
Comparative analysis and implementation
of selected new alternating current electric

arc models

Doctoral Dissertation
by

Maciej Klimas

Supervisor: dr hab. inż. Dariusz Grabowski, prof PŚ

Co-Supervisor: dr inż. Dawid Buła

Faculty of Electrical Engineering
Silesian University of Technology

Gliwice, Poland
2023





Contents

1 Introduction 11
1.1 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Power balance-based electric arc furnace (EAF) model . . . . . . . . 16

2 Electric arc furnace 19
2.1 Installation description . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Mechanical structure . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Electrical circuit . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Operation principle . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Measurement data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Large industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Small industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Laboratory EAF . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Stochastic EAF model 29
3.1 EAF random differential equation . . . . . . . . . . . . . . . . . . . . 29
3.2 Simulation results and analysis . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Analysis of K1, K2 and K3 for the large industrial EAF . . . . 34
3.2.2 Analysis of K1, K2 and K3 for the small industrial EAF . . . 37
3.2.3 Analysis of K1, K2 and K3 for the laboratory EAF . . . . . . 41
3.2.4 Analysis of K̂1 and K̂2 for the large industrial EAF . . . . . . 44

4 Chaotic EAF model 50
4.1 Selected chaotic systems . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Chua circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Lorenz system . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Rössler system . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.4 Four-wing chaotic attractor system . . . . . . . . . . . . . . . 54

4.2 Simulation results and analysis . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Large industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Small industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Laboratory EAF . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Artificial neural network EAF models 62
5.1 Selected ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 Shallow ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Deep ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Simulation results and analysis . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Large industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 68



5.2.2 Small industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Laboratory EAF . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Fractional order EAF model 81
6.1 Fractional order power balance equation . . . . . . . . . . . . . . . . 81
6.2 Simulation results and analysis . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Large industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Small industrial EAF . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.3 Laboratory EAF . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Comparative analysis 94

8 ETMP-ATP EAF model 102
8.1 Implementation of the RDE model . . . . . . . . . . . . . . . . . . . 102

8.1.1 Representation of K̂1 . . . . . . . . . . . . . . . . . . . . . . . 103
8.1.2 Representation of K̂2 . . . . . . . . . . . . . . . . . . . . . . . 104
8.1.3 Representation of the high frequency component . . . . . . . . 104

8.2 Simulation results and analysis . . . . . . . . . . . . . . . . . . . . . 107
8.2.1 Single-phase model . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.2 Three-phase model . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 109

9 Conclusions 111

10 Appendix - EMTP-ATP code 115

Bibliography 119

List of figures 126



Abstract

Electric arc furnaces (EAFs) are one of the largest and most disturbing loads found
in electrical power systems. Their random and nonlinear nature can result in many
power quality problems. Mitigating these problems involves the use of power quality
improvement systems and the appropriate design of the power system itself. This,
in turn, requires detailed knowledge of the furnace behavior and its influence on the
electrical circuit. An accurate model can provide that kind of data.

The doctoral dissertation is focused on the development of new, more accurate
models of the electric arc phenomena occurring in electric arc furnaces. The mod-
eling process has especially been oriented to the melting stage of the EAF work
cycle because of its worst impact on power quality, compared to other stages. The
proposed models have been based on measurement data originating from three dif-
ferently sized real furnaces: a large industrial furnace, a small industrial furnace,
and a laboratory-sized self-designed furnace. The analysis carried out based on those
datasets has confirmed that the proposed approaches can be successfully applied to
installations with various rated powers.

The main part of the thesis is devoted to the actual development of the EAF
models using different theoretical approaches. One of the primary goals was to cre-
ate models capable of reflecting not only the deterministic component of the furnace
behavior, but also its stochastic part. To do so, four concepts have been proposed: a
model based on a random differential equation, a chaotic model, models using shal-
low and deep learning artificial neural networks, and a novel fractional order model.
Both qualitative and quantitative evaluations presented in the text have shown that
all proposed approaches can be effectively applied for EAF model development,
significantly reducing errors between modeled and measured waveforms.

Another goal of the dissertation has been related to comparative analysis lead-
ing to the selection of a model suitable for implementation in the widely known
EMTP-ATP simulation software. The comparison has highlighted the differences
between the proposed approaches and evaluated their performance. In conclusion,
the models varied in the precision of the stochastic component reflection, the compu-
tational power required, and the calculation time. Based on those criteria, a random
differential equation model has been chosen and implemented in the EMTP-ATP
software using built-in components and the programming language. The results of
simulations conducted with the EMTP-ATP software indicate that the proposed
model can be applied not only to reflect the single-phase arc but also to model a
three-phase device.

An analysis contained in the doctoral dissertation yielded an overview of modern
methods for simulation of the stochastic electric arc phenomena. Furthermore, it
revealed potential paths for further studies related to the indicated limitations and
the simplified assumptions used.





Streszczenie

Elektryczny piec łukowy stanowi jeden z największych odbiorników energii elek-
trycznej spotykanych w systemach elektroenergetycznych. Jego losowa i nieliniowa
charakterystyka może powodować wiele problemów w zakresie jakości energii elek-
trycznej. Łagodzenie skutków tych problemów wiąże się z koniecznością stosowa-
nia systemów poprawy jakości energii oraz odpowiedniego zaprojektowania samego
układu zasilania. To z kolei wymaga znajomości zachowania pieca łukowego oraz
jego wpływu na sieć. Dokładny model pieca jest w stanie zapewnić te informacje.

Rozprawa doktorska skupia się na stworzeniu nowych, dokładniejszych modeli
łuku elektrycznego występującego w elektrycznych piecach łukowych. Praca obej-
muje modelowanie etapu roztapiania wsadu, który cechuje się najgorszym wpły-
wem na sieć elektryczną pod kątem jakości energii. Zaproponowane modele zostały
opracowane na podstawie danych pochodzących z trzech pieców łukowych różnej
wielkości: dużego i małego przemysłowego pieca oraz laboratoryjnego pieca za-
projektowanego specjalnie do tego celu. Analizy przeprowadzone na bazie zgro-
madzonych danych potwierdziły, że zaproponowane podejścia mogą być skutecznie
wykorzystane do modelowania instalacji o różnej mocy znamionowej.

Zasadnicza część pracy jest poświęcona opracowaniu modeli przy wykorzysta-
niu czterech różnych podejść teoretycznych. Jednym z głównych celów pracy było
stworzenie modeli zdolnych do odzwierciedlenia deterministycznego i stochastycznego
zachowania pieca. W tym celu zaproponowano zastosowanie następujących metod:
modelu opartego o losowe równania różniczkowe, modelu chaotycznego, modeli ko-
rzystających z płytkich oraz głębokich sztucznych sieci neuronowych oraz nowego
modelu ułamkowego rzędu. Zarówno jakościowa, jak i ilościowa ocena modeli przed-
stawiona w pracy wykazała, że wszystkie zaproponowane koncepcje mogą być skute-
cznie stosowane do modelowania elektrycznych pieców łukowych, istotnie zmniejsza-
jąc błąd między przebiegami symulowanymi a pomiarowymi.

Kolejnym celem pracy była analiza porównawcza opracowanych modeli służąca
wybraniu najodpowiedniejszego do implementacji w szeroko stosowanym środowisku
symulacyjnym EMTP-ATP. Wyciągnięte wnioski świadczą, iż modele różniły się
dokładnością odwzorowania stochastycznych cech obiektu, wymaganą mocą oblicze-
niową oraz czasem obliczeń. Na podstawie tych kryteriów wybrano model oparty na
losowym równaniu różniczkowym. Zaimplementowano go z wykorzystaniem dostęp-
nych w programie komponentów i dedykowanego języka programowania. Wyniki
symulacji świadczą, iż zaproponowane rozwiązanie jest zdolne do odzwierciedlenia
zarówno pojedynczego łuku elektrycznego, jak i trójfazowego pieca łukowego.

Analiza zawarta w pracy doktorskiej przedstawia współczesne metody mode-
lowania stochastycznych zjawisk towarzyszących łukowi elektrycznemu. Ponadto,
wskazuje potencjalne ścieżki do dalszych badań, których przyczynkiem są ogranicze-
nia obecnych rozwiązań oraz zastosowane założenia upraszczające.
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Chapter 1

Introduction

As stated by the famous writer and scientist Johann Wolfgang von Goethe: "He
who moves not forward, goes backward." This philosophy accompanied us through-
out the ages, even before being put into words by Goethe. As a consequence, the
main goal was always connected with constant growth and development in societal or
technical areas. This approach eventually leads to further industrial revolutions and
the incorporation of countless solutions for improving our everyday life. However,
further development requires increasing energy consumption. It is very important
to note that an economy based on endless growth is unsustainable. To maintain
sustainability, technological development has started to focus more on the optimiza-
tion of existing solutions to reduce energy and financial costs. Because the most
widely used form of energy is electrical energy, it is especially important to reduce
unnecessary losses related to its transmission and final utilization. Not paying atten-
tion to excessive power losses is related not only to unnecessary energy production
but also to reduced power system capabilities by nonoptimal exploitation of trans-
mission and distribution lines, as well as excessive equipment wear. Consequently,
unacted power losses can lead to further financial and environmental losses. This
fact imposes an obligation to identify and solve power quality problems.

In worldwide electrical energy consumption, the industrial sector has always been
one of the most significant contributors. Due to its scale, the optimization of indus-
trial processes also has the most significant positive influence on the sustainability
aspects. An understanding of this sector itself allows for the identification of the
loads that can be the most problematic. Among them there is one of the largest
electrical loads - an electric arc furnace (EAF). The EAF is a device used for melting
processes, mainly for steel production, using the heat generated by the arc burning
between the electrodes and the load. The electric arc itself is an unpredictable and
strongly nonlinear phenomenon. Due to the high power of EAFs, the negative im-
pact of arc behavior on the power system can be significant. Strong and random
variations in power consumption in EAFs, as well as voltage or current deformations,
reduce power quality in the supplying power system, therefore increasing unwanted
losses. Of course, mitigation methods for such problems exist and are most often
directly applied, however, the appropriate selection and design of such devices re-
quire detailed knowledge about the load’s behavior. Furthermore, designers of the
power system designated for facilities equipped with EAFs would benefit from this
knowledge. Being aware of this fact, electrical engineers around the world have been
investigating the working conditions of EAFs since their early introduction to in-
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dustry. The key element to understanding the furnace is the arc phenomenon itself,
which is the root of the nonlinearities and randomness of this load. Measurements
and observations of the arc lead to the development of various theoretical models,
some of which directly describe the relationships between the electrical properties
of EAFs. The models vary in their theoretical background, complexity, or range of
reflected arc features, and therefore in their accuracy. The simplest approaches lack
stochastic properties of the arc but are easy to implement, while the most complex
are better in reflection of randomness, but simultaneously they require larger com-
putation power and are not as easy to be applied by the end user. Even the most
accurate models available today have a limited background related to the stochastic
features of the arc. This indicates room for improvement. Development of more
accurate models would lead to a better understanding of such complex phenomena
as the electric arc. Incorporation of a wide range of arc stochastic features into the
model would make the analyses more reliable and trustworthy. Moreover, its imple-
mentation in suitable software would contribute to the promotion of such solutions
to a larger audience. All of these actions could result in improvements in the design
and analysis of power quality conditioning systems or components of power systems.

The main goal of the research presented in this thesis is to develop new and
more accurate models of EAFs for the purpose of time-domain circuit simulations,
based on different theoretical approaches and real measurement data. In terms of
accuracy, the models should not only properly reflect the deterministic component
of the behavior of EAFs, but also include representation of stochastic properties in
a wide frequency range. The specific goals of the thesis include:

• extension of the existing deterministic model of the EAF based on the power
balance differential equation to the random differential equation reflecting
stochastic properties of the arc phenomenon,

• representation of the stochastic behavior of the arc using chaotic signals and
artificial neural networks with different topologies,

• novel generalization of the power balance equation model to include fractional
order operator,

• a multi-aspect comparative analysis of the developed models,
• implementation of selected models directly in the software dedicated to elec-

trical circuit time domain simulations.

Moreover, all of the proposed models are intended to be developed based on real
measurement data. The aim of this thesis is to analyze the versatility of the pro-
posed approaches by investigating their application to the data obtained from three
independent furnaces of different sizes.

The main hypothesis of this work is that it is possible to develop new stochastic
models of the EAF based on different theoretical approaches using real measurement
data, so that their accuracy is higher than existing deterministic-only models. Tak-
ing into account the main and specific goals, supplementary hypotheses have been
formulated:

• it is possible to include physically interpretable stochastic processes in the
power balance equation in order to improve the model accuracy,
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• it is possible to fit selected chaotic systems so that the signals they generate
represent stochastic processes in the power balance equation without reduction
of accuracy,

• it is possible to train artificial neural network so that it can represent stochastic
processes in the model based on power balance without reduction of accuracy,

• it is possible to generalize the power balance differential equation to fractional
order differential equation to improve the model accuracy,

• it is possible to directly implement the best performing stochastic EAF model
in the EMTP-ATP circuit simulation software.

The research presented in this thesis is subject to specific assumptions and lim-
itations. The most significant is that the models considered are developed only for
alternating current (AC), not for direct current (DC) EAFs and only with openly
burning arcs, not submerged arc furnaces. Moreover, as described in detail in the
following chapters, the thesis considers only the worst stage of the EAF work cycle,
in terms of power quality. Although the proposed models can be modified for other
stages, they are developed only for the melting stage. The analysis was carried
out on the basis of measurement data obtained from three different-sized furnaces.
Consequently, the proposed approaches can be applied for furnaces with different
rated power, however, individual differences between installations with the same size
are not considered. As for the electric arc phenomenon itself, the general approach
is focused on the phase voltage and current waveforms. From this follows the as-
sumption that random, automatic control, or human operator interferences with the
furnace load, arc environment, or electrodes are already indirectly contained in the
measurement data. Therefore, to conduct an effective analysis, various statistical
methods are applied. Additionally, because the models are focused on a single arc
and can later be extended to the three-phase version, the thesis applies a simplifying
assumption that the influence of the three arcs in the three-phase EAF on each other
can be omitted.

The thesis is divided into 10 chapters. This Chapter includes an introduction to
the work, its conceptualization, as well as its main goals and scientific hypothesis.
It is also devoted to a discussion of the current state of knowledge and a literature
overview including the differential equation of power balance, which is a basis for
the development of new EAF models. Chapter 2 consists of a description of the
construction and operation of EAFs. It also includes details of the measurement
data used for the development of the stochastic models described in the following
chapters. Chapters 3-6 present a detailed description of both methods and results of
development of the random differential equation (RDE), chaotic, ANN and fractional
models, respectively. These chapters are followed by a comparative analysis of the
models in Chapter 7. Chapter 8 is devoted to the implementation of a selected
model in the EMTP-ATP simulation software. The thesis ends with a 9th Chapter
with conclusions and an appendix containing a code of the model implemented in
the EMTP-ATP software.

1.1 Literature overview
The first attempts at applying arc melting in industrial processes were conducted in
the XIXth century. The first successful tests were carried out by Ernesto Stassano
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and Paul Hérnoult, in Italy and France, respectively [1]. In the next decades, the
technology was improved and gained popularity - more furnaces around the world
emerged, and their rated power and capacity increased. Since the introduction of
EAFs into the industry, this device has been an object of interest to researchers.
After reaching levels of capacity surpassing 100 t in so-called Ultra-High-Power
EAFs, their development focused on improving the steelmaking process itself. Such
improvements included a reduction in heating time, enhancement of electrode control
systems, and reinforcement of the refractory lining. Despite a long history, research
related to issues that focus on energy efficiency is still of interest and is addressed
with modern methodologies, for example, with machine learning methods, as in [2].

One of the aspects related to the improvement of EAF operation concerns its
electrical properties. These are especially important considering not only the steel
production process itself, but also the quality of the power in the power system
to which the furnace is connected. Due to the strongly nonlinear and stochastic
nature, the EAFs are especially problematic in terms of power quality. Among the
problems they can cause are voltage harmonics, current harmonics, voltage sags or
swells, and voltage flicker [3]. Similar problems can also occur in the case of DC
furnaces [4]. Mitigating such issues requires the application of appropriate power
quality improvement systems. Among common methods, there are installations
with Static Var Compensators [5], [6], STATCOMs [7], Active Power Filters [8],
and passive or hybrid filters [9]. To correctly choose and design an appropriate
power quality improvement system, it is essential to have an accurate EAF model
at disposal. Even the design stage of the entire facility that is intended to be
equipped with EAF would benefit from accurate models because they can help with
estimation of the electrical parameters needed for correct operation.

The problems of EAF modeling are extensively studied by researchers using
various methods. In the past, some researchers developed frequency domain mod-
els, as in [10]. Nowadays, however, because of the importance of transients, time
domain models predominate. Among time domain models, one can specify sev-
eral of the most popular basic arc models, which are then improved or general-
ized. Very popular and simple models consist of an approximation of the EAF’s
V-I characteristic. It can be achieved using different functions fitted to the ex-
perimentally obtained data. In some cases the models are limited to approximation
with a linear piecewise, hyperbolic, exponential, hybrid hyperbolic-exponential func-
tions [11], [9], [6], [8], [7], [12] and other, e.g. cubic spline interpolation model [13].
The next commonly used group of arc models includes Cassie, Mayr, and hybrid
Cassie-Mayr models [14], [9], [15], [16]. These take the form of dynamic models
based on a differential equation with arc resistance as a state variable. The other
group of arc models can be found with the radius of the arc column as a state
variable. The most significant is the one based on the instantaneous power balance
equation. Some approaches are based on analytical solutions of this equation [17],
while others rely on numerical solutions [18], [19], [20]. Sometimes the integral form
of the equation is used [21].

The basic models listed in the previous paragraph are most often enhanced by
the application of various components, which are designed to reflect the random
behavior of the electric arc phenomenon. One way is to use statistical methods, most
often by the introduction of stochastic processes into the deterministic model. For
example, certain regions of the EAF characteristic or waveforms can be represented



1.1 - Literature overview 15

with the hidden Markov model as presented in [22] or [23]. A different way is based
on superimposing a stochastic process onto the previously obtained deterministic
data. The considered process can be, for example, a white noise as in [16], [24]
or [25], autoregressive model [26] or combined autoregressive and moving average
models [27].

Other methods of representing the random arc behavior are based on the ap-
plication of deterministic chaos. Chaotic signals are then also superimposed on the
previously obtained model output. In terms of applied chaotic systems, the Chua
circuit is often used [28], [24], [18]. Other chaotic systems such as Lorenz, Rössler
systems, or logistic map have also been applied [29], [30].

In addition to introducing purely stochastic or chaotic components, another pop-
ular method is to apply various ANNs for the purpose of EAF modeling. For exam-
ple, in [31] or [27] authors used ANNs with the hyperbolic tangent sigmoid transfer
function to represent the arc length in the arc model, while in [32] the authors ap-
plied the radial basis function network combined with the lookup table. In [33] in
turn, the hybrid wavelet transform has been applied to model the EAF characteris-
tic. In addition to shallow neural networks, deep learning methods are also applied
in the field of EAF modeling, although, most often not for direct representation
of the characteristic EAF. For example, deep learning can be applied to predictive
compensation in power quality studies as shown in [34].

In terms of the application of fractional order system analysis in EAF modeling,
the literature overview indicated a gap. To the author’s current knowledge, the
literature lacks publications considering the EAF model focused on the time domain
simulations including fractional order methods. Instead, the only available research
topics on EAF and fractional systems are devoted to control systems, as shown
in [35].

The most common EAF modeling approaches have been presented in Fig. 1.1.
Existing models often consist of the deterministic and stochastic parts. The first
can be described with ordinary differential equations (e.g. Cassie, Mayr, or power
balance models), directly by ANNs or various approximations. The stochastic part
may be divided into low and high frequency components. Low frequency variations
can be reflected using a stochastic, modulated, chaotic or ANN-based component
added to the deterministic solution. The high frequency component, if included, can
be directly represented with an additional stochastic signal.

The methods of EAF modeling presented in this Chapter strongly rely on nu-
merical simulations conducted in various environments. Among the most popular
software used for this purpose are: Matlab/Simulink ( [7], [20], [16], [8], [6], [9], [13],
[17], [33]), PSCAD ( [27], [25], [36], [24]) and EMTP-ATP ( [37], [30]). These pro-
grams are widely used by engineers around the world, making the considered EAF
models available for replication or development by a larger audience. Additionally,
they are often used by commercial and industrial users, increasing the usefulness of
the proposed solutions.

The following chapters include results that are an extension and summary of
research partially published in previous papers by the author [38], [39], [40], [41],
[42], [43], [44], [45], [46].
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EAF model

Deterministic part

ODE
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Fig. 1.1: Diagram presenting the most common strategies of EAF modeling.

1.2 Power balance-based EAF model
As stated in the previous section, the basic component of the EAF models is its deter-
ministic part. It describes the fundamental behavior of the electric arc phenomena.
Then it can be extended or enhanced with additional components, improving the
accuracy of the model by including more realistic characterization of the disturbing
load, such as EAF. Various deterministic models of the EAF exist, they can be based
on a mathematical description of the voltage-current characteristic’s shape, or the
relationship between arc voltage and current as closed-form equations. In this thesis,
the new proposed EAF models are based on the deterministic differential equation
that describes the phenomenon of the electric arc using the principle of energy con-
servation. This model was first introduced in [47]. Its definition states that the
electrical power delivered to the burning arc is balanced between two main compo-
nents: the power transmitted to the environment as heat and the power increasing
the energy accumulated internally by the arc column. It is worth noting that the
applied model describes a single arc phenomenon. It binds quantities related to a
single phase of the EAF and this model can later be extended for the description of
each of the furnace phases by tripling its structure. Such a simplified model omits
the influence of arcs on each other. Formally, the equation takes the following form:

k1r
n(t) + k2r(t)

dr(t)
dt

=
k3

rm+2(t)
i2(t), (1.1)

where:

r(t) – arc radius,
i(t) – arc current,
kj – proportionality coefficients, j = 1, 2, 3,
n,m – parameters, n = 0, 1, 2, m = 0, 1, 2.
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The arc voltage is then given by:

v(t) =
k3

rm+2(t)
i(t). (1.2)

The model applies several assumptions regarding the electric arc phenomenon.
The most fundamental one states that the arc column can be thought of as a cylin-
drical shape, which is approximately uniform throughout its length but may not be
uniform throughout the cross-sectional area. In consequence, the energy balance de-
pends on the volume of the column and therefore can be described mathematically
using its length and radius. The first term of the sum in equation (1.1) is related
to the cooling effect, and it uses the assumption that the heat transfer depends on
the radius of the arc column. The arc’s environment temperature influences the
heat transfer, therefore when its hot, it can be simplified with n = 0. If the heat
transfer is more efficient and the arc is long, it is assumed that n = 1 due to the
proportionality of the cooling effect to the lateral surface. For a short arc, n = 2,
since the cooling is proportional to the cross section of the arc. The second term
assumes that the energy accumulated in the column is proportional to r2(t) and the
rate at which it changes is described with derivative of that expression. The right
side of the equation represents the total electrical power delivered to the arc, where
the resistivity of the arc is assumed to be proportional to the term r−m(t). The
parameter m equals 0, 1 or 2, which reflects the fact that the arc can be hotter near
the center of its cross section.

When applying equations (1.1) and (1.2) to the EAF model, it is assumed that
the parameters m and n are related to the phase of the furnace work cycle. For the
melting stage, which is the main focus of this work, m = 0 and n = 2 are assumed.
From now on, throughout the rest of the thesis, these values will be assumed constant
and equal to those indicated above. However, the proportionality coefficients kj
should be estimated using empirical data. Most often, they are assumed constant.
Exemplary values were estimated in [28] and equal to k1 = 3000, k2 = 1 and
k3 = 12.5, while in [23] they were estimated as: k1 = 2565, k2 = 7.04 and k3 = 26.7.
The exemplary voltage-current characteristic of the arc calculated using equations
(1.1) and (1.2) and the coefficient values proposed by the authors cited have been
presented in Fig. 1.2. The output voltage has been calculated with the assumption
of a sinusoidal input current of 1000 A amplitude. As shown, their values strongly
influence the characteristic’s shape.

The model has been widely used in different electrical engineering applications.
For example, it can be used to model the power system with PSCAD or EMTP-
ATP software. Moreover, it has been pointed out as one of the most important arc
models by the IEEE Task Force on Harmonics Modeling and Simulation [48].
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Chapter 2

Electric arc furnace

EAFs belong to the group of devices used for electrical heating in the industry. They
use the heat generated by the electric arc phenomenon to melt the load and can
operate with either a submerged or an open arc. Another classification can be made
considering the type of power supply - DC or AC. Each type of device, although
with many similarities, is characterized by different properties, construction, and
power supply. This thesis focuses on the AC furnaces with an openly burning arc.

2.1 Installation description

2.1.1 Mechanical structure

As with any other device of this type, an EAF consists of mechanical and electrical
parts. A general schematic of an early EAF construction has been presented in
Fig. 2.1. Nowadays, the main structure does not change much. AC EAFs are mainly
constructed as three-phase devices, which is important for structure construction. In
terms of the mechanical part, an EAF consists of the hearth covered with refractory
materials, resistant to very high temperatures. The metal load is placed inside the
main chamber for the smelting process. The hearth usually has two or three main
side openings, one for the slag tapping, sometimes a separate one for the molten
charge tapping, and one for charging. The tapping is performed by tilting the
whole furnace at an appropriate angle, allowing the liquid to flow freely due to the
gravitational force. Depending on the size of the furnace, it can be charged through
the charging door placed on the side (smaller EAFs) or from above (larger EAFs).
Charging from above is available because in most cases the furnace’s roof can be
lifted and moved to the side, leaving the inside of the chamber exposed. Depending
on the installation, the roof and chamber walls can be equipped with additional
gear, such as oxygen lances or burners designed to improve the smelting process or
water cooling systems designed to increase the service life of the construction. The
size of industrial EAFs usually varies between 50 and 80 t (up to a maximum of
400 t [1]) of metal charge per one smelting cycle.

The EAF roof has three additional openings through which the graphite elec-
trodes are lowered into the chamber. Electrodes wear out in the melting process. In
time, they are not replaced, but extended by screwing a new segment at the top and
appropriate positioning in the holder. The holder arms, separate for each electrode,
are conductive and equipped with a water cooling system. Each horizontal arm is
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mounted on a pillar on which it can move in a vertical direction using the positioning
system driven by electric motors or other type of actuators. These are controlled
either manually by the operator or, more commonly, by the dedicated automatic
control system. The electrodes can be moved independently from each other.

Fig. 2.1: Schematic of the EAF construction [49].

2.1.2 Electrical circuit

The EAF’s power supply consists of two main sections divided by the furnace trans-
former, which has a primary side with a medium voltage of the grid and a secondary
side of low voltage and high current. The primary circuit is usually equipped with
additional devices related to the operation of the grid, the improvement of power
quality, and the regulation and control systems of the furnace. This equipment
includes a disconnector, voltage and current transformers for auxiliary devices, cir-
cuit breaker, reactor with optional bypass, surge diverter, and installation of a local
power quality improvement system.

The furnace transformer itself is a special transformer that reduces the medium
voltage of the grid to a low voltage supplied to the electrodes. The transformer
should be equipped with several taps for regulatory purposes. The secondary circuit
must be designed to withstand tens of kA of current during normal operation, and
surges related to the initial melting phase, where short circuit to the furnace load
can occur repeatedly. The primary coils are most often connected in a star, whereas
the secondary coils are connected in a delta connection.

Further, towards the furnace, the power is transferred through flexible cables to
the electrode arms, allowing their unrestricted vertical movement. Cables can also
be equipped with a water cooling system due to their severe working conditions. The
working current of each phase then flows through the conductive arms and contact
pads to the graphite electrodes. Each of the phase currents then passes through the
burning arc column and reaches the common coupling point in the conductive metal
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bath. The furnace hearth is usually grounded, that is why it is important to leave
the transformer secondary circuit ungrounded.

Each element of the EAF installation contributes to the resistance and induc-
tance of the circuit. This fact is especially important considering any measurements
conducted in such a system. The presence of an electrode and cable impedance
strongly influences the measurement of electric arc parameters, and the transformer
impedance also has a considerable impact on the measurements if conducted on the
primary side. In the case of steel furnaces, the resistance and reactance of the overall
high-current circuit vary around 0.5− 1.5 mΩ and 2− 5 mΩ, respectively. The part
between the transformer bus bars to the electrodes can make up the most (around
60% [1]) of the circuit impedance. A simplified electrical circuit of the EAF power
supply has been presented in Fig. 2.2. It consists of a HV/MV supply transformer
(T1) and an electric arc furnace MV/LV transformer (T2). Next, XLSC represents
the short circuit reactance at Bus 1, Lf and Rf represent the inductance and re-
sistance of the feeder connecting the supply transformer and the EAF transformer,
Lc and Rc represent the equivalent impedance of flexible cables, bus conductors and
graphite electrodes.

AC
MV/LVHV/MV

EAF

T1 T2Bus 1 Bus 2 Bus 3

PCC

Fig. 2.2: Electrical circuit of EAF.

2.1.3 Operation principle

The EAF is designed for cyclic work. The cycle starts with a load charging when
the scrap metal to be melted is placed inside the furnace. Next, the actual furnace
operation starts - electrified electrodes are lowered into the furnace chamber, and
when they reach a certain height in the proximity of the charge, the electric arc
ignites. The heat generated by the arc starts the metal melting process. At the
beginning of this phase, the metal is still in solid form with random and asymmetric
placement. This causes the arc to ignite and extinguish repeatedly in a random
and unstable manner. However, each time the arc burns, some part of the charge is
melted, allowing the electrodes to go deeper into the hearth. Once the bottom layers
of charge are reached, the volume of liquid metal at the bottom of the furnace allows
the arc to burn more continuously. The phenomenon is then still very unpredictable
and random, but the arc can be maintained as a continuous heat source. The melting
stage lasts until the load is fully liquefied. The next stage is a refining one, where
the molten metal bath is still being heated with more stable arcs. The metallurgical
parameters of the load are measured and refined during this period. The last steps
include deslagging and tapping of the molten metal with the desired properties, and
the whole process is repeated for the next charge. If necessary, after cooling, EAF
may be inspected and some maintenance of the refractory lining or other equipment
can be performed.
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2.2 Measurement data
From a power quality point of view, the worst conditions in the power system occur
continuously during the melting phase, when the charge inside the furnace is still
not completely molten. The physical conditions of the arc in such a relatively cold
environment cause its instability and random behavior. This, in turn, leads to the
occurrence of various power quality problems, such as harmonics, voltage flicker,
or sags and swells. Because of this, it is important to focus on the modeling of
this particular stage so that the simulation can consider the worst-case scenario.
Only then could the equipment and design of the industrial facility with an EAF be
accurate enough to withstand its continuous operation. This thesis is in particular
oriented towards the development of such exact models of the EAF reflecting the
melting stage.

The proposed models are based solely on actual measurement data collected
during measurements of real and differently sized electric arc furnaces (EAFs). The
difference in size, of course, translates into the difference in the range of measured
quantities. As the EAF electrical circuit consists of several important elements, one
can choose from multiple measurement points. Each point is characterized by its own
advantages and disadvantages. Measurements on the high voltage side of the furnace
transformer may be more feasible considering smaller currents, but it also requires
appropriate medium voltage level probes. However, because of the influence of the
transformer, the current and voltage waveforms at this point would be less distorted
than those on the low voltage side. This means that the actual point of interest,
which is the behavior of the arc and its influence, would not be directly visible. Next,
the point at the low voltage side is characterized by easier voltage measurements
because of low voltage; however, the current measurements are more complicated
because of their very high amplitude, reaching several dozens of kA. Despite this,
it is beneficial to place probes on this side of the transformer because the measured
quantities would be far more accurate in terms of arc behavior reflection. In this
case, the only factor that influences them would be the impedance of the electrodes
and flexible cables. Another point of measurement that is theoretically available
would be at the electrode mounting point. It allows the exclusion of the influence of
the cable directly during the measurements, but unfortunately, due to very severe
environmental conditions (temperature, dust, and harmful fumes) and movement of
the electrodes, it is virtually impossible to install appropriate current and voltage
probes at this location. However, it would be closest to the arc itself. Given the
circumstances mentioned above, the best measurement location has been chosen as
the low voltage side of the furnace transformer.

While taking measurements, the phase voltage and phase current of the electric
arc have been recorded with a sampling frequency of 5 kHz for the small industrial
EAF, 8 for the large industrial EAF and 10 kHz for the laboratory EAF. Any other
quantity such as active, reactive power, or harmonics can be derived from such
recordings at a later post-processing stage. In the case of such measurements, it is
especially important to record all three voltages and all three currents of the three-
phase device simultaneously, without delays at the single sample level. For this
purpose, a suitable six-channel recorder has been applied. Three of the channels
were equipped with differential voltage probes, and the other three with Rogowski
coils with an embedded integrator, allowing for measurement of currents up to 30 kA.
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The coils were placed on the bars on the low voltage transformer busbars, while the
phase voltage was measured between each phase busbar and the EAF hearth. The
outer hearth housing is usually grounded, therefore phase voltages are measured
relative to the ground potential.

2.2.1 Large industrial EAF

The first installation from which the measurement data has been obtained is a large
industrial EAF located in Iran 1. Its rated power is equal to 70 MW. It is a high-
power industrial installation with a 400/63/33 kV transformer that connects the 400
kV grid to a 63 kV EAF busbar and a 63/0.718 kV furnace transformer. Three-phase
voltages and currents have been presented in Fig. 2.3 on both long and short time
scales. For this dataset the powers related to the melting process were changing, as
shown in Fig. 2.4. Due to its size and significant influence on power quality, it has
been a primary dataset used for the development of EAF models. The second and
third considered installations described in the following sections have been included
to investigate the versatility of the proposed modeling methods.
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Fig. 2.3: Phase voltage and current waveforms measured in the large industrial EAF.

For arc modeling purposes, the data had to be cleared by subtracting the voltage
drop that occurs across the cables and the electrode impedance. Resistance and
reactance values per phase in this particular furnace were equal to R = 0.33 mΩ
and X = 2.26 mΩ. The influence of those voltage drops is significant from the
point of view of arc modeling. This influence has been visualized in Fig. 2.5 on the
example of several consecutive measured single phase voltage periods.

2.2.2 Small industrial EAF

To broaden the analysis and provide better accuracy of the proposed models in addi-
tion to their generality, the next measurement has been carried out in another EAF.
In this case, it was a smaller installation, which additionally provides information

1The measurement data have been obtained from EAF located at the Mobarakeh Steel Com-
pany in Isfahan. The data have been provided by Prof. Haidar Samet, who also used them in his
own research, e.g. [14].
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Fig. 2.4: Active, reactive and apparent power of each phase of the melting process
of the large industrial EAF.
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Fig. 2.5: Measured voltage waveform compared with cables and electrodes voltage
drop and arc voltage itself for the large industrial EAF.

about the scalability of the phenomena and models considered. This furnace is lo-
cated in a facility in Gliwice, Poland 2. It has a capacity of 0.6 t of steel charge, which
is significantly less than the device considered in Subsection 2.2.1. The furnace has
been presented in Fig. 2.6.

The measured three-phase voltages and currents have been presented in Fig. 2.7
on both a long and short time scale. For this dataset the powers related to the
melting process have been changing, as shown in Fig. 2.8.

Again, for this EAF, the data were cleared by subtracting the voltage drop
occurring across the cables and the electrode impedance. For this particular furnace,
the impedance components have been estimated as R = 2.5 mΩ and X = 0.15 mΩ.
This influence has been visualized in Fig. 2.9 on the example of several consecutive
measured single phase voltage periods.

2.2.3 Laboratory EAF

Access to real, especially large EAF installations, is often limited, due to the fact
that it disrupts the normal operation of the facility. If the works are not part

2The data have been obtained at ZDWO steel and cast iron foundry in Gliwice.
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Fig. 2.6: Photos of the small industrial electric arc furnace.
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Fig. 2.7: Measurement phase voltage and current waveforms in the small industrial
EAF.

of a commissioned action, it may be difficult to examine the furnace and be able
to conduct repeated measurements. Additionally, performing any additional tests
unusual for the classic work cycle can be either impossible or prohibited by facility
staff. Because of that, to be independent from such conditions and for further
scalability analysis, a special dedicated laboratory station has been constructed. The
laboratory station is designed to represent a very small scale EAF. The maximum
power of the laboratory station furnace is estimated to be 20 kVA with a crucible
capacity of around 2 kg.

For this purpose, the three-phase transformer was replaced with three single-
phase welding transformers equipped with a dedicated cooling system and an over-
heating indicator. Similarly to the real size EAF, the power from the transformer
is transferred to the hearth through flexible cables and graphite electrodes placed
in copper holders. The holders are attached to a vertically moving rack, driven
manually by a handwheel. The system is equipped with input current measurement
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industrial EAF.
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Fig. 2.9: Measured voltage waveform compared with cables and electrodes voltage
drop and arc voltage itself for the small industrial EAF.

conducted with an analog ammeter, a switching gear allowing various operating
modes including single- or two-phase operation, and a main chamber temperature
control and fume extractor. The hearth consists of a graphite crucible protected
with additional refractory bricks. The station has been presented in Fig. 2.10

A difference between the laboratory EAF and larger installations, apart from its
flexibility and ability to easily change its structure, is that the measurement probes
can be placed closer to the actual electric arc phenomena. In this case, the influence
of flexible cables can be minimized but not completely eliminated. Additionally,
for the purpose of a more detailed analysis of the arc behavior, the measurements
were focused on the dataset captured during the melting stage, in which only two
electrodes have been powered. One of them has been placed in the crucible to
provide short-circuit connection to the load, while the second has been in proximity
of the metal, allowing ignition of the arc.

The measured voltage and current have been presented in Fig. 2.11 in both long
and short time scales. For this dataset the powers related to the melting process
have been changing, as shown in Fig. 2.12.

Again, for this EAF, the data were cleared by subtracting the voltage drop that
occurs on the cables and the impedance of the electrode. This particular furnace
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Fig. 2.10: Photos of the laboratory scale electric arc furnace.
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Fig. 2.11: Measurement phase voltage and current waveforms in the laboratory
EAF.

had an estimated R = 55 mΩ and the negligibly low reactance. This influence has
been visualized in Fig. 2.13 on the example of several consecutive measured single
phase voltage periods.

As shown in this Chapter, the scale of the furnace considered significantly influ-
ences the measurement data. The influence of the flexible cable parameters is much
more considerable in larger installations. For the smaller furnaces, the measured
V-I characteristics are more similar to the actual arc characteristic. Moreover, the
smaller the furnace, the more visible is the asymmetry between the positive and
negative parts of waveforms. This effect is very significant in the laboratory EAF.
It is related to the scale of the investigated phenomena. On a smaller scale, where
the environment of the arc and load is characterized by different thermodynamical
properties, it is more evident that the direction of current flow influences the volt-
age and current waveforms. As observed, the arc rectification effect occurs, which
is related to difference in emission of the electrical charges from steel and graphite.
Similar phenomena had been used in industrial rectifiers in the pre-semiconductor
era, e.g. in mercury vapor arc rectifiers [50]. Namely, lower resistance is posed by
the arc column, while current flows from the steel to the graphite electrode, and
higher resistance in the opposite direction. Along with lower resistance, the more
visible high frequency random variations of the signals are observed.
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Stochastic EAF model

The effects observable in the electric arc phenomenon are random in their nature,
therefore any measured quantities can be thought of as realizations of some stochas-
tic processes. Assuming that the fundamental behavior of the arc can be approx-
imately described with deterministic relationships, the model can be improved by
incorporating a stochastic component into its structure. Such a stochastic com-
ponent is usually designed as an additive or multiplicative term, which appears in
deterministic equations. However, that kind of solution requires the introduction
of a new term that acts as a stochastic ingredient. This section describes a solu-
tion where the kj coefficients of the equation (1.1) are considered to be stochastic
processes. A physical interpretation of this assumption is related to dynamic and
random environment conditions in the EAF hearth in close proximity to the arc col-
umn. The rate of arc cooling and energy accumulation, as well as the conductivity
of the arc, can be subject to variations due to changes in position of the furnace
charge, speed of its movement, and thermodynamical processes. Those variations
can be reflected in the proportionality coefficient values, and as such they can change
throughout the melting process.

3.1 EAF random differential equation
The general methodology described in this section is related to representation of
random phenomena occurring in the electric arc, with stochastic processes. Mea-
surement data indicate that such random variations can be observed in a wide
frequency spectrum. Consequently, two main stochastic components can be speci-
fied: low and high frequency. The first is related to the general shape of the EAF
V-I characteristic, while the second is mainly related to the high frequency ripples
visible especially in the voltage waveforms, e.g. around its peak values. Both of
them can be reflected separately with certain stochastic processes.

The low frequency component can be described based on a power balance equa-
tion (1.1) into which stochastic processes are incorporated. Because the equation
consists of three terms with three coefficients, it is also possible to rely on its reduced
form obtained by division of the equation by one of the coefficients. A diagram de-
scribing possible structures of the RDE model has been presented in Fig. 3.1. As
shown, the model can consist of two components; low frequency and high frequency
components. The first one can be reflected on the basis of a full power balance model
with three stochastic processes representing its three coefficients. Optionally, it can
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be reflected with a reduced form of the power balance model with only two stochastic
processes representing its two coefficients. The high frequency component itself can
be treated as a separate stochastic process. Each of the stochastic processes present
in the chosen model should be identified based on the measurement data. The iden-
tification procedure can be done in two different ways. The first relies only on an
identification of the distribution of the process values. Such an approach results in
the generation of a white noise process with an empirically specified distribution. It
does not include any possible dependencies between consecutive values. The second
way is an extended version in which a whole stochastic process should be identified,
including the correlation of consecutive values, where e.g. an ARIMA model can be
applied [51].

RDE model

Low frequency component

High frequency component Full equation

Described with  3 stochastic 
processes: K1, K2, K3

Reduced equation

Described with 2 stochastic 
processes: K?1, K?2

White noise model

Identification of 
distribution only

More complex stochastic 
process model

Identification of the whole 
process, e.g. ARIMA 

Described with 1 stochastic 
process: vhf

Stochastic processes

Fig. 3.1: Diagram of possible RDE model structures.

The assumption that the kj coefficients are, in fact, the stochastic processes
Kj

1 results in the transformation of the original power balance model into a random
differential equation, where each quantity is also represented by a stochastic process:

K1(l)R
2(t) +K2(l)R(t)

dR(t)

dt
=

K3(l)

R2(t)
I2(t), (3.1)

where:

Kj(l) – model coefficients represented by discrete-time stochastic processes for j =
{1, 2, 3},

l – current frame index, l =
⌈

t
Tw

⌉
,

1Notation of uppercase Kj refers to the stochastic processes representing variations of the power
balance equation coefficients, while lowercase kj is used to refer to constant values of coefficients
in a single considered frame.
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Tw – length of a frame,
R(t) – arc radius stochastic process,
I(t) – arc current stochastic process.

Thus, a modified equation for calculating the arc voltage can be expressed as:

V (t) =
K3(l)

R2(t)
I(t). (3.2)

Stochastic processes Kj must be identified. A procedure has been proposed
that leads to the estimation of the coefficient values based on the measurement
data. The details of this procedure have been presented in [38]. The coefficient
estimation process assumes that the coefficients remain constant for a certain time
frame and then change their values for the next frame. A detailed investigation
of the influence of frame length and starting point has been carried out. Fig. 3.2
presents the configurations that have been analyzed. The analysis indicated that
for the dataset where the V-I characteristic is symmetrical in positive and negative
planes, the optimal solution is that the frame starts with waveform’s zero-crossing
and has length equal to the signal’s period (version B). In the case of asymmetry
between the positive and negative parts of the characteristic, a half-period long
frame is more appropriate (version C).

Frame 1 Frame 2

Version A

Version B

Frame 1 Frame 2

Version C

Frame 1 Frame 2

Version D

Frame 2Frame 1
Version E

Frame 1 Frame 2

Fig. 3.2: Graphical presentation of investigated Kj coefficients frames and starting
points.

This assumption leads to a further estimation process in which the data were di-
vided into frames. Then, for each frame separately, the measured current waveform
was considered as input for the power balance equation, allowing the calculation
of the voltage as output. First, the calculation was performed using an arbitrarily
chosen set of coefficient values kj. The essence of the estimation procedure is to
optimize the coefficient values kj for each frame separately to minimize the discrep-
ancy between the simulated output voltage and the measured voltage related to the
appropriate frame. For this purpose, the goal function was proposed in the form of
root mean square error (RMSE):

min
k1,k2,k3

√√√√ 1

N

N∑
i=1

(vi − v̂i)2, (3.3)

where:
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vi – i-th sample of the measurement voltage,
v̂i – i-th sample of the simulated voltage,
N – number of samples in the considered frame.

The optimization was carried out using genetic algorithm (GA), which is a univer-
sal tool suitable for various types of problems, especially multivariate optimization
with complex goal function. In this procedure, a set of coefficient values kj is en-
coded on a chromosome representing one of the possible solutions. Initially, a whole
population is generated with respect to user-defined boundaries and constraints.
Then each individual is evaluated on the basis of the goal function, which in this
case is an RMSE value describing the error between the simulated and measured
voltages. Based on the evaluation process, a new population is created following
rules representing the biological processes of natural selection: selection of the best
individuals, crossover of chosen individuals, and mutations in some of their chromo-
somes. This process leads to the acquisition of a new population. More specifically,
the GA approach uses a selection method based on moving along a line, where par-
ents are represented proportionally to their goal function value, with steps of equal
size. Most of the new individuals in the next generation, namely 80%, are obtained
through a crossover, which is done by creating a random binary vector that deter-
mines the origin of the genes. Genes corresponding to value 1 in the binary vector
are taken from the first parent and those corresponding to 0 are taken from the
second parent. Mutation is the second process that takes place when creating a
new generation. It makes small random changes in individuals in the population to
create mutation children. The mutation in GA is carried out using a function that
randomly generates the direction and step by which the decision variable changes.
These parameters are adapted to the scores of the previous generation. Further-
more, 5% of the best individuals are passed on unchanged to the next generation.
The whole cycle is then repeated until stopping conditions are met, which can be
defined using the maximum generation value or with respect to the change in the
best individual goal function value. After reaching an optimal solution for the ini-
tially selected frame, the values of the kj coefficients are saved, and optimization
is performed again for the next frame. The whole process has been presented in a
flowchart in Fig. 3.3.

Due to the fact that equation (3.1) has three terms and three coefficients, it
is possible to reduce the number of the unknown variables by dividing the equa-
tion with one of them. Consequently, it leads to the reduction of the number of
stochastic processes to be identified from three to two. Here, a division of the whole
equation by K1 is proposed because of its highest values. This operation results in
the simplification of RDE in the following form:

R2(t) + K̂1(l)R(t)
dR(t)

dt
=

K̂2(l)

R2(t)
I2(t), (3.4)

where:

K̂1(l) =
K2(l)

K1(l)
, K̂2(l) =

K3(l)

K1(l)
, for K1(l) > 0. (3.5)

The last step that leads to the acquisition of a standalone RDE model is to take
the obtained realizations of the stochastic processes, either K1, K2 and K3 or K̂1
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Fig. 3.3: Flowchart of the GA optimization process.

and K̂2 and analyze them to actually identify them. To do so, it is important to
consider the distributions of the data itself, its autocorrelation function, and the
partial autocorrelation. The information given by this statistical analysis is helpful
in choosing the best-fitting stochastic process model. After choosing one, it is also
important to test the distributions of residuals that would be left after applying the
chosen stochastic process model. A set of data with the type of stochastic process
and the distribution of its residuals can be considered as a complete RDE model.
Any implementation knowing the definition of the stochastic process would be able
to generate such realizations independently.

The procedure described in the previous subsection is limited to the components
that can be reflected in the power balance-based model and changes in the general
shape of the EAF V-I characteristic. However, apart from such variations, the mea-
surement data also contain a high frequency component which is best visible in the
voltage waveform, especially around peak values. To incorporate such phenomena
into the RDE model, a separate stochastic component is applied. It consists of a
voltage signal added directly to the output voltage obtained from a previous version
of the model. However, in this way, a general operating point would not change,
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assuming that linearization of the characteristic in strict proximity around the op-
erating point allows for a simple summation of those two components. In order to
actually identify the high frequency component first, the measured voltage wave-
form has been filtered using a high-pass FIR filter. It is worth mentioning that the
cut-off frequency of the filter is chosen based on the capacity of the low frequency
component model. The base model is capable of reflecting signals up to 600 Hz,
and thus the frequencies higher than that are points of interest for high frequency
component models. The obtained signal is then considered as a separate stochastic
process. An analysis based on distribution of the values, autocorrelation function,
and partial autocorrelation function is repeated in order to select the best fitting
stochastic process model. Details and results have been presented in the following
section.

3.2 Simulation results and analysis
The procedures described in the previous sections have been used for the develop-
ment of three models, each reflecting the behavior of EAFs with different sizes. In
the next subsections, the numerical results for the modeling of large industrial, small
industrial, and laboratory EAFs have been presented. The primary models for each
furnace are constructed with a low frequency component represented with a full
equation with three stochastic processes reflected with a simplified white noise pro-
cess of suitable distribution according to Fig. 3.1. Additionally, each contains a high
frequency component identified as a stochastic process more complex than a simple
white noise. The fourth subsection has been introduced to present the possibility of
extended analysis of a low frequency component represented with a simplified equa-
tion with two stochastic components identified as more complex stochastic processes
from the ARIMA group. This extended analysis has been performed based on the
large industrial EAF dataset.

3.2.1 Analysis of K1, K2 and K3 for the large industrial EAF

For the measurement data obtained from the large industrial EAF, the estimation of
the coefficients kj has been carried out separately for every period-long frame. The
frame starting point was set to zero crossing at the rising edge of the waveforms.
As described in the previous section, this led to the acquisition of three separate
realizations of discrete-time stochastic processes Kj. These realizations have been
shown in Fig. 3.4. The next graphs presented in Fig. 3.5 and Fig. 3.6 show results
of further statistical analysis - autocorrelation functions, and distribution of values
and their increments. As presented, the realizations themselves exhibit stochastic
behavior. The autocorrelation and partial autocorrelation functions clearly suggest
a significant correlation in some cases, but their character differs between different
coefficients. A visualization of 3D histograms also highlights that the realizations
oscillate in a stable way around some central location - larger values are accompa-
nied by negative increments and vice versa. This suggests that the process being
considered is stationary.

To provide a quantitative measure of the improvement of the EAF model caused
by the introduction of variable coefficients kj, their optimal values have been cal-
culated considering that they are constant throughout the measurement data set.
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Fig. 3.4: Realizations of Kj stochastic processes estimated from large industrial EAF
measurement data.
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Fig. 3.5: Autocorrelation and partial autocorrelation function of realizations of Kj

stochastic processes obtained from large industrial EAF measurement data.

That case was compared to the solution, where they vary from period to period. As
a result, the reduction in the RMSE error reached 27%. The details of the results
have been gathered in Table 3.1. These results clearly justify the introduction of
the proposed approach.

The values of kj in this simulation have been generated randomly for each frame
from their actual distributions shown in Fig. 3.6. The applied method was an
inverse cumulative distribution function (CDF) method, which allowed the drawing
of random variables from the empirically obtained distribution [52]. The exemplary
output voltage realization has been presented in Fig. 3.7. As depicted, the model
exhibits behavior similar to that of the measurement data.

As indicated in Chapter 2, apart from low frequency changes in the EAF voltage,
there are high frequency stochastic components visible. The application of the high
pass filter to the voltage measurement allowed one to obtain a signal presented in
Fig. 3.8. As shown, the waveform seems stochastic. Analysis of the autocorrelation
function and partial autocorrelation function of the signal and its increment has
been presented in Fig. 3.9. The analysis suggests that data can be represented with
a model from the ARIMA group, but much simpler, reduced only to the moving
average (MA) process. In this case, the MA process has four components. The
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Fig. 3.6: Three dimensional histogram of raw values and their increments of re-
alizations of Kj stochastic processes obtained from large industrial EAF
measurement data.

Table 3.1: Comparison of approaches with constant and variable values kj for the
large industrial EAF.

Constant Stochastic Relative
coefficients processes change

Fitted values
k1 = 2213.3

k2 = 7.46

k3 = 31.82

kj variable -

RMSE 3.2 2.4 -27%
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Fig. 3.7: Short-term current and voltage waveforms and characteristic of the EAF
single phase arc measured during the melting stage compared to the sim-
ulation output for the large industrial EAF.

MA model has been fitted to the measurement data, resulting in the estimation of
the following coefficients: MA1 = −0.417, MA2 = −0.521, MA3 = −0.140 and
MA4 = 0.086. A signal generated with this MA model has been added to Fig. 3.8
with measurement data.

The overall RDE standalone model can be implemented by applying the power
balance equation with kj coefficients generated independently for the consecutive



3.2 - Simulation results and analysis 37

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 t, s

-20

0

20

 v
h

f, 
V

Measurement data

Simulation output

Fig. 3.8: High frequency component of large industrial EAF voltage waveform.
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Fig. 3.9: Autocorrelation and partial autocorrelation function of the high frequency
voltage component for the large industrial EAF.

frames by discrete time stochastic processes described in this section with an addi-
tional high frequency voltage signal simply added to the output voltage. An example
of such a waveform and the V-I characteristic obtained with a complete RDE model
have been presented in Fig. 3.10. As shown, the overall effect reflects stochastic
variations in the EAF characteristic in a wide spectrum of frequencies.

3.2.2 Analysis of K1, K2 and K3 for the small industrial EAF

For the purpose of investigating the versatility of the proposed approach, the pro-
cedures described in previous sections have been repeated for the small industrial
EAF measurement dataset. Due to little but visible asymmetry between positive
and negative parts of the waveforms, this dataset has been divided into half-period
long frames based on the detected zero crossings. This type of division has been
marked as Version C in Fig. 3.2.

The realizations of the processes Kj for this case have been presented in Fig.
3.11. Compared to the realizations obtained from a large industrial furnace, the
distributions and range differ significantly. However, the stochastic behavior of the
series is retained. Similarly to the previous section, the autocorrelation and 3D
histograms of the realizations and its increments have been calculated and showed
in Fig. 3.12 and Fig. 3.13. In this case, there is a significant negative autocorrelation
in K1 and especially K3, which is related to the fact that consecutive samples are
related to the half of the period with the opposite sign and shape. This effect is not
present in the realization of K2. Histograms suggest that these processes again vary
around a certain level, without any long-term drift in either a positive or negative
direction.
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Fig. 3.10: Short-term current and voltage waveforms and characteristic of EAF sin-
gle phase arc measured during the melting stage compared to the overall
simulation output (with both low and high frequency components) for the
large industrial EAF.
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Fig. 3.11: Realizations of Kj stochastic processes estimated from the small industrial
EAF measurement data.
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Fig. 3.12: Autocorrelation and partial autocorrelation function of realizations of Kj

stochastic processes obtained from the small industrial EAF measurement
data.
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Fig. 3.13: Three dimensional histogram of raw values and their increments of re-
alizations of Kj stochastic processes obtained from the small industrial
EAF measurement data.

Table 3.2: Comparison of approaches with constant and variable kj values for small
industrial EAF.

Constant Stochastic Relative
coefficients processes change

Fitted values
k1 = 62.15

k2 = 0.05

k3 = 114.46

kj variable -

RMSE 23.9 14.0 -41%

In addition to the graphical representation of the realizations and some of their
statistical properties, an investigation has been conducted to determine whether this
approach improves the accuracy of the small industrial model EAF. Similarly to the
large industrial EAF, Table 3.2 presents the rate of improvement in terms of RMSE
error between the constant kj (optimal for the entire dataset) and stochastic Kj. As
shown, the improvement reaches approximately 40%, which is an even better result
than for the large industrial furnace.

Additionally, a complete model has been developed to compare the overall RDE
approach. The values of kj in this simulation have been generated randomly for
each frame from their actual distributions shown in Fig. 3.13. The applied method
was an inverse CDF method, which allowed the draw of random variables from the
empirically obtained distribution. The exemplary output voltage realization has
been presented in Fig. 3.14. As depicted, the model exhibits behavior similar to
that of the measurement data.

In the case of the small industrial EAF the high frequency component has also
been analyzed. The application of the high-pass filter to the voltage measurement
allow the obtaining of a signal presented in Fig. 3.15. As shown, the waveform
exhibits stochastic behavior. The analysis of the autocorrelation and partial au-
tocorrelation function of the signal and its increment has been presented in Fig.
3.16. The investigation based on the information criterion indicated that the op-
timal results are obtained by simulating the series with the MA process with four
components. The MA model has been fitted to the measurement data, resulting
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Fig. 3.14: Short-term current and voltage waveforms and characteristic of EAF sin-
gle phase arc measured during the melting stage compared to the simu-
lation output for the small industrial EAF.
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Fig. 3.15: High frequency component of small industrial EAF voltage waveform.
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Fig. 3.16: Autocorrelation and partial autocorrelation function of the high frequency
voltage component for small industrial EAF.

in the estimation of the following coefficients: MA1 = −0.395, MA2 = −0.335,
MA3 = −0.507 and MA4 = 0.248. A signal generated with this MA model has
been added to Fig. 3.15 with measurement data.

An example of the overall output waveform of the model and the characteristic
V-I has been presented in Fig. 3.17. As shown, it reflects stochastic variations in
the EAF characteristic in a wide spectrum of frequencies.
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Fig. 3.17: Short-term current and voltage waveforms and characteristic of EAF sin-
gle phase arc measured during the melting stage compared to the overall
simulation output (with both low and high frequency components) for the
small industrial EAF.

3.2.3 Analysis of K1, K2 and K3 for the laboratory EAF

Another dataset which has been used to verify the RDE model has been obtained
from the laboratory station. Due to strong asymmetry between the positive and
negative parts of the waveforms, this dataset has been divided into half-period long
frames based on the detected zero crossings. This type of division has been marked
as Version C in Fig. 3.2.

The realizations of the processes Kj for this case have been presented in Fig.
3.18. In comparison with the realizations obtained from the large industrial furnace,
the distributions and range significantly differ, although they are more similar to
those from the small industrial one. The stochastic behavior of the series is again
retained. Similarly to the previous section, the autocorrelation and 3D histograms
of the realizations and its increments have been calculated and showed in Fig, 3.19
and Fig. 3.20. In this case a significant negative autocorrelation occurred in K1.
Histograms suggest that these processes again vary around a certain level, without
any long-term drift in either a positive or negative direction. A histogram of K3 has
been zoomed into a range where the most significant differences between the bars
are the most visible. Individual instances of values reaching above the histogram
axis in Fig. 3.18 have been omitted.

In addition to the graphical representation of the realizations and some of their
statistical properties, an investigation has been conducted to determine whether
this approach improves the accuracy of the model for the laboratory EAF. Simi-
larly to the large industrial and the small industrial EAFs, Table 3.3 presents the
improvement rate in terms of RMSE error between the constant kj (optimal for
the dataset) and stochastic Kj. As shown, the improvement reaches approximately
70%. This is the best result among all the tested datasets and is strongly related
to the asymmetry observed in the measurement data. Constant values of kj are not
only not capable of an accurate representation of the general shape of the furnace
characteristic but cannot also include this asymmetry in the simulation.

Additionally, a model similar to the one concerning the large industrial furnace
has been developed to compare the overall modeling approach. The values of kj
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Fig. 3.18: Realizations of Kj stochastic processes estimated from laboratory EAF
measurement data.
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Fig. 3.19: Autocorrelation and partial autocorrelation function of realizations of Kj

stochastic processes obtained from laboratory EAF measurement data.

Fig. 3.20: Three dimensional histogram of raw values and their increments of real-
izations of Kj stochastic processes obtained from laboratory EAF mea-
surement data.

in this simulation have been generated randomly for each frame from their actual
distributions shown in Fig. 3.20. The applied method was an inverse CDF method,
which allowed the draw of random variables from the empirically obtained distribu-



3.2 - Simulation results and analysis 43

Table 3.3: Comparison of approaches with constant and variable kj values for labo-
ratory EAF.

Constant Stochastic Relative
coefficients processes change

Fitted values
k1 = 88.49

k2 = 0.06

k3 = 12.30

kj variable -

RMSE 12.3 3.9 -68%
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Fig. 3.21: Short-term current and voltage waveforms and characteristic of EAF sin-
gle phase arc measured during the melting stage compared to the simu-
lation output for the laboratory EAF.

tion. The exemplary output voltage realization has been presented in Fig. 3.21. As
depicted, the model exhibits behavior similar to that of the measurement data.

For the laboratory EAF, the high frequency component has been analyzed sep-
arately. The application of the high-pass filter to the voltage measurement allow
the obtaining of a signal presented in Fig. 3.22. As shown, the waveform seems
stochastic. The autocorrelation and partial autocorrelation function analysis of the
signal and its increment have been presented in Fig. 3.23. The investigation based
on the information criterion indicated that the optimal results are obtained by sim-
ulating the series with the MA process with three components. The MA model has
been fitted to the measurement data, resulting in the estimation of the following
coefficients: MA1 = 0.907, MA2 = 0.526 and MA3 = 0.216. A signal generated
with this MA model has been added to Fig. 3.22 for comparison with measurement
data.
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Fig. 3.22: High frequency component of the laboratory EAF voltage waveform.
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Fig. 3.23: Autocorrelation and partial autocorrelation function of the high frequency
voltage component for the laboratory EAF.

An example of the overall model output waveform and the V-I characteristic ob-
tained with a complete RDE model has been presented in Fig. 3.24. The asymmetry
visible in those data limits the accuracy of representation of the high frequency com-
ponent in the smoother, negative half of the signal period. However, the reflection
of this component in the positive half is much better.
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Fig. 3.24: Short-term current and voltage waveforms and characteristic of the EAF
single phase arc measured during the melting stage compared to the over-
all simulation output (with both low and high frequency component) for
the laboratory EAF.

3.2.4 Analysis of K̂1 and K̂2 for the large industrial EAF

The results presented in the previous section are related to the RDE model with three
stochastic coefficients. This subsection is devoted to an extended analysis of the large
industrial EAF with a model containing two stochastic processes that are identified
in detail using more complex statistical analysis. After appropriate division of the
realizations of the stochastic processes K1, K2, and K3 by K1, according to equation
(3.5), the K̂1 and K̂2 time sequences have been obtained and presented in Fig. 3.25.
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Fig. 3.25: Realizations of K̂1 and K̂2 stochastic processes estimated from large in-
dustrial EAF measurement data.

Table 3.4: Parameters of the ARIMA process representing K̂1(l) for large industrial
EAF.

ARIMA(1,1,2) coefficients AR1 MA1 MA2

0.7627 0.8135 0.1556
standard error 0.0642 0.0738 0.0546

Analysis of K̂1 process

Firstly, a detailed investigation of the realization of K̂1 has been carried out. The
graphic presentation of the distribution of values in Fig. 3.26 indicated that the
distribution is not Gaussian. To perform further analysis, a Box-Cox transformation
has been applied [53]. Then the autocorrelation and partial autocorrelation functions
of both transformed data and its increments ∆K̂1[l] = K̂1[l] − K̂1[l − 1] have been
calculated [51]. The results have been presented in Fig. 3.27.

These results suggest that K̂1(l) can be an autoregressive integrated moving av-
erage (ARIMA) process [51]. This process consists of terms related to regression
based on previous samples (AR), a derivative of time series (I), and a linear combi-
nation of previous values (MA). ARIMA models are a class of models widely used
in statistical analysis of time series for better understanding and prediction of some
phenomena developing over time. To develop a standalone large industrial EAF
model, the ARIMA process coefficients have been fitted to the measurement data.
This was obtained by minimizing the information criterion. The optimization pro-
cess resulted in the fitting of the ARIMA(1,1,2) model, which is characterized by a
single autoregressive term, a differentiation degree of one, and two moving average
terms. The values of the fitted parameters along with their standard errors have
been combined in Table 3.4.

The residuals obtained under the assumption that K̂1 can be represented with
the ARIMA (1,1,2) process have then been analyzed. Their distribution was non-
normal, which was proven by a Shapiro-Wilk test (statistical significance: p−value=
1.404 ·10−10). Furthermore, analysis of the autocorrelation of the residuals indicated
that they are not correlated. This hypothesis was also supported by the Ljung-Box
test (Q = 3.0403, df = 7, statistical significance: p−value = 0.8812). The histogram



46 Chapter 3 - Stochastic EAF model

Fig. 3.26: Distribution of the values of K̂1(l) for the large industrial EAF.
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Fig. 3.27: Autocorrelation and partial autocorrelation function of K̂1(l) and ∆K̂1(l)
for the large industrial EAF.

itself suggests a symmetric distribution with positive excess kurtosis. A fitting of
three potential distribution functions that could represent the residuals has been
proposed, i.e. Laplace, hyperbolic secant, and logistic distribution. Each distribu-
tion has been fitted to the residual data and tested with the Kolmogorov-Smirnov
test with a parametric bootstrap method to reduce the bias of the test results.
Numerical results have been collected in Table 3.5.

The results suggest that the hypothesis that the K̂1 residuals can be represented
with a logistic distribution should be rejected. Of the two remaining options, the
hyperbolic secant distribution was the best fit. In conclusion, K̂1 can be represented
with the ARIMA(1,1,2) model, the residuals of which follow the hyperbolic secant
distribution.

Analysis of K̂2 process

Next, K̂2 has been analyzed similarly. The autocorrelation and partial autocorre-
lation of K̂2 have been calculated and shown in Fig. 3.28. The results obtained
suggest that the process is white noise, which was supported by the results of the
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Ljung-Box test (statistical significance: p−value= 0.7489) and Turning point test of
independence (statistical significance: p−value= 0.6193).

After concluding that the process can be white noise, the exact distribution of
the values was investigated. The histogram has been presented in Fig. 3.29. As
shown, it is a bimodal distribution. Data were shifted to ensure that all values were
positive. Then, it has been analyzed whether the distribution can be described by
a shifted mixed Weibull distribution or a shifted mixed Gamma distribution. Each
proposed model has been fitted to the data, and its compatibility was checked again
with the Kolmogorov-Smirnov test with parametric bootstrap method correction.
The combined results have been presented in Table 3.6. The numerical results
obtained indicate that the best-fit distribution of a white noise K̂2(l) process is a
mixed shifted Weibull distribution with two components.
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Fig. 3.28: Autocorrelation and partial autocorrelation function of K̂2(l) for the large
industrial EAF.

Fig. 3.29: Histogram of K̂2(l) for the large industrial EAF.



48 Chapter 3 - Stochastic EAF model

Ta
bl

e
3.

5:
P
ar

am
et

er
s

of
re

si
du

al
s

of
th

e
A

R
IM

A
pr

oc
es

s
re

pr
es

en
ti

ng
K̂

1
(l
)

fo
r

th
e

la
rg

e
in

du
st

ri
al

E
A

F
.

D
is

tr
ib

ut
io

n
D

en
si

ty
fu

nc
ti

on
F
it

te
d

pa
ra

m
et

er
s

K
-S

p-
va

lu
e

C
or

re
ct

ed
p-

va
lu

e

La
pl

ac
e

f
(x
)
=

1 2
σ
e−

|x
−
µ
|

σ
µ̂
=

0.
01
1

σ̂
=

0.
21
7

0.
79

5
0.

44
5

H
yp

er
bo

lic
se

ca
nt

f
(x
)
=

1 2
σ
se
ch

( π
(x

−
µ
)

2
σ

)
µ̂
=

0.
00
7

σ̂
=

0.
29
2

0.
89

5
0.

82
4

Lo
gi

st
ic

f
(x
)
=

1 β
e

x
−
α

β

( 1
+
e

x
−
α

β

) −2
α̂
=

71
.7
53

β̂
=

15
78
.3
95

0.
49

6
0.

03
5

Ta
bl

e
3.

6:
D

is
tr

ib
ut

io
n

pa
ra

m
et

er
s

of
K̂

2
(l
)

fo
r

th
e

la
rg

e
in

du
st

ri
al

E
A

F
.

D
is

tr
ib

ut
io

n
D

en
si

ty
fu

nc
ti

on
F
it

te
d

pa
ra

m
et

er
s

K
-S

p-
va

lu
e

C
or

re
ct

ed
p-

va
lu

e

M
ix

ed
W

ei
bu

ll
f
(x
)
=

π
1
·f

W
ei
b
(x
;k

1
,λ

1
)
+
π
2
·f

W
ei
b
(x
;k

2
,λ

2
)

f W
ei
b
(x
;k
,λ

)
=

{ k λ

( x λ

) k−1 e
−
(x λ
)k

:
x
>

0

0
:
x
≤

0

π̂
1
=

0.
76
5
π̂
2
=

0.
23
5

k̂
1
=

1.
27
8
k̂
2
=

3.
20
9

λ̂
1
=

0.
00
8
λ̂
2
=

0.
03
0

0.
98

2
0.

63
1

M
ix

ed
G

am
m

a
f
(x
)
=

π
1
·f

G
a
m
(x
;α

1
,β

1
)
+
π
2
·f

G
a
m
(x
;α

2
,β

2
)

f G
a
m
(x
;α

,β
)
=

{ x
α
−
1
e−

x β

β
α
Γ
(α

)
:
x
>

0

0
:
x
≤

0

π̂
1
=

0.
93
6
π̂
2
=

0.
06
4

α̂
1
=

1.
23
1
α̂
2
=

60
.0
02

β̂
1
=

11
8.
29
6
β̂
2
=

17
44
.3
54

0.
65

8
0.

23
6



3.2 - Simulation results and analysis 49

0 0.02 0.04 0.06

 t, s

-600

-400

-200

0

200

400

600

 v
, 
V

-1

-0.5

0

0.5

1

 i
, 
A

10
5

 v
meas

 v
sim

 i
meas

-1 -0.5 0 0.5 1

 i, A 10
5

-600

-400

-200

0

200

400

600

 v
, 
V

Measurement data

Simulation output

Fig. 3.30: Short-term current and voltage waveforms and characteristic of the EAF
single-phase arc measured during the melting stage compared to the ex-
tended model output for large industrial EAF.

The results described above can be considered as details of a standalone model
of an EAF capable of reflecting low frequency stochastic phenomena related to vari-
ations of a general shape of the V-I characteristic. For demonstration of the model
operation, the output of an exemplary clipping of the input current waveform has
been calculated. The output voltage waveform has been computed using the model
with stochastic processes Kj obtained through independent processes of K̂1 and K̂2.
The discrete-time processes have changed the values of the kj coefficients in the
power balance model for each period. The output voltage and characteristic have
been presented in Fig. 3.30. As shown, the low frequency random variations ob-
servable in the real EAF measurement data are reflected by the model accurately.
Individual periods vary and tend to have a larger difference to the measurement
data. However, it needs to be stressed that this is only an exemplary realization,
among which such an effect can occur.



Chapter 4

Chaotic EAF model

In certain conditions, random properties of a given phenomenon can be mistakenly
interpreted as purely stochastic in nature, while they can be the result of determin-
istic chaos. In the case of EAFs, it is generally considered stochastic, although some
researchers have proven that it can exhibit chaotic behavior, as shown in [54]. In
fact, an EAF is a complex dynamical system in which the arc is influenced by mul-
tiple factors, which may lead to temporary chaotic behavior. This in turn is similar
to the complex dynamical system such as weather, which was a subject to initial
chaos research conducted by E. Lorenz in the 1960s [55]. The chaotic behavior can
be included in the EAF model to mimic the stochastic variations, as has been done
in e.g., [24], [18] or [29]. This idea is based on the model introduced in the previous
Chapter. Its details have been introduced in the author’s previous publication - [40]
and are presented in the next Section. One of the advantages of this approach is
that although the chaotic system approximates the stochastic behavior, it is still de-
terministic. Consequently, one could study many different paths of developments in
a dynamical system describing the arc, while maintaining the exact same nature and
order of random-like events. Those paths could be related, e.g., to the application
of different control algorithms or topology of power quality improvement systems.
A deterministic background would allow for an objective comparison of the effects
that those components or strategies have on a power system with an EAF.

4.1 Selected chaotic systems
The chaotic EAF model approach is strongly based on the RDE model presented in
the previous Chapter. The main assumption regarding the changes in the EAF V-I
characteristic remains the same - the variability of the kj coefficients is responsible
for their reflection. However, in the case of a chaotic model, the coefficients are
not reflected with stochastic processes, but time sequences derived from chaotic
systems. It is essential that the applied system remains in a chaotic state so that
a single chosen variable time sequence can approximate random changes of a single
coefficient kj. In this way, a set of three chaotic systems could represent changes
of the three coefficients kj. There are many different chaotic systems described
in the literature, which vary in terms of the severity of the chaotic behavior, the
complexity of the chaotic attractors, and the timescale at which those behaviors
can be observed. To ensure that the final results are accurate, the most universal
and widely used have been chosen: a system based on the Chua circuit, the Lorenz
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system, the Rössler system and another chaotic system introduced in [56]. The
latter does not have a name, so it will be referred to as a four-wing chaotic attractor
system based on the shape of its attractor.

As suggested in the previous paragraph, each system is characterized by its
own range of values and the speed of changes. The first step leading to a proper
application of a chaotic system is to modify the raw chaotic system time sequences
using the median and standard deviation of each kj coefficient calculated from the
EAF measurement data. The sequence obtained from the chaotic system is modified
so that the median and kurtosis of its distribution fits the chosen kj coefficient
distribution. To fit a chaotic system to modeling EAF, its parameters must be
further optimized. The optimization has to be conducted in a way ensuring chaotic
behavior, because otherwise the obtained time sequences would not be suitable for
approximation of stochastic changes. To fit the system into its assumed role, a
two-objective optimization has been performed for the combination of each system
juxtaposed with each of the coefficients kj. After the optimization process, the
best-fit pairs have been selected.

The optimization process takes into account two decision variables. The first is
one of the system’s parameters which value is bounded to ensure a chaotic state,
but which changes could result in better fitting of an attractor shape. This variable
is denoted as ξ. The second is a sampling frequency fs, which cannot be too high to
obtain stochastic-like time sequences. Those two variables are subject to optimiza-
tion applying two goal functions. One is related to the distribution of the values
obtained from a chaotic system, while the second is related to their autocorrela-
tion. The goal is to minimize the Cramér-von Mises distance between histograms
and autocorrelation samples calculated based on the sequences kj obtained from the
measurement data and those obtained from a chaotic system [57]. Formally, the
goal functions can be written as

f1(·) =
N∑
p=1

(hmeas
p − hchaotic

p )2,

f2(·) =
M∑
p=1

(ACFmeas
p − ACF chaotic

p )2,

(4.1)

where:

hp – p-th histogram bar of measurement or modified chaotic system data distribu-
tion,

N – number of histogram bars,
ACFp – autocorrelation value for p-th lag,
M – number of lags for autocorrelation calculation.

Considering the decision variables, the optimization problem takes the following
form:

min
ξ,fs

f1(ξ, fs),

min
ξ,fs

f2(ξ, fs),
(4.2)

where ξ ∈ {C2, L2, R3, F3} represents a single optimized parameter chosen individu-
ally from the coefficients in the equation of the chaotic system. The systems related
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to the above variables are the Chua system, the Lorenz system, the Rössler system,
and the four-wing attractor system, respectively. The exact equations have been
presented in the following subsections.

Once the two-objective optimization is complete, a final solution is selected from
a Pareto front as the closest to the ideal solution, which would be given by f1(·) = 0
and f2(·) = 0 [58]. More precisely, for each solution that belongs to the front,
both values of the target function are normalized, and then an Euclidean distance is
calculated with respect to the ideal point (0, 0). The best solution is characterized
by the smallest distance calculated.

4.1.1 Chua circuit

A Chua circuit was first introduced in [59]. It is a physical, autonomous electrical
circuit that exhibits chaotic behavior. It has been studied through the years by
many researchers because of its potential for many engineering applications. The
system is described with a set of differential equations:

ẋ = C1(y − x− g(x)),

ẏ = x− y + z,

ż = −C2y,

g(x) = Cd2x+
Cd1 − Cd2

2
(|x+ 1| − |x− 1|),

(4.3)

where:

C1, C2 – coefficients related to resistance and capacitance of circuit elements,
Cd1, Cd2 – parameters related to the slopes of the characteristic of the Chua diode.

Typical chaotic orbits examined in the case of the Chua system are obtained for
C1 = 15.6, Cd1 = −8

7
, Cd2 = −5

7
and with variable C2. In this case, the value C2

was fitted to the data related to EAFs. To keep the signals chaotic, this coefficient
can change in the following range 22.8 ≤ C2 ≤ 33.6. The variable y was chosen to
represent the stochastic processes Kj. An exemplary chaotic attractor related to
the Chua circuit has been presented in Fig. 4.1.

4.1.2 Lorenz system

The Lorenz chaotic system was introduced in [55] as a model related to the unpre-
dictability of the weather. The set of equations can be formulated as follows:

ẋ = L1(y − x),

ẏ = x(L2 − z)− y,

ż = xy − L3z,

(4.4)

where:

L1 – coefficient related to the Prandtl number,
L2 – coefficient related to the Rayleigh number,
L3 – a geometric factor.
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Fig. 4.1: Example of a Chua circuit chaotic attractor for the following parameters:
C1 = 15.6, C2 = 27 Cd1 = −8

7
, Cd2 = −5

7
.

The dynamics of the Lorenz system is most often investigated for parameters
L1 = 10, L3 =

8
3
, and for variable L2. The latter was fitted to the data, but in order

to ensure chaotic behavior, it had to be greater than:

L′
2 =

L1(L1 + L3 + 3)

L1 − L3 − 1
= 24.74. (4.5)

The variable x was chosen to represent the stochastic processes Kj. An example of
a Lorenz attractor has been presented in Fig. 4.2.

Fig. 4.2: Example of a Lorenz chaotic attractor for the following parameters: L1 =
10, L2 = 28, L3 =

8
3
.

4.1.3 Rössler system

The Rössler system, intended to behave similarly to the Lorenz system, was intro-
duced in [60]. It is described with the following equations:
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
ẋ = −(y + z),

ẏ = x+R1y,

ż = R2 + z(x−R3),

(4.6)

where:

R1, R2, R3 – real-valued system coefficients.

The Rössler system was investigated, among others, for parameters R1 = R2 =
0.2 and variable R3. We have assumed that R3 was fitted to the limits 4.2 ≤ R3 ≤ 8.
The variable y was chosen to represent the stochastic processes Kj. An example of
a Rössler chaotic attractor has been presented in Fig. 4.3.

Fig. 4.3: Example of a Rössler chaotic attractor for the following parameters: R1 =
R2 = 0.2 and R3 = 5.7.

4.1.4 Four-wing chaotic attractor system

Based on theoretical and practical experiences related to the Chua, Lorenz, and
Rössler systems the authors of [56] introduced a new chaotic system. It exhibits
a four-wing chaotic attractor with a complicated topological structure over a wide
range of parameters. The system is given by:

ẋ = F1(y − x) + F5yz,

ẏ = F3x+ F4y − xz,

ż = −F2z + xy,

(4.7)

where:

F1, F2, F4, F5 – positive real-valued system coefficients,
F3 – real-valued coefficient.

The system was thoroughly investigated and described in the cited work [56]. The
authors deal primarily with the simulation results obtained with F1 = 14, F2 = 43,
F4 = 16, F5 = 4, and the variable F3. A wide range of chaotic behavior was observed
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for −2.3 ≤ F3 ≤ 3. Similarly, in the case of EAF modeling, the coefficients F1, F2, F4,
and F5 were fixed as mentioned and F3 was fitted to the data while maintaining the
proposed range. The variable x was chosen to represent the stochastic processes Kj.
An example of a four-wing chaotic attractor has been presented in Fig. 4.4.

Fig. 4.4: Example of a four-wing chaotic attractor for the following parameters:
F1 = 14, F2 = 43, F3 = −1, F4 = 16, F5 = 4.

4.2 Simulation results and analysis
This section consists of three subsections devoted to the numerical results of the
development of the chaotic model based on the EAF measurement data. Each
subsection includes results obtained for EAFs of different sizes: large industrial,
small industrial and laboratory furnace, respectively.

4.2.1 Large industrial EAF

Each of the systems proposed in the previous Section, i.e., the Chua, Lorenz, Ros̈sler,
and four-wing attractor systems, has been fitted using the optimization procedure
described with equation (4.2) to each of the realizations of stochastic processes
Kj. For each combination of the chaotic system and the coefficient Kj, the error,
which is an Euclidean distance of the normalized coordinates represented with the
goal function values to the ideal point (0, 0) has been calculated. Its value has been
denoted with symbol d. For every solution considered, the fitted value of the chaotic
system coefficient ξ ∈ {C2, L2, R3, F3} and the appropriate sampling frequency fs
have been provided. The exact results have been presented in Table 4.1. As shown,
for the processes K1 and K3, it was the Lorenz system that after optimization was
characterized by the lowest error. For K2, the best fitted system was the four-wing
attractor system. The best solutions for each process Kj are indicated in bold font.

To provide more detailed information on the results obtained, an additional
graphical representation of the quantities related to the goal functions has been
presented. The output sequences obtained from the chaotic systems have been
presented in Fig. 4.5. For each of the best solutions, that is, the Lorenz system for



56 Chapter 4 - Chaotic EAF model

Table 4.1: Results of multi-objective optimization of chaotic systems for the large
industrial EAF.

Chua Lorenz Rössler Four-wing
ξ 24.73 41.00 7.34 -0.28

K1 fs, Hz 0.18 2.05 0.43 3.00
d 0.13 0.08 1.35 1.00
ξ 24.15 27.13 7.86 1.13

K2 fs, Hz 0.30 3.40 0.45 8.47
d 0.56 0.54 1.41 0.47
ξ 24.21 32.03 7.85 -1.00

K3 fs, Hz 0.20 2.48 0.51 3.57
d 0.62 0.43 1.41 0.59
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Fig. 4.5: Time sequences of the realizations of Kj obtained with an optimized chaotic
systems for the large industrial EAF.

K1 and K3, and the four-wing attractor system for K2, Fig. 4.6 shows the histograms
and autocorrelation plots calculated based on the original realizations Kj and those
simulated with the appropriate chaotic system. As shown, the optimized chaotic
system for all cases is characterized by features very similar to those of the original
measurement-based data in terms of distributions and autocorrelation.

Based on the above results, a model similar to the one presented in Chapter
3 has been proposed, but with a fundamental difference: in the chaotic model,
the discrete-time values of Kj are generated with autonomous, optimized chaotic
system differential equations. Each of the Kj is described with a separate chaotic
system, the best fitting according to the data presented in Table 4.1. This means
that in the case of a large industrial furnace, K1 and K3 have been represented
with two separate Lorenz systems, and K2 with a four-wing attractor system. Fig.
4.7 presents an example realization of the output voltage waveform and the V-I
characteristic obtained from such a combined model, compared to the measurement
data. As depicted, the model exhibits very similar features related to changes in the
general shape of the EAF V-I characteristic.



4.2 - Simulation results and analysis 57

Fig. 4.6: Histograms and autocorrelation functions of the realizations of Kj calcu-
lated based on measurement data (MD) and fitted using the Lorenz system
(LS) or the four-wing attractor system (FWS) for the large industrial EAF.

0 0.02 0.04 0.06

 t, s

-600

-400

-200

0

200

400

600

 v
, 
V

-1

-0.5

0

0.5

1

 i
, 
A

10
5

 v
meas

 v
sim

 i
meas

-1 -0.5 0 0.5 1

 i, A 10
5

-600

-400

-200

0

200

400

600

 v
, 
V

Measurement data

Simulation output

Fig. 4.7: Comparison of the measurement voltage waveform and the V-I character-
istic with a realization generated by a chaotic EAF model for the large
industrial EAF.
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4.2.2 Small industrial EAF

A similar optimization procedure has been carried out based on the measurement
data obtained from the small industrial EAF. The numerical results have been pre-
sented in Table 4.2. As highlighted, in this case the best chaotic systems were the
four-wing attractor system for representation of K1 and K2, and the Ros̈sler system
for K3. The realizations of the time series Kj have been presented in Fig. 4.8.
Reflection of K2 with a chaotic system has been more complicated due to the range
of data, which causes the chaotic system to generate values close to zero, which can
hinder the simulation process. An additional step of outliers cleaning is enough to
ensure that numerical results remain good and the stochastic-like properties of the
time series are retained. A graphic representation of both optimization criteria has
been placed in Fig. 4.9. As shown for this dataset, the optimization process leads
to obtaining distributions and autocorrelation values close to those originating from
the measurement data.

For the purpose of comparison of the overall output of the model, Fig. 4.10
presents the measurement voltage, current and exemplary realization of the output
voltage taken from the combined chaotic model using best fitted systems for the
small industrial EAF. In addition, the figure contains a comparison of the V-I char-
acteristics. Certain periods tend to take a shape which is more square, although,
as mentioned earlier, these are only the exemplary realizations. Thus, some periods
may differ. However, the tendency of the model to produce such a shape is related
to the range of values generated by the chaotic model, which in the case of K2 is
slightly lower than in the measurement data.

Table 4.2: Results of multi-objective optimization of chaotic systems for the small
industrial EAF.

Chua Lorenz Rössler Four-wing
ξ 24.08 31.02 7.85 -1.76

K1 fs, Hz 0.86 0.42 2.94 0.44
d 0.76 1.09 1.36 0.50
ξ 24.38 41.48 7.86 -0.61

K2 fs, Hz 1.47 0.54 2.15 0.42
d 0.44 1.00 1.02 0.12
ξ 27.64 37.20 6.10 0.08

K3 fs, Hz 0.73 0.31 2.94 0.44
d 1.00 1.14 0.61 1.17

4.2.3 Laboratory EAF

The optimization procedure has been repeated for the measurement data obtained
from the laboratory EAF. The numerical results are summarized in Table 4.3. As
highlighted, in this case the best chaotic system for the representation of all co-
efficients was the four-wing attractor system. The realizations of the time series
Kj have been presented in Fig. 4.11. In case of these data, an additional step
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Fig. 4.8: Time sequences of the realizations of Kj obtained with the optimized
chaotic systems for the small industrial EAF.

Fig. 4.9: Histograms and autocorrelation functions of realizations Kj calculated on
the basis of measurement data (MD) and fitted using the Ros̈sler system
(RS) or the four-wing attractor system (FWS) for the small industrial
EAF.
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Fig. 4.10: Comparison of the measurement voltage waveform and V-I characteristic
with a realization generated by a chaotic EAF model for the small indus-
trial EAF.
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of outliers cleaning has also been applied. The graphic representation of both op-
timization criteria has been placed in Fig. 4.12. As shown, for this dataset, the
optimization process leads to the obtaining of distributions and autocorrelation val-
ues close to those originating from the measurement data. The results also suggest
that the reflection of autocorrelation has been relatively harder than in the case of
the other datasets, mainly because of the asymmetry between the period halves.
The distribution of values was well represented, especially in the case of K1 and K2.

For the purpose of comparison of the overall output of the model, Fig. 4.13
presents the measurement voltage, current, and exemplary realization of the output
voltage taken from the combined chaotic model using the best fitting chaotic systems
for the laboratory EAF. In addition, the figure contains a comparison of the V-I
characteristics. The overall effects of stochastic-like features resemble real observable
phenomena.

Table 4.3: Results of multi-objective optimization of chaotic systems for the labo-
ratory EAF.

Chua Lorenz Rössler Four-wing
ξ 24.21 30.73 6.67 -1.50

K1 fs, Hz 1.94 0.40 2.75 0.41
d 0.42 0.38 1.41 0.23
ξ 24.41 37.56 7.86 -0.39

K2 fs, Hz 1.97 0.55 2.43 0.33
d 0.52 0.53 1.41 0.09
ξ 24.60 26.30 7.86 -0.96

K3 fs, Hz 0.58 0.23 2.13 0.37
d 1.06 1.01 1.04 0.22
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Fig. 4.11: Time sequences of the realizations of Kj obtained with the optimized
chaotic systems for the laboratory EAF.
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Fig. 4.12: Histograms and autocorrelation functions of the realizations of Kj calcu-
lated on the basis of the measurement data (MD) and fitted using the
four-wing attractor system (FWS) for the laboratory EAF.
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Fig. 4.13: Comparison of the measurement voltage waveform and V-I characteristic
with a realization generated by a chaotic EAF model for the laboratory
EAF.



Chapter 5

Artificial neural network EAF models

Some complex objects are very hard to model using any directly described mathe-
matical expressions. In such cases, sometimes the only information regarding their
behavior is limited to input and output data. To model such phenomena, it is very
useful to apply methods belonging to the category of artificial intelligence. The
development of a black-box model can be significantly simpler than trying to find a
closed-form mathematical solution. Moreover, such models are characterized a high
level of accuracy. In some other cases, developing a gray-box model is even more
suitable. Especially when one has limited knowledge about a theoretical structure of
a modeled phenomenon. Such a model combines a black-box concept with additional
information regarding the structure to achieve good accuracy. The electric arc be-
longs to the group of phenomena which are relatively complex to model accurately.
Therefore, it is justified to analyze the possibility of modeling EAFs with universal
methods such as those based on artificial intelligence. Moreover, this approach has
been applied for this purpose by other researchers, e.g., in [31], [27] or [32].

5.1 Selected ANNs
This Chapter introduces several models based on ANNs with different complexity.
Three of the developed models have a fairly simple structure and belong to shallow
ANNs, while two others are more complex, and they apply deep learning methods.
The latter models are based on long short-term memory (LSTM) networks. A
diagram presenting the approaches introduced in this Chapter has been presented
in Fig. 5.1. Shallow ANNs include multilayer perceptron (MLP) and dual MLP
models for the approximation of the V-I characteristic, as well as the modified
nonlinear autoregressive exogenous (NARX) model, which replaces a dynamic block
in the power balance equation model. The deep learning approach includes the
representation of stochastic processes identified in Chapter 3 with LSTM neural
networks. The proposed solutions have been the subject of previous publications
[41], [39] and [42].

5.1.1 Shallow ANN

Multilayer perceptron model

The first shallow model developed is a very simple MLP model, which is considered
a universal approximator. Its universality also comes with relatively low accuracy
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ANN models

Shallow ANNs Deep ANNs

V-I characteristic 
approximation

- MLP
- dual MLP

Dynamic time series 
modeling

Low frequency stochastic 
component 

- M-NARX

High frequency stochastic 
component 

- Three LSTM networks 
representing three stochastic 
processes Kj in power 
balance equation

- One LSTM network 
representing a single 
stochastic process vhf

Fig. 5.1: Diagram presenting ANN based solutions for EAF modeling proposed in
the dissertation.

in reflecting more complex objects. The MLP model has been developed to provide
a basic reference to other models based on ANNs. The MLP consists of an input
layer, a hidden layer containing a user-chosen number of units, and an output layer.
The structure of a single neuron has been shown in Fig. 5.2. The transfer function
f can be defined by the user, but among the most common are linear, logistic, or
hyperbolic tangent functions. Such units are contained in hidden and output layers
of the MLP model. A whole model structure including all important layers has been
presented in Fig. 5.3.

Input Neuron Output

Fig. 5.2: Structure of a single neuron in an ANN model.

As shown in Fig. 5.3, the MLP applied in the EAF model is reduced to a simple
structure of the single input single output (SISO) system. It has the role of a simple
black-box object that is intended to directly reflect the EAF V-I characteristic.
In this application, a current waveform is considered as the input while a voltage
is considered as the output. The weight coefficients located inside the individual
neural units are fitted during the learning procedure based on the measurement
data. The data are first divided into training, validation, and testing sets, which are
necessary to obtain the good effects of the learning procedure. The network adjusts
its coefficients to reduce the overall error between its output and target data. Due to
the simple structure of the MLP model, it is characterized by a tendency to average
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Fig. 5.3: Structure of the MLP model.

more complex input-output relationships but is perfectly capable of reflecting a
certain class of nonlinear characteristics.

Dual multilayer perceptron (MLP) model

Due to limitations related to the application of a single MLP model, an extension
has been proposed that allows for a better reflection of the EAF characteristic.
As shown in Chapter 2, the V-I characteristic of the arc contains a hysteresis. An
improvement in MLP response to such training data can be achieved by doubling its
structure and dividing the characteristic into two categories, one for each network.
Taking into account the MLP operation, the best division would run through the
middle of the V-I characteristic so that its entire rising edge would be reflected with
one network, while its entire falling edge would be reflected with the second. As the
current waveforms in EAFs have relatively low deformations, the current would serve
as a division criterion. Both the voltage and current data for which the current is
rising would belong to one category, while the data for falling current would belong
to the second. Formally, the division criterion is as follows:

v1 = v
∣∣
di
dt
≥0
, i1 = i

∣∣
di
dt
≥0
,

v2 = v
∣∣
di
dt
<0
, i2 = i

∣∣
di
dt
<0
.

(5.1)

The example of data division obtained with the above criterion has been visualized
in Fig. 5.4.
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Fig. 5.4: An example of training data division for the Dual-MLP model.
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The training, validation, and testing procedure for the dual MLP model remains
virtually the same as for a single MLP network. The only difference is related to
the division of the measurement data.

Modified nonlinear autoregressive exogenous model

Both models described above are limited to the reflection of a single characteristic
obtained by averaging the measurement data. Neither of them is capable of includ-
ing the changes of the characteristic. To complete a set of shallow models with
another, which includes dynamic properties, an application of the NARX model has
been proposed. However, the NARX structure cannot be applied directly to the
measurement data. In this case, the developed model becomes a grey-box model
due to the inclusion of some theoretical structure to this approach.

Again, similarly to the previous Chapter, this model refers to the power balance
model of the electric arc. As stated in [23], a slight modification of equation (1.1)
can result in its transformation, so the current can be considered as an input and
the arc conductance as an output. Such a rearranging of the equation allows the
separation of the two static nonlinear components from a single linear dynamic one
in the middle. This structure is visible in Fig. 5.5 that presents a graphical block
representation of the equation. This form is known as the Hammerstein-Wiener
(HW) model, characterized by two nonlinear static blocks on both sides of the linear
dynamic block.

Fig. 5.5: Structure of the Hammerstein-Wiener model of the EAF [23].

Due to the transformation of the power balance model into the HW model form,
one can directly implement both nonlinear static blocks using mathematical expres-
sions, while the linear dynamic block can be represented with ANNs. In this case,
the NARX model has been applied. Its basic structure has been shown in Fig. 5.6.
Its general structure is similar to the MLP network, but NARX additionally includes
feedback loop and optional delays of input signals. A delay of size 1 is equivalent to
z−1 discrete-time operator, which delays input by one sample. However, this exact
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structure is not best fitted to represent the dynamic linear block of the HW model.
It has been modified to directly reflect the dynamic block (DL), so the delays have
remained equal to 1, but the sigmoid activation function had to be changed to a
linear one to ensure that the hidden layer output would only be a linear combination
of input signal and delays. Additionally, because the output is the arc conductance,
it has to be positive. To ensure that there are no negative values outputted, a single
neuron in the output layer has been exchanged for a rectified linear unit, which is
characterized by a linear function for positive input and 0 for negative ones. This
modified NARX network has been presented in Fig. 5.7.

Fig. 5.6: Structure of NARX ANN.

Fig. 5.7: Structure of M-NARX ANN.

Before referring to a numerical example, it is also worth noting that modification
of the power balance model to obtain the arc conductance as the output requires
recalculation of the measurement data. Calculation of the arc conductance was
obtained by applying Ohm’s law, but for some samples, the numerical accuracy
resulted in outliers, which are very undesirable from the ANN training point of view.
As a result, an additional data pre-processing stage is required to remove outliers.
The entire data set has been cleared from outliers using the Hampel filter [61]. An
example of an outlier in the conductance waveform has been shown in Fig. 5.8.

5.1.2 Deep ANN

Low frequency component

The main idea behind the application of deep learning methods in EAF modeling
is to simplify a specific stage of model development. Here, it is again used in the
context of a grey-box model. An application of LSTM networks capable of learning
and reproducing relatively long data sequences has been proposed. Such networks,
due to their versatility and ability to store information from earlier input samples
and include them in the current stage, are most often used to predict time-varying
phenomena or speech and text processing [62]. Such a LSTM network consists of
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Fig. 5.8: Example of an outlier in EAF’s arc conductance waveform.

multiple cells that process the input. A single cell structure has been presented
in Fig. 5.9. It consists of separate functions, which, based on an input (xt) and
previous state (ct−1, ht−1), perform the operation of removing unnecessary pieces of
information and updating the current state with the relevant data. That is, the
"forget" gate removes certain data on the basis of the previous cell state, output,
and new input. "Update" gate introduces new information to the cell state, and
eventually the "output" gate provides information about the cell state (ct) and newly
calculated output (ht) to the next cell. This procedure is repeated according to the
number of LSTM units. The LSTM networks, similarly to the shallow ones, must be
subject to a training, validation, and testing procedure. Training allows fitting of the
coefficients governing each LSTM cell so that the entire structure would accurately
replicate the output, even over the long term.

Fig. 5.9: Structure of a single LSTM cell [63].

Those exact features of LSTM networks make them suitable for replication of
various signals, including stochastic-like time sequences. Here, three separate LSTM
networks have been applied to replicate the Kj stochastic processes, instead of their
actual identification. What is important is that a properly conducted training en-
sures that such deep networks are capable of independent generation of signals with
statistical properties similar to the actual realizations of processes Kj from mea-
surement data. Such signals, generated with an appropriate sampling frequency,
can feed the model based on power balance, similar to the model from Chapter 3.



68 Chapter 5 - Artificial neural network EAF models

In addition to the set of LSTM cells, a network structure must be completed
with additional layers to ensure the appropriate flow of data. In the case of time
sequence analysis, a standalone solution should consist of a sequence input layer,
then the LSTM layer, a fully connected layer, and finally a regression output layer.
Each of the separate LSTM networks reflecting each of the Kj processes has the
same structure. However, they are trained with different datasets. The structure of
a complete LSTM network has been presented in Fig. 5.10.

Fig. 5.10: Block diagram of a complete LSTM network.

High frequency component

Because the LSTM models shares the same base as the RDE model, the LSTM
model form previous Subsection is limited to accurate reflection of low frequency
components of the EAF characteristic. Therefore, a complete model should have
an additional component reflecting the high frequency ripples observable in the
measurement voltage waveforms. Here again, this component is an addition to the
voltage output obtained from the previous subsection, based on linearization of the
characteristic in proximity to the operating point. The only difference is due to the
fact that the high frequency component is generated by a separate fourth LSTM
network. This network is trained with the high frequency signal obtained from
filtering the measurement voltage waveform, exactly in the same way as in the case
of a RDE model.

5.2 Simulation results and analysis
For the purpose of developing the ANN models of the electric arc, a series of sim-
ulations have been carried out. The data obtained from the training of individual
networks have been grouped into parts related to shallow models - MLP, dual MLP
and M-NARX, and deep learning models - LSTM. The following subsections de-
scribe the results obtained for large industrial, small industrial and laboratory EAF
separately.

5.2.1 Large industrial EAF

Shallow ANNs

The first developed ANN model was a basic MLP network. Data provided for
model development have been divided into three groups: training, validation, and
testing, with proportions of 70%, 15% and 15%, respectively. The network has been
tested for different hidden layer sizes and activation function types. Eventually, the
structure was deployed with 10 hidden units because more neurons only extended
the computation time without improving the results. For the transfer function, the
commonly used hyperbolic tangent sigmoid function has been selected. This network
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has been used for training based on the measurement waveforms obtained for the
large industrial EAF - with current as input and voltage as output.

Next, an exemplary clipping of the current waveform has been selected as input
for the trained network. In this way, the simulated output voltage was calculated.
The results have been presented in the form of a V-I characteristic compared to
that in Fig. 5.11. As shown, the MLP model only averages the characteristic of the
arc. It does include its nonlinearity but does not reflect any dynamic changes or the
hysteresis.
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Fig. 5.11: V-I characteristic of the EAF – comparison between the MLP output and
measurement data from the large industrial EAF.

An improvement in performance can be achieved by doubling the MLP structure
and dividing the measurement data for half-period long frames stretching between
consecutive peaks of a relatively low distorted current waveform. The data divided
in this way have been used for the development of two MLP networks of identical
structure and transfer function as for the single MLP version. In this case, again,
the simulated output voltage waveform has been computed using trained networks
for an exemplary current frame. The output V-I characteristic was compared with
the measurement one in Fig. 5.12. As shown, this model is capable of reflecting the
nonlinear characteristic with a hysteresis, but still does not include any changes in
the characteristic’s shape.

To incorporate the dynamic component into the ANN model, the M-NARX
model has been developed. As previously introduced, it is constructed as a re-
placement for the linear dynamic block of the HW model shown in Fig. 5.5. This
application required special data pre-processing consisting of outliers cleaning using
appropriate filter. Additionally, the output of the M-NARX model is the arc conduc-
tance and not the voltage waveform directly. The exact structure of the M-NARX
model remained as proposed in Fig. 5.7. It has single delays, one unit in the hidden
layer with linear function, and the rectifying unit in the output transfer function.
The intermediate exemplary results, that is, the arc conductance waveform, were
compared with the conductance calculated based on the measurement data in Fig.
5.13. These data were then used for the calculation of the output voltage, which
was again compared with the measurement data in Fig. 5.14. The model correctly
reflects the arc conductance and includes both hysteresis and dynamic changes of
the characteristic.
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Fig. 5.12: V-I characteristic of the EAF – comparison between the dual MLP output
and measurement data from the large industrial EAF.
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Fig. 5.13: Comparison between conductance waveforms based on data measured and
simulated by the M-NARX for the large industrial EAF.

Among the shallow ANNs it was possible to calculate the objective error measure
because all models were designed for the most precise reflection of the measurement
waveforms, yet without stochastic components. Exemplary output voltage wave-
forms have been compared graphically in Fig. 5.15. As presented, each model
reflects the voltage waveform differently, but all are relatively accurate. In addition,
a quantitative assessment has been introduced. For this purpose, the following error
measure has been proposed:

ϵv =

√√√√∫ To

0
[v̂(t)− v(t)]2dt∫ To

0
[v(t)]2dt

· 100% =
|∆V |
|V |

· 100%, (5.2)

where:

ϵv – percent RMS error,
v(t) – measured voltage data (model target),
v̂(t) – simulated voltage data (model output),
To – observation window.



5.2 - Simulation results and analysis 71

-1 -0.5 0 0.5 1

 i, A 10
5

-500

0

500

 v
, 

V

Measurement

M-NARX output

Fig. 5.14: V-I characteristic of the large industrial EAF – comparison between the
M-NARX output and measurement data.

This formula describes the RMS value of the error relative to the RMS value of the
voltage, expressed as a percentage. For the datasets applied to the development of
the ANN models, the results have been presented in Table 5.1. They indicate that
despite the lack of a dynamic component in the network structure, it was the dual
MLP model characterized by the smallest error and a single MLP with the greatest.
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Fig. 5.15: Voltage waveforms – comparison between the outputs of the proposed
shallow ANN models obtained for the same input current, for the large
industrial EAF.

Deep ANNs

To directly include stochastic components in models based on ANN, deep learning
EAF models have been proposed. The first one is oriented on reflection of the low
frequency component - the general changes in the arc’s V-I characteristic. The main
idea behind this approach is to train LSTM networks to reflect stochastic processes,
where realizations estimated from the measurement data have been calculated in
Chapter 3. Three LSTM models have been trained with these data. Their ability
to recall certain features of longer sequences allowed the independent generation of
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Table 5.1: Errors of shallow ANN models of the large industrial EAF.

ANN Voltage RMS error, ϵv
MLP 16.7%

Dual MLP 9.4%
M-NARX 13.2%

signals with similar statistical features. Various numbers of hidden units were tested
and finally the networks were fitted with 300 hidden units in the LSTM layer. Their
training was carried out using the Adam Optimizer with a variable learning rate
starting from 0.005. The number of training epochs was also investigated in order
to obtain the best results, and, in general, training stopped after 500 epochs, with
the batch size equal to 128. The output realizations generated independently by
each of the networks have been presented in Fig. 5.16. As shown, the signals indeed
exhibit stochastic-like behavior.

Similarly to the RDE model, described in Chapter 3, this model provides a
realization of discrete-time stochastic processes Kj, which allows calculation of the
output voltage based on a given input current. Such a procedure has been conducted
to calculate the voltage realization based on a chosen current waveform frame. The
results in the form of the V-I characteristic have been compared with the measure-
ment characteristic in Fig. 5.17. As presented, the characteristic changes shape from
period to period in a manner similar to that observed in the measurement data.
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Fig. 5.16: Exemplary realization of Kj coefficients time series obtained from the
LSTM model for the large industrial EAF.

Additionally, apart from the first LSTM model, its extension to the high fre-
quency stochastic component has been developed. Similarly to the RDE model,
the same high frequency signal filtered out from the voltage waveform was used.
A separate fourth LSTM network was trained with this signal in order to replicate
it independently in the later stage of development. The network has been trained
and, as a result, was able to generate a signal with similar statistical properties.
The output high frequency voltage component has been presented in Fig. 5.18. A
simple addition to the previous voltage output results in the final LSTM model with
a wide frequency spectrum. The overall output characteristic has been presented in
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Fig. 5.17: Exemplary V-I characteristic of the large industrial EAF obtained from
the LSTM model and measurements.

Fig. 5.19. To provide an additional perspective for the quality of the voltage rep-
resentation, the figure also presents the voltage waveforms from the measurement
data and the second LSTM models. As shown, addition of the high frequency signal
allows reflection of stochastic changes related to the general shape of the waveform,
as well as ripples in voltage observable in the measurement data.
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Fig. 5.18: Exemplary realization of high frequency voltage ripples generated by the
LSTM network for the large industrial EAF.

5.2.2 Small industrial EAF

Shallow ANNs

Each of the proposed shallow ANN models has been applied separately to the small
industrial furnace dataset. The combined results of the shallow model V-I output
characteristics have been presented in Fig. 5.20, while exemplary clippings of the
voltage waveforms have been compared in Fig. 5.21. As shown, the simplest models
perform relatively well, however, the asymmetry present in this dataset results in
poor accuracy of the M-NARX model. This problem could be solved by applying a
dual M-NARX model, similar to the dual MLP model. However, this solution would
require different data division, for which the first quadrant of the V-I characteristic
would be modeled by one network and the third quadrant with the other. The
performance of the original M-NARX structure has been worse, so to ensure better
results for this more complex characteristic, delays of 2 samples have been added to
the original input signals. This allows better reflection of the small industrial EAF
characteristic. The quantitative assessment has confirmed the above conclusions.
The results of the RMS error calculated for the voltage have been placed in Table 5.2.
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Fig. 5.19: Comparison of the V-I characteristic of the large industrial EAF obtained
from the second LSTM model and measurements.

The numbers indicate that both MLP networks have very similar performance and,
despite their limitations, outperform the M-NARX model developed based on this
dataset.
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Fig. 5.20: Comparison of the V-I characteristic obtained from the shallow ANNs for
small industrial EAF dataset.
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Fig. 5.21: Comparison of the voltage waveforms obtained from the shallow ANNs
for small industrial EAF dataset.

Table 5.2: Errors of shallow ANN models of the small industrial EAF.

ANN Voltage RMS error, ϵv
MLP 17.2%

Dual MLP 17.0%
M-NARX 29.9%

Deep ANNs

The realizations of stochastic processes Kj of the small industrial EAF have also been
applied to the development of a deep learning model. In this case, the procedure
remained the same as for the large industrial furnace. The only difference is that
optimal results have been obtained for LSTM networks with 300 hidden units for
K1 and K2, and 350 for K3. The general structure remained the same. The output
realizations generated independently by each of the networks have been presented
in Fig. 5.22. In addition, an exemplary realization of the output voltage and a V-I
characteristic is shown in Fig. 5.23. As presented, the model accurately reflects the
measurement data.

The measurement data obtained from the small industrial EAF also contain the
high frequency component, thus the next version of the LSTM model has been de-
veloped. This component and the simulation output of the separate LSTM network
have been presented in Fig. 5.24. In this case, the network has been fitted with 500
hidden units. Exemplary results of the overall model with both the low and high
frequency components have been shown in Fig. 5.25.
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Fig. 5.22: Exemplary realization of Kj coefficients time series obtained from the
LSTM model for the small industrial EAF.
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Fig. 5.23: Comparison of the V-I characteristic of small industrial EAF obtained
from the LSTM model and measurements.
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Fig. 5.24: Exemplary realization of high frequency voltage ripples generated by the
LSTM network for the small industrial EAF.

5.2.3 Laboratory EAF

Shallow ANNs

Similarly to the previous section, each of the shallow ANN models has been applied
again, but to the laboratory furnace dataset. The combined results of the V-I
output characteristics of the shallow models have been presented in Fig. 5.26, while
exemplary clippings of the voltage waveforms have been compared in Fig. 5.27.
As shown, the simplest models perform relatively well, although, the asymmetry
present in this dataset results in poor accuracy of the M-NARX model in the same
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Fig. 5.25: Comparison of the V-I characteristic of the small industrial EAF obtained
from the second LSTM model and measurements.

manner as in the case of the small industrial furnace. However, this time the results
exhibit even more visible discrepancies with the measurement data. The delays of
2 samples have been added to the original input signals. Without that operation,
the accuracy has been significantly worse. Quantitative assessment has confirmed
the above conclusions. The results of the RMS error calculated for the voltage have
been placed in Table 5.3. The numbers indicate that both MLP networks have very
similar performance and, despite their limitations, outperform the M-NARX model
developed based on this dataset.

Table 5.3: Errors of the shallow ANN models of the laboratory EAF.

ANN Voltage RMS error, ϵv
MLP 21.3%

Dual MLP 24.1%
M-NARX 46.6%

Deep ANNs

The realizations of stochastic processes Kj in the laboratory EAF has been applied
for the development of a deep learning model. In this case, the procedure remained
the same as for the large industrial furnace. The only difference is that optimal
results have been obtained for LSTM networks with 300 hidden units for K1, 400
for K2, and 350 for K3. The general structure remained the same. Fig. 5.28.
Additionally, an exemplary realization of the output voltage and the V-I character-
istic has been shown in Fig. 5.29. As presented, the model accurately reflects the
measurement data.

The measurement data obtained from the laboratory EAF also contains the high-
frequency component, so the next version of the LSTM model has been developed.
This component, as well as the simulation output of the separate LSTM network, has
been presented in Fig. 5.30. In this case, the network has been fitted with 300 hidden
units. As shown, the 600 Hz frequency threshold selected for the division between
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Fig. 5.26: Comparison of the V-I characteristic obtained from the shallow ANNs for
laboratory EAF dataset.
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Fig. 5.27: Comparison of the voltage waveforms obtained from the shallow ANNs
for laboratory EAF dataset.

the low and high frequency components resulted in exposure of some additional
sinusoidal components, which do not fit directly with a simple stochastic process
representation. The advantage of using the LSTM network is that those components
can be easily included in the model. However, the realizations of individual periods
can differ in the content of those components. Exemplary results of the overall
model with both low and high frequency component has been shown in Fig. 5.31.
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Fig. 5.28: Exemplary realization of Kj coefficients time series obtained from the
LSTM model and measurements for the laboratory EAF.
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Fig. 5.29: Comparison of the V-I characteristic of the laboratory EAF obtained from
the LSTM model and measurements.
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Fig. 5.30: Exemplary realization of high frequency voltage ripples generated by the
LSTM network for the laboratory EAF.

Tabular data comparing models developed in this Section provide better insight
into the performance of shallow neural network models. A comparison of deep
learning models capable of reflecting more complex stochastic behavior (apart from
graphical presentation of the output) is more difficult due to the need of apply-
ing statistical measures. The error calculated directly between two realizations of
stochastic processes would not be correct. For this reason, a more detailed com-
parative analysis including measures of accuracy of deep leaning models in terms of
their stochastic properties has been presented in Chapter 7.



80 Chapter 5 - Artificial neural network EAF models

0 0.02 0.04 0.06

 t, s

-100

-50

0

50

100

 v
, 
V

-300

-200

-100

0

100

200

300

 i
, 
A

 v
meas

 v
sim

 i
meas

-300 -200 -100 0 100 200 300

 i, A

-100

-50

0

50

100

 v
, 
V

Measurement data

Simulation output

Fig. 5.31: Comparison of the V-I characteristic obtained from the second LSTM
model and measurements for the laboratory EAF.



Chapter 6

Fractional order EAF model

The three previous chapters that present RDE, chaotic, and ANN models aim to
improve the model of the deterministic power balance equation of the electric arc
phenomenon by including stochastic or stochastic-like components. This procedure
leads to better reflection of the real phenomena that occur in power systems with
EAFs. This Chapter, in turn, is oriented toward improving the deterministic compo-
nent itself. Namely, the following sections are related to the question if the electric
arc can be modeled more accurately with power balance equation but generalized
in order to include a fractional order integro-differential operator instead of classic
differentiation of order 1.

6.1 Fractional order power balance equation
The power balance equation (1.1) can be simplified by adding an auxiliary variable
y, as shown in [64]:

y = rm+4, (6.1)

then, for n = 2 and m = 0, 1, 2 it can be brought to a linear differential equation:

dy(t)
dt

= −βy(t) + f(t), (6.2)

where:

f(t) = γ i2(t), (6.3)

β =
(m+ 4)k1

k2
, (6.4)

γ =
(m+ 4)k3

k2
. (6.5)

Transformation of the original equation into a linear one (6.2) additionally results
in the obtaining of a closed form solution, which simplifies the calculations and opens
new ways to take into account the stochastic nature of the arc phenomena [65].

Similarly to the approach presented in the ANN M-NARX model, this equation
can be presented in the form of a SISO block model. A graphic representation of the
block model has been presented in Fig. 6.1. However, this time the output is not
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Fig. 6.1: Hammerstein-Wiener model of the EAF.

the arc conductance but the arc column radius. The linear dynamic model visible
in the middle of nonlinear static blocks is a direct reflection of (6.2).

In practice, the HW model is implemented as a discrete system and thus its input
and output signals consist of samples corresponding to the continuous signals. Iden-
tification algorithms provide information on the parameters of this discrete system.
The linear block of the HW model corresponds to a difference equation [23]:

1

Ts

(y[k]− y[k − 1]) + βy[k] = f [k], y[k] = y(kTs), f [k] = f(kTs), (6.6)

where:

Ts – sampling period (time step of calculation),
y[k] – discrete time signal, k = 1, 2, 3, ...,
y[0] – initial condition.

After some transformation of the above equation, the numerical solution of the
linear difference equation in the HW EAF model can be expressed as:

y [k] = η(f [k] +
1

Ts

y [k − 1]), (6.7)

where:
η =

Ts

1 + βTs

. (6.8)

The discrete version of EAF HW shown in Fig. 6.1 has been presented in Fig.
6.2, where the block z−1 denotes a delay of one sample.

The main idea behind the EAF model presented in this Chapter is to generalize
the HW model by replacing a classical integral operator with a fractional order
integro-differential operator. Such a continuous operator aDα

t is defined as [66]:

aDα
t =


dα

dtα
: α > 0,

1 : α = 0,∫ t

a
(dτ)α : α < 0,

(6.9)

where a and t are the limits of the operation and α is the order of the fractional
operator α ∈ R.
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Several definitions for the general fractional operator have been developed which
are named after their inventors. The most popular definitions include, Riemann-
Liouville (RL), Grünwald-Letnikov (GL), Hadamard, or Sonin-Letnikov. In the
twentieth century, many new definitions were proposed by Riesz, Miller-Ross, Weyl,
and Caputo, etc. New definitions, which are emerging to this day, are proof that
theory and possible new applications of fractional calculus are still interesting to
researchers. Although there are several definitions of fractional operators, their ap-
plication in numerical analysis is limited. However, there are some methods that can
approximate the solution of fractional order differentiation and integration. Here,
the classical Grünwald-Letnikov (GL) definition has been chosen. It is often used
for numerical calculations and simulations. It is given by:

aDα
t y (t) = lim

Ts 7→0

1

Tα
s

⌊ t−a
Ts ⌋∑
j=0

(−1)j
(
α

j

)
y (t− jTs) , (6.10)

where ⌊·⌋ denotes the integer part of the argument. For a wide class of functions,
the GL definition, as well as RL and Caputo, is equivalent when y(a) = 0 [67].

The fractional order extension of the linear differential equation (6.2) with the
integro-differential operator results in the following:

dαy (t)

dtα
= −βy (t) + f (t) . (6.11)

Moving to the discrete implementation by applying the GL definition (6.10) to
(6.11), one obtains the following:

1

Tα
s

k∑
j=0

cαj y [k − j] + βy [k] = f [k] , k = 1, 2, 3, ..., (6.12)

where cαj (j= 0, 1, ..., k) are binomial coefficients (see [68]). They can be calculated
using a recursive formula:

cα0 = 1, cαj =

(
1− 1 + α

j

)
· cαj−1. (6.13)

After rearranging the terms in (6.12), the numerical solution of the fractional
order linear differential equation in the HW EAF model can be expressed as:

+

 

Discrete linear blockDiscrete nonlinear block Discrete nonlinear block

Fig. 6.2: Discrete HW model of an EAF [23].
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y [k] = ηα(f [k]− 1

Tα
s

k∑
j=1

cαj y [k − j]), (6.14)

where:
ηα =

Tα
s

1 + βTα
s

. (6.15)

It is worth stressing that for α = 1 the solution (6.14) simplifies to (6.7). The
discrete fractional order HW model of an EAF that takes into account (6.14) has
been presented in Fig. 6.4. The effects of varying α order have also been visualized
by calculating the voltage waveform based on an exemplary period-long frame taken
from the measurement data. The current waveform was repeatedly fed as input to
the fractional model with constant noninteger order. Each time, the constant α
was different. The kj coefficients have been set to a constant and optimal value.
This allowed calculation of the set of voltage waveforms, each related to a different
fractional order. The results have been presented in Fig. 6.3. If the model is
implemented in the system with limited resources, at the cost of reduced accuracy,
the number of delay elements in the diagram can be reduced and limited to a given
number, taking into account that the coefficients cαj decrease to 0 as j increases (see
Table 6.1).
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Fig. 6.3: Comparison of the shape of the output voltage depending on the value of
α with the optimal coefficients kj (j = 1, 2, 3).

Formula (6.14) describing the solution to a discrete fractional order differential
equation has been used to evaluate the usefulness of the fractional order HW model
of an EAF. The results of parameter identification and modeling have been presented
and compared with the classical case of integer order in the next section. Calcu-
lations also have been validated using different methods proposed in [69]. Results
obtained for both methods are consistent.

6.2 Simulation results and analysis
Similarly to the main concept of this thesis described in the RDE model in Chapter
3 for the fractional model, the results related to the estimation of order α of the
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Table 6.1: Binomial coefficients cαj .

j α = 0.8 α = 0.9 α = 1.0 α = 1.1 α = 1.2

0 1.0000 1.0000 1.0000 1.0000 1.0000
1 -0.8000 -0.9000 -1.0000 -1.1000 -1.2000
2 -0.0800 -0.0450 0.0000 0.0550 0.1200
3 -0.0320 -0.0165 0.0000 0.0165 0.0320
4 -0.0176 -0.0087 0.0000 0.0078 0.0144
5 -0.0113 -0.0054 0.0000 0.0045 0.0081
6 -0.0079 -0.0037 0.0000 0.0030 0.0051
7 -0.0059 -0.0027 0.0000 0.0021 0.0035
8 -0.0045 -0.0020 0.0000 0.0015 0.0025
9 -0.0036 -0.0016 0.0000 0.0012 0.0019
10 -0.0030 -0.0013 0.0000 0.0009 0.0015

model equation have been presented together with the estimation of the coefficients
kj. The following subsections describe the results obtained for all datasets. In each
subsection, two main concepts are tested, one with variable noninteger order and
one with constant noninteger order of the integrodifferential operator.

6.2.1 Large industrial EAF

The optimization procedure described in the previous Section leads to the real-
izations of stochastic processes Kj, as well as the stochastic process representing
changes of order α. The introduction of an additional parameter to optimize re-
sulted in a change in the optimal values of the coefficients kj for particular periods.
The global optimum for optimization of the goal function with four decision vari-
ables leads to significantly different values of the estimated coefficients. It is worth
stressing that the results obtained retained their stochastic characteristics. The most
significant difference is the range of coefficient value changes and the shape of their
distribution. Approximate representations of these distributions compared to the
realizations of the classic version, that is, with α = 1, have been presented in Fig.
6.5. As shown, the most significant difference occurred in the case of the K2 pro-
cess, namely its range of values increased, but the general shape of the distribution
remained similar.

Regarding the order α of the equation itself, it has been estimated similarly to
the remaining coefficients, separately for each signal period at the same time as the
coefficients kj. This led to the realization of another stochastic process, describing
the random changes of α. The time sequence of this realization has been shown in
Fig. 6.6, while its distribution is shown in Fig. 6.7. As presented, fractional order
exhibits a behavior similar to that of a stochastic process realization, with a median
around 0.6.

The introduction of the variable α leads to better fitting of the simulated voltage
waveform to the measurement data. To visualize this effect, an exemplary period of
both the simulated voltage with classic α = 1, α = var and the measured voltage
has been selected. The error between each case and the measured voltage has been
calculated and plotted separately to highlight the differences. The plots have been
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Fig. 6.4: The discrete Hammerstein-Wiener fractional order model of EAF.

Fig. 6.5: Histograms of Kj (j = 1, 2, 3) for the classical case with α = 1 and for the
variable α for the large industrial EAF.

presented in Fig. 6.8. As shown, along this exemplary period, the case α = var
is characterized with a smaller error in the measured data than in the case of the
ordinary approach.

To gain a more detailed understanding of the error characteristics, the errors
related to each of the periods have been visualized using a box plot. The results
have been shown in Fig. 6.9. The box edges indicate the 25th and 75th percentiles
of the errors, while the line inside indicates the median of the dataset. The whiskers
cover 99% confidence intervals calculated based on the standard deviation. The
remaining points indicated with separate markers appear individually. As shown,
the introduction of the variable order α resulted in a reduction of the error in the
value of its median and overall distribution. Although the 25th percentile remained
similar, the fractional order significantly lowered the remaining values.
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Fig. 6.6: Realization of discrete-time stochastic process of α value for the large in-
dustrial EAF.

Fig. 6.7: Histogram of the estimated coefficient α for the large industrial EAF.
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Fig. 6.8: Exemplary voltage waveform of the large industrial EAF fractional model
fitted to the measurement data and its error.
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Fig. 6.9: Box plots of errors for all frames for both constant and variable α for the
large industrial EAF

Despite the better accuracy of the model including the fractional order separately
for each signal period, it is interesting to investigate if and how a constant noninteger
value α could be chosen to still maintain improvement against the classic α = 1 case.
In this way, the model would be simpler because it would not require considering an
additional stochastic process that represents the changes of α from period to period.
To determine which value could be useful, two approaches have been applied. The
first is to use the median value of the realization of α from Fig. 6.6, that is, α = 0.606.
The second was carried out using sweep analysis, in which the entire optimization
procedure of coefficients kj was carried out period-wise, but for the constant α that
was iteratively repeated for the incremented value. The sweep has been carried out
with the basic step of 0.05, which was reduced around the minimum error to 0.005.
The results have been presented in Fig. 6.10. As shown, the minimal error was
obtained for α = 0.755, which further justifies the application of fractional order
model to the electric arc phenomena.

To compare the results for each approach presented, the error medians have been
calculated and compared. The results have been collected in Table 6.2. As noted,
the case with variable fractional order is characterized by the highest improvement
rate, close to 25%. The result with minimum error obtained from the sweep analysis
with constant α is slightly worse, and the result for α median calculated from its
stochastic realization is the worst, with an improvement of around 20%. The fact
that every proposed fractional order application to EAF modeling resulted in a
significant improvement in the accuracy of the model is worth stressing.

Table 6.2: RMSE median for large industrial EAF fractional model.

α = 1 α = var α = 0.606 α = 0.755

2.41 1.81 1.91 1.82
RMSE change -24.8% -20.8% -24.3%



6.2 - Simulation results and analysis 89

0 0.2 0.4 0.6 0.8 1 1.2

1

1.5

2

2.5

3

3.5

4

4.5

5

R
M

S
E

 m
e
d

ia
n

Minimum:

 = 0.755

RMSE = 1.82

Fig. 6.10: Relationship of the error median depending on the value of the constant
order α of the applied fractional differential equation for the large indus-
trial EAF.

6.2.2 Small industrial EAF

The procedure presented in the previous section has been repeated for the dataset
obtained from the small industrial EAF. The results of the analysis of the realizations
of the Kj and α processes have been presented below. Fig. 6.11 shows the histograms
of the calculated values compared to the classical case for α = 1. The realization of
the variable α has been presented in Fig. 6.12. As shown, for this dataset the range
of values is different from that of a large industrial furnace. The most significant
difference is related to the distribution of α. The median was equal to αmed = 1.178
which exceeds the range of the large industrial furnace. To ensure that this value is
correct, the other fragments of the measurement waveforms have been investigated.
The analysis indicated that the distribution of α actually changes compared to
the large furnace and that the median of α is greater than 1. Variations of order
indicate that some short-term phenomena occurring in EAFs are better reflected
with α > 1, while others with α < 1, as shown, for example, around the 7th
second of realization in Fig. 6.12. The exact reason for this behavior may lie in the
movement and properties of the metal charge inside the furnace hearth. In terms
of the error related to this approach, the introduction of a fractional and variable
order α again resulted in an improvement in accuracy. An example period of the
voltage waveform and the error between simulation and measurement have been
shown in Fig. 6.13. This figure additionally presents boxplots related to the results
obtained. The graph indicates that the range and median error made have decreased
compared to the classical approach with α = 1. This fact has been supported by
the calculations of the error change presented in Table 6.3.

Table 6.3: RMSE median for the small industrial EAF fractional model.

α = 1 α = var α = 1.178 α = 1.300

14.02 12.53 13.54 12.87
RMSE change -10.6% -3.4% -8.2%
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Fig. 6.11: Histograms of coefficients Kj (j = 1, 2, 3) for the classical case with α = 1
and for the variable α for the small industrial EAF.
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Fig. 6.12: Realization of discrete-time stochastic process of α value for the small
industrial EAF.
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Fig. 6.13: Exemplary voltage waveform and box plot of RMSE errors of the small
industrial EAF fitted to measurement data.

Apart from the classical case for α = 1, the general α = var, and αmed = 1.178
Table 6.3 includes the RMSE error calculated for α chosen based on the lowest
RMSE median among other cases investigated by sweep analysis with constant α,
the results of which have been presented in Fig. 6.14. As shown, every approach
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including the fractional order results in error reduction. The α = var case improves
accuracy the most.
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Fig. 6.14: Relationship of the median error according to the value of the order of the
applied constant fractional differential equation α for the small industrial
EAF.

6.2.3 Laboratory EAF

The fractional order model has been once again recalculated on the basis of the
laboratory furnace measurement data. The comparison of the Kj and α distributions
between classical α = 1 and α = var has been presented in Fig. 6.15. The realization
of α has been shown in Fig. 6.16. The results confirm that the phenomena that occur
within the furnace influence the optimal value of α. The laboratory furnace is the
smallest, where very little metal charge can be placed inside the crucible compared to
industrial installations. Therefore, its thermodynamic constant is much lower than
in the case of other furnaces. This, in turn, results in a shift of the local mean value
of α visible in Fig. 6.16. At first α is generally closer to 1, but during progressive
heating of the crucible by the arc, the value tends to decrease. The observed behavior
differs from the results connected with other tested installations. However, the
overall approach again has brought improvement in the model accuracy. An example
period of the voltage waveform and the error between simulation and measurement
have been shown in Fig. 6.17. This figure additionally presents boxplots related to
the obtained results. The graph indicates that the range and median error made
have been decreased compared to the classical approach with α = 1. This fact has
been supported by the calculation of the change in error presented in Table 6.4.

Table 6.4: RMSE median for the laboratory EAF fractional model.

α = 1 α = var α = 0.777 α = 0.715

3.50 3.21 3.34 3.33
RMSE change -8.4% -4.8% -5.0%

Apart from the classical case for α = 1 and more general α = var, Table 6.4
includes RMSE error calculated for the constant α chosen based on the procedure
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Fig. 6.15: Histograms of coefficients Kj (j = 1, 2, 3) for the classical case with α = 1
and for the variable α for the laboratory EAF.
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Fig. 6.16: Realization of discrete-time stochastic process of α value for the labora-
tory EAF.
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Fig. 6.17: Exemplary voltage waveform and box plot of RMSE errors of the labora-
tory EAF fitted to the measurement data.

described in Subsection related to the large industrial EAF. Namely, the first value
α = 0.777 is the median of α calculated from the results of the general case with
variable α. The second α = 0.715 is a value characterized by the lowest RMSE
median among other cases investigated by sweep analysis, the results of which have



6.2 - Simulation results and analysis 93

been presented in Fig. 6.18. As shown, every approach including the fractional
order model results in error reduction. The general α = var improves accuracy the
most.
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Fig. 6.18: Relationship of the error median depending on the constant value of the
order α of the applied fractional differential equation for the laboratory
EAF.



Chapter 7

Comparative analysis

The previous chapters have presented several different EAF models, developed based
on three different measurement datasets. They are oriented toward reflecting the
stochastic behavior of EAFs or improving the deterministic part of the model in the
melting stage of the work cycle. The proposed approaches include the following:

• random differential equation model,
• chaotic model,
• artificial neural network models:

– multilayer perceptron model,
– dual multilayer perceptron model,
– modified nonlinear autoregressive exogenous model,
– long short-term memory model,

• fractional order model.

Every of the listed models is characterized with different properties with respect to
the accuracy and range of the reflected features. Previous chapters include not only
details of model development but also the exemplary results related to the model
performance. This section is devoted to comparing these models in terms of their
properties and accuracy measures.

In the application of the EAF modeling, it is especially difficult to objectively
combine and compare models with a wide range of theoretical approaches and in-
cluded features. Because of that, the first stage of the comparative analysis is the
qualitative assessment of the proposed models. Information about their features has
been collected in Table 7.1 below. As shown, only two of the proposed models (RDE
and LSTM) are fully capable of reflecting the deterministic component and the low-
and high-frequency stochastic changes in the EAF waveforms. Other approaches
also have their own advantages related to, e.g. simplicity of the structure. However,
the qualitative assessment is not enough to draw objective conclusions.

The next stage of the comparative analysis is related to the comparison of the
exemplary realizations of the output voltage waveform performed by each of the
models. The waveforms in some cases are only realizations obtained with random
variables and stochastic processes. This means that they cannot be compared di-
rectly. Here, an objective measure of the waveform realizations has been proposed.
Analysis is limited to the large industrial EAF installation, because due to its size
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Table 7.1: Qualitative comparison of the EAF models presented in the thesis.

Model Det.
Low
freq.
stoch.

High
freq.
stoch.

Comment

Power
balance ✕

Power balance equation is the base for other de-
veloped models. It only reflects the deterministic
part of the EAF behavior.

RDE ✕ ✕ ✕

The RDE model is the main framework for devel-
opment of other models. It is based on the assump-
tion that power balance equation kj coefficients
can be represented with stochastic processes Kj,
which enables reflection of low frequency changes
in the EAF model. Additionally another stochastic
process can reflect high frequency stochastic vari-
ations.

Chaotic ✕ ✕

The chaotic model applies optimized chaotic sys-
tems in order to reflect changes of the power bal-
ance equation kj coefficients, therefore also models
stochastic-like low frequency changes retaining de-
terministic background.

MLP ✕

The MLP model is the most basic ANN model
not capable of reflecting any dynamic changes or
hysteresis in the EAF characteristic.

Dual
MLP ✕

The dual MLP model consists of a doubled MLP
structure in order to allow reflection of the V-I
characteristic hysteresis, although it still does not
include any stochastic properties.

M-
NARX ✕ ✕

The M-NARX is a model capable of reflecting dy-
namic changes of the EAF characteristic and hys-
teresis with fairly simple structure, but does not
include any more complex stochastic features.

LSTM ✕ ✕ ✕

The LSTM model is the most complex among the
presented ANN models. It is capable of standalone
reflection of stochastic processes representing Kj

and high frequency variations. Similarly to RDE
it is based on the power balance equation.

Fractional
order ✕ ✕

The fractional model is oriented mainly on the im-
provement of the deterministic part by addition
of the noninteger derivative order. The idea be-
hind this model is similar to the RDE model with
another degree of freedom available - the order of
equation α. Based on that, it could reflect low fre-
quency stochastic changes similarly to RDE.
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Fig. 7.1: Diagram presenting method of data preprocessing for the statistical com-
parative analysis.

and rated power, better modeling accuracy could have the most significant influence
on the circuits considered. In order to avoid direct comparison of the voltage real-
izations, the 10 s long dataset has been divided into periods (related to the 50 Hz
grid frequency). Then every period has been imposed onto one timeframe. A dia-
gram presenting the way of preprocessing of calculated voltage waveforms has been
shown in Fig. 7.1. For each of the n-th corresponding samples taken from every
frame, a distribution ϕn is obtained. A set of N distributions characterizes every
random variable contained in the voltage realization. The distributions ϕn have
been calculated for measurement data as well as for every EAF model considered in
this dissertation. In order to graphically present the effects of this statistical data
characterization, Fig. 7.2 presents waveforms consisting of the mean value of every
ϕn distribution obtained for the EAF models compared to that from measurement
data. Additionally, plots include 95% confidence bounds of these distributions in
order to show their dispersion. As shown, all shallow ANN models have a very lim-
ited ability to reflect proper variations in the shape of the voltage waveform between
simulated periods. On the other hand, stochastic models, especially the RDE and
fractional model, tend to overestimate those variations.

In order to provide an objective quantitative analysis of proposed solutions, for
each pair of distribution ϕn taken from measurement data and a chosen model, a
Cramér-von Mises statistic has been calculated [70]:

W 2(n) = CM(ϕmeas
n , ϕsim

n ), (7.1)

where:

W 2(n) – Cramér-von Mises statistic for distributions of n-th sample taken from the
measurement data and selected model,

ϕmeas
n – distribution of n-th sample taken from measurement data,

ϕsim
n – distribution of n-th sample taken from data simulated by the selected model.
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Fig. 7.2: Comparison between the averaged realizations of the output voltage of the
developed models, the output of a model with constant coefficients kj ( [28]
and [23]) and the measurement data.
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Calculations of this measure have been repeated for each of the N samples in the
frame. This way, a series of W 2 statistics has been obtained, representing quality of
reflection of the modeled voltage variability with respect to the real measurement
data. Those series calculated for all models developed in this dissertation have been
presented in Fig. 7.3. Lower values of W 2 indicate better conformity between mea-
surement and simulated distribution. As shown, around signal zero crossings (0, 10
and 20 ms), the conformity is the best, however this feature is reflected similarly by
every model. More informative data is presented between zero crossings, indicating
that the shallow ANN models and constant coefficient model proposed by Ozgun and
Abur in [28] are characterized by the largest discrepancies with respect to the mea-
surement data. A second constant coefficient model proposed by Grabowski in [23]
has lower discrepancies, but is visibly worse than the remaining models proposed in
this dissertation, which include stochastic properties.

In order to further analyse the previous results, a single-valued measure has been
proposed as a median of W 2 statistic time sequence, calculated for every model. A
bar plot with obtained values has been presented in Fig. 7.4. The results confirm
previously stated dependencies. The constant coefficient model proposed by Ozgun
and Abur in [28] is characterized by the worst accuracy. Next, the group of shallow
ANN models and the constant coefficient model by Grabowski from [23] have bet-
ter, similar accuracy. The best performing models belong to the stochastic models
developed in earlier Chapters of this dissertation, i.e. RDE, chaotic, fractional, and
LSTM models.

Another very important factor relevant in comparative analysis is the computa-
tional power required for the development and usage of the models. It is especially
important from the point of view of target simulation software, which can have
limited resources or available libraries. Furthermore, industrial applications, espe-
cially embedded solutions, are even more dependent on these parameters. Due to
this, the models proposed in this thesis have been subjected to an analysis of the
computational resources required. The first parameter investigated was the size
of the model in software memory, which is proportional to the complexity of the
model structure and the size of the auxiliary variables or functions required for
its functionality. What is important is the fact that the calculated memory usage
included all the additional variables related to the development of the models, in-
cluding, target datasets for ANN models or auxiliary variables obtained through
the data pre-processing stages. The second important parameter is related to the
computation time. Because, for some models, their parameters change between
consecutive periods, some calculations are performed only with an interval of those
periods, while the others are needed at each timestep. The time estimated here is
the CPU time elapsed during generation of a 10 s long output voltage waveform,
divided by the number of obtained samples. In this way, the final value is the av-
erage time spent on the computation of a single output voltage sample, regardless
of the simulation stage. All models have been designed and evaluated in Matlab
software, and the computing infrastructure included a portable computer with an
Intel Core i7 processor (4 cores, 1.8 GHz), 16 GB RAM, and the Windows 10 oper-
ating system. Some of the calculations related to the development stage, especially
for the purpose of optimization of the model structure, have been computed by the
high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet
AGH), however, the comparison of computation time has been done using only data
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Fig. 7.3: Time series of Cramér-von Mises statistic illustrating divergence between
distributions of samples taken from measurement data and a given model.
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Fig. 7.4: Bar plot comparing median of W 2 statistics obtained for all considered
EAF models.

from the aforementioned portable computer. The results have been presented in Fig.
7.5. As shown, the fractional, RDE and MLP models significantly outperform the
others in terms of both computation time and used memory. The highest memory
usage characterizes the M-NARX model because of additional preprocessing stages,
recalculation of the arc’s conductance, and filtering of the outliers. The longest
computational time of the dual MLP model seems counterintuitive, but is related
to the need to check the criterion of the current derivative, whether to use the first
or the second MLP model. The best overall model is the RDE model.

On the basis of all the results provided in this Chapter, a selection of the suitable
model for further implementation has been made. The goal of this research is to
equip electrical engineers around the world with a tool to simulate EAFs, with the
ability to reflect the stochastic phenomena that occur in power systems with such
loads. The simulation tool that has been chosen for this purpose is the EMTP-ATP
program, which is a very popular software for circuit simulation. It is often used
for research purposes, as well as for direct industrial applications. However, the
software has limitations. The main idea of this research was not only to develop the
EAF model, but also to implement it directly into the target software so potential
users would not have to install additional libraries, components, and establish new
dynamic links or connections with other external software. Taking this into account,
the three main aspects of the comparative analysis have been considered:

• capability of reflecting the stochastic phenomena,
• model accuracy,
• required computational power and required resources.

In case of the first aspect (see Table 7.1), the whole spectrum of both low frequency
and high frequency stochastic changes is reflected only by the LSTM and RDE
models. For model accuracy, the RDE, LSTM, fractional and chaotic models are
leading. Furthermore, the simple incorporation of the variable coefficients kj leads
to an improvement in the representation of the voltage waveform by almost 30%
(see Table 3.1). Lastly, in terms of computational resources, the best models are
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Fig. 7.5: Comparison between the average computation time and memory used for
the development and use of the proposed models.

fractional RDE and MLP. Based on the information above, the factor by which
the RDE model outperforms others in terms of computational power, including
stochastic features and relatively good accuracy, as well as structural simplicity,
results in the conclusion that it is the one which should be implemented in the
EMTP-ATP simulation software. The details of the implementation procedure and
its results are presented in the next Chapter.



Chapter 8

ETMP-ATP EAF model

This Chapter is devoted to the implementation of the RDE model of the EAF
selected based on the analysis presented in Chapter 7. The target software was
selected to be ETMP-ATP, which is a world-known and very popular program for the
simulation of electrical circuits. Among the advantages related to the application of
this software is its flexibility to model circuits, starting from small topologies all the
way up to large power systems. Additionally, this program’s version is free-licensed,
which makes it available to anyone interested. Although not commercial, several
groups of users exist which contribute to the further development of software, share
knowledge, and provide support (e.g. the European EMTP-ATP Users Group).
This program is used by various companies and institutions and is often applied not
only for industrial purposes but also for scientific research. On the other hand, the
software also has limitations, especially related to the components available in the
libraries and capabilities of add-ons extending the properties of existing elements.
Fortunately, the program has been equipped with a component where the user can
add a code that performs all the previously assumed features. The language applied
in this software is called MODELS language and provides functionalities similar to
other popular high-level programming languages [71], [72]. In this way, the model
introduced in this thesis, initially developed as a Matlab code, can be translated and
implemented in the EMTP-ATP software. The approach presented in this Chapter
has been the subject of a conference publication that was presented during the
European EMTP-ATP Users Group meeting [45]. Details of the implementation
have been provided in the following sections.

8.1 Implementation of the RDE model
The selected EAF model has been implemented in the EMTP-ATP software follow-
ing a definition provided in Chapter 3. Similarly, the model implemented consists
of three main structural blocks, the deterministic part, low frequency stochastic
changes and a high frequency addition. Arc resistance was represented with a non-
linear resistor, whose value would change at each solver step. It follows the governing
equations coded in the MODELS language. These assumptions impose the need to
implement the equations of Chapter 3 in such a way that the resistance to the arc
would be their output variable.

For the purpose of RDE model implementation, the same auxiliary variable y as
introduced in Chapter 6 has been used. In this way, the deterministic part would



8.1 - Implementation of the RDE model 103

be reflected directly in the EMTP-ATP software by solving the following differential
equation:

dy(t)
dt

= −βy(t) + f(t). (8.1)

However, the overall model output should be the arc resistance, which in this case
is only the deterministic component of the arc resistance, denoted as Rp, since it
originates from the power balance equation:

Rp(t) =
k3√
y(t)

, y(t) ≥ 0. (8.2)

The above deterministic part is supplied with kj coefficients that change from period
to period, which consist of the low frequency stochastic part. The exact changes
are calculated on the basis of the discrete-time stochastic processes representing the
auxiliary k̂j coefficients, as identified in the previous chapters.

To independently generate those values in a model, the identified stochastic
processes had to be implemented in the MODELS language. The language is flexible
and convenient for the user, but the entire implementation had to rely only on
the built-in random number generator, which generates a random number from
the uniform distribution U(0, 1). The rest of the stochastic properties had to be
implemented by the user manually.

8.1.1 Representation of K̂1

The stochastic process representing changes in coefficient k̂1 has been identified as
the ARIMA(1,1,2) process with residuals following a hyperbolic secant distribution
and a shift - see Chapter 3. Moreover, the distribution was reshaped with a Box-Cox
transformation [53]. Here, the ARIMA process was implemented as follows [51]:

Yt = Yt−1 + AR1(Yt−1 − Yt−2) + ϵt + ϵt−1MA1 + ϵt−2MA2, (8.3)

where:

Yt – ARIMA sample in discrete timestep t,
AR1 – autoregressive component coefficient,
MA1,MA2 – moving average component coefficients,
ϵt – innovations following a hyperbolic secant distribution in timestep t.

Innovations ϵ following hyperbolic secant distributions have been generated using
an inversion method. In this way, a random number p from the universe distribution
U(0, 1) is applied as an argument for the inverse CDF of the hyperbolic secant
distribution. The output variable then follows this exact distribution [52]. That is,

ϵt = µϵ +
2σϵ

π
ln
(
tan

(π
2
pt

))
, (8.4)

where:

µϵ – mean of the hyperbolic secant distribution,
σϵ – standard deviation of the hyperbolic secant distribution,
pt – random value of the uniform distribution U(0, 1) at time t.
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Eventually, the value of k̂1 can be calculated using the reverse Box-Cox trans-
formation:

k̂1,t = (λYt + 1)
1
λ , (8.5)

where:

λ – Box-Cox transformation parameter.

8.1.2 Representation of K̂2

The second stochastic process that has been identified in the EAF model in Chap-
ter 3 was the one that represents the changes of k̂2. It was a white noise process
with a mixed shifted Weibull distribution with two components. The effect of the
combination of two different components was achieved with the auxiliary random
variable ps of uniform distribution U(0, 1), which was used as a decision variable.
Drawing a value below a certain threshold leads to generation of a random value
from one Weibull component, while a value above the threshold leads to genera-
tion of a random value from the second Weibull component. The threshold value
reflected the probability of choosing the first component. The Weibull distribution
itself was again implemented using the inverse CDF method, namely:

k̂2,t =

{
µW + a1(ln(1− p))

1
b1 for ps ≤ pthr,

µW + a2(ln(1− p))
1
b2 for ps > pthr,

(8.6)

where:

µW – Weibull distribution shift,
a1, b1 – shape coefficients of the first Weibull component,
a2, b2 – shape coefficients of the second Weibull component,
p – random variable from uniform distribution U(0, 1),
ps – random variable from uniform distribution U(0, 1) used for selection of the

Weibull distribution component,
pthr – threshold value representing probability of selecting the first Weibull compo-

nent, then probability of selecting the second is equal to 1− p.

The last step before solving the actual differential equation is to supply it with
the original three coefficients kj. It is done by applying the constant mean value of k3
calculated from the measurement data and coming back to the original coefficients
of the coefficients k̂j, using:

k1 =
k3

k̂1
, k2 =

k3k̂1

k̂2
. (8.7)

8.1.3 Representation of the high frequency component

As stated previously in Chapter 3, the high frequency component can be represented
with a moving average stochastic process with four components. The process itself
can be described with the following equation:

Vr,t = ϵr,t + ϵr,t−1MAr1 + ϵr,t−2MAr2 + ϵr,t−3MAr3 + ϵr,t−4MAr4, (8.8)
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where:

Vr,t – high frequency component voltage sample in a discrete timestep t,
MA – moving average coefficients,
ϵr,t – innovation in timestep t.

The innovations in this particular process follow a normal distribution and have
been generated using the Box-Muller method, which applies two independent ran-
dom variables from a uniform distribution U(0, 1) [52]. The equation takes the
following form:

ϵr,t = MAvar

√
−2 ln(u1) cos(2πu2), (8.9)

where:

ϵr,t – innovation with normal distribution in discrete timestep t,
MAvar – scale coefficient for generated innovations,
u1, u2 – uniformly distributed random values from U(0, 1).

These equations allow for calculation of the high frequency component voltage.
However, the model implemented in EMTP-ATP requires information about the
arc resistance value. This results in the necessity of transformation of the high
frequency voltage component into a component with resistive character. An EAF is
a nonlinear object, however this component is implemented assuming a linearization
at the operating point at given t. Thus, the resistance calculated from the differential
equation and the high frequency resistive component are simply summed. The
resistance related to the high frequency component can then be calculated as:

Rr,t =
Vr,t

iarc,t
, (8.10)

where:

Rr,t – high frequency resistance component at timestep t,
iarc,t – arc current at timestep t.

The global EMTP-ATP solver timestep can often be too small for the high fre-
quency component to be generated each time. This could cause inaccuracies in the
final results. As shown in previous research related to the high frequency compo-
nent [39], a suitable sampling time is equal to ∆tr = 1.25 ·10−4 s. To ensure that, for
different ATP solver timesteps, the correct results are obtained, an additional proce-
dure has been introduced. The main idea is to provide the appropriate intermediate
steps of Rr,t between the larger ATP timesteps. Fig. 8.1 presents the relationship
between consecutive time steps of the ATP solver with regard to ∆tr. The graph
also presents how voltage samples are calculated between two consecutive ∆tr steps,
based on the linear approximation. Firstly, a simplified derivative of high frequency
component voltage is calculated using:

dVr,t =
Vr,t − Vr,t−1

∆tr
, (8.11)

where:

∆tr – fixed timestep of the high frequency component,
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Fig. 8.1: Graphical explanation of the intermediate calculation of the high frequency
voltage component in EMTP-ATP.

Next, for each ATP timestep the currently used value of Vr,t is corrected by
adding a component equal to the product of derivative dVr,t and the current ATP
timestep:

V ∗
r,tATP

= V ∗
r,tATP−1 + dVr,t∆tATP . (8.12)

The value computed from the above equation is then used to calculate the cor-
rected high frequency resistance component. The last step is to sum both compo-
nents, which results in the following relationship.

Rarc(t) = Rp(t) +Rr(t) = Rp(t) +
V ∗
r (t)

iarc(t)
, (8.13)

where:

Rarc(t) – overall resistance of the arc at time t,
Rp(t) – component of the resistance of the arc originating from the power balance

equation (both deterministic and low frequency stochastic components at time
t),

Rr(t) – resistance of high frequency stochastic components at time t.

For a complete model including the stochastic components mentioned above, the
resistance Rarc(t) is a realization of a stochastic process describing the resistance of
the arc.

The numerical stability of such a model could be disrupted by changes of high
frequency components in the area near the origin of V-I characteristic coordinate
system. To ensure its stability, an additional weighting factor has been applied.
It consists of a multiplicative variable that reduces the value of the Rr component
around the current zero crossing. The level of such a reduction can be adapted by
adjusting the value of the current threshold Ithr. The whole expression for the arc
resistance with the weighting factor is as follows:

Rarc(t) = Rp(t) +Rr(t) tanh(Ithr|iarc(t)|). (8.14)
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8.2 Simulation results and analysis
All of the equations presented in the previous section have been implemented directly
in the MODELS language in the code governing the appropriate nonlinear resistor.
In EMTP-ATP it is a nonlinear resistor with resistance controlled externally, e.g. by
code calculated at each timestep. The results provided in the following subsections
arise from the calculation of the expected resistance computed by the MODELS
language solver. For the purpose of performance analysis, the output arc voltage
has been presented instead of the resistance itself, based on the following equation:

ṽarc(t) = Rarc(t)iarc(t), (8.15)

where:

ṽarc(t) – estimated arc voltage,
Rarc(t) – arc resistance calculated using MODELS code,
tarc(t) – arc branch current measured by the built-in EMTP-ATP component.

8.2.1 Single-phase model

The single-phase model directly reflects the equations describing the arc model be-
cause the power balance approach itself is designed to reflect the behavior of a single
arc. In the EMTP-ATP software, a simple test circuit has been designed. It con-
sists of a voltage source, resistance, and inductance that simulate the influence of
busbars, flexible cables, and the arc model. The arc model itself consists of three
crucial elements: a current-measuring component, a general MODELS block, which
takes the current measurement as an input and computes desired arc resistance as
output, and finally the nonlinear resistor controlled by the MODELS block output.
The single-phase model topology has been presented in Fig. 8.2. As can be noticed,
there is an additional resistor between the nonlinear resistor node and the ground.
It is related to the simplifying assumptions that the single phase arc can exist inde-
pendently from the remaining EAF phases 1, which would contribute to the overall
resistance through which the current would flow.

It was assumed that R and L in the source branch had values: 0.33 mΩ and
7.18µH as in the primary dataset for the large industrial EAF. The parameters of the
voltage source are 718 V RMS and 50 Hz. Figs. 8.3-8.5 present a set of exemplary
results generated by the model with only a deterministic part, deterministic and
global stochastic, and deterministic and both stochastic parts, respectively.

8.2.2 Three-phase model

The single-phase model presented in the previous subsection can be directly used
for the development of a three-phase version. In that case, the model structure has
to be tripled for each branch to model each of the three arc columns. The branches,
of course, have a common coupling point in the node that represents the melting
load. The parameters of the flexible cables have also been duplicated. The whole

1This assumption has been made in order to allow analysis of a single phase of the EAF circuit.
However, in a real three phase device, where transformer secondary windings are connected in delta
configuration, a single phase arc cannot exist.
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Fig. 8.2: Single phase EAF circuit constructed in EMTP-ATP.

Fig. 8.3: Voltage and V-I characteristic of the deterministic part of the model im-
plemented in EMTP-ATP.

Fig. 8.4: Voltage and V-I characteristic of the deterministic and low frequency
stochastic component of the model implemented in EMTP-ATP.

Fig. 8.5: Voltage and V-I characteristics of the deterministic stochastic components,
both low- and high-frequency, of the model implemented in EMTP-ATP.
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test circuit has been shown in Fig. 8.6. The results containing the estimated arc
voltage, as well as the measured current and V-I characteristic in each phase, have
been presented in Figs. 8.7 and 8.8.

Fig. 8.6: Three-phase EAF model constructed in EMTP-ATP.

Fig. 8.7: Output voltage (left graph) and measured current (right graph) of the
three-phase EAF model implemented in EMTP-ATP.

8.2.3 Model validation

The performance of the arc model implemented in EMTP-ATP software has been
validated using a single phase model. Comparison of the resistance calculated by
the MODELS code with the resistance of the nonlinear resistor presented in Fig. 8.2
calculated based on the ATP measurement variables indicated its consistency. The
graphical representation of this comparison has been shown in Fig. 8.9. For the
sake of clarity, the high frequency component has been disabled leaving only the
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Fig. 8.8: V-I characteristics for each of the phases of the three-phase EAF model
implemented in EMTP-ATP.
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Fig. 8.9: Arc resistance calculated by MODELS block (green line) compared to arc
resistance calculated on the basis of the EMTP-ATP results (red line).

low frequency component active. The plot presents stochastic realization of arc
resistance in a single phase model.

The entire ATP code of the single phase model has been placed in the Appendix
in order to provide the details leading to the implementation of the proposed EAF
model in the EMTP-ATP software.
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Conclusions

EAFs are often listed as one of the most disturbing loads in electrical engineer-
ing. Their random and unpredictable behavior, along with the strongly nonlinear
characteristic of the arc phenomenon, results in their significant influence on power
systems and power quality. Moreover, a large proportion of the worldwide steel
production use EAFs, so the consequences of their use are far from negligible. As
previously stated in the Introduction, many industrial applications, from the de-
sign stage of facilities, through operation, to the design or control of power quality
improvement systems, require an accurate model of the phenomena occurring in
the EAFs. Simplified, deterministic-only models are not capable of reflecting some
stochastic phenomena that are observable in real installations. This thesis has pre-
sented the development of several new EAF models, especially oriented toward the
possibilities of the incorporation of stochastic behavior into those models. Various
theoretical approaches have been investigated. The research included the devel-
opment of the models based on three different, real EAF measurement datasets,
investigation of the numerical results, and multi-aspect comparison. A single model
selected by means of the comparative analysis has been implemented directly in
the time domain simulation software: EMTP-ATP. The code of the EAF model
implemented using dedicated MODELS language has been presented in the thesis
Appendix, making it available to all the interested parties.

The research presented in this thesis is fully supported by real measurement data.
All of the proposed approaches have been tested by applying them to calculations
based on three different measurement datasets. These datasets consisted of single
phase current and voltage measured in differently sized EAFs. The first was a large
industrial furnace, the second a smaller industrial furnace, while the last was the
smallest, laboratory scale furnace. For every dataset, the point of interest was the
melting stage of the EAF work cycle. This was related to the fact that while the
furnace’s load is still not liquid, the arc can behave the most randomly and its
characteristic is highly nonlinear. This results in the worst impact on the power
quality of the power system among all the remaining stages. The small industrial
EAF and laboratory version measurements have been personally carried out by
the author for the purpose of this analysis. In addition, a laboratory station has
been constructed, especially for comparative analysis with industrial furnaces during
doctoral research.

All of the proposed methodologies are based on a well-known model of electric
arc power balance. The model is suitable for the simulation of behavior of a single
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arc. Instantaneous power balance with definitions based on the arc current and arc
column radius are combined into this differential equation. Each of the equation
expressions has its own proportionality coefficient. In this thesis, the first proposed
model assumes a representation of those coefficients (which often are considered
constant) with stochastic processes instead of their constant values. Due to this,
the error RMSE between the voltage calculated from the RDE model and the mea-
surement data has decreased compared to the error based on the voltage calculated
with constant coefficients. The error was reduced by approximately 30%, 40% and
70% for a large industrial furnace, a small industrial furnace, and a laboratory fur-
nace, respectively. The RDE model introduced in Chapter 3 includes a detailed
identification of the stochastic processes based on the realizations estimated from
the measurement data.

The next covered model relies similarly on the coefficients of the power balance
equation variable in time. In this case, however, their changes have been appropri-
ately represented with optimized chaotic signals. As chaotic systems are relatively
popular in various scientific branches, in this Chapter, four different systems have
been compared: Chua, Lorenz, Ros̈sler and four-wing attractor systems. The best
results of the EAF modeling have been obtained for the combination of the Lorenz
and four-wing attractor system.

Another way to model EAFs is by applying ANNs. This thesis includes the
development of several different ANN models based on shallow and deep learning
networks. Among shallow models, very simple MLP and dual MLP have been
introduced, but they are not capable of reflecting any stochastic changes of the EAF
characteristic. The only shallow model that included dynamic changes was the
M-NARX model. The application of deep learning methods with LSTM networks
has been required to accurately model stochastic changes in the wide frequency
spectrum.

The last proposed model has been focused on improving the deterministic part
of the power balance equation by introducing a novel fractional order operator into
it. The addition of another degree of freedom allowed a better reflection of the EAF
characteristic. What is interesting is that the best results have been obtained on
the order of approximately 0.6, 1.2 and 0.8 for large industrial, small industrial, and
laboratory furnaces, respectively. These results suggest that the size of the EAF
influences the value of α.

All of the proposed approaches have been compared using the data averaged
throughout 10 s long waveforms in order to avoid errors of direct comparison of
realizations of stochastic processes. The computational resources needed for the
development and operation of each model have also been analyzed. Additionally,
the qualitative assessment has been done, emphasizing the range of features which
a given model can reflect in comparison to real observable phenomena. The level
of accuracy of the models is strongly related to the fact that, although large, the
datasets are still limited. The amount of information is enough for the development
and accurate application of the models, however it does not cover every possible
scenario. The proposed models are limited to the representation of the melting
stage only. On the basis of the possible power quality issues, this stage is of the
main interest for the simulation, but it is necessary to note that other stages are not
covered. Furthermore, the proposed models assume that the coefficients kj are not
correlated with each other. In reality, such a correlation exists. Therefore, future
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research following this thesis should first focus on investigating this effect. The
application of all of the proposed methodologies to measurement data originating
from differently sized furnaces proves their versatility. Although the range of results
obtained differs, the same features occur in all sets of results. As a consequence, the
same methods can be applied to accurately model installations of different sizes.

The proposed solutions consist of data driven models, which have been devel-
oped on the basis of three selected real installations. It is important to mention
that although all of the presented approaches resulted in an accurate reflection of
the modeled object, these models are not universally parameterized in the sense of
scalability to other, not investigated furnaces. The analysis indicated that differ-
ent furnaces exhibit similar stochastic features, but further research should focus
on the analysis of possible universal scalability rules applicable to developed solu-
tions. Determining such rules would allow modeling of any given EAF based on the
proposed approaches. However, such an extended investigation would require many
more measurement datasets and access to different EAFs. The most informative set
of measurement waveforms would have to include not only datasets from differently
sized furnaces, but also multiple datasets from installations with comparable rated
power. Moreover, even in one particular EAF, different smelting processes can be
characterized by slightly different features due to the influence of melted metal.

Based on the comparative analysis conducted, drawing conclusions from vari-
ous aspects of the performance of the models, the RDE model has been selected
as the most suitable for implementation in the EMTP-ATP software. Appropriate
numerical methods developed in the dedicated MODELS language allowed direct
implementation of the stochastic processes and differential equation governing this
model. The exact nature of the model was a nonlinear controlled resistor, the re-
sistance of which is provided by the computation of implemented code, based on
the measured branch current. The calculations are carried out repeatedly for each
timestep, updating the resistance value each time. The calculations themselves accu-
rately reflect not only the deterministic component, but also low- and high-frequency
stochastic variations of the EAF characteristic. The code has been presented in the
Appendix, in order to make it freely available to anyone interested in modeling the
circuits with EAFs.

Among the most significant original achievements of this thesis are:

• introduction of the variable coefficients kj reflecting the stochastic changes of
the EAF characteristic, resulting in significant accuracy improvement, instead
of implementing a new random variable without a physical interpretation,

• application of an optimization of chaotic systems in terms of their parameters
and sampling frequency to the measurement data to reflect the stochastic
changes of the power balance equation,

• development of a novel M-NARX and LSTM models of EAF, which allow
reflection of dynamic changes or whole stochastic features, respectively,

• improvement of the deterministic component of the arc model by novel in-
troduction of the fractional order differentiation into the ordinary differential
power balance equation,

• multi-aspect comparative analysis of all of the proposed approaches resulting
in selection and implementation of the RDE model into the circuit simulation
software used worldwide - EMTP-ATP,
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• design and construction of the laboratory stand for measurements and analysis
of electric arc phenomenon.

Taking into account all the above points, it can be concluded that the aims of this
thesis presented in the Introduction have been reached and the stated hypotheses
can be considered as positively verified.
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Appendix - EMTP-ATP code

BEGIN NEW DATA CASE
C --------------------------------------------------------
C Generated by ATPDRAW styczen, poniedzialek 30, 2023
C A Bonneville Power Administration program
C by H. K. Hoidalen at SEfAS/NTNU - NORWAY 1994-2016
C --------------------------------------------------------
C dT >< Tmax >< Xopt >< Copt ><Epsiln>

1.E-6 .1 60. 60. 1.E-12
500 1 1 1 1 0 0 1 0

C Proposed single-phase EAF model based on random differential equation

/MODELS
MODEL EAF1p

-- Default variables implemented in the EAF model

DATA global {dflt:0}
local {dflt:0}
k3 {dflt:31.6300}
lambda {dflt:-0.1113}
AR1 {dflt:0.7627}
MA1 {dflt:-0.8135}
MA2 {dflt:-0.1556}
mu_ARIMA {dflt:-7.8668}
mu_eps {dflt:-0.0002}
sigma_eps {dflt:0.2918}
p_thr {dflt:0.7651}
a1 {dflt:0.0079}
b1 {dflt:1.2780}
a2 {dflt:0.0301}
b2 {dflt:3.2092}
mu_W {dflt:0.0033}
MAr1 {dflt:-0.4170}
MAr2 {dflt:-0.5210}
MAr3 {dflt:-0.1400}
MAr4 {dflt:0.0860}
MA_var {dflt:14.2370}
dt_r {dflt:1.25e-4}
I_thr {dflt:0.01}

INPUT Iarc
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OUTPUT Rall, Varc_est

VAR Rall
y
Iarc2
k1_hat, k2_hat
k1, k2
Yt[1..3], eps[1..3], Yt_s
p
Varc_est
v_r[1..2], epsr[1..5], t_r, u1, u2, dv_r, v_r_star

HISTORY
y {dflt:1}
Iarc2 {dflt:0}
Rall {dflt:1e8}

INIT
Rall:=1e8
Yt[1..2]:=0
eps[1..2]:=0
k1:=2523.8
k2:=9.22
k1_hat:=0.0037
k2_hat:=0.0125
epsr[1..5]:=0
t_r:=0
v_r[1..2]:=0
dv_r:=0
v_r_star:=0

ENDINIT

EXEC

-- Part of code responsible for calculation of arc resistance including the
↪→ stochastic components

IF global=1 THEN
IF prevval(Iarc)*Iarc<=0 AND prevval(Iarc)<0 THEN

eps[3]:=mu_eps+(sigma_eps*2/pi)*ln(tan((pi/2)*random()))

Yt[3]:=Yt[2]+AR1*(Yt[2]-Yt[1])+MA1*eps[2]+MA2*eps[1]+eps[3]
Yt_s:=Yt[3]+mu_ARIMA
k1_hat:=(lambda*Yt_s+1)**(1/lambda)

eps[1]:=eps[2]
eps[2]:=eps[3]
Yt[1]:=Yt[2]
Yt[2]:=Yt[3]

p:=random()
IF p<=p_thr THEN
k2_hat:=a1*(-ln(1-random()))**(1/b1)

ELSE
k2_hat:=a2*(-ln(1-random()))**(1/b2)
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ENDIF
k2_hat:=k2_hat+mu_W

k1:=k3/k2_hat
k2:=k3*k1_hat/k2_hat

ENDIF
ENDIF

t_r:=t_r+timestep
IF t_r>=dt_r THEN
t_r:=0

u1:=random()
u2:=random()
epsr[5]:=MA_var*sqrt(-2*ln(u1))*cos(2*pi*u2)

v_r[2]:=epsr[5]+epsr[4]*MAr1+epsr[3]*MAr2+epsr[2]*MAr3+epsr[1]*MAr4
dv_r:=(v_r[2]-v_r[1])/dt_r
v_r_star:=v_r[1]

v_r[1]:=v_r[2]

epsr[1]:=epsr[2]
epsr[2]:=epsr[3]
epsr[3]:=epsr[4]
epsr[4]:=epsr[5]

ENDIF
v_r_star:=v_r_star+dv_r*timestep

Iarc2:=Iarc*Iarc
LAPLACE(y/Iarc2):=((4*k3/k2)|)/((4*k1/k2)| + 1.0|s)

IF local=1 THEN
Rall:=k3*recip(sqrt(y))+((v_r_star)/Iarc)*tanh(I_thr*abs(Iarc))

ELSE
Rall:=k3*recip(sqrt(y))

ENDIF

Varc_est:=Rall*Iarc

ENDEXEC
ENDMODEL

-- Usage of the EAF model in ATP circuit

USE EAF1p AS DEFAULT
INPUT
Iarc:= MM0001

DATA
global:= 1.
local:= 0.0
k3:= 31.63
lambda:= -0.11134
AR1:= 0.7627
MA1:= -0.8135
MA2:= -0.1556
C:= -7.86682
mu:= -1.81E-4
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sigma:= 0.291776
pW:= 0.765095
aW1:= 0.00789
bW1:= 1.278046
aW2:= 0.030121
bW2:= 3.209155
Wshift:= 0.00335
MAr1:= -0.417
MAr2:= -0.521
MAr3:= -0.14
MAr4:= 0.086
MAvar:= 14.237
v_rip_dt:= 1.25E-4
I_threshold:= 0.1

OUTPUT
RARC:=Rarc
Vest:=Varc_est

ENDUSE
RECORD
RARC AS RARC
VEST AS VEST

ENDMODELS

C Beginning of ATP circuit definition

/BRANCH
C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><><>0
91VARC VRARC TACS RARC 2
VARC VRARC NAME PHASOR 10.
XX0001XX0002 .000337.2E-6 0
VRARC 1.E-8 0

C Additional resistor defined above between the arc resistance and the ground
↪→ influences the final results. Its value should be considered during the
↪→ design of a final model with respect to the real contact resistance that
↪→ may exist in the modeled object

/SWITCH
C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type >
XX0002XX0003 MEASURING
XX0003VARC MEASURING 1

/SOURCE
C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
14XX0001 1015.4 50. -1. 100.
/OUTPUT
VARC

BLANK MODELS
BLANK BRANCH
BLANK SWITCH
BLANK SOURCE
BLANK OUTPUT
BLANK PLOT
BEGIN NEW DATA CASE
BLANK
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