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This doctoral thesis focuses on improving the analysis of hyperspectral images by
addressing key challenges across the entire machine learning workflow, from data
preparation to model deployment. The research begins by tackling the problem of
biased model evaluation, often caused by spatial correlations in hyperspectral imagery.
A rigorous data splitting and validation strategy is introduced to prevent information
leakage between training and test sets, ensuring fair and trustworthy assessment of
model performance.

The next part of the work investigates how the size of the training dataset in-
fluences the accuracy and reliability of material abundance estimations. Through
systematic experiments, this study highlights the sensitivity of deep learning mod-
els to the availability of labeled data, offering valuable insights for designing robust
models in data-scarce environments.

Building on these foundations, the thesis benchmarks state-of-the-art deep learn-
ing methods for hyperspectral image analysis and proposes new model architectures
designed to improve unmixing accuracy. These include deep ensemble techniques,
graph convolutional neural networks combining spectral and spatial features as well
as attention modules, and a flexible band selection method that reduces data com-
plexity without compromising performance.

Finally, the research addresses the practical challenge of deploying these advanced
models in real-world settings, particularly on resource-limited platforms such as satel-
lites. To support this, the thesis explores model quantization techniques that sig-
nificantly reduce computational demands, making it possible to run complex deep
learning models efficiently on edge devices.

Together, these contributions form a complete, end-to-end framework for hyper-
spectral image analysis — from data preparation and feature selection to model devel-
opment, evaluation, optimization, and deployment. This work not only advances the
scientific understanding of hyperspectral unmixing but also delivers practical tools
and methods for operational Earth observation applications.
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Chapter 1

Introduction

1.1 Introduction to Hyperspectral Image Analysis

Hyperspectral image (HSI) analysis is a pivotal area in the field of remote sensing,
focusing on extracting meaningful information from captured HSIs. An HSI consists
of a continuous spectrum of electromagnetic data represented as a series of images,
referred to as bands. Each band captures a narrow range of the spectrum, providing
detailed reflectance characteristics of the scene’s objects, enabling analysis based on
spectral signatures [5], [125], [136].

Despite the richness of hyperspectral information, HSI analysis poses several in-
herent challenges that hinder its direct and efficient application. Firstly, HSIs are
characterized by extremely high dimensionality—often encompassing hundreds of
contiguous spectral bands—which leads to massive data volumes that are compu-
tationally expensive to store, transmit, and process [46], [52], [227], [241]. This is
especially critical in satellite-based scenarios, where data downlink capacity is lim-
ited. As a result, efficient techniques such as smart compression, including band
selection and feature extraction, become essential to reduce data size while preserv-
ing critical information [150], [221], [241]. Band selection, in particular, not only
enhances computational efficiency but also promotes interpretability of the analysis
results by retaining only the most informative and non-redundant bands. Another
major challenge is the lack of labeled data: while raw hyperspectral images are abun-
dant, annotated datasets are scarce due to the high cost and complexity of ground-
truth acquisition. This scarcity significantly limits the development and scalability of
supervised learning models. Additionally, factors such as high spectral similarity be-
tween different materials, spectral mixing, and external conditions like cloud coverage
further complicate the analysis [1], [251]. Preprocessing steps such as cloud detection
and masking can help reduce the volume of irrelevant or corrupted data and improve
the reliability of downstream tasks [272]. Collectively, these challenges necessitate
the development of robust, data-efficient, and interpretable machine learning (ML)
methods for HSI processing, a topic that has gained increasing attention in recent
literature [194], [215].
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Processing of HSIs often involves segmentation (HS), i.e., a pixel-level classifica-
tion. It is a critical step utilized across numerous scientific and industrial applica-
tions, such as mineralogy [121], agriculture [79], medicine [153], forensics [57], and
others [39], [154], [205]. The primary aim of segmentation is to partition the input
image’s pixels into non-overlapping groups, each corresponding to a distinct class
of objects. However, the high dimensionality of HSIs, often comprising hundreds of
bands, poses significant challenges to the segmentation process. Prior research [151]
has demonstrated that dimensionality reduction through selective band selection can
maintain segmentation performance. Additionally, the inherent similarity of intensity
values across materials or their intermixing complicates pixel grouping into correct
groups. To address these challenges, various machine learning approaches for HSI
segmentation have been proposed, which will be explored in detail in Chapter 4.

In addition to spectral similarity issues, HSIs often suffer from low spatial resolu-
tion due to large ground sampling distances (GSDs). This limitation causes individual
pixels to represent mixtures of multiple materials, further complicating the segmen-
tation process. When such mixed pixels occur, the model must infer the predominant
and secondary materials contributing to the observed spectra. This introduces the
challenge of hyperspectral unmixing (HU), which aims to estimate the abundance of
individual materials, known as endmembers, within each pixel [89]. HU is crucial
in various scientific and operational domains, including precision agriculture (e.g.,
crop type monitoring and stress detection) [152], mineral exploration (e.g., mapping
lithological units) [20], [209], urban planning (e.g., land cover classification) [30], and
environmental monitoring (e.g., pollutant dispersion or vegetation composition anal-
ysis) [100], [191]. Moreover, the domains previously referenced in the context of HS
also benefit from HU techniques. Mathematically, HU can be conceptualized as a
multi-target regression problem, where each target corresponds to the abundance of
a specific endmember in the image.

In this dissertation, we focus on the HU task to address several key challenges
in the field. Our primary objectives are to overcome the issue of limited availabil-
ity of labeled data and to develop artificial intelligence-based models that can be
effectively optimized even with small training sets. We aim to tackle the problem
of mixed spectral signatures by proposing multiple deep learning (DL) approaches,
including convolutional neural networks and graph-based methods. Furthermore, we
investigate the influence of training dataset size on model performance, providing a
comprehensive evaluation. Moreover, we focus on establishing non-overlapping train-
ing sets, without any information leak between training and testing samples, which
is a common problem in HSI analysis as the task is bounded by a single scene. An
additional aspect of our work involves exploring deployment on edge devices such
as satellite sensors. In this context, we examine the impact of model quantization
and its implications for real-world applications. Overall, this research contributes to
advancing the state of the art and pushing the boundaries of scientific progress in
this domain.
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1.2 Problem Analysis

With the rapid growth of remote sensing data acquisition in recent years, there is an
increasing demand for high-quality HU models. However, constructing such models
requires access to accurate ground-truth (GT) information, which is costly, time-
intensive, and prone to human errors. Labeling hyperspectral images is both costly
and time-intensive, as it involves assigning each pixel a real-valued vector indicating
the abundance fractions of endmembers [17], [20], [89], [191]. Needless to say such
vectors have to be precise to enable real use case possibility.

This task becomes even more demanding due to the large number of pixels in
hyperspectral images, which directly increases the volume of data to be processed
and raises the computational cost of the models. The spectral mixing phenomenon
further complicates the labeling process, as pixels often represent mixtures of multiple
materials [20]. Additional challenges arise during the data acquisition phase, such as
variations in illumination conditions and the presence of atmospheric noise, which
further degrade the quality of the data [19], [100], [250].

These issues not only affect the labeling process but also impact both segmentation
and unmixing tasks in hyperspectral image analysis. To address these challenges,
various methods have been proposed in the literature, for the complete description of
the literature, please refer to Chapter 4—we discuss there different approaches that
focus on HU as well as the segmentation task.

The task of HU can be split into two main approaches: (i) Linear Mixing Model
(LMM), and (ii) Non-linear Mixing Model (NMM). The former method assumes
that the observed spectral signal of a pixel is created by a linear combination of the
endmembers spectra and the abundances of each respective target in the HSI [93].
The formula can be given as:

p = Σk
i=1aiei + ϵ, (1.1)

where p is the observed signal of a pixel as a spectral vector p := [p1, p2, ..., pb]
T , ai

denotes the abundance of endmember indexed by i, ei is the endmember spectrum,
and ϵ represents the noise attributed to the image, for instance the additive noise.

The components denoted as ai for each pixel compose a vector with k elements.
Such vector has two constraints in the problem of HU. The first one is the abundance
nonnegativity constraint, which dictates that all percentages of abundances cannot be
lower than zero. Furthermore, the abundance sum constraint requires the sum of the
entire vector for all pixels to be equal to 1.

Though the model itself is relatively simple and offers acceptable approximation
for scattered spectra in many real scenarios, such model has its limitations in situa-
tions when the collected light is refracted or disturbed by various materials, difficult
acquisition conditions or any medium such as water or atmospheric compositions.
The assumption that all interactions among endmembers are linear usually does not
allow to perform satisfactory unmixing.
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To overcome such problems the NMM model accounts for interaction between end-
members that are outside the span of linear unmixing methods. It incorporates but is
not limited to effects such as material contamination, noise atmospheric conditions,
shading, overlapping spectra,

The NMM incorporates bilinear models which are designed to address the non-
linearity inherently present in many real-world applications, where complex vary-
ing illumination conditions and material interactions on microscopic level hinder ac-
curate HU. The methods encapsulate constrained nonnegative matrix factorization
techniques and its modifications and generalized bilinear models [89], for complete
overview of different HU techniques, please see Chapter 4.
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Chapter 2

Contribution

This doctoral thesis focuses on improving the analysis of hyperspectral images by
addressing key challenges across the entire machine learning workflow, from data
preparation to model deployment. The research tackles critical issues in HU and
broader HSI analysis, including unbiased validation, the scarcity of labeled training
data, and the development of effective algorithms for feature extraction and dimen-
sionality reduction. The included works collectively address these challenges through
innovative approaches, contributing significantly to the field and advancing its prac-
tical applications.

The research begins by tackling the problem of biased model evaluation, often
caused by spatial correlations in hyperspectral imagery. The first contribution intro-
duces a method to combat information leakage by ensuring clear separation between
training and test data. This work proposes a rigorous data splitting and validation
strategy that prevents information leakage between training and test sets, avoiding
overly optimistic performance assessments and setting a new standard for evaluat-
ing unmixing techniques. This approach ensures fair and trustworthy assessment of
model performance.

Another major focus addresses the challenge of limited labeled data for supervised
learning in hyperspectral unmixing. The impact of training set size on the quality
of abundance estimation is carefully analyzed through systematic experiments. This
study highlights the sensitivity of deep learning models to the availability of labeled
data, providing insights into the robustness of these models and their dependency on
data availability. The findings offer valuable guidance for designing robust models in
data-scarce environments.

Building upon advances in deep learning, this research explores the potential
of deep ensembles, which combine the strengths of multiple convolutional models.
This approach enhances hyperspectral data unmixing performance by integrating
supervised fusing methods and proposing a novel augmentation technique. The result
is a robust framework that outperforms traditional methods and provides a scalable
solution for handling hyperspectral imagery.

Further advancing the field, this thesis benchmarks state-of-the-art deep learn-
ing methods for hyperspectral image analysis and proposes new model architectures
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designed to improve unmixing accuracy. A recap of multibranch convolutional neu-
ral networks from previous PhD Candidate research is presented, which integrates
spectral, spatial, and spectral-spatial features for unmixing tasks. These multibranch
architectures are treated as state-of-the-art approaches in the field. Note: The work
on multi-branch CNNs has started while working on the PhD Candidate’s Master’s
thesis, and has become a point of departure to the works presented in this dissertation.

Furthermore, this work utilizes graph convolutional neural networks (GCNNs) to
tackle unmixing challenges, comparing their performance against established multi-
branch models and other literature-based state-of-the-art approaches. The multi-
branch architecture demonstrates superior performance in abundance estimation via
the fusion of spectral and spectral-spatial features extracted via 1D, 2D, and 3D
convolutional branches, yielding statistically significant improvements in root mean
square error (RMSE) and root mean square abundance angle distance (rmsAAD)
metrics across multiple datasets. However, ablation studies revealed that the com-
bination of 1D and 3D branches provides the most significant improvements, while
the 2D branch addition offers no statistically distinguishable benefits due to redun-
dancy and insufficient spatial discrimination. Notably, GCNNs achieve comparable
HU performance to state-of-the-art architectures despite having significantly fewer
trainable parameters and simpler architectural design. Beyond their effectiveness in
unmixing, GCNNs demonstrate marked advantages in training efficiency, converg-
ing more rapidly and requiring substantially less training time compared to deep,
multi-branch counterparts. This computational efficiency, combined with their lower
architectural complexity, positions GCNNs as particularly attractive for deployment
on resource-constrained platforms such as satellites. Additionally, the interpretabil-
ity of GCNN architectures offers unique advantages for explainable AI approaches in
remote sensing, while their robustness to noise and deployment versatility make them
highly suitable for practical applications in operational and edge environments.

Additionally, this work introduces CANNIBAL, a novel non-parametric feature
selection method that addresses the critical challenge of hyperspectral data dimen-
sionality. This method leverages unsupervised clustering of inter-band dependencies
to identify most informative bands, significantly reducing data complexity without
sacrificing model quality. Statistical analysis through pairwise Wilcoxon tests over
benchmark datasets confirmed that configurations with more than 25 CANNIBAL-
selected bands perform statistically equivalent to full-spectrum analysis, enabling up
to 85% data reduction (from 162 to 25 bands in the utilized Urban benchmark dataset)
while eliminating redundant spectral information. The method consistently outper-
forms other feature selection approaches with statistical significance while requiring
significantly fewer features, parameters, and demonstrating substantial practical value
for computational efficiency and storage optimization in operational hyperspectral
systems.

Finally, this work addresses the practical deployment challenges of deep neural
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networks through quantization analysis. The research evaluates quantization capabil-
ities with real-life data, examining how quantization affects model accuracy, latency,
and memory footprint under practical deployment scenarios. The quantization ap-
proach achieves substantial storage savings, reducing the full-precision model from
25 MB to 2.5 MB with employed optimization (90% overall reduction). Such sig-
nificant compression enables efficient deployment on satellite systems and embedded
platforms with limited memory and bandwidth.

Overall, these contributions form a complete, end-to-end framework for hyper-
spectral image analysis—from data preparation and feature selection to model devel-
opment, evaluation, optimization, and deployment. This dissertation emphasizes the
importance of developing techniques that are not only accurate and robust but also
practical for real-world Earth observation scenarios. This body of work demonstrates
the field’s evolution, bridging theoretical advancements with applied solutions while
addressing critical deployment considerations through quantization and model opti-
mization techniques. The research not only advances the scientific understanding of
hyperspectral unmixing but also delivers practical tools and methods for operational
Earth observation applications.
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2.1 Published Works Included in This Thesis

Below, all of the published articles that are related and included in this thesis are
listed coupled with short description of each publication:

• Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, and
Jakub Nalepa. “Unbiased Validation of Hyperspectral Unmixing Algorithms.”
In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Sym-
posium, pp. 7344-7347. IEEE, 2023 [235].
CORE ranking: C.

This article tackles the information leakage due to spatial correlations in an
input HSI, compromising the validation of techniques using spatial informa-
tion. To address this, a new algorithm is proposed for unbiased validation,
ensuring separate training and test samples. Experiments reveal that random
sampling overestimates algorithm performance, highlighting the importance of
this rigorous validation method.

In this work, we focus on establishing non-overlapping training and testing
data splits over a single hyperspectral image. This is of critical importance,
as incorrectly designed validation procedures may easily lead to overly opti-
mistic estimations of the model’s generalization capabilities, as shown in [176].
The proposed algorithm has three additional advantages: i) it is easily pa-
rameterizable, i.e., allows us to specify a variable size for training and test
splits, ii) it incorporates the possibility of generating multiple folds to simulate
cross-validation scenario, and iii) it allows us to sample training and test splits
encapsulating spectral as well as spatial features by pixel-wise and patch-wise
sampling. In Figure 2.1, we present the visualization of such sampling strategy
with pixel-wise approach.
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Figure 2.1: Visualization of training (green shade) and test subsets
sampled from the Urban HU scene. The region where the borders
between training and testing sets meet are magnified. Those edge
pixels (in violet and red) are discarded and not included in neither
set, as they would induce information leak. This figure was included

in our publication in [235].

In our experiments, we utilized three widely-researched HU benchmark datasets,
i.e., Samson (Sa, 95× 95, containing 156 bands), Urban (Ur, 207× 307, 162
bands) and Jasper Ridge (JR, 100× 100, 198 bands) [287]. The Sa dataset
encapsulates three endmembers: #1 Soil, #2 Tree and #3 Water, for Ur six
endmembers are incorporated: #1 Asphalt, #2 Grass, #3 Tree, #4 Roof, #5
Metal, and #6 Dirt, finally, for JR, four targets are utilized: #1 Road, #2
Water, #3 Soil, and #4 Tree. In the experiments, we incorporate 30-fold Monte
Carlo cross-validation method, and sample 30 test sets that do not change with
the variation of the training set size.

From the experiments, we conducted that random sampling results are overly
optimistic for all benchmark datasets. Furthermore, the errors obtained for our
proposed non-overlapping sampling went up by around 550% larger than for the
formerly mentioned method showing that there indeed exist an information leak
between the training and testing sets. Such leakage compromises the validity
of the results and undermines the effectiveness of the method as a reliable
benchmarking tool.

Contribution of the PhD candidate:



10 Chapter 2. Contribution

The PhD Candidate was responsible for executing the literature review, con-
ducting the experiments required in this work, and (together with other co-
authors) worked on preparation of the manuscript including visualizations, ta-
bles and descriptions of the results.

• Lukasz Tulczyjew and Jakub Nalepa. “Investigating the impact of the train-
ing set size on deep learning-powered hyperspectral unmixing.” In 2021 IEEE
International Geoscience and Remote Sensing Symposium IGARSS, pp. 2024-
2027. IEEE, 2021 [238].
CORE ranking: C.

This work addresses the problem of limited labeled training data for supervised
HU. In particular, we investigate how the size of the training dataset affects the
performance of DL models for HU. Our experiments focus on understanding and
quantifying the impact of training set size on the abundance maps extracted by
DL models. This aspect is pivotal in practical supervised learning for hyperspec-
tral data analysis, as capturing high-quality GT labels is extremely challenging.
Acquiring GT data typically requires labor-intensive field campaigns involving
precise geo-referencing, expert annotations, and often the use of sophisticated
and costly instruments. Moreover, the annotation process is prone to human
error and subjectivity, particularly when it involves manual interpretation of
complex spectral signatures. In many real-world scenarios, environmental vari-
ability and limited accessibility of regions of interest further complicate reliable
data collection. As a result, ground truth datasets for hyperspectral unmix-
ing are often limited in size and may not fully capture the variability present
in the scene, which can significantly hinder the training and generalization of
deep learning models. Therefore, understanding how the size and quality of the
training dataset influence model performance is crucial for designing practical
and effective HU solutions. Using two conceptually different architectures—a
Convolutional Neural Network (CNN) and a Deep Convolutional Autoencoder
(DCAE)—we investigate how varying the size of training datasets impacts un-
mixing accuracy.

From our experimental study we conducted the key findings as following:

– Very small training datasets (amounting to ≤6% training examples of total
available data) result in poor unmixing performance.

– Increasing the dataset size significantly improves performance up to a mag-
nitude of 33% available data, beyond which further improvements plateau
in terms of quality of the abundance estimation.

– Cube-based models (which incorporate spatial information) generally out-
perform pixel-based models while performing HU.
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The publication employs established hyperspectral datasets (JR and Ur) and
quantitative metrics like RMSE defined in Equation 2.1 and rmsAAD formu-
lated in Equation 2.2, to evaluate model performance. The findings emphasize
the need for cautious dataset preparation and suggest that optimal training
data sizes can mitigate the costly manual annotation process without sacrific-
ing model quality.

RMSE =

√∑N
i=1(ai − âi)2

N
, (2.1)

where N is the number of pixels in the test set, a and â represent the true and
predicted unmixing vectors. The rmsAAD measure is:

rmsAAD =

√√√√∑N
i=1 arccos( a⊤

i âi

∥ai∥∥âi∥ )
2

N
. (2.2)

Table 2.1: The results of the Friedman statistical tests followed by
the Dunn’s multiple comparisons tests for (a) Jasper Ridge and (b) Ur-
ban, obtained for rmsAAD. We indicate the pairs (a–b, where a and
b are the percentage of all training pixels, in %) for which the means
are significantly different (at p < 0.05). This table was also utilized in

the PhD Candidate’s work in [238].

Variant Set Pairs

Pixel-based CNN (a) 1–13, 1–33, 1–66, 1-100, 6–33, 6–66, 6–100, 13–66, 13–100
(b) 1–33, 1–66, 1–100, 6–66, 6–100, 13–100

Cube-based CNN (a) 1–13, 1–33, 1–66, 1–100, 6–33, 6–66, 6–100, 13–66, 13–100
(b) 1–33, 1–66, 1–100, 6–66, 6–100, 13–66, 13–100

Pixel-based DCAE (a) —
(b) 1–33, 1–66, 1–100

Cube-based DCAE (a) 1–13, 1–33, 1–66, 1–100, 6–66, 6–100
(b) 1–100

To statistically assess the influence of training set size on model performance,
we applied the Friedman test followed by Dunn’s post-hoc multiple comparisons
test on the rmsAAD metric. These non-parametric tests allow us to evaluate
whether the differences in performance across different training set sizes are
statistically significant. The results, summarized in Table 2.1, highlight which
pairs of training set sizes (expressed as percentages of all available pixels) yield
significantly different results at a confidence level of p < 0.05. Notably, for
both Jasper Ridge and Urban scenes, the pixel-based and cube-based CNN
models exhibit significant differences across a wide range of training percentages,
particularly when comparing the smallest training sizes (e.g., 1%) to larger ones
(e.g., 66% or 100%). This indicates a strong dependency of CNN-based models
on the volume of training data. In contrast, the DCAE models, especially
the pixel-based variant, show fewer significant pairwise differences, suggesting
a higher level of robustness to limited training data. These findings reinforce
the importance of dataset size in hyperspectral unmixing and underline how
different deep learning architectures respond to training data scarcity.
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This research provides valuable insights, e.g., minimal magnitudes of training
sets for the most well established HU benchmark datasets, for training DL
architectures in scenarios with limited labeled data, especially in real-world
hyperspectral imaging applications.

Contribution of the PhD Candidate:

The PhD Candidate performed the literature review, preparation of datasets
and experimental setup, performed the experiments and analyzed the results.
Together with the co-authors, the PhD Candidate prepared the manuscript
including the visualizations and tables.

• Jakub Nalepa, Michal Myller, Lukasz Tulczyjew, and Michal Kawulok. “Deep
ensembles for hyperspectral image data classification and unmixing.” Remote
Sensing 13, no. 20 (2021): 4133 [178].
Impact factor: 5.349. Ministerial score (points): 100.

This study introduces deep ensembles combining advancements in convolutional
models with a supervised fuser for output aggregation. A novel model augmen-
tation technique is also proposed, injecting Gaussian noise into model weights to
create new networks. Experiments demonstrate that these deep ensembles out-
perform traditional models and fusion methods in hyperspectral classification
and unmixing.

In this work, we introduced a new deep ensemble methods that draw upon the
strengths of multiple convolutional architectures for hyperspectral segmentation
and unmixing. Furthermore, we proposed a supervised fuser, which accurately
merges the outputs from these individual base learners. Also, a new model
augmentation procedure in which Gaussian noise is injected into the weights of
the models was introduced. This approach enables the synthesis of additional
network instances derived from the original model, without compromising its
essential characteristics—such as its learned feature representations, spectral-
spatial sensitivity, and overall predictive behavior. These core properties ensure
that the augmented models remain functionally similar to the original, allowing
for the generation of meaningful ensemble predictions or robustness analysis
while preserving the integrity of the original model’s knowledge.

We carried out extensive experiments concerning both classification and un-
mixing tasks and observed that our deep ensembles consistently outperform
standard spectral or spectral-spatial deep networks. We also compared our
approach to traditional ensembles that employ voting or averaging and found
that our supervised fusion strategy offers marked significant improvements in
hyperspectral image analysis.

In this research our contribution incorporates heterogeneous ensemble methods,
which encapsulate Convolutional Neural Networks (CNNs) with both, spectral
and spatial dimensions to tackle the problems of hyperspectral segmentation
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and unmixing. In the task of hyperspectral classification our base models con-
stitute spectral 1D CNN network, a 2.5D-CNN architecture [69], and 3D-CNN
model [180]. The former method performs pixel-wise classification, whereas the
last two models incorporate the spatial neighborhood context into the input
features, hence allowing us to obtain patch-wise prediction. The distinction
between the last two models is that the 2.5D architecture extends its kernel
throughout the entire electromagnetic spectrum and the 3D model has a fixed
filter length in all dimensions equal to 3, thus allowing us to extract fine-grained
spectral relations, based on the receptive field of its kernels. In the problem of
HU, we operate on pixel- and patch-wise paradigms and utilize models intro-
duced in [112], [278], both the pixel- and cube-based variants of DCAEs. It is
worth emphasizing that all models could be decomposed into two underlying
parts, i.e., the feature extractor which incorporates convolutional layers, and
the predictor module, which is responsible of transforming the activation maps
into interpretable output that is problem specific. For classification the number
of output neurons is equal to the number of classes, whereas for unmixing, the
number of endmembers dictate the size of output activations.

Our thorough experimental process and findings prove that employed mod-
els allow us to improve existing State-Of-The-Art (SOTA) models and other
classical ensemble methods. Finally, we provide a clear and open-source for-
mat of our development and our algorithms are publicly available at https:

//github.com/ESA-PhiLab/hypernet/tree/master/beetles.

In our experimental findings, we observed that the spectral 1D-CNN consis-
tently achieved higher classification accuracy and outperformed both the 2.5D-
CNN and 3D-CNN models. We attribute this finding to the scarcity and limited
diversity of training samples, which can lead large-capacity networks to over-
fit and thus not generalize effectively, especially considering noise injection to
the trained models. We further noted that if the training set size becomes
larger, a spectral-spatial 3D-CNN is capable of markedly surpassing the 1D-
CNN approach by leveraging both local spatial neighborhoods and rich spectral
information for accurate class identification. We also recognized that the ob-
stacle of insufficient labeled data can be addressed with a variety of established
strategies, including transfer learning and data augmentation, as these methods
have proven particularly effective in earlier research [123].

In the HU experiments, we observed that expanding the training sets generally
strengthens the performance of DCAEs, yet only marginal improvements occur
once we move beyond a certain threshold (i.e., when using the entire sets or 66%
randomly selected samples). We also found that constructing heterogeneous en-
sembles enhances unmixing for all considered training sizes, with the Random
Forest (RF) fuser consistently achieving the best results. We also noted that in-
creasing the size of the training data mitigates the limitations of weaker models

https://github.com/ESA-PhiLab/hypernet/tree/master/beetles
https://github.com/ESA-PhiLab/hypernet/tree/master/beetles
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trained on small ground-truth sets. Moreover, our experimental findings con-
firm that the proposed ensembles outperform standard hyperspectral unmixing
techniques.

Because DCAE is an unsupervised approach, we concluded that creating aug-
mented versions of DCAEs would be less beneficial, as there is no straightfor-
ward way to utilize supervised fusers for integrating the predictions of both
unaltered and perturbed unsupervised models. Our initial tests also implied
that averaging the outputs of the original and noise-injected 1D-DCAEs did
not yield observable enhancements.

Nonetheless, injecting Gaussian noise proved to substantially boost the general-
ization abilities of 1D-CNNs for both analyzed datasets, allowing us to construct
high-performing ensembles from relatively weak individual models. We believe
that this type of ensemble learning—coupled with our model augmentation tech-
nique—could accelerate the application of CNN-based unmixing methodologies
in scenarios where the availability of labeled training data is severely limited or
collecting new examples is impractical.

Contribution of the PhD Candidate:

The PhD Candidate was responsible for all aspects of the hyperspectral un-
mixing research, including implementing SOTA models from literature, devel-
oping and applying noise augmentation techniques, training all unmixing mod-
els, conducting all experiments, collecting and analyzing results, and preparing
the manuscript sections related to hyperspectral unmixing. The PhD Candi-
date also contributed to the literature review, dataset preparation, experimental
setup design, and collaborated with co-authors on manuscript preparation in-
cluding visualizations and tables for the complete study.

• Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, and
Jakub Nalepa. “A multibranch convolutional neural network for hyperspectral
unmixing.” IEEE Geoscience and Remote Sensing Letters 19 (2022): 1-5 [233].
Impact factor: 4.0. Ministerial score (points): 140.

Deep Machine Learning Models for HU:

This work addresses the challenge of HU, a critical task in analyzing hyperspec-
tral data. Building on the success of deep learning, which has outperformed
traditional methods and is suitable for deployment on Earth observation satel-
lites, we propose a multibranch convolutional neural network that integrates
spectral, spatial, and spectral-spatial features. Experimental results, supported
by an ablation study, show that our approach surpasses existing techniques,
achieving superior fractional abundance estimation. Additionally, we examined
the impact of reduced training sets on algorithm performance and robustness to
noise, recognizing the practical difficulties of obtaining extensive ground-truth
datasets in emerging Earth observation scenarios. To tackle the task of HU
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in our approach we utilize the concept of multibranch architectures. We uti-
lize different combinations of fusing features based on three possible domains:
spectral, spatial and spectral-spatial.

In this work, we investigate the possibility of utilizing convolutional layers and
fuse spectral, spatial and spectral-spatial features to tackle the task of HU. In
our experiments, we proved that incorporating such methodology allows us to
outperform other SOTA models and provide high quality fractional abundances.
Furthermore, we analyzed the influence of varying training set sizes on the
generalization capabilities of DL models and the impact of noise injection on
the robustness of such methods.

The first variation incorporates three 1D convolutional layers and max pooling
operations with only spectral features and performs pixel-wise prediction. Sub-
sequently, the 2D model incorporates patch-wise input and encapsulates five
3-dimensional kernels, spanning across the entire spectral dimension, hence the
spectral features extracted from this axis are limited and constrained to a single
Hadamard product, since there is no movement of filter in this domain. The
kernel convolves over the spatial local neighborhood of the central pixel. Finally,
the 3D variant uses three blocks, where each one incorporates two layers with
3D convolution. It extracts spectral-spatial features by sliding over all of three
dimensions of the input cube. The output of every module is concluded with a
regressor part that incorporates 3 consecutive fully-connected layers, where the
number of last activations is equal to the number of endmembers in the image.
For non-linearities we utilize the ReLU activation function.

We further extend the already defined architectures by introducing more ar-
chitectural variations. First, we utilize a model with dimensionality reduction
via two additional 3D convolutional layers without padding. We refer to it as
MB-DR. Furthermore, based on such architecture, we add residual connections
to accelerate the process of training and improve the gradient flow for deeper
layers (MB-Res). Finally, keeping the last modifications, we extend the train-
ing scheme to incorporate two-step approach: i) train each branch separately
and ii) fine-tune the entire model or only the regressor module. In ii), the
first approach incorporates a pre-training the feature extractor, named MB-
PT, whereas when training only the regressor part, thus this approach may be
considered as transfer learning, we refer to it as MB-TL. In the experiments,
we focus on three well-known HU benchmark datasets, i.e., Samson, Urban and
Jasper Ridge. Furthermore, we sample 30 tests sets via Monte Carlo cross-
validation strategy that remain constant when changing the training set size for
each benchmark.

The experiments showed that 1D and 3D modules provide the best performance
in terms of the quality of HU. When combining 2D and 3D branches there is
no statistically significant improvement when compared to the 3D convolution
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model. Such phenomenon could be because of the fact that additional 2D
convolution does not introduce any new informative context nor features during
the fusion step. The 3D convolutional layers alone provide all the required data
to properly estimate the abundances of the input cube. Furthermore, we observe
noticeable improvements in HU when spectral and spatial-spectral features are
fused together. Finally, within the noise injection experiments, we showed that
our proposed models are robust against various difficult acquisition conditions
and provide stable results. The experiments denoted that our method allows to
outperform other classic and DL method for HU.

Contribution of the PhD Candidate:

The PhD Candidate was responsible for all aspects of the multibranch con-
volutional neural network development for hyperspectral unmixing, including
designing and implementing the complete multibranch architecture with spec-
tral, spatial, and spectral-spatial feature fusion capabilities. The PhD Candi-
date developed all architectural variations, implemented the two-step training
approach with pre-training and transfer learning schemes, conducted compre-
hensive experiments across benchmark datasets (Samson, Urban, Jasper Ridge),
performed Monte Carlo cross-validation with 30 test sets, analyzed the impact of
varying training set sizes and noise injection on model robustness, conducted ab-
lation studies, collected and analyzed all experimental results, and contributed
to the complete manuscript including visualizations and tables. The PhD Can-
didate also contributed to the literature review and experimental setup design
in collaboration with co-authors.

• Lukasz Tulczyjew, Michal Przewozniczek, Renato Tinós, Agata M. Wijata,
and Jakub Nalepa. “CANNIBAL Unveils the Hidden Gems: Hyperspectral
Band Selection via Clustering of Weighted Variable Interaction Graphs.” In
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 412-
421. 2024 [240].
CORE ranking: A.

Feature (Band) Selection for (Not Only) Hyperspectral Data:

This work explores the potential of HSI, which captures rich information across
numerous spectral bands, yet poses significant challenges in terms of trans-
fer, storage, and analysis due to its high spectral and spatial dimensional-
ity. To address these issues, we propose CANNIBAL, a genetiC Algorithm
with liNkage learNIng with unsupervised clustering for hyperspectral BAnd
seLection. This novel band selection algorithm that leverages unsupervised
clustering of inter-band dependencies using Variable Interaction Graphs (VIGs),
which are generated as a byproduct of Genetic Algorithm with Linkage Learn-
ing (GAwLL) optimization. By capturing inter-band correlations, CANNIBAL
efficiently identifies and selects the most informative bands, substantially reduc-
ing data dimensionality without compromising the quality of downstream tasks.
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We validate CANNIBAL on two representative HSI use cases—hyperspectral
unmixing and segmentation—demonstrating that it consistently outperforms
existing band selection techniques in terms of performance and compression.
Its flexible design supports both parametric and non-parametric configurations,
making it adaptable to a wide range of Earth observation scenarios, particularly
when only certain spectral bands are relevant to specific tasks.

Figure 2.2: The flow diagram of proposed CANNIBAL method in-
cluded in our work [240]. The start of the flow represents the HSI on
the upper left part. Subsequently, the GAwLL [230] is employed to ob-
tain the optimal solution with the inherently trained model MGAwLL

as well as the selected set of bands denoted as BGAwLL bands. Those
artifacts may be used directly, however, in our approach we utilize
the side product of this optimization, i.e., the weighted VIG, it un-
dergoes unsupervised clustering to detect the most related cliques of
bands. Such groups denote features that are highly correlated to each
other and convey similar information that may be redundant. Based
on this assumption and hypothesis, we select one band per cluster of
similar features, i.e., cannibalize all other bands within those groups.
Afterwards, we obtain B CANNIBAL bands and output our selected
features BCANNIBAL bands and the trained model MCANNIBAL. Fi-
nally, there is another alternative of obtaining adjustable model based
on bands generated by GAwLL algorithm, i.e., rejecting the embedded
GAwLL model and training from scratch basing on the selected bands,
this model is denoted as M ′

GAwLL. This figure was also utilized in the
PhD Candidate’s work [240].

The overall architecture and operational flow of the proposed CANNIBAL
method is illustrated in Figure 2.2. Starting from the input HSI, the GAwLL
algorithm [230] is first used to perform optimization and obtain both a trained
model MGAwLL and a corresponding subset of selected bands BGAwLL. While
these outputs may be used directly, our method instead exploits the weighted
Variable Interaction Graph (VIG) produced as a side product of GAwLL. This
graph is subjected to unsupervised clustering to identify tightly connected
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cliques of bands that are likely redundant due to high inter-correlation. Based on
this structure, one representative band is selected from each cluster, effectively
reducing dimensionality by cannibalizing redundant features. The final output
consists of the refined subset of bands BCANNIBAL and the associated trained
model MCANNIBAL. Alternatively, one may discard the embedded GAwLL-
trained model and retrain a new model M ′

GAwLL from scratch using only the
selected bands. This flexibility, highlighted in the diagram, underscores the
modular and adaptable nature of the CANNIBAL framework.

A key novelty of our approach lies in the utilization of the side product of
the GAwLL algorithm [230], namely the VIG, rather than relying solely on
the final optimal solution to the underlying optimization problem. This strate-
gic shift enables us to extract structural information about feature dependen-
cies, offering a new perspective on the band selection process. Moreover, the
CANNIBAL framework is designed to be highly modular: nearly every step
in the processing pipeline can be replaced with an alternative algorithm that
fulfills the same underlying function. For example, the clustering component
is flexible and can incorporate various algorithms, both parametric and non-
parametric, depending on the needs of the application or the desired level of
control over the output band count. The cannibalization step itself, which
selects a representative feature from each cluster, is also customizable; while
our default implementation selects the feature with the highest total similar-
ity, alternative statistical metrics such as intra-cluster variance or standard
deviation can be used instead. Additionally, the GAwLL component can be
substituted with any optimization technique capable of learning linkage struc-
tures or generating weighted interaction graphs as a side effect. We have eval-
uated CANNIBAL across multiple hyperspectral datasets, confirming its abil-
ity to generalize across different types of targets and endmembers. Finally,
we provide an open-source implementation of CANNIBAL, publicly available
at https://github.com/V-o-y-a-g-e-r/CANNIBAL/, to encourage further re-
search and application in the hyperspectral imaging community.

The experiments can be decomposed into two parts: i) HU utilizing Urban
benchmark dataset, incorporating six various endmembers and ii) hyperspec-
tral segmentation task with Pavia University benchmark dataset with 9 targets.
We compared our model with SOTA feature selection methods widely utilized
in remote sensing imagery. From the unmixing experiments we conducted that
CANNIBAL outperforms all baseline methods for most utilized metrics. Fur-
thermore, for hyperspectral segmentation our method also outperforms other
selected SOTA algorithms.

Contribution of the PhD Candidate:

The PhD Candidate was the primary architect responsible for designing and
developing the complete CANNIBAL algorithm framework, including the novel

https://github.com/V-o-y-a-g-e-r/CANNIBAL/
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approach of utilizing VIGs as byproducts of GAwLL optimization for hyperspec-
tral band selection. The PhD Candidate implemented the entire methodology
including the unsupervised clustering of inter-band dependencies, the “canni-
balization” process for selecting representative bands from clusters, and the
modular framework design supporting both parametric and non-parametric con-
figurations. The PhD Candidate conducted comprehensive experiments across
hyperspectral unmixing (Urban dataset) and segmentation (Pavia University
dataset) tasks, performed implementation and comparative analysis against
SOTA feature selection methods, analyzed all experimental results, developed
the open-source implementation available on GitHub, and contributed the com-
plete manuscript including visualizations, flow diagrams, and tables. The PhD
Candidate also contributed to the literature review and collaborated with co-
authors on manuscript refinement.

2.2 On the Reproducibility of Machine Learning Research

Ensuring reproducibility is a cornerstone of scientific progress, especially in the con-
text of ML, where methodological pitfalls such as data leakage, unreported random-
ness, or poor documentation can lead to overly optimistic and non-replicable results.
As emphasized by Kapoor et al. [109], reproducibility crises in ML-based science are
often driven by unnoticed data leakage, which can critically distort the validity of
conclusions in fields ranging from political science to biology. Their study outlines
a taxonomy of eight distinct types of leakage and finds evidence of reproducibility
problems in at least 17 scientific fields, affecting nearly 300 publications. The conse-
quences of such errors include inflated model performance and unjustified claims that
newer ML techniques outperform traditional statistical models—claims which often
collapse under rigorous reproduction attempts. These findings highlight the urgent
need for better reporting standards and reproducibility practices in ML research, such
as model info sheets proposed by the authors.

In light of this, we ensure full transparency and reproducibility in our work by
publicly releasing all relevant codebases, datasets (where licensing permits), model ar-
chitectures, and configurations. Each repository includes clear documentation, step-
by-step reproduction instructions, and references to corresponding publications:

• CANNIBAL: Band Selection via Clustering of Variable Interaction
Graphs
https://github.com/V-o-y-a-g-e-r/CANNIBAL/

Contains the full implementation of the CANNIBAL algorithm used for band
selection in hyperspectral imaging, along with scripts for running experiments
described in [240].

• Jakub Nalepa, Michal Myller, Lukasz Tulczyjew, and Michal Kawulok. “Deep
ensembles for hyperspectral image data classification and unmixing.” Remote

https://github.com/V-o-y-a-g-e-r/CANNIBAL/
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Sensing 13, no. 20 (2021): 4133 [178].
https://github.com/ESA-PhiLab/hypernet/tree/master/beetles

Includes deep learning models, experimental pipelines, and data processing
scripts for hyperspectral unmixing under varying dataset sizes.

• Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, and
Jakub Nalepa. “Unbiased Validation of Hyperspectral Unmixing Algorithms.”
In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Sym-
posium, pp. 7344-7347. IEEE, 2023 [235].
https://gitlab.com/jnalepa/hu_validation

Provides implementations of the training and testing pipelines, the proposed
non-overlapping sampling method as well as model architectures.

• Lukasz Tulczyjew and Jakub Nalepa. “Investigating the impact of the train-
ing set size on deep learning-powered hyperspectral unmixing.” In 2021 IEEE
International Geoscience and Remote Sensing Symposium IGARSS, pp. 2024-
2027. IEEE, 2021 [238].
https://github.com/ESA-PhiLab/hypernet/tree/master/beetles Includes
implemented and evaluated models, training and evaluation pipelines. Allows
for full experiments reproducibility.

• Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, and
Jakub Nalepa. “A multibranch convolutional neural network for hyperspectral
unmixing.” IEEE Geoscience and Remote Sensing Letters 19 (2022): 1-5 [233].
https://gitlab.com/jnalepa/mbhu

Provides implementations of all of the multi-branch architectures as well as the
literature baselines utilized in the study. We also include the required codebase
to run all experiments coupled with implemented metrics.

All repositories are open-source and freely available, with experiments configured
for reproducibility through fixed seeds, consistent preprocessing, and self-contained
evaluation scripts. By adopting these best practices, we align with the growing stan-
dards in ML research aimed at increasing transparency, trust, and long-term impact.

https://github.com/ESA-PhiLab/hypernet/tree/master/beetles
https://gitlab.com/jnalepa/hu_validation
https://github.com/ESA-PhiLab/hypernet/tree/master/beetles
https://gitlab.com/jnalepa/mbhu
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2.3 Published Works Not Included in This Thesis

1. Pablo Ribalta Lorenzo, Lukasz Tulczyjew, Michal Marcinkiewicz, and Jakub
Nalepa. “Hyperspectral band selection using attention-based convolutional neu-
ral networks.” IEEE Access 8 (2020): 42384-42403 [150].

Contribution of the PhD candidate:

The PhD Candidate was responsible for research and development of the pro-
posed method for feature, i.e., band selection. Furthermore, the PhD Candidate
was executing all experiments and gathering results. Moreover, the PhD Can-
didate was involved in writing the manuscript.
Impact factor: 3.367. Ministerial score (points): 100.

2. Jakub Nalepa, Michal Myller, Marcin Cwiek, Lukasz Zak, Tomasz Lakota,
Lukasz Tulczyjew, and Michal Kawulok. “Towards on-board hyperspec-
tral satellite image segmentation: Understanding robustness of deep learning
through simulating acquisition conditions.” Remote Sensing 13, no. 8 (2021):
1532 [172].

Contribution of the PhD candidate:

The PhD Candidate was responsible for conducting experiments and imple-
menting the investigated methods and the overall required codebase.
Impact factor: 5.349. Ministerial score (points): 100.

3. Lukasz Tulczyjew, Michal Kawulok, and Jakub Nalepa. “Unsupervised fea-
ture learning using recurrent neural nets for segmenting hyperspectral images.”
IEEE Geoscience and Remote Sensing Letters 18, no. 12 (2020): 2142-2146 [236].

Contribution of the PhD candidate:

The PhD Candidate’s work encompassed implementing the proposed unsuper-
vised method as well as other literature approaches, executing all experiments,
statistical analysis and partial writing of the manuscript.
Impact factor: 3.966. Ministerial score (points): 140.

4. Jakub Nalepa, Bertrand Le Saux, Nicolas Longépé, Lukasz Tulczyjew, Michal
Myller, Michal Kawulok, Krzysztof Smykala, and Michal Gumiela. “The hy-
perview challenge: Estimating soil parameters from hyperspectral images.” In
2022 IEEE International Conference on Image Processing (ICIP), pp. 4268-
4272. IEEE, 2022 [171].

Contribution of the PhD candidate:

The PhD Candidate was responsible for technical part of the challenge, i.e.,
implementation, establishing the scoring metric, providing tutorial notebooks
for competitors and was responsible for evaluating users’ submissions to assess
the reproducibility and correctness.
CORE ranking: B.
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5. Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux,
and Jakub Nalepa. “Graph neural networks extract high-resolution cultivated
land maps from Sentinel-2 image series.” IEEE Geoscience and Remote Sensing
Letters 19 (2022): 1-5 [234].

Contribution of the PhD candidate:

The PhD Candidate implemented the proposed algorithm as well as baseline
literature methods, performed all experiments and took part in construction of
the scientifc article.
Impact factor: 4.8. Ministerial score (points): 140.

6. Lukasz Tulczyjew, Michal Myller, Michal Kawulok, Daniel Kostrzewa, and
Jakub Nalepa. “Predicting risk of satellite collisions using machine learning.”
Journal of Space Safety Engineering 8, no. 4 (2021): 339-344 [237].

Contribution of the PhD candidate:

The work of PhD Candidate was concerning implementation and evaluation
of all of the utilized models and approaches for detecting satellite collisions.
Furthermore, the PhD Candidate was the main contributor during writing of
the manuscript.
Impact factor: 1.0. Ministerial score (points): 20.

7. Jakub Nalepa, Lukasz Tulczyjew, Michal Myller, and Michal Kawulok. “Hy-
perspectral image classification using spectral-spatial convolutional neural net-
works.” In IGARSS 2020-2020 IEEE International Geoscience and Remote Sens-
ing Symposium, pp. 866-869. IEEE, 2020 [180].

Contribution of the PhD candidate:

The PhD Candidate was responsible for executing the greater majority of exper-
iments, implementing the proposed approach as well as utilized augmentation
methods. Moreover, the PhD Candidate collected all results and created tables
in the manuscript.
CORE Ranking: C.

8. Tomasz Jastrzab, Michal Myller, Lukasz Tulczyjew, Miroslaw Blocho, Michal
Kawulok, Adam Czornik, and Jakub Nalepa. “Standardized validation of vehi-
cle routing algorithms.” Applied Intelligence 54, no. 2 (2024): 1335-1364 [103].

Contribution of the PhD candidate:

In this work, the PhD Candidate was responsible for implementing the Bench-
mark Generator that was utilized in the study for validation of functional and
non-functional abilities of the routing problem solvers. Furthermore, the PhD
Candidate took part in implementing a set of quality metrics that help to quan-
tify various aspects of solutions, such as their profitability.
Impact factor: 3.4. Ministerial score (points): 70.
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9. Tomasz Tarasiewicz, Lukasz Tulczyjew, Michal Myller, Michal Kawulok,
Nicolas Longépé, and Jakub Nalepa. “Extracting high-resolution cultivated
land maps from sentinel-2 image series.” In IGARSS 2022-2022 IEEE Inter-
national Geoscience and Remote Sensing Symposium, pp. 175-178. IEEE,
2022 [226].

Contribution of the PhD candidate:

The PhD Candidate took part in the ideation and implementation of the pro-
posed method for extracting high-resolution cultivated land maps from Sentinel-
2 image series.
CORE Ranking: C.

10. Tomasz Jastrzab, Michal Myller, Lukasz Tulczyjew, Miroslaw Blocho, Woj-
ciech Ryczko, Michal Kawulok, and Jakub Nalepa. “Particle swarm optimiza-
tion configures the route minimization algorithm.” In International Conference
on Computational Science, pp. 80-87. Cham: Springer International Publish-
ing, 2022 [104].

Contribution of the PhD candidate:

The PhD Candidate was involved in implementing the proposed method for
route minimization as well as executing all experiments presented in the manuscript.
CORE Ranking: A.

11. Lukasz Tulczyjew, Kinan Jarrah, Charles Abondo, Dina Bennett, and Nathanael
Weill. “LLMcap: Large Language Model for Unsupervised PCAP Failure Detec-
tion.” In 2024 IEEE International Conference on Communications Workshops
(ICC Workshops), pp. 1559-1565. IEEE, 2024 [232].

Contribution of the PhD candidate:

The PhD Candidate proposed and implemented the Large Language Model-
based method introduced in the manuscript. Furthermore, the PhD Candidate
was responsible for executing all experiments, statistical analysis and writing of
the scientific article.
CORE ranking: Co-located with ICC rank—B.

12. Vladimir Zaigrajew, Hubert Baniecki, Lukasz Tulczyjew, Agata M. Wijata,
Jakub Nalepa, Nicolas Longépé, and Przemyslaw Biecek. “Red teaming models
for hyperspectral image analysis using explainable AI.”. In ICLR 2024 Machine
Learning for Remote Sensing (ML4RS) Workshop (2024) [270].

Contribution of the PhD candidate:

The PhD Candidate was responsible for providing and training the required
top-ranked models for explanatory model analysis. Based on those models, the
read teaming methodology for hyperspectral image analysis was conducted.
CORE ranking: Co-located with ICLR rank—A*.
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13. Lukasz Tulczyjew, Ihor Biruk, Murat Bilgic, Charles Abondo, and Nathanael
Weill. “PCAPVision: PCAP-Based High-Velocity and Large-Volume Network
Failure Detection.” In Proceedings of the 2024 SIGCOMM Workshop on Net-
works for AI Computing, pp. 26-33. 2024 [231].

Contribution of the PhD candidate:

The PhD Candidate proposed the methodology for Packet Capture failure de-
tection and was responsible for implementing and conducting all experiments
presented in the manuscript. Furthermore, the PhD Candidate was involved in
writing of the scientific article.
CORE ranking: Co-located with ACM SIGCOMM rank—A*.

14. Bartosz Grabowski, Agata M. Wijata, Lukasz Tulczyjew, Bertrand Le Saux,
and Jakub Nalepa. “Soil Analysis with Very Few Labels Using Semi-Supervised
Hyperspectral Image Classification.” In IGARSS 2024-2024 IEEE International
Geoscience and Remote Sensing Symposium, pp. 407-411. IEEE, 2024 [80].

Contribution of the PhD candidate:

The PhD Candidate took part in ideation and implementation of semi-supervised
learning pipeline for elaborating deep learning models for multi-class hyperspec-
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Chapter 3

Background: Deep Artificial
Neural Networks

In this chapter, we describe the foundation of Deep Artificial Neural Networks (DNNs).
The first part encapsulates the mathematical formulation of the pivotal concepts and
data structures. In the subsequent subsections, we introduce more advanced modifi-
cations of standard DNNs like CNNs and Graph Neural Networks (GNNs).

3.1 Forward Propagation

A standard DNN operates as a composite function composed of multiple layers, each
performing a transformation on its input to eventually produce a prediction. In
the forward propagation process, input data—represented as samples—are passed
through the network layer by layer. Each sample is described by a set of features,
which constitute the dimensions of the input space and serve as independent vari-
ables in the model. These features are problem-specific and can vary significantly in
number, depending on the domain and task complexity.

However, as the number of input features increases, the model may struggle to gen-
eralize effectively due to the so-called curse of dimensionality [6]. This phenomenon
describes the exponential growth in computational complexity and data sparsity as
dimensionality rises, often leading to overfitting and degraded performance. In such
scenarios, the forward propagation process becomes less efficient, as the network must
process a high-dimensional input space, much of which may contain redundant or ir-
relevant information.

To mitigate these issues and improve learning efficiency, feature selection be-
comes crucial. Feature selection aims to reduce the dimensionality of the input space
by identifying and retaining only the most informative variables. This not only en-
hances model interpretability and training speed but also improves generalization. In
the literature, three main categories of feature selection approaches are commonly dis-
tinguished: (i) wrapper methods, which evaluate subsets of features based on model
performance; (ii) filter methods, which rely on statistical properties such as corre-
lation or mutual information; and (iii) embedded methods, which integrate feature
selection directly into the model training process [28], [108], [203]. By applying such
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techniques, the model can focus its forward computations on the most relevant data
dimensions, thereby reducing the burden of dimensionality and enhancing predictive
capability.

Similarly to the input data, predicted output is also problem-specific and can
be composed of any number of dimensions. It can also vary between continuous or
discrete values, coupled with necessary post-processing, e.g., thresholding.

The entire mechanism can be mathematically described as matrix multiplication,
where the input vector (for a single sample) or matrix (for an entire batch) is combined
with the weight matrix. The operation can be formulated as:

Z(l) = X(l−1)W(l) + b(l), (3.1)

where:

• X(l−1) is the input matrix to layer l, with shape (n, dl−1), where n is the batch
size and dl−1 is the number of features from the previous layer,

• W(l) is the weight matrix of layer l with shape (dl−1, dl),

• b(l) is the bias vector of layer l with shape (1, dl), and

• Z(l) is the pre-activation output of layer l.

3.2 Non-Linearity

The DNNs feed forward mechanism processes an input sample to obtain the model
prediction. Such mechanism, without any mathematical modifications defined in
Subsection 3.1, incorporates only linear operations thus is unable to model non-linear
relationships that can be inherently present in the data. To overcome this issue
and enable more complex data modeling, DNNs incorporate activation functions.
Those structures are utilized in both, forward and backward propagation. Without
activation functions, the model would only perform linear transformations of the
input, hence rendering itself with limited capability.

The formula with added activation function can be presented as:

A(l) = σ(Z(l)), (3.2)

where σ(·) denotes an element-wise non-linear activation function (e.g., ReLU,
sigmoid, tanh, see Subsection 3.2 for detailed formulas), and A(l) is the output (ac-
tivation) of layer l, which becomes the input for the next layer.

With the unprecedented development of DL, the number of different activation
functions is expanding rapidly. Each variation has its own advantages and use cases.
Below, we present the set of activation functions used across the models introduced
in this work. In addition to standard choices such as ReLU, Sigmoid, or Tanh,
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Figure 3.1: Sigmoid activation function (blue) and its derivative
(green) utilized during backward propagation.

we also employ task-specific or less common activation functions where appropriate,
depending on the architecture and optimization needs of each model.

The pivotal and one of the most known activation functions is called the sigmoid
function, it is depicted in Diagram 3.1. It can be characterized by a distinctive S-
shaped curve, which centers directly on 0.5 in its domain. The codomain spans from
0 to 1 both inclusive ranges. This characteristic allows to control the output values
and prevent from exploding gradient problem [14], [192].

The sigmoid activation function can be described as:

σ(x) =
1

1 + e−x
, (3.3)

where x is the input and e denotes the exponential function.
Another activation function that is widely utilized is hyperbolic tangent (tanh).

The output range is defined from −1 to 1, both inclusive. Its shape is presented in
Diagram 3.2.

The tanh nonlinearity can be mathematically formulated as:

tanh(x) = e2x − 1
e2x + 1. (3.4)

The tanh activation function is most commonly utilized in Recurrent Neural Net-
works (RNNs) [162]–[165], [266] and their successors with more advanced gating mech-
anisms, such as GRUs and LSTMs [40], [91]. This is primarily due to its ability to
center the activations around zero, producing outputs in the range [−1, 1]. Unlike the
sigmoid function, which outputs values in [0, 1], tanh enables more balanced gradients
during training, reducing the risk of biased updates and improving convergence. In
RNNs, where information is propagated across many time steps, tanh helps maintain
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Figure 3.2: Tanh non-linearity (blue) with its derivative (green).

signal strength over time, making it especially suitable for handling temporal de-
pendencies in sequences. Furthermore, both GRU and LSTM architectures explicitly
incorporate tanh in their update and output gates, leveraging its smooth non-linearity
to regulate memory cell values and improve learning dynamics in long-range sequence
modeling.

With the recent advancements in DL, most modern models have moved away from
traditional activation functions such as Sigmoid or Tanh, in favor of novel SOTA
alternatives. One of the main reasons behind this shift is the need to mitigate the
vanishing gradient problem [90]. This phenomenon occurs during backpropagation
when gradients become progressively smaller as they are propagated through multiple
layers, eventually approaching zero. Such behavior hinders effective learning and
slows convergence, especially in deep architectures. For example, the derivative of
the sigmoid function (see Figure 3.1) quickly saturates, reducing the gradient signal
to near-zero values.

Another related challenge is the exploding gradient problem, which arises when
large weight values in the forward pass cause activations and gradients to grow ex-
ponentially. This results in instability during training, making it difficult for the
optimization process to converge to meaningful local minima. These two issues —
vanishing and exploding gradients — both stem from the compounding effect of layer-
by-layer transformations in deep networks. Modern activation functions and normal-
ization techniques have been introduced to alleviate these issues, enabling deeper and
more stable model training.

The recent advancements lead to creating different modifications of Rectified Lin-
ear Unit (ReLU) function [170]. The ReLU nonlinearity can be formulated as:

ReLU(x) =

x, if x > 0

0, otherwise.
(3.5)
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Figure 3.3: ReLU activation function and its derivative marked in
blue and green colors.

This activation function owes its popularity by numerous reasons, one of them being
its simplicity and adaptability. In Figure 3.3, it is visible that the output gradient
denoted in green is constant and allows for smooth training by mitigating the explod-
ing as well as vanishing gradient problems [14], [90], [192]. However, it is important
to notice that when the output values are below or equal to 0, the gradient becomes
0 as well. In such situations, the training is impossible because the weight updates
are non-existing. This problem is referred to in literature as dying ReLU [155]. To
overcome this issue, there are numerous modifications of this pivotal activation func-
tion that allow for effective parameter updates, even when the output activations
are negative. There are worth mentioning variations of this function such as: Leaky
ReLU [260], Exponential Linear Unit [44], Parametric leaky version of a Rectified
Linear Uni (PReLU) [200], or Scaled Exponential Linear Unit (SELU) [200]. Each of
the mentioned non-linearities aim to improve ReLU’s stability during training, miti-
gate the mentioned issue for negative outputs, enhance smoothness of its derivative,
and adapt to a particular use case.

3.3 Backward Propagation

The backward propagation process is the foundation of training mechanism that
allows for adjusting the model to a particular task. It incorporates the process of
gradient descent [206]. Its main goal is to minimize the error calculated by comparing
the model output values with the expected targets, often referred to as ground-truth
(GT). The error can be computed using various functions, depending on the range
of values. It is worth emphasizing that there can be millions of trainable parameters
inside the model, thus the search space is highly complex and sensitive to tiny changes
in any dimension. Furthermore, one parameter is equal to one dimension in the
optimization space. Consecutively, weights are correlated to each other, meaning that
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changing one weight can affect the others, due to the way the gradient is computed
and applied during gradient descent process.

When the error is calculated in the output layer, the obtained partial derivatives
are used in the previous layers, continuing to the first one. In the gradient descent
method, the model is updated by subtracting a fraction of its magnitude against
the current weight values. In Subsection 3.4, we describe the most known and used
optimizers.

An optimizer in deep neural networks is an algorithm responsible for updating
the weights of the model based on the computed gradients during backpropagation.
Its goal is to minimize the loss function by iteratively adjusting the model parameters
in the direction that reduces prediction error. Optimizers determine how large the
update step should be (via the learning rate), how momentum or history of gradients
should influence updates, and how adaptive mechanisms should adjust learning dy-
namically. While the basic Gradient Descent method provides a foundational frame-
work, in practice, more advanced optimizers such as Adam, RMSprop, or Adagrad are
preferred due to their improved convergence speed, ability to escape local minima,
and robustness to sparse gradients [54], [116], [271]. These optimizers are key to
efficiently training deep networks, particularly in high-dimensional and non-convex
problem spaces.

3.4 Optimizers

Following an overview of the most commonly used and fundamental activation func-
tions and their significance in deep learning, in this section we focus on exploring
the core optimization mechanics of DNNs in greater detail. As previously mentioned,
a standard DNN can be viewed as a complex, composite function where each stage
involves two operations: matrix multiplication and addition, followed by a nonlinear
activation. Each stage corresponds to a specific layer in the network, each containing
its own set of parameters, typically referred to as weights. These weights are fine-
tuned during training using the backpropagation algorithm. This method is essential
for supervised learning and is based on the gradient descent optimization technique.

The most classic and known gradient descent method is referred to as stochastic
gradient descent (SGD). Because of the “stochastic” prefix, its main function is to
calculate and apply the gradient over a very small batch or usually a single sample.
Such phenomenon renders it as unstable and versatile based on the correctness of
the model over such small batch. The scaling factor which minimizes the effect of
full gradient magnitude is often referred to as η. This hyper-parameter is global,
i.e., affects all of the learnable parameters, hence is difficult to appropriately choose.

Another noteworthy optimizer is SGD with momentum [24]. The core concept of
this approach involves incorporating the gradients accumulated from previous itera-
tions when calculating the update for the current step. If the current gradient aligns
with the direction of the preceding gradients, meaning they share the same sign,
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the update step is amplified. Conversely, when the gradients have opposite signs,
momentum decreases the size of each update. This mechanism not only accelerates
the training process but also reduces fluctuations within the optimization landscape,
thereby preventing the overshooting of optimal points.

A variant of the previously mentioned method is known as the Nesterov accel-
erated gradient [24], representing another significant advancement in optimization
techniques. The fundamental distinction between this approach and the standard
momentum method is that instead of computing the gradient at the current position,
the optimizer takes an additional step in the direction of the accumulated gradient,
referred to as the velocity, before evaluating the gradient. This implies that the gra-
dient accumulated from prior iterations is used twice in determining the update step.
This strategy enables the optimizer to effectively preview the next step in the direc-
tion of the velocity, manage the gradient’s magnitude, and prevent overshooting the
minima.

The current growing preference for deep learning-based end-to-end solutions that
do not rely on any a priori task-specific knowledge stems from exponentially increas-
ing data growth rate [223]. Unsurprisingly, these methods are favored over manual
approaches due to their greater convenience and quicker implementation. Nonethe-
less, the swift expansion of data comes with several drawbacks. A significant challenge
is the existence of a large number of features that are difficult to interpret and cause
the previously mentioned curse of dimensionality [6]. When combined with frequent
data sampling, this leads to numerous redundant features where values either show
minimal variation or remain consistently at zero. This situation results in sparse
datasets, characterized by many features predominantly containing zeros. Such spar-
sity complicates the optimization of DNNs, as certain parameters are scarcely utilized
during the feed-forward phase. Consequently, the scaled-down gradients calculated
for these weights during the backward pass become almost negligible. To address
this issue, an adaptive gradient-based optimization algorithm known as Adagrad was
introduced in [54]. As previously discussed, Adagrad’s primary role is to adjust the
learning rate hyperparameter dynamically. It does so by reducing the update magni-
tude for frequently used features, thereby enforcing smaller updates. Conversely, for
less common weights—resulting from input feature sparsity—it increases the gradient,
making updates more substantial for those parameters.

Adadelta is another noteworthy gradient descent optimizer for DNNs, first pre-
sented in [271]. Its core innovation lies in addressing the key shortcoming of the
Adagrad method: Adagrad tends to make the learning rate shrink drastically over
time, owing to the continuous accumulation of squared gradients throughout training.
In contrast, Adadelta cleverly limits the influence of historical gradients by maintain-
ing an exponentially decaying average of squared gradients instead of storing their
entire sum. By doing so, it effectively “forgets” older updates at a controlled pace,
preventing the learning rate from diminishing too much as training progresses.

Beyond merely counteracting the steadily declining updates in Adagrad, Adadelta
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also enhances stability when training models on complex tasks, such as those involv-
ing deep or recurrent network architectures. By striking a balance between adapting
to recent gradients and not overemphasizing their long-term accumulation, this opti-
mization strategy can help models converge more reliably and tune their parameters
effectively across varying scales of features.

Beyond Adadelta, the RMSProp algorithm also tackles the challenge of a shrink-
ing learning rate inherent in Adagrad by regulating the sum of squared gradients in
a manner similar to Adadelta [206]. This approach ensures that gradients do not
diminish as training progresses, leading to more consistent updates for DNN param-
eters.

On top of these advancements, the Adaptive Moment Estimation (Adam) opti-
mizer introduced in [116] combines helpful ideas from both Adadelta and RMSProp
to counteract the issue of diminishing learning rates. In addition, Adam maintains
a memory of past gradients in the form of momentum, allowing it to adapt more
efficiently to the curvature of the loss landscape. This momentum-like aspect is par-
ticularly beneficial near saddle points, where gradients can be weak or oscillatory. By
keeping an exponentially decaying average of past gradients and their squares, Adam
can accelerate convergence while preserving the stability that comes from control-
ling learning rates, making it one of the most widely used optimization methods in
DL [83].

3.5 Convolutional Neural Networks

In the broader field of DL, convolution is a foundational mathematical operation at
the heart of CNNs [129]. Similar to traditional fully-connected neural architectures,
CNNs employ sets of learnable parameters to propagate inputs forward. However,
instead of relying on a single, full-scale matrix multiplication, CNNs make use of
smaller matrices, typically referred to as convolutional kernels or filters. These filters
are systematically shifted across the input activation maps, which differs from how
parameters are applied in standard matrix-to-matrix multiplication.

Each layered convolution can involve one or more of these filters, and the number
of filters is determined by a hyperparameter defining the model’s capacity to recognize
different features. The output generated by each filter is known as a channel or a
feature map. Mathematically, this “sliding” operation is usually performed by taking
an element-wise (Hadamard) product of the filter with a portion of the input, followed
by summing the product’s values to generate a single response in the feature map.

Importantly, the shape of the convolutional kernel is tied to the nature of the
input data. For 1D input signals (such as audio waveforms or other time series),
the kernel spans all input channels but shifts along a single spatial or temporal axis.
In contrast, image-based tasks rely on 2D filters, which move in both height and
width dimensions of the image, while 3D filters can be applied to volumetric data
or videos, shifting along three axes. This flexibility, combined with localized weight
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sharing, allows CNNs to capture and learn hierarchical patterns in the data far more
efficiently than standard fully-connected layers.

As an example, the 1D convolution operation can be mathematically formulated
as:

ol, f
z = ζ(bl, f +

C∑
c=1

D∑
d=1

θl, f
c, d · i

l−1
c, z+d), (3.6)

where i and o characters denote the input and output values within specific locations
in the matrices. Additionally, θ and b demonstrate the adjustable weights, i.e., the
filter and bias weights. Consequently, the C symbol shows the number of input
feature maps and c points at a specific channel. The size of the filter is denoted by
D. Finally, the l and f characters allow us to index the layer and its corresponding
kernel, whereas ζ denotes the non-linearity function. This formula can be extended by
adding more dimensions and allows to create 2- and 3D convolutional layers. In the
Figure 3.4, we provide a visualization of a single convolutional layer and demonstrate
how spatial and spectral features are aggregated in the subsequent layer, i.e., output
activation map.

Input: 6× 6× 3

3× 3 Kernel

Output: 4× 4× 1

Channel 1 Channel 2 Channel 3

Convolution Process:

1. Slide kernel across all channels
2. Multiply & sum elements 3.6
3. Produce single output value

Figure 3.4: Simplified CNN showing how a 3× 3 kernel convolves
across 6× 6× 3 input to produce a single 4× 4 feature map. Input
channels are colored in blue, whereas the output feature map is de-
picted in red. Finally, we highlight a single convolution operation in

orange.
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The size of each kernel’s coverage along its dimensions can be adjusted as a hy-
perparameter, typically chosen based on the specific requirements of the problem at
hand. This region that the kernel covers is often referred to as the receptive field. Be-
yond determining the kernel size, each convolutional layer also comes with additional
hyperparameters that can significantly influence performance.

For instance, the stride specifies how many steps the filter “jump” as it slides
across the input. A stride set to 1 means the kernel shifts one unit or pixel at a
time, creating closely spaced convolution outputs. Increasing the stride reduces the
total number of convolution operations, which in turn decreases the dimensions of
the output feature maps.

Another key hyperparameter is padding. By appending extra values around the
edges of the input data, one can preserve the same output size even when using larger
strides or larger kernels. Although zero-padding is the most common (often referred
to as “same” padding in some frameworks), other methods like adding mean, median,
or symmetric padding are possible [86], [139].

Additionally, the kernel’s layout itself can be modified through dilation, giving
rise to dilated (or atrous) convolutions [139], [269]. In this setup, the elements of
the kernel are spaced out, allowing the network to capture longer-range relationships
without increasing the total number of learnable parameters. This approach can be
especially useful in tasks like semantic segmentation or time-series analysis, where
it is advantageous to expand the effective receptive field without overly inflating
computational costs [140].

In most deep learning architectures, convolutional layers are often paired with
pooling layers [210]. The principal reason for including pooling is to further reduce
the dimensions of the output feature maps, thereby introducing a regularizing effect
and speeding up the training, especially when dealing with large, high-resolution
inputs. While pooling layers operate with a window-sliding mechanism similar to
that of convolution, they differ in a key respect: instead of performing element-wise
multiplications followed by a sum, a pooling layer calculates statistical measurements
based on the values enclosed by its spatial window [76]. The most widely used types
include max pooling, which selects the maximum value within the window, and average
pooling, which computes the mean of the values. These operations help reduce spatial
dimensions and control overfitting by providing a form of translation invariance. A
related variant, known as global pooling, takes this a step further by aggregating the
maximum or average over the entire spatial dimension, preserving only the channel
information and thus reducing the dimensionality more drastically.

Another notable benefit of pooling layers is their contribution to spatial trans-
lation invariance [210]. By lowering the resolution of intermediate representations,
small shifts or minor changes in the input data have less impact on the network’s out-
put. This is particularly advantageous for classification tasks involving high-quality
images, where the precise position of a feature should not significantly alter the final
prediction [126].
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3.6 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are particularly effective whenever the data in-
volves sequential or time-dependent patterns, such as in natural language processing
(NLP) [162]–[164], [266]. Unlike conventional deep neural networks, RNNs incorpo-
rate an internal short-term memory mechanism that retains information from prior
time steps, thus introducing an awareness of historical context. An illustrative appli-
cation is sentiment analysis [214], where each sentence must be assigned a specific label
reflecting its overall attitude. The key challenge lies in capturing the significance of the
entire sequence of words, which standard DNNs often struggle to manage due to their
lack of contextual memory. As demonstrated in numerous industries—ranging from
consumer feedback and investment forecasting to security details [110]—effectively
performing sentiment analysis can provide valuable insights that inform strategic de-
cisions. Another important application of RNNs is in the analysis of satellite data,
particularly for processing spatial-temporal sequences [277]. Satellite imagery and
remote sensing data are often collected at regular intervals, forming time series that
reflect dynamic changes in land cover, vegetation health, urban growth, or environ-
mental conditions. RNNs, along with their gated extensions such as Long Short-Term
Memory (LSTM) [91], [92] and Gated Recurrent Units (GRU) [40], [41], are especially
well-suited for modeling such temporal dependencies due to their internal memory
structure. For instance, in precision agriculture, those architectural modifications
can be used to monitor crop growth patterns and predict crop semantic segmentation
by analyzing multispectral data over time, as proposed in the PhD Candidate’s work
in [236]. Similarly, in climate monitoring, they can help detect gradual environmental
changes or extreme weather events [32]. These capabilities make RNNs a powerful
tool for Earth observation and environmental management tasks, where understand-
ing temporal context is essential. Each of these models adds gating components to the
recurrent cell structure, maintaining more relevant information for longer sequences
and mitigating both vanishing and exploding gradients. By better preserving his-
torical data while regulating step-to-step updates, these architectures offer improved
performance for tasks involving extended temporal or sequential inputs. In our work
outlined in [236], we developed an unsupervised feature extraction technique based
on an autoencoder, where the encoder operates through an RNN. The architecture
is depicted in Figure 3.5. The embedded representation produced by this encoder is
then transformed back into the original domain via a decoder constructed from multi-
ple fully connected layers. Once training is finalized, the decoder is removed, and the
compressed embeddings are passed to any desired clustering method. Experimental
outcomes highlight that this approach achieves high-quality segmentation even with-
out any ground-truth labels, frequently exceeding or matching the performance of
state-of-the-art solutions, such as the 3D convolutional autoencoder model proposed
in [175].
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Standard RNNs frequently encounter considerable optimization challenges related
to vanishing and exploding gradients, as documented in [14], [192]. These complica-
tions emerge when modeling extended temporal dependencies, causing gradients to
either shrink toward zero or magnify excessively over successive time steps. A num-
ber of mitigation strategies have been explored, including well-known options such as
L1 and L2 regularization [78]. In general machine learning settings, these techniques
limit model overfitting by pushing certain parameters partially or entirely to zero,
for L2 and L1 regularizers, respectively [184]. This also facilitates implicit feature se-
lection, as weights that are driven toward zero effectively deactivate their associated
features. In the deep learning context, you can incorporate L1 and L2 regularization
as an extra penalty term in the loss function, which helps control parameter values
and counteracts sudden gradient spikes that occasionally lead to overfitting [78], [185].
Another notable approach to addressing gradient explosion is gradient clipping [273],
where any gradients that surpass a predefined threshold are scaled back, preventing
large, destabilizing updates. Furthermore, it was experimentally proven in [273] that
employing gradient clipping accelerates training of DNNs.

3.7 Graph Neural Networks

GNNs have emerged as a powerful class of deep learning models that operate on
graph-structured data [258]. Unlike CNNs, which excel at processing grid-like ar-
rangements of pixels, or RNNs, which are adept at handling sequential dependencies,
GNNs are specifically designed to ingest and analyze sets of nodes and their corre-
sponding edges, incorporating and allowing irregular and non-grid structures. By
taking relationships among entities into account, GNNs provide a means to capture
both local and global structural information in a single framework. This characteristic
has proven invaluable for tasks such as node classification [259], link prediction [275],
and graph-level classification in social networks [58], biological systems [282], chem-
istry [202], e-commerce [146], and many other fields [106], [258], [261], [286].

Graph data is noteworthy for its non-Euclidean structure, which sets it apart from
more conventional domains like images or sequences. In a two-dimensional grid—such
as an image—each pixel has a fixed arrangement with neighbors immediately above,
below, left, or right, and in a time series every element follows a strict order. By con-
trast, graphs often exhibit an irregular connectivity pattern, where individual nodes
can have a varying number of adjacent nodes. Simply reshaping these relationships
into a flat format risks losing critical connections. To address this issue, GNNs employ
message-passing algorithms [77] and specialized modules (often referred to as aggre-
gators or updaters) that gather and refine information from each node’s neighborhood
in a principled manner [63].

From a functional standpoint, a GNN layer usually carries out three core steps [258].
First, it collects input signals—often called messages—from neighboring nodes. Next,
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these messages are combined or aggregated to produce a single composite representa-
tion. Finally, this representation is used to update the node’s internal embedding. By
stacking multiple GNN layers, nodes gradually incorporate more contextual informa-
tion from various parts of the graph, even those that are distant via multiple edges.
This iterative exchange of data helps each node encode increasingly comprehensive
insights into the broader topology [145].

The development of GNNs is fundamentally linked to the emergence of graph
convolution techniques [276], which originate from concepts in spectral graph the-
ory [43]. Early GNNs were implemented using spectral theory, where spectral graph
theory studies fundamental graph properties using algebraic methods to analyze the
spectrum of graphs [36], [38]. Early approaches utilized the eigen-decomposition of
the graph Laplacian to define convolution operations in the frequency domain, en-
abling the generalization of traditional convolutional operations to non-Euclidean
graph-structured data. A notable example is the work by Kipf and Welling [15], who
presented a scalable approach for semi-supervised learning on graph-structured data
based on an efficient variant of convolutional neural networks which operate directly
on graphs, motivated by a localized first-order approximation of spectral graph con-
volutions [117]. While spectral-based techniques yielded strong performance in some
applications, they also presented computational challenges when applied large-scale
graphs [4], [18], [49]. Later advancements shifted toward spatial methods that scale
linearly in the number of nodes [117], directly defining convolutions through local
neighbor interactions. These spatial techniques reduced computational complexity
and made it easier to adopt strategies such as mini-batching and distributed learn-
ing, paving the way for the broad and efficient application of GNNs today.

A useful way to think about GNNs is by drawing comparisons to other deep
learning architectures, such as CNNs and RNNs. Much like CNNs, GNNs incorpo-
rate local,“filter-like” mechanisms that capture neighborhood-level patterns. How-
ever, rather than working with a rigid grid as in images, the core operation in GNNs
is message passing, where nodes collect and merge information from their neighbors
to update their own embeddings. There is also a conceptual link to RNNs, in the
sense that GNNs apply iterative updates that potentially resemble recurrence. Never-
theless, GNNs generally process layer by layer in a feed-forward fashion, rather than
unrolling over time. Yet, issues like vanishing or exploding gradients can still appear
in deeper GNNs, prompting researchers to introduce architectural enhancements, at-
tention and gating modules aimed at maintaining stable training dynamics.

Over the years, numerous GNN variants have emerged, each creating unique meth-
ods for neighbor aggregation. GraphSAGE, for instance, learns a flexible aggregator
which might perform averaging, max pooling, or even use an LSTM to handle sampled
subsets of neighbors [144]. Meanwhile, the Graph Attention Network (GAT) employs
attention mechanisms that build upon logical framework of letting each node assign
different weights to its neighbors based on their importance [243]. Furthermore, it



3.7. Graph Neural Networks 41

allowed to mitigate and reduce computationally extensive matrix operations utiliz-
ing the graph structure itself. Graph Isomorphism Network (GIN) offers another
perspective, shaping its aggregation rules to align with the expressive capabilities of
the Weisfeiler-Lehman isomorphism test, thereby excelling at distinguishing nuanced
structural differences in subgraphs [115].

Choosing how to train a GNN strongly depends on the intended goal. For instance,
if node classification is the objective, one typically applies a cross-entropy loss [159]
to a labeled subset of nodes, especially useful when many nodes in the graph remain
unlabeled. In contrast, link prediction tasks revolve around assessing the probability
that two nodes are connected by an edge. For problems requiring a classification
decision for the entire graph, a readout or global pooling layer is used to aggregate
all node embeddings into a single vector, which is then passed through a standard
classification module. By customizing these procedures according to the nature of the
underlying data, GNNs can learn rich, context-sensitive representations that excel in
a variety of graph-focused applications.

Much like pooling strategies in CNNs that gather global context and reduce
computational costs, specialized graph pooling algorithms have emerged to down-
sample nodes and edges. Approaches including Top-k pooling [27], [119], [143],
SAGPool [119], [131], DiffPool [267], ClusterPooling [216], ASAPolling [199], PAN-
Pooling [158], and MemPooling [2] identify the most crucial subset of nodes in a
hierarchical graph structure. This process parallels the way CNNs distill extensive
images into progressively smaller feature maps, helping to simplify complex graphs
into manageable layers of representation.

Beyond strictly supervised or semi-supervised applications, investigations into
unsupervised and self-supervised methods for GNNs training are gaining traction.
Inspired by the concept of autoencoders in CNN or RNN architectures, graph au-
toencoders implement an encoder-decoder pipeline to map a graph’s adjacency or
feature matrix to a latent space, then reconstruct it [118], [207]. Meanwhile, con-
trastive learning frameworks push node or subgraph embeddings to be similar when
they hold related contextual information, offering a promising avenue for exploiting
unlabeled data effectively [248], [268].

One advantage behind GNN development is that many real-world problems natu-
rally form graphs [35]. Social networks, for instance, are a prime target: each person
corresponds to a node, and edges indicate friendships or interactions [166]. Knowl-
edge graphs, which store factual information via entities and their relationships, also
benefit from GNN approaches to perform link prediction or entity classification [105].
Biological and chemical tasks (where proteins or molecules can be represented as
nodes and bonds or interactions as edges) have similarly seen substantial improve-
ments by using GNN models that can learn meaningful molecular substructures [202].

Graph Convolutional Networks have also shown great promise in Earth obser-
vation (EO) tasks, where spatial relationships and geospatial dependencies play a
critical role. In EO, satellite imagery or remote sensing data can be modeled as
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graphs, with nodes representing geographic regions or pixels, and edges encoding
spatial adjacency or contextual similarity. Such approach was utilized in the PhD
Candidate’s work in [234]. GCNs have been effectively applied in land use and land
cover classification [111], [285], environmental monitoring [102], crop type recogni-
tion and crop semantic segmentation [234]. By leveraging graph structures, these
models can exploit both the spectral features from satellite images and the spatial
correlations between neighboring regions—an advantage over traditional CNN-based
approaches, which often fail to capture non-Euclidean spatial dependencies. Further-
more, GCNs facilitate semi-supervised learning [65], which is particularly beneficial
in EO applications where labeled data are scarce or expensive to obtain.

Nevertheless, GNNs come with challenges as well. High-degree nodes can lead
to a computational explosion, as message-passing might involve aggregating from
thousands of neighbors. Many approaches address this by limiting the number of
neighbors considered or by introducing hierarchical sampling strategies. Furthermore,
graph size variability can complicate model design, since real-world graphs can range
from small subgraphs of tens of nodes to massive networks with millions of nodes.
Scaling GNNs up to such large graphs involves specialized data partitioning, mini-
batching, and distributed training solutions [160].

Another critical consideration is the phenomenon of over-smoothing in very deep
GNNs. As one can stack many message-passing layers, node embeddings can become
progressively more similar, effectively losing the granularity needed for classification
or other tasks. To counter this, researchers have developed skip connections, resid-
ual layers [147], or normalization strategies that preserve local distinctiveness [25],
[98], [99], [132]. Gating functions similar to those seen in RNNs—like gating residual
connections—can also be employed to carefully blend new information with existing
hidden states, helping maintain meaningful variations in node embedding distribu-
tions [107].

Although GNNs are a relatively recent addition to the DL field, they have al-
ready attracted significant attention, partly due to their impressive success across
numerous fields. From recommending new content in social or e-commerce platforms
(using user-item interaction graphs) to predicting novel compounds in computational
chemistry, GNNs have reliably showcased their capability [35], [105], [166], [202]. Dy-
namic or temporal GNN architectures push these boundaries even further by handling
evolving graphs where nodes or edges change over time.

In a similar fashion to how sophisticated gating in RNNs can prolong the effective
memory of sequences, GNNs can also be enhanced with memory modules for certain
use cases, storing historical states of individual nodes or entire subgraphs [157]. This
can be particularly advantageous in scenarios where the underlying relationships shift,
as the network can adapt by blending old and new representations stored in memory.
Research on interpretability and explainability for GNNs is also on the rise, with
methods aimed at identifying the crucial subgraph structures or edges that lead to a
given prediction [61], [97], [138].
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Given their unique blend of representational power and flexibility, GNNs repre-
sent one of the most rapidly evolving niches in DL. They continue to inspire not
only new architectures (e.g., those featuring advanced attention mechanisms [243] or
spectral-based transformations [144]) but also fresh aforementioned application do-
mains that were once thought too unstructured for neural network solutions. As the
field matures, standard practices and deeper theoretical insights are helping to estab-
lish best-in-class approaches for training large-scale, high-performing graph models,
setting the stage for further breakthroughs in graph representation learning, knowl-
edge discovery, and beyond.

To shed more light on the mathematical foundation and operational awareness,
we provide description of a GCNN layer. Each (l + 1)-th layer in GCNN can be
formulated as [117]:

H l+1 = ReLU(ÂH lW l), (3.7)

where H l and W l denote the activation and trainable parameter matrices of layer
index l. Within the initial layer of GCNN, i.e., l = 1, H l presents the input neigh-
borhood in matrix-based format, where the number of rows is equal to the number
of samples, and columns define the number of features. Furthermore, Â is the nor-
malized adjacency matrix:

Â = D− 1
2 AD− 1

2 , (3.8)

where D is the diagonal degree matrix obtained by summation of all columns of A

per consecutive row i, and fills the value in di,i. We encompass the self-connections
within the graph, thus each node can utilize its own features during the aggregation
step. Such operation is obtained by summing the identity matrix to the adjacency
matrix Ã = A + I, and recomputing the degree matrix from Ã. Finally, we obtain:

Â = D̃− 1
2 ÃD̃− 1

2 . (3.9)

In the Figure 3.6, we visualize a 2-layer GCNN without node reduction, i.e., 5
nodes in both layers. The first layer’s nodes are depicted in blue, whereas the second
layer is represented by red color. Within the first layer, the dimensionality of nodes is
set as 16. Moreover, the second layer constitutes 32 features. To demonstrate feature
aggregation, we include connections (highlighted in orange) that indicate the local
neighborhood of 2nd node. Finally, we include dimensionality of weight matrix that
is utilized in projection from 16 to 32 features.

To moderate the scale of the activations each node accumulates, it is a often prac-
tice to apply a normalization step on the adjacency matrix. This practice is especially
helpful when certain nodes exhibit a large number of connections, as it averts exces-
sively large representations for those “center” nodes and comparatively diminished
ones for “border” nodes—imbalances that can trigger vanishing or exploding gradi-
ents [85]. By normalizing the adjacency matrix, each node’s embedding becomes a
weighted average of itself and its neighbors, thus contributing to more stable training.
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Figure 3.6: Graph Convolutional Neural Network showing neigh-
borhood aggregation mechanism. The highlighted node in the output
layer demonstrates how GCN layers aggregate information from neigh-
boring nodes in the input layer, following the Kipf & Welling (2017)

formulation.

Moreover, in the (l + 1)-th layer of the network in GCNN, an (l + 1)-hop con-
nectivity concept is preserved [127]. In the second layer, the aggregation process
grabs features not only from a node’s immediate neighbors but also from the neigh-
bors of those neighbors. This expanded scope enriches the contextual awareness of
GCNN, enabling it to identify more abstract patterns in both spatial and temporal
dimensions.
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Chapter 4

Related Literature

Due to the unprecedented success of ML and DL, there is a wide range of SOTA
methods that leverage the advantages of ML to automatically extract features and
predict the desired output target in a wide range of various applications [128]. Tra-
ditional approaches often rely on standard techniques that use domain-specific or
hand-crafted features. Conversely, in DL, the user is not required to possess a priori
knowledge, which can be particularly challenging in highly constrained environments.
Instead, we benefit from automated representation learning which may indeed help
us capture features that were not possible to define by hand.

Naturally, when depending on ML systems, it is crucial to consider the signifi-
cance of explainability, which often diminishes as model complexity increases. DL
models, in particular, are frequently characterized as black-box systems due to their
high dimensionality and non-linear internal representations, making their internal de-
cision processes difficult to interpret directly from a human or scientific standpoint.
However, the field of explainable artificial intelligence (XAI) [56] has advanced sig-
nificantly in recent years, offering a variety of tools and techniques—such as SHAP
[156], LIME [204], Integrated Gradients [222], or Grad-CAM [211]—that aim to un-
cover and visualize how these complex models arrive at their predictions. While
full transparency remains a challenge, these methods provide valuable insights into
model behavior, allowing researchers and practitioners to better understand, debug,
and trust ML systems.

Since this thesis addresses the problem of HU, this chapter will focus on DL ap-
proaches applied to abundance estimation in the context of remote sensing. Given
the strong conceptual and methodological overlap between HU and HSI segmenta-
tion (HS), the literature review will encompass both domains. Although the primary
emphasis is placed on modern ML and DL-based methods, traditional and base-
line techniques will also be discussed to provide broader context and illustrate the
field’s evolution. Importantly, both HU and segmentation tasks typically operate
on homogeneous hyperspectral data, allowing for architectural designs developed for
segmentation to be effectively adapted for unmixing purposes.

Hyperspectral segmentation and unmixing, like many other remote sensing tasks,
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can be approached using supervised, unsupervised, or reinforcement learning meth-
ods. In supervised learning, datasets include labels provided a priori, allowing mod-
els to learn mappings between inputs and corresponding outputs. After training, the
model is evaluated on a separate, previously unseen test set to assess its generalization
performance.

By contrast, unsupervised learning operates without explicit labels or ground-
truth annotations. Instead, models aim to discover the intrinsic structure of the
data, such as underlying clusters or patterns in the feature space. This category
includes techniques such as clustering, dimensionality reduction, density estimation,
and anomaly detection. Since no labeled supervision is used, there is generally no
strict division between training and testing sets.

A third paradigm, reinforcement learning (RL), has also begun to gain attention
in remote sensing contexts. In RL, an agent learns to take sequential actions in
an environment to maximize cumulative rewards. While RL has traditionally been
applied in control and robotics, its emerging applications in hyperspectral analysis
include adaptive sampling, sequential band selection, and iterative label refinement.
These methods are particularly useful in scenarios where decisions are made over time
and involve trade-offs, such as balancing data fidelity with computational cost.

4.1 Machine Learning for Hyperspectral Segmentation

HS, being pixel-level classification, has been thoroughly researched in the literature
due to its practical applications in Earth observation. HSI segmentation via Kernel
Sparse Representation (KSR) proposed in [37] is a method designed to improve pixel
classification accuracy by leveraging the power of sparse coding combined with kernel
methods. Instead of directly performing unmixing, KSR focuses on representing
each hyperspectral pixel as a sparse linear combination of training samples mapped
into a high-dimensional feature space via a kernel function. This approach captures
nonlinear relationships within the data, which are common in hyperspectral imagery,
enabling better discrimination between classes. The sparse coefficients obtained serve
as features for classification, typically through a classifier such as support vector
machines or nearest neighbors. By integrating sparsity and kernel-based nonlinear
mapping, KSR effectively enhances segmentation and classification performance in
hyperspectral images, particularly in complex scenarios where spectral signatures
exhibit nonlinear mixing or variability.

In [257] the authors introduce a ML-based method for automated segmentation of
scanning electron microscope (SEM) images of organic-rich shale samples. Their ap-
proach combines classical feature extraction techniques—such as wavelet transform,
Gaussian blur, and Hessian matrix features—with a random forest classifier to accu-
rately identify and segment four key shale components: pores/cracks, matrix, pyrite,
and organic/kerogen. The method addresses challenges posed by overlapping pixel in-
tensities that hinder traditional threshold-based segmentation, leveraging spatial and
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multiscale information for improved differentiation. The authors demonstrate that
their approach achieves high segmentation accuracy and operates efficiently on large
SEM images. This work highlights the robustness of combining feature engineering
with supervised learning for material characterization in geoscience applications.

The authors in [122] present a novel semi-supervised ML method for pixel classifi-
cation and segmentation of mid-infrared HSI tissue samples. Their approach leverages
both labeled and unlabeled pixels for spectral dimension reduction and hierarchical
clustering, addressing the challenges posed by noisy and high-dimensional HSI data.
Unlike traditional supervised methods that require extensive annotations, their tech-
nique effectively handles limited labeled data while capturing the variability within
sub-cellular components. The method achieves a strong classification performance
with an F1 score of over 71% on cross-validation across multiple tissue images. The
authors also release their code to promote further research and demonstrate that
disease classification can be simplified following accurate HSI segmentation.

In [135] the authors propose a semisupervised segmentation algorithm tailored
for high-dimensional HSI data. Their approach consists of two main stages: first,
semisupervised learning of the posterior class distributions using multinomial logistic
regression, where the model parameters are estimated from both labeled and actively
selected unlabeled samples via a graph-based method. Second, the segmentation step
integrates spatial contextual information by applying a multilevel logistic Markov
random field prior to enforce spatial smoothness in the labeling. The final segmen-
tation is computed through an efficient maximum a posteriori estimation. Experi-
mental results on both synthetic and real hyperspectral datasets demonstrate that
their method achieves classification accuracy comparable to or better than existing
supervised techniques, highlighting the advantage of combining spectral and spatial
information within a semisupervised framework.

4.2 Deep Learning for Hyperspectral Segmentation

In [208], the authors proposed using spectral-spatial convolutional operations to en-
hance segmentation performance. The architecture of their model is organized into
three main components. The initial block employs a 1× 1 spatial convolution, tar-
geting the extraction of spectral features from the local image region. This block’s
primary role is to extract features from the input patch and modify the number of
bands to a value divisible by the number of blocks defined in the subsequent stage.
This adjustment is accomplished by splitting the activation map into n consecutive
non-overlapping band sets. The second block comprises parallel spectral convolutional
layers that operate across the spatial axis. Its objective is to capture both spectral
and spatial information while keeping the model’s complexity low by enabling param-
eter sharing across the parallel modules. Finally, the third block integrates multiple
fully connected layers, which process the concatenated activation maps output by the
parallel modules in the second block.
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Empirical evaluations demonstrate that this model achieves precise segmentation
and surpasses other approaches such as k-Nearest Neighbor (k-NN) [283], Support
Vector Machine (SVM) [45], Multilayer Perceptron (MLP) [187], and an alternative
CNN model described in [95]. Furthermore, it introduces an innovative method that
combines the pixel-pair technique to augment the training dataset, employing CNN
for feature extraction and a voting mechanism for inference [137].

In the study presented in [95], the authors proposed a simple architecture that
integrates a convolutional layer followed by a max pooling operation, which acts as a
feature extractor, and concludes with two fully connected layers that function as the
classifier. In contrast to previous methods, this approach exclusively processes input
samples that contain only the spectral dimension of a specific pixel in HSI, omitting
any spatial information. The experimental results demonstrate that this streamlined
architecture can surpass the performance of other models, including LeNet-5 [130],
which encompasses two convolutional layers. This is particularly evident in situations
where training sample availability is severely limited. Such findings are especially
relevant in remote sensing applications, where restricted training data is frequently
encountered, notably in HU. These results underscore the advantages of employing
simpler architectures in DL approaches for these challenging scenarios.

An approach presented in [165] employs RNNs for feature extraction along the
spectral dimension. This research also introduces a new activation function known as
the parametric rectified hyperbolic tangent, which the authors claim facilitates higher
learning rate parameters. This modification accelerates the training process and
reduces the likelihood of divergence or overshooting the minimum. The authors assert
that this study represents the first use of RNNs for HSI segmentation. Experimental
results indicate that this model, in conjunction with CNNs, achieves high-quality land
cover classification.

The study described in [3] introduced an approach to hyperspectral segmentation
that combines superpixels with CNNs. The method involves segmenting the HSI into
superpixels, which represent distinct regions, followed by labeling these regions using
a deep CNN. This process integrates both spectral and spatial information. Experi-
mental findings indicate that applying segmentation prior to labeling can significantly
improve the overall segmentation accuracy.

In [70], the authors implemented CNNs combined with multiple feature learning
techniques to enhance model accuracy. The architecture they proposed is composed of
two main parts: a feature extractor and a predictor. The feature extractor includes
several parallel convolutional blocks, allowing for the extraction of varied feature
representations by merging spectral and spatial information from the input sample.
These features are then concatenated and forwarded to the predictor, which utilizes
a softmax activation function to compute the probability distribution of class mem-
berships for each pixel. The experimental results indicated that the integration of
multiple features significantly boosts the performance of the models.

The study presented in [255] introduced a convolutional-RNN specifically designed
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for hyperspectral pixel segmentation. This architecture effectively merges the benefits
of convolutional and recurrent operations, resulting in enhanced segmentation perfor-
mance when compared to other advanced DL models. The network is organized into
two primary components: the first part consists of several convolutional layers, which
are followed by recurrent layers. Ultimately, the prediction of labels is accomplished
using the softmax function, which is based on the features extracted from the final
recurrent layer.

The work presented in [151] proposed a DL-driven method for band selection, uti-
lizing CNNs integrated with an attention mechanism. The approach also incorporates
anomaly detection to pinpoint the most informative spectral bands. Experimental
findings revealed that this method maintains segmentation accuracy while effectively
identifying the key regions of the spectrum. On top of that, the underlying CNN
model equipped with attention modules, can be utilized after training for precise HSI
segmentation.

In [173], the authors evaluated the generalization capabilities of CNNs by simulat-
ing various atmospheric conditions and noise distortions. Their experimental findings
revealed that certain undesirable image artifacts can significantly impair segmenta-
tion quality, underscoring the necessity of simulating such noise to create models that
are well-generalized for real-world applications. Furthermore, they verified the ro-
bustness of such algorithms against data-level distortions that correspond to real-life
phenomenon which is critical for on-board applications for EO tasks.

In [181], the authors introduced an approach for HSI segmentation that combines
multiple 3D convolutional layers with various augmentation techniques to tackle the
issue of limited ground truth (GT) data. The experimental results demonstrated that
this method surpasses the performance of other SOTA techniques.
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4.3 Machine Learning for Hyperspectral Unmixing

One of the earliest and most prominent methods for HU endmember extraction is
the N-FINDR algorithm [254]. This method operates by identifying the set of pixels
that form a simplex with the maximum volume within the data space, under the
assumption that the true endmembers correspond to the vertices of this simplex. By
maximizing the volume of the simplex, N-FINDR effectively finds the most spectrally
pure pixels that define the data distribution, making it well-suited for hyperspectral
images where pure material signatures are assumed to be present.

Another widely used algorithm for endmember extraction is the Pixel Purity Index
(PPI) [21]. PPI works by projecting the hyperspectral pixels onto multiple randomly
generated vectors and counting how often each pixel appears at the extremes of these
projections. Pixels that frequently appear as extremes are considered spectrally pure
and likely to be endmembers. This approach is computationally efficient and robust to
noise, and has been extensively applied in remote sensing for material identification.

In [51], authors propose a novel blind hyperspectral unmixing algorithm based
on an extended linear mixing model (LMM) to effectively address spectral variabil-
ity. Their approach introduces a pixelwise, spatially coherent local variation of end-
members by allowing scaled versions of reference spectra, overcoming limitations of
the classic LMM which assumes fixed endmember signatures. The method unifies
several existing techniques under a common framework and demonstrates superior
performance on both synthetic and real datasets, accurately estimating endmember
variability and fractional abundances in complex hyperspectral scenes.

The authors in [247] introduced a hypergraph-regularized sparse nonnegative ma-
trix factorization (NMF) algorithm for hyperspectral unmixing. By modeling the
spatial–spectral joint structure through a hypergraph, their approach captures high-
order similarity relationships among spatially neighboring pixels, which enhances the
estimation of abundances. This method improves upon existing sparsity-constrained
NMF models by enforcing abundance consistency within hyperedges, leading to more
robust unmixing results. Experimental evaluations on synthetic and real hyperspec-
tral datasets demonstrate the superiority of the proposed algorithm compared to
several state-of-the-art techniques.

4.4 Deep Learning for Hyperspectral Unmixing

In [279], the authors introduce a CNN architecture that combines multiple convolu-
tional layers followed by several fully connected layers. The initial layers function as
a feature extractor, while the final layers use the extracted feature vectors to estimate
the abundance of each endmember in the HSI. To mitigate the risk of overfitting, the
model employs the dropout technique [218] that randomly zeros activations within
the model’s layers. Experimental results demonstrated that this approach outper-
forms other methods, such as linear spectral unmixing [88] and a cascade DNN-based



4.4. Deep Learning for Hyperspectral Unmixing 53

model presented in [141]. Given its innovative nature and high-quality unmixing per-
formance, this model is among those investigated in this thesis and will be explored
in greater detail in chapter summarizing our experimental studies.

In [141], the authors proposed a two-step methodology based on artificial neural
networks. In the initial phase, a network is trained to represent the input pixel in a
reduced dimensional space. This model can be divided into two parts: an encoder
and a decoder, which function sequentially. This design is often referred to as an
autoencoder, where the encoder learns to map the input data to a compact repre-
sentation, referred to as the code. The decoder then takes this feature vector and
reconstructs it into the original space. In the second phase of training, the pre-trained
encoder is used along with an additional multilayer perceptron (MLP) in a sequential
manner. Once the input passes through the encoder, the MLP predicts the abun-
dances of the endmembers in the hyperspectral image. The experimental findings
demonstrated that this approach delivers superior unmixing performance compared
to linear spectral unmixing.

Another interesting approach in HU was presented in [113]. The authors pro-
posed a DCAE model. The functionality of the model is analogous to the former
ANN model. The encoder part contains convolutional layers, whilst the decoder’s
weights are set to the endmember matrix. Such operation allows the authors to
linearly rebuild the endmember fraction vector by matrix multiplication with the
endmember matrix. The endmember matrix contains information about the values
for each hyperspectral band for each considered material. To alleviate overfitting, the
model contains dropout [218]. To fit to the unmixing scenario, the objective function
utilized is spectral information divergence.

In [239], we explored how the size of the training set affects the performance of HU
using two models previously discussed in [113], [279], namely the CNN and DCAE
architectures. The experiments, conducted on two real-life datasets, showed that
the unmixing accuracy drops noticeably when the training set is small. Moreover, a
certain point was found where increasing the number of training samples no longer
leads to significant improvements in the unmixing results. These findings suggest that
identifying this threshold could help reduce the costs involved in manual labeling.

In [219], the authors propose a novel architecture that builds upon a deep autoen-
coder framework. This architecture is structured into two key components. The first
component, which consists of stacked autoencoders, is designed to extract features
efficiently while maintaining robustness against outliers. Meanwhile, the second com-
ponent utilizes a variational autoencoder to estimate both the endmember signatures
and their corresponding abundance fractions. Experimental assessments conducted
on synthetic and real datasets indicate that this approach achieves performance levels
comparable to other leading methods in HU.

In [188], the authors introduced an autoencoder-based method, where the encoder
is made up of four fully connected layers, and the decoder’s weights are set to the
endmember spectra. The code, which refers to the activations from the encoder’s
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final hidden layer, serves as the abundance vector for the input sample. To guaran-
tee nonlinear mapping within the encoder, several nonlinear activation functions are
employed, including Sigmoid [186], ReLU [170], and LReLU [260]. Additionally, to
accelerate the training phase, batch normalization [99] is applied to one of the en-
coder layers. Lastly, to prevent overfitting and introduce regularization, a Gaussian
Dropout layer [218] is added at the conclusion of the encoder module.

In [189], the authors introduced a novel approach to hyperspectral unmixing us-
ing a multitask learning model built on parallel autoencoders. This architecture
incorporates both spectral and spatial features to exploit the relationships between
neighboring pixels. Each pixel is processed through its own encoder path, and the
decoder applies a linear mixing model. The results from each path are then com-
bined and passed through a shared hidden layer, which helps capture the contextual
information of adjacent pixels. The method was tested on two real-world datasets,
and the results demonstrated its superior performance compared to other methods
evaluated in the study.

The authors of [60] propose a novel autoencoder (AE)-based neural network for un-
supervised hyperspectral unmixing, leveraging the multilinear mixing model (MLM).
Unlike traditional linear or bilinear models, MLM models light reflections through
discrete Markov chains, capturing infinite degrees of endmember interactions. The
network architecture explicitly incorporates endmembers, abundances, and transition
probabilities, functioning in two configurations: MLM-1DAE, which analyzes pixel-
wise spectral data, and MLM-3DAE, which incorporates spectral-spatial correlations.
Furthermore, the decoder segment is composed of three parts, each one utilizes lin-
ear or non-linear characteristics coupled with reconstruction of the input spectra.
Experimental results on synthetic and real datasets show the model’s competitive
performance compared to traditional MLM-based methods.

In [74], the authors examine the utilization of autoencoder models for the pur-
pose of unmixing in the context of non-destructive molecular composition. The ex-
periments proof that such methodology provides superior accuracy and robustness
compared to conventional techniques, e.g., involving traditional chemometric meth-
ods. Moreover, such approach could be extrapolated to unmixing in the case of EO
data.

Furthermore, in [124], a novel algorithm for HU was introduced. It incorporates
multivariate curve resolution with alternating least squares and state-of-the-art au-
toencoder models. The proposed approach allowed to reduce the cost of manual work
and accurate detection of solid waste. In this study, solid waste refers to hetero-
geneous mixtures of discarded materials—including leather, paper, wood, plastics,
textiles, inert waste, and food waste—often contaminated with liquids such as wa-
ter, oil, and leachates, whose complex composition challenges spectral analysis and
identification.

In [224], the authors provide a new algorithm for HU which encapsulates a dual-
feature fusion network that is composed of four parts. It incorporates feature fusion
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module, abundance estimation, endmember estimation, and lastly, the reconstruction
module. The approach was evaluated on synthetic and real data, proving high preci-
sion in the context of unmixing. Furthermore, the model also can extract endmember
signatures and reconstruct images, thus provides a cross-task functionality.

Another method which incorporates an autoencoder based approach was proposed
in [220]. The method is based on multilinear mixture model, which takes into account
multiple scattering problem. Such phenomenon occurs when electromagnetic waves
encounter multiple particles on their way to the observer object. The model incorpo-
rates autoencoder-based augmented network. The encoder part is composed of two
modules, where the first one focuses on the linear spectrum, whilst the latter targets
the problem of multiple scattering. The decoder reconstructs the input sample.

In [264] a new method for HU was introduced that incorporates NMF as the
foundation algorithm. The authors proposed to utilize NMF to enhance the accuracy
of HU. To improve robustness of this process, NFM was adapted to a low-rank and
sparse variation. The experimental results provided that such method allows for high
quality endmember and abundance estimation.

In [262], a DL-based architecture was introduced to tackle HU. The model incor-
porates convolutional layers with stationary wavelet transform to improve noise ro-
bustness in the spatial-spectral feature domain. The proposed innovation of standard
convolutional layers with injection of advanced feature learning strategy allowed to
surpass other baseline methods over simulated as well as real benchmark HU datasets.

The authors of [246] propose a new DL model called MAT-Net for HU, addressing
the limitations of existing methods that extract spatial-spectral features. To improve
detection of heterogeneous ground objects, and avoid incomplete or mixed features,
MAT-Net uses an encoder-decoder architecture that combines spectral and spatial
data. It includes a dual-stream, multibranch CNN encoder to capture both spectral
and multiscale spatial features, with a block-by-block branching strategy to optimize
computational cost. Additionally, a transformer encoder with multihead self-scale-
aggregation attention blocks is introduced to improve feature integration by adapting
to different scales. Experimental results show that MAT-Net outperforms existing
methods in both synthetic and real datasets.

The authors of [225] proposed a novel method to tackle HU that incorporates
attention mechanism to enhance the process of abundance estimation utilizing con-
volutional layers in the spectral as well as spatial domain. Furthermore, the authors
utilize various kernel shapes (such as 1 × 1 and 3 × 3), to enhance the process of
feature extraction. From the experimental results over benchmark datasets, the ap-
proach proved to execute on a par with state of the art approaches.

Another approach utilized an evolutionary algorithm (EA), to unmix the hyper-
spectral pixels [134]. The authors proposed a multi-step approach which utilizes a
weakly non-dominated sorting algorithm to tackle various problems encountered in
HSI analysis. The algorithm decomposes an input image into homogenous regions,
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which later undergo multiobjective optimization. Such operation allows to allevi-
ate the problem of dimensionality which often occurs in hyperspectral imagery. The
experiments proved that such method allows to better tackle the curse of dimen-
sionality [6], as well as allows for better convergence in terms of the final solution
quality.

The authors of [31] proposed a model with a deep shared fully connected au-
toencoder, which incorporates feature fusion with two different branches in the in-
put, i.e., the spectral dimension and spectral features from superpixel segmentation.
The latter approach instead of utilizing square-shaped neighborhoods, incorporates a
hexagon structure for each superpixel. The experimental results provided that such
non-standard grid structure allows to obtain accurate abundance estimations over
several real datasets.

In [72], the authors proposed a reversible generative network for the problem of
HU. The model incorporates an endmember learning module to understand the pro-
cess of endmember generation as well as an abundance guidance module to estimate
the abundances of targets in the imagery. The experimental results provided that
such architecture allows to understand the endmembers as well as abundances and
tackle the challenge of spectral variability.

Another interesting approach which utilizes an autoencoder architecture and in-
corporates transformer-like methodology was proposed in [73]. The model exploits
spatial and spectral features which undergo fusion by incorporating local convolution
operations as well as a transformer mechanism to understand global-wise relation-
ships. The architecture includes a spectral Swin Transformer [148] and spatial con-
volution blocks. the proposed model proved to be robust against noise and provide
state-of-the-art accuracy and outperformed other HU methods.

In [16] a transformer-based architecture was proposed to tackle HU. The approach
incorporates Principal Component Analysis (PCA) and spectral-spatial preprocessing
step to extract both features from the input sample. The underlying architecture uses
a vision transformer to improve the abundance extraction capabilities. The model
proved to achieve high quality results over three real benchmark datasets.

Another research introduced a multiscale convolutional mask network for HU
[263]. The model utilizes two main modules, i.e., the mixed region mask and a
multiscale convolution AE. Furthermore a new strategy for initialization is used which
incorporates vertex component analysis [183] and density-based spatial clustering of
application with noise [59] to alleviate the problem of outliers. The introduced method
allowed the authors to improve the SOTA methods and provide accurate endmember
and abundances estimations over real and simulated unmixing benchmark datasets.

In another research [53] a novel DL-based approach was introduced. It incor-
porates a double-aware transformer model for HU. It extracts features from both
dimensions, i.e., spatial and spectral axes. The architecture includes score-based
homogenous-aware module and spectral group-aware module to execute the afore-
mentioned feature fusion and enhance the estimated abundance maps. Experiments
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over real and simulated benchmark datasets proved that the model delivers high-
quality unmixing.

Authors in [265] proposed a novel architecture, i.e., an U-shaped transformer
model with shifted windows. It incorporates spatial features with the use of multihead
attention blocks and more importantly, operates over the entire image, without the
use of patching during preprocessing of input samples. Furthermore, the method
utilizes downsampling and upsampling with various scale factors, to introduce more
informative representation for feature fusion. The experimental results provided that
the model surpasses other DL architectures and allows to obtain accurate abundance
maps.

In [198] the authors proposed a method to enhance graph learning capabilities
for HSI analysis in the context of HU by utilizing higher-order graph regularizer with
nonnegative matrix factorization coupled with adaptive feature selection. In the graph
structure, the second-order nearest-neighbor relations with adaptive weighting were
incorporated. The proposed method was validated on real and simulated datasets
demonstrating its high precision and superiority over baseline solutions.

The authors in [197] proposed another method based on nonnegative matrix fac-
torization with fast sparse modification to overcome the issue of nonconvex and non-
smoth optimization. The algorithm uses gradient-based modifications to solve local
subproblems within the nonnegative matrix factorization method. Based on the ex-
perimental results, the approach demonstrated superiority over other algorithms.

The authors of [133] proposed a DL architecture to tackle the task of HU by
exploiting a semi-supervised framework. The model utilizes a cube-based input with
a 3D convolutional AE network. It extracts spatial and spectral features through the
use of the attention mechanism to improve the abundance estimation capabilities.
The abundance maps estimated inside the model are treated as latent features in
the AE structure, and are fed to the regression module. The proposed architecture
proved to outperform other convolutional-based methods.

In [94], a interesting HU model was introduced. It can be decomposed into two
main parts, an endmember unmixing network, related to endmember extraction and
processing, and the abundance unmixing network, used for abundances extraction.
The first module incorporates a variational autoencoder (VAE) coupled with a multi-
scale convolution block attention module with pretraining. The latter abundance
module uses a multi-scale attention convolution block to incorporate spectral and
spatial attention features to enhance the unmixing capabilities. The experimental
results showed that such architecture allows to improve and outperform the SOTA
models.

In [106], the authors proposed a new graph attention convolutional AE model
to tackle the task of HU. The model focuses on long-range and short-range spatial
dependencies by employing graph attention convolutions. Such operation allowed the
authors to enhance the unmixing capabilities of the proposed AE model. The decoder
part is constructed as a nonlinear mixing model to allow for more complex physical



58 Chapter 4. Related Literature

interpretability and reconstruction. The experimental results over real and simulated
data indicated that such model is able to outperform the SOTA methods in the task
of HU.

The authors in [50] proposed an approach utilizing block-term decomposition
models for HU. The model aims to overcome the current limitations of decomposition
methods. It incorporates a two-factor reparametrization of tensor (it breaks down a
complex multi-dimensional tensor into two simpler factors, these two factors corre-
spond directly to the endmember components and the abundance components), which
aligns with the endmember and abundance components. This method allows to inject
physics-based priors and adjust to specific HU conditions. The optimization prob-
lem is solved by using the gradient projection algorithm. The experimental results
provided that such method allows for fast convergence over the compared baseline
solutions.

In [217] the authors proposed a first-order graph trend filtering method for HU.
The goal of the architecture is to enhance the spatial features by utilizing first-order
graph difference operator from an original input hyperspectral cube. Furthermore, the
authors increase the sparsity of abundances by incorporating L1 regularization [184].
The experimental results showed that such a method allows for precise unmixing and
abundance estimation over real and simulated datasets and allows to overcome the
existing baseline solutions.
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4.5 Summary of Literature Review

Upon examining the existing literature on hyperspectral segmentation and unmixing,
it becomes evident that these two challenges involve analogous type of data and are
intrinsically connected. The primary distinction between the two lies in the type of
outputs they generate. Consequently, models developed for one task can often be
adapted to the other. For example, the feature extraction components of an existing
model could be reused with minimal changes, such as altering the output layer or
the activation function. By reviewing and summarizing the current SOTA methods
in both fields, a collection of potential models that could be adapted for both tasks
was identified in Table 4.1 (segmentation), and Table 4.2 (unmixing). Furthermore,
transfer learning offers a alternative viable strategy, allowing a pre-trained model
for segmentation to be fine-tuned for unmixing by modifying only the final output
layer. Typically, in such transfer learning scenarios, the pre-trained weights of the
base model remain fixed, and only the last layer is retrained, significantly reducing
the time required to train the new model. Based on these points, it is apparent
that models designed for segmentation and unmixing can be effectively adapted and
applied across both tasks.
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Chapter 5

Proposed Hyperspectral
Unmixing Framework

5.1 Investigating the Impact of Varying Training Set
Sizes on Hyperspectral Unmixing

In this section, we focus on the problem of the lack of labeled ground-truth data in the
task of HU. As already mentioned, acquiring new, high-quality ground-truth datasets
is extremely costly, user-dependent and infeasible in lots of practical scenarios. Thus,
building machine learning models from limited ground truth is of paramount practical
importance nowadays. It is one of the most critical problems in this domain since it
hinders the possibility of developing and deploying DL-based methods, which require
extensive amount of labeled training data. We investigate the impact of varying
training set size on the quality of HU provided by DL-based models with various
architectures, to quantify the impact of the size of such training sets on the capabilities
of the corresponding models.

5.1.1 Deep Learning Models

We investigate two state-of-the-art models to estimate the abundance vectors of un-
derlying endmembers. To ensure variability of models, we selected two topologically
different architectures: i) a CNN model to employ its capability of learning hierarchi-
cal spectral-spatial patters and features, and ii) a Deep Convolutional Autoencoder
(DCAE) which is based on an autoencoder concept. Such architecture uses the en-
coder and decoder that work in back-to-back fashion—the encoder learns how to
properly map the input data into dense latent representation, whereas the decoder
reconstructs the input sample given the latent compressed representation. The main
objective of the study is to understand and measure the impact of varying training
set size in the task of HU on the performance of different DL models.

The formerly mentioned CNN was proposed in [278]. The approach focuses on
employing CNN architecture to utilize the automated feature- and pattern-learning
capabilities of convolutional layers. The model is presented in two variations: i) the
spectral approach which focuses on the analysis of a single pixel only (without its
neighborhood) during the unmixing process, hence extracts only its spectral features,
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and ii) spectral-spatial approach, to additionally enhance the unmixing quality by
adding spatial features to the input context. The spatial features incorporate a local
neighborhood of pixels, such a patch is centered on the element of interest for which
the abundance vector has to be estimated.

The pixel-based variant employs a 1× 1× λ sample, where λ denotes the number
of hyperspectral bands. Furthermore, it employs four convolutional layers where the
kernels dimensionalities are set to 1× 1× 5, 1× 1× 4, 1× 1× 5, 1× 1× 4 for each
layer, respectively. In each layer, the number of feature maps is set to 3, 6, 12, and
24. Moreover, the model is equipped with additional pooling layers to lower the di-
mensionality of the activation maps and control the gradient flow. Each convolutional
layer utilizes a pooling kernel of shape 1× 1× 2. Finally, the model is concluded with
three fully-connected layers with 192, 150 and c units, respectively. Here c denotes
the number of endmembers in the HSI. All of the layers employ ReLU non-linearity
and the output is concluded with softmax function, to satisfy unmixing constraints.
In the Figure 5.1, we depict the architecture of the pixel-based CNN.

The cube-based model enhances the feature-learning capabilities by applying a
3D sample with the following shape: 3× 3× λ. Similarly to the pixel-based model,
it employs four convolutional layers where the kernel dimensionalities are 5× 1× 1,
4× 1× 1, 5× 1× 1, and 4× 1× 1. The last two layers use a dropout mechanism to
mitigate overfitting and improve model generalization. The dropout rate was set to
0.2. The number of activation maps is set to 16, 32, 64, and 128. We depict the
cube-based variant in Figure 5.2.

As it can be seen, the model employs larger amount of feature maps, thus con-
tains a higher number of trainable parameters and should provide a better unmixing
performance. This variant is also concluded with two fully-connected layers. Fur-
thermore, the authors in [278], experimentally proved the cube-based architecture’s
superiority over the pixel-based approach on unmixing the Urban benchmark dataset.
The authors also compared this model to an auto-associative neural network (AANN)
model proposed in [142], a linear mixing model (LMM) [88], and extended support
vector machine (eSVM) introduced in [244]. The cube-based variant outperformed
all of the baseline methods, including its spectral variation.
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Input: (1 × 1 × λ)

Conv3D: 3 filters (1 × 1 × 5), ReLU

MaxPool3D: (1 × 1 × 2)

Conv3D: 6 filters (1 × 1 × 4), ReLU

MaxPool3D (1 × 1 × 2)

Conv3D: 12 filters (1 × 1 × 5), ReLU

MaxPool3D: (1 × 1 × 2)

Conv3D: 24 filters (1 × 1 × 4), ReLU

MaxPool3D: (1 × 1 × 2)

Flatten

Dense: 192, ReLU

Dense: 150, ReLU

Dense: c, Softmax

Figure 5.1: Pixel-based CNN architecture for hyperspectral unmix-
ing [278]. Input shape is 1× 1× λ, where λ is the number of spectral

bands, and c is the number of endmembers in HSI.
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Input
(N × N × λ)

Conv3D: 16 filters
(1 × 1 × 5), ReLU

Conv3D: 32 filters
(1 × 1 × 4), ReLU

Conv3D: 64 filters
(1 × 1 × 5), ReLU

Dropout: 0.2

Conv3D: 128 filters
(1 × 1 × 4), ReLU

Dropout: 0.2

Flatten

Dense: 192,
ReLU

Dense: 150,
ReLU

Dense: c,
Softmax

Figure 5.2: Cube-based CNN architecture for hyperspectral unmix-
ing [278]. Input is N ×N spatial neighborhood with λ spectral bands,

output contains c abundances for each endmember in the HSI.

The second model, referred to as DCAE, was proposed in [112]. This model was
the first attempt in HU to use an autoencoder-based architecture and utilize spectral-
spatial information context. The objective function to train the model was set to
spectral information divergence (SID) proposed in [29], coupled with the dropout
technique. This model also incorporates two variants for spectral and spectral-spatial
approaches respectively. The former one employs five convolutional layers where
the kernel shape is set to 1× 1× 3 and the number of feature maps follows 2, 4,
8, 16, and 32. This part of the model can be understood as a feature extractor,
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which automatically learns different patterns to improve abundance estimation. All
of the layers utilize ReLU non-linearity. The next part of the model incorporates
two fully-connected layers which aim to learn how to properly construct the latent
representation, which represents the abundance vector. The convolutional and fully-
connected layers together form the encoder part of the model. The decoder includes
a single fully-connected layer, where its weights are set to the endmembers’ spectral
matrix. Such operations allows the model to linearly combine the estimated latent
representation with the constant matrix of the last layer (representing the endmem-
bers spectra), to reconstruct the input sample. In this approach, the model learns how
to estimate the unmixing vectors without explicitly utilizing the abundance ground-
truth labels. Furthermore, a dropout technique is used in the first fully-connected
layers in the encoder, with the rate set to 0.2. In the cube-based variant, the number
of convolutional layers is set to four with its kernels dimensionality set to 3× 3× 3,
3× 3× 3, 1× 1× 3, and 1× 1× 3. All of the non-linearities are the ReLU functions
and the number of activation maps are 16, 32, 64, and 128. Analogously to the
spectral variant, the encoder part also incorporates the same fully-connected layers
and the decoder constitutes a single matrix with its weights set to the endmembers
spectra. In Figure 5.3, we provide visual representation of the pixel-based approach
of the DCAE model, whereas in the Figure 5.4, we display topology of the cube-
based variant. Finally, to showcase clear topology of the utilized models, we provide
description in Tables 5.1 and 5.2, for both CNN and DCAE models, respectively.
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Input: (1 × 1 × λ)

Conv3D: 2 filters (1 × 1 × 3), ReLU

MaxPool3D: (1 × 1 × 2)

Conv3D: 4 filters (1 × 1 × 3), ReLU

MaxPool3D: (1 × 1 × 2)

Conv3D: 8 filters (1 × 1 × 3), ReLU

MaxPool3D: (1 × 1 × 2)

Conv3D: 16 filters (1 × 1 × 3), ReLU

MaxPool3D: (1 × 1 × 2)

Conv3D: 32 filters (1 × 1 × 3), ReLU

Flatten

Dense: 256, ReLU

Dense: c, ReLU

Softmax (abundances)

Dense: 1 × 1 × λ

(frozen weights as endmembers matrix)

Figure 5.3: Autoencoder-based CNN architecture for hyperspectral
unmixing proposed in [112]. Input is a 1 × 1 spatial pixel with λ
spectral bands. The encoder learns abundances via convolutional and
dense layers followed by a softmax, and the decoder reconstructs the
spectrum using frozen endmember weights. Finally, c denotes the num-

ber of endmembers in the HSI.
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Input: (N × N × λ)

Conv3D: 16 filters (3 × 3 × 3), ReLU

Conv3D: 32 filters (3 × 3 × 3), ReLU

Conv3D: 64 filters (1 × 1 × 3), ReLU

Conv3D: 128 filters (1 × 1 × 3), ReLU

Flatten

Dense: 256, ReLU

Dropout: 0.2 drop rate

Dense: c, ReLU

Softmax (abundances)

Dense: n × n × λ

(frozen weights as endmembers matrix)

Figure 5.4: 3D DCAE model for hyperspectral unmixing [112]. In-
put is an N ×N spatial neighborhood with λ spectral bands. The
network extracts spectral-spatial features via 3D convolutions, learns
abundance vectors (c) using dense layers, and reconstructs spectra us-

ing fixed endmember weights.
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Table 5.1: The CNN architecture proposed in [278]. For each layer,
we report the number of kernels, alongside their dimensions and acti-
vation functions. This table was included in our publication in [238].

Variant Layer Parameters Activation

Pixel-based
CNN
(1× 1× λ)

Conv1 3@1× 1× 5 ReLU
Conv2 6@1× 1× 4 ReLU
Conv3 12@1× 1× 5 ReLU
Conv4 24@1× 1× 4 ReLU
FC1 #× 192 ReLU
FC2 192× 150 ReLU
FC3 150× a Softmax

Cube-based
CNN
(3× 3× λ)

Conv1 16@1× 1× 5 ReLU
Conv2 32@1× 1× 4 ReLU
Conv3 64@1× 1× 5 ReLU
Conv4 128@1× 1× 4 ReLU
FC1 #× 192 ReLU
FC2 192× 150 ReLU
FC3 150× a Softmax

Table 5.2: The DCAE architecture proposed in [112]. For each layer,
we report the number of kernels, alongside their dimensions and acti-
vation functions. This table was included in our publication in [238].

Variant Layer Parameters Activation

Pixel-based
DCAE (1×
1× λ)→
(1× 1× λ)

Conv1 2@1× 1× 3 ReLU
Conv2 4@1× 1× 3 ReLU
Conv3 8@1× 1× 3 ReLU
Conv4 16@1× 1× 3 ReLU
Conv5 32@1× 1× 3 ReLU
FC1 #× 256 ReLU
FC2 256× a + Softmax
FC3 a× λ ReLU

Cube-based
DCAE (5×
5× λ)→
(1× 1× λ)

Conv1 16@3× 3× 3 ReLU
Conv2 32@3× 3× 3 ReLU
Conv3 64@1× 1× 3 ReLU
Conv4 128@1× 1× 3 ReLU
FC1 #× 256 ReLU
FC2 256× a + Softmax
FC3 a× λ ReLU
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5.1.2 Experimental Settings

The neighborhood shape was set to 3× 3 and 5× 5 for the CNN [278] and DCAE
[112] models, respectively. We train both models utilizing the Adam [116] optimizer
with the batch size set to 256 to allow for decently-sized step during training and
maintain stability. The learning rates for pixel- and cube-based CNNs were set to
0.001 and 0.0001, respectively, whereas the learning rates for DCAE for spectral and
spectral-spatial variants were equal to 0.00001 and 0.00005. The maximum number
of training epochs was set to 100 with an early-stopping mechanism conditioned on
the validation loss equal to 15 epochs without improvement.

5.1.3 Benchmark Datasets

In this study, we focus on two HU well-established benchmarks, i.e., the Jasper Ridge
and Urban datasets. The first one originally employs 512× 614 pixels, where each
one captures 224 channels. The electromagnetic spectrum spans from 380 nm to
2500 nm. This HSI is further cropped in to a 100× 100 window with four underlying
endmembers: i) road, ii) water, iii) soil and iv) Tree. After removing contaminated
and water vapor channels, the HSI incorporates 198 bands. In the Urban benchmark,
the HSI spatial shape is 307× 307 and the number of bands is equal to 162. This
benchmark comprises six endmembers: i) Asphalt, ii) Grass, iii) Tree, iv) Roof, v)
Metal, and vi) Dirt. As it can be seen, both benchmarks provide different complexity
in terms of spectral or spatial domains, i.e., the Jasper Ridge contains a higher number
of bands, thus making it more complex to interpret in this domain, whereas the
Urban benchmark uses more pixels, hence introducing more context in these axes.
Such selection of benchmarks allowed us to ensure variability and provide fair and
representative comparison between the investigated methods as well as the impact of
varying size of the training set.

Note: In this thesis, we give the description of utilized datasets potentially mul-
tiple times, in order to make the corresponding sections self-contained. Although it
would be possible to keep them in a single place in the thesis, we believe that referring
to a fairly “distant” section would negatively impact the read.

In all experiments, we incorporate a cross-validation strategy with Monte-Carlo
technique and sample 30 variations of training (T) and test sets (Ψ). It is critical to
emphasize that the test set elements do not change with the change of the size of the
training set size. The test size for the Jasper Ridge benchmark is set to 7500, whereas
for Urban dataset it is equal to 47000 pixels. We evaluate the impact of the size of
the training set by investigating the following variants {1%, 6%, 13%, 33%, 66%} of
randomly sampled pixels from the original benchmark HSIs. Thus, for Jasper Ridge
and Urban datasets we constructed the sets with {75, 500, 1000, 2500, 5000} and
{470, 2800, 6100, 15500, 31000} elements. The validation set incorporates 10% of
the available training pixels for both benchmarks and utilized for the early stopping
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condition mechanism. Naturally, such pixels are removed from training set to remove
duplication.

5.1.4 Quality Metrics

To evaluate the HU capabilities of investigated models, we incorporate two metrics
that measure the distance between the estimated and ground-truth abundance vec-
tors. The first one is the RMSE, whereas the second metric is rmsAAD. RMSE can
be formulated as:

RMSE =

√∑N
i=1(ai − âi)2

N
, (5.1)

whereas the rmsAAD can be given as:

rmsAAD =

√√√√∑N
i=1 arccos( a⊤

i âi

∥ai∥∥âi∥ )
2

N
. (5.2)

The N is the number of samples in the test set that remains constant with the
change of size of the training sets, a and â are the ground-truth and estimated
abundance vectors. Note: In this thesis, we give the formulas for the most important
quantitative metrics potentially multiple times, in order to make the corresponding
sections self-contained. Although it would be possible to keep them in a single place
in the thesis, we believe that referring to a fairly “distant” section would negatively
impact the read.
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5.1.5 Experimental Results and Discussion

In Figures 5.5 and 5.6, we provide the RMSE and rmsAAD values estimated for
each variant of the models (CNN and DCAE), coupled with the varying sizes of the
training set (on the horizontal axis). To perform statistical analysis and tests, we
filter out the outlier experimental runs employing the inter-quartile range (IQR).
This procedure allowed us to calculate the mean and median statistics without the
influence of outlying runs. More specifically, we retain executions for which RMSE
is in between Q1 − 1.5 · IQR and Q3 + 1.5 · IQR, where Q1 and Q3 are the first
and the third quartile. For both models, there are approximately two such outlying
experiment runs per variant.

For the DCAE model, similarly as in the original work [112], the cube-based
model outperforms the pixel-based variant, which shows that spatial context infor-
mation is effectively employed in the latent representation elaborated by DCAE.
Furthermore, it implies that in the neighborhood data, there are important explana-
tory features, which allow the model to enhance the estimated abundance vectors.
Such phenomenon was not manifested in CNNs variants. In the experimental re-
sults, the pixel-based model obtained lower regression errors when compared to the
cube-based CNN. This can be attributed to noise inherently present in the spatial
dimensions that negatively influenced the quality of unmixing predictions. Moreover,
if the ground sampling distance is too large, some fine-grainted features could be dif-
ficult to recognized by the cube-based variant. Subsequently, as HU is a multitarget
regression problem, the models are more sensitive to fluctuations in the input data
when compared to e.g., classification or segmentation models.
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Figure 5.5: The experimental results for RMSE metric. We provide
values for the pixel- and cube-based configurations of CNN and DCAE
models. The averages are rendered in gray, whereas the medians are
presented in red (the whiskers indicate standard deviation). This figure

was included in our publication in [238].
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Figure 5.6: The experimental results for rmsAAD metric. We pro-
vide values for the pixel- and cube-based configurations of CNN and
DCAE models. The averages are rendered in gray, whereas the me-
dians are presented in red (the whiskers indicate standard deviation).

This figure was included in our publication in [238].
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Table 5.3: The metrics of the Friedman tests followed by the Dunn’s
multiple comparisons tests for (a) Jasper Ridge as well as (b) Urban
benchmarks calculated for rmsAAD. We highlight pairs (a–b, where
a and b are the percentage of all training pixels, in %) for which the
averages are statistically significantly different (at p < 0.05). This
table was also included in the PhD Candidate’s publication in [238].

Variant Set Pairs

Pixel-based CNN
(a) 1–13, 1–33, 1–66, 1-100, 6–33, 6–66, 6–100, 13–66, 13–100
(b) 1–33, 1–66, 1–100, 6–66, 6–100, 13–100

Cube-based CNN
(a) 1–13, 1–33, 1–66, 1–100, 6–33, 6–66, 6–100, 13–66, 13–100
(b) 1–33, 1–66, 1–100, 6–66, 6–100, 13–66, 13–100

Pixel-based DCAE
(a) —
(b) 1–33, 1–66, 1–100

Cube-based DCAE
(a) 1–13, 1–33, 1–66, 1–100, 6–66, 6–100
(b) 1–100

In this study, the values show that decreasing the size of the training sets severely
affects the unmixing error (Table 5.3). To evaluate the statistical relevance of these
results, we performed Friedman tests in conjunction with Dunn’s multiple comparison
procedures for each dataset. For brevity, we focus on rmsAAD, since the outcomes
for RMSE correspond and correlate closely with those of rmsAAD. The examination
of this metric indicates that extremely small training sets (comprising 1% and 6% of
the overall data) lead to significantly inferior unmixing quality in contrast to models
trained on more extensive datasets (spanning from 33% to 100% of the data). Im-
portantly, when utilizing adequately sized reduced training sets (33% of the available
data), no substantial decrease in unmixing efficacy was noted for either model archi-
tecture, even when juxtaposed with training on larger datasets (surpassing 66% of
the data). This implies that increasing the quantity of manually annotated training
pixels may not considerably improve the models’ performance under these conditions.

5.1.6 Concluding Remarks

The experimental results obtained over two benchmarks indicated that the deterio-
ration of the abundance estimation quality is especially present for smaller training
sets, i.e., up to 6% of the HSI. Furthermore, when increasing the size of the training
sets above the threshold of 33% did not bring statistically significant improvements.
The experimental results show that the manual labeling process should be coupled
with the quantitative and statistical analysis to determine the required and sufficient
number of training samples.

We utilized the cube-based variants of both models without asserting the infor-
mation leak that may be present when the neighboring pixels of training and test
sets overlap with each other. Such phenomenon may lead to overly-optimistic results
and must be studied carefully. In the subsequent Section 5.2, we investigate another
sampling strategy to mitigate the information leak and expanding this study. Such
issue is critical when it comes to model evaluation for multifold reasons, with the
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pivotal ones being operational and deployment safety, model generalization capabili-
ties, inference expected results, and proactive root cause error handling—by fair and
unbiased quantitative evaluation. Finally, in Section 5.2, we continue the research on
the influence of the varying training set sizes.

5.2 Unbiased Validation and Representative Sampling
Strategy of Hyperspectral Unmixing Algorithms

The initial step in our framework concerns establishing a representative and fair
division of an input hyperspectral scene into the training and test subsets. As already
mentioned, the evaluation of supervised HU methods is significantly influenced by
the limited availability of GT data. Typically, the hyperspectral pixels used for the
training set (T ) and the test set (Ψ) are extracted from the same HSI, which represents
a singular scene. Such pixels are spatially correlated and captured under identical
acquisition conditions. Because of this phenomenon, it disables the possibility of
replicating the operational scenarios encountered by Earth observation satellites in
real-world applications. In HU, this challenge is more visible, as satellite images
possess significantly lower spatial resolution compared to airborne HSIs, where the
spectral features are of better fidelity.

Even in cases where multiple HSIs are accessible, they often encompass different
endmembers. In such situations, it is extremely difficult (or even impossible) to
train using one HSI and test with another since the targets are completely different.
While deriving T and Ψ from the same HSI is considered valid, ensuring there is no
leakage of information between these datasets is essential [109], [176], especially for
sensors with low spatial resolution. For methods focused solely on spectral features,
it suffices to prevent identical pixels from being present in both subsets. However, in
spectral-spatial analysis when considering 3D samples from the HSIs, it is necessary
to exclude pixel spatial neighborhoods from training to avoid overlaps. Such situation
renders when the same pixel appears within the neighborhoods of different pixels in
both training and testing sets, causing the leak of information across those subsets.
Moreover, when training or evaluating models on such data, the results will most likely
be over-optimistic, hindering the ability to draw sensible conclusions or performing
statistical analysis of such data [176]. Furthermore, this issue has been examined in
the literature in the context of HSI classification in [176]. Many of HU studies tend
to overlook this significant limitation and discard the neccessity to split such sets
properly, asserting no information leak. Moreover, as highlighted in [7], [23], HSIs
are generally smaller in terms of number of pixels when compared to datasets in other
imaging modalities, making this problem even more pressing.
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5.2.1 Extracting Training-Test Dataset Splits

To extract the T and Ψ division, we propose a multistep approach (for visual example,
please refer to Figure 2.1) called Geospatially Stratified Validation (GSV) that given
an input HSI image of height H and width W as well as the expected size of T and
Ψ (|T | and |Ψ| respectively) performs the following:

1. Sample randomly the start index based on the maximum H and W variables:

hs, ws ←− randint(H), randint(W ),

where randint operation samples integers from the discrete uniform distribution
in the half-open interval [low, high). In this case, the lower and upper bounds
are 0 and H or W , respectively.

2. Calculate the flattened index from the 2D image by treating it as it was a 1D
projection via concatenating rows sequentially:

ie ←− hsW + ws.

3. Calculate the end index given the size of the training set |T |:

ie ←− is + |T |.

4. Given the start and end indices for the training set, we have two possibilities: i)
the ie index is larger than is—this happens when the end did not wrap around
the HSI, and ii) the opposite case of ie < is. The situation when is = ie is
logically not possible for a real example, thus omitted by our algorithm. This
can happen when the magnitude of the training set T is set to be equal the
number of pixels in the HSI. In the former example of ie < is, the end index did
overshoot the maximum dimensions thus was reduced by the modulo operator
and wrapped around the image.

In the first case for ie > is, we incorporate all pixels between start and end
indices to the training set T . Subsequently, for the test set Ψ, we populate it
with all the remaining pixels, i.e., from ie up to the end of the image iH+W , as
well as from the first pixel in the 1D array i1 up to is.

In the opposite case, when ie < is, we employ a reverse strategy, i.e., the T set
is populated with pixels from is up to iH+W and i1 to ie. The test set is filled
with the remaining samples between ie and is (since s > e).

To obtain specific spatial 2D indices of each index, e.g., index ik, the required
formula is the following:

hk ←−
⌈

ik
W

⌉
mod H,

for the height index and

wk ←− ik mod W , for the width index.

5. Finally, since the magnitude of the test set was specified, we additionally sub-
sample Ψ to a required size |Ψ|.
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In our algorithm, the final test set is redefined to only include a subset of its
elements from the existing set Ψ. Specifically, our algorithm takes the last |Ψ|
pixels (or patches) from the total number of elements in Ψ and counts backward
to select only those elements that fit within the specified size.

The purpose of this step is to ensure that the test set conforms to a predefined
size limit, which can be crucial for various applications such has DL models
validation. Another important advantage is that if the length of the training
set |T | is increased, such backward sampling allows to maintain the exact same
elements in Ψ. It is critical during various types of experiments, when the test
set must remain constant (with the change of |T |).

The specified algorithm can be utilized for spectral and spatial-spectral approaches,
where in the latter case, each index does not only represent a specific pixel, but a
local neighborhood of pixels. To prevent from the information leak phenomenon, it
is crucial to only extract non-overlapping patches. In the case of edge pixels—which
normally would be included in the neighboring regions in both sets (T and Ψ), thus in-
troducing information leak—we do not incorporate them in any set and are discarded
from analysis. For a visualization of such procedure please refer to Figure 2.1.

Finally, although using our proposed algorithm allows to effectively alleviate and
remove the problem of information leak, nonetheless, given the fact that T and Ψ
are from the same HSI, the samples from both sets are likely spatially correlated
and could share the same endmembers that are inherently embedded in the imagery.
Furthermore, the samples from training and test sets were acquired with the same
hyperspectral sensor, sharing the same acquisition parameters and effects such as
noise related to the atmosphere or the camera itself. To completely remove such
correlations from those sets, it is necessary to examine HSIs from different regions of
interest and preferably change sensor characteristics to completely validate robustness
of validated models.

There are numerous benefits of this algorithms with the main contribution being:

• Operating only on indices allows us for fast and memory efficient sampling and
division on training and test sets.

• The size of T and Ψ are adjustable.

• The test set remains constant with the changing size of training set. Hence,
such training-test splits might be used to validate the robustness of machine
learning models against different sizes of the training sets, and this analysis
would be performed on the very same test set. This, is turn, allows us to directly
confront the obtained quality metrics across different models, and ensures full
reproducibility of such experimentation.

• Our algorithm removes the risk of spatial information leak and allows us to
sample non-overlapping neighboring regions between pixels from T and Ψ.
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• Our approach strives in its simplicity, thus allowing for easy modification, of-
fering high flexibility and versatility.

• The proposed sampling strategy can operate on any image—not only on HSIs
but also could be used for semantic or instance segmentation of even red, green,
blue (RGB) images.

• We can extract multiple training-test folds to simulate cross validation scenarios,
via sliding window operation across the input image.

• Our algorithm can be used for pixel- and patch-based approaches.

5.2.2 Experimental Settings

In the experiments, we evaluate the influence of T and Ψ sampling process and
compare performance of state-of-the-art methods for HU. We compare a standard
and universally used random sampling (RS) approach with our proposed—GSV—
sampling algorithm. It is worth emphasizing that the stratification approach widely
used in the literature does not incorporate any mechanism to detect and alleviate the
problem of spatial information leak, thus such scenario is highly probable. Hence, may
lead to overoptimistic results when benchmarking models and provide inconclusive
results. Furthermore, RS method does not prevent from injecting spatially-correlated
neighborhood across training and test subsets.

Our experiments were conducted utilizing Python 3.6 and the entire implementa-
tion is freely accessible under the link https://gitlab.com/jnalepa/hu_validation.

git. The selected state-of-the-art models were trained with the same hyperparame-
ters and we used the Adam optimizer with the learning rate set to 0.001. Moreover,
the maximum number of epochs to train DL models was set to 100, where the early
stopping condition—that allows us to stop the training before reaching the maximum
number of epochs if the validation loss is not decreasing—was 15 epochs. In our
experiments the validation set incorporates 10% of T , consequently those elements
are removed from the training set. Furthermore, the batch size was set to 256, hence
allowing the Adam optimizer to incorporate a sufficiently large step to avoid over-
fitting, oscillation and allow for smooth convergence. For the loss function that is
utilized by the optimizer, we utilize mean square error.

In the study, we evaluate different models, ranging from classical method used
in HU to DL models that manifest the recent advancements in this field. The first
technique that we evaluate is a LMM approach proposed in [88]. It is a fully con-
strained least squares method with two constraints incorporated: i) the abundance
nonnegativity constraint, and ii) the abundance sum constraint. The next classical
model selected as baseline was a Support Vector Regression (SVR) model with one
instance per target to fit the multitarget regression HU task presented in [33].

Moreover, we evaluate a CNN model adjusted for the unmixing task proposed in
[278]. In our experiments we select the more advanced cube-based variant of this

https://gitlab.com/jnalepa/hu_validation.git
https://gitlab.com/jnalepa/hu_validation.git
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architecture, by using an additional local neighborhood to improve the unmixing per-
formance. This model incorporates four 3D convolutional layers as feature extractor
segment and is concluded with three fully-connected layers with additional dropout
mechanism to avoid overfitting. The kernel dimensions are 1× 1× 5 and 1× 1× 4
with unit stride and are used consecutively, one after another. In the regressor block
which exploits fully-connected layers, the number of units is 192, 150 and C, where
C denotes the number of endmembers in the HSI. For the activation functions, the
authors utilized the ReLU non-linearity for all but the last layers, which incorporates
the Softmax function [12] to satisfy the abundance constraints. We refer to this model
as CB-CNN in the experiments and provide visualization of its architecture in the
Figure 5.7.
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Input
(N × N × λ)

Conv3D: 16
(1 × 1 × 5), ReLU

Conv3D: 32
(1 × 1 × 4), ReLU

Conv3D: 64
(1 × 1 × 5), ReLU

Dropout: 0.2

Conv3D: 128
(1 × 1 × 4), ReLU

Dropout: 0.2

Flatten

Dense: 192, ReLU

Dense: 150, ReLU

Output: c endmem-
bers and Softmax

Figure 5.7: Cube-based CNN (CB-CNN) architecture for hyperspec-
tral unmixing [278]. N defines the spatial size of the input sample,
whereas λ represents the number of bands in the HSI. The number of

endmembers is referred to as c.

Finally, we select an additional model from the literature proposed in [10]. This
research introduces a weakly supervised deep CNN model to tackle the task of HU.
The proposed model architecture resembles an autoencoder and it can be decom-
posed into the encoder and decoder parts. The former one incorporates a feature
extraction block that is composed of 5 Network blocks and a linear layer followed by
the Softmax non-linearity to obtain the abundance maps as the latent representation.
Each Network block encapsulates a convolutional layer with 2× 2× 7 initial kernel
and following ones of dimensionality 2× 2× 5 with ReLU activation function. The
decoder utilizes the estimated abundance maps and reconstructs the input sample.
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In the Figure 5.8, we provide visual representation of the utilized architecture. This
model can also work in spectral and spectral-spatial fashion, hence in our experi-
ments we selected the more advanced cube-based version. We refer to this method
as weekly-supervised autoencoder (WS-AE).

Input

5 Conv
Blocks

(2× 2× 7,
2× 2× 5)

Linear +
Softmax

Abundance
Maps

Decoder

Reconstructed
Output

Figure 5.8: WS-AE (Weakly-Supervised Autoencoder) architecture
for hyperspectral unmixing [10]. We highlight the 5 convolutional
blocks with feature reduction to obtain the estimated abundance vec-
tors. The decoder is set to the endmembers matrix and is utilized to
reconstruct the input sample via combination of abundances and its

weights.

5.2.3 Benchmark Datasets

In the experiments we selected the most well-known and established unmixing bench-
marks, i.e., the Samson (Sa) with spectral-spatial dimensionality of 95× 95× 156,
hence incorporating 156 bands. It encapsulates three endmembers: i) Soil, ii) Tree,
and iii) Water. The subsequent dataset is Urban (Ur) containing 307× 307 pixels
accompanied with 162 bands. This benchmark incorporates six endmembers: i) As-
phalt, ii) Grass, iii) Tree, iv) Roof, v) Metal, and vi) Dirt. Finally, the last dataset
utilized for evaluation is Jasper Ridge (JR) with 100× 100 spatial shape and 198
bands. The following four endmembers are present in this scene: i) Road, ii) Water,
iii) Soil, and iv) Tree.

To perform statistical analysis of the results, each experiment is repeated 30 times
following a 30-fold Monte Carlo cross-validation scheme. Utilizing RS and our GSV
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approaches, we sample 30 test sets that do not change size with the change of T

length. The size of Ψ for Sa, Ur and JR is set to 3025, 47249, and 2500 respectively.
The total size of the training set is set to 6000, 47000 and 7500 for Sa, Ur, and JR.

We also investigate the influence of varying training set size on the quality of
unmixing in the context of RS (sampling with information leak) and GSV (strati-
fication without information leak). This part of experiments is crucial to measure
how different sampling techniques cope with limited training data and what is the
consequence of training on such samples. Furthermore, it allows us to understand the
relationship between the presence of information leak and varying training set sizes.
We incorporate such magnitudes for T compared to full HSI in such percentages:
1%, 6%, 13%, 33%, 66%. Subsequently, such sampling creates the following training
set sizes for Sa, Ur and JR:

• Sa—60, 360, 780, 1980, 3960

• Ur—470, 2800, 6100, 15500, 31000

• JR—75, 500, 1000, 2500, 5000

5.2.4 Quality Metrics

To evaluate the quality of unmixing we utilize two metrics: i) RMSE and ii) rmsAAD.
The formula for RMSE can be denoted as:

RMSE =

√√√√ |Ψ|∑
i=1

(ai − âi)2/|Ψ|, (5.3)

whereas rmsAAD can be described using the following formula:

rmsAAD =

√√√√ |Ψ|∑
i=1

arccos( a⊤
i âi

∥ai∥∥âi∥
)2/|Ψ|, (5.4)

where |Ψ| is the size of the test set Ψ, and a and â are the ground-truth and predicted
abundances. It is worth emphasizing that both metrics should be minimized and the
perfect score is equal to zero.

5.2.5 Experimental Results and Discussion

In Table 5.4 we present RMSE and rmsAAD for both sampling strategies, whereas in
Table 5.5, we show the rankings for both metrics, calculated with all models averaged
across all benchmark datasets. From the experimental results we can observe that
the CB-CNN architecture outperforms other methods on all benchmark datasets, in-
cluding the patch-based WS-AE model. If the results are averaged for all variations
of training set sizes, we also appreciate the best performance in unmixing for the
CB-CNN model. It is also worth emphasizing that utilizing the spectral-spatial fea-
tures is most beneficent and allows the model to improve its precision in estimating
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the abundances over Ψ by exploiting more informative context in the feature maps.
Moreover, the experimental results also convey that increasing the size of T leads to
improvement in unmixing over the test set, which should be an expected scenario.
Furthermore, the classical techniques such as LMM failed short when compared to
more advanced and recent DL architectures in the quality of abundance estimation
over Sa and Ur. In the case of JR, LMM provided better results than CB-CNN and
WS-AE. Such phenomenon is probably caused by a very limited number of training
samples, thus bounding the learning and generalization capabilities of DL models.
Such limitation emphasizes a real problem of the sparse amount of labeled data in
HU and could be resolved via various augmentation techniques at a cost of longer
training times and increased compute resources.

We evaluated the impact of sampling strategy on the unmixing capabilities of all
methods. We investigated the metrics obtained for both RS and GSV for all Monte-
Carlo 30 cross-validation folds. It is important to emphasize that the test set Ψ was
kept constant and was the same for RS as well as for GSV. In the case of training sets
T, the elements were sampled differently as both techniques incorporate divergent
strategies. We calculate the delta for both metrics, i.e., RMSE:

δRMSE = (RMSEGSV −RMSERS)/RMSERS , (5.5)

and rmsAAD:

δrmsAAD = (rmsAADGSV − rmsAADRS)/rmsAADRS . (5.6)

Consequently, δ is the real difference between the GSV and RS sampling methods.
Furthermore, if the information leak which is present in RS would have no effect on
the HU metrics, the delta would be equal to zero. Values > 0 indicate that for GSV
the unmixing error was larger than for RS. Thus RS division would in effect render
overly-optimistic results of abundance estimation, which is a critical point in this
research. In Table 5.6, we present the deltas calculated for both metrics with varying
size of T. From the results it is clear that for all cases the RS approach produces lower
errors for both metrics, hence produces overly optimistic results for all benchmarks.
The GSV errors could even be up to > 5 times larger than results for RS. It is clear
that RS does not allow to obtain a fair stratification between training and test sets,
and incorporates information leak, which in result, causes the experimental results to
be overly optimistic and not conclusive. Furthermore, such pattern in the HU metrics
is also visible in Figure 5.9 and 5.10, where we depict RMSE and rmsAAD values via
a radar plot visualization for both metrics, respectively. The both metrics are much
closer to the origin for RS approach. What is worth of observing is that the rankings
calculated in Table 5.5 are positively correlated for both sampling strategies, thus
both stratification methods could be utilized for model selection. Nonetheless, the
information leak will cause the RS values to be overly optimistic, hence its metrics
would not be usable in further analysis or statistical testing. What is more, the overly
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optimistic values of RS could lead to operational problems and massive failures if any
model validated in this paradigm would be deployed in real use cases, e.g., satellite
sensors. In such conditions, the produced results would be of lesser quality and could
potentially be the root cause of many operational issues.
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Figure 5.9: The RMSE values for both sampling strategies (RS and
GSV) and all datasets: LMM [88], SVR [34] CB-CNN [280],

WS-AE [11]. The values closer to zero indicate better HU quality.
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Figure 5.10: The rmsAAD values for both sampling strategies (RS
and GSV) and all datasets: LMM [88], SVR [34] CB-CNN [280],

WS-AE [11]. The values closer to zero indicate better HU quality.
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5.2.6 Concluding Remarks

This study demonstrates the critical importance of proper data stratification in
HU research and highlights the superior performance of deep learning architectures
when adequately trained. The CB-CNN model consistently outperformed traditional
methods like LMM and other deep learning approaches across multiple benchmark
datasets, particularly when leveraging spectral-spatial features that provide richer
contextual information for abundance estimation. The results underscore that while
classical linear mixing models may suffice for certain datasets with limited train-
ing samples, modern deep learning architectures excel when sufficient labeled data
is available, emphasizing the ongoing challenge of data scarcity in remote sensing
applications.

The comparison between RS and GSV reveals a fundamental methodological flaw
that has likely affected numerous studies in the field. The information leakage in-
herent in RS approaches produces overly optimistic results that can be up to five
times better than the true model performance, creating a false sense of accuracy
that could lead to operational failures in real-world deployments such as satellite
sensor applications. This finding calls for a paradigm shift in HU validation proto-
cols, advocating for GSV or similar spatially-aware stratification methods to ensure
realistic performance estimates. Future research should prioritize the development
of data augmentation techniques and novel architectures that can effectively handle
the sparse labeled data problem while maintaining rigorous validation standards that
reflect true operational conditions.

5.3 Toward Compact Deep Learning for Hyperspectral
Unmixing

In this work, we focus on benchmarking several literature-based architectures, a multi-
feature learning approach, as well as the proposed GCNN-based models to address the
task of HU. In this experimental study, we incorporate multiple multi-branch CNN
models previously proposed by the PhD Candidate in [233], which integrate spectral,
spatial, and spectral-spatial feature fusion to enhance the estimation of abundance
vectors and are treated as a recap and reference point. Additionally, we benchmark
GCNN models to evaluate the capabilities of such architectures in the context of
HU. To the best of our knowledge, such topologies have not yet been explored for
hyperspectral abundance vector estimation so far.

5.3.1 Multi-Branch Convolutional Neural Networks for Hyperspec-
tral Unmixing: Reminder from the State of the Art

Our experimental results had demonstrated that the multi-branch approach outper-
forms other state-of-the-art classical and deep learning-based architectures in HU
tasks. To complete the study, and in line with the experiments presented in Section
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Figure 5.11: A high-level view of our multi-branch approach. Three
branches extract spectral (1D), spatial (2D) and spectral-spatial (3D)
features from an input HSI. Subsequently, those features are later fused
and fed to the fully-connected regressor module, to estimate the abun-
dances. For the 1D branch, we show a relative change in the dimen-
sionality. This diagram was also utilized in the PhD Candidate’s work

in [233].

5.1 and Section 5.2, we conduct an analysis of how varying training set sizes affect
the quality of the estimated abundance vectors and the generalization capabilities of
the evaluated models. Finally, we assess the robustness of the larger multi-branch
models by evaluating their accuracy under noise contamination.

In our proposed multi-branch approach, we utilize early and late fusion techniques
coupled with a multi-branch methodology that allows the model to learn different
types of fine-grained features across various domains of data. In Figure 5.11, we
visualize the feature learning mechanisms of the model via this approach. The model
utilizes 1D convolution to extract feature representations from the spectral dimension
of the input sample of shape p× p× λ. The variable p indicates the spatial extent
of the sliding window used to generate examples, with the central element being the
pixel of interest—for this sample, the abundance vector is estimated. The variable λ

denotes the number of spectral bands, which is the dimension utilized by the kernel
in 1D convolution.

Consequently, the 2D convolutional layers operate by extracting features through
movement across the spatial dimensions. In contrast, the 3D convolutional layers
utilize both spectral and spatial dimensions simultaneously. As shown in Figure 5.11,
each of the branches shares a common concatenation layer. Analogously to other
models proposed in this chapter, the network concludes with several fully-connected
layers that serve as a regressor to estimate the abundance vectors.

Several methods incorporating similar fusion strategies via multi-branch networks
have been introduced in the literature. Audebert et al. [8] implemented such fusion
in a multi-branch network. In [68], a multi-branch fusion network was utilized for
hyperspectral classification. Feng et al. [64] proposed an attention-based multi-branch
CNN for the same task. Cai et al. [26] introduced a multi-branch multi-scale residual
fusion network, and Guo et al. [82] presented a novel approach that incorporates
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weight sharing and an attention mechanism within a multi-branch network.
The underlying structure of the model consists of parallel blocks designed to

extract different feature representations, which are subsequently concatenated. The
first block utilizes three 1D convolutional layers, each followed by a max pooling layer
to reduce the size of the activation maps. The kernel sizes in the spectral dimension
are set to 9, 7, and 5 for each respective layer, with pooling filters of extent 2. This
setup helps control the increasing receptive field as the depth of the network increases.
The number of feature maps in each 1D convolutional layer is set to 16, 32, and 32,
respectively.

As the input sample is a 3-dimensional tensor, it is reshaped to fit the 1D convo-
lutional format by concatenating the spatial pixels into a single axis. This operation
is represented as:

p× p× λ→ p2 × λ, (5.7)

where p× p denotes the input patch shape. The first dimension is treated as the
number of input feature maps, with the kernel sliding along the second (spectral)
dimension. This operation is limited in its feature-learning capability because it only
utilizes the spectral axis.

The second module, the 2D convolutional branch, extracts spatial features from
the input sample. This branch uses five convolutional kernels with 2× 2 spatial extent
and spectral depth equal to λ. The number of feature maps is set to 16, 32, 64, 128,
and 256 for the five convolutional layers, respectively.

Finally, the 3D convolutional branch includes three blocks, each containing two
convolutional layers with kernel sizes of 2× 2× 9 and 2× 2× 5. These filters move
in three dimensions to extract joint spectral–spatial features. Each block has 16 and
32 activation maps, respectively.

The model concludes with flattening and concatenation layers, followed by a three-
layer fully-connected regressor with 512, 64, and c units, where c represents the
number of total endmembers in the input HSI. ReLU activation is applied in all layers
to mitigate vanishing and exploding gradient problems [14], [90], [192]. The output
layer uses softmax activation to satisfy hyperspectral unmixing (HU) constraints: i)
the abundance nonnegativity constraint and ii) the abundance sum constraint, as
discussed in Section 1.2.

In our study, we further modified the baseline multi-branch CNN architecture
(MB). Such modifications aim to improve the foundational topology via adjustments
to the number of features, employing residual connections, and more advanced and
multifold training scheme. We designed the model modifications to be model-agnostic
so that they could be extrapolated into other multi-branch architectures. Below we
define the added modifications in detail:

1. In the first modification variant, we tackle the phenomenon that is present in
the baseline multi-branch CNN model concerning the number of output features
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extracted by each parallel block. More specifically, there is a high imbalance
of such activations when compared across 1-, 2-, and 3-D branches, e.g., the
number of units after flattening the output of 3D module can be orders of mag-
nitude larger compared to those from other branches. For the Urban dataset
with the input shape of 3× 3× 162, we observe approximately around 500, 200,
and more than 46000 features for 1D, 2D and 3D parallel CNN components. It
is highly probable that after concatenating such activations from each branch,
there would be a noticeable bias in the direction of 3D branch, hence it would
hinder the learning capabilities of other branches and negatively impact their ef-
fectiveness in feature extraction. Motivated by this extensive feature imbalance,
we apply feature reduction in the 3D branch by employing two additional con-
volutional layers, without padding, and keeping the same kernel shapes (hence
effectively adding one more block). Furthermore, we modify the strides of such
new layers to be 1× 1× 4 as well as 1× 1× 2 for each layer respectively. We
refer to this variant as MB-DR

2. The next modification aims to improve the gradient flow by incorporating resid-
ual connections to the model. It was experimentally proven in the literature
that such operation allows the model to accelerate training process and mitigate
the problems of vanishing and exploding gradient phenomena [22], [87], [96].
In this variant, we employ residual connections in the 3D branch to mitigate
the mentioned problems and enhance propagation of the original hyperspectral
information within the model. This modification is based on the previous ad-
vancement, i.e., MB-DR, where we incorporated additional feature reduction to
the 3D branch. More specifically, the output of each consecutive block is com-
bined via a sum aggregation with the output of the previous block, e.g., output
of the second module incorporates additionally first block output, where the
output from first block utilizes the repeated input data. We denote this model
as MB-Res.

3. The last modification which bases on the MB-Res architecture incorporates a
two-step training process: i) the initial training includes optimizing each branch
separately by decoupling them from each other, and ii) fine-tuning the entire
architecture or only the regressor part. Consequently, the second step has two
alternatives where in the former case the training strategy incorporates a scheme
where the feature extractor is pre-trained and then fine-tuned together (MB-
PT). In the latter case, where only the regressor part is trained, we refer to it
as MB-TL as it resembles transfer learning methodology. Furthermore, in the
MB-PT, we fine-tune parameters from all branches at the same time, whereas in
the MB-TL scheme, we assume the feature extractors from each branch trained
separately are already properly converged and ready to be utilized, and only
fine-tune the regressor part (which accounts to a smaller subset of trainable
weights). Consequently, the former method is faster to execute, however has
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its own limitations when utilizing the model on different dataset and can affect
the generalization capabilities of the model.

Finally, in the experiments, we analyze the models in the following order, with
the networks expanding their predecessors: MB→MB-DR→MB-Res→MB-PT and
MB-TL.

5.3.2 Graph Convolutional Neural Networks for Hyperspectral Un-
mixing

The next set of models we investigate are Graph Convolutional Neural Network
(GCNN)-based architectures, designed specifically for HSI abundance estimation.
The primary model, referred to and depicted in figures and tables as GCNN, leverages
graph-based learning techniques to effectively capture both spectral and spatial de-
pendencies inherent in hyperspectral data. The model begins by reshaping the input
hyperspectral patch of size n×n, with λ spectral bands, into a sequence of n2 nodes,
where each node represents a single pixel and contains its corresponding spectral
features. This formulation enables the construction of a graph in which each node
corresponds to a pixel within the local spatial neighborhood, and the model performs
global regression at the graph level. An alternative approach, not adopted in this
work, considers the entire HSI cube as a single global graph, where each pixel (node)
is assigned a regression target—typically an abundance vector. In contrast, the ap-
proach used here allows the GCNN model to process local neighborhoods individually
as graph structures, thus enabling localized feature extraction and prediction.

The spatial relationships between nodes are captured by a symmetric, normalized
adjacency matrix, computed based on inverse Euclidean distances between pixel co-
ordinates within the patch, following the method of [117]. This adjacency matrix is
then replicated across the batch dimension and used consistently as the graph con-
nectivity structure throughout the model. Spectral feature processing begins with a
learnable dense transformation layer followed by batch normalization and ReLU or
PReLU activations, which enhances the spectral representations before graph con-
volutions. The model employs several graph convolutional layers, which aggregates
features from neighboring nodes by multiplying node features with the normalized
adjacency matrix and applying learned linear transformations. The operations con-
sist of fully-connected layers and the weight initialization technique follows Xavier
method [47]. Such initialization allows is to mitigate the problems of vanishing [90]
and exploding [14], [192] gradient problems.

To further improve focus on the most informative spectral bands, a lightweight
spectral attention mechanism, that is composed of two fully-connected layers is in-
tegrated into the model. It incorporates a global pooling operation across neigh-
boring pixels. Afterwards, it employs a fully-connected layer with reduction ratio
to subsample the channel space to lower dimension. Subsequently, the second dense
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Input: (λ× 5× 5)

Reshape: (λ× 25)

GraphConv + BN

Spectral Attention

GraphConv + BN

Spectral Attention

Residual GraphConv + Dropout

Global Pooling: Avg + Max + Attention

Dense Layers: 512→ 256→ 64

Output: c units

Figure 5.12: Simplified architecture of the proposed GCNN. The
model includes spectral and graph-based modules, attention mecha-
nisms, and multi-stage feature fusion for robust abundance estimation.
Additionally, GCNN incorporates batch normalization (BN) layers to
accelerate training. The example utilizes a 5 × 5 spatial patch, on
which the adjacency matrix is created. Finally, c represents the num-
ber of endmembers in the HSI, whereas λ denotes the number of bands.

layer decodes the denser representation of spectral channels into the original projec-
tion. Such operation allows us to estimate learnable spectral-channel-wise attention
weights. Finally, the output of such attention module equals to the input scaled by
the computed attention weights for each spectral channel. This attention modulates
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the spectral features to emphasize salient spectral information and during preliminary
experiments proved to have great impact on general convergence correctness as well
as training time and final abundance metrics.

The architecture extends to multi-scale spatial modeling by computing multiple
adjacency matrices representing local, medium-range, and global spatial relationships,
enabling multi-scale graph convolutions that capture spatial dependencies at varying
distances. It is worth emphasizing that the global spatial relationships are understood
as the total extent of the utilized patch neighborhood and are bounded by the estab-
lished hyperparameters prior to training, thus it should be carefully selected based on
the dataset. The GCNN model also incorporates batch normalization (BN) layer to
stabilize and accelerate training [99]. Furthermore, the model applies residual graph
convolution blocks with batch normalization and PReLU activations improve gradi-
ent flow and enable training of deeper models. Such operation allows us to diminish
the possible vanishing gradient problems [90] that could arise during training deeper
architectures.

At the final level of the GCNN, we apply further feature aggregation that combines
global average pooling, global max pooling, and a spectral attention-weighted pooling
mechanism to generate a comprehensive feature vector that captures diverse aspects
of the spatial-spectral information and later is utilized in the regressor part of the
model. Finally, a fully connected regression head with multiple dense layers, batch
normalization, PReLU activations, and Dropout culminates in a softmax or sigmoid
output layer depending on the number of classes, enabling effective multi-class or
binary classification.

This refined GCNN framework effectively exploits the spatial-spectral structure
of hyperspectral data, providing robust performance and flexibility across different
HSI classification scenarios. Throughout the GCNN model layers, we exploit Dropout
regularization technique with 0.1 and 0.2 rates, to alleviate the problem of overfitting.
We refer to this model as GCNN and depict its general architecture in Figure 5.12
for a 5× 5 spatial window.

Also, we introduce, the GCNN with Chebyshev GCN layers (referred to as GCNN-
Cheb) is a DL architecture tailored for HSI regression and unmixing. By integrat-
ing spectral attention mechanisms with advanced spectral graph convolution, this
model is specifically designed to capture intricate spatial and spectral dependencies
within hyperspectral data. A distinguishing component of GCNN-Cheb is the use
of Chebyshev polynomial-based graph convolutional layers proposed in [48].
These layers enable efficient and localized filtering on graphs by approximating spec-
tral graph convolutions with a truncated expansion of Chebyshev polynomials of the
graph Laplacian. Unlike standard GCNNs which are limited to immediate neighbors,
the Chebyshev formulation allows information propagation from a K-hop neighbor-
hood, where K is a tunable hyperparameter. This leads to more expressive and deeper
spatial context modeling.
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In practice, the model constructs two separate convolutional paths using Cheby-
shev graph convolutions (ChebConv) with different polynomial orders: K = 3 and
K = 5. The first path applies a ChebConv layer with 64 output filters and K = 3
hops, followed by batch normalization, a PReLU non-linearity, and dropout with a
rate of 0.2. Similarly, the second path employs a ChebConv layer with 64 filters and
K = 5, also followed by batch normalization, PReLU, and dropout. This dual-path
approach allows the model to capture multi-scale spatial relationships within the
graph structure, aggregating information from both local and more distant neighbor-
hoods. The outputs of both Chebyshev paths are subsequently fused with features
from previous stages via an additive merge operation. This aggregated output is then
propagated forward through the network. By combining multiple receptive fields and
residual pathways, GCNN-Cheb retains robustness in learning hierarchical spatial
features.

In addition to the graph convolutional enhancements, GCNN-Cheb also incor-
porates the spectral attention module described earlier in GCNN model. This
module adaptively emphasizes informative spectral bands by applying a lightweight
channel attention mechanism composed of two fully-connected layers with a chan-
nel reduction and expansion operation. This modulation of spectral features helps
the network focus on the most discriminative bands, improving convergence, gener-
alization, and overall performance. As with the base GCNN architecture, adjacency
matrices are computed using normalized inverse Euclidean distances within each spa-
tial patch and replicated across the batch. These matrices govern the connectivity
for the graph convolution operations. Dropout layers with rates of 0.1 and 0.2 are
consistently applied throughout the model to mitigate overfitting, particularly given
the relatively small sample sizes common in HSI datasets.

A crucial aspect of the GCNN-Cheb model lies in the parameterization of the
ChebConv layers. Each Chebyshev graph convolutional layer contains a learnable
weight tensor of shape (K, Fin, Fout), where K is the polynomial order (i.e., the
maximum hop distance), Fin is the number of input spectral features (channels), and
Fout is the number of output filters. This weight structure allows each Chebyshev
polynomial term to apply a distinct transformation to the input features, effectively
encoding multi-hop neighborhood information. Consequently, the number of trainable
parameters in a single ChebConv layer grows linearly with K, and quadratically with
the number of feature channels. For instance, a layer with K = 3, Fin = 128,
and Fout = 64 would contain 3 × 128 × 64 = 24,576 parameters. Therefore, the
choice of K, as well as the width of the network (i.e., number of filters), directly
impacts both the model’s capacity and computational cost. This parameter flexibility
enables the network to scale in complexity according to the characteristics of the input
data, making GCNN-Cheb highly adaptable for varying levels of spatial and spectral
heterogeneity in hyperspectral datasets. We depict the architecture of the GCNN-
Cheb variant in the Figure 5.13.
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Input: (λ× 5× 5)

Reshape: (λ× 25)

GraphConv + BN

Spectral Attention

ChebConv (K = 3)
64 filters + BN + Dropout (0.2)

ChebConv (K = 5)
64 filters + BN + Dropout (0.2)

Additive Fusion and Multi-scale Features

Residual ChebConv + Dropout (0.1)

Global Pooling: Avg + Max + Attn

Dense Layers: 512→ 256→ 64

Output: c units

Figure 5.13: Architecture of the GCNN-Cheb model with Cheby-
shev polynomial-based graph convolutional layers. The model features
dual-path Chebyshev convolutions with different polynomial orders
(K = 3 and K = 5) to capture multi-scale spatial relationships, fol-
lowed by additive fusion and residual processing. The Chebyshev for-
mulation enables efficient K-hop neighborhood information propaga-
tion, providing more expressive spatial context modeling compared to
standard graph convolutions. Furthermore, model incorporates batch
normalization (BN) layers. Finally, c represents the number of end-

members in the HSI and λ number of spectral bands.

In summary, GCNN-Cheb advances the base GCNN framework by replacing stan-
dard GCN layers with Chebyshev polynomial GCNNs for enhanced spatial locality
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and multi-hop receptive fields; introducing parallel convolutional paths with different
Chebyshev orders (K = 3 and K = 5) to support multi-scale spatial feature extrac-
tion; maintaining spectral attention and residual graph convolutional blocks to ensure
rich and stable feature learning; and preserving the same adjacency formulation and
pooling-based feature aggregation strategy as the original GCNN. We hypothesize
that this hybrid approach, combining spectral attention with multi-scale Chebyshev
graph convolutions, can demonstrate significant improvements in the model’s ability
to regress accurate abundance maps and classify complex HSI scenes, as evidenced
by the evaluation metrics reported in Subsection 5.3.6.

5.3.3 Experimental Settings

In our experiments, we pursued several key objectives. First, we investigated the
impact of employing multi-branch architectures, including their various design vari-
ations, in conjunction with different training set sizes for the task of HU as a recap
from our previous experiments concerning multi-branch approaches proposed by the
PhD Candidate in [233]. Second, we benchmark and validate the effectiveness of the
proposed multi-branch methodology by comparing it against state-of-the-art HU algo-
rithms. Third, we examine the robustness of multi-branch CNNs under the presence
of noise in hyperspectral imagery, aiming to understand their generalization capacity
in realistic scenarios. Fourth, we assess the effectiveness of graph-based convolutional
models, specifically GCNN and GCNN-Cheb, by quantifying their performance and
evaluating their ability to capture complex spatial-spectral relationships inherent in
HSI data. Finally, we analyze the sensitivity of GCNN-based architectures to varia-
tions in the size of the training dataset, providing insights into their data efficiency
and stability under limited supervision.

In our experiments, we utilized Python 3.6 with Tensorflow 2.0 as the DL frame-
work. Furthermore, the optimizer chosen to train all of the models was set to Adam
[116] with learning rate of 0.001. We kept the maximum number of epochs as 100,
where the early stopping condition was set to 15 epochs without improvement, con-
ditioned on the validation loss. Moreover, the validation dataset incorporated 10%
of available samples from the training data (which were consequently removed from
training set to avoid redundant samples). The size of batch was set to 256 to allow
the optimizer for generalized steps. In the task of HU, we utilize the mean squared
error (MSE) loss, to calculate the gradient and perform back propagation. This func-
tion utilizes the ground-truth and the estimated abundance vectors generated by the
benchmarked models.

For the comparative analysis with other algorithms from the literature, we selected
the following HU methods:

• A LMM proposed in [88]. For the complete description of this method please
refer to Section 5.2.
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• An SVR with one regressor trained separately for each endmember introduced
in [33]. The detailed description of this machine learning-based model was
provided in Section 5.2.

• Cube-based variant of the CNN proposed in [278]. The detailed description of
this architecture was given in Section 5.1.

• The WS-AE model proposed in [10]. For the detailed specification of this model
please refer to Section 5.2.

• A two-step CNN-based model proposed in [201]. It incorporates a module for
endmembers extraction via a geometric method with simplex volume maxi-
mization in the subspace of the utilized benchmark. Furthermore, the vec-
tors of abundances are estimated through a deep image prior. The introduced
mechanism allowed the authors to improve the model robustness to noise and
outperform other state-of-the-art methods.

To allow for equal experimental conditions, each of the DNN-based architectures,
i.e., all algorithms except the LMM, employs a 3D patch of shape 3× 3× λ. Further-
more, we train all of the algorithms in a supervised scenario, where the abundance
vectors of the training set constitute the ground-truth labels. It is important to em-
phasize that in spite of that fact, such models cannot estimate the kinds nor the
number of endmembers in the HSI, hence this information has to be included a priori
the experiments. In our work, we incorporate an ablation study to evaluate different
variations of the multi-branch approach. Below, we provide the description of distinct
types of architectures:

• MB(1D)—incorporates only the 1D convolutional branch, thus can be consid-
ered as a standard CNN model (without added branching).

• MB(2D)–utilizes sole 2D convolutional branch.

• MB(3D)—single branch incorporating 3D convolutional layers provided before.

• MB(1D+2D)—combination of 1D- and 2D-convolutional branches coupled to-
gether.

• MB(1D+3D)—1D- and 3D-convolutional branches strategy.

• MB(2D+3D)—configuration with 2D and 3D convolutional layers only.

In the experiments we performed Monte Carlo cross-validation and samples 30
pairs of training T and test Ψ sets. It is critical to emphasize that the size of test
set remains constant and does not change as we change the size of the training data.
Furthermore, the test set is always composed of the same examples, even with the
change of T sizes. Such approach was already proposed and suggested in [278]. The
magnitude of Ψ is set to 3025, 47249, and 2500 for Sa, Ur, and JR benchmarks
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respectively. Moreover the sizes of T that we modify in our experiments are equal
to 1, 6, 13, 33, and 66%. Such division allowed us to construct the training datasets
for each variant presented in Table 5.7. The values represent the number of training
pixels for each benchmark respectively.

Table 5.7: Sizes of the training and testing sets for each of the in-
vestigated datasets.

Size variant Samson Jasper Ridge Urban
~100% 6000 7500 41000
~66% 3960 5000 31000
~33% 1980 2500 15500
~13% 780 1000 6100
~6% 360 500 2800
~1% 60 75 470

Test sizes 3025 2500 47249

5.3.4 Benchmark Datasets

In our study, we utilized the most known and established HU benchmarks. The first
Samson (Sa) dataset with dimensionality 95× 95× 156 (the last axis determines the
number of bands) incorporates three endmembers: i) soil, ii) tree, and iii) water.
The next benchmark called Urban (Ur) constitutes a HSI with shape 307× 307× 162
as well as six endmembers: i) asphalt, ii) grass, iii) tree, iv) roof, v) metal, and vi)
dirt. Lastly, we utilize the Jasper Ridge (JR) benchmark with spatial-spectral axes
shape 100× 100× 198. JR dataset incorporates four different endmembers: i) road,
ii) water, iii) soil, and iv) tree.

5.3.5 Quality Metrics

To evaluate the noise robustness of the proposed architectures, we incorporate four
variants of white zero-mean Gaussian noise perturbation to the test dataset, with 20,
30, 40, and 50 dB respectively. Finally, to evaluate the estimated abundance vectors
against the ground-truth data, we utilize the RMSE 5.1 and rmsAAD 5.2 metrics
defined in Section 5.1.

5.3.6 Experimental Results and Discussion
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Table 5.8: The results of the two-tailed Wilcoxon tests (p < 0.05)—
we present the number of cases (for each training set size, out of 3 HU
sets) in which the confronted variants lead to obtaining statistically
the same results as those by MB. We boldface the entries, in which
MB obtained the statistically significantly better results for all sets.

This table was also utilized in the PhD Candidate’s work in [233].

Compared with ↓ 100% 66% 33% 13% 6% 1% Total
MB(1D) 0/3 0/3 0/3 1/3 2/3 2/3 5/18
MB(2D) 0/3 0/3 0/3 0/3 0/3 1/3 1/18
MB(3D) 0/3 0/3 0/3 1/3 1/3 3/3 5/18
MB(1D+2D) 1/3 0/3 0/3 2/3 2/3 2/3 7/18
MB(1D+3D) 3/3 1/3 1/3 2/3 3/3 3/3 13/18
MB(2D+3D) 1/3 0/3 0/3 0/3 2/3 2/3 5/18
Total→ 5/18 1/18 1/18 6/18 10/18 13/18 36/108
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Figure 5.14: Overall RMSE (Ur) for different T sizes: LMM [88],
SVR [34] CB-CNN [280], WS-AE [11], UnDIP [201],
MB(1D), MB(2D), MB(3D), MB(1D+2D), MB(1D+3D),
MB(2D+3D), MB, MB-DR, MB-Res, MB-TL, MB-PT,
GCNN, GCNN-Cheb. For some methods, we indicate the exact

value (out of the Y range) of RMSE above the arrow to maintain read-
ability.
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The results calculated over the benchmark datasets with varying sizes of the
training sets are included in the Figure 5.14 (Ur), Figure 5.15 (JR), and Figure 5.16
(Sa), for RMSE metric indicate that utilizing all branches in our approach allows
us for statistically significant improvement in the quality of delivered vectors of
abundances. We provide the number of such cases, i.e., 72/108 (where this phe-
nomenon occurred) in Table 5.8 for RMSE with p-value < 0.05 which is our con-
fidence threshold. Furthermore, we incorporate the results obtained between all
variants of the multi-branch approach, the full experimental results are provided at
https://gitlab.com/jnalepa/mbhu. Our ablation study provided that when cou-
pling the 1D and 3D branches allowed us for statistically largest improvement in
HU. Such feature fusion enhances the estimated abundances vectors the most. When
compared the sole 3D approach and fusion of 2D and 3D branches, there is no sig-
nificant improvement of incorporating the additional 2D convolutional layers. Those
two approaches lead to statistically identical HU results with RMSE as well as rm-
sAAD metrics in 5/18 cases. This phenomenon can be explained by the superior
spectral-spatial extraction capabilities of the 3D branch. Conversely, the 2D branch
fails to contribute any additional information or functionality that could improve the
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Figure 5.17: The impact of the white zero-mean Gaussian noise
added to the original test data (Jasper Ridge) on RMSE obtained by
the selected models trained from the full training set. This figure was

also utilized in the PhD Candidate’s work in [233].

Table 5.11: The impact of the patch size on RMSE (on Jasper
Ridge), quantified as ∆RMSE = RMSEk×k −RMSE3×3 (k = {5, 7, 9})
obtained using MB trained from the training sets of various sizes. This

table was also utilized in the PhD Candidate’s work in [233].

RMSE ∆RMSE
Train. size 3× 3 5× 5 7× 7 9× 9

100% 0.014 0.002 0.002 0.003
66% 0.016 0.002 0.002 0.003
33% 0.022 0.103 0.005 0.008
13% 0.032 0.003 0.009 0.017
6% 0.042 0.004 0.010 0.022
1% 0.105 0.028 0.055 0.038

https://gitlab.com/jnalepa/mbhu
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Figure 5.18: Average train. time for Urban (all T’s
sizes): LMM [88], SVR [34] CB-CNN [280], WS-AE [11],

UnDIP [201], MB(1D), MB(2D), MB(3D), MB(1D+2D),
MB(1D+3D), MB(2D+3D), MB, MB-DR, MB-Res, MB-

TL, MB-PT, GCNN, GCNN-Cheb. This figure was also utilized
in the PhD Candidate’s work in [233].

unmixing quality. On the other hand, we observe significant HU improvement when
combining 1D and 3D branches, hence fusing spectral and spectral-spatial features.
Furthermore, the least notable enhancement in estimated abundance vectors is at-
tributed to the smallest variant of the training set size. Such scenario identifies the
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Figure 5.19: Number of trainable parameters for all learning-based
models on the Urban dataset (log scale). LMM [88] is excluded as
it is a fully constrained least-squares solution and does not involve
any trainable parameters: SVR [34] CB-CNN [280], WS-AE [11],

UnDIP [201], MB(1D), MB(2D), MB(3D), MB(1D+2D),
MB(1D+3D), MB(2D+3D), MB, MB-DR, MB-Res, MB-

TL, MB-PT, GCNN, GCNN-Cheb.

lower bound of the required amount of samples to effectively capture any dependen-
cies between the multi-branch approaches and causes saturation effect. This issue
could me mitigated by employing additional augmentation techniques via synthetic
generation of data points [9].

Another interesting outcome happens when decoupling the feature extraction
branches between each other in the MB-TL method. In such a scenario, the model
provided the worst performance in all multi-branch cases. This can be attributed to
the fact that the first part of training was not allowing the feature fusion to happen,
conversely the branches could extract redundant or even interfering or disturbing
features, during the concatenation layer.

In the experiments we observed that the multi-branch approaches consistently out-
perform other conventional and DL-based methods from the literature (Table 5.9).
Furthermore, we observe such phenomenon even when aggregating the results of both
metrics for all benchmark datasets. The MB and MB-DR approaches constitute the
top-2-scoring methods (Table 5.10 rankings), thus proving that there is a large poten-
tial in fusing spectral and spectral-spatial features of HSI data. Such representation
of features significantly impacts the capabilities of DL models when estimating the
abundance vectors in HU. Moreover, we observe that for all methods the increasing
size of T allows to improve the results over the test set Ψ (which remains constant
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across all experiments).
Based on the experimental outcomes illustrated in Figures 5.14, 5.15, and 5.16,

which correspond to the Urban, Jasper Ridge and Samson datasets respectively, a
noteworthy observation emerges. Despite having a significantly lower number of train-
able parameters, both the GCNN and its Chebyshev polynomial variant (GCNN-
Cheb) demonstrate performance metrics that are comparable to those achieved by
more complex multi-branch architectures. In Figure 5.19, we depict the total number
of trainable parameters for Urban dataset for all models.

In contrast, the MB architectures typically require a substantially larger number
of parameters to function effectively. Nonetheless, the simpler GCNN-based models
manage to attain root mean square error RMSE scores that are similar to, and in
some cases on par with, their more parameter-heavy counterparts. These findings are
further substantiated by the detailed numerical results presented in Table 5.9, which
highlight the comparable error levels across different model configurations.

In the results aggregated for all experiment repetitions for the multi-fold setup
in Table 5.9 show that multi-branch methodology outperforms other state-of-the-art
models. Furthermore, we provide the visualizations of the effectiveness in HU for all
methods in the Figures 5.14, 5.15, and 5.16, which correspond to the Urban, Jasper
Ridge and Samson HSIs, respectively. The visualizations are strictly and positively
correlated with the experimental results utilizing the RMSE as well as the rmsAAD
metrics.

In the following experiments, we evaluated the robustness of the selected models
under challenging and obstructive noise conditions. Specifically, we included the
multi-branch approach along with the top three best-performing models identified in
the literature (see Figure 5.17). GCNN-based models were excluded from this study
due to their limited model capacity and smaller architectural scale, which restricts
their ability to generalize under severe noise. Their inclusion would not provide a
meaningful comparison under the chosen experimental conditions. However, exploring
their potential through enhanced architectures is part of our planned future work. For
all multi-fold scenarios, we employ independent noise contamination of the 30 test sets
Ψ. From the experiments we deducted that UnDIP model offers the best robustness
against additive Gaussian noise providing undisturbed predictions even for the largest
noise configuration, i.e., equal to 20 dB. Nonetheless, the multi-branch architecture
also provides steady abundance vectors almost for all noise variants, failing for the
largest case of 20 dB.

In addition to the abundance errors considerations, training efficiency is another
critical aspect where the GCNN models exhibit superiority. As shown in Table 5.18,
both GCNN and GCNN-Cheb achieve faster training durations and quicker con-
vergence compared to the larger and more complex MB models. This indicates
a favorable trade-off between computational efficiency and predictive performance,
making GCNN-based approaches attractive for scenarios with limited computational
resources or time constraints.
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Moreover, the architectural design of GCNNs is inherently simpler, primarily re-
lying on fully connected layers combined with graph convolutional operations. This
simplicity not only facilitates easier model maintenance and interpretability but also
significantly reduces computational complexity. Such characteristics make GCNNs
particularly well-suited for deployment on edge devices, such as satellites or unmanned
aerial vehicles, where onboard computational resources and power consumption are
severely constrained. Additionally, GCNNs lend themselves well to quantization tech-
niques, allowing further compression of model size and acceleration of inference with-
out significant loss of accuracy. This ease of quantization and deployment enables
real-time processing and adaptability, which are critical for remote sensing applica-
tions requiring timely and reliable hyperspectral image analysis.

While the unmixing quality of GCNN-based models does not quite match the
higher precision typically achieved by more complex multi-branch architectures, GC-
NNs offer significant advantages in terms of simplicity and interpretability. Their
straightforward structure facilitates explainable AI approaches, making it easier to
understand and analyze model decisions and feature importance. This transparency
is particularly valuable in hyperspectral imaging applications where interpretability
can be as critical as predictive accuracy.

In Table 5.11, we provide the experimental results when comparing different spa-
tial sizes of the input patch for RMSE metric obtained for the Jasper Ridge dataset
over the five test sets. In all scenarios the underlying model was selected as the MB
architecture. The results indicate that increasing the spatial neighborhood window
causes the model to provide less stable results, thus increasing the standard devia-
tion to 0.220, 0.209, and 0.215 for 5× 5, 7× 7, and 9× 9 spatial shapes respectively.
Conversely, the patch of 3× 3 allowed us to decrease the standard deviation to 0.002.
Such phenomenon can be attributed to large ground sampling distances between the
hyperspectral sensor and the earth, thus increasing the amount of noise in the input
patch and incorporating more materials.

In Figure 5.18, we provide the average training time for the Urban dataset (which
is highly consistent and correlated to other benchmarks). It is visible that the multi-
branch architectures situate at the upper range of that metric, nonetheless, the WS-
AE model constitutes the longest training time. As could be expected the LMM
provides the fastest training time. It is important to emphasize that the multi-
branch architecture offer similar training times as other DL-based models with clear
advantage in the estimated abundance vectors in HU.

5.3.7 Concluding Remarks

In this study, we conducted a comprehensive evaluation of multiple deep learning
models, including conventional, graph-based, and multi-branch architectures, for HU.
Our experimental framework encompassed a wide range of benchmarking scenarios,
incorporating various dataset sizes, noise levels, and architectural configurations.
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The multi-branch architecture, developed in previous work by the PhD Candidate
in [233], continues to demonstrate superior performance in abundance estimation.
By fusing spectral and spectral-spatial features extracted through 1D, 2D, and 3D
convolutional branches, the model effectively captures complex material interactions.
This fusion yields statistically significant improvements in the RMSE and rmsAAD
metrics across multiple datasets. Nonetheless, the performance gain saturates for
the smallest training sets, suggesting a need for sample augmentation. Furthermore,
an ablation study revealed that the combination of 1D and 3D branches yields the
most significant improvements, while the addition of the 2D branch did not provide
statistically distinguishable benefits, likely due to redundancy and insufficient spatial
discrimination.

On the other hand, one of the most notable findings from our study pertains to
GCNNs and their Chebyshev variant (GCNN-Cheb). Despite having a significantly
reduced number of trainable parameters and a simpler architectural design, these
models achieve HU performance comparable to that of SOTA and computationally
intensive architectures. In addition to their effectiveness in unmixing, GCNNs exhibit
marked advantages in terms of training efficiency. As shown in our runtime analysis
(Figure 5.18, GCNN-based models converge more rapidly and require substantially
less training time compared to deep, multi-branch counterparts. This efficiency, com-
bined with their lower complexity (Figure 5.19) positions GCNNs as a particularly
attractive option for deployment on resource-constrained platforms such as satellites.
Moreover, the interpretability of GCNN architectures offers unique advantages for
explainable AI (XAI) approaches in remote sensing.

In conclusion, while multi-branch architectures remain powerful tools for high-
precision HU, GCNN-based models present a strong and efficient alternative. Their
low computational overhead, robustness to noise, rapid convergence, and deployment
versatility make them highly suitable for practical applications in operational and
edge environments. Future work will explore architectural extensions to GCNNs
to enhance their expressive capacity and further close the gap with complex SOTA
models.

5.4 CANNIBAL: Band Selection for Hyperspectral Data

In this section, we focus on the topic of feature (band) selection in the context of
the task of HU. The HSI images are constructed via capturing a continuous range of
electromagnetic spectrum. Subsequently, depending on the spectral resolution of the
utilized sensor—the better the sensor, the narrower the wavelengths of consecutive
bands are—hundreds of channels are acquired [213]. It is important to emphasize that
the qualification of sensor as hyperspectral refers to the continuousness and narrowness
of the captured bands rather then the resulting number of channels of the underlying
sensor.
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Given the fact that the continuous hyperspectral bands are locally correlated be-
tween each other, (as was experimentally proven in multiple works [62], [84], [150],
[161], [193], [249]) we hypothesize that by discovering the dependencies and strengths
of dependencies between them, would allow us for efficient and accurate feature se-
lection, thus lowering the resulting number of channels in the HSIs. Furthermore,
we hypothesize that such selection would incorporate a mixture of representative
and informative bands, without any statistically significant loss in the quality of the
estimated abundance vectors in HU task.

Finally, as this dissertation focuses specifically on the hyperspectral unmixing
task, we present and analyze results exclusively within this domain. It should be noted
that the CANNIBAL algorithm has also been investigated for hyperspectral image
segmentation tasks, as detailed in the PhD Candidate’s work [240]. However, for the
purpose of maintaining focus and ensuring appropriate scope within this thesis, the
segmentation results are omitted from the current discussion. This targeted approach
allows for a more thorough and comprehensive analysis of the algorithm’s performance
in the context of abundance estimation, which remains the primary objective of this
research.

5.4.1 Proposed Approach for HSI Feature (Band) Selection

To tackle the tasks of HU and band selection, we employ a genetic algorithm with the
linkage learning approach (GAwLL) [229] that, as a side product of the optimization,
produces a weighted variable interaction graph (wVIG). Unlike in the vast majority of
genetic algorithm (GA)-based methods, in our approach, we do not utilize the main
product of GAwLL, instead we incorporate the side product, which later undergoes
unsupervised clustering, to determine the most informative set of bands. In the
domain of GAs, we are not aware of any study that discards the main product of
the optimization and utilizes the side product instead. Furthermore, we employ the
optimization to support the linkage learning process. Naturally, as GA progresses
in generations, the individuals in the underlying populations volume up to be more
representative, providing better fitness values and hence becoming of better-quality
as the solution to the optimization problem. As the objective function, we selected
the MSE metric 5.8, which can be formulated as:

MSE =

∑N
i=1(ai − âi)2

N
, (5.8)

where the a and â denote the ground-truth as well as the estimated abundance
vectors. Furthermore, variable N refers to the size of the test set. It compares and
measures the distance between the ground-truth and estimated abundance vectors.
This function treats all of the endmembers equally, without any bias. In the Figure
2.2, we visualize our approach and describe each step in the method.

In our main contribution in this work, we incorporate the use case of a wVIG
that later undergoes unsupervised clustering, followed by a band selection algorithm.
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That algorithm performs a greedy feature selection based on the strengths of the
interaction between the variables. The architecture of our algorithm for band selec-
tion is highly modular and customizable, e.g., the unsupervised clustering step and
offers extensive flexibility. Furthermore, the number of CANNIBAL output bands
is parametrizable but also can utilize non-parametric clustering. In such scenario,
the number of selected features is automatically adjusted, without any user interac-
tion. The ability of parametrization of the output number of bands may be highly
desired in cases when it is crucial to perform aggressive data reduction, e.g., vari-
ous satellite sensors to increase the speed of data downlink. Moreover, the proposed
CANNIBAL method is task-agnostic and could be utilized in HU as well as seg-
mentation. Finally, we provide the full software and the entire implementation at
https://github.com/V-o-y-a-g-e-r/CANNIBAL/.

Linkage learning in GAs is a process of identifying and preserving real and ex-
isting beneficial combinations between genes, i.e., variables. Such phenomenon is
crucial in scenarios where the fitness of a solution is not determined by the individ-
ual sole genes but groups of variables that interaction with each other (possibly in
non-linear cases). The term linkage refers to the degree of relation or interaction
between different variables in the chromosome. High linkage determines that certain
variables work better when incorporated together. The linkage learning concept is
utilized in different optimization problems, i.e., binary [196], [228], non-binary [195],
and continuous [120] optimization. There are two main methods for learning and
extracting the linkage between variables: i) statistical linkage learning, and ii) em-
pirical linkage learning. In the former approach, the dependencies are detected via
the entropy, however, it may detect false linkage. Such false positives may negatively
impact the quality of the solution. To alleviate that, the empirical linkage learning
approach focuses on exploiting only real dependencies. Moreover, it was proven that
such methods cannot detect false linkage. In the literature, several approaches also
target non-linear dependencies and incorporate monotonicity checks. The final in-
dividual is based on the fact that the near-local-optima solutions are more likely to
render a positive non-monotonicity check. In the work [229], the technique of wVIG
was introduced. wVIG couples the advantages of empirical linkage learning with the
idea of the strength of dependency derived from statistical linkage learning, whilst
not detecting false positive relationships between variables. Moreover, wVIG may
be incorporated to any optimization domain, including segmentation or unmixing
tasks—we utilize this advantage in our approach.

As depicted in the Figure 2.2, CANNIBAL allows to obtain three different machine
learning models:

• M GAwLL constitutes the main output of GAwLL. It incorporates the set of
variables, i.e., bands that were selected utilizing the best candidate solution.
It is important to emphasize that the final number of features here cannot be
parametrized and hence is not controllable by the user.

https://github.com/V-o-y-a-g-e-r/CANNIBAL/
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• M ′
GAwLL refers to any model that utilizes the bands selected by GAwLL but is

trained from scratch, after obtaining the candidate solution M GAwLL.

• M CANNIBAL constitutes any model (incorporating segmentation or unmixing)
trained over the selected bands by CANNIBAL. It is important to emphasize
that the resulting number of features here is controllable by the user. The
selection can be parametrizable or run without parameters, when incorporating
non-parametric clustering algorithms, e.g., Affinity Propagation [55].

In this work, the wVIG structure is utilized to store a weighted graph with its
weights referring to the strength of interactions among input variables. In the case of
this research, the input variables correspond to the hyperspectral bands but can be
easily extrapolated to any other task, requiring feature selection. Given an optimiza-
tion task where the fitness function can be denoted as f(x), with x being the vector
of a single candidate solution, the interaction between two independent, i.e., decision
variables can be formulated as scenario where variables xg and xh interact, if the im-
pact on f(x), of varying xh is contingent on of xg. As previously mentioned, GAwLL
extracts an empirical wVIG, which is a side-effect of the optimization performed by
a GA. Therefore, constituting it a no-cost empirical linkage-learning technique (as it
is conducted during the optimization time). Based on a candidate solution x ∈ BN ,
the differences in fitness can be formulated as:

δg(x) = f(x⊕ 1g)− f(x) (5.9)

and

δg(x⊕ 1h) = f
(
x⊕ 1h ⊕ 1g

)
− f(x⊕ 1h), (5.10)

where ⊕ refers to the bitwise XOR function, 1g ∈ BN is a solution characteristic
vector with the g-th element equal to one whilst all other elements are equal to zero.
Furthermore, f(x ⊕ 1g) refers to the fitness of candidate solution x after flipping
xg variable, and f

(
x⊕ 1h ⊕ 1g

)
denotes the fitness of a candidate solution x after

flipping both variables xh and xg. Based on the fitness differences, we can define:

ωg,h(x) = |δg(x⊕ 1h)− δg(x)|. (5.11)

Following the theorem 3.1 in [229] it indicates that if ωg,h(x) > 0, then there is an
interaction between variables xg and xh, which cannot be a false positive dependency.

The offspring population in GAwLL us generated solely by mutation operation,
where three children are created. The first and second offspring are equal to the
parent individual with the exception of inverted bits in the chromosome, i.e., g and
h respectively. The indices are randomly sampled from a uniform distribution and
only one change per new individual is allowed. The third child is generated via
flipping both selected genes, i.e., g and h. This scenario allows us to obtain all
possible combinations considering bits of g and h, and are later utilized to compute
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the strength of interaction ωg,h, between such variables. The interaction can also be
aggregated over a set of new offspring generated by mutation. Finally, the wVIG
is iteratively built, during the passing generations of GAwLL, with the initial graph
incorporating no edges, and each vertex equal to one variable, i.e., hyperspectral
band.

In the case of HSIs, the candidate vector incorporates the solution of x ∈ BN ,
where N indicates the number of channels. The GAwLL model incorporates a KNN
model, with k parameter set to three and the fitness function is denoted as:

f(x) = 0.98f1(x) + 0.02N −
∑N−1

i=0 xi

N
, (5.12)

where f1(x) is a metric measuring the performance of the base machine learning
model in a particular task, whereas the second component could be interpreted as
the selection rate and serves the role of a regularizer. The fitness evaluation is de-
terministic based on the combination of variables in the candidate solution. As the
metric for measuring quality of the solution, the rate of correctly classified pixels
is used for HSI segmentation, whereas the MSE function is employed in HU. It is
important to emphasize that the wVIGs are estimated per target (in multi-target
tasks, there can be more than one wVIG). Consequently, to obtain a wVIG that is
agnostic to the number of targets, e.g., endmembers in HU task, we sum all of the
obtained wVIGs and obtain a holistic view on inter-variable dependencies across all
of the targets.

The time complexity of CANNIBAL (excluding the clustering algorithm) amounts
to O(

∑k
i=1 s2

i ), where si denotes the number of bands in the cluster i and k refer to
the total number of clusters.

The subsequent operation is the unsupervised clustering of the aggregated wVIG.
Such grouping allows us to identify strong interactions between independent variables.
Our core hypothesis is that selecting a single representative band from a cluster of
strongly interacting bands will preserve the overall information content of the cluster.
Consequently, the wVIG structure could be interpreted as an adjacency matrix, which
designate the strengths of relations between its members. More specifically, we aim
to find a division of the wVIG, where the variables between different clusters have
low strengths of interactions. On the other hand, we aim to construct such groups
of which bands relate strongly to each other. The clustering process visualization is
depicted in the Figure 5.20. After the clustering operation, CANNIBAL selects the
representative of each group. To select the best representative, we calculate the total
similarity between other variables (in the same cluster) for each band. Subsequently,
we pick the band with the highest total similarity as the final cluster representative.
This process allows us to capture the essential representation and preserve as much
as possible information from each cluster, by selecting only one band. Furthermore,
this approach utilizes empirically-learned linkages, hence assures that the selected
variables are indeed the best representatives in terms of total similarity for each
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cluster. We refer to this step as cannibalization, since only a single band of each
cluster prevails.

5.4.2 Experimental Settings

In our experiments, we focus on validating the impact of feature selection offered by
CANNIBAL with different reduction values. Furthermore, we evaluate the quality
of the machine learning models that exploit bands extracted via CANNIBAL and
other state-of-the-art band selection methods. Additionally, we investigate and mea-
sure the flexibility of our method in different downstream tasks, i.e., hyperspectral
segmentation and unmixing. As the baseline band selection methods we incorporate
in the study the following methods:

• A multi objective artificial immune system-based algorithm [274]. The best can-
didate solution is selected based on two objective functions, where the first one
measures the quality of the solution, whereas the second estimates the amount
of redundancy in the incorporated independent variables, i.e., hyperspectral
bands.

• Approach that based on information theory and entropy of each hyperspectral
band [81]. It incorporates the estimation of mutual information between each
band and the ground-truth data. The mutual information requires to calculate
the joint and individual entropies of pairs of random variables.

• A baseline method where the subset of features, i.e, bands is randomly sampled
with a uniform distribution, to avoid any bias for the band selection.

The parametrization of each method is specified in the corresponding research. To
ensure reproducibility of experimental findings as well as conclusions and robustify
the results, we repeat each of the experiments 30 times. Each experiment evaluation
utilizes a random forest model with different seed. For all experiment runs, we set
the number of estimators in the random forest model to 100 and keep it constant.
We sample the T and Ψ randomly, utilizing a pixel-based approach. Following this
strategy, we ensure that there is no information leak across both datasets. Further-
more, to incorporate high representativeness of the endmembers target distributions,
we perform stratified random sampling to establish training and test sets. In the case
of unsupervised clustering algorithm, we employ the spectral clustering method.

5.4.3 Benchmark Datasets

In the HU experiments, we utilize the Urban dataset which incorporates 307× 307
pixels and 162 hyperspectral bands. It attributes a 2 m sampling distance with a
spectral resolution of 10 nm. The range of wavelengths starts with 400 nm and con-
tinues up to 2500 nm. The Urban benchmark incorporates six various endmembers:
i) asphalt, ii) grass, iii) tree, iv) roof, v) metal, and vi) dirt. The training sets
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contain 6000 random pixels, 1000 per endmember. We select the abundances to be
between 0.2 and 0.8 to eliminate outlier cases from the training set. Consequently,
the remaining 3072 − 6000 samples constitute the test set.

5.4.4 Quality Metrics

To measure the quality of estimated abundance vectors, we utilize the mean absolute
error (MAE), MSE, explained variance (EV), as well as the coefficient of determina-
tion (R2). The MAE and MSE metrics should be minimized, where zero indicates the
perfect HU solution. Furthermore, the EV and R2 measures should be maximized,
with one being the perfect unmixing score. Additionally, we incorporate the mean
(M), coupled with the minimum and maximum (MinMax) values estimated for 30
random forest models, trained with different seeds. It is important to note that there
is not seed for KNN since the implementation of this model was deterministic.

5.4.5 Experimental Results and Discussion

In the Figure 5.21, the quality of selected features of BR = 5, 10, . . . ,B bands, mea-
sured as the HU scores utilizing MAE, MSE, EV and R2 metrics are visualized. These
metrics can be formulated as following:

MAE =

∑|Ψ|
i=1 |pi − p̂i|
|Ψ|

, (5.13)

MSE =

∑|Ψ|
i=1 (pi − p̂i)

2

|Ψ|
, (5.14)

EV = 1− Var (p− p̂)

Var (p)
, (5.15)

R2 =

∑|Ψ|
i=1 (pi − p̂i)

2∑|Ψ|
i=1 (pi − p̄i)

2 . (5.16)

Our proposed approach (CANNIBAL) outperforms all state-of-the-art feature se-
lection methods in terms of EV and R2 metrics for almost all BR sets, whilst incor-
porating the KNN model. Furthermore, the MAE and MSE metrics showcase that
CANNIBAL performs worse than BOMBS approach and random sampling strategy
for the lowest numbers of selected bands, i.e., 5 up to 20. However the mentioned
differences in MAE and MSE metrics are very low, when compared with the ones
obtained for the coefficient of determination visible in the Figure 5.21. Such subtle
differences in MAE and MSE may be attributed to the outlier cases of abundances
incorporated within the Urban benchmark.

In our work, we emphasize that CANNIBAL can effortlessly be executed as non-
parametric method. Furthermore, the output number of selected bands can be au-
tomatically determined utilizing non-parametric unsupervised clustering methods.
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This extremely useful feature, offering flexibility is denoted in the Figure 5.21 where
we incorporate the results when employing the Affinity Propagation (AP) clustering
method [66] using the AP subscript. When incorporating the AP method, the di-
mensionality reduction rate is equal to 6.5, conversely obtaining 25 bands. As can be
seen, the metrics obtained for this configuration indicate high-quality HU, without
any significant deterioration of the scores. Furthermore, in the Figure 5.23, we include
the normalized HU errors, calculated over the best random forest models for two end-
members, trained by utilizing the subsets of selected bands. Notably, CANNIBAL
allows us to obtain a significantly lower number of features equal to 35. Moreover,
there is lack of increased HU errors, when compared to other state-of-the-art methods.

Furthermore, in Table 5.13, we conducted pairwise Wilcoxon statistical tests over
the aggregated quality metrics across all of the 30 random forest seed configurations,
assess and measure the statistical significance of the HU scores estimated from dif-
ferent subsets of hyperspectral bands. The test’s results indicate that the HU perfor-
mance for configuration greater than 25 bands selected by CANNIBAL is statistically
equivalent to that of the full or larger spectrum. Such observation proves that the
bands that are excluded from clusters, and hence undergo “cannibalization” process,
incorporate redundant information. From the statistical tests, we also conclude that
our method consistently outperforms other feature selection methods with statistical
significance.
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Table 5.12: The results of the Wilcoxon tests verifying if the dif-
ferences between CANNIBAL and other investigated techniques are
statistically significant at p < 0.05. The background of statistically
significant differences is rendered in green, and the corresponding p-
values are boldfaced. This table was also utilized in the PhD Candi-

date’s work in supplement of [240].

MAE MSE R2

B BOMBS MI Random BOMBS MI Random BOMBS MI Random
5 0.009 0.000 0.027 0.000 0.000 0.027 0.000 0.000 0.000
10 0.000 0.000 0.053 0.000 0.000 0.123 0.000 0.000 0.154
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.036
20 0.000 0.000 0.000 0.000 0.812 0.000 0.001 0.000 0.002
25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.000 0.000 0.546 0.000 0.000 0.452 0.114 0.000 0.000
35 0.596 0.000 0.000 0.522 0.000 0.000 0.011 0.000 0.000
40 0.571 0.000 0.002 0.898 0.000 0.002 0.033 0.000 0.000
45 0.000 0.000 0.648 0.000 0.000 0.388 0.000 0.000 0.123
50 0.001 0.000 0.006 0.000 0.000 0.003 0.114 0.000 0.000
55 0.330 0.000 0.000 0.154 0.000 0.000 0.475 0.000 0.000
60 0.927 0.000 0.005 0.927 0.000 0.001 0.008 0.000 0.000
65 0.245 0.000 0.000 0.368 0.000 0.000 0.001 0.000 0.000
70 0.701 0.000 0.002 0.784 0.000 0.002 0.019 0.000 0.000
75 0.368 0.000 0.000 0.202 0.000 0.000 0.011 0.000 0.000
80 0.294 0.000 0.000 0.349 0.000 0.000 0.154 0.000 0.000
85 0.007 0.000 0.003 0.048 0.000 0.002 0.596 0.000 0.000
90 0.001 0.000 0.036 0.002 0.000 0.007 0.006 0.000 0.000
95 0.003 0.000 0.053 0.030 0.000 0.024 0.154 0.000 0.000
100 0.036 0.000 0.011 0.015 0.000 0.053 0.053 0.000 0.002
105 0.033 0.000 0.006 0.048 0.000 0.004 0.019 0.000 0.000
110 0.012 0.000 0.003 0.003 0.004 0.003 0.009 0.000 0.000
115 0.202 0.004 0.002 0.177 0.009 0.001 0.133 0.000 0.000
120 0.261 0.048 0.001 0.216 0.133 0.002 0.021 0.000 0.000
125 0.004 0.498 0.004 0.017 0.294 0.004 0.021 0.033 0.000
130 0.701 0.312 0.040 0.869 0.349 0.036 0.430 0.105 0.001
135 0.202 0.001 0.007 0.076 0.004 0.002 0.245 0.001 0.001
140 0.245 0.012 0.000 0.189 0.040 0.000 0.294 0.000 0.000
145 0.522 0.001 0.015 0.812 0.004 0.011 0.812 0.001 0.000
150 0.869 0.019 0.006 0.784 0.009 0.006 0.674 0.002 0.001
155 0.927 0.012 0.000 0.571 0.003 0.000 0.368 0.027 0.000
160 0.956 0.177 0.000 0.784 0.133 0.000 0.033 0.058 0.000
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(a) Example weighted Variable Interaction Graph

(b) Example clustering of the Variable Interaction Graph

Figure 5.20: The (a) example of wVIG obtained by CANNIBAL for
the Urban dataset—the vertices to the hyperspectral bands, whereas
the edges to the uncovered interactions between the variables. In (b)
we depict the clustering of VIGw. Each color represents a different
cluster of bands. This figure was utilized in the PhD Candidate’s

work in [240].
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Figure 5.21: Quantification of the HU results, depicted as the MAE,
MSE, EV, and R2. This figure was utilized in the PhD Candidate’s

work in [240].
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CANNIBAL (51, 78, 130) BOMBS (57, 92, 95)

MI (69, 108, 110) Random (44, 131, 145)

Figure 5.22: The RGB visualization of band selection process (the
band identifiers are reported in parentheses) for all investigated algo-
rithms for Urban benchmark dataset. This figure was utilized in the

PhD Candidate’s work in [240].
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CANNIBAL (35) BOMBS (85) MI (135) Random (130)
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In the Figure 5.22, we depict the visualizations of the Urban benchmark datasets
for each of the investigated algorithms. As can be seen, all method provide a se-
lection where distinct objects could be noticed. Nonetheless CANNIBAL allows us
for more intuitive interpretation of the scene by capturing better color representa-
tion. Furthermore, in the Figure 5.23, we provide the visual representation of the
unmixing errors for all investigated algorithms (horizontal axis) and all endmembers
respectively (vertical axis). The brighter the color the higher the distance between
the estimated abundance vectors and the ground-truth labels, hence higher unmix-
ing error. It is clearly visible that CANNIBAL attributes much darker colors, and
thus significantly lower errors when compared to other state-of-the-art band selection
methods. Moreover, when investigating different areas over the Urban benchmark,
we see much less anomalous regions, where the error spikes to large values for the
CANNIBAL band selection approach.

5.4.6 Concluding Remarks

In this work, we proposed CANNIBAL, a novel, non-parametric band selection
method designed for HSI analysis tasks such as unmixing and segmentation. By
leveraging a clustering-based selection strategy, our approach dynamically identifies
and excludes redundant spectral bands, thereby enhancing both the interpretability
and computational efficiency of downstream processing pipelines.

Comprehensive experiments conducted on the widely utilized Urban HU bench-
mark dataset demonstrated that CANNIBAL consistently outperforms several state-
of-the-art feature selection techniques across multiple performance metrics, including
MSE, MAE, EV and (R2). Notably, our method preserves high performance levels
even when reducing the number of selected bands substantially, achieving statistically
equivalent unmixing results to full-spectrum configurations when selecting as few as
25 bands, totaling up to 8̃5% of data reduction.

An important characteristic of CANNIBAL is its ability to operate in a fully
non-parametric manner, eliminating the need for user-defined parameters or thresh-
olds. Additionally, the number of selected bands can be determined automatically
through unsupervised clustering techniques, such as AP, without compromising the
end result quality. Visual assessments of abundance estimations and unmixing er-
rors further confirmed that CANNIBAL produces lower error rates and offers more
consistent and intuitive scene representations compared to alternative methods.

Furthermore, pairwise Wilcoxon statistical tests validated the superiority of our
approach in terms of performance stability and reliability across multiple initializa-
tion configurations. The results highlighted that the bands excluded through the
“cannibalization” process indeed contained redundant or non-informative informa-
tion, thereby substantiating the rationale behind our selection strategy.

It is critical for our work to emphasize that CANNIBAL is not limited to
hyperspectral imaging and remote sensing applications. Owing to its data-driven,
clustering-based formulation, the proposed methodology can be easily extrapolated
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to other forms of multi-channel imagery, including biomedical imaging, industrial
quality control systems, and multi-modal sensor data analysis. Its adaptability and
scalability make it a promising candidate for feature selection in high-dimensional
data domains beyond traditional HSI processing.

Our future work will focus on integrating CANNIBAL with advanced deep learn-
ing architectures and extending its application to end-to-end use-cases via automatic
endmembers extraction.

5.5 Deep Ensembles for Hyperspectral Unmixing

In this work we focus on building heterogeneous ensemble models that incorporate
as base learners cube-based CNNs that extract data from spectral as well as spa-
tial domains of HSIs. The models are trained via supervised learning approach.
Furthermore, we combine the multiple outputs of each learner and fuse them to pro-
duce the final output. The employed fusion methods can be selected and attributed
based on the underlying problem. Our ensemble architecture allows for maximum
flexibility, i.e., can incorporate any base model (not only DL-based methods). More-
over, our ensemble approach could be extrapolated to other tasks such as classifi-
cation or even forecasting. To produce a set of robust learners, we employ noise
augmentations of the base models. In this work, we utilize Gaussian distribution
as the source of contamination that is injected to the trained convolutional-based
model’s weights. We hypothesize that such noise augmentation allows the model to
obtain extra robustness to difficult conditions during HSI acquisition and greatly im-
proves the generalization of the base models. Finally, our implementation is available
at https://github.com/ESA-PhiLab/hypernet/tree/master/beetles and can be
fully reproducible.

It should be noted that while the PhD Candidate’s research has also explored the
application of deep ensemble methods to hyperspectral segmentation tasks in [178],
demonstrating the broader applicability of this ensemble framework, these segmen-
tation experiments are not included in the current dissertation. Since the primary
focus of this thesis is hyperspectral unmixing, the discussion and experimental results
are deliberately concentrated on abundance estimation tasks to ensure comprehensive
treatment and analytical depth within this specific domain. This focused approach
allows for more thorough investigation of the ensemble methodology’s performance
in unmixing scenarios and provides clearer insights into its practical implications for
real-world abundance estimation applications.

5.5.1 Proposed Fusing Method

In our approach, we utilize different fusing techniques. More specifically, we incorpo-
rate classical majority voting approach for segmentation, whereas for the unmixing
task, we exploit the averaging aggregation. Furthermore, we exploit more advanced
strategy of adding additional supervised models after the combination of multiple

https://github.com/ESA-PhiLab/hypernet/tree/master/beetles
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features from the base learning. The supervised models are trained utilizing o×N

feature vectors, where o denotes the output feature vector of a single base learner.
Conversely, N refers to the number of such learners. To provide an example, in the
case of hyperspectral segmentation, the output of the base learners is a vector of
the size equal to the number of classes, where each entry represents a target prob-
ability. In such case, the input to the fuser module incorporates N of such vectors
F = [o1; o2; . . . ; oN ]T , where i-th base model. Furthermore, the vectors later undergo
majority (hard) voting or are fed to the subsequent supervised classifier.

To obtain the base learner, we train in a supervised manner a CNN model. Such
model is later utilized for Gaussian noise injection. We incorporate those small pertur-
bations directly in to the base learner’s weights (after the training is completed). The
probability density function that allows us to sample noise values can be formulated
as:

p(x) =
1

σ
√

2π
e−(x−µ)2/

2σ2
, (5.17)

where mean is denoted as µ, σ refers to standard deviation, and σ2 is the variance
parameter. For each layer of the CNN model, we inject the generated noise with zero
mean and standard deviation set to σ′

j = ϵ · σw
j , where the standard deviation of the

kernels is denoted as σw
j , ϵ is the scaler and can be treated as hyperparameter that

measures the noise impact of the kernel’s weights. We experimentally, chosen the
value of ϵ = 0.1. Nonetheless, the proper setting of this parameter can be further
investigated in other problems and benchmarks. Finally, j constitutes the index of
the underlying layer, where the noise will be injected. In the Figure 5.24, we provide a
visual example of contamination of the model indexed by one and two. Such operation
produced another set of models denoted with 1′, 1′′, and 2′ postfixes. The output
of the added noise-augmented base learners is forwarded to the fuser, which later
undergoes aggregation to form the final prediction.

In the case of hyperspectral image segmentation, we exploit three different archi-
tectures of CNN-based models. The specific topologies are defined in 5.1. The first
model utilizes only the spectral dimension and it is referred to 1D-CNN. This archi-
tecture is build upon the model proposed in [177]. Additionally, we incorporate in
the study two models named as 2.5-CNN [71] as well as 3D-CNN [182]. The following
models utilize spectral-spatial dependencies to estimate the class of the central pixel,
and the neighborhood shape for 2.5-CNN was suggested in [174]. The 2.5D-CNNs
differ from 3D-CNNs in the mechanism of the convolutional layers. More specifically,
the former variant extends all the kernels in the spectral dimensions, thus is limited
in terms of feature extraction in this domain. Conversely, the 3D-CNN kernels move
throughout all the axes (both spectral and spatial), thus are able to extract more rela-
tional information in those domains. We hypothesize that 3-dimensional convolution
allows the model to enhance the quality of hyperspectral segmentation.

Furthermore, in the task of HU, we incorporate the architecture proposed in [281].
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This model incorporates two versions, the spectral and spectral-spatial approaches.
The Table 5.14 specifies the specific kernel dimensionalities of the both (pixel- and
cube-based) variants.

Base models

λ
W

H

Input HSI

Model M1:

o1

Model M2:

o2

Augmented models

Model M′
1:

o′
1

Model M′′
1 :

o′′
1

Model M′
2:

o′
2

Fuser

o

Final output
of HSI data
classification
or unmixing

Figure 5.24: High-level view on the proposed deep ensemble-based
approach in this work for HSI analysis. Each model can be a foun-
dation of a set of noise-augmented variations. The noise perturbation
follows the Gaussian distribution. The red arrows indicate the original
(undisturbed) model that was utilized to create the further architec-
ture. After all of the models perform the prediction, the fuser module
combines the estimated abundance vectors (or in the case of segmen-
tation class probabilities) and performs a aggregation. Of note, such
aggregation is flexible and could incorporate nested logic and set of
rules. Finally the final output is predicted. This figure was utilized in

the PhD Candidate’s work in [178].
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Table 5.14: The CNN-based architectures utilized in the HU task.
We note the number of filers, i.e., kernels as well as their dimensions.

This table was utilized in the PhD Candidate’s work in [178].

Variant Layer Parameters Activation

1D-CNN
(1× 1× λ)

Conv1 3@1× 1× 5 ReLU
Conv2 6@1× 1× 4 ReLU
Conv3 12@1× 1× 5 ReLU
Conv4 24@1× 1× 4 ReLU
FC1 #× 192 ReLU
FC2 192× 150 ReLU
FC3 150× a Softmax

3D-CNN
(3× 3× λ)

Conv1 16@1× 1× 5 ReLU
Conv2 32@1× 1× 4 ReLU
Conv3 64@1× 1× 5 ReLU
Conv4 128@1× 1× 4 ReLU
FC1 #× 192 ReLU
FC2 192× 150 ReLU
FC3 150× a Softmax

Table 5.15: The DCAE model’s topology. As in the previous Table
5.14, we report the number of utilized kernels together with their di-
mensionalities. This table was utilized in the PhD Candidate’s work

in [178].

Variant Layer Parameters Activation

1D-DCAE
(1× 1× λ)

Conv1 2@1× 1× 3 ReLU
Conv2 4@1× 1× 3 ReLU
Conv3 8@1× 1× 3 ReLU
Conv4 16@1× 1× 3 ReLU
Conv5 32@1× 1× 3 ReLU
FC1 #× 256 ReLU
FC2 256× a + Softmax
FC3 a× λ ReLU

3D-DCAE
(5× 5× λ)

Conv1 16@3× 3× 3 ReLU
Conv2 32@3× 3× 3 ReLU
Conv3 64@1× 1× 3 ReLU
Conv4 128@1× 1× 3 ReLU
FC1 #× 256 ReLU
FC2 256× a + Softmax
FC3 a× λ ReLU

5.5.2 Experimental Settings

As previously mentioned our experiments incorporate two underlying and fundamen-
tal tasks in the problem of HSI analysis, i.e., segmentation and unmixing. Our im-
plementation was coded in Python 3.6 and we utilize the Tensorflow 1.12 package
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for training the DL models. The experiments were conducted on NVIDIA Tesla T4
GPU.

In the HU experiments, we utilize the hyperparameters settings proposed in [114],
[281]. More specifically, the spatial extend of the cube-based variant incorporates a
3× 3 window. Additionally, we incorporate the formerly mentioned DCAE model
[113], presented in the Table 5.15. The spatial neighborhood for this architecture was
proposed in the original research paper, and we follow the recommendation, hence
we exploit a 5× 5 patch approach. In [113], the authors employ a autoencoder-based
strategy, where the decoder constitutes a single fully-connected layer with its weights
set to the endmembers matrix. In such a scenario, the DCAE’s latent representation is
extracted via the encoder part and composes the code. The model bases on the linear
mixture model, which assumes that the spectral pixel vector is a linear combination
of the estimated abundances and the endmembers matrix. Naturally, the number of
endmembers has to be set a priori and is tied to the underlying HSI. It is important
to emphasize that because of the fact that the DCAE is trained in a unsupervised
manner, it cannot be incorporated in the supervised ensemble approach. Therefore,
we validate the unmixing capabilities of this architecture by coupling multiple DCAEs
trained over various training examples. To obtain the final prediction, we perform
the averaging aggregation of their predictions. We also incorporate conventional
machine learning methods as the baseline solutions. To this set we employ support
vector regression (SVR) [33] as well as the linear mixing model that incorporates fully
constrained least-squares (LMM) [88]. The hyperparameters for each approach was
extracted via experiments and sensitivity analysis.

We train both of the DL-based models utilizing Adam optimizer with learning
rates set to 0.001, 0.0001, 0.00001, and 0.00005 for the pixel- and cube-based forms of
CNN and DCAE models respectively. As in the previous experiments the maximum
number of epochs was set to 100 and the number of epochs without improvement con-
ditioned on the validation loss, i.e., patience was set to 15 epochs. The validation set
constitutes 10% of randomly selected pixels from the training data. Furthermore, the
DCAE model incorporates the spectral information divergence (SID) loss proposed
in [29]. Conversely for the CNN model, we utilize the MSE loss function.

To establish generic results and conclusions from the experiments, we repeat them
30 times following the Monte Carlo cross-validation split. Similarly as in the previous
experiments, we sample 30 test sets that do not change with the change of the size
of the training data.

5.5.3 Benchmark Datasets

In this study, we incorporate two HU benchmarks, i.e., the Jasper Ridge (JR) as well
as Urban (Ur) datasets (Figure 5.25). The former one constitutes a 100×100 HSI with
198 hyperspectral bands. Furthermore, the Ur dataset contains a 307× 307 scene that
incorporates 162 channels. The JR benchmark employs four endmembers: i) road,
ii) water, iii) soil, and iv) tree. In the Ur dataset, there are six endmembers with the
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following materials: i) asphalt, ii) grass, iii) tree, iv) roof, v) metal, and vi) dirt. In
both benchmarks, we exploit 7500 as well as 47000 samples in the training data for JR
and Ur datasets respectively. In our study we investigate the influence of the varying
size of the training data on the generalization over the test sets of all models. As
in the previous research, we utilize {1, 6, 13, 33, 66}% variants approximately. Such
training sets amount to {75, 500, 1000, 2500, 5000} and {470, 2800, 6100, 15500, 31000}
training examples for JR and Ur benchmark datasets respectively.

5.5.4 Quality Metrics

To measure the performance of the unmixing algorithms, we utilize the root-mean
square error (RMSE) as well as root-mean square abundance angle distance (rm-
sAAD) metrics. Such measures allow us to validate the distance between the esti-
mated abundance fractions and the ground-truth labels and can be formulated as:

RMSE =

√√√√∑|Ψ|
i=1(ai − âi)2

|Ψ|
, (5.18)

where |Ψ| represents the total number of pixels in test set Ψ, whereas the a and â
vectors denote the ground-truth and estimated fractions of abundances. Furthermore,
the rmsAAD can be formulated as:

rmsAAD =

√√√√∑|Ψ|
i=1 arccos( a⊤

i âi

∥ai∥∥âi∥ )
2

|Ψ|
. (5.19)

In the experiments where the fusers incorporate additional machine learning mod-
els (instead of standard aggregation or majority voting scenario), we utilize random
forest (RF) regressor, with 100 decision trees (DT) as base estimators. Furthermore,
we evaluate the DT and SVR fusers. The SVR incorporates a radial-basis kernel. We
incorporate one such regressor model per endmember, as the SVR framework does
not natively support multi-target problems.

5.5.5 Experimental Results and Discussion

The experimental results calculated for all variants of the training sets and meth-
ods selected in this work are depicted in the Figure 5.26. It is visible that when
increasing the training set sizes, it allows the models to provide better abundances
and over improves their generalization capabilities (as more examples are evident in
the labeled data). Nonetheless, the difference between the larges and second-larges
training set sizes are not significant and in fact, very little. This phenomenon can be
observed for both CNN and DCAE models. Furthermore, when incorporating het-
erogeneous ensemble approach, it allows us to enhance the HU results for all training
set sizes. It is important to emphasize that the RF fuser outperformed other fusing
techniques (including the standard and conventional methods with averaging). The
SVR approach offered the worst performance (probably due to separate regression
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(a) Urban

(b) Jasper Ridge

Figure 5.25: Visual representation of the (a) Urban (Ur) and (b)
Jasper Ridge (JR) datasets for the task of hyperspectral unmixing.

models for each endmember respectively). The ensemble approach also outperformed
the classical methods, which incorporate LLM and SVR models. Of note, the SVR
for the largest training set size failed to accomplish training during the maximum
threshold of 12 hours (all methods were trained on the same device). In the Figure
5.27, we stipulate the training and test times for all investigated methods, averaged
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across both unmixing benchmarks. The difference between standard and ensemble-
based approach in terms of inference time is minimal, hence could be incorporated in
production-ready environments.

Table 5.16 presents the performance results from noise augmentation experiments
on HU, comparing single 1D-CNN models against ensembles of varying sizes (1-16
copies) using different fusion methods (Mean, RF, DT, SVR) on Urban and Jasper
Ridge datasets. The results clearly demonstrate that ensemble-based modeling with
noise augmentation significantly improves unmixing quality, with RF consistently
achieving the best performance across both datasets—reducing RMSE from 6.76 to
6.40 for Urban and from 11.95 to 9.25 for Jasper Ridge when using 16 ensemble
copies. The progressive improvement with increasing ensemble size suggests that
weight perturbation through noise injection creates beneficial diversity among model
predictions, leading to more robust and accurate abundance estimations. This ap-
proach proves particularly valuable for practical hyperspectral applications where
ground-truth labeled data is scarce, as the noise augmentation strategy effectively
expands the training diversity without requiring additional labeled samples, making
CNN-based unmixing more feasible for real-world deployment scenarios.

Finally, Table 5.17 examines the computational performance of ensemble-based
1D-CNN models for HU, comparing training and testing (inference) times across
different ensemble sizes (1-16 copies) and fusion methods (RF, DT, SVR, and mean-
based) on Urban and Jasper Ridge datasets. The results show a clear trade-off be-
tween ensemble performance and computational cost, with training times increasing
substantially as ensemble size grows—particularly evident in the Urban dataset where
16-copy ensembles require 3-4 times longer training. However, testing times remain
reasonably manageable for practical deployment. Interestingly, mean-based fusion
demonstrates competitive performance while maintaining lower computational over-
head compared to more complex supervised methods like SVR. These findings suggest
that while ensemble methods can enhance unmixing quality, researches must carefully
balance ensemble size and fusion strategy based on their computational constraints
and accuracy requirements, with mean-based fusion offering an attractive compromise
for resource-limited applications.
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Figure 5.26: The performance outcomes–—specifically, overall
RMSE and rmsAAD averaged across Ur and JR—are presented for
both 1D-CNN and 3D-CNN (displayed in the upper two plots), and
for 1D-DCAE and 3D-DCAE (shown in the lower two plots). Ad-
ditionally, results for ensemble approaches and traditional baseline
methods, including LMM and R-SVR, are provided for comparison.
For the supervised CNN models, RF, DT, and SVR are employed as
fusion techniques. In both supervised and unsupervised scenarios, an
ensemble strategy is also applied that computes the average prediction
across base models (mean aggregation variant). For each training data
size, heterogeneous ensembles are constructed combining both 1D and
3D model versions (CNNs and DCAEs). Furthermore, results are in-
cluded for ensemble models that incorporate all base models trained
on every evaluated training set size (referred to as the “Al” variant for
both CNNs and DCAEs). It is noted that R-SVR results for the largest
training sets are excluded, as the method did not complete training
within the predefined 12-hour time limit. This table was utilized in

the PhD Candidate’s work in [178].
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Figure 5.27: Training and prediction (testing) times, measured in
seconds and presented on a logarithmic scale (note that test times cor-
respond to the entire test sets), are provided for all considered training
set sizes and algorithms, with values averaged across the datasets. The
timing results for R-SVR on the largest training sets are omitted, as
the method was unable to complete training within the designated 12-
hour time limit. This table was utilized in the PhD Candidate’s work

in [178].
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5.5.6 Concluding Remarks

The comprehensive experimental evaluation of ensemble-based deep learning ap-
proaches for hyperspectral unmixing presented in this chapter yields several significant
findings that advance the SOTA in HSI analysis. The experimental results demon-
strate that heterogeneous ensemble approaches consistently outperform individual
deep learning models across all investigated training set sizes. The integration of
CNN and DCAE architectures through ensemble fusion techniques resulted in sub-
stantial improvements in both RMSE and rmsAAD metrics on the Jasper Ridge and
Urban benchmark datasets.

The superior performance of the RF fuser compared to conventional averaging
and SVR approaches highlights the importance of intelligent aggregation strategies
in ensemble frameworks. The RF fuser’s ability to learn complex non-linear relation-
ships between base learner predictions and ground-truth abundances proves crucial
for optimal ensemble performance, achieving the best results across both benchmark
datasets. This finding demonstrates that the choice of fusion mechanism significantly
impacts the overall ensemble effectiveness, with classical ML-based fusers outperform-
ing simple averaging approaches.

The analysis of varying training set sizes reveals important insights into the gen-
eralization capabilities of deep learning models for hyperspectral unmixing. While
increasing training data size from 1% to 33% and 66% of available samples consis-
tently improves model performance, the marginal gains diminish significantly between
the second-largest (66%) and third-largest (33%) training configurations. This phe-
nomenon, observed across both CNN and DCAE architectures, suggests that these
models reach a performance plateau with sufficient training data, indicating effec-
tive feature learning capabilities even with moderately-sized datasets. The ensemble
approach demonstrates particular robustness across different training set sizes, main-
taining superior performance even in data-scarce scenarios, which is especially valu-
able for practical HSI applications where ground-truth abundance data is expensive
and time-consuming to obtain.

Subsequently, the timing analysis reveals that ensemble-based approaches main-
tain minimal difference in inference time compared to individual models without any
additional overhead. The failure of SVR to complete training within the 12-hour
threshold for the largest training set proves the computational advantages of the pro-
posed deep learning ensemble framework. The fast prediction times achieved by the
ensemble models demonstrate the practical viability of these approaches for real-world
HSI processing applications where processing speed is critical.

The noise augmentation experiments provide compelling evidence that ensemble-
based modeling coupled with synthetic noise injection significantly enhances unmixing
quality. This finding is particularly significant for practical applications where HSI
data often contains various forms of noise and artifacts. The improved robustness
achieved through noise augmentation suggests that the proposed ensemble frame-
work can effectively handle real-world data imperfections such as difficult atmospheric
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conditions or noise, while maintaining high accuracy. The preservation of fast predic-
tion times in augmented architectures ensures that the enhanced robustness does not
compromise computational efficiency, making the approach suitable for operational
deployment.

This work makes several important methodological contributions to HSI anal-
ysis, including the successful demonstration of heterogeneous ensemble integration
combining supervised (CNN) and unsupervised (DCAE) architectures, validation of
RF-based fusion as a superior aggregation strategy, and establishment of training
set size requirements for optimal performance. The experimental results conclusively
demonstrate that ensemble-based deep learning approaches represent a significant
advancement in HU capabilities. The combination of improved accuracy, maintained
computational efficiency, and enhanced robustness through noise augmentation po-
sitions these methods as viable solutions for operational HSI analysis applications,
providing a solid foundation for further research into ensemble deep learning frame-
works and offering promising directions for advancing automated HSI analysis.
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5.6 Onboarding Deep Learning: Post-Training Quanti-
zation

In this chapter, we evaluate the DNNs’ quantization capabilities coupled with real-
life data. A comprehensive comparison between full- and limited-precision models is
made that dives into qualitative and quantitative properties. Specifically, we exam-
ine how quantization affects model accuracy, latency, and memory footprint under
practical deployment scenarios. We also explore the trade-offs between precision and
performance, highlighting the conditions under which low-bit quantization (e.g., 8-
bit representations) can be used without significant degradation in output quality.
Furthermore, qualitative assessments are conducted using visualization techniques
to better understand how quantization impacts feature representations and decision
boundaries. This analysis not only demonstrates the effectiveness of post-training
quantization (PTQ) but also provides insights into its applicability for edge and mo-
bile computing environments.

5.6.1 Introduction to Quantization of Deep Learning Models for Hy-
perspectral Unmixing

In the field of DL, the quantization is a process where the full-precision models are
reduced to much more compact representation. Usually, DNNs utilize 32-bit floating-
point representation, which offers high precision but is computationally expensive and
memory intensive. The quantization process allows us to replace the high-precision
weight values with lower-precision alternative, such as 16-bit, 8-bit or even binary
formats [42], [256]. This process is crucial in situations when deploying models on
resource-constrained devices, e.g., smartphones [256], embedded systems, satellites
[75], and Internet of Things hardware. It is important to emphasize that quantization
may introduce a loss of accuracy of DNNs, nonetheless such techniques are necessary
for certain conditions and there are also methods to alleviate such deviation.

One of the well-known techniques is PTQ [149]. It incorporates lowering the
precision of weights of an already trained model. Also, it requires a dataset for cali-
brating the low bit quantization intervals of models’ parameters and the input data.
Recent research has focused on developing PTQ methods that eliminate the need
for retraining or fine-tuning a model. Yoni et al. [42] introduced the Optimal Mean
Squared Error technique, which aims to minimize the L2 distance between original
and quantized tensors. Similarly, Ron et al. [13] proposed the Analytical Clipping
for Integer Quantization method, which analytically determines the optimal clipping
range and bit allocation per channel in neural networks. To address the issue of
outlier channels, Zhao et al. [284] presented the Outlier Channel Splitting technique.
Wang et al. [245] contributed a Bit-Split and Stitching framework to lower bit preci-
sion in PTQ and an Error Compensated Activation Quantization strategy to reduce
quantization errors in activations. Nagel et al. [167] developed AdaRound, a data-
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and task-aware weight-rounding method that formulates rounding as a quadratic un-
constrained binary optimization problem via Taylor series approximation. In a more
recent advancement, Nagel et al. [168] introduced Data-Free Quantization, which
extends PTQ to zero-shot settings, where neither training nor testing data are acces-
sible.

Furthermore, Quantization-Aware Training (QAT) [169], [190] is an advanced
quantization approach that mimics low-precision computation during neural network
training, allowing the model to adjust to quantized representations (e.g., 8-bit inte-
gers) without significant accuracy degradation. In contrast to PTQ, QAT introduces
simulated quantization operations—including rounding and clipping effects—in the
forward propagation step while retaining high-precision gradients during backpropa-
gation. By exposing the model to quantization errors early in the training process,
QAT enhances the robustness of weights and activations, making them more resilient
to precision loss when deployed on edge devices or mobile platforms. This method
often outperforms PTQ, particularly in low-bitwidth settings, as it optimizes both the
model parameters and quantization ranges simultaneously. Popular DL frameworks
such as TensorFlow and PyTorch support QAT through built-in tools, leveraging
techniques like gradient straight-through estimators to handle the non-differentiable
aspects of quantization.

5.6.2 Quantization Setup for Hyperspectral Unmixing

Field-Programmable Gate Arrays (FPGAs) are reconfigurable hardware platforms
that provide parallel processing capabilities, low-latency execution, and energy-efficient
operation, making them ideal for deploying deep neural networks in embedded and
edge computing applications. This work explores the implementation of quantized
neural networks using Microchip Technology Inc.’s VectorBlox Accelerator SDK [212],
an open-source framework available on GitHub
(https://github.com/Microchip-Vectorblox/VectorBlox-SDK). The VectorBlox
ecosystem combines hardware and software components to accelerate neural network
inference on FPGAs, particularly targeting the PolarFire FPGA with its integrated
CoreVectorBlox IP core. The SDK offers a comprehensive workflow for model con-
version, optimization, simulation, and deployment onto FPGA hardware.

To streamline this process, the VectorBlox SDK incorporates tools from Intel’s
OpenVINO Toolkit (2021.1 release), an open-source suite for deep learning inference
optimization. Key integrated components include the OpenVINO Model Zoo, a model
downloader, model converter to convert the model from various frameworks, and the
Model Optimizer, which converts trained models from frameworks like TensorFlow
and PyTorch into an intermediate representation compatible with VectorBlox:

• OpenVINO Model Zoo — it allows us access to multiple NNs architectures
coupled with information about the preprocessing steps and performance. Fur-
thermore, it also includes option to download the mentioned models.

https://github.com/Microchip-Vectorblox/VectorBlox-SDK
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• OpenVINO Converter and Optimizer — offers a mechanism to convert
models from various DL frameworks into OpenVINO Intermediate Representa-
tion (IR). The optimizer allows us to remove training-time layers and operations,
e.g., Dropout and applies layer fusion.

Afterwards, when the OpenVINO IR is created, the model is fed through the
VectorBlox graph generation tool. The result of that is a quantized VNNX-extension
based file that could be run on the simulator as well as real FPGA hardware. In
this research, we focus only on the simulator. Together with the IR-based model,
VectorBlox graph generation tool accepts a hardware configuration option, that may
be set to V1000, V500, or V250. Those parameter values control the latency, degree
of parallelism and computational resources used during inference process. For V250,
a lower-performance is present with fewer resources used, resulting in lower inference
speed. Such an option is recommended for smaller FPGAs. Furthermore, the V500
option provides higher throughput and increases the general speed of inference, thus
is advocated for mid-range FPGAs. On the other hand, the V1000 option is best for
compute-demanding real-time applications. It uses more memory and achieves lower
latency to other possible options. We focus on examining the V1000 alternative.
Lastly, the tool also accepts example images that are used during the quantization
process. These images serve to calibrate the model weights by collecting activation
statistics (e.g., min/max or histogram distributions) across the layers of the network.
This data is essential for computing appropriate scaling and zero-point factors during
quantization, ensuring the resulting integer-only model maintains accuracy close to
the original floating-point model. The calibration process operates by propagating the
representative dataset through the original floating-point model in inference mode,
systematically recording the range of activations at each layer. For each layer l, the
minimum and maximum activation values (r(l)min, r

(l)
max) are collected across all calibra-

tion samples. These statistics are then used to compute the quantization parameters:
the scale factor, and the zero-point, which ensures that the floating-point zero maps
exactly to an integer value. Both of the parameters are defined in [101]. The quality
of calibration directly impacts the final model accuracy, as inadequate representative
samples may lead to suboptimal quantization parameters that introduce significant
HU numerical errors during inference. It is also worth mentioning that the user may
optionally stop the graph at any point during the conversion process, producing a par-
tial or truncated model after quantization. This feature is particularly useful when
post-processing steps (such as decoding or bounding box filtering for object detection
or instance segmentation) need to be performed externally, outside of the FPGA. By
stopping the graph early, unnecessary operations are excluded from the quantized
model, thereby reducing its size and complexity while enabling greater flexibility in
deployment pipelines.

In selecting a suitable neural network model for quantization and the HU task,
compatibility with both the VectorBlox Accelerator SDK and the OpenVINO toolkit
was a central consideration. While the SDK supports a range of neural network layers
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and architectures, not all models are equally compatible due to varying degrees of
support for specific operations and input configurations.

The experimental evaluation was conducted using the VectorBlox SDK inference
simulator, a functionally accurate simulation environment specifically designed for
evaluating quantized neural networks on VectorBlox accelerator hardware. The Vec-
torBlox SDK provides a comprehensive framework for compiling and executing quan-
tized networks, supporting 64 different operators optimized for inference acceleration.

The VectorBlox simulator operates as a bit-accurate functional model of the Vec-
torBlox accelerator, enabling precise performance evaluation without requiring phys-
ical hardware access. The simulation environment supports both C and Python ap-
plication programming interfaces, providing flexibility in model evaluation and post-
processing operations. For our experimental evaluation, we utilized the Python inter-
face due to its enhanced data manipulation capabilities and streamlined integration
with our analysis pipeline.

5.6.3 Experimental Settings: Neural Network Architecture Selec-
tion for Quantization in Hyperspectral Unmixing

During the initial evaluation phase, multiple CNN architectures were considered, in-
cluding 1D, 2D, and 3D CNNs, all of which are relevant to HU tasks. 1D CNNs are
effective at processing spectral data across a single dimension, while 3D CNNs simul-
taneously handle both spatial and spectral dimensions, offering a more comprehensive
representation of hyperspectral information. Despite their theoretical advantages,
both 1D and 3D CNNs posed significant compatibility challenges with the Vector-
Blox SDK. The primary issues encountered included unsupported layers, limitations
in operation types, and difficulties in converting these models into the VNNX format
required for deployment on the simulator and the VectorBlox hardware.

As a result of these constraints, the focus shifted to 2D CNN architectures, which
proved to be fully compatible with the VectorBlox SDK. These models operate on
two-dimensional spatial data and can accommodate hyperspectral information by
treating spectral bands as additional input channels. This approach aligns well with
the SDK’s supported operations, enabling seamless model conversion and deployment.
Moreover, 2D CNNs maintain sufficient modeling capacity to extract meaningful spa-
tial and spectral features from hyperspectral imagery, making them a practical com-
promise between complexity and deployability.

By selecting 2D CNNs, the research ensures compatibility with the VectorBlox
platform, thereby taking full advantage of its acceleration capabilities. This enables
efficient, low-latency inference on simulator and possible FPGA hardware, which is
particularly valuable in the space-constrained and performance-critical conditions.
The decision to prioritize deployment feasibility over architectural complexity not
only simplifies the possible development and integration process but also enhances
the robustness and reliability of the system.
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The neural network model used in this research is a CNN implemented using
TensorFlow’s Keras API. Designed for regression HU task on hyperspectral data,
this model emphasizes both architectural effectiveness and deployment compatibility.
Due to the potential for future adaptability, the model can be fine-tuned on new
datasets if required. The full architecture of the model is shown in Figure 5.28
and is inspired and adapted from the PhD Candidate work in [233]. The model
starts with three 2D convolutional layers that are incorporated to process the feature
maps created from the input hyperspectral cube. The number of filters are 16, 32,
and 64 respectively whilst, the kernel sizes are set to (1, 16), (1, 8), and finally
(1, 4). We utilize unit stride in both dimensions. Afterwards, a flattening layer is
incorporated to provide features that will undergo regression. The final part of the
model constitutes a regressor, that utilizes two fully-connected layers with 64 and C

units, respectively. The C variable denotes the number of endmembers in the final
HU image. Assuming 6 endmembers and 162 channels, the total number of trainable
parameters is equal to 574,262. Lastly, in the entire model, we apply ReLU [170]
activation function to prevent from vanishing gradient problem [90]. Finally, the
model was trained using the Adam [116] optimizer. Overall, this CNN architecture is
tailored to effectively process hyperspectral data by leveraging multiple convolutional
layers focused on spectral dimension extraction, followed by fully connected layers for
accurate abundance regression for HU task.
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Conv2D: 16 filters, (1,16), ReLU

Conv2D: 32 filters, (1,8), ReLU

Conv2D: 64 filters, (1,4), ReLU

Flatten

Dense: 64 units, ReLU

Output Layer: Nendmembers units

Figure 5.28: Block diagram of the CNN architecture used in the
quantization experiment for HU.

5.6.4 Benchmark Datasets

To evaluate the performance of the proposed method, three widely used hyperspec-
tral datasets were employed: Samson, Jasper Ridge, and Urban. These benchmarks
provide ground truth data for both endmember spectra and abundance distributions.

The Samson dataset captures high-resolution spectral data from the visible to
near-infrared range with approximately 3 nm spectral granularity. A representative
95× 95× 156 region of interest was selected, containing three endmembers: i) soil,
ii) tree, and iii) water.

The Jasper Ridge dataset spans the visible to shortwave infrared spectrum with
moderately high spectral resolution. Noisy spectral bands were removed to ensure
data quality. A 100× 100× 198 region was selected, comprising four endmembers: i)
road, ii) water, iii) soil, and iv) tree.

The Urban dataset covers various man-made and natural materials, with spectral
data ranging from the visible to shortwave infrared regions at 10 nm intervals. Spec-
tral bands affected by atmospheric effects or sensor noise were excluded. The selected
307× 307× 162 subset includes six endmembers: i) asphalt, ii) grass, iii) tree, iv)
roof, v) metal, and vi) dirt.
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5.6.5 Quality Metrics

To effectively assess the performance of HU algorithms, it is important to rely on a
set of well-defined evaluation metrics. These metrics help quantify the accuracy and
reliability of abundance estimations, providing a basis for comparing different meth-
ods. Additionally, they are crucial for ensuring that the process of model quantiza-
tion does not introduce significant performance degradation compared to the original
floating-point implementation. In this work, we use the following standard metrics
for evaluation:

• Mean Squared Error (MSE) quantifies the average squared difference between
estimated and true abundance values:

MSE =
1

NP

N∑
i=1

P∑
j=1

(
Aij − Âij

)2
(5.20)

where Aij and Âij denote the ground truth and estimated abundance values of
the j-th endmember at the i-th pixel, respectively. N is the number of pixels
in the test set and P is the number of endmembers.

• Mean Absolute Error (MAE) measures the average absolute deviation between
estimated and true abundances:

MAE =
1

NP

N∑
i=1

P∑
j=1

∣∣∣Aij − Âij

∣∣∣ (5.21)

Similar to MSE, this metric uses absolute differences, making it less sensitive
to large outliers while still reflecting overall prediction accuracy.

• Root Mean Squared Error (RMSE) is the square root of the MSE, offering a
more stringent evaluation by penalizing larger errors:

RMSE =

√√√√ 1
NP

N∑
i=1

P∑
j=1

(
Aij − Âij

)2
(5.22)

RMSE retains the unit of the original data, making it more interpretable in the
context of abundance fractions, while emphasizing larger deviations due to the
squared term inside the root.

Together, these metrics form the basis for a reliable assessment of HU performance
before and after quantization.

5.6.6 Experimental Results and Discussion: Onboarding Deep Learn-
ing Model via Quantization

In this subsection, we present the experimental results of HU measured on the Vec-
torBlox inference simulator. The simulator is specifically designed for evaluating the
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performance of quantized models. It’s important to note that the values reported in
the tables are presented with high numerical precision to capture any subtle differ-
ences, even though such results are typically shown with lower decimal precision in
conventional reporting.

The results for the Urban dataset in Table 5.18 indicate that the quantized
model performs comparably to the full-precision model across all evaluated
metrics (MSE, MAE, and RMSE). Although the mean errors for MSE and RMSE are
slightly higher in the quantized model, the differences remain minor, demonstrating
only a slight decrease in accuracy. Additionally, the standard deviations and range
between minimum and maximum values are similar for both models, suggesting con-
sistent performance. This confirms that quantization preserves model accuracy well,
making it a practical choice for scenarios with limited computational resources.

For the Jasper Ridge dataset depicted in Table 5.19, the quantized model shows
error metrics close to those of the full-precision model. The mean values for MSE,
MAE, and RMSE are very similar, with minor variations that fall within a comparable
range. The error distribution, as evidenced by percentiles and standard deviation,
further supports that quantization does not significantly affect predictive quality.
This demonstrates the robustness of quantization for datasets with moderately large
spectral dimensions.

In the Samson dataset (see Table 5.20), the quantized model exhibits slightly
increased error metrics compared to the full-precision model, with marginally higher
means and standard deviations for MSE, MAE, and RMSE. However, these differences
are small and do not represent a significant degradation in performance. Both models
share similar minimum and maximum values, and the error distributions suggest
stable behavior. Therefore, quantization can be effectively applied to this dataset,
offering a balance between model compression and accuracy.

Finally, the comparison of model sizes highlights the substantial storage savings
achieved through quantization and model optimization. The full-precision model
occupies approximately 25 MB of disk space. When converted to the OpenVINO
IR format, the model size reduces to around 8.5 MB, representing a reduction of
66%. Further optimization with VNNX results in a compact model size of about
2.5 MB, yielding an overall reduction of 90% from the original size and an
additional 71% reduction from the OpenVINO IR format. This corresponds to a size
reduction ratio of approximately 3:1 when moving from full-precision to OpenVINO
IR, and about 10:1 when using the VNNX format compared to the original full-
precision model. Such significant compression enables more efficient storage and
faster model loading, which are critical factors for deployment on satellite systems
and other embedded platforms with limited memory and bandwidth.
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Figure 5.29: Distribution plots (KDE, Histogram, Violin) for Tar-
gets 1 and 2 for Urban dataset.

Figure 5.30: Distribution plots (KDE, Histogram, Violin) for Tar-
gets 3 and 4 for Urban dataset.
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Figure 5.31: Distribution plots (KDE, Histogram, Violin) for Tar-
gets 5 and 6 for Urban dataset.
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KDE Distribution Histogram Violin Plot

Figure 5.32: Prediction distributions for all 3 targets from the Sam-
son dataset. Each row corresponds to one target, with the kernel
density estimation (KDE) plot (left), histogram (middle), and violin
plot (right) comparing predicted and ground truth soft labels using

quantized and non-quantized models.
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KDE Histogram Violin Plot

Figure 5.33: Prediction distributions for all 4 targets from the Jasper
Ridge dataset. Each row corresponds to one target, with the kernel
density estimation (KDE) plot (left), histogram (middle), and violin
plot (right) comparing predicted and ground truth soft labels using

quantized and non-quantized models.

Across all three hyperspectral datasets, the quantized models maintain perfor-
mance close to their full-precision counterparts. The slight differences in error metrics
indicate that quantization is an effective technique to reduce model complexity and
memory demands while preserving reliable prediction accuracy. This makes quanti-
zation especially useful for real-time or resource-constrained applications [252].



5.6. Onboarding Deep Learning: Post-Training Quantization 157

Figures 5.29, 5.30, 5.31, 5.32, and 5.33 presented above, provide a detailed com-
parison of predicted soft label distributions from quantized and non-quantized models
against the ground truth data for multiple targets across different datasets. For each
target, three types of plots are included:

• KDE (Kernel Density Estimation) plots show smooth estimates of the
probability density functions of predicted and ground truth soft labels, facili-
tating the visualization of distribution shapes and overlaps.

• Histogram plots display the frequency distribution of predicted and ground
truth values in discrete bins, offering insight into the common value ranges.

• Violin plots combine box plot statistics with KDE to illustrate the shape,
spread, and density of distributions, enabling direct comparison among quan-
tized predictions, non-quantized predictions, and ground truth.

Together, these visualizations illustrate how effectively the models approximate the
true soft label distributions for each target, shedding light on both the similarities
and differences across the Urban, Samson, and Jasper Ridge datasets. Notably, the
quantized model demonstrates a strong alignment with the full-precision model, main-
taining nearly identical output distributions across all endmembers in each benchmark
dataset. This consistency suggests that quantization does not significantly degrade
the model’s ability to estimate abundance maps with high fidelity. In fact, the pre-
served distributional characteristics indicate that the quantized model retains the
essential representational capacity needed for accurate soft label prediction. As a
result, it offers a compelling balance between computational efficiency and predictive
performance, particularly in resource-constrained deployment scenarios.

5.6.7 Concluding Remarks

This work evaluated the impact of model quantization on HU performance across
three widely used datasets: Urban, Jasper Ridge, and Samson. Both full-precision
and quantized versions of the model were tested on identical test sets, allowing for a
direct comparison of accuracy metrics such as MSE, MAE, and RMSE.

The results consistently show that the quantized model achieves performance
comparable to the full-precision counterpart. For the Urban dataset, quantization led
to only minor increases in error values, with mean MSE, MAE, and RMSE remaining
closely aligned between models. Similarly, the Jasper Ridge dataset results indicate
negligible accuracy loss after quantization, with error distributions nearly overlapping.
The Samson dataset, which exhibits more variability, showed slightly higher errors in
the quantized model but still maintained overall stable and acceptable performance.

These findings demonstrate that quantization can significantly reduce model size
and computational demand without substantially sacrificing predictive accuracy in
HU tasks. The minor increases in error observed are outweighed by the efficiency
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benefits, making quantized models a practical choice for deployment in resource-
constrained environments. In particular, the reduced memory footprint and com-
putational requirements of the quantized models open up promising possibilities for
deployment directly on satellites or other embedded platforms where hardware re-
sources, power consumption, and bandwidth are highly limited. Real-time or near-
real-time hyperspectral analysis onboard satellites can enable faster data processing
and decision-making, minimizing the need for extensive data transmission to ground
stations. This capability is crucial for applications such as environmental monitoring,
disaster response, and precision agriculture. Overall, the experiments validate quanti-
zation as a robust approach for optimizing hyperspectral unmixing models, balancing
efficiency and accuracy effectively across diverse datasets and spectral characteristics.
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Chapter 6

Conclusions

This dissertation presents a comprehensive investigation into HU through multiple
interconnected research gaps, addressing critical challenges in training optimization,
validation methodology, architectural efficiency, feature selection, ensemble learning,
and model deployment. The collective findings establish a robust framework for
practical and reliable hyperspectral analysis across diverse operational and resource-
constrained scenarios.

6.1 Training Set Optimization and Validation Method-
ology

Our investigation into training set size effects revealed that abundance estimation
quality deteriorates significantly for smaller training sets, particularly those compris-
ing less than 6% of the HSI. Importantly, we demonstrated that increasing training
set sizes beyond 33% yields no statistically significant improvements, establishing a
practical threshold for optimal data utilization. This finding has profound implica-
tions for operational efficiency, as it indicates that extensive labeling efforts beyond
this threshold provide diminishing returns.

Equally critical is our development of an unbiased validation methodology that
addresses the frequent issue of information leakage due to spatial correlations in
HSI data. Our proposed non-overlapping sampling algorithm revealed that tradi-
tional random sampling methods overestimate algorithm performance by approxi-
mately 550%, fundamentally compromising the reliability of model evaluation in the
literature that utilizes random sampling approach. The algorithm’s parameterizable
nature, multi-fold cross-validation capability, and support for both pixel-wise and
patch-wise sampling establish it as an essential tool for rigorous hyperspectral algo-
rithm validation. This methodological contribution ensures that model generalization
capabilities are accurately assessed, which is crucial for operational deployment and
safety-critical applications.



160 Chapter 6. Conclusions

6.2 Architectural Innovation and Efficiency

Our comprehensive evaluation of deep learning architectures for HU demonstrates
that different approaches serve distinct operational requirements. Multi-branch ar-
chitectures, leveraging spectral and spectral-spatial feature fusion through 1D, 2D,
and 3D convolutional branches, continue to achieve superior abundance estimation
performance with statistically significant improvements in RMSE and rmsAAD met-
rics. However, our ablation studies revealed that the combination of 1D and 3D
branches provides the most substantial benefits, while 2D branches offer limited ad-
ditional value due to redundancy and insufficient spatial discrimination.

Most notably, our investigation of GCNNs and their Chebyshev variants revealed
a paradigm shift toward efficiency without substantial performance compromise. The
parameter efficiency is particularly striking: GCNN requires only 363,235 trainable
parameters while GCNN-Cheb uses 620,071 parameters, representing dramatic re-
ductions compared to state-of-the-art alternatives. For context, the multi-branch
(MB) architecture requires 68,079,974 parameters—over 187 times more than GCNN
and 110 times more than GCNN-Cheb. Even compared to other efficient archi-
tectures, GCNNs demonstrate superior parameter efficiency: they require approx-
imately 3 times fewer parameters than CB-CNN [280] (91,006,624), 5 times fewer
than UnDIP [201] (1,738,970), and 14 times fewer than WS-AE [11] (5,094,420).
Despite this substantial parameter reduction, GCNNs achieve performance compara-
ble to these computationally intensive models while demonstrating superior training
efficiency and rapid convergence. This exceptional efficiency, combined with their
inherent interpretability advantages for explainable AI approaches, positions GCNNs
as particularly attractive for resource-constrained deployment scenarios, including
satellite-based applications where memory and computational resources are severely
limited.

6.3 Feature Selection and Dimensionality Optimization

The development of CANNIBAL as a non-parametric feature selection method ad-
dresses the critical challenge of hyperspectral data dimensionality. Our approach
automatically determines optimal band selection through unsupervised clustering,
achieving effective dimensionality reduction while maintaining high-quality unmixing
performance without significant score deterioration. Statistical analysis through pair-
wise Wilcoxon tests over benchmark datasets confirmed that configurations with more
than 25 CANNIBAL-selected bands perform statistically equivalent to full-spectrum
analysis (in the utilized benchmark dataset the total number of bands amounts to 162,
thus allowing us for 85% data reduction), validating the elimination of redundant
spectral information. Furthermore, the method’s ability to consistently outperform
other feature selection approaches with statistical significance, while requiring signif-
icantly fewer features, demonstrates its practical value for computational efficiency
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and storage optimization in operational systems.

6.4 Ensemble Learning and Data Augmentation

Our investigation into ensemble-based modeling coupled with noise augmentation
revealed substantial potential for enhancing HU quality, particularly in scenarios with
sparse and limited ground-truth labeled data. The ensemble approach maintains rapid
prediction times while improving robustness, making it especially valuable for real-
world applications where training data availability is constrained. This contribution
is particularly relevant for accelerating the adoption of CNN-based unmixing models
in operational scenarios.

6.5 Model Quantization and Practical Deployment

The evaluation of post-training quantization across multiple benchmark datasets
(Urban, Jasper Ridge, and Samson) demonstrates that model compression can be
achieved without substantial accuracy sacrifice. Quantized models maintain perfor-
mance closely aligned with full-precision counterparts while significantly reducing
computational demands and memory footprints up to 90% of overall reduction from
the original full-precision model. This capability opens promising avenues for direct
deployment on satellites and embedded platforms where hardware resources, power
consumption, and bandwidth are severely constrained.

6.6 Integrated Framework and Future Directions

Collectively, this research establishes a comprehensive framework that balances data
validation, accuracy, efficiency, and practical deployment considerations for HU. The
integration of rigorous validation methodologies with efficient architectural designs,
intelligent feature selection, ensemble approaches, and quantization techniques pro-
vides multiple pathways for optimizing HU systems according to specific operational
requirements.

Key recommendations emerging from this work include: i) adoption of non-
overlapping validation strategies to ensure reliable model evaluation, ii) utilization
of training sets comprising 6-33% of available data for optimal efficiency-accuracy
balance, iii) consideration of GCNN-based architectures for resource-constrained de-
ployments, iv implementation of CANNIBAL feature selection for dimensionality op-
timization, and v) application of quantization techniques for edge deployment scenar-
ios with high reduction rates.

Future research directions should focus on extending GCNNs architectural ca-
pabilities to further close performance gaps with complex state-of-the-art models,
investigating transfer learning approaches to leverage the established training set
thresholds across different domains, and developing adaptive ensemble strategies that
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dynamically adjust to varying data availability and quality conditions. Additionally,
the integration of the proposed methodologies into end-to-end hyperspectral process-
ing pipelines for operational satellite missions represents a critical next step toward
practical implementation.

This dissertation contributes both methodological approaches and practical so-
lutions to the HU domain, establishing foundations for more reliable, efficient, and
deployable hyperspectral analysis systems that can meet the demanding requirements
of present-day remote sensing applications.
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