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LIST OF BASIC SYMBOLS

Capital Latin letters

A — horizontal section of the masonry wall,
Ac — the area of the horizontal layout of the walls,
D — ductility index,

E — modulus of elasticity,

Ev — the shear modulus,

Ft — tensile force,

G — the shear modulus,

Gt — fracture energy,

H — storey height,

Ha — load (force) acting on stiffening wall A,
Hs — load (force) acting on stiffening wall B,
Her1 — cracking force in the initial phase,

Her — cracking force,

Hres — residual force,

Hiot — total load acting on a building,

Hu — maximum horizontal force,

Hx Hi — horizontal shear force,

Al — analytical cracking force in the initial phase,
calH, — analytical cracking force,

calH,, — analytical maximum horizontal force,
CalH e — analytical residual force,

MUMH — numerical cracking force,

numH,, — numerical maximum horizontal force,

| — the horizontal cross-sectional moment of inertia of the wall element in
the direction of bending,

Ker — the stiffness of the stiffening wall in the elastic phase,

Kres — the stiffness of the stiffening wall in the post-peak residual phase,
Kitot,cr — the total stiffness in the elastic phase,

Kitot,er,1 — the total stiffness in the initial phase,

Ktot,res — the total stiffness in the post-peak residual phase,
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Ktot,u

Vsd
VRd

the total stiffness in the nonlinear phase,

the stiffness of the stiffening wall in the nonlinear phase,

in-plane bending moment,

the vertical force acting in the plane of the wall, caused by a horizontal

design load,

design load-bearing capacity of the wall due to vertical loads,
design vertical force acing in the plane of the wall,

the vertical force caused by a vertical load,

the geometrical center of the building plan,

the geometrical center of the stiffening wall plan,

in-plane vertical force,

total vertical load on the walls,

shear force taken up by the stiffening wall, determined in the elastic
stage in the middle of the storey height,

compressive strength of the masonry determined without the
compressive stresses,

lateral force (shear force),

design shear force caused by horizontal forces in the plane of the wall,
design load-bearing capacity of the checked wall section.

Small Latin letters

c
d
fc
va
fvd

Nett

cohesion,

the length of the stiffening wall,

compressive strength,

initial shear strength,

design shear strength of the masonry in the direction parallel to the bed
joints,

clear storey height of the wall,

effective height of the wall,

the height of the lintel,

the overall height of the stiffening wall,

length of the masonry wall,

length of the compressed part of the wall cross-section,

distance to the adjacent stiffening wall,

the thickness of the masonry wall,

horizontal displacement in the direction x,

horizontal displacement in the direction vy,

uniformly distributed wind load,

distance from the center of gravity of the wall (together with flanges).



Capital Greek letters

A AW
B AW
P Aw
Atot
Av
O

On
Gadgm
6k
Or
@cr. 1

Onv
@es
O

oY

displacement of the lintel,

displacement of the bottom spandrel,

displacement of the vertical pillar,

the total displacement of the building,

the shear deformation,

strain angle (elastic phase) or shear deformation angle (nonlinear

phase),
shear deformation angle of stiffening wall A,

the shear deformation angle (polish standard PN-B-03264:2002),
shear deformation angle of stiffening wall B,

shear deformation angle corresponding to cracking force,

shear deformation angle corresponding to cracking force in the initial
phase,

the mean value of the deformation angle of stiffening walls,

shear deformation angle corresponding residual force,

the angle of shear deformation calculated for the characteristic values
of horizontal shear forces,

shear deformation angle corresponding to maximum horizontal force.

Small Greek letters

§dVE
énax

&
&pl
ni

DR >3

Oc

Ot

Tmax

average displacement of the storey at the extreme points of the
structure,

the maximum displacement of the storey at the extreme points of the
structure,

Strain,

plastic strain,

influence coefficient of space performance for each storey of
a building,

coefficient taking into account the reduction of masonry creep,
the final value of the creep coefficient equals,

shear deformation coefficient,

friction coefficient,

Poisson's ratio,

reduction factor depending on edge restraint or stiffening of the wall,
compressive stress,

the average vertical compression,

tensile stress,

the maximum value of shear stress,

proportions of the shear deformation angles.



1. INTRODUCTION

This monograph is written while the word crisis is inflected in all ways. At the end
of 2019, the Covid pandemic broke out and paralyzed the normal functioning of the
world. The significant problem was the enormous amount of misinformation [139]
during the pandemic and the widespread dissemination of fake news. Incomplete three
years later - at the beginning of 2022, the war began in Ukraine, resulting in a refugee
crisis in Europe. According to statistics [155], more than 5.5 million people, mainly
women and children, fled Ukraine on 1 May. However, noticeable geopolitical tensions
and turbulences in the economy are not the only challenges facing civilization.

The modern direction of construction development aims to limit negative climate
changes, and one of the goals is to reduce CO? emissions® and use sustainable materials.
The eco-strategies in the civil engineering industry are anticipated to result in net-zero
emissions by the concrete industry by 2050 [2]. One of the ideas is to replace the
conventional clinker (i.e. limestone). In the calcination of the limestone, carbon dioxide
is one of the reaction products. Fly ash, foundry sand or filter clay are incorporated as
a partial replacement for the clinker. Other strategies include the application
of alternative binders or aggregates.

However, it should be mentioned that buildings (implicitly the construction industry)
influence the environment during the production of building materials but also
throughout the entire life cycle. The Joint Research Centre (JRC) of the European
Commission (EC) and Building Performance Institute Europe have documented various
Initiatives that come from countries to integrate the whole life cycle (WLC) of buildings,
Global Warming Potential (GWP) and Life Cycle Assessment (LCA) requirements.

The European Commission defined the concept of Level(s) to tackle environmental
challenges posed by construction materials and whole buildings. This approach attempts
to constitute a common language in an evaluation set of indicators that can be used to
measure and manage the performance of residential and office buildings across Europe
[48]. Level(s) scheme consists of sixteen indicators corresponding to six macro-

! Intergovernmental Panel on Climate Change (IPCC) ‘Climate change 2022 mitigation of climate change’, 2022
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objectives — Fig. 1.1. That life cycle approach is split into three levels that are connected

with construction stages:

stages,

built and in-use performance.

Level 1 - to set qualitative objectives at the conceptualization stage,

Level 2 — to assess quantitative performance at the design and construction

Level 3 - to evaluate and monitor the performance after completion for as-

The careful analysis of macro-objectives indicates the foundations of modern
construction based on sustainable materials and optimization of the life cycle cost and

value of buildings.

[Life cycle tool: Cradle to cradle Life Cycle Assesment (LCA)|
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Fig. 1.1 Level(s) scheme with indicators, followed by [48]

Sustainable material will stand out with good thermal insulation performance (reducing
the cost of additional wall insulation), fire resistance that meets stringent fire safety
requirements, and proper structural performance expected in construction materials.



Autoclaved aerated concrete (AAC) is a material which fits into this philosophy due to
its good strength-to-weight ratio and well-desired performance parameters. However,
the properties are determined by microstructure (void-paste system) and composition
(type of binder, method of pore-formation and curing) [118, 128]. AAC is produced
from raw materials — cement, sand water gypsum, lime and aluminum powder [86]. The
advantage of this material is also its full recyclability [19, 132, 160]. It has been proven
that the use of autoclaved aerated concrete walls leads to a reduction of energy
consumption in residential buildings by 7%. Moreover, each square meter of AAC can
reduce 350 kg of emission of CO> throughout the life cycle of a building [129].
Autoclaved aerated concrete is commonly used to produce masonry units or greater
prefabricated elements. Load-bearing walls, partition walls or infill ones are
successfully erected with AAC. Though many studies relate to recognising AAC
material characteristics, relatively few analyses concern structures made of this material.
The masonry unit does not work separately, but the adjacent structure limits its
deformations. The interaction between the elements and the mechanics of the structure
can be captured on models of larger dimensions.

The development of ecological and sustainable buildings makes AAC applicable in
construction. Residential buildings are often erected as load-bearing structures, and
multi-storey buildings are built using skeletal frames, in which masonry walls act as
filling. Vertical loads are considered the most critical loads on masonry walls in wall-
bearing systems. In designing, horizontal loads caused by environmental influences,
such as wind, should also be considered. Although the horizontal load on the building
can be caused by various factors, such as the uneven settlement of the ground or
influences from mining, it is often overlooked. The problem has its historical
background - masonry walls were characterized by considerable thickness in former
residential buildings, and the horizontal shear problem could be negligible.
Contemporary trends aim to optimize the walls' thickness while ignoring the complete
computational verification of walls for all impacts - both vertical (induced by dead and
live-load) and horizontal (shear).

Stiffening walls are load-bearing elements that transfer horizontal forces to the
foundation safely. The primary construction role of the stiffening elements is to ensure
the geometrical stability of the building, limiting horizontal deformations and ensuring
the comfort of use. Although the significance of these elements is crucial - the awareness
of designing masonry stiffening walls is low. Buildings with thinner and thinner walls
require the development of computational models and design methods based on
experimental background and numerical research.
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2. MOTIVATION AND ASSUMPTIONS OF THE DISSERTATION

2.1. Motivation

Masonry stiffening walls have a different specificity than the corresponding
reinforced concrete stiffening elements. The masonry is an anisotropic structure in
which the mechanical parameters are not a simple sum of individual components. The
complex stress state in shear masonry walls results from the simultaneous action of
horizontal and vertical loads. The stiffening walls are compressed, sheared and
simultaneously bent in the plane, significantly hindering experimental research and
correct inference. Using advanced numerical models without validation based on
experimental research seems to be the wrong approach.

The lack of a comprehensive scientific approach to stiffening walls creates
a significant cognitive gap and demand for miscellaneous research. The justification for
writing the doctoral thesis is the need for consistent analysis of stiffening walls from
theoretical and experimental points of view. This study was motivated by a few factors:

e omitting the problem of horizontal shearing of walls while reducing the
thickness of the wall,

e unclear and imprecise standard recommendations for the design of stiffening
walls,

e unknown actual redistribution of internal forces in masonry stiffening walls
(even though Eurocode 6 allows for redistribution of internal forces up to
15%),

e lack of a consistent methodology for determining the stiffness of stiffening
walls and load distribution,

e no method for determining the location of the torsion center of the building
and taking into account the effect of building torsion in the calculations,

o the influence of openings on the stiffness of walls and mechanics of damage,

e no studies (experimental research) of stiffening walls on full-scale models of

buildings under monotonical horizontal load.
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2.2. Objectives

The primary research problem is the behavior of the stiffening wall made of

autoclaved aerated concrete (AAC), both in the elastic and non-linear range. The work

1s based on a theoretical and experimental approach and can be divided into intermediate

goals such as:

state of knowledge in domestic and foreign literature on stiffening masonry walls,
systematization of standard provisions concerning the discussed issues,

method of calculating the stiffness of stiffening walls,

distribution of loads on the stiffening walls,

determination of the redistribution of internal forces,

analysis of the crack propagation and crack morphology of stiffening walls,
proposal of a method for calculating the location of the torsion center of the
building,

describing the behavior phases of stiffening walls in elastic and post-elastic states,

numerical analysis of stiffening walls using the finite element method (FEM).

2.3. Statements of the thesis

The in-depth analysis of the state of knowledge allowed the following theses to be

put forward:

1. The stiffness of individual parts of the structure determines the distribution of
internal forces in masonry buildings.

2. The linear behavior of an unreinforced masonry structure subjected to
horizontal shear is small and ends at approximately 30% of the maximum
force.

3. The lateral load of the building causes a significant decrease in the structure's
stiftness.

4. A building with asymmetric stiffness distribution, subjected to horizontal
shear, undergoes rotation and translation.

5. The location of the building torsion center results from the stiffness
distribution of the structural elements.

6. The selection method of the masonry homogenization affects the accuracy

and reliability of the numerical representation of the stiffening walls.
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2.4. Scope

The scope of the monograph encloses theoretical and experimental research
undertaken to verify statements (theses) and determine their truth or denial. The
monograph encloses the analysis of unreinforced masonry structures (URM) under the
monotonic horizontal load. Experimental and theoretical analyzes were undertaken to
achieve the set goals of the dissertation. The scope of the work includes the following:

e state of the art regarding stiffening masonry walls,

e own experimental program,

e Finite Element Method analysis,

e proposal of an analytical method for determining the stiffness of shear walls,

e discussion and conclusions.

The doctoral monograph has been divided into chapters devoted to particular issues.
Chapter 3 reviews standard regulations concerning stiffening walls, selected tests of
unreinforced masonry walls (URM) and buildings, calculation procedures and
numerical wall homogenization techniques. Chapter 4 determines the main assumptions
of the research campaign and encloses test details as the construction of models, test
stand and measuring method. Chapter 5 examines the test results in linear and nonlinear
behavior phases of stiffening walls. Chapter 6 uses a digital image correlation (DIC)
system to examine crack morphology and crack patterns. Chapter 7 investigates the
stiffening walls in numerical calculations. Section 7.1 concerns its own homogenization
technique, and section 7.2 encloses advanced nonlinear calculations.

Chapter 8 analyses the results in a critical approach and proposes an engineering
method for calculating the stiffening walls. Chapter 9 provides a conclusion and
determines the further scope of work. The appendix contains detailed construction

drawings of tested walls.
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3. EVALUATION OF THE STATE OF KNOWLEDGE

3.1. Standard arrangements for stiffening masonry walls

3.1.1. Regulations in the Eurocode 6

Regulations on the design of stiffening walls in the Eurocode are limited, and the
information contained therein is made to general statements. Following the [N7]
1.5.10.10 stiffening wall 1s a structural element situated perpendicular to other walls,
which supports them with the taking of horizontal forces, preventing buckling and
contributing to the stability of the building. The stiffening elements are mainly subjected
to the horizontal loads acting in the plane of the walls. Therefore, these are primarily
shear in the wall plane, which can simultaneously transfer other forces (axial, bending
moments) depending on other functions and load distribution in the building. The term
stiffening walls is often replaced with shear walls (in this dissertation, these terms are
also used interchangeably). In the regulations of Eurocode 6, the definition of a shear
wall - point 1.5.10.9 - is distinguished and denotes shear walls whose task is to transfer
horizontal forces acting in the wall plane. The separation of the terms stiffening wall
and shear wall may cause inaccuracies in naming the walls. Based on the Eurocode, the
shear wall can be sheared and at the same time not have a stiffening function. However,
it should be considered that if the slab structure allows the horizontal force to be
transferred to the walls, it will still function as a stiffening.

In the primary part of Eurocode 6, the chapter on the calculation of masonry
structures provides information on calculating the effective height of a wall (section
5.5.1.2):

a) in calculations of the effective height of the wall should be considered the
relative stiffness of the structural elements connected to the wall, and the
efficiency of the connections,

b) stiffening of the load-bearing wall can be realized by floor, roofs or

transversely situated walls or other rigid structural elements,

14



c)

d)

the wall stiffening along its vertical edge may be included in the calculations
in two cases: when no cracks are expected between the analyzed wall and the
stiffening wall (walls are characterized by similar deformability and evenly
load) or when the connection has a load-bearing capacity allowing for the
transfer of internal forces arising from in combination. Increasing the load
capacity of the joint can be obtained by using anchors or construction
connectors,

the stiffening wall should meet the conditions:

thickness greater than or equal to 0.3 of the effective thickness of the wall it
stiffens,

a length greater than or equal to 0.2 of the clear height of the wall it stiffens,
there may be openings in the stiffening wall; however, the minimum length
of the wall between the openings that connect to the stiffened wall should
meet the conditions in Fig. 3.1 and should extend beyond each opening for
a length of at least 0.2 of the storey height,

S

n

2

B I

L(h1+h2)>
5 2 -

|
[
|
|
|
|
|
| h >h/5
|
|
|
|
I
I
|
|

t

Fig. 3.1 Minimum length of stiffening wall with openings: 1 — stiffened wall, 2 — stiffening wall,
3 — window opening, 4 — door opening, 5 — slab

f)

9)

stiffening of the walls can be performed by elements other than masonry ones
if their stiffness meets the conditions for masonry walls (point d), and the
connections between the walls made of ties, anchors or connectors can absorb
compressive or tensile forces occurring in the joint,

stiffened walls that meet the following conditions are calculated only as walls
restrained at the top and bottom:

walls stiffened along two vertical edges and / >30¢,
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e walls stiffened along one vertical edge and / >15¢,
where:

[ - 1s the length of the wall between the stiffening walls,
t - thickness of the stiffened wall,

h) the weakening of stiffened walls above the normative ones - other than in
point 6.1.2.1(7), with vertical chases or recesses requires a calculated
reduction of the wall thickness #, or the establishment of a free wall edge in
the place of chase or recesses. Assuming a free wall edge is required whenever
the remaining wall thickness with a chase is made is less than half the wall
thickness,

I) it is calculation assumed that the walls have free edges at the opening when
at least one of the following conditions is met:

e the opening has a clear height of more than 0.25 of the clear wall height,

e the clear opening width is greater than 0.25 of the wall length,

e the opening has an area greater than 0.1 of the total wall,

j) the effective height of the wall is calculated from the formula (3.1).

heff = p,-h 3.1)
where:

hesr — the effective height of the wall,
pn — reduction factor depending on edge restraint or stiffening of the wall, where
n takes the values 2,3 or 4,

h — clear storey height of the wall.

Section 5.5.3 of [N7] includes provisions for masonry shear walls subjected to shear
loading. Following the standard, elastic stiffness is assumed in the calculations of shear
walls, considering fragments of transverse walls connected to the stiffening wall (so-
called flanged walls). The effect of shear deformations on the wall stiffness can be
neglected if the wall height is twice its length. The cooperating fragments of the
transverse walls may be considered in the calculations. However, the connection
between the structural elements (stiffened wall and the stiffening wall) must transfer
shear forces. Moreover, the part cooperating with the stiffened wall does not lose its
stability — it cannot buckle within the assumed length. The length of the perpendicular
wall, which can act as a flange as shown in Fig. 3.2, increases the actual thickness of the

stiffening wall in both directions by the smallest of the given values:
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® ot/ 5, where Ao 1s the overall height of the stiffening wall,

e /s/2,wherels - distance to the adjacent stiffening wall,

e distance to the edge of the wall,

e /1 /2 where h — clear wall height,

e 6t where ¢ — intersecting wall thickness (in the draft of the new version of
the Eurocode 6, the thickness of 8¢ was proposed [N18]).

1

e

0

o

Fig. 3.2 Flange widths that can be assumed for shear walls: 1 — a fragment of the intersecting wall,
2 — intersecting wall, 3 — shear wall, /; — the distance between shear walls

Openings with dimensions smaller than /#/4 or //4, made in walls transverse to the
stiffening wall, may be neglected by calculations. The edges of openings with
dimensions larger than //4 or I/4 are taken as wall ends.

The distribution of loads on the stiffening walls depends on the construction of the
entire building. Horizontal forces can be transferred to the walls proportionately to their
stiffness, provided the floors act as a rigid diaphragm. Suppose the horizontal forces act
on an eccentricity relative to the center of gravity of the stiffening walls or the layout of
the stiffening walls is asymmetrical. In that case, the torsion effect should be considered
in the calculations. It is worth mentioning that this situation occurs in engineering
practice in most cases. However, the standard recommendations do not indicate
a consistent design methodology for considering the torsion effect or the rules for the
possibility of omitting that effect.

When the floors (slabs) cannot act as a rigid diaphragm (the standard specifies the
case of precast concrete units that are not interconnected), stiffening walls should take
over the horizontal forces from the floor to which they are directly connected. The
standard does not specify when it can be unequivocally stated that the floor is not a rigid
diaphragm. The exception is the computational semi-rigid analysis, i.e. calculations in
a non-linear range. The maximum horizontal load on the calculated stiffening wall can

be reduced to 15%, provided that the load on parallel stiffening walls is appropriately

17



increased. It can therefore be assumed that the standard allows redistribution of internal
forces up to a maximum of 15%.

The vertical load applied to bidirectional floor slabs may be distributed evenly across
the supporting walls of the floor, provided that the analysis assumes a relevant design
load that assists the shear resistance. For the walls of the lower storeys, not loaded
directly, the load taken from the area separated at an angle of 45° from the slabs or roof
panels spanned in one way - can be treated as axial load. The shear stress distribution

can be assumed as constant along the compressed part of a wall.

3.1.2. Regulations in the polish standard for masonry structures
PN-B-03002:2007

According to the Polish standard [N15], a stiffening wall is a wall transferring forces
acting in its plane and a wall located perpendicularly to the stiffened wall, constituting
its support when absorbing loads.

Chapter 5.4 of the Polish standard is dedicated to stiffening walls. In the calculations
of this type of structural elements, in addition to internal forces resulting from vertical
loads, forces acting in the plane of the wall - resulting from the building's spatial
construction - are taken into account. The following walls are distinguished:

o stiffening walls due to horizontal load,

o stiffening walls due to vertical displacements of the subsoil.

Case 1: Stiffening walls due to horizontal loads
In the calculations of buildings with reinforced concrete or prestressed slabs, it is
assumed that the horizontal load is distributed on the stiffening walls in proportion to
their bending stiffness, considering the openings in the walls. The horizontal load is
parallel to the direction of the stiffening walls. As a result, the walls must be analyzed
separately in the transverse and longitudinal direction of the building. In cases where
the floors are not a rigid slab - forces are transferred to the stiffening wall only in the
places of direct connection of the wall and the floor. The effect of torsion of the stiffening
structure on the distribution of the load on individual stiffening walls and spatial
stiffness should be taken into account in the case of:
- the asymmetric layout of the stiffening walls,
- when the resultant horizontal force is located eccentrically to the center of gravity
of the layout of the stiffening wall (on an eccentricity greater than 0.05 of the
width or length of the building — Fig. 3.3).
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Fig. 3.3 The principle of the layout of stiffening walls: O — the geometrical center of the building plan,
O, — the geometrical center of the stiffening wall plan
There is a possibility of shaping a stiffening wall with a complex layout — Fig. 3.4.
However, the restrictions apply to the part of the wall located perpendicularly to the
stiffening wall:

o the length of which does not exceed 1.2 m

e whose length does not exceed 0.2 of the calculated wall length,

e within which no door or window opening was made,

e is connected to the rest of the stiffening walls as required.
If one of the above conditions is not met, the stiffening wall with a complex layout must

be analyzed separately as two separate stiffening parts.

B, B, B, B,

1.2 12
L =028 L 1058

L

Fig. 3.4 Stiffening wall with a complex layout: B1, B,, B4 —the stiffening wall treated as single stiffening
strip, B; - the stiffening wall treated as two independent stiffening strip

The guidelines for calculating the length of the sections cooperating with the

stiffening wall (flange) are identical to the requirements of Eurocode 6. The design
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increase in the stiffness and load capacity of the structural stiffness is possible when:
e the height of the wall is not more than twice its length,
e the connection between the section transverse to the wall and the stiffening
wall can transfer shear forces,
e the wall flange will not buckle.

When the stiffening wall is not connected with the transverse wall at the level of
masonry units - it should be assumed that the entire transverse force is taken over by the
reinforced concrete tie beam connecting both walls at the floor level (provided that the
load capacity of the tie beam was sufficient and calculated in accordance with the polish
standards PN-B-03264:2002). The length of the flange used in the calculations should
not be greater than the smallest of the values determined in the same way as in
Eurocode 6 (0.2 of the total height of the calculated stiffening wall /4w 0.5 of the
distance to the adjacent stiffening wall /;; distance to the edge of the wall; 0.5 of the
clear storey height /; six times the flange thickness ¢).

The openings in transverse walls with dimensions smaller than 4/4 or //4 can be
neglected in the calculations. If the openings are bigger, their edges should be treated as
wall ends. A stiffening wall taking vertical loads other than its the own-weight requires
a design check for both vertical and horizontal loads acting in the plane of the wall.

In a stiffening wall that takes vertical loads only resulting from its self-weight within
one storey, the deformation angle Giim should not exceed the limit value. Shear
deformation is caused by the horizontal load acting in the plane of the wall. If the
analyzed stiffening wall is also an external wall of the building, its load-bearing capacity
should be checked due to horizontal loads acting perpendicularly to its plane. The
calculation analysis of stiffening walls includes verification of the wall load capacity for
vertical loads in the section above and below the floor and the middle part of the wall,

taking the value of the force Nsq as the sum of (3.2):

Nsq = Nygq + Npg (3.2)
where:

Nyq — vertical force caused by a vertical load,

Nnq — vertical force acting in the wall plane caused by a horizontal design load.

When on the edges of a separated part of width bo, the difference in stresses resulting

from the vertical and horizontal loads is (3.3):

0-1 - 0-2 2 0.33 '0-1 (3.3)
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Then the force Nsq is (3.4):

Nsd = Uobot = 0830-1b0t (34)
where:

o1 = o0z the force Nsq corresponds to the resultant of the block of evenly distributed
stresses op occurring in the separated part of the wall — Fig. 3.5.

When the stresses on the edges of a separated part of width by meet the following
condition (3.5):

The force Nsq 1s assumed to be (3.6):

Nsd = Uobot = 05(01 + 0-2) bot (36)

For a fragment of a wall in which tensile stresses occur as a result of the combined
horizontal and vertical loads, it i1s assumed that the force Nsq = 0. The width bo should
be taken as:

e bo=bwhenb<1.0m,

e pp=1.0mwhenbd>1.0m.

a) b) ©)

| —

IJ 7 |

Fig. 3.5 Determining the value of Nsq force: a) cross-section for calculations, b) the resultant diagram of
vertical stresses from the simultaneous action of vertical and horizontal loads, ¢) the hypothetical part
with a width of by and solid stress o, for determining the force Nsq

The load capacity of the wall on horizontal loads acting in its plane is verified from the
formula (3.7):

Vsqa < Vrq (3.7)
where:
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Vsd - design shear force caused by horizontal forces in the plane of the wall - equivalent
to the resultant of the shear stress block from the design values of actions,

Vrda - design load-bearing capacity of the checked wall section, which is calculated as
(3.8):

Vra = fvd tlc (3~8)
where:

fva — design shear strength of the masonry in the direction parallel to the bed joints,
t — wall thickness,
l. — length of the compressed part of the wall cross-section.

The stiffening walls should be checked for not exceeding the limit value of the shear

deformation angle G.am from the general formula (3.9):

Osq < Ougm (3.9
in which:

x4 — the angle of shear deformation calculated for the characteristic values of horizontal

shear forces Vsk (3.10) — Fig. 3.6:

Ogy = (3.10)
where: .
E — modulus of elasticity of the wall,
A — horizontal section of the wall,

Ghadm — the limit value of the shear deformation angle.

The value of the shear deformation angle G.am can be assumed for walls:
o with filled vertical joints from Table 3.1,
e with unfilled vertical joints, the values of shear deformation angles from Table
3.1 should be reduced by 50%.

Table 3.1
Maximum values of the shear deformation angle ®igm, mrad
Group of masonry unit Cement mortar Cement-lime mortar
group 1, except autoclaved aerated
. 0.4 0.5
concrete units
group 2,3.4 0.3 0.4
autoclaved aerated concrete units 0.2 0.3
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Fig. 3.6 Calculation model to determine the shear deformation angle Gkxq of a horizontally loaded
stiffening wall

Masonry lintels acting as a horizontal spandrel of the vertical piers of the stiffening
wall are checked using the formula (3.11) (if the condition is not met, a reinforced

concrete lintel should be designed):

< fua (3.11)

where:
Vsa — design shear force in the lintel; the share of the vertical load is usually neglected
when the lintel is loaded with the floor,
t — wall thickness,
hn — the height of the lintel, including the tie beam,
fva — design shear strength of the wall.

Case 2: Stiffening walls due to the displacement of the ground.

Chapter 5.4.3 regarded checking the load-bearing capacity of the stiffening walls due
to the vertical displacements of the subsoil. The first assumption is that the vertical
deformations of the ground under the building are transferred entirely to the stiffening
wall. The cooperation of the building with the substrate, when calculating the
deformation of the building subjected to vertical displacements of the ground, can be
estimated using analytical models or programs based on the finite element method
(FEM). When determining the flexural stiffness and the deformation state of the
stiffening walls, the window and door openings shall be considered in the calculations.
Calculations of stiffening walls due to vertical subsoil displacements consist in:

e checking the load-bearing capacity of the stiffening wall for vertical loads,
e checking the shear deformation angle of the wall caused by the characteristic
values of vertical shear forces.

Stiffening walls subjected to vertical shear forces or substrate deformations should

be checked according to the general formula (3.12) due to vertical compression and
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horizontal wind loads (section 5.1 of the code, walls loaded mainly vertically). Moreover,
the shear deformation angle should not exceed the limit value, following the formula
(3.9).

Nsq = Ngq (3.12)
where:

Nsq — vertical force in the wall caused by the design load,

Nrd — design load-bearing capacity of the wall due to vertical loads.

The reliable value of the shear deformation angle %4 is determined according to Fig.
3.7:
e for a wall of length /i (3.13):

_ lui — i |
Osq = Oy ——F—— (3.13)
L
e for a wall of length 4 (3.14):
Ogq = Oypy 18— M| (3.14)

L,
where:
ui-1, ui, ui+1 — values of vertical displacements determined at both ends of the separated
parts of the calculated stiffening wall,
1,  — lengths of separated parts of the stiffening wall (distances between transverse

walls or between openings).

Fig. 3.7 The simplified method of determining the shear deformation angle ¢%q in the case of known
values of transverse walls settlement

If calculations were made using software based on the finite element method — the

value of the shear deformation angle is determined from the formula (3.15):

24



Au;
o, = | ll|
i

(3.15)

where:

Aui— the value of the difference in vertical displacements determined at both ends of the
area (section) with the greatest deformations,

[1 — length of the area (section) with the greatest deformations for part of the calculated

wall.

The values of the shear deformation angle G.am for displacements under the building
caused by temporary loading can be taken from Table 3.1. Increased values of the
permissible shear deformation angle can be taken from formula (3.16) if the vertical
displacements of the substrate were caused by long-term load or when rheological

processes had already been done in the wall.

Qadm (1 + NeP ) (3-16)
in which:

Gadm — a permissible value of the shear deformation angle according to Table 3.1,

ne — coefficient taking into account the reduction of masonry creep due to the
redistribution of internal forces in the structure and the ratio of the long-term load to the
total load of the masonry structure with the value 7e = 0.3.

@ — the final value of the creep coefficient equals ¢, = 1.5.

Earlier versions of the standard

It is worth mentioning that earlier editions of the standard [N12, N13] did not contain
any guidelines for the design of stiffening walls. The provisions are limited to statements
that internal forces should be calculated assuming the elastic behavior of the structure.
Static schemes should correspond to the conditions of the structure in the considered
limit states. Additionally, in [N12], it is written that for walls subjected to permanent
horizontal loads, the limit state of loss of stability by rotation or displacement of the wall
should also be checked. In [N14] from 1999, there are rules for the design of stiffening
walls, but with some differences to the 2007 version [N15]. The shear resistance of the
lintels is checked from formula (3.17); the coefficient in the 2007 version was 0.75 —
formula (3.11):

< fua (3.17)



The value of the shear deformation angle G&sq was determined according to the formula
(3.18):

2(1+v) Vex
_ ey _ 3.18
sd E  'max T 0afpa (3-18)

where:

E — modulus of elasticity of the wall,

v— coefficient of transverse deformation equals v =0.25,

Tmax — the maximum value of shear stress caused by a characteristic shear load equal to
Vsk/Av, in which: Ay — a cross-section of shear area,

A — horizontal section of the wall.

3.1.3. Standard regulations in other European countries

Section 8.7 of the German standard [N6] contains provisions for stiffening masonry
walls. Stiffening walls must have an effective length of at least 1/5 of the clear storey
height /s and have a thickness of 1/3 of the thickness of the wall to be stiffened but at
least 115 mm. If the stiffening wall has openings, the length of the wall between the
perforation must meet the condition shown in Fig. 3.1. The clear opening height is /; or
hz.

The swiss standard [N19] rules for calculating the horizontal displacement between
storeys v (3.19) and the marginal strain &max (3.20) for the quasi-permanent load.
Displacement marks are shown in Fig. 3.8. Deformation conditions for the serviceability

limit state are also given in Table 3.2.

_ 6M,,h% +4VhE  Vh,

3.19

Y Eyklévtw * lewtw ( )
6(M,; +Vh,,) N,

€xmax = Eyklgvtw - Eyklwtw (320)

26



SX max

| 1,2

Fig. 3.8 Model for calculating horizontal wall displacements between storeys in the swiss standard

Table 3.2

Deformation conditions based on swiss standard [N19]

Criterion

Normal requirements

High requirements

floor shift

v <0.001 Aw

v <0.0003 Aw

maximum strain

Emax < 1.0 %o

&max < 0.1 %o

The Russian standard [N20] also does not provide detailed guidelines for the design

of stiffening walls. When calculating walls (or their vertical cross-sections) for vertical

and horizontal loads, the following should be checked:

a) horizontal cross-sections for compression or eccentric compression load,

b) inclined cross-sections for the principal tensile stresses while bending in the plane

of the wall,

¢) width of cracks due to the vertical load of walls differently loaded and connected

or characterized by different stiffness of adjacent fragments of walls.

Formula 3.21 describes the load capacity of the connection of transverse and

longitudinal walls under the horizontal load.

where:

T

QAyH
== < tHR,,
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Rsq — compressive strength of the masonry determined without the compressive stresses,
QO — shear force taken up by the stiffening wall, determined in the elastic stage in the
middle of the storey height,

H — storey height,

y — distance from the center of gravity of the wall (together with flanges),

A — area of the cross-section of the flange,

t — wall thickness.

The British regulations [N2] do not systematize stiffening walls' design. The standard
includes information presenting shear actions in the connection of walls perpendicular
to each other — Fig. 3.9.

Fig. 3.9 Shear forces acting in vertical and horizontal planes [N2]: 1 — complementary shear acting in
the vertical direction in the vertical plane (stress vector), 2 — complementary shear acting in the
horizontal direction in the vertical plane (stress vector), 3 — shear acting in the horizontal direction in
the horizontal plane (stress vector), /' — shear force

3.1.4. Other standards and recommendations

IS:1905-1987 Indian Standard

Indian standard [N10] demands checking the necessity of lateral support when the
hall length exceeds 8.0 m. The requirements for the geometry of the transverse walls
constituting the horizontal support are shown in Fig. 3.10a. Figure 3.10b presents the

connection between the stiffening and the transverse wall.
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Fig. 3.10 Requirements in Indian standard [N10]: a) minimum dimension for masonry wall or buttress

providing effective lateral supports, b) anchoring of stiffening wall with the transverse wall:
h — the height of the wall

Moreover, the flange geometry is also defined depending on the shape of the cross-
section of the wall. In the case of T/I-shaped walls, the maximum size of the flange is
12t or h/6 — Fig. 3.11a. In L/U-shaped walls, the geometry of the flange is 6¢ or 4/6 —
Fig. 3.11b.

a) b)
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| |
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Fig. 3.11 The geometry of flange [N10]: a) T/I-shaped walls, b) L/U-shaped walls: ¢ — thickness of
bearing wall and % — total height of the wall above the level being considered

GB50003-2011. National standard of the people's republic of China

Appendix C: Statical Calculation of Semi-Rigid Buildings in Chinese standard [N9]
formulates the method for calculating the action of horizontal load (wind load) on
buildings. Internal forces can be calculated as a superposition of two steps:

a) in-plane calculation diagram — Fig. 3.12a: a horizontal hinged strut represents the
connection between the beam and column on each storey; the internal forces
under wind load without lateral displacement and the counterforce R; of each strut
could be calculated,

b) space action of the building — Fig. 3.12b: the counterforce R; of each strut should
be multiplied by the corresponding space performance coefficient 7; — Table 3.3

and applied on the joint reversely.
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Fig. 3.12 Modéiﬂof a ihulti-stor“e’}lf" frame used in the calculatién/bf in‘gerﬁ/al fofcés based on Chinese
standard [N9]: a) in-plane model, b) spatial model

Table 3.3
Influence coefficient of space performance for each storey of the building 7; [N9]

E3

Transverse wall spacing s, m
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

- - - - 1033]039]045]0.50]0.55]0.60 | 0.64 | 0.68 | 0.71 | 0.74 | 0.77
0.35]0.45]0.54 | 0.61 | 0.68 | 0.73 | 0.78 | 0.82

3 10.37/0.49]0.60] 0.68 | 0.75 | 0.81 -

[y

This calculation approach assumes that all stiffening walls have the same geometry,
and the effect of building torsion is not considered. To sum up, these are calculations

carried out on plane models, and equivalent coefficients represent the spatial behavior
of the structure.

Canadian Standards Associations CSA S304-14 and NBCC2005

Canadian regulations for analysing walls loaded with a horizontal load focus on
structures in seismic areas [N4]. Within the meaning of the standard, structural walls
have to resist axial compression (due to the vertical gravity loads), out-of-plane bending
(flexure) and shear due to transverse wind, earthquake or blast loads, eccentric vertical
loads and in-plane bending and shear due to lateral wind and earthquake loads acting in
a direction parallel to the plane of the wall. One of the roles of slabs called diaphragms
is to transfer horizontal loads to a lateral load-resisting system. The standard [N4]
distinguishes several types of shear walls. A solid wall (Fig. 3.13a) is a term which
describes shear walls without openings (door or window openings), while walls with
openings are called perforated walls. The parts of the wall between the openings are
called piers — Fig. 3.13b. Coupled walls mean shear walls in medium-rise masonry
buildings with vertically aligned openings over the height.
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a) b)

W/ /2727772, '/{1'}"/‘ 7 Az

Fig. 3.13 Types of shear walls distinguished in [N4]: a) solid wall, b) perforated wall: 1 — door opening,
2 — windows opening, 4, B, C — piers, V' — horizontal force

Moreover, the standard [N4] introduces the aspect ratio Aw/lw (relation between
height and length of the shear wall), which enables wall classification based on the
geometry — Fig. 3.14. Flexural shear walls mean that the height/length ratio equals 1.0

or higher, and squat walls mean that such a ratio is less than 1.0.

a) b)
h/1>1.0

hy/lw<1.0

Iy
|
[
[ ]
[
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| |
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Wiz Wi/ 7,
2 /VV / “ ]\\' /L/

Fig. 3.14 Shear wall classification based on the aspect ratio according to [N4]: a) flexural walls, b) squat
walls

Standard assumes the shear forces distribution in a wall is similar to a vertical
cantilevered beam fixed at the base — Fig. 3.15. There are reactive forces such as P,
which is a sum of vertical forces acting on a wall, /' — the sum of horizontal forces and
M — the bending moment equals the quotient of the resultant horizontal force
V multiplied by the effective height 4.. It is worth mentioning that regulations in [N4]

are among the few that draw attention to the static scheme adopted in the calculations.
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Fig. 3.15 Load distribution in masonry shear wall: P, and P, — vertical loads, V', and V> — horizontal
loads, h. — the effective height of acting the resultant horizontal load V, P — vertical reactive force
P =3%P;, V—horizontal reactive force V' = XVi, M — in-plane bending moment M = V-h,

The National Building Code of Canada [N11] also include regulations for structures
in seismic areas. Point 4.1.8.11(8) included notes on torsional effects. Torsional
moments are induced by forces acting on the eccentricity relative to the center of mass.
Torsional sensitivity can be determined based on the ratio Bx for each level and each

orthogonal direction independently — (3.22):

)
B, = omax (3.22)

‘Save

where:

Omax — maximum displacement of the storey at the extreme points of the structure at
level x in the direction of earthquake induced by equivalent static forces acting at
distances + 0.10 Dy« from the center of mass at each floor,

Oawve — average displacement of the storey at the extreme points of the structure at level
x in the direction of earthquake induced by equivalent static forces acting at distances
+ 0.10 Dnx from the center of mass at each floor,

Dix — plan dimension of the building at level x perpendicular to the direction of seismic
loading being considered.

The B value of the building is the maximum one of all values Bx in both orthogonal
directions. The torsion of the building is taken into account by calculating the torsional
moment of the building (for buildings with B < 1.7) or by dynamic analysis procedure
(for buildings with B > 1.7) specified in chapter 4.1.8.12 of [N11].

American regulations ACI 530-05/ASCE 5-05/TMS 402-05 and Army TM 5-809-3
According to the American standard [N3], design assumptions enclose a braced

structural system. The distribution of lateral loads depends on the construction of slabs
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(if they are diaphragms) and the rigidities of the structural system. Additionally,
connections between particular elements, such as walls and slabs, determine if the wall
participates in taking horizontal loads. Lateral loads induced by wind or seismic forces
are considered in the directions of the principal axes of the building. Torsion of the
structure can be caused by load acting at eccentricity to the center of rigidity. The
analysis should include the influence of openings on the structure behavior and whether

the masonry between openings allows them to act as coupled shear walls — Fig. 3.16.

a) b)
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Fig. 3.16 The effects of openings in shear walls: a) coupled stiffening wall, b) noncoupled stiffening
wall: 1 — stiffening wall, 2 — opening, 3 — slab

In calculation, the stiffness of shear walls should consider shear and flexural
deformation. Standard distinguishes three types of solid shear walls based on the
relationship between the height /4 and length d of the wall — Fig. 3.17. There are walls
in which shear stiffness predominates — 4/d<0.25. When the ratio 4/d is between 0.25
and 4, both shear and flexural stiffness determine the behavior of the wall. For walls

with h/d >4, the most crucial is flexural stiffness.

a) b) c)

|

=~/

Wd<025

d L a | . d |

Fig. 3. 17 Shear walls stiffness [N3]: a) shear stiffness predominates, b) both shear and bending stiffness
are essential, c) bending stiffness predominates

hWd=>4

0.25<h/d< 4

h

The standard that provides relatively much information on the design of stiffening
walls is TM 5-809-3/NAVFAC DM-2.9/AFM 88-3, Chap. 3 [N21] issued by
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Departments of the army, the navy and the air force. Chapter 7 deals with reinforced in-
plane shear walls, but the guidelines do not apply to structures in seismic areas. The
allowable shear stress in the wall depends on the ratio M/Vd, where M is the maximum
moment resulting from the shear force V' acting in the plane of the wall, and d is the
effective length of the wall. The stiffening wall can be considered in two static schemes.
A wall between storeys (a multistory shear wall) can be analysed in a double-fixed

scheme. Then the bending moment is calculated from the formula (3.23):

M=05-h-V (3.23)
in which,

h — the height of the wall.

The M/Vd value equals h/2d. In the second calculation variant, the static scheme of the
walls assumes a single restraint only in the base of the wall (a single-story cantilevered
shear wall). Then the value of the bending moment can be calculated from (3.24). The
value of the M/Vd ratio then becomes //d. Calculation situations are presented in Fig.
3.18.

M=h-V (3.24)

,,,,,,,

 d , M=0.5hV L d M=hv

Fig. 3.18 M/Vd ratios and static schemes for masonry shear walls: a) stiffening wall between floors —

fixed top and bottom edge, b) one story cantilever wall — fixed bottom edge: 4 — the height of the wall,
d — the length of the wall, M — in-plane bending moment, /' — horizontal force

If the calculated shear stress fum exceeds the allowable value Fym, shear reinforcement

is required. In that case, the reinforcement is designed to transfer the total shear force.

The horizontal load capacity of a building depends on the structural system considered

an entire construction. The relative shear stiffness of a wall is inversely proportional to

its displacement under a unit horizontal force. The total horizontal displacement of the

building is the sum of shear and flexural deformations — Fig. 3.19.
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Fig. 3.19 Sfiffening \’V’E’lll’ defdrrnation: a) shear deformation, b) ﬂ‘ekural deformation: A, A, Az —
horizontal displacements, Fi, F>, F3 —horizontal forces

The analysis of the building is based on the division of the structure into stiffening
parts considered separately. Structure division points are called control joints. Both the
location and the number of control nodes along the stiffening walls can affect the
stiffness of the members — especially in the case of bending deformations. In addition,
the computational analysis should consider the effect of openings on the stiffness of the
elements. Stiffening walls can increase load-bearing capacity by including a fragment
of a perpendicular wall to cooperate in transferring loads. The horizontal cross-sections
of the stiffening unit (stiffening wall) take the letter ‘T’ or ‘L’ shape. Chapter 7-5 (point
3) [N21] stated that the load capacity increase resulting from the cooperation of elements
might be difficult to estimate. Moreover, the calculations assume that the soil under the
foundation is unyielding or that the soil pressure has a linear distribution. Although this
assumption is a significant simplification, it allows the estimation of the structure's
stiffness acceptably for design purposes.

The distribution of forces on the stiffening walls depends on their stiffness and the
horizontal stiffness of each storey slab. Suppose the floors act as rigid diaphragm at the
level of the storey. In that case, the distribution of loads on the walls is proportional to
their stiffness. Under symmetrical loading, each element will resist the same proportion
of lateral force (all vertical shear wall elements deflect equally). Another situation is
when the slabs do not act as a rigid diaphragm. Flexible diaphragms are considered less
rigid than shear walls and transfer the load to the walls analogously to a continuous
beam scheme without considering the rigidity of the walls. A flexible diaphragm is not
able to transfer torsional rotational moments. On the other hand, when the resultant
horizontal force does not coincide with the center of rigidity of shear walls, a torsional

moment will be generated within the rigid diaphragm (case called rotational shears). The
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criterion for floors is not exceeding the permissible deflection u#adm (own designation),

which is calculated from formula (3.25):

h?F,

-t 3.25
Yadm = 501 F, ¢ (3.25)

in which:

F, — the allowable flexural compressive stress in masonry, psi (pound per square inch);

Fv=10.33fm,

En — the modulus of elasticity for CMU (concrete masonry unit), psi; Em = 1000 fm,

t — the effective thickness of the wall, inches.

This rule ensures that excessive deflection of the roof and floor diaphragms do not cause

damage to vertical shear elements. The standard [N21] stipulates that the equation is not

technically correct and is only a reference point for the designer, who should consider

the maximum allowable deflection of floors that transfer loads to the stiffening walls.
The regulations indicate that calculations should consider the effects of the

perforations in the building, and this effect depends on the geometry of openings. The

influence of small openings will be minor or negligible compared to larger ones.

Additionally, the localization of openings also affects the degree of complexity of the

calculations. If perforations occur in regularly spaced vertical rows or piers, the

calculation is not as complicated as when the openings do not align vertically or

horizontally. Analysis should consider stress concentration areas such as extreme sides

of the wall (boundaries) where the lengthening or shortening sides occur due to deep

beam action, corner joints or diagonal tension — Fig. 3.20.

Fig. 3.20 Deformation of structure: 1 — stiffening wall, 2 — window opening, 3 — diagonal tension cracks
in spandrels, which can occur at the top or other elevations, depending on the vertical shear distribution,
4 — diagonal tension cracks in piers which can occur at the bottom where horizontal shear is the largest
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Moreover, the value of relative stiffnesses of the vertical piers and horizontal wall
fragments (spandrels, lintels) between them impacts the type of adopted analysis. Figure
3.21 shows two extreme cases of different stiffness of the external wall of the building.
The analysis assumes that the wall is fixed in the foundation.

For rigid vertical cantilever piers (Fig. 3.21a) —spandrels and lintels act as horizontal
struts between the vertical piers. In this scheme, the determination of internal forces is
relatively simple. It is based on the cantilever flexural behavior of the vertical wall
fragments between the openings by ignoring the deformation characteristics of the
spandrels. The role of lintels is to transfer forces to vertical elements. It is required that
flexural deformation of struts must be compatible with the deformation of vertical
cantilever piers. In the second scheme (Fig. 3.21b), the vertical wall fragments are
characterized by much lower stiffness than the horizontal elements. In this case, the
lintels and horizontal fragments are assumed to be infinitely rigid, and the vertical piers
are analyzed as fixed-end columns. The horizontal bands between the windows

(spandrels) are designed for the forces induced by the vertical elements.
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Fig. 3.21 Relative r1g1d1tles of piers and spandrels [N21]: a) rigid piers and ﬂex1b1e spandrel, b) flexible
piers and rigid spandrel: 1 — horizontal force, 2 — the deflected shape of the building, 3 — opening

Both calculation situations can be considered using wall deflection charts (an
example is shown in Fig. 3.22) and standard procedures specified in chapters 7-8 of
[N21]. A more complex situation occurs when the rigidity of piers and spandrels is
relative — static behavior cannot be clearly defined.

The stiffness of the stiffening wall is inversely proportional to its deflection. The
calculations are carried out on a model loaded with a unit horizontal force. The wall
dimensions are essential in the analysis - length, height and thickness. Mechanical
parameters such as modulus of elasticity, shear modulus and boundary conditions for

fixing the element at the bottom and top are also considered.
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Fig. 3.22 Wall deflection chart according to the [N21]: 1 — fixed pier, 2 — cantilever pier, I — corner pier,
fixed: Ar = 0.0412(h/d)’ + 0.1543(h/d), 11 — rectangular pier, fixed: A = 0.0617(h/d)’ + 0.1852(h/d),
III — corner pier, cantilever: A. = 0.1646(h/d)> + 0.1543(h/d), IV — rectangular pier, cantilever:
A = 0.2469(h/d)*+ 0.1852(h/d)

The standard considers two static schemes. In the first one, the masonry wall is fixed
on top and bottom. Then the horizontal deflection At (deflection) is the sum of shear and

flexural deformations calculated from relation (3.26):

S WL AL AL (3.26)
FoTh Y T 12 B, 0 E,-A '

where:

Ay — the flexural deflection, inches; and A, — the shear deformation, inches,

A — the horizontal cross-sectional area of the wall element, in?,

I — the horizontal cross-sectional moment of inertia of the wall element in the direction
of bending, in*,

E — the shear modulus of masonry, psi; Ey = 0.40En,

V' — horizontal force, and /4 — the height of the wall.

If the wall or pier is fixed only at the bottom (cantilever scheme), the total horizontal

displacement is calculated from the formula (3.27):

A=p, 4a, = P12 VR (3.27)
A Y E,-A '
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It can be concluded that the horizontal displacement of the wall resulting from its
flexural deformation is four times greater in the cantilever model compared to the
restraint on both sides. However, shear deformations of the wall are the same —
regardless of the adopted support conditions. The total stiffness of the shear wall £ is the

reciprocal of the total horizontal displacement (3.28):

k + (3.28)

1 1

B Ab Av
To sum up, openings within the wall significantly impact the methodology of designing
stiffening walls. Calculations of solid walls without perforations are relatively simple,
and the irregular distribution of openings adversely affects the time and labour

consumption of the analysis.

3.2. Selected experimental and numerical studies of stiffening walls

The behavior of a masonry structure is a complex research problem. Both the
mechanical parameters of the wall components (e.g. modulus of elasticity, compressive
and tensile strength) as well as the type of joints and their thickness are influential. The
masonry is most often in a complex stress state resulting from vertical (gravitational
loads) and horizontal actions (e.g. wind). These factors in various configurations affect
the wall mechanics. The shear of unreinforced masonry is largely resistant due to
deformation in mortar bed joints [50]. It is defined conveniently by the Mohr-Coulomb
failure envelope that relates the shear strength 7, to the shear bond strength 7, an
apparent friction coefficient x and vertical stress £, in the joint. However, wall failure
may occur in joints, masonry units, or both [33]. The paper [99] distinguishes nine
possible mechanisms of wall failure in a plane stress state — Table 3.4. Other failure
patterns are possible, but several basic mechanisms have coincided in these cases.

Mechanisms 7MF-9MF describe the possible failure of the stiffening masonry walls.
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Table 3.4

The primary mechanisms of masonry failure in a plane stress state, based on [99]

Designation | Failure mechanism | A 2-D view of failure Description
'1 vertical cracks through
IMF Separation of I ] masonry units passing
columns [ through joints under
‘l uniaxial compression
. T horizontal cracks through
Separation of layers .
| | bed joint surface under
2MF or several masonry —[ ] . . o
] horizontal uniaxial
rows .
[ | compression
I I 1 e .
3MF Parallel splitting g | 3§ spllttlng masonry fallu:‘re
] under biaxial compression
[ ]
4
[ | horizontal breakage through
4MF Damage.gilr(i?g a bed I I \ | bed joint surface under axial
] | 1 | 1 tension
.
[ |
SMEF Breakage along a «—H ELl 1. breakage of head joints
toothing crack | under horizontal tension
[ |
r. |
Vertical breakage | 1 V(:;t:s:ilnbresgige ;l;?llllgh
6MF through masonry “— = fy untts p g
. (1] through joints under
units [ . .
; compression and tension
. S
Splitting along a % I stepped crack along the bed
stepped crack with J \ .
TMF L1 | and head joints under
shear along the bed [ :
. ] compression and shear
joint ?
[ 1 \ :
11 horizontal crack along the
8MF Shear al‘or‘lg the bed g B > bed joint surface under
joint | [ 1
] shear
L] A inclined crack along both
OMF Splitting along an e I\l\i\l _‘_ masonry units and passing
inclined crack | [ N through joints under
[ [\ compression and shear




Moreover, masonry in tension shows other characteristics in tensile strength
reduction, and this phenomenon is related to cracks. When masonry is cracked in
a stepped pattern, the strength reduction is relatively small, and the wall respond ductile.
When an inclined crack occurs in masonry, the behavior indicates a brittle failure with
a rapid strength decrease [61] — Fig. 3.23. It should be mentioned that the cracks provide
in-depth information about the mechanics of masonry behavior, which justifies

conducting experimental research which gives much information about failure patterns.
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Fig. 3.23 Differences in tensile behavior of masonry: a) straight and stepped crack pattern depends on
compressive stress, based on [61], b) behavior of stiffening masonry wall in complex failure mode:
1 — straight crack (high compressive stress), 2 — stepped crack (low compressive stress),
o.— compressive stress, oi — tensile stress, Hx — horizontal shear force, F; — tensile force.

Shear wall tests are often carried out on small models consisting of several masonry
elements connected with mortar [133] (masonry prism), masonry couplet [158] or
masonry triplets [15, 101]—Fig. 3.24. Sometimes standard procedures cannot be applied

directly; however, they are a reference point for testing walls with complex structures.
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Fig. 3.24 Types of shear tests [101]: a) couplet tesf, b) van der Pluijm test, c) triplet test
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The test made by Binda et. al. [20] is an example of a triplet test for twelve three-
leaf stone wallets consisting of two outer leaves of ashlar masonry with mortar joints
10 mm thick and an inner core of rubble masonry. The shear was similar to the procedure
presented in EN 1052-3 [N17] — a monotonic load was applied to the inner leaf while
the outer leaves were supported (triplet test). Small models are beneficial for
determining basic shear parameters, e.g. initial shear strength fvo [78]. Tests of shear
models are commonly performed following the ASTM standard [N1] (models subjected
to diagonal testing) [148], or in a variation of this test — the masonry assemblage rests
on a plinth, and the force is applied diagonally between the two corners [91]. It should
be added that the most important shear parameter, which is the shear modulus, may
differ depending on the adopted test method, even for the same masonry wall [44]. Full-
scale models [41, 93, 87, 62] or scaled models [17, 11, 90] are used instead to determine
the global behavior of the structure.

Most shear masonry studies are cyclic loading analyses [47, 116, 25, 143], and
monotonic load tests are rare [84]. The analysis of stiffening walls, both masonry and
reinforced concrete, mainly concerns seismic areas [56, 137]. Test type also depends on
the type of construction used in a particular world region — e.g. most reinforced masonry
constructions in the mid-western and eastern parts of the United States are partially
grouted, so it determines the experimental [21, 24] and analytical [6] recognition of such
structures. Even in-situ masonry tests are carried out to assess existing structures [16].

Research by Paulo B. Lourengo et al. [103] presented results of experimental
research on the structural behavior of dry joint masonry — Fig. 3.25.
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Fig. 3.25 Details of rese/arch [103]: a) geometry and test stand, b) static cantilever scheme: 1 — vertical
load, 2 — horizontal load, 3 — reinforced concrete beam, P — axial force, V' — shear force
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Analyses were conducted in collaboration between the Structural Technology
Laboratory of the Technical University of Catalonia, Barcelona and the University of
Minho. Seven dry masonry walls were tested under combined vertical and horizontal
loading. The tested walls were a rectangle with dimensions 1.0x1.0 m, and the thickness
of the walls was 0.20 m (Fig. 3.25). Each model was made of locally available stone,
known as Montjuic stone (many monuments in Catalonia are made of that). Walls were
tested under different compressive normal stresses of 0.15, 0.50, 1.00 and 1.25 N/mm?,
and the vertical load was equal to 30, 200 and 250 kN, respectively — Table 3.5. All the
tests were carried out under monotonic loading. Initially, a vertical compressive load
was applied using a hydraulic actuator until the set load was applied to the wall. The
horizontal load was applied in the next stage by imposing small displacement increments.
LVDTs (linear variable differential transformers) measured displacements between units.

The models were tested one day after their construction.

Table 3.5
Values of normal stress and corresponding vertical loads in research [103]
Model designation Normal stress, N/mm? Corresponding vertical load, kKN
SW.30.1 0.15 30
SW.30.2 0.15 30
SW.100.1 0.50 100
SW.100.2 0.50 100
SW.200.1 1.00 200
SW.200.2 1.00 200
SW.250.1 1.25 250

The results indicated that the stiffness increases with normal stresses, which means
that the stiffness of walls depends on the prestress level (Table 3.6) and masonry
exhibits a peculiar elastic non-linear behavior with increasing stiffness upon

compressive loading.

Table 3.6

The stiffness increase of tested models in research [11]

o Modulus of elasticity, N/mm?
Model designation Tost 1 o Test 2
SW.100 824 688
SW.200 969 1302
SW.250 1024 1353

Results pointed out that the linear behavior of masonry ended at 30% of the peak

load. Then, continuous stiffness degradation takes place under increasing horizontal
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displacement. The failure pattern is presented in Fig. 3.26. Observations show that
cracks also depend on the level of compressive stress. A typical stepped crack in joints
was noticed under lower compression without cracks in masonry units. Damages along
stone units were observed in the walls subjected to a higher vertical load. Moreover, the
increase in compressive stress applied initially to the model was connected with the

increase in obtained maximum horizontal force.

Fig. 3.26 Cracked pattefns observed in research [11]: a) model SW.30.1, b moel SW.30.2, ¢) model
SW.100.1, d) model SW.100.2, e) model SW.200.1, f) model SW.200.2: 1 — diagonal crack,
2 — the crushed corner

The paper by M. Shedid et al. [149] describes an experimental study on reinforced
concrete masonry shear walls in flexure. The tests concerned the six models under
reversed cyclic horizontal load — Fig. 3.27, and research focused on the contribution of
flexure and shear deformation to the total horizontal displacements. Tests enclosed six
fully-grouted masonry shear walls. Models were 1.8 m long by 3.6 m high and were

constructed using hollow 190 mm width concrete blocks. A displacement-controlled

44



1400 kN hydraulic actuator was used to apply the horizontal load.
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Fig. 3.27 Test stand in research [149]: 1 — tested wall, 2 — wall foundation, 3 — concrete slab, 4 — steel

reaction frame, 5 — truss, 6 — rigid structural floor, 7 — hydraulic actuator, 8 — hydraulic jack, 9 — out of
plane bracing, /0 — U-shape loading beam, /1 — post-tensioned steel tendons

The paper [149] demonstrates that for the aspect ratio of 2.0, shear displacement was
32% of total lateral displacement at the onset of yielding of the outermost vertical bar.
The shear displacement equalled 20% of the total lateral displacement for maximum
load. Furthermore, walls with a higher amount of vertical reinforcement and walls with
higher values of compressive stress resulted in a slight variation in the contribution of
shear displacement. The authors suggested that this effect can have a minor or negligible
influence on masonry behavior. The results showed that the contribution of shear
displacements depends not on the initial compressive stress but, above all, on the wall
geometry.

The analysis by R. Senthivel and P.B. Lourengo [146] describes the test performed
by Vasconcelos [159] in the Structural Engineering Laboratory at the University of
Minho, Guimaraes, Portugal. The primary purpose of the experimental research work
was to evaluate the in-plane seismic performance of stone masonry shear walls. Three
types of walls were tested: dry-stone or dry-stack mortarless stone masonry (type 1),
irregular stone masonry with bonding mortar (type 2) and rubble masonry with irregular
bonding mortar joint thickness (type 3). The dimensions of the models were
1000x1200x200 mm (length x height x width), and the height/length ratio was equal to
1.2 — Fig. 3.28. Walls were subjected to lateral monotonic and reversed cyclic loads with
three values of pre-compression vertical loads — Table 3.7.
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Fig. 3.28 Geometry of tested walls [146, 159]: a) type I - dry stack sawn masonry, b) type II - iffegular
masonry with bonding mortar joints, c) type III - rubble masonry

Table 3.7

Vertical pre-compression loads for tested wall models [146, 159]

Pre-compression level | Normal stress, N/mm? | Corresponding vertical load, kN
low 0.500 100
moderate 0.875 175
high 1.250 250

Ten walls of the first type and seven walls of type II and I1I were tested (twenty-four
total walls). The load was applied sequentially — first the vertical load, then the
horizontal in terms of controlled displacement at 100 um/s. Deformations were
measured by linear variable differential transducers (LVDTs). Numerical simulations
were also undertaken [146].

It has been shown that the most important factors influencing the shear walls on
load-deformation response and failure pattern are axial pre-compression load and
material properties. Although the strength of the masonry was different for each type
(I, IT and III), the behavior of the wall under high axial load (175 kN and 200 kN) was
similar. The lower axial vertical load caused flexural or rocking failures, and the higher
vertical load caused rocking, toe crushing and diagonal shear failures along the diagonal
direction. Each failure pattern showed cracks through the mortar, and the masonry unit
had no damage. Moreover, the flanges affect the effectiveness of transferring the
horizontal load through the stiffening wall, and the flange length increases the wall
stiffness subjected to horizontal loading and lateral strength [68]. The simplified
calculation for effective flange width for shear walls has been proposed in [150].

Simulation of the damage patterns obtained in the tests is possible using numerical

calculation. The heterogeneity of materials influences the load-displacement curve and
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peak load of unreinforced masonry shear walls. As the heterogeneity index increases,
the curve becomes linear, and the peak load is higher than in the low heterogeneity index
[163]. The reinforcement also affects the behavior of stiffening walls [81, 82]. The test
of confined masonry walls subjected to horizontal load showed that in confined elements
compressed to the value of 0.1 and 0.75 N/mm?, shear deformation at the cracking
moment was lower by 25 and 32% than in unreinforced walls [81]. In confined models,
values of shear deformation at the failure moment were higher when compared to
unreinforced ones. Moreover, horizontal reinforcement in bed joints constrained the
intensity of crack formation.

Paper [88] presents three results of full-scale tests of masonry buildings made of
calcium silicate with different opening sizes under a cyclic load. Linear behavior was
proven to occur up to 77% of the maximum load. The torsion effect was also
demonstrated due to the different stiffness of the walls caused by openings. Masonry
walls of tested models cracked in a stair-stepped pattern. In the first model, at the load
of 41.82 kN, the first stair-stepped crack occurred on the side corner of the building -
after that, a stair-stepped crack started at the corner of the door opening and propagation
to the bond beam. At a load of 45.86 kN, the building resistance reached peak value in
the push direction, and crack size reached 30 mm wide in the last cycle. In the second
model, at a load 0of 42.84 kN, the first stair-stepped crack started at the corner of the door
opening and propagated to the bond beam. These stair-stepped cracks reached 20 mm at
the end of the test. At a load of 43.60 kN, in the pull direction, a splitting crack started
from the middle point of the window openings and propagated to the floor level. The
results show that after the appearance of the first cracks, the building begins to lose its
stiffness as further damage occurs quickly. At the load of 44.79 kN, building resistance
reached its peak value in the pull direction. In the third case, stair-stepped cracks
occurred on the side wall and reached approximately 38 mm wide at the end of the test.
At26.83 kN in the push direction and 36.16 kN in the pull direction, stair-stepped cracks
were observed on the side wall pier between the two window openings. The differences
in wall stiffness caused the twist of the tested building.

The stiffness of unreinforced shear walls [117] and lateral load capacity [75] can
reduce significantly due to wall openings. The numerical simulation showed that the
lateral load-carrying unconfined masonry walls might be reduced by up to 28.5% when
incorporating only a 1.85% opening - this reduction increases to 76.5% with a 16.5%
opening [117]. The full-scale test showed that horizontal displacement suddenly
increases near wall openings [141]. In addition, the cracks change the pillars' height

between the openings [157].
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3.3. Computational models of stiffening walls

Although numerical methods are commonly used in the calculations of stiffening
walls, there is a need for simple methods to allow for analytical verification [1] of the
structure's behavior. Paper [18] proposed a simplified model for shear walls under
compression based on three parameters: the limit strength fnk, the yielding strain &, and
ductility index D=&/gy. The model considers the wall under shear at the top and the
compressed in a vertical direction. Three states (fully elastic, cracked elastic and elastic-
plastic) are distinguished depending on the geometry of the cutting line, which separates
compressed and inactive zones. The static scheme of the structure is a cantilever wall —
Fig. 3.29. The authors compared such an analytical model with experimental data and
estimated an average error. The average estimation error of ultimate shear force was
equal A4,=10.7%, and the corresponding displacement estimation error was 4¢=26.9%
[18].
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Fig. 3.29 Equilibrium states of a wall under compression and shear based on [18]: a) fully elastic,
b) cracked elastic, c) elastic-plastic

Simplified planar models were developed for non-torsional reinforced concrete

structures [121]. The tall building is a non-twisting structure when the load is uniformly
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distributed over the height, the geometry of the building is symmetric, and the structural
system 1s the same at each floor level. Moreover, the slabs should constrain the
horizontal deflections of the walls and frames and be rigid in their planes. In such
conditions, the building can be represented by a single-bay moment resisting frame,
joined at each slab level by an axially rigid link or a multi-bay system [161].

The equivalent single-bay frame may be considered a planar continuum model in
simplified analysis, assuming the structure to be uniform with height. In such a model,
accounting for the double-curvature bending of the columns within each story height is
necessary when calculating the shear rigidity GA. It is assumed that a continuous
medium links columns. Continuum has shear rigidity G4 equivalent to the story-average
shear rigidity of the frame associated with a double-curvature bending of its columns
and beams. Fig. 3.30 shows that the wall is linked with continuously coupled columns
by axially rigid connection links with no shear rigidity. The structure can be represented
mathematically by equation (3.29). The model may be extended by adding a stiffening

panel to analyse the structure with the stiffened intermediate-level story [121].
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Fig. 3.30 The calculation model of a building: a) continuum representation of wall-frame, b) forces in
a structural system, based on [121]: 1 — shear wall, 2 — moment-resisting frame, 3 — shear and bending
continuum representing G4 property of frame, 4 — horizontal rigid continuum representing axially stiff

connecting links, 5 — line of contra flexure
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[ (* l l x
Ej; Mg(x)dx —T (x)a+ Ekz fo [T(x)]dx =0 (3.29)

where:

ME(x) — external moment acting on the building at height x from the base,

T(x) — axial force in the columns at height x due to overturning,

[ — the distance between columns of the equivalent one-bay moment resisting frame,
ET — the sum of flexural rigidities of the frame columns and the shear wall,

GA — the racking shear rigidity of the moment-resisting frame.
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Continuum models are good predictions of the overall lateral load behavior of
uniform coupled wall and wall-frame structures. It is worth mentioning that such an
approach is developed for reinforced concrete structures and not involving specific
masonry behavior. Therefore, it is insufficient for detailed interactions between the wall
and frame, particularly at the bottom and the top of the building.

For the dynamic behavior of stiffened coupled shear walls, also are used discrete-
continuous approach [94]. In such calculations, there is a possibility to consider the
effect of flexible foundations represented by rotational and translational springs at the
base of each shear wall. The analytical model enables a simplified representation of soil-
structure interaction. Due to the wind action design needing to be considered the overall
building stability and the strength of individual stiffening walls, the book [69] presented
an analytical method for wind load analysis based on the simple bending theory — Fig.
3.31. It is assumed that shear walls deform as cantilevers, and the slab is a rigid
diaphragm. The deflection at the slab level is the same as the shear wall and is given by
formulas (3.30) and (3.31).

W1 " h3 /1W1h
= 3.30
A 3El, T (3-30)
_Wz'h3 /1W2h, (331)

B2= 3EI T
where:

w1, wa — lateral forces acting on stiffening walls,
D1, D> — deflections of particular walls,

h — height,

G- modulus of rigidity,

11, I — second moments of areas,

A —shear deformation coefficient (1.2 for rectangular section and 1.0 for flanged section).
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Fig. 3.31 Analytical méthod [69] for sheaf walls resisting wind force: a) 3D view, b) plan view
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The first part of formulas (3.30) and (3.31) describes bending deflection, and the
second part characters the shear displacement. Shear deflection can be neglected if the
height/width ratio exceeds 5.0. Equations (3.32) and (3.33) formulate the lateral load
that shear walls take.

A1= AZ (3.32)
2wy +w, = w (3.33)

The walls with openings are called coupled walls or pierced shear walls and present
a more complex problem in static [4, 43, 152, 92] and dynamic analysis [3]. There are
five different calculation models for the analysis of this case: individual cantilever,
equivalent frame, wide column frame, continuum model, and model based on the finite
element method (FEM) — Fig. 3.32.
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Fig. 3.32 /C’aylculation rﬁodels for stiffening walls with openings [69]: a) bu/ildi’nglvrierw, /b) incﬁvidual
cantilever, c¢) equivalent frame, d) wide column frame, e) continuum model, f) model based on finite
element method (FEM)
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When a series of vertical cantilever walls idealize the structure, there is assumed that
vertical piers are deflecting together and the slabs transmit only normal forces,
neglecting its bending. The load is distributed in proportion to the flexural stiffness of
load-bearing elements. The shear wall deflection is calculated by formulas (3.34) —
(3.37).

w; x* h3x h*
_ _ n 3.34
MG T (3-34)

a=e X XN (3.35)

w I

wy = L+ 1 (3.36)
w I

w, = L +1, 2 (3.37)

where:

w — uniformly distributed wind load/unit height,

h — the building height,

x — a distance of the section under consideration from the top,

I and I» — second moments of areas.

In the equivalent frame approach, walls and slabs are represented by beams with the
same flexural stiffness as walls and slabs. A similar model is a wide column frame. In
this approach, an equivalent frame idealizes the actual structure, but the interconnecting
members are assumed to be of infinite stiffness for part of their length. Another approach
is a continuum model in which an equivalent shear medium represents the structure, and
the contra-flexure point is taken at the center of the medium. The most complex model
is based on Finite Element Method.

In order to compare the results of the analytical methods and the actual behavior of
the masonry structure, experimental tests were carried out [69]. A full-scale model of
a three-story building was made - the model was loaded horizontally, and the deflections
and strains were measured at various level loads. The view of the full-scale model and

plan view is shown in Fig 3.33.
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Fig. 3.33 Full-scale Bﬁildiflg model [69]: a) view of the structure, b) plan view: 1 — tested building, 2 —

horizontal load (three jacks per floor)

Results indicate nonlinear stain and stress distribution across the shear wall near

ground level. This phenomenon causes analytical calculations not to converge the

experimental results because they assumed linear stress variation across the shear wall

(except Finite Element Method). The best convergence between the theoretical and

experimental results was obtained for the equivalent rigid frame. In such a method, the

columns have the same sectional properties as the walls with interconnecting slabs

spanning between the columns — Fig. 3.34.

Height

0 0.5 1.0 1.52 2.03

Deflection

Fig. 3.34 Comparison between the theoretical and experimental results based on the full-scale research

presented in [69]
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Moreover, A.W. Hendry, B.P. Sinha and S.R. Davies presented in [69] the method of
load distribution between the unsymmetrically arranged stiffening walls. The resultant
horizontal load caused by the wind, which does not pass through the shear center can be
replaced by the load W and twisting moment We — Fig. 3.35. When stiffening walls are
arranged symmetrically, the load is distributed proportionally to particular wall stiffness.
The deflection of walls must be equal at floor level. Forces in individual walls can be
calculated from formulas (3.38) — (3.40).

Wi, Wi,

W, = = 3.38
AT L+ lg+ 1 Y (3.38)
Wiy
Wy = S (3.39)
148
W, = 57 (3.40)
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Fig. 3.35 Unsymmetrical arranged stiffening walls subjected to horizontal load, according to [69]

Due to the rotation of the building, in walls arise additional forces W’a, W’s W’c. In
walls A and B, forces have the same negative value; in wall C, the force has a positive
value. The deflections 4., 4, and Ac caused by rotation (Fig. 3.36) can be calculated
from the following relationships (3.41) — (3.44):

Ab: Aaxb/xa (341)
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AC= Aaxc/xa

Aaz W’A - hB/KEIA

/

Xc

Xb

Xa ¥

(3.42)

(3.43)

Fig. 3.36 Horizontal displacements of stiffening walls due to rotation (twisting), according to [69]

where: K is a constant deflection and:
A= W'y - h3/KEI,
Substituting the value of 4, from (3.41) and 4. from (3.43), there are (3.45):
(Ba/xa)xp = Wp - h*/KElg
or (3.46):
(xp/xa)(W'a/la) = Wg/Ig
or (3.47):
W'g = (W' alg /1) (xp/%a)
Analogously (3.48):
W'e = (W' alc/1a)(xc/xa)
The sum of moments must be equal to the rotation moment (3.49) and (3.50):
Wiyxqg + Wigxy + Wiex, = W,
vl ()G + GG -
or (3.51):

55

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)



VVeIAxa _ VVeIAxa

W'y = = :
AT a2 4 Ipgx? +1ox2 T Y Ix? (3.51)
Then the other forces are (3.52) and (3.53):
,_ Welpxy
Wo =~ (3.52)
,_ Welcx,
We =<1 (3.53)

The force in each wall can be calculated as the algebraic sum expressed in the
relationship (3.54):

_Wely  Welnxy

Win = Y1 + Y1 x2

(3.54)

The second term in the equation is positive for walls on the same side of the centroid as
the load W. The analytical determination of the location of the flexural center of the
building was proposed in the paper [114]. The authors presented the method for dynamic
analysis of tall buildings braced by stiffening walls and thin-walled open-section
structures — Fig. 3.37. The formulas (3.55) and (3.56) describe the coordinates of center

of flexural rigidity for asymmetric structure:

Zq quIyq

Xo = 3.55
2qVqElxq

Vo = w7 — 3.56

X0, Yo— the coordinates of the flexural center,

Elyq, El,q — the lateral stiffness of g™ shear wall/thin-walled open cross-section.
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Fig. 3.37 Layout of an asymmetric building with shear walls and thin-walled open cross sections
columns, according to [114]

The location of the geometric center (xc, yc) can be calculated from equation (3.57) —
(3.58):

X, = Xc— Xg (357)
Ye =Yc— Yo (3.58)

X0, Y, — the coordinates of the flexural center.

The description of the rotation of the building can be analyzed using Vlasov’s theory
— the approaches based on that presented in [162, 5]. Although the three-dimensional

analysis of shear wall structures with any number of connecting and stiffening beams
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can give a faithful representation of tall buildings — it does not consider the specificity
of masonry structures. The so-called multi-pier (MP) approach enables the non-linear
analysis of the in-plane behavior of masonry walls. The method consists of substituting
the 2D continuum with an assemblage of vertical trusses (piers) and braces, exhibiting
a monodimensional non-linear behavior with softening [127].

Distribution of loads based on the stiffness of the shear walls is the right approach
assuming that the floors act as a rigid diaphragm, but this approach is incorrect in
analysing low-rise buildings with slab-rib or wooden ceilings. In this case, floors act as
flexible diaphragms, and lateral loads cannot be distributed on shear walls
proportionally to their stiffness. Sang-Cheol Kim and Donald W. White proposed an
analytical approach for analysing low-rise buildings with flexible diaphragms [89]. The
structural separation method is based on the phenomenon that flexible floors within the
structure tend to respond independently. The method models each diaphragm and its
adjacent walls as separate subassemblies — Fig. 3.38. The in-plane wall horizontal forces
are calculated by summing the forces from the adjacent diaphragm subassemblies.
Although the method is related to seismic analysis, the methodology can be helpful also

in static calculations of low-rise buildings with flexible diaphragms.

a) b)

Uy

Fig. 3.38 Distribution of the lateral forces in low-rise buildings: a) rigid diaphragm, b) flexible
diaphragm, CM — the center of mass, according to [89]

The simple equilibrium model (load-path or strut and tie schemes) is a different
calculation approach for stiffening walls. In reinforced concrete structure analysis strut
represent the compression zone, and the tie corresponds to reinforcement. Although
masonry behaves in another way due to its brittle nature, it is possible to adapt some

well-known analytical methods, such as strut and tie models (the S-T), for first-approach
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calculations. Pere Roca determined that struts representing the diagonal field of
compression stresses and in equilibrium with the external load can be smeared or
concentrated [138]. Moreover, the distribution of the compression zone is conditioned
by the wall geometry, loads and presence of openings, which disturbance the stresses.
The proposed models consist of bars and nodes — Fig. 3.39. Bars can be smeared (sC)
or discrete (dC). Nodes can be a punctual connection between ties and struts (CCT) or
finite regions (CCS — external load or reaction meet with one converging internal
compression force and CCCS - external load or reaction meet with two converging
internal compression forces). At least two discrete struts should be assumed to represent
the effect of concentrated or partial load on a wall.

Furthermore, such load (or reaction) cause a reverse bottle-neck effect. In such cases,
two opening struts should be balanced by a tie - Fig. 3.39c. The slope of struts
concerning vertical is limited to tan¢ (¢ — friction angle of unit-unit interface for dry-
joint wall). In the case of a cohesive wall, the slope is restricted to tana (3.59). The slope
of the ties concerning horizontal is limited by the tensile strength of masonry in a normal

direction to the bed joint’s surface.

c
tana = tan @ + — (3.59)
Un
in which:
tana - the angle of friction of the unit-mortar interface,
¢ — cohesion,

on — the average vertical compression.

U Pttttrttt |, —t* b |
CCS g !
Fig. 3.39 The strut and tie models for shear walls proposed by Pere Roca [138]: a) deviation of
compression stress zone by horizontal tensile forces (T), b) parallel smeared struts (sC) and CCS nodes,
¢) discrete struts (dC) picturing a reverse bottle-neck compression stress field combined with a tie (T),

in combination with CCT and CCCS nodes
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The presence of openings determines more complex the S-T model. In a wall with
a centrally located opening, there is no vertical compression close to the top and bottom

edges of the opening. The model presented in Fig. 3.40a can be assumed in very cohesive
walls. If the tie cannot emerge, the walls can be estimated using models presented in

Fig. 3.40b and 3.40c.

a)

{ |

Fig. 3.40 The S-T models for shear walls with openings, according to [138]: a) cohesive walls, b) and

¢) non-cohesive walls
The S-T models are used for simplified calculation of the shear strength of confined

masonry walls subjected to in-plane loads [153]. The analysis encloses confined
masonry with and without openings [154]. A single concentric strut constitutive model
also can represent the infill response under in-plane horizontal loads [98]. The
experimental verification of the models and the mixed model (combined model) is

presented in [130, 83].

3.4. Numerical methods of modelling masonry structures

Masonry characterizes the anisotropic behavior because it combines different

materials with different mechanical and physical parameters. The modelling strategy for
the masonry has to fully represent its behavior discretely or represent the structure using

a simplified method with the averaged mechanical parameters of the masonry [105, 107].
The discrete modelling is usually based on the FEM (finite element method) or

FDEM (finite-discrete element method). In such an approach, the number of parameters
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used to describe the behavior of masonry units, mortar and bonds between them is time-
consuming and labour-consuming. This aspect makes discrete modelling unsuitable for
large-size structures. Simplified modelling requires fewer parameters than the discrete
technique and is much less time-consuming. Thus, this method can be applied to parts
of the structure and the whole building. Numerical models should always be validated
based on structural test results [147]. Regardless of the choice of homogenization
strategy, a sensitivity analysis of the parameters on a numerical model should be
performed [32, 55].

Mechanical parameters of masonry components (units, mortar) are not the same as
parameters of masonry which there are parts. Homogenized masonry requires a new
composite material model with specific mechanical behavior. The homogenization
technique should be precise in parameter selection and easily adaptable to another
masonry. Various combinations [102] of different masonry units and different types of
mortars determine the complexity of the modelling approach for masonry structures [9].
The influence of the uncertainty in material properties on the in-plane lateral behavior
can be solved by numerical assessment of an unreinforced masonry (URM) wall using
a stochastic analysis in the form of Monte Carlo simulations [63]. Therefore, due to the
intricacy of historical buildings with irregular textures, homogenization techniques
represent the original structure by the continuum model and make the analysis possible
[51].

3.4.1. Classification of homogenization methods

The simple classification of homogenization methods is rather difficult due to the
specific nature of the proposed literature solutions. Requirements for small-scale
structures are different than in entire masonry buildings. The systematics of modelling
masonry structures is considered to appear at the beginning of the 1990s. At that time,
two approaches for masonry modelling were introduced in the papers [105, 104] - the
first one is based on homogeneous parameters and is defined as the continuum model.
The second introduces the concept of the interface model representing the effects
observed at the interface between mortar and masonry units.

The paper [107] from 1996 should be considered the first cohesive paper that
presents the classification of modelling techniques for masonry structures. The method
of discrete (micro) modelling of masonry has been developed. The mechanics of the
contact between mortar and masonry units is crucial as this zone is mainly responsible

for representing the masonry behavior at the non-linear (post-elastic) phase. The paper
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on micro-modelling published in 1997 [124] indicated the need to search for new
homogenization methods that simplify the computation. The paper considered whether
replacing the actual mortar joints with an interface modelled as interface elements is
possible. In 1999, the paper [100] introduced the term meso-model. That was a variety
of the macro-model using the original method of calibrating material parameters
regarded as a reproducible masonry unit (RVE — representative volume element). The
method of validating parameters for homogeneous models was improved in the
subsequent years [31, 30], considering the experimental results. The paper [46]
describes the additional classification of macro-modelling into the following categories:
BBM (block-based models), CM (continuum models), MM (macroelement models),
GBM (geometry-based models) — Fig. 3.41. The conventional classification of

numerical methods of masonry modelling is different and is illustrated in Fig. 3.42.

Numerical strategies
for masonry structures

— ~ z

- A —a
BBM CHM GBM EFM
Block-based models Continuum homogenous models Geometry-based models Equivalent frame models
interface element- direct approaches static theorem-based MM
based approaches macroelement models
contact-based homogenization procedures and kinematic theorem-based equivalent beam-based
approaches multi-scale approaches approaches
textured continuum- spring-based
based approaches approaches

block-based limit
analysis approaches

extended finite
element approaches

Fig. 3.41 Alternative classification of modelling strategies based on [46]
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for masonry structures

A k N

¥ N
FEM method FDEM method
‘ T i
3D model
\
2D model
v - = T e -
macro model micro model
|
micro model
|
mezo model

Fig. 3.42 Classification of homogenization techniques in numerical masonry modelling

3.4.2. Macro-modelling

Macro modelling (Fig. 3.43) is the recommended approach to analyse the entire
masonry buildings built of other structural components such as wooden or reinforced
concrete slabs, reinforced concrete and steel columns, and components of facades and
foundations. This method uses the isotropic or anisotropic material model [106] and the
equivalent parameters [13] to represent the behavior of a masonry structure. The
validation of the implemented parameters conditions the accuracy of the masonry
representation. Macro modelling cannot be used to observe in detail the failure pattern
of masonry - cohesive cracks between masonry units and mortar. Thus, the calculated
results regarding the failure process cannot be regarded as detailed enough. However,
the macro modelling approach has many advantages. It significantly accelerates the
process of structure modelling, can be used to perform the global analysis of the masonry
behavior, is less time-consuming and requires a lower design effort.

Two basic masonry macro-models can be currently identified [12]: continuum finite
element macro-models and discontinuum finite element macro-models. The continuum
finite element macro-model is similar to the concrete or soil model, considering linear
or nonlinear constitutive relations, yield surfaces, and boundary surfaces. On the other
hand, the discontinuum models [28, 27] consist of rigid elements connected by flexible
ones that represent mortar of linear or non-linear behavior [26]. Due to the minimized
number of parameters, the masonry macro-models are used to perform calculations for
constructions subjected to static, dynamic and cyclic loading, including safety
evaluation for seismic or paraseismic areas [59, 123, 58, 109, 122]. Macro modelling
can be adapted to unreinforced masonry (URM) and wide-spaced reinforced masonry

(WSRM) [49] or masonry panels confined with reinforced grouted cores [76].
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Fig. 3.43 Classification of macro-modelling approach: 1 — unworked stone, 2 — mortar, 3 — solid brick,
4 — unfilled head joint, 5 —unfilled bed joint

3.4.3. Micro-modelling

Micro-modelling (Fig. 3.44) is used to represent in detail masonry and perform
a more in-depth analysis of the local effects of cracking morphology and failure process.
This type of modelling is more time-consuming and usually extends the computing time.
Micro-modelling is based on dividing the masonry structure [13, 7, 14, 64] into specific
parts representing actual masonry units and mortar. Joints are represented by additional

contact (interface) elements between the masonry units and mortar.
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Fig. 3.44 Classification of micro-modelling approach: 1 — unworked stone, 2 — mortar, 3 — solid brick,
4 —unfilled head joint, 5 — unfilled bed joint, 6 — interface element in the bed joint, 7 — contact element
in the head joint

Two main types of such modelling can be identified: simplified micro-modelling
(masonry as two-phase material) and detailed micro-modelling (masonry as three-phase
material) [12]. In the first strategy, the masonry is composed of elements representing
the original geometry of the masonry units plus the joint thickness. The mortar is
modelled as an interface with zero thickness and suitable mechanical parameters for the
bond.

The second strategy — the detailed micro-modelling — is an expanded version of the
first strategy. It consists of modelling the masonry as the continuum of elements

representing masonry units and mortar. Micro-modelling, due to the high accuracy, can
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be applied in computations performed for historical stone masonry with mortar layers
[29], walls made of hollow masonry units partially filled with masonry [22], or masonry
with multi-perforated units [144]. The strategy for micro-modelling can be applied to
evaluate shear walls and shear models [167,126,57,53,35], compressed walls [135, 8,
145], and walls subjected to flexure [65]. Besides the procedures involved in the finite
element method (FEM), the finite discrete element method (FDEM) is becoming
increasingly common. This method was developed mainly to model unbound materials,
such as non-cohesive soil, granular materials, stacks of elements and those showing
cohesive fracture [37, 38, 36, 40]. The applied computational algorithm models the
behavior of small and big masonry structures. This method is used in computations for
dry masonry with the predominant cohesive type damage [151]. It successfully
combines FDEM with FEM to consider the failure of masonry units [39].

3.4.4. Meso-modelling

Meso-modelling (Fig. 3.45) combines micro and macro models using the
representative volume element RVE [110]. Representative volume element contains
each piece of geometrical and physical information of the masonry components
(masonry units and mortar) connected by contact elements. This approach is based on
a concept similar to the periodic microstructure and can reflect the observed general
masonry behavior. Statistical descriptors can define this original structure, and then the
statistically equivalent periodic unit cell SEPUC can be found [166]. The papers [111,

125, 52, 54] show masonry analysis using the meso-modelling technique.
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Fig. 3.45 Classification of meso-modelling approach: 1 — unworked stone, 2 — mortar, 3 — solid brick,
4 — unfilled head joint, 5 — unfilled bed joint, 6 — representative volume element (RVE), 7 — contact
element in the head joint, 8 — interface element in the bed joint

3.5. Concluding remarks

The standard provisions in the Eurocode 6 are limited to brief, incomplete
information regarding the calculation of stiffening walls. Although it was indicated that
the horizontal load might be distributed on the stiffening walls in proportion to their

stiffness - the methodology for its determination was not provided. Furthermore, no
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details are provided on the redistribution of internal forces - except that it is allowed up
to 15%.

The American and Canadian procedures include the most extensive provisions
concerning shear walls. Despite that, the shear equation of CSAS304-14 [N4] resulted
in the most inaccurate predictions of the shear load capacity of unperforated partially
grouted masonry wall of both the numerical and experimental datasets, followed by the
conclusion of [113]. It can be concluded that the rules for calculating shear walls are
incomplete in the entire scope - from load distribution (resulting from the stiffness of
the walls) to linear and non-linear analysis.

The most important conclusions resulting from the literature review are formulated
in the points below.

1. The tests of monotonically loaded stiffening walls are rare.

2. Most analyses of unreinforced shear walls involve cyclic loads.

3. The horizontal displacement of the walls consists of a component due to shear
and due to bending (flexural deformation).

4. The contribution of shear displacements depends not on the initial
compressive stress but, above all, on the wall geometry.

5. The initial prestressing of the wall influences shear load capacity — higher
compressive stress determines the shear resistance increase.

6. Compressive stress changes the crack morphology of the wall. At low levels
of compressive stresses, shear cracking is stepped. When the wall is highly
prestressed, the cracks run diagonally through the masonry units.

7. Perpendicular fragments of the stiffening walls (flanged walls) participate in
transferring horizontal loads.

8. The stiffness of unreinforced shear walls and lateral load capacity decreases
significantly due to wall openings.

9. The openings affect the crack pattern change and the pillars' actual geometry
between the openings.

10. The different stiffness of the shear walls caused by the openings determines
the building to twist.

11. The method of numerical masonry homogenization should be adapted to the
size of the analyzed structure and the purpose of the calculations (representa-
tion accuracy).

12. Advanced material models require many input parameters - physical and em-

pirical, and few works provide their values adopted in the calculations.
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4. EXPERIMENTAL RESEARCH

4.1. Assumptions

The literature describes the research on single shear walls; however, most tests

concern structures subject to cyclic loading, and studies of full-scale building models

under monotonic load are scarce. The goal of the work is experimental recognition and

description of the behavior of stiffening walls. Own research models were designed to

achieve the objectives of the work. Research models were designed according to the

following criteria:

a)
b)

c)
d)

e)

f)

9)

h)

the models are built of masonry units made of autoclaved aerated concrete,

the walls are characterized by thin-layer bed joints and unfilled head joints —
tongue and groove joints were used,

all models are non-reinforced masonry structures (URM — unreinforced masonry),
the models consist of masonry walls and reinforced concrete slab that performs
the function of a rigid diaphragm through which the horizontal load is distributed,
the initial compressive stresses of the stiffening walls correspond to a single-
storey building load (in addition to the self-weight, the applied load is 4.59 kN/m?*
which corresponds to the finishing layers and the live load),

the tests can be extended to the analysis of multi-storey buildings by increasing
the initial compressive stresses of the walls,

the geometry of the walls is designed in a way that the decisive deformations of
the walls are shear (not flexural), the //[ ratio is less than 1.0,

in building models, window and door openings with geometry corresponding to
the actual dimensions of such perforations in housing construction were made,

a test stand was designed for testing full-scale building models in the scheme of
restraint of walls on the bottom edge and with the initial compressive stresses of
the building.
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4.2. Research campaign — models and research program

Detailed studies of the mechanical characterization of the masonry components —
mortar and autoclaved aerated concrete masonry units are included in the work [131].
For this reason, material parameters were not tested in this monograph. The research
program (campaign) was carried out regarding the work's set goals and is focused on
global structure behavior.

The research models are eight full-scale masonry buildings made of autoclaved
aerated concrete. The models were erected on a square plan of 4.0x4.0 m. The height of
the buildings is 2.85 m, and the wall thickness is equal to 0.18 m. Each model consists
of two stiffening walls marked as A and B (parallel to the horizontal load) and two
perpendicular walls marked as 1 and 2. The shape and arrangement of openings in the
walls were chosen to reflect the actual structures best. Models are marked with an
alphanumeric symbol MB-AAC-010/N, where N is the following number of the tested
building, MB — masonry building, AAC — autoclaved aerated concrete, and 010 is
a conventional designation of the initial level of compressive stresses. The models were
grouped into two or three buildings and an additional reference model. There are four
types of buildings (type I, II, IIT and IV). Models MW-AAC-010/1 and MW-AAC-010/2
have one door opening in stiffening wall A. Models MW-AAC-010/3, MW-AAC-010/4,
MW-AAC-010/5 have a door opening in stiffening wall A and windows opening in
perpendicular wall 1. Models MW-AAC-010/6 and MW-AAC-010/7 have a window
opening in stiffening wall A and a door opening in stiffening wall B. The reference
model MW-AAC-010/8 had no opening, and all building walls were solid. At least two
models make it possible to verify the correctness of the research and compare the results.
The list of the tested full-scale buildings constituting the primary research is shown in
Table 4.1.

Table 4.1
The research programme of full-scale masonry buildings
Model designation / 3D view | Wall designation | Opening Wall description
- Wall A door opening
§ stiffening
< Wall B solid
Q
<
< 9 | Wall | solid
; perpendicular
Wall 2 solid
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cont. Table 4.1

Ql Wall A door opening

— stiffening

< Wall B solid

@)

5 Wall 1 solid

oA perpendicular
= Wall 2 solid

o Wall A door opening

= MB-AAC-010/3_2 stiffening

S| = /%%j Wall B solid

:55 5 | Wall 1 window opening

e - perpendicular
= Wall 2 solid

Ny Wall A door opening

S stiffening

< Wall B solid

=

< Wall 1 window opening

oA perpendicular
= Wall 2 solid

w Wall A door opening

— MB-AAC-010/5 stiffening

< S 22 Wall B solid

> YRS J/

< RSN RINSS g | Wall 1 window opening

oA S perpendicular
> Wall 2 solid

© Wall A window opening

= stiffening

8 Wall B door opening

3 Wall 1 solid

A perpendicular
= Wall 2 solid

Ly Wall A window opening

— MB-AAC-010/7_Z stiffening

8 %&; Wall B door opening

| IS g | Walll solid

- / perpendicular
> ~7 Wall 2 solid

® Wall A solid

s stiffening

< Wall B solid

z

< Wall 1 solid

e perpendicular
= Wall 2 solid
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In order to ensure the possibility of fully representing and repeating the research by
other scientists, detailed information on constructing research models is included. All
models were built on the same bottom beam, using such an element repeatedly. Similarly,
the slab was designed to be lifted and used in each model without needing to concrete

a ncw onc.

4.2.1. Construction of the bottom ring beam

The bottom beam was made on a rectangular plan with dimensions 4.0x4.0 m.
Precast L-shaped elements were used to speed up and facilitate the formwork of the
element. These elements were made of lightweight concrete. Reinforcement consisting
of four 12 mm diameter bars and 6 mm diameter stirrups, spaced every 15 cm, was
placed on the L-shaped elements — Fig 4.1a. Each corner has been additionally
reinforced with six reinforcing bars with a diameter of 12 mm (3 bars per one level of
reinforcement) — Fig. 4.1b. The steel grade of the bar reinforcement is BSOOSP, and the
stirrup is B500B. The view of the formwork structure before concreting is shown in Fig.
4.2

a) b) _

o 4| @6/150
b /1492

2

3] 4012
3890

Fig. 4.1 Design of construction details: a) reinforcement of bottom beam, b) corner reinforcement:
1 — L-shaped precast element, 2 — concrete, 3 — bar reinforcement, 4 — stirrups, 5 — corner reinforcement
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with stirrups, ¢) bottom beam formwork

After the preparation of both reinforcement and formwork, the bottom beam was
concreted. The concrete class of the lower beam is C25/30. Concreting was carried out
using a concrete bucket — Fig. 4.3a and 4.3b. After placing the concrete mix, it was
compacted with a vibrator — Fig. 4.3c¢ and 4.3d. This procedure allowed for proper
compaction of the concrete mixture, even distribution of aggregate and preventing the
segregation process.
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~ &,

Fig. 4.3 Concreting the bottom beam: a) concrete bucket, b) lying the concrete mixture,
¢) and d) compaction of concrete with a vibrator

The concreted bottom beam was left to mature for 28 days. Concrete care was carried

out during this time by pouring water on the beam at appropriate intervals — Fig. 4.4.
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4.2.2. Construction of the masonry walls

The walls of the research models were made of autoclaved aerated concrete masonry
units. The dimensions of a single block are 180x590x240 mm (width x length x height).
The tests used masonry units from the Solbet Optimal series with a density of 600 kg/m°.
The walls were built with mortar for thin joints, and bed joints were filled with mortar
class M5. Head joints were not filled — the masonry units were connected with a tongue

and groove — Fig. 4.5.

CROSS SECTION CROSS SECTION
VIEW VIEW
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- ‘4»
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/ 7 2
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B V

590 ’ ’C
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Fig. 4.5 Geometry of a single masonry unit used in the tests: 1 — masonry unit, 2 — tongue, 3 — groove

The dimensions of the masonry walls of the building are 4.0 x 2.4 m. The wall's
thickness was equal to a single masonry unit and amounted to 0.18 m. The total height
of the building, including the slab and bottom beam, is 2.85 m. Depending on the
research model of the building, door or window openings were made in the walls. The
dimensions of the door openings are 1.0x1.92 m, and the window openings are
1.0x1.0 m. Even though the models were made in series - two or three buildings the
same (except for the reference model), the arrangement of individual masonry units was
different. A detailed arrangement of wall elements and lintels for all tested building
models to enable the possibility of repeating the tests by other researchers is provided
in the Appendix.

The masonry walls were made in stages, starting with the first levelling layer. Works
were carried out with platforms enabling the laying of higher parts of the walls — Fig.
4.6. After the works were completed, the walls were cured for 28 days (time for the

mortar to reach full strength).
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Figr. 4.6 The walls of the MW-AAC-010/1 model after briéklayihg: a) view of wall B, b) view of wall A
with door opening

4.2.3. Construction of the reinforced concrete slab

The slab was designed as a panel structure, constituting a rigid diaphragm in its plane
— Fig. 4.7. Construction of the slab began with laying precast L-shaped elements made
of lightweight concrete on masonry walls. In the place of horizontal load, the L-shaped
elements were replaced with a ribbed C-section UPE220 with a length of 1.00 m. Then
three prestressed concrete precast panels were placed on L-shaped elements. The
concrete class of the panels is C40/50, and the prestressing reinforcement is three strands
placed at the bottom and one strand at the top. Each strand consists of seven wires and
is made of Y2060S7 steel. The diameter of each one is ¥6.85 mm (1x02.24 mm
+ 6 x ¥2.40 mm).

The ends of the strands were anchored in the ring beam. The panels consist of
a 4 cm thick slab at the bottom and 12 cm high prestressed ribs. The width of the precast
panel is 1.20 m, and the ordered element length is 3.76 m. Polystyrene of 8 cm thickness
panels was inserted between the ribs, flush with the upper edge of the ribs. This solution
allowed for a significant reduction of the dead weight of the slab. The upper ring beam
was made around the panels. The main reinforcement was steel bars BSOOSP with
a diameter of 12 mm and B500B steel stirrups with a diameter of 6 mm spaced every

15 cm. The corners were reinforced in the same way as the bottom beam.
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Fig. 4.7 Rigid slab: a) top view, b) cross-section A-A, c¢) cross-section B-B: 1 —precast L-shaped element,
2 — precast panel, 3 — polystyrene panel, 4 — C-section element, 5 — concrete overlay, 6 — the concrete
connection between the panels, 7 — main reinforcement, 8 — stirrups, 9 — assembly tolerance
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For the partial negative moment of the restraint, the appropriate upper reinforcement
was designed - BSOOSP steel hooks with a diameter of 10 mm. A 15x15 cm mesh with
a diameter of 4 mm was also used against concrete shrinkage. The slab was monolithized
with concrete class C30/37. The thickness of the concrete overlay over the precast ribs
was 4 cm, so the total thickness of the floor was 16 cm. The construction details are
shown in Fig. 4.8.

a) b) c)
8| ©10/500 8| ©10/500 8| ©10/500
| 570+60 (h()ok)\‘x\ 570+60 (hook) 570+60 (hook)
9| #0945 314012 N\ | 9| #0945 34012 N\ 6| UPE220 o] #04.5  3|4012 \  J
[T50x150°\ 3890\ \ \ [T50x150 3890 \ \  / [1000 [150x150 3890 C N
g‘; \\J AN AN = Sr:j\i sr\ - \
|
|
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Fig. 4.8 Structural details of the slab support on the top ring beam: a) supporting the panels on the L —
shaped element, b) cross-section through UPE220 steel element, ¢) cross-section through a precast slab
panel with visible assembly tolerance: 1 — precast L-shaped element, 2 — concrete, 3 — main
reinforcement, 4 — stirrups, 5 — precast panel, 6 — C-section steel element, 7 — cut L-shaped element,
8 — steel hook (upper reinforcement), 9 — steel mesh 15x15 ¢cm with a diameter of 4 mm

A view of structural elements before built-in is in Fig. 4.9. Figure 4.9a shows
protruding prestressing strands for anchoring in the upper ring beam. The L-shaped
elements are shown in Fig. 4.9b, and the upper reinforcements are in Fig. 4.9c — hooks
and Fig. 4.9d — steel mesh.

Figure 4.10 shows the reinforcement of the slab. Polystyrene was removed in place
of the planned horizontal load on the model — Fig. 4.10b. These areas were filled with
a concrete overlay. As the span of the slab was about 4 m, one line of assembly supports
in the middle of the span was sufficient — Fig. 4.11a. Before concreting, the formwork

of the slab and the upper beam was prepared — Fig. 4.11 b.
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Flg 4 9 Slab components: a) precast panels, b) L shapedprecast elements " c) @10 mm hooks (upper
reinforcement), d) @4 mm diameter nets with a mesh size of 15 cm (upper reinforcement)

Fig. 4.10 Construction details at the stage of making the slab: a) reinforcing the coer, b) reving
polystyrene in the place of the planned horizontal load, c) upper reinforcement with steel hooks, d) upper
reinforcement with steel mesh
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Fig. 4.11 Preparation of the floor for concreting: a) formwork supports, b) top view on the ring formwork

The concrete mix was placed using a concrete bucket — Fig 4.12a. The works were
carried out in stages - the laid concrete mix was compacted each time using a vibrator
(Fig. 4.12b). Concreted and compacted slab fragments were finished to a levelled
surface (Fig. 4.12c). The slab was made and left for 28 days of maturation
— Fig. 4.12d. Concrete care was carried out at that time by pouring water on the slab,

and this curing work prevented the shrinkage of the concrete.

Fig. 4.12 Concreting the slab and the uppér beam: a) concrete bucket, b) compaction of concrete using
a vibrator, c) laying the concrete mix, d) finishing of concrete
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4.2.4. Construction of steel supporting structure

During the test, there was a risk of the slab falling onto the laboratory floor. A steel
supporting structure was designed to be inside the research models and protect the
research site. Furthermore, this structure aimed for safe transfer forces in case masonry
walls collapse. The structure consists of four columns HEA 200 connected diagonal and
horizontal angle bars L50x50x7 — Fig. 4.13a. Structural nodes were made of 10 mm
thick steel sheets — Fig. 4.13b. The steel grade of the supporting structure was S355JR.
The elements were joined using M16 class 8.8 bolt connectors. Holes in the bottom
plates with a diameter of 65 mm were made to fasten the structure to the laboratory floor.
The overall dimensions of the interior steel structure in the column axes were
3.00x3.21 m, and the total height is 2.54 m, so there is no collision with the research

buildings. Eventually, the structure was painted yellow as part of the test stand.

-

Fig. 4.13 Steel supporting structure after completion: a) illustrative‘hoto, b) construction node detail

4.2.5. Construction phases of subsequent models

In the tests, the slab performs only a rigid diaphragm transferring the horizontal load
to the masonry walls of the building, and it was designed to be reused many times. This
solution shortened the model building time and depended mainly on building new walls.
The surface of the upper ring beam (precast L-shaped elements) required cleaning and

surface preparation each time to ensure adhesion.
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The construction of research models can be divided into the following stages:
e [ — building the first model,
e I — test of the research building,
e [II — cutting off the walls from the slab and lifting it with an overhead crane,
e [V — laying the slab on assembly supports based on a steel structure,
e V — demolition of the walls of the tested building,
e VI - building a new model and laying the slab.

Figure 4.14 shows the model of the building after the test with partial and complete
demolition of load-bearing walls. During these works, the slab was based on temporary

supports located on the steel structure.

Fig. 4.14 Procedure of reusing the slab: a) demolition of masonry walls after the test, b) slab left on
supporting steel structure

4.3. Test stand

The test stand was designed based on the purpose of the work - the determination of
the behavior of masonry stiffening walls. The tests were carried out in the Faculty of
Civil Engineering laboratory at the Silesian University of Technology. The test stand
enables applying vertical and horizontal load on the tested building.

The research model was fixed in a strong floor. The restraint was carried out by
additional horizontal beams that surrounded the model's bottom beam and were
anchored with a diameter of 65 mm bolts to the laboratory floor. A steel column with
a brace was located next to the model. The horizontal force was induced by a hydraulic

actuator of 1000 kN range supported by steel construction mounted on the steel column.
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The horizontal load was monotonically applied to the building at the geometric center
of the slab halfway along the masonry wall. The force gauge of range 250 kN enabled
the measurement of horizontal force. The building model in the test stand is shown in
Fig. 4.15.

2850

Fig. 4.15 Research model in the test stand: 1 — slab, 2 — masonry wall made of autoclaved aerated
concrete units, 3 — bottom beam, 4 — top beam, 5 — fixing the building model in the slab of great forces,
6 — hydraulic actuator, 7 — force gauge, 8 — steel column

A vertical load was also designed corresponding to the actual load on the building's
slab with the weight of the finishing layers and the live load. The weights with a diameter
of 60 cm and a height of 30 cm were used to induce initial compressive stress in masonry
walls. The vertical load was suspended on the twelve steel rods with a diameter
@16 mm, and on each rod hung three weights — Table 4.2. The values of initial

compressive stresses are in Table 4.3.

Table 4.2
Vertical loads applied to building model
Types of load | Value, kN Description
Dead-load 57.00 Self-weight of slab
Live-load 2.04 One weight
6.12 Load per one steel rod (three weights)
73.44 Total load of 12 steel rods
4.59 kN/m? Live-load for floor
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Table 4.3

Values of initial compressive stress in masonry walls of a research model

Value Description

P.=130.44 kN total vertical load on the walls

Ac=2.82 m? the surface of the horizontal layout of the walls
0. = 46.26 kKN/m? = 0.05 N/mm? compressive prestress of the walls

Holes with a diameter of 25 mm were made in the slab to pass steel rods with weights.
The vertical loads have been planned so that the steel rods pass between the prestressed
ribs of the panel slabs - so as not to damage the prestressing strands. The layout of
vertical loads is shown in Fig. 4.16. The view of vertical and horizontal loads on the test
stand is in Fig. 4.17 and Fig. 4.18.
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Fig. 4.16 Vertical loads: a) layout of weights, b) geometry of one set of weights: 1 —hole with diameter
(25 mm in the slab, 2 — weight, 3 — steel rod @16 mm

Fig. 4.17 Loads of esearch model at fst stnd: a) horizontal load, b) vertical loé&
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Fig. 4.18 Research model in the test stand: 1 — prestressed precast slab panel, 2 — reinforcement of the
top ring beam, 3 — top reinforcement of the slab, 4 — steel C-profile, 5 — precast lintel, 6 — load suspension
points, 7 — visible weights.

4.4. Measuring methods

4.4.1. Measurement of displacements with LVDT sensors

Measuring bases (frame) were mounted on the wall of the research model. The size
of the frame system was designed to cover the largest possible area of the wall and avoid
edge disturbances. The frames were rectangular, 3260 mm long, and 2150 mm high —
Fig. 4.19. Linear variable differential transformer (LVDT) sensors [142] measured the
change in vertical and horizontal segments and the length of diagonals of the measuring
base. LVDT sensors with a measuring range of 20 mm (PJX-20) were mounted on the
diagonals and LVDT sensors with a range of 10 mm (PJX-10) on the vertical and
horizontal frames. The resolution of the indications was 0.002 mm. The measuring base
was attached to the masonry wall point-by-point in the corners with screws. This
solution allows the measurement of the shear strain in the elastic range and the

deformation angle in the non-linear range.
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Fig. 4.19 Frame system mounted on each research model to measure shear strain and deformation angle:
H — horizontal shear force, 1 — rigid diaphragm; 2 — bottom beam; 3 — masonry wall made of AAC,
4 —measuring base, ao, co — horizontal part of the frame system, by, do — vertical part of the frame system,

eo, fo — diagonal part of the frame system

The basic lengths of the measuring frame fragments changed by a value of Aa, Ap, Ac,
Ad, Ae, Ar. After deformation, the total length of vertical fragments was calculated from
equations (4.1) and (4.2), horizontal fragments from equations (4.3) and (4.4) and
diagonals from (4.5) and (4.6).

bg = by + Ay (4.1)
dy = do + Ay (4.2)
ag = ag + A, (4.3)
Cq = Co + A, (4.4)
eq = ey + Ag (4.5)
fa=fo+ 4 (4.6)

The value of the change in the length of the measuring frame fragments was used to
determine the partial deformation angles @ (where i = 1, 2, 3, 4) isolated from the
deformed measuring system — Fig. 4.20. The partial values of the global deformation
angle were calculated based on the law of cosines relations (4.7) — (4.10).
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T
f#=a%+d% — 2aqdy - cos (§+ 01) -
4.7
T, (G #.7)
1 = —5 +acos 2,
2 2 2 T
ef=cgt+dg — 2cddd-cos(§ - 62) -
4.8
T ¢ 4 d? — 2 (4.8)
2 = = acos 2erd,
T
el = a3+ b3 — 2aqbq ' cos (E - 63) -
4.9
0. " ai+ b3 — e (*4)
3 =5~ acos 2a.bn
T
f& =b%+ct — 2bgcq - cos (§+ 04) -
(4.10)

0, = ——+ acos
4 2

T <b§ + ¢ — fdz>

Zded

Fig. 4.20 Deformation of measuring base (frame system) due to the action of shear force: H — horizontal
shear force, 1 — rigid diaphragm, 2 — bottom beam, 3 — masonry wall made of AAC, 4 — measuring base
before the deformation, 5 — measuring base after deformation, aq, cq — deformed horizontal part of the
frame system, bq, dqa — deformed vertical part of the frame system, eq, fi — deformed diagonal part of the

frame system

The global value of the deformation angle @ at the following load levels was

calculated as the arithmetic mean of the partial values of deformation angles & (where
i=1,2,3,4)—relation (4.11).
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1n=4
0 = —Z|@i| @4.11)
ni=1

The total angle of strain deformation determined from relation (4.11) includes both
deformations resulting from in-plane bending (Fig. 4.21) and shear (Fig. 4.22).
As a result of bending, the lengths of the vertical bases change and horizontal lengths
remain unchanged. Thanks to that, trigonometric relationships (4.12) and (4.13) enable

calculating the lengths of diagonals caused by bending moments.

¢ = jcé - (d“ R b“)z (4.12)

The diagonal lengths resulting from the flexural deformations can be calculated

according to the formula (4.13).

2
dq — by
e1 = fi= C12+<dd—( 5 ))"

dy — by
el=f1=\/cg+d§—2-dd( 5 )

(4.13)

The differences in the length of the diagonals are calculated by subtracting from the
total lengths of the deformed diagonals (fi and eq) the lengths of diagonals resulting from
only in-plane bending (fi and e:1) — relationships (4.14) and (4.15).

Ay =fa—Nf (4.14)
Ae; =eq—e (4.15)

The diagonal lengths resulting from the shear deformations can be calculated
according to formulas (4.16) and (4.17).

fs = fo+ AR (4.16)

es = ey + Aey (4.17)
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Fig. 4.21 Deformation of measuring base resulting from flexural deformation: V' — vertical force,
M — in-plane bending moment, 1 —rigid diaphragm, 2 — bottom beam, 3 — masonry wall made of AAC,
4 — measuring base before the deformation, ao, co — undeformed horizontal part of the frame system,
e1, fi — deformed diagonal part of the frame system results from flexural deformation

g

Fig. 4.22 Deformation of measuring base resulting from shear deformation: H — horizontal shear force,
1 — rigid diaphragm, 2 — bottom beam, 3 — masonry wall made of AAC, 4 — measuring base before
deformation, 5 — measuring base after deformation, aq, cs — deformed horizontal part of the frame system,
bo, do —undeformed vertical part of the frame system, e, fs — deformed diagonal part of the frame system
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result from shear deformation, @5, Ghs, Gss, Gss — values of partial strain deformation angles
Values of the partial angle of strain deformation can find it from the law of cosines

— formulas (4.18) — (4.21):
o the triangle formed by lines db, fs and aq:

T
fE=dZ+a% — 2dyaq - cos (E + 615) -

4.18
o = _T N dz + a3 — f2 (4.18)
15 = —5 + acos 2dy g
e the triangle formed by lines cq, es and dbo:
T
el =ci+d32 — 2cqd, - cos (E — 625) -
4.19
0. " ci+di—e? (4.19)
25 = 75— Acos 2cady
e the triangle formed by lines aq, es and bo:
T
eZ =ai+ b2 — 2aqb, - cos (E — 035) -
4.20
0. " ai + b2 —e? (4.20)
3s =5~ acos 2agby
e the triangle formed by lines bo, fs and cq:
T
f2 =b%+ct — 2bycq - cos (E + 945) -
4.21)

s <b§ + ¢k — f52>

Oy = - + acos 2Dy Cq

The mean value of the partial strain deformation angle caused by shear is determined
by the formula (4.22).

1 n=4
6: = = > 164l (4.22)
i=1

The geometry of the walls of the tested buildings makes shear deformations
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negligible, and the total shear deformation angle coincides with the partial shear
deformation angle. The total shear angle is considered in further analysis of the behavior
of the building. This approach is also helpful in determining the stiffness of walls
calculated from the total angle of shear deformation.

Measuring bases were fixed on the outside of the wall. The frame was mounted
inside the building if the wall was painted a specific pattern used in the digital image
correlation system. Measurement frames mounted on solid walls and walls with

openings are shown in Fig. 4.23.

Fig. 4.23 asuring baseé: a) corner detail with LVDT — PJX—27(7): ﬂb measuring frame bases,
¢) measuring frame on the wall with the window opening, d) measuring frame inside the building (wall
analyzed by the GOM system)

4.4.2. Measurement of displacements, strains, deformations and crack
propagation using a digital image correlation system (DIC)

Digital image correlation (DIC) belongs to non-contact measurement techniques.
The analysis is based on solid mechanics and includes changes in geometry and

localization of points before and after material deformation [80]. The system assigns the
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coordinates to small areas and records changes in the shape and location of that zone.
The DIC system [108] consists of the proper illumination of an object. The light
intensity reflected from the (undeformed) object surface f(x, y) before the object is
loaded and from any surface fi(x1, y1) in the next stage after applying the load that results
in deformation is analysed - Fig. 4.24. This procedure is used for measuring deformation
within small areas and then presenting the deformation distribution on a greater, actual

surface of the object.

J(x,») Ha )
Ao 4 N

Sx,3)

Fig. 4.24 Pattern of analysed images of surfaces against the scanning area [42]: 1 — scanning area,
2 — the area of scanning after deformation, 3 — the image of the undeformed surface, 4 — the image of
the deformed surface

The principle of the DIC technique was developed from the fundamentals of the
mechanics of continuous media [74]. The analysis includes changes in dimensions and
location of short segments determined by positioning two points before (P, Q) and after
(P1, Q1) deformations — Fig. 4.25, expressed by the following equations in a 3D

rectangular Cartesian system of coordinates (4.23) — (4.24):

P, = (x,v1,2z1) =[x + u(P),x + v(P),z + w(P)] (4.23)

Q1 = (x1 +dxq,y1 + dyy, 2 +dzy) =
x+u(P) +u(Q) —u(P) +dx,y + v(P) + v(Q) — v(P) + dy (4.24)
z4+wP)+w(Q) —w(P)+dz
where: u, v, w are displacement components towards x, y or z axis, respectively.

The length of segments PQ and P1Q; are expressed by the relationships (4.25) and (4.26):

|PQ|? = (ds)? = dx? + dy? + dz? (4.25)
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|P,Q,|? = (ds;)? = dx? + dy? + dz? (4.26)

The equations (4.23) — (4.26) and simple transformations result in the following
relationships defining components of deformation in the two-dimensional system of

coordinates (which define components of the strain tensor in a plane stress state) —
relationships (4.27) — (4.29):

~ Ju N 1 (au)z N (av)z
o = 5x T2 |\ox ox

(4.27)
v 1[ou\* [0r\° (4.28)
e )
dy 2]|\dy dy
~1<6u+6v)+1 6u6u+6v6v 49
fy =73 oy 0dx/ 2loxoy oxoy (4.29)

Components in a spatial state can be determined similarly. The undeformed surface
is analysed by assigning coordinates to small areas (pixels) — Fig. 4.26. Separating the
undeformed reference zone is the next step. Changes in the shape and location of that

zone are analysed during the test and recorded in the system of Oxy and Oxi1y1 coordinates.
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Fig. 4.25 Characteristic area before (R) and after (R) deformation [42]

DIC has been successfully used in construction areas such as concrete structures
[95,112,164,60], corrosion process [97], structural health monitoring [10,45,119] and
also the masonry analyses of 1/6th scale masonry wall [70], soil-masonry structure
interaction [120], infill masonry [134,23], and unreinforced masonry (URM) [73].
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Fig. 4.26 Graphical interpretation of deformations for selected scanning area in a 2D system of
coordinates [80, 42]: 1 —scanning area, 2 — scanning area after deformation, 3 — pixel sub-images of the

structure

The measuring process is based on the correlation principle and the technique of
searching points of the same coordinates. The area (contour) should be defined to
perform the analysis and record its shape — Fig. 4.27a. In order to do that, square or
rectangular areas (relatively small, e.g. 15 x 15 pixels), known as facets - are assigned

to characteristic points of the analysed surface — Fig. 4.27a and 4.27b.

a) b)

Fig. 4.27 Principle of image correlation [85]: a) segment of measuring area with arranged facets marked
with green lines, b) enlarged segment of un analysed area with facet contour

A segment of gradient measuring area is characterized by digital measuring areas of
rectangular shape and dimensions of 15 x 15 pixels subjected to changes in the DIC
software and by typical areas of 2 x 2 pixels - Fig. 4.27a. Common areas were used to
reduce an error in measuring strains as each analysed area (facet) contained elements
from the adjacent area and the same boundary conditions. Each rectangular area has its
unique pattern. The identification of common areas is necessary for the DIC technique.
The size of facets also impacts the accuracy and rate of calculations. An increase in their
size deteriorates the accuracy of measurements. However, the test result is obtained

faster. Rectangular areas are directly used in analysing displacement/strain components.
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The next stage includes loading, where displacement components are determined in 2D
or 3D areas. Then, values of displacement components are used to calculate components
of strain/stress as the field image. The DIC system determines the coordinates of the 2D
system based on the reorientation of the rectangle/rhombus/facet midpoint — Fig. 4.27b.
Coordinates determined with both cameras and an angle between their axes can be used
to describe the coordinates of the 3D system. In subsequent stages of the analysis, the
specific layer with the pattern is identified to use its position for determining the
displacement. Number “0” is assigned to the initial stage (Stage 0), and other stages
have numbers: “17, “2”, “3”, etc. Difficulties with the DIC systems are mainly caused
by the preparation of the surface and the technique of camera positioning using the
calibration plate. The DIC system for testing big deformations can be successfully
applied to determining Young’s modulus and Poisson's ratio, identifying the process of
material softening or hardening within a wide range of plastic strain. It can also be
employed for high ductility (exceeding 100%) materials and determining parameters of
crack mechanics.

This system is based on recording and analysing changes in the positions of points
on the specimen surface. According to papers [85,108,96] two models are analysed. The
first type uses the Normalized Cross-Correlation p (NCC), and the second one the Least
Squares Method (LSM). The first method calculates normalized cross-correlation (4.30)
between each point's initial and current location. The closest location is chosen at the
level of pixel pattern on the surface by choosing the minimum value of the common
normalized cross-correlation. Estimating the function of normalized cross-correlations
1s conducted within the searched area, and its maximum indicates the best match. The
correlation p is calculated as a discrete function of changes in displacements (Ax, Ay)

and average values from grey areas and compared windows of the equation (4.30):

p= Zny(f(x'y_f)(g(x+Ax,y+Ay)_g-))
\/Zx Zy(f(x.y - f))z) Dix Zy((g(x + Ax,y + Ay) — g—)z)

(4.30)

The normalized correlation coefficient takes values from the range of [-1, 1]. When
the reference image texture coincides with the deformed area image's brightness, this
coefficient equals 1. When they do not coincide, the coefficient is 0. The value -1 means
reverse correlation.

The NCC algorithm is fast but only includes displacements of points on the vertical

and horizontal axis, not point rotation. Such an approach is not appropriate for testing
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mineral-asphalt mixtures or other road materials with such occurrences [140,165]. The
LSM method employs more complex models considering the points' displacements and
rotation. The best match is defined by minimising a difference in grey intensity between
two consecutive analysis windows using the least squares method [140]. The correction
of parameters taking into account displacements and rotations is determined from the
equation (4.31), where (a1, a2, b1, b2 ) are variable parameters of the model shape, and

(a3, b3) are displacement parameters [140]:

f(xlt Y1) + e(xlﬁ :V1) =Ty + rlg(xZ(u: v), Y2 (u, ‘U)) (431)
= g_(rO' n,a4,04,0as, b1, b2: b3)

The function g(rg, 71, aq,ay, as, by, by, b3) is linearized and solved following the least
squares estimator by the Gauss—Markov theorem.

These tests used the Aramis 6M system — Fig. 4.28a consisting of two digital cameras
(each with a resolution 6MPx), a high-performance computer as the control unit, a GOM
Testing Controller, certified calibration elements and GOM Correlate software. The
measuring area for Aramis 6M system ranges from 150x170 mm to 2150x2485 mm.
Objectives were used in the studies with a focal length of 12.5 mm for area mapping
with a strain measurement resolution of £0.01%. The stiffening walls (A and B) located
in the direction of the horizontal load were analysed. The walls were covered with
irregular contrasting patterns obtained by applying black paint with a brush with stiff
hair — Fig. 4.28b. Benchmarks were also stuck on the wall surface. The slab was painted
grey, the invisible interior edges of the walls were marked with a blue dashed line, and

the axes of the building were marked with red lines — Fig. 4.29.

FTg. 4.8 Digital imége correlation system: a) location of measu
painted with a pattern
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On the slab were placed benchmarks for digital image correlation. The designations
of the points are shown in Fig. 4.30. A Canon EOS 500D camera with a Canon EF-S
10-18 mm, f/4.5-5.6 lens was used to analyze the displacements of the slab. The

equipment was suspended on a metal arm above the tested building model — Fig. 4.31.

a)

Fig. 4.29 Painting the slab: a) measurement points, b) measurement points in the corner
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A2 |A7 | F2 [F7 D2 |D7 ‘
A3 [A8 F3 I8 D3 [D8
A4 [AD F4 /9 D4 [D9 ‘
A5 |AL0 | F5 [F10 D5 [DI0

Fig. 4.30 Measurement point markings for the DIC system
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Fig. 4.31 Research model on the test stand
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4.4.3. Measurement of horizontal force

A hydraulic cylinder induced the horizontal load. Force value was measured using
a force gauge of range 250 kN £ 0.1 kN and a pressure sensor P10 of the range 1000 bar
+ 0.1 bar. A constant increment in displacements of 1 cm/mm was set. The measuring

apparatus is shown in Fig. 4.32.

Fig. 4.32 Measuring apparatus

4.4.4. Additional methods

In addition to using LVDT and Aramis system, macroscopic damage assessment was
performed. Observed damage and cracks are marked on the walls of buildings in blue
(Fig. 4.33a). A GoPro Hero 8 camera was used to observe the building during the test
(Fig. 4.33b). A Canon EOS 40D camera was also used for the DIC system. Each

measurement method allowed for wall and slab displacement registration during the test.

i W
system
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5. BEHAVIOR OF MASONRY STIFFENING WALLS

5.1. Behavior phases

The behavior of the stiffening walls is presented in diagrams of the normalized
horizontal force (Hi/H.) to the shear deformation angle &. Moreover, the normalized
lateral load — horizontal displacement charts were done. The horizontal displacements
based on shear deformation angles were calculated following formula (5.1). The test

results were grouped with a series of models with the same geometry — types I, 11, 1L,
and I'V.

in which:

ui — horizontal displacement in the direction x along to load (ux) or direction
y perpendicular to load (uy),

@), — shear strain angle in linear phase and shear formation angle in non-linear phase,

h — the height of the model and equal 2 =2.63 m.

5.1.1. Results for models with door opening in stiffening wall A — type I models

Figures 5.1 and 5.2 show the relationship between the normalized horizontal force
and shear deformation angle for MB-AAC-010/1 and MB-AAC-010/2 models. Figures
5.3 and 5.4 present the normalized lateral load-horizontal displacement chart for
particular building models. The results for model MB-AAC-010/1 are incomplete due
to problems with diagonal LVDT sensors during the test. The charts were prepared for
both stiffening and perpendicular walls.
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a) b)
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Fig. 5.1 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/1
model: a) results for A and B walls, b) for 1 and 2 walls

a) b)
12 g — Stiffening wall - axis A 12 4 Perpendicular wall - axis 1
Stiffening wall - axis B —— Perpendicular wall - axis 2
1.0 1.0
0.8 0.8
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B
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Fig. 5.2 Relationship between the horizontal load and shear deformation angle for the MB-AAC-010/2
model: a) results for A and B walls, b) for 1 and 2 walls

Based on the diagram — Fig. 5.2a, it can be concluded that the behavior of the
stiffening walls was similar. However, walls are characterised by different stiffness due
to the door opening in wall A. Shear deformation angles in stiffening walls are greater
than in perpendicular walls (by order of magnitude). The maximum horizontal
displacement in the direction of the load was over 21 mm, and in the transverse direction,
it was about 0.7 mm (MB-AAC-010/2 model). In the MB-AAC-010/1 model, these
displacements were successively over 16 mm (wall B) and about 1.1 mm (wall 2).
Displacements in the transverse direction indicate the rotation of the building caused by
the different stiffness of wall A about the other walls.
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a) b)
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Fig. 5.3 The normalized lateral load — horizontal displacement chart for the MB-AAC-010/1 model:

a) results for A and B walls, b) for 1 and 2 walls

a) b)
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0.8 0.8
< 06
=
04
02 @
0.0 > 0.0 >
0.00 5.00 10.00 15.00 20.00 25.00 30.00 0.00 100 200 3.00 4.00 5.00
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Fig. 5.4 The normalized lateral load — horizontal displacement chart for the MB-AAC-010/2 model:
a) results for A and B walls, b) for 1 and 2 walls

Based on the test results, a table containing the characteristic values of the cracking
forces and the corresponding shear deformation angles was prepared to capture the
phases of the walls' behavior. The moment of the first crack occurring within the corner
of wall A was distinguished. The assumed force representing the limit of the elastic
behavior of the wall was 49.9 kN (model MB-AAC-010/1) and 49.6 kN (model MB-
AAC-010/2). The maximum forces in the tests are consecutively 57.8 kN and 69.3 kN,
and residual forces are 45.3 kN and 459 kN. Detailed values of forces and
corresponding deformations are shown in Table 5.1. The graphical representation of

behavior phases of a wall with a door opening in Fig. 5.5 and a solid wall in Fig. 5.6.
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Table 5.1

The values of horizontal forces and deformation angles based on test results

" . . Post-peak
Vodel Model Initial phase Elastic phase | Nonlinear phase Sesidunl g
wall H cr,l, @cr,l 5 Her, @cr, H,, @J, Hies, @res,
kN mrad kN mrad kN mrad kN mrad
MB- A |29.108 | 0.002 - - - - -
AAC- 58.784
010/1 B - - 49935 | 0.071 0.743 | 45.291 | 2.210
MB- A 9.759 | 0.020 | 49.615 | 0.389 1.890 | 45.894 | 2.522
AAC- 69.247
010/2 B - - 49.615 | 0.162 0.756 | 45.894 | 1.874
Phase | Phase 11
CTC O-C
H, ? v }, CEEEEREE |, e
H,, .____\
) N
- H_ Phase III Phase IV
| o, a,
l/l g, fmonm g, oo
|
6‘_(';01’_;;C1 (':)u (‘jres H;tl—‘_'jjl HI::l_’:t:_L
@i, mrad >

Fig. 5.5 Behavior phases of stiffening walls with door opening: I - ihifial phasqe;”H”; eiastic phase,

IIT — nonlinear phase, IV — post-peak residual phase
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Fig. 5.6 Behavior phases of solid stiffening walls: I — elastic phase, Il — nonlinear phase, III — post-peak

residual phase

There is no initial phase in walls without openings, which consists of cracking the

tensile opening corners. The behavior of walls with openings is more complex than the

corresponding solid wall. The range of actual elastic behavior (linear behavior up to the

first crack) is smaller than in walls without openings.
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5.1.2. Results for models with door opening in stiffening wall A and windows
opening in perpendicular wall 1 — type II models

Models MB-AAC-010/3, MB-AAC-010/4 and MB-AAC-010/5 were assigned to the
second type of models in which the stiffening wall A had a door opening, and the
transverse wall 1 had a window opening. Analogously to the previous diagrams of the
normalized horizontal force to the angles of shear deformation — Fig. 5.7 — Fig 5.9 and

about the horizontal displacements — Fig. 5.10 — Fig 5.12 of the walls were prepared.

a) b)
12 —— Stiffening wall - axis A 1.2 Perpendicular wall - axis 1
0.8 0.8
L o6 < 06
T T
0.4 0.4
0.2 0.2
0.0 0.0 N

0.00 100 200 3.00 4.00 5.00 6.00 0.00 005 0.10 045 0.20 0.25 0.30
O, mrad O, mrad

Fig. 5.7 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/3

model: a) results for A and B walls, b) for 1 and 2 walls

a) b)
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1.0 1.0
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0.4 ’MBAA 04 |
" Ze) '
\?g oz
02 |, { P, 02
0.0 0.0

0.00 1.00 2.00 3.00 4.00 5.00 6.00 0.00 005 0.10 0.15 0.20 0.25 0.30
6, mrad ®, mrad

Fig. 5.8 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/4
model: a) results for A and B walls, b) for 1 and 2 walls
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Fig. 5.9 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/5
model: a) results for A and B walls, b) for 1 and 2 walls
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Fig. 5.10 The normalized lateral load — horizontal displacement chart for the MB-AAC-010/3 model:
a) results for A and B walls, b) for 1 and 2 walls

a) b)
12 — Stiffening wall - axis A 12 Perpendicular wall - axis 1
—— Stiffening wall - axis B ——Perpendicular wall - axis 2
1.0 1.0
0.8 0.8
> I:
< 06 = 06
e I
0.4 0.4
0.2 0.2
0.0 > 0.0 >
0.00 5.00 10.00 15.00 20.00 25.00 30.00 000 100 200 3.00 4.00 5.00
Uy, Mm Uy, mm

Fig. 5.11 The normalized lateral load — horizontal displacement chart for the MB-AAC-010/4 model:
a) results for A and B walls, b) for 1 and 2 walls
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Fig. 5.12 The normalized lateral load — horizontal displacement chart for MB-AAC-010/5 model; a)
results for A and B walls, b) for 1 and 2 walls

The largest horizontal displacements were observed in model MB-AAC-010/3. The
horizontal displacement for the stiffening wall A is 21.7 mm, and for the transverse
wall 2 is about 2.3 mm. The behavior phases of the stiffening walls were the same as in
type I models. The course of the dependencies is similar - after reaching the maximum
force, there is a rapid decrease and successive increases. The values of the cracking
forces within the door opening are 20.8, 17.7 and 20.2 kN. The maximum forces are in
order 74.1, 84.9 and 87.5 kN. The detailed results of the forces and the corresponding

deformation angles are shown in Table 5.2.

Table 5.2
The values of horizontal forces and deformation angles based on test results
.\ . . Post-peak

Vodel Model Initial phase Elastic phase | Nonlinear phase el s

ode wall Hcr,l, @cr,l, Hcr, @cr, Hu, @ua HV€S> @res,

kN mrad kN mrad kN mrad kN mrad

MB- A 20.768 | 0.034 | 60.385 | 0.202 2.967 | 61.455 | 3.202
AAC- 74.048

0103 | B - - 1 67.631 | 0.098 0.410 | 61.455 | 0.436

MB- A | 17.677 | 0.034 | 68.738 | 0.267 1.900 | 78.633 | 1.973
AAC- 84.860

010/4 | B - - | 68.738 | 0.097 0.840 | 78.633 | 1.128

MB- A 20.192 | 0.040 | 51.461 | 0.258 3.042 | 62.282 | 3.038
AAC- 87.532

010/5 | B - - | 51.461 | 0.198 2.180 | 62.282 | 3.145
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5.1.3. Results for models with a window opening in stiffening wall A and door
opening in stiffening wall B— type 111 models

Models MB-AAC-010/6 and MB-AAC-010/7 were assigned to type III models due
to the geometry of the building. A window opening was formed in the stiffening wall A,
and a door opening in the stiffening wall B. The results are presented in the same way
as before as graphs of the dependence of the normalized horizontal force in relation to

the shear deformation angles — Fig. 5.13 and Fig. 5.14 and about the horizontal

displacements of the walls — Fig. 5.15 and Fig. 5.16.
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Fig. 5.13 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/6

model: a) results for A and B walls, b) for 1 and 2
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Fig. 5.14 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/7

model: a) results for A and B walls, b) for 1 and 2

walls
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Fig. 5.15 The normalized lateral load - horizontal displacement chart for the MB-AAC-010/6 model:

a) results for A and B walls, b) for 1 and 2 walls
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Fig. 5.16 The normalized lateral load - horizontal displacement chart for the MB-AAC-010/7 model:
a) results for A and B walls, b) for 1 and 2 walls

The diagrams show that after reaching the maximum force, load capacity still
increases with increasing displacements. The actual range of the elastic phase is small
due to the slight cracks in the wall within the openings (the initial phase limit is about
0.35% of the maximum force). The assumed elastic range is about 0.75% of the
maximum force. MB-AAC-010/6, stiffening wall A with greater stiffness, after cracking
in the elastic phase, was finally characterized by higher deformation values than wall B
with lower stiffness. This means that the cracking of wall A significantly reduced its
stiffness so that the displacements increased faster than in wall B, and there was no rapid
redistribution of internal forces between the walls. The exact values of the behavior
phases of the stiffening walls are shown in Table 5.3. The behavior phases for the wall

with a window opening were developed — Fig. 5.17.
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Table 5.3

The values of horizontal forces and deformation angles based on test results

L

—O——

6 (Jcr. 1 ¢ :) cr

" . . Post-peak

Vodel Model Initial phase Elastic phase Nonlinear phase Sesidunl g

ode wall Hcr,l, @cr,l, Hcr, @cr, Hu, QJ, Hres, @res,

kN mrad kN mrad kN mrad kN mrad

MB- A 26.047 | 0.043 | 56.508 | 0.148 2.392 | 64.136 | 2911
AAC- 74.529

010/6 B 17.877 | 0.041 | 56.508 | 0.211 2.766 | 64.136 | 2.885

MB- A | 27304 | 0.043 | 52.039 | 0.120 2.255 | 55.237 | 2.613
AAC- 66.693

010/7 B 23.625 | 0.043 | 52.039 | 0.154 1.266 | 55.237 | 1.338
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Fig. 5.17 Behavior phases of stiffening walls with window openilnrg):’/I - iﬁitial phaée? H! é’lastic phase,
IIT — nonlinear phase, IV — post-peak residual phase

5.1.4. Results for reference model -— type I'V models

Model MB-AAC-010/8 is a reference model in which the walls are devoid of
openings. Figures 5.18 and 5.19 present the charts of masonry building behavior.
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Fig. 5.18 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/8
model: a) results for A and B walls, b) for 1 and 2 walls



a) b)

12 g —— Stiffening wall - axis A 12 & Perpendicular wall - axis 1
Stiffening wall - axis B —— Perpendicular wall - axis 2
1.0 1.0
0.8 0.8 (
T T
= 06 = 0.6
0.4 0.4
0.2 0.2
0.0 = — 0.0 >
0.00 5.00 10.00 15.00 20.00 25.00 30.00 0.00 100 200 3.00 4.00 5.00
Uy, mm Uy, mm

Fig. 5.19 The normalized lateral load — horizontal displacement chart for the MB-AAC-010/8 model:
a) results for A and B walls, b) for 1 and 2 walls

The stiffnesses of all walls are the same in the reference model. Theoretically, such
a building should not rotate but only translate. Tests have shown that the load capacity
does not increase after reaching the maximum force, and this phenomenon is observed
in buildings with openings. After reaching the maximum force, a gradual decrease in the
stiffness of the building and increasing horizontal displacements are observed. The range
of elastic behavior (elastic phase) reached 80% of the maximum force. The results
suggest that opening the walls not only reduces the stiffness of the building but also
determines the range of the elastic phase. The maximum horizontal displacements in the
MB-AAC-010/8 model are 22.3 mm (wall A) and 24.0 mm (wall B). The values of
forces and shear deformation angles in elastic, nonlinear and post-peak residual phases

are presented in Table 5.4.

Table 5.4
The values of horizontal forces and deformation angles based on test results
i . . Post-peak

Vodel Model Initial phase Elastic phase | Nonlinear phase et s

ode wall Hcr,l, @cr,l, Hcr, @cr, Hu, @u, Hres, @res,

kN mrad kN mrad kN mrad kN mrad

MB- A - - | 52870 | 0.114 0.856 | 59.309 | 1.283
AAC- 65.521

0108 | B - - | 52870 0.118 0.526 | 59.309 | 1.148
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5.2. Analysis of test results

One of the goals of the dissertation is to determine the actual stiffness of the walls.
The test results were analyzed, and a proposal for the empirical calculation of the wall
stiffness was presented in section 5.2.1. The redistribution of internal forces was
estimated based on comparing the actual forces representing the behavior phases of the

stiffening walls (test results) with theoretical values - section 5.2.2.

5.2.1. The proposition of an Empirical Method of Load Distribution on Stiffening
Walls

Forces acting on individual stiffening walls depend on the stiffness defined as the

quotient of the total load corresponding to the displacement (5.2):

k=2_4 (5.2)
A O-h '
in which:
H — total load acting on the wall,
A — horizontal displacement,
® — shear deformation angle,
h —wall height.
The total stiffness of the building can be calculated as follows (5.3):
HtOt HtOt
Kior = = 5.3
tot Atot @mv h ( )

where:
Hio: — total load acting on a building,
Aot — total displacement of the building,

Onv — mean value of deformation angle of stiffening walls, calculated following (5.4):

04+ 6,

mv 2

(5.4)
in which:
Ox — shear deformation angle of stiffening wall A,

Ok — shear deformation angle of stiffening wall B.
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Based on the formulas total stiffness of tested buildings was calculated. The results in

Table 5.5 include the wall behavior phases and the corresponding values of the average

shear deformation angles of the tested buildings.

Table 5.5
The total stiffness of tested buildings

Vodel Model Initial phase Elastic phase | Nonlinear phase res}:gi;f ;ileise

Wall @cr,l,mv Ktot,cr,l, @cr,mv Ktot,cr,l, @u,mv K tot,u, @res,mv K tot,res,

mrad | kN/mm | mrad | kN/mm | mrad | kN/mm | mrad | kN/mm
MB-

AAC- | A,B - - 0.28 75.00 1.32 21.81 2.20 8.70
010/2
MB-

AAC- | A,B - - 0.15 | 177.62 | 1.69 18.27 1.82 14.07
010/3
MB-

AAC- | A,B - - 0.18 | 157.09 | 1.37 25.79 1.55 21.13
010/4
MB-

AAC- | A B - - 0.23 94.16 2.61 13.97 3.09 8.39
010/5
MB-

AAC- | A B 0.04 | 216.82 | 0.18 | 130.83 | 2.58 12.04 2.90 9.22
010/6
MB-

AAC- | A B 0.04 | 24652 | 0.14 | 158.68 | 1.76 15.78 1.98 11.65
010/7
MB-

AAC- | A B - - 0.12 | 190.10 | 0.69 39.53 1.22 20.33
010/8

The results indicate a significant degradation of the stiffness under the building load.

The highest stiffness values are in the initial phase (first cracks in the corner of openings)

- a significant decrease in stiffness occurs in the non-linear range. The distribution of

the total horizontal load depends on the actual stiffness of the stiffening walls. For this

purpose, based on tests, the stiffness of each of the stiffening walls was determined

separately — Table 5.6.
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Stiffness of stiffening walls based on the test

Table 5.6

" . . Post-peak
Vodel Model Initial phase Elastic phase | Nonlinear phase Sesidunl g
Wall Kcr’] 5 Kcr, Ku, Kres,
kN/mm kKN/mm kKN/mm kKN/mm

MB- A 205.58 53.12 15.26 7.58
AAC-

010/2 B i 127.51 38.16 10.20
MB- A 254.61 124.40 10.40 8.00
AAC-

010/3 B - 287.39 75.26 58.68
MB- A 216.71 107.10 18.61 16.61
AAC-

010/4 B - 294.59 42.00 29.04
MB- A 212.68 83.21 11.99 8.54
AAC-

010/5 B - 108.42 16.73 8.25
MB- A 251.34 158.57 12.98 9.18
AAC-

010/6 B 180.66 111.36 11.23 9.26
MB- A 263.47 181.43 12.32 8.81
AAC-

010/7 B 229.45 141.00 21.96 17.21
MB- A - 193.82 31.91 19.26
AAC-

010/8 B - 186.51 51.95 21.52

The larger the opening, the lower the initial stiffness of the wall. The values of the initial

stiffness of the walls were over 200 kN/mm. In the non-linear residual phase, the

stiffness of the walls decreased significantly. In order to determine the load acting on

individual stiffening walls, relationships that determine the proportions of the shear

deformation angles @ was introduced (5.5):

in which:

Ox — shear deformation angle of stiffening wall A,

Ok — shear deformation angle of stiffening wall B,

(U:@A/@B

(5.5)

Selected diagrams of the deformation of stiffening walls @ for models MB-AAC-

010/4 and MB-AAC-010/8 are shown in Fig. 5.20.
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Fig. 5.20 The charts between the normalized horizontal force and proportion of shear deformation angles:
a) the MB-AAC-010/4 model, b) the MB-AAC-010/8 model
The forces in the stiffening walls balance the total force acting on the building Hio,

and the equilibrium condition is as follows (5.6):

Hoe = Hy + Hp (5.6)
where:

Ha —load (force) acting on stiffening wall A,
Hg — load (force) acting on stiffening wall B.

The above formula (5.6) can be expanded as shown below in (5.7):

Kiot = Dror=Ka - By + Kg " Ap =Kot " Oy = K4- 04+ Kg - Op
:KA. QB'(I)‘l‘KB' @B:(KA.(U-I_KB)@B_)

Kiot _
Op
Omv
Having regard to that (5.8):
Hp Hp
Ko= -7~ %= % (5.8)
In addition, the following equation can be formulated (5.9):
Keot * Omy — 9. = Hp
(Ky-w+Kg) 2 Kg-h (5.9)
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The value of the force acting on the stiffening wall B can be calculated from the formula

(5.10). The results are summarized in Table 5.7.

K e Lo Hs
= - = —
B QB - h B KB " h
K. 0 (5.10)
H — K . h tot mv
g P U (K@ + Kp)
Table 5.7
Forces acting on particular stiffening walls
i . . Post-peak
Vodel Model Initial phase Elastic phase | Nonlinear phase Sesidhnl g
wall Hcr,l 5 Hcr, Hu, Hres,
kN kN kN kN
MB. A - 24.81 34.62 22.95
AAC- B - 24.81 34.62 22.95
01072 @ 2.04 2.40 2.50 1.35
MB. A - 32.64 37.02 30.73
AAC- B - 31.37 37.02 30.73
01073 @ 2.65 2.40 7.24 7.34
MB. A - 34.37 42.43 39.32
AAC- B - 34.37 42.43 39.32
01074 @ 2.00 2.75 2.26 1.75
MB. A - 25.73 43.77 31.14
AAC- B - 25.73 43.77 31.14
01075 @ 1.49 1.30 1.40 0.97
A 10.77 28.25 37.26 32.07
MB-
AAC- B 11.19 28.25 37.26 32.07
01076 @ 0.69 0.70 0.86 1.01
MB. A 12.82 26.02 33.35 27.62
AAC- B 12.64 26.02 33.35 27.62
01077 @ 0.88 0.78 1.78 1.95
MB. A - 26.44 32.76 29.65
AAC- B - 26.44 32.76 29.65
01078 @ - 0.96 1.63 1.12
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5.2.2. Determination of internal forces by the analytical method

In addition to the empirical method of determining internal forces in stiffening walls,
the own method [79] was used to calculate the stiffness and load distribution. The shear
forces in the walls due to acting horizontal forces Hx and Hy can be calculated by
formulas (5.11) and (5.12).

Ky;

Hy; =HXZ,K . (5.11)
i Dy

Hoo = H, 2

yE= Yy Ky (-12)

Moreover, the shear forces caused by the torsional moments Mg and My are (5.13-
5.16):

Hyos = Mooy 01 (5.13)
2i GiKyi + Xi Ay Ky i

fysi = EMsx i aiiszf}gi aziKy, (5.14)

fxsi = My i aiiszf}gi ayiKy (5.15)

Hys; = +M Gl (5.16)

V¥ a5y + X aiKy
in which:

i) Qyi — distances between the gravity center of the wall fragments and the rotation
centre (RC),

hm — wall height.

The bending moments due to load Hx and Hy can be calculated following formulas (5.17)
— (5.18). Formulas (5.19) — (5.20) express the bending moments due to torsional

moments Msx and Msy.

Kx,i

Mox,i MOXZ_K ] (5.17)
i Bxi
Ky;

Moy,i Mox Zi Kyi (5. 1 8)



Msx,i = ins,ihm (519)

Mgy; = +Hygihm (5.20)

sy,i

The coordinates of the rotation centre (RC) are calculated according to formulas
(5.21) and (5.22):

_ ZiaxiKy)

DT e
_ Zi(ayiKyi)

L W (5.22)

in which:

axi, ayi — the distance between the load centre (LC) and the rotation center of the wall or
stiffening group,

K, Kyi — stiffness of the wall or stiffening group.

The total stiffness method [79] was used to calculate the stiffness of the walls. The
wall with a window or door opening was divided into vertical pillars, a lintel band, and
a bottom spandrel. The total displacement of the upper edge of the wall Ay from the unit

load is the sum of the displacements of the bottom spandrels, inter-opening pillars and
lintels (5.23).

Aw = AAy + PAy + BAy (5.23)
in which:

AAy — displacement of the lintel,
BAw — displacement of the bottom spandrel,

PAw — displacement of the vertical pillar.

The displacements of the wall components (parts) depend on the geometry and boundary
conditions. The geometrical parameters of walls with openings adopted for calculations
are shown in Fig. 5.21. Moreover, if the height ratio to the length of the wall is 4/l > 2,
the effects of tangential stresses in determining the wall stiffness can be neglected.
Otherwise, the stiffness should be calculated, considering shear deformations. Wall

stiffness depending on the boundary conditions is shown in Table 5.8.
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Fig. 5.21 The geometrical parameters adopfed for calculation in the total stiffness method: a) division
of a wall with a door opening into component elements, b) deformations of a wall with a door opening,
¢) division of a wall with a window opening into component elements, d) deformations of a wall with

a window opening

Table 5.8
Stiffness of solid walls in the total stiffhess method
Static scheme =2 il = 2
Force P Moment M Force P Moment M
A 2E] 3EI 2E]
R | ety "= "
Cantilever B % LR ) &
" [( ( [/ / | | |
‘ ! - Il } ! 7 i
P 12E1
PR L2k, - M=73 -
Double- ) 12E1 GAGA T
fixed i LA d
type F ) X X + L / _ E ' _
I | 1 !
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After calculating the total displacement of the wall, its stiffness can be estimated
following the formula (5.24).

where:

K, (5.24)

1
=5

Aw - the total displacement of the top edge of the wall due to unit load H = 1.

The analytical calculations of the stiffening walls were carried out according to the

following procedure:

1.

The length of the transverse wall fragment (flange) berri was assumed
following the recommendations of Eurocode 6.

The wall with the opening was divided into fragments, as shown in Fig. 5.21.
Moments of inertia of the wall components were calculated, considering the
transverse befr1 parts.

Static schemes of each component were established: “C” - cantilever wall,
“F” - restrained wall.

The stiffness K of the wall components were determined according to the
formulas in Table 5.8.

The stiffness of the walls was determined according to Fig. 5.21 and formula
(5.24), and results are collected in Tables 5.9 — 5.12.

The distances axi, ayi to the load center (LC) were assumed.

. The localization of the rotation center was calculated according to formulas

(5.21) and (5.22) — Table 5.13.

The internal forces in walls were calculated according to (5.11) —(5.20).

Table 5.9
Geometric and stiffness characteristics of walls for type I models
Model type I - MB-AAC-010/1 and MB-AAC-010/2
Wall or Moment of inertia | Static scheme *Distance Stiffness
component I, m* GC-LC K, KN/mm
a, m
A 1.59 F 592.75
A C 0.09 F 1.91 47.22 | 81.46
D 0.09 F 47.22
B 1.59 F -1.91 113.96
| 1.59 F -1.91 113.96
2 1.59 F 1.91 113.96

* distance from the center of gravity of the wall to a point LC (load center)
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Table 5.10

Geometric and stiffness characteristics of walls for type II models

Model type II - MB-AAC-010/3, MB-AAC-010/4 and MB-AAC-010/5

Wall or Moment of inertia | Static scheme *Distance Stiffness
component | /, m* GC-LC K, kN/mm
a, m
A 1.59 F 592.75
A C 0.09 F 1.91 47.22 | 81.46
D 0.09 F 47.22
B 1.59 F -1.91 113.96
A’ 1.59 F 592.75
B 1.59 F 294.89
! C 0.09 F 191 106.56 | 1023
D 0.09 F 106.56
2 1.59 F 1.91 113.96
* distance from the center of gravity of the wall to a point LC (load center)
Table 5.11
Geometric and stiffness characteristics of walls for type III models
Model type IIT - MB-AAC-010/6 and MB-AAC-010/7
Wall or Moment of inertia | Static scheme *Distance Stiffness
component | /, m* GC-LC K, kKN/mm
a, m
A 1.59 F 592.75
B 1.59 F 294.89
A C 0.09 F 191 106.56 102.35
D 0.09 F 106.56
A 1.59 F 592.75
B C 0.09 F -1.91 47.22 | 81.46
D 0.09 F 47.22
1 1.59 F -1.91 113.96
2 1.59 F 1.91 113.96
* distance from the center of gravity of the wall to a point LC (load center)
Table 5.12
Geometric and stiffness characteristics of walls for type IV models
Model type IV - MB-AAC-010/8
Wall or Moment of inertia Static scheme *Distance Stiffness
component I, m* GC-LC K, kKN/mm
a, m
A 1.59 F -1.91 113.96
B 1.59 F -1.91 113.96
1 1.59 F -1.91 113.96
2 1.59 F 1.91 113.96

* distance from the center of gravity of the wall to a point LC (load center)
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Table 5.13

The coordinates of the torsion center for each model type

Model type Sozdmates of torsion center —
I 0.00 2032
il 0.10 -0.32
11 0.00 -0.10
v 0.00 0.00

The values of internal forces in stiffening walls were calculated based on formulas
of the total stiffness method. The analysis encloses the elastic and non-linear phases in
Table 5.14. The theoretical results were compared with the forces calculated by the

empirical method (test results) — Table 5.15.

Table 5.14
The values of internal forces in the total stiffness method
Elastic phase Nonlinear phase
Model 1\1[:;}161 cal[']cr,l, cal[']cr,si, cachr’ CalI—Iu,lzo calHU,Sia calHu’
kN kN kN kN kN kN
MB- A -20.68 -1.88 -22.56 28.87 2.62 -31.48
AAC-
010/2 B -28.94 1.88 -27.06 -40.38 2.62 -37.77
MB- A -26.68 2.42 -29.10 -30.87 -2.80 -33.67
AAC-
010/3 B -37.33 2.42 -34.91 -43.18 2.80 -40.38
MB- A -28.65 -2.60 -31.25 -35.37 -3.21 -38.58
AAC-
010/4 B -40.09 2.60 -37.49 -49.49 3.21 -46.28
MB- A -21.45 -1.95 -23.40 -36.49 -3.31 -39.80
AAC-
010/5 B -30.01 1.95 -28.06 -51.04 3.31 -47.73
MB- A -23.56 2.14 -25.69 -31.07 -2.82 -33.89
AAC-
010/6 B -32.95 2.14 -30.82 -43.46 2.82 -40.64
MB- A -21.69 -1.97 -23.66 -27.80 -2.52 -30.32
AAC-
010/7 B -30.35 1.97 -28.38 -38.89 2.52 -36.37
MB- A -22.04 -2.00 -24.04 -27.31 -2.48 -29.79
AAC-
010/8 B -30.83 2.00 -28.83 -38.21 2.48 -35.73

* signs of internal forces concerning the global coordinate system (Fig. 4.30)

.1 — elastic force due to shear, “'H., — elastic force due to rotation of the building, “'H.. — the total
internal force in stiffening wall (elastic phase), “"H,; — force due to shear (nonlinear phase), “'H, s —
force due to rotation of the building (nonlinear phase), “'H, — the total internal force in a stiffening wall
(nonlinear phase)

121



Table 5.15

Comparison of test results and analytical analysis

Model Elastic phase Nonlinear phase
Model Wal] Hcr, cal Hcr, Hcr / cal Hcr Hu, cal Hu, Hu / cal Hu
kN kN kN kN
MB- A 24.81 22.56 1.10 34.62 31.48 1.10
AAC-
010/2 B 24.81 27.06 0.92 34.62 37.77 0.92
MB- A 32.64 29.10 1.12 37.02 33.67 1.10
AAC-
010/3 B 31.37 34.91 0.90 37.02 40.38 0.92
MB- A 34.37 31.25 1.10 42.43 38.58 1.10
AAC-
010/4 B 34.37 37.49 0.92 42.43 46.28 0.92
MB- A 25.73 23.40 1.10 43.77 39.80 1.10
AAC-
010/5 B 25.73 28.06 0.92 43.77 47.73 0.92
MB- A 28.25 25.69 1.10 37.26 33.89 1.10
AAC-
010/6 B 28.25 30.82 0.92 37.26 40.64 0.92
MB- A 26.02 23.66 1.10 33.35 30.32 1.10
AAC-
010/7 B 26.02 28.38 0.92 33.35 36.37 0.92
MB- A 26.44 24.04 1.10 32.76 29.79 1.10
AAC-
010/8 B 26.44 28.83 0.92 32.76 35.73 0.92

* signs of internal forces in absolute value

The results indicate a redistribution of internal forces between the stiffening walls.
The difference between the theoretical values and those obtained in the tests is not more
than 12%.

5.3. The procedure for calculations of the coordinates of the rotation center

The proposed procedure applies to a situation where the uncertainty of a single
measurement of displacements of measurement points is not specified. The solution
should take into account the uncertainty transfer principle. As a result of the external
load, the building is rotated relative to the center of torsion (also called RC — rotation
center) and simultaneously displaced (translation). The coordinates of the assumed
measurement points before and after loading are known. The coordinates of the center

of torsion (xrc, yrc), the angle of rotation (o) and the translation parallel to the load
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direction (A7) are not known. Figure 5.22 shows the layout of the building before and
after loading in the direction of the X-axis. The load point (LC) is located at the
intersection of the load directions. Points "a", "b", "c¢", "d" are in the corners, and point

"e", is located at the intersection of the axes of the walls and the direction of the applied
load.
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Fig. 5.22 Layout of the building before and after loading in the direction of the X-axis

Two coordinate systems are introduced LC-X-Y associated with the load center and
RC-X'-Y' at the center of rotation (RC) — Fig. 5.23. The kinematics of all available
measurement points should be considered to determine four unknowns. In the general

solution, the coordinates of the considered point defined in the LC-X-Y coordinate
system (related to the assumed load point) are equal to (5.25):

A(x,y) (5.25)

In the coordinate system associated with the center of rotation RC-X'-Y", the coordinates
are (5.26):

A, y") (5.26)
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The coordinates can be calculated according to (5.27) and (5.28):
x'=x—Xp¢ (5.27)
Y' =Y = Yre (5.28)

where:
Xrc, VRC — the coordinates of the RC point relative to the LC-X-Y system.

a)
Y'A
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B (% ¥) RA By Ry
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Fig. 5.23 Changes in the position of the RC point: a) as a result of rotation by the angle « and translation
in the X-direction, b) as a result of rotation by the angle « and translation in the Y-direction
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Due to the specificity of the load, each of the directions can be considered separately.
When the load acts in the direction of the X-axis (Fig. 5.23a), the building will rotate

relative to the RC-X'-Y' coordinate system by the angle ax. The coordinates of point

A in the rotated coordinate system will be (5.29) and (5.30):

Rx" = x'cosa, — y' sin a, (5.29)
Ry" = x'sina, — y' cos a,, (5.30)
In the LC-X-Y coordinate system, the coordinates are equal to (5.31) and (5.32):
Rx = Bx' + xp¢ (5.31)
(5.32)

Ry = 2y + yre

In addition to the rotation, the building will be translated by distance ATx. The
coordinates in the RC-X'-Y' and LC-X-Y coordinate systems are equal to (5.33) — (5.36):

Fx' = Bx' + AT, (5.33)
Ty =&y (5.34)
Fx = Rx + AT, (5.35)
fy="Fy (5.36)

The measurement of displacements of the building slab is made about the LC-X-Y
system, and the coordinates are equal to (5.37):
A("x, Fy) (5.37)

The corresponding relative displacements of the point coordinates in the LC-X-Y

coordinate system (directly determined in tests) are (5.39) — (5.40):

Ax = Fx,—x (5.39)

(5.40)

F

Ay ="y—y
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When the load acts in the direction of the Y-axis (Fig. 5.23b), the building will rotate
relative to the RC-X'-Y' coordinate system by the angle «y.. The coordinates of point
A 1n the rotated coordinate system can be determined according to formulas (5.29) and
(5.30). In the LC-X-Y coordinate system, the coordinates of point A can be calculated
according to formulas (5.31) and (5.32).

Similarly, the building will be translated by the distance A7y, and the coordinates in
the RC-X'-Y"' and LC-X-Y coordinate systems are equal (5.41) — (5.44):

Fx'= Rx' (5.41)
fy' = Ry’ + AT, (5.42)
Fx = Ry (5.43)
Fy = Ry + AT, (5.44)

The value of translation is crucial. Without knowing the displacement of the RC point,
it is impossible to determine the position of the RC. The assumption is that this RC point
displacement corresponds to the horizontal load application point displacement. In the
direction of the load acting parallel to the Y-axis, the coordinates of point A relative to
the LC-X-Y coordinate system are (5.45):

A(Fx, Fy) (5.45)

Similarly, the relative displacements of the coordinates of the point in the LC-X-Y
coordinate system are (5.46) — (5.47):

Ax = Fx —x (5.46)

Ay = Fy -y (5.47)

A minimum of three points must be defined on the slab to determine the coordinates
of the center of the building torsion. However, it is better to take points located in the
corners of the slab at the intersection of the wall axes (points: "a", "b", "c", "d") and the
intersection of the wall axes and the direction of the load (point: "e"). The unknowns in
the load direction parallel to the X-axis (in the LC-X-Y system) are the angle of rotation

of the building ¢, the translation of the building A7k and the xrc and yrc coordinates.
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The unknowns in the load direction parallel to the Y-axis are the angle of rotation of the
building ¢y, the translation of the building A7y and the xrc and yrc coordinates. The joint
(independent) unknowns are the coordinates of the xrc and yrc centers of rotation. The
building rotation angles ox, oy and the values of translations A7k and A7y are dependent
unknown. Each direction can be analysed separably and reduce the number of unknowns.
First, the angle of rotation of the building should be determined. For this purpose, it can
consider any two points located initially in the load direction and then construct
a straight line passing through these points in the post-load stage. The inclination angle
of the straight line corresponding to the angle of rotation in the case of corners "b" and

"c" (when the load is applied in the direction of the X-axis) is equal to (5.48):

F _ F .
Y = Y yc) (5.48)

Axcal = aCtg( Fy Fy
llbll —_— ”C"

Next, the approximate slab translation should be determined. For this purpose, point "e"
located at the intersection of the wall axis and the load direction can be used. The

approximate displacement after the transformation of the coordinate system is (5.49):

ATy ops = X — Fx cos Ay cal (5.49)

Then, the coordinates of the points (corners) in the LC-X-Y system, caused only by the
rotation, should be determined according to the following relations (5.50) and (5.51):

Rxcal = fx — ATx,obs (5.50)

RYcal = Fy (5.51)

In each corner, in addition to the coordinates before the deformation, there are
coordinates after the deformation. Straight lines y = a,;x + b, are drawn through these
two points (straight lines "1", "2", "3", "4") in Fig. 5.24a. Directional coefficients of

straight lines "a;" in any corner can be determined according to the following relation
(5.52):

_ R
q, =2 Yeal (5.52)
X — Xcal
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Fig. 5.24 Construction of lines used to determine the location of the center of rotation: a) when the load
is applied in the direction of the X axis, b) when the load is applied in the direction of the Y axis
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The intercept can be calculated according to the relation (5.53):

bl = Rycal —a, Rxcal (553)

Then, it is possible to determine the coordinates of the auxiliary point "P" located in the
middle of the segment connecting the points before and after the rotation by equations
(5.54) and (5.55):

1
xp = E(x + Rxcal) (554)

1
Vp = E(y + RYcal) (5.55)

Perpendicular lines ’y = Pa,x + Pb; (straight lines "1", "2", "3", "4" in Fig. 5.24a are
constructed through this point to straight lines connecting points in the building corner

before and after rotation. The slopes of the lines are equal to (5.56):

p
1 a, ( )

The intercepts are (5.57):

Pp, = Yp — Pa, Px (5.57)

A straight line from each corner can be drawn perpendicular to a line connecting the
corner coordinates before and after the building rotation. It is enough to solve the system
of equations of two straight lines formed from adjacent corners to determine the xrc and
yre coordinates. It is much more advantageous to solve all combinations occurring in
individual corners. As a result, this gives n = 6 systems of equations to be solved:

e the straight line "1" — the straight line "2",

o the straight line "1" — the straight line "3",

o the straight line "1" — the straight line "4",

o the straight line "2" — the straight line "3",

o the straight line "2" — the straight line "4",

o the straight line "3" — the straight line "4".
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From each of the systems of the equation, the coordinates xrc,i and yrc, are obtained.
The calculation results are the maximum, minimum, mean and median values. All values
that do not make physical sense and significantly deviate from the others, confirmed by
the Grubbs statistical test, should be omitted from the calculation. This approach allows
determining the interval in which the coordinates occur with equal probabilities
(rectangular distribution). Outlier analysis can be omitted when a robust approach is
used, and then the median of the results should be sought. The same procedure is
followed when the load acts in the direction parallel to the Y-axis. The angle of
inclination of the straight line, corresponding to the angle of rotation, for the corners "b"

and "c" (when the load acts in the direction of the Y-axis) is equal (5.58):

Fo _ F..
M) (5.58)

Ay cal = atan
Y Fx..b.. — Fx..c..

The approximate translation is determined from the displacement of the point "e"
located at the intersection of the wall axis and the load direction. The approximate

displacement after the transformation of the coordinate system is (5.59):

ATy ops =y — Fy COS @y cqi (5.59)

Then determine the coordinates of the points (corners) in the LC-X-Y alignment caused

by rotation only, according to the following relationships (5.60) and (5.61):
Ry o= Fx (5.60)

RYcal = Fy - ATy,obs (5.61)

At each corner, straight lines are drawn between the points before and after the
deformation (lines "1", "2", "3", and "4" in Fig. 5.24b). The constants in the equations
of the straight lines are calculated according to (5.52) and (5.53). Then, an auxiliary
point "P" is introduced. That point is located in the middle of the segment between the
corners before and after the deformation. The point coordinates are determined using
formulas (5.54) and (5.55). The constants of straight lines passing through the point "P"
(straight lines "1", "2", "3", "4" in Fig. 5.24b) perpendicular to the lines connecting the
corners before and with the deformation are calculated according to equation 5.56 and

5.57. Similarly to the action of the load in the X direction, it is possible to build n = 6

130



systems of equations and determine the six coordinates xrc,i and yrc,i. The result of the
calculation is the minimum, maximum and mean values.

If the rotation of the building for a load direction does not occur or is negligibly small,
then the xrc and yrc coordinates have infinitely large values. Otherwise, when the
rotation has a finite value and the translation is negligibly small, the exact position of
the center of torsion is obtained. In the general case, there will be both a finite rotation
and a finite translation. Then the coordinates of the center of torsion are obtained, which
are between the minimum and maximum values. Considering that the value adopted for
calculations in an analysed direction is not true and affects the calculated coordinate
associated with such a direction, as a result of calculations, a coordinate not related to
a given direction is obtained as credible. When the load is parallel to the X-axis, the
plausible value is xrccal, and when the load is parallel to the Y-axis, the plausible value
1S YRC,cal.

After considering the confidence intervals of both coordinates, a rectangular area is
obtained. The probability of the location of the center of torsion in such an area is
identical (after standardization of the coordinates). If a robust approach is used, the RC
coordinates are uniquely specified.

The results with greater error (the intersection of the lines is far beyond the slab
contour, and each measurement inaccuracy generates greater uncertainty of the results)
can be obtained by specifying the coordinates of the torsion center, ignoring the shift
effect. Then the coordinates related to the direction of the load (parallel to the X-axis
(xrc,cal) and the Y-axis (yrc,cal,) are calculated assuming the values ATxos = 0 and
ATyobs = 0. After determining the coordinates of the rotation center, it is possible to
calculate the exact translation of the building under the action of the load in the direction
of the X and Y axes. When the load is applied in the X-axis direction, the coordinates in
the RC-X"-Y' coordinate system are first calculated from the following dependencies
(5.62) and (5.63):

xobsl = X — Xgc¢,cal (5.62)

YObsl =Y — YRC,cal (5.63)

Then transform the points to the position before loading according to the relationship
(5.64) and (5.65):

RX' ops = X' ops COS @ — V' s SIN @ (5.64)
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Ry obs = X ops SIN @ + V' gps COS (5.65)

The next step is to express the coordinates in the LC-X-Y coordinate system according
to the formula (5.66) and (5.67):

R _ Rt
Xobs = X obs + xRC,cal (5~66)

RYobs = Ry’obs + Yre cal (5.67)

Finally, at each point (corner) the displacement value is calculated according to the
relation (5.68):

ATx,cal = fx - Rxobs (5.68)

The result of the calculation is the mean and standard deviation (5.69) and (5.70):

6
1
ATx,cal = Ez ATx,i (5.69)
i=1
1 6
2

Sy = — Z(ATM- — ATy cat) (5.70)

i=1

The same procedure is followed in the direction of the load in the Y-axis direction.
Coordinates are transformed according to formulas (5.62) — (5.67). The value of the

displacement at each corner is determined according to (5.71):

ATy,cal = Fy - R:VObs (5.71)

The result of the calculation is the mean and standard deviation (5.72) and (5.73):

6
1
ATy,cal = az ATy,i (572)
i=1

1
n—1

Sy:

6
2
Z(ATW- —ATy0) (5.73)
i=1
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6. CRACK MORPHOLOGY

The crack morphology analysis was divided into two stages. The first part concerns
recognising the order in which successive cracks appear during the test (crack
propagation) — section 6.1. The results from the DIC system and the macroscopic
assessment of the tested buildings were collected in the second stage. The model damage

was summarized as a crack pattern in section 6.2.

6.1. Digital image correlation results

The results from the DIC system enclose seven building models (no results for model
MB-AAC-010/3). The results were presented as deformation maps & (principal strain),

and the scales were adjusted to obtain the best crack propagation map.

6.1.1. Results for MB-AAC-010/1 model

Figure 6.1 presents the crack propagation maps for the MB-AAC-010/1 model.
Stiffening wall A was analyzed. The order of damage was as follows:

e horizontal crack in the corner of the door opening and a small stepped crack
in the upper left part of the wall,

e increasing the crack size within the door opening and progressing step
cracking of the wall,

e the horizontal crack from the top edge of the wall connects to the crack at the
opening,

e a step crack divides the vertical pier into two parts, and new step cracks are

formed.
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-1.0% [ [ +1.0%
Fig. 6.1 Crack propagation of Wall A — model MB-AAC-010/1: a) analyzed area, b) crack pattern at Hx
= 32.23 kN, c) crack pattern at Hy =42.38 kN, d) crack pattern at Hx = 48.58 kN, e) crack pattern at Hx
= 58.22kN, f) crack pattern at Hy = 42.40kN (post-peak)

Figures 6.2, 6.3 and 6.4 present the horizontal, vertical and out-of-plane deformation of
stiffening wall A. The sliding failure occurs in the left vertical pier. The maximum
horizontal deformation equals about 23.0 mm, and the vertical displacement is about

4.0 mm. The out-of-plane deformation indicates the rotation of the building.
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A-1 A-2 A-3 +23.0 mm
m dx +23.072 mm dx +22.921 mmdx +22.970 mm '.

+17.979 mm

||
- 2.0 mm
Fig. 6.2 Post peak in-plane horizontal deformation dyx with force Hx = 42.40 kN for Wall A

A-l A-2 A-3
dy +3.863 mm  dY +3.053 mm dY +2.793 mm " 5'(: mm
A-4 A5 A-6 !

dy +4.292 mm ng +2.797 mm dY +3.296 mm

n
0.0 mm
Fig. 6.3 Post peak in-plane vertical deformation dy with force Hx = 42.40 kN for Wall A

A-1 A-2 A-3 + mm
m dz -0.068 mm dZ -1.387 mm dz -2.126 mm 2(:
= A-5
) dz +

0.364 mm dZ -0.397 mm

[ ]
-2.0 mm
Fig. 6.4 Post peak in-plane out-of-plane deformation d, with force Hx = 42.40 kN for Wall A
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6.1.2. Results for MB-AAC-010/2 model

Figure 6.5 shows the crack propagation maps for the MB-AAC-010/2 model.

Stiffening wall A was analyzed. The order of damage was as follows:

-3.0%

a stepped crack formed in the corner of a door opening,

increasing the crack size,

formation of a stepped crack in the lower part of the wall,

formation of new step cracks in the part of the wall from the side of the applied
horizontal load,

increasing the opening of the existing cracks,

dividing the vertical pier into two parts.

7o — -
b d

| m +3.0%

Fig. 6.5 Crack propagation of Wall A - model MB-AAC-010/2: a) analyzed area, b) crack pattern at Hx
=34.62 kN, c) crack pattern at Hy = 69.25 kN, d) crack pattern at Hx =37.71 kN
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A similar DIC analysis was done for stiffening wall B; the results are presented in

Fig. 6.6. As a wall without openings, the initial phase was not observed. The order of

damage was:

the first crack in the upper part of the wall from the side of the applied horizontal
load,

step cracks gradually widening from the top to the bottom of the wall,
then new step cracks parallel to the existing one in the lower part of the wall,
increasing the opening of the existing cracks,

separating the wall into two parts with a diagonal step crack.

g3
|
Lok
c
|

Fig. 6.6 Crack propagation of Wall B —model MB-AAC-010/2: a) analyzed area, b) crack pattern at Hy
= 48.05 kN, c) crack pattern at Hx =49.04 kN, d) crack pattern at Hx = 55.58 kN, e) crack pattern at Hx
= 69.25kN, f) crack pattern at Hx = 46.35kN (post-peak)

137



Figures 6.7 and 6.8 show the horizontal and vertical deformation at the post-peak
phase of stiffening wall B. The measured horizontal displacement is about 19.6 mm, and
the vertical one is equal to over 2.5 mm. A stepped crack divides the wall into two parts,
and a wall fragment above the diagonal crack is prone to lifting. The diagonal crack is
formed from the top edge of the wall, where the load is applied and proceeds diagonally
to the wall base.

Figures 5.9 — 5.11 shows the displacement map for stiffening wall A at the same load
level (the post-peak phase). The horizontal crack runs from the corner of the door
opening to the edge of the wall. The values of horizontal displacements are greater than
those of parallel wall B and are a maximum of 19.8 mm. The out-of-plane displacements

are about 1.0 mm.

B-1.dX B-2.d% B-3.d% +20.0 mm
dx +18.153 rmm dx +19.106 rm dx +18.304 mm i

IB—ﬁ.dx
+19,551 mrmfd=

B-4.dX B-5.dX
dx -0.527 mm fd=

+192.422 mm

- 1.0 mm
Fig. 6.7 Post peak in-plane horizontal deformation dy with force Hy = 37.71 kN for Wall B
B-1.dY B-2.d¥ B-3.dY + 3.0 mm
dy +2.730 mm  dY +1.799 mm dY +2.312 mm ]
= / F
[0 })J
_— s
B-5.dY ?B-6.dY
+0.519 mm  dY +1.896 mm _dY +2.531 mm
i
¥
n
0.0 mm

Fig. 6.8 Post peak in-plane vertical deformation dy with force Hx =37.71 kN for Wall B

138



A-1.dX A-2.dX A-3.dX 0.0 mm
dx -19.884 mm dX -19.748 mm dX -19.719 mm ’

A-5.dX A-6.dX
-19.374 mmidx -19.511 mmjdx -2.181 mm

-20.0 mm
Fig. 6.9 Post peak in-plane horizontal deformation dy with force Hyx = 37.71 kN for Wall A

A-1.dY A-2.dY A-3.dY +3.0 mm

dy +1.584 mm dY +1.835 mm dY +2.707 mm -

‘A-5.dY :
+.&§2_r‘_nm dY', : +2.321 mm
||
0.0 mm

Fig. 6.10 Post peak in-plane vertical deformation d, with force Hx =37.71 kN for Wall A

A-1.dZ A-2.dZ A-3.dZ +2.0 mm
dz +0.769 mm dZ +0.843 mm dZ +0.761 mm "
A-4.dZ " A-5.dZ A-6.dZ

dz +1.389 mmildz +1.174 mm! d +0.967 mm

— B

[ ]
0.0 mm
Fig. 6.11 Post peak in-plane out-of-plane deformation d, with force Hx =37.71 kN for Wall A
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6.1.3. Results for MB-AAC-010/4 model

Figure 6.12 shows the crack propagation maps for the MB-AAC-010/4 model.

Deformation maps of stiffening wall A were presented in Fig. 6.13 — 6.15.

a)

m +1.0%
Fig. 6.12 Crack propagation of Wall A — model MB-AAC-010/4: a) analyzed area, b) crack pattern at
H, = 64.55 kN, c) crack pattern at Hx = 66.34 kN, d) crack pattern at Hx = 70.25 kN, e) crack pattern at
H, = 84.80kN, f) crack pattern at Hy = 63.55kN (post peak)

-1.0% u
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A-1 A-2 A-3 +8.0 mm
dXx +1.730 mm dx +7.469 mm dX +7.681 mm j

A-6
+4.846 mm dX

+5.756 mm

0.0 mm
Fig. 6.13 Post peak in-plane horizontal deformation dx with force Hx = 63.55 kN for Wall A

A-1 A-2 A-3 +40 mm
dy +1.202 mm dY +3.246 mm dY +3.173 mm u

+3.335 mm

0.0 mm
Fig. 6.14 Post peak in-plane vertical deformation d, with force Hx = 63.55 kN for Wall A

A= A-2 A-3 +1.0 mm
dz +0.519 mm dZ +0.665 mm dz +0.612 mm u

Ja-5

2ois

7t

0.0 mm
Fig. 6.15 Post peak in-plane out-of-plane deformation d, with force Hx = 63.55 kN for Wall A
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The crack morphology was similar to the previously analyzed walls. The first crack
is located in the corner of the door opening. Then, with a slight increase in horizontal
load - numerous step cracks appear. In the next stage, the size of the main step crack is
increased. After exceeding the load capacity of the wall, there are no more new cracks.
However, there are increasing displacements, and a sliding failure occurs. The maximum
horizontal displacement was 7.7 mm, and the maximum vertical displacement was about
3.3 mm. The out-of-plane displacements were small and amounted to a maximum of

1.3 mm.

6.1.4. Results for MB-AAC-010/5 model

Figure 6.16 presents the crack propagation maps for stiffening wall A of the MB-
AAC-010/5 model. The sequence of appearance of cracks in the wall with a door
opening was identical to previous models, and the first crack occurred in the door
opening corner. Figures 6.17 — 6.19 show maps of wall deformation at the nonlinear

post-peak phase.

a)
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-1.0%

HEE T ] [
Fig. 6.16 Crack propagation of Wall A — model MB-AAC-010/5: a) analyzed area, b) crack pattern at

|
H, =46.33 kN, c) crack pattern at Hy = 51.65 kN, d) crack pattern at Hx = 54.30 kN, e) crack pattern at
H, = 87.53kN, f) crack pattern at Hy = 66.17 kN (post-peak)

A-1 A-2
dx +1.251 mm dX

A-3
+8.227 mm dX

+8.0 mm
+8.085 mm

A-4
dX +0.250 mmfldx

A-6
+0.368 mm dx

+5.892 mm

0.0 mm
A-1 A-2
m dy +1.898 mm dY

A-3
+4.399 mm dY

Fig. 6.17 Post peak in-plane horizontal deformation dx with force Hx = 66.17 kN for Wall A

+5.0 mm
+3.878 mm n

dy +0.158 mmiidY

A-6
+0.059 mm dY

~ +3.836 mm

Fig. 6.18 Post peak in-plane vertical deformation dy with force Hx = 63.55 kN for Wall A

0.0 mm
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A-1 A-2 A-3 +1.0 mm
dz +0.792 mm dz -0.167 mm dZ +0.029 mm -
. -

A-4 A6
dz -0.097 mmkdZ +0.326 mm dZ _+0.700 mm

0.0 mm
Fig. 6.19 Post peak in-plane out-of-plane deformation d, with force Hy = 63.55 kN for Wall A of MB-
AAC-010/5 model

As in model MB-AAC-010/4, the horizontal displacements were small and reached
a maximum of 8.2 mm. The corresponding maximum vertical displacement equals

4.4 mm, and the out-of-plane deformation does not over 1.0 mm.

6.1.5. Results for MB-AAC-010/6 model

The crack propagation maps for stiffening wall A of the MB-AAC-010/6 were
presented in Fig. 6.20. As in other models, the first cracks appear within the window
opening — the vertical crack below the opening and the horizontal one in a tensile corner.
Then stepped cracks appeared on the left side of the wall from the side of the acting load.
With increasing load, the cracks are connected and have a diagonal course.

Finally, a diagonal step crack divides the wall into two parts.
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-1.0% u u +1.0%
Fig. 6.20 Crack propagation of Wall A — model MB-AAC-010/6: a) analyzed area, b) crack pattern at

H,=46.28 kN, c) crack pattern at Hy = 56.60 kN, d) crack pattern at Hx = 57.25 kN, e) crack pattern at
H, =74.53kN, f) crack pattern at Hx = 61.44 kN (post-peak)

Figures 6.21 — 6.23 present the deformation maps of stiffening wall A at the post-
peak phase.

A-1 A-2 A-3 +36.0 mm
dx +33.635 mmdx +36.860 mm dX +36.849 mm .
A-4 A-5
+0.036 mm|dx +34.077 mm dX +35.255 mm
¥
®
[ |
0.0 mm

Fig. 6.21 Post peak in-plane horizontal deformation dyx with force Hx = 61.44 kN for Wall A of MB-
AAC-010/6 model
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A-1 A-2 A-3 +5.0 mm
dy +5.047 mm dY +4.869 mm dY +4.600 mm j

A-6
+1.565 mmdY +4.700 mm
N

0.0 mm
Fig. 6.22 Post peak in-plane vertical deformation dy with force Hx = 61.44 kN for Wall A of MB-AAC-
010/6 model

A-1 A-2 A-3 +1.0 mm
dz -0.534 mm dZ -1.655 mm dZ -1.870 mm -

i

5 1 -1.0 mm
Fig. 6.23 Post peak in-plane out-of-plane deformation d, with force Hy = 61.44 kN for Wall A of MB-
AAC-010/6 model

dz -1.418 mm dZ -1.079 mm

The values of a maximum horizontal deformation are 36.9 mm. After dividing the
wall with a diagonal crack, the part of the wall above the crack is horizontally displaced.
The largest vertical displacement was measured in the corner of the wall from the side

of the applied load — 5.0 mm, and the out-of-plane displacement reached almost 2.0 mm.

6.1.6. Results for MB-AAC-010/7 model

The damage propagation of wall A of the MB-AAC-010/7 is shown in Fig. 6.24.
Similar to model MB-AAC-010/6, the first cracks appeared in the upper left corner of

the window opening and the lower half of the opening. Successively, numerous stepped

146



cracks occur, which eventually run diagonally from the upper corner to the opposite
lower corner. Figures 6.25 — 6.27 present the deformation maps. Significant out-of-

plane displacements of almost 5.0 mm were recorded in the analysed model (Fig. 6.27).

a) b)

4

-1.0% [ [ +1.0%
Fig. 6.24 Crack propagation of Wall A — model MB-AAC-010/7: a) analyzed area, b) crack pattern at
H,=50.41 kN, c) crack pattern at Hx = 50.47 kN, d) crack pattern at Hx = 54.82 kN, e) crack pattern at
H, =66.69 kN, f) crack pattern at Hx = 53.40 kN (post-peak)
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+21.595 mm dx +37.308 mm dx +37.376 mm []
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0.0 mm
Fig. 6.25 Post peak in-plane horizontal deformation dx with force Hx = 53.40 kN for Wall A
A-1 A-2 A-3 +8.0 mm
dy +4.659 mm dY +6.639 mm dY +7.496 mm n

A-5 A-6
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Fig. 6.26 Post peak in-plane vertical deformation d, with force Hx = 53.40 kN for Wall A
A-1 A-2 A-3 +1.0 mm
dz -2.524 mm dz -4.857 mm dZ -4.341 mm =

A6
+0.987 mmidZ _ -1.037 mm

E

-5.0 mm
Fig. 6.27 Post peak 1n—plane out-of- plane deformatlon d, with force Hx = 53.40 kN for Wall A
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6.1.7. Results for MB-AAC-010/8 model

Stiffening wall A was observed in the reference model. The crack propagation is

presented in Fig. 6.28, and the deformation maps in Fig. 6.29 — 6.31.

m +1.0%

-1.0% ]
Fig. 6.28 Crack propagation of Wall A — model MB-AAC-010/8: a) analyzed area, b) crack pattern at
H,=32.53 kN, c) crack pattern at Hx = 48.59 kN, d) crack pattern at Hx = 59.85 kN, e) crack pattern at
H, = 65.52 kN, f) crack pattern at Hx = 27.23 kN (post-peak)
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Fig. 6.29 Post peak in-plane horizontal deformation dx with force Hx = 27.23 kN for Wall A
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Fig. 6.30 Post peak in-plane vertical deformation d, with force Hx = 27.23 kN for Wall A
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Fig. 6.31 Post peak in-plane out-of-plane deformation d, with force Hx = 27.23 kN for Wall
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The first crack appears in the upper part of the wall facing the applied load. With
increasing load, a stepped diagonal crack appears, gradually increasing its width. Finally,
a diagonal step crack divides the wall into two parts. The horizontal displacement at the
post-peak phase equals 41.0 mm, and the maximum vertical one is 3.6 mm. The out-of-

plane displacement was also recorded.

6.2. Crack patterns of tested buildings

The 3D drawings were prepared to show a detailed crack pattern of each model.
Additionally, distinct types of cracks are documented with photos of the damage. The
pattern is similar for each model, and common areas of failure can be distinguished. In
stiffening walls, the cracks run diagonally from the side of the applied load to the wall
base in the opposite corner. If there are openings in the walls (windows or doors), the
initiation of cracks takes place in the tensile corner of the opening. Diagonal cracks
divide the wall into two parts, and after reaching the load capacity of the wall, the part
above the crack undergoes significant horizontal displacements (sliding failure). It
should be added that in the tested models, the diagonal cracks had a stepped course.
With greater compressive stresses of the walls, the diagonal cracks would also run
through the masonry elements (a straight diagonal crack).

The damage pattern is different in the walls perpendicular to the stiffening walls. No
diagonal cracks are observed, but only small areas of accumulated damage. There is
a horizontal crack in half the height of the wall from the side of the applied load (wall
assigned as wall 2). This damage is the result of tensile and lifting of the wall. The
remaining damage accumulates in the upper part of the wall at its edges — they are local
and small (small cracks or chipping of the surface of masonry units).

A similar damage pattern occurs on the opposite side of the building in the
perpendicular wall marked as Wall 1. The damage does not accumulate in its corner if
an opening is made in such a wall. The cracks occur in the lower part of the wall; the
most damaged areas are the corners, which result from the concentration of compressive
stresses in such areas. Figures 6.33 — 6.40 shows the observed crack patterns of tested

masonry buildings. Cracks and damages are marked in red in the drawings.
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Fig. 6.32 Crack pattern — model MB-AAC-010/1: a) view of the stiffening wall A with the door opening,
152

b) view of the stiffening wall B without an opening



71,/
N/
/

7

g ""\\“{I:lil“v
A/
A

)
/1

-,
/f

o
bl

i
9,.
7))

7
{

\/’
£
L/
> )

Fig. 6.33 Crack pattern — model MB-AAC-010/2: a) view of the stiffening wall A with the door opening,
b) view of the stiffening wall B without an opening
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Fig. 6.34 Crack pattern — model MB-AAC-010/3: a) view of the stiffening wall A with the door opening,

b) view of the stiffening wall B without an opening
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Fig. 6.35 Crack pattern — model MB-AAC-010/4: a) view of the stiffening wall A with the door opening,
b) view of the stiffening wall B without an opening
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Fig. 6.36 Crack pattern — model MB-AAC-010/5: a) view of the stiffening wall A with the door opening,
b) view of the stiffening wall B without an opening
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model MB-AAC-010/6: a) view of the stiffening wall A with the window

opening, b) view of the stiffening wall B with the door opening

Fig. 6.37 Crack pattern
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Fig. 6.38 Crack pattern — model MB-AAC-010/7: a) view of the stiffening wall A with the window
opening, b) view of the stiffening wall B with the door opening
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model MB-AAC-010/8: a) view of the stiffening wall A without an opening,

b) view of the stiffening wall B without an opening

Fig. 6.39 Crack pattern
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/. NUMERICALANALYSIS

7.1. Empirical homogenization of the elasto-plastic model

7.1.1. Assumptions

Many homogenization methods show a good agreement between test results and
numerical calculations. However, the practical and common applications of
homogenization can be limited as they require many material tests on masonry units and
mortar and are often performed at original test stands. Also, the test procedures are not
standardized. Validation of individual non-linear parameters for the models can be
troublesome as it was performed and tested on bigger elements under simple stress states.
Therefore, it is necessary to develop a new procedure for the masonry homogenization
approach. The biggest problem with the existing wall homogenization approach is the
procedure's lack of repeatability. Thus, the own procedure for masonry homogenization
was developed. The approach is based on the test results performed on models and
according to procedures standardized following the current standards [67]. The proposed
empirical homogenization fulfils the following assumptions:

e the method is developed for designing new buildings and provides the
possibility for conducting a set of standard tests on masonry and its
components while the in-situ tests using the NDT (non-destructive testing) or
MDT (minor-destructive testing) methods were not required,

e a multi-stage validation could be performed on models developed and tested
following the design standards for masonry structures [N1, N16],

e the masonry material was represented by a model of the isotropic material
whose yield and failure surfaces depended on values of hydrostatic stress —
similarly as in the case of concrete and rock,

e the presence of contact surfaces between the masonry units could be neglected.
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7.1.2. Properties of masonry components

The own homogenization approach was developed based on the test results
conducted in [131]. The masonry consists of autoclaved aerated concrete masonry units
with a nominal density class of 600 kg/m® and M5 class mortar for thin joints. The
concrete masonry units had a length /, = 590 mm, a height 4, = 240 mm, and a width
t« = 180 mm. Mechanical parameters of materials were tested on at least six specimens
following the standard procedure. According to the user-defined procedure, the uniaxial
compressive and tensile strength, modulus of elasticity, and Poisson’s ratio were
determined for cylinders of 60 mm diameter and 120 mm height. The basic mechanical

parameters are presented in Table 7.1.

Table 7.1
Mechanical properties of masonry components
Average parameter (coefficient of variation)
Material o, fm, fecyl, f, E, Gtmv,
N/mm? N/mm? N/mm? | N/mm? | N/mm? v MN/m
AAC 4.95 _ 425 | 061 | 2886 020 | 5.21:10°
(7%) (7.3%) | (14.0%) | (10.5%) | (8.5%) (15%)
Mortar B 6.1 5.64 0.51 6351 0.18 B
(6.2%) (4.0%) | (22%) (9%) (10%)
Proce- EN 17e- EN_1015' The tests were performed on cylinders RILEM
dure 1:2015 11:2020 ?60x120 mm [136]
[N8] [N5]

f, — standardized compressive strength,

fm — compressive strength,

fccyl — uniaxial compressive strength,

fi — uniaxial tensile strength,

E — modulus of elasticity,

v — Poisson's ratio,

Gtmv— cracking energy corresponding to cracking model I (bending test).

7.1.3. Masonry models used in the validation procedure

Following the made assumptions, the validation involved the normalized models in
specifying the mechanical properties of the masonry in compression perpendicular and
diagonal to planes of bed joints. The tests were conducted on walls having a size of 1180
x 1210 x 180 mm (/ x & x ¢) as specified in the standards EN 1052-1:2000 [N16] and
ASTM E519-81 [N1]. The walls were erected in a thin joint mortar with a thickness
tvj = 3 mm. The measuring frames were fixed to the test specimens to measure strains

using linear variable differential transducers (LVDT). The frames fixed to axially
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compressed walls were parallel and perpendicular to the load direction, while the
(diagonally) shear walls had the frames arranged along their diagonals. All the models
were tested after 28 days of concrete hardening under laboratory conditions (relative
humidity 80%, average temperature 23°C, relative humidity of AAC at the time of
testing w = 3% did not significantly impact the test results [77]). Figure 7.1 illustrates
the test models and determines the relationship between stress and strains. The results
are shown in Table 7.2.

a) b)
l,”y 40
& 35
/ 3.0
|
‘ Y 25 Model SIN-1
~ & ‘ E Model SIN-2
3 8 | E 20 I Model SIN-3
= Z Model SIN-4
0 } s 1.5 . Model SIN-5
| g #lﬂf_g Model SIN-6
o i) 1.0 réy % A Mean value
o ¢ 0.5 of Gl \ ; \ “pl
A ’ i
71180 mm f 0.0 &y (52) ' Emax C')‘C 5;(( 52):

I(1+£9)

-0.003 -0.002 -0.001 0.000 0.001 0.002

&
d)

0.25 4 ——RL-S-N-1
——RL-§-N-2
——RL-S-N-4

0.20 I RL-S-N-5

RL-S-N-6 ~

- 0.15 Mean value
g
£
Z 0.10
[ ¥4

0.05 /

0.00

00 01 02 03 04 05 06 07
@, mrad

Fig. 7.1 The models and test results for test specimens used in the validation procedure: a) walls
compressed in a perpendicular direction to the plane of bed joints according to the standard [N16],
b) o,— &, oy— &crelationships for walls compressed in a perpendicular direction to the plane of bed joints,
c) walls in diagonal compression tested according to the standard [N1], d) T — ® relationships for walls
in diagonal compression
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Table 7.2

Properties of masonry used in the validation procedure

Average parameter (coefficient of variation)
3 fc Eobs
Loadi ng ' ! &l &max Epl fim, Ocrobs | Ocr13 G,
N/fm | N/gm |- v % | % % |N/mm?| mrad | mrad | N/mm?
Axial - -
2.97 | 2041 | 0.18
corsr;g:]es- (14%) | (11%) | (15%) -0.048 0.339 0.833 -- -- -- --
Diagonal 0.196 0.587 | 0.138 | 475
compres-| - - -- -- - -- ' (12.3% | (15.4% | (15.4%
. (8.3%)
sion ) ) )
Proce- EN 1052-1:2000 ASTM E519-81
dure [N16] [N1]

“ — read from the averaged diagram of ¢ — ¢ relationships at 0.33fem= 0.335¢cm,

“ — read from the averaged diagram of ¢ — & relationships,

fc — compressive strength of masonry,

E — modulus of elasticity,

v — Poisson's ratio,

emax — Strain at the maximum stress,

epl— plastic strain,

fim — diagonal compressive strength,

Ocobs— mean angle of shear strain determined at the time of formation of visible cracks,

O.,13— mean angle of shear strain determined at the level of 1/3f,

G — shear modulus.

7.1.4. Material models

The procedure of homogenization included the elastoplastic model showing the M-
W-3 degradation. The linear-elastic model defined by Hooke’s law was also used as the
auxiliary model. The M-W-3 model was developed to model brittle materials in which
the shape of the boundary surface depended on average hydrostatic stresses. Constitutive
relations, which were not the same in the hardening and softening phases, were used to
specify the non-linear behavior of the model. This model combined two material models:
the elastoplastic model with the Menétrey-William boundary surface and the elastic-
brittle model with the Rankine boundary surface [34]. The boundary surfaces (failure
surfaces) were defined for the reduced space of octahedral stresses. The space of
principal stresses is described by principal stresses o1, a2, 3. The free parameters define
the octahedral space specified by Haigh-Westergaard coordinates: the hydrostatic
coordinator &, the deviatoric coordinator p, and the Lodge angle ©@. The Haigh-
Westergaard coordinates — Fig. 7.2 are the functions of invariants (/1, J2, J3) of principle

stress tensors (1> o2 > o3). The following formulas (7.1) — (7.3) can describe the
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definition of the space coordinators for boundary surfaces:

=1

p=J2I, (7.2)

(7.1)

3v3 I3

1
@—gacos 2 72 (7.3)
for which formulas express the stress tensor’s invariants (7.4) — (7.6):
11 = 01 + (})] + (})] (74)
[(01 — 02)% + (02 — 03)* + (05 — 01)?]
I, = (7.5)
6
1 1 1
I3 = (0, - g11)(02 - 511)(03 - 511) (7.6)
a) b) c)
o
'y (o} t o, t o= const
Y e Plo-6r 4o
7 &, /
% &
/ »
b oo ™~ %
e L /\54,7° R
5 Y < ! >
/// / E /‘ 520 5
//// \\,\/\33.3
0=, S
0,-cA o2
\\ ) \\o"’o
X 0-0° =
\O'l

Fig. 7.2 The Haigh—Westergaard coordinates in space: a) the components of principal stress space,
b) an axiatoric section, ¢) a deviatoric section

The Rankine criterion was used as the tension-induced failure condition. This
criterion described the condition ox<f; (Fig. 7.3), in which each of three directions of
principal stress (k= 1, 2, 3) could be described by the general form (7.7):

fil= taijn%‘n]l-‘ - (<0 (7.7)

at Haigh-Westergaard coordinates are (7.7):
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ff=&—2pcos® —V/3f, <0 (7.7)

o @=0°
Fig. 7.3 The Rankine criterion in the Haigh-Westergaard space: a) view of principle stress space, b) view
of axiatoric section, c¢) view of deviatoric section

The following relationship expresses strains on the Rankine surface (7.8):

aff Lo, mknk — f(wk
dejj = di* afl.{. =dat = —— T kftk( k) (7.8)

0ij Djjmnn; MmN

where: WX is a crack width calculated from the relationship (7.9):
wk = I8¢l + dak) (7.9)

Equation (7.8) was satisfied after cracking while softening the cracked material
depended on the cracking energy and the crack width [72] expressed by equation (7.9).
The crack width in the direction & was calculated using the known strains E{, and the
specified length L: (crack band size) of smeared cracks. The crack width in the discussed

material model was calculated from the element's size projected into the direction & (Fig.
7.4).

& w

Fig. 7.4 The function of material softening expressed as the crack width
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The elastoplastic model was described with the modified empirical model by Hoek and
Brown [71] based on the concept of Menétrey and William [115], who expressed a three-
parameter yield surface M-W-3 as follows (7.10):

(5Lt N =
f“aﬂa)‘ﬁﬁgkwm)'“”Q@umﬁrw”)+%%wn) W0 o)

where:

m - a parameter, an equivalent to cohesion equal to (7.11):

_ (KDL — (efe)” e
e kWOfASf, e+1 (7.11)

r - an elliptical function (7.12):

B 4(1 — e?)cos?0 + (2e — 1)?
T(@, e) o 2 _ — 2 2 2 _ (712)
2(1 — e?)cosO + (2e — 1)/4(1 — e2)cos26 + 5e2 — 4e

in which:
e — eccentricity of the elliptical function taking values from the range e € (0.5;1.0),

fc, ft — uniaxial compressive and tensile strength,
J+> 1 —scaling parameter for M-W-3 surface.

The surface defined by Menétrey and William (Fig. 7.5) comprised parabolic
compressive meridians (visible in the axiatoric section — Fig. 7.5b) intercepting at a point
corresponding to the triaxial tension. The M-W-3 surface in a deviatoric section was
composed of three tangential curves along compressive meridians, whose shape was

affected by the value of eccentricity e - Fig. 7.5c.

b) )

o o L
Fig. 7.5 Menétrey-William criterion in the Haigh-Westergaard space: a) view of principal stress space,
b) view of an axiatoric section, c) view of a deviatoric section
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The eccentricity of the elliptical function determined the shape of the elliptical curve.
The curves constituting the deviatoric section formed a circle at the eccentricity value
of 1.0. When the eccentricity e equalled 0.5, the elliptical curve in the deviatoric section
had a shape of an equilateral triangle. The intermediate values of the eccentricity
changed the curves' shapes, forming an equilateral triangle with rounded corners. The
surface matching parameter A; > 1 determined the relative positions of the M-W-3 and
the Rankine surfaces — Fig. 7.6. If A; = 1, the yield surface was confined in the Rankine
pyramid. For A: = 2A; = 2, the surfaces were intercepting from the side of hydrostatic
tension and minor compression. The Rankine boundary surface was used to describe the

stress states in that situation.

a)
n
e
P
S\E
a
c|§
2|8
2|3
AR
2|2
Slo
5|5

c)

0=60° 0=60° o=60 0-60°
Fig. 7.6 Relative position of Rankine and M-W-3 surfaces: a) view of surfaces in principal stress space,
b) axiatoric sections, ¢) deviatoric sections: 1 — Rankine Surface, 2 — M-W-3, the surface at k = 1 (yield
strength), 3 — M-W-3 surface at ko (end of the elastic stage)
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At higher values of hydrostatic compression, the failure was specified by the M-W-
3 surface. Displacements of the M-W-3 surface along the hydrostatic axis were possible
due to changes in the surface matching parameter A by simulating the material hardening
or softening stages. These stages were determined by the parameter x related to plastic

volumetric strains expressed by the following (7.13):

dk = dey = de} + de} + del (7.13)

The location of the M-W-3 surface and its temporary shape at the hardening stage
was defined by the hardening function x, which depended on the hardening and
softening parameters. This function was included in the M-W-3 surface and was
responsible for scaling the compressive strength f: of the material. It had the elliptical
form [66] defined by the following formula (7.14):

p p

k(k) = k(eh) =ko+ (1 - ko)\[l - (EV‘t ; SV)Z (7.14)

€yt

where:

&P — plastic strain at the highest compressive stress obtained from uniaxial compression
tests,

& — plastic volumetric strain obtained from uniaxial compression tests (the beginning
of softening),

ko— the value defining an initial yield surface that limited the elastic state (the beginning

of plastic behavior).

At the end of the hardening stage, the function reached the constant value, and the
material entered the softening phase specified by the softening function c. That function
simulated decohesion by shifting the yield surface towards a negative part of the
hydrostatic axis. That function (7.15) in the uniaxial compression had the following
form [156]:

2

L1y
c(k) = c(e\’;) = (1/ ll + (Zz — 1) D (7.15)

where:
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n="p
el (7.16)
n; = (E\I;,t + t)‘g\,;,t (7.17)

The parameter ¢, describing the volumetric strain, controlled the slope of the
softening function. The value of the softening function ¢ was equal to 1 at the hardening
stage. The complete softening of the material with decohesion ¢ was observed at a value
equal to 0. The function's behavior for material hardening & and softening c is illustrated
in Fig. 7.7.

i vt

k(x) /e(x)

P
Ev,l

Fig. 7.7 Shape of hardening/softening function

7.1.5. Strategy for calibrating mechanical parameters

Following the assumptions, homogenization was based on the results obtained from
the standard tests for the masonry models in diagonal compression. The material
parameters for the Rankine and M-W-3 surfaces were validated by step-by-step changes
in the values of the selected mechanical parameters. The results were verified by
comparing the stress-vertical strain and the standard stress-horizontal strain
relationships for the compressed walls. In the case of the walls in diagonal compression,
the verification was based on the relationships between shear stress and an angle of shear
strain. Apart from that, the crack images were compared. They were the images obtained
by calculating the crack morphology from the tested models. Individual stages of the
validation procedure for the homogeneous model for the masonry are presented in Fig.
7.8.
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Fig. 7.8 Stages of the validation procedure for mechanical parameters for the homogeneous model

Stage I of the calibration was to determine the masonry's input modulus of elasticity
Einit. This value was used as the input parameter for the calibration. In stage II, the 2D
linear elastic models of a wall in diagonal compression (the plane stress state) were
developed. Values of the input modulus of elasticity Einic were changed to reach the
modulus value Eca. Stage III was to verify the value of the modulus of elasticity

Eca calibrated in stage Il against the masonry model in diagonal compression. The
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procedure was the same as the previous one. Values of the modulus Ec. were changed
in such a way as to ensure the best match between the stress-vertical strain relationship
and the test results. The material's tensile strength in the diagonally compressed model
ft was calibrated in stage IV. Cracking energy Grca was calibrated in stage IV-A, and
plastic strain &cp cal€cp in stage IV-B. In stage V, compressive strength fc.ca of the masonry
was calibrated against the masonry parameters that had been calibrated in the previous

stages.

7.1.6. Results of the validation of parameters for the homogeneous finite element
model

Stage 1 - determination of the input value of the modulus of elasticity for the
masonry — the elastic model

The input modulus of elasticity was calculated based on the tests on diagonally
compressed models using the known relationship Eiic = 2(1+v)G and the masonry
parameters from Table 7.2. At Poisson's ratio v = 0.18 and shear modulus
G = 475 N/mm?, the elasticity modulus reached the value Einic = 1121 N/mm?.

Stage II - calibration of the elasticity modulus E for diagonally compressed walls —
the elastic model

The modulus of elasticity was calibrated during stage II at the constant value of
Poisson's ratio using the 2D linear-plastic, isotropic models of finite elements. The
masonry and steel elements of the test stand, which were arranged along the diagonal in
the wall corners, were modelled separately. The contact elements were introduced
between the test stand elements and the masonry. The cohesion between these
introduced elements was ¢ = 0, and the friction coefficient was u = 0.1. All the models
were loaded under the same scheme, which included vertical displacements of the upper
supports equal to the constant value A = —10 mm. Each loading step, at which the
calculated results were read, was 0.001A. The bottom of the steel elements of the test
stand was placed on hinge supports. The numerical models of finite elements in the
masonry structures in diagonal compression are shown in Fig. 7.9. The values of shear
strain angle Oca = @ were taken as the conformance criterion for shear stress equal to
0.337max (the representative range of elastic behavior of the wall) and @ca =Omax for the
stress Tmax. The results obtained from calibrating the modulus of elasticity for the models
of walls subjected to diagonal compression are presented in Table 7.3 and illustrated in
graphs of the relationships 7 — @ (Fig. 10a) and Oca/Oobs.— Ecal/Einit Fig. 10b.
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’ A=-10 mm

Fig. 7.9 The numerical 2D model for diagonally compressed masonry structures: 1 — the macro-model
of homogenized masonry units made of autoclaved aerated concrete, 2 — steel elements of the test
machine, 3 — the contact elements representing the connection between the masonry and steel elements
of the test stand

Table 7.3
Results for validation of the elasticity modulus in stage II
Model N/Er;]arl"nz Ecal/Einit rr?r:a Oell Oobs n@‘lr;‘];)((j' Omax/ Oobs
S1 1121 1.000 0.212 1.50 0.626 0.99
S2 1110 0.990 0.212 1.50 0.632 1.00
S3 1612 1.438 0.147 1.04 0.435 0.69
S4 1630 1.454 0.146 1.03 0.430 0.68
S5 1670 1.490 0.142 1.00 0.420 0.67
S6 1675 1.494 0.142 1.00 0.419 0.66
S7 1676 1.495 0.142 1.00 0.418 0.66
a) b)
025 4 test results
model S2

0.20 model S7
AR é
£
§ 0.10 =
K o

0.05

0.00 >

0.0 01 02 03 04 05 06 0.7
@, mrad

1.2

Ecal / Einit

Fig. 7.10 Calibration results for stage II: a) comparison of shear stress — deformation angle relationship
for test results and numerical calculations, b) analysis of the sensitivity of the change in the elasticity
modulus £ to the value of the deformation angle
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The test results for shear walls indicated the non-linear behavior of the masonry even
at a low-stress level. Thus, it was impossible to obtain the modulus of elasticity, which
could be a reliable representation of the actual differences in the behavior of the stressed
masonry. The deformation was consistent at the level of 0.337max for model S7 and the
elasticity modulus £ = 1676 N/mm?, and at the level Tmax for the model S2 and the
modulus £ = 1110 N/mm?. Differences in the modulus of elasticity exceeded 50%.
According to the calculations, changes in the modulus of elasticity caused nearly
proportional changes in the angle of shear strain. Some change in the direction of graphs
representing changes in the shear strain (Fig. 10b) was observed only at the reduced
modulus of elasticity. Eventually, the modulus of elasticity Eca = 1676 N/mm? at @ and

Eca = 1110 N/mm? at Omax were taken for the calculations made in the subsequent stage.

Stage I1I - calibration of the elasticity modulus E for axially compressed walls — the
elastic model

Stage III was to verify the values of the modulus of elasticity calibrated in stage 11
against the behavior of the wall under axial compression. The numerical models of finite
elements were the same as in stage I, apart from an obvious boundary and loading
conditions change. The masonry and steel slabs of the test machine were modelled
separately. The contact elements were introduced between the test stand elements and
the masonry. The cohesion between these introduced elements was ¢ = 0, and the friction
coefficient was ¢ = 0.1. All the models were loaded under the same scheme, which
included the vertical displacement of the top slabs of the test machine equal to the
constant value 4 =—10 mm. Each loading step, at which the calculated results were read,
was 0.001A. The bottom of the steel slabs of the test machine was placed on hinge
supports. The numerical FEM models of the wall subjected to axial compression are
shown in Fig. 7.11.

The results were analysed by comparing horizontal &xca and vertical &ycal strains at
two levels of standard stress 0.33omax (the representative range of elastic behavior of the
wall) and maximum stress omax. The modulus of elasticity of the masonry was changed
as in stage I. The numerical calculations with reference to the test results are presented
in Tables 7.4 and 7.5.
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A

A=-10 mm

Fig. 7.11 The numerical 2D models for axiaﬁy co—rnpre_ssed masonry structures: 1 — the macro-model of
homogenized masonry units made of autoclaved aerated concrete, 2 — steel elements of the test machine,
3 — the contact elements representing the connection between the masonry and steel elements of the test

stand

For the elasticity modulus Eca = 1676 N/mm?, which was calibrated during stage I1

and at the phase of elastic behavior, horizontal strains in compressed walls differed by

32% for horizontal strains and 23% for vertical ones. A similar situation was found for

maximum stress values and the elasticity modulus Eca = 1110 N/mm?. In that case, the

difference in horizontal strains about the test results was 72%, and in the vertical strains

— 52%.

Table 7.4

Results for validation of the elasticity modulus £ in stage III — horizontal strains

Model N/Er;arl,hz Ecai/Einit (0.38§§'Imax) exel | €x,0bs (8;(_;];)3 ex,max | €x,obs
C1 1100 0.98 1.57-10* 1.80 4.83-10™ 0.72
C2 1121 1.00 1.55-10* 1.78 4.66-10™ 0.69
C3 1140 1.02 1.53-10* 1.75 4.69-10 0.69
C4 1500 1.34 1.24-10* 1.42 3.76-10* 0.56
C5 1650 1.47 1.16-10* 1.33 3.53-10* 0.52
C6 1667 1.49 1.16-10* 1.33 3.50-10* 0.52
C7 1668 1.49 1.16-10* 1.33 3.54-10* 0.52
C8 1669 1.49 1.15-10* 1.32 3.51-10" 0.52
C9 1676 1.50 1.15-10* 1.32 3.54-10* 0.52
C10 1690 1.51 1.14-10* 1.31 3.51-10* 0.52
C11 1700 1.52 1.14-10* 1.30 3.52-10* 0.52
C12 2069 1.85 9.94-10° 1.14 3.03-10" 0.45
C13 2070 1.85 1.24-10* 1.42 3.03-10* 0.45
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Table 7.5

Results for validation of the elasticity modulus £ in stage III — vertical strains

Model N/Er;a;hz Ecal/Einit (Oé:éﬁ_lmax) Eyel /Sy,obs (gg_:aix) Ey,max / Ey,0bs
C1 1100 0.98 -8.99-10™* 1.88 -2.71-10° 1.52
C2 1121 1.00 -8.82-10* 1.85 -2.66-10° 1.49
C3 1140 1.02 -8.68-10™ 1.82 -2.62-10°° 1.46
C4 1500 1.34 -6.59-10™* 1.38 -1.99-107 1.11
C5 1650 1.47 -5.99-10™* 1.25 -1.81:107 1.01
C6 1667 1.49 -5.93-10 1.24 -1.79:107 1.00
C7 1668 1.49 -5.93-10 1.24 -1.79-10°° 1.00
C8 1669 1.49 -5.92-10 1.24 -1.79-10°° 1.00
C9 1676 1.50 -5.90-10" 1.23 -1.78-10°° 0.99
C10 1690 1.51 -5.85-10* 1.22 -1.77-107 0.99
C11 1700 1.52 -5.82-10* 1.22 -1.76-10°° 0.98
C12 2069 1.85 -4.78-10* 1.00 -1.45-10°3 0.81
C13 2070 1.85 -4.78-10* 1.00 -1.45-10° 0.81

The values of the modulus of elasticity calibrated in stage I against the models of
diagonally compressed walls did not provide a reliable estimation of the behavior of
axially compressed walls. Therefore, another calibration was performed. It included
a change in the value of the elasticity modulus Eca to match the values of vertical
deformations to the test results at the stress level equal to 0.330max and omax. The
agreement between the vertical strains and the test results at the level of normal stress
equal to 0.330max was found for model C12 at the modulus Eca = 2069 N/mm? —
Fig. 7.12a. The difference in the horizontal strains was 14%. Thus, the modulus of
elasticity increased by 23% compared to the calibrated modulus of elasticity
Eca = 1676 N/mm? of the model subjected to diagonal compression. The vertical strains
of model C8 at Eca = 1669 N/mm? agreed with the test results at the stress level omax.
Differences in horizontal strains determined from the numerical calculations and the
tests were equal to 52% at the stress level omax— Fig. 7.12b. In that case, the modulus of
elasticity Eca increased by 52% compared to the calibrated modulus of elasticity
Ecai = 1110 N/mm? of the models subjected to diagonal compression. Fig. 7.13 compares
how changes in the modulus of elasticity affected the changes in vertical and horizontal
strains at different normal stresses. The obtained relationships were clearly non-linear.
At the stress level of 0.330max, the curves representing horizontal and vertical strains
intercepted at the point representing the elasticity modulus which increased by 18%
regarding the value Einii. Then, the error in representing the horizontal and vertical

strains would be at the same level of ca. 60%.
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Fig. 7.12 Comparison of normal stress-horizontal and vertical deformation relationships for test results
and numerical calculations: a) calibration of vertical deformation at 0.330max, b) calibration of vertical
deformation at omax
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Fig. 7.13 The sensitivity analysis of the change in the elasticity modulus £ to the value of the horizontal
and vertical deformation: a) at 0,330max, b) at omax

At the normal stress omax Within the analysed range of changes of the modulus of
elasticity E, the curves were non-linear and clearly divergent. No value of the modulus
E could be determined, at which the estimating error for horizontal and vertical strains
would be at the same level. The curves also had different slope angles — a change in the
modulus of elasticity caused a more rapid change in the vertical strains than the

horizontal ones.

Stage IV - calibration of the tensile strength f; of the diagonally compressed walls
— the elasto-plastic damage model

The linear-plastic damage model was used in the subsequent stages of the calibration.
The parameters shown in Table 7.6 were taken for further calculations. The value

Eca = 2069 N/mm? was assumed as the representative value of the elasticity modulus.
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This parameter was calibrated for the wall models subjected to axial compression by

matching the vertical strains to the test results at the level of standard stress equal to

0.330max-
Table 7.6
Material parameters — elasto-plastic damage model in stage [V
No. Parameter Based on: Value
1 | Modulus of elasticity E, N/mm? Calibration s;age Il —Table 2069
2 Uniaxial compressive strength fc, Tests on compressed walls — 297
N/mm? Table 7.2 '
. . . Tests on compressed walls — 04
3 | Plastic strain under compression &p| Table 7.2 3.33-10
Tests on cylindrical AAC
4 | Uniaxial tensile strength fi, N/mm? specimens (D60xx120mm) 0.61
—Table 7.1
. L Tests on compressed walls —
5 | Poisson's ratio Table 7.2 0.18
Tests on AAC specimens — o
6 | Fracture energy Gf, MN/m Table 7.1 5.21-10
7 | Softening function in tension Softening de_scrlbed .by the -
exponential function
8 Qltlmate displacement in compres- Constant value 0.0005
sion Wg, m
Calculated based on the
9 | Displacement wc in tension, m cracking energy f_rom the re- -
lationship
we = 5.14(G+lfy)
10 R'educ'ed compressive strength in the Default value 0.8
direction parallel to cracks
11 Coefficient of stiffness reduction co- Constant value as for ordi- 20
efficient in shearing nary concrete
12 | Crack spacing, m Constant value 0.0005
Determined based on macro-
13 | The average size of aggregate, mm scopic observations of the 2.0
masonry units
14 | Eccentricity of elliptical function e Determlneg:trsom triaxial 0.52
15 | Direction of plastic flow Taken as for mc_ompressmle 0
material

The procedure of calibration in stage IV consisted in changing the tensile strength.

The strength of a masonry unit determined from the cylindrical specimens @60x120 mm

and equal to i = 0.61 N/mm? was taken as the reference value. The calculations were

made for the models for shear walls (in diagonal compression), and their results are

presented in Table 7.7.
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Table 7.7

Shear wall calculation results - elasto-plastic damage model in stage IV

Model N];t;?;’nz frcall Tt r?r:’d Oell Oops znl?:(; Omax! Oobs
S20 0.610 1.000 0.115 0.81 0.339 0.54
S21 0.087 0.143 0.115 0.81 0.516 0.82
S22 0.078 0.128 0.115 0.81 0.613 0.97
S23 0.076 0.125 0.115 0.81 0.637 1.01
S24 0.075 0.123 0.115 0.81 0.655 1.03
S25 0.074 0.121 0.115 0.81 0.662 1.05
S26 0.070 0.115 0.115 0.82 0.692 1.10
S27 0.061 0.100 0.118 0.83 0.826 1.31
S28 0.038 0.062 0.146 0.99 1.293 2.05
S29 0.037 0.061 0.144 1.02 1.331 211
S30 0.0061 0.010 1.389 9.81 - -

Due to a change in the tensile strength, the values of shear strain were matched to

the test results for stress levels 0.337max and zmax (the models S28 and S23). However,

the shape of the curve representing the 7 — @ relationship was not convergent,

considering the complete range of shear stress values. The behavior of individual

numerical models and the related test results are compared in Fig. 7.14.
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Fig. 7.14 Comparison of shear stress — deformation angle relationships for test results and numerical

calculations in stage IV of calibration

By matching the angle of shear strain for model S28 at the stress level of 0.337max,

a huge discrepancy in the test results exceeding 200% was generated at the level of the

failure stress. In model S23, whose tensile strength was reduced to 0.125 of the value f;,

the convergence of an angle of shear strain was reached at the level of ultimate stresses.

At this tensile strength value, the shear strain estimation error was equal to 19% at the

stress level of 0.337max.
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The sensitivity analysis of changes in tensile strength that affected the relationships
between calculated results for an angle of shear deformation and the test results was
conducted. This comparison was performed independently at two levels of shear stress.
A change in the tensile strength had a non-linear effect on the behavior of the masonry
subjected to shear loading. The calculations showed that there was no strength value f; cal,
which could represent the behavior of the actual model in shear within the full range of
stresses. The angle of shear deformation was precisely determined at ultimate stresses
for the model S23, for which the best agreement was found between numerical
calculations and test results. The calibrated tensile strength f; cai = 0.076 N/mm? was used
in further calculations. Maps of maximum principal strains of the models S23 and S28
at stress levels 0.337max and zmax are shown in Fig. 7.15, and charts for sensitivity analysis

are shown in Fig. 7.16.
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Fig. 7.15 Principal minimum strain of the selected numerical models: a) S23, b) S28

179



10.0 25 4
- .33 Tmax
8.0 2.0
@é 6.0 2 15
= o)
E 4.0 ~ 1.0
: S
2.0 0.5
0.0 > 0.0 >
0.0 0.2 _0.4 . 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
.ft,cal’{ft .fl,cal ’/th

Fig. 7.16 Sensitivity analysis of the change in the tensile strength to the value of the strain angle:
a) at 0.337max, b) at Tmax

Stage I'V-A - calibration of cracking energy Gy of walls in diagonal compression —
the elasto-plastic damage model
The subsequent stages of the calibration verified the effect of the remaining

mechanical parameters on the behavior of numerical models for shear walls. The tensile
strength value fical = 0.076 N/mm?, calibrated in stage IV, was taken in stage IV-A. The
values of cracking energy Gr were changed by referring them to the reference value
obtained from the masonry unit tests (Table 7.1). The results from numerical calculations

are compared in Table 7.8.

Table 7.8
Shear wall calculation results - elasto-plastic damage model in stage [V -A
Model I\/(i; lil(ﬁn Gf,cal/ Gt rr?r:,d Ocll Oops grpgﬁ Omaxl Oobs

S31 | 5.210-10° 100 0.1149 0.81 0.636 1.01
§32 | 5.210-10* 10 0.1149 0.81 0.636 1.01
§23 | 5.210-10° 1.00 0.1149 0.81 0.637 1.01
S33 | 5.210-10° 0.10 0.1149 0.81 0.655 1.04
S34 | 5.210-10” 0.01 0.1149 0.81 1.115 1.77
S35 | 5.210-10° 0.001 0.1945 1.37 - -

A change in the parameter Gr did not affect the angle of shear strain in the linear

stage (at the value of shear stress equal to 0.337max. An increase in the parameter by 10
and 100 times did not cause an increase in shear strains within the analysed range at the
stress level of failure zmax. A significant reduction of cracking energy intensified the
model vulnerability at the post-elastic phase. The behavior of shear walls in the
calibration stage IV-A is compared in Fig. 7.17. Figures 7.17a and 7.17b show the

sensitivity analysis of the numerical models to the change in the analysed parameter.

180



0.25 —
0.337,0x
0.20 — Tmax
/
. 015 &
E test results ®
B model S31 ~
E, 0.10 model S32 G
model 23 @ 1.0
0.05 model S33 0.8
model S34 ’
0.00 model S3'5 0.6 >
00 01 02 03 04 05 06 07 0.0 25.0 50.0 75.0 100.0
Q, mrad G[,cal/G['

Fig. 7.17 Calibration results for stage IV-A: a) comparison of shear stress — deformation angle
relationships for test results and numerical calculations, b) analysis of the sensitivity of the change in
fracture energy to the value of the deformation angle at 0.337max and at Tmax

Stage IV-B - calibration of cracking energy Gt of walls in diagonal compression —
the elasto-plastic damage model
A similar procedure of calibration was applied in stage IV-B. The elasticity modulus

Eca = 2069 N/mm? that was calibrated in stage III and tensile strength fica = 0.076
N/mm? from stage IV were used in these calculations. The impact of changes in plastic
strain &, which was equated to plastic strain &p of the wall in axial compression
presented in Table 7.2, was tested against the results from numerical calculations.
Following the calculations performed in stage [V-A, the calibrated cracking energy took
the value Gteal = Gr=5.21-10° MN/m shown in Table 7.1. The test results are presented
in Table 7.9.

Table 7.9
Shear wall calculation results — elasto-plastic damage model in stage IV-B
Model Ecp,cal Scp,caI/ Ecp rr?r:,d Oell Oobs grpgﬁ Omax! Oobs

S36 | -3.330-107 100 0.115 0.81 - -

S37 | -3.330-10°® 10 0.115 0.81 0.808 1.28
S$23 | -3.330-10* 1.00 0.115 0.81 0.637 1.01
S38 | -3.330-10° 0.10 0.115 0.81 0.622 0.96
S39 | -3.330-10° 0.01 0.115 0.81 0.606 0.960

A change in the plastic strain did not affect the angle of shear strain at the level of
representative cracking stress 0.33tmax. The model stiffness in the non-linear regime
decreased as the parameter decreased. However, matching the shape of the curve 1 — ©®
to the test results was impossible despite the calibration of the analysed parameter

— Fig. 18. Due to the validation, the value ecp.ca= €p1 Was used in further calculations.
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Fig. 7.18 Calibration results for stage IV-B: a) comparison of shear stress — deformation angle
relationships for test results and numerical calculations, b) analysis of the sensitivity of the change in
plastic deformation &, to the value of the deformation angle at 0.33 7max and at Tmax

Stage V — calibration of compressive strength f. of the wall model in axial
compression — the elasto-plastic damage model
The tensile strength of the masonry in compression was calibrated in stage V. The

following values were used in the calculations: elasticity modulus Eci = 2069 N/mm?,
cracking energy Grea = Gr= 5.21-10”> MN/m, plastic strain &ep.cal = epi= -3.330-1073 (cf
Table 7.2), and tensile strength £; cai= 0.076 N/mm?. The numerical calculations for shear
walls were based on these assumptions, and three different values of compressive
strength fc ca were used — Table 7.10.

Table 7.10

Calculation results for compressed wall — elasto-plastic damage model in stage V
(comparison of horizontal and vertical deformations)

Model Nflcr’;]arlﬁz fc,caI/ fc omaxlfem (0.38§§'Imax) Ex.el /8x,obs (O.?gg'lmax) Ey.el /8y,0bs
C20 2.82 0.95 0.95 1.02:10* 1.16 -4.84-10 1.01
C21 2.97 1.00 0.94 1.02:10* 1.16 -4.83-10™ 1.01
C22 3.12 1.05 0.99 1.01-10" 1.16 -4.82-10™ 1.01

A difference in the determined maximum stress values omax did not exceed 5% for
all the numerical models with changed compressive strength of the masonry. The best
agreement was found for model C22, for which the difference did not exceed 1%
compared to the empirical value. For the horizontal strains determined at the level of
0.330max, the calculated strains were greater by 16%, and a negligible difference was
obtained for the vertical strains. The numerical calculations for the homogeneous model
for the masonry can take the value of compressive strength equal to the average

compressive strength determined from the tests fc cal = fc. The comparison of stress-strain
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relationships for the models C20, C21, and C22 is illustrated in Fig. 7.19. Maps of
maximum principal strains of the models C21 and C22 at stress levels 0.33 tmax and 7max

are shown in Fig. 7.20.
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Fig. 7.19 Calibration results for stage V - comparison of normal stress — horizontal and vertical
deformation relationships for test results and numerical calculations
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Fig. 7.20 Principal minimum strain of the selected numerical models: a) C21, b) C22
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Comparison of crack images
The last analysed factor included images of the element cracking under the highest

compressive stresses. Compared results from tests and calculations are shown in Fig. 21.
Cracks in the numerical models for the walls in axial compression were developed
diagonally from the base towards the centre. They formed two pyramids connected at
their tops— Fig. 21a. The similar cracks were found in the test models at failure. However,
the predominant cracks were running vertically in the extended head joints — Fig. 21b.
Considering the numerical models for the walls in diagonal compression — Fig. 21c; the
cracks cumulated in their central part. The test models — Fig. 21d had cohesive cracks
that developed in the head and bed joints. The masonry units were also cracked with
certain exceptions. To sum up, the images of cracks in the numerical models for masonry
containing the homogeneous material were convergent only for compressed walls. The
crack images showed only a certain tendency for the complex stress states with

predominate shear stresses.
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Fig. 7.21 Comparison of empirical images of cracking and images of cracking in calibrated numerical
models: a) cracks in the numerical model C22 for the wall in axial compression, b) real images of
cracking in the wall in axial compression, c) cracks in the numerical model S23 for the wall in diagonal
compression, d) real images of cracks in the wall in diagonal compression
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Discussion of calculated results

The proposed homogenization procedure for the AAC masonry was based on another
approach than recommended in the literature. Instead of calculating the resultant
parameters for the homogeneous model, the results obtained from the standardized tests
on masonry models in axial and diagonal compression were taken as the reference level.
Based on the tests on walls in diagonal compression, the initial value of the elasticity
modulus for the masonry was determined in stage I. The correctness of the parameter
used in the linear-elastic FEM models was verified in stage 11.

Then, the elasticity modulus Eca = 2069 N/mm? was calibrated against the linear-
elastic FEM model for the compressed walls in stage III (there was an agreement
between vertical strains in the axially compressed model with the standard tests at the
level of cracking stresses). The determined value of the elasticity modulus was slightly
higher than the empirical elasticity modulus for axially compressed wall equal to
Eobs = 2041 N/mm? (cf Table 7.2). The elasticity modulus for the numerical calculation
in the linear stage can take the value Eca = 1.01Eops. It should be noted that the inverse
approach was possible. It could be based on taking in stage I the value of the masonry
elasticity, which was determined in the tests on axially compressed walls with the
subsequent calibration against the walls in diagonal compression.

Stages IV and V verified the taken value of tensile strength for the elasticity modulus
calibrated for the axially compressed model. The agreement of the vertical strains was
found at the level of stresses 0.33omax. In that case, the tensile strength of the AAC block
equal to fieyi = 0.61 N/mm?, was assumed to be the trigger value (cf Table 7.1). This
approach was very reasonable as the subject of the tests included the walls with thin
joints at the minimum mortar content. Based on the conducted calibration of the models
for diagonally compressed walls, the determined tensile strength was fea1=0.076 N/mm?.
Following the proposed homogenization method, the tensile strength could be
determined from the equation fica = 0.125 f:.

Regarding the diagonal compression strength of the masonry (cf Table 7.2), this
relation was expressed as fecar = 0.39 fim. The additional analysis was conducted in stages
IV-A and IV-B. The sensitivity analysis of cracking energy Gf was in line with the
cracking model I and plastic strains in compression &c,. The analyses were performed on
the models in axial and diagonal compression. No significant effect on the obtained test
results was found in both case. The developed approach seemed rather reliable for
predicting strain and stress values in the state specified as the linear range of the wall
behavior at maximum standard and shear stresses. Compressive strength £ ca of the

masonry was calibrated in stage V. The calculated and test results show the agreement
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when f:ca = fc =2.97 N/mm?. The final results of calibrating the linear and non-linear
parameters for the masonry as the relationship between the stress-strain of the walls in

diagonal and linear compression are presented in Fig. 7.22.
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Fig. 7.22 Compared calculated and test results: a) comparison of shear stress-strain angle relationship
for walls in diagonal compression, b) comparison of normal stress — a horizontal and vertical strain of
compressed walls

The differences in results between the tests and calculations were at £10%. It was
possible to obtain a better agreement between these results providing that the model for
the orthotropic material with adequate failure surfaces was used. However, this approach
would be considerably beyond the range of the standard tests on masonry. The highest
reliability of results was obtained for the crack pattern at failure. The numerical crack
patterns in the compressed walls agreed with the test results. This effect was caused by
softening of the masonry units, which predominate during the compression and are
induced by the compression of AAC blocks. A different situation was observed for the
walls in diagonal compression, for which the calculated images of cracks showed the
trend observed during the tests. These findings resulted from neglecting the contact
effects in the homogeneous model, which were noticed in the tests. Such imperfections
of this model could not be eliminated and were identified as the main weaknesses of this
approach. The conversion factors for the mechanical parameters of the homogeneous

model intended for the practical application are presented in Table 7.11.
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Table 7.11

Summary of empirical results for the masonry homogenization

1 Conversion coefficient
Test results Parameter for the of the parameter
homogeneous
Parameter Tests on Tests on model FEM FEM
AAC block masonry (FEM) — —_—
Modulus of
elasticity 2886 2041 2069 0.72 1.01
E, N/mm?
Tensile
strength 0.61 0.196 0.076 0.12 0.39
£, N/mm?
Fracture
energy 5.21-10° -- 5.21-10°7 1.0 --
G, MN/m
Plastic strain 3 3
- - -3.330-10 -3.330-10 -- 1.0
cp
Compressive
strength 4.95 2.97 2.97 0.60 1.00
/., N/mm?
Conclusions

The own empirical approach to calibrating the mechanical parameters for the
homogeneous model for the masonry made of AAC masonry units was developed. At
first, the elasticity modulus of the masonry was calibrated using the models of axially
and diagonally compressed walls. They were linear-elastic FEM models. The elasticity
modulus of the masonry, which correctly specified the vertical strains in axial
compression, could be assumed as Eca = Eobs. Other parameters were calibrated against
the elasto-plastic FEM models with the combined Rankine and Menétrey-William
boundary surfaces. The tensile strength of the masonry units was the most crucial
parameter affecting the calculated results for the walls in axial and diagonal compression.
Hence, the obtained empirical value used to calculate the tensile strength of the masonry
model was expressed as fea = 0.125 f;. Other parameters that controlled the material
behavior in the softening phase in tension (cracking energy) and compression (plastic
strain and compressive strength) had a minor effect on the masonry behavior. The values
of stress and strain in compression and tension could be successfully determined using
the procedure of empirical homogenization. However, the crack images would only
agree if the compressive stresses predominated. To sum it up, the advantages of the

described method of homogenization are as follows:
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easy determination of parameters for the masonry using the normalized
models in axial and diagonal compression,

simple development of the 2D FEM model with calibrated parameters for the
masonry. The contact elements between the masonry units and mortar were
neglected,

the possible application of the homogeneous model to predict the relationship
between stress and strain of the masonry in the complex state of stresses. The
maximum error could be of the order of £10%,

the adequate estimation of the masonry behavior in the elastic and post-elastic
phase,

and the adequate estimation of a crack pattern of the masonry mainly

subjected to compressive stresses.

The obvious weaknesses of this procedure include:

its limitation to the masonry made of solid elements with similar mechanical
parameters of the orthotropic nature,
incorrect specification of crack pattern for the walls that are mainly subjected

to tensile stresses.

7.2. Full-scale nonlinear analysis

A full-scale numerical model was made to verify the empirical homogenization

based on axial and diagonal wall compression tests. The building with a door opening

in the stiffening wall A was analyzed. The main assumptions of the numerical model are:

a spatial model of the building (Fig. 7.23) with a mesh size of 9.0 cm,

the geometry of the numerical model was consistent with the research model
MB-AAC-010/2,

the model was fixed on the bottom surface of the walls — Fig. 7.24,

the horizontal load was applied at the gravity center of the slab, as in the tests,
the elastic material model represents the slab (concrete class C30/37) — Fig.
7.25,

the elastoplastic material model with degradation represents the masonry
walls, model parameters following Table 7.12,

individual elements of the model are connected (inseparability of

displacements).
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Table 7.12

Parameters of the elasto-plastic material model (first calculation approach)

No. Parameter Value

1 Modulus of elasticity £, N/mm? 2069

2 Uniaxial compressive strength f;, N/mm? 2.97

3 Plastic strain under compression &pi 3.33-10*

4 Uniaxial tensile strength fi, N/mm? 0.076

5 Poisson's ratio 0.18

6 Fracture energy Gy, MN/m 5.21-10°

7 Softening function in tension -

8 Ultimate displacement in compression w4, mm 0.05

9 Displacement w. in tension, m -

10 Reduced compressive strength in the direction 0.8
parallel to cracks )

11 Coefticient of stiffness reduction coefficient in 20
shearing

12 Crack spacing, m 0.0005

13 The average size of aggregate, mm 2.0

14 Eccentricity of elliptical function e 0.52

15 Direction of plastic flow 3 0

16 Onset of crushing, MPa 0.16

A,

z
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Fig. 7.23 Numerical model view (3D volume model) with the coordinate system
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Fig. 7.24 Support boundary conditions: a) locked displacements in all directions, b) surface view of
locked displacements
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AACnonlinear
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model with degradation

Fig. 7.25 Material models for particular parts of the calculation building model

Loads were applied in stages in three sequences. A self-weight of walls and slab was
applied in the first sequence — Fig. 7.26, and in the second sequence, the load
corresponding to the weight of the finishing layers and the live load was set — Fig. 7.27.
Load values were recalculated and applied to volumetric elements — Table 7.13. The
horizontal load was applied at the end as a displacement for point — Fig. 7.28. After that,
the model was divided into finite elements with a mesh size of 9.0 cm. The view of the
3D model with the FEM mesh is shown in Fig. 7.29.

Table 7.13
Load values in the calculation model
Types of load | Description Value, kN Weight for volume, kN/m®
Dead-load Self-weight of slab 57.00 26.888
Dead-load Self-weight of walls - 6.000
Live load Live-load for floor 73.44 34.643

*volume of the slab in the calculation model: 3.64 m x 3.64 mx 0.16 m =2.12 m®
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Weight of slab
-26.888 kN/m?

. Weight of walls
-6.00 kN/m?

Fig. 7.26 First load sequence — self-weight of slab and masonry walls

. Live load
-34.643 kN/m’>

<>;’%/f/)/

Fig. 7.27 Second load sequence — live load of a floor

@ -

e

Displacements for
point
-0.0l m

Fig. 7.28 Third load sequence — horizontal load
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Fig. 7.29 Mesh of finite elements with a mesh size of 9.0 cm

Calculation results were compared with the test results of the MB-AAC-010/2 model.

The model validation criteria were established as follows:

criterion A — the global behavior of the building expressed by the dependency

Hy — ux (horizontal load — horizontal displacements of the stiffening walls A

and B),

criterion B — crack pattern

7.2.1. First calculation approach

The numerical calculations in the first approach do not agree with the test results.

The maximum force of the numerical model was 214.78 kN, and the corresponding one

in the test results was 69.25 kN — Table 7.14. The numerical model was also

characterized by lower initial stiffness than the tested model. Fig. 7.30 compares the

results, and Fig. 7.31 shows the values of horizontal displacements in the X-direction.

Table 7.14
Comparison of total forces between numerical and test results
Nonlinear phase
MOdel Hu, numHu, Hu / uu, Caluu, uu / numuu
kN kN numgr, mm mm

MB- | wall A 4.97 9.20 0.54
AAC- 69.25 214.78 0.32

010/2 Wall B 1.99 6.74 0.30
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Fig. 7.30 First calculation approach - comparison of numerical calculations and test results: a) results
b) for 1 and 2 walls

for A and B walls,
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Fig. 7.31 Horizontal displacements in the X-direction of a nonlinear numerical model (first approach)

Furthermore, the analysis of criterion B showed that the crack pattern does not

coincide with the test result. No cracks were obtained in the homogeneous numerical

model. Therefore, instead of cracks, areas of material softening — (7.14) and (7.15) — are

shown in Fig. 7.32 and Fig. 7.33. The crack pattern obtained in the calculations is diffuse

- without dominant diagonal damage in the stiffening walls, as was in the test.
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Fig. 7.32 Softening of the material — view of walls A and 2 of a nonlinear numerical model (first
approach)
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Fig. 7.33 Softening of the material — view of walls B and 1 of a nonlinear numerical model (first
approach)

As the material model is isotropic and the real masonry behaves orthotopically,

calibration of the homogeneous model is required (even if the model was calibrated on
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walls with smaller geometry). Calibration of the tensile strength (second approach),

fracture energy (third approach) and a combined model (fourth approach) in which both

parameters were modified was analysed. When the tensile strength f; was changed, the

onset of crushing was also corrected as -2.1f;. Table 7.15 shows the values of changed

parameters.

Table 7.15

The values of calibrated parameters in particular computational approaches

Conversion coefficient
Test results Parameter
Calcula- Tests on Tests on for the ho- of the parameter
tion ap- | Parameter YT p—— mogeneous FEM FEM
proach model —— —
(AAC) (M) (FEM) AAC M
Tensile
strength f;, 0.61 0.196 0.076 0.12 0.39
1 N/mm?
Fracture
energy Gr, | 5.21-10° - 5.21-10° 1.00 -
MN/m
Tensile
strength fi, 0.61 0.196 1.00-107* 1.64-10* | 5.10-10*
) N/mm?
Fracture
energy Gr, | 5.21-10° - 5.21-10° 1.00 -
MN/m
Tensile
strength fi, 0.61 0.196 0.076 0.12 0.39
3 N/mm?
Fracture
energy Gy, | 5.21-10° - 5.21-10710 1.00-10°® -
MN/m
Tensile
strength fi, 0.61 0.196 0.010 0.02 0.05
4 N/mm?
Fracture
energy Gr, | 5.21-10° - 5.21-1010 1.00-10° -
MN/m

7.2.2. Second calculation approach

In the second calculation approach, the tensile strength was significantly reduced to
the value f; = 1.00-10* N/mm? (Table 7.15). The onset of crushing was adjusted to the

value of 2.10-10* N/mm?. A better convergence of the maximum force value was
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obtained; however, the horizontal displacements of the numerical model were greater
than the real ones. Numerical stiffening wall A moved horizontally at maximum force
by 10.37 mm and wall B by 5.66 mm — Table 7.16. In addition, the numerical models
showed significantly lower stiffness than the tested building — Fig. 7.34.

Table 7.16
Comparison of total forces between numerical and test results
Nonlinear phase
Model H,, & H,/ Uy, calyp, g / ™M uy
kN kN A, mm mm
MB- Wall A 4.97 10.37 0.48
AAC- 69.25 85.90 0.81
a) b)
100.0 4
80.0 oV il
4
’l
~ 600 -
X ,I
= /
T 400 A
] ’/
I —— Stiffening wall - axis A /’ Perpendicular wall - axis 1
200 |/ ——— Stiffening wall - axis B 20.0 ot Pergendicular wall - axis 2
g mmm— FEM - Wa” A S FEM - Wall 1
----- FEM - Wall B ’ -----FEM-
0.0 % > 0.0 L2 FEM - Wall 2 .
0.00 500 10.00 1500 20.00 25.00 000 100 200 3.00 4.00 5.00
Uy, mm Uy, mm

Fig. 7.34 Second calculation approach - comparison of numerical calculations and test results: a) results
for A and B walls, b) for 1 and 2 walls

The significant weakening of the masonry tensile strength resulted in a change in the
damage to the building. The softening of the material was more concentrated in points
(small areas) — Fig. 7.35. The nature of the damage to the stiffening wall B was similar
to the test results - diagonal softening of the material — Fig. 7.36. At the intersection of
the stiffening wall A and the perpendicular wall 1 (the lower part of the corner), material

softening was indicated as it was in the tests.
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Fig. 7.35 Softening of the material — view of walls A and 2 of a nonlinear numerical model (second

approach)
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Fig. 7.36 Softening of the material — view of walls A and 2 of a nonlinear numerical model (second

approach)
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7.2.3. Third calculation approach

The third approach concerned the reduction of the fracture energy - the tensile
strength was the same as in the first approach (Table 7.15). This led to significant
discrepancies between actual and numerical displacements — Table 7.17. Only the
maximum force was similar to the test results — Table 7.18; the corresponding
displacements differed significantly. The analyzed numerical model had lower initial
stiffness than the tested building. The global behavior is presented in Fig. 7.37. The
softening of the material is shown in Fig. 7.38 and Fig. 7.39.

Table 7.17
Comparison of total forces between numerical and test results — linear phase
Nonlinear phase
MOdel Hcr, nuchr, Hcr / ucr, calucr’ uCI‘ /
kN kN s mm mm Mgy
MB- Wall A 1.02 9.90 0.10
AAC- 49.62 150.43 0.33
0102 | WallB 0.43 6.17 0.07
Table 7.18
Comparison of total forces between numerical and test results — nonlinear phase
Nonlinear phase
Model H,, 5 H,/ Uy, “alyr, Uy /™ uy
kN kN A, mm mm
MB- Wall A 4.97 29.90 0.17
AAC- 69.25 164.69 0.81
0l0/2 | WallB 1.99 18.69 0.1
a) b)
180.0 4 180.0 4
160.0 T e e 1600 [ e
140.0 i 140.0 A
120.0 -4 120.0 A
Z 1000 £ Stifening wall - axis A Z 100.0
= tiffening wall - axisB "= /
I 80.0 Ill // ..... FEM - Wall A T 800 //
60.0 FEM - Wall B 60.0 ~ Jrd
, Perpendicular wall - axis 1
40.0 40.0 J Perpendicular wall - axis 2
20.0 200 |- FEM - Wall 1
S - FEM - Wall 2
0.0 > 0.0 >
0.00 500 10.00 15.00 20.00 25.00 0.00 100 200 300 4.00 5.00
Uy, Mm u,, mm

Fig. 7.37 Third calculation approach - comparison of numerical calculations and test results: a) results

for A and B walls, b) for 1 and 2 walls
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Fig. 7.38 Softening of the material — view of walls A and 2 of a nonlinear numerical model (third
approach)
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Fig. 7.39 Softening of the material — view of walls A and 2 of a nonlinear numerical model (third
approach)

Although the cracking and maximum forces differed from the test results,
a convergent crack pattern was obtained. The homogeneous model showed the

formation of diagonal damage in walls A and B and local concentrations in the corners.
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7.2.4. Fourth calculation approach

The fourth approach is a combined model in which the fracture energy (as in
approach 3) and the tensile strength are reduced to value f; = 0.01 N/mm? (the onset of
crushing was 0.021 N/mm?). The discrepancies in the horizontal displacements of the
walls were significant both in the linear — Table 7.19 and nonlinear phases — Table 7.20.
Reducing parameters lowers the initial stiffness (Fig. 7.40) - higher values lead to

overestimating the structure's load capacity (maximum force).

Table 7.19
Comparison of total forces between numerical and test results — linear phase
Nonlinear phase
cal
Model Hcr, a5 cry He: / rLItlcrrI,l mL;;’ ngr(rrlr /
kN kN g ter
MB- Wall A 1.02 9.23 0.11
AAC- 49.62 97.48 0.51
0102 | WallB 0.43 6.79 0.06
Table 7.20
Comparison of total forces between numerical and test results — nonlinear phase
Nonlinear phase
Model H,, 5 H,/ Uy, “alyr, Uy /™ uy
kN kN MH mm mm
MB- Wall A 4.97 28.56 0.17
AAC- 69.25 116.28 0.60
0102 | WallB 1.99 19.78 0.10
a) b)
—— Stiffening wall - axis A Perpendicular wall - axis 1
160.0 & o Stiffening wall - axis B 160.0 & Pergendicular wall - axis 2
1400 | —=--- FEM - Wall A 140.0 FEM - Wall 1
----- FEM - Wall B ====-FEM - Wall 2
1200 |
1000 | et
<
= 80.0
I /
60.0 I/
40.0 o
20.0
> 00 & >
0.00 5.00 10.00 15.00 20.00 25.00 000 100 200 300 400 5.00
Uy, MM Uy, mm

Fig. 7.40 Fourth calculation approach - comparison of numerical calculations and test results: a) results
for A and B walls, b) for 1 and 2 walls

200



Changing the parameters also affects the crack pattern obtained — Fig. 7.41 and Fig.
7.42. In the fourth approach, the cracks (softening of the material in the numerical

calculation) consistent with the test results were not obtained.
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Fig. 7.41 Softening of the material — view of walls A and 2 of a nonlinear numerical model (fourth
approach)
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Fig. 7.42 Softening of the material — view of walls A and 2 of a nonlinear numerical model (fourth
approach)
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In conclusion, non-linear, full-scale numerical analyzes of the building with a door
opening in the stiffening wall A were carried out. Validations were performed based on
the results of testing the MB-AAC-010/2 model. Two criteria for verification of
numerical models have been proposed: comparison of horizontal displacements
(criterion A) and crack pattern (criterion B). The calculation results of four selected
models are presented:

e the first approach — model with mechanical parameters calibrated on standard
models,

e the second approach — model with reduced tensile strength (fi = 1.00-10*
N/mm?),

e the third approach — model with reduced fracture energy (Gr = 5.21:10°1°
MN/m),

e the fourth approach — combined model with reduced fracture energy as in
approach third and reduced the tensile strength (f; = 0.010 N/mm?).

Calibration of the tensile strength reduced the models' load capacity - although no
convergence with the test results was obtained. The reduction of the fracture energy
Gr allowed for accurate representing of damage in the lack of convergence of criterion
A. It should be added that the calculations were carried out on an isotropic,
homogeneous model, which is a significant simplification of the masonry structure
characterized by anisotropic behavior. Introducing contact surfaces (calculations on the
micromodel) would allow for a better representation of stiffening masonry behavior.
The above calculations should be continued in a scheme similar to section 7.1 as
a multi-stage calibration of mechanical parameters until the results converge based on
criteria A and B. Complete solutions should also include an analysis of the sensitivity of
parameter changes to validation criteria. The parameter correction [ is expected to
soften the masonry model and validate the numerical results. Another approach is
introducing contact elements in the crack zones, e.g. in the tensile corner of the opening.
Nevertheless, the calculated results indicate that validation based on relevant test

findings is essential to advance nonlinear numerical calculations.
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8. DISCUSSION

The behavior of stiffening walls is a complex issue consisting of multi-stage phases
(initial phase, linear and nonlinear and residual one). Numerical simulations using
advanced material models (e.g. elasto-plasic with degradation) allow for partially
representing masonry behavior. However, this approach is time-consuming and labor-
intensive. Multi-parameter models require structural tests and validation of the model
each time, which is impractical and unfeasible from the engineering point of view. In
addition, modelling all openings in the building may not be justified for designing the
structure.

A significant simplification of calculations using elastic models without openings is
proposed. Instead of modelling the openings in the numerical model, it can be replaced
with a solid wall with reduced stiffness. This solution speeds up modelling and allows
getting correct calculation results. Two approaches were analysed.

In the first model, the wall stiffness was the same as in the test results based on
standards (uncalibrated model). In the second approach, the modulus of elasticity was
calibrated (reduced) — Table 8.1.

Table 8.1

Results for calibrating the elastic modulus of numerical models

Test results Conversion coefficient
Parameter of the parameter
Model Tests on for the elas-
(approach) Parameter AAC block -r[;sstgn?; tic model FEM FEM
(AAC) (M) (FEM) AAC M
Wall A | Modulus of 2041 0.71 1.00
1 Walls elasticity 2886 2041
E, N/mm? 2041 0.71 1.00
B, 12
Wall A | Modulus of 35 0.01 0.02
2 Walls elasticity 2886 2041
B 12 E, N/mm? 1200 0.42 0.59
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Vertical loads were omitted from the analysis because the reduction of the modulus of
elasticity would lead to an incorrect estimation of slab deflections due to excessive
vertical displacements of the wall. For this reason, the proposed approach applies only
to the analysis of horizontal displacements under an acting lateral load. The numerical
model was based entirely on the elastic material model — Fig. 8.1. Stiffening wall A with

a door opening has been replaced with a solid wall.

. concrete
elastic material model

steelmaterial

elastic material model
elastic material model

. AACwallA

elastic material model

Fig. 8.1 Material models for particular parts of the calculation building model

The uncalibrated model was characterized by greater stiffness than the test results of
the MB-AAC-010/2 model — Fig. 8.2. Moreover, the rotation of the building was not
obtained (no displacements in the direction perpendicular to the acting load). Because
the stiffness of all the walls was the same, only translation occurred. The values of

horizontal displacements are presented as a map of displacements in Fig. 8.3.

a) b)
: 80.0 &
E 70.0
E 60.0
: 50.0
i Z
{ -40.0
e . I . .
30.0 —— Stiffening wall - axis A 30.0 Perpendicular wall - axis 1
——— Stiffening wall - axis B Perpendicular wall - axis 2
200 |- ===-- FEM - Wall A 20.0 FEM - Wall 1
_____ FEM - Wall B -----FEM - Wall 2
10.0 10.0
0.0 > 0.0 >
0.00 2.00 4.00 6.00 8.00 0.00 0.50 1.00 1.50 2.00
Uy, mm uy, mm

Fig. 8.2 Comparison of numerical calculations and test results (elastic model 1): a) results for A and B
walls, b) for 1 and 2 walls
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Fig. 8.3 Horizontal displacements in the X-direction of a numerical model (elastic model 1)

In the second model, in which the wall stiffnesses were reduced, the correct values
of stiffnesses were estimated - matched to the initial stiffnesses of the tested building
(Fig. 8.4).

In addition, the rotation of the building resulting from the difference in stiftness of
the walls was also indicated — Fig. 8.5. The calibration of numerical models can be done
by reducing the modulus of elasticity or by reducing the wall thickness, depending on

the chosen approach.

a)
800 ‘ifrffrf 77777 | | | | -0 T r— 77 |
A R R | : |
00 fla ~ S S | o [ I |
60.0 S 1 o e00 | L - T |
500 ‘ ! ! Perpendicular wall - axis 1
O [ = ‘ - Perpendicular wall - axis 2
Z Y FEM - Wall 1
-40.0 ~— —— Stiffening wall - axis A FEM - Wall 2
L ——— Stiffening wall - axis B ! ] |
O [ FEM-wallA 300 p-7 Tt Tt |
20.0 ,,,,i,,:::}::EEM}:Wﬁﬂ}Tz ,,,,, 200 Hp doee b |
oo i wolff e
00 A I R : : .
0.00 2.00 4.00 6.00 8.00 10.00 1.00 1.50 2.00

Uy, mm Uy, mm
Fig. 8.4 Comparison of numerical calculations and test results (elastic model 2): a) results for A and B
walls, b) for 1 and 2 walls
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Fig. 8.5 Horizontal displacements in the X-direction of a numerical model (elastic model 2)

The approaches to calculating stiffness presented in this dissertation are subject to
some assumptions. The adopted static scheme of the wall or its components determines
the final result in the total stiffness method. Table 8.2 show the stiffness calculation
results for a stiffening wall with a door opening, assuming the wall is restrained on both

sides (double-fixed static scheme).

Table 8.2
Stiffness of wall A with door opening for double-fixed piers
. Distance .
Wall or Moment of; inertia Static scheme GC-LC Stiffness
component I, m . m K, KN/mm
A 1.59 F 592.75
A C 0.09 F 1.91 47.22 | 81.46
D 0.09 F 47.22

For such assumptions, the stiffness of the masonry wall is 81.46 kN/mm. Assuming
that the piers between the opening behave in the static cantilever scheme, the stiffness
of the wall is lower by 28% and amounts to 58.5 — Table 8.3. This significant difference
has consequences in changing the location of the torsion center. Assuming the double-
fixed piers, the coordinates of the torsion center are x; = 0.00 m and y: = -0.32 m. The
coordinates of the torsion center in the static cantilever scheme of piers are x; = 0.00 m
and yr =-0.61 m — Table 8.4.
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Table 8.3

Stiffness of wall A with door opening for cantilever piers

) . Distance .
Wall or Moment OE inertia Static scheme GC-LC Stiffness
component I, m 0 m K, kKN/mm
A 1.59 F 592.75
A C 0.09 C 1.91 32.45 58.49
D 0.09 C 32.45
Table 8.4
The coordinates of the torsion center
Siaiits oo of i Coordinates of torsion center
Xr, M Yr, M
double-fixed 0.00 -0.32
cantilever 0.00 -0.61

In the engineering approach of replacing a wall with an opening with a solid wall of
reduced stiffness, the total stiffness method can be used to calculate the cracking phase.
As shown in chapter 6 — cracks change the geometry of the piers between the openings,
and considering this fact makes it possible to calculate the reduced stiffness of the wall
— Fig. 8.6.
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Fig. 8.6 Division of the wall into components: a) cracked wall, b) calculation model: 1 — masoﬁry wall,
2 — door opening, 3 — static scheme, 4 — cracks

The stiffness of a wall with a door opening (and a window opening) can be calculated
by adopting a modulus of elasticity calibrated in a numerical model and piers geometry
following Fig. 8.6. The boundary conditions of the structure influence the assuming
static schemes of individual wall parts. The calculation results for the wall with the door
opening, taking into account the cracking, are presented in Table 8.5.

This approach allows for a safe estimation of the behavior of the wall in the post-

207



elastic phase. A reduced stiffness is shown as a green line in Fig. 8.7.

Table 8.5
Stiftness of cracked wall A with door opening
) . Distance .
Wall or Moment OE inertia Static scheme GC-LC Stiffness

component I, m 0 m K, kKN/mm

A 1.59 F 540.71

C 0.09 C 49
A D 0.09 C 1.91 5.15 1.53

E 0.09 F 30.86

* a reduced modulus of elasticity was assumed: £ = 35.0 MPa (Table 8.1).
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Fig. 8.7 Behavior phases of stiffening wall A

The wall stiffness differs both in the initial phase due to the openings and in the non-
linear phase due to progressive cracking. This phenomenon causes the building's center
of torsion to be constantly changing. Digital image correlation (DIC) was used to
measure the displacements of slab corners to prove that the coordinates of the torsion
center changed within the loading process. Vectors of resultant displacements and values
of horizontal and vertical displacements were analysed. The measurements were made
in all behavior phases of the stiffening walls.

Analysis of displacement vectors showed that in the initial phase, when the stiffness
of the building is the highest, the building rotates — Fig. 8.9 and Fig. 8.9. As the load
increases, the walls crack, and the internal forces redistribute. The equalization of
internal forces between the walls makes the rotation give way to the translation of the
building in the subsequent phases — Fig. 8.10. In the residual phase, the rotation is
marginal, and the horizontal displacement, consistent with the action of the lateral load,
dominates — Fig. 8.11.
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b)

H,=20.693 kN

Fig. 8.8 The horizontal displacement vectors in the elastic phase: a) at force Hx = 16.826 kN, b) at force
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Fig. 8.9 The horizontal displacement vectors: a) at force Hx =29.519 kN, b) at force Hx = 34.854 kN
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The procedure described in section 5.3 and the results of displacement measurements
in the X and Y directions (Table 8.6) were used to calculate the torsion center (RC).
Different coordinates were obtained for each load level — Table 8.7. Moreover, the
results indicate that the torsion center of the building is constantly changing due to the
changing stiffness of the building's structural elements. A similar verification was
carried out for the elastic numerical model (approach 2). Based on the slab corners'
displacements, the torsion centre's location was calculated — Table 8.8. The coordinates
of the torsion center calculated on the calibrated elastic model were close to the residual
phase of the MB-AAC-010/2 model. Moreover, the changing position of the RC
determines the change in the distribution of internal forces. In the walls transverse to the

stiffening ones, the internal forces are caused by the torsion effect of the structure.

Table 8.6
The horizontal corners displacements of slab for the MB-AAC-010/2 model

Horizontal The ho‘rizontal displacements of slab corners, mm ' .
Point Point Point Point Point
force,
Hy. kN a b c d e
’ dx.a dy.a dx.b dy.b dx.c dy‘c dx.d dy.d dx.e dy.e
16.826 -0.191 | 1.384 | -0.243 | 1.443 -0201 | 1.389 | -0291 | 1.336 | -0270 | 1.246
20.693 -0.059 | 1.985 -0.097 | 2.185 | 0.007 |2.177 |-0.077 | 2.001 -0.105 | 1.948
29.519 -0.180 | 1.161 -0.076 | 1226 | -0.043 | 1.158 | -0.180 | 1.073 | -0.107 | 0.990
34 854 -0.493 | 1.629 | -0.471 | 1.999 | -0.198 | 1.947 | -0.564 | 1.613 | -0.476 | 1.557
49.328 -1.236 | 3.095 -1286 | 3316 | -0.947 | 3.163 | -1.394 |3.083 |-1.277 | 2951
69.247 -4320 | 1987 | -2.898 | 2.273 -1.814 | 1.461 23902 | 0.623 | -3.351 | 0.672
64.494 4967 |2.036 |-3322 |2410 |-2269 | 1366 | -4.625 | 0.521 23911 | 0.578
46.850 -10.925 | 0.238 | -10.812 | 0.946 | -9.756 | 0.415 | -10.404 | -0430 | -10.319 | -0.082
Table 8.7
The coordinates of the torsion center of the MB-AAC-010/2 model based on research
Horizontal force, Coordinates of torsion center

Hy, kKN Xr, M Yr, M

16.826 -216.31 13.52

20.693 -113.16 -0.98

29.519 26.81 0.97

34.854 147.68 0.02

49.328 -65.31 -0.15

69.247 4.71 1.04

64.494 3.56 0.70

46.850 -0.48 0.70
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Table 8.8
The coordinates of the torsion center of the MB-AAC-010/2 FEM elastic model

(approach 2)
Horizontal force, Coordinates of torsion center
Hx, kN Xr, M Yr, M
26.47 -0.05 0.72
37.05 -0.05 0.72
47.64 -0.05 0.72
68.81 -0.05 0.71

The analysis shows that the center of torsion in a real building changes its position
with increasing load. The proper design of elements stiffening masonry buildings should

ensure the geometric invariability of the structure both in terms of horizontal

displacement of the building and its rotation.
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9. CONCLUSIONS

This doctoral thesis 1s devoted to masonry stiffening walls. The modern trend in the
construction industry to optimize the structure (reducing the cross-sections of load-
bearing elements) does not always go hand in hand with the correct calculation
verification. The lack of a comprehensive method for calculating the stiffness of
stiffening walls, localization of the torsion center and a deep understanding of the
behavior of such elements prompted the author to consider the topic from theoretical
and experimental points of view.

Chapter 1 is a short introduction describing the current economic situation and
market-related to the construction industry. Chapter 2 includes the justification for
taking up the subject of shear walls as well as the goals, theses (statements) and scope
of the work. Chapter 3 analyzes the state of knowledge regarding standard regulations
and scientific publications in domestic (polish) and foreign literature. Selected results of
masonry structures tests, calculation procedures and methods of wall homogenization
used in numerical calculations are presented. Chapter 4 concerns the own experimental
program of testing full-scale models of masonry buildings, the description of the test
stand and the measurement methods used. Chapter 5 presents the main test results and
a determination of the behavior phases of the stiffening walls in the elastic and non-
linear range. Chapter 6 contains the results of analyzes of the propagation of cracks and
wall damage. Chapter 7 covers numerical calculations. Chapter 8 encloses a discussion
of the research results in the field of the stiffness of walls, taking into account the
cracking process, the location of the torsion center, and a proposal for an engineering
method of numerical analysis of walls.

Based on the analysis of state of the art, the twelve most important issues regarding
shear walls were defined:

1. The tests of monotonically loaded stiffening walls are rare.
2. Most analyses of unreinforced shear walls involve cyclic loads.

3. The horizontal displacement of the walls consists of a component due to shear
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and due to bending (flexural deformation).

The contribution of shear displacements depends not on the initial
compressive stress but, above all, on the wall geometry.

The initial prestressing of the wall influences shear load capacity — higher
compressive stress determines the shear resistance increase.

Compressive stress changes the crack morphology of the wall. At low levels
of compressive stresses, shear cracking is stepped. When the wall is highly
prestressed, the cracks run diagonally through the masonry units.
Perpendicular fragments of the stiffening walls (flanged walls) participate in
transferring horizontal loads.

The stiffness of unreinforced shear walls and lateral load capacity decreases
significantly due to wall openings.

The openings affect the crack pattern change and the pillars' actual geometry

between the openings.

10. The different stiffness of the shear walls caused by the openings determines

the building to twist.

11. The method of numerical masonry homogenization should be adapted to the

size of the analyzed structure and the purpose of the calculations (representa-

tion accuracy).

12. Advanced material models require many input parameters - physical and em-

pirical, and few works provide their values adopted in the calculations.

The unique test stand was constructed to identify the stiffening walls experimentally.

The research was designed so that it was possible to apply a monotonic horizontal load

while inducing initial compressive stresses. Full-scale testing concerned eight masonry

buildings erected on a square plan of 4.0x4.0 m. The studies analyzed the values of the

forces acting on the particular walls and the shear deformation angles (and strain angle

in the linear phase). Measurement techniques included measuring displacements using

LVDT sensors and a digital image correlation (DIC) system for crack morphology

analysis. Based on the results, the behavior phases of the stiffening walls with (Fig. 9.1)

and without openings (Fig. 9.2) were determined:

the initial phase (cracks in the tensile corner): 0 - Her,1,

elastic phase (cracks in the wall without opening): Her,1 - Her,

nonlinear phase (up to maximum horizontal force): Her - H.,

post-peak residual phase (decrease the horizontal force and stabilization of

shear deformations): Hy - Hres.
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Fig. 9.1 Behavior phases of stiffening walls with door opening: I — irﬁﬁal phase, - éiastic phase,
IIT — nonlinear phase, IV — post-peak residual phase
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Fig. 9.2 Behavior phases of solid stiffening walls: I — elastic phase, 11 — nonlinear phase, 11l — post-peak
residual phase

It has been shown that there is no initial phase in walls without openings, which
consists of cracking the tensile opening corners. The behavior of walls with openings is
more complex than the corresponding solid wall. The range of elastic behavior of walls
with a door opening is 29% (mean value) of the maximum force, 38% for walls with
a window opening, and 78% for solid walls. Large openings may lead to the non-linear
behavior of the structure even at low shear loads due to cracking of the walls within the
openings. Subsequent cracks cause significant degradation of wall stiffness and an
uncontrolled increase in horizontal displacements.

Moreover, two approaches to the determination of forces in stiffening walls have
been proposed:

e empirical approach - based on empirical proportions between the deformation
angles of the walls,
e analytical approach - based on determining the stiffness of each wall
component.
Comparing forces in both methods enabled the redistribution of internal forces in the

walls estimation at a maximum of 12%.
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The analysis of horizontal displacements of the slab corners showed that the building
undergoes both translation and rotation. In the elastic phase, the building tends to rotate;
as the horizontal load increases, the walls are cracked, and the stiffness decreases. In the
post-peak phase, translation dominates with marginal importance of torsion of the
building. As part of the work, numerical calculations were also carried out on an elastic-
plastic model with degradation. The need to validate the model based on the calibration
of the mechanical parameters of the wall was demonstrated. Based on the research and
calculations, it is concluded that the theses formulated at the beginning of the work can
be considered trustworthy — Table 9.1.

Table 9.1
Verification of the veracity of theses of the dissertation
Number | Statement Verification
1 The stiffness of individual parts of the structure determines the true

distribution of internal forces in masonry buildings.

The linear behavior of an unreinforced masonry structure subjected
2 to horizontal shear is small and ends at approximately 30% of the true
maximum force.

The lateral load of the building causes a significant decrease in the

3 structure's stiffness. true
A building with asymmetric stiffness distribution, subjected to

4 . . . true
horizontal shear, undergoes rotation and translation.

5 The location of the building torsion center results from the stiffness true

distribution of the structural elements.

The selection method of the masonry homogenization affects the
6 accuracy and reliability of the numerical representation of the true
stiffening walls.

The author is aware of the inexhaustibility of the subject and treats the research
presented within the dissertation as exploratory. Further work should include the
following:

e numerical analyses on micromodels of the wall allowing for an accurate
representation of the shear masonry and comparison of the internal forces
with test results,

e repetition of tests on scale models to verify the results of full-scale studies,

e extension of the research campaign with scale models of buildings with
increased vertical load (higher precompression of walls),

e systematization of procedures for calculating the stiffness of stiffening walls.
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ZACHOWANIE SIE MUROWANYCH SCIAN USZTYWNIAJACYCH NA
PODSTAWIE BADAN PEENOSKALOWYCH

Streszczenie

Zadaniem murowanych $cian usztywniajacych jest zapewnienie geometrycznej
niezmienno$ci budynku, ograniczenie poziomych przemieszczen konstrukeji oraz
zapewnienie ogdlnego komfortu uzytkowania budowli. Elementy usztywniajace
przenoszg obcigzenia poziome, oddziatywujace w ptaszczyznie Sciany. Moga by¢ one
wywolane przez oddzialywanie wiatru, nierbwnomierne osiadanie podloza czy tez
moga wynika¢ z negatywnych wptywow eksploatacji gorniczej (wstrzasy, odksztalcenia
podioza). Cho¢ rola murowanych $cian usztywniajacych jest niezwykle wazna z punktu
widzenia zardwno projektowania jak i1 uzytkowania budynkéw — brakuje spdjnego
opracowania dotyczacego specyfiki tych elementow.

Niniejsza praca doktorska stanowi zatem wktad w usystematyzowanie wiedzy na
temat murowanych usztywnien budynkéw. W ramach opracowania przeprowadzono
wnikliwe studium literaturowe obejmujace krajowe i1 zagraniczne przepisy normowe
oraz publikacje naukowe wraz z krytyczng analizg stanu wiedzy. Przeprowadzono
badania pelnoskalowe jednokondygnacyjnych budynkéw murowanych z elementéw
murowanych z autoklawizowanego betonu komoérkowego o réznej geometrii otwordw
w Scianach. Analizy te pozwolily na okreslenie faz pracy $cian usztywniajgcych
z okresleniem zakresu pracy sprezystej 1 nieliniowej. Wykonano szczegotowe
obserwacje propagacji uszkodzen oraz morfologii rys z wykorzystaniem technologii
cyfrowej korelacji obrazu. Wykazano zmiang geometrii filarkow migdzyotworowych
1 wplyw tego fenomenu na sztywno$¢ konstrukcji. Zaproponowano dwie metody
szacowania sztywnosci §cian usztywniajagcych — metode calkowitej sztywnosci oraz
metode empiryczng. Przedstawiono ponadto propozycje obliczania srodka skrecania
budynku na podstawie pomiaru przemieszczen narozy budynku. Na podstawie
poréwnania wynikow teoretycznych 1 wynikow badan okreslono wartosci sit
wewngetrznych.

Ponadto opracowano autorska procedure numerycznej homogenizacji konstrukcji
murowej w oparciu o badania normowe 1 kalibracj¢ parametréw mechanicznych.
Przeprowadzono stosowne petnoskalowe analizy numeryczne w oparciu o sprezysto-
plastyczny model materialowy z degradacjg. Wykazano wptyw zmiany energii p¢kania
oraz wytrzymato§ci na rozcigganie muru na wyniki obliczen numerycznych.
Zaproponowano réwniez inzynierskie podej$cie do analizy murowanych $cian
usztywniajacych w oparciu o sprezyste modele numeryczne o skorygowanej sztywnos$ci
scian. Wyznaczono rdwniez dalsze kierunku prac badawczych i teoretycznych
dotyczacych przedmiotu rozprawy.
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THE BEHAVIOR OF MASONRY STIFFENING WALLS BASED ON THE
FULL-SCALE RESEARCH

Abstract

The role of the masonry stiffening walls is to ensure the geometric invariability of
the building, to limit the horizontal displacements and to ensure the overall comfort of
use of the building. Stiffeners transfer horizontal loads acting in the plane of the wall.
Lateral loads may be caused by wind and uneven ground subsidence or may result from
the adverse effects of mining (shocks, ground deformations). Although the masonry
stiffening walls is crucial from the design and use of buildings' point of view, there is no
consistent study on the specificity of these elements.

This doctoral thesis contributes to the systematization of knowledge about masonry
stiffeners of buildings. A thorough literature study was carried out, including domestic
and foreign standard regulations and scientific publications, along with a critical
analysis of the state of knowledge. Full-scale tests of single-storey masonry buildings
made of masonry elements made of autoclaved aerated concrete (AAC) with different
geometry of openings in the walls were carried out. These analyses made it possible to
determine the behavior phases of the stiffening walls, specifying the range of elastic and
non-linear behavior. Detailed damage propagation and crack morphology observations
were made using digital image correlation (DIC) technology. The change in the vertical
piers geometry and the effect of this phenomenon on the stiffness was demonstrated.
Two methods of estimating the stiffness of stiffening walls have been proposed - the
total stiffness method and the empirical method. In addition, a proposal for calculating
the torsion center of the building based on the measurement of slab corner displacements
has been presented. The values of internal forces were determined based on comparing
theoretical and test results.

In addition, an original procedure for numerical homogenization of the masonry
structure was developed based on standard tests and calibration of mechanical
parameters. Appropriate full-scale numerical analyzes were performed based on an
elastic-plastic material model with degradation. The impact of changes in the cracking
energy and tensile strength of the wall on the results of numerical calculations was
indicated. An engineering approach to the analysis of stiffening masonry walls using
numerical elastic models with corrected stiffness of the walls was also proposed. Further
research directions and theoretical work on the dissertation subject were also set.
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ZACHOWANIE SIE MUROWANYCH SCIAN USZTYWNIAJACYCH NA
PODSTAWIE BADAN PEENOSKALOWYCH

Poszerzone streszczenie

Zadaniem murowanych $cian usztywniajacych jest zapewnienie geometrycznej
niezmienno$ci budynku, ograniczenie poziomych przemieszczen konstrukeji oraz
zapewnienie ogdlnego komfortu uzytkowania budowli. Elementy usztywniajace
przenoszg obcigzenia poziome, oddziatywujace w ptaszczyznie Sciany. Moga by¢ one
wywolane przez oddzialywanie wiatru, nierbwnomierne osiadanie podloza czy tez
moga wynika¢ z negatywnych wptywow eksploatacji gdrniczej (wstrzasy, odksztalcenia
podioza).

Konstrukcja murowa jest strukturg anizotropowa, ktorej cechy mechaniczne nie sg
prostym odzwierciedleniem parametrow mechanicznych sktadowych cze$ci muru —
elementow murowych 1 zaprawy. Ponadto zlozony stan naprezen w murowanej $cianie
usztywniajgcej wynika z jednoczesnego oddzialywania obcigzenia poziomego
i pionowego. Sciana usztywniajaca jest jednoczeénie §ciskana, $cinana i zginana
w swojej ptaszczyznie — co znaczgco utrudnia badania eksperymentalne. Cho¢ rola tych
elementow jest niezwykle wazna z punktu widzenia zar6wno projektowania jak
1 uzytkowania budynkoéw — brakuje spdjnego opracowania dotyczacego specyfiki tychze
usztywnien. Ten fakt sklonit autora do podjecia rozprawy doktorskiej poswigconej
zagadnieniu murowanych §cian sztywnigcych.

Celem pracy jest teoretyczne i1 eksperymentalne rozpoznanie przedmiotu pracy,
motywowane nastepujacymi czynnikami:

e brakiem spdjnych procedur projektowania $cian usztywniajacych przy
tendencji rynkowej do optymalizacji konstrukcji (zmniejszania przekroju
poprzecznego $cian),

e niejasne 1 nieprecyzyjne sformutowania normowe dotyczace S$cian
usztywniajacych,

e nieznana rzeczywista wielko$¢ redystrybucji  sit  wewngtrznych
w murowanych $cianach usztywniajacych — w Eurokodzie 6 dopuszczono
redystrybucje sit do 15% bez uzasadnienia takich regulacji,

e brak spojnych metod okreslania sztywnosci §cian usztywniajacych i rozdziatu
obcigzen poziomych na poszczegdlne Sciany,

e brak metod wyznaczania potozenia $rodka skrecania budynku
1 uwzgledniania obrotu budynku w obliczeniach,

e nieznany wpltyw perforacji $cian na sztywnos$¢ konstrukcji,

e niedostateczne rozpoznanie badawcze przedmiotowej tematyki na modelach
petnoskalowych.
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Glownym zagadnieniem badawczym pracy jest zachowanie si¢ Scian usztywniajacych
wykonanych z elementéw murowych z autoklawizowanego betonu komorkowego
(ABK) zarowno w fazie sprezystej jak 1 nieliniowej. Celami pracy s3:
e analiza stanu wiedzy w literaturze krajowej 1 zagranicznej dotyczace]
murowanych §cian usztywniajacych,
e przeglad ustalen normowych,
e rozdziat obcigzen na $ciany usztywniajace,
e okreslenie rzeczywistej redystrybucji sit wewngtrznych,
e analiza propagacji zarysowan 1 morfologii rys,
e propozycja metody wyznaczania potozenia srodka skrecania budynku,
e okreslenie faz pracy murowanych $cian usztywniajacych w zakresie sprezystym
1 post-sprezystym.

W ramach rozprawy sformutowano nast¢pujace tezy pracy:

1. Sztywno$¢ poszczegdlnych czgsci konstrukcji determinuje wielko$¢ redystrybucji
sit wewngetrznych w budynku murowanym.

2. Sprezysty zakres pracy konstrukcji murowej jest niewielki 1 stanowi ok. 30%
nos$nosci.

3. Sciany usztywniajace poddane $cinaniu ulegaja znacznej degradacji swojej
SZtywnoscl.

4. Potozenie $rodka skrecania budynku wynika z rozktadu sztywnoSci
poszczego6lnych elementéw konstrukcyjnych ($cian).

5. Budynek, w ktorym wystepuje niesymetryczny rozdzial sztywnosci elementow
usztywniajacych, na skutek dziatania obcigzenia poziomego, ulega przesunigciu
(translacji) oraz skreceniu (obrotowi).

6. Dobor metody homogenizacji konstrukcji murowej wptywa na dokladnos¢
numerycznego odwzorowania pracy konstrukcji.

Do weryfikacji postawionych tez przedsigwzi¢to analizy eksperymentalne 1 teoretyczne
niezbrojonych konstrukcji  murowych, poddanych dzialaniu monotonicznego
obcigzenia poziomego. Zakresem pracy objeto:
e przeglad literatury,
e wlasny program badan eksperymentalnych,
e analizy numeryczne z wykorzystaniem Metody Elementéw Skonczonych
(MES),
e propozycj¢ analitycznej metody Wwyznaczania  sztywnos$ci  §cian
usztywniajacych i potozenia $rodka skrecania budynku,
e dyskusje i gtowne wnioski.
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Rozdzial 1 rozprawy stanowi krotki wstep opisujacy aktualng sytuacje gospodarcza
1 rynkowa dotyczacg branzy budowlanej — w okresie, w ktérym powstawata niniejsza
praca. Rozdziat 2 obejmuje uzasadnienie podjecia tematu $cian usztywniajacych oraz
cele, tezy 1 zakres pracy. Rozdzial 3 obejmuje analiz¢ stanu wiedzy w ujeciu przepisow
normowych oraz publikacji naukowych w literaturze krajowej 1 zagranicznej.
Przedstawiono wybrane wyniki badan konstrukcji murowych, procedury obliczeniowe
1 metody (techniki) homogenizacji muru, stosowane w obliczeniach numerycznych.
Rozdzial 4 dotyczy wiasnego programu badan petnoskalowych modeli budynkow
murowanych, opis stanowiska badawczego opis oraz wykorzystywanych metod
pomiarowych. W rozdziale 5 zaprezentowano gltowne wyniki badan 1 opis faz
zachowania si¢ Scian usztywniajagcych w zakresie sprezystym 1 nieliniowym.
W rozdziale 6 zawarto rezultaty analiz propagacji zarysowan i uszkodzen S$cian.
Rozdzial 7 obejmuje obliczenia numeryczne. W ramach pracy zaproponowano autorska
procedur¢ homogenizacji muru, opierajaca si¢ na wynikach badan normowych.
Podejscie to zapewnia powtarzalno$¢ 1 dzigki temu moze by¢ weryfikowane przez
innych badaczy. Ponadto wykonano analizy numeryczne z wykorzystaniem sprezysto-
plastycznego modelu materiatlowego z degradacja do odzwierciedlenia zachowania si¢
Scian usztywniajacych. Rozdziat 8 zawiera dyskusj¢ wynikoéw badan w zakresie
wyznaczania sztywnoS$ci $cian w fazie sprezystej 1 post-sprezystej z uwzglednieniem
zarysowania $ciany, potozenie srodka skrecania budynku oraz propozycj¢ inzynierskiej
metody analizy numerycznej $cian. W rozdziale 9 zebrano najwazniejsze wnioski
wynikajace z przeprowadoznych analiz. W zalgczniku zawarto zdetalizowane rysunki
konstrukcyjne §cian, umozliwiajace powtoérzenie (doktadne odwzorowanie) badan.

Na podstawie przegladu literatury stwierdzono, ze:

e badania $cian usztywniajacych obcigzonych monotonicznie nalezg do rzadkosci,

e wigkszo$¢ analiz niezbrojonych konstrukcji murowych dotyczy obcigzen
cyklicznych,

e przemieszczenia poziome S$cian usztywniajagcych obejmuja deformacje
spowodowane $cinaniem (deformacje postaciowe) oraz spowodowane
zginaniem (deformacje gigtne),

e udzial poszczegolnych deformacji w catkowitym odksztalceniu $cian nie zalezy
od wstepnego obcigzenia S$ciskajacego — zalezy wylacznie od geometrii
konstrukeji,

e no$no$¢ Scian usztywniajacych uwarunkowana jest poziomem wstepnych
naprezen Sciskajacych — zwigkszenie naprezen $ciskajacych powoduje wzrost
nosnosci $ciany na $cinanie w swojej ptaszczyznie,

e wstepne naprezenia $ciskajgce maja wptyw na morfologi¢ zarysowania $ciany —
przy niewielkim obcigzeniu pionowym rysy majg charakter schodkowy, przy
znaczacych warto$ciach naprezen S$ciskajacych, rysy przebiegaja ukosnie
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rowniez przez elementy murowe,

fragmenty S§cian poprzecznych do S$cian usztywniajagcych biorg udzial
W przenoszeniu obcigzen poziomych (sg to tzw. szerokosci wspolpracujace),

e sztywno$¢ niezbrojonej konstrukcji murowej spada znaczaco w przypadku
wykonania otworOw w $cianie,

obecno$¢ otworow zmienia rzeczywistg geometri¢ filarkow miedzyotworowych
1 obraz zarysowania konstrukcji,

niesymetryczny rozktad perforacji w budynku determinuje skrecanie konstrukcji
obcigzonej poziomo.

Wiasny program badan doswiadczalnych zaprojektowano wedlug nastepujacych
kryteriow:

e modele wykonane s3 z elementow murowych z autoklawizowanego betonu
komorkowego,

e Sciany s3 wzniesione w technologii na cienkie spoiny wsporne i niewypetnione
spoiny pionowe (czotowe) — polaczenia typu pidro-wpust,

e wszystkie modele sg niezbrojonymi konstrukcjami murowymi,

e modele badawcze sktadajg si¢ ze §cian murowanych i stropu zelbetowego, ktory
stanowi sztywng tarcze przez ktora przekazywane sg obcigzenia poziome na
$ciany,

o wielko§¢  wstepnych naprezen  Sciskajacych  odpowiada  obcigzeniu
jednokondygnacyjnego budynku w zabudowie mieszkalnej i obejmuje cigzar
wlasny, ciezar warstw wykonczeniowych oraz obcigzenie zmienne (uzytkowe),

e badania moga =zosta¢ w przysztosci rozszerzone do analizy budynkow
wielokondygnacyjnych poprzez zwickszenie wstepnych naprezen $ciskajacych,

e geometria S$cian sprawia, ze dominujagcymi odksztatlceniami sg deformacje
postaciowe — nie gietne, wspotczynnik wysokosci do dlugosci Sciany
usztywniajacej jest mniejszy od jednosci 4/l <1,

e w wybranych modelach budynkow wykonano otwory drzwiowe 1 okienne,
o geometrii odpowiadajacej rzeczywistym gabarytom takich otwordw,

e zaprojektowane stanowisko badawcze umozliwia badania pelnoskalowych
modeli budynkoéw w schemacie statycznym utwierdzenia $cian u podstawy, przy
zadaniu wstepnych naprezen $ciskajacych Sciany.

Modele zaprojektowano w taki sposob aby umozliwi¢ zrealizowanie postawionych
celow pracy. Program badawczy obejmuje osiem petnoskalowych modeli budynkow,
wzniesionych na planie kwadratu 4,0x4,0 m, przy wysokosci calkowitej budynku
rownej 2,85 m 1 grubosci $cian 0,18 m. Kazdy model sktada si¢ z dwoch $cian
usztywniajacych, oznaczonych literami A i B oraz dwoch $cian prostopadlych
oznaczonych cyframi 1 i 2. Modele oznaczono symbolami literowo- cyfrowymi MB-
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AAC-010/N, gdzie N oznacza kolejne modele budynkow. Program badawczy sktada si¢
z czterech typoéw modeli — typ I to modele z jednym otworem drzwiowym, typ II to
otwor drzwiowy w $cianie usztywniajgcej 1 otwoOr okienny w Scianie prostopadtej. Typ
IIT to modele z dwoma otworami w $cianach usztywniajacych, a typ I'V to jeden model
referencyjny pozbawiony otworow. Zestawienie badanych modeli budynkéw pokazano
w tabeli 1.

Tabela 1

Lista modeli badawczych budynkéw murowanych

Oznaczenie modelu / widok Oznaczenie . .
. Otworowanie Opis Sciany
3D Sciany

. Sciana A otwor drzwiowy

= MB-AAC-010/1__ ] usztywniajaca

< Sciana B petna

@)

< .

< Sciana 1 pea

g prostopadta
Sciana 2 petna

N Sciana A otwor drzwiowy

= - usztywniajgca

8 Sciana B peina

ZE Sciana 1 petna

oA - prostopadta

> Sciana 2 pelna

o Sciana A otwor drzwiowy

= - usztywniajaca

< Sciana B petna

=

< Sciana 1 otwor okienny

oA - prostopadta

> Sciana 2 petna

= Sciana A otwor drzwiowy

— - usztywniajaca

8 Sciana B pela

:E Sciana 1 otwor okienny

oA - prostopadta

= Sciana 2 pelna

w Sciana A otwor drzwiowy

= - usztywniajaca

8 Sciana B petna

::t Sciana 1 otwor okienny

A - prostopadta

= Sciana 2 pelna
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c.d tabeli 1

) Sciana A otwor okienny
= - usztywniajgca
8 Sciana B otwor drzwiowy
ﬁ Sciana 1 petna
: - prostopadta
E Sciana 2 petna
= Sciana A otwor okienny
= - usztywniajgca
8 Sciana B otwor drzwiowy
2 Sciana 1 petna
e ; prostopadta
= Sciana 2 petna
® Sciana A petna
= - usztywniajgca
3 Sciana B pelna
:E Sciana 1 pelna
A - prostopadta
> Sciana 2 pelna

Aby skroci¢ czas wznoszenia poszczegdlnych modeli zdecydowano si¢ na
zaprojektowaniu stropu, ktory mogiby by¢ podnoszony po badaniu modelu budynku
1 wykorzystany ponownie w kolejnym tescie. W tym celu wykorzystano
prefabrykowane panele stropowe (zwane elementami panelowymi). Sg to segmenty
sprezone skladajace sie¢ z zeber 1 plyty dolnej. Pomigdzy zebra wlozono styropian
pozwalajacy na zredukowanie cigzaru wilasnego stropu — ograniczenie to wynikato
z tonazu suwnicy. Elementy panelowe ukladano na ksztattkach wiencowych, a catos$¢
konstrukcji stropu monolityzowano nadbetonem — rys. 1.

a b)

N . Ss e

>

Rys. 1 Betonowahie stropu: a)zasobnk z mieszanka b
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Modele badawcze wznoszono w kilku etapach — rys. 2:
e wzniesienie pierwszego modelu,
e badanie pierwszego modelu,
e odcigcie stropu od $Scian 1 podniesienie stropu suwnica,
e ultozenie stropu na stalowej konstrukcji wsporczej,
e rozbiorka Scian,

e wzniesienie nowych $Scian kolejnego modelu 1 utozenie stropu.

Rys. 2 Procedura ponownego wykorzystania stropu: a) wyburzenie $cian modelu po badaniu, b) strop
utozony na stalowej konstrukcji wsporczej

. =

Stanowisko zaprojektowano w sposdb umozliwiajacy zadanie obcigzenia pionowego
jak roéwniez poziomego. Model badawczy utwierdzono w plycie wielkich sil.
Zamocowanie zrealizowano za pomocg zewn¢trznych belek okalajacych dolny wieniec
modelu, zaklinowanych o $ruby S$rednicy 65 mm, ktére byty przykrecone do hali
laboratorium. Obok modelu umiejscowiono stalowy stup z zastrzalem — do niego
przymocowano stalowg konstrukcje podpierajaca sitownik hydrauliczny. Pomiar sity
odbywatl si¢ za pomoca silomierza o zakresie pracy 250 kN £ 0.1 kN. Obcigzenie
poziome przytozone w §rodku ciezkos$ci stropu 1 w polowie dtugosci Sciany prostopadte;j
do $cian usztywniajacych. Obcigzenia pionowe wywotano obcigznikami
podwieszonymi do stropu. Pojedynczy odwaznik miat §rednice 60 cm i wysokos¢
30 cm. Sumarycznie podwieszono po trzy odwazniki o ci¢zarze 204 kg w dwunastu
punktach (73.44 kN). W tym celu w wykonanym stropie uprzednio wywiercono otwory
o $rednicy 25 mm do przepuszczenia stalowych ciggien podwieszajacych obcigzniki.
Otwory byly zlokalizowane pomiedzy spr¢zonymi zebrami stropu panelowego — by nie
uszkodzi¢ ciggien sprezajacych. W miejscu przykladania obcigzenia ksztattki wiencowe
zamieniono na ceownik stalowy, umozliwiajacy bezpieczne przekazanie obcigzenia na
konstrukcje stropu. Widok modelu badawczego na stanowisku pokazano na rys. 3.
Pomiary przemieszczen prowadzono z wykorzystaniem transformatorowych
przetwornikow przemieszczen liniowych (LVDT). Analiz¢ propagacji zarysowan oraz
odksztalcen modeli wykonano za pomoca systemu Aramis 6M.
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Rys. 3 Model badawczy na stanowisku: 1 — prefabrykowane, spr¢zone element panelowe stropu,
2 — zbrojenie gornego wienca, 3 — zbrojenie gorne stropu, 4 — ceownik stalowy, 5 — prefabrykowane
nadproze, 6 — punkty podwieszenia obcigzenia pionowego, 7 — widoczne obcigzniki

Zachowanie si¢ $cian usztywniajacych 1 $cian prostopadtych przedstawiono w formie
wykreséw zalezno$ci znormalizowanej sity poziomej (Hi/H,) do kata odksztatcenia
postaciowego. Przykladowe rezultaty pokazano na rys. 4. Znajac katy odksztatcenia
deformacji postaciowej obliczono rowniez wielko$ci poziomych przemieszczen $cian.

a) b)

12 g7 —— stiffening wall - axis A 12 4 Perpendicular wall - axis 1
Perpendicular wall - axis 2
| |
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|

|

|

|
SN W

|

|

-

|

|

"

|

I

|

|

|

|
-1

08 |[/\ | 08
=S / I::
T os < 06
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0.2 0.2
0.0 ‘ ‘ > 0.0 ® >
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®, mrad ®, mrad

Rys. 4 Zalezno$¢ pomiedzy obcigzeniem poziomym, a katem odksztatcenia postaciowego dla modelu
MB-AAC-010/2: a) wyniki dla $cian usztywniajacych A i B, b) wyniki dla $cian prostopadtych 112
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Analiza wynikow badan pozwolila na okreslenie faz pracy zachowania si¢ $cian
usztywniajacych z otworami i bez otworow. Wyrdzniono faze poczatkowsa (faza I),
w ktorej jako pierwszy uszkodzeniu ulega rozciggany naroznik otworu. Nastepnie ma
miejsce zarysowanie samej $ciany murowanej, co jest tozsame z granicg sprezystej
pracy konstrukeji (faza II). W dalszej kolejnosci dochodzi do postepujacych zarysowan
schodkowych $ciany w zakresie post-sprezystym (faza III). Po przekroczeniu sity
niszczacej (maksymalnej) — $ciana ulega poziomej translacji (faza rezydualna IV) —
rys. 5.

Bazujac na wynikach badan opracowano empiryczng metode wyznaczania sztywnosci
scian. Jako podejscie referencyjne zaproponowano rowniez metode catkowitej
sztywnosci. Porownanie obu metod pozwolito na okreslenie redystrybucji sit
wewnetrznych w $cianach — ktorej wielkos¢ okreslono na ok. 10%.

Phase [ Phase 11
UC O-C
H, LITEVTTT H, EITTTITT)
‘ O RN
\
| -
\
\
\ Phase III Phase IV
} O-C O-C
| H, LhEP by H VTV VLS
\
X
0 Ger,l Ger G (res -LL:LLI;rLLLL %
@i, mrad

Rys. 5 Fazy pracy §cian usztywniajacych z otworem okiennym

Analiza propagacji 1 morfologii zarysowan $cian (rys. 6) pozwolity na okreslenie
rzeczywistej geometrii filarkow migdzyotworowych. W pracy zaproponowano korekte
geometrii filarkow, pozwalajaca na wyznaczenie sztywnos$ci postsprezystej Sciany
w fazie zarysowanej. Ponadto przeanalizowano zjawisko obrotu budynku na skutek
dzialania obcigzenia poziomego - rys. 7.

a) b)

56
-3.0% | | L — +3.0%
Rys. 6 Propagacja zarysowan $ciany usztywniajacej A - model MB-AAC-010/2: a) obraz zarysowan
przy sile poziomej Hx = 69,25 kN, b) ) obraz zarysowan przy sile poziomej Hx = 37,71 kN
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Rys. 7 Wektory przemieszczen poziomych naroznikéw stropu — model MB-AAC-010/2: a) przy sile
poziomej Hy = 64,49 kN, b) przy sile poziomej Hy = 46,85 kN
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Pomiary poziomych przemieszczen naroznikdw stropu 1 analiza wektorow
przemieszczenia wypadkowego wskazala, ze budynek w fazie poczatkowej 1 sprezystej
podlega niewielkiemu przemieszczeniu poziomemu 1 obrotowi. Na skutek
postepujacych zarysowan S$cian dochodzi do redystrybucji sit wewngtrznych
1 wyréwnania sztywnos$ci $cian. W fazach postsprezystych budynek ma tendencje do
stosunkowo duzej translacji, a zjawisko obrotu konstrukcji jest marginalne.
Zaproponowana w pracy procedura wyznaczania potozenia srodka skrecania budynku
umozliwila na analityczne okreslenie wspotrzednych srodka obrotu. Wykorzystujac
wyniki badan stwierdzono, ze polozenie to zmienia si¢ w trakcie zwigkszania obcigzenia,
na skutek postepujacych zmian sztywnosci (spowodowanych zarysowaniem).

W ramach rozprawy doktorskiej wykonano zaawansowane (nieliniowe) obliczenia
numeryczne. W tym celu wykorzystano autorska procedure homogenizacji konstrukcji
murowej. Walidacje obliczen numerycznych prowadzono w oparciu o wyniki badan
1 dwa kryteria walidacyjne. Kryterium A polegajace na pordéwnaniu globalnego
zachowania si¢ modelu, w ktorym porownywano zalezno$ci sita pozioma -—
przemieszczenie poziome $cian. Kryterium B dotyczylo pordwnania obrazow
uszkodzen 1 zarysowan $cian. Kalibrowano wybrane parametry mechaniczne modelu
materialowego. Redukcja wytrzymatosci na rozcigganie pozwolita na lepsze
dopasowanie sit niszczacych, jednak prowadzita do znacznego rozmigkczenia modelu
— kalibracja energii pekania umozliwita na dopasowanie obrazéw uszkodzen $cian
(obszary ostabienia materialu w modelu numerycznym), przy jednoczesnym braku
satysfakcjonujacej zbieznosci zachowania si¢ modelu numerycznego w odniesieniu do
wynikéw badan.

Jako, ze w praktyce inzynierskiej stosowanie nieliniowych modeli materialowych w
obliczeniach numerycznych jest niepraktyczne ze wzgledu na stopien zlozonos$ci
modelu i czasochtonnos$¢ obliczen — zaproponowano podejscie uproszczone. W tym celu
postuzono si¢ modelem sprezystym budynku, w ktéorym nie modelowano otworow.
Sciany z otworami zastapiono $cianami bez otworéw o zredukowanej sztywnosci.
Podejscie to pozwolito na dopasowanie sztywnos$ci budynku poprzez kalibracje modutu
sprezystosci. Podobny efekt mozna réwniez uzyska¢ redukujac grubos¢ S$cian
w modelu numerycznym.

Autor jest Swiadomy, Ze niniejsze opracowanie ma charakter badan rozpoznawczych,
pozwalajacych na wyznaczenie dalszych kierunkéw prac, ktore powinny obejmowac:

e analizy numeryczne na mikromodelach, pozwalajacych na doktadne
odwzorowanie zachowania si¢ modeli budynkéw i umozliwiajacych porownanie
sit wewngetrznych,

e powtdrzenie badan na modelach w skali, przy jednoczesnym zapewnieniu
powtarzalnosci eksperymentu,

e rozszerzenie programu badan o analizy modeli budynkow ze zwigkszonym
obcigzeniem pionowym (o zwigkszonych napre¢zen $ciskajacych $Sciany).
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APPENDIX - SUPPLEMENTARY MATERIALS
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Fig. A.1 lDesign of the MB-AAC-010/1 model: a) stiffening wall A, b) stiffening wall B
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Fig. A.2 Design of the MB-AAC-010/1 model: a) perpendicular wall 1, b) perpendicular wall 2
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Fig. A.3 Design of the MB-AAC-010/2 model: a) stiffening wall A, b) stiffening wall B
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Fig. A.4 Design of the MB-AAC-010/2 model: a) perpendicular wall 1, b) perpendicular wall 2
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Fig. A.5 Design of the MB-AAC-010/3 model: a) stiffening wall A, b) stiffening wall B
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Fig. A.6 Design of the MB-AAC-010/3 model: a) perpendicular wall 1, b) perpendicular wall 2
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Fig. A.7 Design of the MB-AAC-010/4 model: a) stiffening wall A, b) stiffening wall B
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Fig. A.8 Design of the MB-AAC-010/4 model: a) perpendicular wall 1, b) perpendicular wall 2
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Fig. A.9 Design of the MB-AAC-010/5 model: a) stiffening wall A, b) stiffening wall B
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Fig. A.10 Design of the MB-AAC-010/5 model: a) perpendicular wall 1, b) perpendicular wall 2
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Fig. A. 11 Design of the MB-AAC-010/6 model: a) stiffening wall A, b) stiffening wall B
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Fig. A.12 Design of the MB-AAC-010/6 model: a) perpendicular wall 1, b) perpendicular wall 2
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Fig. A.13 Design of the MB-AAC-010/7 model: a) stiffening wall A, b) stiffening wall B
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Fig. A.14 Design of the MB-AAC-010/7 model: a) perpendicular wall 1, b) perpendicular wall 2
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Fig. A.15 Design of the MB-AAC-010/8 model: a) stiffening wall A, b) stiffening wall B

12

4000

590 590 590 590 590 590
590 590 590 590 590 590 460
I 590 590 590 590 590 590
590 590 590 590 590 590 460
590 590 590 590 590 590
g
& 590 590 590 590 590 590 460
I 590 590 590 590 590 590 I
590 590 590 590 590 590 460
I 590 590 590 590 590 590 I
590 590 590 590 590 590 460
l\
j o=
I
Kk
o 4000 P
KN
(=)
&
N
i 590 590 590 590 590 590
590 590 590 590 590 590 460
l 590 590 590 590 590 590
590 590 590 590 590 590 460
590 590 590 590 590 590
S
& 590 590 590 590 590 590 460
I 590 590 590 590 590 590 I
590 590 590 590 590 590 460
I 590 590 590 590 590 590 I
590 590 590 590 590 590 460
=
(=)
AL swwwewws |
KR

14

263

Ed



2850

2400

¥

2850

®)

1220,

230

2400

N

220

N

460 590 590 590 590 590 590
I 590 590 590 590 590 590 I
460 590 590 590 590 590 590
I 590 590 590 590 590 590
460 590 590 590 590 590 590
I 590 590 590 590 590 590
460 590 590 590 590 590 590
I 590 590 590 590 590 590
590 | 590 590 590 590 590 590
o) 590 590 590 590 590 590

4000

590

590

590

590

590

4000

14

Fig. A.16 Design of the MB-AAC-010/8 model: a) perpendicular wall 1, b) perpendicular wall 2
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