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LIST OF BASIC SYMBOLS 

Capital Latin letters 

A – horizontal section of the masonry wall, 

Ac – the area of the horizontal layout of the walls, 

D – ductility index, 

E – modulus of elasticity, 

Ev – the shear modulus, 

Ft – tensile force, 

G – the shear modulus, 

Gf – fracture energy, 

H – storey height, 

HA – load (force) acting on stiffening wall A, 

HB – load (force) acting on stiffening wall B, 

Hcr,1 – cracking force in the initial phase, 

Hcr – cracking force, 

Hres – residual force, 

Htot – total load acting on a building, 

Hu – maximum horizontal force, 

Hx, Hi  – horizontal shear force, 
calHcr,1 – analytical cracking force in the initial phase, 
calHcr – analytical cracking force, 
calHu – analytical maximum horizontal force, 
calHres – analytical residual force, 
numHcr – numerical cracking force, 
numHu – numerical maximum horizontal force, 

I – the horizontal cross-sectional moment of inertia of the wall element in 

the direction of bending, 

Kcr – the stiffness of the stiffening wall in the elastic phase, 

Kres – the stiffness of the stiffening wall in the post-peak residual phase, 

Ktot,cr – the total stiffness in the elastic phase, 

Ktot,cr,1 – the total stiffness in the initial phase, 

Ktot,res – the total stiffness in the post-peak residual phase, 
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Ktot,u – the total stiffness in the nonlinear phase, 

Ku – the stiffness of the stiffening wall in the nonlinear phase, 

M – in-plane bending moment, 

Nhd – the vertical force acting in the plane of the wall, caused by a horizontal 

design load, 

NRd – design load-bearing capacity of the wall due to vertical loads, 

NSd – design vertical force acing in the plane of the wall, 

Nvd – the vertical force caused by a vertical load, 

O – the geometrical center of the building plan, 

O1 – the geometrical center of the stiffening wall plan, 

P – in-plane vertical force, 

Pc – total vertical load on the walls, 

Q – shear force taken up by the stiffening wall, determined in the elastic 

stage in the middle of the storey height, 

Rsq – compressive strength of the masonry determined without the 

compressive stresses, 

V – lateral force (shear force), 

VSd – design shear force caused by horizontal forces in the plane of the wall, 

VRd – design load-bearing capacity of the checked wall section. 

 

Small Latin letters 

c – cohesion, 

d – the length of the stiffening wall, 

fc – compressive strength, 

fv0 – initial shear strength, 

fvd – design shear strength of the masonry in the direction parallel to the bed 

joints, 

h – clear storey height of the wall, 

heff – effective height of the wall, 

hn – the height of the lintel, 

htot – the overall height of the stiffening wall, 

l – length of the masonry wall, 

lc – length of the compressed part of the wall cross-section, 

ls – distance to the adjacent stiffening wall, 

t – the thickness of the masonry wall, 

ux – horizontal displacement in the direction x, 

uy – horizontal displacement in the direction y, 

w – uniformly distributed wind load, 

y – distance from the center of gravity of the wall (together with flanges). 
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Capital Greek letters 
Δw – displacement of the lintel, 
Δw – displacement of the bottom spandrel, 
PΔw – displacement of the vertical pillar, 

tot – the total displacement of the building, 

v – the shear deformation, 

 – strain angle (elastic phase) or shear deformation angle (nonlinear 

phase), 

A – shear deformation angle of stiffening wall A, 

adm – the shear deformation angle (polish standard PN-B-03264:2002), 

B – shear deformation angle of stiffening wall B, 

cr – shear deformation angle corresponding to cracking force, 

cr.1 – shear deformation angle corresponding to cracking force in the initial 

phase, 

mv – the mean value of the deformation angle of stiffening walls, 

res – shear deformation angle corresponding residual force, 

Sd – the angle of shear deformation calculated for the characteristic values 

of horizontal shear forces, 

u – shear deformation angle corresponding to maximum horizontal force. 

 

Small Greek letters 

ave – average displacement of the storey at the extreme points of the 

structure, 

max – the maximum displacement of the storey at the extreme points of the 

structure, 

 – Strain, 

pl – plastic strain, 

i – influence coefficient of space performance for each storey of  

a building, 

 – coefficient taking into account the reduction of masonry creep, 

∞ – the final value of the creep coefficient equals, 

 – shear deformation coefficient, 

 – friction coefficient, 

 – Poisson's ratio, 

n – reduction factor depending on edge restraint or stiffening of the wall, 

c – compressive stress, 

n – the average vertical compression, 

t – tensile stress, 

max – the maximum value of shear stress, 

 – proportions of the shear deformation angles. 
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1. INTRODUCTION 

This monograph is written while the word crisis is inflected in all ways. At the end 

of 2019, the Covid pandemic broke out and paralyzed the normal functioning of the 

world. The significant problem was the enormous amount of misinformation [139] 

during the pandemic and the widespread dissemination of fake news. Incomplete three 

years later - at the beginning of 2022, the war began in Ukraine, resulting in a refugee 

crisis in Europe. According to statistics [155], more than 5.5 million people, mainly 

women and children, fled Ukraine on 1 May. However, noticeable geopolitical tensions 

and turbulences in the economy are not the only challenges facing civilization. 

The modern direction of construction development aims to limit negative climate 

changes, and one of the goals is to reduce CO2 emissions1 and use sustainable materials. 

The eco-strategies in the civil engineering industry are anticipated to result in net-zero 

emissions by the concrete industry by 2050 [2]. One of the ideas is to replace the 

conventional clinker (i.e. limestone). In the calcination of the limestone, carbon dioxide 

is one of the reaction products. Fly ash, foundry sand or filter clay are incorporated as  

a partial replacement for the clinker. Other strategies include the application  

of alternative binders or aggregates. 

However, it should be mentioned that buildings (implicitly the construction industry) 

influence the environment during the production of building materials but also 

throughout the entire life cycle. The Joint Research Centre (JRC) of the European 

Commission (EC) and Building Performance Institute Europe have documented various 

initiatives that come from countries to integrate the whole life cycle (WLC) of buildings, 

Global Warming Potential (GWP) and Life Cycle Assessment (LCA) requirements. 

The European Commission defined the concept of  Level(s) to tackle environmental 

challenges posed by construction materials and whole buildings. This approach attempts 

to constitute a common language in an evaluation set of indicators that can be used to 

measure and manage the performance of residential and office buildings across Europe 

[48]. Level(s) scheme consists of sixteen indicators corresponding to six macro-

 
1 Intergovernmental Panel on Climate Change (IPCC) ‘Climate change 2022 mitigation of climate change’, 2022 
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objectives – Fig. 1.1. That life cycle approach is split into three levels that are connected 

with construction stages: 

• Level 1 – to set qualitative objectives at the conceptualization stage, 

• Level 2 – to assess quantitative performance at the design and construction 

stages, 

• Level 3 – to evaluate and monitor the performance after completion for as-

built and in-use performance. 

The careful analysis of macro-objectives indicates the foundations of modern 

construction based on sustainable materials and optimization of the life cycle cost and 

value of buildings. 

 

 
Fig. 1.1 Level(s) scheme with indicators, followed by [48] 
 

Sustainable material will stand out with good thermal insulation performance (reducing 

the cost of additional wall insulation), fire resistance that meets stringent fire safety 

requirements, and proper structural performance expected in construction materials.  
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Autoclaved aerated concrete (AAC) is a material which fits into this philosophy due to 

its good strength-to-weight ratio and well-desired performance parameters. However, 

the properties are determined by microstructure (void-paste system) and composition 

(type of binder, method of pore-formation and curing) [118, 128]. AAC is produced 

from raw materials – cement, sand water gypsum, lime and aluminum powder [86]. The 

advantage of this material is also its full recyclability [19, 132, 160]. It has been proven 

that the use of autoclaved aerated concrete walls leads to a reduction of energy 

consumption in residential buildings by 7%. Moreover, each square meter of AAC can 

reduce 350 kg of emission of CO2 throughout the life cycle of a building [129]. 

Autoclaved aerated concrete is commonly used to produce masonry units or greater 

prefabricated elements. Load-bearing walls, partition walls or infill ones are 

successfully erected with AAC. Though many studies relate to recognising AAC 

material characteristics, relatively few analyses concern structures made of this material. 

The masonry unit does not work separately, but the adjacent structure limits its 

deformations. The interaction between the elements and the mechanics of the structure 

can be captured on models of larger dimensions.  

The development of ecological and sustainable buildings makes AAC applicable in 

construction. Residential buildings are often erected as load-bearing structures, and 

multi-storey buildings are built using skeletal frames, in which masonry walls act as 

filling. Vertical loads are considered the most critical loads on masonry walls in wall-

bearing systems. In designing, horizontal loads caused by environmental influences, 

such as wind, should also be considered. Although the horizontal load on the building 

can be caused by various factors, such as the uneven settlement of the ground or 

influences from mining, it is often overlooked. The problem has its historical 

background - masonry walls were characterized by considerable thickness in former 

residential buildings, and the horizontal shear problem could be negligible. 

Contemporary trends aim to optimize the walls' thickness while ignoring the complete 

computational verification of walls for all impacts - both vertical (induced by dead and 

live-load) and horizontal (shear).  

Stiffening walls are load-bearing elements that transfer horizontal forces to the 

foundation safely. The primary construction role of the stiffening elements is to ensure 

the geometrical stability of the building, limiting horizontal deformations and ensuring 

the comfort of use. Although the significance of these elements is crucial - the awareness 

of designing masonry stiffening walls is low. Buildings with thinner and thinner walls 

require the development of computational models and design methods based on 

experimental background and numerical research.  
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2. MOTIVATION AND ASSUMPTIONS OF THE DISSERTATION 

2.1. Motivation 

Masonry stiffening walls have a different specificity than the corresponding 

reinforced concrete stiffening elements. The masonry is an anisotropic structure in 

which the mechanical parameters are not a simple sum of individual components. The 

complex stress state in shear masonry walls results from the simultaneous action of 

horizontal and vertical loads. The stiffening walls are compressed, sheared and 

simultaneously bent in the plane, significantly hindering experimental research and 

correct inference. Using advanced numerical models without validation based on 

experimental research seems to be the wrong approach.  

The lack of a comprehensive scientific approach to stiffening walls creates  

a significant cognitive gap and demand for miscellaneous research. The justification for 

writing the doctoral thesis is the need for consistent analysis of stiffening walls from 

theoretical and experimental points of view. This study was motivated by a few factors: 

• omitting the problem of horizontal shearing of walls while reducing the 

thickness of the wall, 

• unclear and imprecise standard recommendations for the design of stiffening 

walls, 

• unknown actual redistribution of internal forces in masonry stiffening walls 

(even though Eurocode 6 allows for redistribution of internal forces up to 

15%), 

• lack of a consistent methodology for determining the stiffness of stiffening 

walls and load distribution, 

• no method for determining the location of the torsion center of the building 

and taking into account the effect of building torsion in the calculations, 

• the influence of openings on the stiffness of walls and mechanics of damage, 

• no studies (experimental research) of stiffening walls on full-scale models of 

buildings under monotonical horizontal load. 
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2.2. Objectives 

The primary research problem is the behavior of the stiffening wall made of 

autoclaved aerated concrete (AAC), both in the elastic and non-linear range. The work 

is based on a theoretical and experimental approach and can be divided into intermediate 

goals such as: 

• state of knowledge in domestic and foreign literature on stiffening masonry walls, 

• systematization of standard provisions concerning the discussed issues, 

• method of calculating the stiffness of stiffening walls, 

• distribution of loads on the stiffening walls, 

• determination of the redistribution of internal forces, 

• analysis of the crack propagation and crack morphology of stiffening walls, 

• proposal of a method for calculating the location of the torsion center of the 

building, 

• describing the behavior phases of stiffening walls in elastic and post-elastic states, 

• numerical analysis of stiffening walls using the finite element method (FEM). 

2.3. Statements of the thesis 

The in-depth analysis of the state of knowledge allowed the following theses to be 

put forward: 

1. The stiffness of individual parts of the structure determines the distribution of 

internal forces in masonry buildings. 

2. The linear behavior of an unreinforced masonry structure subjected to 

horizontal shear is small and ends at approximately 30% of the maximum 

force. 

3. The lateral load of the building causes a significant decrease in the structure's 

stiffness. 

4. A building with asymmetric stiffness distribution, subjected to horizontal 

shear, undergoes rotation and translation. 

5. The location of the building torsion center results from the stiffness 

distribution of the structural elements. 

6. The selection method of the masonry homogenization affects the accuracy 

and reliability of the numerical representation of the stiffening walls. 



 

 
13 

2.4. Scope 

The scope of the monograph encloses theoretical and experimental research 

undertaken to verify statements (theses) and determine their truth or denial. The 

monograph encloses the analysis of unreinforced masonry structures (URM) under the 

monotonic horizontal load. Experimental and theoretical analyzes were undertaken to 

achieve the set goals of the dissertation. The scope of the work includes the following: 

• state of the art regarding stiffening masonry walls, 

• own experimental program, 

• Finite Element Method analysis, 

• proposal of an analytical method for determining the stiffness of shear walls, 

• discussion and conclusions. 

 

The doctoral monograph has been divided into chapters devoted to particular issues. 

Chapter 3 reviews standard regulations concerning stiffening walls, selected tests of 

unreinforced masonry walls (URM) and buildings, calculation procedures and 

numerical wall homogenization techniques. Chapter 4 determines the main assumptions 

of the research campaign and encloses test details as the construction of models, test 

stand and measuring method. Chapter 5 examines the test results in linear and nonlinear 

behavior phases of stiffening walls. Chapter 6 uses a digital image correlation (DIC) 

system to examine crack morphology and crack patterns. Chapter 7 investigates the 

stiffening walls in numerical calculations. Section 7.1 concerns its own homogenization 

technique, and section 7.2 encloses advanced nonlinear calculations. 

Chapter 8 analyses the results in a critical approach and proposes an engineering 

method for calculating the stiffening walls. Chapter 9 provides a conclusion and 

determines the further scope of work. The appendix contains detailed construction 

drawings of tested walls. 
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3. EVALUATION OF THE STATE OF KNOWLEDGE 

3.1. Standard arrangements for stiffening masonry walls 

3.1.1. Regulations in the Eurocode 6 

Regulations on the design of stiffening walls in the Eurocode are limited, and the 

information contained therein is made to general statements. Following the [N7] 

1.5.10.10  stiffening wall is a structural element situated perpendicular to other walls, 

which supports them with the taking of horizontal forces, preventing buckling and 

contributing to the stability of the building. The stiffening elements are mainly subjected 

to the horizontal loads acting in the plane of the walls. Therefore, these are primarily 

shear in the wall plane, which can simultaneously transfer other forces (axial, bending 

moments) depending on other functions and load distribution in the building. The term 

stiffening walls is often replaced with shear walls (in this dissertation, these terms are 

also used interchangeably). In the regulations of Eurocode 6, the definition of a shear 

wall - point 1.5.10.9 - is distinguished and denotes shear walls whose task is to transfer 

horizontal forces acting in the wall plane. The separation of the terms stiffening wall 

and shear wall may cause inaccuracies in naming the walls. Based on the Eurocode, the 

shear wall can be sheared and at the same time not have a stiffening function. However, 

it should be considered that if the slab structure allows the horizontal force to be 

transferred to the walls, it will still function as a stiffening. 

In the primary part of Eurocode 6, the chapter on the calculation of masonry 

structures provides information on calculating the effective height of a wall (section 

5.5.1.2): 

a) in calculations of the effective height of the wall should be considered the 

relative stiffness of the structural elements connected to the wall, and the 

efficiency of the connections, 

b) stiffening of the load-bearing wall can be realized by floor, roofs or 

transversely situated walls or other rigid structural elements, 
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c) the wall stiffening along its vertical edge may be included in the calculations 

in two cases: when no cracks are expected between the analyzed wall and the 

stiffening wall (walls are characterized by similar deformability and evenly 

load) or when the connection has a load-bearing capacity allowing for the 

transfer of internal forces arising from in combination. Increasing the load 

capacity of the joint can be obtained by using anchors or construction 

connectors, 

d) the stiffening wall should meet the conditions:  

• thickness greater than or equal to 0.3 of the effective thickness of the wall it 

stiffens, 

• a length greater than or equal to 0.2 of the clear height of the wall it stiffens, 

e) there may be openings in the stiffening wall; however, the minimum length 

of the wall between the openings that connect to the stiffened wall should 

meet the conditions in Fig. 3.1 and should extend beyond each opening for  

a length of at least 0.2 of the storey height, 

 

 
Fig. 3.1 Minimum length of stiffening wall with openings: 1 – stiffened wall, 2 – stiffening wall,  

3 – window opening, 4 – door opening, 5 – slab 

 

f) stiffening of the walls can be performed by elements other than masonry ones 

if their stiffness meets the conditions for masonry walls (point d), and the 

connections between the walls made of ties, anchors or connectors can absorb 

compressive or tensile forces occurring in the joint, 

g) stiffened walls that meet the following conditions are calculated only as walls 

restrained at the top and bottom: 

• walls stiffened along two vertical edges and l ≥30t, 
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• walls stiffened along one vertical edge and l ≥15t, 

where: 

l - is the length of the wall between the stiffening walls, 

t - thickness of the stiffened wall, 

h) the weakening of stiffened walls above the normative ones - other than in 

point 6.1.2.1(7), with vertical chases or recesses requires a calculated 

reduction of the wall thickness t, or the establishment of a free wall edge in 

the place of chase or recesses. Assuming a free wall edge is required whenever 

the remaining wall thickness with a chase is made is less than half the wall 

thickness, 

i) it is calculation assumed that the walls have free edges at the opening when 

at least one of the following conditions is met: 

• the opening has a clear height of more than 0.25 of the clear wall height, 

• the clear opening width is greater than 0.25 of the wall length, 

• the opening has an area greater than 0.1 of the total wall, 

j) the effective height of the wall is calculated from the formula (3.1). 

 

 ℎ𝑒𝑓𝑓  =  𝜌𝑛 ∙ ℎ (3.1) 

where: 

heff – the effective height of the wall, 

n – reduction factor depending on edge restraint or stiffening of the wall, where  

n takes the values 2,3 or 4, 

h – clear storey height of the wall. 

 

Section 5.5.3 of [N7] includes provisions for masonry shear walls subjected to shear 

loading. Following the standard, elastic stiffness is assumed in the calculations of shear 

walls, considering fragments of transverse walls connected to the stiffening wall (so-

called flanged walls). The effect of shear deformations on the wall stiffness can be 

neglected if the wall height is twice its length. The cooperating fragments of the 

transverse walls may be considered in the calculations. However, the connection 

between the structural elements (stiffened wall and the stiffening wall) must transfer 

shear forces. Moreover, the part cooperating with the stiffened wall does not lose its 

stability – it cannot buckle within the assumed length. The length of the perpendicular 

wall, which can act as a flange as shown in Fig. 3.2, increases the actual thickness of the 

stiffening wall in both directions by the smallest of the given values: 
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• htot / 5, where htot is the overall height of the stiffening wall, 

• ls / 2, where ls  - distance to the adjacent stiffening wall, 

• distance to the edge of the wall, 

• h / 2 where h – clear wall height, 

• 6t where t – intersecting wall thickness (in the draft of the new version of 

the Eurocode 6, the thickness of 8t was proposed [N18]). 

 

 
Fig. 3.2 Flange widths that can be assumed for shear walls: 1 – a fragment of the intersecting wall,  

2 – intersecting wall, 3 – shear wall, ls – the distance between shear walls 
 

Openings with dimensions smaller than h/4 or l/4, made in walls transverse to the 

stiffening wall, may be neglected by calculations. The edges of openings with 

dimensions larger than h/4 or l/4 are taken as wall ends. 

The distribution of loads on the stiffening walls depends on the construction of the 

entire building. Horizontal forces can be transferred to the walls proportionately to their 

stiffness, provided the floors act as a rigid diaphragm. Suppose the horizontal forces act 

on an eccentricity relative to the center of gravity of the stiffening walls or the layout of 

the stiffening walls is asymmetrical. In that case, the torsion effect should be considered 

in the calculations. It is worth mentioning that this situation occurs in engineering 

practice in most cases. However, the standard recommendations do not indicate  

a consistent design methodology for considering the torsion effect or the rules for the 

possibility of omitting that effect. 

When the floors (slabs) cannot act as a rigid diaphragm (the standard specifies the 

case of precast concrete units that are not interconnected), stiffening walls should take 

over the horizontal forces from the floor to which they are directly connected. The 

standard does not specify when it can be unequivocally stated that the floor is not a rigid 

diaphragm. The exception is the computational semi-rigid analysis, i.e. calculations in  

a non-linear range. The maximum horizontal load on the calculated stiffening wall can 

be reduced to 15%, provided that the load on parallel stiffening walls is appropriately 
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increased. It can therefore be assumed that the standard allows redistribution of internal 

forces up to a maximum of 15%. 

The vertical load applied to bidirectional floor slabs may be distributed evenly across 

the supporting walls of the floor, provided that the analysis assumes a relevant design 

load that assists the shear resistance. For the walls of the lower storeys, not loaded 

directly, the load taken from the area separated at an angle of 450 from the slabs or roof 

panels spanned in one way - can be treated as axial load. The shear stress distribution 

can be assumed as constant along the compressed part of a wall. 

3.1.2. Regulations in the polish standard for masonry structures  

PN-B-03002:2007 

According to the Polish standard [N15], a stiffening wall is a wall transferring forces 

acting in its plane and a wall located perpendicularly to the stiffened wall, constituting 

its support when absorbing loads. 

Chapter 5.4 of the Polish standard is dedicated to stiffening walls. In the calculations 

of this type of structural elements, in addition to internal forces resulting from vertical 

loads, forces acting in the plane of the wall - resulting from the building's spatial 

construction - are taken into account. The following walls are distinguished: 

• stiffening walls due to horizontal load, 

• stiffening walls due to vertical displacements of the subsoil. 

 

Case 1: Stiffening walls due to horizontal loads 

In the calculations of buildings with reinforced concrete or prestressed slabs, it is 

assumed that the horizontal load is distributed on the stiffening walls in proportion to 

their bending stiffness, considering the openings in the walls. The horizontal load is 

parallel to the direction of the stiffening walls. As a result, the walls must be analyzed 

separately in the transverse and longitudinal direction of the building. In cases where 

the floors are not a rigid slab - forces are transferred to the stiffening wall only in the 

places of direct connection of the wall and the floor. The effect of torsion of the stiffening 

structure on the distribution of the load on individual stiffening walls and spatial 

stiffness should be taken into account in the case of: 

- the asymmetric layout of the stiffening walls, 

- when the resultant horizontal force is located eccentrically to the center of gravity 

of the layout of the stiffening wall (on an eccentricity greater than 0.05 of the 

width or length of the building – Fig. 3.3). 
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Fig. 3.3 The principle of the layout of stiffening walls: O – the geometrical center of the building plan, 

O1 – the geometrical center of the stiffening wall plan 

 

There is a possibility of shaping a stiffening wall with a complex layout – Fig. 3.4. 

However, the restrictions apply to the part of the wall located perpendicularly to the 

stiffening wall: 

• the length of which does not exceed 1.2 m 

• whose length does not exceed 0.2 of the calculated wall length, 

• within which no door or window opening was made, 

• is connected to the rest of the stiffening walls as required. 

If one of the above conditions is not met, the stiffening wall with a complex layout must 

be analyzed separately as two separate stiffening parts. 

 

 
Fig. 3.4 Stiffening wall with a complex layout: B1, B2, B4 – the stiffening wall treated as single stiffening 

strip, B3 - the stiffening wall treated as two independent stiffening strip 

 

The guidelines for calculating the length of the sections cooperating with the 

stiffening wall (flange) are identical to the requirements of Eurocode 6. The design 
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increase in the stiffness and load capacity of the structural stiffness is possible when: 

• the height of the wall is not more than twice its length, 

• the connection between the section transverse to the wall and the stiffening 

wall can transfer shear forces, 

• the wall flange will not buckle. 

When the stiffening wall is not connected with the transverse wall at the level of 

masonry units - it should be assumed that the entire transverse force is taken over by the 

reinforced concrete tie beam connecting both walls at the floor level (provided that the 

load capacity of the tie beam was sufficient and calculated in accordance with the polish 

standards PN-B-03264:2002). The length of the flange used in the calculations should 

not be greater than the smallest of the values determined in the same way as in  

Eurocode 6 (0.2 of the total height of the calculated stiffening wall htot; 0.5 of the 

distance to the adjacent stiffening wall ls; distance to the edge of the wall; 0.5 of the 

clear storey height h; six times the flange thickness t). 

The openings in transverse walls with dimensions smaller than h/4 or ls/4 can be 

neglected in the calculations. If the openings are bigger, their edges should be treated as 

wall ends. A stiffening wall taking vertical loads other than its the own-weight requires 

a design check for both vertical and horizontal loads acting in the plane of the wall. 

In a stiffening wall that takes vertical loads only resulting from its self-weight within 

one storey, the deformation angle adm should not exceed the limit value. Shear 

deformation is caused by the horizontal load acting in the plane of the wall. If the 

analyzed stiffening wall is also an external wall of the building, its load-bearing capacity 

should be checked due to horizontal loads acting perpendicularly to its plane. The 

calculation analysis of stiffening walls includes verification of the wall load capacity for 

vertical loads in the section above and below the floor and the middle part of the wall, 

taking the value of the force NSd as the sum of (3.2): 

 

 𝑁Sd  =  𝑁vd + 𝑁hd (3.2) 

where: 

Nvd – vertical force caused by a vertical load, 

Nhd – vertical force acting in the wall plane caused by a horizontal design load. 

 

When on the edges of a separated part of width b0, the difference in stresses resulting 

from the vertical and horizontal loads is (3.3): 

 

 𝜎1  −  𝜎2  ≥  0.33 ∙ 𝜎1 (3.3) 
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Then the force NSd is (3.4):  

 

 𝑁Sd  =  𝜎0𝑏0𝑡 =  0.83𝜎1𝑏0𝑡 (3.4) 

where:  

 ≥   the force NSd corresponds to the resultant of the block of evenly distributed 

stresses  occurring in the separated part of the wall – Fig. 3.5. 

When the stresses on the edges of a separated part of width b0 meet the following 

condition (3.5): 

 

 𝜎1  −  𝜎2  <  0.33 ∙ 𝜎1 (3.5) 

 

The force NSd is assumed to be (3.6): 

 

 𝑁Sd  =  𝜎0𝑏0𝑡 =  0.5(𝜎1  +  𝜎2) 𝑏0𝑡 (3.6) 

 

For a fragment of a wall in which tensile stresses occur as a result of the combined 

horizontal and vertical loads, it is assumed that the force NSd = 0. The width b0 should 

be taken as: 

• b0 = b when b ≤ 1.0 m, 

• b0 = 1.0 m when b > 1.0 m. 

 

a) b) c) 

 

  

Fig. 3.5 Determining the value of NSd force: a) cross-section for calculations, b) the resultant diagram of 

vertical stresses from the simultaneous action of vertical and horizontal loads, c) the hypothetical part 

with a width of b0 and solid stress 𝜎0 for determining the force NSd 

 

The load capacity of the wall on horizontal loads acting in its plane is verified from the 

formula (3.7): 

 

 𝑉Sd  ≤  𝑉Rd  (3.7) 

where: 
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VSd - design shear force caused by horizontal forces in the plane of the wall - equivalent 

to the resultant of the shear stress block from the design values of actions, 

VRd - design load-bearing capacity of the checked wall section, which is calculated as 

(3.8): 

 

 𝑉𝑅𝑑  =  𝑓𝑣𝑑 𝑡𝑙𝑐  (3.8) 

where: 

fvd – design shear strength of the masonry in the direction parallel to the bed joints, 

t – wall thickness, 

lc – length of the compressed part of the wall cross-section. 

 

The stiffening walls should be checked for not exceeding the limit value of the shear 

deformation angle adm from the general formula (3.9): 

 

 𝛩Sd  ≤  𝛩adm  (3.9) 

in which: 

Sd – the angle of shear deformation calculated for the characteristic values of horizontal 

shear forces VSk (3.10) – Fig. 3.6: 

 

 
𝛩Sd  =  

𝑉Sk

0.2𝐸𝐴
 (3.10) 

where: 

E – modulus of elasticity of the wall, 

A – horizontal section of the wall, 

adm – the limit value of the shear deformation angle. 

 

The value of the shear deformation angle adm can be assumed for walls: 

• with filled vertical joints from Table 3.1, 

• with unfilled vertical joints, the values of shear deformation angles from Table 

3.1 should be reduced by 50%. 

Table 3.1 

Maximum values of the shear deformation angle adm, mrad 

Group of masonry unit Cement mortar Cement-lime mortar 

group 1, except autoclaved aerated 

concrete units 
0.4 0.5 

group 2,3,4 0.3 0.4 

autoclaved aerated concrete units 0.2 0.3 
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Fig. 3.6 Calculation model to determine the shear deformation angle Sd of a horizontally loaded 
stiffening wall 

 

Masonry lintels acting as a horizontal spandrel of the vertical piers of the stiffening 

wall are checked using the formula (3.11) (if the condition is not met, a reinforced 

concrete lintel should be designed): 

 

 𝑉Sd

0.75𝑡ℎn
 ≤  𝑓vd  (3.11) 

where: 

VSd – design shear force in the lintel; the share of the vertical load is usually neglected 

when the lintel is loaded with the floor, 

t – wall thickness, 

hn – the height of the lintel, including the tie beam, 

fvd – design shear strength of the wall. 

 

Case 2: Stiffening walls due to the displacement of the ground. 

Chapter 5.4.3 regarded checking the load-bearing capacity of the stiffening walls due 

to the vertical displacements of the subsoil. The first assumption is that the vertical 

deformations of the ground under the building are transferred entirely to the stiffening 

wall. The cooperation of the building with the substrate, when calculating the 

deformation of the building subjected to vertical displacements of the ground, can be 

estimated using analytical models or programs based on the finite element method 

(FEM). When determining the flexural stiffness and the deformation state of the 

stiffening walls, the window and door openings shall be considered in the calculations. 

Calculations of stiffening walls due to vertical subsoil displacements consist in: 

• checking the load-bearing capacity of the stiffening wall for vertical loads, 

• checking the shear deformation angle of the wall caused by the characteristic 

values of vertical shear forces. 

Stiffening walls subjected to vertical shear forces or substrate deformations should 

be checked according to the general formula (3.12) due to vertical compression and 
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horizontal wind loads (section 5.1 of the code, walls loaded mainly vertically). Moreover, 

the shear deformation angle should not exceed the limit value, following the formula 

(3.9).  

 

 𝑁Sd  ≤  𝑁Rd  (3.12) 

where: 

NSd – vertical force in the wall caused by the design load, 

NRd – design load-bearing capacity of the wall due to vertical loads. 

 

The reliable value of the shear deformation angle Sd is determined according to Fig. 

3.7: 

• for a wall of length l1 (3.13): 

 

 
𝛩Sd  =  𝛩i−1

|𝑢i −  𝑢i−1 |

𝑙1
 (3.13) 

 

• for a wall of length l2 (3.14): 

 

 
𝛩Sd  =  𝛩i+1

|𝑢i −  𝑢i+1 |

𝑙2
 (3.14) 

where: 

ui-1, ui, ui+1 – values of vertical displacements determined at both ends of the separated 

parts of the calculated stiffening wall, 

l1, l2 – lengths of separated parts of the stiffening wall (distances between transverse 

walls or between openings). 

 

 

Fig. 3.7 The simplified method of determining the shear deformation angle Sd  in the case of known 

values of  transverse walls settlement 
 

If calculations were made using software based on the finite element method – the 

value of the shear deformation angle is determined from the formula (3.15): 
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𝛩Sd  =  

|∆𝑢i |

𝑙i
 (3.15) 

where: 

ui – the value of the difference in vertical displacements determined at both ends of the 

area (section) with the greatest deformations, 

l1 – length of the area (section) with the greatest deformations for part of the calculated 

wall. 

 

The values of the shear deformation angle adm for displacements under the building 

caused by temporary loading can be taken from Table 3.1. Increased values of the 

permissible shear deformation angle can be taken from formula (3.16) if the vertical 

displacements of the substrate were caused by long-term load or when rheological 

processes had already been done in the wall. 

 

 𝛩adm  (1 + 𝜂E𝜑∞  ) (3.16) 

in which: 

adm – a permissible value of the shear deformation angle according to Table 3.1, 

E – coefficient taking into account the reduction of masonry creep due to the 

redistribution of internal forces in the structure and the ratio of the long-term load to the 

total load of the masonry structure with the value E = 0.3. 

∞ – the final value of the creep coefficient equals ∞ = 1.5. 

 

Earlier versions of the standard 

It is worth mentioning that earlier editions of the standard [N12, N13] did not contain 

any guidelines for the design of stiffening walls. The provisions are limited to statements 

that internal forces should be calculated assuming the elastic behavior of the structure. 

Static schemes should correspond to the conditions of the structure in the considered 

limit states. Additionally, in [N12], it is written that for walls subjected to permanent 

horizontal loads, the limit state of loss of stability by rotation or displacement of the wall 

should also be checked. In [N14] from 1999, there are rules for the design of stiffening 

walls, but with some differences to the 2007 version [N15]. The shear resistance of the 

lintels is checked from formula (3.17); the coefficient in the 2007 version was 0.75 – 

formula (3.11): 

 

 𝑉Sd

0.70𝑡ℎn
 ≤  𝑓vd  (3.17) 
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The value of the shear deformation angle Sd was determined according to the formula 

(3.18): 

 

 
𝛩Sd  =  

2(1 + 𝜈)

𝐸
𝜏𝑚𝑎𝑥 =

𝑉Sk

0.4𝐸𝐴
 (3.18) 

where: 

E – modulus of elasticity of the wall, 

 – coefficient of transverse deformation equals   = 0.25, 

max – the maximum value of shear stress caused by a characteristic shear load equal to 

VSk/Av, in which: Av – a cross-section of shear area, 

A – horizontal section of the wall. 

3.1.3. Standard regulations in other European countries 

Section 8.7 of the German standard [N6] contains provisions for stiffening masonry 

walls. Stiffening walls must have an effective length of at least 1/5 of the clear storey 

height hs and have a thickness of 1/3 of the thickness of the wall to be stiffened but at 

least 115 mm. If the stiffening wall has openings, the length of the wall between the 

perforation must meet the condition shown in Fig. 3.1. The clear opening height is h1 or 

h2. 

The swiss standard [N19] rules for calculating the horizontal displacement between 

storeys v (3.19) and the marginal strain x.max (3.20)  for the quasi-permanent load. 

Displacement marks are shown in Fig. 3.8. Deformation conditions for the serviceability 

limit state are also given in Table 3.2. 

 

 
𝜈 =  

6𝑀𝑧1ℎ𝑤
2 + 4𝑉ℎ𝑤

3

𝐸𝑦𝑘 𝑙𝑤
3 𝑡𝑤

+
𝑉ℎ𝑤

𝐺𝑘𝑙𝑤𝑡𝑤
 (3.19) 

 

 
𝜀x.max  =  

6(𝑀𝑧1 + 𝑉ℎ𝑤)

𝐸𝑦𝑘 𝑙𝑤
2 𝑡𝑤

−
𝑁𝑦

𝐸𝑦𝑘 𝑙𝑤𝑡𝑤
 (3.20) 
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Fig. 3.8 Model for calculating horizontal wall displacements between storeys in the swiss standard 

 

Table 3.2 

Deformation conditions based on swiss standard [N19] 

Criterion Normal requirements High requirements 

floor shift v ≤ 0.001 hw v ≤ 0.0003 hw 

maximum strain x.max  ≤ 1.0 ‰ x.max  ≤ 0.1 ‰ 

 

The Russian standard [N20] also does not provide detailed guidelines for the design 

of stiffening walls. When calculating walls (or their vertical cross-sections) for vertical 

and horizontal loads, the following should be checked: 

a) horizontal cross-sections for compression or eccentric compression load,  

b) inclined cross-sections for the principal tensile stresses while bending in the plane 

of the wall, 

c) width of cracks due to the vertical load of walls differently loaded and connected 

or characterized by different stiffness of adjacent fragments of walls. 

 

Formula 3.21 describes the load capacity of the connection of transverse and 

longitudinal walls under the horizontal load. 

 

 
𝑇 =

𝑄𝐴𝑦𝐻

𝐼
≤ 𝑡𝐻𝑅𝑠𝑞 (3.21) 

where: 
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Rsq – compressive strength of the masonry determined without the compressive stresses, 

Q – shear force taken up by the stiffening wall, determined in the elastic stage in the 

middle of the storey height, 

H – storey height, 

y – distance from the center of gravity of the wall (together with flanges), 

A – area of the cross-section of the flange, 

t – wall thickness. 

 

The British regulations [N2] do not systematize stiffening walls' design. The standard 

includes information presenting shear actions in the connection of walls perpendicular 

to each other – Fig. 3.9. 

 

 
Fig. 3.9 Shear forces acting in vertical and horizontal planes [N2]: 1 – complementary shear acting in 

the vertical direction in the vertical plane (stress vector), 2 – complementary shear acting in the 

horizontal direction in the vertical plane (stress vector), 3 – shear acting in the horizontal direction in 

the horizontal plane (stress vector), V – shear force 

3.1.4. Other standards and recommendations 

IS:1905-1987 Indian Standard 

Indian standard [N10] demands checking the necessity of lateral support when the 

hall length exceeds 8.0 m. The requirements for the geometry of the transverse walls 

constituting the horizontal support are shown in Fig. 3.10a. Figure 3.10b presents the 

connection between the stiffening and the transverse wall. 
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a) b) 

  
Fig. 3.10 Requirements in Indian standard [N10]: a) minimum dimension for masonry wall or buttress 
providing effective lateral supports, b) anchoring of stiffening wall with the transverse wall:  

h – the height of the wall 

 
 

Moreover, the flange geometry is also defined depending on the shape of the cross-

section of the wall. In the case of T/I-shaped walls, the maximum size of the flange is 

12t or h/6 – Fig. 3.11a. In L/U-shaped walls, the geometry of the flange is 6t or h/6 – 

Fig. 3.11b. 

 

a) b) 

  
Fig. 3.11 The geometry of flange [N10]: a) T/I-shaped walls, b) L/U-shaped walls: t – thickness of 

bearing wall and h – total height of the wall above the level being considered 

 
 

GB50003-2011. National standard of the people's republic of China 

Appendix C: Statical Calculation of Semi-Rigid Buildings in Chinese standard [N9] 

formulates the method for calculating the action of horizontal load (wind load) on 

buildings. Internal forces can be calculated as a superposition of two steps: 

a) in-plane calculation diagram – Fig. 3.12a: a horizontal hinged strut represents the 

connection between the beam and column on each storey; the internal forces 

under wind load without lateral displacement and the counterforce Ri of each strut 

could be calculated,  

b) space action of the building – Fig. 3.12b: the counterforce Ri of each strut should 

be multiplied by the corresponding space performance coefficient i – Table 3.3 

and applied on the joint reversely. 
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a) b) 

  
Fig. 3.12 Model of a multi-storey frame used in the calculation of internal forces based on Chinese 

standard [N9]: a) in-plane model, b) spatial model 

 

Table 3.3 

Influence coefficient of space performance for each storey of the building i [N9] 

* Transverse wall spacing s, m 
16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 

1 - - - - 0.33 0.39 0.45 0.50 0.55 0.60 0.64 0.68 0.71 0.74 0.77 

2 - 0.35 0.45 0.54 0.61 0.68 0.73 0.78 0.82 - - - - - - 

3 0.37 0.49 0.60 0.68 0.75 0.81 - - - - - - - - - 

 

This calculation approach assumes that all stiffening walls have the same geometry, 

and the effect of building torsion is not considered. To sum up, these are calculations 

carried out on plane models, and equivalent coefficients represent the spatial behavior 

of the structure. 

 

Canadian Standards Associations CSA S304-14 and NBCC2005 

Canadian regulations for analysing walls loaded with a horizontal load focus on 

structures in seismic areas [N4]. Within the meaning of the standard, structural walls 

have to resist axial compression (due to the vertical gravity loads), out-of-plane bending 

(flexure) and shear due to transverse wind, earthquake or blast loads, eccentric vertical 

loads and in-plane bending and shear due to lateral wind and earthquake loads acting in 

a direction parallel to the plane of the wall. One of the roles of slabs called diaphragms 

is to transfer horizontal loads to a lateral load-resisting system. The standard [N4] 

distinguishes several types of shear walls. A solid wall  (Fig. 3.13a) is a term which 

describes shear walls without openings (door or window openings), while walls with 

openings are called perforated walls. The parts of the wall between the openings are 

called piers – Fig. 3.13b. Coupled walls mean shear walls in medium-rise masonry 

buildings with vertically aligned openings over the height. 
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a) b) 

  
 

Fig. 3.13 Types of shear walls distinguished in [N4]: a) solid wall, b) perforated wall: 1 – door opening, 

2 – windows opening, A, B, C – piers, V – horizontal force 
 

Moreover, the standard [N4] introduces the aspect ratio hw/lw (relation between 

height and length of the shear wall), which enables wall classification based on the 

geometry – Fig. 3.14. Flexural shear walls mean that the height/length ratio equals 1.0 

or higher, and squat walls mean that such a ratio is less than 1.0.  

 

a) b) 

  
 

Fig. 3.14 Shear wall classification based on the aspect ratio according to [N4]: a) flexural walls, b) squat 

walls 

 

Standard assumes the shear forces distribution in a wall is similar to a vertical 

cantilevered beam fixed at the base – Fig. 3.15. There are reactive forces such as P, 

which is a sum of vertical forces acting on a wall, V – the sum of horizontal forces and 

M – the bending moment equals the quotient of the resultant horizontal force  

V multiplied by the effective height he. It is worth mentioning that regulations in [N4] 

are among the few that draw attention to the static scheme adopted in the calculations. 
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Fig. 3.15 Load distribution in masonry shear wall: P1 and P2 – vertical loads, V1 and V2 – horizontal 
loads, he – the effective height of acting the resultant horizontal load V, P – vertical reactive force  

P = Pi, V – horizontal reactive force V = Vi, M – in-plane bending moment M = V⋅he 

 

The National Building Code of Canada [N11] also include regulations for structures 

in seismic areas. Point 4.1.8.11(8) included notes on torsional effects. Torsional 

moments are induced by forces acting on the eccentricity relative to the center of mass. 

Torsional sensitivity can be determined based on the ratio Bx for each level and each 

orthogonal direction independently – (3.22): 

 

 
𝐵𝑥 =

𝛿𝑚𝑎𝑥

𝛿𝑎𝑣𝑒
 (3.22) 

where: 

max  – maximum displacement of the storey at the extreme points of the structure at 

level x in the direction of earthquake induced by equivalent static forces acting at 

distances ± 0.10 Dnx from the center of mass at each floor, 

ave – average displacement of the storey at the extreme points of the structure at level  

x in the direction of earthquake induced by equivalent static forces acting at distances  

± 0.10 Dnx from the center of mass at each floor, 

Dnx – plan dimension of the building at level x perpendicular to the direction of seismic 

loading being considered. 

The B value of the building is the maximum one of all values Bx in both orthogonal 

directions. The torsion of the building is taken into account by calculating the torsional 

moment of the building (for buildings with B ≤ 1.7) or by dynamic analysis procedure 

(for buildings with B > 1.7) specified in chapter 4.1.8.12 of [N11]. 

 

American regulations ACI 530-05/ASCE 5-05/TMS 402-05 and Army TM 5-809-3 

According to the American standard [N3], design assumptions enclose a braced 

structural system. The distribution of lateral loads depends on the construction of slabs 
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(if they are diaphragms) and the rigidities of the structural system. Additionally, 

connections between particular elements, such as walls and slabs, determine if the wall 

participates in taking horizontal loads. Lateral loads induced by wind or seismic forces 

are considered in the directions of the principal axes of the building. Torsion of the 

structure can be caused by load acting at eccentricity to the center of rigidity. The 

analysis should include the influence of openings on the structure behavior and whether 

the masonry between openings allows them to act as coupled shear walls – Fig. 3.16.  

 

a) b) 

  
Fig. 3.16 The effects of openings in shear walls: a) coupled stiffening wall, b) noncoupled stiffening 

wall: 1 – stiffening wall, 2 – opening, 3 – slab 

 

In calculation, the stiffness of shear walls should consider shear and flexural 

deformation. Standard distinguishes three types of solid shear walls based on the 

relationship between the height h and length d of the wall – Fig. 3.17. There are walls 

in which shear stiffness predominates – h/d<0.25. When the ratio h/d is between 0.25 

and 4, both shear and flexural stiffness determine the behavior of the wall. For walls 

with h/d >4, the most crucial is flexural stiffness.  

 

a) b) c) 

   
Fig. 3.17 Shear walls stiffness [N3]: a) shear stiffness predominates, b) both shear and bending stiffness 
are essential, c) bending stiffness predominates 

 

The standard that provides relatively much information on the design of stiffening 

walls is TM 5-809-3/NAVFAC DM-2.9/AFM 88-3, Chap. 3 [N21] issued by 
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Departments of the army, the navy and the air force. Chapter 7 deals with reinforced in-

plane shear walls, but the guidelines do not apply to structures in seismic areas. The 

allowable shear stress in the wall depends on the ratio M/Vd, where M is the maximum 

moment resulting from the shear force V acting in the plane of the wall, and d is the 

effective length of the wall. The stiffening wall can be considered in two static schemes. 

A wall between storeys (a multistory shear wall) can be analysed in a double-fixed 

scheme. Then the bending moment is calculated from the formula (3.23): 

 

 𝑀 = 0.5 ∙ ℎ ∙ 𝑉 (3.23) 

in which, 

h – the height of the wall. 

The M/Vd value equals h/2d. In the second calculation variant, the static scheme of the 

walls assumes a single restraint only in the base of the wall (a single-story cantilevered 

shear wall). Then the value of the bending moment can be calculated from (3.24). The 

value of the M/Vd ratio then becomes h/d. Calculation situations are presented in Fig. 

3.18. 

 

 𝑀 = ℎ ∙ 𝑉 (3.24) 

 

a) b) 

  
Fig. 3.18 M/Vd ratios and static schemes for masonry shear walls: a) stiffening wall between floors – 

fixed top and bottom edge, b) one story cantilever wall – fixed bottom edge: h – the height of the wall, 

d – the length of the wall, M – in-plane bending moment, V – horizontal force 
 

If the calculated shear stress fvm exceeds the allowable value Fvm, shear reinforcement 

is required. In that case, the reinforcement is designed to transfer the total shear force.  

The horizontal load capacity of a building depends on the structural system considered 

an entire construction. The relative shear stiffness of a wall is inversely proportional to 

its displacement under a unit horizontal force. The total horizontal displacement of the 

building is the sum of shear and flexural deformations – Fig. 3.19. 
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a) b) 

  
Fig. 3.19 Stiffening wall deformation: a) shear deformation, b) flexural deformation: 1, 2, 3 – 

horizontal displacements, F1, F2, F3 – horizontal forces 
 

The analysis of the building is based on the division of the structure into stiffening 

parts considered separately. Structure division points are called control joints. Both the 

location and the number of control nodes along the stiffening walls can affect the 

stiffness of the members –  especially in the case of bending deformations. In addition, 

the computational analysis should consider the effect of openings on the stiffness of the 

elements. Stiffening walls can increase load-bearing capacity by including a fragment 

of a perpendicular wall to cooperate in transferring loads. The horizontal cross-sections 

of the stiffening unit (stiffening wall) take the letter ‘T’ or ‘L’ shape. Chapter 7-5 (point 

3) [N21] stated that the load capacity increase resulting from the cooperation of elements 

might be difficult to estimate. Moreover, the calculations assume that the soil under the 

foundation is unyielding or that the soil pressure has a linear distribution. Although this 

assumption is a significant simplification, it allows the estimation of the structure's 

stiffness acceptably for design purposes.  

The distribution of forces on the stiffening walls depends on their stiffness and the 

horizontal stiffness of each storey slab. Suppose the floors act as rigid diaphragm at the 

level of the storey. In that case, the distribution of loads on the walls is proportional to 

their stiffness. Under symmetrical loading, each element will resist the same proportion 

of lateral force (all vertical shear wall elements deflect equally). Another situation is 

when the slabs do not act as a rigid diaphragm. Flexible diaphragms are considered less 

rigid than shear walls and transfer the load to the walls analogously to a continuous 

beam scheme without considering the rigidity of the walls. A flexible diaphragm is not 

able to transfer torsional rotational moments. On the other hand, when the resultant 

horizontal force does not coincide with the center of rigidity of shear walls, a torsional 

moment will be generated within the rigid diaphragm (case called rotational shears). The 
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criterion for floors is not exceeding the permissible deflection uadm (own designation), 

which is calculated from formula (3.25): 

 

 
𝑢adm  =  

ℎ2𝐹𝑏 

0.01 ∙ 𝐸𝑚 ∙ 𝑡
 (3.25) 

in which: 

Fb – the allowable flexural compressive stress in masonry, psi (pound per square inch); 

Fb = 0.33fm,  

Em – the modulus of elasticity for CMU (concrete masonry unit), psi; Em = 1000 fm, 

t – the effective thickness of the wall, inches. 

This rule ensures that excessive deflection of the roof and floor diaphragms do not cause 

damage to vertical shear elements. The standard [N21] stipulates that the equation is not 

technically correct and is only a reference point for the designer, who should consider 

the maximum allowable deflection of floors that transfer loads to the stiffening walls. 

The regulations indicate that calculations should consider the effects of the 

perforations in the building, and this effect depends on the geometry of openings. The 

influence of small openings will be minor or negligible compared to larger ones. 

Additionally, the localization of openings also affects the degree of complexity of the 

calculations. If perforations occur in regularly spaced vertical rows or piers, the 

calculation is not as complicated as when the openings do not align vertically or 

horizontally. Analysis should consider stress concentration areas such as extreme sides 

of the wall (boundaries) where the lengthening or shortening sides occur due to deep 

beam action, corner joints or diagonal tension – Fig. 3.20. 

 

 
Fig. 3.20 Deformation of structure: 1 – stiffening wall, 2 – window opening, 3 – diagonal tension cracks 

in spandrels, which can occur at the top or other elevations, depending on the vertical shear distribution, 

4 – diagonal tension cracks in piers which can occur at the bottom where horizontal shear is the largest 
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Moreover, the value of relative stiffnesses of the vertical piers and horizontal wall 

fragments (spandrels, lintels) between them impacts the type of adopted analysis. Figure 

3.21 shows two extreme cases of different stiffness of the external wall of the building. 

The analysis assumes that the wall is fixed in the foundation. 

For rigid vertical cantilever piers (Fig. 3.21a) – spandrels and lintels act as horizontal 

struts between the vertical piers. In this scheme, the determination of internal forces is 

relatively simple. It is based on the cantilever flexural behavior of the vertical wall 

fragments between the openings by ignoring the deformation characteristics of the 

spandrels. The role of lintels is to transfer forces to vertical elements. It is required that 

flexural deformation of struts must be compatible with the deformation of vertical 

cantilever piers. In the second scheme (Fig. 3.21b), the vertical wall fragments are 

characterized by much lower stiffness than the horizontal elements. In this case, the 

lintels and horizontal fragments are assumed to be infinitely rigid, and the vertical piers 

are analyzed as fixed-end columns. The horizontal bands between the windows 

(spandrels) are designed for the forces induced by the vertical elements. 

 

a) b) 

  
Fig. 3.21 Relative rigidities of piers and spandrels [N21]: a) rigid piers and flexible spandrel, b) flexible 
piers and rigid spandrel: 1 – horizontal force, 2 – the deflected shape of the building, 3 – opening 

 

Both calculation situations can be considered using wall deflection charts (an 

example is shown in Fig. 3.22) and standard procedures specified in chapters 7-8 of 

[N21]. A more complex situation occurs when the rigidity of piers and spandrels is 

relative – static behavior cannot be clearly defined.  

The stiffness of the stiffening wall is inversely proportional to its deflection. The 

calculations are carried out on a model loaded with a unit horizontal force. The wall 

dimensions are essential in the analysis - length, height and thickness. Mechanical 

parameters such as modulus of elasticity, shear modulus and boundary conditions for 

fixing the element at the bottom and top are also considered. 
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Fig. 3.22 Wall deflection chart according to the [N21]: 1 – fixed pier, 2 – cantilever pier, I – corner pier, 

fixed: f = 0.0412(h/d)3 + 0.1543(h/d), II – rectangular pier, fixed: f = 0.0617(h/d)3 + 0.1852(h/d),  

III – corner pier, cantilever: c = 0.1646(h/d)3 + 0.1543(h/d), IV – rectangular pier, cantilever: 

c = 0.2469(h/d)3+ 0.1852(h/d) 

 

The standard considers two static schemes. In the first one, the masonry wall is fixed 

on top and bottom. Then the horizontal deflection f (deflection) is the sum of shear and 

flexural deformations calculated from relation (3.26): 

 

 
∆𝑓 = ∆𝑏  + ∆𝑣  =  

𝑉 ∙ ℎ3
 

12 ∙ 𝐸𝑚 ∙ 𝐼
 +  

1.2 ∙ 𝑉 ∙ ℎ 

𝐸𝑣 ∙ 𝐴
 (3.26) 

where: 

b – the flexural deflection, inches; and v – the shear deformation, inches, 

A – the horizontal cross-sectional area of the wall element, in2, 

I – the horizontal cross-sectional moment of inertia of the wall element in the direction 

of bending, in4, 

Ev – the shear modulus of masonry, psi; Ev = 0.40Em 

V – horizontal force, and h – the height of the wall. 

 

If the wall or pier is fixed only at the bottom (cantilever scheme), the total horizontal 

displacement is calculated from the formula (3.27): 

 

 
∆𝑓 = ∆𝑏  + ∆𝑣  =  

𝑉 ∙ ℎ3
 

3 ∙ 𝐸𝑚 ∙ 𝐼
 +  

1.2 ∙ 𝑉 ∙ ℎ 

𝐸𝑣 ∙ 𝐴
 (3.27) 
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It can be concluded that the horizontal displacement of the wall resulting from its 

flexural deformation is four times greater in the cantilever model compared to the 

restraint on both sides. However,  shear deformations of the wall are the same – 

regardless of the adopted support conditions. The total stiffness of the shear wall k is the 

reciprocal of the total horizontal displacement (3.28): 

 

 
𝑘  =  

1 

∆𝑏
 +  

1 

∆𝑣
  (3.28) 

 

To sum up, openings within the wall significantly impact the methodology of designing 

stiffening walls. Calculations of solid walls without perforations are relatively simple, 

and the irregular distribution of openings adversely affects the time and labour 

consumption of the analysis. 

3.2. Selected experimental and numerical studies of stiffening walls 

The behavior of a masonry structure is a complex research problem. Both the 

mechanical parameters of the wall components (e.g. modulus of elasticity, compressive 

and tensile strength) as well as the type of joints and their thickness are influential. The 

masonry is most often in a complex stress state resulting from vertical (gravitational 

loads) and horizontal actions (e.g. wind). These factors in various configurations affect 

the wall mechanics. The shear of unreinforced masonry is largely resistant due to 

deformation in mortar bed joints [50]. It is defined conveniently by the Mohr-Coulomb 

failure envelope that relates the shear strength u to the shear bond strength 0, an 

apparent friction coefficient  and vertical stress fv in the joint. However, wall failure 

may occur in joints, masonry units, or both [33]. The paper [99] distinguishes nine 

possible mechanisms of wall failure in a plane stress state – Table 3.4. Other failure 

patterns are possible, but several basic mechanisms have coincided in these cases. 

Mechanisms 7MF-9MF describe the possible failure of the stiffening masonry walls. 
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Table 3.4 

The primary mechanisms of masonry failure in a plane stress state, based on [99]  

Designation Failure mechanism A 2-D view of failure Description 

1MF 
Separation of 

columns 

 

vertical cracks through 

masonry units passing 

through joints under 

uniaxial compression 

2MF 

Separation of layers 

or several masonry 

rows 
 

horizontal cracks through 

bed joint surface under 

horizontal uniaxial 

compression 

3MF Parallel splitting 

 

splitting masonry failure 

under biaxial compression 

4MF 
Damage along a bed 

joint 

 

horizontal breakage through 

bed joint surface under axial 

tension 

5MF 
Breakage along a 

toothing crack 

 

breakage of head joints 

under horizontal tension 

6MF 

Vertical breakage 

through masonry 

units 

 

vertical breakage through 

masonry units passing 

through joints under 

compression and tension 

7MF 

Splitting along a 

stepped crack with 

shear along the bed 

joint 

 

stepped crack along the bed 

and head joints under 

compression and shear 

8MF 
Shear along the bed 

joint 

 

horizontal crack along the 

bed joint surface under 

shear 

9MF 
Splitting along an 

inclined crack 

 

inclined crack along both 

masonry units and passing 

through joints under 

compression and shear 
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Moreover, masonry in tension shows other characteristics in tensile strength 

reduction, and this phenomenon is related to cracks. When masonry is cracked in  

a stepped pattern, the strength reduction is relatively small, and the wall respond ductile. 

When an inclined crack occurs in masonry, the behavior indicates a brittle failure with 

a rapid strength decrease [61] – Fig. 3.23. It should be mentioned that the cracks provide 

in-depth information about the mechanics of masonry behavior, which justifies 

conducting experimental research which gives much information about failure patterns. 

 

a) b) 

 

 
Fig. 3.23 Differences in tensile behavior of masonry: a) straight and stepped crack pattern depends on 

compressive stress, based on [61], b) behavior of stiffening masonry wall in complex failure mode: 

1 – straight crack (high compressive stress), 2 – stepped crack (low compressive stress), 

c – compressive stress, t – tensile stress, Hx – horizontal shear force, Ft – tensile force. 

 

Shear wall tests are often carried out on small models consisting of several masonry 

elements connected with mortar [133] (masonry prism), masonry couplet [158] or 

masonry triplets [15, 101] – Fig. 3.24. Sometimes standard procedures cannot be applied 

directly; however, they are a reference point for testing walls with complex structures.  

 

a) b) c) 

 

 

 

Fig. 3.24 Types of shear tests [101]: a) couplet test, b) van der Pluijm test, c) triplet test 
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The test made by Binda et. al. [20] is an example of a triplet test for twelve three-

leaf stone wallets consisting of two outer leaves of ashlar masonry with mortar joints  

10 mm thick and an inner core of rubble masonry. The shear was similar to the procedure 

presented in EN 1052-3 [N17] – a monotonic load was applied to the inner leaf while 

the outer leaves were supported (triplet test). Small models are beneficial for 

determining basic shear parameters, e.g. initial shear strength fv0 [78]. Tests of shear 

models are commonly performed following the ASTM standard [N1] (models subjected 

to diagonal testing) [148], or in a variation of this test – the masonry assemblage rests 

on a plinth, and the force is applied diagonally between the two corners [91]. It should 

be added that the most important shear parameter, which is the shear modulus, may 

differ depending on the adopted test method, even for the same masonry wall [44]. Full-

scale models [41, 93, 87, 62] or scaled models [17, 11, 90] are used instead to determine 

the global behavior of the structure. 

Most shear masonry studies are cyclic loading analyses [47, 116, 25, 143], and 

monotonic load tests are rare [84]. The analysis of stiffening walls, both masonry and 

reinforced concrete, mainly concerns seismic areas [56, 137]. Test type also depends on 

the type of construction used in a particular world region – e.g. most reinforced masonry 

constructions in the mid-western and eastern parts of the United States are partially 

grouted, so it determines the experimental [21, 24] and analytical [6] recognition of such 

structures. Even in-situ masonry tests are carried out to assess existing structures [16]. 

Research by Paulo B. Lourenço et al. [103] presented results of experimental 

research on the structural behavior of dry joint masonry – Fig. 3.25.  

 

a) b) 

 

 

Fig. 3.25 Details of research [103]: a) geometry and test stand, b) static cantilever scheme: 1 – vertical 

load, 2 – horizontal load, 3 – reinforced concrete beam, P – axial force, V – shear force 
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Analyses were conducted in collaboration between the Structural Technology 

Laboratory of the Technical University of Catalonia, Barcelona and the University of 

Minho. Seven dry masonry walls were tested under combined vertical and horizontal 

loading. The tested walls were a rectangle with dimensions 1.0x1.0 m, and the thickness 

of the walls was 0.20 m (Fig. 3.25). Each model was made of locally available stone, 

known as Montjuic stone (many monuments in Catalonia are made of that). Walls were 

tested under different compressive normal stresses of 0.15, 0.50, 1.00 and 1.25 N/mm2, 

and the vertical load was equal to 30, 200 and 250 kN, respectively – Table 3.5. All the 

tests were carried out under monotonic loading. Initially, a vertical compressive load 

was applied using a hydraulic actuator until the set load was applied to the wall. The 

horizontal load was applied in the next stage by imposing small displacement increments. 

LVDTs (linear variable differential transformers) measured displacements between units. 

The models were tested one day after their construction. 

Table 3.5 

Values of normal stress and corresponding vertical loads in research [103] 

Model designation Normal stress, N/mm2 Corresponding vertical load, kN 

SW.30.1 0.15 30 

SW.30.2 0.15 30 

SW.100.1 0.50 100 

SW.100.2 0.50 100 

SW.200.1 1.00 200 

SW.200.2 1.00 200 

SW.250.1 1.25 250 

 

The results indicated that the stiffness increases with normal stresses, which means 

that the stiffness of walls depends on the prestress level  (Table 3.6) and masonry 

exhibits a peculiar elastic non-linear behavior with increasing stiffness upon 

compressive loading.  

Table 3.6 

The stiffness increase of tested models in research [11]  

Model designation 
Modulus of elasticity, N/mm2 

Test 1 Test 2 

SW.100 824 688 

SW.200 969 1302 

SW.250 1024 1353 

 

Results pointed out that the linear behavior of masonry ended at 30% of the peak 

load. Then, continuous stiffness degradation takes place under increasing horizontal 
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displacement. The failure pattern is presented in Fig. 3.26. Observations show that 

cracks also depend on the level of compressive stress. A typical stepped crack in joints 

was noticed under lower compression without cracks in masonry units. Damages along 

stone units were observed in the walls subjected to a higher vertical load. Moreover, the 

increase in compressive stress applied initially to the model was connected with the 

increase in obtained maximum horizontal force. 

 

a) b) 

  
c) d) 

  
e) f) 

  
Fig. 3.26 Cracked patterns observed in research [11]: a) model SW.30.1, b) model SW.30.2, c) model 

SW.100.1, d) model SW.100.2, e) model SW.200.1, f) model SW.200.2: 1 – diagonal crack,  
2 –  the crushed corner 

 

The paper by M. Shedid et al. [149] describes an experimental study on reinforced 

concrete masonry shear walls in flexure. The tests concerned the six models under 

reversed cyclic horizontal load – Fig. 3.27, and research focused on the contribution of 

flexure and shear deformation to the total horizontal displacements. Tests enclosed six 

fully-grouted masonry shear walls. Models were 1.8 m long by 3.6 m high and were 

constructed using hollow 190 mm width concrete blocks. A displacement-controlled 

1 1 

1 

1 

1 1 

2 2 

2 2 
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1400 kN hydraulic actuator was used to apply the horizontal load. 

 

 

Fig. 3.27 Test stand in research [149]: 1 – tested wall,  2 – wall foundation, 3 – concrete slab, 4 – steel 
reaction frame, 5 – truss, 6 – rigid structural floor, 7 – hydraulic actuator, 8 – hydraulic jack, 9 – out of 

plane bracing, 10 – U-shape loading beam, 11 – post-tensioned steel tendons 

 

The paper [149] demonstrates that for the aspect ratio of 2.0, shear displacement was 

32% of total lateral displacement at the onset of yielding of the outermost vertical bar. 

The shear displacement equalled 20% of the total lateral displacement for maximum 

load. Furthermore, walls with a higher amount of vertical reinforcement and walls with 

higher values of compressive stress resulted in a slight variation in the contribution of 

shear displacement.  The authors suggested that this effect can have a minor or negligible 

influence on masonry behavior. The results showed that the contribution of shear 

displacements depends not on the initial compressive stress but, above all, on the wall 

geometry. 

The analysis by R. Senthivel and P.B. Lourenço [146] describes the test performed 

by Vasconcelos [159] in the Structural Engineering Laboratory at the University of 

Minho, Guimarães, Portugal. The primary purpose of the experimental research work 

was to evaluate the in-plane seismic performance of stone masonry shear walls. Three 

types of walls were tested: dry-stone or dry-stack mortarless stone masonry (type 1), 

irregular stone masonry with bonding mortar (type 2) and rubble masonry with irregular 

bonding mortar joint thickness (type 3). The dimensions of the models were  

1000x1200x200 mm (length x height x width), and the height/length ratio was equal to 

1.2 – Fig. 3.28. Walls were subjected to lateral monotonic and reversed cyclic loads with 

three values of pre-compression vertical loads – Table 3.7.  
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a) b) c) 

   
Fig. 3.28 Geometry of tested walls [146, 159]: a) type I - dry stack sawn masonry, b) type II -  irregular 

masonry with bonding mortar joints, c) type III - rubble masonry 

 

Table 3.7 

Vertical pre-compression loads for tested wall models [146, 159] 

Pre-compression level Normal stress, N/mm2 Corresponding vertical load, kN 

low 0.500 100 

moderate 0.875 175 

high 1.250 250 

 

Ten walls of the first type and seven walls of type II and III were tested (twenty-four 

total walls). The load was applied sequentially – first the vertical load, then the 

horizontal in terms of controlled displacement at 100 m/s. Deformations were 

measured by linear variable differential transducers (LVDTs). Numerical simulations 

were also undertaken [146]. 

 It has been shown that the most important factors influencing the shear walls on 

load-deformation response and failure pattern are axial pre-compression load and 

material properties. Although the strength of the masonry was different for each type  

(I, II and III), the behavior of the wall under high axial load (175 kN and 200 kN) was 

similar.  The lower axial vertical load caused flexural or rocking failures, and the higher 

vertical load caused rocking, toe crushing and diagonal shear failures along the diagonal 

direction. Each failure pattern showed cracks through the mortar, and the masonry unit 

had no damage. Moreover, the flanges affect the effectiveness of transferring the 

horizontal load through the stiffening wall, and the flange length increases the wall 

stiffness subjected to horizontal loading and lateral strength [68]. The simplified 

calculation for effective flange width for shear walls has been proposed in [150]. 

Simulation of the damage patterns obtained in the tests is possible using numerical 

calculation. The heterogeneity of materials influences the load-displacement curve and 
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peak load of unreinforced masonry shear walls. As the heterogeneity index increases, 

the curve becomes linear, and the peak load is higher than in the low heterogeneity index 

[163]. The reinforcement also affects the behavior of stiffening walls [81, 82]. The test 

of confined masonry walls subjected to horizontal load showed that in confined elements 

compressed to the value of 0.1 and 0.75 N/mm2, shear deformation at the cracking 

moment was lower by 25 and 32% than in unreinforced walls [81]. In confined models, 

values of shear deformation at the failure moment were higher when compared to 

unreinforced ones. Moreover, horizontal reinforcement in bed joints constrained the 

intensity of crack formation. 

Paper [88] presents three results of full-scale tests of masonry buildings made of 

calcium silicate with different opening sizes under a cyclic load. Linear behavior was 

proven to occur up to 77% of the maximum load. The torsion effect was also 

demonstrated due to the different stiffness of the walls caused by openings. Masonry 

walls of tested models cracked in a stair-stepped pattern. In the first model, at the load 

of 41.82 kN, the first stair-stepped crack occurred on the side corner of the building - 

after that, a stair-stepped crack started at the corner of the door opening and propagation 

to the bond beam. At a load of 45.86 kN, the building resistance reached peak value in 

the push direction, and crack size reached 30 mm wide in the last cycle. In the second 

model, at a load of 42.84 kN, the first stair-stepped crack started at the corner of the door 

opening and propagated to the bond beam. These stair-stepped cracks reached 20 mm at 

the end of the test. At a load of 43.60 kN, in the pull direction, a splitting crack started 

from the middle point of the window openings and propagated to the floor level. The 

results show that after the appearance of the first cracks, the building begins to lose its 

stiffness as further damage occurs quickly. At the load of 44.79 kN, building resistance 

reached its peak value in the pull direction. In the third case, stair-stepped cracks 

occurred on the side wall and reached approximately 38 mm wide at the end of the test. 

At 26.83 kN in the push direction and 36.16 kN in the pull direction, stair-stepped cracks 

were observed on the side wall pier between the two window openings. The differences 

in wall stiffness caused the twist of the tested building. 

The stiffness of unreinforced shear walls [117] and lateral load capacity [75] can 

reduce significantly due to wall openings. The numerical simulation showed that the 

lateral load-carrying unconfined masonry walls might be reduced by up to 28.5% when 

incorporating only a 1.85% opening - this reduction increases to 76.5% with a 16.5% 

opening [117]. The full-scale test showed that horizontal displacement suddenly 

increases near wall openings [141]. In addition, the cracks change the pillars' height 

between the openings [157]. 
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3.3. Computational models of stiffening walls 

Although numerical methods are commonly used in the calculations of stiffening 

walls, there is a need for simple methods to allow for analytical verification [1] of the 

structure's behavior. Paper [18] proposed a simplified model for shear walls under 

compression based on three parameters: the limit strength fmk, the yielding strain y and 

ductility index D=u/y. The model considers the wall under shear at the top and the 

compressed in a vertical direction. Three states (fully elastic, cracked elastic and elastic-

plastic) are distinguished depending on the geometry of the cutting line, which separates 

compressed and inactive zones. The static scheme of the structure is a cantilever wall – 

Fig. 3.29. The authors compared such an analytical model with experimental data and 

estimated an average error. The average estimation error of ultimate shear force was 

equal v=10.7%, and the corresponding displacement estimation error was d=26.9% 

[18]. 

 

a) b) c) 

 

 
 

Fig. 3.29 Equilibrium states of a wall under compression and shear based on [18]: a) fully elastic,  

b) cracked elastic, c) elastic-plastic 

 

Simplified planar models were developed for non-torsional reinforced concrete 

structures [121]. The tall building is a non-twisting structure when the load is uniformly 
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distributed over the height, the geometry of the building is symmetric, and the structural 

system is the same at each floor level. Moreover, the slabs should constrain the 

horizontal deflections of the walls and frames and be rigid in their planes. In such 

conditions, the building can be represented by a single-bay moment resisting frame, 

joined at each slab level by an axially rigid link or a multi-bay system [161].  

The equivalent single-bay frame may be considered a planar continuum model in 

simplified analysis, assuming the structure to be uniform with height. In such a model, 

accounting for the double-curvature bending of the columns within each story height is 

necessary when calculating the shear rigidity GA. It is assumed that a continuous 

medium links columns. Continuum has shear rigidity GA equivalent to the story-average 

shear rigidity of the frame associated with a double-curvature bending of its columns 

and beams. Fig. 3.30 shows that the wall is linked with continuously coupled columns 

by axially rigid connection links with no shear rigidity. The structure can be represented 

mathematically by equation (3.29). The model may be extended by adding a stiffening 

panel to analyse the structure with the stiffened intermediate-level story [121]. 

 

a) b) 

  
Fig. 3.30 The calculation model of a building: a) continuum representation of wall-frame, b) forces in  

a structural system, based on [121]: 1 – shear wall, 2 – moment-resisting frame, 3 – shear and bending 

continuum representing GA property of frame, 4 – horizontal rigid continuum representing axially stiff 
connecting links, 5 – line of contra flexure 

 

 𝑙

𝐸𝐼
∫ 𝑀𝐸(𝑥)𝑑𝑥 − 𝑇′(𝑥)

𝑙2

𝐺𝐴
+  

𝑙2

𝐸𝐼
𝑘2  ∫ [𝑇(𝑥)]𝑑𝑥 = 0

𝑥

0

𝑥

0

 (3.29) 

where: 

ME(x) – external moment acting on the building at height x from the base, 

T(x) – axial force in the columns at height x due to overturning, 

l – the distance between columns of the equivalent one-bay  moment resisting frame, 

EI – the sum of flexural rigidities of the frame columns and the shear wall, 

GA – the racking shear rigidity of the moment-resisting frame.  
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Continuum models are good predictions of the overall lateral load behavior of 

uniform coupled wall and wall-frame structures. It is worth mentioning that such an 

approach is developed for reinforced concrete structures and not involving specific 

masonry behavior. Therefore, it is insufficient for detailed interactions between the wall 

and frame, particularly at the bottom and the top of the building. 

For the dynamic behavior of stiffened coupled shear walls, also are used discrete-

continuous approach [94]. In such calculations, there is a possibility to consider the 

effect of flexible foundations represented by rotational and translational springs at the 

base of each shear wall. The analytical model enables a simplified representation of soil-

structure interaction. Due to the wind action design needing to be considered the overall 

building stability and the strength of individual stiffening walls, the book [69] presented 

an analytical method for wind load analysis based on the simple bending theory – Fig. 

3.31. It is assumed that shear walls deform as cantilevers, and the slab is a rigid 

diaphragm. The deflection at the slab level is the same as the shear wall and is given by 

formulas (3.30) and (3.31).  

 

 
∆1=

𝑤1 ∙ ℎ3

3𝐸𝐼1
+

𝜆𝑤1ℎ

𝐴𝐺
 (3.30) 

 

 
∆2=

𝑤2 ∙ ℎ3

3𝐸𝐼2
+

𝜆𝑤2ℎ

𝐴𝐺
 (3.31) 

where: 

w1, w2 – lateral forces acting on stiffening walls, 

D1, D2 – deflections of particular walls, 

h – height, 

G- modulus of rigidity,  

I1, I2 – second moments of areas, 

 – shear deformation coefficient (1.2 for rectangular section and 1.0 for flanged section). 

 

a) b) 

  
Fig. 3.31 Analytical method [69] for shear walls resisting wind force: a) 3D view, b) plan view 
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The first part of formulas (3.30) and (3.31) describes bending deflection, and the 

second part characters the shear displacement. Shear deflection can be neglected if the 

height/width ratio exceeds 5.0. Equations (3.32) and (3.33) formulate the lateral load 

that shear walls take. 

 

 ∆1= ∆2 (3.32) 

 

 2𝑤1 + 𝑤2 = 𝑤 (3.33) 

 

The walls with openings are called coupled walls or pierced shear walls and present 

a more complex problem in static [4, 43, 152, 92] and dynamic analysis [3]. There are 

five different calculation models for the analysis of this case: individual cantilever, 

equivalent frame, wide column frame, continuum model, and model based on the finite 

element method (FEM) – Fig. 3.32. 

 

a) b) c) 

 

 

 

 

 

d) e) f) 

   
Fig. 3.32 Calculation models for stiffening walls with openings [69]: a) building view, b) individual 

cantilever, c) equivalent frame, d) wide column frame, e) continuum model, f) model based on finite 

element method (FEM) 
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When a series of vertical cantilever walls idealize the structure, there is assumed that 

vertical piers are deflecting together and the slabs transmit only normal forces, 

neglecting its bending. The load is distributed in proportion to the flexural stiffness of 

load-bearing elements. The shear wall deflection is calculated by formulas (3.34) – 

(3.37). 

 

 
∆=

𝑤1

𝐸𝐼1
(

𝑥4

24
−

ℎ3𝑥

6
+

ℎ4

8
) (3.34) 

 

 
∆=

𝑤2

𝐸𝐼2
(

𝑥4

24
−

ℎ3𝑥

6
+

ℎ4

8
) (3.35) 

 

 𝑤1 =
𝑤

𝐼1 + 𝐼2
𝐼1 (3.36) 

 

 𝑤2 =
𝑤

𝐼1 + 𝐼2
𝐼2 (3.37) 

where: 

w – uniformly distributed wind load/unit height,  

h – the building height,  

x – a distance of the section under consideration from the top,  

I1 and I2 – second moments of areas. 

 

In the equivalent frame approach, walls and slabs are represented by beams with the 

same flexural stiffness as walls and slabs. A similar model is a wide column frame. In 

this approach, an equivalent frame idealizes the actual structure, but the interconnecting 

members are assumed to be of infinite stiffness for part of their length. Another approach 

is a continuum model in which an equivalent shear medium represents the structure, and 

the contra-flexure point is taken at the center of the medium. The most complex model 

is based on Finite Element Method. 

 In order to compare the results of the analytical methods and the actual behavior of 

the masonry structure, experimental tests were carried out [69]. A full-scale model of  

a three-story building was made - the model was loaded horizontally, and the deflections 

and strains were measured at various level loads. The view of the full-scale model and 

plan view is shown in Fig 3.33. 
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a) b) 

  
Fig. 3.33 Full-scale building model [69]: a) view of the structure, b) plan view: 1 – tested building, 2 – 

horizontal load (three jacks per floor) 

 

Results indicate nonlinear stain and stress distribution across the shear wall near 

ground level. This phenomenon causes analytical calculations not to converge the 

experimental results because they assumed linear stress variation across the shear wall 

(except Finite Element Method). The best convergence between the theoretical and 

experimental results was obtained for the equivalent rigid frame. In such a method, the 

columns have the same sectional properties as the walls with interconnecting slabs 

spanning between the columns – Fig. 3.34.  

 

 
Fig. 3.34 Comparison between the theoretical and experimental results based on the full-scale research 

presented in [69] 

 

 1 
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Moreover, A.W. Hendry, B.P. Sinha and S.R. Davies presented in [69] the method of 

load distribution between the unsymmetrically arranged stiffening walls. The resultant 

horizontal load caused by the wind, which does not pass through the shear center can be 

replaced by the load W and twisting moment We – Fig. 3.35. When stiffening walls are 

arranged symmetrically, the load is distributed proportionally to particular wall stiffness. 

The deflection of walls must be equal at floor level. Forces in individual walls can be 

calculated from formulas (3.38) – (3.40).  

 

 
𝑊𝐴 =

𝑊𝐼𝐴

𝐼𝐴 + 𝐼𝐵 + 𝐼𝐶
=

𝑊𝐼𝐴

∑ 𝐼
 (3.38) 

 

 
𝑊𝐵 =

𝑊𝐼𝐵

∑ 𝐼
 (3.39) 

 

 
𝑊𝐶 =

𝑊𝐼𝐶

∑ 𝐼
 (3.40) 

 

a) b) c) 

   

Fig. 3.35 Unsymmetrical arranged stiffening walls subjected to horizontal load, according to [69] 

 

Due to the rotation of the building, in walls arise additional forces W’A, W’B W’C. In 

walls A and B, forces have the same negative value; in wall C, the force has a positive 

value. The deflections a, b and c caused by rotation (Fig. 3.36) can be calculated 

from the following relationships (3.41) – (3.44): 

 

 ∆𝑏= ∆𝑎𝑥𝑏/𝑥𝑎 (3.41) 
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 ∆𝑐= ∆𝑎𝑥𝑐/𝑥𝑎 (3.42) 

 

 ∆𝑎= 𝑊′𝐴 ∙ ℎ3/𝐾𝐸𝐼𝐴 (3.43) 

 

 
Fig. 3.36 Horizontal displacements of stiffening walls due to rotation (twisting), according to [69] 

 

where: K is a constant deflection and: 

 

 ∆𝑏= 𝑊′𝐵 ∙ ℎ3/𝐾𝐸𝐼𝐵 (3.44) 

 

Substituting the value of b from (3.41) and a from (3.43), there are (3.45): 

 

 (∆𝑎/𝑥𝑎)𝑥𝑏 = 𝑊𝐵 ∙ ℎ3/𝐾𝐸𝐼𝐵 (3.45) 

 

or (3.46): 

 

 (𝑥𝑏/𝑥𝑎)(𝑊′𝐴/𝐼𝐴) = 𝑊𝐵/𝐼𝐵 (3.46) 

 

or (3.47): 

 

 𝑊′𝐵 = (𝑊′
𝐴𝐼𝐵/𝐼𝐴)(𝑥𝑏/𝑥𝑎) (3.47) 

 

Analogously (3.48):  

 

 𝑊′𝐶 = (𝑊′
𝐴𝐼𝐶/𝐼𝐴)(𝑥𝑐/𝑥𝑎) (3.48) 

 

The sum of moments must be equal to the rotation moment (3.49) and (3.50): 

 

 𝑊′𝐴𝑥𝑎 + 𝑊′𝐵𝑥𝑏 + 𝑊′𝐶𝑥𝑐 =  𝑊𝑒  (3.49) 

 

 
𝑊′𝐴 [𝑥𝑎 + (

𝐼𝐵

𝐼𝐴
) (

𝑥𝑏
2

𝑥𝑎
) + (

𝐼𝐶

𝐼𝐴
) (

𝑥𝑐
2

𝑥𝑎
)] = 𝑊𝑒  (3.50) 

 

or (3.51): 
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𝑊′𝐴 =

𝑊𝑒𝐼𝐴𝑥𝑎

𝐼𝐴𝑥𝑎
2 + 𝐼𝐵𝑥𝑏

2 + 𝐼𝐶𝑥𝑐
2

=
𝑊𝑒𝐼𝐴𝑥𝑎

∑ 𝐼 𝑥2
 (3.51) 

 

Then the other forces are (3.52) and (3.53): 

 

 
𝑊′𝐵 =

𝑊𝑒𝐼𝐵𝑥𝑏

∑ 𝐼 𝑥2
 (3.52) 

 

 
𝑊′𝐶 =

𝑊𝑒𝐼𝐶 𝑥𝑐

∑ 𝐼 𝑥2
 (3.53) 

 

The force in each wall can be calculated as the algebraic sum expressed in the 

relationship (3.54): 

 

 
𝑊′𝑛 =

𝑊𝑒𝐼𝑛

∑ 𝐼
+

𝑊𝑒𝐼𝑛𝑥𝑛

∑ 𝐼 𝑥2
 (3.54) 

 

The second term in the equation is positive for walls on the same side of the centroid as 

the load W. The analytical determination of the location of the flexural center of the 

building was proposed in the paper [114]. The authors presented the method for dynamic 

analysis of tall buildings braced by stiffening walls and thin-walled open-section 

structures – Fig. 3.37. The formulas (3.55) and (3.56) describe the coordinates of center 

of flexural rigidity for asymmetric structure: 

 

 
�̅�0 =

∑ �̅�𝑞𝐸𝐼𝑦,𝑞𝑞

∑ 𝐸𝐼𝑦,𝑞𝑞
 (3.55) 

 

 
�̅�0 =

∑ �̅�𝑞𝐸𝐼𝑥,𝑞𝑞

∑ 𝐸𝐼𝑥,𝑞𝑞
 (3.56) 

 

�̅�0, �̅�0– the coordinates of the flexural center, 

EIx,q, EIy,q – the lateral stiffness of qth shear wall/thin-walled open cross-section. 
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Fig. 3.37 Layout of an asymmetric building with shear walls and thin-walled open cross sections 

columns, according to [114] 

 

The location of the geometric center (xc, yc) can be calculated from equation (3.57) – 

(3.58): 

 

 𝑥𝑐 = �̅�𝐶 − �̅�0 (3.57) 

 

 𝑦𝑐 = �̅�𝐶 − �̅�0 (3.58) 

 

�̅�0, �̅�
0
 –  the coordinates of the flexural center. 

 

The description of the rotation of the building can be analyzed using Vlasov’s theory 

– the approaches based on that presented in [162, 5]. Although the three-dimensional 

analysis of shear wall structures with any number of connecting and stiffening beams 
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can give a faithful representation of tall buildings – it does not consider the specificity 

of masonry structures. The so-called multi-pier (MP) approach enables the non-linear 

analysis of the in-plane behavior of masonry walls. The method consists of substituting 

the 2D continuum with an assemblage of vertical trusses (piers) and braces, exhibiting 

a monodimensional non-linear behavior with softening [127]. 

Distribution of loads based on the stiffness of the shear walls is the right approach 

assuming that the floors act as a rigid diaphragm, but this approach is incorrect in 

analysing low-rise buildings with slab-rib or wooden ceilings. In this case, floors act as 

flexible diaphragms, and lateral loads cannot be distributed on shear walls 

proportionally to their stiffness. Sang-Cheol Kim and Donald W. White proposed an 

analytical approach for analysing low-rise buildings with flexible diaphragms [89]. The 

structural separation method is based on the phenomenon that flexible floors within the 

structure tend to respond independently. The method models each diaphragm and its 

adjacent walls as separate subassemblies – Fig. 3.38. The in-plane wall horizontal forces 

are calculated by summing the forces from the adjacent diaphragm subassemblies. 

Although the method is related to seismic analysis, the methodology can be helpful also 

in static calculations of low-rise buildings with flexible diaphragms. 

 

a) b) 

  
Fig. 3.38 Distribution of the lateral forces in low-rise buildings: a) rigid diaphragm, b) flexible 
diaphragm, CM – the center of mass, according to [89] 

 

The simple equilibrium model (load-path or strut and tie schemes) is a different 

calculation approach for stiffening walls. In reinforced concrete structure analysis strut 

represent the compression zone, and the tie corresponds to reinforcement. Although 

masonry behaves in another way due to its brittle nature, it is possible to adapt some 

well-known analytical methods, such as strut and tie models (the S-T), for first-approach 
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calculations. Pere Roca determined that struts representing the diagonal field of 

compression stresses and in equilibrium with the external load can be smeared or 

concentrated [138]. Moreover, the distribution of the compression zone is conditioned 

by the wall geometry, loads and presence of openings, which disturbance the stresses. 

The proposed models consist of bars and nodes – Fig. 3.39. Bars can be smeared (sC) 

or discrete (dC). Nodes can be a punctual connection between ties and struts (CCT) or 

finite regions (CCS – external load or reaction meet with one converging internal 

compression force and CCCS - external load or reaction meet with two converging 

internal compression forces). At least two discrete struts should be assumed to represent 

the effect of concentrated or partial load on a wall.  

Furthermore, such load (or reaction) cause a reverse bottle-neck effect. In such cases, 

two opening struts should be balanced by a tie - Fig. 3.39c. The slope of struts 

concerning vertical is limited to tan ( – friction angle of unit-unit interface for dry-

joint wall). In the case of a cohesive wall, the slope is restricted to tan (3.59). The slope 

of the ties concerning horizontal is limited by the tensile strength of masonry in a normal 

direction to the bed joint’s surface. 

 

 tan 𝑎 = tan ∅ +
𝑐

𝜎𝑛
 (3.59) 

in which: 

tan  - the angle of friction of the unit-mortar interface, 

c – cohesion, 

n – the average vertical compression. 

 

a) b) c) 

  

 

 
Fig. 3.39 The strut and tie models for shear walls proposed by Pere Roca [138]: a) deviation of 

compression stress zone by horizontal tensile forces (T), b) parallel smeared struts (sC) and CCS nodes, 
c) discrete struts (dC) picturing a reverse bottle-neck compression stress field combined with a tie (T), 

in combination with CCT and CCCS nodes 
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The presence of openings determines more complex the S-T model. In a wall with  

a centrally located opening, there is no vertical compression close to the top and bottom 

edges of the opening. The model presented in Fig. 3.40a can be assumed in very cohesive 

walls. If the tie cannot emerge, the walls can be estimated using models presented in  

Fig. 3.40b and 3.40c. 

 

a) b) c) 

 
  

Fig. 3.40 The S-T models for shear walls with openings, according to [138]: a) cohesive walls, b) and  
c) non-cohesive walls 

 

The S-T models are used for simplified calculation of the shear strength of confined 

masonry walls subjected to in-plane loads [153]. The analysis encloses confined 

masonry with and without openings [154]. A single concentric strut constitutive model 

also can represent the infill response under in-plane horizontal loads [98]. The 

experimental verification of the models and the mixed model (combined model) is 

presented in [130, 83]. 

3.4. Numerical methods of modelling masonry structures 

Masonry characterizes the anisotropic behavior because it combines different 

materials with different mechanical and physical parameters. The modelling strategy for 

the masonry has to fully represent its behavior discretely or represent the structure using 

a simplified method with the averaged mechanical parameters of the masonry [105, 107]. 

The discrete modelling is usually based on the FEM (finite element method) or 

FDEM (finite-discrete element method). In such an approach, the number of parameters 
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used to describe the behavior of masonry units, mortar and bonds between them is time-

consuming and labour-consuming. This aspect makes discrete modelling unsuitable for 

large-size structures. Simplified modelling requires fewer parameters than the discrete 

technique and is much less time-consuming. Thus, this method can be applied to parts 

of the structure and the whole building. Numerical models should always be validated 

based on structural test results [147]. Regardless of the choice of homogenization 

strategy, a sensitivity analysis of the parameters on a numerical model should be 

performed [32, 55]. 

Mechanical parameters of masonry components (units, mortar) are not the same as 

parameters of masonry which there are parts. Homogenized masonry requires a new 

composite material model with specific mechanical behavior. The homogenization 

technique should be precise in parameter selection and easily adaptable to another 

masonry. Various combinations [102] of different masonry units and different types of 

mortars determine the complexity of the modelling approach for masonry structures [9]. 

The influence of the uncertainty in material properties on the in-plane lateral behavior 

can be solved by numerical assessment of an unreinforced masonry (URM) wall using 

a stochastic analysis in the form of Monte Carlo simulations [63]. Therefore, due to the 

intricacy of historical buildings with irregular textures, homogenization techniques 

represent the original structure by the continuum model and make the analysis possible 

[51]. 

3.4.1. Classification of homogenization methods 

The simple classification of homogenization methods is rather difficult due to the 

specific nature of the proposed literature solutions. Requirements for small-scale 

structures are different than in entire masonry buildings. The systematics of modelling 

masonry structures is considered to appear at the beginning of the 1990s. At that time, 

two approaches for masonry modelling were introduced in the papers [105, 104] - the 

first one is based on homogeneous parameters and is defined as the continuum model. 

The second introduces the concept of the interface model representing the effects 

observed at the interface between mortar and masonry units.  

The paper [107] from 1996 should be considered the first cohesive paper that 

presents the classification of modelling techniques for masonry structures. The method 

of discrete (micro) modelling of masonry has been developed. The mechanics of the 

contact between mortar and masonry units is crucial as this zone is mainly responsible 

for representing the masonry behavior at the non-linear (post-elastic) phase. The paper 
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on micro-modelling published in 1997 [124] indicated the need to search for new 

homogenization methods that simplify the computation. The paper considered whether 

replacing the actual mortar joints with an interface modelled as interface elements is 

possible. In 1999, the paper [100] introduced the term meso-model. That was a variety 

of the macro-model using the original method of calibrating material parameters 

regarded as a reproducible masonry unit (RVE – representative volume element). The 

method of validating parameters for homogeneous models was improved in the 

subsequent years [31, 30], considering the experimental results. The paper [46] 

describes the additional classification of macro-modelling into the following categories: 

BBM (block-based models), CM (continuum models), MM (macroelement models), 

GBM (geometry-based models) – Fig. 3.41. The conventional classification of 

numerical methods of masonry modelling is different and is illustrated in Fig. 3.42. 

 

 
Fig. 3.41 Alternative classification of modelling strategies based on [46] 
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Fig. 3.42 Classification of homogenization techniques in numerical  masonry modelling 
 

3.4.2. Macro-modelling 

Macro modelling (Fig. 3.43) is the recommended approach to analyse the entire 

masonry buildings built of other structural components such as wooden or reinforced 

concrete slabs, reinforced concrete and steel columns, and components of facades and 

foundations. This method uses the isotropic or anisotropic material model [106] and the 

equivalent parameters [13] to represent the behavior of a masonry structure. The 

validation of the implemented parameters conditions the accuracy of the masonry 

representation. Macro modelling cannot be used to observe in detail the failure pattern 

of masonry - cohesive cracks between masonry units and mortar. Thus, the calculated 

results regarding the failure process cannot be regarded as detailed enough. However, 

the macro modelling approach has many advantages. It significantly accelerates the 

process of structure modelling, can be used to perform the global analysis of the masonry 

behavior, is less time-consuming and requires a lower design effort.  

Two basic masonry macro-models can be currently identified [12]: continuum finite 

element macro-models and discontinuum finite element macro-models. The continuum 

finite element macro-model is similar to the concrete or soil model, considering linear 

or nonlinear constitutive relations, yield surfaces, and boundary surfaces. On the other 

hand, the discontinuum models [28, 27] consist of rigid elements connected by flexible 

ones that represent mortar of linear or non-linear behavior [26]. Due to the minimized 

number of parameters, the masonry macro-models are used to perform calculations for 

constructions subjected to static, dynamic and cyclic loading, including safety 

evaluation for seismic or paraseismic areas [59, 123, 58, 109, 122]. Macro modelling 

can be adapted to unreinforced masonry (URM) and wide-spaced reinforced masonry 

(WSRM) [49] or masonry panels confined with reinforced grouted cores [76]. 
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Fig. 3.43 Classification of macro-modelling approach: 1 – unworked stone, 2 – mortar, 3 – solid brick,  

4 – unfilled head joint, 5 – unfilled bed joint 

3.4.3. Micro-modelling 

Micro-modelling (Fig. 3.44) is used to represent in detail masonry and perform  

a more in-depth analysis of the local effects of cracking morphology and failure process. 

This type of modelling is more time-consuming and usually extends the computing time. 

Micro-modelling is based on dividing the masonry structure [13, 7, 14, 64] into specific 

parts representing actual masonry units and mortar. Joints are represented by additional 

contact (interface) elements between the masonry units and mortar.  
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Fig. 3.44 Classification of micro-modelling approach: 1 – unworked stone, 2 – mortar, 3 – solid brick,  

4 – unfilled head joint, 5 – unfilled bed joint, 6 – interface element in the bed joint, 7 – contact element 

in the head joint 

 

Two main types of such modelling can be identified: simplified micro-modelling 

(masonry as two-phase material) and detailed micro-modelling (masonry as three-phase 

material) [12]. In the first strategy, the masonry is composed of elements representing 

the original geometry of the masonry units plus the joint thickness. The mortar is 

modelled as an interface with zero thickness and suitable mechanical parameters for the 

bond. 

The second strategy – the detailed micro-modelling – is an expanded version of the 

first strategy. It consists of modelling the masonry as the continuum of elements 

representing masonry units and mortar. Micro-modelling, due to the high accuracy, can 
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be applied in computations performed for historical stone masonry with mortar layers 

[29], walls made of hollow masonry units partially filled with masonry [22], or masonry 

with multi-perforated units [144]. The strategy for micro-modelling can be applied to 

evaluate shear walls and shear models [167,126,57,53,35], compressed walls [135, 8, 

145], and walls subjected to flexure [65]. Besides the procedures involved in the finite 

element method (FEM), the finite discrete element method (FDEM) is becoming 

increasingly common. This method was developed mainly to model unbound materials, 

such as non-cohesive soil, granular materials, stacks of elements and those showing 

cohesive fracture [37, 38, 36, 40]. The applied computational algorithm models the 

behavior of small and big masonry structures. This method is used in computations for 

dry masonry with the predominant cohesive type damage [151]. It successfully 

combines FDEM with FEM to consider the failure of masonry units [39]. 

3.4.4. Meso-modelling 

Meso-modelling (Fig. 3.45) combines micro and macro models using the 

representative volume element RVE [110]. Representative volume element contains 

each piece of geometrical and physical information of the masonry components 

(masonry units and mortar) connected by contact elements. This approach is based on  

a concept similar to the periodic microstructure and can reflect the observed general 

masonry behavior. Statistical descriptors can define this original structure, and then the 

statistically equivalent periodic unit cell SEPUC can be found [166]. The papers [111, 

125, 52, 54] show masonry analysis using the meso-modelling technique. 
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Fig. 3.45 Classification of meso-modelling approach: 1 – unworked stone, 2 – mortar, 3 – solid brick,  

4 – unfilled head joint, 5 – unfilled bed joint, 6 – representative volume element (RVE), 7 – contact 

element in the head joint, 8 – interface element in the bed joint 

3.5. Concluding remarks 

The standard provisions in the Eurocode 6 are limited to brief, incomplete 

information regarding the calculation of stiffening walls. Although it was indicated that 

the horizontal load might be distributed on the stiffening walls in proportion to their 

stiffness - the methodology for its determination was not provided. Furthermore, no 
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details are provided on the redistribution of internal forces - except that it is allowed up 

to 15%.  

The American and Canadian procedures include the most extensive provisions 

concerning shear walls. Despite that, the shear equation of CSAS304-14 [N4] resulted 

in the most inaccurate predictions of the shear load capacity of unperforated partially 

grouted masonry wall of both the numerical and experimental datasets, followed by the 

conclusion of [113]. It can be concluded that the rules for calculating shear walls are 

incomplete in the entire scope - from load distribution (resulting from the stiffness of 

the walls) to linear and non-linear analysis.  

The most important conclusions resulting from the literature review are formulated 

in the points below. 

1. The tests of monotonically loaded stiffening walls are rare. 

2. Most analyses of unreinforced shear walls involve cyclic loads. 

3. The horizontal displacement of the walls consists of a component due to shear 

and due to bending (flexural deformation). 

4. The contribution of shear displacements depends not on the initial 

compressive stress but, above all, on the wall geometry. 

5. The initial prestressing of the wall influences shear load capacity – higher 

compressive stress determines the shear resistance increase. 

6. Compressive stress changes the crack morphology of the wall. At low levels 

of compressive stresses, shear cracking is stepped. When the wall is highly 

prestressed, the cracks run diagonally through the masonry units. 

7. Perpendicular fragments of the stiffening walls (flanged walls) participate in 

transferring horizontal loads. 

8. The stiffness of unreinforced shear walls and lateral load capacity decreases 

significantly due to wall openings. 

9. The openings affect the crack pattern change and the pillars' actual geometry 

between the openings. 

10. The different stiffness of the shear walls caused by the openings determines 

the building to twist. 

11. The method of numerical masonry homogenization should be adapted to the 

size of the analyzed structure and the purpose of the calculations (representa-

tion accuracy). 

12. Advanced material models require many input parameters - physical and em-

pirical, and few works provide their values adopted in the calculations.  
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4. EXPERIMENTAL RESEARCH 

4.1. Assumptions  

The literature describes the research on single shear walls; however, most tests 

concern structures subject to cyclic loading, and studies of full-scale building models 

under monotonic load are scarce. The goal of the work is experimental recognition and 

description of the behavior of stiffening walls. Own research models were designed to 

achieve the objectives of the work. Research models were designed according to the 

following criteria: 

a) the models are built of masonry units made of autoclaved aerated concrete, 

b) the walls are characterized by thin-layer bed joints and unfilled head joints – 

tongue and groove joints were used, 

c) all models are non-reinforced masonry structures (URM – unreinforced masonry), 

d) the models consist of masonry walls and reinforced concrete slab that performs 

the function of a rigid diaphragm through which the horizontal load is distributed, 

e) the initial compressive stresses of the stiffening walls correspond to a single-

storey building load (in addition to the self-weight, the applied load is 4.59 kN/m2, 

which corresponds to the finishing layers and the live load), 

f) the tests can be extended to the analysis of multi-storey buildings by increasing 

the initial compressive stresses of the walls, 

g) the geometry of the walls is designed in a way that the decisive deformations of 

the walls are shear (not flexural), the h/l ratio is less than 1.0, 

h) in building models, window and door openings with geometry corresponding to 

the actual dimensions of such perforations in housing construction were made, 

i) a test stand was designed for testing full-scale building models in the scheme of 

restraint of walls on the bottom edge and with the initial compressive stresses of 

the building. 
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4.2. Research campaign – models and research program  

Detailed studies of the mechanical characterization of the masonry components – 

mortar and autoclaved aerated concrete masonry units are included in the work [131]. 

For this reason, material parameters were not tested in this monograph. The research 

program (campaign) was carried out regarding the work's set goals and is focused on 

global structure behavior.  

The research models are eight full-scale masonry buildings made of autoclaved 

aerated concrete. The models were erected on a square plan of 4.0x4.0 m. The height of 

the buildings is 2.85 m, and the wall thickness is equal to 0.18 m. Each model consists 

of two stiffening walls marked as A and B (parallel to the horizontal load) and two 

perpendicular walls marked as 1 and 2. The shape and arrangement of openings in the 

walls were chosen to reflect the actual structures best. Models are marked with an 

alphanumeric symbol MB-AAC-010/N, where N is the following number of the tested 

building, MB – masonry building, AAC – autoclaved aerated concrete, and 010 is  

a conventional designation of the initial level of compressive stresses. The models were 

grouped into two or three buildings and an additional reference model. There are four 

types of buildings (type I, II, III and IV). Models MW-AAC-010/1 and MW-AAC-010/2 

have one door opening in stiffening wall A. Models MW-AAC-010/3, MW-AAC-010/4, 

MW-AAC-010/5 have a door opening in stiffening wall A and windows opening in 

perpendicular wall 1. Models MW-AAC-010/6 and MW-AAC-010/7 have a window 

opening in stiffening wall A and a door opening in stiffening wall B. The reference 

model MW-AAC-010/8 had no opening, and all building walls were solid. At least two 

models make it possible to verify the correctness of the research and compare the results. 

The list of the tested full-scale buildings constituting the primary research is shown in 

Table 4.1. 

 

Table 4.1 

The research programme of full-scale masonry buildings 

Model designation / 3D view Wall designation Opening Wall description 

M
B

-A
A

C
-0

1
0
/1

 

 

Wall A door opening 

stiffening 

Wall B solid 

Wall 1 solid 

perpendicular 

Wall 2 solid 
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cont. Table 4.1 
M

B
-A

A
C

-0
1
0
/2

 

 

Wall A door opening 
stiffening 

Wall B solid 

Wall 1 solid 
perpendicular 

Wall 2 solid 

M
B

-A
A

C
-0

1
0
/3

 

 

Wall A door opening 
stiffening 

Wall B solid 

Wall 1 window opening 
perpendicular 

Wall 2 solid 

M
B

-A
A

C
-0

1
0
/4

 

 

Wall A door opening 
stiffening 

Wall B solid 

Wall 1 window opening 
perpendicular 

Wall 2 solid 

M
B

-A
A

C
-0

1
0
/5

 

 

Wall A door opening 
stiffening 

Wall B solid 

Wall 1 window opening 
perpendicular 

Wall 2 solid 

M
B

-A
A

C
-0

1
0
/6

 

 

Wall A window opening 
stiffening 

Wall B door opening 

Wall 1 solid 
perpendicular 

Wall 2 solid 

M
B

-A
A

C
-0

1
0
/7

 

 

Wall A window opening 
stiffening 

Wall B door opening 

Wall 1 solid 
perpendicular 

Wall 2 solid 

M
B

-A
A

C
-0

1
0
/8

 

 

Wall A solid 
stiffening 

Wall B solid 

Wall 1 solid 
perpendicular 

Wall 2 solid 
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In order to ensure the possibility of fully representing and repeating the research by 

other scientists, detailed information on constructing research models is included. All 

models were built on the same bottom beam, using such an element repeatedly. Similarly, 

the slab was designed to be lifted and used in each model without needing to concrete  

a new one. 

4.2.1. Construction of the bottom ring beam 

The bottom beam was made on a rectangular plan with dimensions 4.0x4.0 m. 

Precast L-shaped elements were used to speed up and facilitate the formwork of the 

element. These elements were made of lightweight concrete. Reinforcement consisting 

of four 12 mm diameter bars and 6 mm diameter stirrups, spaced every 15 cm, was 

placed on the L-shaped elements – Fig 4.1a. Each corner has been additionally 

reinforced with six reinforcing bars with a diameter of 12 mm (3 bars per one level of 

reinforcement) – Fig. 4.1b. The steel grade of the bar reinforcement is B500SP, and the 

stirrup is B500B. The view of the formwork structure before concreting is shown in Fig. 

4.2 

 

a) b) 

 
  

Fig. 4.1 Design of construction details: a) reinforcement of bottom beam, b) corner reinforcement:  

1 – L-shaped precast element, 2 – concrete, 3 – bar reinforcement, 4 – stirrups, 5 – corner reinforcement 
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a) b) 

  
c) 

 
Fig. 4.2 Execution of construction details of the bottom beam: a) corner reinforcement, b) main bars 

with stirrups, c) bottom beam formwork 

 

After the preparation of both reinforcement and formwork, the bottom beam was 

concreted. The concrete class of the lower beam is C25/30. Concreting was carried out 

using a concrete bucket – Fig. 4.3a and 4.3b. After placing the concrete mix, it was 

compacted with a vibrator – Fig. 4.3c and 4.3d. This procedure allowed for proper 

compaction of the concrete mixture, even distribution of aggregate and preventing the 

segregation process. 
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a) b) 

  
c) d) 

  
Fig. 4.3 Concreting the bottom beam: a) concrete bucket, b) laying the concrete mixture,  
c) and d) compaction of concrete with a vibrator 

 

The concreted bottom beam was left to mature for 28 days. Concrete care was carried 

out during this time by pouring water on the beam at appropriate intervals – Fig. 4.4. 

 

a) b) 

  
Fig. 4.4 The bottom beam after concreting 
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4.2.2. Construction of the masonry walls  

The walls of the research models were made of autoclaved aerated concrete masonry 

units. The dimensions of a single block are 180x590x240 mm (width x length x height). 

The tests used masonry units from the Solbet Optimal series with a density of 600 kg/m3. 

The walls were built with mortar for thin joints, and bed joints were filled with mortar 

class M5. Head joints were not filled – the masonry units were connected with a tongue 

and groove – Fig. 4.5. 

 

 
Fig. 4.5 Geometry of a single masonry unit used in the tests: 1 – masonry unit, 2 – tongue, 3 – groove 

 

The dimensions of the masonry walls of the building are 4.0 x 2.4 m. The wall's 

thickness was equal to a single masonry unit and amounted to 0.18 m. The total height 

of the building, including the slab and bottom beam, is 2.85 m. Depending on the 

research model of the building, door or window openings were made in the walls. The 

dimensions of the door openings are 1.0x1.92 m, and the window openings are  

1.0x1.0 m. Even though the models were made in series - two or three buildings the 

same (except for the reference model), the arrangement of individual masonry units was 

different. A detailed arrangement of wall elements and lintels for all tested building 

models to enable the possibility of repeating the tests by other researchers is provided 

in the Appendix. 

The masonry walls were made in stages, starting with the first levelling layer. Works 

were carried out with platforms enabling the laying of higher parts of the walls – Fig. 

4.6. After the works were completed, the walls were cured for 28 days (time for the 

mortar to reach full strength). 
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a) b) 

  
Fig. 4.6 The walls of the MW-AAC-010/1 model after bricklaying: a) view of wall B, b) view of wall A 

with door opening 

4.2.3. Construction of the reinforced concrete slab 

The slab was designed as a panel structure, constituting a rigid diaphragm in its plane 

– Fig. 4.7. Construction of the slab began with laying precast L-shaped elements made 

of lightweight concrete on masonry walls. In the place of horizontal load, the L-shaped 

elements were replaced with a ribbed C-section UPE220 with a length of 1.00 m. Then 

three prestressed concrete precast panels were placed on L-shaped elements. The 

concrete class of the panels is C40/50, and the prestressing reinforcement is three strands 

placed at the bottom and one strand at the top. Each strand consists of seven wires and 

is made of  Y2060S7 steel. The diameter of each one is Ø6.85 mm (1xØ2.24 mm  

+ 6 x Ø2.40 mm). 

The ends of the strands were anchored in the ring beam.  The panels consist of  

a 4 cm thick slab at the bottom and 12 cm high prestressed ribs. The width of the precast 

panel is 1.20 m, and the ordered element length is 3.76 m.  Polystyrene of 8 cm thickness 

panels was inserted between the ribs, flush with the upper edge of the ribs. This solution 

allowed for a significant reduction of the dead weight of the slab. The upper ring beam 

was made around the panels. The main reinforcement was steel bars B500SP with  

a diameter of 12 mm and B500B steel stirrups with a diameter of 6 mm spaced every  

15 cm. The corners were reinforced in the same way as the bottom beam.  
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a) 

 
b) 

 
c) 

 
Fig. 4.7 Rigid slab: a) top view, b) cross-section A-A, c) cross-section B-B: 1 – precast L-shaped element, 
2 – precast panel, 3 – polystyrene panel, 4 – C-section element, 5 – concrete overlay, 6 – the concrete 

connection between the panels, 7 – main reinforcement, 8 – stirrups, 9 –  assembly tolerance 
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For the partial negative moment of the restraint, the appropriate upper reinforcement 

was designed - B500SP steel hooks with a diameter of 10 mm. A 15x15 cm mesh with 

a diameter of 4 mm was also used against concrete shrinkage. The slab was monolithized 

with concrete class C30/37. The thickness of the concrete overlay over the precast ribs 

was 4 cm, so the total thickness of the floor was 16 cm. The construction details are 

shown in Fig. 4.8.  

 

a) b) c) 

   
Fig. 4.8 Structural details of the slab support on the top ring beam: a) supporting the panels on the L – 

shaped element, b) cross-section through UPE220 steel element, c) cross-section through a precast slab 

panel with visible assembly tolerance: 1 – precast L-shaped element, 2 – concrete, 3 – main 
reinforcement, 4 – stirrups, 5 – precast panel, 6 – C-section steel element, 7 – cut L-shaped element,  

8 – steel hook (upper reinforcement), 9 – steel mesh 15x15 cm with a diameter of 4 mm 

 

A view of structural elements before built-in is in Fig. 4.9. Figure 4.9a shows 

protruding prestressing strands for anchoring in the upper ring beam. The L-shaped 

elements are shown in Fig. 4.9b, and the upper reinforcements are in Fig. 4.9c – hooks 

and Fig. 4.9d – steel mesh. 

 

Figure 4.10 shows the reinforcement of the slab. Polystyrene was removed in place 

of the planned horizontal load on the model – Fig. 4.10b. These areas were filled with  

a concrete overlay. As the span of the slab was about 4 m, one line of assembly supports 

in the middle of the span was sufficient – Fig. 4.11a. Before concreting, the formwork 

of the slab and the upper beam was prepared – Fig. 4.11 b. 
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a) b) 

  
c) d) 

  
Fig. 4.9 Slab components: a) precast panels, b) L-shaped precast elements, c) Ø10 mm hooks (upper 

reinforcement), d) Ø4 mm diameter nets with a mesh size of 15 cm (upper reinforcement) 

 

a) b) 

  
c) d) 

  
Fig. 4.10 Construction details at the stage of making the slab: a) reinforcing the corner, b) removing 

polystyrene in the place of the planned horizontal load, c) upper reinforcement with steel hooks, d) upper 
reinforcement with steel mesh 
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a) b) 

  
Fig. 4.11 Preparation of the floor for concreting: a) formwork supports, b) top view on the ring formwork 

  

The concrete mix was placed using a concrete bucket – Fig 4.12a. The works were 

carried out in stages - the laid concrete mix was compacted each time using a vibrator 

(Fig. 4.12b). Concreted and compacted slab fragments were finished to a levelled 

surface (Fig. 4.12c). The slab was made and left for 28 days of maturation  

– Fig. 4.12d. Concrete care was carried out at that time by pouring water on the slab, 

and this curing work prevented the shrinkage of the concrete. 

 

a) b) 

  
c) d) 

  
Fig. 4.12 Concreting the slab and the upper beam: a) concrete bucket, b) compaction of concrete using 
a vibrator, c) laying the concrete mix, d) finishing of concrete 
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4.2.4. Construction of steel supporting structure 

During the test, there was a risk of the slab falling onto the laboratory floor. A steel 

supporting structure was designed to be inside the research models and protect the 

research site. Furthermore, this structure aimed for safe transfer forces in case masonry 

walls collapse. The structure consists of four columns HEA 200 connected diagonal and 

horizontal angle bars L50x50x7 – Fig. 4.13a. Structural nodes were made of 10 mm 

thick steel sheets – Fig. 4.13b. The steel grade of the supporting structure was S355JR. 

The elements were joined using M16 class 8.8 bolt connectors. Holes in the bottom 

plates with a diameter of 65 mm were made to fasten the structure to the laboratory floor. 

The overall dimensions of the interior steel structure in the column axes were  

3.00x3.21 m, and the total height is 2.54 m, so there is no collision with the research 

buildings. Eventually, the structure was painted yellow as part of the test stand. 

 

a) b) 

  
Fig. 4.13 Steel supporting structure after completion: a) illustrative photo, b) construction node detail 

4.2.5. Construction phases of subsequent models 

In the tests, the slab performs only a rigid diaphragm transferring the horizontal load 

to the masonry walls of the building, and it was designed to be reused many times. This 

solution shortened the model building time and depended mainly on building new walls. 

The surface of the upper ring beam (precast L-shaped elements) required cleaning and 

surface preparation each time to ensure adhesion.  
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The construction of research models can be divided into the following stages: 

• I –  building the first model, 

• II – test of the research building, 

• III –  cutting off the walls from the slab and lifting it with an overhead crane, 

• IV –  laying the slab on assembly supports based on a steel structure, 

• V –  demolition of the walls of the tested building, 

• VI –  building a new model and laying the slab. 

 

Figure 4.14 shows the model of the building after the test with partial and complete 

demolition of load-bearing walls. During these works, the slab was based on temporary 

supports located on the steel structure. 

 

a) b) 

  
Fig. 4.14 Procedure of reusing the slab: a) demolition of masonry walls after the test, b) slab left on 

supporting steel structure 

4.3. Test stand 

The test stand was designed based on the purpose of the work - the determination of 

the behavior of masonry stiffening walls. The tests were carried out in the Faculty of 

Civil Engineering laboratory at the Silesian University of Technology. The test stand 

enables applying vertical and horizontal load on the tested building.  

The research model was fixed in a strong floor. The restraint was carried out by 

additional horizontal beams that surrounded the model's bottom beam and were 

anchored with a diameter of 65 mm bolts to the laboratory floor. A steel column with  

a brace was located next to the model. The horizontal force was induced by a hydraulic 

actuator of 1000 kN range supported by steel construction mounted on the steel column.  
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The horizontal load was monotonically applied to the building at the geometric center 

of the slab halfway along the masonry wall. The force gauge of range 250 kN enabled 

the measurement of horizontal force. The building model in the test stand is shown in 

Fig. 4.15. 

 

 
Fig. 4.15 Research model in the test stand: 1 – slab, 2 – masonry wall made of autoclaved aerated 

concrete units, 3 – bottom beam, 4 – top beam, 5 – fixing the building model in the slab of great forces, 
6 – hydraulic actuator, 7 – force gauge, 8 – steel column 

 

A vertical load was also designed corresponding to the actual load on the building's 

slab with the weight of the finishing layers and the live load. The weights with a diameter 

of 60 cm and a height of 30 cm were used to induce initial compressive stress in masonry 

walls. The vertical load was suspended on the twelve steel rods with a diameter  

Ø16 mm, and on each rod hung three weights – Table 4.2. The values of initial 

compressive stresses are in Table 4.3. 

Table 4.2 

Vertical loads applied to building model 

Types of load Value, kN Description 

Dead-load 57.00 Self-weight of slab 

Live-load 2.04 One weight 

6.12 Load per one steel rod (three weights) 

73.44  Total load of 12 steel rods 

4.59 kN/m2
 Live-load for floor 
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Table 4.3 

Values of initial compressive stress in masonry walls of a research model 

Value Description 

Pc = 130.44 kN total vertical load on the walls 

Ac = 2.82 m2 the surface of the horizontal layout of the walls 

c = 46.26 kN/m2 = 0.05 N/mm2 compressive prestress of the walls 

 

Holes with a diameter of 25 mm were made in the slab to pass steel rods with weights. 

The vertical loads have been planned so that the steel rods pass between the prestressed 

ribs of the panel slabs - so as not to damage the prestressing strands. The layout of 

vertical loads is shown in Fig. 4.16. The view of vertical and horizontal loads on the test 

stand is in Fig. 4.17 and Fig. 4.18. 

 

a) b) 

 

 

Fig. 4.16 Vertical loads: a) layout of weights, b) geometry of one set of weights: 1 – hole with diameter 
Ø25 mm in the slab, 2 – weight, 3 – steel rod Ø16 mm 

 

a) b) 

  
Fig. 4.17 Loads of research model at test stand: a) horizontal load, b) vertical load 
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Fig. 4.18 Research model in the test stand: 1 – prestressed precast slab panel, 2 – reinforcement of the 

top ring beam, 3 – top reinforcement of the slab, 4 – steel C-profile, 5 – precast lintel, 6 – load suspension 

points, 7 – visible weights. 

4.4. Measuring methods 

4.4.1. Measurement of displacements with LVDT sensors 

Measuring bases (frame) were mounted on the wall of the research model. The size 

of the frame system was designed to cover the largest possible area of the wall and avoid 

edge disturbances. The frames were rectangular, 3260 mm long, and 2150 mm high –

Fig. 4.19. Linear variable differential transformer (LVDT) sensors [142] measured the 

change in vertical and horizontal segments and the length of diagonals of the measuring 

base. LVDT sensors with a measuring range of 20 mm (PJX-20) were mounted on the 

diagonals and LVDT sensors with a range of 10 mm (PJX-10) on the vertical and 

horizontal frames. The resolution of the indications was 0.002 mm. The measuring base 

was attached to the masonry wall point-by-point in the corners with screws. This 

solution allows the measurement of the shear strain in the elastic range and the 

deformation angle in the non-linear range. 
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Fig. 4.19 Frame system mounted on each research model to measure shear strain and deformation angle: 

H – horizontal shear force, 1 – rigid diaphragm; 2 – bottom beam; 3 – masonry wall made of AAC,  
4 – measuring base, a0, c0 – horizontal part of the frame system, b0, d0 – vertical part of the frame system, 

e0, f0 – diagonal part of the frame system 

 

The basic lengths of the measuring frame fragments changed by a value of ∆a, ∆b, ∆c, 

∆d, ∆e, ∆f. After deformation, the total length of vertical fragments was calculated from 

equations (4.1) and (4.2), horizontal fragments from equations (4.3) and (4.4) and 

diagonals from (4.5) and (4.6). 

 

 𝑏d = 𝑏0 + ∆b (4.1) 

 

 𝑑d = 𝑑0 + ∆d (4.2) 

 

 𝑎d = 𝑎0 + ∆a (4.3) 

 

 𝑐d = 𝑐0 + ∆c (4.4) 

 

 𝑒d = 𝑒0 + ∆e (4.5) 

 

 𝑓d = 𝑓0 + ∆f (4.6) 

 

The value of the change in the length of the measuring frame fragments was used to 

determine the partial deformation angles i (where i = 1, 2, 3, 4) isolated from the 

deformed measuring system – Fig. 4.20. The partial values of the global deformation 

angle were calculated based on the law of cosines relations (4.7) – (4.10). 
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Fig. 4.20 Deformation of measuring base (frame system) due to the action of shear force: H – horizontal 

shear force, 1 – rigid diaphragm, 2 – bottom beam, 3 – masonry wall made of AAC, 4 – measuring base 
before the deformation, 5 – measuring base after deformation, ad, cd – deformed horizontal part of the 

frame system, bd, dd – deformed vertical part of the frame system, ed, fd – deformed diagonal part of the 

frame system 

 

The global value of the deformation angle  at the following load levels was 

calculated as the arithmetic mean of the partial values of deformation angles i  (where 

i = 1, 2, 3, 4) – relation (4.11). 
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𝛩 =  
1

𝑛
∑|𝛩𝑖|

𝑛=4

𝑖=1

 (4.11) 

 

The total angle of strain deformation determined from relation (4.11) includes both 

deformations resulting from in-plane bending (Fig. 4.21) and shear (Fig. 4.22).  

As a result of bending, the lengths of the vertical bases change and horizontal lengths 

remain unchanged. Thanks to that, trigonometric relationships (4.12) and (4.13) enable 

calculating the lengths of diagonals caused by bending moments. 

 

 

𝑐1 =  √𝑐0
2 − (

𝑑d − 𝑏d

2
)

2

 (4.12) 

 

The diagonal lengths resulting from the flexural deformations can be calculated 

according to the formula (4.13). 
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2
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2

→ 
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𝑑d − 𝑏d

2
) 

(4.13) 

 

The differences in the length of the diagonals are calculated by subtracting from the 

total lengths of the deformed diagonals (fd and ed) the lengths of diagonals resulting from 

only in-plane bending (f1 and e1) – relationships (4.14) and (4.15). 

 

 ∆𝑓1 = 𝑓d − 𝑓1 (4.14) 

 

 ∆𝑒1 = 𝑒d − 𝑒1 (4.15) 

 

The diagonal lengths resulting from the shear deformations can be calculated 

according to formulas (4.16) and (4.17). 

 

 𝑓s = 𝑓0 + ∆𝑓1  (4.16) 

 

 𝑒s = 𝑒0 + ∆𝑒1  (4.17) 
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Fig. 4.21 Deformation of measuring base resulting from flexural deformation: V – vertical force,  

M – in-plane bending moment, 1 – rigid diaphragm, 2 – bottom beam, 3 – masonry wall made of AAC, 

4 – measuring base before the deformation, a0, c0 – undeformed horizontal part of the frame system,  
e1, f1 – deformed diagonal part of the frame system results from flexural deformation 

 

 
Fig. 4.22 Deformation of measuring base resulting from shear deformation: H – horizontal shear force, 

1 – rigid diaphragm, 2 – bottom beam, 3 – masonry wall made of AAC, 4 – measuring base before 
deformation, 5 – measuring base after deformation, ad, cd – deformed horizontal part of the frame system, 

b0, d0 – undeformed vertical part of the frame system, es, fs – deformed diagonal part of the frame system 
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result from shear deformation, 1s, 2s, 3s, 4s – values of partial strain deformation angles 

Values of the partial angle of strain deformation can find it from the law of cosines 

– formulas (4.18) – (4.21): 

• the triangle formed by lines d0, fs and ad: 
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• the triangle formed by lines cd, es and d0: 
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• the triangle formed by lines ad, es and b0: 
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• the triangle formed by lines b0, fs and cd: 
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The mean value of the partial strain deformation angle caused by shear is determined 

by the formula (4.22). 

 

 

𝛩𝑠 =  
1

𝑛
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 (4.22) 

 

The geometry of the walls of the tested buildings makes shear deformations 
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negligible, and the total shear deformation angle coincides with the partial shear 

deformation angle. The total shear angle is considered in further analysis of the behavior 

of the building. This approach is also helpful in determining the stiffness of walls 

calculated from the total angle of shear deformation. 

Measuring bases were fixed on the outside of the wall. The frame was mounted 

inside the building if the wall was painted a specific pattern used in the digital image 

correlation system. Measurement frames mounted on solid walls and walls with 

openings are shown in Fig. 4.23. 

 

a) b) 

  
  

  
Fig. 4.23 Measuring bases: a) corner detail with LVDT – PJX-20, b) measuring frame bases,  
c) measuring frame on the wall with the window opening, d) measuring frame inside the building (wall 

analyzed by the GOM system)  

4.4.2. Measurement of  displacements, strains, deformations and crack 

propagation using a digital image correlation system (DIC) 

Digital image correlation (DIC) belongs to non-contact measurement techniques. 

The analysis is based on solid mechanics and includes changes in geometry and 

localization of points before and after material deformation [80]. The system assigns the 
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coordinates to small areas and records changes in the shape and location of that zone.  

The DIC system [108] consists of the proper illumination of an object. The light 

intensity reflected from the (undeformed) object surface f(x, y) before the object is 

loaded and from any surface f1(x1, y1) in the next stage after applying the load that results 

in deformation is analysed - Fig. 4.24. This procedure is used for measuring deformation 

within small areas and then presenting the deformation distribution on a greater, actual 

surface of the object. 

 

 

Fig. 4.24 Pattern of analysed images of surfaces against the scanning area [42]: 1 – scanning area,  

2 – the area of scanning after deformation, 3 – the image of the undeformed surface, 4 – the image of 
the deformed surface 

 

The principle of the DIC technique was developed from the fundamentals of the 

mechanics of continuous media [74]. The analysis includes changes in dimensions and 

location of short segments determined by positioning two points before (P, Q) and after 

(P1, Q1) deformations – Fig. 4.25, expressed by the following equations in a 3D 

rectangular Cartesian system of coordinates (4.23) – (4.24): 

 

 𝑃1 = (𝑥1, 𝑦1, 𝑧1) = [𝑥 + 𝑢(𝑃), 𝑥 + 𝑣(𝑃), 𝑧 + 𝑤(𝑃)] (4.23) 

 

 𝑄1 = (𝑥1 + 𝑑𝑥1, 𝑦1 + 𝑑𝑦1, 𝑧1 + 𝑑𝑧1) = 

[
𝑥 + 𝑢(𝑃) + 𝑢(𝑄) − 𝑢(𝑃) + 𝑑𝑥, 𝑦 + 𝑣(𝑃) + 𝑣(𝑄) − 𝑣(𝑃) + 𝑑𝑦

𝑧 + 𝑤(𝑃) + 𝑤(𝑄) − 𝑤(𝑃) + 𝑑𝑧
] 

(4.24) 

where: u, v, w are displacement components towards x, y or z axis, respectively. 

 

The length of segments PQ and P1Q1 are expressed by the relationships (4.25) and (4.26): 

 

 |𝑃𝑄|2 = (𝑑𝑠)2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (4.25) 
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 |𝑃1𝑄1|2 = (𝑑𝑠1)2 = 𝑑𝑥1
2 + 𝑑𝑦1

2 + 𝑑𝑧1
2 (4.26) 

 

The equations (4.23) – (4.26) and simple transformations result in the following 

relationships defining components of deformation in the two-dimensional system of 

coordinates (which define components of the strain tensor in a plane stress state) – 

relationships (4.27) – (4.29): 

 

 
𝜀𝑥𝑥 ≅

𝜕𝑢

𝜕𝑥
+

1

2
[(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

] (4.27) 

 

  

𝜀𝑦𝑦 ≅
𝜕𝑣

𝜕𝑦
+

1

2
[(

𝜕𝑢

𝜕𝑦
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

] 
(4.28) 

 

 
𝜀𝑥𝑦 ≅

1

2
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) +

1

2
[
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
] (4.29) 

 

Components in a spatial state can be determined similarly. The undeformed surface 

is analysed by assigning coordinates to small areas (pixels) – Fig. 4.26. Separating the 

undeformed reference zone is the next step. Changes in the shape and location of that 

zone are analysed during the test and recorded in the system of 0xy and 0x1y1 coordinates. 

 

 
Fig. 4.25 Characteristic area before (R) and after (R1) deformation [42] 

 

DIC has been successfully used in construction areas such as concrete structures 

[95,112,164,60], corrosion process [97], structural health monitoring [10,45,119] and 

also the masonry analyses of 1/6th scale masonry wall [70], soil-masonry structure 

interaction [120], infill masonry [134,23], and unreinforced masonry (URM) [73].  
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Fig. 4.26 Graphical interpretation of deformations for selected scanning area in a 2D system of 

coordinates [80, 42]: 1 – scanning area, 2 – scanning area after deformation, 3 – pixel sub-images of the 

structure 

 

The measuring process is based on the correlation principle and the technique of 

searching points of the same coordinates. The area (contour) should be defined to 

perform the analysis and record its shape – Fig. 4.27a. In order to do that, square or 

rectangular areas (relatively small, e.g. 15 x 15 pixels), known as facets - are assigned 

to characteristic points of the analysed surface – Fig. 4.27a and 4.27b.  

 

a) b) 

  
Fig. 4.27 Principle of image correlation [85]: a) segment of measuring area with arranged facets marked 
with green lines, b) enlarged segment of un analysed area with facet contour  

 

A segment of gradient measuring area is characterized by digital measuring areas of 

rectangular shape and dimensions of 15 x 15 pixels subjected to changes in the DIC 

software and by typical areas of 2 x 2 pixels - Fig. 4.27a. Common areas were used to 

reduce an error in measuring strains as each analysed area (facet) contained elements 

from the adjacent area and the same boundary conditions. Each rectangular area has its 

unique pattern. The identification of common areas is necessary for the DIC technique. 

The size of facets also impacts the accuracy and rate of calculations. An increase in their 

size deteriorates the accuracy of measurements. However, the test result is obtained 

faster. Rectangular areas are directly used in analysing displacement/strain components. 
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The next stage includes loading, where displacement components are determined in 2D 

or 3D areas. Then, values of displacement components are used to calculate components 

of strain/stress as the field image. The DIC system determines the coordinates of the 2D 

system based on the reorientation of the rectangle/rhombus/facet midpoint – Fig. 4.27b. 

Coordinates determined with both cameras and an angle between their axes can be used 

to describe the coordinates of the 3D system. In subsequent stages of the analysis, the 

specific layer with the pattern is identified to use its position for determining the 

displacement. Number “0” is assigned to the initial stage (Stage 0), and other stages 

have numbers: “1”, “2”, “3”, etc. Difficulties with the DIC systems are mainly caused 

by the preparation of the surface and the technique of camera positioning using the 

calibration plate. The DIC system for testing big deformations can be successfully 

applied to determining Young’s modulus and Poisson's ratio, identifying the process of 

material softening or hardening within a wide range of plastic strain. It can also be 

employed for high ductility (exceeding 100%) materials and determining parameters of 

crack mechanics. 

This system is based on recording and analysing changes in the positions of points 

on the specimen surface. According to papers [85,108,96] two models are analysed. The 

first type uses the Normalized Cross-Correlation ρ (NCC), and the second one the Least 

Squares Method (LSM). The first method calculates normalized cross-correlation (4.30) 

between each point's initial and current location. The closest location is chosen at the 

level of pixel pattern on the surface by choosing the minimum value of the common 

normalized cross-correlation. Estimating the function of normalized cross-correlations 

is conducted within the searched area, and its maximum indicates the best match. The 

correlation ρ is calculated as a discrete function of changes in displacements (Δx, Δy) 

and average values from grey areas and compared windows of the equation (4.30): 

 

 
𝜌 =

∑ ∑ (𝑓(𝑥, 𝑦 − 𝑓)̅(𝑔(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − �̅�))𝑦𝑥

√∑ ∑ (𝑓(𝑥, 𝑦 − 𝑓)̅)2) ∑ ∑ ((𝑔(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − �̅�)2)𝑦𝑥𝑦𝑥

 
(4.30) 

 

The normalized correlation coefficient takes values from the range of [-1, 1]. When 

the reference image texture coincides with the deformed area image's brightness, this 

coefficient equals 1. When they do not coincide, the coefficient is 0. The value -1 means 

reverse correlation. 

The NCC algorithm is fast but only includes displacements of points on the vertical 

and horizontal axis, not point rotation. Such an approach is not appropriate for testing 
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mineral-asphalt mixtures or other road materials with such occurrences [140,165]. The 

LSM method employs more complex models considering the points' displacements and 

rotation. The best match is defined by minimising a difference in grey intensity between 

two consecutive analysis windows using the least squares method [140]. The correction 

of parameters taking into account displacements and rotations is determined from the 

equation (4.31), where (a1, a2, b1, b2 ) are variable parameters of the model shape, and 

(a3, b3) are displacement parameters [140]:  

 

 𝑓(𝑥1, 𝑦1) + 𝑒(𝑥1, 𝑦1) = 𝑟0 + 𝑟1𝑔(𝑥2(𝑢, 𝑣), 𝑦2(𝑢, 𝑣))

= �̅�(𝑟0, 𝑟1, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) 
(4.31) 

 

The function �̅�(𝑟0, 𝑟1, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) is linearized and solved following the least 

squares estimator by the Gauss–Markov theorem. 

These tests used the Aramis 6M system – Fig. 4.28a consisting of two digital cameras 

(each with a resolution 6MPx), a high-performance computer as the control unit, a GOM 

Testing Controller, certified calibration elements and GOM Correlate software. The 

measuring area for Aramis 6M system ranges from 150x170 mm to 2150x2485 mm. 

Objectives were used in the studies with a focal length of 12.5 mm for area mapping 

with a strain measurement resolution of ±0.01%. The stiffening walls (A and B) located 

in the direction of the horizontal load were analysed. The walls were covered with 

irregular contrasting patterns obtained by applying black paint with a brush with stiff 

hair – Fig. 4.28b. Benchmarks were also stuck on the wall surface. The slab was painted 

grey, the invisible interior edges of the walls were marked with a blue dashed line, and 

the axes of the building were marked with red lines – Fig. 4.29. 

 

a) b) 

  
Fig. 4.28 Digital image correlation system: a) location of measurement cameras – Aramis 6M, b) wall 
painted with a pattern 
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On the slab were placed benchmarks for digital image correlation. The designations 

of the points are shown in Fig. 4.30. A Canon EOS 500D camera with a Canon EF-S  

10-18 mm, f/4.5-5.6 lens was used to analyze the displacements of the slab. The 

equipment was suspended on a metal arm above the tested building model – Fig. 4.31. 

 

a) b) 

  
Fig. 4.29 Painting the slab: a) measurement points, b) measurement points in the corner 

 

 
Fig. 4.30 Measurement point markings for the DIC system 
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Fig. 4.31 Research model on the test stand 
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4.4.3. Measurement of horizontal force 

A hydraulic cylinder induced the horizontal load. Force value was measured using  

a force gauge of range 250 kN ± 0.1 kN and a pressure sensor P10 of the range 1000 bar 

± 0.1 bar. A constant increment in displacements of 1 cm/mm was set. The measuring 

apparatus is shown in Fig. 4.32. 

 

 
Fig. 4.32 Measuring apparatus 

4.4.4. Additional methods 

In addition to using LVDT and Aramis system, macroscopic damage assessment was 

performed. Observed damage and cracks are marked on the walls of buildings in blue 

(Fig. 4.33a). A GoPro Hero 8 camera was used to observe the building during the test 

(Fig. 4.33b). A Canon EOS 40D camera was also used for the DIC system. Each 

measurement method allowed for wall and slab displacement registration during the test. 

 

a) b) 

  
Fig. 4.33 Additional methods: a) blue markings of cracks, b) GoPro camera next to the Aramis system 
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5. BEHAVIOR OF MASONRY STIFFENING WALLS 

5.1. Behavior phases 

The behavior of the stiffening walls is presented in diagrams of the normalized 

horizontal force (Hi/Hu) to the shear deformation angle i. Moreover, the normalized 

lateral load – horizontal displacement charts were done. The horizontal displacements 

based on shear deformation angles were calculated following formula (5.1). The test 

results were grouped with a series of models with the same geometry – types I, II, III, 

and IV. 

 

 𝑢𝑖 = 𝛩𝑖 ∙ ℎ (5.1) 

in which: 

ui – horizontal displacement in the direction x along to load (ux) or direction  

y perpendicular to load (uy), 

i – shear strain angle in linear phase and shear formation angle in non-linear phase, 

h – the height of the model and equal h = 2.63 m. 

5.1.1. Results for models with door opening in stiffening wall A – type I models 

Figures 5.1 and 5.2 show the relationship between the normalized horizontal force 

and shear deformation angle for MB-AAC-010/1 and MB-AAC-010/2 models. Figures 

5.3 and 5.4 present the normalized lateral load-horizontal displacement chart for 

particular building models.  The results for model MB-AAC-010/1 are incomplete due 

to problems with diagonal LVDT sensors during the test. The charts were prepared for 

both stiffening and perpendicular walls. 

  



 

 
101 

a) b) 

  
Fig. 5.1 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/1 

model: a) results for A and B walls, b) for 1 and 2 walls 

 

a) b) 

  
Fig. 5.2 Relationship between the horizontal load and shear deformation angle for the MB-AAC-010/2 

model: a) results for A and B walls, b) for 1 and 2 walls 

 

Based on the diagram – Fig. 5.2a, it can be concluded that the behavior of the 

stiffening walls was similar. However, walls are characterised by different stiffness due 

to the door opening in wall A. Shear deformation angles in stiffening walls are greater 

than in perpendicular walls (by order of magnitude). The maximum horizontal 

displacement in the direction of the load was over 21 mm, and in the transverse direction, 

it was about 0.7 mm (MB-AAC-010/2 model). In the MB-AAC-010/1 model, these 

displacements were successively over 16 mm (wall B) and about 1.1 mm (wall 2). 

Displacements in the transverse direction indicate the rotation of the building caused by 

the different stiffness of wall A about the other walls. 
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a) b) 

  
Fig. 5.3 The normalized lateral load – horizontal displacement chart for the MB-AAC-010/1 model:  

a) results for A and B walls, b) for 1 and 2 walls 

 

a) b) 

  
Fig. 5.4 The normalized lateral load – horizontal displacement chart for the MB-AAC-010/2 model:  
a) results for A and B walls, b) for 1 and 2 walls 

 

Based on the test results, a table containing the characteristic values of the cracking 

forces and the corresponding shear deformation angles was prepared to capture the 

phases of the walls' behavior. The moment of the first crack occurring within the corner 

of wall A was distinguished. The assumed force representing the limit of the elastic 

behavior of the wall was 49.9 kN (model MB-AAC-010/1) and 49.6 kN (model MB-

AAC-010/2). The maximum forces in the tests are consecutively 57.8 kN and 69.3 kN, 

and residual forces are 45.3 kN and 45.9 kN. Detailed values of forces and 

corresponding deformations are shown in Table 5.1. The graphical representation of 

behavior phases of a wall with a door opening in Fig. 5.5 and a solid wall in Fig. 5.6. 
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Table 5.1 

The values of horizontal forces and deformation angles based on test results 

Model 
Model 

wall 

Initial phase Elastic phase Nonlinear phase 
Post-peak 

residual phase 

Hcr,1, 

kN 
cr,1, 

mrad 

Hcr, 

kN 
cr, 

mrad 

Hu, 

kN 
u, 

mrad 

Hres, 

kN 
res, 

mrad 

MB-

AAC-

010/1 

A 29.108 0.002 - - 
58.784 

- - - 

B - - 49.935 0.071 0.743 45.291 2.210 

MB-

AAC-

010/2 

A 9.759 0.020 49.615 0.389 
69.247 

1.890 45.894 2.522 

B - - 49.615 0.162 0.756 45.894 1.874 

 

 
Fig. 5.5 Behavior phases of stiffening walls with door opening: I – initial phase, II – elastic phase,  

III – nonlinear phase, IV – post-peak residual phase 

 

 
Fig. 5.6 Behavior phases of solid stiffening walls: I – elastic phase, II – nonlinear phase, III – post-peak 

residual phase 

 

There is no initial phase in walls without openings, which consists of cracking the 

tensile opening corners. The behavior of walls with openings is more complex than the 

corresponding solid wall. The range of actual elastic behavior (linear behavior up to the 

first crack) is smaller than in walls without openings. 
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5.1.2. Results for models with door opening in stiffening wall A and windows 

opening in perpendicular wall 1 – type II models 

Models MB-AAC-010/3, MB-AAC-010/4 and MB-AAC-010/5 were assigned to the 

second type of models in which the stiffening wall A had a door opening, and the 

transverse wall 1 had a window opening. Analogously to the previous diagrams of the 

normalized horizontal force to the angles of shear deformation – Fig. 5.7 – Fig 5.9 and 

about the horizontal displacements – Fig. 5.10 – Fig 5.12  of the walls were prepared. 

 

a) b) 

  
Fig. 5.7 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/3 

model: a) results for A and B walls, b) for 1 and 2 walls 

 

a) b) 

  
Fig. 5.8 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/4 

model: a) results for A and B walls, b) for 1 and 2 walls 
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a) b) 

  
Fig. 5.9 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/5 

model: a) results for A and B walls, b) for 1 and 2 walls 
 

a) b) 

  
Fig. 5.10 The normalized lateral load – horizontal displacement chart for the MB-AAC-010/3 model:  

a) results for A and B walls, b) for 1 and 2 walls 

 

a) b) 

  
Fig. 5.11 The normalized lateral load – horizontal displacement chart for the MB-AAC-010/4 model:  
a) results for A and B walls, b) for 1 and 2 walls 
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a) b) 

  
Fig. 5.12 The normalized lateral load – horizontal displacement chart for MB-AAC-010/5 model; a) 

results for A and B walls, b) for 1 and 2 walls 

 

The largest horizontal displacements were observed in model MB-AAC-010/3. The 

horizontal displacement for the stiffening wall A is 21.7 mm, and for the transverse  

wall 2 is about 2.3 mm. The behavior phases of the stiffening walls were the same as in 

type I models. The course of the dependencies is similar - after reaching the maximum 

force, there is a rapid decrease and successive increases. The values of the cracking 

forces within the door opening are 20.8, 17.7 and 20.2 kN.  The maximum forces are in 

order 74.1, 84.9 and 87.5 kN. The detailed results of the forces and the corresponding 

deformation angles are shown in Table 5.2. 

 

Table 5.2 

The values of horizontal forces and deformation angles based on test results 

Model 
Model 

wall 

Initial phase Elastic phase Nonlinear phase 
Post-peak 

residual phase 

Hcr,1, 

kN 
cr,1, 

mrad 

Hcr, 

kN 
cr, 

mrad 

Hu, 

kN 
u, 

mrad 

Hres, 

kN 
res, 

mrad 

MB-

AAC-

010/3 

A 20.768 0.034 60.385 0.202 
74.048 

2.967 61.455 3.202 

B - - 67.631 0.098 0.410 61.455 0.436 

MB-

AAC-

010/4 

A 17.677 0.034 68.738 0.267 
84.860 

1.900 78.633 1.973 

B - - 68.738 0.097 0.840 78.633 1.128 

MB-

AAC-

010/5 

A 20.192 0.040 51.461 0.258 
87.532 

3.042 62.282 3.038 

B - - 51.461 0.198 2.180 62.282 3.145 
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5.1.3. Results for models with a window opening in stiffening wall A and door 

opening in stiffening wall B– type III models 

Models MB-AAC-010/6 and MB-AAC-010/7  were assigned to type III models due 

to the geometry of the building. A window opening was formed in the stiffening wall A, 

and a door opening in the stiffening wall B. The results are presented in the same way 

as before as graphs of the dependence of the normalized horizontal force in relation to 

the shear deformation angles – Fig. 5.13 and Fig. 5.14 and about the horizontal 

displacements of the walls – Fig. 5.15 and Fig. 5.16. 

 

a) b) 

  
Fig. 5.13 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/6 

model: a) results for A and B walls, b) for 1 and 2 walls 

 

 

a) b) 

  
Fig. 5.14 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/7 
model: a) results for A and B walls, b) for 1 and 2 walls 
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a) b) 

  
Fig. 5.15 The normalized lateral load - horizontal displacement chart for the MB-AAC-010/6 model:  

a) results for A and B walls, b) for 1 and 2 walls 

 

a) b) 

  
Fig. 5.16 The normalized lateral load - horizontal displacement chart for the MB-AAC-010/7 model:  

a) results for A and B walls, b) for 1 and 2 walls 
 

The diagrams show that after reaching the maximum force, load capacity still 

increases with increasing displacements. The actual range of the elastic phase is small 

due to the slight cracks in the wall within the openings (the initial phase limit is about 

0.35% of the maximum force). The assumed elastic range is about 0.75% of the 

maximum force. MB-AAC-010/6, stiffening wall A with greater stiffness, after cracking 

in the elastic phase, was finally characterized by higher deformation values than wall B 

with lower stiffness. This means that the cracking of wall A significantly reduced its 

stiffness so that the displacements increased faster than in wall B, and there was no rapid 

redistribution of internal forces between the walls. The exact values of the behavior 

phases of the stiffening walls are shown in Table 5.3. The behavior phases for the wall 

with a window opening were developed – Fig. 5.17. 
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Table 5.3 

The values of horizontal forces and deformation angles based on test results 

Model 
Model 

wall 

Initial phase Elastic phase Nonlinear phase 
Post-peak 

residual phase 

Hcr,1, 

kN 
cr,1, 

mrad 

Hcr, 

kN 
cr, 

mrad 

Hu, 

kN 
u, 

mrad 

Hres, 

kN 
res, 

mrad 

MB-

AAC-

010/6 

A 26.047 0.043 56.508 0.148 
74.529 

2.392 64.136 2.911 

B 17.877 0.041 56.508 0.211 2.766 64.136 2.885 

MB-

AAC-

010/7 

A 27.304 0.043 52.039 0.120 
66.693 

2.255 55.237 2.613 

B 23.625 0.043 52.039 0.154 1.266 55.237 1.338 

 

 
Fig. 5.17 Behavior phases of stiffening walls with window opening: I – initial phase, II – elastic phase,  

III – nonlinear phase, IV – post-peak residual phase 

5.1.4. Results for reference model  -– type IV models 

Model MB-AAC-010/8 is a reference model in which the walls are devoid of 

openings. Figures 5.18 and 5.19 present the charts of masonry building behavior. 

 

a) b) 

  
Fig. 5.18 Relationship between the horizontal force and shear deformation angle for the MB-AAC-010/8 
model: a) results for A and B walls, b) for 1 and 2 walls 
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a) b) 

  
Fig. 5.19 The normalized lateral load – horizontal displacement chart for the MB-AAC-010/8 model:  

a) results for A and B walls, b) for 1 and 2 walls 

 

The stiffnesses of all walls are the same in the reference model. Theoretically, such 

a building should not rotate but only translate. Tests have shown that the load capacity 

does not increase after reaching the maximum force, and this phenomenon is observed 

in buildings with openings. After reaching the maximum force, a gradual decrease in the 

stiffness of the building and increasing horizontal displacements are observed. The range 

of elastic behavior (elastic phase) reached 80% of the maximum force. The results 

suggest that opening the walls not only reduces the stiffness of the building but also 

determines the range of the elastic phase. The maximum horizontal displacements in the 

MB-AAC-010/8 model are 22.3 mm (wall A) and 24.0 mm (wall B). The values of 

forces and shear deformation angles in elastic, nonlinear and post-peak residual phases 

are presented in Table 5.4. 

 

Table 5.4 

The values of horizontal forces and deformation angles based on test results 

Model 
Model 

wall 

Initial phase Elastic phase Nonlinear phase 
Post-peak 

residual phase 

Hcr,1, 

kN 
cr,1, 

mrad 

Hcr, 

kN 
cr, 

mrad 

Hu, 

kN 
u, 

mrad 

Hres, 

kN 
res, 

mrad 

MB-

AAC-

010/8 

A - - 52.870 0.114 
65.521 

0.856 59.309 1.283 

B - - 52.870 0.118 0.526 59.309 1.148 
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5.2. Analysis of test results 

One of the goals of the dissertation is to determine the actual stiffness of the walls. 

The test results were analyzed, and a proposal for the empirical calculation of the wall 

stiffness was presented in section 5.2.1. The redistribution of internal forces was 

estimated based on comparing the actual forces representing the behavior phases of the 

stiffening walls (test results) with theoretical values - section 5.2.2. 

5.2.1. The proposition of an Empirical Method of Load Distribution on Stiffening 

Walls 

Forces acting on individual stiffening walls depend on the stiffness defined as the 

quotient of the total load corresponding to the displacement (5.2): 

 

 
𝐾 =  

𝐻

∆
=

𝐻

𝛩 ∙ ℎ
  (5.2) 

in which: 

H – total load acting on the wall, 

 – horizontal displacement, 

 – shear deformation angle, 

h – wall height. 

 

The total stiffness of the building can be calculated as follows (5.3): 

 

 
𝐾𝑡𝑜𝑡 =  

𝐻𝑡𝑜𝑡

∆𝑡𝑜𝑡
=

𝐻𝑡𝑜𝑡

𝛩𝑚𝑣 ∙ ℎ
 (5.3) 

where: 

Htot – total load acting on a building, 

tot – total displacement of the building, 

mv – mean value of deformation angle of stiffening walls, calculated following (5.4): 

 

 
𝛩𝑚𝑣 =  

𝛩𝐴 + 𝛩𝐵

2
 (5.4) 

in which: 

A – shear deformation angle of stiffening wall A, 

B – shear deformation angle of stiffening wall B. 
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Based on the formulas total stiffness of tested buildings was calculated. The results in 

Table 5.5 include the wall behavior phases and the corresponding values of the average 

shear deformation angles of the tested buildings. 

 

Table 5.5 

The total stiffness of tested buildings 

Model 
Model 

wall 

Initial phase Elastic phase Nonlinear phase 
Post-peak 

residual phase 

cr,1,mv 

mrad 

Ktot,cr,1, 

kN/mm 
cr,mv 

mrad 

Ktot,cr,1, 

kN/mm 
u,mv 

mrad 

K tot,u, 

kN/mm 
res,mv 

mrad 

K tot,res, 

kN/mm 

MB-

AAC-

010/2 

A, B - - 0.28 75.00 1.32 21.81 2.20 8.70 

MB-

AAC-

010/3 

A, B - - 0.15 177.62 1.69 18.27 1.82 14.07 

MB-

AAC-

010/4 

A, B - - 0.18 157.09 1.37 25.79 1.55 21.13 

MB-

AAC-

010/5 

A, B - - 0.23 94.16 2.61 13.97 3.09 8.39 

MB-

AAC-

010/6 

A, B 0.04 216.82 0.18 130.83 2.58 12.04 2.90 9.22 

MB-

AAC-

010/7 

A, B 0.04 246.52 0.14 158.68 1.76 15.78 1.98 11.65 

MB-

AAC-

010/8 

A, B - - 0.12 190.10 0.69 39.53 1.22 20.33 

 

The results indicate a significant degradation of the stiffness under the building load. 

The highest stiffness values are in the initial phase (first cracks in the corner of openings) 

- a significant decrease in stiffness occurs in the non-linear range. The distribution of 

the total horizontal load depends on the actual stiffness of the stiffening walls. For this 

purpose, based on tests, the stiffness of each of the stiffening walls was determined 

separately – Table 5.6. 

  



 

 
113 

Table 5.6 

Stiffness of stiffening walls based on the test 

Model 
Model 

wall 

Initial phase Elastic phase Nonlinear phase 
Post-peak 

residual phase 

Kcr,1, 

kN/mm 

Kcr, 

kN/mm 

Ku, 

kN/mm 

Kres, 

kN/mm 

MB-

AAC-

010/2 

A 205.58 53.12 15.26 7.58 

B - 127.51 38.16 10.20 

MB-

AAC-

010/3 

A 254.61 124.40 10.40 8.00 

B - 287.39 75.26 58.68 

MB-

AAC-

010/4 

A 216.71 107.10 18.61 16.61 

B - 294.59 42.00 29.04 

MB-

AAC-

010/5 

A 212.68 83.21 11.99 8.54 

B - 108.42 16.73 8.25 

MB-

AAC-

010/6 

A 251.34 158.57 12.98 9.18 

B 180.66 111.36 11.23 9.26 

MB-

AAC-

010/7 

A 263.47 181.43 12.32 8.81 

B 229.45 141.00 21.96 17.21 

MB-

AAC-

010/8 

A - 193.82 31.91 19.26 

B - 186.51 51.95 21.52 

 

The larger the opening, the lower the initial stiffness of the wall. The values of the initial 

stiffness of the walls were over 200 kN/mm. In the non-linear residual phase, the 

stiffness of the walls decreased significantly. In order to determine the load acting on 

individual stiffening walls, relationships that determine the proportions of the shear 

deformation angles  was introduced (5.5): 

 

 𝜔 =  𝛩𝐴 / 𝛩𝐵 (5.5) 

in which: 

A – shear deformation angle of stiffening wall A, 

B – shear deformation angle of stiffening wall B, 

 

Selected diagrams of the deformation of stiffening walls  for models MB-AAC-

010/4  and MB-AAC-010/8 are shown in Fig. 5.20. 
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a) b) 

  
Fig. 5.20 The charts between the normalized horizontal force and proportion of shear deformation angles: 

a) the MB-AAC-010/4 model, b) the MB-AAC-010/8 model 

 

The forces in the stiffening walls balance the total force acting on the building Htot, 

and the equilibrium condition is as follows (5.6): 

 

 𝐻𝑡𝑜𝑡 =  𝐻𝐴 +  𝐻𝐵 (5.6) 

where: 

HA – load (force) acting on stiffening wall A,  

HB – load (force) acting on stiffening wall B. 

 

The above formula (5.6) can be expanded as shown below in (5.7): 

 

 𝐾𝑡𝑜𝑡 ∙  ∆𝑡𝑜𝑡= 𝐾𝐴 ∙  ∆𝐴 + 𝐾𝐵 ∙  ∆𝐵 = 𝐾𝑡𝑜𝑡 ∙  𝛩𝑚𝑣 =  𝐾𝐴 ∙  𝛩𝐴 +  𝐾𝐵 ∙  𝛩𝐵

= 𝐾𝐴 ∙  𝛩𝐵 ∙ 𝜔 + 𝐾𝐵 ∙  𝛩𝐵 = (𝐾𝐴 ∙ 𝜔 + 𝐾𝐵)𝛩𝐵 → 

𝐾𝑡𝑜𝑡

(𝐾𝐴 ∙ 𝜔 + 𝐾𝐵)
= 

𝛩𝐵

𝛩𝑚𝑣
 

(5.7) 

  

Having regard to that (5.8): 

 

 
𝐾𝐵 =  

𝐻𝐵

𝛩𝐵 ∙ ℎ
→ 𝛩𝐵 =  

𝐻𝐵

𝐾𝐵 ∙ ℎ
 (5.8) 

 

In addition, the following equation can be formulated (5.9): 

 

 𝐾𝑡𝑜𝑡 ∙ 𝛩𝑚𝑣

(𝐾𝐴 ∙ 𝜔 + 𝐾𝐵)
= 𝛩𝐵 =

𝐻𝐵

𝐾𝐵 ∙ ℎ
 (5.9) 
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The value of the force acting on the stiffening wall B can be calculated from the formula 

(5.10). The results are summarized in Table 5.7. 

 

 
𝐾𝐵 =  

𝐻𝐵

𝛩𝐵 ∙ ℎ
→ 𝛩𝐵 =  

𝐻𝐵

𝐾𝐵 ∙ ℎ
 

𝐻𝐵 = 𝐾𝐵 ∙ ℎ
𝐾𝑡𝑜𝑡 ∙ 𝛩𝑚𝑣

(𝐾𝐴 ∙ 𝜔 + 𝐾𝐵)
 

(5.10) 

 

Table 5.7 

Forces acting on particular stiffening walls 

Model 
Model 

wall 

Initial phase Elastic phase Nonlinear phase 
Post-peak 

residual phase 

Hcr,1, 

kN 

Hcr, 

kN 

Hu, 

kN 

Hres, 

kN 

MB-

AAC-

010/2 

A - 24.81 34.62 22.95 

B - 24.81 34.62 22.95 

 2.04 2.40 2.50 1.35 

MB-

AAC-

010/3 

A - 32.64 37.02 30.73 

B - 31.37 37.02 30.73 

 2.65 2.40 7.24 7.34 

MB-

AAC-

010/4 

A - 34.37 42.43 39.32 

B - 34.37 42.43 39.32 

 2.00 2.75 2.26 1.75 

MB-

AAC-

010/5 

A - 25.73 43.77 31.14 

B - 25.73 43.77 31.14 

 1.49 1.30 1.40 0.97 

MB-

AAC-

010/6 

A 10.77 28.25 37.26 32.07 

B 11.19 28.25 37.26 32.07 

 0.69 0.70 0.86 1.01 

MB-

AAC-

010/7 

A 12.82 26.02 33.35 27.62 

B 12.64 26.02 33.35 27.62 

 0.88 0.78 1.78 1.95 

MB-

AAC-

010/8 

A - 26.44 32.76 29.65 

B - 26.44 32.76 29.65 

 - 0.96 1.63 1.12 
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5.2.2. Determination of internal forces by the analytical method 

In addition to the empirical method of determining internal forces in stiffening walls, 

the own method [79] was used to calculate the stiffness and load distribution. The shear 

forces in the walls due to acting horizontal forces Hx and Hy can be calculated by 

formulas (5.11) and (5.12). 

 

 
𝐻x,i  = 𝐻x

𝐾y,i

∑ 𝐾y,i𝑖
 (5.11) 

 

 
𝐻y,i  = 𝐻𝑦

𝐾x,i

∑ 𝐾x,ii
 (5.12) 

 

Moreover, the shear forces caused by the torsional moments Msx and Msy are (5.13-

5.16): 

 

 
𝐻xs,i  = ±𝑀sx

�̅�xi𝐾y,i

∑ �̅�xi
2 𝐾x,i + ∑ �̅�yi

2 𝐾y,iii

 (5.13) 

 

 
𝐻ys,i  = ±𝑀sx

�̅�xi𝐾y,i

∑ �̅�xi
2 𝐾x,i + ∑ �̅�yi

2 𝐾y,iii

 (5.14) 

 

 
𝐻xs,i  = ±𝑀sy

�̅�xi𝐾y,i

∑ �̅�xi
2 𝐾x,i + ∑ �̅�yi

2 𝐾y,iii

 (5.15) 

 

 
𝐻ys,i  = ±𝑀sy

�̅�xi𝐾y,i

∑ �̅�xi
2 𝐾x,i + ∑ �̅�yi

2 𝐾y,iii

 (5.16) 

in which: 

𝑎xi, 𝑎yi – distances between the gravity center of the wall fragments and the rotation 

centre (RC),  

hm – wall height. 

 

The bending moments due to load Hx and Hy can be calculated following formulas (5.17) 

– (5.18). Formulas (5.19) – (5.20) express the bending moments due to torsional 

moments Msx and Msy. 

 

 
𝑀ox,i  = 𝑀ox

𝐾x,i

∑ 𝐾x,ii
 (5.17) 

 

 
𝑀oy,i  = 𝑀ox

𝐾y,i

∑ 𝐾y,ii
 (5.18) 

  



 

 
117 

 𝑀sx,i = ±𝐻xs,iℎm (5.19) 

 

 𝑀sy,i = ±𝐻ys,iℎm (5.20) 

 

The coordinates of the rotation centre (RC) are calculated according to formulas 

(5.21) and (5.22): 

 

 
𝑥R  =

∑ (𝑎xi𝐾xi) i

∑ 𝐾xi i
 (5.21) 

 

 
yR  =

∑ (𝑎yi𝐾yi) i

∑ 𝐾yi i
 (5.22) 

in which:  

axi, ayi – the distance between the load centre (LC) and the rotation center of the wall or 

stiffening group,  

Kxi, Kyi – stiffness of the wall or stiffening group. 

 

The total stiffness method [79] was used to calculate the stiffness of the walls. The 

wall with a window or door opening was divided into vertical pillars, a lintel band, and 

a bottom spandrel. The total displacement of the upper edge of the wall Δw from the unit 

load is the sum of the displacements of the bottom spandrels, inter-opening pillars and 

lintels (5.23).  

 

 Δw = AΔw + PΔw + BΔw (5.23) 

in which:  
AΔw – displacement of the lintel, 

BΔw – displacement of the bottom spandrel, 

PΔw – displacement of the vertical pillar. 

 

The displacements of the wall components (parts) depend on the geometry and boundary 

conditions. The geometrical parameters of walls with openings adopted for calculations 

are shown in Fig. 5.21. Moreover, if the height ratio to the length of the wall is h/l > 2, 

the effects of tangential stresses in determining the wall stiffness can be neglected. 

Otherwise, the stiffness should be calculated, considering shear deformations. Wall 

stiffness depending on the boundary conditions is shown in Table 5.8. 
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a) b) 

 

 

 

c) d) 

 

 

 

Fig. 5.21 The geometrical parameters adopted for calculation in the total stiffness method: a) division 
of a wall with a door opening into component elements, b) deformations of a wall with a door opening, 

c) division of a wall with a window opening into component elements, d) deformations of a wall with  

a window opening 

 

Table 5.8 

Stiffness of solid walls in the total stiffness method 

Static scheme 
h/l ≤ 2 h/l > 2 

Force P Moment M Force P Moment M 

Cantilever 

type C 

 

𝐾𝑝 =
1

ℎ𝑚
3

3𝐸𝐼
+

1.2ℎ𝑚

𝐺𝐴

 𝐾𝑀 =
2𝐸𝐼

ℎ𝑚
2

 𝐾𝑀 =
3𝐸𝐼

ℎ𝑚
3

 𝐾𝑀 =
2𝐸𝐼

ℎ𝑚
2

 

    

Double- 

fixed  

type F 

𝐾𝑝 =
1

ℎ𝑚
3

12𝐸𝐼 +
1,2ℎ𝑚

𝐺𝐴

 - 𝐾𝑀 =
12𝐸𝐼

ℎ𝑚
3

 - 

 

- 

 

- 
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After calculating the total displacement of the wall, its stiffness can be estimated 

following the formula (5.24). 

 

 
𝐾𝑤 =

1

∆𝑤
 (5.24) 

where: 

Δw - the total displacement of the top edge of the wall due to unit load H = 1. 

 

The analytical calculations of the stiffening walls were carried out according to the 

following procedure: 

1. The length of the transverse wall fragment (flange) beff1 was assumed 

following the recommendations of Eurocode 6. 

2. The wall with the opening was divided into fragments, as shown in Fig. 5.21. 

Moments of inertia of the wall components were calculated, considering the 

transverse beff1 parts. 

3. Static schemes of each component were established: “C” - cantilever wall,  

“F” - restrained wall. 

4. The stiffness K of the wall components were determined according to the 

formulas in Table 5.8. 

5. The stiffness of the walls was determined according to Fig. 5.21 and formula 

(5.24), and results are collected in Tables 5.9 – 5.12. 

6. The distances axi, ayi to the load center (LC) were assumed. 

7. The localization of the rotation center was calculated according to formulas 

(5.21) and (5.22) – Table 5.13. 

8. The internal forces in walls were calculated according to (5.11) –(5.20). 

 

Table 5.9 

Geometric and stiffness characteristics of walls for type I models 

Model type I - MB-AAC-010/1 and MB-AAC-010/2 

Wall or 

component  

Moment of inertia  

I, m4 

Static scheme *Distance  

GC-LC 

a, m 

Stiffness 

K, kN/mm 

A 

A’ 1.59 F 

1.91 

592.75 

81.46 C 0.09 F 47.22 

D 0.09 F 47.22 

B 1.59 F -1.91 113.96 

1 1.59 F -1.91 113.96 

2 1.59 F 1.91 113.96 
* distance from the center of gravity of the wall to a point LC (load center) 
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Table 5.10 

Geometric and stiffness characteristics of walls for type II models 

Model type II - MB-AAC-010/3, MB-AAC-010/4 and MB-AAC-010/5 

Wall or 

component  

Moment of inertia  

I, m4 

Static scheme *Distance  

GC-LC 

a, m 

Stiffness 

K, kN/mm 

A 

A’ 1.59 F 

1.91 

592.75 

81.46 C 0.09 F 47.22 

D 0.09 F 47.22 

B 1.59 F -1.91 113.96 

1 

A’ 1.59 F 

-1.91 

592.75 

102.35 
B 1.59 F 294.89 

C 0.09 F 106.56 

D 0.09 F 106.56 

2 1.59 F 1.91 113.96 
* distance from the center of gravity of the wall to a point LC (load center) 

 

Table 5.11 

Geometric and stiffness characteristics of walls for type III models 

Model type III - MB-AAC-010/6 and MB-AAC-010/7 

Wall or 

component  

Moment of inertia  

I, m4 

Static scheme *Distance  

GC-LC 

a, m 

Stiffness 

K, kN/mm 

A 

A’ 1.59 F 

1.91 

592.75 

102.35 
B 1.59 F 294.89 

C 0.09 F 106.56 

D 0.09 F 106.56 

B 

A’ 1.59 F 

-1.91 

592.75 

81.46 C 0.09 F 47.22 

D 0.09 F 47.22 

1 1.59 F -1.91 113.96 

2 1.59 F 1.91 113.96 

* distance from the center of gravity of the wall to a point LC (load center) 
 

Table 5.12 

Geometric and stiffness characteristics of walls for type IV models 

Model type IV - MB-AAC-010/8 

Wall or 

component  

Moment of inertia  

I, m4 

Static scheme *Distance  

GC-LC 

a, m 

Stiffness 

K, kN/mm 

A 1.59 F -1.91 113.96 

B 1.59 F -1.91 113.96 

1 1.59 F -1.91 113.96 

2 1.59 F 1.91 113.96 
* distance from the center of gravity of the wall to a point LC (load center) 

 



 

 
121 

Table 5.13 

The coordinates of the torsion center for each model type 

Model type 
Coordinates of torsion center 

xr, m yr, m 

I 0.00 -0.32 

II 0.10 -0.32 

III 0.00 -0.10 

IV 0.00 0.00 
 

The values of internal forces in stiffening walls were calculated based on formulas 

of the total stiffness method. The analysis encloses the elastic and non-linear phases in 

Table 5.14. The theoretical results were compared with the forces calculated by the 

empirical method (test results) – Table 5.15. 

 

Table 5.14 

The values of internal forces in the total stiffness method 

Model 
Model 

wall 

Elastic phase Nonlinear phase 
calHcr,I, 

kN 

calHcr,si, 

kN 

calHcr, 

kN 

calHu,I, 

kN 

calHu,si, 
kN 

calHu, 
kN 

MB-

AAC-

010/2 

A -20.68 -1.88 -22.56 -28.87 -2.62 -31.48 

B -28.94 1.88 -27.06 -40.38 2.62 -37.77 

MB-

AAC-

010/3 

A -26.68 -2.42 -29.10 -30.87 -2.80 -33.67 

B -37.33 2.42 -34.91 -43.18 2.80 -40.38 

MB-

AAC-

010/4 

A -28.65 -2.60 -31.25 -35.37 -3.21 -38.58 

B -40.09 2.60 -37.49 -49.49 3.21 -46.28 

MB-

AAC-

010/5 

A -21.45 -1.95 -23.40 -36.49 -3.31 -39.80 

B -30.01 1.95 -28.06 -51.04 3.31 -47.73 

MB-

AAC-

010/6 

A -23.56 -2.14 -25.69 -31.07 -2.82 -33.89 

B -32.95 2.14 -30.82 -43.46 2.82 -40.64 

MB-

AAC-

010/7 

A -21.69 -1.97 -23.66 -27.80 -2.52 -30.32 

B -30.35 1.97 -28.38 -38.89 2.52 -36.37 

MB-

AAC-

010/8 

A -22.04 -2.00 -24.04 -27.31 -2.48 -29.79 

B -30.83 2.00 -28.83 -38.21 2.48 -35.73 

* signs of internal forces concerning the global coordinate system (Fig. 4.30) 
calHcr,I  – elastic force due to shear, calHcr,si – elastic force due to rotation of the building, calHcr – the total 

internal force in stiffening wall (elastic phase), calHu,I  – force due to shear (nonlinear phase), calHu,si – 
force due to rotation of the building (nonlinear phase), calHu – the total internal force in a stiffening wall 

(nonlinear phase) 
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Table 5.15 

Comparison of test results and analytical analysis 

Model 
Model 

wall 

Elastic phase Nonlinear phase 

Hcr, 
kN 

calHcr, 
kN 

Hcr / 
calHcr 

 

Hu, 
kN 

calHu, 
kN 

Hu / 
calHu 

 

MB-

AAC-

010/2 

A 24.81 22.56 1.10 34.62 31.48 1.10 

B 24.81 27.06 0.92 34.62 37.77 0.92 

MB-

AAC-

010/3 

A 32.64 29.10 1.12 37.02 33.67 1.10 

B 31.37 34.91 0.90 37.02 40.38 0.92 

MB-

AAC-

010/4 

A 34.37 31.25 1.10 42.43 38.58 1.10 

B 34.37 37.49 0.92 42.43 46.28 0.92 

MB-

AAC-

010/5 

A 25.73 23.40 1.10 43.77 39.80 1.10 

B 25.73 28.06 0.92 43.77 47.73 0.92 

MB-

AAC-

010/6 

A 28.25 25.69 1.10 37.26 33.89 1.10 

B 28.25 30.82 0.92 37.26 40.64 0.92 

MB-

AAC-

010/7 

A 26.02 23.66 1.10 33.35 30.32 1.10 

B 26.02 28.38 0.92 33.35 36.37 0.92 

MB-

AAC-

010/8 

A 26.44 24.04 1.10 32.76 29.79 1.10 

B 26.44 28.83 0.92 32.76 35.73 0.92 

* signs of internal forces in absolute value 

 

The results indicate a redistribution of internal forces between the stiffening walls. 

The difference between the theoretical values and those obtained in the tests is not more 

than 12%. 

5.3. The procedure for calculations of the coordinates of the rotation center 

The proposed procedure applies to a situation where the uncertainty of a single 

measurement of displacements of measurement points is not specified. The solution 

should take into account the uncertainty transfer principle. As a result of the external 

load, the building is rotated relative to the center of torsion (also called RC – rotation 

center) and simultaneously displaced (translation). The coordinates of the assumed 

measurement points before and after loading are known. The coordinates of the center 

of torsion (xRC, yRC), the angle of rotation () and the translation parallel to the load 
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direction (ΔT) are not known. Figure 5.22 shows the layout of the building before and 

after loading in the direction of the X-axis. The load point (LC) is located at the 

intersection of the load directions. Points "a", "b", "c", "d" are in the corners, and point 

"e", is located at the intersection of the axes of the walls and the direction of the applied 

load. 

 

 
Fig. 5.22 Layout of the building before and after loading in the direction of the X-axis 

 

Two coordinate systems are introduced LC-X-Y associated with the load center and 

RC-X'-Y' at the center of rotation (RC) – Fig. 5.23. The kinematics of all available 

measurement points should be considered to determine four unknowns. In the general 

solution, the coordinates of the considered point defined in the LC-X-Y coordinate 

system (related to the assumed load point) are equal to (5.25): 

 

 A (𝑥, 𝑦) (5.25) 

 

In the coordinate system associated with the center of rotation RC-X'-Y', the coordinates 

are (5.26): 

 

 A (𝑥′, 𝑦′) (5.26) 
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The coordinates can be calculated according to (5.27) and (5.28): 

 

 𝑥′ = 𝑥 − 𝑥𝑅𝐶 (5.27) 

 

 𝑦′ = 𝑦 − 𝑦𝑅𝐶  (5.28) 

where: 

xRC, yRC – the coordinates of the RC point relative to the LC-X-Y system. 

 

a) 

 
b) 

 
Fig. 5.23 Changes in the position of the RC point: a) as a result of rotation by the angle  and translation 

in the X-direction, b) as a result of rotation by the angle  and translation in the Y-direction 
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Due to the specificity of the load, each of the directions can be considered separately. 

When the load acts in the direction of the X-axis (Fig. 5.23a), the building will rotate 

relative to the RC-X'-Y' coordinate system by the angle x. The coordinates of point  

A in the rotated coordinate system will be (5.29) and (5.30): 

 

 𝑥′𝑅 = 𝑥′ cos 𝛼𝑥 − 𝑦′ sin 𝛼𝑥 (5.29) 

 

 𝑦′𝑅 = 𝑥′ sin 𝛼𝑥 − 𝑦′ cos 𝛼𝑥 (5.30) 

 

In the LC-X-Y coordinate system, the coordinates are equal to (5.31) and (5.32): 

 

 𝑥𝑅 = 𝑥′𝑅 + 𝑥𝑅𝐶  (5.31) 

 

 𝑦𝑅 = 𝑦′𝑅 + 𝑦𝑅𝐶  (5.32) 

 

In addition to the rotation, the building will be translated by distance Tx. The 

coordinates in the RC-X'-Y' and LC-X-Y coordinate systems are equal to (5.33) – (5.36): 

 

 𝑥′𝐹 = 𝑥′𝑅 + ∆𝑇𝑥 (5.33) 

 

 𝑦′ = 𝑦′𝑅𝐹  (5.34) 

 

 𝑥𝐹 = 𝑥𝑅 + ∆𝑇𝑥 (5.35) 

 

 𝑦 =𝐹 𝑦𝑅  (5.36) 

 

The measurement of displacements of the building slab is made about the LC-X-Y 

system, and the coordinates are equal to (5.37): 

 

 A ( 𝑥,𝐹 𝑦𝐹 ) (5.37) 

 

The corresponding relative displacements of the point coordinates in the LC-X-Y 

coordinate system (directly determined in tests) are (5.39) – (5.40): 

 

 ∆𝑥 = 𝑥,𝐹 − 𝑥 (5.39) 

 

 ∆𝑦 = 𝑦,𝐹 − 𝑦 (5.40) 
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When the load acts in the direction of the Y-axis (Fig. 5.23b), the building will rotate 

relative to the RC-X'-Y' coordinate system by the angle y.. The coordinates of point  

A in the rotated coordinate system can be determined according to formulas (5.29) and 

(5.30). In the LC-X-Y coordinate system, the coordinates of point A can be calculated 

according to formulas (5.31) and (5.32).  

Similarly, the building will be translated by the distance Ty, and the coordinates in 

the RC-X'-Y' and LC-X-Y coordinate systems are equal (5.41) – (5.44): 

 

 𝑥′ = 𝑥′𝑅𝐹  (5.41) 

 

 𝑦′ = 𝑦′ + ∆𝑇𝑦
𝑅𝐹  (5.42) 

 

 𝑥 = 𝑥𝑅𝐹  (5.43) 

 

 𝑦 = 𝑦 + ∆𝑇𝑦
𝑅𝐹  (5.44) 

 

The value of translation is crucial. Without knowing the displacement of the RC point, 

it is impossible to determine the position of the RC. The assumption is that this RC point 

displacement corresponds to the horizontal load application point displacement. In the 

direction of the load acting parallel to the Y-axis, the coordinates of point A relative to 

the LC-X-Y coordinate system are (5.45): 

 

 A( 𝑥,𝐹 𝑦𝐹 ) (5.45) 

 

Similarly, the relative displacements of the coordinates of the point in the LC-X-Y 

coordinate system are (5.46) – (5.47): 

 

 ∆𝑥 = 𝑥 − 𝑥𝐹  (5.46) 

 

 ∆𝑦 = 𝑦 − 𝑦𝐹  (5.47) 

 

A minimum of three points must be defined on the slab to determine the coordinates 

of the center of the building torsion. However, it is better to take points located in the 

corners of the slab at the intersection of the wall axes (points: "a", "b", "c", "d") and the 

intersection of the wall axes and the direction of the load (point: "e"). The unknowns in 

the load direction parallel to the X-axis (in the LC-X-Y system) are the angle of rotation 

of the building x, the translation of the building Tx and the xRC and yRC coordinates. 
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The unknowns in the load direction parallel to the Y-axis are the angle of rotation of the 

building y, the translation of the building Ty and the xRC and yRC coordinates. The joint 

(independent) unknowns are the coordinates of the xRC and yRC centers of rotation. The 

building rotation angles x, y and the values of translations Tx and Ty are dependent 

unknown. Each direction can be analysed separably and reduce the number of unknowns. 

First, the angle of rotation of the building should be determined. For this purpose, it can 

consider any two points located initially in the load direction and then construct  

a straight line passing through these points in the post-load stage. The inclination angle 

of the straight line corresponding to the angle of rotation in the case of corners "b" and 

"c" (when the load is applied in the direction of the X-axis) is equal to (5.48): 

 

 
𝛼𝑥,𝑐𝑎𝑙 = actg (

𝑦"𝑏" − 𝑦"𝑐"
𝐹𝐹

𝑥"𝑏" − 𝑥"𝑐"
𝐹𝐹 ) (5.48) 

 

Next, the approximate slab translation should be determined. For this purpose, point "e" 

located at the intersection of the wall axis and the load direction can be used. The 

approximate displacement after the transformation of the coordinate system is (5.49): 

 

 ∆𝑇𝑥,𝑜𝑏𝑠 = 𝑥 − 𝑥𝐹 cos 𝛼𝑥,𝑐𝑎𝑙 (5.49) 

 

Then, the coordinates of the points (corners) in the LC-X-Y system, caused only by the 

rotation, should be determined according to the following relations (5.50) and (5.51): 

 

 𝑥𝑐𝑎𝑙 = 𝑥 − ∆𝑇𝑥,𝑜𝑏𝑠
𝐹𝑅  (5.50) 

 

 𝑦𝑐𝑎𝑙 = 𝑦𝐹𝑅  (5.51) 

 

In each corner, in addition to the coordinates before the deformation, there are 

coordinates after the deformation. Straight lines 𝑦 = 𝑎1𝑥 + 𝑏1 are drawn through these 

two points (straight lines "1", "2", "3", "4") in Fig. 5.24a. Directional coefficients of 

straight lines "a1" in any corner can be determined according to the following relation 

(5.52): 

 

 
𝑎1 =

𝑦 − 𝑦𝑐𝑎𝑙
𝑅

𝑥 − 𝑥𝑐𝑎𝑙
𝑅  (5.52) 
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a) 

 
b) 

 
Fig. 5.24 Construction of lines used to determine the location of the center of rotation: a) when the load 
is applied in the direction of the X axis, b) when the load is applied in the direction of the Y axis 
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The intercept can be calculated according to the relation (5.53): 

 

 𝑏1 = 𝑦𝑐𝑎𝑙 − 𝑎1 𝑥𝑐𝑎𝑙
𝑅𝑅  (5.53) 

 

Then, it is possible to determine the coordinates of the auxiliary point "P" located in the 

middle of the segment connecting the points before and after the rotation by equations 

(5.54) and (5.55): 

 

 
𝑥𝑝 =

1

2
(𝑥 + 𝑥𝑐𝑎𝑙

𝑅 ) (5.54) 

 

 
𝑦𝑝 =

1

2
(𝑦 + 𝑦𝑐𝑎𝑙

𝑅 ) (5.55) 

 

Perpendicular lines 𝑦 = 𝑎1𝑥 + 𝑏1
𝑝𝑝𝑝

 (straight lines "1", "2", "3", "4" in Fig. 5.24a are 

constructed through this point to straight lines connecting points in the building corner 

before and after rotation. The slopes of the lines are equal to (5.56): 

 

 
𝑎1 = −

1

𝑎1

𝑝
 (5.56) 

 

The intercepts are (5.57): 

 

 𝑏1 = 𝑦𝑝 − 𝑎1 𝑥
𝑝𝑝𝑝

 (5.57) 

 

A straight line from each corner can be drawn perpendicular to a line connecting the 

corner coordinates before and after the building rotation. It is enough to solve the system 

of equations of two straight lines formed from adjacent corners to determine the xRC and 

yRC coordinates. It is much more advantageous to solve all combinations occurring in 

individual corners. As a result, this gives n = 6 systems of equations to be solved: 

• the straight line "1" – the straight line "2", 

• the straight line "1" – the straight line "3", 

• the straight line "1" – the straight line "4", 

• the straight line "2" – the straight line "3", 

• the straight line "2" – the straight line "4", 

• the straight line "3" – the straight line "4". 
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From each of the systems of the equation, the coordinates xRC,i and yRC,i are obtained. 

The calculation results are the maximum, minimum, mean and median values. All values 

that do not make physical sense and significantly deviate from the others, confirmed by 

the Grubbs statistical test, should be omitted from the calculation. This approach allows 

determining the interval in which the coordinates occur with equal probabilities 

(rectangular distribution). Outlier analysis can be omitted when a robust approach is 

used, and then the median of the results should be sought. The same procedure is 

followed when the load acts in the direction parallel to the Y-axis. The angle of 

inclination of the straight line, corresponding to the angle of rotation, for the corners "b" 

and "c" (when the load acts in the direction of the Y-axis) is equal (5.58): 

 

 
𝛼𝑦,𝑐𝑎𝑙 = atan (

𝑦"𝑏" − 𝑦"𝑐"
𝐹𝐹

𝑥"𝑏" − 𝑥"𝑐"
𝐹𝐹 ) (5.58) 

 

The approximate translation is determined from the displacement of the point "e" 

located at the intersection of the wall axis and the load direction. The approximate 

displacement after the transformation of the coordinate system is (5.59): 

 

 ∆𝑇𝑦,𝑜𝑏𝑠 = 𝑦 − 𝑦 cos 𝛼𝑦,𝑐𝑎𝑙
𝐹  (5.59) 

 

Then determine the coordinates of the points (corners) in the LC-X-Y alignment caused 

by rotation only, according to the following relationships (5.60) and (5.61): 

 

 𝑥𝑐𝑎𝑙 = 𝑥𝐹𝑅  (5.60) 

 

 𝑦𝑐𝑎𝑙 = 𝑦 − ∆𝑇𝑦,𝑜𝑏𝑠
𝐹𝑅  (5.61) 

 

At each corner, straight lines are drawn between the points before and after the 

deformation (lines "1", "2", "3", and "4" in Fig. 5.24b). The constants in the equations 

of the straight lines are calculated according to (5.52) and (5.53). Then, an auxiliary 

point "P" is introduced. That point is located in the middle of the segment between the 

corners before and after the deformation. The point coordinates are determined using 

formulas (5.54) and (5.55). The constants of straight lines passing through the point "P" 

(straight lines "1", "2", "3", "4" in Fig. 5.24b) perpendicular to the lines connecting the 

corners before and with the deformation are calculated according to equation 5.56 and 

5.57. Similarly to the action of the load in the X direction, it is possible to build n = 6 
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systems of equations and determine the six coordinates xRC,i and yRC,i. The result of the 

calculation is the minimum, maximum and mean values. 

If the rotation of the building for a load direction does not occur or is negligibly small, 

then the xRC and yRC coordinates have infinitely large values. Otherwise, when the 

rotation has a finite value and the translation is negligibly small, the exact position of 

the center of torsion is obtained. In the general case, there will be both a finite rotation 

and a finite translation. Then the coordinates of the center of torsion are obtained, which 

are between the minimum and maximum values. Considering that the value adopted for 

calculations in an analysed direction is not true and affects the calculated coordinate 

associated with such a direction, as a result of calculations, a coordinate not related to 

a given direction is obtained as credible. When the load is parallel to the X-axis, the 

plausible value is xRC,cal, and when the load is parallel to the Y-axis, the plausible value 

is yRC,cal. 

After considering the confidence intervals of both coordinates, a rectangular area is 

obtained. The probability of the location of the center of torsion in such an area is 

identical (after standardization of the coordinates). If a robust approach is used, the RC 

coordinates are uniquely specified. 

The results with greater error (the intersection of the lines is far beyond the slab 

contour, and each measurement inaccuracy generates greater uncertainty of the results) 

can be obtained by specifying the coordinates of the torsion center, ignoring the shift 

effect. Then the coordinates related to the direction of the load (parallel to the X-axis 

(xRC,cal) and the Y-axis (yRC,cal,) are calculated assuming the values Tx,obs = 0 and 

Ty,obs = 0. After determining the coordinates of the rotation center, it is possible to 

calculate the exact translation of the building under the action of the load in the direction 

of the X and Y axes. When the load is applied in the X-axis direction, the coordinates in 

the RC-X'-Y' coordinate system are first calculated from the following dependencies 

(5.62) and (5.63): 

 

 𝑥𝑜𝑏𝑠′ = 𝑥 − 𝑥𝑅𝐶,𝑐𝑎𝑙 (5.62) 

 

 𝑦𝑜𝑏𝑠 ′ = 𝑦 − 𝑦𝑅𝐶,𝑐𝑎𝑙 (5.63) 

 

Then transform the points to the position before loading according to the relationship 

(5.64) and (5.65): 

 

 𝑥′𝑜𝑏𝑠 = 𝑥′𝑜𝑏𝑠 cos 𝛼 − 𝑦′𝑜𝑏𝑠 sin 𝛼𝑅  (5.64) 
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 𝑦′𝑜𝑏𝑠 = 𝑥′𝑜𝑏𝑠 sin 𝛼 + 𝑦′𝑜𝑏𝑠 cos 𝛼𝑅  (5.65) 

 

The next step is to express the coordinates in the LC-X-Y coordinate system according 

to the formula (5.66) and (5.67): 

 

 𝑥𝑜𝑏𝑠 = 𝑥′𝑜𝑏𝑠 + 𝑥𝑅𝐶,𝑐𝑎𝑙
𝑅𝑅  (5.66) 

 

 𝑦𝑜𝑏𝑠 = 𝑦′𝑜𝑏𝑠 + 𝑦𝑅𝐶,𝑐𝑎𝑙
𝑅𝑅  (5.67) 

 

Finally, at each point (corner) the displacement value is calculated according to the 

relation (5.68): 

 

 ∆𝑇𝑥,𝑐𝑎𝑙 = 𝑥 − 𝑥𝑜𝑏𝑠
𝑅𝐹  (5.68) 

 

The result of the calculation is the mean and standard deviation (5.69) and (5.70): 

 

 

∆𝑇𝑥,𝑐𝑎𝑙 =
1

𝑛
∑ ∆𝑇𝑥,𝑖

6

𝑖=1

 (5.69) 

 

 

𝑠𝑥 =
1

𝑛 − 1
∑(∆𝑇𝑥,𝑖 − ∆𝑇𝑥,𝑐𝑎𝑙)

2
6

𝑖=1

 (5.70) 

 

The same procedure is followed in the direction of the load in the Y-axis direction. 

Coordinates are transformed according to formulas (5.62) – (5.67). The value of the 

displacement at each corner is determined according to (5.71): 

 

 ∆𝑇𝑦,𝑐𝑎𝑙 = 𝑦 − 𝑦𝑜𝑏𝑠
𝑅𝐹  (5.71) 

 

The result of the calculation is the mean and standard deviation (5.72) and (5.73): 

 

 

∆𝑇𝑦,𝑐𝑎𝑙 =
1

𝑛
∑ ∆𝑇𝑦,𝑖

6

𝑖=1

 (5.72) 

 

 

𝑠𝑦 =
1

𝑛 − 1
∑(∆𝑇𝑦,𝑖 − ∆𝑇𝑦,𝑐𝑎𝑙)

2
6

𝑖=1

 (5.73) 
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6. CRACK MORPHOLOGY 

The crack morphology analysis was divided into two stages. The first part concerns 

recognising the order in which successive cracks appear during the test (crack 

propagation) – section 6.1. The results from the DIC system and the macroscopic 

assessment of the tested buildings were collected in the second stage. The model damage 

was summarized as a crack pattern in section 6.2. 

6.1. Digital image correlation results 

The results from the DIC system enclose seven building models (no results for model 

MB-AAC-010/3). The results were presented as deformation maps 1 (principal strain), 

and the scales were adjusted to obtain the best crack propagation map. 

6.1.1. Results for MB-AAC-010/1 model 

Figure 6.1 presents the crack propagation maps for the MB-AAC-010/1 model. 

Stiffening wall A was analyzed. The order of damage was as follows: 

• horizontal crack in the corner of the door opening and a small stepped crack 

in the upper left part of the wall, 

• increasing the crack size within the door opening and progressing step 

cracking of the wall, 

• the horizontal crack from the top edge of the wall connects to the crack at the 

opening, 

• a step crack divides the vertical pier into two parts, and new step cracks are 

formed. 
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a) b) 

  
c) d) 

  

e)  f)  

  
-1.0%  +1.0% 

Fig. 6.1 Crack propagation of Wall A – model MB-AAC-010/1: a) analyzed area, b) crack pattern at Hx 
= 32.23 kN, c) crack pattern at Hx = 42.38 kN, d) crack pattern at Hx = 48.58 kN, e) crack pattern at Hx 

= 58.22kN, f) crack pattern at Hx = 42.40kN (post-peak) 

 

Figures 6.2, 6.3 and 6.4 present the horizontal, vertical and out-of-plane deformation of 

stiffening wall A. The sliding failure occurs in the left vertical pier. The maximum 

horizontal deformation equals about 23.0 mm, and the vertical displacement is about  

4.0 mm. The out-of-plane deformation indicates the rotation of the building. 

 

 

 

Hx = 32.23kN 

Hx = 42.38kN Hx = 48.58kN 

Hx = 58.22kN Hx = 42.40kN 

(post peak) 

Hx = 0.00kN 
LOAD Hx 
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+ 23.0 mm 

 
- 2.0 mm 

Fig. 6.2 Post peak in-plane horizontal deformation dx with force Hx = 42.40 kN for Wall A  

 

  

+ 5.0 mm 

 
0.0 mm 

Fig. 6.3 Post peak in-plane vertical deformation dy with force Hx = 42.40 kN for Wall A  

 

  

+ 2.0 mm 

 
- 2.0 mm 

Fig. 6.4 Post peak in-plane out-of-plane deformation dz with force Hx = 42.40 kN for Wall A  
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6.1.2. Results for MB-AAC-010/2 model 

Figure 6.5 shows the crack propagation maps for the MB-AAC-010/2 model. 

Stiffening wall A was analyzed. The order of damage was as follows: 

• a stepped crack formed in the corner of a door opening, 

• increasing the crack size, 

• formation of a stepped crack in the lower part of the wall, 

• formation of new step cracks in the part of the wall from the side of the applied 

horizontal load, 

• increasing the opening of the existing cracks, 

• dividing the vertical pier into two parts. 

 

a)  b) 

 
 

c) d)  

  
-3.0%  +3.0% 

Fig. 6.5 Crack propagation of Wall A - model MB-AAC-010/2: a) analyzed area, b) crack pattern at Hx 
= 34.62 kN, c) crack pattern at Hx = 69.25 kN, d) crack pattern at Hx = 37.71 kN 

 

Hx = 0.00kN Hx = 34.62kN 

Hx = 69.25kN Hx = 37.71kN 

(post peak) 

LOAD Hx 
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A similar DIC analysis was done for stiffening wall B; the results are presented in 

Fig. 6.6. As a wall without openings, the initial phase was not observed. The order of 

damage was: 

• the first crack in the upper part of the wall from the side of the applied horizontal 

load, 

• step cracks gradually widening from the top to the bottom of the wall, 

• then new step cracks parallel to the existing one in the lower part of the wall, 

• increasing the opening of the existing cracks, 

• separating the wall into two parts with a diagonal step crack. 

 

a)  b) 

  
c) d)  

  
e) f) 

  
-1.0%  +1.0% 

Fig. 6.6 Crack propagation of Wall B – model MB-AAC-010/2: a) analyzed area, b) crack pattern at Hx 

= 48.05 kN, c) crack pattern at Hx = 49.04 kN, d) crack pattern at Hx = 55.58 kN, e) crack pattern at Hx 
= 69.25kN, f) crack pattern at Hx = 46.35kN (post-peak) 
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Figures 6.7 and 6.8 show the horizontal and vertical deformation at the post-peak 

phase of stiffening wall B. The measured horizontal displacement is about 19.6 mm, and 

the vertical one is equal to over 2.5 mm. A stepped crack divides the wall into two parts, 

and a wall fragment above the diagonal crack is prone to lifting. The diagonal crack is 

formed from the top edge of the wall, where the load is applied and proceeds diagonally 

to the wall base. 

Figures 5.9 – 5.11 shows the displacement map for stiffening wall A at the same load 

level (the post-peak phase). The horizontal crack runs from the corner of the door 

opening to the edge of the wall. The values of horizontal displacements are greater than 

those of parallel wall B and are a maximum of 19.8 mm. The out-of-plane displacements 

are about 1.0 mm. 

 

 
 

+20.0 mm 

 
- 1.0 mm 

Fig. 6.7 Post peak in-plane horizontal deformation dx with force Hx = 37.71 kN for Wall B  

 

  

+ 3.0 mm 

 
0.0 mm 

Fig. 6.8 Post peak in-plane vertical deformation dy with force Hx = 37.71 kN for Wall B  
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0.0 mm 

 
-20.0 mm 

Fig. 6.9 Post peak in-plane horizontal deformation dx with force Hx = 37.71 kN for Wall A  

 

  

+3.0 mm 

 
0.0 mm 

Fig. 6.10 Post peak in-plane vertical deformation dy with force Hx = 37.71 kN for Wall A 

 

  

+2.0 mm 

 
0.0 mm 

Fig. 6.11 Post peak in-plane out-of-plane deformation dz with force Hx = 37.71 kN for Wall A 
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6.1.3. Results for MB-AAC-010/4 model 

Figure 6.12 shows the crack propagation maps for the MB-AAC-010/4 model. 

Deformation maps of stiffening wall A were presented in Fig. 6.13 – 6.15. 

 

a)  b) 

 
 

c) d)  

  
e) f) 

  
-1.0%  +1.0% 

Fig. 6.12 Crack propagation of Wall A – model MB-AAC-010/4: a) analyzed area, b) crack pattern at 

Hx = 64.55 kN, c) crack pattern at Hx = 66.34 kN, d) crack pattern at Hx = 70.25 kN, e) crack pattern at 
Hx = 84.80kN, f) crack pattern at Hx = 63.55kN (post peak) 
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+8.0 mm 

 
0.0 mm 

Fig. 6.13 Post peak in-plane horizontal deformation dx with force Hx = 63.55 kN for Wall A  

 

  

+4.0 mm 

 
0.0 mm 

Fig. 6.14 Post peak in-plane vertical deformation dy with force Hx = 63.55 kN for Wall A  

 

  

+1.0 mm 

 
0.0 mm 

Fig. 6.15 Post peak in-plane out-of-plane deformation dz with force Hx = 63.55 kN for Wall A  
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The crack morphology was similar to the previously analyzed walls. The first crack 

is located in the corner of the door opening. Then, with a slight increase in horizontal 

load - numerous step cracks appear. In the next stage, the size of the main step crack is 

increased. After exceeding the load capacity of the wall, there are no more new cracks. 

However, there are increasing displacements, and a sliding failure occurs. The maximum 

horizontal displacement was 7.7 mm, and the maximum vertical displacement was about 

3.3 mm. The out-of-plane displacements were small and amounted to a maximum of  

1.3 mm. 

6.1.4. Results for MB-AAC-010/5 model 

Figure 6.16 presents the crack propagation maps for stiffening wall A of the MB-

AAC-010/5 model. The sequence of appearance of cracks in the wall with a door 

opening was identical to previous models, and the first crack occurred in the door 

opening corner. Figures 6.17 – 6.19 show maps of wall deformation at the nonlinear 

post-peak phase. 

 

a)  b) 

  
c) d)  

  

Hx = 0.00kN Hx = 46.33kN 

Hx = 51.65kN Hx = 54.30kN 

LOAD Hx 
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e) f) 

  
-1.0%  +1.0% 

Fig. 6.16 Crack propagation of Wall A – model MB-AAC-010/5: a) analyzed area, b) crack pattern at 
Hx = 46.33 kN, c) crack pattern at Hx = 51.65 kN, d) crack pattern at Hx = 54.30 kN, e) crack pattern at 

Hx = 87.53kN, f) crack pattern at Hx = 66.17 kN (post-peak) 

 

  

+8.0 mm 

 
0.0 mm 

Fig. 6.17 Post peak in-plane horizontal deformation dx with force Hx = 66.17 kN for Wall A  

 

  

+5.0 mm 

 
0.0 mm 

Fig. 6.18 Post peak in-plane vertical deformation dy with force Hx = 63.55 kN for Wall A  

Hx = 87.53kN Hx = 66.17kN 

(post peak) 

LOAD Hx 
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+1.0 mm 

 
0.0 mm 

Fig. 6.19 Post peak in-plane out-of-plane deformation dz with force Hx = 63.55 kN for Wall A of MB-

AAC-010/5 model 

 

As in model MB-AAC-010/4, the horizontal displacements were small and reached 

a maximum of 8.2 mm. The corresponding maximum vertical displacement equals  

4.4 mm, and the out-of-plane deformation does not over 1.0 mm. 

6.1.5. Results for MB-AAC-010/6 model 

The crack propagation maps for stiffening wall A of the MB-AAC-010/6 were 

presented in Fig. 6.20. As in other models, the first cracks appear within the window 

opening – the vertical crack below the opening and the horizontal one in a tensile corner. 

Then stepped cracks appeared on the left side of the wall from the side of the acting load. 

With increasing load, the cracks are connected and have a diagonal course.  

Finally, a diagonal step crack divides the wall into two parts. 

 

a)  b) 
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LOAD Hx 

LOAD Hx 



 

 
145 

c) d)  

  
e) f) 

  
-1.0%  +1.0% 

Fig. 6.20 Crack propagation of Wall A – model MB-AAC-010/6: a) analyzed area, b) crack pattern at 
Hx = 46.28 kN, c) crack pattern at Hx = 56.60 kN, d) crack pattern at Hx = 57.25 kN, e) crack pattern at 

Hx = 74.53kN, f) crack pattern at Hx = 61.44 kN (post-peak) 

 

Figures 6.21 – 6.23 present the deformation maps of stiffening wall A at the post-

peak phase.  

 

  

+36.0 mm 

 
0.0 mm 

Fig. 6.21 Post peak in-plane horizontal deformation dx with force Hx = 61.44 kN for Wall A of MB-
AAC-010/6 model 
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(post peak) 
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+5.0 mm 

 
0.0 mm 

Fig. 6.22 Post peak in-plane vertical deformation dy with force Hx = 61.44 kN for Wall A of MB-AAC-

010/6 model 

 

  

+1.0 mm 

 
-1.0 mm 

Fig. 6.23 Post peak in-plane out-of-plane deformation dz with force Hx = 61.44 kN for Wall A of MB-

AAC-010/6 model 
 

 

The values of a maximum horizontal deformation are 36.9 mm. After dividing the 

wall with a diagonal crack, the part of the wall above the crack is horizontally displaced. 

The largest vertical displacement was measured in the corner of the wall from the side 

of the applied load – 5.0 mm, and the out-of-plane displacement reached almost 2.0 mm. 

6.1.6. Results for MB-AAC-010/7 model 

The damage propagation of wall A of the MB-AAC-010/7 is shown in Fig. 6.24. 

Similar to model MB-AAC-010/6, the first cracks appeared in the upper left corner of 

the window opening and the lower half of the opening. Successively, numerous stepped 

LOAD Hx 

LOAD Hx 
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cracks occur, which eventually run diagonally from the upper corner to the opposite 

lower corner. Figures 6.25 –  6.27 present the deformation maps. Significant out-of-

plane displacements of almost 5.0 mm were recorded in the analysed model (Fig. 6.27). 

 

a)  b) 

   
c) d)  

  

e) f) 

 
 

-1.0%  +1.0% 
Fig. 6.24 Crack propagation of Wall A – model MB-AAC-010/7: a) analyzed area, b) crack pattern at 
Hx = 50.41 kN, c) crack pattern at Hx = 50.47 kN, d) crack pattern at Hx = 54.82 kN, e) crack pattern at 

Hx = 66.69 kN, f) crack pattern at Hx = 53.40 kN (post-peak) 
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+38.0 mm 

 
0.0 mm 

Fig. 6.25 Post peak in-plane horizontal deformation dx with force Hx = 53.40 kN for Wall A  

 

  

+8.0 mm 

 
0.0 mm 

Fig. 6.26 Post peak in-plane vertical deformation dy with force Hx = 53.40 kN for Wall A  

 

  

+1.0 mm 

 
-5.0 mm 

Fig. 6.27 Post peak in-plane out-of-plane deformation dz with force Hx = 53.40 kN for Wall A  
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6.1.7. Results for MB-AAC-010/8 model 

Stiffening wall A was observed in the reference model. The crack propagation is 

presented in Fig. 6.28, and the deformation maps in Fig. 6.29 – 6.31. 

 

a)  b) 

   
c) d)  

  
e) f) 

  
-1.0%  +1.0% 

Fig. 6.28 Crack propagation of Wall A – model MB-AAC-010/8: a) analyzed area, b) crack pattern at 

Hx = 32.53 kN, c) crack pattern at Hx = 48.59 kN, d) crack pattern at Hx = 59.85 kN, e) crack pattern at 

Hx = 65.52 kN, f) crack pattern at Hx = 27.23 kN (post-peak) 
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+42.0 mm 

 
0.0 mm 

Fig. 6.29 Post peak in-plane horizontal deformation dx with force Hx = 27.23  kN for Wall A  

 

  

+4.0 mm 

 
0.0 mm 

Fig. 6.30 Post peak in-plane vertical deformation dy with force Hx = 27.23 kN for Wall A  

 

  

+5.0 mm 

 
0.0 mm 

Fig. 6.31 Post peak in-plane out-of-plane deformation dz with force Hx = 27.23 kN for Wall  
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The first crack appears in the upper part of the wall facing the applied load. With 

increasing load, a stepped diagonal crack appears, gradually increasing its width. Finally, 

a diagonal step crack divides the wall into two parts. The horizontal displacement at the 

post-peak phase equals 41.0 mm, and the maximum vertical one is 3.6 mm. The out-of-

plane displacement was also recorded. 

6.2. Crack patterns of tested buildings 

The 3D drawings were prepared to show a detailed crack pattern of each model. 

Additionally, distinct types of cracks are documented with photos of the damage. The 

pattern is similar for each model, and common areas of failure can be distinguished. In 

stiffening walls, the cracks run diagonally from the side of the applied load to the wall 

base in the opposite corner. If there are openings in the walls (windows or doors), the 

initiation of cracks takes place in the tensile corner of the opening. Diagonal cracks 

divide the wall into two parts, and after reaching the load capacity of the wall, the part 

above the crack undergoes significant horizontal displacements (sliding failure). It 

should be added that in the tested models, the diagonal cracks had a stepped course. 

With greater compressive stresses of the walls, the diagonal cracks would also run 

through the masonry elements (a straight diagonal crack). 

The damage pattern is different in the walls perpendicular to the stiffening walls. No 

diagonal cracks are observed, but only small areas of accumulated damage. There is  

a horizontal crack in half the height of the wall from the side of the applied load (wall 

assigned as wall 2). This damage is the result of tensile and lifting of the wall. The 

remaining damage accumulates in the upper part of the wall at its edges – they are local 

and small (small cracks or chipping of the surface of masonry units).  

A similar damage pattern occurs on the opposite side of the building in the 

perpendicular wall marked as Wall 1. The damage does not accumulate in its corner if 

an opening is made in such a wall. The cracks occur in the lower part of the wall; the 

most damaged areas are the corners, which result from the concentration of compressive 

stresses in such areas. Figures 6.33 – 6.40 shows the observed crack patterns of tested 

masonry buildings. Cracks and damages are marked in red in the drawings. 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.32 Crack pattern – model MB-AAC-010/1: a) view of the stiffening wall A with the door opening, 

b) view of the stiffening wall B without an opening 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.33 Crack pattern – model MB-AAC-010/2: a) view of the stiffening wall A with the door opening, 
b) view of the stiffening wall B without an opening 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.34 Crack pattern – model MB-AAC-010/3: a) view of the stiffening wall A with the door opening, 

b) view of the stiffening wall B without an opening 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.35 Crack pattern – model MB-AAC-010/4: a) view of the stiffening wall A with the door opening, 
b) view of the stiffening wall B without an opening 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.36 Crack pattern – model MB-AAC-010/5: a) view of the stiffening wall A with the door opening, 

b) view of the stiffening wall B without an opening 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.37 Crack pattern – model MB-AAC-010/6: a) view of the stiffening wall A with the window 

opening, b) view of the stiffening wall B with the door opening 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.38 Crack pattern – model MB-AAC-010/7: a) view of the stiffening wall A with the window 

opening, b) view of the stiffening wall B with the door opening 
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a) 

 

 

 

   
b) 

 

 

 

   
Fig. 6.39 Crack pattern – model MB-AAC-010/8: a) view of the stiffening wall A without an opening, 

b) view of the stiffening wall B without an opening 
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7. NUMERICAL ANALYSIS 

7.1. Empirical homogenization of the elasto-plastic model 

7.1.1. Assumptions 

Many homogenization methods show a good agreement between test results and 

numerical calculations. However, the practical and common applications of 

homogenization can be limited as they require many material tests on masonry units and 

mortar and are often performed at original test stands. Also, the test procedures are not 

standardized. Validation of individual non-linear parameters for the models can be 

troublesome as it was performed and tested on bigger elements under simple stress states. 

Therefore, it is necessary to develop a new procedure for the masonry homogenization 

approach. The biggest problem with the existing wall homogenization approach is the 

procedure's lack of repeatability. Thus, the own procedure for masonry homogenization 

was developed. The approach is based on the test results performed on models and 

according to procedures standardized following the current standards [67]. The proposed 

empirical homogenization fulfils the following assumptions: 

• the method is developed for designing new buildings and provides the 

possibility for conducting a set of standard tests on masonry and its 

components while the in-situ tests using the NDT (non-destructive testing) or 

MDT (minor-destructive testing) methods were not required, 

• a multi-stage validation could be performed on models developed and tested 

following the design standards for masonry structures [N1, N16], 

• the masonry material was represented by a model of the isotropic material 

whose yield and failure surfaces depended on values of hydrostatic stress – 

similarly as in the case of concrete and rock, 

• the presence of contact surfaces between the masonry units could be neglected. 
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7.1.2. Properties of masonry components 

The own homogenization approach was developed based on the test results 

conducted in [131]. The masonry consists of autoclaved aerated concrete masonry units 

with a nominal density class of 600 kg/m3 and M5 class mortar for thin joints. The 

concrete masonry units had a length lu = 590 mm, a height hu = 240 mm, and a width  

tu = 180 mm. Mechanical parameters of materials were tested on at least six specimens 

following the standard procedure. According to the user-defined procedure, the uniaxial 

compressive and tensile strength, modulus of elasticity, and Poisson’s ratio were 

determined for cylinders of 60 mm diameter and 120 mm height. The basic mechanical 

parameters are presented in Table 7.1. 

Table 7.1 

Mechanical properties of masonry components 

Material 

Average parameter (coefficient of variation) 

fb,  

N/mm2 

fm,  

N/mm2 

fc,cyl,  

N/mm2 

ft,  

N/mm2 

E,  

N/mm2 
ν 

Gf,mv, 

MN/m 

AAC 
4.95 

(7%) 
-- 

4.25 

(7.3%) 

0.61 

(14.0%) 

2886 

(10.5%) 

0.20 

(8.5%) 

5.21·10-5 

(15%) 

Mortar -- 
6.1 

(6.2%) 

5.64 

(4.0%) 

0.51 

(22%) 

6351 

(9%) 

0.18 

(10%) 
-- 

Proce-

dure 

EN 772-

1:2015  

[N8] 

EN 1015-

11:2020 

[N5] 

The tests were performed on cylinders 

Ø60120 mm 

RILEM 

[136] 

fb – standardized compressive strength, 

fm – compressive strength, 
fc,cyl – uniaxial compressive strength, 

ft – uniaxial tensile strength, 

E – modulus of elasticity, 
v – Poisson's ratio, 

Gf,mv– cracking energy corresponding to cracking model I (bending test). 

7.1.3. Masonry models used in the validation procedure 

Following the made assumptions, the validation involved the normalized models in 

specifying the mechanical properties of the masonry in compression perpendicular and 

diagonal to planes of bed joints. The tests were conducted on walls having a size of 1180 

x 1210 x 180 mm (l x h x t) as specified in the standards EN 1052-1:2000 [N16] and 

ASTM E519-81 [N1]. The walls were erected in a thin joint mortar with a thickness  

tbj = 3 mm. The measuring frames were fixed to the test specimens to measure strains 

using linear variable differential transducers (LVDT). The frames fixed to axially 
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compressed walls were parallel and perpendicular to the load direction, while the 

(diagonally) shear walls had the frames arranged along their diagonals. All the models 

were tested after 28 days of concrete hardening under laboratory conditions (relative 

humidity 80%, average temperature 23oC, relative humidity of AAC at the time of 

testing w = 3% did not significantly impact the test results [77]). Figure 7.1 illustrates 

the test models and determines the relationship between stress and strains. The results 

are shown in Table 7.2.  

 

a) b) 

  
c) d) 

  

Fig. 7.1 The models and test results for test specimens used in the validation procedure: a) walls 

compressed in a perpendicular direction to the plane of bed joints according to the standard [N16],  

b) σy – εx, σy – εx relationships for walls compressed in a perpendicular direction to the plane of bed joints, 
c) walls in diagonal compression tested according to the standard [N1], d) τ – Θ relationships for walls 

in diagonal compression 

  



 

 
163 

Table 7.2 

Properties of masonry used in the validation procedure 

Loading 

Average parameter (coefficient of variation) 

fc,  

N/mm
2 

Eobs, 

N/mm
2 

v 
εel 

% 

εmax 

% 
εpl 

% 

ftm,  

N/mm2 

Θcr,obs 

mrad 

Θcr,1/3 

mrad 

G, 

N/mm2 

Axial 

compres-

sion 

2.97 

(14%) 

2041 

(11%) 

0.18 

(15%) 
-0.048 

-

0.179

** 

-

0.033

** 

-- -- -- -- 

Diagonal 

compres-

sion 

-- -- -- -- -- -- 
0.196 

(8.3%) 

0.587 

(12.3%

) 

0.138 

(15.4%

) 

475 

(15.4%

) 

Proce-

dure 

EN 1052-1:2000 

[N16] 

ASTM E519-81 

[N1] 
* – read from the averaged diagram of σ – ε relationships at 0.33fcm= 0.33σcm, 
* – read from the averaged diagram of σ – ε relationships, 

fc – compressive strength of masonry, 
E – modulus of elasticity, 

v – Poisson's ratio, 

εmax – strain at the maximum stress, 

εpl – plastic strain, 
ftm – diagonal compressive strength, 

Θcr,obs – mean angle of shear strain determined at the time of formation of visible cracks, 

Θcr,1/3 – mean angle of shear strain determined at the level of 1/3ft, 

G – shear modulus. 

7.1.4. Material models 

The procedure of homogenization included the elastoplastic model showing the M-

W-3 degradation. The linear-elastic model defined by Hooke’s law was also used as the 

auxiliary model. The M-W-3 model was developed to model brittle materials in which 

the shape of the boundary surface depended on average hydrostatic stresses. Constitutive 

relations, which were not the same in the hardening and softening phases, were used to 

specify the non-linear behavior of the model. This model combined two material models: 

the elastoplastic model with the Menétrey-William boundary surface and the elastic-

brittle model with the Rankine boundary surface [34]. The boundary surfaces (failure 

surfaces) were defined for the reduced space of octahedral stresses. The space of 

principal stresses is described by principal stresses σ1, σ2, σ3. The free parameters define 

the octahedral space specified by Haigh-Westergaard coordinates: the hydrostatic 

coordinator ξ, the deviatoric coordinator ρ, and the Lodge angle Θ. The Haigh-

Westergaard coordinates – Fig. 7.2 are the functions of invariants (I1, J2, J3) of principle 

stress tensors (σ1> σ2 > σ3). The following formulas (7.1) – (7.3) can describe the 
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definition of the space coordinators for boundary surfaces: 

 

  = 
𝐼1

√3
  (7.1) 

 

  =√2𝐼2 (7.2) 

 

  = 
1

3
acos (

3√3

2

𝐼3

𝐼2
3/2) (7.3) 

 

for which formulas express the stress tensor’s invariants (7.4) –  (7.6):  

 

 𝐼1 = 𝜎1 + 𝜎2 + 𝜎2 (7.4) 

 

 
𝐼2 =

[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]

6
 (7.5) 

 

 𝐼3 = (𝜎1 −
1

3
𝐼1)(𝜎2 −

1

3
𝐼1)(𝜎3 −

1

3
𝐼1)   (7.6) 

 

a) b) c) 

 

 

 
Fig. 7.2 The Haigh–Westergaard coordinates in space: a) the components of principal stress space,  

b) an axiatoric section, c) a deviatoric section 

 

The Rankine criterion was used as the tension-induced failure condition. This 

criterion described the condition k≤ft  (Fig. 7.3), in which each of three directions of 

principal stress (k = 1, 2, 3) could be described by the general form (7.7):  

 

 𝑓𝑘
f = 𝜎𝑖𝑗𝑛𝑖

k𝑛𝑗
k − 𝑓t ≤ 0t   (7.7) 

 

at Haigh-Westergaard coordinates are (7.7): 
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 𝑓f =  𝜉 − √2𝜌𝑐𝑜𝑠𝛩 − √3𝑓𝑡 ≤ 0 (7.7) 

 

a) b) c) 

  

 

Fig. 7.3 The Rankine criterion in the Haigh-Westergaard space: a) view of principle stress space, b) view 
of axiatoric section, c) view of deviatoric section 

 

The following relationship expresses strains on the Rankine surface (7.8): 

 

 
𝑑𝜀𝑖𝑗

rfk = 𝑑𝜆𝑘
𝜕𝑓𝑘

f

𝜕𝜎𝑖𝑗
= 𝑑𝜆𝑘 =

𝜎𝑖𝑗𝑛𝑖
k𝑛𝑗

kt − 𝑓𝑡(𝑤𝑘)

𝐷𝑖𝑗𝑚𝑛𝑛𝑖
k𝑛𝑗

k𝑛𝑚
k 𝑛𝑛

k
 (7.8) 

where: wk is a crack width calculated from the relationship (7.9): 

 

 𝑤k = 𝐿t(𝜀�̂�
𝑓

+ 𝑑𝜆𝑘) (7.9) 

 

Equation (7.8) was satisfied after cracking while softening the cracked material 

depended on the cracking energy and the crack width [72] expressed by equation (7.9). 

The crack width in the direction k was calculated using the known strains �̂�𝑘
𝑓

, and the 

specified length Lt (crack band size) of smeared cracks. The crack width in the discussed 

material model was calculated from the element's size projected into the direction k (Fig. 

7.4).  

 

 
Fig. 7.4 The function of material softening expressed as the crack width 
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The elastoplastic model was described with the modified empirical model by Hoek and 

Brown [71] based on the concept of Menétrey and William [115], who expressed a three-

parameter yield surface M-W-3 as follows (7.10): 

 

𝑓ρ(𝜉, 𝜌, 𝛩) = (√1,5
𝜌

𝑘(𝜅)𝑓𝑐
)

𝟐

+ 𝑚 (
𝜌

√6𝑘(𝜅)𝑓𝑐

𝑟(𝛩, 𝑒) +
𝜉

√3𝑘(𝜅)𝑓𝑐

) − 𝑐(𝜅) = 0 (7.10) 

where: 

m - a parameter, an equivalent to cohesion equal to (7.11): 

 

 
𝑚 = 3

(𝑘(𝜅)𝑓𝑐)2 − (𝜆𝑡𝑓𝑡)2

𝑘(𝜅)𝑓𝑐𝜆𝑡𝑓𝑡

𝑒

𝑒 + 1
 (7.11) 

 

r - an elliptical function (7.12): 

 

 
𝑟(𝛩, 𝑒) =

4(1 − 𝑒2)𝑐𝑜𝑠2𝛩 + (2𝑒 − 1)2

2(1 − 𝑒2)𝑐𝑜𝑠𝛩 + (2𝑒 − 1)√4(1 − 𝑒2)cos2𝛩 + 5𝑒2 − 4𝑒
 

(7.12) 

in which: 

e – eccentricity of the elliptical function taking values from the range e ∈ (0.5;1.0), 

fc, ft – uniaxial compressive and tensile strength, 

λt ≥ 1 – scaling parameter for M-W-3 surface. 

 

The surface defined by Menétrey and William (Fig. 7.5) comprised parabolic 

compressive meridians (visible in the axiatoric section – Fig. 7.5b) intercepting at a point 

corresponding to the triaxial tension. The M-W-3 surface in a deviatoric section was 

composed of three tangential curves along compressive meridians, whose shape was 

affected by the value of eccentricity e - Fig. 7.5c. 

 

a) b) c) 

  

 

Fig. 7.5 Menétrey-William criterion in the Haigh-Westergaard space: a) view of principal stress space, 

b) view of an axiatoric section, c) view of a deviatoric section 
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The eccentricity of the elliptical function determined the shape of the elliptical curve. 

The curves constituting the deviatoric section formed a circle at the eccentricity value 

of 1.0. When the eccentricity e equalled 0.5, the elliptical curve in the deviatoric section 

had a shape of an equilateral triangle. The intermediate values of the eccentricity 

changed the curves' shapes, forming an equilateral triangle with rounded corners. The 

surface matching parameter λt > 1 determined the relative positions of the M-W-3 and 

the Rankine surfaces – Fig. 7.6. If λt = 1, the yield surface was confined in the Rankine 

pyramid. For λt = 2λt = 2, the surfaces were intercepting from the side of hydrostatic 

tension and minor compression. The Rankine boundary surface was used to describe the 

stress states in that situation. 

 

a) 

 
b) 

 
c) 

 
Fig. 7.6 Relative position of Rankine and M-W-3 surfaces: a) view of surfaces in principal stress space, 

b) axiatoric sections, c) deviatoric sections: 1 – Rankine Surface, 2 – M-W-3, the surface at k = 1 (yield 
strength), 3 – M-W-3 surface at k0 (end of the elastic stage) 
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At higher values of hydrostatic compression, the failure was specified by the M-W-

3 surface. Displacements of the M-W-3 surface along the hydrostatic axis were possible 

due to changes in the surface matching parameter λt by simulating the material hardening 

or softening stages. These stages were determined by the parameter κ related to plastic 

volumetric strains expressed by the following (7.13): 

 

 𝑑𝜅 = 𝑑𝜀V
p

= 𝑑𝜀1
p

+ 𝑑𝜀2
p

+ 𝑑𝜀3
p

 (7.13) 

 

The location of the M-W-3 surface and its temporary shape at the hardening stage 

was defined by the hardening function κ, which depended on the hardening and 

softening parameters. This function was included in the M-W-3 surface and was 

responsible for scaling the compressive strength fc of the material. It had the elliptical 

form [66] defined by the following formula (7.14): 

 

 

𝑘(𝜅) = 𝑘(𝜀V
p) = 𝑘0 + (1 − 𝑘0)√1 − (

𝜀V,t
p

− 𝜀V
p

𝜀V,t
p )2 (7.14) 

where: 

v
p – plastic strain at the highest compressive stress obtained from uniaxial compression 

tests, 

v,t
p  – plastic volumetric strain obtained from uniaxial compression tests (the beginning 

of softening), 

k0 – the value defining an initial yield surface that limited the elastic state (the beginning 

of plastic behavior). 

 

At the end of the hardening stage, the function reached the constant value, and the 

material entered the softening phase specified by the softening function c. That function 

simulated decohesion by shifting the yield surface towards a negative part of the 

hydrostatic axis. That function (7.15) in the uniaxial compression had the following 

form [156]: 

 

 
𝑐(𝜅) = 𝑐(𝜀V

𝑝) = (1/ [1 + (
𝑛1 − 1

𝑛2 − 1
)

2

])

2

 (7.15) 

where:  
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𝑛1 =

𝜀V
𝑝

𝜀V,𝑡
𝑝  (7.16) 

 

 𝑛2 = (𝜀V,t
𝑝

+ 𝑡)𝜀V,t
𝑝

 (7.17) 

 

The parameter t, describing the volumetric strain, controlled the slope of the 

softening function. The value of the softening function c was equal to 1 at the hardening 

stage. The complete softening of the material with decohesion c was observed at a value 

equal to 0. The function's behavior for material hardening k and softening c is illustrated 

in Fig. 7.7. 

 

 
Fig. 7.7 Shape of hardening/softening function 

7.1.5. Strategy for calibrating mechanical parameters 

Following the assumptions, homogenization was based on the results obtained from 

the standard tests for the masonry models in diagonal compression. The material 

parameters for the Rankine and M-W-3 surfaces were validated by step-by-step changes 

in the values of the selected mechanical parameters. The results were verified by 

comparing the stress-vertical strain and the standard stress-horizontal strain 

relationships for the compressed walls. In the case of the walls in diagonal compression, 

the verification was based on the relationships between shear stress and an angle of shear 

strain. Apart from that, the crack images were compared. They were the images obtained 

by calculating the crack morphology from the tested models. Individual stages of the 

validation procedure for the homogeneous model for the masonry are presented in Fig. 

7.8. 
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Fig. 7.8 Stages of the validation procedure for mechanical parameters for the homogeneous model 

 

Stage I of the calibration was to determine the masonry's input modulus of elasticity 

Einit. This value was used as the input parameter for the calibration. In stage II, the 2D 

linear elastic models of a wall in diagonal compression (the plane stress state) were 

developed. Values of the input modulus of elasticity Einit were changed to reach the 

modulus value Ecal. Stage III was to verify the value of the modulus of elasticity  

Ecal calibrated in stage II against the masonry model in diagonal compression. The 
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procedure was the same as the previous one. Values of the modulus Ecal were changed 

in such a way as to ensure the best match between the stress-vertical strain relationship 

and the test results. The material's tensile strength in the diagonally compressed model 

ft was calibrated in stage IV. Cracking energy Gf,cal was calibrated in stage IV-A, and 

plastic strain εcp,calεcp in stage IV-B. In stage V, compressive strength fc,cal of the masonry 

was calibrated against the masonry parameters that had been calibrated in the previous 

stages.  

7.1.6. Results of the validation of parameters for the homogeneous finite element 

model 

Stage I - determination of the input value of the modulus of elasticity for the 

masonry – the elastic model 

The input modulus of elasticity was calculated based on the tests on diagonally 

compressed models using the known relationship Einit = 2(1+v)G and the masonry 

parameters from Table 7.2. At Poisson's ratio v = 0.18 and shear modulus  

G = 475 N/mm2, the elasticity modulus reached the value Einit = 1121 N/mm2.  

 

Stage II - calibration of the elasticity modulus E for diagonally compressed walls – 

the elastic model 

The modulus of elasticity was calibrated during stage II at the constant value of 

Poisson's ratio using the 2D linear-plastic, isotropic models of finite elements. The 

masonry and steel elements of the test stand, which were arranged along the diagonal in 

the wall corners, were modelled separately. The contact elements were introduced 

between the test stand elements and the masonry. The cohesion between these 

introduced elements was c = 0, and the friction coefficient was μ = 0.1. All the models 

were loaded under the same scheme, which included vertical displacements of the upper 

supports equal to the constant value Δ = –10 mm. Each loading step, at which the 

calculated results were read, was 0.001Δ. The bottom of the steel elements of the test 

stand was placed on hinge supports. The numerical models of finite elements in the 

masonry structures in diagonal compression are shown in Fig. 7.9. The values of shear 

strain angle Θcal = Θel were taken as the conformance criterion for shear stress equal to 

0.33τmax (the representative range of elastic behavior of the wall) and Θcal =Θmax for the 

stress τmax. The results obtained from calibrating the modulus of elasticity for the models 

of walls subjected to diagonal compression are presented in Table 7.3 and illustrated in 

graphs of the relationships τ – Θ (Fig. 10a) and Θcal/Θobs.– Ecal/Einit Fig. 10b. 
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Fig. 7.9 The numerical 2D model for diagonally compressed masonry structures: 1 – the macro-model 

of homogenized masonry units made of autoclaved aerated concrete, 2 – steel elements of the test 

machine, 3 – the contact elements representing the connection between the masonry and steel elements 
of the test stand 

 

Table 7.3 

Results for validation of the elasticity modulus in stage II 

Model 
Ecal, 

N/mm2 
Ecal/Einit 

Θel, 

mrad 
Θel/Θobs 

Θmax, 

mrad 
Θmax/Θobs 

S1 1121 1.000 0.212 1.50 0.626 0.99 

S2 1110 0.990 0.212 1.50 0.632 1.00 

S3 1612 1.438 0.147 1.04 0.435 0.69 

S4 1630 1.454 0.146 1.03 0.430 0.68 

S5 1670 1.490 0.142 1.00 0.420 0.67 

S6 1675 1.494 0.142 1.00 0.419 0.66 

S7 1676 1.495 0.142 1.00 0.418 0.66 

 

a) b) 

  
Fig. 7.10 Calibration results for stage II: a) comparison of shear stress – deformation angle relationship 

for test results and numerical calculations, b) analysis of the sensitivity of the change in the elasticity 

modulus E to the value of the deformation angle 
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The test results for shear walls indicated the non-linear behavior of the masonry even 

at a low-stress level. Thus, it was impossible to obtain the modulus of elasticity, which 

could be a reliable representation of the actual differences in the behavior of the stressed 

masonry. The deformation was consistent at the level of 0.33τmax for model S7 and the 

elasticity modulus E = 1676 N/mm2, and at the level τmax for the model S2 and the 

modulus E = 1110 N/mm2. Differences in the modulus of elasticity exceeded 50%. 

According to the calculations, changes in the modulus of elasticity caused nearly 

proportional changes in the angle of shear strain. Some change in the direction of graphs 

representing changes in the shear strain (Fig. 10b) was observed only at the reduced 

modulus of elasticity. Eventually, the modulus of elasticity Ecal = 1676 N/mm2 at Θel and 

Ecal = 1110 N/mm2 at Θmax were taken for the calculations made in the subsequent stage. 

 

Stage III - calibration of the elasticity modulus E for axially compressed walls – the 

elastic model 

Stage III was to verify the values of the modulus of elasticity calibrated in stage II 

against the behavior of the wall under axial compression. The numerical models of finite 

elements were the same as in stage I, apart from an obvious boundary and loading 

conditions change. The masonry and steel slabs of the test machine were modelled 

separately. The contact elements were introduced between the test stand elements and 

the masonry. The cohesion between these introduced elements was c = 0, and the friction 

coefficient was μ = 0.1. All the models were loaded under the same scheme, which 

included the vertical displacement of the top slabs of the test machine equal to the 

constant value Δ = –10 mm. Each loading step, at which the calculated results were read, 

was 0.001Δ. The bottom of the steel slabs of the test machine was placed on hinge 

supports. The numerical FEM models of the wall subjected to axial compression are 

shown in Fig. 7.11. 

The results were analysed by comparing horizontal εx,cal and vertical εy,cal strains at 

two levels of standard stress 0.33σmax (the representative range of elastic behavior of the 

wall) and maximum stress σmax. The modulus of elasticity of the masonry was changed 

as in stage I. The numerical calculations with reference to the test results are presented 

in Tables 7.4 and 7.5.  
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Fig. 7.11 The numerical 2D models for axially compressed masonry structures: 1 – the macro-model of 
homogenized masonry units made of autoclaved aerated concrete, 2 – steel elements of the test machine, 

3 – the contact elements representing the connection between the masonry and steel elements of the test 

stand 

 

For the elasticity modulus Ecal = 1676 N/mm2, which was calibrated during stage II 

and at the phase of elastic behavior, horizontal strains in compressed walls differed by 

32% for horizontal strains and 23% for vertical ones. A similar situation was found for 

maximum stress values and the elasticity modulus Ecal = 1110 N/mm2. In that case, the 

difference in horizontal strains about the test results was 72%, and in the vertical strains 

– 52%. 

 

Table 7.4 

Results for validation of the elasticity modulus E in stage III – horizontal strains 

Model 
Ecal, 

N/mm2 
Ecal/Einit 

εx,el 

(0.33σmax) 
εx,el / εx,obs 

εx,max 

(σmax) 
εx,max / εx,obs 

C1 1100 0.98 1.57·10-4 1.80 4.83·10-4 0.72 

C2 1121 1.00 1.55·10-4 1.78 4.66·10-4 0.69 

C3 1140 1.02 1.53·10-4 1.75 4.69·10-4 0.69 

C4 1500 1.34 1.24·10-4 1.42 3.76·10-4 0.56 

C5 1650 1.47 1.16·10-4 1.33 3.53·10-4 0.52 

C6 1667 1.49 1.16·10-4 1.33 3.50·10-4 0.52 

C7 1668 1.49 1.16·10-4 1.33 3.54·10-4 0.52 

C8 1669 1.49 1.15·10-4 1.32 3.51·10-4 0.52 

C9 1676 1.50 1.15·10-4 1.32 3.54·10-4 0.52 

C10 1690 1.51 1.14·10-4 1.31 3.51·10-4 0.52 

C11 1700 1.52 1.14·10-4 1.30 3.52·10-4 0.52 

C12 2069 1.85 9.94·10-5 1.14 3.03·10-4 0.45 

C13 2070 1.85 1.24·10-4 1.42 3.03·10-4 0.45 
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Table 7.5 

Results for validation of the elasticity modulus E in stage III – vertical strains 

Model 
Ecal, 

N/mm2 
Ecal/Einit 

εy,el 

(0.33σmax) 
εy,el / εy,obs 

εy,max 

(σmax) 
εy,max / εy,obs 

C1 1100 0.98 -8.99·10-4 1.88 -2.71·10-3 1.52 

C2 1121 1.00 -8.82·10-4 1.85 -2.66·10-3 1.49 

C3 1140 1.02 -8.68·10-4 1.82 -2.62·10-3 1.46 

C4 1500 1.34 -6.59·10-4 1.38 -1.99·10-3 1.11 

C5 1650 1.47 -5.99·10-4 1.25 -1.81·10-3 1.01 

C6 1667 1.49 -5.93·10-4 1.24 -1.79·10-3 1.00 

C7 1668 1.49 -5.93·10-4 1.24 -1.79·10-3 1.00 

C8 1669 1.49 -5.92·10-4 1.24 -1.79·10-3 1.00 

C9 1676 1.50 -5.90·10-4 1.23 -1.78·10-3 0.99 

C10 1690 1.51 -5.85·10-4 1.22 -1.77·10-3 0.99 

C11 1700 1.52 -5.82·10-4 1.22 -1.76·10-3 0.98 

C12 2069 1.85 -4.78·10-4 1.00 -1.45·10-3 0.81 

C13 2070 1.85 -4.78·10-4 1.00 -1.45·10-3 0.81 

 

The values of the modulus of elasticity calibrated in stage I against the models of 

diagonally compressed walls did not provide a reliable estimation of the behavior of 

axially compressed walls. Therefore, another calibration was performed. It included  

a change in the value of the elasticity modulus Ecal to match the values of vertical 

deformations to the test results at the stress level equal to 0.33σmax and σmax. The 

agreement between the vertical strains and the test results at the level of normal stress 

equal to 0.33σmax was found for model C12 at the modulus Ecal = 2069 N/mm2 – 

Fig. 7.12a. The difference in the horizontal strains was 14%. Thus, the modulus of 

elasticity increased by 23% compared to the calibrated modulus of elasticity  

Ecal = 1676 N/mm2 of the model subjected to diagonal compression. The vertical strains 

of model C8 at Ecal = 1669 N/mm2 agreed with the test results at the stress level σmax. 

Differences in horizontal strains determined from the numerical calculations and the 

tests were equal to 52% at the stress level σmax – Fig. 7.12b. In that case, the modulus of 

elasticity Ecal increased by 52% compared to the calibrated modulus of elasticity  

Ecal = 1110 N/mm2 of the models subjected to diagonal compression. Fig. 7.13 compares 

how changes in the modulus of elasticity affected the changes in vertical and horizontal 

strains at different normal stresses. The obtained relationships were clearly non-linear. 

At the stress level of 0.33σmax, the curves representing horizontal and vertical strains 

intercepted at the point representing the elasticity modulus which increased by 18% 

regarding the value Einit. Then, the error in representing the horizontal and vertical 

strains would be at the same level of ca. 60%.  
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a) b) 

  
Fig. 7.12 Comparison of normal stress-horizontal and vertical deformation relationships for test results 

and numerical calculations: a) calibration of vertical deformation at 0.33σmax, b) calibration of vertical 

deformation at σmax 

 

a) b) 

  
Fig. 7.13 The sensitivity analysis of the change in the elasticity modulus E to the value of the horizontal 

and vertical deformation: a) at 0,33σmax, b) at σmax 

 

At the normal stress σmax within the analysed range of changes of the modulus of 

elasticity E, the curves were non-linear and clearly divergent. No value of the modulus 

E could be determined, at which the estimating error for horizontal and vertical strains 

would be at the same level. The curves also had different slope angles – a change in the 

modulus of elasticity caused a more rapid change in the vertical strains than the 

horizontal ones. 

 

Stage IV – calibration of the tensile strength ft of the diagonally compressed walls 

– the elasto-plastic damage model 

The linear-plastic damage model was used in the subsequent stages of the calibration. 

The parameters shown in Table 7.6 were taken for further calculations. The value  

Ecal = 2069 N/mm2 was assumed as the representative value of the elasticity modulus. 
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This parameter was calibrated for the wall models subjected to axial compression by 

matching the vertical strains to the test results at the level of standard stress equal to 

0.33σmax. 

Table 7.6 

Material parameters – elasto-plastic damage model in stage IV 

No. Parameter Based on: Value 

1 Modulus of elasticity E, N/mm2 
Calibration stage III – Table 

7.5 
2069 

2 
Uniaxial compressive strength fc, 

N/mm2 

Tests on compressed walls – 

Table 7.2 
2.97 

3 Plastic strain under compression εpl 
Tests on compressed walls – 

Table 7.2 
3.33·10-4 

4 Uniaxial tensile strength ft, N/mm2 

Tests on cylindrical AAC 

specimens (Ø60×x120mm) 

– Table 7.1 

0.61 

5 Poisson's ratio 
Tests on compressed walls – 

Table 7.2 
0.18 

6 Fracture energy Gf, MN/m 
Tests on AAC specimens – 

Table 7.1 
5.21·10-5 

7 Softening function in tension 
Softening described by the 

exponential function 
- 

8 
Ultimate displacement in compres-

sion wd, m 
Constant value 0.0005 

9 Displacement wc in tension, m 

Calculated based on the 

cracking energy from the re-

lationship  

wc = 5.14(Gf/ft) 

- 

10 
Reduced compressive strength in the 

direction parallel to cracks 
Default value  0.8 

11 
Coefficient of stiffness reduction co-

efficient in shearing 

Constant value as for ordi-

nary concrete 
20 

12 Crack spacing, m Constant value 0.0005 

13 The average size of aggregate, mm 

Determined based on macro-

scopic observations of the 

masonry units 

2.0 

14 Eccentricity of elliptical function e 
Determined from triaxial 

tests 
0.52 

15 Direction of plastic flow β 
Taken as for incompressible 

material 
0 

 

The procedure of calibration in stage IV consisted in changing the tensile strength. 

The strength of a masonry unit determined from the cylindrical specimens Ø60×120 mm 

and equal to ft = 0.61 N/mm2 was taken as the reference value. The calculations were 

made for the models for shear walls (in diagonal compression), and their results are 

presented in Table 7.7. 
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Table 7.7 

Shear wall calculation results - elasto-plastic damage model in stage IV 

Model 
ft,cal, 

N/mm2 
ft,cal/ ft 

Θel, 

mrad 
Θel/Θobs 

Θmax, 

mrad 
Θmax/Θobs 

S20 0.610 1.000 0.115 0.81 0.339 0.54 

S21 0.087 0.143 0.115 0.81 0.516 0.82 

S22 0.078 0.128 0.115 0.81 0.613 0.97 

S23 0.076 0.125 0.115 0.81 0.637 1.01 

S24 0.075 0.123 0.115 0.81 0.655 1.03 

S25 0.074 0.121 0.115 0.81 0.662 1.05 

S26 0.070 0.115 0.115 0.82 0.692 1.10 

S27 0.061 0.100 0.118 0.83 0.826 1.31 

S28 0.038 0.062 0.146 0.99 1.293 2.05 

S29 0.037 0.061 0.144 1.02 1.331 2.11 

S30 0.0061 0.010 1.389 9.81 - - 

 

Due to a change in the tensile strength, the values of shear strain were matched to 

the test results for stress levels 0.33τmax and τmax (the models S28 and S23). However, 

the shape of the curve representing the τ – Θ relationship was not convergent, 

considering the complete range of shear stress values. The behavior of individual 

numerical models and the related test results are compared in Fig. 7.14. 

 

 
Fig. 7.14 Comparison of shear stress – deformation angle relationships for test results and numerical 

calculations in stage IV of calibration 

 

By matching the angle of shear strain for model S28 at the stress level of 0.33τmax,  

a huge discrepancy in the test results exceeding 200% was generated at the level of the 

failure stress. In model S23, whose tensile strength was reduced to 0.125 of the value ft, 

the convergence of an angle of shear strain was reached at the level of ultimate stresses. 

At this tensile strength value, the shear strain estimation error was equal to 19% at the 

stress level of 0.33τmax.  
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The sensitivity analysis of changes in tensile strength that affected the relationships 

between calculated results for an angle of shear deformation and the test results was 

conducted. This comparison was performed independently at two levels of shear stress. 

A change in the tensile strength had a non-linear effect on the behavior of the masonry 

subjected to shear loading. The calculations showed that there was no strength value ft,cal, 

which could represent the behavior of the actual model in shear within the full range of 

stresses. The angle of shear deformation was precisely determined at ultimate stresses 

for the model S23, for which the best agreement was found between numerical 

calculations and test results. The calibrated tensile strength ft,cal = 0.076 N/mm2 was used 

in further calculations. Maps of maximum principal strains of the models S23 and S28 

at stress levels 0.33τmax and τmax are shown in Fig. 7.15, and charts for sensitivity analysis 

are shown in Fig. 7.16. 

 

a) b) 

0.33τmax 

 

0.33τmax 

 
τmax 

 

τmax 

 
Fig. 7.15 Principal minimum strain of the selected numerical models: a) S23, b) S28 
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a) b) 

  
Fig. 7.16 Sensitivity analysis of the change in the tensile strength to the value of the strain angle:  

a) at 0.33τmax, b) at τmax 

 

Stage IV-A - calibration of cracking energy Gf of walls in diagonal compression – 

the elasto-plastic damage model 

The subsequent stages of the calibration verified the effect of the remaining 

mechanical parameters on the behavior of numerical models for shear walls. The tensile 

strength value ft,cal = 0.076 N/mm2, calibrated in stage IV, was taken in stage IV-A. The 

values of cracking energy Gf were changed by referring them to the reference value 

obtained from the masonry unit tests (Table 7.1). The results from numerical calculations 

are compared in Table 7.8. 

Table 7.8 

Shear wall calculation results - elasto-plastic damage model in stage IV -A 

Model 
Gf,cal 

MN/m 
Gf,cal/Gf 

Θel, 

mrad 
Θel/Θobs 

Θmax, 

mrad 
Θmax/Θobs 

S31 5.210·10-3 100 0.1149 0.81 0.636 1.01 

S32 5.210·10-4 10 0.1149 0.81 0.636 1.01 

S23 5.210·10-5 1.00 0.1149 0.81 0.637 1.01 

S33 5.210·10-6 0.10 0.1149 0.81 0.655 1.04 

S34 5.210·10-7 0.01 0.1149 0.81 1.115 1.77 

S35 5.210·10-8 0.001 0.1945 1.37 - - 

 

A change in the parameter Gf did not affect the angle of shear strain in the linear 

stage (at the value of shear stress equal to 0.33τmax. An increase in the parameter by 10 

and 100 times did not cause an increase in shear strains within the analysed range at the 

stress level of failure τmax. A significant reduction of cracking energy intensified the 

model vulnerability at the post-elastic phase. The behavior of shear walls in the 

calibration stage IV-A is compared in Fig. 7.17. Figures 7.17a and 7.17b show the 

sensitivity analysis of the numerical models to the change in the analysed parameter. 
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a) b) 

  
Fig. 7.17 Calibration results for stage IV-A: a) comparison of shear stress – deformation angle 

relationships for test results and numerical calculations, b) analysis of the sensitivity of the change in 

fracture energy to the value of the deformation angle at 0.33τmax and at τmax  

 

Stage IV-B - calibration of cracking energy Gf of walls in diagonal compression – 

the elasto-plastic damage model 

A similar procedure of calibration was applied in stage IV-B. The elasticity modulus 

Ecal = 2069 N/mm2 that was calibrated in stage III and tensile strength ft,cal = 0.076 

N/mm2 from stage IV were used in these calculations. The impact of changes in plastic 

strain εcp, which was equated to plastic strain εpl of the wall in axial compression 

presented in Table 7.2, was tested against the results from numerical calculations. 

Following the calculations performed in stage IV-A, the calibrated cracking energy took 

the value Gf,cal = Gf = 5.21·10-5 MN/m shown in Table 7.1. The test results are presented 

in Table 7.9. 

Table 7.9 

Shear wall calculation results – elasto-plastic damage model in stage IV-B 

Model εcp,cal εcp,cal / εcp 
Θel, 

mrad 
Θel/Θobs 

Θmax, 

mrad 
Θmax/Θobs 

S36 -3.330·10-2 100 0.115 0.81 - - 

S37 -3.330·10-3 10 0.115 0.81 0.808 1.28 

S23 -3.330·10-4 1.00 0.115 0.81 0.637 1.01 

S38 -3.330·10-5 0.10 0.115 0.81 0.622 0.96 

S39 -3.330·10-6 0.01 0.115 0.81 0.606 0.960 

 

A change in the plastic strain did not affect the angle of shear strain at the level of 

representative cracking stress 0.33τmax. The model stiffness in the non-linear regime 

decreased as the parameter decreased. However, matching the shape of the curve τ – Θ 

to the test results was impossible despite the calibration of the analysed parameter  

– Fig. 18. Due to the validation, the value εcp,cal = εpl was used in further calculations. 
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a) b) 

  
Fig. 7.18 Calibration results for stage IV-B: a) comparison of shear stress – deformation angle 

relationships for test results and numerical calculations, b) analysis of the sensitivity of the change in 

plastic deformation εcp to the value of the deformation angle at 0.33 τmax and at τmax 

 

Stage V – calibration of compressive strength fc of the wall model in axial 

compression – the elasto-plastic damage model 

The tensile strength of the masonry in compression was calibrated in stage V. The 

following values were used in the calculations: elasticity modulus Ecal = 2069 N/mm2, 

cracking energy Gf,cal = Gf = 5.21·10-5 MN/m, plastic strain εcp,cal = εpl= -3.330·10-3 (cf 

Table 7.2), and tensile strength ft,cal = 0.076 N/mm2. The numerical calculations for shear 

walls were based on these assumptions, and three different values of compressive 

strength fc,cal were used – Table 7.10.  

Table 7.10 

Calculation results for compressed wall – elasto-plastic damage model in stage V 

(comparison of horizontal and vertical deformations) 

Model 
fc,cal, 

N/mm2 
fc,cal/ fc σmax/fcm 

εx,el 

(0.33σmax) 
εx,el / εx,obs 

εy,el 

(0.33σmax) 
εy,el / εy,obs 

C20 2.82 0.95 0.95 1.02·10-4 1.16 -4.84·10-4 1.01 

C21 2.97 1.00 0.94 1.02·10-4 1.16 -4.83·10-4 1.01 

C22 3.12 1.05 0.99 1.01·10-4 1.16 -4.82·10-4 1.01 

 

A difference in the determined maximum stress values σmax did not exceed 5% for 

all the numerical models with changed compressive strength of the masonry. The best 

agreement was found for model C22, for which the difference did not exceed 1% 

compared to the empirical value. For the horizontal strains determined at the level of 

0.33σmax, the calculated strains were greater by 16%, and a negligible difference was 

obtained for the vertical strains. The numerical calculations for the homogeneous model 

for the masonry can take the value of compressive strength equal to the average 

compressive strength determined from the tests fc,cal = fc. The comparison of stress-strain 
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relationships for the models C20, C21, and C22 is illustrated in Fig. 7.19. Maps of 

maximum principal strains of the models C21 and C22 at stress levels 0.33τmax and τmax 

are shown in Fig. 7.20.  

 

 
Fig. 7.19 Calibration results for stage V - comparison of normal stress – horizontal and vertical 

deformation relationships for test results and numerical calculations 

 

a) 0.33σmax b) 0.33σmax 

    
c) σmax d) σmax 

    
Fig. 7.20 Principal minimum strain of the selected numerical models: a) C21, b) C22 
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Comparison of crack images 

The last analysed factor included images of the element cracking under the highest 

compressive stresses. Compared results from tests and calculations are shown in Fig. 21. 

Cracks in the numerical models for the walls in axial compression were developed 

diagonally from the base towards the centre. They formed two pyramids connected at 

their tops– Fig. 21a. The similar cracks were found in the test models at failure. However, 

the predominant cracks were running vertically in the extended head joints – Fig. 21b. 

Considering the numerical models for the walls in diagonal compression – Fig. 21c; the 

cracks cumulated in their central part. The test models – Fig. 21d had cohesive cracks 

that developed in the head and bed joints. The masonry units were also cracked with 

certain exceptions. To sum up, the images of cracks in the numerical models for masonry 

containing the homogeneous material were convergent only for compressed walls. The 

crack images showed only a certain tendency for the complex stress states with 

predominate shear stresses. 

 

a)  b) 

   

c)  d) 

   

Fig. 7.21 Comparison of empirical images of cracking and images of cracking in calibrated numerical 
models: a) cracks in the numerical model C22 for the wall in axial compression, b) real images of 

cracking in the wall in axial compression, c) cracks in the numerical model S23 for the wall in diagonal 

compression, d) real images of cracks in the wall in diagonal compression 
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Discussion of calculated results 

The proposed homogenization procedure for the AAC masonry was based on another 

approach than recommended in the literature. Instead of calculating the resultant 

parameters for the homogeneous model, the results obtained from the standardized tests 

on masonry models in axial and diagonal compression were taken as the reference level. 

Based on the tests on walls in diagonal compression, the initial value of the elasticity 

modulus for the masonry was determined in stage I. The correctness of the parameter 

used in the linear-elastic FEM models was verified in stage II. 

Then, the elasticity modulus Ecal = 2069 N/mm2 was calibrated against the linear-

elastic FEM model for the compressed walls in stage III (there was an agreement 

between vertical strains in the axially compressed model with the standard tests at the 

level of cracking stresses). The determined value of the elasticity modulus was slightly 

higher than the empirical elasticity modulus for axially compressed wall equal to  

Eobs = 2041 N/mm2 (cf Table 7.2). The elasticity modulus for the numerical calculation 

in the linear stage can take the value Ecal = 1.01Eobs. It should be noted that the inverse 

approach was possible. It could be based on taking in stage I the value of the masonry 

elasticity, which was determined in the tests on axially compressed walls with the 

subsequent calibration against the walls in diagonal compression.  

Stages IV and V verified the taken value of tensile strength for the elasticity modulus 

calibrated for the axially compressed model. The agreement of the vertical strains was 

found at the level of stresses 0.33σmax. In that case, the tensile strength of the AAC block 

equal to ft,cyl = 0.61 N/mm2, was assumed to be the trigger value (cf Table 7.1). This 

approach was very reasonable as the subject of the tests included the walls with thin 

joints at the minimum mortar content. Based on the conducted calibration of the models 

for diagonally compressed walls, the determined tensile strength was fcal = 0.076 N/mm2. 

Following the proposed homogenization method, the tensile strength could be 

determined from the equation ft,cal = 0.125 ft. 

Regarding the diagonal compression strength of the masonry (cf Table 7.2), this 

relation was expressed as fcal = 0.39 ftm. The additional analysis was conducted in stages 

IV-A and IV-B. The sensitivity analysis of cracking energy Gf was in line with the 

cracking model I and plastic strains in compression εcp. The analyses were performed on 

the models in axial and diagonal compression. No significant effect on the obtained test 

results was found in both case. The developed approach seemed rather reliable for 

predicting strain and stress values in the state specified as the linear range of the wall 

behavior at maximum standard and shear stresses. Compressive strength fc,cal of the 

masonry was calibrated in stage V. The calculated and test results show the agreement 
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when fc,cal = fc =2.97 N/mm2. The final results of calibrating the linear and non-linear 

parameters for the masonry as the relationship between the stress-strain of the walls in 

diagonal and linear compression are presented in Fig. 7.22.  

 

a) b) 

  
Fig. 7.22 Compared calculated and test results: a) comparison of shear stress-strain angle relationship 

for walls in diagonal compression, b) comparison of normal stress – a horizontal and vertical strain of 
compressed walls  

 

The differences in results between the tests and calculations were at ±10%. It was 

possible to obtain a better agreement between these results providing that the model for 

the orthotropic material with adequate failure surfaces was used. However, this approach 

would be considerably beyond the range of the standard tests on masonry. The highest 

reliability of results was obtained for the crack pattern at failure. The numerical crack 

patterns in the compressed walls agreed with the test results. This effect was caused by 

softening of the masonry units, which predominate during the compression and are 

induced by the compression of AAC blocks. A different situation was observed for the 

walls in diagonal compression, for which the calculated images of cracks showed the 

trend observed during the tests. These findings resulted from neglecting the contact 

effects in the homogeneous model, which were noticed in the tests. Such imperfections 

of this model could not be eliminated and were identified as the main weaknesses of this 

approach. The conversion factors for the mechanical parameters of the homogeneous 

model intended for the practical application are presented in Table 7.11. 
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Table 7.11 

Summary of empirical results for the masonry homogenization 

Parameter 

Test results Parameter for the 

homogeneous 

model 

(FEM) 

Conversion coefficient 

of the parameter 

Tests on 

AAC block 

(AAC) 

Tests on 

masonry 

(M) 

𝐹𝐸𝑀

𝐴𝐴𝐶
 

𝐹𝐸𝑀

𝑀
 

Modulus of 

elasticity 

E, N/mm2 

2886 2041 2069 0.72 1.01 

Tensile 

strength 

ft, N/mm2 

0.61 0.196 0.076 0.12 0.39 

Fracture 

energy 

Gf, MN/m 

5.21·10-5 -- 5.21·10-5 1.0 -- 

Plastic strain 

εcp 
-- -3.330·10-3 -3.330·10-3 -- 1.0 

Compressive 

strength 

fc, N/mm2 

4.95 2.97 2.97 0.60 1.00 

 

Conclusions 

The own empirical approach to calibrating the mechanical parameters for the 

homogeneous model for the masonry made of AAC masonry units was developed. At 

first, the elasticity modulus of the masonry was calibrated using the models of axially 

and diagonally compressed walls. They were linear-elastic FEM models. The elasticity 

modulus of the masonry, which correctly specified the vertical strains in axial 

compression, could be assumed as Ecal = Eobs. Other parameters were calibrated against 

the elasto-plastic FEM models with the combined Rankine and Menétrey-William 

boundary surfaces. The tensile strength of the masonry units was the most crucial 

parameter affecting the calculated results for the walls in axial and diagonal compression. 

Hence, the obtained empirical value used to calculate the tensile strength of the masonry 

model was expressed as fcal = 0.125 ft. Other parameters that controlled the material 

behavior in the softening phase in tension (cracking energy) and compression (plastic 

strain and compressive strength) had a minor effect on the masonry behavior. The values 

of stress and strain in compression and tension could be successfully determined using 

the procedure of empirical homogenization. However, the crack images would only 

agree if the compressive stresses predominated. To sum it up, the advantages of the 

described method of homogenization are as follows: 
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• easy determination of parameters for the masonry using the normalized 

models in axial and diagonal compression, 

• simple development of the 2D FEM model with calibrated parameters for the 

masonry. The contact elements between the masonry units and mortar were 

neglected, 

• the possible application of the homogeneous model to predict the relationship 

between stress and strain of the masonry in the complex state of stresses. The 

maximum error could be of the order of ±10%, 

• the adequate estimation of the masonry behavior in the elastic and post-elastic 

phase, 

• and the adequate estimation of a crack pattern of the masonry mainly 

subjected to compressive stresses. 

The obvious weaknesses of this procedure include: 

• its limitation to the masonry made of solid elements with similar mechanical 

parameters of the orthotropic nature, 

• incorrect specification of crack pattern for the walls that are mainly subjected 

to tensile stresses. 

7.2. Full-scale nonlinear analysis 

A full-scale numerical model was made to verify the empirical homogenization 

based on axial and diagonal wall compression tests. The building with a door opening 

in the stiffening wall A was analyzed. The main assumptions of the numerical model are: 

• a spatial model of the building (Fig. 7.23) with a mesh size of 9.0 cm, 

• the geometry of the numerical model was consistent with the research model 

MB-AAC-010/2, 

• the model was fixed on the bottom surface of the walls – Fig. 7.24, 

• the horizontal load was applied at the gravity center of the slab, as in the tests, 

• the elastic material model represents the slab (concrete class C30/37) – Fig. 

7.25, 

• the elastoplastic material model with degradation represents the masonry 

walls, model parameters following Table 7.12, 

• individual elements of the model are connected (inseparability of 

displacements). 
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Table 7.12 

Parameters of the elasto-plastic material model (first calculation approach) 

No. Parameter Value 

1 Modulus of elasticity E, N/mm2 2069 

2 Uniaxial compressive strength fc, N/mm2 2.97 

3 Plastic strain under compression εpl 3.33·10-4 

4 Uniaxial tensile strength ft, N/mm2 0.076 

5 Poisson's ratio 0.18 

6 Fracture energy Gf, MN/m 5.21·10-5 

7 Softening function in tension - 

8 Ultimate displacement in compression wd, mm 0.05 

9 Displacement wc in tension, m - 

10 Reduced compressive strength in the direction 

parallel to cracks 
0.8 

11 Coefficient of stiffness reduction coefficient in 

shearing 
20 

12 Crack spacing, m 0.0005 

13 The average size of aggregate, mm 2.0 

14 Eccentricity of elliptical function e 0.52 

15 Direction of plastic flow β 0 

16 Onset of crushing, MPa 0.16 

 

  
Fig. 7.23 Numerical model view (3D volume model) with the coordinate system 
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a) b) 

  
Fig. 7.24 Support boundary conditions: a) locked displacements in all directions, b) surface view of 

locked displacements 
 

 

 

concrete 

elastic material model 

 

steelmaterial 

elastic material model 

 

AACnonlinear 

elastoplastic material 

model with degradation 

Fig. 7.25 Material models for particular parts of the calculation building model 
 

Loads were applied in stages in three sequences. A self-weight of walls and slab was 

applied in the first sequence – Fig. 7.26, and in the second sequence, the load 

corresponding to the weight of the finishing layers and the live load was set – Fig. 7.27. 

Load values were recalculated and applied to volumetric elements – Table 7.13. The 

horizontal load was applied at the end as a displacement for point – Fig. 7.28. After that, 

the model was divided into finite elements with a mesh size of 9.0 cm. The view of the 

3D model with the FEM mesh is shown in Fig. 7.29. 

Table 7.13 

Load values in the calculation model 

Types of load Description Value, kN Weight for volume, kN/m3 

Dead-load Self-weight of slab 57.00 26.888 

Dead-load Self-weight of walls - 6.000 

Live load Live-load for floor 73.44 34.643 

*volume of the slab in the calculation model: 3.64 m x 3.64 m x 0.16 m = 2.12 m3 
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Weight of slab 

-26.888 kN/m3 

 

Weight of walls 

-6.00 kN/m3 

Fig. 7.26 First load sequence – self-weight of slab and masonry walls 

 

 

 

Live load 

-34.643 kN/m3 

Fig. 7.27 Second load sequence – live load of a floor  

 

 

 

Displacements for 

point 

-0.01 m 

Fig. 7.28 Third load sequence – horizontal load 
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Fig. 7.29 Mesh of finite elements with a mesh size of 9.0 cm 

 

Calculation results were compared with the test results of the MB-AAC-010/2 model. 

The model validation criteria were established as follows: 

• criterion A – the global behavior of the building expressed by the dependency 

Hx – ux (horizontal load – horizontal displacements of the stiffening walls A 

and B), 

• criterion B – crack pattern 

7.2.1. First calculation approach 

The numerical calculations in the first approach do not agree with the test results. 

The maximum force of the numerical model was 214.78 kN, and the corresponding one 

in the test results was 69.25 kN – Table 7.14. The numerical model was also 

characterized by lower initial stiffness than the tested model. Fig. 7.30 compares the 

results, and Fig. 7.31 shows the values of horizontal displacements in the X-direction. 

 

Table 7.14 

Comparison of total forces between numerical and test results 

Model 

Nonlinear phase 

Hu, 
kN 

numHu, 
kN 

Hu / 
numHu 

uu, 
mm 

caluu, 
mm 

uu / 
numuu 

 

MB-

AAC-

010/2 

Wall A 
69.25 214.78 0.32 

4.97 9.20 0.54 

Wall B 1.99 6.74 0.30 
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a) b) 

  
Fig. 7.30 First calculation approach - comparison of numerical calculations and test results:  a) results 

for A and B walls, b) for 1 and 2 walls 

 

 

Fig. 7.31 Horizontal displacements in the X-direction of a nonlinear numerical model (first approach) 
 

Furthermore, the analysis of criterion B showed that the crack pattern does not 

coincide with the test result. No cracks were obtained in the homogeneous numerical 

model. Therefore, instead of cracks, areas of material softening – (7.14) and (7.15) – are 

shown in Fig. 7.32 and Fig. 7.33. The crack pattern obtained in the calculations is diffuse 

- without dominant diagonal damage in the stiffening walls, as was in the test. 
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Fig. 7.32 Softening of the material – view of walls A and 2 of a nonlinear numerical model (first 

approach) 

 

 
Fig. 7.33 Softening of the material – view of walls B and 1 of a nonlinear numerical model (first 

approach) 

 

As the material model is isotropic and the real masonry behaves orthotopically, 

calibration of the homogeneous model is required (even if the model was calibrated on 
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walls with smaller geometry). Calibration of the tensile strength (second approach), 

fracture energy (third approach) and a combined model (fourth approach) in which both 

parameters were modified was analysed. When the tensile strength ft was changed, the 

onset of crushing was also corrected as -2.1ft. Table 7.15 shows the values of changed 

parameters. 

 

Table 7.15 

The values of calibrated parameters in particular computational approaches 

Calcula-

tion ap-

proach 

Parameter 

Test results Parameter 

for the ho-

mogeneous 

model 

(FEM) 

Conversion coefficient 

of the parameter 

Tests on 

AAC block 

(AAC) 

Tests on 

masonry 

(M) 

𝐹𝐸𝑀

𝐴𝐴𝐶
 

𝐹𝐸𝑀

𝑀
 

1 

Tensile 

strength ft, 

N/mm2 

0.61 0.196 0.076 0.12 0.39 

Fracture 

energy Gf, 

MN/m 

5.21·10-5 - 5.21·10-5 1.00 - 

2 

Tensile 

strength ft, 

N/mm2 

0.61 0.196 1.00·10-4 1.64·10-4 5.10·10-4 

Fracture 

energy Gf, 

MN/m 

5.21·10-5 - 5.21·10-5 1.00 - 

3 

Tensile 

strength ft, 

N/mm2 

0.61 0.196 0.076 0.12 0.39 

Fracture 

energy Gf, 

MN/m 

5.21·10-5 - 5.21·10-10 1.00·10-5 - 

4 

Tensile 

strength ft, 

N/mm2 

0.61 0.196 0.010 0.02 0.05 

Fracture 

energy Gf, 

MN/m 

5.21·10-5 - 5.21·10-10 1.00·10-5 - 

7.2.2. Second calculation approach 

In the second calculation approach, the tensile strength was significantly reduced to 

the value ft = 1.00·10-4 N/mm2 (Table 7.15). The onset of crushing was adjusted to the 

value of 2.10·10-4 N/mm2. A better convergence of the maximum force value was 
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obtained; however, the horizontal displacements of the numerical model were greater 

than the real ones. Numerical stiffening wall A moved horizontally at maximum force 

by 10.37 mm and wall B by 5.66 mm – Table 7.16. In addition, the numerical models 

showed significantly lower stiffness than the tested building – Fig. 7.34. 

 

Table 7.16 

Comparison of total forces between numerical and test results 

Model 

Nonlinear phase 

Hu, 
kN 

numHu, 
kN 

Hu / 
numHu 

uu, 
mm 

caluu, 
mm 

uu / 
numuu 

 

MB-

AAC-

010/2 

Wall A 
69.25 85.90 0.81 

4.97 10.37 0.48 

Wall B 1.99 5.66 0.35 

 

a) b) 

  
Fig. 7.34 Second calculation approach - comparison of numerical calculations and test results: a) results 

for A and B walls, b) for 1 and 2 walls 

 

The significant weakening of the masonry tensile strength resulted in a change in the 

damage to the building. The softening of the material was more concentrated in points 

(small areas) – Fig. 7.35. The nature of the damage to the stiffening wall B was similar 

to the test results - diagonal softening of the material – Fig. 7.36. At the intersection of 

the stiffening wall A and the perpendicular wall 1 (the lower part of the corner), material 

softening was indicated as it was in the tests. 
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Fig. 7.35 Softening of the material – view of walls A and 2 of a nonlinear numerical model (second 

approach) 

 

 
Fig. 7.36 Softening of the material – view of walls A and 2 of a nonlinear numerical model (second 

approach) 
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7.2.3. Third calculation approach 

The third approach concerned the reduction of the fracture energy - the tensile 

strength was the same as in the first approach (Table 7.15). This led to significant 

discrepancies between actual and numerical displacements – Table 7.17. Only the 

maximum force was similar to the test results – Table 7.18; the corresponding 

displacements differed significantly. The analyzed numerical model had lower initial 

stiffness than the tested building. The global behavior is presented in Fig. 7.37. The 

softening of the material is shown in Fig. 7.38 and Fig. 7.39. 

Table 7.17 

Comparison of total forces between numerical and test results – linear phase 

Model 

Nonlinear phase 

Hcr, 
kN 

numHcr, 
kN 

Hcr / 
numHcr 

ucr, 
mm 

calucr, 
mm 

ucr / 
numucr 

MB-

AAC-

010/2 

Wall A 
49.62 150.43 0.33 

1.02 9.90 0.10 

Wall B 0.43 6.17 0.07 

 

Table 7.18 

Comparison of total forces between numerical and test results – nonlinear phase 

Model 

Nonlinear phase 

Hu, 
kN 

numHu, 
kN 

Hu / 
numHu 

uu, 
mm 

caluu, 
mm 

uu / 
numuu 

 

MB-

AAC-

010/2 

Wall A 
69.25 164.69 0.81 

4.97 29.90 0.17 

Wall B 1.99 18.69 0.11 

 

a) b) 

  
Fig. 7.37 Third calculation approach - comparison of numerical calculations and test results: a) results 

for A and B walls, b) for 1 and 2 walls 
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Fig. 7.38 Softening of the material – view of walls A and 2 of a nonlinear numerical model (third 

approach) 

 

 
Fig. 7.39 Softening of the material – view of walls A and 2 of a nonlinear numerical model (third 

approach) 

 

Although the cracking and maximum forces differed from the test results,  

a convergent crack pattern was obtained. The homogeneous model showed the 

formation of diagonal damage in walls A and B and local concentrations in the corners. 
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7.2.4. Fourth calculation approach 

The fourth approach is a combined model in which the fracture energy (as in 

approach 3) and the tensile strength are reduced to value ft = 0.01 N/mm2 (the onset of 

crushing was 0.021 N/mm2). The discrepancies in the horizontal displacements of the 

walls were significant both in the linear – Table 7.19 and nonlinear phases – Table 7.20. 

Reducing parameters lowers the initial stiffness (Fig. 7.40) - higher values lead to 

overestimating the structure's load capacity (maximum force). 

Table 7.19 

Comparison of total forces between numerical and test results – linear phase 

Model 

Nonlinear phase 

Hcr, 
kN 

numHcr, 
kN 

Hcr / 
numHcr 

ucr, 
mm 

calucr, 
mm 

ucr / 
numucr 

 

MB-

AAC-

010/2 

Wall A 
49.62 97.48 0.51 

1.02 9.23 0.11 

Wall B 0.43 6.79 0.06 

 

Table 7.20 

Comparison of total forces between numerical and test results – nonlinear phase 

Model 

Nonlinear phase 

Hu, 
kN 

numHu, 
kN 

Hu / 
numHu 

uu, 
mm 

caluu, 
mm 

uu / 
numuu 

 

MB-

AAC-

010/2 

Wall A 
69.25 116.28 0.60 

4.97 28.56 0.17 

Wall B 1.99 19.78 0.10 

 

a) b) 

  
Fig. 7.40 Fourth calculation approach - comparison of numerical calculations and test results: a) results 
for A and B walls, b) for 1 and 2 walls 
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Changing the parameters also affects the crack pattern obtained – Fig. 7.41 and Fig. 

7.42. In the fourth approach, the cracks (softening of the material in the numerical 

calculation) consistent with the test results were not obtained. 

 

 
Fig. 7.41 Softening of the material – view of walls A and 2 of a nonlinear numerical model (fourth 

approach) 

 

 
Fig. 7.42 Softening of the material – view of walls A and 2 of a nonlinear numerical model (fourth 
approach) 
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In conclusion, non-linear, full-scale numerical analyzes of the building with a door 

opening in the stiffening wall A were carried out. Validations were performed based on 

the results of testing the MB-AAC-010/2 model. Two criteria for verification of 

numerical models have been proposed: comparison of horizontal displacements 

(criterion A) and crack pattern (criterion B). The calculation results of four selected 

models are presented: 

• the first approach – model with mechanical parameters calibrated on standard 

models, 

• the second approach – model with reduced tensile strength (ft = 1.00·10-4 

N/mm2), 

• the third approach – model with reduced fracture energy (Gf = 5.21·10-10 

MN/m), 

• the fourth approach – combined model with reduced fracture energy as in 

approach third and reduced the tensile strength (ft = 0.010 N/mm2). 

 

Calibration of the tensile strength reduced the models' load capacity - although no 

convergence with the test results was obtained. The reduction of the fracture energy  

Gf allowed for accurate representing of damage in the lack of convergence of criterion 

A. It should be added that the calculations were carried out on an isotropic, 

homogeneous model, which is a significant simplification of the masonry structure 

characterized by anisotropic behavior.  Introducing contact surfaces (calculations on the 

micromodel) would allow for a better representation of stiffening masonry behavior.  

The above calculations should be continued in a scheme similar to section 7.1 as  

a multi-stage calibration of mechanical parameters until the results converge based on 

criteria A and B. Complete solutions should also include an analysis of the sensitivity of 

parameter changes to validation criteria. The parameter correction  is expected to 

soften the masonry model and validate the numerical results. Another approach is 

introducing contact elements in the crack zones, e.g. in the tensile corner of the opening. 

Nevertheless, the calculated results indicate that validation based on relevant test 

findings is essential to advance nonlinear numerical calculations. 
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8.  DISCUSSION 

The behavior of stiffening walls is a complex issue consisting of multi-stage phases 

(initial phase, linear and nonlinear and residual one). Numerical simulations using 

advanced material models (e.g. elasto-plasic with degradation) allow for partially 

representing masonry behavior. However, this approach is time-consuming and labor-

intensive. Multi-parameter models require structural tests and validation of the model 

each time, which is impractical and unfeasible from the engineering point of view. In 

addition, modelling all openings in the building may not be justified for designing the 

structure.  

A significant simplification of calculations using elastic models without openings is 

proposed. Instead of modelling the openings in the numerical model, it can be replaced 

with a solid wall with reduced stiffness. This solution speeds up modelling and allows 

getting correct calculation results. Two approaches were analysed. 

 In the first model, the wall stiffness was the same as in the test results based on 

standards (uncalibrated model). In the second approach, the modulus of elasticity was 

calibrated (reduced) – Table 8.1. 

Table 8.1 

Results for calibrating the elastic modulus of numerical models 

Model 

(approach) 
Parameter 

Test results 
Parameter 

for the elas-

tic model 

(FEM) 

Conversion coefficient 

of the parameter 

Tests on 

AAC block 

(AAC) 

Tests on 

masonry 

(M) 

𝐹𝐸𝑀

𝐴𝐴𝐶
 

𝐹𝐸𝑀

𝑀
 

1 

Wall A Modulus of 

elasticity 

E, N/mm2 

2886 2041 

2041 0.71 1.00 

Walls 

B, 1, 2 
2041 0.71 1.00 

2 

Wall A Modulus of 

elasticity 

E, N/mm2 

2886 2041 

35 0.01 0.02 

Walls 

B, 1, 2 
1200 0.42 0.59 
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Vertical loads were omitted from the analysis because the reduction of the modulus of 

elasticity would lead to an incorrect estimation of slab deflections due to excessive 

vertical displacements of the wall. For this reason, the proposed approach applies only 

to the analysis of horizontal displacements under an acting lateral load. The numerical 

model was based entirely on the elastic material model – Fig. 8.1. Stiffening wall A with 

a door opening has been replaced with a solid wall.  

 

 

 

concrete 

elastic material model 

 

steelmaterial 

elastic material model 

 

AACall 

elastic material model 

 

AACwallA 

elastic material model 

Fig. 8.1 Material models for particular parts of the calculation building model 

 

The uncalibrated model was characterized by greater stiffness than the test results of 

the MB-AAC-010/2 model – Fig. 8.2. Moreover, the rotation of the building was not 

obtained (no displacements in the direction perpendicular to the acting load). Because 

the stiffness of all the walls was the same, only translation occurred. The values of 

horizontal displacements are presented as a map of displacements in Fig. 8.3. 

 

a) b) 

  
Fig. 8.2 Comparison of numerical calculations and test results (elastic model 1): a) results for A and B 

walls, b) for 1 and 2 walls 
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Fig. 8.3 Horizontal displacements in the X-direction of a numerical model (elastic model 1) 

 

In the second model, in which the wall stiffnesses were reduced, the correct values 

of stiffnesses were estimated - matched to the initial stiffnesses of the tested building 

(Fig. 8.4).  

In addition, the rotation of the building resulting from the difference in stiffness of 

the walls was also indicated – Fig. 8.5. The calibration of numerical models can be done 

by reducing the modulus of elasticity or by reducing the wall thickness, depending on 

the chosen approach. 

 

a) b) 

  
Fig. 8.4 Comparison of numerical calculations and test results (elastic model 2): a) results for A and B 

walls, b) for 1 and 2 walls 
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Fig. 8.5 Horizontal displacements in the X-direction of a numerical model (elastic model 2) 

 

The approaches to calculating stiffness presented in this dissertation are subject to 

some assumptions. The adopted static scheme of the wall or its components determines 

the final result in the total stiffness method. Table 8.2 show the stiffness calculation 

results for a stiffening wall with a door opening, assuming the wall is restrained on both 

sides (double-fixed static scheme).  

Table 8.2 

Stiffness of wall A with door opening for double-fixed piers 

Wall or 

component 

Moment of inertia 

I, m4 
Static scheme 

Distance 

GC-LC 

a, m 

Stiffness 

K, kN/mm 

A 

A’ 1.59 F 

1.91 

592.75 

81.46 C 0.09 F 47.22 

D 0.09 F 47.22 

 

For such assumptions, the stiffness of the masonry wall is 81.46 kN/mm. Assuming 

that the piers between the opening behave in the static cantilever scheme, the stiffness 

of the wall is lower by 28% and amounts to 58.5 – Table 8.3. This significant difference 

has consequences in changing the location of the torsion center. Assuming the double-

fixed piers, the coordinates of the torsion center are xr = 0.00 m and yr = -0.32 m. The 

coordinates of the torsion center in the static cantilever scheme of piers are xr = 0.00 m 

and yr = -0.61 m – Table 8.4. 
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Table 8.3 

Stiffness of wall A with door opening for cantilever piers 

Wall or 

component 

Moment of inertia 

I, m4 
Static scheme 

Distance 

GC-LC 

a, m 

Stiffness 

K, kN/mm 

A 

A’ 1.59 F 

1.91 

592.75 

58.49 C 0.09 C 32.45 

D 0.09 C 32.45 

 

Table 8.4 

The coordinates of the torsion center 

Static scheme of piers 
Coordinates of torsion center 

xr, m yr, m 

double-fixed 0.00 -0.32 

cantilever 0.00 -0.61 

 

In the engineering approach of replacing a wall with an opening with a solid wall of 

reduced stiffness, the total stiffness method can be used to calculate the cracking phase. 

As shown in chapter 6 – cracks change the geometry of the piers between the openings, 

and considering this fact makes it possible to calculate the reduced stiffness of the wall 

– Fig. 8.6.  

 

a) b) 

 

 

 
Fig. 8.6 Division of the wall into components: a) cracked wall, b) calculation model: 1 – masonry wall, 

2 – door opening, 3 – static scheme, 4 – cracks  

 

The stiffness of a wall with a door opening (and a window opening) can be calculated 

by adopting a modulus of elasticity calibrated in a numerical model and piers geometry 

following Fig. 8.6. The boundary conditions of the structure influence the assuming 

static schemes of individual wall parts. The calculation results for the wall with the door 

opening, taking into account the cracking, are presented in Table 8.5.  

This approach allows for a safe estimation of the behavior of the wall in the post-
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elastic phase. A reduced stiffness is shown as a green line in Fig. 8.7. 

Table 8.5 

Stiffness of cracked wall A with door opening 

Wall or 

component 

Moment of inertia 

I, m4 
Static scheme 

Distance 

GC-LC 

a, m 

Stiffness 

K, kN/mm 

A 

A’ 1.59 F 

1.91 

540.71 

1.53 
C 0.09 C 4.9 

D 0.09 C 5.15 

E 0.09 F 30.86 
* a reduced modulus of elasticity was assumed: E = 35.0 MPa (Table 8.1). 

 

 
Fig. 8.7 Behavior phases of stiffening wall A 

 

The wall stiffness differs both in the initial phase due to the openings and in the non-

linear phase due to progressive cracking. This phenomenon causes the building's center 

of torsion to be constantly changing. Digital image correlation (DIC) was used to 

measure the displacements of slab corners to prove that the coordinates of the torsion 

center changed within the loading process. Vectors of resultant displacements and values 

of horizontal and vertical displacements were analysed. The measurements were made 

in all behavior phases of the stiffening walls. 

Analysis of displacement vectors showed that in the initial phase, when the stiffness 

of the building is the highest, the building rotates – Fig. 8.9 and Fig. 8.9. As the load 

increases, the walls crack, and the internal forces redistribute. The equalization of 

internal forces between the walls makes the rotation give way to the translation of the 

building in the subsequent phases – Fig. 8.10. In the residual phase, the rotation is 

marginal, and the horizontal displacement, consistent with the action of the lateral load, 

dominates – Fig. 8.11. 
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a) 

 
b) 

    
Fig. 8.8 The horizontal displacement vectors in the elastic phase: a) at force Hx = 16.826 kN, b) at force 

Hx = 20.693 kN 
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a) 

 
b) 

  
Fig. 8.9 The horizontal displacement vectors: a) at force Hx = 29.519 kN, b) at force Hx = 34.854 kN 
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a) 

            
b) 

 
Fig. 8.10 The horizontal displacement vectors: a) at force Hx = 49.328 kN, b) at force Hx = 69.247 kN 
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a) 

 
b) 

 
Fig. 8.11 The horizontal displacement vectors in residual phase: a) at force Hx = 64.494 kN, b) at force 

Hx = 46.850 kN 
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The procedure described in section 5.3 and the results of displacement measurements 

in the X and Y directions (Table 8.6) were used to calculate the torsion center (RC). 

Different coordinates were obtained for each load level – Table 8.7.  Moreover, the 

results indicate that the torsion center of the building is constantly changing due to the 

changing stiffness of the building's structural elements. A similar verification was 

carried out for the elastic numerical model (approach 2). Based on the slab corners' 

displacements, the torsion centre's location was calculated – Table 8.8. The coordinates 

of the torsion center calculated on the calibrated elastic model were close to the residual 

phase of the MB-AAC-010/2 model. Moreover, the changing position of the RC 

determines the change in the distribution of internal forces. In the walls transverse to the 

stiffening ones, the internal forces are caused by the torsion effect of the structure. 

 

Table 8.6 

The horizontal corners displacements of slab for the MB-AAC-010/2 model 

Horizontal 

force, 

Hx, kN 

The horizontal displacements of slab corners, mm 

Point 

a 

Point 

b 

Point 

c 

Point 

d 

Point 

e 

dx.a dy.a dx.b dy.b dx.c dy.c dx.d dy.d dx.e dy.e 

16.826 -0.191 1.384 -0.243 1.443 -0.201 1.389 -0.291 1.336 -0.270 1.246 

20.693 -0.059 1.985 -0.097 2.185 0.007 2.177 -0.077 2.001 -0.105 1.948 

29.519 -0.180 1.161 -0.076 1.226 -0.043 1.158 -0.180 1.073 -0.107 0.990 

34.854 -0.493 1.629 -0.471 1.999 -0.198 1.947 -0.564 1.613 -0.476 1.557 

49.328 -1.236 3.095 -1.286 3.316 -0.947 3.163 -1.394 3.083 -1.277 2.951 

69.247 -4.320 1.987 -2.898 2.273 -1.814 1.461 -3.902 0.623 -3.351 0.672 

64.494 -4.967 2.036 -3.322 2.410 -2.269 1.366 -4.625 0.521 -3.911 0.578 

46.850 -10.925 0.238 -10.812 0.946 -9.756 0.415 -10.404 -0.430 -10.319 -0.082 

 

Table 8.7 

The coordinates of the torsion center of the MB-AAC-010/2 model based on research 

Horizontal force, 

Hx, kN 

Coordinates of torsion center 

xr, m yr, m 

16.826 -216.31 13.52 

20.693 -113.16 -0.98 

29.519 26.81 0.97 

34.854 147.68 0.02 

49.328 -65.31 -0.15 

69.247 4.71 1.04 

64.494 3.56 0.70 

46.850 -0.48 0.70 
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Table 8.8 

The coordinates of the torsion center of the MB-AAC-010/2 FEM elastic model 

(approach 2) 

Horizontal force, 

Hx, kN 

Coordinates of torsion center 

xr, m yr, m 

26.47 -0.05 0.72 

37.05 -0.05 0.72 

47.64 -0.05 0.72 

68.81 -0.05 0.71 

 

The analysis shows that the center of torsion in a real building changes its position 

with increasing load. The proper design of elements stiffening masonry buildings should 

ensure the geometric invariability of the structure both in terms of horizontal 

displacement of the building and its rotation. 
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9. CONCLUSIONS 

This doctoral thesis is devoted to masonry stiffening walls. The modern trend in the 

construction industry to optimize the structure (reducing the cross-sections of load-

bearing elements) does not always go hand in hand with the correct calculation 

verification. The lack of a comprehensive method for calculating the stiffness of 

stiffening walls, localization of the torsion center and a deep understanding of the 

behavior of such elements prompted the author to consider the topic from theoretical 

and experimental points of view.  

Chapter 1 is a short introduction describing the current economic situation and 

market-related to the construction industry. Chapter 2 includes the justification for 

taking up the subject of shear walls as well as the goals, theses (statements) and scope 

of the work. Chapter 3 analyzes the state of knowledge regarding standard regulations 

and scientific publications in domestic (polish) and foreign literature. Selected results of 

masonry structures tests, calculation procedures and methods of wall homogenization 

used in numerical calculations are presented. Chapter 4 concerns the own experimental 

program of testing full-scale models of masonry buildings, the description of the test 

stand and the measurement methods used. Chapter 5 presents the main test results and  

a determination of the behavior phases of the stiffening walls in the elastic and non-

linear range. Chapter 6 contains the results of analyzes of the propagation of cracks and 

wall damage. Chapter 7 covers numerical calculations. Chapter 8 encloses a discussion 

of the research results in the field of the stiffness of walls, taking into account the 

cracking process, the location of the torsion center, and a proposal for an engineering 

method of numerical analysis of walls. 

Based on the analysis of state of the art, the twelve most important issues regarding 

shear walls were defined: 

1. The tests of monotonically loaded stiffening walls are rare. 

2. Most analyses of unreinforced shear walls involve cyclic loads. 

3. The horizontal displacement of the walls consists of a component due to shear 
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and due to bending (flexural deformation). 

4. The contribution of shear displacements depends not on the initial 

compressive stress but, above all, on the wall geometry. 

5. The initial prestressing of the wall influences shear load capacity – higher 

compressive stress determines the shear resistance increase. 

6. Compressive stress changes the crack morphology of the wall. At low levels 

of compressive stresses, shear cracking is stepped. When the wall is highly 

prestressed, the cracks run diagonally through the masonry units. 

7. Perpendicular fragments of the stiffening walls (flanged walls) participate in 

transferring horizontal loads. 

8. The stiffness of unreinforced shear walls and lateral load capacity decreases 

significantly due to wall openings. 

9. The openings affect the crack pattern change and the pillars' actual geometry 

between the openings. 

10. The different stiffness of the shear walls caused by the openings determines 

the building to twist. 

11. The method of numerical masonry homogenization should be adapted to the 

size of the analyzed structure and the purpose of the calculations (representa-

tion accuracy). 

12. Advanced material models require many input parameters - physical and em-

pirical, and few works provide their values adopted in the calculations. 

 

The unique test stand was constructed to identify the stiffening walls experimentally. 

The research was designed so that it was possible to apply a monotonic horizontal load 

while inducing initial compressive stresses. Full-scale testing concerned eight masonry 

buildings erected on a square plan of 4.0x4.0 m. The studies analyzed the values of the 

forces acting on the particular walls and the shear deformation angles (and strain angle 

in the linear phase). Measurement techniques included measuring displacements using 

LVDT sensors and a digital image correlation (DIC) system for crack morphology 

analysis. Based on the results, the behavior phases of the stiffening walls with (Fig. 9.1) 

and without openings (Fig. 9.2) were determined: 

• the initial phase (cracks in the tensile corner): 0 - Hcr,1, 

• elastic phase (cracks in the wall without opening): Hcr,1 - Hcr, 

• nonlinear phase (up to maximum horizontal force): Hcr - Hu, 

• post-peak residual phase (decrease the horizontal force and stabilization of 

shear deformations): Hu - Hres. 
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Fig. 9.1 Behavior phases of stiffening walls with door opening: I – initial phase, II – elastic phase,  

III – nonlinear phase, IV – post-peak residual phase 

 

 
Fig. 9.2 Behavior phases of solid stiffening walls: I – elastic phase, II – nonlinear phase, III – post-peak 

residual phase 

 

It has been shown that there is no initial phase in walls without openings, which 

consists of cracking the tensile opening corners. The behavior of walls with openings is 

more complex than the corresponding solid wall. The range of elastic behavior of walls 

with a door opening is 29% (mean value) of the maximum force, 38% for walls with 

a window opening, and 78% for solid walls. Large openings may lead to the non-linear 

behavior of the structure even at low shear loads due to cracking of the walls within the 

openings. Subsequent cracks cause significant degradation of wall stiffness and an 

uncontrolled increase in horizontal displacements. 

Moreover, two approaches to the determination of forces in stiffening walls have 

been proposed: 

• empirical approach - based on empirical proportions between the deformation 

angles of the walls, 

• analytical approach - based on determining the stiffness of each wall 

component. 

Comparing forces in both methods enabled the redistribution of internal forces in the 

walls estimation at a maximum of 12%. 
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The analysis of horizontal displacements of the slab corners showed that the building 

undergoes both translation and rotation. In the elastic phase, the building tends to rotate; 

as the horizontal load increases, the walls are cracked, and the stiffness decreases. In the 

post-peak phase, translation dominates with marginal importance of torsion of the 

building.  As part of the work, numerical calculations were also carried out on an elastic-

plastic model with degradation. The need to validate the model based on the calibration 

of the mechanical parameters of the wall was demonstrated. Based on the research and 

calculations, it is concluded that the theses formulated at the beginning of the work can 

be considered trustworthy – Table 9.1. 

 

Table 9.1 

Verification of the veracity of theses of the dissertation 

Number Statement Verification 

1 
The stiffness of individual parts of the structure determines the 

distribution of internal forces in masonry buildings. 
true 

2 

The linear behavior of an unreinforced masonry structure subjected 

to horizontal shear is small and ends at approximately 30% of the 

maximum force. 

true 

3 
The lateral load of the building causes a significant decrease in the 

structure's stiffness. 
true 

4 
A building with asymmetric stiffness distribution, subjected to 

horizontal shear, undergoes rotation and translation. 
true 

5 
The location of the building torsion center results from the stiffness 

distribution of the structural elements. 
true 

6 

The selection method of the masonry homogenization affects the 

accuracy and reliability of the numerical representation of the 

stiffening walls. 

true 

 

The author is aware of the inexhaustibility of the subject and treats the research 

presented within the dissertation as exploratory. Further work should include the 

following: 

• numerical analyses on micromodels of the wall allowing for an accurate 

representation of the shear masonry and comparison of the internal forces 

with test results, 

• repetition of tests on scale models to verify the results of full-scale studies, 

• extension of the research campaign with scale models of buildings with 

increased vertical load (higher precompression of walls), 

• systematization of procedures for calculating the stiffness of stiffening walls. 
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ZACHOWANIE SIĘ MUROWANYCH ŚCIAN USZTYWNIAJĄCYCH NA 

PODSTAWIE BADAŃ PEŁNOSKALOWYCH 

Streszczenie 

Zadaniem murowanych ścian usztywniających jest zapewnienie geometrycznej 

niezmienności budynku, ograniczenie poziomych przemieszczeń konstrukcji oraz 

zapewnienie ogólnego komfortu użytkowania budowli. Elementy usztywniające 

przenoszą obciążenia poziome, oddziaływujące w płaszczyźnie ściany. Mogą być one 

wywołane przez oddziaływanie wiatru, nierównomierne osiadanie podłoża czy też 

mogą wynikać z negatywnych wpływów eksploatacji górniczej (wstrząsy, odkształcenia 

podłoża).  Choć rola murowanych ścian usztywniających jest niezwykle ważna z punktu 

widzenia zarówno projektowania jak i użytkowania budynków – brakuje spójnego 

opracowania dotyczącego specyfiki tych elementów.  

Niniejsza praca doktorska stanowi zatem wkład w usystematyzowanie wiedzy na 

temat murowanych usztywnień budynków. W ramach opracowania przeprowadzono 

wnikliwe studium literaturowe obejmujące krajowe i zagraniczne przepisy normowe 

oraz publikacje naukowe wraz z krytyczną analizą stanu wiedzy. Przeprowadzono 

badania pełnoskalowe jednokondygnacyjnych budynków murowanych z elementów 

murowanych z autoklawizowanego betonu komórkowego o różnej geometrii otworów 

w ścianach. Analizy te pozwoliły na określenie faz pracy ścian usztywniających  

z określeniem zakresu pracy sprężystej i nieliniowej. Wykonano szczegółowe 

obserwacje propagacji uszkodzeń oraz morfologii rys z wykorzystaniem technologii 

cyfrowej korelacji obrazu. Wykazano zmianę geometrii filarków międzyotworowych  

i wpływ tego fenomenu na sztywność konstrukcji. Zaproponowano dwie metody 

szacowania sztywności ścian usztywniających – metodę całkowitej sztywności oraz 

metodę empiryczną. Przedstawiono ponadto propozycję obliczania środka skręcania 

budynku na podstawie pomiaru przemieszczeń naroży budynku. Na podstawie 

porównania wyników teoretycznych i wyników badań określono wartości sił 

wewnętrznych. 

Ponadto opracowano autorską procedurę numerycznej homogenizacji konstrukcji 

murowej w oparciu o badania normowe i kalibrację parametrów mechanicznych. 

Przeprowadzono stosowne pełnoskalowe analizy numeryczne w oparciu o sprężysto-

plastyczny model materiałowy z degradacją. Wykazano wpływ zmiany energii pękania 

oraz wytrzymałości na rozciąganie muru na wyniki obliczeń numerycznych. 

Zaproponowano również inżynierskie podejście do analizy murowanych ścian 

usztywniających w oparciu o sprężyste modele numeryczne o skorygowanej sztywności 

ścian. Wyznaczono również dalsze kierunku prac badawczych i teoretycznych 

dotyczących przedmiotu rozprawy. 
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THE BEHAVIOR OF MASONRY STIFFENING WALLS BASED ON THE 

FULL-SCALE RESEARCH  

Abstract 

The role of the masonry stiffening walls is to ensure the geometric invariability of 

the building, to limit the horizontal displacements and to ensure the overall comfort of 

use of the building. Stiffeners transfer horizontal loads acting in the plane of the wall. 

Lateral loads may be caused by wind and uneven ground subsidence or may result from 

the adverse effects of mining (shocks, ground deformations). Although the masonry 

stiffening walls is crucial from the design and use of buildings' point of view, there is no 

consistent study on the specificity of these elements. 

This doctoral thesis contributes to the systematization of knowledge about masonry 

stiffeners of buildings. A thorough literature study was carried out, including domestic 

and foreign standard regulations and scientific publications, along with a critical 

analysis of the state of knowledge. Full-scale tests of single-storey masonry buildings 

made of masonry elements made of autoclaved aerated concrete (AAC) with different 

geometry of openings in the walls were carried out. These analyses made it possible to 

determine the behavior phases of the stiffening walls, specifying the range of elastic and 

non-linear behavior. Detailed damage propagation and crack morphology observations 

were made using digital image correlation (DIC) technology. The change in the vertical 

piers geometry and the effect of this phenomenon on the stiffness was demonstrated. 

Two methods of estimating the stiffness of stiffening walls have been proposed - the 

total stiffness method and the empirical method. In addition, a proposal for calculating 

the torsion center of the building based on the measurement of slab corner displacements 

has been presented. The values of internal forces were determined based on comparing 

theoretical and test results. 

In addition, an original procedure for numerical homogenization of the masonry 

structure was developed based on standard tests and calibration of mechanical 

parameters. Appropriate full-scale numerical analyzes were performed based on an 

elastic-plastic material model with degradation. The impact of changes in the cracking 

energy and tensile strength of the wall on the results of numerical calculations was 

indicated. An engineering approach to the analysis of stiffening masonry walls using 

numerical elastic models with corrected stiffness of the walls was also proposed. Further 

research directions and theoretical work on the dissertation subject were also set. 
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ZACHOWANIE SIĘ MUROWANYCH ŚCIAN USZTYWNIAJĄCYCH NA 

PODSTAWIE BADAŃ PEŁNOSKALOWYCH 

Poszerzone streszczenie 

Zadaniem murowanych ścian usztywniających jest zapewnienie geometrycznej 

niezmienności budynku, ograniczenie poziomych przemieszczeń konstrukcji oraz 

zapewnienie ogólnego komfortu użytkowania budowli. Elementy usztywniające 

przenoszą obciążenia poziome, oddziaływujące w płaszczyźnie ściany. Mogą być one 

wywołane przez oddziaływanie wiatru, nierównomierne osiadanie podłoża czy też 

mogą wynikać z negatywnych wpływów eksploatacji górniczej (wstrząsy, odkształcenia 

podłoża).   

Konstrukcja murowa jest strukturą anizotropową, której cechy mechaniczne nie są 

prostym odzwierciedleniem parametrów mechanicznych składowych części muru – 

elementów murowych i zaprawy. Ponadto złożony stan naprężeń w murowanej ścianie 

usztywniającej wynika z jednoczesnego oddziaływania obciążenia poziomego  

i pionowego. Ściana usztywniająca jest jednocześnie ściskana, ścinana i zginana  

w swojej płaszczyźnie – co znacząco utrudnia badania eksperymentalne. Choć rola tych 

elementów jest niezwykle ważna z punktu widzenia zarówno projektowania jak 

i użytkowania budynków – brakuje spójnego opracowania dotyczącego specyfiki tychże 

usztywnień. Ten fakt skłonił autora do podjęcia rozprawy doktorskiej poświęconej 

zagadnieniu murowanych ścian sztywniących. 

 

Celem pracy jest teoretyczne i eksperymentalne rozpoznanie przedmiotu pracy, 

motywowane następującymi czynnikami: 

• brakiem spójnych procedur projektowania ścian usztywniających przy 

tendencji rynkowej do optymalizacji konstrukcji (zmniejszania przekroju 

poprzecznego ścian), 

• niejasne i nieprecyzyjne sformułowania normowe dotyczące ścian 

usztywniających, 

• nieznana rzeczywista wielkość redystrybucji sił wewnętrznych  

w murowanych ścianach usztywniających – w Eurokodzie 6 dopuszczono 

redystrybucję sił do 15% bez uzasadnienia takich regulacji, 

• brak spójnych metod określania sztywności ścian usztywniających i rozdziału 

obciążeń poziomych na poszczególne ściany,  

• brak metod wyznaczania położenia środka skręcania budynku  

i uwzględniania obrotu budynku w obliczeniach, 

• nieznany wpływ perforacji ścian na sztywność konstrukcji, 

• niedostateczne rozpoznanie badawcze przedmiotowej tematyki na modelach 

pełnoskalowych. 
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Głównym zagadnieniem badawczym pracy jest zachowanie się ścian usztywniających 

wykonanych z elementów murowych z autoklawizowanego betonu komórkowego 

(ABK) zarówno w fazie sprężystej jak i nieliniowej. Celami pracy są: 

• analiza stanu wiedzy w literaturze krajowej i zagranicznej dotyczącej 

murowanych ścian usztywniających, 

• przegląd ustaleń normowych, 

• rozdział obciążeń na ściany usztywniające, 

• określenie rzeczywistej redystrybucji sił wewnętrznych, 

• analiza propagacji zarysowań i morfologii rys, 

• propozycja metody wyznaczania położenia środka skręcania budynku, 

• określenie faz pracy murowanych ścian usztywniających w zakresie sprężystym  

i post-sprężystym. 

 

W ramach rozprawy sformułowano następujące tezy pracy: 

1. Sztywność poszczególnych części konstrukcji determinuje wielkość redystrybucji 

sił wewnętrznych w budynku murowanym. 

2. Sprężysty zakres pracy konstrukcji murowej jest niewielki i stanowi ok. 30% 

nośności. 

3. Ściany usztywniające poddane ścinaniu ulegają znacznej degradacji swojej 

sztywności. 

4. Położenie środka skręcania budynku wynika z rozkładu sztywności 

poszczególnych elementów konstrukcyjnych (ścian). 

5. Budynek, w którym występuję niesymetryczny rozdział sztywności elementów 

usztywniających, na skutek działania obciążenia poziomego, ulega przesunięciu 

(translacji) oraz skręceniu (obrotowi). 

6. Dobór metody homogenizacji konstrukcji murowej wpływa na dokładność 

numerycznego odwzorowania pracy konstrukcji. 

 

Do weryfikacji postawionych tez przedsięwzięto analizy eksperymentalne i teoretyczne 

niezbrojonych konstrukcji murowych, poddanych działaniu monotonicznego 

obciążenia poziomego. Zakresem pracy objęto: 

• przegląd literatury, 

• własny program badań eksperymentalnych, 

• analizy numeryczne z wykorzystaniem Metody Elementów Skończonych 

(MES), 

• propozycję analitycznej metody wyznaczania sztywności ścian 

usztywniających i położenia środka skręcania budynku, 

• dyskusję i główne wnioski. 
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Rozdział 1 rozprawy stanowi krótki wstęp opisujący aktualną sytuację gospodarczą  

i rynkową dotyczącą branży budowlanej – w okresie, w którym powstawała niniejsza 

praca. Rozdział 2 obejmuje uzasadnienie podjęcia tematu ścian usztywniających oraz 

cele, tezy i zakres pracy. Rozdział 3 obejmuje analizę stanu wiedzy w ujęciu przepisów 

normowych oraz publikacji naukowych w literaturze krajowej i zagranicznej. 

Przedstawiono wybrane wyniki badań konstrukcji murowych, procedury obliczeniowe 

i metody (techniki) homogenizacji muru, stosowane w obliczeniach numerycznych. 

Rozdział 4 dotyczy własnego programu badań pełnoskalowych modeli budynków 

murowanych, opis stanowiska badawczego opis oraz wykorzystywanych metod 

pomiarowych. W rozdziale 5 zaprezentowano główne wyniki badań i opis faz 

zachowania się ścian usztywniających w zakresie sprężystym i nieliniowym.  

W rozdziale 6 zawarto rezultaty analiz propagacji zarysowań i uszkodzeń ścian. 

Rozdział 7 obejmuje obliczenia numeryczne. W ramach pracy zaproponowano autorską 

procedurę homogenizacji muru, opierającą się na wynikach badań normowych. 

Podejście to zapewnia powtarzalność i dzięki temu może być weryfikowane przez 

innych badaczy. Ponadto wykonano analizy numeryczne z wykorzystaniem sprężysto-

plastycznego modelu materiałowego z degradacją do odzwierciedlenia zachowania się 

ścian usztywniających. Rozdział 8 zawiera dyskusję wyników badań w zakresie 

wyznaczania sztywności ścian w fazie sprężystej i post-sprężystej z uwzględnieniem 

zarysowania ściany, położenie środka skręcania budynku oraz propozycję inżynierskiej 

metody analizy numerycznej ścian. W rozdziale 9 zebrano najważniejsze wnioski 

wynikające z przeprowadoznych analiz. W załączniku zawarto zdetalizowane rysunki 

konstrukcyjne ścian, umożliwiające powtórzenie (dokładne odwzorowanie) badań. 

 

Na podstawie przeglądu literatury stwierdzono, że: 

• badania ścian usztywniających obciążonych monotonicznie należą do rzadkości, 

• większość analiz niezbrojonych konstrukcji murowych dotyczy obciążeń 

cyklicznych, 

• przemieszczenia poziome ścian usztywniających obejmują deformacje 

spowodowane ścinaniem (deformacje postaciowe) oraz spowodowane 

zginaniem (deformacje giętne), 

• udział poszczególnych deformacji w całkowitym odkształceniu ścian nie zależy 

od wstępnego obciążenia ściskającego – zależy wyłącznie od geometrii 

konstrukcji, 

• nośność ścian usztywniających uwarunkowana jest poziomem wstępnych 

naprężeń ściskających – zwiększenie naprężeń ściskających powoduje wzrost 

nośności ściany na ścinanie w swojej płaszczyźnie, 

• wstępne naprężenia ściskające mają wpływ na morfologię zarysowania ściany – 

przy niewielkim obciążeniu pionowym rysy mają charakter schodkowy, przy 

znaczących wartościach naprężeń ściskających, rysy przebiegają ukośnie 
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również przez elementy murowe, 

• fragmenty ścian poprzecznych do ścian usztywniających biorą udział  

w przenoszeniu obciążeń poziomych (są to tzw. szerokości współpracujące), 

• sztywność niezbrojonej konstrukcji murowej spada znacząco w przypadku 

wykonania otworów w ścianie, 

• obecność otworów zmienia rzeczywistą geometrię filarków międzyotworowych  

i obraz zarysowania konstrukcji, 

• niesymetryczny rozkład perforacji w budynku determinuje skręcanie konstrukcji 

obciążonej poziomo. 

 

Własny program badań doświadczalnych zaprojektowano według następujących 

kryteriów: 

• modele wykonane są z elementów murowych z autoklawizowanego betonu 

komórkowego, 

• ściany są wzniesione w technologii na cienkie spoiny wsporne i niewypełnione 

spoiny pionowe (czołowe) – połączenia typu pióro-wpust, 

• wszystkie modele są niezbrojonymi konstrukcjami murowymi, 

• modele badawcze składają się ze ścian murowanych i stropu żelbetowego, który 

stanowi sztywną tarczę przez którą przekazywane są obciążenia poziome na 

ściany, 

• wielkość wstępnych naprężeń ściskających odpowiada obciążeniu 

jednokondygnacyjnego budynku w zabudowie mieszkalnej i obejmuje ciężar 

własny, ciężar warstw wykończeniowych oraz obciążenie zmienne (użytkowe), 

• badania mogą zostać w przyszłości rozszerzone do analizy budynków 

wielokondygnacyjnych poprzez zwiększenie wstępnych naprężeń ściskających, 

• geometria ścian sprawia, że dominującymi odkształceniami są deformacje 

postaciowe – nie giętne, współczynnik wysokości do długości ściany 

usztywniającej jest mniejszy od jedności h/l <1, 

• w wybranych modelach budynków wykonano otwory drzwiowe i okienne,  

o geometrii odpowiadającej rzeczywistym gabarytom takich otworów, 

• zaprojektowane stanowisko badawcze umożliwia badania pełnoskalowych 

modeli budynków w schemacie statycznym utwierdzenia ścian u podstawy, przy 

zadaniu wstępnych naprężeń ściskających ściany. 

 

Modele zaprojektowano w taki sposób aby umożliwić zrealizowanie postawionych 

celów pracy. Program badawczy obejmuje osiem pełnoskalowych modeli budynków, 

wzniesionych na planie kwadratu 4,0x4,0 m, przy wysokości całkowitej budynku 

równej 2,85 m i grubości ścian 0,18 m. Każdy model składa się z dwóch ścian 

usztywniających, oznaczonych literami A i B oraz dwóch ścian prostopadłych 

oznaczonych cyframi 1 i 2. Modele oznaczono symbolami literowo- cyfrowymi MB-
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AAC-010/N, gdzie N oznacza kolejne modele budynków. Program badawczy składa się 

z czterech typów modeli – typ I to modele z jednym otworem drzwiowym, typ II to 

otwór drzwiowy w ścianie usztywniającej i otwór okienny w ścianie prostopadłej. Typ 

III to modele z dwoma otworami w ścianach usztywniających, a typ IV to jeden model 

referencyjny pozbawiony otworów. Zestawienie badanych modeli budynków pokazano 

w tabeli 1. 

 

Tabela 1 

Lista modeli badawczych budynków murowanych 

Oznaczenie modelu / widok 

3D 

Oznaczenie 

ściany 
Otworowanie Opis ściany 

M
B

-A
A

C
-0

1
0
/1

 

 

Ściana A otwór drzwiowy 

usztywniająca 

Ściana B pełna 

Ściana 1 pełna 

prostopadła 

Ściana 2 pełna 

M
B

-A
A

C
-0

1
0
/2

 

 

Ściana A otwór drzwiowy 
usztywniająca 

Ściana B pełna 

Ściana 1 pełna 
prostopadła 

Ściana 2 pełna 

M
B

-A
A

C
-0

1
0
/3

 

 

Ściana A otwór drzwiowy 
usztywniająca 

Ściana B pełna 

Ściana 1 otwór okienny 
prostopadła 

Ściana 2 pełna 

M
B

-A
A

C
-0

1
0
/4

 

 

Ściana A otwór drzwiowy 
usztywniająca 

Ściana B pełna 

Ściana 1 otwór okienny 
prostopadła 

Ściana 2 pełna 

M
B

-A
A

C
-0

1
0
/5

 

 

Ściana A otwór drzwiowy 
usztywniająca 

Ściana B pełna 

Ściana 1 otwór okienny 
prostopadła 

Ściana 2 pełna 
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c.d tabeli 1 
M

B
-A

A
C

-0
1
0
/6

 

 

Ściana A otwór okienny 
usztywniająca 

Ściana B otwór drzwiowy 

Ściana 1 pełna 
prostopadła 

Ściana 2 pełna 

M
B

-A
A

C
-0

1
0
/7

 

 

Ściana A otwór okienny 
usztywniająca 

Ściana B otwór drzwiowy 

Ściana 1 pełna 
prostopadła 

Ściana 2 pełna 

M
B

-A
A

C
-0

1
0
/8

 

 

Ściana A pełna 
usztywniająca 

Ściana B pełna 

Ściana 1 pełna 
prostopadła 

Ściana 2 pełna 

 

Aby skrócić czas wznoszenia poszczególnych modeli zdecydowano się na 

zaprojektowaniu stropu, który mógłby być podnoszony po badaniu modelu budynku  

i wykorzystany ponownie w kolejnym teście. W tym celu wykorzystano 

prefabrykowane panele stropowe (zwane elementami panelowymi). Są to segmenty 

sprężone składające się z żeber i płyty dolnej. Pomiędzy żebra włożono styropian 

pozwalający na zredukowanie ciężaru własnego stropu – ograniczenie to wynikało  

z tonażu suwnicy. Elementy panelowe układano na kształtkach wieńcowych, a całość 

konstrukcji stropu monolityzowano nadbetonem – rys. 1. 

 

a) b) 

  
Rys. 1 Betonowanie stropu: a) zasobnik z mieszanką betonową, b) układanie mieszanki betonowej. 
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Modele badawcze wznoszono w kilku etapach – rys. 2: 

• wzniesienie pierwszego modelu, 

• badanie pierwszego modelu, 

• odcięcie stropu od ścian i podniesienie stropu suwnicą, 

• ułożenie stropu na stalowej konstrukcji wsporczej, 

• rozbiórka ścian, 

• wzniesienie nowych ścian kolejnego modelu i ułożenie stropu. 

 

a) b) 

  
Rys. 2 Procedura ponownego wykorzystania stropu: a) wyburzenie ścian modelu po badaniu, b) strop 

ułożony na stalowej konstrukcji wsporczej 

 

Stanowisko zaprojektowano w sposób umożliwiający zadanie obciążenia pionowego 

jak również poziomego. Model badawczy utwierdzono w płycie wielkich sił. 

Zamocowanie zrealizowano za pomocą zewnętrznych belek okalających dolny wieniec 

modelu, zaklinowanych o śruby średnicy 65 mm, które były przykręcone do hali 

laboratorium. Obok modelu umiejscowiono stalowy słup z zastrzałem – do niego 

przymocowano stalową konstrukcję podpierającą siłownik hydrauliczny. Pomiar siły 

odbywał się za pomocą siłomierza o zakresie pracy 250 kN ± 0.1 kN. Obciążenie 

poziome przyłożone w środku ciężkości stropu i w połowie długości ściany prostopadłej 

do ścian usztywniających. Obciążenia pionowe wywołano obciążnikami 

podwieszonymi do stropu. Pojedynczy odważnik miał średnicę 60 cm i wysokość  

30 cm. Sumarycznie podwieszono po trzy odważniki o ciężarze 204 kg w dwunastu 

punktach (73.44 kN). W tym celu w wykonanym stropie uprzednio wywiercono otwory 

o średnicy 25 mm do przepuszczenia stalowych cięgien podwieszających obciążniki. 

Otwory były zlokalizowane pomiędzy sprężonymi żebrami stropu panelowego – by nie 

uszkodzić cięgien sprężających. W miejscu przykładania obciążenia kształtki wieńcowe 

zamieniono na ceownik stalowy, umożliwiający bezpieczne przekazanie obciążenia na 

konstrukcję stropu. Widok modelu badawczego na stanowisku pokazano na rys. 3. 

Pomiary przemieszczeń prowadzono z wykorzystaniem transformatorowych 

przetworników przemieszczeń liniowych (LVDT). Analizę propagacji zarysowań oraz 

odkształceń modeli wykonano za pomocą systemu Aramis 6M. 
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Rys. 3 Model badawczy na stanowisku: 1 – prefabrykowane, sprężone element panelowe stropu,  

2 – zbrojenie górnego wieńca, 3 – zbrojenie górne stropu, 4 – ceownik stalowy, 5 – prefabrykowane 

nadproże, 6 – punkty podwieszenia obciążenia pionowego, 7 – widoczne obciążniki 

 

Zachowanie się ścian usztywniających i ścian prostopadłych przedstawiono w formie 

wykresów zależności znormalizowanej siły poziomej (Hi/Hu)  do kąta odkształcenia 

postaciowego. Przykładowe rezultaty pokazano na rys. 4. Znając kąty odkształcenia 

deformacji postaciowej obliczono również wielkości poziomych przemieszczeń ścian.  

 

a) b) 

  
Rys. 4 Zależność pomiędzy obciążeniem poziomym, a kątem odkształcenia postaciowego dla modelu 

MB-AAC-010/2: a) wyniki dla ścian usztywniających A i B, b) wyniki dla ścian prostopadłych 1 i 2 
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Analiza wyników badań pozwoliła na określenie faz pracy zachowania się ścian 

usztywniających z otworami i bez otworów. Wyróżniono fazę początkową (faza I),  

w której jako pierwszy uszkodzeniu ulega rozciągany narożnik otworu. Następnie ma 

miejsce zarysowanie samej ściany murowanej, co jest tożsame z granicą sprężystej 

pracy konstrukcji (faza II). W dalszej kolejności dochodzi do postępujących zarysowań 

schodkowych ściany w zakresie post-sprężystym (faza III). Po przekroczeniu siły 

niszczącej (maksymalnej) – ściana ulega poziomej translacji (faza rezydualna IV) –  

rys. 5.  

Bazując na wynikach badań opracowano empiryczną metodę wyznaczania sztywności 

ścian. Jako podejście referencyjne zaproponowano również metodę całkowitej 

sztywności. Porównanie obu metod pozwoliło na określenie redystrybucji sił 

wewnętrznych w ścianach – której wielkość określono na ok. 10%. 

 

 
Rys. 5 Fazy pracy ścian usztywniających z otworem okiennym 

 

Analiza propagacji i morfologii zarysowań ścian (rys. 6) pozwoliły na określenie 

rzeczywistej geometrii filarków międzyotworowych. W pracy zaproponowano korektę 

geometrii filarków, pozwalającą na wyznaczenie sztywności postsprężystej ściany  

w fazie zarysowanej. Ponadto przeanalizowano zjawisko obrotu budynku na skutek 

działania obciążenia poziomego - rys. 7. 

 

a) b)  

  
-3.0%  +3.0% 

Rys. 6 Propagacja zarysowań ściany usztywniającej A - model MB-AAC-010/2: a) obraz zarysowań 

przy sile poziomej Hx = 69,25 kN, b) ) obraz zarysowań przy sile poziomej Hx = 37,71 kN 

Hx = 69.25kN Hx = 37.71kN 

(faza rezydualna) 
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a) 

 
b) 

 
Rys. 7 Wektory przemieszczeń poziomych narożników stropu – model MB-AAC-010/2: a) przy sile 

poziomej Hx = 64,49 kN, b) przy sile poziomej Hx = 46,85 kN 
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Pomiary poziomych przemieszczeń narożników stropu i analiza wektorów 

przemieszczenia wypadkowego wskazała, że budynek w fazie początkowej i sprężystej 

podlega niewielkiemu przemieszczeniu poziomemu i obrotowi. Na skutek 

postępujących zarysowań ścian dochodzi do redystrybucji sił wewnętrznych  

i wyrównania sztywności ścian. W fazach postsprężystych budynek ma tendencje do 

stosunkowo dużej translacji, a zjawisko obrotu konstrukcji jest marginalne. 

Zaproponowana w pracy procedura wyznaczania położenia środka skręcania budynku 

umożliwiła na analityczne określenie współrzędnych środka obrotu. Wykorzystując 

wyniki badań stwierdzono, że położenie to zmienia się w trakcie zwiększania obciążenia, 

na skutek postępujących zmian sztywności (spowodowanych zarysowaniem).  

W ramach rozprawy doktorskiej wykonano zaawansowane (nieliniowe) obliczenia 

numeryczne. W tym celu wykorzystano autorską procedurę homogenizacji konstrukcji 

murowej. Walidacje obliczeń numerycznych prowadzono w oparciu o wyniki badań  

i dwa kryteria walidacyjne. Kryterium A polegające na porównaniu globalnego 

zachowania się modelu, w którym porównywano zależności siła pozioma – 

przemieszczenie poziome ścian. Kryterium B dotyczyło porównania obrazów 

uszkodzeń i zarysowań ścian. Kalibrowano wybrane parametry mechaniczne modelu 

materiałowego. Redukcja wytrzymałości na rozciąganie pozwoliła na lepsze 

dopasowanie sił niszczących, jednak prowadziła do znacznego rozmiękczenia modelu 

– kalibracja energii pękania umożliwiła na dopasowanie obrazów uszkodzeń ścian 

(obszary osłabienia materiału w modelu numerycznym), przy jednoczesnym braku 

satysfakcjonującej zbieżności zachowania się modelu numerycznego w odniesieniu do 

wyników badań. 

Jako, że w praktyce inżynierskiej stosowanie nieliniowych modeli materiałowych w 

obliczeniach numerycznych jest niepraktyczne ze względu na stopień złożoności 

modelu i czasochłonność obliczeń – zaproponowano podejście uproszczone. W tym celu 

posłużono się modelem sprężystym budynku, w którym nie modelowano otworów. 

Ściany z otworami zastąpiono ścianami bez otworów o zredukowanej sztywności. 

Podejście to pozwoliło na dopasowanie sztywności budynku poprzez kalibrację modułu 

sprężystości. Podobny efekt można również uzyskać redukując grubość ścian  

w modelu numerycznym. 

Autor jest świadomy, że niniejsze opracowanie ma charakter badań rozpoznawczych, 

pozwalających na wyznaczenie dalszych kierunków prac, które powinny obejmować: 

• analizy numeryczne na mikromodelach, pozwalających na dokładne 

odwzorowanie zachowania się modeli budynków i umożliwiających porównanie 

sił wewnętrznych, 

• powtórzenie badań na modelach w skali, przy jednoczesnym zapewnieniu 

powtarzalności eksperymentu, 

• rozszerzenie programu badań o analizy modeli budynków ze zwiększonym 

obciążeniem pionowym (o zwiększonych naprężeń ściskających ściany). 
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APPENDIX - SUPPLEMENTARY MATERIALS 

a) 

 
b) 

 
Fig. A.1 Design of the MB-AAC-010/1 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.2 Design of the MB-AAC-010/1 model: a) perpendicular wall 1, b) perpendicular wall 2 
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a) 

 
b) 

 
Fig. A.3 Design of the MB-AAC-010/2 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.4 Design of the MB-AAC-010/2 model: a) perpendicular wall 1, b) perpendicular wall 2 
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a) 

 
b) 

 
Fig. A.5 Design of the MB-AAC-010/3 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.6  Design of the MB-AAC-010/3 model: a) perpendicular wall 1, b) perpendicular wall 2 
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a) 

 
b) 

 
Fig. A.7   Design of the MB-AAC-010/4 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.8 Design of the MB-AAC-010/4 model: a) perpendicular wall 1, b) perpendicular wall 2 
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a) 

 
b) 

 
Fig. A.9 Design of the MB-AAC-010/5 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.10 Design of the MB-AAC-010/5 model: a) perpendicular wall 1, b) perpendicular wall 2 
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a) 

 
b) 

 
Fig. A.11 Design of the MB-AAC-010/6 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.12 Design of the MB-AAC-010/6 model: a) perpendicular wall 1, b) perpendicular wall 2 
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a) 

 
b) 

 
Fig. A.13 Design of the MB-AAC-010/7 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.14  Design of the MB-AAC-010/7 model: a) perpendicular wall 1, b) perpendicular wall 2 
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a) 

 
b) 

 
Fig. A.15 Design of the MB-AAC-010/8 model: a) stiffening wall A, b) stiffening wall B 
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a) 

 
b) 

 
Fig. A.16 Design of the MB-AAC-010/8 model: a) perpendicular wall 1, b) perpendicular wall 2 
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