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1 Doctoral dissertation motivation 
Ionizing radiation is a ubiquitous factor that has always accompanied human life. Radiation 

exposure may bring adverse health effects, considering the absorbed radiation dose. Still, this factor 
has gained a lot in value due to the development of branches of medicine that currently widely use 
techniques for treating and preventing diseases utilizing the radiation phenomenon affecting the human 
body. The analysis of this factor's influence on the processes inside living organisms, particularly in the 
functioning and changes in individual cells of complex organisms, could be the key to minimizing the 
adverse effects of ionizing radiation in everyday life. Moreover, the possibility and necessity of 
conducting such considerations is provided not only by the aspect mentioned above of the ubiquity of 
this factor but also by the development of technologies that allow insight into the changes taking place 
at the cellular level. The need to study these aspects is all the more critical as more high-dimensional 
data is currently being generated, offering many analytical possibilities, but not supported by 
appropriate tools, and above all, by sufficient caution and prudence when processing complex datasets. 

1.1 Theses of the doctoral dissertation 
The presented doctoral dissertation is based on two fundamental hypotheses:  

1. Combining feature engineering methods and advanced dimensionality reduction 
techniques with unsupervised clustering algorithms allows for the efficient identification 
of white blood cell subtypes in single-cell RNA sequencing data.  

2. The proposed intelligent and stratified algorithm of the training set construction supports 
the classification system, especially in the case of heterogeneous datasets. 

1.2 Objectives of the doctoral dissertation 
This doctoral dissertation assumes two main goals of the single-cell sequencing experiments data 

analysis: to create the analysis workflow necessary for recognizing 1 Gy dose irradiated white 
blood cells gene signature and to detect and separate white blood cell subpopulations in the single-
cell sequencing data. Additionally, one side goal is assumed: the comparison of two machine 
learning-based methods in terms of control and irradiated cells classification and resulting 
irradiated cells' genetic profiles. All these goals are affiliated with implementing many bioinformatics 
methods, especially the analysis workflow that automates specific analysis steps. The most important 
in terms of content and giving the most significant opportunities for subsequent manipulation of the 
processes of the applied analysis steps is the construction of an appropriate workflow related to the 
crucial stage of work, feature selection. 
 
 
Detection of irradiated cells gene signature 
 

Detection of the genetic profile of irradiated cells for high-dimensional data from single-cell 
sequencing experiments not only creates a vast field for applying many methods and innovative 
solutions. The analysis of such complex data carries the burden of analyzing very large in terms of 
dimensionality as well as the degree of complexity and possible hidden interactions or other properties 
of such data, which must be very carefully recognized before starting the proper analysis, leading to 
the achievement of the assumed goal. Failure to pay special attention to this aspect may lead to 
distortions in the results obtained and the lack of full explanation, and, in extreme cases, contradictions 
and incorrect interpretations of the results. The gene signature recognition of 1 Gy dose irradiated cells 
forces the implementation of the machine learning-based method that will be well-thought-out and 
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adjusted to the complexity of the task and the analyzed data. After introducing scRNA-seq white blood 
cell data, the created algorithm should learn the specific gene structures that allow for the most effective 
separation of normal and irradiated cells. Due to the significant complexity of the research problem, it 
is necessary to use a combination and cooperation of many tools and methods that determine the impact 
of individual genes and gene structures, including gene cooperation and joint combined influence on 
cell differentiation. One of the essential parts of the proposed workflow is the features selection 
procedure on detailed and iteratively carried out modeling methods. This process is often 
underestimated but extremely important. It affects the duration of subsequent analyses and, above all, 
the interpretability of the results. As an effect of the feature selection procedure, it is assumed that the 
list of selected genes will be created corresponding to the given problem, so the ionizing radiation factor 
influences gene expression differentiation. Thus, after applying this factor, the detected gene signature 
can be used to make a biological inference about the structure and strength of changes in white blood 
cells. It will also be essential to utilize the detected irradiated cells’ genetic model in a broader and 
more general way, i.e., to distinguish control and irradiated cells derived from single-cell sequencing 
experiments for cell classification purposes. Conclusions from this work stage may benefit medical and 
industrial approaches. 

 

 
 

Comparison of machine learning-based methods 
 
The comparison of the application and the results obtained from two machine learning techniques, 

i.e., modeling based on logistic regression and neural networks, must address the two most important 
aspects of the work. The first is, of course, the stage of feature selection, as a result of which the gene 
signature of cells irradiated in an ex vivo environment will be determined. There is assumed that the 
signature for both approaches should be similar. However, the absolute number of features included in 
this signature is not considered, but their specific names and functions are. The expected similarities in 
gene composition are because only some of the genes present in the panel should show a specific 
response to irradiation. Moreover, the task of this work is to show these genes and exclude the others, 
which are not related to the radiation response but are responsible for several other functionalities, such 
as housekeeping genes, cell cycle genes, or genes responsible for the very differentiation of cells and 
their heterogeneity about the entire dataset. The diversity of the genetic composition of the signature 
may result primarily from the fact of prioritizing certain "behaviors" of genes (expression diversity or 

 
Figure 1. The aim of the doctoral dissertation is presented in a graphical form - the use of the genetic profile of irradiated 

cells for observation classification purposes. 
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cooperation of selected genes) due to internal algorithms and the diversity of the approaches used in 
this respect. 

The second compared aspect, i.e., the generally described quality of the classification of control and 
irradiated cells in cooperation with the selected genetic profile, will make it possible to determine the 
usefulness of both solutions numerically and thus directly. It will also provide a broader view of the 
pros and cons of their use in the context of high-dimensional data. By design, the methodology woven 
into neural networks is much more complicated in terms of implementation than a simple learning 
algorithm based on logistic regression. The purpose of this stage of the work is to check whether any 
of these methods prevail in the case of the analyzed data, and if so, to what extent and in what context. 
The purpose of the comparison should be both the mentioned degree of complexity and the time 
necessary to carry out the calculations, but above all, what we can gain in the context of the clarity and 
explainability of the results, as well as the possibility of application and adaptation to a specific research 
problem and the specificity of the analyzed data. 
 
Detection of white blood cell subpopulations 
 

Recognition of cell subpopulations is another aspect directly related to different cell subtypes in the 
analyzed white blood cells. Such analysis of cell heterogeneity may open further comparative and 
analytical possibilities for the undertaken research. Differences in the responses of white blood cell 
subtypes may be significant enough to interfere with the self-learning classification algorithms. Due to 
this, existing subpopulations could significantly impact the classifiers’ learning process results. 
Particular subtypes of white blood cells differ significantly not only in the case of their responses to 
stress factors such as ionizing radiation but also in terms of the sensitivity of such a response. Some 
subtypes of white blood cells are very sensitive to changes in the surrounding environment,                    
which interacting even at low intensity may trigger apoptosis pathways. On the other hand, some of 
them, up to a certain threshold level, do not develop significant reactions to environmental changes. 
Due to such large fluctuations and subpopulation variability of individual white blood cell subtypes, it 
becomes an aspect that has a potential impact on the quality and accuracy of the results related to the 
genetic profile of irradiated cells. Classifier learning processes may focus on irrelevant aspects from 
the point of view of the problem under study and give the advantage on the described subpopulation 
relationships. Consequently, it may lead to the determination of a genetic profile containing interesting 
radiation response genes and some features responsible for the internal heterogeneity of the cell set. To 
avoid the distortion of the results, this aspect of differentiation in terms of subpopulations of white 
blood cells should be considered and treated as a priority. If such variability is detected, appropriate 
measures should be taken to prevent the influence of this factor on the obtained genetic profile of 
irradiated cells. In the detected genetic profile, there is no space for additional features that determine 
an aspect other than the response to ionizing radiation. 
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2 Introduction 
Radiation is a naturally occurring factor on Earth that is an integral part of our lives. It means that 

our life has permanently moved, developed, and evolved in the presence of radiation. We come into 
contact with radiation not only consciously due to its omnipresence. We are exposed to even minimal 
doses of radiation every day. We have direct contact with radiation in our work, food, and water. Our 
houses are also a source of radiation, not only because of the more and more modern appliances for 
everyday use but also because of the material our houses are made of. Houses built of stone and brick 
have higher radiation levels than houses constructed of wood [1]. This shows that not only is what 
appears to be the apparent emission source but also several radiation sources that people need to be 
aware of. In the real world, many unconsciously selected environmental elements are potential emitters. 
The air we breathe to produce energy and live is also a significant radiation source. Of course, the level 
of radiation, unquestionably related to its effect on our bodies, is also essential. This level can vary 
significantly depending on where we work and live. Our organisms, tissues of skin, muscles, bones, 
and fluids inside our bodies also have naturally occurring radiating elements [1]. Analyzing the effects 
of ionizing radiation on the human body is a highly complicated process, often requiring many 
analytical tools and techniques. 

A completely new single-cell sequencing method was beneficial for obtaining material for 
bioinformatics analysis. This method allows for simultaneously studying the genetic material of many 
cells, thus creating a pervasive and accurate set of information about the expression of individual genes 
[2] [3]. This method is much more accurate than its predecessor, the bulk analysis of genetic material, 
which averaged expression values over many cells [4] [5]. In the scRNA-seq research, it became 
possible to determine the expression (more precisely estimated count values) of each gene in the panel 
for individual cells, thus creating more extensive but highly informative sets of count matrices [6]. As 
a result of applying this technique, it has also become possible to automatically distinguish individual 
cells in the context of cell subpopulations or even to determine the difference in responses of individual 
cells to the applied external factor, such as ionizing radiation. 

The challenge of the emerging scRNA-seq technique, more precisely of the multidimensional and 
complex count matrices generated, is effectively tackled in bioinformatics analysis. This kind of 
analysis is very progressive nowadays. After introducing the new method of sequencing, all the tools 
whose task was to meet the increasingly precise and more frequent challenges posed by biologists and 
doctors took place very quickly. To date, some tools and solutions have been developed for the quality 
control of data matrices, normalization of counts, or prediction based on a single-cell data set. Among 
the most popular tools are Partek Flow [7], Cellxgene [8], ROSALIND [9], and Cellenics [10]. These 
tools differ in the possibility of using data from different single-cell technologies and the range of 
possible steps in bioinformatics analysis. Apart from the technology in which the data was generated, 
their format is also essential. Not all tools work with raw data in fastq files, and not all support the 
already pre-processed count matrices. Several others support the transition processes between the stages 
of creating an input data structure suitable for analysis, such as Kallisto [11], STARsolo [12], or analysis 
protocols generated directly by sub-teams of companies dealing with single-cell data sequencing. 

However, a large part of the tools do not answer the problem of many possible goals of the analysis; 
hence, there are still not many universal solutions that will fit each research problem perfectly [13]. 
Many existing tools often do not allow the user to select the particular steps of the study thoroughly or 
to omit the irrelevant steps in the context of the goal set. Hence, modifying existing or creating new 
tools is still necessary. For a scrupulous researcher, it is crucial to understand the individual steps of 
the tool's operation and to be able to interpret the results biologically. It is, therefore, essential to create 
a tool that will provide many possibilities regarding various research problems, as well as the fullest 
possible editability of individual parameters and steps of the analysis. This way, the tool will be able to 
create a uniform research structure, fully adapted to the data's needs and the research analysis's purpose. 
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2.1 Sources of radiation 
Radiation sources can be divided into those that occur naturally and those that man has produced. 

The naturally occurring sources are cosmic radiation and radioactive minerals on the Earth (terrestrial) 
and the human body (internal). 

Cosmic radiation is caused by highly energetic particles from the sun and stars entering the Earth's 
atmosphere. These particles are a direct source of radiation falling to the ground or indirect if it reacts 
with the atmosphere's components, influencing the type of radiation [14]. Suppose we consider the 
distribution of cosmic ray levels; of course, the closer to the source, the greater the dose. Therefore, the 
height above sea level of the place of work, residence, or stay significantly defines the received dose - 
the higher, the greater the received dose [15]. 

Internal and terrestrial radiation sources are related to the presence of radioactive minerals. This 
radiation is associated with the company and decays mainly of uranium, thorium, and radium [16]. The 
presence and decay of radioactive elements began before time began. Radioactive elements, their trace 
amounts, and decay products can be found everywhere in our environment [14]. These elements occur 
naturally in rocks, groundwater, and soil. Also, there is radon in the air, which directly affects living 
organisms, and contains radioactive carbon and potassium. However, the absorbed radiation dose 
differences may be significant for different regions. Not only is the terrain significant, but also the 
differences in uranium and thorium concentrations in soil in the various areas [17]. On the other hand, 
the general level of external radiation, considering terrestrial emission, is so low that its impact on 
human health is unlikely [17].  

The last naturally occurring factor of radiation is a living organism, including the human body, 
which from birth to death, is characterized by the presence of both radioactive potassium-40 and 
carbon-14 [18]. Additionally, radioactive minerals (carbon, potassium, uranium, thorium, radium) can 
enter the body through food, drink, and air. The last mentioned case is crucial as most human exposure 
to natural radiation, especially radon, comes from breathing, the largest source of natural radiation [17]. 
The human body contains insignificant amounts of radioactive elements due to its continuous 
metabolism [14]. 

Radiation related to human presence and activities can be classified into two subcategories: radiation 
in public life and radiation linked to occupation [19]. Radiation in public life includes both sources of 
radiation coming from medical procedures and consumer products. Some medical procedures, one of 
the essential sources of radiation created by man, are related primarily to saving health and life and 
improving the quality of life. We have no direct influence on this type of emission, and the principle of 
improving patients' condition should undoubtedly be followed. However, it should be remembered that 
very often, undertaken treatment procedures are associated with exposure to significant radiation doses. 
For example, whole-body computed tomography (single design) exposes the patient to 10 mSv, while 
the annual dose of cosmic rays ingested at sea level is 0.3 mSv [14]. Radiation associated with consumer 
products comes from many areas of human life: building and road construction materials, combustible 
fuels (including gas and coal), X-ray security systems, the ceramics industry, tobacco, and smoke 
detection systems. People are also exposed to lower doses of radiation from the nuclear fuel industry, 
from extraction to disposal of spent fuel, and precipitation from atomic weapons testing and nuclear 
reactor accidents (Chernobyl) [19].  

 Today, many professions and jobs increase workers’ exposure to radiation. The occupations 
requiring special attention are related to the fuel cycle, industrial radiography, radiological and nuclear 
medicine departments, atomic power plants, and research laboratories. Depending on the work 
performed and the radiation sources present, different exposures exist in different areas. On the other 
hand, due to the particular vulnerability to the negative impact of the radiation dose taken in the course 
of work, the workers of the exposed areas are under exceptional control of the organs whose task is to 
limit the exposure of adults working in the radioactive environment [19]. Instruments called dosimeters 
are often used to determine the degree of exposure. Table 1 is based on a report by the National Council 
on Radiation Protection & Measurements (NCRP) [20] and lists radiation doses from various sources. 
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2.2 Types of radiation 
As shown before, the presence of radiation in our lives is inevitable. Moreover, nowadays, radiation 

is utilized in many areas of life. Radiation surrounds us in everyday life, both in the environment of our 
life and at work, and when undertaking many medical procedures necessary to maintain health and life. 
It is essential to distinguish between two types of radiation: non-ionizing and ionizing. Additionally, 
ionizing radiation is divided into alpha particles, beta particles, gamma rays, and X-rays. 

The difference between the two types of radiation is that non-ionizing radiation carries much smaller 
energy than ionizing radiation. This means that when non-ionizing radiation interacts with an atom, it 
does not cause ionization, i.e., it does not change the neutral charge of the atom to positive or negative. 
Examples of non-ionizing radiation are microwave waves, radio waves, visible light, laser light, and 
ultraviolet light. This radiation cannot ionize, but it can cause the atom in the molecule to move or even 
make it vibrate [1]. Due to this, some non-ionizing radiation can seriously damage the tissues of living 
organisms when the exposure is too high. A vivid example of the described case is sunburn or skin 
cancer, both arising from overexposure to UV radiation. On the other hand, ionizing radiation has 
enough energy to remove electrons from the atom, thus creating ions. This type of radiation, when used 
wisely, has excellent potential in both medicine and industry. Still, if used without prudence and the 
necessary protection against their operation, it can cause serious health problems, irreversible effects, 
and even in extreme cases, the death of a living organism. 

Alpha particles are made of two protons and two neutrons from the nucleus. They are positively 
charged and heavy (the heaviest type of radiation particles); therefore, they do not travel far by air. 
Moreover, they cannot penetrate through clothing, paper, a thin layer of water, or even skin. Alpha 
particles are emitted by naturally occurring minerals such as uranium-238, thorium-232, rad-226, 
polonium-210, americium-241, and radon-222. 

Beta particles are electrons formed from an atomic nucleus during radioactive decay and are not 
attached to the nucleus. They are negatively charged particles of low mass and can travel farther by air 
than alpha particles. Beta particles can penetrate the skin into the deepest layers of the epidermis, where 
new cells are produced. The clothing partially protects against this type of radiation. Instead, a sheet of 
plastic stops them. Examples of radioactive materials that emit beta particles are hydrogen-3 (tritium), 
carbon-14, phosphorus-32, sulfur-35, and strontium-90. 

Gamma rays and X-rays are widely used in medicine nowadays. Contrary to the previously 
described radiation particles, they do not have any charge or mass and are therefore called photons. 
These types of radiation often accompany alpha and beta particles as well. They can carry an extensive 
range of energies. Gamma and X-rays pose a radiation hazard to the entire body because they penetrate 
most materials. They can travel a long way in the air and human tissues. To protect against gamma 

Table 1. Radiation sources and their radiation dose. 

Source of radiation Radiation dose [mSv] 
Whole body CT (single procedure) 10.00 

Upper gastrointestinal X-ray (single procedure) 6.00 
Head CT (single procedure) 2.00 

Cosmic radiation – high elevation (annual) 0.80 
Mammogram (single procedure) 0.42 

Cosmic radiation – sea level (annual) 0.30 
Radiation in the body (annual) 0.29 

Terrestrial radioactivity (annual) 0.21 
Chest X-ray (single procedure) 0.10 

Leaving near a nuclear power station (annual) <0.01 
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rays, dense materials should be used. Lead or thick layers of concrete are used to stop this type of 
radiation. The difference between gamma rays and X-rays is that they come from different parts of the 
atom. X-rays are emitted from a process outside the nucleus on electron shells, while gamma rays come 
from inside the nucleus. Generally, X-rays contain less energy than gamma rays and have a lower 
penetrating force. The gamma-emitting radionuclides are technetium-99m (metastable), iodine-125, 
iodine-131, cobalt-57, cobalt-60, cesium-137, and radium-226. 

2.3 Health effects of radiation 
Even though judiciously and carefully used radiation brings undoubted benefits in many areas, such 

as medicine or industry. But if treated without due fear, it can cause irreversible damage to human 
organisms. All types of radiation carry energy that, when entering the tissues, can destroy cellular 
functions and change the genetic material. Of course, how the exposure will affect the body depends 
on three key factors the speed at which a specific dose of radiation was received, where the dose was 
absorbed, and the body's sensitivity to radiation. If the entire body is irradiated, a much more harmful 
effect can be expected than if only a specific part of the body is irradiated. The dose rate is a particular 
radiation dose delivered to the body within a specific time window. However, how a certain dose of 
radiation will affect the tissues depends mainly on the age and general condition of the body. The 
developing fetus is most exposed to the harmful effects of radiation. Young people, whose cell division 
and tissue development are rapid, are also at an increased risk. People with immune system defects and 
the elderly are also at increased risk [21].  

Generally, the effect of radiation on a living organism and its tissues does not differ from that of 
other toxic substances. When a cell is destroyed, three main things can happen. The first is the complete 
repair of the changed cell and its return to normal functioning. Another is when the cell does not repair 
properly, which changes the cells’ functions. This can lead to the development of neoplastic disease. 
The final aspect is cell death, which is not always the worst option. If a few misshapen cells die, the 
body will be fully functional again, and the changed cells will not pose a risk of cancer development. 
However, if too many cells within a given organ die, it may result in organ failure, which in critical 
situations will lead to the organism's death [21].  

Irradiation exposure can be divided into three categories high, medium, and low. Exposure to 
radiation, such as nuclear weapons use, causes massive damage to cells, tissues, organs, and the entire 
organism. On the other hand, careful control of high doses of radiation can save lives. In cancer 
therapies, high doses of radiation are aimed directly at specific areas of cancer cells, which causes their 
destruction without the need to irradiate other parts of the body. High levels of radiation are doses above 
1000 mSv [1]. The higher the radiation dose, the greater the chance of death. Due to the sudden death 
of many cells, high doses of radiation can trigger a violent response in the body, such as Acute Radiation 
Syndrome (ARS). It is a disease resulting from irradiating the whole body, or a large part of it, with 
high doses of radiation over a brief period. Sensitive to the harmful effects of radiation are primarily 
cells in the mitotic phase, where the genetic material is most exposed. Among the white blood cells, 
lymphocytes are the line most exposed to ionizing radiation, the first to be depleted in ARS [22].  

Moderate exposure to radiation does not kill the exposed organism but can cause various cellular 
changes. The changed cells, dividing into new cells, can produce abnormal ones. The neoplastic process 
may begin with the appropriate accumulation of altered cells within a given tissue or organ. Exposure 
to moderate radiation levels can also cause changes in reproductive cells, which can be passed on and 
accumulated over the next generations [1]. 

Exposure to low doses of radiation comes primarily from the environment that affects    the body, 
and these doses can also damage reproductive cells and lead to cancer development. They affect cells 
and tissues but do not immediately cause problems with the functioning of organs or the body. 
Moreover, low doses of ionizing radiation can even stimulate DNA repair processes [1].  

The influence of particular levels of radiation on living organisms is intuitive. But it is also essential 
to know how different types of ionizing radiation can affect the body. Alpha particles are hazardous in 
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their effects because the ionizations they cause are very close to each other, so they can transfer all the 
stored energy to a limited number of cells. Beta particles have greater penetrating power than alpha 
particles, but the ionizations they cause are much more dispersed in space. Additionally, pollutants that 
emit beta particles that remain on the skin for long periods can cause severe skin damage. The last type 
of radiation, gamma radiation, thoroughly permeates the human body. In this way, it can cause 
ionizations that damage tissues and genetic material. 

The complete list of recommendations and effects of ionizing radiation issued by the International 
Commission on Radiological Protection [23]. It describes in detail the biological effects of ionizing 
radiation depending on the dose taken, the issues of exposure to radiation in connection with medical 
procedures, and environmental facilities subject to special radiological protection. 

2.4 Single-cell RNA-sequencing method 
Single-cell RNA sequencing is a technique that extracts information about the expression of 

individual genes. A distinctive feature of this technique is that the expression information relates to a 
single, specific cell and not the averaged values for the set of analyzed cells, as in the previously utilized 
data acquisition methods. Such advanced and detailed technology allows for studying many aspects of 
biologists' dilemmas with unprecedented accuracy and many new possibilities that have become sincere 
thanks to scRNA-seq. 

Currently used scRNA-seq protocols involve five steps: isolation of genetic material from single-
cell RNA, reverse transcription, amplification, library building, and sequencing. The isolation of the 
research material is a crucial stage from the point of view of the subsequent sequencing steps, but it 
requires careful selection of viable cells. At this stage, several different possibilities appear, with the 
choice of techniques for isolating single cells or the appropriate indexing of single cells [24]. The 
separated cells must then undergo cell lysis so that the genetic material accumulated inside the cells 
becomes available and to capture as many RNA molecules as possible. In this step, polyadenylated 
mRNA determination using poly[T] primers is often used to avoid analyzing molecules other than those 
of interest. Then, as a result of reverse transcription, mRNA is transformed into complementary DNA 
molecules (cDNA). At this stage, various types of cDNA tags are often used. One is the unique 
molecular identifier (UMI), which uniquely identifies individual mRNA molecules recovered from one 
cell. Such molecule marking procedure is used before the amplification step as it allows the 
determination of read families of the same RNA fragment. After the PCR process, i.e., the process 
leading molecules marked with cDNA amplification, the collected material is combined and sequenced. 
Because, in theory, any eukaryotic cell can be analyzed using scRNA-seq [24], biomedical researchers 
have taken up the challenge of creating a transcriptomic atlas for each type of human cell called the 
Human Cell Atlas [25]. It was developed to create maps of different cell types through which we can 
describe and understand their complex functions and communication networks. 

Due to the great interest of researchers in the scRNA-seq methods, explained by the great potential 
of this technique of biological data acquisition, many protocols have been developed, which include 
the subsequent and very detailed steps of the analysis. The creation of many instructions for scRNA-
seq is related primarily to the type of analyzed cells and the study’s intended purpose. For example, 
poorly differentiated cell subtypes analysis may differ from analyzing the cellular response to a specific 
external factor. The protocols also vary in detail, for example, the minimum number of mRNA 
molecules necessary to determine the expression of a given gene. Therefore, some are more specific    
for poorly expressed genes, and the significance of this aspect entirely depends on the goal of biological 
data analysis. 

Upon receipt of the raw sequencing data, the question arises, how to carry out further analysis steps 
to achieve the intended biologically interpretable goal? The answer to this question is not simple and 
unambiguous, mainly due to the sequencing data's rather complicated structure and the data analysis's 
specificity, where precision in the decisions made is essential. Platforms that perform sequencing come 
to the rescue, creating free applications for customers that enable fundamental data analysis. However, 



| Katarzyna Sieradzka 

13 
 

in this case, and the possibility of generally available data analysis packages already available on many 
programming platforms, there is a problem with the 'black box' in which we do not know how the data 
is processed. Moreover, we do not have complete control over the subsequent stages of the analysis. 
Therefore we are wondering whether the data is analyzed in a way that will ensure the achievement of 
the set goal. There is a need for the work of specialized bioinformatics, who becomes a mediator 
between a biologist who expects biologically interpretable results and a programmer whose task is to 
implement appropriate software that gives a full range of analytical, control, and modification 
possibilities for each stage of the study. Until we can use tested algorithms and platforms that meet the 
requirements mentioned above, including complete adaptability to the data type and purpose, it is 
necessary to create analysis tools and protocols related to only a single study. 

2.5 White Blood Cell subpopulations 
The problem of cell subpopulation identification is not yet widely discussed in the literature, 

especially when considering the set of white blood cells. Looking from the perspective of the generality 
of the collection, in the context of the recognition of cell subpopulations in data from single-cell 
experiments, the most significant expenditure is currently on a very detailed analysis of specific types 
of cells in terms of their internal variability. Until recently, the problem of identifying cell 
subpopulations in a biological data set was based only on the manual interpretation and assignment of 
cells due to their phenotype or morphology [26]. Nowadays, due to the increasing automation of 
biological data acquisition processes and the introduction of more and more accurate methods of 
obtaining these data, such as the single-cell technology generating particularly high-dimensional data, 
it is also very desirable to automate the processes of recognizing specific cell structures, or general 
analysis of biological data sets. Such automation aims to accelerate the recognition of new, unknown, 
and rarely occurring cell types. The immune system is an excellent field for such analyzes. Given the 
high diversity of all pathogens and having high adaptive capacity, the immune system, by definition, 
must contain an enormous variety of individual cells differing in type, subtype, or phase of the cell 
cycle. With such advanced technology as single-cell sequencing, the only limitation is the availability 
of algorithms enabling an insight into the detail of the composition of biological matter and the 
processes taking place in it. Because of this technology's introduction, it became possible to look even 
deeper into specific types of cells, thus dividing cells previously assigned to the same category into 
smaller classes [27] [28]. Considering the discovery of white blood cells in 1843, any further 
technological advances, whether in obtaining biological data or complex analysis, made another 
building block leading to the present state of knowledge about the functioning and heterogeneity of 
these blood components. Moreover, it has also become possible to better understand the functioning of 
individual cell subtypes in the context of pathways of biological processes. This has made it possible 
to understand many previously unclear aspects of the immune system’s functions and adaptations. It is 
thanks to the simultaneous development of ever more accurate and faster computer analysis and data 
visualization technologies, as well as the accompanying enormity of acquired data that scientists have 
had the opportunity to view increasingly complex structures, explaining the heterogeneity of biological 
data at a lower and lower level of complexity [29]. This is why there is a growing need to develop more 
automated techniques. Using complex data analysis protocols based on manual foundations is 
sometimes even impossible. Therefore, there is an increasing need to produce universal automatic tools 
for processing and in-depth data analysis with the lowest possible level of human interference.  

Despite being divided into separate subpopulations showing differences in detailed functioning and 
participation in specific biological processes, white blood cells have some common features. These 
cells arise in the bone marrow and can be found successfully in blood and lymph tissues. They are a 
crucial part of the immune system, to which we owe the ability to maintain life in contact with various 
pathogens. Moreover, looking globally, the broadly understood evolution phenomenon can occur. 
White blood cells fall into two main groups: granulocytes and agranulocytes. Instead, these two groups 
fall back into many more minor subtypes (depending on how accurately we want to judge their 
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division). Granulocytes are broadly divided into neutrophils, eosinophils, and basophils.                 
Conversely, agranulocytes contain subtypes such as lymphocytes (including T-cells, B-cells, and NK-
cells) and monocytes. However, the most significant percentage is due to neutrophils, which constitute 
approximately 50-70% of WBCs. Subsequently, due to the percentage share in the WBCs fraction, 
there are lymphocytes (25-35%), monocytes (4-6%), eosinophils (1-3%), and basophils (up to 1%) [30]. 
T-cells constitute the most numerous fraction among lymphocytes, occupying 80 to 90% of its fraction, 
leaving B-cells second and NK-cells third in the percentage share. 

Both T-cells and B-cells are responsible for fighting diseases. Their spectrum of activity, however, 
differs slightly [31]. T-cells respond to viral infections, support other cells' immune function, and 
destroy cancer cells. On the other hand, B-cells are specific in response to bacterial infections. 
Monocytes, by transforming into macrophages, gain the ability to eat microorganisms and get rid of 
dead cells. This increases strength and affects the proper functioning of the immune system. The most 
abundant neutrophils allow microbes to be trapped in infections by ingesting or destroying them with 
enzymes. Besides, basophils and eosinophils produce necessary enzymes in allergic reactions, 
inflammations, and parasitic infections. 

A fascinating study published by R. C. Wilkins et al. [32] in 2002 showed that white blood cells 
have significantly different cellular responses to the radiation factor. This analysis considered 
subpopulations of granulocytes, B-cells, NK-cells, and T-cells (divided into two subgroups). Utilizing 
a modified neutral comet assay, the apoptotic fraction of the control sample and the sample irradiated 
with X-rays were analyzed. The experiment was carried out in an in vitro environment. As a result of 
examining the apoptotic fraction of control cells, it was shown that the highest fraction of spontaneous 
apoptosis characterized granulocytes. The subpopulation of B-cells and NK-cells also showed a high 
index, while the lowest index described the T-cells fraction. Moreover, as a result of cell irradiation, 
the granulocytes again showed the highest value of the apoptotic fraction, while the most significant 
increase occurred among the T-cells subpopulation. This indicates a very high sensitivity of the T-cells 
subpopulation to ionizing radiation. 

2.6 Classification problem 
The problem of cell classification is not trivial, mainly due to the complex structure of biological 

data. Their increasing volume, both in the context of the classification entities and the number of 
features, is caused by developing subsequent, more detailed data acquisition techniques. Two concepts 
are fundamental in the case of the classification of high-dimensional data. The first is data disruption 
that often occurs with modern, meticulous data acquisition techniques. Due to their high accuracy, the 
importance of controlling the disturbances is also increasing so that the analytical procedures are 
entirely focused on recognizing the heterogeneity of the sets or analyzing the factors specified for 
testing. The disorders arising at the data preparation stage may effectively hinder or prevent identifying 
specific data differentiating factors. The second essential aspect related directly to the high 
dimensionality of the data is the increase in the number of features irrelevant from the point of view of 
the research problem. Analyzing all generated and available features often leads to a significant and 
unprofitable increase in computational and physical costs for analyzing such complete data.  

The classification problem is a two-step process without considering the apparent differences 
between the existing methods. The first stage is based on constructing the model. It consists of the 
learning and validating processes. Separating the train, validation, and test sets cautiously is essential. 
They should reflect the analyzed data as best as possible, without introducing additional disturbances 
in the critical process of model learning, in the form of, for example, uneven or unreal distribution of 
cells in subsets. The train and validation sets are used to build the model. The train set is utilized to 
develop appropriate weights for the introduced features. Then the validation set is iteratively used to 
self-correct the estimated weights or to control the learning process. The second step of building a fully 
functioning model is based on fine-tuning the ability and quality of classification of individual 
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observations. Instead of classification, the goal is to create a complete profile of the differentiating 
features of a set of observations. 

Currently, there are many different classifier-building methods. One of them is the quite widespread 
method of decision trees. The undoubted advantage of this method is the relatively quick construction 
of the entire decision tree compared to other methods. This method makes it possible to determine 
whether an element belongs to a specific class based on a series of decisions [33]. Moreover, this 
method can be successfully used in the case of a multi-class problem. The deeper we look into the 
resulting decision tree, the more complicated the decision and the rules for determining the affiliation 
of the observation. On the other hand, decision trees have one major drawback; it is only possible to 
discover the correlation between the data with the need to develop additional calculations. 

Another exciting example is the neural networks method. These are computational systems inspired 
by the operation and construction of biological neural networks found in the brains of animals. 
Collections of interconnected nodes are called neurons, which are supposed to reflect neurons in 
biological brains. Neurons communicate through connections that carry information. Each neuron 
performs appropriate calculations based on applying nonlinear functions to each input signal and 
transmits the result to the subsequent neurons connected. A crucial element in constructing the entire 
network are weights assigned to signals from individual neurons [34]. Such signals can increase or even 
decrease the strength of the conducted signal. Moreover, neurons are often grouped into layers between 
which signals can be transformed differently [35].  

The following solution for classifiers inspired by natural biological processes is the genetic 
algorithm, belonging to a larger group of evolutionary algorithms [35]. This method is based on the 
elements of Darwin's theory of evolution based on aspects such as mutation, selection, and crossover. 
These algorithms are based on determining the match of a specific element of the data set compared to 
the other components. These procedures are quite complicated in computation and require multi-stage 
action, but they can solve very complex problems, often requiring a very long time to solve. 

Another example of the algorithm successfully used in the classification problem is the  k-nn nearest 
neighbors method. To simplify, this algorithm predicts the membership of a given observation based 
on the set of the n-nearest neighbors of this observation. What is essential is that the affiliation of 
neighborhood observations is known [36]. The closest neighbors are usually defined using the 
minimization of a simple distance metric such as the Euclidean metric. The predicted value is based on 
averaging the values of selected observations. This method is beneficial in the case of data analysis 
with a complex relationship that is difficult to model using other methods. 

The last mentioned in this dissertation approach is a group of statistical methods that use more or 
less complex mathematical expressions for modeling. One of the subsets of statistical methods is 
logistic regression, and it can be successfully used when there are only two predictive groups: positive 
and negative (binary classification). This method determines the probability of belonging to a positive 
class of a data set element based on the calculated and numerically presented relationship between the 
independent and dependent variables. The expected observation value is the sum of the products 
derived from the observation value and the coefficient fitted to the independent variable [37]. The 
resulting coefficients of the independent variables determine how they affect the dependent variable. 
The element is assigned to one of the two classes based on the estimated probability value for the 
specified observation. 

Such a large variety of classifier construction methods is not only reflected in the fast development 
of high-dimensional data analysis techniques. An even more important reason is the large variety of 
data that can be subjected to the problem of classification and, above all, the assumptions and challenges 
of the research problem. To a large extent, the choice of the appropriate method is dictated by the aim 
of the analysis because it imposes on us a particular research thesis assuming differences or their 
absence from the analyzed phenomenon. Very often, it may turn out that the time-consuming and 
complicated analysis methodology not only takes a disproportionate amount of time concerning the 
expected results but may cause overfitting or overtraining of the classification tool. The result of such 
an action is a joint waste of time and a result that will be useless in achieving the set goal. It all means 
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that choosing the most computationally complex method does not always produce the best results. In 
this case, particular attention should be paid to the costs and benefits of the analysis performed. A 
fundamental question should be answered: will the results obtained by a much more complicated and 
labor-intensive method of constructing a classifier allow for significantly more accurate results? An 
insightful and critical answer to this question will enable us to avoid many failures and disappointments 
and often speed up the analysis period from obtaining data to achieving the set goal. 

2.7 Feature selection methods – a literature overview 
The feature selection problem is fundamental in building an efficient and accurate classifier. In the 

context of the available features, the dimensionality of the data set undoubtedly impacts the 
computational and time costs necessary to achieve this goal. Therefore, dimensionality reduction is a 
desirable step before the model-building approach. This allows the number of features to be limited to 
those that are important from the point of view of the research problem under consideration. The 
phenomenon of feature selection has been described in detail in the manuscript entitled Feature 
selection methods for classification purposes [38]. 

There are two types of possible operations on features to reduce dimensionality. The first is feature 
extraction, which usually reduces dimensionality significantly, but completely new features are created, 
resulting from a combination of input features. The very high informativeness of the set of features is 
maintained, with the possibility of a significant dimensionality reduction. What is important, the 
features created in this way, and analyzed in further stages, are not interpretable from the biological 
point of view. This is due to the creation of new features resulting from the combination of input 
features without the possibility of disconnecting them again. Principal Components Analysis (PCA) is 
a widely used feature extraction example. On the other hand, the second dimensionality reduction 
method is called feature selection. It consists of selecting statistically significant characteristics, for 
example, differentiating two data samples, without transforming the input data. This way, the remaining 
features' full biological interpretability is preserved. Because the task is closely related to the 
subsequent interpretation or manipulation of selected features in large part of the research work, the 
main types of the feature selection procedure are described below. 

In general, feature selection methods include unsupervised and supervised approaches. 
Unsupervised feature selection refers to the process which does not need the output label class for 
feature selection, and this type of approach can be used successfully for unlabelled data. On the other 
hand, supervised feature selection refers to the method which uses the output label class. It uses the 
target variables to identify features that can increase the model’s efficiency. Supervised methods are 
divided into the wrapper, filter, and hybrid methods [39].  

   Filters are not very time-consuming because they do not use complicated machine-learning 
algorithms [39]. Without extreme computing resources and a significant amount of time, the data 
dimensionality can be reduced successfully. It is easy to implement most filter methods because they 
are mainly based on the statistics that enable the creation of feature ranks [40]. Features are dropped 
based on their relation to the output or how they correlate to the output. The critical point when using 
the method from the filters group is the selection of an appropriate cut-off threshold for the number of 
selected features [41] [42]. This task is challenging because specific decisions must be made about 
which features to retain in the analysis and which do not contribute the appropriate and expected level 
of informativeness based on the chosen and estimated characteristics. After this, a list of features is 
obtained that, when applied to the dataset, will reduce the data dimensionality. Filters are quite a general 
approach, so they are especially recommended for high-dimensional data [43]. Another advantage of 
filters is that they are also easy to interpret – a feature is discarded if it has no statistical relationship to 
the target variable. On the other hand, however, filter methods have one major drawback. They look at 
each feature in isolation, evaluating its relation to the target. This makes them prone to discarding 
valuable features that are weak predictors of the target but add much value to the model when combined 
with other features [40]. 
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The next type of supervised method is the wrappers approach. This method uses a learning algorithm 
to select the most critical, differentiating features. However, the use of a complex methodology requires 
substantial computational resources, especially in the case of high-dimensional data [43]. Therefore it 
is not a thoroughly recommended method for complex datasets [44]. The wrapper algorithm splits the 
input data into subsets and trains a model [39], which is then used to score different subsets of features 
to select the best one. There are very often utilized backward and forward selection procedures. 
Backward selection is an approach in which we start with a full model containing all available features. 
In subsequent iterations, we remove one feature at a time. The following most common procedure is 
forward selection. It works in the opposite direction compared to backward procedures: we start from 
a null model with zero features and add them one at a time to maximize the model’s performance. 
Building a set of features ends when the stopping criterion is met in both cases. It can be, for example, 
a difference in the value of the quality metric obtained for the compared sets of features or a 
deterioration in quality for a specific set of features. 

There are two key aspects to compare the two supervised feature selection methods. Both 
approaches have many undoubted advantages but are also characterized by disadvantages that should 
be remembered when considering a specific research problem. One such aspect is the time necessary 
for the feature selection procedure and the computational cost. In this regard, wrappers are much more 
demanding methods than filters [40]. Wrappers are computationally expensive and very time-
consuming procedures, especially in the case of high-dimensional data [42]. On the other hand, filter 
methods use statistical measures to evaluate a subset of features, making them less demanding in terms 
of computational cost. But apart from the discussed aspects, a fundamental problem is the purpose of 
feature selection and what losses and disadvantages of a given approach we can accept. For this reason, 
it is worth remembering that filter methods measure the significance of features by their correlation 
with the dependent variable, while wrapper methods measure the usefulness of a subset of features by 
actually training a model. It also means wrappers can catch correlations between subsequent features 
[45]. Suppose we care about maintaining the dependencies between individual features, an essential 
aspect of the problem under consideration in which we must keep the correlation between features. In 
that case, this should be a solid guiding argument in the considerations; thus, the focus should be paid 
to wrappers that give such opportunities. Filters cannot capture such relationships because they examine 
the impact of individual features on the dependent variable, considering them entirely separately. 

As mentioned earlier, the hybrid approach is a third type of supervised feature selection method. It 
combines both wrappers and filters into a single system. It gives the most significant scope for 
manipulation and selection regarding the intended goals. The use of filters, reducing the dimensionality 
of the data, significantly affects the reduction of computational resources and the time necessary to 
perform complex methods included in the category of wrappers. Therefore, adequately selected 
techniques from the filter and wrapper categories, forming a hybrid approach, can eliminate many 
disadvantages of these approaches used separately [46]. However, especially in the case of hybrid 
methods, attention should be paid to the weaknesses of individual systems. Improper and ill-considered 
application of the random order of occurrence of techniques from the category of filters or wrappers 
may result in incorrect and misleading results [47]. Using the filter method first, we can filter out some 
significant features because this approach looks at each feature in isolation. It does not consider if a 
specified feature can correlate with other features, making it quite crucial from the point of view of the 
analyzed problem. The wrapper method controls possible correlations between all the features, so no 
information is lost in this context. Due to the possibility of excluding some correlation-important 
features using the first filter and then wrapper approach, the resulting model can be weaker regarding 
the model's classification quality compared to the opposite approach, where the model is as strong as 
possible for a given set of features. However, using filters first and then on the reduced dataset utilizing 
wrappers can significantly speed up calculations and reduce the problem of data complexity. More 
favorable calculation times can be achieved by reducing the number of features. Choosing the proper 
method from filter and wrapper categories is problematic in the feature selection approach. The biggest 
and much more time-consuming problem is to select the correct workflow for feature selection and 
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consider all the advantages and disadvantages that we can accept in the context of the analyzed research 
problem.  

An essential question may also be asked – why is feature selection such a key and important step in 
high-dimensional data analysis? The first answer that comes to mind is overfitting. Suppose there is a 
relatively large number of features to the observations. In that case, the model can quickly match the 
target function on the training data. Such an approach will not result in a generalized model, which is 
often the goal. Dealing with big data is always connected with variables that, in part or even in the 
majority, do not carry any significant information from the point of view of the analyzed problem. This 
means they have no relation with the target and are entirely unrelated to the task the model is designed 
to solve. Filtering out irrelevant features will prevent the model from picking up on false correlations 
it might carry. Sometimes created models suffer from what is known as the curse of dimensionality. It 
means that in a very high-dimensional space, each training example is so far from all the other examples 
that the model cannot learn any valuable patterns. The solution is to decrease the dimensionality of the 
feature space to prevent this phenomenon. Additionally, with too many features, we also lose the 
explainability of the model. While interpreting and explaining the model’s results, it is essential to 
remember that the more features, the more complicated it will be to find key aspects that drive the 
analyzed problem. The last aspect is the phenomenon called Occam’s Razor. It means that simpler 
models should be preferred over the more complex ones as long as their performance is the same or not 
significantly different in terms of the intended goal. This shows that a properly carried out feature 
selection makes it possible to solve many classification problems, select a small set of features relevant 
to the problem being solved, significantly reduce the dimensionality of the data, and allow to make a 
clear explanation of the analyzed problem. 

Moreover, feature selection is critical if we know that many research problems, especially those 
with a biological basis, must be reflected in the researched field of science. It is worth remembering 
that not always the solutions proposed by the majority can be applied to the analysis of our data. We 
must think carefully and plan the entire feature selection path concerning the expected results. The use 
of universal solutions that give benefits in the form of time savings and reduction of computational 
costs carries a specific price. The question is whether this price is acceptable in the context of our work. 
Sometimes the gains from retaining more information are so small that they can be neglected and thus 
reduce computation time. However, in some cases, if even the smallest piece of information counts and 
there is the possibility of significant correlations between features occurrence, it is worth not taking 
shortcuts. 
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3 Materials 
In this dissertation, there are analyzed two high-dimensional datasets. Both sets are derived from 

single-cell sequencing experiments based on white blood cells and are technical repetitions of the same 
trial. To maintain clarity and legibility of references to individual data sets, they have been presented 
and described as sets A and B. Both datasets include two cell samples: normal (control) and ex vivo 
irradiated. The irradiated group of cells was exposed to ionizing radiation at a dose of 1 gray (Gy), 
which is the energy of 1 joule (J) absorbed by 1 kilogram (kg) of the irradiated environment. The 
analysis of complex high-dimensional data in the form of two technical repetitions of the same 
experiment not only allows for achieving the individual goals of this work but also gives a clear insight 
into possible errors or inaccuracies related to the procedure of the conducted experiment. Moreover, it 
enables the creation of designs resistant to potential differences in sets from technical repetitions of the 
same experiment. Based on the analysis of both data sets, it is also possible to capture the accuracy and 
quality of the procedures for preparing and collecting the analyzed data. 

3.1 Single-cell RNA-sequencing data 
As mentioned, the analyzed ex vivo data consisted of control and irradiated samples (24h post-

irradiation time point). Both samples were obtained based on the white blood cell population. The blood 
control sample, after being collected, was stored at 37⁰C. A part of the control sample was subjected to 
ionizing radiation at a dose of 1 Gy. To keep both control and irradiated samples at -80⁰C until RNA 
extraction, the RNAlater was added to both samples. In the case of the irradiated sample, the RNA later 
was added 24 hours after the occurrence of the radiation agent. 

The data acquisition and processing of single-cell sequencing was performed according to the 
protocols of the BD™ Single-Cell Multiplexing Kit. This platform uses a cartridge workflow and a 
complex barcoding system. Control and irradiated cells are marked with a specific SampleTag to be 
able to process them together in subsequent steps and allow them to be separated later when the 
appropriate procedures are completed. Such prepared control and irradiated cells are loaded onto a 
matrix of microwells, where they fall into weels with gravity. Next, the mixture containing beads is 
added to the cell compound. Then beads are deposited in the wells containing subsequent cells. The 
microwells are designed so that only one bead can fit in there. When the lysis process starts, RNA is 
released from the cells and bound to nearby beads. A magnet pulls the biological material together with 
the bound beads. The beads’ design allows binding to only one cell. Beads from the BD Rhapsody 
platform have a two-step control ensured by the barcoding system. It is possible to recognize the cell 
(poly-dT primers) from which the RNA is derived and the specific transcript (UMI) of origin. In the 
last step, a PCR procedure is carried out in which cDNA is synthesized using reverse transcriptase. The 
entire process guarantees the formation of a labeled transcriptome of thousands of introduced cells [48]. 
Before sequencing, quality control is also performed using Agilent Bioanalyzer with the High 
Sensitivity Kit and the Qubit dsDNA HS Kit. In the analyzed data, the Illumina® paired-end sequencing 
platform was used for sequencing purposes. 

The BD Rhapsody™ platform also provides the processing of raw sequencing data into the count 
matrices necessary for bioinformatics analysis. The tool's algorithm work with raw paired-end 
sequencing data from Illumina sequencers. In simple terms, it is possible to carry out the following 
analysis steps: filtering by the quality of reads, annotation of R1 and R2 reads, and combining 
information from both read annotations and molecules. The last mentioned step consists mainly of 
removing possible PCR reactions and sequencing errors, using the implemented RSEC and DBEC 
algorithms based on UMI determinations. The next step in quality control is the removal of erroneously 
generated cell labels that may have arisen in preparing data for sequencing. The last step necessary to 
obtain the count matrix is sample multiplexing. This is due to loading multiple labeled samples (control 
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and irradiated) into the BD Rhapsody Cartridge. This way, all samples can be analyzed simultaneously, 
maintaining the same experimental conditions. After the data collection and preparation procedures are 
completed, cells belonging to individual samples can be easily separated and explored in later steps 
according to the research thesis needs. 

3.2 Count matrices 
The data analysis workflow in this doctoral dissertation was adapted to the count matrices form 

created by the BD Rhapsody™ system. The rows in the generated count matrices are represented by 
the list of cell indices entered for analysis. The columns contain the list of genes of the used immune 
response panel. Due to such a matrix design, each cell in the matrix structure represents the number of 
molecules detected in each cell per specified gene. Moreover, the raw sequencing data analysis platform 
also generates a file containing information about the quality control results performed for individual 
genes. This file marks each panel gene with one of the three statuses: not detected, low depth, and pass. 
Status not detected indicates that the gene was present in the panel but not in the real data due to its 
zero counts. Low depth status means the minimum required sequencing depth has not been reached. 
The only status indicator that allows for further analysis is the pass status. It indicates regularities in 
the counts and sequencing depths for a given gene. Moreover, when the multiplexing option is selected, 
what is required while analyzing multiple samples simultaneously, an additional file is generated. It 
includes the marks necessary to assign individual cells to appropriate origin samples. This file contains 
the index of each cell and its associated SampleTag. 

3.3 Data summary 
Table 2 summarizes the cell per gene count information in the two ex vivo technical replicate 

datasets (set A and B).  
 

 
The first two columns, described in the table, show the number of control and irradiated with 1 Gy dose 
cells. The third column, pointing to Other cells, represents the cells identified by the filters applied by 
the BD Rhapsody platform that did not pass the initial quality control steps. Among the designations 
used, indicating the reason for cell rejection, there are Mixed, Multiplet, and Undetermined cells. Mixed 
group cells are cells without an assigned control or irradiated SampleTag. The other two statuses, 
Multiplet and Undetermined, indicate cells that could not be correctly classified during the experimental 
process due to technical issues. These three groups of cells (Mixed, Multiplet, and Undetermined) 
cannot participate in further analysis methods, such as irradiated cells’ genetic profile detection, 
classification, or even cell subpopulation recognition. Therefore, the analytical procedures adopted in 
the dissertation were applied only for two correctly marked and processed groups of cells, i.e., for cells 
from the control and irradiated samples. 

 

Table 2. The number of cells and genes in the subsequent ex vivo datasets. 

Dataset Control cells Irradiated cells Other cells Total cells Total genes 
Set A 1584 1139 1516 4239 452 
Set B 2301 1988 2633 6922 452 
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4 Publicly available tools and developed workflows 
The doctoral dissertation utilized publicly available free tools and own-developed workflows using 

several statistical and machine learning methods. Publicly available tools such as UMAP and 
HDBSCAN were used to visualize datasets with unsupervised learning methods and recognize 
individual white blood cell subpopulations. Own-developed workflows were used in a wide range, 
including the main aspects such as feature selection, building models based on logistic regression and 
neural network methods, classification of control and irradiated cells, and building a genetic profile of 
cells irradiated with a 1 Gy dose. In the following subsections, there are described both the methods 
and tools used. 

4.1 Publicly available tools 
4.1.1 UMAP 

Uniform Manifold Approximation and Projection (UMAP) [49] is a free and publicly available tool. 
It is beneficial in the context of high-dimensional data visualization. The high complexity of the 
analyzed data is characterized by the speed of operation at an acceptable level. This tool is highly 
effective in reproducing the global structure of the entered data. Moreover, it often enables the detection 
of hidden structures inside the datasets, depending on the input data specificity. 

The instructions for constructing a weighted graph are implemented and utilized in the initial stages 
of the algorithms' operation. Inside the graph, the marginal weights are related to the probability of 
connecting two specific points, which depends on the proximity of these points to each other. In simple 
terms, the weight of the edge is higher the closer the following points are. The possibility of connecting 
points depends on the neighborhood's radius because it is possible to connect points only within the 
vicinity. The radius of the vicinity of a given point is determined based on the distance to the nth nearest 
neighbor. When the designated circles with a certain radius for two points are superimposed to a certain 
extent, it is possible to connect them with a weighing edge. Delving into the process of creating a high-
dimensional structure, it is worth mentioning the Čech complex, which is precisely a method of 
combinatorial topology representation with the use of sets [50]. This creates a high-dimensional 
graphical structure optimized for a low-dimensional form. Such optimization works by creating a low-
dimensional graph that is as close to a high-dimensional graph as possible, taking advantage of the 
insight from Riemannian geometry and algebraic topology. The basic unit in the optimization 
phenomenon is simplex, a k-dimensional object created from the combination of k+1 points. By joining 
points with overlapping radii, it is possible to create more complex, multidimensional simplices. Going 
further in this theory and considering the data set as a set of simplices, it is possible to capture a topology 
representation. It turns out that most of the topology mapping focuses on the 0- and 1-simplices that 
make up the Vietoris-Rips Complex [50]. By considering only 0- and 1-simplices, it is possible to 
project a high-dimensional topology onto a low-dimensional topology. Moreover, this approach 
significantly reduces the computational costs and thus the directly related time-consuming process. The 
most complicated step is to select the appropriate radius to define the number of k-nearest neighbors. 
Choosing a too small radius will result in the formation of small, local clusters. On the other hand, 
selecting a too-large radius, the included instructions will lead to connecting all available points. Hence, 
UMAP uses an approach that does not directly define a radius value but uses a variable radius. This 
value is predefined using the k-nearest neighbors. Thus, UMAP sets a radius equal to the distance to 
the kth nearest neighbor. It is essential in the case of high-dimensional data where the points are closer 
and closer to each other with the increase in dimensionality. The fuzzy connections between the points 
are then created within the radius. The connection weight value is determined based on the distance 
between neighboring points. However, there is a problem with edges connecting two points with 
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different values of connection probability, of course, directed in opposite ways. To determine the 
weight of the joining edge, the UMAP tool calculates the probability that at least one of the edges exists. 

When applying the UMAP tool to real data, selecting the appropriate parameter values [51] is 
essential. The most critical parameter, n_neighbors, is the one responsible for the choice of the k-nearest 
neighbors. Thanks to this parameter, it is possible to control the local and global structure of the data. 
As previously mentioned, the low values of this parameter will focus on the local structure. In contrast, 
high values will allow insight into the global structure at the cost of losing some detailed information. 
The second crucial parameter is named min_dist. It describes the minimum distance between points in 
the low-dimensional space. Therefore, this parameter determines the point concentration. For this 
reason, using high values of this parameter will result in a better reflection of the global data structure 
due to the smaller data grouping. 

The UMAP tool allows working in both a supervised and unsupervised manner. This is undoubtedly 
a great advantage of this tool. It can be widely used for various purposes, often having a joint part in 
one test procedure. Working with this tool undoubtedly reduces the time necessary to perform complex 
analyzes that are very computationally demanding. It allows, among other things, to discover the local 
and global structure of the analyzed data, capture unexpected behavior of a data set observations, or 
contribute to a deeper analysis of dependencies occurring in a data set. Additionally, it is possible to 
perform supervised learning for later classification observations with an unknown origin. 

4.1.2 HDBSCAN 
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [52]is a 

clustering algorithm that uses hierarchical clustering techniques and the phenomenon of cluster 
stability. Its operation generally consists of five basic steps [53]: density estimation, construction of a 
minimum spanning tree based on a distance-weighted graph, hierarchization of connected clusters, 
condensation of clusters, and selection of stable clusters from a condensed tree.  

The first step in density estimation is crucial to understand the underpinnings of this algorithm and 
draw attention to the differences from other clustering algorithms. Density estimation is used to 
generate a map that shows the clusters of points in the analyzed data. On the other hand, in the case of 
real data, which is often characterized by a high content of noise and multi-cause disturbances, single 
points may cause the joining of clusters that are predisposed to separate and create spatially separated 
structures. For this reason, lowering the noise density level is necessary by introducing the mutual 
reachability distance metric [53]. Of course, this metric uses the primary kth nearest neighbor metric 
and the core distance metric [53]. The core distance metric described the circle’s radius drawn for the 
specified center point containing the k nearest points and established for the k+1 point touched by the 
circle. The lower the value of the radius of the circle defining the core measure, the more densely the 
point is in the region. Based on the mutual distance between two points and the core measures for both 
points, the value of mutual reachability distance is determined as the highest value by ( 1 ) [53]. 

 

 
The next stage, i.e., constructing a minimal spanning tree, is based on the previously calculated 

metric. The weights of the edges connecting the points are equivalent to the mutual reachability distance 
metric values. Building a minimal spanning tree based on Prim's algorithm was used. Edges are added 
to the tree one by one, selecting in a given step the edge with the lowest weight connecting the tree to 
be built with the vertex, which has yet to be included in the tree. Based on the generated tree, the next 
step is to convert it to make a hierarchy of connected clusters. Joined clusters of points are created, 
starting from the edges with the lowest weight values and working toward the higher values. Building 
a cluster hierarchy ends when one central point cluster is reached. On the other hand, the problem of 
choosing the optimal number of clusters remains unsolved. Of course, it is possible to enter one tree 

𝑑௠௥௘௔௖௛ି௞(𝑎, 𝑏) = max{𝑐𝑜𝑟𝑒௞(𝑎), 𝑐𝑜𝑟𝑒௞(𝑏), 𝑑(𝑎, 𝑏)} ( 1 ) 
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cut value, but in addition to the clusters through which the cut line passes, we also get a cloud of single 
points (below the set cut value) that must be declared as noise. In this case, there is a perfect chance to 
connect individual clusters or classify many points as noise. Hence, in the HDBSCAN tool, there is a 
cluster extraction solution based on the condensation of the cluster tree. In assessing what a cluster is, 
it turned out that it was necessary to introduce a parameter defining the minimum number of points that 
would be perceived as a separate set and not counted as noise. In the condensation of the tree, it is 
essential to re-traverse the established cluster hierarchy at each stage of the cluster division to determine 
whether the newly created cluster meets the minimum cluster size requirements. If so, another division 
of the home cluster is created. On the other hand, if these requirements are not met, the points that 
would make the next split are classified as "dropping out" "points from the home cluster. These points 
are then marked as noise. As a result, we get a more condensed picture of the hierarchy and division of 
clusters with a much smaller number of nodes. 

Cluster extraction is the last step required to achieve the intended purpose of splitting the dataset 
into clusters. To decide on the number of selected clusters, two lambda values were introduced to define 
the duration of the cluster. The first is the cluster birth value, which begins with the division of the 
home cluster and the formation of the new structure. The second is the death of the cluster (which 
intuitively does not apply to every distinguished structure) determined by dividing the cluster into 
smaller structures. The difference between the value of cluster death and the value of cluster birth is 
determined by the cluster stability measure, which can be called the cluster lifetime. It is worth 
emphasizing that the death of a cluster is also considered in the case of "falling out" of points defined 
as noise (the tree condensation procedure described earlier). So how are clusters of final choice 
determined? This is where HDBSCAN computes the child clusters' stability sums starting at the tree's 
bottom. If this sum is lower than the stability of the parent cluster, then the selected cluster is the parent 
cluster, and the following divisions are meaningless. After reaching the root, the tool returns the clusters 
chosen as the optimal version of the dataset split. 

However, we often want to assign each analyzed point to the closest cluster in many real data 
analysis approaches. The standard clustering approach assigns points arbitrarily to individual clusters 
or noise. The solution to this problem is introduced in the HDBSCAN tool extension called "soft 
clustering" [54]. In this solution, points are not assigned directly to the clusters, but the probability 
vector of their assignment to each generated cluster is determined. This allows the algorithm to choose 
the point’s affiliation more accurately and have insight into mixed affiliation. For real data analysis, 
and especially when analyzing biological data, this can provide additional insight into the behavior and 
internal structure of the data. It is also possible to analyze the strength of the point binding to the clusters 
to which specific biological functions will be assigned by further analysis. This approach gives unique 
possibilities for research and the case of a very detailed study of the internal structure and different 
phenomena occurring in the data set. The soft clustering method is based on introducing two metrics 
that define the distance of a point from the clusters. One of them is the usual distance from individual 
clusters. The point deviations from the separated clusters determine the second. However, calculating 
the distance of a point from individual clusters is not a trivial task, mainly due to the frequently 
occurring uneven shapes of structures. For this reason, the set of exemplary points that defines the 
cluster’s center is used to assess the distance [54]. As a set of exemplar points, observations are 
presented that last the longest in a given cluster, i.e., have the most extended lifetime. The second 
measure, as was mentioned, is related to determining how strongly the point deviates from the 
designated clusters. To estimate the value of this measure, the membership length of a given point is 
compared with the total duration of a given cluster. The combination of these two metrics is created 
using Bayesian conditional probability. As a result of the generally described "soft clustering" 
procedures, it is possible to have an insight into the probabilities of individual points belonging to 
selected and discovered clusters. 

It is worth mentioning that the HDBSCAN utility allows the user to change several parameters. Of 
course, the most important are parameters called min_samples and min_cluster_size. The appropriate 
selection of these parameters may be of crucial importance in the results of the work utilizing this tool. 
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A reasonable approach is the introduction of a proper metric informing how the selected set of startup 
parameters affects the separation of clusters. Of course, the metric and the inference should be labeled 
primarily in conjunction with the expected results and the purpose of the analysis. Inattentive juggling 
with startup parameters can lead either to the loss of essential divisions by treating the data set too 
general or to dividing into clusters that do not show statistically significant differences in terms of the 
stated purpose of the analysis. 

4.2 Developed workflows 
The reason for developing a new workflow related to analyzing data from single-cell sequencing 

experiments was primarily the lack of a developed and publicly available method for feature selection 
and building a model based on the genetic profile of irradiated cells. The available processing methods 
require many tools in which it is impossible to ensure complete control of the flow and analysis of the 
entered data. The feature selection stage is a crucial moment in this work. Indeed, lack of control at 
some stage will result in inaccuracies and distorted results in the form of a genetic profile of irradiated 
cells. As a consequence, the cell classification process will also be severely affected.  

4.2.1 Logistic regression-based workflow 
The algorithm based on machine learning (ML) methodology, implemented as part of the doctoral 

dissertation, aims to generate a model describing the gene signature of irradiated cells. In the case of 
the research problem, binary logistic regression was used, and which task was to learn the classifier to 
assign observations to one of two classes: positive (irradiated) or negative (control). Logistic regression 
estimates the vector of weights assigned to the model's components. These weights are information 
about the importance of a given feature in the problem of class recognition. The weights can take both 
positive values, showing the impact on the classification of a positive class, and negative ones, showing 
the effect on the classification of a negative class [55]. To calculate the value of the probability of a 
particular observation belonging to a positive class, it is necessary to use the sigmoid function. The 
decision on belonging to a positive class is made using a simple decision procedure – the observation 
is classified as being in a positive class if its probability of a belonging value is at least 0.50. Learning 
weights, i.e., model parameters takes place in a supervised manner. This means that the true class for a 
particular observation is known. The model aims to make class predictions for that observation as close 
to the real class as possible. The loss function determines how much the predicted class differs from 
the actual class. In the proposed approach, the inverse of the loss function was used due to the 
subsequent need to maximize it when determining the optimal model using the Bayesian Information 
Criterion (BIC) value. The model parameters are calculated iteratively, striving for the best fit by 
minimizing the differences between subsequent likelihood values. Below is a thorough and detailed 
description of the implemented approach and the formulas used. 

The implemented ML algorithm accepts three arguments as input values: LR - training set matrix 
(genes/features in columns, cells indices in rows manner), anno - sorted, as in the input matrix, a single-
column matrix containing the markings of a cell belonging to one of the two samples, draw - number 
analyzed genes (equal to the number of columns of the transferred LR matrix). As part of the 
implementation, changing four basic parameters is possible. Parameters influencing the functioning of 
the algorithm and the results achieved are epsilon - acceptable likelihood difference in the process of 
learning parameter values, max_iter - maximum number of iterations of parameter value estimation 
(stop criterion), alpha - learning rate (default value is set to 0.001). An additional parameter influencing 
the readability of the obtained results when iteratively invoking the algorithm several times is called a 
draw, which means the run number (total model number). At the output of the implemented model, 
there is information saved in .txt files containing details about the models generated in each iteration 
(draw) regarding Bayesian Information Criterion values, Log-Likelihood (LL) values, weighted 
classification quality values based on the validation set (Acc), the names of the genes included in the 
model in the order of their appearance in the final model (gene_step), and the values of the final model 
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parameters in the order in which the genes appear in the model (parameters). The primary function that 
is the basis for calling the algorithm (FullLRclassifier) is responsible for all the procedures for features 
selection utilizing the wrappers method and building the final model. Inside the primary call function 
is the ClassifierLR function, which is responsible for the parameter values learning process for the given 
set of genes involved in modeling.  

The overall operation procedure of the program, to simplify the complex structure, can be divided 
into building single-factor models and building multi-factor model parts. Both methods follow each 
other after running the algorithm. The process of building models begins with calling the function along 
with the passed variables and parameters. After the primary function accepts the input values, building 
one-factor models follows (the complexity of the created models in the context of the included features 
is N=1). Subsequently, as part of the transfer of a single gene to the second function, the probability of 
the cells belonging to the positive class y=1 given a set of genes x and the collection of 𝜃 parameters is 
calculated  ( 2 ), and their labels are predicted using the sigmoid function ( 3 ) and decision scheme. 

 

 
 
 

 
Where: 
 

 
This function gives results in the form of the probability that an observation belongs to a positive class. 
Using a simple decision scheme, cells are classified into the positive (1) or negative (0) group. 
 

if   predictioncell < 0.50  then   𝑔𝑟𝑜𝑢𝑝ෟ ௖௘௟௟ = 0 
else      then   𝑔𝑟𝑜𝑢𝑝ෟ ௖௘௟௟ = 1 

 
Model parameter values are calculated using gradient descent ( 5 ) with a learning rate α = 0.001. 
Finding the optimal set of parameters for the analyzed model is possible using the descent gradient.  
 

 
Therefore, the model learns the parameter values in such a way as to achieve the best results in the 
context of the selected loss function, which for logical reasons, of applications in this implementation 
takes the form of the inverse of the loss function ( 6 ).  
 
 

𝑧 =  ෍ 𝜃௜ାଵ  × 𝐿𝑅௫,௜௟௘௡௚௧௛(ఏ)ିଵ
௜ୀଵ  ( 4 ) 

𝜃௖௘௟௟௡௘௪ =  𝜃௖௘௟௟ −  𝛼 ෍ ൣ(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦௖௘௟௟ −  𝑔𝑟𝑜𝑢𝑝௖௘௟௟) ∗ 𝑥௖௘௟௟௚௘௡௘൧ே௖௖௘௟௟ୀ  ( 5 ) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛௖௘௟௟ =  11 +  𝑒ି௭ ( 3 )

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦௖௘௟௟ =  11 +  𝑒ି(ఏబା ∑ ఏ೒೐೙೐∗௫೒೐೙೐೒ಿ೐೙೐ ) = 𝑃(𝑦 = 1|𝑥; 𝜃)  ( 2 ) 
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At this stage, the likelihood difference ( 7 ) value is also checked for subsequent calculation iterations 
for the values of the model parameters. If this difference is smaller than specified by parameter 
epsilon=0.1, the procedure of calculating parameter values is completed for a given model, and these 
parameters are considered final. 

 

 
Where: 
i is the parameters estimation iteration 
and L is the likelihood estimated based on the formula ( 8 ) 

 

 
The procedure for a single-gene model ends when the BIC ( 9 ) and LL ( 6 ) values are calculated, and 
the declared maximum number of iterations or Ldif is reached.  

 

 
The calculations for the single-feature models with the following transferred genes begin. When the 
analyses are performed for all single-factor models based on genes available in the shared data matrix, 
the BIC values for all these models are compared. The model with the lowest BIC value is selected best 
from single-factor models. For this purpose, the inverse of the loss function was maximized, which 
results directly from equation ( 9 ) and the presented algorithm workflow. After selecting the best 
single-feature model, the procedure with the degree of complexity N=1 ends.  

Building multivariate models start at the level of complexity N=2. The remaining genes not included 
in the univariate model are iteratively attached to the gene selected in the previous step at N=1. The 
estimation of all procedures listed before in the case of single-feature models is compatible with the 
workflow, including multi-feature models. There is one additional stop criterion at this level. This 
criterion is also reached if all features are included in the created model at the highest level of 
complexity. When all possible models for specified complexity levels are calculated, the model with 
the lowest BIC value is selected, following the procedure described earlier for single-factor models. At 
this stage, when the level of complexity satisfies the assumption that N>1, an additional part of the 
tools’ work appears, enabling the comparison of models of varying complexity. The introduction of the 
Bayes Factor ( 10 ) metric makes it possible to compare models with a complexity of N-1 and N.  
 

 
If the value of the BF metric is greater than 101.5, the model with a higher degree of complexity is more 
profitable. Therefore, the implemented algorithm builds models with successive degrees of complexity. 
The model-building procedure is completed when one of the two algorithm termination criteria (smaller 

𝐿𝐿 =  ෍ ln (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦௖௘௟௟௉௢௦௜௧௜௩௘)஼௘௟௟௦௉௢௦௜௧௜௩௘ +  ෍ 𝑙𝑛(1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦௖௘௟௟ே௘௚௔௧௜௩௘)஼௘௟௟௦ே௘௚௔௧௜௩௘  

 

( 6 ) 

𝐵𝐼𝐶 = 𝑁௣௔௥௔௠௘௧௘௥௦ × ln(𝑁௖௘௟௟௦) − 2 × 𝐿𝐿 ( 9 ) 

𝐵𝐹 =  𝑒(௅௅ಿషభ ି ௅௅ಿ) ( 10 ) 

𝐿ௗ௜௙ = |𝐿௜ −  𝐿௜ିଵ| ( 7 ) 

𝐿 =  ෍ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦௖௘௟௟௉௢௦௜௧௜௩௘஼௘௟௟௦௉௢௦௜௧௜௩௘ + ෍ (1 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦௖௘௟௟ே௘௚௔௧௜௩௘)஼௘௟௟௦ே௘௚௔௧௜௩௘  ( 8 ) 
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BF value at the next level of complexity or the highest possible complexity level) is reached. Below, in 
Figure 2, a simplified diagram of the implemented machine learning algorithm is shown based on 
logistic regression methods. 
 

 
 
 
 
 
 
 
 
 

 
Figure 2. Outline of the implemented algorithm for the features selection and cells’ classification purposes. 
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After building the entire workflow architecture, it became necessary to optimize the full 

implementation. Optimization was required due to the extended running time of the algorithm. This 
procedure was carried out based on the selected set of cells and genes from the set B data. The 
optimization was based on the first indexed 300 cells and 200 genes. The following improvements were 
made with the original version of the program: hiding redundant information displayed in the console, 
vectorizing the code (only possible to vectorize elements), and changing all analyzed data frame objects 
on the matrix structures. The actions taken made it possible to shorten the number of rows for the 
implementation of the algorithm by approximately 33% of the original implementation version. More 
importantly, the implementation improvements also reduced the algorithms’ uptime significantly. 
Table 3 compares the algorithms’ working time for one and five built models. 

 
 

 
Figure 3. Outline of the implemented algorithm for the features selection and cells’ classification 

purposes – model parameters estimation process details. 
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The tic()…toc() function implementation in the tictoc library from the R environment was used to 
determine the algorithms’ operation time. This basic optimization of the implemented algorithm 
allowed for a significant improvement in the program operation times.  

4.2.2 Neural networks-based workflow 
The second approach to modeling the gene signature of irradiated cells, used in the dissertation, is 

based on machine learning algorithms using neural networks. To create the network structure, the 
Sequential() function from the tensorflow.keras library [56] was used. This function makes it possible 
to design and develop the scheme of a neural network model very transparently, including the number 
of network layers used, the number of neurons in individual layers, and the neuron activation functions 
used in specified layers.  

In the case of this dissertation, the sigmoid activation function was considered. The task of the 
activation function, as the name suggests, is to decide whether a given neuron in the neural network 
should be activated. Activation means determining whether the information provided by this network 
element is relevant to its prediction process. The task of this function is, therefore, to transform the 
summary information, in the form of the transmitted signal value xi, weights for the input neuron wi, 
and bias b, flowing into a specific neuron into an output value transferred from this neuron to the next 
layer of the neural network. However, using a considerable simplification about the activation 
function’s purpose introduces non-linearity in the analyzed and utilized network. This nonlinearity is 
necessary to build the least complicated network to learn the complex scheme of the analyzed data. In 
neural networks, it is possible to use many different types of activation functions,  but the most 
commonly used is the sigmoidal function [57] which is defined by ( 11 ): 
 

 
Where: 

 
This function transforms the appropriate input values into the range from 0 to 1. It is widespread in 
currently used solutions using neural networks due to the content of resulting values that can be directly 
translated into probability values. A significant part of the problems for which machine learning 
methods are used is based on probability. Another reason for the frequent use of the sigmoidal activation 
function is its smooth transition between the result values, which limits the occurrence of jumps to the 
following result values [57].  

 

𝑧 =  ෍ 𝑥௜ × 𝑤௜ே೔೙೛ೠ೟
௜ୀଵ + 𝑏 ( 12 ) 

𝑓(𝑧) =  11 + 𝑒ି௭ ( 11 ) 

Table 3. Comparison of the runtime of the raw and optimized versions of the implemented algorithm. 

Implementation 1 Model 5 Models 
Raw algorithm [sec] 90.99 340.59 
Optimized algorithm [sec] 18.78 52.13 
Gain of time [%] 79.36 84.69 
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Essential elements of each neural network are built-in layers containing a certain number of neurons. 
There are generally three layers: input, hidden, and output [58] [59]. The neurons building the input 
layer transmit raw information about the introduced features to the next layer, the hidden layer. What 
is more, in a complete neural network model, there may be several hidden layers depending on the 
needs or specificity of the data. It is in the hidden layers that the conversion of individual signals takes 
place, resulting in the input information to the last output layer. The received signal is transformed into 
the expected results in the output layer. Figure 4 shows a simplified diagram of a fully connected neural 
network. 

 

 
The next worth concerning concept in modeling, particularly in the case of neural networks, is the 

flow of information. The forward and backward propagation procedures play a vital role in this 
phenomenon. Forward propagation is data flow from the input layer to the output layer. The defined 
hidden layers calculate the input information using feature values and specified weights in this 
procedure. The resulting values from all included hidden layers are then transformed in the output layer 
to obtain the result. In the case of this procedure, the activation function is responsible for converting 
the signal coming out of the neuron, which in combination with signals from other neurons, becomes 
the input information to neurons located in the next layer of the network. On the other hand, backward 
propagation converts the obtained results from the output layer through successive hidden layers toward 
the input layer. The weights of individual neurons are recalculated in such a way as to minimize the 
difference between the output vector from the neural network 𝑦ො and the expected (true) output vector 
y. This procedure reduces the cost function by adjusting the weights and biases that build the neural 
network. Therefore, the loss function plays a significant role in the flow of information. It is generally 
possible to update the model’s parameters by utilizing the loss function. It informs about the essential 
differences between the predictions and the correct result, which we want to get as close as possible. 
Most commonly used for two class problem is the binary cross-entropy (BCE) function, according to 
equation ( 13 ): 
 

 
 
 

 
Figure 4. A simplified diagram of the neural networks structure. 

𝐵𝐶𝐸(𝑦, 𝑦ො) =  − 1𝑁 ෍ 𝑦௜ × ln(𝑦ො௜) + (1 − 𝑦௜) × ln (1 − 𝑦ො௜)ே
௜ୀଵ  ( 13 ) 
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Following the procedures described, the conversion of model parameters was performed using the fit() 
function from the tensorflow.keras library in the Python environment. Moreover, the Adaptive Moment 
Estimation Adam [59] optimizer was used. It is nowadays one of the most frequently utilized 
optimization methods for neural network purposes [60]. Adam is often used to find the individual 
learning rate values for each parameter and to update weights and biases available in the neural 
networks-based model. This method of optimizing the parameters of neural network models is popular 
primarily because it is computationally efficient and very well suited to working with large datasets in 
the context of the number of features [61].  
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5 Preliminary data analysis 
The preliminary single-cell sequencing data analysis workflow is fundamental to pre-investigate the 

structure of the real data. This part consists of a series of procedures subject to the quality control of 
cells and genes and visualization procedures. The last mentioned are extremely important in studying 
the internal structure of data, its volatility, and dependencies. These methods very often detect 
structures hidden inside the analyzed data. Thus, it is essential to carefully examine the cells and genes’ 
quality to be subjected to the complicated procedures of discovering a genetic profile of irradiated white 
blood cells. The preliminary analysis procedure was applied to samples from the ex vivo experimental 
environment, both the control and the irradiated, with a dose of 1 Gy samples. 

5.1 Data pre-processing 
The data from two technical repetitions of the experiment carried out in an ex vivo environment, as 

mentioned in the Material section, included five group designations of cells: control, irradiated, mixed, 
multiplet, and undetermined. Three groups of cells without explicit control or irradiated group 
assignment (mixed, multiplet, and undetermined) were filtered out before proceeding with the proper 
quality control procedures. Due to the described filtration rule, 1516 cells were removed from further 
analysis in the case of set A, and 2633 cells were rejected from the set B data matrices. 

Before the proper quality control analysis, the second step was to check the counts across the control 
and irradiated samples for the well-known GAPDH housekeeping gene (HKG). It was found that 
although the GAPDH gene is widely regarded as an indicator of quality or a gene of high utility value 
in data normalization, it cannot be used as a determinant for data derived from single-cell sequencing 
experiments. Table 4 gives detailed information on the number of zero-count cells for this gene over 
both technical repetitions of the ex vivo experiment. 

 

 
Removal of a described number of cells detected as invalid (about 1/4 of set A and about     1/3 of set 
B data) means losing a lot of potentially valuable information carried across the datasets. Due to the in-
depth analysis of literature sources, it turned out that studies on the stability of genes, once considered 
an excellent indicator, clearly show that the GAPDH gene should not be regarded as HKG for sample 
normalization purposes due to the bimodality of the distribution [62] [63] [64]. For this reason, further 
analyses related to the GAPDH gene were abandoned in this dissertation, and attention was drawn to 
another gene that can be used as the HKG. The HLA-A gene was next recognized as potentially 
valuable for the described problem and analyzed for zero-count cells. For set B, only six cells from the 
irradiated sample were found to have zero counts for this gene. These cells were filtered from the dataset 
for further quality control purposes. This procedure allowed the filtering of cells for which proper 
functioning was not maintained during the experiment. In addition, it was found that the selection of an 
appropriate HKG is not always evident in the case of single-cell data. The detected discrepancies for 
the GAPDH gene as a housekeeping gene, in the case of data from single-cell sequencing experiments, 
have been fully confirmed by numerous literature sources [62] [63] [64]. 

 

Table 4. Number of zero-count cells for GAPDH gene for ex vivo datasets. 

 Set A Set B 
Control 381 (24.05%) 795 (34.55%) 

Irradiated 308 (27.04%) 675 (33.95%) 
 



| Katarzyna Sieradzka 

35 
 

The proper quality control consists of three steps covering issues: gene quality control based on 
Unique Molecular Identifiers (UMIs) distribution and cell quality control based on library size and 
expressed features. Additionally, in two step-manner, the number of genes with zero counts over all 
observations was assessed to filter out cells without significant analytical value. 

For ex vivo data analysis, the UMI information about the genes was attached in the additional data 
quality file created at the data collection and preparation stage. Unique Molecular Identifiers are 
random oligonucleotide barcodes used in high-throughput sequencing techniques. Including UMI in 
the exact location in every fragment of genetic material during library preparation but before PCR 
amplification makes it possible to distinguish between PCR duplicates that have identical UMI 
sequences [65]. As a result, each of the genes in the panel was described by one of the three gene 
statuses: not detected, low depth, and pass. As mentioned before, the not detected status means that the 
gene was not detected due to zero reads despite its presence in the gene panel. The low depth status 
means the minimum sequencing depth has not been reached. Both described statuses indicate 
significant abnormalities in determining the counts of individual genes. Not detected and low depth 
described genes were filtered from both ex vivo data sets. Subsequently, 42 and 28 genes were removed 
from further analysis in sets A and B. At this step, genes with zero counts across available cells were 
also checked in the individual ex vivo dataset. For this reason, four genes from set A were rejected, and 
two from set B. Summing up this step of the quality control workflow, 30 genes were filtered from set 
A, and 46 poor-quality genes from Set B. 

The library size is another essential property used concerning the analyzed data sets, and it is the 
total sum of the counts across all available features. Filtering based on library size allows identifying 
cells on which RNA capture in the library preparation process (cDNA conversion and amplification) 
was inefficient. Therefore, these cells are characterized by small library sizes. For the analyzed single-
cell sequencing data, the cumulative sum of the counts across all available genes was calculated for 
each cell. Thus, the library sizes of each cell were determined. From the data prepared this way, 
histograms of the library sizes of individual cells were drawn for both technical replicates of the ex 
vivo experiment. The median absolute deviation (MAD) criterion derived from ( 14 ) was used to 
determine the appropriate cut-off point for acceptable-quality cells.  
 

Where: 
M is the median value, 
and LS is the library size. 
 
As described, MAD measures the variability of a univariate sample of quantitative data. Utilizing this 
measure, the deviations of a small number of outliers are insignificant. Library size histograms for set 
A and set B data, along with the cut-off threshold values for acceptable and poor-quality cells, are 
presented in Figure 5 and Figure 6, respectively. The given measures have been scaled to log10(library 
size) values for better visualization. 
 
 

𝑀𝐴𝐷௧௛௥௘௦௛௢௟ௗ = 𝑀(𝐿𝑆) − 3 × ( 𝑀|𝐿𝑆௜ − 𝑀(𝐿𝑆)| ) ( 14 ) 
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The minimum and maximum library size values for set A were equal to 92 and 8654, respectively; for 
set B, these values were equal to 72 and 12448, respectively. Cells with an estimated library size value 
less than the marked MADthreshold were rejected from further analysis using the designated thresholds. 
The library size values of individual cells marked as low-quality cells are to the left of the specified 

 
Figure 5. Histogram of library sizes with marked log10MAD=2.08 threshold for set A. 

 
Figure 6. Histogram of library sizes with marked log10MAD=2.07 threshold for set B. 
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threshold values in Figure 5 and Figure 6. Cells marked as low-quality cells were filtered from the data 
sets: 67 low-quality cells were filtered from set A, and 114 low-quality cells were filtered from set B. 

The next analyzed measure was the number of expressed features in each cell. It is defined as the 
number of genes with non-zero counts for specified observation. Cells with very few genes in 
expression (non-zero counts) are treated as poor-quality cells. For both technical repetitions of the ex 
vivo experiment, the number of features in expression was calculated for each cell as the sum of the 
features with non-zero counts. This metric's minimum and maximum values were for set A, equal to 29 
and 144 features in expression, and set B, equal to 31 and 169 features in expression. Tukey's criterion 
for extreme outlier values was used to determine the cut-off point for this metric. Equations ( 15 ) 
present the formulas for the lower and upper thresholds for the number of expressed features.  

 
 

 
Where: 
Q1, Q3 are 1st and 3rd quartiles, 
and IQR is the interquartile range. 
 
Figure 7 and Figure 8 show the histograms of the number of expressed features with marked 
Tukeythreshold values for the set A and set B data, respectively. Moreover, the histograms are presented 
on a log10(expressed features) scale for better visualization. In both histograms, the median values for 
the number of features in the expression for both technical replicates were also marked with a solid red 
line. The median values were 1.80 and 1.81 for sets A and B, respectively. In the case of the set A data, 
two cells were found outside the designated threshold values (one cell was above, and one cell was 
below the selected lines). These two cells were filtered out from the mentioned set A data. 

𝑇𝑢𝑘𝑒𝑦௟௢௪௘௥ =  𝑄ଵ − 3 × 𝐼𝑄𝑅 
 𝑇𝑢𝑘𝑒𝑦௨௣௣௘௥ =  𝑄ଷ + 3 × 𝐼𝑄𝑅 

( 15 ) 

 
Figure 7. Histogram of the number of expressed features with marked log10Tukeylower=1.42 and 

log10Tukeyupper=2.18 thresholds for set A. 
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For the number of expressed features, a second metric was also used for threshold values estimation 
concerning good-quality cell recognition. As with the described library size metric, the MAD measure 
was used to determine the threshold values. In the case of both ex vivo datasets, the determined 
MADthreshold values indicated the need to remove 66 cells from set A and as many as 106 cells from set 
B. Due to the possible significant loss of acceptable-quality cells, an additional and detailed analysis 
was performed. The number of expressed features distribution division was utilized in the Gaussian 
mixture models (GMM). To estimate the best number of components, there was used the Bayesian 
Information Criterion. The analyzes carried out this way for both datasets, with utilized BIC criterion, 
indicated the selection of three GMM components. Histograms of the number of expressed features 
with a marked MADthreshold and designated GMM components are presented in Figure 9 and Figure 10. 
For both datasets, the cells to the left of the selected threshold values constitute a significant proportion 
of one of the GMM components. Therefore, they cannot be considered poor-quality cells. Due to this, 
no cells from both ex vivo datasets were removed from further analysis in this step. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Histogram of the number of expressed features with marked log10Tukeylower=1.39 and 

log10Tukeyupper=2.23 thresholds for set B. 



| Katarzyna Sieradzka 

39 
 

 

 
 

 
Figure 9. Histogram of the number of expressed features with marked log10MAD=1.63 threshold and GMM 

components (red, yellow, green) for set A data. 

 
Figure 10. Histogram of the number of expressed features with marked log10MAD=1.63 threshold and GMM 

components (red, yellow, green) for set B data. 
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As the last part of the QC workflow, based on the data from ex vivo experiments, the informativeness 
of the genes remaining in the analysis was checked. For this purpose, the number of cells with non-zero 
counts for specified genes was found. Features with non-zero counts in less than three cells were filtered 
from the analysis. Based on this criterion, ten genes were removed from set A, and 16 genes were 
extracted from set B. A summary of the quality control performed on genes and cells for both technical 
repetition datasets is presented in Table 5. 

 

 
As a result of the preliminary data analysis and quality control, there were removed poor-quality cells 
and genes from the analyzed ex vivo datasets. There are still many valuable features left in the analysis: 
for set A, there are 396 genes, and for set B, there are 406 genes of satisfactory quality and 
informativeness. For the quality control performed on cells and summing up the total number of cells 
still available in the analysis, there are 2683 cells left for set A and 4214 cells for set B data. 

5.2 Dimensionality reduction and visualization 
Visualizing such complex, multi-dimensional single-cell sequencing data requires prior 

dimensionality reduction. The visualization process must be carried out within an acceptable time 
window while maintaining the best reflection of the raw data structure. Analyzing hundreds of features 
simultaneously is a computationally highly complex process that takes much time. The purpose of 
visualization is, first of all, to get acquainted with the data structure and to look for hidden connections 
of features, if any are present. Of course, when reducing dimensions, special attention should be paid 
to maintaining important information transferred within the available features. The dimensionality 
reduction for data visualization purposes cannot be a priority stage; it should be an auxiliary one, 
allowing for the reduction of computational costs. The log2(counts+1) transformation was performed 
on the analyzed data sets to represent the features better. Adding the unit value to the number of counts 
will not worsen the representation of the analyzed data but will avoid zero-count transformations. It 
will primarily allow measuring changes in expression (counts), which is a much more interesting 
biological phenomenon. 

First, the dimensionality of the data sets was reduced using Principal Component Analysis (PCA) 
procedures. Importantly, with the use of PCA, it is not possible to return to the original structure of 
features. PCA performs a series of transformations, changing individual features into their 
combinations, thus creating entirely new features called PCA components. This is an exciting approach 
regarding a significant reduction in dimensionality while maintaining vast information from the raw 
features. However, if further research requires a return to the space of primary features, other 
dimensionality reduction methods should be used, supporting the feature selection problem. In the 
described case, dimensionality reduction was used only for visualization purposes. Therefore, there is 
no need to return to the primary space later, and a fundamental goal is to reduce the number of features 

Table 5. Summary of the quality control workflow performed for set A and B data, specifying the number of genes 
and cells. 

 Set A Set B 
Removed Control cells 25 49 

Irradiated cells 15 26 
Cells (total) 40 (1.47%) 75 (1.75%) 

Genes 56 (12.39%) 46 (10.18%) 
Remaining Control cells 1559 2252 

Irradiated cells 1124 1962 
Cells (total) 2683 4214 

Genes 396 406 
 



| Katarzyna Sieradzka 

41 
 

with the lowest possible loss of information carried by them. In such a complex system, the linkages of 
individual genes can have significant signatures. Based on PCA procedures, the methodology used is a 
very conservative choice, leading to a substantial reduction in the dimensionality of data sets. It assumes 
the selection of only those PCA components for which significant changes in the explained variance of 
the set can be subsequently observed. Figure 11 and Figure 12 show the percentage of explained 
variance of the datasets for individual components, with the number of PCA components selected for 
further visualization procedures marked successively for sets A and B. The graphs show only the first 
100 PCA components for readability purposes. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. PCA components with the marked threshold for a number of chosen PCA components for set A. 
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To visualize spatially reduced feature sets, the first 15 PCA components (out of 396 available features) 
were selected for set A, explaining almost 61% of the variance. In the case of set B, the first 15 PCA 
components (out of 406 available features) were selected, explaining over 63% of the variance. 

The UMAP tool was used based on the chosen PCA components on dimensionality-reduced 
datasets. The visualization was performed using the unsupervised approach to enable the detection of 
possible structures within the data, independent of the assignment of individual cells to the control or 
irradiated sample. An appropriate color legend was also assigned to the spatially arranged cells to define 
their original affiliation. Results for both datasets are presented in Figure 13 and Figure 14. 

 
Figure 12. PCA components with the marked threshold for a number of chosen PCA components for  set B. 



| Katarzyna Sieradzka 

43 
 

 

 
Figure 13. UMAP unsupervised representation for set A. 

 
Figure 14. UMAP unsupervised representation for set B. 
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Based on the two-dimensional UMAP projections, separated clusters of observations for analyzed 
datasets can be easily delineated. Each collection consists of both control and irradiated cells. Thus, the 
separation of individual clusters is not caused by the presence of two cell samples but by an effect much 
more vital than the radiation factor. It is worth emphasizing that these clusters were detected using an 
unsupervised approach. It means visible clusters were separated without providing information about 
the cell memberships to the control or irradiated sample. Therefore, this analysis made it possible to 
conclude that the hidden data structure is related to the high heterogeneity of the studied datasets. It 
undoubtedly dominates over the radiation factor in the unsupervised approach. To better identify the 
distribution of control and irradiated cells in the separated clusters, the maps of the highest 
concentration of these cells in the 2-dimensional UMAP space were analyzed. Table 6 shows the results 
of the cell-cluster analysis for the three different thresholds for testing cell density arrangement. 
 

 
 
 

Table 6. Results of the analysis of the cells’ density inside the designated clusters for different concentration 
thresholds t. 

 Set A Set B 
 
 
 
 

t=0.25 

  
 
 
 
 

t=0.50 

  
 
 
 
 

t=0.75 
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As a result of the analysis of the clusters’ density arrangement, it can be clearly stated that the centers 
of clusters for control and irradiated cells, despite occupying the same separated clusters, have different 
locations. The conducted analysis allows for drawing two basic conclusions. The first undoubted 
finding is the hidden structure of the analyzed ex vivo datasets related to their high heterogeneity level. 
Leaving this problem unresolved in building genetic profiles of irradiated cells and classifying these 
cells may negatively impact further considerations. It is, therefore, necessary to discover the cause of 
the heterogeneity of these datasets to make the required manipulations to monitor this effect. The 
second conclusion is the apparent influence of radiation on the differentiation of control and irradiated 
cells. The analysis of cluster density made it possible to detect that despite the superficially visible 
blurring of differences between these groups of cells inside the designated clusters, these cells group 
together in other locations of the presented 2-dimensional UMAP space. 

5.3 The hold-out test structure 
Preparation of the test data structures for both technical repetitions of the ex vivo experiment is 

enormously essential to maintain the possibility of testing solutions on the data set that did not 
participate in the individual stages of building the gene signature or, above all, models’ learning 
procedure. A part of the A and B datasets was set aside to ensure the complete independence of a 
particular pool of observations from the processes of creating the genetic profile of irradiated cells. 
These sets will be consistently called the test sets in the doctoral dissertation. They were created by 
randomly selecting 20% of the data remaining after the quality control process. Notably, the ratio of 
control to irradiated cells in the test sets was retained to reflect the composition of the initial input data. 
The test sets remain the same, considering their design, throughout recognizing the genetic profile of 
irradiated cells, regardless of the machine learning methodology used. Table 7 shows the quantitative 
compositions of individual cell samples for the randomly selected test and model structures.  
 

 
The distribution of the test set observations is shown in Figure 15. For visualization, there was utilized 
the UMAP tool. It was based on previously described 15 PCA components data for all observations 
available after the quality control in set B.  
 
 
 
 
 
 
 
 
 
 
 

Table 7. The composition of the test and model structures. 

 Set A Set B 
 

Test structure 
Control 306 452 

Irradiated 231 391 
Total 537 843 

 
Model structure 

Control 1253 1800 
Irradiated 893 1571 

Total 2146 3371 
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According to the assumptions, the random selection of observations for the test set made it possible to 
ensure an even representation of cells in the 2-dimensional space of the B dataset. The presented points 
representing the control (red) and irradiated (light blue) cells of the test set cover the area of the drawn 
observations of the model structure for the control (goldenrod) and irradiated cells (navy blue). 
Moreover, there are no places of particular accumulation of cells of the test set in specific parts of the 
presented 2-dimensional UMAP space. This guarantees a full and independent representation of the 
cells for the test set and will allow the testing and direct comparison of classification results for different 
approaches used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15. Distribution of the test set over the B dataset. 
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6 Ex vivo irradiated cells’ genetic profile recognition based on the 
logistic regression methods 

The ex vivo data analysis, in the form of two technical repetitions of the experiment, sets A and B, 
concerns the set of features and observations after data quality control. This part of the dissertation is 
intended to determine the ex vivo irradiated cells’ gene signature. Based on selected genes, it will be 
possible to distinguish between control and irradiated cells in the mixed-cells-membership datasets. 
The purpose is to find features indicating whether the analyzed cells among the white blood cell sample 
were irradiated. The following subsections exhaustively describe the research workflow, leading to 
determining the gene structure of irradiated cells based on logistic regression methods.  

6.1 Irradiated cells’ genetic profile recognition based on the white blood cell 
dataset 

The irradiated cells’ genetic profile identification stage using logistic regression methods is based 
on data set B. In the next step, there was an independent testing of the model based on data set A, 
derived from a technical repetition of the same experiment. The developed workflow consists of the 
features selection using modeling based on logistic regression methods, determining the significance 
of features based on the generated lists of features using the appropriate metric, final model building, 
and mentioned independent testing of the model.  

The feature selection using LR methods, implemented according to the proposed workflow, is 
described in detail in the section Logistic regression-based workflow. The algorithm was designed to 
build 50 complete models based on the provided set B model data structure. There was an obvious need 
to generate train and validation sets for the LR-based model learning. When the algorithm is run once, 
it is possible to generate only one set of selected features; therefore, to obtain 50 assumed models, the 
algorithm was run 50 times. The sets generation system was programmed at the entrance to the models’ 
implementation. The graphical presentation of the randomization of individual datasets is presented in 
a simplified way in Figure 16. 

 

 
 
 

 
Figure 16. Scheme of extracting data subsets with the use of randomization methods. 



| Katarzyna Sieradzka 

49 
 

The task of the sets generation system is to draw a validation data structure consisting of 30% of the 
input cells available in the model data structure (remaining after the test set was separated). Moreover, 
the validation set was always composed of the same number of control and irradiated cells to ensure 
the balanced composition of this set. The remaining part of the model set formed the training structure. 
Each launch of the model was associated with the analysis of the train and validation data structures, 
modified in terms of cells’ composition. 

As a result of the features selection process utilizing a self-learning LR-based algorithm, 50 sets of 
features included in the created models were obtained. For each model, the validation set weighted 
accuracy of classification was estimated. These results are presented in Table 8.  

 

 
The highest obtained value of weighted accuracy was equal to 93.59%, while the lowest was equal to 
89.37%. The median and mean values are 91.28% and 91.33%, respectively. 

After the lists of selected features were generated, the subsequently occurring genes were collected 
into one cumulative list along with the weighted accuracy values of the validation structures among 50 
generated models. The GeneRank measure ( 16 ) feature selection filter method was applied to assign 
the proper feature ranks. 

 
 
 
 
 

Table 8. Weighted accuracy values based on set B validation structures for 50 generated LR-based models. 

Model ID Weighted accuracy [%] Model ID Weighted accuracy [%] 
1 91.25 26 91.87 
2 92.27 27 92.20 
3 90.32 28 89.57 
4 92.99 29 90.81 
5 90.35 30 90.43 
6 91.31 31 90.63 
7 90.24 32 91.65 
8 91.51 33 89.37 
9 92.61 34 91.22 
10 93.59 35 89.95 
11 90.13 36 89.88 
12 91.32 37 91.95 
13 91.09 38 90.43 
14 91.99 39 91.38 
15 91.24 40 91.22 
16 90.52 41 91.60 
17 91.54 42 90.91 
18 91.61 43 91.12 
19 92.31 44 91.40 
20 93.58 45 93.43 
21 91.57 46 91.13 
22 89.97 47 92.69 
23 92.43 48 90.82 
24 91.04 49 91.91 
25 91.91 50 90.24 
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Where: 
x is the feature indicator 
N is the model index 
k is the number of features in the most extended model 
i is the features’ position in the jth model 

 
Described importance measure was applied for each feature that occurred at least once in all 50 
generated models. GeneRank focuses not only on the weighted classification accuracy of the validation 
set for the model from which the feature is derived but also on the number of features that occurred in 
the longest-generated model. The last aspect important from the point of view of the introduced measure 
of genes’ importance is the position of the feature in a given model. If a specific gene was present in 
multiple models, its calculated performances are summed up. After each gene’s estimates, the metric 
values were normalized to the 0-1 range to make all available features comparable. To determine the 
appropriate cut-off point for the number of informative genes, a feature distribution plot was created 
along with the assigned values of the normalized GeneRank metric. The threshold value for the correct 
number of features was determined based on the GeneRank metric, where the significant difference 
between the following values was imperceptible. Hence, in Figure 17, presenting the distribution of the 
metrics’ values for individual genes, the threshold was marked with a red line.  
 

 
Features on the right of the designated threshold value create a visible continuous line without any 
jumps between individual values. These genes do not significantly impact the recognition of the genetic 
profile of ex vivo irradiated cells. They, therefore, are not important from the point of view of the 
general cells’ classification problem. The complete list of sorted features included 159 genes, while 
after the appropriate cut-off value was determined, 29 genes were left for further analysis of irradiated 
cells’ genetic profile recognition. These were considered informative in terms of the ability to recognize 
irradiated cells. Chosen 29 genes and their assigned GeneRank values are presented in Table 9. 

 
Figure 17. List of importance-sorted features with marked cut-off point for the number of informative genes. 

𝐺𝑒𝑛𝑒𝑅𝑎𝑛𝑘௫ =  ෍ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦௝  × (𝑘 − 𝑖 + 1)𝑘ே
௝ୀଵ  ( 16 ) 



| Katarzyna Sieradzka 

51 
 

 
After features selection and determination of genes’ significance in the problem of distinguishing 
between control and irradiated cells, there were estimated model parameter values utilizing the 
implemented algorithm. The calculations were based on the model structure of the B set, and estimated 
parameter values are presented in Table 10.  
 

 
The last step necessary to build a fully functioning, tuned model was to select the appropriate 
probability threshold value for irradiated cells classification. This step will arm the built model with an 
adjusted probability level, allowing even more efficient cell classification. For this purpose, a 
classification threshold inspection step was performed based on the set B test structure, utilizing the 
Youden index ( 17 ).  
 

 
It is a valuable metric, especially if the goal is to select the optimal cut-off classification threshold for 
a balanced study of sensitivity and specificity measures. The Youden index is an indicator specified for 
all Receiver Operating Characteristic (ROC) points. The maximum value of the indicator may be used 
as a criterion for selecting the probability value for classification purposes. The index is often 

Table 9. Complete list of genes selected for the final model building part. 

Gene GeneRank Gene GeneRank 
BAX 1.0000 TYMS 0.3715 

RPS19P1 0.9743 CD40 0.3087 
RPL23AP42 0.9482 TMEM97 0.2678 

RPS27L 0.9092 RUNX3 0.2408 
DDB2 0.8907 GZMH 0.2388 

TNFSF8 0.7362 MYC 0.2313 
CCNG1 0.7336 CXCL9 0.2141 
STAT5A 0.6756 IL15 0.2098 

LCK 0.6556 FYB 0.1923 
TNFRSF10B 0.5949 MCM2 0.1905 

AQP9 0.5871 FLT3 0.1895 
CD3D 0.5361 LAT 0.1856 
PHPT1 0.4805 TRIB2 0.1713 
AEN 0.4075 GAPDH 0.1592 

LAMP3 0.3801   
 

𝐽 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 ( 17 ) 

Table 10. Estimated parameter values for the final model. 

Intercept BAX RPS19P1 RPL23AP42 RPS27L DDB2 TNFSF8 CCNG1 
-2.47 0.79 0.25 -0.21 0.74 1.27 0.71 0.48 

STAT5A LCK TNFRSF10B AQP9 CD3D PHPT1 AEN LAMP3 
-0.63 -0.29 0.85 0.39 -0.21 0.34 0.90 -0.17 

TYMS CD40 TMEM97 RUNX3 GZMH MYC CXCL9 IL15 
-0.69 -0.33 -0.47 -0.27 -0.20 -0.19 -0.06 -0.40 
FYB MCM2 FLT3 LAT TRIB2 GAPDH   
-0.31 0.29 -0.26 -0.25 -0.47 -0.14   

 



| Ex vivo irradiated cells’ genetic profile recognition based on the logistic regression methods 

52 
 

represented graphically as the height above the diagonal line. The determined ROC curve with the 
estimated 0.7047 value of the new classification probability value is presented in Figure 18. 
 

 
A testing procedure was performed using the set B test data structure to verify whether a significant 
change occurred after utilizing the new classification probability threshold value. To compare the 
results, several qualitative metrics were introduced: True Positive (TP), True Negative (TN), False 
Positive (FP), False Negative (FN), precision, recall, specificity, and weighted classification accuracy. 
All these measures are described in detail in Table 11 and Table 12. 
 

 

 
 

 
Figure 18. ROC with Youden classification probability value marked. 

Table 11. Confusion matrix details. 

  True class 
  Positive Negative 

Predicted class Positive TP FP 
Negative FN TN 

 

Table 12. Introduced qualitative metrics. 

Metric name Formula 
Precision TP/(TP+FP) 

Recall (Sensitivity) TP/(TP+FN) 
Specificity TN/(TN+FP) 

Weighted accuracy (Recall + Specificity)/2 
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Precision is the ratio of observations correctly classified as positive to all marked positives. Sensitivity 
(recall), on the other hand, is the ratio of observations correctly classified as a positive group concerning 
all positive cases in the actual data set. The explanation for specificity is almost the same as sensitivity, 
but on the contrary, it examines the negative group. Additionally, the F1score ( 18 ) measure was 
introduced, enabling the comparison of different models’ quality metrics. The F1score metric takes into 
account both FPs and FNs. It is, therefore, a much more valuable metric than the pure classification 
quality value. 
 

 
To verify the effectiveness of the irradiated cells’ new classification probability value, the results for 
the default and new classification probability thresholds are presented in Table 13. This analysis was 
carried out based on the set B test structure. 
 

 
The estimated F1score metric values indicate the advantage of classification quality for the changed 
probability classification threshold. Utilizing the new threshold value, it was possible to classify 
correctly 15 cells more compared to the predetermined threshold. The operations related to the feature 
selection and the refinement of the final model made it possible to obtain a weighted classification 
quality at a very high and satisfactory level, amounting to over 92%. 

As the final verification of the model’s accuracy, the independent testing procedure was performed 
based on the set A data. It was necessary to perform one more additional checking step to determine 
factors precluding the possibility of direct testing on this dataset. There was investigated if the batch 
effect is present among sets distribution in the two-dimensional UMAP space. Before UMAP 
projection, the dimensionality of both data sets (set A and set B) was limited using the PCA method to 
reduce computational costs. There were analyzed all observations from both ex vivo datasets. 
Moreover, there were considered raw datasets without preliminary quality control steps. As a result of 
the PCA, the analyzed dimensionality was reduced from 452 to only 18 PCA components, explaining 
96.74% of the variance in the pooled dataset. The data was next transformed into a two-dimensional 

Table 13. Classification quality metrics comparison for two classification probability threshold values. 

 Classification threshold 
Quality metric Fixed 0.5000 Youden 0.7047 
TP 361 351 
TN 404 429 
FP 48 23 
FN 30 40 
Precision 0.8826 0.9385 
Sensitivity 0.9233 0.8977 
Specificity 0.8938 0.9491 
Weighted accuracy 0.9075 0.9253 
F1score 0.9025 0.9176 
Number of cells 843 843 
Number of correctly classified cells 765 780 
Number of incorrectly classified cells 78 63 
Incorrectly classified cells [%] 9.25 7.47 

 

𝐹1 = 2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  ( 18 ) 
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UMAP space and projected using isolines showing the distribution of the data cloud of both datasets. 
The results are presented in Figure 19. 
 

 
The distributions of both ex vivo datasets are consistent, as they occupy very similar areas in the two-
dimensional space. What is more, the presented distribution overlap between both datasets. The testing 
procedure can be performed on the raw set A data without additional data manipulation and processing. 
The results of the independent testing procedure are presented in Table 14. 
 

Table 14. Classification quality metric values based on the independent test set. 

Quality metric name Quality metric value 
TP 1017 
TN 1485 
FP 99 
FN 122 

Precision 0.9113 
Sensitivity 0.8929 
Specificity 0.9375 

Weighted accuracy 0.9188 
F1score 0.9020 

Number of cells 2723 
Number of correctly classified cells 2502 

Number of incorrectly classified cells 221 
Incorrectly classified cells [%] 8.12 

 

 
Figure 19. Isolines for ex vivo datasets distribution. 
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Results of the testing procedure based on an independent dataset yielded very satisfactory results. These 
are reflected in the high value of the weighted classification accuracy, exceeding 91%. There were also 
achieved high specificity and precision values of above 0.90. This means that the constructed classifier 
correctly recognizes both irradiated and control cells. 

6.2 White blood cell subpopulations recognition 
After a detailed analysis of individual genes included in the recognized genetic profile of irradiated 

cells, it turned out that not all genes are used to distinguish irradiated cells from control cells. Some 
genes in the recognized profile have other functions, including recognition of specific cell subtypes. 
Table 15 is based on supplementary material BD Rhapsody Immune Response Panel Hs, provided with 
the single-cell sequencing data. It was found that as many as 9 out of 29 genes of the irradiated cells’ 
genetic profile are responsible for distinguishing individual cell subpopulations. They constitute an 
additional burden for the built genetic profile.  

 

 
 

Table 15. Genes of the recognized irradiated cells’ genetic profile with assigned corresponding functions. 

Gene name Function/process – cell type specificity 
BAX Apoptosis regulator 

RPS19P1 - 
RPL23AP42 - 

RPS27L - 
DDB2 - 

TNFSF8 Cytokine 
CCNG1 - 
STAT5A Transcription factor 

LCK Marker gene – T subset 
TNFRSF10B - 

AQP9 Transporter 
CD3D Marker gene – Pan T 
PHPT1 - 
AEN - 

LAMP3 Marker gene – Dendritic cells 
TYMS Cell cycle (S phase) 
CD40 CD marker 

TMEM97 Miscellaneous 
RUNX3 Transcription factor – T subset 
GZMH Effector molecule – Cytotoxic T, NK 
MYC Proliferation marker 

CXCL9 Chemokine 
IL15 Interleukin 
FYB Miscellaneous – T subset 

MCM2 Cell cycle (S phase) 
FLT3 CD marker, kinase – Dendritic cells 
LAT Miscellaneous – T subset 

TRIB2 Kinase - T 
GAPDH Metabolism 
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These genes are not directly accountable for determining cells due to the analyzed external factor, so 
they do not fully correspond to the aim of this doctoral dissertation which focuses primarily on radiation 
response genes. Undoubtedly, however, they play an important role in distinguishing irradiated and 
control cells. Observations from different subpopulations of white blood cells are characterized by 
differences in the strength of response to ionizing radiation, as described in the introduction to the 
doctoral dissertation White Blood Cell subpopulations. This analysis allowed us to discover a critical 
correcting factor in the problem of the irradiated cells' genetic profile recognition - the internal 
heterogeneity of the white blood cells dataset influencing the final irradiated cells’ genetic signature. 

Due to the purpose of this dissertation, which is constructing a classifier for control and irradiated 
cell recognition, the detected heterogeneity of the dataset must be carefully analyzed. The aim is to 
eliminate internal differences between cells that do not result from the influence of the radiation factor 
but influence the behavior of gene profiles of these cells. To determine the exact cause of the variation 
in collections, procedures were carried out to isolate individual subpopulations of white blood cells. 
The cell subpopulations were analyzed separately for the model structures of both technical repetitions 
and the set B test structure. The problem of white blood cell subpopulation recognition has been divided 
into the following stages: feature selection, cell cluster recognition utilizing the HDBSCAN tool, and 
white blood cell subpopulations recognition using marker genes characteristic of the expected cell 
subpopulations (BD Rhapsody Immune Response Panel Hs).  

6.2.1 Feature selection 
Before the relevant part of WBCs subpopulation recognition, the feature selection procedure was 

performed. It is primarily aimed at reducing the dimensionality of the datasets. The goal is to select the 
genes set that show the most significant variability across the control and irradiated cell count values. 
For this purpose, the coefficient of variation (CV) measure was used, according to ( 19 ).  

 

 
In the analyzed data, different genes are characterized by varying counts. The CV measure benefits the 
variables with various ranges of values comparison procedures. The lower the estimated CV value, the 
more stable the feature is, which means the lower CV values are dedicated to fewer variable features 
over the analyzed set. The dimensionality reduction using the described measure of the variability is 
based on 396 genes from set A and 406 genes from set B (available in the data sets after QC procedures 
were performed). The GMM was utilized with the number of GMM components determined by the 
BIC metric to determine the appropriate threshold value for the number of features. A reasonable 
threshold value was estimated based on the CV and the GMM approaches. Among both analyzed 
datasets, this value was determined by rejecting the one component that contained features with the 
lowest variability. The feature selection results for both model structures and the set B test structure are 
presented in Figure 20, Figure 21, and Figure 22, respectively. 
 
 
 

𝐶𝑉௚௘௡௘ =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛௚௘௡௘𝑚𝑒𝑎𝑛௚௘௡௘  × 100% ( 19 ) 
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Figure 20. GMM components for CV distribution with the number of chosen features threshold marked based on 

set A model structure. 

 
Figure 21. GMM components for CV distribution with the number of chosen features threshold marked based on 

set B model structure. 
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The summary of performed dimensionality reduction procedure with the estimated CV threshold values 
and the number of selected genes and cells are described in Table 16. In addition, for both model 
structures for ex vivo data, 46 and 14 cells were detected, respectively, for set A and set B data, having 
non-zero counts in less than three genes available after dimensionality reduction using CV. Described 
cells were marked suspicious and removed from further analysis based on the HDBSCAN tool. In the 
next step of the subpopulation recognition part, these cells will be restored to the model datasets 
according to the proposed procedures for including sub-types of cells into individual clusters. 

 

 

6.2.2 HDBSCAN cluster analysis 
The HDBSCAN tool was utilized to divide cells into clusters corresponding to their variability 

across the spatially reduced datasets. The cluster separation with the tool consisted mainly of selecting 
an appropriate starting parameter set and properly dividing the data set into clusters. The influence of 
3 out of 4 properties listed in Table 17 was analyzed to select the appropriate set of parameters. 
 
 
 
 
 

Table 16. Summary of feature selection procedures for the WBCs subpopulation recognition, detailing the analyzed 
data structures. 

Data  CV threshold Genes Control cells Irradiated cells Total cells 
Set A model 310 273 1234 866 2100 
Set B model 300 286 1796 1561 3357 

Set B test 22 197 452 391 843 
 

 
Figure 22. GMM components for CV distribution with the number of chosen features threshold marked based on 

set B test structure. 
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A total of 40 different sets of starting parameters were tested based on the original count values 
considering only the control cell samples. The analysis was performed separately for each of the three 
data sets: set A model structure, set B model structure, and set B test structure. The effect size omega-
squared measure was used to determine the parameter set that best separates the analyzed control cells 
in terms of their differentiation, according to ( 20 ).  

 

Where: 
SSbetween is the between-group variation 
dfbetween is the between group degrees of freedom 
MSwithin is the mean square within groups 
and SStotal is the total variation 
 
The estimates of the omega-squared measure took into account all genes available after the features 
selection procedure with the use of CV and clusters generated by the HDBSCAN tool, excluding groups 
containing unassigned cells. The complete set of tested parameters and the results of the analysis 
performed for individual data sets are included in Table 18. The selection of an appropriate set of 
parameters was based primarily on the value of the effect size measure and the content of unclassified 
cells (Uncls. cells). The selected sets of parameters for individually analyzed datasets are also marked 
in Table 18 – for the set A and set B model structures, the set of parameters marked with the number 
38 was chosen. The parameters marked with the number 3 were selected for the set B test structure. 

Table 17. Set of starting HDBSCAN tool parameters with their interpretation. 

Parameter Interpretation 
min_cluster size 

(mcs) 
the smallest group size that is considered to be a cluster 

 
min_samples 

(ms) 

the measure how conservative the clustering algorithm is – the 
larger the value, the more conservative clustering (the larger the 

value, the more points will be declared as noise,  and clusters will 
be restricted to more dense areas) 

cluster_selection_epsilon 
(cse) 

helps to merge clusters in regions determined by parameter value - 
if even groups of few points might be of interest to us, we can 

change this parameter 
metric euclidean 

 

𝜔ଶ =  𝑆𝑆௕௘௧௪௘௘௡ − 𝑑𝑓௕௘௧௪௘௘௡  ×  𝑀𝑆௪௜௧௛௜௡𝑆𝑆௧௢௧௔௟ +  𝑀𝑆௪௜௧௛௜௡  ( 20 ) 
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Next, the control and irradiated cells were subjected to the clustering procedure. The HDBSCAN tool 
starting parameter sets selected from the control samples were applied to the control and the irradiated 
sample for the specified dataset. An extension of this tool was also used to assign cells of unknown 
origin to the closest, based on the estimated probability value, clusters. As a result of the ex vivo data 
analysis with the HDBSCAN tool, the cells were divided into clusters. These clusters are assumed to 
correspond to the intrinsic heterogeneity of the cells, which was detected in the ex vivo datasets 

Table 18. Set of tested HDBSCAN starting parameters. 

    Set A model structure Set B model structure Set B test structure 
Param. 
version 

mcs ms cse No. 
clusters 

Uncls. 
cells 
[%] 

 𝜔ଶ 
No. 

clusters 
Uncls. 
cells 
[%] 

 𝜔ଶ 
No. 

clusters 
Uncls. 
cells 
[%] 

 𝜔ଶ 

1 10 2 0.100 2 13.13 0.75 6 10.80 0.97 2 1.99 0.75 
2 15 2 0.100 2 13.13 0.75 3 12.64 0.72 2 1.99 0.75 
3 5 2 0.100 7 11.43 0.85 13 8.91 0.99 3 0.66 0.86 
4 5 5 0.100 5 14.26 0.73 5 12.47 0.98 2 3.32 0.65 
5 5 10 0.100 2 16.05 0.38 2 14.20 0.46 0 100.00 0.00 
6 5 2 0.300 7 11.43 0.85 13 8.91 0.99 3 0.66 0.86 
7 5 2 0.050 7 11.43 0.85 13 8.91 0.99 3 0.66 0.86 
8 5 2 0.001 7 11.43 0.85 13 8.91 0.99 3 0.66 0.86 
9 20 2 0.100 2 13.13 0.75 2 12.53 0.50 0 100.00 0.00 

10 20 5 0.100 2 14.75 0.67 2 13.81 0.61 0 100.00 0.00 
11 20 6 0.100 2 15.48 0.57 3 55.40 0.11 0 100.00 0.00 
12 20 10 0.100 3 61.91 0.33 2 48.55 0.05 0 100.00 0.00 
13 20 8 0.100 2 15.56 0.56 7 56.57 0.34 0 100.00 0.00 
14 15 8 0.100 2 15.56 0.56 2 42.87 0.05 0 100.00 0.00 
15 15 9 0.100 3 50.24 0.18 2 13.86 0.57 0 100.00 0.00 
16 15 5 0.100 2 14.75 0.67 2 13.81 0.61 0 100.00 0.00 
17 10 8 0.100 2 15.56 0.56 2 14.31 0.45 0 100.00 0.00 
18 10 8 0.200 2 15.56 0.56 2 14.31 0.45 0 100.00 0.00 
19 10 8 0.300 2 15.56 0.56 2 14.31 0.45 0 100.00 0.00 
20 10 8 0.400 2 15.56 0.56 2 14.31 0.45 0 100.00 0.00 
21 10 8 0.600 2 15.56 0.56 2 14.31 0.45 0 100.00 0.00 
22 5 8 0.200 2 15.56 0.56 4 13.47 0.60 2 38.72 0.06 
23 5 8 0.050 2 15.56 0.56 4 13.47 0.60 2 38.72 0.06 
24 2 8 0.200 6 15.32 0.90 8 12.81 0.97 2 4.42 0.41 
25 10 11 0.200 2 15.96 0.49 2 14.20 0.46 0 100.00 0.00 
26 30 35 0.200 2 59.81 0.14 3 63.70 0.11 0 100.00 0.00 
27 30 10 0.200 3 61.91 0.33 5 60.75 0.25 0 100.00 0.00 
28 6 8 0.100 2 15.56 0.56 4 13.47 0.60 2 38.72 0.06 
29 5 2 0.000 7 11.43 0.8 13 8.91 0.99 3 0.66 0.86 
30 5 2 0.020 7 11.43 0.85 13 8.91 0.99 3 0.66 0.86 
31 10 4 0.005 2 14.10 0.72 2 13.70 0.60 2 2.65 0.73 
32 8 4 0.005 2 14.10 0.72 4 12.69 0.60 2 2.65 0.73 
33 5 4 0.010 5 13.53 0.79 7 11.80 0.98 3 1.55 0.86 
34 5 4 0.000 5 13.53 0.79 7 11.80 0.98 3 1.55 0.86 
35 5 6 0.000 3 15.07 0.66 5 12.75 0.75 2 3.76 0.56 
36 5 1 0.000 7 11.43 0.85 13 8.91 0.99 3 0.66 0.86 
37 10 1 0.000 2 13.13 0.75 6 10.80 0.97 2 1.99 0.75 
38 3 1 0.000 13 10.05 0.97 24 7.80 0.99 4 0.88 0.86 
39 4 1 0.000 9 10.78 0.95 16 8.24 0.99 3 0.66 0.86 
40 6 1 0.000 5 12.24 0.81 11 9.47 0.99 3 0.66 0.86 
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visualization process. The result of the operation of this tool, for each analyzed cell, is the vector of 
probabilities of this cell belonging to all of the detected by HDBSCAN tool clusters. The assignment 
was utilized for the cluster with the highest probability of belonging value to determine the membership 
of individual cells. In this way, all analyzed cells were described by the unique cluster ID showing their 
internal variability. Table 19 shows the number of cell clusters detected for the control and irradiated 
sample, depending on the analyzed dataset. 

 

 
This step also restored weak-count cells previously removed from the analysis at the features selection 
step using the CV metric for both model structures of the ex vivo experiment (46 cells for set A and 14 
cells for set B data). The centroids-based distance metric was used for cell clusters detected by the 
HDBSCAN tool. This procedure was applied separately to the control and irradiated cells. To achieve 
the best possible accuracy in restoring weak-count cells, the full dimensionality of the data was restored 
that was available after QC procedures. In the case of the set A and set B datasets, the dimensionality 
of respectively 396 and 406 features was restored. The centroid values were determined as 
multidimensional structures for each available feature in the next step. Each dimension of a centroid is 
related to the specified feature. Weak-count cells were restored to the dataset severally, and Spearman's 
correlation measure was calculated for each available cluster. The selected cell was assigned to the 
cluster for which the highest estimated correlation value was achieved. The weak-count cell recovery 
procedure was performed on the original scaled data. Thus, the data was returned to their full 
dimensionality, containing the full range of cells available after QC procedures. In addition to restoring 
full dimensionality, each cell was assigned to a specific data heterogeneity cluster. 

6.2.3 WBC subpopulations recognition 
The stage allowing the detection of specific subpopulations of white blood cells was performed 

using the information about marker genes characteristic for particular subpopulations of WBCs. Table 
20 presents a list of the marker genes used, with the assignment of the appropriate subpopulation of 
WBCs. 

Table 19. The number of detected clusters for ex vivo data sets. 

Data set Cell type Number of HDBSCAN clusters 
Set A model structure Control 13 

Irradiated 11 
Set B model structure Control 24 

Irradiated 23 
Set B test structure Control 3 

Irradiated 3 
 

Table 20. List of marker genes with an assignment of the corresponding subpopulation of white blood cells. 

WBCs subpopulation Marker gene 
Monocytes FCGR3A, S100A9, CD14 

Dendritic cells LAMP3, CD1C 
T cells CD3G, CD4, LCK, LEF1, SELL, FOXP3, CD8A, CD8B 
B cells CD79A, CD79B, TCL1A, MS4A1 

Granulocytes PI3 
Basophil/Eosinophil CLC 

NK cells CST7, CTSW, NKG7 
Alpha/Beta T cells TRAC, TRBC2 

Gamma/Delta T cells TRDC 
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To identify the relevant structures of the WBC subpopulations, including even very low-represented 
cell types, boxplots were generated for each cell cluster and each subpopulation marker gene, showing 
the counts distribution. Based on generated boxplots, individual clusters belonging to the appropriate 
cell subpopulation were decided separately for the control and irradiated cells. The clusters marked as 
the same subpopulation were joined, creating larger structures corresponding to the internal data 
heterogeneity. Examples of boxplots for the three analyzed ex vivo data structures for the CD14 
monocyte subpopulation marker gene are presented in Figure 23, Figure 24, and Figure 25. The 
remaining boxplots can be found in the section Additional materials in the subsection Recognition of 
cell subpopulations based on ex vivo experiments. Control cell clusters (C) are marked in goldenrod, 
while irradiated cell clusters (R) are kept in navy blue. 

 

 

 

 
 
 

 
Figure 23. Boxplot of count distribution for the CD14 monocyte marker gene for set A model structure data. 

 
Figure 25. Boxplot of count distribution for the CD14 monocyte marker gene for set B test structure data. 

 
Figure 24. Boxplot of count distribution for the CD14 monocyte marker gene for set B model structure data. 
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The detected WBC subpopulations were visualized in the next step using the UMAP tool. The 
designated subpopulations were marked with different colors to test whether the structure of clusters, 
defined using unsupervised learning methods, corresponds to the recognized cell subpopulations. After 
the analysis of the resulting UMAP projection plots, it was noticed that in the case of both set A and 
set B model data structures, there exists a small fraction of cells that are mixed with a subpopulation 
other than assigned. Figure 26 and Figure 27 show the described phenomenon successively for the set 
A and B model data structures. In the case of the model structures of the set A data, 19 cells (14 control 
and 5 irradiated), and the set B data, 19 such cells (9 control and 10 irradiated) were marked suspect. 
 

 
 
 
 

 
Figure 26. UMAP visualization for detected WBC subpopulations for set A model structure. 
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Suspicious cells were subjected to a detailed analysis to match them to the genetic profiles of the 
remaining correctly classified subtypes of white blood cells. This procedure consisted of redetermining 
the boxplots for marker genes. However, the distribution for not all cells classified as a given subtype 
is plotted in this case. In this case, there are marked only those cells for which there is no doubt their 
affiliation to a specific subpopulation type is correct. The suspicious cell counts were plotted directly 
on the distributions of individual cell subpopulations. If the suspect cell shows increased counts for the 
marker gene of the subpopulation they do not belong, it means that they have been incorrectly assigned, 
and it is necessary to change their affiliation. Figure 28 and Figure 29 show, for the model structure of 
the set A and set B data, an exemplary procedure for the CD14 gene, which is a marker gene for the 
monocyte subpopulation. Other generated boxplots can be found in Additional materials in the 
subsection Recognition of suspicious cells affiliation.  

 

 
Figure 27. UMAP visualization for detected WBC subpopulations for the set B model structure. 

 
Figure 28. Analysis of the suspect cells affiliation based on the set A model structure data. 
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Analyzing the boxplots in Figure 28 and the T-cell subpopulation for irradiated cells (Tcells-R), it can 
be seen that one of the red-marked cells shows increased counts for the CD14 monocyte marker gene. 
Therefore, this cell should be reclassified from a T-cell to a monocyte subpopulation. Described 
procedure was performed for all suspect cells from the set A and set B model structures data.  

After thoroughly analyzing suspicious cells for both model sets, the heterogeneity structures of the 
analyzed data were presented utilizing 2-dimensional UMAP projection. The final UMAP plots with 
marked identified cellular subpopulations are shown in Figure 30, Figure 31, and Figure 32 for the 
model structures of set A and set B and for the set B test structure, respectively.  

 
Figure 29. Analysis of the suspect cells affiliation based on the set B model structure data. 



| Ex vivo irradiated cells’ genetic profile recognition based on the logistic regression methods 

66 
 

 

 

 
Figure 31. UMAP visualization for final WBC subpopulations based on set B model structure data. 

 
Figure 30. UMAP visualization for final WBC subpopulations based on set A model structure data. 
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As a result of the re-estimation of the individual WBCs subpopulation distribution, it was found that 
there is a noticeable improvement in cell affiliation based on the UMAP projection. A summary of 
detected white blood cell subpopulations based on the ex vivo data is presented in Table 21. It contains 
the numerical and percentage share of cells of a specific cell subpopulation concerning the analyzed 
datasets. 
 

 
 

Table 21. Summary of the white blood cell subpopulation recognition. 

WBCs 
subpopulation 

Cell type Set A model 
structure 

Set B model 
structure 

Set B test 
structure 

T cells Control 83.88% (1051) 85.56% (1540) 94.91% (429) 
Irradiated 89.70% (801) 84.66% (1330) 89.26% (349) 

Monocytes Control 3.67% (46) 6.28% (113) 5.09% (23) 
Irradiated 3.47% (31) 5.60% (88) 10.74% (42) 

B cells Control 11.25% (141) 5.56% (100) not detected 
Irradiated 6.83% (61) 6.36% (100) not detected 

Granulocytes Control 0.24% (3) 1.44% (26) not detected 
Irradiated not detected 1.59% (25) not detected 

Dendritic cells Control 0.96% (12) 0.61% (11) not detected 
Irradiated not detected 1.34% (21) not detected 

Basophile/ 
Eosinophile 

Control not detected 0.55% (10) not detected 
Irradiated not detected 0.45% (7) not detected 

 

 
Figure 32. UMAP visualization for final WBC subpopulations based on set B test structure data. 
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Recognized WBC subpopulations overlap very well with the structures generated by the unsupervised 
approach to data clustering using the UMAP tool. The shares of individual subpopulations about a given 
data set presented in Table 21 indicate a significant advantage of the content of T-cells in all analyzed 
sets of cells. Moreover, no essential differences can be observed in the percentage of cells of a given 
subpopulation concerning the control and irradiated groups. Thanks to carefully conducted analysis, it 
was also possible to detect very few subpopulations, such as granulocytes, dendritic cells, or 
basophils/eosinophils. This indicates a high sensitivity of the performed analysis aimed at cell 
subpopulation recognition. A very in-depth analysis of the cells marked as suspicious was focused on 
a relatively small group of cells. Therefore, it can be pondered if the lack of this part of the analysis 
will significantly disturb the conclusion about the recognition of cell subpopulations. The answer to 
this hypothesis is not easy, but it is essential to pay attention to the purpose of the study. The aim was 
to recognize as much heterogeneity as possible in the datasets. Such a thorough study of the structures 
hidden inside the data allowed for accurate recognition of the cause of cell variability detected using 
unsupervised machine learning techniques. Moreover, the detected phenomenon was confirmed by 
several visualizations, which proved the presence of variability due to the WBC subpopulation’s 
existence. Omitting the additional step of correcting subpopulations due to suspicious cells would result 
in lower accuracy in the assignment of individual cells, thus leaving part of the variability in a way 
impossible to control later. Building a self-learning classifier to distinguish between control and 
irradiated cells will undoubtedly benefit from a thorough analysis of cell subpopulations. In the data set 
prepared this way, the cause of uncontrolled and visible variability within the cells was eliminated. 
Considering all the aspects mentioned above of the WBC subpopulation recognition procedures, it can 
be clearly stated that the proposed solution enables, in a very satisfactory way, to isolate cell clusters 
corresponding to their biological meaning in the case of ex vivo data.  

6.3 Irradiated cells’ genetic profile recognition based on T-cells subpopulation 
Detection of cell subpopulations revealed bases of the heterogeneity visible in 2-dimensional UMAP 

plots using unsupervised techniques. Utilizing the previously determined genetic profile of irradiated 
cells and the model built on its basis, it is also possible to decide on the models’ effectiveness in 
classifying observations belonging to selected subpopulations of white blood cells. A summary of 
classification quality results for individual cell subpopulations based on the independent set A model 
structure is provided in Table 22. The table shows the three cell subpopulations detected for control 
and irradiated samples. 

 

Table 22. Classification quality metric values based on the independent test set for three recognized subpopulation 
types. 

Quality metric name T-cells Monocytes B-cells 
TP 749 20 54 
TN 995 33 106 
FP 56 13 35 
FN 52 11 7 

Precision 0.9304 0.6061 0.6067 
Sensitivity 0.9351 0.6452 0.8852 
Specificity 0.9467 0.7174 0.7518 

Weighted accuracy 0.9417 0.6883 0.7921 
F1score 0.9328 0.6250 0.7200 

Number of cells 1852 77 202 
Number of correctly classified cells 1744 53 160 

Number of incorrectly classified cells 108 24 42 
Incorrectly classified cells [%] 5.83 31.17 20.79 
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Based on the quality analysis of the classification of individual subpopulations, it was found that only 
the T-cells subpopulation is correctly classified, maintaining satisfactory results. All values of the 
analyzed quality metrics are higher for the T-cells subpopulation than for the model based on complete 
data for all WBC subtypes. This proves the low quality concerning the classification of cell subtypes, 
constituting a significant minority of the analyzed data set. The weighted classification quality for 
Monocytes and B-cells is 69% and 79%, respectively, while for the T-cells set, it is as high as 94%. 
Significantly lower values of this metric, with simultaneous consideration of the F1score measure, mean 
that the model has learned specific patterns adequate to most T-cells, attaching less importance to the 
other, less numerous cell subpopulations.  

The distribution of counts for the selected set of genes for the detected cell subpopulations was also 
analyzed. Distributions were drawn using boxplots separating control and irradiated samples. The 
analysis, therefore, concerned each cell subpopulation and each sample individually. The aim was to 
determine and confirm the specificity of some genes relating to the data's internal heterogeneity. This 
analysis was performed based on data from the set B model structure. The selected three genes are 
shown in the following figures: Figure 33, Figure 34, and Figure 35. The distribution of the remaining 
genes is presented in the Additional materials section in the Distribution of counts for selected genes 
by cell subpopulations subsection. 
 

 

 
Figure 33. CD3D gene distribution among recognized subpopulations and data samples. 

 
Figure 34. LAMP3 gene distribution among recognized subpopulations and data samples. 
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Figure 33 and Figure 34 indicate that the CD3D and LAMP3 genes allow the classifier to recognize T-
cell and Dendritic subpopulations, respectively. In the case of the CD3D gene, no significant 
differences can be seen between the count values for the control and irradiated T-cells, further 
highlighting that this gene was included in the model only due to the intrinsic heterogeneity of the 
analyzed dataset. On the other hand, in Figure 35, the BAX gene is shown, the presence of which in the 
model is correctly considered for the differentiation of control and irradiated cells. The distribution of 
the counts of this gene does not favor any of the detected subpopulations and allows for the detection 
of differences between the control and irradiated cells. Control and irradiated cell count distribution 
differences are visible for almost every subpopulation. Therefore, this gene plays a universal role, not 
considering the dataset’s heterogeneity. Considering the above additional analysis steps and the earlier 
ones concerning the function of the selected set of genes, an undoubted influence of the heterogeneity 
of the data set on the recognized genetic profile of irradiated cells was found. For this reason, a set of 
the most numerous T-cell subpopulations was separated to complete the analysis and determine the 
genetic profile of irradiated cells. Further procedures focused only on this specific part of the data. This 
made it possible to exclude a solid interfering factor, which is the detected heterogeneity of the dataset 
caused by the presence of different cell subpopulations. Table 23 shows the observation counts of the 
T-cell subpopulation for the analyzed data structures.  

 

 
The irradiated cells’ genetic profile identification procedure remains analogous to the previously 

described workflow and focuses on set B data at the initial analysis stages. What is more, this analysis 
is based on the examination of the normalized data. Normalization of observations in a data set without 
an internal source of variability (caused by other than the expected variability related to the ionizing 
radiation factor) is essential in the case of the analyzed data. The main factor in favor of its necessity is 
the occurrence of count values of individual cells in different scales, i.e., different ranges of count 

Table 23. The composition of the test and model structures among T-cell subpopulation. 

 Set A Set B 
 

Test structure 
Control - 429 

Irradiated - 349 
Total - 778 

 
Model structure 

Control 1051 1540 
Irradiated 801 1330 

Total 1852 2870 
 

 
Figure 35. BAX gene distribution among recognized subpopulations and data samples. 
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values. Normalization is a process that enables the direct comparison of features over a dataset. The 
approach to normalizing the data deviates from the standard method of considering the mean and 
standard deviation but is much less sensitive to outliers [66]. All generated data structures have been 
subjected to separate normalization procedures. For each data structure, a specific median value was 
determined for each gene separately (Mg) over all cells from the control sample. The value of Median 
Absolute Deviation (MAD) ( 22 ) or Mean Absolute Deviation (MeanAD) ( 24 ) was also determined 
depending on the Mg value. Also, all cell count values from the control sample for a particular gene 
were considered in this case. These two values of normalization parameters, i.e., Mg and MAD or 
MeanAD, were used in the normalization process. It was carried out for each control and irradiated cell 
according to the formulas in equations ( 21 ) and ( 23 ). Moreover, the numerical values in the formulas 
used serve as calibration factors to the assumed data distribution, in this case, to the standard normal 
distribution. It converts the MAD to a standard deviation assuming a normal distribution [67]. The value 
1.4826 is the inverse of the cumulative distribution function, called the probit function for a normal 
distribution. More precisely, this value is the reciprocal of the 75% quantile for the standard normal 
distribution because, for this quantile, 50% of the standard normal cumulative distribution function is 

covered [68]. When MAD is 0, the scaling factor is 1.2533, which is equivalent to ටగଶ [68].  

 

 
Where: 
i is the row index (cell-specific) 
j is column index (gene-specific) 
x(i,j) is specified cell count 
Mg(j) is the estimated median value for a particular jth gene 
MAD(j) is determined by: 
 

 
If the MAD(j) value was estimated to be equal to 0, then: 
 

Where: 
i is the row index (cell-specific) 
j is column index (gene-specific) 
x(i,j) is specified cell count 
Mg(j) is the estimated median value for a particular jth gene 
MeanAD(j) is determined by: 

 

 
 

After the normalization process, 50 models were built utilizing the implemented algorithm based on 
normalized T-cell data. Table 24 summarizes the obtained weighted accuracy values for the validation 
sets.  

𝑀𝐴𝐷(𝑗) = 𝑀(ห𝑥(𝑖, 𝑗) − 𝑀௚(𝑗)ห) ( 22 ) 

𝑟𝑜𝑏𝑢𝑠𝑡 𝑧௦௖௢௥௘(𝑖, 𝑗) =  11.2533 × 𝑥(𝑖, 𝑗) − 𝑀௚(𝑗)𝑀𝑒𝑎𝑛𝐴𝐷(𝑗)  ( 23 ) 

𝑟𝑜𝑏𝑢𝑠𝑡 𝑧௦௖௢௥௘(𝑖, 𝑗) =  11.4826 ×  𝑥(𝑖, 𝑗) − 𝑀௚(𝑗)𝑀𝐴𝐷(𝑗)  ( 21 ) 

𝑀𝑒𝑎𝑛𝐴𝐷(𝑗) = 𝑚𝑒𝑎𝑛(ห𝑥(𝑖, 𝑗) − 𝑀௚(𝑗)ห) ( 24 ) 
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Concerning this data structure, the mean value of the weighted accuracy was 95.40%, and the median 
value was 95.28%. A minimum weighted accuracy value of 89.61% was achieved, and a maximum 
value for one of the models of 100.00%. Among the generated models, considered in the context of 
feature selection as a list of genes, there were 54 unique features. Each gene that occurred at least once 
in 50 models was assigned a corresponding GeneRank value, consistent with ( 16 ). A cut-off threshold 
value was established for the number of significant features, determined in Figure 36. As before, this 
value was determined based on no changes in subsequent values of the defined metric to the right of 
the threshold value of the number of features.  

Table 24. A set of weighted accuracy values for the validation sets for 50 generated models based on the 
normalized set B model structure T-cells dataset. 

Model ID Weighted accuracy [%] Model ID Weighted accuracy [%] 
1 94.37 26 96.82 
2 94.37 27 93.59 
3 95.21 28 91.94 
4 95.16 29 100.00 
5 97.69 30 95.35 
6 91.98 31 93.59 
7 89.61 32 95.98 
8 94.37 33 97.59 
9 94.46 34 91.98 

10 95.98 35 95.16 
11 96.82 36 96.82 
12 93.73 37 95.16 
13 93.55 38 98.44 
14 92.33 39 95.21 
15 96.82 40 97.59 
16 94.37 41 97.59 
17 98.44 42 95.98 
18 98.39 43 94.65 
19 96.08 44 93.55 
20 97.59 45 93.02 
21 95.21 46 96.08 
22 97.69 47 96.82 
23 95.98 48 94.46 
24 97.59 49 92.84 
25 95.98 50 95.98 
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The list of selected 21 genes and the corresponding GeneRank metric values are presented in Table 25. 
 

 
The estimated final model parameter values for 21 chosen features are presented in Table 26. The model 
parameters were calculated based on the set B model structure, consisting of 2870 normalized T-cells. 
 
 
 
 
 
 
 

 
Figure 36. List of features sorted in terms of informativeness with a marked cut-off point for the number of 

selected features based on the normalized set B model structure T-cells dataset. 

Table 25. Complete list of genes selected for constructing the final model based on the normalized set B model 
structure T-cells dataset. 

Gene GeneRank Gene GeneRank 
RPS19P1 1.0000 CD74 0.3878 

RPL23AP42 0.9564 TNFSF8 0.3742 
BAX 0.9127 THBS1 0.3316 
DDB2 0.8491 STAT1 0.2183 
HLA-A 0.8307 TRIB2 0.2001 
RPS27L 0.7792 LCK 0.1922 
PHPT1 0.7277 AEN 0.1904 
MYC 0.7224 CDKN1A 0.1448 

CCNG1 0.6509 STAT51 0.1429 
FYB 0.4759 CHI3L1 0.1407 
CD52 0.4033   
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The final stage of building the complete model was determining the new probability threshold value 
for irradiated cells classification utilizing the previously described Youden index ( 17 ). Results are 
presented in a graphical form, with the 0.5124 new classification probability threshold value marked in 
Figure 37. As in the previously described approach, this value was determined based on a set B test 
structure. 

 

 
The effectiveness of utilizing the new probability threshold value for control and irradiated cells 
classification purposes was compared against a predetermined value of 0.50 classification probability 
value. These results are included in Table 27. 

 
 

 
Figure 37. ROC with marked Youden threshold for the final model. 

Table 26. Estimated parameter values for the final model based on the normalized set B model structure T-cells 
dataset. 

Intercept RPS19P1 RPL23AP42 BAX DDB2 HLA-A RPS27L PHPT1 
-4.47 1.76 -1.44 0.60 0.22 -0.75 0.40 0.32 
MYC CCNG1 FYB CD52 CD74 TNFSF8 THBS1 STAT1 
-0.54 0.32 -0.39 -0.39 -0.22 0.10 -0.30 -0.31 

TRIB2 LCK AEN CDKN1A STAT5A CHI3L1   
-0.32 -0.33 0.06 0.05 -0.29 0.11   
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As a result of applying a slightly higher classification probability threshold value, two additional control 
cells were correctly classified. In this case, a high value of the weighted classification accuracy of 
93.83% was achieved. This means that only 48 out of 778 cells were not correctly classified. Also, in 
this case, applying a new probability threshold value is reflected in the higher F1score metric value. In 
addition, independent testing was carried out based on the set A model structure T-cells data. Before 
testing, this data structure was also normalized following the procedures carried out for the data 
structures of set B. Results for independent testing of the final model are shown in Table 28. 
 

 
 
 
 

Table 27. Comparison of the classification quality metrics for the two irradiated cells classification probability threshold 
values. 

 Classification threshold 
Quality metric name Fixed 0.5000 Youden 0.5124 
TP 323 323 
TN 405 407 
FP 24 22 
FN 26 26 
Precision 0.9308 0.9362 
Sensitivity 0.9255 0.9255 
Specificity 0.9440 0.9487 
Weighted accuracy 0.9357 0.9383 
F1score 0.9282 0.9308 
Number of cells 778 778 
Number of correctly classified cells 728 730 
Number of incorrectly classified cells 50 48 
Incorrectly classified cells [%] 6.43 6.17 

 

Table 28. Classification quality metric values based on the independent test set. 

Quality metric name Quality metric value 
TP 751 
TN 989 
FP 62 
FN 50 

Precision 0.9237 
Sensitivity 0.9376 
Specificity 0.9410 

Weighted accuracy 0.9395 
F1score 0.9306 

Number of cells 1852 
Number of correctly classified cells 1740 

Number of incorrectly classified cells 112 
Incorrectly classified cells [%] 6.05 
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The presented classification quality measures are very high considering, first of all, the value of the 
weighted classification quality of almost 94% and the high value of the F1score measure of 0.93. Such 
testing on an independent data set allowed for confirming the high quality and specificity of the detected 
genetic profile of irradiated cells in the context of the problem of recognizing control and irradiated 
cells. 

6.4 Irradiated cells’ genetic profile recognition summary 
The proposed and applied workflow for the problem of genetic profiles of cells irradiated in an ex 

vivo environment based on data from single-cell sequencing experiments recognition allowed the 
detection of the characteristic structure of cells irradiated with a dose of 1 Gy. An exceptionally high 
F1score value estimated at 0.9308 indicates satisfactory classification results concerning control and 
irradiated cells. Another essential aspect that allows determining the usefulness of the recognized model 
of irradiated cell structure is the reduction of dimensionality, in other words, the number of features 
contained in this model. This aspect has undoubtedly been successfully implemented, guaranteeing a 
significant decrease in the number of informative features, selecting only 21 genes out of 406 that were 
considered at this stage of the analysis. These selected genes form the structure that enables the correct 
classification of cells and gives an answer to the stated goal of this work, i.e., recognition of the genetic 
profile of cells irradiated in an ex vivo environment. Moreover, in the case of the detected genetic 
profile, an analogous list of genes and their functions was performed, as in the White blood cell 
subpopulations recognition subsection. The results are presented in Table 29. 
 

 
One crucial question should be answered: how can we decide that the recognized structure contains 

the necessary radiation response genes in the posed problem? In this case, the answer can be directly 
provided by a detailed study concerning the analysis of both the functions of individual genes 

Table 29. Genes of the recognized profile of irradiated cells with their corresponding functions. 

Gene name Function/process 
RPS19P1 - 

RPL23AP42 - 
BAX Apoptosis regulator 
DDB2 - 

HLA-A Housekeeping 
RPS27L - 
PHPT1 - 
MYC Proliferation marker 

CCNG1 - 
FYB Miscellaneous 
CD52 CD marker 
CD74 Cell type marker 

TNFSF8 Cytokine 
THBS1 Cell adhesion 
STAT1 Transcription factor 
TRIB2 Kinase 
LCK Marker gene 
AEN - 

CDKN1A - 
STAT5A Transcription factor 
CHI3L1 Enzyme 
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(functional analysis) and determining which of the selected genes have already been described as 
radiation response genes in previously published works (signature analysis). The purpose of the 
functional analysis on the selected set of genes is primarily to determine whether these genes, due to 
their functions, can be directly or indirectly related to the phenomenon of irradiation. The functional 
analysis thus provides biological insight into the hypothesis that the genetic profiles of irradiated cells 
are altered compared to control cells. Therefore, we expect enrichment in the pathways responsible for 
the cellular response to ionizing radiation or the response to damage to the genetic material (translation, 
mRNA regulation). The enrichGO() [68] function from the clusterProfiler package in the R 
environment was used to perform the functional analysis. The results of the functional analysis are 
presented in Figure 38. Only biological processes with a determined adjusted p.value < 0.0025 are 
shown for clarity and readability.  

 

 
Additionally, in Table 30, the radiation-related BPs are indicated, and the adjusted significance 
threshold considered equals 0.01. 
 
 

 
Figure 38. Functional analysis results for 21 selected features with marked significant BPs. 
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Detailed data and information on all detected statistically significant (adjusted p.value < 0.01) 
biological processes are presented in tables in the Additional materials section in the subsection Ex vivo 
data functional analysis. 

The signature analysis was based on a literature review of sources that would indicate an earlier 
direct or indirect connection with the phenomenon of radiation. Table 31 presents the genes identified 
in the performed analysis workflow as important in the problem of distinguishing control and irradiated 
cells, with marked (green) genes described in literature sources as radiation response genes.  

 
 
 
 
 
 
 
 

Table 30. The number of significant genes (with adjusted p.value < 0.01) connected with radiation-based BP paths. 

BP connected with irradiation Number of 
genes (p.value) 

intrinsic apoptotic signaling pathway 6 (0.000086) 
intrinsic apoptotic signaling pathway by p53 class mediator 5 (0.000013) 
response to radiation 5 (0.001551) 
lymphocyte proliferation 4 (0.003594) 
positive regulation of cysteine-type endopeptidase activity involved in 
the apoptotic process 

4 (0.000548) 

G1/S transition of mitotic cell cycle 4 (0.002808) 
cell cycle G1/S phase transition 4 (0.003150) 
mononuclear cell proliferation 4 (0.003594) 
cellular response to environmental stimulus 4 (0.003731) 
leukocyte proliferation 4 (0.004261) 
cellular response to UV 4 (0.000224) 
cellular response to abiotic stimulus 4 (0.003731) 
response to UV 4 (0.000588) 
cellular response to radiation 4 (0.001026) 
regulation of apoptotic signaling pathway 4 (0.008370) 
signal transduction in response to DNA damage 4 (0.000526) 
response to ionizing radiation 4 (0.000647) 
intrinsic apoptotic signaling pathway in response to DNA damage 4 (0.000305) 
DNA damage response, signal transduction by p53 class mediator 4 (0.000305) 
cellular response to light stimulus 4 (0.000391) 
cellular response to tumor necrosis factor 4 (0.004490) 
activation of cysteine-type endopeptidase activity involved in the 
apoptotic process 

3 (0.001832) 

mitotic G1 DNA damage checkpoint 3 (0.001259) 
response to gamma radiation 3 (0.001026) 
mitotic DNA damage checkpoint 3 (0.002808) 
mitotic DNA integrity checkpoint 3 (0.002972) 
T cell receptor signaling pathway 2 (0.009061) 
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A thorough analysis of the genes’ biological 
functions revealed a strong relationship with the 
phenomenon of response to ionizing radiation. The 
pathways of biological processes described included, 
among other things, the cellular response to UV and 
the response to ionizing radiation. There was found 
that 5 out of 21 detected genes were directly related 
to the response to radiation factor. In addition, 
recognized genes essential in response to radiation 
showed several processes directly associated with 
this phenomenon and the enormity of biological 
pathways related to damage to the genetic material or 
general mobilization due to an external factor. These 
pathways, taking into account the abundance of the 
detected genes, mainly include processes related to 
apoptotic communication, cellular response to an 
environmental stimulus, DNA damage-checking 
pathways, and lymphocyte proliferation. 
Additionally, the signature analysis shows a very 
high coverage with the current literature reports 
regarding the radiation response genes. Only 3 of 21 
genes were not reflected in the available scientific 
articles. Determining the functions performed by 
each of these three additional genes utilizing the 
GeneCards [69] platform enabled the determination 
of these other three genes in the context of the 
radiation response. HLA molecules play a vital role 
in the immune system. They are responsible for the 

presentation of peptides, which, in turn, can be recognized by cytotoxic T lymphocytes. CD52 is 
responsible, among other things, for regulating the concentration of calcium ions in the intracellular 
environment. In turn, TRIB2 is associated with activating and modulating signaling pathways in 
physiological and pathological processes. According to specific genes’ functions, their expression can 
be modified due to an external factor acting on them. 

Only one question remains: is the model built with 21 features much better than the model built 
based on only one most significant feature? Is making a complex model in the context of the achieved 
classification quality metrics profitable? To respond, an uncomplicated analysis was carried out based 
on comparing the created Multiple Input Single Output (MISO) model and 21 Single Input Single 
Output (SISO) models. This analysis was carried out in several successive steps. The first one was 
estimating the values of the parameters of the one-factor models based on the model structure of the B 
dataset. Then, a new classification probability value was recalculated for each model using the Youden 
index. In the last step, the obtained classification results were tested utilizing the set B test structure 
containing 778 cells. Table 32 shows the results of this consideration.  

Table 31. Signature analysis results for 
recognized irradiated cells’ genetic profile. 

Gene 
number 

Gene name 

1 RPS19P1 [83] 
2 RPL23AP42 

[83] 
3 BAX [82] 
4 DDB2 [85] 
5 HLA-A 
6 RPS27L [84] 
7 PHPT1 [87] 
8 MYC [91] 
9 CCNG1 [97] 

10 FYB [93] 
11 CD52 
12 CD74 [102] 
13 TNFSF8 [96] 
14 THBS1 [103] 
15 STAT1 [104] 
16 TRIB2 
17 LCK [99] 
18 AEN [84] 
19 CDKN1A [96] 
20 STAT5A [98] 
21 CHI3L [105] 
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Table 32. MISO vs. SISO analysis preformed for main model from ex vivo data analysis. 

Model Youden 
threshold 

Precision Sensitivity Specificity Weighted 
accuracy 

F1 
score 

Parameters 

RPS19P1 0.4672 0.8017 0.8271 0.8353 0.8316 0.8142 -0.6949; 
1.5454 

RPL23AP42 0.4506 0.4425 0.6657 0.3248 0.4769 0.5316 -0.1823; 
-0.0558 

BAX 0.8012 0.8897 0.6974 0.9304 0.8265 0.7819 -1.8462; 
0.8686 

DDB2 0.7296 0.8170 0.5533 0.9002 0.7455 0.6598 -0.7938; 
0.2607 

HLA-A 0.4695 0.4973 0.5360 0.5638 0.5514 0.5159 -0.1939;  
-0.3198 

RPS27L 0.7410 0.8058 0.5620 0.8910 0.7442 0.6622 -1.5205; 
0.8511 

PHPT1 0.7452 0.7790 0.6196 0.8585 0.7519 0.6902 -0.9105; 
0.4581 

MYC 0.4950 0.4724 0.8127 0.2691 0.5116 0.5975 -0.0200; 
-0.3291 

CCNG1 0.6523 0.8507 0.5418 0.9234 0.7532 0.6620 -1.1435; 
0.6114 

FYB 0.4582 0.4435 0.5879 0.4060 0.4871 0.5056 -0.1675; 
-0.0634 

CD52 0.4480 0.4700 0.6772 0.3852 0.5154 0.5549 -0.2086; 
-0.2668 

CD74 0.4868 0.5448 0.6311 0.5754 0.6003 0.5848 -0.2185; 
-0.2455 

TNFSF8 0.6245 0.7384 0.3660 0.8956 0.6594 0.4894 -0.5601; 
0.1736 

THBS1 0.8278 0.0000 0.0000 1.0000 0.5540 0.0000 -0.1692; 
0.0155 

STAT1 0.4804 0.4582 0.6484 0.3828 0.5013 0.5370 -0.0783; 
-0.1899 

TRIB2 0.4182 0.4543 0.9308 0.0998 0.4704 0.6106 -0.1139; 
-0.1211 

LCK 0.4697 0.4737 0.5187 0.5360 0.5283 0.4952 -0.1875; 
-0.0981 

AEN 0.7267 0.8358 0.3228 0.9490 0.6697 0.4657 -0.5107; 
0.0992 

CDKN1A 0.0010 0.4453 0.9971 0.0000 0.4447 0.6157 -0.1918; 
-0.0664 

STAT5A 0.4702 0.4503 0.6398 0.3712 0.4910 0.5286 -0.1193; 
-0.1195 

CHI3L1 0.9918 1.0000 0.0231 1.0000 0.5643 0.0452 -0.1790; 
0.0536 

Full model 0.5124 0.9362 0.9255 0.9487 0.9383 0.9308 - 
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The constructed model, consisting of 21 features, was marked as a Full model, while the remaining 21 
single-feature models are marked with the subsequent gene names. This table compares all the most 
crucial classification quality metrics utilized in this dissertation. Thus, it is possible to answer the 
question posed. The MISO model is much more advantageous than all other SISO models. By 
comparing the F1score metric, no other than the MISO one exceeds the value of 0.90 for this metric. For 
this model, the F1score metric value is above 0.93. Due to the highest F1score, it is also possible to infer 
the best precision-sensitivity ratio for data classification. Moreover, the Full model achieved a weighted 
accuracy value of 93.83%, while the best SISO model (RPS19P1) achieved a much lower value of 
83.16%. This unambiguously determines the superiority of the multi-factor model over the one-factor 
models, also considering the number of included features. 
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7 Ex vivo irradiated cells’ genetic profile recognition based on the 
neural networks 

The second machine learning approach was also aimed at determining the genetic profile of 
irradiated cells and the classification of irradiated and control cells based on the built model. It was 
necessary to apply feature selection methods beforehand. In this case, feature selection based on neural 
network theory was applied. However, the feature selection was used primarily with filter methods and 
not, as in the case of logistic regression, first wrappers and then filters. The approach utilized in building 
a model based on LR is much more time-consuming precisely because of the use of computationally 
expensive wrappers on a complete set of features in the first line. In the case of the neural network, 
filters were first applied on a complete set of genes and then wrappers to a minimal set of selected 
features. This part of the doctoral dissertation is based on a previously selected and normalized subset 
of T-cells subpopulation data. The division into a test set, which does not participate in the processes 
of building the classifier structure, and a model set remains valid, as previously described. The 
numerical content of control and irradiated cells is included in Table 23. The conducted analysis 
consisted of several main aspects, such as the selection of the structure of the classifier based on neural 
network methods, the features selection using the filter method, building a model based on the chosen 
set of informative genes, and testing the model both on the test structure of data set B and an 
independent model structure of data set A.  

The appropriate neural network model structure research required the analysis of the impact of 
several characteristics as the number of neurons in the subsequent layers, the dropout level, the number 
of learning epochs, and the number of layers built into the neural network. Each neural network must 
have one input layer that accepts features and one output layer that transmits the results. Therefore, the 
number of neurons in the input layer equals the number of features to be analyzed. In contrast, the 
output layer in the presented workflow consists of only one element, providing information about the 
observations’ probability of belonging to the irradiated sample. In hidden layers, the number of neurons 
is determined based on the formula ( 25 ): 

 

 
The dropout level in hidden layers was set a priori to 10% of the number of neurons in a given layer. 
Dropout is essential when learning complex neural networks on large and complicated data sets. By 
rejecting a specific level or number of neurons from the network learning process in a given layer, 
dropout prevents too good matching to this data set, significantly reducing or even preventing the 
network from overfitting [70] [71]. This is a very undesirable phenomenon because most models are 
built for later use on other data sets. In the case of an overtrained model, it does not meet the assumed 
goals of generalization of the problem and is only fitted to the training data. The next, worth 
emphasizing term is the training epoch. It is described as one complete training cycle based on the 
entire training set. Therefore, the number of training epochs defines how many times the training 
algorithm will go through the training set [72]. In the case of the presented workflow, the number of 
learning epochs is only a conventional element to shorten the calculation time. It is treated as the 
maximum number of learning epochs rather than choosing the optimal number after which the model 
parameters will be delivered. The model parameters are selected based on the highest value of the F1score 
metric achieved based on the validation set among all training epochs. The complete set of features 
concerning the model structure of data set B was analyzed to determine the maximum number of 

𝑁௡௘௨௥௢௡௦ =  𝑁௜௡௣௨௧௦ +  𝑁௢௨௧௣௨௧௦2  ( 25 ) 
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training epochs. The analyzed model structure consisted of 3 layers, including one hidden layer. Results 
are presented in Figure 39. 
 

 
After passing 150 training epochs, there is a visible and long-term stabilization of the F1score metric 
value for the validation set. Based on the performed analysis, the maximum number of training epochs 
was selected and set at 150. The last step of building the general structure of the neural network model 
is the number of network layers selection. Three variants containing the network’s 3, 5, and 10 layers 
were analyzed. The analysis was performed over 150 training epochs based on the model structure of 
dataset B. The results are shown for the training and validation data structure in Figure 39, Figure 40, 
and Figure 41. Moreover, the number of layers equal to 10 means one input layer, eight hidden layers, 
and one output layer. This scheme applies to the other analyzed variants. 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 39. Selection of the number of training epochs for the model of neural networks with three layers. 
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The decision about the number of layers for the given problem was also based on the value of the F1score 
metric for the validation set. The differences between the successive numbers of layers are minor, taking 
into account the value of this metric, while two aspects support the choice of three network layers. The 
first is the highest value of the F1score metric achieved for this approach, and the second is the lowest 
degree of complexity of the model structure. For this reason, three layers were selected to create a 
neural network model. A summary of the final neural network model details is presented in Table 33. 

 
 

 
Figure 40. Selection of the number of neural network layers for the model with five layers. 

 
Figure 41. Selection of the number of neural network layers for the model with ten layers. 
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The structure of the neural network model is undoubtedly an essential part of the observations’ 

classification problem. Nevertheless, as with a logistic regression model, or any other model designed 
to classify observations correctly, feature selection is one of the most critical aspects. In the earlier 
chapters of this dissertation, attention was drawn to the benefits and risks of feature selection and the 
need for its usage in the case of high-dimensional data. This line of reasoning was also adopted in this 
case. In the feature selection process, the retention of information about possible correlations between 
features was prioritized. For this reason, a model of neural networks was built on the model structure 
of data set B for all 406 available features. For this purpose, the function Sequential() from 
TensorFlow.Keras library [73] was used. To maintain the possibility of choosing the best set of features, 
the ModelCheckpoint() function from the same library in the Python environment was utilized. The 
introduced functionality allows monitoring the changing parameters of the model on an ongoing basis 
and saving only those that meet the given condition. In the analysis, this condition was to obtain the 
highest value of the F1score metric based on the training set. The model was trained using the fit() 
function for a given training set with observations sample of origin information, the number of epochs 
set to a predetermined value of 150, and a validation set with annotations of the observations sample of 
origin information. The utilized function returns the values of the specified metric for both input 
datasets. Moreover, the validation set is not directly involved in training the model. Still, it is only used 
to calculate the values of the returned metrics to give a broader insight into the models’ performance. 
Based on the validation set, these values are fundamental when determining the degree of generalization 
of the model being built or for observing and reacting appropriately in the event of model overfitting. 
This phenomenon is very well visible in the previously presented Figure 39, Figure 40, and Figure 41, 
where in most cases, an increase in the value of the loss function can be observed (black line). An 
increase in the loss function with no decrease in the classification quality could indicate the 
classification uncertainty level increase. 

After fitting the model to the given training set and returning the values of the neural network model 
parameters, it was possible to proceed directly to the feature selection part of the workflow. For this 
purpose, the popular and widely used shap [74] library was utilized to explain the ‘black box’ problem 
in neural networks. Moreover, this method is recommended and used more often for feature selection 
[75] [76]. This tool's primary goal is to determine each feature's influence on the classification of a 
single observation. The methodology included in this tool enables computing Shapley values based on 
coalition game theory to distribute the features’ contributions fairly. Therefore, this tool plays a vital 
role in using neural networks, which until now were considered mentioned ‘black boxes’ because their 
actions and decisions could not be fully explained. The interpretation itself is critical in the growing 
social and scientific expectations, where an increasingly conscious society expects a full explanation 
of the functioning and dependencies of a given problem. The Shapley Additive exPlanations (SHAP) 
tool's fundamental task is to interpret the machine learning model in the context of model learning and 
prediction results [76]. The concept of Shapley values is not new, as it was already described in 1953 
by Lloyd S. Shapley [77] [78]. However, it is particularly appreciated in this case, and this approach 
enables interpreting the utilized neural network model. The very idea of the significance of SHAP 
features is based on the assessment that the higher the absolute value assigned to a specific feature, the 

Table 33. Details of the neural network model structure. 

Analyzed feature Applied 
Number of neurons Equation ( 25 ) 
Dropout level 10% neurons 
Number of learning epochs 150 
Number of layers 3 (1+1+1) 
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more important this feature is. To carry out a global interpretation of the features’ influence, there have 
to be considered the absolute value of the feature over the entire data [76] ( 26 ): 

 

Where: 
N is the number of observations in the dataset 

 
As a result of applying the described procedures, a measure of the significance of individual features 
was obtained called ShapScore. The results are presented in Figure 42 for a set of 406 analyzed input 
features. 
 

 
The previously described methodology was used to determine a threshold value for the number of 
features based on ShapScore. Table 34 represents a list of 10 features with the assigned ShapScore 
values. 

 

 

Table 34. ShapScore values for chosen informative genes. 

Gene ShapScore value 
RPS19P1 50.62 
BAX 50.02 
DDB2 41.75 
PHPT1 40.34 
RPS27L 30.15 
CCNG1 21.83 
AEN 18.69 
PCNA 17.78 
TNFRSF10B 16.57 
TNFSF8 14.98 

 

𝑆 =  1𝑁 ෍ |𝑆ℎ𝑎𝑝𝑉𝑎𝑙𝑢𝑒௜|ே௜ୀଵ  ( 26 ) 

 
Figure 42. List of importance-sorted features with the marked cut-off point for the number of informative 

genes based on ShapScore. 
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Based on the ten chosen genes, the final model was built with the estimated parameter values. Figure 
43 shows the course of the training process with internal validation based on the model structure of data 
set B. 

 
What is very important, as a result of the features selection and the use of selected genes in the final 
formula of the model based on neural networks, it became possible to eliminate the phenomenon of the 
increase in the loss function, which was directly related to the decrease in classification certainty and 
the phenomenon of model overfitting. The loss function takes lower and lower values for both the 
training and validation sets, while the classification quality and F1score metric increase over 150 training 
epochs. The created neural network-based model was subjected to a test procedure based on the test 
structure of data set B. The exact values of the classification quality metrics are presented in Table 35. 

 

 
 

 
Figure 43. The course of learning and validation of the neural networks-based model. 

Table 35. Classification quality metric values based on the set B test structure. 

Quality metric name Quality metric value 
TP 308 
TN 402 
FP 27 
FN 41 

Precision 0.9194 
Sensitivity 0.8825 
Specificity 0.9371 

Weighted accuracy 0.9098 
F1score 0.9016 

Number of cells 778 
Number of correctly classified cells 710 

Number of incorrectly classified cells 68 
Incorrectly classified cells [%] 8.74 
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The classification quality metrics achieved by the classifier are satisfactory, as evidenced by high 
precision and specificity values above 0.90 and a sensitivity value above 0.88. The classifier performs 
very well in recognizing control cells and slightly worse in identifying irradiated cells, as evidenced by 
the higher level of FN cases, which negatively affects the sensitivity measure. The classification's 
weighted accuracy was determined at almost 91%, with a high value of the F1score measure above 0.90. 
The overall percentage of misclassified cells was over 8.50%. 

The last step was to conduct independent testing based on the model structure of dataset A. The 
classification quality metrics based on the independent testing are shown in Table 36. 
 

 
Independent testing allowed for very high measures of the three described classification quality metrics, 
precision, sensitivity, and specificity, each above the value of 0.92. A weighted classification accuracy 
of over 92% was also achieved. The percentage share of incorrectly classified cells was below 7.50%, 
proving satisfactory classification results based on the created neural network model. Also, 
classification quality metrics are better for the independent test set than the internal one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 36. Classification quality metric values for independent testing based on the set A model structure. 

Quality metric name Quality metric value 
TP 738 
TN 976 
FP 75 
FN 63 

Precision 0.9077 
Sensitivity 0.9213 
Specificity 0.9286 

Weighted accuracy 0.9250 
F1score 0.9087 

Number of cells 1852 
Number of correctly classified cells 1714 

Number of incorrectly classified cells 138 
Incorrectly classified cells [%] 7.45 
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8 Logistic Regression and Neural Networks - results comparison 
Applied machine learning workflows enabled the detection of the appropriate genetic structures of 

irradiated cells and the creation of classifiers to separate control and irradiated cells by assigning 
suitable classes. In the case of using logistic regression methods to determine the genetic profile of 
irradiated cells, a more complex structure was obtained, consisting of 21 selected genes. In the case of 
using neural network methods, the recognized genetic structure was twice as small, including only ten 
genes. Genetic profiles in both instances of the machine learning methods were based on analyzing an 
identified subset of T-cells over the white blood cells. All machine learning procedures were performed 
based on the model structure of data set B. The testing procedures in both cases were based on the test 
structure of data set B, which was removed from the analysis at an early stage. Thus, this structure did 
not affect the selection of individual genes and the processes of creating the final model for cell 
classification. Therefore, testing was carried out on the same data set concerning the cellular 
composition for both methods, enabling their direct comparison. 

Selected genes for both utilized approaches are shown in Table 37. Moreover, relevant literature 
references are provided for radiation response genes. 

 

 
Based on current literature sources, as many as 18 out of 21 genes detected using logistic regression 
methods are described as radiation response genes. The functions of the other genes have been 
determined based on the GeneCards platform [69]. They include the HLA-A gene that plays a central 

Table 37. Irradiated cells’ genetic signature recognized based on logistic regression and neural networks 
approaches. 

Logistic Regression-based Neural Networks-based 
Gene Radiation response Gene Radiation response 

RPS19P1 Radiation response [83] RPS19P1 Radiation response [83] 
RPL23AP42 Radiation response [83] BAX Radiation response [82] 

BAX Radiation response [82] DDB2 Radiation response [85] 
DDB2 Radiation response [85] PHPT1 Radiation response [87] 

HLA-A - RPS27L Radiation response [84] 
RPS27L Radiation response [84] CCNG1 Radiation response [97] 
PHPT1 Radiation response [87] AEN Radiation response [84] 
MYC Radiation response [91] PCNA Radiation response [84] 

CCNG1 Radiation response [97] TNFRSF10B Radiation response [86] 
FYB Radiation response [93] TNFSF8 Radiation response [96] 
CD52 -   
CD74 Radiation response [102]   

TNFSF8 Radiation response [96]   
THBS1 Radiation response [103]   
STAT1 Radiation response [104]   
TRIB2 -   
LCK Radiation response [99]   
AEN Radiation response [84]   

CDKN1A Radiation response [96]   
STAT5A Radiation response [98]   
CHI3L Radiation response [105]   
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role in the immune system (the process of recognition of peptides by cytotoxic T cells), the CD52 gene 
associated with the regulation of cytosolic calcium ion concentration, and the TRIB2 gene responsible 
for processes of signaling pathways in physiological and pathological processes. In turn, in the case of 
genes detected using neural networks, all of them were described as radiation response genes. 
Moreover, as many as eight detected genes are common to both workflows, as shown in Figure 44. 
 

 
Genes common to both workflows are marked in green, genes characteristic of the approach based on 
logistic regression in blue, and genes based on neural networks in red. 

An additional analysis was also conducted to determine whether one of the two detected genetic 
profiles of irradiated cells is more universal and whether they can be transferred to another classification 
method without classification quality loss. Three approaches to feature selection were compared. The 
first was the lack of feature selection, i.e., building a model on all 406 genes available after quality 
control for the model structure of data set B. In the second and third variants, genetic structures were 
used as a result of feature selection using logistic regression and neural network methods. These 
structures contained 21 and 10 selected genes, respectively. The built models were then tested using 
the approach based on logistic regression and neural networks, i.e., each model was tested twice, each 
time based on a different machine learning methodology. In Table 38, there are described three model 
selection approaches compared between both machine learning methods. The values of the 
classification quality metrics were determined based on the test structure of dataset B. 

 
Figure 44. LR and NN-based irradiated cells genetic profiles comparison. 
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The lack of feature selection for both analyzed machine learning methods resulted in the worst results 
considering the presented classification quality measures. This model was very complicated and 
contained as many as 406 features, which required determining the values of model parameters and 
proceeding with observations on the entire feature space. However, when considering models built 
based on feature selection for both machine learning approaches, the best results were achieved for the 
model built based on feature selection using logistic regression methods (Forward Selection for LR) 
and also processed using logistic regression methods. The weighted classification accuracy was almost 
94%, with the value of the F1score measure above 0.93. However, for the model built in this way and the 
classification of cells using neural networks, comparably satisfactory results were achieved, 
considering the value of the F1score metric above 0.93 and the weighted classification accuracy above 
93.5%. However, the model built based on neural network methods achieved significantly worse results 
than the previously described model based on logistic regression. Both for classification using logistic 
regression methods and neural networks, the F1score metric value was above 0.90, and the weighted 
classification quality was about 91%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 38. Comparison of the classification quality for three model selection approaches for both machine learning 
methods applied. 

Model selection approach Length of 
signature 

Logistic Regression Neural Networks 
w. accuracy  F1score w. accuracy  F1score 

No selection 406 0.8856 0.8712 0.8638 0.8453 
Forward Selection  

for LR 
 

21 
 

0.9383 
 

0.9308 
 

0.9369 
 

0.9305 

Shap Scoring (conventional)  
for NN 

 
10 

 
0.9165 

 
0.9057 

 
0.9098 

 
0.9016 
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9 Conclusions 
The objectives of this doctoral dissertation have been successfully achieved, both in terms of 

detecting white blood cell subpopulations, recognizing ex vivo irradiated cells’ genetic profiles and the 
two different machine learning methods for feature selection application comparison. A specific and 
complex workflow of single-cell data analysis was developed, including new techniques and publicly 
available tools and algorithms. An additional advantage of the work is the implementation of an 
algorithm for the features selection based on the logistic regression methods, which significantly 
improves, and, what is more, enables the proposed methodology of analysis to be carried out on high-
dimensional scRNA-seq data. 

9.1 White blood cell subpopulations recognition 
The ex vivo data, consisting of two datasets from technical repetitions of the experiment, showed a 

high heterogeneity detected using the unsupervised UMAP learning methods. Performed procedures 
for recognizing cellular subpopulations made it possible to unequivocally define all the steps necessary 
to determine the main factor of heterogeneity of the analyzed data. A crucial part of the entire process 
was the feature selection procedures application, which not only allowed for a significant reduction in 
the dimensionality of the data but also improved the procedures used further by limiting the data set to 
informative, at the level of cells’ differentiation, features. Based on using the HDBSCAN tool for cell 
clustering, the subsequent analysis stage was associated with a significant increase in computational 
expenditure and, therefore, closely related to a greater need for time to conduct a specific study stage. 
It is worth paying particular attention that when tuning the tool’s initial parameter values, it is necessary 
to consider its high sensitivity, even with slight changes in the parameter values. Therefore, an essential 
step is introducing a specific, consistent measure of the clustering quality. The lack of information 
about the affiliation of individual cells to appropriate cell subpopulations imposed the use of a measure 
that was an indicator of good cluster separation due to the only information available, i.e., the counts 
of cells creating designated subgroups. All the analyzed for subpopulation recognition ex vivo data 
structures (set A model structure, set B model structure, and set B test structure) achieved very high 
values of the utilized omega-squared metric equal to 0.97, 0.99, and 0.86, respectively. This means the 
data was very well separated into clusters of similar diversity using the HDBSCAN tool. The use of 
information about marker genes of an individual and expected cell subpopulations made it possible to 
combine clusters with a similar genetic profile in the next stage.  
In connection with the conducted series of analyses, it was proved hypothesis 1. that combining 
feature engineering methods and advanced dimensionality reduction techniques with 
unsupervised clustering algorithms allows for the efficient identification of white blood cell 
subtypes in single-cell RNA sequencing data. The analysis workflow and the procedures included 
enabled the detection of white blood cell subpopulations and the determination of the reason for the 
observed cellular variability not related to the radiation factor. High internal heterogeneity of the 
analyzed data was indicated as the source of this variability. The conclusions were supported by 
applying the detected subpopulations to pre-defined clusters extracted using unsupervised UMAP 
learning techniques. An almost perfect match was achieved in analyzed ex vivo datasets. For this data 
type, the visualization of spatially distributed cells and the color coding of the respective subpopulations 
fully coincided with the clusters. Therefore, the analysis path made it possible to detect several 
subpopulations of white blood cells, the vast majority of which, as much as 85-90% of the datasets, 
were T-cells. A monocyte subpopulation was also detected for all subsets of data. For the model 
structures of datasets A and B, rarer subpopulations such as B cells, granulocytes, and dendritic cells 
were also detected. For the model structure of dataset B, it was also possible to detect a very small 
subpopulation of basophils/eosinophils, representing approximately 0.5% of the analyzed white blood 
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cell data. Such results indicate the high efficiency and sensitivity of the proposed approach for detecting 
cell subpopulations for data from single-cell sequencing experiments. 

9.2 Ex vivo irradiated cells genetic profile 
One of this dissertation's most technically valuable aspects is the development of the feature 

selection procedures workflow. As discussed in the introduction, this phenomenon is one of the most 
critical stages of high-dimensional data analysis. It enables practical conclusions on the collected data 
and the analysis results. A workflow based on logistic regression methods was implemented to 
automate feature selection procedures. This analysis stage should be devoted to a relatively large 
amount of time due to the number of benefits that can be obtained related to the possibility of correct 
interpretation of the results. However, it should be noted that the proposed workflow is not a quick-
working solution but allows for maintaining all existing relationships between the analyzed features. 
Moreover, this tool’s components cannot only detect significant changes in the genetic profile of 
irradiated cells. It can also be successfully used for classification purposes, based on a previously 
created full model, for a set of control and irradiated cells. Implemented workflow enables the analysis 
to be carried out stably, with a guaranteed choice of the most critical parameters that should be used in 
case of the need for their manipulation due to the different purposes and specific assumptions of the 
analysis performed. In the case of estimating model parameters with a list of selected features and in 
the case of features selection problem, it is possible to manipulate parameters such as epsilon 
(difference of likelihood value between successive estimates of model parameters), max_iter 
(maximum number of iterations of model parameters estimation process) and alpha (learning rate for 
the estimation of model parameters). When performing the testing part, it is possible to change the 
value of the pred_thr parameter, which is responsible for the probability value for the observations’ 
classification, to the positive class. Using this implementation, it is possible to carry out all the 
necessary steps of model building, testing, and utilizing the constructed model for cell classification of 
external data sets. 

Recognition of the genetic profile for the entire gene pool available in the datasets allowed the 
detection of a factor worth noting, namely the need to perform a thorough and refined selection of 
features. The detected genetic profile of the irradiated cells of such a dataset allowed recognition of the 
radiation response genes. Still, it was contaminated with features not responsible for distinguishing the 
irradiated cells. Detected genes such as AQP9, CD3D, FYB, LAT, LAMP3, LCK, and TRIB2 were 
selected at the feature selection stage to detect differences between white blood cell subpopulations 
present and previously uncontrolled in the dataset. To carry out the appropriate path of data analysis in 
terms of recognizing the correct genetic profile of cells irradiated in the ex vivo environment, the 
variability associated with the occurrence of cell subpopulations was removed before, filtering out only 
the T-cell subpopulation, which constitutes the vast majority of all analyzed cells.  

Based on the applied workflow, it was proved hypothesis 2. that the proposed intelligent and 
stratified algorithm of the training set construction supports the classification system, especially 
in the case of heterogeneous datasets. This approach made it possible to find out how the control cells 
differ from irradiated ones without additional disturbing factors. In the gene composition of the model 
built based on the T-cells normalized counts, almost only the genes described in the literature reports 
as radiation response genes were found. As many as 18 out of 21 such genes were included in the 
model. The remaining three genes, HLA-A, CD52, and TRIB2, were associated with the pathways of 
biological processes responsible mainly for the cellular response to a harmful external factor. The 
previously performed procedures for detecting cell subpopulations were necessary to remove the cause 
of the high heterogeneity of the ex vivo data set, which was exhaustively confirmed with the 
visualization method on separate data subsets using unsupervised learning techniques for this division. 
As a result, the analysis was conducted in a manner that did not object to UMAP's prior knowledge of 
the internal differences in the data set. After removing the cause of the heterogeneity of the collection, 
i.e., the different subpopulations present, and focusing the classifier's attention only on the majority 
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class of the T-cells subpopulation, it was possible to detect the only cause of differences between cells, 
i.e., the presence of two cells’ types - control and irradiated. The selected set of features fully 
corresponds to the assumption of recognizing the genetic profile of irradiated cells stated in this 
dissertation. The constructed genetic profile of irradiated cells consisted of 21 features. Identified 
radiation-response genes with assigned parameter values are indicated in Table 39. 
 

 
The constructed model of the irradiated cells’ genetic profile also allowed high weighted classification 
accuracy for the test set, equal to 93.83%. Excellent precision, sensitivity, and specificity values of 
0.9362, 0.9255, and 0.9487 were also achieved. The percentage of incorrectly classified cells was equal 
to 6.17% of the test set, which means that only 48 out of 778 observations were not correctly assigned. 
In addition, comparing the MISO model built based on 21 selected genes and single-factor SISO models 
showed the advantage of the proposed genetic profile of irradiated cells. Despite the higher complexity, 
the MISO model achieves noticeably better results considering the F1score measure and the weighted 
accuracy of cells’ classification. 

9.3 Logistic regression and neural networks-based workflows 
Comparing two machine learning methods regarding feature selection and classification of 

irradiated and control cells is challenging. Many factors must be taken into account, among which the 
most important are the degree of complexity of the analysis, computational costs, the time necessary to 
perform the calculations, and the results achieved in terms of interpretability and correctness.  

Considering the complexity of the analysis carried out using logistic regression methods and neural 
networks, and based on the presented approaches, both workflows cannot be directly compared in this 
respect. This is because the workflow related to the logistic regression methods was implemented in its 
entirety for this doctoral dissertation. In contrast, using neural networks was mainly associated with 
using ready-made and publicly available functions. Moreover, for the logistic regression methods, a 
more thorough study was carried out related to the selection of features, consisting in randomizing the 
training set 50 times, which ensured more significant variability and generalization of the problem 
compared to the approach using neural networks. In addition, in the case of neural networks, a tool 
supporting the explanation of the model structure was used, which undeniably increased the complexity 
of this approach. However, apart from differences in the first-line feature selection technique, i.e., 
wrappers, both approaches were consistent in the further use of the filters method. In both cases, the 
number of significant features was estimated, and the final model was built on these features. 

Another critical factor relates to the computational costs and the time necessary to achieve 
satisfactory results. In this context, modeling using neural networks is superior to the developed 
approach based on logistic regression. Obtaining 50 LR-based models for feature selection required 
significant time and was computationally intensive. In the case of neural networks, only one model was 
built based on which the significance of individual features was concluded. Thus, the computational 
costs were relatively small, and the time to obtain results was incomparably shorter. The listed aspects 
and conclusions do not result from the nature of the operation or the intention of individual machine-
learning solutions. This comparison is based on the solutions used in this dissertation and cannot be 

Table 39. Recognized ex vivo irradiated cells genetic profile. 

Intercept RPS19P1 RPL23AP42 BAX DDB2 HLA-A RPS27L PHPT1 
-4.47 1.76 -1.44 0.60 0.22 -0.75 0.40 0.32 
MYC CCNG1 FYB CD52 CD74 TNFSF8 THBS1 STAT1 
-0.54 0.32 -0.39 -0.39 -0.22 0.10 -0.30 -0.31 

TRIB2 LCK AEN CDKN1A STAT5A CHI3L1   
-0.32 -0.33 0.06 0.05 -0.29 0.11   
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generalized and used to draw general conclusions about the effectiveness of both machine learning 
methods. Regarding the solutions used in this work, the approach to using neural networks is 
characterized by a much higher level of complexity. In contrast, the approach associated with using 
logistic regression methods required a much longer calculation time. 

However, described factors cannot exceed the importance of the last one, i.e., the interpretability 
and correctness of the results. Both workflows yielded a genetic profile of irradiated cells in an ex vivo 
environment. Moreover, as many as eight genes were common to these approaches. This indicates a 
high consistency in recognizing the appropriate structures of cell changes under the influence of an 
ionizing radiation agent. Considering the complexity of the identified model of irradiated cells, 21 
features were significant in logistic regression methods. In comparison, only ten features were used 
with neural networks. An additional analysis comparing the classification quality of irradiated cells for 
both models showed a clear advantage for the model built based on logistic regression methods, 
enabling almost 94% classification quality and a very high value of the F1score metric at the level above 
0.93. It allows better cell classification results and the detection of more radiation response genes. The 
final model is more complex than in the case of neural networks. However, there is still a significant 
dimensionality reduction, and the resulting genetic profile does not contain features that are not directly 
related to the research problem. Moreover, the proposed approach ensured complete control over the 
data from the feature selection stage through the model tuning stage to the final model use for 
observations’ classification.  
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10 Discussion 
The theses presented in this doctoral dissertation are not trivial aspects regarding the analyses and 

solutions interpretation. Moreover, the given subject still leaves a lot to maneuver in the context of the 
possibility of applying improvements and eliminating the need for human intervention in individual 
stages. Of course, the ability to validate individual results is necessary, but in the developed workflow, 
there are several individual fragments where improvements and automation could be successfully 
applied. One of these elements is the procedure related to the recognition of cell subpopulations and, 
more precisely, the assignment of many individual clusters detected by the HDBSCAN tool to the actual 
subpopulations of white blood cells. This step requires much human input regarding the time needed 
to analyze the distribution of all marker genes for each detected cluster. An automated solution based 
on the counts of these clusters, and more precisely based only on the values of the first, second, and 
third quartiles of distribution, would enable the accurate and efficient diagnosis of white blood cell 
subpopulations. Such a solution would significantly improve the work and eliminate the likelihood of 
human error. Recognition of cell subpopulations is an aspect that certainly positively impacts 
recognizing the correct genetic profile of irradiated cells. The verification of the genetic profile built 
based on a heterogeneous set (without separated cell subpopulations) revealed the presence of features 
that are not related to the research problem but result only from the lack of complete control of the 
phenomena and relationships occurring in the dataset. The genetic profile of the irradiated cells, built 
on the set after removing the internal heterogeneity, i.e., after filtering out the collection of T-cells, 
enabled the detection of those genes that affect the recognition of control and irradiated cells. In the 
final model, built based on logistic regression methods, no genes responsible for recognizing variability 
other than those resulting from irradiation of the cell fraction were detected. Comparative analysis 
performed for two machine learning methods, logistic regression, and neural networks, allowed 
establishing a specific clamp closing the careful considerations on the theses. This analysis made it 
clear that despite applying different methods, the radiation response genes are mainly common to these 
approaches. Moreover, eight genes common to both studies, i.e., AEN, TNFSF8, CCNG1, PHPT1, 
RPS27L, DDB2, BAX, and RPS19P1, are described in the available and current literature sources as 
well-known radiation response genes. In addition, despite the apparent advantage of the model built 
based on logistic regression methods and the classification carried out by this trend, both allow for 
satisfactory results in recognizing and classifying control and irradiated cells. 

There are many possibilities to apply the proposed approaches related to machine learning, the 
described path of subpopulation recognition, and the use of the final model of the irradiated cells’ 
genetic profile. The implemented machine learning algorithm, based on logistic regression methods, is 
straightforward to use and allows a very class-oriented reduction of the dimensionality of the features 
in the set to the most important ones. Moreover, this algorithm consists of a parameter panel that can 
be adjusted according to the needs of the analysis. Additionally, the advantage of such a self-learning 
algorithm is the possibility of applying it to two-class problems for biological data and any other 
available data of interest.  

Due to the very high coverage of the recognized genetic profile of ex vivo irradiated cells with 
current literature reports, it is also possible to use it in further data sets from single-cell sequencing 
experiments to distinguish control and irradiated cells. It is also worth emphasizing the possibility of 
using this full model concerning higher doses of absorbed ionizing radiation. However, this approach 
requires studying how this model copes with possibly more significant differentiation of the control 
and irradiated class. An interesting approach is to compare the performance of the proposed genetic 
model of irradiated cells with, as mentioned, doses greater than 1 Gy and also for doses below 1 Gy. A 
comparative analysis would make it possible to determine the model’s universality over the full 
spectrum of the absorbed radiation dose or to achieve satisfactory results in the specified range of the 
absorbed doses. 
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The analysis scheme of recognizing individual cell subpopulations also has a vast application if we 
consider the diversity of data sets. The developed workflow allows not only effective separate clusters 
that are biologically differentiated. It also provides for detecting the heterogeneity phenomenon 
occurring among other data sets. However, this highly complex scheme requires manual interpretation 
based on the features’ count distribution graphs for the detected clusters. This issue must be addressed 
before introducing the tool to a broader range of conscious and unconscious users. The developed 
workflow is complicated; it consists of many stages, during which a general knowledge of the analyzed 
data should be demonstrated and often advanced statistical, mathematical, or programming reasoning. 
Simplifying the developed series of methods in terms of ease of use would allow the individual stages 
of the analysis to be packed into a 'box.' It would serve as a framework containing particular methods 
and allowing for interference by an inexperienced user while eliminating the possibility of making a 
mistake and drawing hasty and erroneous conclusions. For advanced users, however, it should be 
possible to have a more significant impact on the operation of the following analysis steps in this 'box'. 
Such an approach to the modernization of the proposed workflow would solve the undoubted problem 
of the 'black box' in many publicly available tools and the lack of knowledge about the subsequent 
stages of analysis and the selection, often arbitrarily considered universal threshold values. An 
advanced user could fully understand each analysis step and select only those relevant to the research 
problem. This element is undoubtedly missing in many available and widely used tools for careful data 
analysis. 

Due to the increasing use of tools generating high-dimensional data, the presented approaches are 
highly universal concerning the diversity and composition of these data. Big and high-dimensional data 
is produced in industry, science, and medicine. The use of tools to improve the work of analysts, both 
in terms of time and reducing the possibility of human error, is increasingly necessary and more and 
more appreciated nowadays. The tools and solutions presented in the doctoral dissertation also have 
very high development potential, constituting an excellent basis for future considerations. 
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11 Abstract 
Single-cell RNA-sequencing (scRNA-seq) is an increasingly widely used technology to analyze the 

transcriptome of many single cells. By sequencing the genome of single cells, it is possible to avoid the 
data generalization problem in sequencing technologies that do not focus on individual cells. As a result 
of utilizing this technology, high-dimensional data is generated, which requires more and more 
computing resources to make the proper analysis. The scRNA-seq technology is essential for 
investigating cell-to-cell heterogeneity in analyzing the impact of specific factors, such as a cellular 
response to ionizing radiation. Unconscious or conscious exposure to radiation induces changes in cell 
responses caused by modifications in the expression of many genes regulating cell lives. The analysis 
of such modifications can reveal genes that are most involved in the radiation response. Such analysis 
can also demonstrate gene communication pathways that could give insight into what changes occur 
throughout a complex cellular system. By combining the knowledge about the level of radiation-
induced changes and the available sequencing technologies, we can perform appropriate analysis steps 
that will allow us to learn about the genes that respond to radiation. 

This work has two main goals. One is purely biological, while the other is related to engineering. 
The biological aim of this study is to search for known and new genes of radiation response based 
on the data from single-cell RNA-sequencing techniques. This way, the differences in the gene 
signature of normal cells and those subjected to ionizing radiation will be determined. A fundamental 
goal in engineering is to create an appropriate bioinformatic analysis workflow to partially 
automate the consecutive steps of working with high-dimensional data from single-cell 
sequencing experiments. The main aspects included in the proposed method are based on feature 
selection procedures and the problem of cell classification itself. It is a considerable challenge, 
especially considering the very high complexity and dimensionality of the analyzed data, but also              
the expectations of achieving satisfactory results regarding the quality of the classification of irradiated 
cells. The expected outcome of the created tool is primarily related to the biological purpose of the 
research, i.e., to the recognition of the complete genetic profile of cells irradiated in an ex vivo 
environment. 

The first work stage focuses on data quality control. For this purpose, two ex vivo samples, technical 
repetitions of the same experiment, were tested. Several statistical and visualization paths were 
developed to allow detailed analysis of the quality of both genes and cells. The methodology used, 
especially the unsupervised classification approach utilized for visualization, allows for drawing an 
unambiguous conclusion about the significant heterogeneity of the studied data sets. Therefore, 
attempts were made to determine the cause of such cell heterogeneity using public and own-developed 
mathematical and statistical methods. Moreover, a list of subpopulation-specific marker genes was also 
used to designate white blood cell subpopulations. It was proved that the chosen research path 
determined the cause of the internal heterogeneity in complex data sets related to the occurrence of 
highly-differentiated cell subtypes. Moreover, as a result of a series of analyses, it was possible to detect 
frequently occurring subpopulations of this fraction in the quantitative context and rare and small 
subpopulations of white blood cells. The works’ main stage aims to build a classifier based on logistic 
regression methods. The purpose of the classifier is to distinguish control and ionizing radiation-
subjected cells. At this stage of the work, only the T-cells subpopulation was considered as it constituted 
most of the selected white blood cell subtypes. What is essential, the applied procedure made it possible 
to remove the substantial heterogeneity of the data set. Next, to standardize the structure of the analyzed 
data set, there was also performed the data normalization procedure. A feature selection procedure was 
based on cells and genes prepared this way. For this purpose, an own-implemented workflow was 
developed, enabling the classification of normal and irradiated cells with adequate measures of 
classification quality. As a result of using the implemented workflow, a radiation response genes panel 
was finally obtained. Interestingly, a significant majority of found genes correspond to current literature 
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reports. While reducing the impact of the heterogeneity in the data set allowed to improve the 
classification quality to obtain very satisfactory results with the value of the weighted accuracy, based 
on the hold-out test data set, at above 93%. Additionally, a detailed analysis was made using the neural 
networks approach to compare logistic regression-based workflow with another well-known method. 
Another machine-learning analysis workflow was created that is compatible with the stated goal to 
recognize irradiated cells set out in the dissertation. This approach was primarily aimed at checking and 
comparing the quality of classifications resulting from using two different feature selection techniques. 
Using neural networks made it possible to obtain promising results, with a classification quality value 
of almost 91%. Moreover, such results were achieved in a much shorter time frame, comparing neural 
networks with a logistic regression-based approach. On the other hand, what is even more critical in 
undertaking analysis this way, it was also possible to compare the genetic profiles of irradiated cells 
resulting from the logistic regression and neural networks-based approaches. It occurred that 8 out of 
10 genes creating the neural networks-based model are familiar with the logistic regression-based 
procedure. These well-known genes of radiation response include RPS19P1, BAX, DDB2, RPS27L, 
PHPT1, CCNG1, TNFSF8, and AEN. 

This doctoral dissertation shows that using data derived from a precise and detailed technology, 
such as scRNA-seq, it is possible to determine the specific gene structure of cells subjected to ionizing 
radiation. This work also made it possible to compare two machine-learning techniques: logistic 
regression and neural networks-based approaches. Several bioinformatics methods and different 
workflows developed can be used in the future as support in medicine, science, and engineering. The 
developed method for feature selection and irradiated cell classification met the challenges posed in the 
dissertation with very high efficiency. This research describes exactly the workflow of high-
dimensional data analysis from single-cell sequencing experiments, such as the extended quality 
control, through the recognition of radiation response genes,  the determination of the irradiated cells 
gene signature, classification of white blood cells along with the subpopulations recognition, the 
comparison of machine learning procedures in terms of high dimensional data analysis and 
observations’ classification, and also the biological interpretation of the results. Therefore this work 
covers, with a detailed description of the proposed analysis steps and the effects in the form of results, 
all aspects necessary to achieve the assumed goals, combining them into a logical workflow with 
appropriate comments and inferences from both the technical and engineering side, and supports these 
aspects in the form of a biological interpretation. 
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Sekwencjonowanie RNA pojedynczych komórek (scRNA-seq) jest coraz szerzej stosowaną 
technologią do analizy transkryptomu wielu pojedynczych komórek. Dzięki zastosowaniu 
sekwencjonowania genomu pojedynczych komórek można uniknąć problemu generalizacji danych 
występującego w technologiach sekwencjonowania, które nie koncentrują się na pojedynczych 
komórkach. W wyniku wykorzystania tej technologii generowane są dane wielowymiarowe,                            
co wymaga coraz większych zasobów obliczeniowych do właściwej analizy. Technologia scRNA-seq 
jest niezbędna do badania heterogeniczności między komórkami w analizie wpływu określonych 
czynników, takich jak odpowiedź komórkowa na promieniowanie jonizujące. Zarówno nieświadoma, 
jak i świadoma ekspozycja na promieniowanie jonizujące wywołuje zmiany w odpowiedziach 
komórkowych spowodowane modyfikacjami ekspresji wielu genów regulujących życie komórek. 
Analiza takich modyfikacji może ujawnić geny najbardziej zaangażowane w odpowiedź                                    
na promieniowanie. Taka analiza może również wykazać ścieżki komunikacji genów, które mogą dać 
wgląd w to, jakie zmiany zachodzą w złożonym systemie komórkowym. Integrując wiedzę o stopniu 
zmian indukowanych promieniowaniem i dostępnymi technologiami sekwencjonowania, możemy 
przeprowadzić odpowiednie kroki analityczne, które pozwolą nam poznać geny reagujące                                
na promieniowanie. 

Przedstawiona rozprawa doktorska ma dwa główne cele. Jeden z nich ma podłoże biologiczne,                     
a drugi związany jest z inżynierią. Celem biologicznym niniejszej pracy jest poszukiwanie znanych 
i nowych genów odpowiedzi na promieniowanie w oparciu o dane z technik sekwencjonowania 
RNA pojedynczych komórek. W ten sposób zostaną określone różnice w sygnaturze genowej 
normalnych komórek i tych poddanych działaniu promieniowania jonizującego w środowisku ex vivo. 
Podstawowym celem pracy w zakresie inżynierii jest stworzenie odpowiedniego schematu pracy 
analizy bioinformatycznej, aby częściowo zautomatyzować kolejne etapy pracy                                              
z wielowymiarowymi danymi pochodzącymi z eksperymentów sekwencjonowania pojedynczych 
komórek. Główne aspekty zawarte w proponowanej metodzie opierają się na procedurach selekcji cech 
oraz problemie klasyfikacji komórek. Jest to duże wyzwanie, zwłaszcza biorąc pod uwagę bardzo 
istotną złożoność i wymiarowość analizowanych danych, ale także oczekiwania nastawione                              
na uzyskanie zadowalających wyników w zakresie jakości klasyfikacji komórek napromienionych. 
Oczekiwany wynik stworzonego narzędzia związany jest przede wszystkim z biologicznym celem 
badań, tj. rozpoznaniem pełnego profilu genetycznego komórek napromienionych w środowisku 
ex vivo. 

Pierwszy etap prac koncentruje się na kontroli jakości danych. W tym celu przetestowano dwie 
próbki ex vivo, będące technicznymi powtórzeniami tego samego eksperymentu. Opracowano kilka 
ścieżek statystycznych i wizualizacyjnych, aby umożliwić szczegółową analizę jakości zarówno 
genów, jak i komórek poddanych analizie. Zastosowana metodologia, a zwłaszcza nienadzorowane 
podejście klasyfikacyjne zastosowane do celów wizualizacji, pozwala na wyciągnięcie jednoznacznego 
wniosku o znacznej heterogeniczności badanych zbiorów danych. W związku z tym, podjęto próby 
ustalenia przyczyny takiej heterogeniczności komórek wykorzystując zarówno ogólnodostępne,                  
jak i opracowane na potrzeby niniejszej rozprawy metody matematyczno-statystyczne. Ponadto,                    
do rozpoznania subpopulacji komórek białych krwinek, wykorzystano również listę genów 
markerowych specyficznych dla określonych subpopulacji. Wykazano, że wybrana ścieżka badawcza 
pozwoliła na określenie przyczyny wewnętrznej heterogeniczności, w złożonych zbiorach danych, 
związanej z występowaniem wysoko zróżnicowanych podtypów komórek. Co więcej, w wyniku 
przeprowadzonych serii analiz udało się wykryć często występujące subpopulacje tej frakcji,                             
w kontekście ilościowym, oraz rzadkie i małe subpopulacje białych krwinek. Główny etap prac                     
ma na celu zbudowanie klasyfikatora opartego o metody regresji logistycznej. Zadaniem klasyfikatora 
jest rozróżnienie komórek kontrolnych i poddanych działaniu promieniowania jonizującego.                           
Na tym etapie pracy uwzględniono jedynie subpopulację limfocytów T, gdyż stanowiła ona większość 
rozpoznanych podtypów analizowanych komórek białych krwinek. Co istotne, zastosowana procedura 
pozwoliła na usunięcie czynnika odpowiedzialnego za występowanie wykrytej heterogeniczności 
zbioru danych. Następnie, w celu ujednolicenia struktury analizowanego zbioru danych, 
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przeprowadzono procedurę normalizacji. Kolejny etap selekcji cech został oparty na zbiorze komórek 
i genów przygotowany w przedstawiony sposób. Celem selekcji cech, samodzielnie opracowano                       
i zaimplementowano schemat analizy, umożliwiający klasyfikację komórek normalnych                                          
i napromieniowanych, z wykorzystaniem odpowiednich miar jakości klasyfikacji. W wyniku 
zastosowania zaimplementowanego algorytmu uzyskano ostatecznie panel genów odpowiedzi                            
na napromienienie. Co istotne, znaczna większość rozpoznanych genów odpowiedzi radiacyjnej 
odpowiada aktualnym doniesieniom literaturowym. Zmniejszenie wpływu heterogeniczności w zbiorze 
danych pozwoliło na poprawę jakości klasyfikacji i uzyskanie bardzo zadowalających wyników                        
z wartością ważonej jakości klasyfikacji, opartej na testowym zbiorze danych, na poziomie powyżej 
93%. Dodatkowo przeprowadzono szczegółową analizę z wykorzystaniem podejścia sieci 
neuronowych w celu porównania schematu pracy opartego o metody regresji logistycznej z inną, 
dobrze znaną metodą uczenia maszynowego. Utworzono drugi schemat analizy, który jest spójny                     
z określonym celem rozprawy, czyli rozpoznaniem komórek napromienionych. Podejście to miało                 
na celu przede wszystkim sprawdzenie i porównanie jakości klasyfikacji wynikających z zastosowania 
dwóch różnych technik selekcji cech. Wykorzystanie sieci neuronowych pozwoliło uzyskać obiecujące 
wyniki, z wartością ważonej jakości klasyfikacji na poziomie prawie 91%. Co więcej, takie wyniki 
uzyskano w znacznie krótszym czasie, porównując sieci neuronowe z podejściem opartym o metody 
regresji logistycznej. Z drugiej strony, co jeszcze ważniejsze przy przeprowadzaniu analiz zgodnie                   
z  zaproponowanym schematem analizy, możliwe było również porównanie profili genetycznych 
komórek napromienionych, rozpoznanych w wyniku zastosowania metod regresji logistycznej                      
oraz sieci neuronowych. Okazało się, że 8 na 10 genów tworzących model oparty o sieci neuronowe 
jest spójnych z modelem opartym o regresję logistyczną. Te dobrze znane geny odpowiedzi                               
na promieniowanie obejmują RPS19P1, BAX, DDB2, RPS27L, PHPT1, CCNG1, TNFSF8 i AEN. 

Niniejsza rozprawa doktorska pokazuje, że wykorzystując dane pochodzące z precyzyjnej                             
i szczegółowej technologii, takiej jak scRNA-seq, można określić specyficzną strukturę genów                      
dla komórek poddanych działaniu promieniowania jonizującego. Przeprowadzone prace umożliwiły 
również porównanie dwóch technik uczenia maszynowego w kontekście selekcji cech. Kilka 
opracowanych metod bioinformatycznych, a przede wszystkim zaproponowany schemat analizy, mogą 
być w przyszłości wykorzystane jako wsparcie w medycynie, nauce i inżynierii. Opracowana metoda 
selekcji cech i klasyfikacji komórek napromienionych sprostała wyzwaniom postawionym w rozprawie 
z bardzo wysoką skutecznością. Badania te dokładnie opisują przebieg analizy danych 
wysokowymiarowych, pochodzących z eksperymentów sekwencjonowania pojedynczych komórek, 
takich jak: rozszerzona kontrola jakości, rozpoznanie genów odpowiedzi na promieniowanie, 
określenie sygnatury genowej komórek napromienionych, klasyfikację białych krwinek                                    
wraz z rozpoznawaniem określonych subpopulacji komórkowych, porównanie procedur uczenia 
maszynowego pod kątem analizy danych wysokowymiarowych i klasyfikacji obserwacji, a także 
biologiczną interpretację wyników. Niniejsza praca obejmuje, wraz ze szczegółowym opisem 
proponowanych etapów analizy oraz efektów w postaci wyników, wszystkie aspekty niezbędne                    
do osiągnięcia założonych celów, łącząc je w logiczny schemat pracy wraz z odpowiednimi 
komentarzami i wnioskami zarówno od strony technicznej, inżynieryjnej, jak i wsparcia tych aspektów 
w postaci interpretacji biologicznej. 
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Additional materials 
Recognition of cell subpopulations based on ex vivo experiments 

The drawings in this part of the work were used to identify appropriate white blood cell 
subpopulations of ex vivo datasets. The subsections have been additionally divided according to the 
subpopulation type. The following graphs of the counts’ distribution for clusters separated using the 
HDBSCAN tool are presented. Clusters designated for control cells are marked in goldenrod, and 
clusters for irradiated cells are marked in navy blue. 
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Recognition of suspicious cells affiliation 
Analysis of suspicious cells required generating a series of count distribution boxplots for confirmed 

cell subpopulations. Suspicious cells are drawn separately and marked as red dots. Based on the figures 
below, it was decided to reclassify these cells to the other corresponding cell subpopulations. If within 
a particular cell there was noticed an increase in counts for a marker gene of a cell subpopulation other 
than the one to which it was assigned, that cell was removed from the current subpopulation and 
transferred to the corresponding subpopulation for which a significant increase in counts was observed. 
This section is divided into subsections depending on the analyzed data set. In connection with the 
problem, analysis required the model structures of the set A and set B data. These subsections were 
described with the name of the subpopulation for which the marker gene was analyzed. 
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Distribution of counts for selected genes by cell subpopulations 
Additional analysis of count distribution for individual genes chosen in the feature selection process 

was intended to indicate the presence of genes associated with high heterogeneity of the analyzed 
dataset. Distribution boxplots were created based on the set B model structure. Individual cell 
subpopulations have been marked with a consistent color map. Control samples are marked with a C, 
and irradiated samples with an R in the name. 
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Ex vivo data functional analysis 
 

Table 40. Functional analysis based on ex vivo data results with marked 91 statistically significant BPs. 

Description Gene 
Ratio 

pvalue p.adjust geneID 

intrinsic apoptotic signaling pathway by 
p53 class mediator 

5/18 1,13007E-08 1,27472E-05 RPS27L/AEN/BAX/CD74/ 
CDKN1A 

intrinsic apoptotic signaling pathway in 
response to DNA damage by p53 class 

mediator 

4/18 1,26284E-07 7,12244E-05 RPS27L/AEN/CD74/ 
CDKN1A 

intrinsic apoptotic signaling pathway 6/18 2,2756E-07 8,55626E-05 LCK/RPS27L/AEN/BAX/ 
CD74/CDKN1A 

cellular response to UV 4/18 8,02119E-07 0,00022383 DDB2/BAX/CDKN1A/MYC 

regulation of cysteine-type 
endopeptidase activity involved in the 

apoptotic process 

5/18 1,29299E-06 0,00022383 LCK/THBS1/RPS27L/BAX/ 
MYC 

regulation of fibroblast proliferation 4/18 1,33066E-06 0,00022383 BAX/CD74/CDKN1A/MYC 

fibroblast proliferation 4/18 1,38902E-06 0,00022383 BAX/CD74/CDKN1A/MYC 

regulation of cysteine-type 
endopeptidase activity 

5/18 2,65348E-06 0,000304757 LCK/THBS1/RPS27L/BAX/ 
MYC 

intrinsic apoptotic signaling pathway in 
response to DNA damage 

4/18 2,70174E-06 0,000304757 RPS27L/AEN/CD74/ 
CDKN1A 

DNA damage response, signal transduction 
by p53 class mediator 

4/18 2,70174E-06 0,000304757 RPS27L/BAX/CD74/CDKN1A 

cellular response to light stimulus 4/18 3,81074E-06 0,000390774 DDB2/BAX/CDKN1A/MYC 

signal transduction by p53 class mediator 5/18 5,3783E-06 0,000505561 RPS27L/AEN/BAX/CD74/CDKN1A 

signal transduction in response to DNA 
damage 

4/18 6,0638E-06 0,000526152 RPS27L/BAX/CD74/CDKN1A 

positive regulation of cysteine-type 
endopeptidase activity involved in the 

apoptotic process 

4/18 6,80256E-06 0,000548092 LCK/RPS27L/BAX/MYC 

response to UV 4/18 7,81721E-06 0,000587854 DDB2/BAX/CDKN1A/MYC 

response to ionizing radiation 4/18 9,1777E-06 0,000647028 AEN/BAX/CDKN1A/MYC 

positive regulation of cysteine-type 
endopeptidase activity 

4/18 1,09775E-05 0,000728391 LCK/RPS27L/BAX/MYC 

positive regulation of fibroblast proliferation 3/18 1,35869E-05 0,000851445 CD74/CDKN1A/MYC 

positive regulation of proteolysis 5/18 1,7745E-05 0,00102561 LCK/RPS27L/BAX/TRIB2/MYC 

response to gamma radiation 3/18 1,89054E-05 0,00102561 BAX/CDKN1A/MYC 

regulation of epithelial cell proliferation 5/18 1,98614E-05 0,00102561 THBS1/STAT5A/BAX/STAT1/MYC 

cellular response to radiation 4/18 2,0003E-05 0,00102561 DDB2/BAX/CDKN1A/MYC 

positive regulation of endopeptidase activity 4/18 2,26888E-05 0,001112737 LCK/RPS27L/BAX/MYC 

mitotic G1 DNA damage checkpoint 3/18 2,79097E-05 0,001259284 RPS27L/BAX/CDKN1A 

mitotic G1/S transition checkpoint 3/18 2,79097E-05 0,001259284 RPS27L/BAX/CDKN1A 

G1 DNA damage checkpoint 3/18 2,92013E-05 0,001266888 RPS27L/BAX/CDKN1A 

positive regulation of peptidase activity 4/18 3,29575E-05 0,001316904 LCK/RPS27L/BAX/MYC 

regulation of endopeptidase activity 5/18 3,32093E-05 0,001316904 LCK/THBS1/RPS27L/ 
BAX/MYC 

response to interleukin-9 2/18 3,5024E-05 0,001316904 STAT5A/STAT1 

cell proliferation involved in 
metanephros development 

2/18 3,5024E-05 0,001316904 STAT1/MYC 

epithelial cell proliferation 5/18 3,86638E-05 0,001406863 THBS1/STAT5A/BAX/ 
STAT1/MYC 

B cell proliferation 3/18 4,09741E-05 0,001444337 BAX/CD74/CDKN1A 
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 Description Gene 
Ratio 

pvalue p.adjust geneID 

regulation of dendritic cell antigen 
processing and presentation 

2/18 4,27841E-05 0,001462438 THBS1/CD74 

regulation of peptidase activity 5/18 4,47916E-05 0,001486028 LCK/THBS1/RPS27L/ 
BAX/MYC 

response to radiation 5/18 4,81257E-05 0,001551022 DDB2/AEN/BAX/ 
CDKN1A/MYC 

dendritic cell antigen processing and 
presentation 

2/18 5,13132E-05 0,001607815 THBS1/CD74 

cell cycle arrest 4/18 5,93145E-05 0,00180829 THBS1/BAX/CDKN1A/ 
MYC 

activation of cysteine-type 
endopeptidase activity involved in 

apoptotic process 

3/18 6,17124E-05 0,001831884 LCK/RPS27L/BAX 

metanephric mesenchyme 
development 

2/18 8,15028E-05 0,002357311 STAT1/MYC 

G1/S transition of mitotic cell cycle 4/18 0,000104144 0,002807809 RPS27L/BAX/CDKN1A/
MYC 

DNA damage response, signal 
transduction by p53 class mediator 

resulting in transcription of p21 class 
mediator 

2/18 0,000105452 0,002807809 RPS27L/CDKN1A 

mitotic DNA damage checkpoint 3/18 0,000105617 0,002807809 RPS27L/BAX/CDKN1A 

regulation of myeloid cell 
differentiation 

4/18 0,000107035 0,002807809 THBS1/STAT1/CD74/ 
MYC 

mitotic DNA integrity checkpoint 3/18 0,000118268 0,002972137 RPS27L/BAX/CDKN1A 

DNA damage response, signal 
transduction resulting in transcription 

2/18 0,000118569 0,002972137 RPS27L/CDKN1A 

regulation of B cell apoptotic process 2/18 0,000132447 0,003149614 BAX/CD74 

kidney mesenchyme development 2/18 0,000132447 0,003149614 STAT1/MYC 

cell cycle G1/S phase transition 4/18 0,000134026 0,003149614 RPS27L/BAX/CDKN1A/
MYC 

lymphocyte proliferation 4/18 0,000157772 0,003593657 BAX/CD74/CDKN1A/ 
TNFSF8 

mononuclear cell proliferation 4/18 0,000161679 0,003593657 BAX/CD74/CDKN1A/ 
TNFSF8 

cell proliferation involved in kidney 
development 

2/18 0,000162479 0,003593657 STAT1/MYC 

cellular response to abiotic stimulus 4/18 0,000178012 0,003731399 DDB2/BAX/CDKN1A/ 
MYC 

cellular response to environmental 
stimulus 

4/18 0,000178012 0,003731399 DDB2/BAX/CDKN1A/ 
MYC 

regulation of monocyte 
differentiation 

2/18 0,000178631 0,003731399 CD74/MYC 

cellular response to tumor necrosis 
factor 

4/18 0,000186612 0,003827252 CHI3L1/THBS1/STAT1/ 
TNFSF8 

response to light stimulus 4/18 0,000193257 0,003892758 DDB2/BAX/CDKN1A/MY
C 

negative regulation of G1/S 
transition of mitotic cell cycle 

3/18 0,000205662 0,004069944 RPS27L/BAX/CDKN1A 

leukocyte proliferation 4/18 0,000219095 0,004261026 BAX/CD74/CDKN1A/ 
TNFSF8 

B cell apoptotic process 2/18 0,000231613 0,004348481 BAX/CD74 

regulation of metanephros 
development 

2/18 0,000231613 0,004348481 STAT1/MYC 

negative regulation of cell cycle 
G1/S phase transition 

3/18 0,000235157 0,004348481 RPS27L/BAX/CDKN1A 

response to tumor necrosis factor 4/18 0,000247346 0,004490141 CHI3L1/THBS1/STAT1/ 
TNFSF8 

positive regulation of mesenchymal 
cell proliferation 

2/18 0,000250779 0,004490141 STAT1/MYC 

B cell homeostasis 2/18 0,000291361 0,005135242 BAX/CD74 

positive regulation of leukocyte 
activation 

4/18 0,000321222 0,00557444 LCK/THBS1/CD74/ 
CDKN1A 

DNA damage checkpoint 3/18 0,000373307 0,006380155 RPS27L/BAX/CDKN1A 

positive regulation of cell activation 4/18 0,000398352 0,006706591 LCK/THBS1/CD74/ 
CDKN1A 
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Description Gene 
Ratio 

pvalue p.adjust geneID 

regulation of antigen processing and 
presentation 

2/18 0,000431021 0,00695112 THBS1/CD74 

regulation of mesenchymal cell 
proliferation 

2/18 0,000431021 0,00695112 STAT1/MYC 

DNA integrity checkpoint 3/18 0,000431364 0,00695112 RPS27L/BAX/CDKN1A 

mitotic cell cycle checkpoint 3/18 0,000446732 0,007097382 RPS27L/BAX/CDKN1A 

monocyte differentiation 2/18 0,000510867 0,007800349 CD74/MYC 

mononuclear cell differentiation 2/18 0,000510867 0,007800349 CD74/MYC 

regulation of intrinsic apoptotic 
signaling pathway 

3/18 0,000511725 0,007800349 LCK/BAX/CD74 

regulation of endothelial cell 
proliferation 

3/18 0,000546379 0,008217536 THBS1/STAT5A/STAT1 

negative regulation of fibroblast 
proliferation 

2/18 0,000567785 0,008370137 BAX/MYC 

regulation of apoptotic signaling 
pathway 

4/18 0,000581233 0,008370137 LCK/THBS1/BAX/CD74 

positive regulation of protein kinase B 
signaling 

3/18 0,000582506 0,008370137 LCK/CHI3L1/THBS1 

negative regulation of protein 
phosphorylation 

4/18 0,000586206 0,008370137 BAX/TRIB2/CDKN1A/ 
MYC 

regulation of G1/S transition of mitotic 
cell cycle 

3/18 0,000610583 0,008609221 RPS27L/BAX/CDKN1A 

positive regulation of B cell 
proliferation 

2/18 0,000627642 0,008740495 CD74/CDKN1A 

regulation of T cell receptor signaling 
pathway 

2/18 0,000658669 0,009060717 LCK/PHPT1 

positive regulation of apoptotic 
signaling pathway 

3/18 0,000679437 0,009233788 LCK/THBS1/BAX 

endothelial cell proliferation 3/18 0,00068966 0,009261152 THBS1/STAT5A/STAT1 

regulation of smooth muscle cell 
proliferation 

3/18 0,000710402 0,009427453 THBS1/STAT1/CDKN1A 

smooth muscle cell proliferation 3/18 0,000731539 0,009595071 THBS1/STAT1/CDKN1A 

mesenchymal cell proliferation 2/18 0,000756132 0,009692237 STAT1/MYC 

regulation of granulocyte chemotaxis 2/18 0,000756132 0,009692237 THBS1/CD74 

response to mechanical stimulus 3/18 0,000786131 0,009883667 CHI3L1/THBS1/STAT1 

myeloid cell differentiation 4/18 0,00079248 0,009883667 THBS1/STAT1/CD74/ 
MYC 

regulation of cell cycle G1/S phase 
transition 

3/18 0,000797353 0,009883667 RPS27L/BAX/CDKN1A 

 


