Numbers of iterations with the reinitialization of at least one network
weight for consecutive models, according to the selected reinitialization method.
Plots depict results for, starting from the left side, whole network reinit. method
with thresholds t ∈ {0.75, 0.9, 0.95} and partial reinit. approach with t = 0.99.
Each line represents one training run while points correspond to test reconstruction
errors before and after the application of reinitialization methods. The color scale
was transformed using a power-law normalization. The darker the color, the fewer
reinitializations were performed.

impact of these two hyperparameters seems to be not as high as in the case of
learning rate, although the most promising results were achieved by networks with
two hidden layers of 500 neurons on each. Similarly, models with greater batch
sizes (like 64 or 128) achieved lower reconstruction errors than models with smaller
values of this hyperparameter, i.e. 4 or 16. Overall, the learning rate seems to
have the greatest influence on network performance.

In Figures 4.4–4.6 there is presented a dependency between the numbers of
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Figure 4.5: The impact of different network hyperparameters on the test recon-
struction error for whole network reinitialization method with threshold t = 0.95.
Each line represents one training run while points correspond to test reconstruction
errors before and after the application of reinitialization methods. Plots depict re-
sults for, starting from the left side, different network architectures, learning rates
and batch sizes.
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network reinitializations and reconstruction errors on the test set. Based on the
above plots, it can be deduced that, generally, the number of iterations in which
at least one weight has been changed, is the highest in the case of low-performing
models. For efficient models, weight reinitializations were not as frequent as for
models with the greatest values of the reconstruction error, or they even did not
occur. It means that reinitialization methods are not harmful for good network
models, while they can improve weaker model instances. The number of iterations
with weight modifications is greater for partial reinit. technique due to the fact
that the reinitialization may be performed for a smaller number of neurons (in
an extreme case only for weights of one neuron), but even such a small change
increments the variable counting weight changes.

Furthermore, Table 4.7 presents results of Spearman’s rank correlation coeffi-
cient between test reconstruction errors from baseline experiments and numbers
of network reinitializations using different methods and threshold values. It is
possible to conclude that for 5 out of 7 approaches, there is a strong correlation
between tested variables and it exceeds 0.7. For single layer reinit. with a thresh-
old t = 0.75 the correlation coefficient is only slightly below 0.7 and it is equal
to 0.672 while for partial reinit. technique, the result is not significant. Probably
it is due to the fact that for this method the way of performing reinitializations
is different than in the other cases. We would obtain additional information by
calculating the correlation using the number of reinitialized neurons instead of
the number of iterations with modification of the weights of at least one neuron.
On the basis of presented results, we can conclude that the values of Spearman’s
rank correlation coefficient are getting higher as the threshold value t increases.
The presented results suggest that reinitialization methods can be considered as a
watchdog, indicating that a given set of hyperparameters is far from optimal and
that a given training session can be earlier stopped. Indeed, a wrong selection of
hyperparameters leads to high reconstruction errors, so a relationship between the
number of reinitializations and the quality of reconstruction opens the direction for
future research. This property may be used for grid or random search algorithms
for the interruption of badly-performing training sessions to save calculation time.

Computational times

Figure 4.7 presents histograms of model training times for various learning sce-
narios, including different reinitialization approaches and the baseline approach.
Furthermore, the kernel density estimation plot of model training times for all the
considered methods is depicted in Figure 4.8. It was prepared to compare model
training times for different reinitialization methods in a more convenient way. Due
to the fact that calculations were performed for various hyperparameters and ar-
chitectures, and since the final number of training epochs was dependent on the
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Figure 4.6: Numbers of iterations with the reinitialization of at least one net-
work weight for consecutive models and single layer reinitialization method with
thresholds t ∈ {0.75, 0.9, 0.95}. Each line represents one training run while points
correspond to test reconstruction errors before and after the application of reini-
tialization methods.

113



0 20 40 60 80 100 120
Training time [min]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Histogram of training times, baseline

0 100 200 300 400
Training time [min]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

Histogram of training times, partial reinit.

0 10 20 30 40 50
Training time [min]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Histogram of training times, single layer reinit., t=0.75

0 20 40 60
Training time [min]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

De
ns

ity

Histogram of training times, single layer reinit., t=0.9

0 25 50 75 100 125
Training time [min]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Histogram of training times, single layer reinit., t=0.95

0 10 20 30
Training time [min]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Histogram of training times, whole network reinit., t=0.75

0 10 20 30 40 50
Training time [min]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Histogram of training times, whole network reinit., t=0.9

0 25 50 75 100 125
Training time [min]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Histogram of training times, whole network reinit., t=0.95

Figure 4.7: Histograms of model training times, for all runs and hyperparameter
selections, according to the given reinitialization scenario.
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Figure 4.8: Kernel density estimation plot of model training times for different
reinitialization scenarios.

validation loss over time, a single histogram aggregates results for all observations
of a given experiment. It would not be sufficient to show only means with corre-
sponding standard deviations because in these cases the variance of the training
duration is very high.

Based on these comparisons, it is possible to conclude that the fastest methods
have the reinitialization threshold set to 0.75 (both whole network and single layer
approaches). In the case of higher thresholds, the training times have increased,
but for methods with the threshold t = 0.9 the computational times were still
lower than for the baseline. The duration of training of the baseline approach was
comparable to methods with a threshold set to 0.95 which achieved more stable
results than methods with lower thresholds. Definitely, the longest training times
were related to partial reinitialization, although it was the most efficient method
in terms of the reconstruction error of the best individuals. One of the reasons is
that it is necessary to calculate the dead activations’ coefficient for each particular
neuron, not only for consecutive network layers, which extends the computation
time, especially for wider networks.

4.8 Conclusions
In this chapter, we investigated selected autoencoder models, and on the basis of
the results, proposed three network reinitialization methods that aim to alleviate
the identified problem. We tested them using different datasets, also beyond the
scope of hyperspectral images. We demonstrated that our approaches are able
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to improve network performance through minimization of the reconstruction er-
ror. For hyperspectral images, in many cases they statistically outperformed the
baseline results. In the case of experiments on the MNIST dataset, we used more
complex architectures and different hyperparameters values. We noticed that mod-
els that initially had low values of reconstruction errors, after the application of
reinitialization methods, remained high-performing while low-performing models
have been in many situations improved. It is promising that the presented meth-
ods may repair bad models without spoiling good ones. In the future, one can
apply the reinitialization techniques in a classification scenario, for more complex
architectures like convolutional neural networks and other datasets.

It should be emphasized that the problem of dying ReLU neurons is related
to the suboptimal choice of network hyperparameters, especially the learning rate.
Since in many cases the cost of network training is very high, it is not possible
to perform a full optimization using many sets of hyperparameters. Hence an
algorithm minimizing the negative impact of the dying neurons phenomenon on
network performance would be useful. Furthermore, it is worth considering the
reinitialization approach as a watchdog during the search for optimal hyperpa-
rameters and for a selection or early rejection of unpromising sets of networks
hyperparameters.

The initial results of experiments on the FashionMNIST [161] and the CI-
FAR10 [76] datasets are consistent with those previously with the MNIST. We can
see that neurons trained with ”weak” sets of hyperparameters can be improved, but
we also notice that some models were deteriorated through reinitialization meth-
ods. The proposed solutions need further investigation in different configurations.
Moreover, an important direction of future research is related to optimization of
threshold values for the considered methods. We showed that it has an important
impact on the performance of reinitialization methods and a more detailed analysis
may lead to their improvements. Another option is related to adding random noise
to the existing weights instead of generating entirely new values. These proposi-
tions need to be revised through a series of additional experiments in the future.
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Table 4.4: Mean results of the network reinitialization methods and the baseline
approach (with the corresponding standard deviation) for Experiments 4 and 5.
A filled circle ( ) indicates that a reinitialization method significantly outperforms
baseline, according to the results of the Wilcoxon signed-rank test (p < 0.05).

init. method reinitialization method RMSE abundance error endmember error

Experiment 4 – Samson dataset, loss function: MSE

XGN

baseline 0.036 ± 0.04 0.349 ± 0.04 0.744 ± 0.14
partial reinitialization 0.089 ± 0.03 0.413 ± 0.08 0.451 ± 0.24
single layer 0.019 ± 0.03 0.310 ± 0.06 0.777 ± 0.19
whole network 0.007 ± 0.00 0.276 ± 0.03 0.687 ± 0.11

XGU

baseline 0.052 ± 0.05 0.344 ± 0.05 0.723 ± 0.12
partial reinitialization 0.089 ± 0.03 0.407 ± 0.08 0.375 ± 0.03
single layer 0.020 ± 0.04 0.307 ± 0.05 0.707 ± 0.16
whole network 0.007 ± 0.00 0.270 ± 0.03 0.695 ± 0.11

KHN

baseline 0.047 ± 0.04 0.365 ± 0.03 1.176 ± 0.13
partial reinitialization 0.024 ± 0.01 0.330 ± 0.03 1.100 ± 0.13
single layer 0.028 ± 0.01 0.355 ± 0.04 1.153 ± 0.11
whole network 0.027 ± 0.01 0.355 ± 0.04 1.134 ± 0.13

KHU

baseline 0.053 ± 0.05 0.357 ± 0.03 0.758 ± 0.19
partial reinitialization 0.007 ± 0.00 0.308 ± 0.04 0.733 ± 0.12
single layer 0.014 ± 0.01 0.347 ± 0.03 0.732 ± 0.15
whole network 0.008 ± 0.01 0.316 ± 0.04 0.663 ± 0.17

Experiment 5 – Samson dataset, loss function: SAD

XGN

baseline 0.155 ± 0.01 0.378 ± 0.04 0.882 ± 0.15
partial reinitialization 0.158 ± 0.00 0.289 ± 0.02 0.755 ± 0.09
single layer 0.154 ± 0.01 0.304 ± 0.04 0.730 ± 0.13
whole network 0.159 ± 0.01 0.317 ± 0.03 0.823 ± 0.10

XGU

baseline 0.158 ± 0.01 0.392 ± 0.04 0.879 ± 0.14
partial reinitialization 0.159 ± 0.00 0.283 ± 0.02 0.733 ± 0.10
single layer 0.156 ± 0.01 0.316 ± 0.04 0.752 ± 0.10
whole network 0.157 ± 0.01 0.313 ± 0.04 0.795 ± 0.09

KHN

baseline 0.223 ± 0.05 0.389 ± 0.04 0.939 ± 0.15
partial reinitialization 0.182 ± 0.03 0.300 ± 0.02 0.822 ± 0.07
single layer 0.240 ± 0.06 0.327 ± 0.04 0.797 ± 0.09
whole network 0.221 ± 0.06 0.329 ± 0.03 0.906 ± 0.12

KHU

baseline 0.138 ± 0.01 0.385 ± 0.04 0.977 ± 0.14
partial reinitialization 0.140 ± 0.01 0.301 ± 0.02 0.831 ± 0.08
single layer 0.138 ± 0.01 0.328 ± 0.03 0.827 ± 0.09
whole network 0.138 ± 0.02 0.329 ± 0.04 0.851 ± 0.11
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Table 4.5: Mean results of the network reinitialization methods and the baseline
approach (with the corresponding standard deviation) for Experiment 10. A filled
circle ( ) indicates that a reinitialization method significantly outperforms baseline,
according to the results of the Wilcoxon signed-rank test (p < 0.05).

init. method reinitialization method RMSE abundance error endmember error

Experiment 10 – Jasper Ridge dataset, loss function: MSE

XGN

baseline 0.020 ± 0.03 0.285 ± 0.04 0.894 ± 0.11
partial reinitialization 0.011 ± 0.00 0.289 ± 0.03 0.893 ± 0.08
single layer 0.014 ± 0.01 0.259 ± 0.04 0.714 ± 0.10
whole network 0.119 ± 0.10 0.316 ± 0.09 1.016 ± 0.27

XGU

baseline 0.019 ± 0.03 0.281 ± 0.04 0.899 ± 0.11
partial reinitialization 0.011 ± 0.00 0.281 ± 0.02 0.863 ± 0.08
single layer 0.017 ± 0.01 0.252 ± 0.05 0.685 ± 0.13
whole network 0.112 ± 0.10 0.307 ± 0.10 1.017 ± 0.28

KHN

baseline 0.021 ± 0.03 0.300 ± 0.02 1.033 ± 0.11
partial reinitialization 0.011 ± 0.00 0.300 ± 0.02 1.006 ± 0.06
single layer 0.015 ± 0.01 0.301 ± 0.02 0.999 ± 0.10
whole network 0.038 ± 0.04 0.298 ± 0.02 1.098 ± 0.12

KHU

baseline 0.037 ± 0.05 0.276 ± 0.04 0.881 ± 0.10
partial reinitialization 0.010 ± 0.00 0.273 ± 0.03 0.827 ± 0.09
single layer 0.018 ± 0.03 0.261 ± 0.04 0.795 ± 0.14
whole network 0.028 ± 0.04 0.265 ± 0.05 0.909 ± 0.14
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Table 4.6: Results of network reinitialization methods for 3 best models for each of
the approaches applied. Models were selected according to RMSE on the validation
set. Experiments were performed on the MNIST dataset. Results are averaged over
5 runs. Mean reconstruction errors are presented with the corresponding standard
deviations. In the column entitled ”no. of reinit.” are presented mean numbers of
iterations in which the reinitialization of neurons occurred while t denotes a threshold
value of the dead activations’ coefficient.

no. method t architecture batch size learning rate test RMSE no. of reinit.

1 partial reinit. 0.99 2 layers, 500 neurons 64 0.0001 0.0854± 0.01 98.4
2 partial reinit. 0.99 2 layers, 500 neurons 128 0.001 0.0865± 0.01 15958.8
3 partial reinit. 0.99 2 layers, 500 neurons 64 0.001 0.0871± 0.00 34772.8
4 single layer 0.9 2 layers, 500 neurons 128 0.001 0.0902± 0.01 0
5 whole network 0.95 2 layers, 500 neurons 128 0.001 0.0902± 0.01 0
6 baseline − 2 layers, 500 neurons 128 0.001 0.0902± 0.01 0
7 whole network 0.9 2 layers, 500 neurons 128 0.001 0.0902± 0.01 0
8 single layer 0.95 2 layers, 500 neurons 128 0.001 0.0902± 0.01 0
9 single layer 0.9 2 layers, 500 neurons 4 0.0001 0.0905± 0.01 4.6
10 whole network 0.95 2 layers, 500 neurons 128 0.0001 0.0909± 0.01 0
11 whole network 0.9 2 layers, 500 neurons 128 0.0001 0.0909± 0.01 0
12 baseline − 2 layers, 500 neurons 128 0.0001 0.0909± 0.01 0
13 single layer 0.95 2 layers, 500 neurons 128 0.0001 0.0909± 0.01 0
14 single layer 0.9 2 layers, 500 neurons 128 0.0001 0.0909± 0.01 0
15 baseline − 2 layers, 500 neurons 64 0.0001 0.0942± 0.00 0
16 whole network 0.9 2 layers, 500 neurons 64 0.0001 0.0942± 0.00 0
17 whole network 0.95 2 layers, 500 neurons 64 0.0001 0.0942± 0.00 0
18 single layer 0.95 2 layers, 500 neurons 64 0.0001 0.0942± 0.00 0
19 single layer 0.75 2 layers, 500 neurons 64 0.001 0.1554± 0.00 226.6
20 single layer 0.75 2 layers, 500 neurons 128 0.001 0.1564± 0.01 116
21 single layer 0.75 2 layers, 500 neurons 32 0.001 0.1627± 0.01 441.4
22 whole network 0.75 2 layers, 500 neurons 64 0.0001 0.1671± 0.01 23.8
23 whole network 0.75 2 layers, 500 neurons 64 0.001 0.1693± 0.01 77.8
24 whole network 0.75 2 layers, 100 neurons 128 0.001 0.1701± 0.00 20

Table 4.7: Results of Spearman’s rank correlation coefficient (with p-value) be-
tween the reconstruction error on the test set without reinitialization method and
the number of network reinitializations after the application of a selected method.
Correlation values above 0.7 are shown in bold.

reinitialization method correlation p-value

whole network, t = 0.75 0.717 1.97 · 10−64

whole network, t = 0.9 0.796 1.04 · 10−88

whole network, t = 0.95 0.843 2.15 · 10−109

single layer, t = 0.75 0.672 6.10 · 10−54

single layer, t = 0.9 0.787 2.01 · 10−85

single layer, t = 0.95 0.844 5.71 · 10−110

partial reinit, t = 0.99 -0.037 0.46

119



120



Chapter 5

Conclusions

The following chapter summarizes the work described in this dissertation. We
present a short discussion of topics and results from previous chapters, including
a proof of the thesis. Finally, we outline a few ideas for further work.

5.1 Summary of the work carried out
The overview of neural network architectures used in further experiments was
presented in Chapter 1. Furthermore, we introduced hyperspectral imaging and
related challenges. In Chapter 2 we applied different algorithms for the classifi-
cation of blood and blood-like substances using hyperspectral data. In order to
study the problem of optimization of network architectures, we analyzed various
state-of-the-art architectures, i.e. a recurrent network, 1D, 2D and 3D convolu-
tional neural networks and a multilayer perceptron. We performed experiments
according to the two approaches: Hyperspectral Transductive Scenario (HTC) and
Hyperspectral Inductive Scenario (HIC). The first one is the most common in ma-
chine learning; i.e. the source image of both the training and the test datasets
is the same. The second scenario is more demanding and, depending on the dif-
ferences between datasets, can lead to low-performing models. We have made an
exhaustive discussion of architectures and their results. While in the HTC scenario
the overall accuracy exceeded 90% for the best methods, the network performance
in the HIC scenario fluctuated between 57% and 100%.

The difficulties in HIC arise from, e.g. the differences in scene composition and
sample characteristics as well as mixed spectra [80]. As a consequence, we studied
a special type of neural network, i.e. autoencoders designed for spectral unmixing,
and presented the results in Chapter 3. We performed several experiments using
well-known HSI datasets and identified that the results of some runs are incon-
sistent and that the final pixel reconstruction is strongly dependent on the initial
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set of weights. We verified this hypothesis through the Kruskal-Wallis H-test [78]
and the Conover-Iman post-hoc test [35] based on the results of a series of training
sessions using different sets of hyperparameters, loss functions, datasets, archi-
tectures and weight initialization approaches. We conducted a total of 100,000
single autoencoder training sessions. Our aim was to determine whether at least
one of the series of trained models is statistically significantly different from the
others. In most of the considered cases, the test hypothesis about the equality of
populations was rejected, which means that at least one population is significantly
different from the others. In these situations, we also checked which pairs stand
out. The results indicate that the network reconstruction error is dependent on
the weight initialization. Furthermore, we presented results of spectral unmixing
for each considered network setup and dataset used. We discussed the experiments
carried out and the research problems encountered.

In Chapter 4, after the analysis of a subset of models from Chapter 3, we iden-
tified the dead activations’ and dead neurons’ phenomena in neural networks with
ReLU activation function. This led us to the proposition of several network reini-
tialization methods that aim to mitigate the negative impact of dead activations
and counteract them. We observed that in some cases it is possible to notice many
zero activations, especially in the bottleneck of the tested autoencoders. We veri-
fied this remark using the Spearman’s rank correlation coefficient and confirmed a
strong relationship between the number of dead activations and the final network
reconstruction error, for one of the network’s layers in particular. We proposed
three network reinitialization methods which are designed to alleviate the dead ac-
tivations phenomenon: whole network reinitialization in which all network weights
are drawn from scratch, single layer reinitialization performed for all weights of
the one selected layer and partial reinitialization that changes only some weights
of the selected layer. We evaluated the described methods for a subset of exper-
iments from Section 3.5.4 and, in many cases, we got a statistically significant
improvement in the network performance when compared to the baseline, i.e. the
network without reinitialization. Furthermore, we applied the approach beyond
the scope of hyperspectral images and performed experiments on the well-known
MNIST dataset. The results obtained are promising,; however, further study is
required to fully assess the potential of the presented methods beyond the scope
of hyperspectral datasets.

5.1.1 Proving the dissertation thesis
In this dissertation, we discussed the topic of optimization of deep learning archi-
tectures for hyperspectral data classification. In Chapter 2, through an extensive
study with different neural network architectures and various experiment scenarios
on a representative dataset with blood and blood-like substances, we demonstrated
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the performance gain resulting from choosing an efficient architecture. We also
identified a problem related to the HIC scenario which led to spectral unmixing,
which was considered in the next chapter.

In Chapter 2 we also identified a network stability problem that relies on the
fact that for a given set of hyperparameters some network training runs lead to
scores of a lower level of performance compared to other runs. We observed that
simpler architectures may still achieve competitive results while they remain easier
to analyze. Thus, we selected linear autoencoders as proper architectures for fur-
ther experiments described in Chapter 3, as the stability problem was also present
in the case of autoencoders. Therefore, we performed an extensive statistical study
and we stated that weight initialization has a statistically significant impact on
network reconstruction error after the training session. We conducted experiments
for different architectures, datasets, loss functions, weight initialization methods,
etc. The results obtained in Chapters 2–3 confirm the first part of the dissertation
thesis, i.e. Optimization of deep learning network architectures improves
the performance of neural networks for hyperspectral data.

We decided to investigate selected network models trained in experiments from
Chapter 3. We discovered that some models suffer from vanishing gradients. Fur-
thermore, we identified that low-performing networks struggle with dead activa-
tion problems. Therefore, we proposed three network reinitialization methods that
mitigate the negative impact of this phenomenon and, in many scenarios of the
considered hyperspectral unmixing experiments, lead to statistically significantly
better results. This confirms the second part of the thesis statement, i.e. Weight
reinitialization methods improve the performance of neural networks
for hyperspectral data. Therefore, the results presented in this dissertation
fully confirm the thesis.

5.2 Future research
Based on the performed study, we can specify some promising research directions
that can be considered as future topics:

• Checking whether the application of reinitialization methods improves the
classification accuracy of multilayer perceptrons when compared to the base-
line, i.e. networks trained without reinitialization steps. This idea can be
verified e.g. through addition of a classification layer at the end of the initial
pipeline and its training with the remaining layers being frozen. Finally, the
whole network may be fine-tuned with a small value of the learning rate.
Such an approach can be performed for all the reinitialization methods pre-
sented and compared to networks without these adjustments.
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• Analysis of the application of reinitialization methods in convolutional neu-
ral networks. The number of dead activations may be calculated based on
feature maps and some filters may be reinitialized. It is necessary to mention
that this process has to be performed carefully because zero activations may
be just connected with the lack of individual features, e.g. the absence of
horizontal lines in a given sample when a filter is designed for their detection.
Probably, a broader perspective for the quality assessment of filter responses
for given samples will be useful.

• Using reinitialization methods as a watchdog indicating whether a given set
of hyperparameters leads to high-performing models or not. When a num-
ber of reinitialization becomes large, then the training should be stopped
and a current set of hyperparameters be rejected. This technique can save
calculation time in a complex hyperparameter optimization process.

• Considering the addition of a random noise instead of a full replacement
of weights in the case of models for which the number of dead activations
exceeds the given threshold value. It could be a less disruptive approach for
networks than the reinitialization of weights.

• Blood age estimation using the deep learning approach. In Chapter 2 we
analyzed a dataset with frame images from 5 different moments of time
and comparison scenes from 3 various days after substance spilling. We
discussed the classification of several substances, but one should consider
focusing only on blood and only assessing its age. This task has the potential
for application in forensic science by crime investigators.
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Appendix

Kruskal-Wallis H-test

Let us suppose that we have K data samples {X1, X2, ..., XK}, where the i–th
random sample, Xi, contains ki observations, i ∈ {1, 2, ..., K}. We want to verify
whether all samples come from the same population or if there exists at least one
sample that is significantly different from the others. To use a parametric method
like a one-way analysis of variance (ANOVA) a variance among all populations has
to be equal. In the opposite case, a nonparametric test such as the Kruskal-Wallis
H-test for several independent samples has to be chosen. It is an extension of the
Mann-Whitney approach for two independent samples [78, 156]. Let F (Xi) denotes
the distribution of the i–th random sample. We assume that if the distribution
of at least one random sample differs from the others, it is due to translation or
shift, i.e. if for i, j,∈ {1, 2, ..., K} F (Xi) 6= F (Xj), then F (Xi) = F (Xj + C),
where C is a constant value. We also denote by E(Xi) the expected value of the
random sample Xi while M = ∑K

i=1 ki is the total number of observations. The
test hypotheses can be described as follows [156]:

H0: E(X1) = E(X2) = ... = E(XK), i.e. the expected values (means) of all K
samples are equal.

H1: ∃ i, j ∈ {1, 2, ..., K} E(Xi) 6= E(Xj), that is, the expected value of at
least one sample is different from the expected value of at least one other sample.

To perform the Kruskal-Wallis one-way analysis of variance, it is necessary to
replace originalM observations by their ranks. More specifically, observations from
all samples must be sorted in ascending order. Then, the smallest observation has
to be replaced by 1, the second smallest by 2, etc., up to the largest one, which is
to be assigned rank M . If there are ties, i.e. observations having the same values,
there are replaced by the mean of the ranks which would have been assigned if all
observations were different. After that, one has to compute the sum of the ranks
for each sample. If there are no tied observations among the samples, the test
statistic is expressed by the following pattern:

125



H = 12
M(M + 1)

K∑
i=1

R2
i

ki
− 3(M + 1), (1)

where Ri is the sum of the ranks for the observations from the i–th sample. As-
suming that the H0 hypothesis is true, the distribution of the H-test statistic can
be approximated by the chi-square distribution with K − 1 degrees of freedom.
We reject the null hypothesis at significance level α > 0 if H is greater than the
value of its (1− α)-th quantile.

Suppose that we have t > 0 groups of tied observations. In this case, Equation 1

must be divided by the value of 1 −
∑t
i=1 Ti

M3 −M
, where Ti = ti(ti − 1)(ti + 1) while

ti is the number of ties in the i–th group of ties. Finally, the H-test statistic for
samples with tied observations is derived as follows:

H =

12
M(M + 1)

K∑
i=1

R2
i

ki
− 3(M + 1)

1−
∑t
i=1 Ti

M3 −M
.

. (2)

Conover-Iman post-hoc test
The Conover-Iman post-hoc test is the Fisher’s Significant Difference (FSD) pro-
cedure applied for ranks instead of original observations [35, 156]. The main as-
sumption is that this test can be performed if and only if the H0 hypothesis of
the Kruskal-Wallis test is rejected. In such a situation, means of the i–th and the
j–th samples are different if the following condition is met:

∣∣∣∣∣Ri

ki
− Rj

kj

∣∣∣∣∣ > t1−α2

√√√√(S2M − 1−H
M −K

)( 1
ki

+ 1
kj

)
, (3)

where t1−α2 is the (1 − α
2 )-quantile of the t-distribution with M − K degrees of

freedom, while S2 is the variance of ranks for populations with ties:

S2 = 1
M − 1

 K∑
m=1

km∑
n=1

R2
m,n −

M(M + 1)2

4

 , (4)

where Rm,n is the rank of the n–th observation of the m–th sample. If there are no

tied observations, S2 reduces to M(M + 1)
12 . The application of the Conover-Iman

test is simpler than multiple repetitions of the Mann-Whitney test due to the fact
that there is no need for multiple ranking recalculations to compare each pair [35].
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Spearman’s rank correlation coefficient
Suppose that we have a k–element simple random sample
(x1, y1), (x2, y2), ..., (xk, yk) selected from the random variables X and Y . For
j ∈ {1, ..., k}, we replace (xj, yj) by (qj, rj), where qj is the rank of observation
xj in the sample x1, x2, ..., xk while rj is the rank of observation yj in the sam-
ple y1, y2, ..., yk. A rank of xj, i.e. qj, is its position in the ordered sequence of
observations.

A Spearman’s rank correlation coefficient, rs, between two random variables X
and Y is expressed by the following formula [73]:

rs = 12
k(k2 − 1)

k∑
j=1

qj · rj −
3(k + 1)
k − 1 . (5)

Wilcoxon signed-rank test
The Wilcoxon signed-rank test is applied for the comparison of paired sample
observations. This test is a non-parametric analogue of the two-sample t-test [73,
74]. Originally, it was described by Frank Wilcoxon in his paper [158].

Suppose that we have two random variables X and Y with continuous cumu-
lative distribution functions F and G, respectively. Let us also assume that we
have k pairs of observations (x1, y1), (x2, y2), ..., (xk, yk) where xi, i ∈ {1, 2, ..., k},
is sampled from X while yj, j ∈ {1, 2, ..., k}, is sampled from Y . Pairs have to
be mutually independent, but two variables of a given pair may be dependent.
Furthermore, we require that pairs have the same two-dimensional distribution.
For each pair, we calculate the difference zi = xi − yi, i ∈ {1, 2, ..., k}. We do
not assume that a distribution of differences is normal. We have to verify a null
hypothesis H0 that F (t) = G(t) for each t ≥ 0, against the alternative hypothesis
H1 which states that F (t) ≥ G(t) for each t ≥ 0 and F 6= G. Similarly as in
the case of the Spearman’s rank correlation coefficient, during the calculation of
the test statistic, we rank absolute differences |xi − yi|. Then, we sum the ranks
corresponding to positive differences.
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