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1. Introduction

For a drug to be effective, it must not only have the right concentration, but it must also have

the ability to bind to the target molecule. One of the most commonly used selection criteria in drug

design is the equilibrium binding affinity of a small chemical molecule (the ligand) to its molecular

target (the receptor). This affinity is a measure of the persistence of the binding and the strength of

the effect of the ligand on the receptor. Ligand potency is an important determinant of ligand

activity. This parameter defines the potential of a ligand to efficiently activate a receptor for the

production of a strong response in vivo. Thus, affinity is a measure to quantify the efficacy of a drug

and to determine the benefit of the interactions that occur between the drug molecule and its target.

Therefore, drug design protocols are mainly based on molecules with high binding affinity. However,

this approach does not always translate into higher drug efficacy under in vivo conditions because

many drugs have non-equilibrium binding properties. Besides pharmacokinetic properties, binding

and dissociation rates of drugs can be measured to predict their biological activity profile under in

vivo conditions (Copeland 2016, Vauquelin 2016). The concept of drug residence time in a molecular

target has also been introduced, which takes into account the conformational dynamics of target

molecules that affect drug binding and dissociation. One important observation is that this time is

sometimes better correlated with in vivo drug effectiveness than binding affinity (Copeland et al.

2006). Therefore, ligand residence time at the target site (τ) has become a reliable determinant of

drug efficacy that is considered along with reaction kinetic parameters in drug discovery programs.

However, it is important to keep in mind that the use of residence time as the sole measure of drug

efficacy can be a limited picture of reaction kinetics (Folmer 2018).

A substrate-ligand (L), which is a small chemical molecule that is acted upon by an

enzyme-receptor (R), begins the series of successive biochemical reactions that occur in the cell.

When the ligand (molecule that is the initial stimulus) meets a specific protein receptor, cellular

pathways are initiated outside the cell. The molecules come in tightly matched pairs. The receptor

recognizes only one (or a few) specific ligands, and the ligand binds only one (or a few) target

receptors. When the ligand binds to the receptor, the shape or activity of the receptor changes,



allowing it to transmit a signal or to directly induce a change in the cell. For example, the drug

ibuprofen, one of the most widely used analgesics, antipyretics, and anti-inflammatory drugs, is a

non-selective inhibitor of cyclooxygenase (COX), the enzyme responsible for converting fatty acids to

prostaglandins, and belongs to the NSAID (non-steroidal anti-inflammatory drugs) group of drugs.

Prostaglandins are substances involved in the inflammatory process. Inhibition of COX leads to the

blockade of prostaglandins. By reducing the production of prostaglandins, ibuprofen is expected to

reduce the fever and pain associated with inflammation. However, it should be noted that blocking

the COX enzyme has side effects. This enzyme has very important beneficial functions in the body,

such as protecting the stomach lining. Therefore, long-term use of COX inhibitors is associated with

adverse effects on the stomach and intestines.

Understanding and fully describing receptor-ligand (RL) binding kinetics, as well as the

molecular determinants of this fit, is an important part of drug design.

Residence time is a measure of how much time a ligand spends at a protein binding site. In

other words, it is the residence time of a drug at a given target site. A drug is pharmacologically active

as long as it remains bound to the receptor. Thus, residence time is defined as the inverse of the

dissociation rate constant τ = 1/koff. This means that the concentration of a ligand does not affect its

residence time in the target, and drugs with long residence times can remain bound even when their

concentration falls below the equilibrium dissociation constant Kd. This is particularly important

when the drug is cleared from the body, resulting in variable in vivo concentrations. The residence

time model is described by a two-step model of binding kinetics that accounts for conformational

changes leading to increased molecular complementarity. In this model, a free drug encounters its

target in a conformational state defined by a drug-binding pocket that is suboptimal for the structure

of the drug molecule. The initial binding step is an association process in which a binding complex

(RL*) is formed, which is defined by the association rate constant (kon), dissociation rate constant

(koff), and equilibrium dissociation constant (Kd) (Gabdoulline & Wade 1999, 2022). The initial binding

is followed by another step in which the system must overcome the energy barriers created by

conformational changes in the receptor and ligand so that a new steady state (RL) can be formed in

which the binding pocket adopts a structure that is more complementary to that of the drug

molecule.

Computer methods to determine binding kinetic parameters

With the increasing interest in residence time and the importance of drug binding kinetics at

the target binding site, in silico methods are becoming increasingly important. This is especially true

when commonly used experimental methods are often time-consuming and costly. In addition, the

use of computational methods that predict residence time and characterize reaction kinetics can



support personalized medicine. Patient-specific simulations can speed up a physician's decision to

select the optimal drug from several potential candidates. What's more, such calculations can be

performed on compounds that have not yet been synthesized, which significantly affects the cost and

time of research. It should be noted that the developed in silico methods are based on experimental

data, which can confirm their reliability.

Computational methods for the estimation of residence time and other kinetic parameters

can be divided into two main groups. The first is a set of molecular dynamics methods with improved

sampling. The second are methods based on machine learning, often also using molecular dynamics

simulations.

2. Motivation and Objectives

An important element in the drug design process is the characterization and understanding

of the reaction kinetics of ligand dissociation from the receptor target site. Molecular simulations are

key to describing dissociation pathways, predicting kinetic parameters including residence time, and

defining structural determinants. To observe the occurrence of rare events during the simulation and

to reduce computational complexity, these approaches often use simplifications such as increased

sampling. The use of simplifications results in a simulation that is not as detailed as classical

molecular dynamics. It does not allow to explain with high accuracy the behavior of the system that

occurs on short time scales, such as the rearrangement of atoms in a molecule during the induced

fitting step. This can be seen as a certain limitation of these simplifications. On the other hand,

classical molecular dynamics allows to understand these rapidly occurring important events, but

again it cannot be applied to longer time scales, such as the residence time of a drug in a target,

which can range from a few seconds to even hours. Simulations are also mostly an input for machine

learning-based algorithms, but their accuracy is not stabilized. The motivation behind the work

presented here is the need to develop and apply more efficient and accurate methods to analyze

receptor-ligand binding kinetics.

The purpose of this work is to apply and verify solutions to determine the drug residence

time to investigate whether they can be used regardless of the size of the molecules or protein family,

and to analyze the structural features and interactions in the binding process of InhA protein and its

inhibitors. The research presented here aims to answer the following questions:

- Are there and what are the key receptor-ligand interactions that distinguish long- and

short-resident ligands?

- Is the τRAMD procedure universal and can it be applied to molecules of different sizes and

similarities?

- What is the correlation between relative residence time and experimentally measured?



In addition to answering the above questions, the work has developed two new tools to

support the study of ligand-receptor binding kinetics:

- PDBrt kinetic database publicly available at https://pdbrt.polsl.pl/ and

- tool to automatically analyze the interactions occurring between ligand and receptor during

simulation.

3. Ligand dissociation trajectories from the receptor binding site by τ Random

Acceleration Molecular Dynamics method

τRAMD is an enhanced sampling method for molecular dynamics simulations. It was

developed to calculate the relative residence time of pharmacological compounds in their molecular

targets, as well as to study the dissociation pathway of ligands from receptor binding sites (Kokh et al.

2018). RAMD simulations are performed for receptor-ligand systems immersed in a solvent, where a

small randomly oriented force is applied to the ligand center of mass to accelerate its exit from the

receptor active site. After a given time step, the movement of the ligand is checked. If the change in

position was less than a predefined threshold distance, a random change in force direction occurs.

The simulation ends when the ligand leaves the receptor binding site. This condition is defined by

specifying in the configuration file the distance of the ligand from the binding site that corresponds

to its release. The simulation time depends on the residence time of the ligand in the target. Ligands

with longer residence times take longer to leave the target (simulation time is longer) or require more

force to leave the target within a given simulation time. Furthermore, this method does not require

prior knowledge of the dissociation path or extensive parameterization. The only parameter that

needs to be carefully defined is the magnitude of the force, which should not interfere with the

calculated relative residence times. In other words, special care should be taken to ensure that the

force set is not too high, as this will force the ligand out of the binding site, and thus the estimated

values of the relative residence times for each ligand will be approximate, regardless of the actual

dissociation rate. The characteristics of the method described above make τRAMD not only an

efficient, but also a relatively simple tool for estimating the relative residence times of drugs for

molecular purposes.

In the present study, an analysis of the published results by Kokh et.al was extended to

include the molecule geldanamycin in complex with HSP90. The protocol was then repeated for 11

ligands of the InhA receptor and 1 ligand each of the ENR, EGFR and HIV-1 receptors. The purpose of

the analysis was to test the versatility and reproducibility of the τRAMD method.

For τRAMD simulations, crystallographic structures of HSP90 inhibitor,

HSP90-geldanamycin, InhA inhibitor, ENR-triclosan and EGFR-lapatinib complexes in the bound



state were used as starting structures. The preparation of the molecular models for the simulation

included: protonation of the input systems using the PyMOL tool (Schrodinger & DeLano 2020),

parameterization using the AmberTools package (Case et al. 2022), including assigning partial

charges to individual ligand atoms and changing atom types to those recognized by the Amber

package14, calculating the partial atomic charges of the ligands using the AM1-BCC method (Jakalian

et al. 2000, 2002), neutralizing the charges (adding Na+ or Cl- ions), and immersing the system in a

solvent using the selected force field and generating system topology files. The pmemd tool was then

used to perform energy minimization, heating, and equilibration calculations of the systems (Maier

et al. 2015). The atomic coordinates of the systems generated in this way were used as input for

molecular dynamics simulations performed with NAMD software (Phillips et al. 2020). The 2 ns

simulations considered Langevin dynamics for a fixed temperature (300 K) and pressure (1 atm). The

resulting atomic coordinates and velocities were then used as input for RAMD simulations. The end

of the simulation, and thus the release of the ligand, was observed when the distance between the

center of mass of the ligand and the receptor exceeded 40 Å. If no ligand release was observed within

2 ns, the simulation was stopped. Trajectory coordinates were recorded every 100 fs. For each system,

molecular dynamics simulation steps were repeated 5 times using NAMD software, which was treated

as start files for τRAMD. A set of 10 dissociation trajectories was generated from each start file,

resulting in a total of 50 dissociation simulations for each system. Following the published procedure,

the residence time was defined as the simulation time required to dissociate the ligand in at least

50% of the trajectories. For each simulated replicate, a bootstrap procedure was used to calculate the

transient residence time as the mean of the (tr) distribution. The correct relative residence time was

then estimated as the average of all simulated repetitions for a given system.

Application for HSP90 protein inhibitors

The published application of τ-RAMD to a set of 70 HSP90 ligands with different chemical

compositions showed that for 55 of them, there is a strong correlation between the average length of

the dissociation trajectory (τcomp) and the experimentally measured residence time. Furthermore, it

was observed that there is a correlation between τcomp and the experimentally determined residence

time for congeneric, i.e. structurally similar, sets of ligands. It was concluded that τRAMD is an

efficient computational method with broad applicability for improving the residence time of a drug

target.

To verify the reproducibility of the results and thus the reliability of the method, analysis

using the τ-RAMD protocol was performed for 15 HSP90 inhibitors, 14 of which are included in the

published data set and 1 of which was not analyzed by the method authors. All compounds tested



were crystallized in the inhibitor-HSP90 complex and the molecular models are publicly available.

This means that the exact same initial structure can be used for testing.

The results obtained are visualized in a scatter plot on a logarithmic and ordinal scale (Figure

1) with the linear fit performed. The black line shows the linear regression of all points except the

gray area, which indicates the region within the residual standard deviation of the linear fit

calculated with a confidence threshold of 0.95. The error bars show the standard deviations of the

calculated residence times.

The correlation of the data was determined by Pearson's coefficient. For the published results

(Fig. 1 a,b) it is R2=0.86, indicating a very strong correlation between calculated and experimental

data. For repeated simulations of exactly the same systems (Fig. 1 c,d), which were published, the

correlation coefficient was R2=0.4, indicating a moderately positive relationship. In contrast, the data

with the additional complex (Fig. 1 e,f) can be described as weakly correlated, since the correlation

coefficient is R2=0.2.



Figure 1: Correlation plot of τcomp with τexp on a logarithmic (left) and ordinal (right) scale for (a, b) 14

HSP90 inhibitors and published results (c, d) 14 HSP90 inhibitors and simulation repeat results (e, f)

15 HSP90 inhibitors.

Application to InhA protein inhibitors

The τRAMD analysis was performed on a set of 10 InhA protein ligands. The correlation of

the data was determined by Pearson's coefficient, which has a value of R2=0.68, indicating a strong

correlation between calculated and experimental data.

Figure 2: Correlation plot of τcomp with τexp on a logarithmic (left) and ordinal (right) scale for 10 InhA

inhibitors.

Application for ENR, EGFR and HIV-1 protein ligands

The correlation of the data was determined by Pearson's coefficient, which has a value of

R2=0.99, indicating a very strong relationship between calculated and experimental data.



Figure 2: Correlation plot of τcomp with τexp on a logarithmic (left) and ordinal (right) scale for 3 ligands

of ENR, EGFR i HIV-1

Application for all systems studied

To check the universality of the method, the correlation of τcomp against experimentally

determined time was checked for all the systems studied. Pearson's coefficient took the value of 0.23

(R2 =0.23), which is considered a negligible correlation. Therefore, it can be concluded that the

accuracy of the method for compounds with greater structural variation is lower.

Figure 4: Correlation plot of calculated residence time τcomp (ns) with experimentally determined τexp

(min) for all tested systems, respectively.

4. Ligand properties that affect residence time

An important factor in understanding the kinetics of ligand binding to receptors is the

analysis of interactions between them, as well as understanding their structural features. A new

approach has been proposed to identify key interactions occurring in the τRAMD dissociation

trajectories that affect the residence time of a drug at its molecular target for the studied InhA

enzyme inhibitors.

The receptor-ligand interactions were extracted from the τRAMD dissociation trajectory as

follows: (i) from each frame (time point) of the trajectory, the position of the ligand center of mass

and the coordinates of the atoms constituting the entire system were obtained and stored in separate

files using a prepared tcl script for the VMD tool running a Python script; (ii) the obtained

coordinates of the position of the atoms in space were used as input to identify ligand-receptor

interactions using the RDKit and ProLif libraries of Python (interaction categories: Hydrophobic,

π-stacking, π-cation and cation-π, anionic and cationic, and H-bond donor and acceptor); (iii) each

interaction was marked as "1" if an interaction was observed or "0", i. e., (iv) repeated interactions

were summed to determine the frequency of occurrence of a given contact and averaged over both a

single dissociation trajectory and all replicates (trajectories) for a given system (which also

eliminated the time dependence of the data); (v) based on the frequency of occurrence of the



interactions, a threshold was defined that allowed the separation of the bound state from the

transient and fully released states - for further analysis, the conformations of the system in which an

interaction was detected in at least 20% of a single dissociation trajectory were removed.

Standardization of datasets is an important step in the analysis because it removes bias from

the original variables. Standardized variables have similar variance. Analysis of the table of

interactions of the studied complexes using PCA allowed us to extract the main factors for all the

studied InhA inhibitor systems. Figure 5 shows how the main variables correlate with the principal

component.

The first two factors model the largest variance in the data, best describing its structure. For

the systems studied, these factors describe only about 50% of the total variance in the data.

Nevertheless, PCA analysis provides valuable information.

Figure 5: Correlation of features (interactions) with principal components.

A projection of the weights onto the space defined by the first two principal components after

k-means clustering of the data is shown in Figure 6 to examine which factors are responsible for the

variation in the sample. Each variable (interaction) is represented as a vector whose direction and

length determine how much the variable influences each principal component. Thus, it can be

concluded that the largest contribution to the formation of the first factor (the values of the

coefficients are the highest) is the van der Waals interaction with the amino acid Trp248.

Hydrophobic contacts with Leu196, Arg41, Gln99 and Phe96 also contribute to the formation of the

first main factor. The latter three together with hydrophobic interactions with Phe40, Arg42, Asp41,

Ile15 and van der Waals interactions with Arg42 and Phe40 form the second principal component.

The weight projections indicate that hydrophobic interactions with Gln99 and Arg41 are highly

correlated. Hydrophobic interactions with the amino acids Phe40, Arg42, Asp41 and Ile15 and van der



Waals interactions with Arg42 and Phe40 are also positively correlated. This set of interactions is

negatively correlated with hydrophobic interactions with Gln99, Arg41 and Phe96. The hydrophobic

interaction between the ligand and Leu196 is negatively correlated with the van der Waals interaction

with the amino acid Trp248, which shows no correlation with the other interactions. The interaction

with Trp248 was observed only with the ligand in the 5MTQ complex (residence time of 119 min) and

with Leu196 with the ligand in the 5UGU complex (194 min).

Figure 6: Projection of weights onto the space of the first two principal components.

5. Discussion and conclusions

The aim of the study was to apply and test drug residence time prediction solutions to

determine if they can be used regardless of the size of the molecules and the protein family, as well as

to identify the molecular properties of the molecules involved in the dissociation of InhA protein

inhibitors. The main questions that the presented studies sought to answer are What are the main

receptor-ligand interactions that distinguish long- and short-residence ligands? Is the τRAMD

method universal and applicable to molecules of different sizes and structural similarities? What is

the correlation between the relative residence time and experimental measurements?

Since no database of ligand binding kinetics was available, data were collected from the

literature and published in an online database (). literature and published in an online database

(https://pdbrt.polsl.pl). The PDBrt database contains 59 ligand entries for 7 different protein families.

The database is continuously updated with new data.

The τRAMD method was applied to 5 different protein systems to estimate the relative

residence time. To check the reproducibility of the method, the analysis was performed on a set of 15



HSP90 protein inhibitors, 14 of which have been published. On the other hand, to check the

versatility, tests were performed on 10 inhibitors of the InhA protein, as well as 3 ligands of the ENR,

EGFR HIV-1 proteins. The total set thus consisted of 28 ligands with different structures.

The analysis led to the conclusion that τRAMD is reproducible, but in some cases, more sets

of simulations should be performed to reduce the scatter of the data around the mean. It was

observed that the τRAMD results show a good or strong correlation with the experimentally

determined residence time for compounds of similar structure, i.e. differing by a slight modification,

e.g. a shift of the functional group. In contrast, for a structurally diverse set of ligands, the method

was found to have poor performance, suggesting a limited application of τRAMD in the drug

discovery process.

An approach that takes into account the transition states of the system and the interactions

that occur between the protein molecule and the ligand molecule was used to determine the

molecular properties of the InhA protein and its inhibitors during the residence time-specific

dissociation process. The approach requires no prior knowledge of the binding mechanism and is

based on PCA and k-means clustering analysis.

The identified groups form interaction fingerprints specific to ligands with specific residence

times, as well as groups that distinguish ligands based on the length of residence time in a molecular

target.

Additional analysis of molecular descriptors that provide deeper insight into the molecular

properties of the protein-ligand system would likely be an interesting extension of the method. This

is an area for further development of the method.

The analysis of the frequency of a given interaction in the complexes allowed us to identify

key amino acids that can have a significant impact on the variation of the residence time in the

complexes:

- hydrophobic interactions with the amino acid Leu196, as well as van der Waals interactions

with Phe40, Asp41, Arg42 and π-cation with Arg42 favor longer residence times, as they were

identified only in complexes with ligands with the longest residence times in the studied data

set (106, 194 and 220 min),

- for compounds with relatively short residence times (30 and 50 min), the hydrophobic

interaction between the ligand and the amino acid Gln99 is characteristic.

Principal component analysis (PCA) identified the factors responsible for the differences in

ligand residence times. These factors are as follows:

- van der Waals interactions with the amino acid Trp248,

- hydrophobic interactions with the amino acids Gln99 and Arg41,

- hydrophobic interactions with the amino acids Phe40, Arg42, Asp41, Ile15, and



- van der Waals interactions with Arg42 and Phe40.

For compounds with similar structures, studies have shown that the relative residence time

correlates well with the experimentally determined time. The proposed algorithm can be used to

identify key molecular features for the rate of ligand dissociation from the binding site for

compounds with similar structures.
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