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1 Wprowadzenie

Analiza niezawodności (ang. reliability analysis) i analiza przeżycia (ang. survival
analysis) to dziedziny inżynierii i statystyki, których przedmiotem jest modelowanie
danych typu czas-do-zdarzenia (ang. time-to-event). W odróżnieniu od klasycznych
problemów klasyfikacji i regresji, opierających się na obserwacjach kompletnych,
metody analizy niezawodności i przeżycia umożliwiają pracę z danymi niepełnymi.
W przypadku takich danych informacja o momencie wystąpienia zdarzenia będą-
cego przedmiotem zainteresowania jest dla części obserwacji niekompletna. Dane
tego typu określane są jako cenzurowane (ang. censored), ponieważ obserwacja
zdarzenia zostaje przerwana przed jego wystąpieniem z przyczyn niezależnych od
badanego procesu [1, 2]. Zastosowanie klasycznych metod klasyfikacji i regresji do
danych cenzurowanych wymagałoby odrzucenia takich obserwacji, co prowadziłoby
do utraty informacji o procesie degradacji oraz do obciążenia wyników analizy.
Ta różnica metodologiczna sprawia, że analiza przeżycia wymaga zastosowania
specjalistycznych technik statystycznych oraz algorytmów uczenia maszynowego
(ang. machine learning, ML).

Analiza niezawodności, jako zbiór metod analitycznych, dotyczy badania trwało-
ści i funkcjonalności systemów technicznych i koncentruje się na analizie czasów do
awarii maszyn, urządzeń i komponentów, co umożliwia prognozowanie ich żywot-
ności oraz planowanie strategii konserwacji [3]. Analiza przeżycia, wywodząca się
ze statystyki medycznej, czyli dziedziny biostatystyki, zajmuje się modelowaniem
czasów do wystąpienia określonych zdarzeń medycznych, takich jak nawrót choroby
czy zgon pacjenta [4]. Pomimo różnego pochodzenia i kontekstów zastosowań,
oba podejścia opierają się na podobnych fundamentach matematycznych i stosują
analogiczne metody statystyczne do modelowania procesów czasowych, w których
znaczenie ma obecność danych cenzurowanych.

Metody analizy niezawodności i przeżycia znajdują zastosowanie w różnych
dziedzinach nauki i przemysłu. W medycynie wykorzystuje się je do oceny sku-
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1 Wprowadzenie

teczności terapii i analizy czynników prognostycznych [1], natomiast w inżynierii
niezawodności wspomagają projektowanie systemów oraz planowanie konserwacji
[5, 6]. W ekonomii i finansach umożliwiają modelowanie ryzyka kredytowego
i analizę czasu do bankructwa [7], a w socjologii i demografii służą do badania
momentów wystąpienia zdarzeń społecznych, takich jak znalezienie pracy, rozpad
związku czy zakończenie edukacji [7, 8, 9]. Szczególnie ważnym obszarem zasto-
sowań jest predykcyjne utrzymanie ruchu (ang. Predictive Maintenance, PdM ),
w którym metody te wykorzystywane są do przewidywania wystąpienia awarii
maszyn i urządzeń przemysłowych [10, 3].

Charakterystyczną cechą danych w analizie niezawodności i przeżycia jest ich
cenzurowany charakter, wynikający z ograniczeń czasowych badań, zróżnicowanych
warunków obserwacji oraz heterogeniczności analizowanych obiektów. W predykcyj-
nym utrzymaniu ruchu cenzurowanie oznacza, że dla części urządzeń nie obserwuje
się awarii w analizowanym okresie: mogą być one nadal eksploatowane, wymie-
nione profilaktycznie lub wycofane z innych przyczyn. Podobnie w medycynie,
pacjenci mogą opuścić badanie przed wystąpieniem interesującego zdarzenia, a w
analizach ekonomicznych przedsiębiorstwa mogą kontynuować działalność poza
horyzont czasowy obserwacji. Ta niepełna informacja o czasach zdarzeń stanowi
wyzwanie metodologiczne, którego tradycyjne metody klasyfikacyjne i regresyjne
nie są w stanie odpowiednio uwzględnić, co prowadzi do obciążonych estymacji
i nieadekwatnego modelowania [2].

W obszarze analizy niezawodności i przeżycia wyróżnia się kilka głównych ka-
tegorii metod, odmiennych pod względem podejścia metodologicznego, poziomu
złożoności oraz stopnia interpretowalności. Przy czym, przyjęto rozróżnienie dwóch
powiązanych pojęć: interpretowalność (ang. interpretability) oraz objaśnialność
(ang. explainability). Interpretowalność jest cechą modelu i oznacza, że mechanizm
generowania predykcji jest dla człowieka zrozumiały bez potrzeby dodatkowych
wyjaśnień (np. drzewa decyzyjne, reguły). Objaśnialność natomiast odnosi się do
technik post-hoc, które dostarczają wyjaśnień dla modeli nieinterpretowalnych lub
dla pojedynczych predykcji (np. LIME, SHAP). W dalszej części pracy konsekwent-
nie stosuje się oba pojęcia: w odniesieniu do modeli o przejrzystym mechanizmie
działania używa się terminu interpretowalne, natomiast w odniesieniu do wyja-
śnień modeli typu „czarna skrzynka” (ang. black box) lub wyjaśnień pojedynczych
predykcji — terminu objaśnialne (por. Rozdział 4).
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Klasyczne metody statystyczne, reprezentowane przez estymator Kaplana-
Meiera oraz model proporcjonalnych hazardów Coxa, stanowią podstawy analizy
przeżycia [1]. Estymator Kaplana-Meiera umożliwia nieparametryczną estymację
funkcji przeżycia, czyli funkcji opisującej prawdopodobieństwo niewystąpienia
zdarzenia (np. awarii urządzenia, zgonu pacjenta) przed określonym momentem
czasowym. Z kolei model Coxa pozwala analizować wpływ zmiennych objaśnia-
jących na funkcję hazardu, opisującą chwilowe ryzyko wystąpienia zdarzenia
w danym momencie, pod warunkiem że nie wystąpiło ono wcześniej, przy założe-
niu proporcjonalności hazardów. Metody te cechują się wysoką interpretowalnością
i są szeroko akceptowane zarówno w środowisku akademickim, jak i w praktyce
przemysłowej ze względu na przejrzystość procesu wnioskowania statystycznego.

Rozwój uczenia maszynowego umożliwił zastosowanie zaawansowanych algoryt-
mów do problemów analizy przeżycia. Wśród interpretowalnych metod w tej dzie-
dzinie dominują przeżyciowe drzewa decyzyjne [11] i przeżyciowe reguły logiczne
[12], przystosowane do specyfiki danych cenzurowanych. Równolegle rozwijane są
bardziej złożone, nieinterpretowalne metody, takie jak przeżyciowe głębokie sieci
neuronowe, zespoły klasyfikatorów oraz metody kernelowe [13, 10], które oferują
wysoką skuteczność predykcyjną kosztem transparentności modeli.

Klasyczne metody statystyczne charakteryzują się interpretowalnością, ale napo-
tykają na ograniczenia w modelowaniu wielowymiarowych, nieliniowych zależności
typowych dla współczesnych danych przemysłowych i medycznych. Model Coxa
zakłada proporcjonalność hazardów oraz liniowość wpływu zmiennych objaśniają-
cych na logarytm funkcji hazardu, co może okazać się nieadekwatne w przypadku
złożonych procesów degradacyjnych. Z kolei estymator Kaplana-Meiera, jako me-
toda nieparametryczna, nie uwzględnia wpływu zmiennych towarzyszących na
funkcję przeżycia, co ogranicza jego możliwości predykcyjne w analizach wielowy-
miarowych.

Zaawansowane metody uczenia maszynowego, takie jak głębokie sieci neuronowe
czy zespoły klasyfikatorów, choć oferują wysoką skuteczność w modelowaniu zło-
żonych wzorców danych, klasyfikowane są jako systemy typu „czarna skrzynka” ze
względu na brak transparentności procesów decyzyjnych [14]. W zastosowaniach
krytycznych, gdzie decyzje modeli mają bezpośredni wpływ na bezpieczeństwo,
efektywność ekonomiczną lub życie ludzkie, brak zrozumienia mechanizmów decy-
zyjnych stanowi barierę we wdrażaniu tych technologii.
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1 Wprowadzenie

W kontekście potrzeby łączenia wysokiej skuteczności predykcyjnej z interpreto-
walnością modeli, szczególne znaczenie w analizie przeżycia zyskują zaawansowane
metody regułowe i drzewiaste. Metody te umożliwiają modelowanie nieliniowych,
wielowymiarowych zależności przy zachowaniu transparentności procesów wnio-
skowania.

Drzewa decyzyjne (ang. decision trees) można interpretować jako hierarchicznie
uporządkowany zbiór reguł, gdzie każda ścieżka od korzenia do liścia odpowiada
pojedynczej regule. Z kolei reguły logiczne oferują większą swobodę w modelowaniu
zależności między atrybutami, eliminując ograniczenia typowe dla drzew. W prze-
ciwieństwie do drzew decyzyjnych, które wymagają przejścia przez wszystkie węzły
na ścieżce od korzenia do liścia, reguły umożliwiają wnioskowanie bez stałej ko-
lejności warunków oraz mogą opierać się na podzbiorach atrybutów. Mogą one
opisywać przecinające się zbiory przykładów, podczas gdy drzewa charakteryzują
się rozłącznym podziałem przestrzeni decyzyjnej, co może ograniczać zdolność
modelowania złożonych wzorców w danych. Dodatkowo, reguły logiczne lepiej
radzą sobie z brakami danych, bez konieczności stosowania podziałów zastępczych
(ang. surrogate splits) charakterystycznych dla drzew, ułatwiając interpretację
modelu. Główną wadą metod regułowych jest zazwyczaj wyższa złożoność oblicze-
niowa procesu indukcji w porównaniu z rekursywnym algorytmem budowy drzew,
jednak oferują one większą różnorodność reprezentacji odkrytej wiedzy [15].

Uwzględniając powyższe rozważania, niniejsza praca koncentruje się na interpre-
towalnych modelach w postaci reguł logicznych jako alternatywie dla tradycyjnych
metod statystycznych oraz zaawansowanych algorytmów uczenia maszynowego
typu „czarna skrzynka”. Reguły logiczne stanowią kompromis między interpreto-
walnością a zdolnością modelowania złożonych zależności, oferując jednocześnie
kompatybilność z procedurami operacyjnymi stosowanymi w środowiskach prze-
mysłowych i medycznych.

W analizie niezawodności i przeżycia reguły logiczne stosuje się głównie do bu-
dowy modeli predykcyjnych umożliwiających przewidywanie czasów do wystąpienia
zdarzeń. Jedyną znaną implementacją dedykowaną do danych cenzurowanych jest
biblioteka RuleKit [12], rozwijana przez naukowców z Politechniki Śląskiej. Zawiera
ona podstawowe algorytmy indukcji reguł przeżyciowych. Natomiast w zadaniach
klasyfikacyjnych reguły logiczne znajdują szersze zastosowanie, obejmujące od-
krywanie podgrup (ang. subgroup discovery) [16, 17], reguły akcji (ang. action
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rules) [18, 19], reguły wyjątków (ang. exception rules) [20], zbiory kontrastowe
(ang. contrast-sets) [21] oraz reguły asocjacyjne (ang. association rules) [22, 23].

Reguły akcji formalizują rekomendacje dotyczące zmian wartości atrybutów
w celu osiągnięcia pożądanego rezultatu. Transformacje te reprezentowane są przez
reguły postaci „jeśli (X, a Ñ b) to (Y, c Ñ d)”, gdzie modyfikacja atrybutu X

z wartości a do b powoduje zmianę atrybutu Y z wartości c do d. Reguły wyjątków
identyfikują nietypowe wzorce w danych poprzez kontrast między regułą bazową
(opisującą typowe zależności w danych) a regułą wyjątku (opisującą odstępstwa
od tej normy). Odkrywanie podgrup koncentruje się na identyfikacji specyficznych
grup obserwacji wyróżniających się nietypowymi wartościami względem zmiennej
celu. Zbiory kontrastowe opisują różnice między grupami, identyfikując atrybuty
o znacząco różnych rozkładach. Reguły asocjacyjne odkrywają współwystępowanie
zdarzeń lub wartości atrybutów w danych transakcyjnych [24].

W predykcyjnym utrzymaniu ruchu, a także w innych obszarach, takich jak
medycyna, szczególną rolę pełnią reguły akcji oraz reguły wyjątków ze względu na
ich użyteczność w podejmowaniu decyzji operacyjnych. Reguły akcji umożliwiają
generowanie konkretnych rekomendacji dotyczących interwencji prewencyjnych,
np. „jeśli temperatura łożyska przekroczy 80 ˝C, a wibracje pozostaną poniżej
5 mm/s, to zwiększenie częstotliwości smarowania z miesięcznej na tygodniową
może przedłużyć czas do awarii z 30 do 90 dni”. W medycynie analogiczne reguły
mogą sugerować modyfikacje terapii, np. „jeśli pacjent zmieni dawkę leku z 10mg
na 15mg dziennie, to prawdopodobieństwo remisji wzrośnie z 60% do 85%”.

Reguły wyjątków identyfikują sytuacje wymagające szczególnej uwagi, dotyczące
np. urządzeń wykazujących nietypowe wzorce degradacji lub pacjentów o niestan-
dardowej odpowiedzi na terapię. W środowiskach przemysłowych umożliwia to
wykrywanie przypadków wymagających indywidualnego podejścia do konserwacji,
a w medycynie wspiera identyfikację pacjentów wymagających spersonalizowanych
protokołów leczenia [23].

W analizie przeżycia dodatkowym kierunkiem rozwoju metod regułowych są
zespoły reguł (ang. rule ensembles), które łączą zalety uczenia zespołowego (ang. en-
semble learning) z transparentnością modeli opartych na regułach. Zespoły reguł
mogą przewyższać pojedyncze reguły pod względem dokładności predykcyjnej,
zachowując jednocześnie możliwość analizy mechanizmów podejmowania decyzji.
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1 Wprowadzenie

W przeciwieństwie do klasycznych metod zespołowych, zespoły reguł umożliwiają
wgląd w proces agregacji predykcji na poziomie poszczególnych reguł składowych.

Wyzwaniem w rozwoju interpretowalnych metod analizy niezawodności i prze-
życia jest ich zastosowanie dla rzeczywistych danych, które cechuje wysoka hetero-
geniczność, wielowymiarowość oraz złożoność procesów degradacyjnych. Walida-
cja skuteczności takich metod w warunkach rzeczywistych zastosowań wymaga
uwzględnienia nie tylko dokładności predykcji, ale również możliwości zrozumie-
nia mechanizmów prowadzących do przewidywanych zdarzeń przez ekspertów
odpowiedzialnych za podejmowanie decyzji operacyjnych.

Współczesny przemysł charakteryzuje się wysoką złożonością maszyn oraz rosną-
cym znaczeniem technologii cyfrowych. Wymaga to zastosowania zaawansowanych
metod analitycznych do optymalizacji procesów utrzymania ruchu [3]. Era Przemy-
słu 4.0 integruje fizyczne procesy produkcyjne z cyfrowymi systemami sterowania
typu SCADA (ang. Supervisory Control and Data Acquisition) oraz Internetem
Rzeczy (ang. Internet of Things, IoT) otwierając nowe możliwości dla zastosowania
interpretowalnych metod analizy niezawodności w praktyce przemysłowej [25].
Rosnąca ilość danych generowanych przez czujniki IoT oraz systemy monitorowa-
nia stwarza potrzebę rozwoju metod analitycznych łączących wysoką skuteczność
predykcyjną z transparentnością procesów decyzyjnych, niezbędną w środowiskach
przemysłowych [10].

Problem interpretowalności w systemach analizy niezawodności nabiera szczegól-
nego znaczenia dla odpowiedzialności prawnej, regulacji branżowych oraz koniecz-
ności budowania zaufania personelu operacyjnego do systemów automatycznych.
Decyzje podejmowane na podstawie analiz niezawodności często dotyczą kosztow-
nych operacji remontowych, planowania przestojów produkcyjnych czy alokacji
zasobów. W takich sytuacjach zrozumienie podstaw decyzji modelu umożliwia
efektywne zarządzanie ryzykiem operacyjnym.

W kontekście transparentności modeli uczenia maszynowego (szczegółowo omó-
wionej w Rozdziale 4), w niniejszej pracy skupiono się na modelach interpreto-
walnych, opracowując interpretowalne metody analizy niezawodności i przeżycia
oparte na regułach logicznych.
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1.1 Motywacja

Przegląd literatury naukowej ujawnia lukę badawczą w zakresie interpretowalnych
metod uczenia maszynowego dedykowanych do analizy niezawodności i przeżycia.
Większość istniejących badań koncentruje się na trzech głównych nurtach: tra-
dycyjnych metodach statystycznych analizy przeżycia, podstawowych metodach
interpretowalnych (takich jak proste drzewa i reguły przeżyciowe) oraz zaawanso-
wanych algorytmach uczenia maszynowego o wysokiej złożoności. Istotny obszar
zaawansowanych interpretowalnych metod przystosowanych do specyfiki danych
cenzurowanych pozostaje jednak pomijany. W obszarach takich jak medycyna
i inżynieria niezawodności częsta obecność niepełnych obserwacji wymaga zastoso-
wania dedykowanych metod analitycznych. Dostępne interpretowalne metody nie
wykorzystują w pełni potencjału zaawansowanych technik regułowych, takich jak
reguły akcji czy reguły wyjątków, co ogranicza ich zastosowanie w środowiskach
wymagających wysokiej interpretowalności.

W nurcie statystycznym dominują klasyczne podejścia oparte na estymatorze
Kaplana-Meiera, modelu Coxa oraz parametrycznych rozkładach przeżycia, które
zapewniają wysoką interpretowalność, lecz mają ograniczenia w modelowaniu zło-
żonych zależności [1]. Proste metody interpretowalne, takie jak drzewa przeżyciowe
i reguły przeżyciowe, lepiej dostosowują się do różnorodnych wzorców danych, ale
wciąż charakteryzują się ograniczeniami w zakresie reguł akcji, reguł wyjątków czy
interpretowalnych zespołów. Natomiast w nurcie zaawansowanych metod uczenia
maszynowego przeważają podejścia oparte na głębokich sieci neuronowych, zespo-
łach klasyfikatorów oraz metodach kernelowych, które oferują wysoką skuteczność
predykcyjną kosztem transparentności procesów decyzyjnych [13].

Szczególnie zauważalna jest nieobecność systematycznych badań nad zaawan-
sowanymi algorytmami indukcji reguł dedykowanych dla danych cenzurowanych.
Choć reguły logiczne znajdują zastosowanie w klasycznych problemach klasyfi-
kacji i regresji [22], ich adaptacja do analizy przeżycia pozostaje w dużej mierze
nieopracowana. Istnieją co prawda implementacje podstawowych reguł przeżycio-
wych, takie jak biblioteka RuleKit [12], ale brakuje kompleksowego podejścia do
zaawansowanych mechanizmów reguł akcji, algorytmów indukcji reguł wyjątków
oraz interpretowalnych zespołów regułowych w analizie przeżycia [23, 24].
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Motywacją do podjęcia badań opisanych w niniejszej rozprawie jest potrzeba
rozszerzenia istniejących interpretowalnych metod analizy niezawodności i przeży-
cia o zaawansowane mechanizmy reguł akcji, algorytmy obsługi wyjątków oraz
interpretowalne zespoły regułowe. Choć podstawowe metody wykorzystujące re-
guły przeżyciowe są dostępne, istnieje potrzeba opracowania zaawansowanych
rozwiązań do generowania rekomendacji opartych na regułach akcji, identyfikacji
wyjątków w danych cenzurowanych oraz łączenia interpretowalności z niezawodno-
ścią zespołów modeli. Rozwój dziedzin stosujących analizę przeżycia oraz rosnące
wymagania dotyczące transparentności systemów automatycznych generują po-
trzebę nowej klasy narzędzi analitycznych o dobrej skuteczności i interpretowalności.
Opracowanie algorytmów indukcji reguł dedykowanych do danych cenzurowanych
oraz integracja metod analizy przeżycia z technikami uczenia maszynowego może
przyczynić się do rozwoju interpretowalnych metod analizy niezawodności. Takie
podejście oferuje narzędzia skuteczne i zrozumiałe dla użytkowników końcowych
w medycynie, inżynierii niezawodności oraz w predykcyjnym utrzymaniu ruchu.

1.2 Cel i teza pracy

Głównym celem niniejszej pracy jest opracowanie interpretowalnych metod ana-
lizy niezawodności i przeżycia oraz przedstawienie ich potencjalnej użyteczności
w zastosowaniach medycznych oraz w predykcyjnym utrzymaniu ruchu. Praca
koncentruje się na rozwoju nowych algorytmów indukcji reguł, uwzględniających
specyfikę danych cenzurowanych i łączących tradycyjne techniki analizy przeżycia
z regułami logicznymi jako interpretowalnymi modelami uczenia maszynowego.
Opracowane metody mają zapewnić zarówno dobrą skuteczność predykcyjną, jak
i interpretowalność, umożliwiającą ekspertom dziedzinowym zrozumienie i weryfi-
kację mechanizmów decyzyjnych w obszarach wykorzystujących analizę przeżycia.

W ramach realizacji celu głównego sformułowano następujące cele szczegółowe:

1. Rozszerzenie podstaw teoretycznych integracji analizy przeżycia z indukcją
reguł poprzez ujednolicenie definicji i interpretacji reguł dla danych cenzu-
rowanych oraz zdefiniowanie kryteriów oceny, selekcji i agregacji predykcji
w modelach i zespołach.
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2. Rozwój pokryciowego algorytmu indukcji przeżyciowych reguł akcji oraz
algorytmu rekomendacji opartych na przeżyciowych regułach akcji.

3. Opracowanie algorytmu indukcji przeżyciowych reguł wyjątków umożliwia-
jącego identyfikację nietypowych wzorców w danych cenzurowanych.

4. Stworzenie interpretowalnego zespołu reguł przeżyciowych, łączącego zalety
uczenia zespołowego z transparentnością modeli regułowych.

5. Walidacja opracowanych metod na zróżnicowanych zbiorach danych prze-
mysłowych i medycznych, odzwierciedlających różnorodność i złożoność
problemów analizy przeżycia.

6. Demonstracja potencjalnej użyteczności zaproponowanych metod poprzez
analizę przypadków zastosowań w medycynie oraz w środowiskach przemy-
słowych.

Na podstawie sformułowanych celów główna teza pracy brzmi następująco:
Zastosowanie interpretowalnych metod uczenia maszynowego, w szcze-

gólności algorytmów indukcji reguł dostosowanych do specyfiki danych
cenzurowanych, umożliwia opracowanie skutecznych i transparentnych
narzędzi analizy niezawodności i przeżycia o szerokim zakresie zastoso-
wań, czego potwierdzeniem jest ich potencjalna użyteczność w medycy-
nie oraz w predykcyjnym utrzymaniu ruchu.

1.3 Elementy oryginalne i wkład naukowy

Niniejsza praca wnosi wkład w rozwój dziedziny poprzez opracowanie nowych,
interpretowalnych metod analizy niezawodności i przeżycia, które wypełniają
zidentyfikowaną lukę badawczą w obszarze łączącym analizę przeżycia z inter-
pretowalnym uczeniem maszynowym. Główne elementy oryginalności i wkładu
naukowego dotyczą przede wszystkim aspektów metodologicznych:

1. Algorytmy przeżyciowych reguł akcji: Opracowano pierwszy w litera-
turze pokryciowy algorytm indukcji reguł akcji, umożliwiający zastosowanie
strategii sekwencyjnego pokrywania do danych cenzurowanych, oraz komple-
mentarny algorytm rekomendacji, który wykorzystuje wygenerowane reguły
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1 Wprowadzenie

akcji do tworzenia interpretowalnych rekomendacji poprzez rozwiązywanie
konfliktów między pokrywającymi się regułami.

2. Algorytm indukcji przeżyciowych reguł wyjątków: Opracowano orygi-
nalny algorytm stanowiący rozszerzenie klasyfikacyjnych reguł wyjątków na
potrzeby analizy przeżycia, który indukuje reguły złożone z trzech elementów
(reguły bazowej, reguły referencyjnej oraz reguły wyjątku) i wykorzystuje
sekwencyjne wyszukiwanie wyjątków w procesie indukcji reguł.

3. Interpretowalny zespół reguł przeżyciowych: Zaproponowano pierwszy
algorytm łączący interpretowalność modeli regułowych z niezawodnością
technik uczenia zespołowego, który rozszerza paradygmat lasów losowych
poprzez zastąpienie drzew decyzyjnych modelami reguł przeżyciowych z wy-
korzystaniem próbkowania bootstrap i agregacji funkcji przeżycia.

Ponadto praca zawiera zarówno elementy teoretyczne — w tym rozszerzenie
istniejących algorytmów indukcji reguł o nowe mechanizmy dedykowane do analizy
przeżycia — jak i praktyczne, obejmujące demonstrację potencjalnej użytecz-
ności opracowanych metod w rzeczywistych zastosowaniach medycznych oraz
w predykcyjnym utrzymaniu ruchu.

Zgodnie z najlepszą wiedzą autora, przedstawione w pracy algorytmy stanowią
pierwsze tak kompleksowe badania w zakresie pokryciowych algorytmów indukcji
reguł akcji, reguł wyjątków oraz zespołów reguł stosowanych do analizy przeżycia.
Opracowane metody otwierają nowy kierunek badań w obszarze łączącym inter-
pretowalne uczenie maszynowe z analizą niezawodności i przeżycia, dostarczając
podstaw do budowy narzędzi dla ekspertów dziedzinowych i wyznaczając punkt
wyjścia dla dalszych prac badawczych w tej dziedzinie.

1.4 Układ pracy

Prezentowana rozprawa doktorska składa się z siedmiu rozdziałów, w których
przedstawiono podstawy teoretyczne, metodologię, implementację oraz poten-
cjalne zastosowania interpretowalnych metod analizy niezawodności i przeżycia
w medycynie oraz w predykcyjnym utrzymaniu ruchu.

Rozdział 2 wprowadza kontekst zastosowań analizy niezawodności i przeży-
cia w środowisku przemysłowym, ze szczególnym uwzględnieniem predykcyjnego
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utrzymaniu ruchu jako strategii eksploatacyjnej wykorzystującej zaawansowane
metody analizy danych typu czas-do-zdarzenia. Omówiono w nim strategie utrzy-
mania ruchu, stosowane technologie i metody, specyfikę danych przemysłowych
o naturalnie cenzurowanym charakterze oraz przykłady zastosowań metod analizy
przeżycia w obszarze przemysłowym i medycznym.

Rozdział 3 stanowi podstawę teoretyczną rozprawy. Przedstawiono w nim podsta-
wowe pojęcia analizy niezawodności jako dziedziny inżynierii oraz analizy przeżycia
jako zestawu metod statystycznych. Omówiono podobieństwa i różnice między tymi
dziedzinami, funkcje statystyczne, rozkłady prawdopodobieństwa oraz metody
estymacji stosowane w analizie niezawodności i przeżycia. Rozdział zawiera także
szczegółową prezentację klasycznych metod analizy przeżycia, w tym estymatora
Kaplana-Meiera, modelu proporcjonalnych hazardów Coxa oraz parametrycznych
modeli przeżycia. Przedstawiono w nim ponadto zastosowania metod analizy
przeżycia w inżynierii niezawodności, w tym przykład wykorzystania estymatora
Kaplana-Meiera w analizie trwałości pomp przemysłowych. Stanowi to podstawę
dla dalszych analiz i zastosowań omawianych w kolejnych częściach pracy.

Rozdział 4 koncentruje się na problematyce objaśnialności i interpretowalności
w uczeniu maszynowym, ze szczególnym uwzględnieniem ich znaczenia w predyk-
cyjnym utrzymaniu ruchu. Przedstawiono w nim przegląd metod objaśnialnego
i interpretowalnego uczenia maszynowego, omawiając podstawowe pojęcia oraz ich
praktyczne implikacje. Rozdział szczegółowo analizuje różnice między modelami
interpretowalnymi a modelami typu „czarnej skrzynki”, prezentuje współczesne
techniki wyjaśniania decyzji modeli uczenia maszynowego i podkreśla znaczenie
interpretowalności w praktyce przemysłowej, zwłaszcza dla odpowiedzialności
prawnej i budowania zaufania do systemów automatycznych.

Rozdział 5 rozwija zagadnienia przedstawione we wcześniejszych rozdziałach,
koncentrując się na regułach logicznych jako interpretowalnej metodzie analizy
danych cenzurowanych i predykcji awarii. Omówiono w nim klasyczne metody
indukcji reguł oraz zespołów reguł, przedstawiając szczegółowy przegląd literatury
dotyczący zastosowań w analizie niezawodności i przeżycia. Rozdział zawiera także
teoretyczne podstawy integracji metod analizy przeżycia z algorytmami indukcji re-
guł oraz szczegółowy opis czterech autorskich algorytmów opracowanych w ramach
pracy doktorskiej, każdy przedstawiony z formalnym opisem matematycznym oraz
pseudokodem.
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Rozdział 6 prezentuje wyniki eksperymentów oraz analizę przypadków użycia,
które stanowią empiryczną walidację teorii i metod omówionych we wcześniej-
szych częściach pracy. Bazując na teoretycznych podstawach analizy niezawodności
i przeżycia, roli objaśnialności w modelach uczenia maszynowego oraz interpreto-
walnych metodach opisanych wcześniej, eksperymenty koncentrują się na ocenie
skuteczności zaproponowanych podejść w medycynie i predykcyjnym utrzymaniu
ruchu. Przeprowadzono testy algorytmów na zróżnicowanych zbiorach danych
odzwierciedlających typowe wyzwania w analizie przeżycia i niezawodności, a wy-
niki eksperymentów dla każdego z czterech autorskich algorytmów zestawiono
z metodami referencyjnymi.

Rozdział 7 stanowi podsumowanie pracy doktorskiej, przedstawiając syntezę
najważniejszych wyników, wniosków oraz wkładu do dziedziny. Omówiono w nim
główne osiągnięcia w zakresie rozwoju interpretowalnych metod analizy niezawod-
ności i przeżycia oraz zakres potencjalnych zastosowań w medycynie i predyk-
cyjnym utrzymaniu ruchu oraz kierunki dalszych badań. Podkreślono znaczenie
integracji metod statystycznych z technikami uczenia maszynowego w kontekście
interpretowalności, wskazano otwarte problemy badawcze wymagające dalszych
prac, a także przedstawiono refleksje nad ograniczeniami opracowanych metod
i propozycje ich przyszłego rozwoju.
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Interpretowalne metody uczenia maszynowego znajdują zastosowanie w predyk-
cyjnym utrzymaniu ruchu, które stanowi ważny obszar analizy niezawodności
i przeżycia. Metody modelowania danych typu czas-do-zdarzenia dostarczają
narzędzi statystycznych niezbędnych do opisu procesów degradacji urządzeń prze-
mysłowych, przy jednoczesnym uwzględnieniu charakterystycznej dla środowisk
przemysłowych obecności danych cenzurowanych [3]. We współczesnym przemyśle,
który charakteryzuje się rosnącą złożonością maszyn i dynamicznym rozwojem tech-
nologii cyfrowych, predykcyjne utrzymanie ruchu stanowi strategię eksploatacyjną,
umożliwiającą optymalizację harmonogramów konserwacji poprzez przewidywanie
momentów wystąpienia awarii.

Era Przemysłu 4.0, wraz z powszechnym wdrażaniem rozwiązań Internetu Rzeczy
i systemów SCADA, umożliwiła gromadzenie dużych ilości danych operacyjnych
w czasie rzeczywistym, co stworzyło podstawę do implementacji zaawansowanych
strategii predykcyjnych opartych na metodach analizy niezawodności [25, 10]. Przej-
ście ku Przemysłowi 5.0 dodatkowo podkreśla znaczenie predykcyjnego utrzymania
ruchu jako ważnego elementu zrównoważonego, zorientowanego na człowieka podej-
ścia do zarządzania produkcją [26]. Integracja fizycznych procesów produkcyjnych
z cyfrowymi systemami zarządzania umożliwia ciągłe monitorowanie parametrów
technicznych maszyn i urządzeń, generując dane o naturalnie cenzurowanym cha-
rakterze, typowym dla analizy przeżycia. Niniejszy rozdział przedstawia strategie
utrzymania ruchu, technologie i metody stosowane w predykcyjnym utrzymaniu
ruchu, charakterystykę danych przemysłowych oraz zastosowania metod analizy
przeżycia w środowisku przemysłowym.
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2.1 Strategie utrzymania ruchu

Współczesne podejścia do zarządzania utrzymaniem ruchu można systematyzować
zgodnie z normą PN-EN 13306:2018 [27], wyróżniając cztery podstawowe strategie
eksploatacyjne:

• strategia do wystąpienia uszkodzenia,

• strategia prewencyjnego utrzymania ruchu,

• strategia utrzymania na podstawie stanu technicznego,

• strategia predykcyjnego utrzymania ruchu.

Każda z tych strategii charakteryzuje się specyficznym podejściem do planowania
działań konserwacyjnych, różnym poziomem zaawansowania technologicznego oraz
odmiennymi skutkami ekonomicznymi i operacyjnymi. Wybór odpowiedniej strate-
gii zależy od charakterystyki eksploatowanych urządzeń, wymagań bezpieczeństwa,
dostępności zasobów oraz celów biznesowych organizacji [28].

Strategia do wystąpienia uszkodzenia (ang. Run to Failure, RTF), nazywana rów-
nież konserwacją reaktywną (ang. Reactive Maintenance), polega na eksploatacji
urządzeń do momentu wystąpienia awarii, bez podejmowania działań prewen-
cyjnych. Podejście to charakteryzuje się niskimi kosztami bieżącej eksploatacji,
ale wiąże się z wysokim ryzykiem nieplanowanych przestojów oraz potencjalnie
wysokimi kosztami napraw w przypadku awarii. RTF znajduje uzasadnienie eko-
nomiczne w przypadku urządzeń o niskiej krytyczności dla procesu produkcyjnego,
łatwej wymienialności oraz niskich kosztach zakupu, gdy koszt monitorowania
i konserwacji prewencyjnej przekraczałby korzyści z uniknięcia awarii.

Strategia prewencyjnego utrzymania ruchu (ang. Preventive Maintenance, PM)
polega na planowaniu działań konserwacyjnych w regularnych odstępach czasowych
lub po osiągnięciu określonych progów eksploatacyjnych, niezależnie od rzeczywi-
stego stanu technicznego urządzenia. Harmonogramy konserwacji są ustalane na
podstawie zaleceń producentów, danych historycznych lub norm branżowych [29].
PM umożliwia planowanie działań konserwacyjnych i alokację zasobów, jednak
może prowadzić do nadmiernego serwisowania urządzeń znajdujących się w dobrym
stanie technicznym lub do niewystarczającej konserwacji, gdy procesy degradacji
przebiegają szybciej niż przewidziano w harmonogramie.
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Strategia utrzymania na podstawie stanu technicznego (ang. Condition Based
Maintenance, CBM) wykorzystuje ciągłe lub okresowe monitorowanie parametrów
technicznych urządzeń w celu podejmowania decyzji dotyczących prac konserwacyj-
nych. Działania prewencyjne są inicjowane w momencie przekroczenia określonych
progów alarmowych, które wskazują na pogorszenie stanu technicznego. CBM
wymaga wdrożenia systemów monitorowania oraz ustalenia kryteriów decyzyj-
nych, ale pozwala na optymalizację częstotliwości konserwacji, dostosowując je do
rzeczywistego stanu urządzeń.

Strategia predykcyjnego utrzymania ruchu stanowi najbardziej zaawansowane
podejście, które wykorzystuje modelowanie predykcyjne do przewidywania przy-
szłego stanu technicznego urządzeń. Predykcyjne utrzymanie ruchu integruje dane
z systemów monitorowania z zaawansowanymi metodami analitycznymi, takimi
jak uczenie maszynowe czy analiza przeżycia, co umożliwia prognozowanie czasów
do awarii oraz optymalizację harmonogramów konserwacji [30, 31]. Strategia ta po-
zwala na minimalizację zarówno kosztów utrzymania, jak i ryzyka nieplanowanych
przestojów, dzięki planowaniu działań prewencyjnych w momencie optymalnym
względem przewidywanej awarii.

2.2 Metody i technologie predykcyjnego utrzymania
ruchu

Predykcyjne utrzymanie ruchu wykorzystuje szerokie spektrum metod analitycz-
nych i technologii monitorowania, dopasowanych do rodzaju urządzeń oraz charak-
teru procesów degradacyjnych. Współczesne systemy predykcyjnego utrzymania
ruchu łączą tradycyjne techniki inżynierskie z zaawansowanymi metodami analizy
danych, tworząc kompleksowe rozwiązania umożliwiające skuteczne przewidywanie
awarii oraz optymalizację strategii konserwacyjnych.

Tradycyjne metody analizy technicznej w predykcyjnym utrzymaniu ruchu obej-
mują szeroki zakres technik diagnostycznych dostosowanych do rodzaju urządzeń
przemysłowych. Analiza wibracji stanowi podstawową metodę diagnozowania stanu
łożysk, przekładni, sprzęgieł oraz elementów wirujących, umożliwiając wykrywa-
nie niezrównoważenia, współosiowości czy luzów mechanicznych na podstawie
charakterystycznych częstotliwości sygnałów wibracyjnych [32].
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Termografia wykorzystuje promieniowanie podczerwone do identyfikacji pro-
blemów związanych z przegrzewaniem komponentów elektrycznych, połączeń,
układów chłodzenia oraz elementów mechanicznych, pozwalając na bezkontaktową
ocenę rozkładu temperatury na powierzchni urządzeń [33, 34, 35]. Analiza oleju
umożliwia ocenę stanu układów smarowania poprzez badanie właściwości fizycz-
nych i chemicznych płynów eksploatacyjnych oraz wykrywanie cząstek zużycia
pochodzących z wewnętrznych elementów maszyn [36].

Uzupełnieniem tradycyjnych metod są analiza ciśnienia w układach hydraulicz-
nych i pneumatycznych [37, 38], monitoring natężenia prądu i napięcia w systemach
elektrycznych [39] oraz badania ultradźwiękowe służące do wykrywania nieszczel-
ności, wyładowań elektrycznych czy problemów z łożyskami na wczesnym etapie
degradacji [40, 41]. Metody te charakteryzują się wysoką specjalizacją i wymagają
eksperckiej wiedzy do interpretacji wyników, lecz jednocześnie zapewniają wgląd
w specyficzne mechanizmy degradacji, charakterystyczne dla różnych klas urządzeń
przemysłowych [3].

Rozwój technologii IoT umożliwił implementację zaawansowanych systemów
czujników, które zapewniają ciągłe monitorowanie parametrów operacyjnych ma-
szyn i urządzeń w czasie rzeczywistym. Nowoczesne czujniki bezprzewodowe mierzą
m.in. wibracje, temperaturę, ciśnienie, prąd, napięcie, przepływ oraz inne parame-
try fizyczne, a następnie przesyłają dane do centralnych systemów analitycznych
za pośrednictwem protokołów komunikacyjnych, takich jak LoRaWAN, Zigbee
czy 5G [42, 43]. Integracja z systemami typu SCADA pozwala łączyć dane z po-
ziomu urządzeń przemysłowych z nadrzędnymi systemami zarządzania produkcją,
tworząc kompleksową infrastrukturę monitorowania. Platformy IoT wspierają za-
równo przetwarzanie danych w chmurze obliczeniowej, jak i wykorzystanie technik
przetwarzania brzegowego (ang. edge computing) do analizy w czasie rzeczywistym,
co stanowi podstawę zaawansowanych analiz predykcyjnych obejmujących całe
zakłady przemysłowe [30]. Możliwość integracji danych z wielu źródeł — od pro-
stych czujników temperatury po złożone systemy wizyjne — zapewnia algorytmom
w predykcyjnym utrzymaniu ruchu dostęp do zróżnicowanych informacji. Coraz
częściej do symulacji i predykcji zachowania urządzeń w różnych scenariuszach
operacyjnych stosuje się także technologie cyfrowych bliźniaków (ang. digital twins)
[44, 45].
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Metody uczenia maszynowego znajdują coraz szersze zastosowanie w predykcyj-
nym utrzymaniu ruchu, umożliwiając automatyczne wykrywanie wzorców degra-
dacji oraz przewidywanie awarii na podstawie danych historycznych i bieżących
pomiarów [46, 10]. Algorytmy klasyfikacji służą do kategoryzowania stanów tech-
nicznych urządzeń, natomiast metody regresji umożliwiają przewidywanie wartości
parametrów technicznych w czasie. Techniki głębokiego uczenia — w szczególności
sieci LSTM (ang. long short-term memory) oraz konwolucyjne (ang. convolutional
neural network, CNN) — pozwalają na modelowanie złożonych zależności w wie-
lowymiarowych szeregach czasowych pochodzących z systemów monitorowania
[47]. Z kolei metody zespołowe [48] oraz zaawansowane metody inżynierii cech,
takie jak transformacje falkowe (ang. continuous wavelet transform, CWT) [49] czy
analiza głównych składowych [50], zwiększają dokładność predykcji, uwzględniając
jednocześnie niepewność modeli i zmienność warunków operacyjnych [51].

Analiza anomalii w predykcyjnym utrzymaniu koncentruje się na identyfika-
cji odstępstw od typowych wzorców operacyjnych. Obejmuje zarówno podejścia
statystyczne, jak i techniki uczenia maszynowego dostosowane do analizy szere-
gów czasowych, co umożliwia wczesne wykrywanie symptomów degradacji przed
wystąpieniem krytycznych awarii [52].

2.3 Charakterystyka danych w predykcyjnym
utrzymaniu ruchu

Dane gromadzone w systemach predykcyjnego utrzymania ruchu charakteryzują
się specyficznymi cechami, które wynikają z natury procesów przemysłowych oraz
ograniczeń praktycznych związanych z monitorowaniem urządzeń w warunkach
operacyjnych. Zrozumienie charakterystyki tych danych pomaga w wyborze odpo-
wiednich metod analitycznych oraz skutecznego wdrażania strategii predykcyjnego
utrzymania ruchu w środowiskach przemysłowych.

Charakterystyczną cechą danych w predykcyjnym utrzymaniu ruchu jest ich
cenzurowany charakter, wynikający z faktu, że w analizowanym okresie znaczna
części urządzeń nie ulega awarii. Urządzenia te mogą pozostawać w eksploatacji do
końca okresu obserwacji, zostać wymienione profilaktycznie w ramach planowanych
modernizacji lub wycofane z użycia z przyczyn niezwiązanych z awarią techniczną.
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Taka niekompletna informacja o czasach awarii stanowi wyzwanie metodologiczne,
ponieważ tradycyjne metody analizy danych zakładają dostępność kompletnych
obserwacji dla wszystkich analizowanych przypadków [2, 53]. Problematyka danych
cenzurowanych jest dobrze znana w niezawodności przemysłowej oraz w analizie
danych gwarancyjnych [54].

Ignorowanie cenzurowanego charakteru danych przemysłowych w analizach
predykcyjnych prowadzi do błędów w estymacji czasów do awarii. Pominięcie
obserwacji cenzurowanych skutkuje utratą informacji o trwałości urządzeń, które
pracowały bezawaryjnie przez cały okres obserwacji, co prowadzi do pesymistycz-
nego obciążenia modeli w kierunku zaniżania przewidywanych czasów eksploatacji.
Z kolei traktowanie obserwacji cenzurowanych jako kompletnych, poprzez przypi-
sanie im czasu obserwacji jako momentu awarii, wprowadza błąd w przeciwnym
kierunku — prowadzi do niedoszacowania ryzyka awarii [55].

Specyfika danych cenzurowanych w predykcyjnym utrzymaniu ruchu uzasadnia
stosowanie metod analizy przeżycia, opracowanych specjalnie do pracy z niekom-
pletnymi obserwacjami czasów do zdarzeń [56, 1]. Metody te pozwalają wykorzystać
pełną informację zawartą w danych, obejmując zarówno obserwowane awarie, jak
i okresy bezawaryjnego funkcjonowania urządzeń. Integracja analizy przeżycia
z danymi przemysłowymi umożliwia tworzenie modeli predykcyjnych, które szacują
prawdopodobieństwo awarii oraz pozostały czas użytkowania urządzeń, uwzględ-
niając niepewność wynikającą z cenzurowania danych [57].

Dane w systemach predykcyjnego utrzymaniu ruchu często charakteryzują się
wysoką wielowymiarowością, obejmującą parametry operacyjne (temperatura,
ciśnienie, prędkość obrotowa), warunki środowiskowe (temperatura otoczenia,
wilgotność), dane eksploatacyjne (czas pracy, liczba cykli) oraz informacje kontek-
stowe (typ urządzenia, wiek, historia konserwacji). Taka struktura danych wymaga
budowy modeli predykcyjnych, które uwzględniają wpływ wielu czynników na pro-
cesy degradacji oraz zastosowania odpowiednich metod analizy wielowymiarowej
dostosowanych do specyfiki danych cenzurowanych [58].
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2.4 Przykład zastosowania drzewa przeżyciowego
w analizie danych przemysłowych

W celu ilustracji zastosowania metod analizy przeżycia w predykcyjnym utrzyma-
niu ruchu przedstawiono przykład analizy danych pochodzących z monitorowania
15 przemysłowych pomp wirowych. Analiza wykorzystuje drzewo przeżyciowe jako
interpretowalną metodę uczenia maszynowego, która uwzględnia wpływ warunków
operacyjnych na niezawodność urządzeń [11, 59]. Zbiór danych obejmuje zarówno
obserwacje awarii, jak i dane cenzurowane. Drzewa przeżyciowe stanowią rozsze-
rzenie klasycznych drzew decyzyjnych do analizy danych typu czas-do-zdarzenia
[60].

Zbiór danych zawiera informacje o czasach obserwacji (w miesiącach), statusie
urządzenia (awaria lub brak informacji o awarii, tj. cenzurowanie) oraz trzech
zmiennych objaśniających: temperaturze pracy (˝C), wilgotności względnej środo-
wiska (%) oraz obciążeniu roboczym (% mocy nominalnej). Dane te odzwierciedlają
typowe parametry monitorowane w systemach predykcyjnego utrzymania ruchu
oraz ilustrują wpływ warunków operacyjnych na niezawodność urządzeń przemy-
słowych [61]. Podobne analizy niezawodności, uwzględniające wpływ warunków
środowiskowych, stosuje się również w przypadku turbin gazowych [62].
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Rysunek 2.1: Drzewo przeżyciowe dla zbioru danych pomp wirowych. Oznaczenia:
T — temperatura pracy (˝C), O — obciążenie robocze (%), W — wilgotność
względna (%), n — liczba obserwacji w węźle, ŷ — przewidywana mediana
czasu przeżycia (miesiące).
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Drzewo przeżyciowe wygenerowane dla tego zbioru danych, przedstawione na
Rysunku 2.1, charakteryzuje się hierarchiczną strukturą podziałów opartych na pro-
gowych wartościach zmiennych objaśniających. Główny podział w korzeniu drzewa
następuje na podstawie temperatury pracy, gdzie próg 74.8 ˝C oddziela pompy
pracujące w wysokiej temperaturze (>74.8 ˝C) od urządzeń eksploatowanych
w standardowych warunkach termicznych (ď74.8 ˝C). Podział ten odzwierciedla
krytyczny wpływ temperatury na trwałość komponentów mechanicznych oraz
efektywność smarowania.

W węzłach potomnych drzewo wprowadza dalsze podziały na podstawie obcią-
żenia roboczego oraz wilgotności względnej. Dla pomp pracujących w niższej tem-
peraturze (ď74.8 ˝C) próg obciążenia wynosi 59.7% mocy nominalnej, z kolejnymi
podziałami przy wilgotności 73.0% i 64.9%. Dla pomp w wyższej temperaturze
(>74.8 ˝C) główny podział następuje przy obciążeniu 80.0%, z dodatkowymi po-
działami przy obciążeniu 66.2% oraz wilgotności 65.1%, które stanowią czynniki
ryzyka wpływające na procesy degradacyjne.

Liście drzewa reprezentują grupy pomp o podobnych profilach niezawodności,
z oszacowanymi funkcjami przeżycia specyficznymi dla każdej kombinacji warun-
ków operacyjnych. Grupa o najwyższym ryzyku, reprezentowana przez skrajną
prawą ścieżkę w drzewie, charakteryzuje się medianą czasu do awarii wynoszącą 4.0

miesiące. Najbardziej niezawodną grupę stanowią pompy eksploatowane w najko-
rzystniejszych warunkach operacyjnych (skrajna lewa ścieżka), dla których mediana
czasu do awarii wynosi 18.3 miesiąca. Pozostałe liście drzewa odpowiadają grupom
o pośrednich poziomach niezawodności, z medianami w zakresie od 6.0 do 17.4

miesięcy.
Drzewo przeżyciowe jest modelem interpretowalnym, którego struktura podzia-

łów umożliwia priorytetyzację działań konserwacyjnych na podstawie rzeczywistych
warunków operacyjnych urządzeń. Struktura drzewa pozwala identyfikować kry-
tyczne kombinacje czynników wpływających na niezawodność, co umożliwia opty-
malizację harmonogramów konserwacji oraz modyfikację warunków eksploatacji
w celu przedłużenia żywotności urządzeń. Metoda ta łączy zalety interpretowal-
ności charakterystycznej dla tradycyjnych podejść inżynierskich z możliwościami
modelowania złożonych zależności oferowanymi przez uczenie maszynowe. Dalsze
rozszerzenia tej metodologii obejmują zespoły drzew przeżyciowych oraz zaawan-
sowane techniki typu boosting dostosowane do danych cenzurowanych [63].
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Analiza niezawodności i przeżycia — wprowadzona w Rozdziale 1 i ilustrowana
przykładami PDM w Rozdziale 2 — dostarcza podstaw teoretycznych do modelo-
wania danych typu czas-do-zdarzenia w kontekstach technicznych i medycznych
[5, 64]. To podejście analityczne rozwijało się początkowo w medycynie, gdzie
służyło do analizy długoterminowych wyników leczenia pacjentów. Następnie zna-
lazło również zastosowanie w inżynierii niezawodności, gdzie umożliwia precyzyjne
modelowanie procesów degradacji urządzeń przemysłowych. Wspólne fundamenty
teoretyczne obu zastosowań sprzyjają transferowi wiedzy i metod pomiędzy domeną
medyczną a techniczną, gdyż podstawowy problem badawczy — modelowanie
czasu do wystąpienia krytycznego zdarzenia w obecności niepełnych obserwacji —
pozostaje taki sam niezależnie od obszaru zastosowań. Uniwersalność tego podej-
ścia sprawia, że metody analizy przeżycia znajdują zastosowanie w zarządzaniu
ryzykiem operacyjnym, planowaniu strategii konserwacyjnych oraz optymalizacji
cykli życia systemów technicznych.

Ze względu na cenzurowany charakter danych (opisany w Rozdziale 1), trady-
cyjne metody klasyfikacyjne i regresyjne nie są odpowiednie do analizy danych
przeżyciowych, co uzasadnia potrzebę zastosowania dedykowanych metod. Cenzuro-
wanie stanowi wyzwanie metodologiczne, ponieważ dla części obserwacji informacja
o czasie wystąpienia zdarzenia jest niepełna — wiemy jedynie, że zdarzenie nie
wystąpiło do momentu zakończenia obserwacji lub że nastąpiło w określonym
przedziale czasowym. Ignorowanie obserwacji cenzurowanych prowadzi do obciąże-
nia estymatorów w kierunku zaniżania czasu pozostałego do wystąpienia zdarzeń,
co w praktyce przemysłowej może skutkować nieadekwatnym planowaniem kon-
serwacji i zwiększonym ryzykiem nieplanowanych przestojów. Z kolei prostsze
podejścia alternatywne, takie jak traktowanie obserwacji cenzurowanych jako
kompletnych na podstawie ostatniego znanego czasu obserwacji, prowadzą do prze-
ciwnego rodzaju obciążenia — przeszacowania rzeczywistych czasów wystąpienia
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zdarzeń. Specjalistyczne metody analizy przeżycia rozwiązują te problemy poprzez
modelowanie procesu cenzurowania i wykorzystanie pełnej dostępnej informacji,
w tym także informacji zawartej w obserwacjach niekompletnych.

Różnicę między tradycyjnymi danymi regresyjnymi a danymi cenzurowanymi
można zilustrować prostym przykładem. W badaniu trwałości 6 urządzeń, w pierw-
szym scenariuszu obserwowane są wszystkie awarie — urządzenia uległy awarii
odpowiednio po 12, 18, 24, 30, 36 oraz 42 miesiącach eksploatacji. Dla takich
kompletnych danych można zastosować standardową regresję liniową, uzyskując
średni czas do awarii wynoszący 27 miesięcy. W drugim scenariuszu, częściej
spotykanym w praktyce, u części obiektów występuje cenzurowanie prawostronne
(obserwację zakończono przed wystąpieniem zdarzenia) — badanie kończy się po
30 miesiącach, w wyniku czego obserwowane są awarie tylko trzech pierwszych
urządzeń (12, 18, 24 miesiące), podczas gdy pozostałe trzy nadal funkcjonują (dane
cenzurowane). Zastosowanie standardowej regresji tylko do obserwowanych awarii
dałoby średni czas 18 miesięcy, co stanowi znaczące niedoszacowanie w porównaniu
z rzeczywistą wartością 27 miesięcy. Pominięcie obserwacji cenzurowanych skutkuje
więc systematycznym błędem w kierunku zaniżania czasów do zdarzeń.

Zaprezentowany przykład ilustruje potrzebę stosowania specjalistycznych metod
analizy przeżycia, które wykorzystują informację zawartą w obserwacjach cenzuro-
wanych. W rzeczywistych zastosowaniach odsetek takich obserwacji może sięgać
kilkudziesięciu procent, co sprawia, że nie można ich pominąć — w szczególno-
ści w przypadku kosztownych badań medycznych czy długoterminowych analiz
przemysłowych. Niniejszy rozdział przedstawia teoretyczne fundamenty analizy
niezawodności i przeżycia, omawiając podstawowe pojęcia, funkcje statystyczne,
rozkłady prawdopodobieństwa oraz metody estymacji stosowane w modelowaniu
danych cenzurowanych. Stanowią one punkt wyjścia dla opracowania interpretowal-
nych algorytmów uczenia maszynowego, które zostaną zaprezentowane w dalszych
częściach pracy.

3.1 Podstawowe pojęcia

Analiza niezawodności i analiza przeżycia, mimo odmiennych obszarów zasto-
sowania, opierają się na wspólnych fundamentach teoretycznych i wykorzystują
analogiczne metody statystyczne do modelowania danych typu czas-do-zdarzenia.
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3.1 Podstawowe pojęcia

W tej sekcji zostaną wprowadzone podstawowe pojęcia dla obu podejść, które
zostaną zilustrowane przykładem badania niezawodności.

pompa t (miesiące) d (status)
A 3 1
B 7 1
C 9 1
D 12 0
E 12 0
F 12 0
G 12 0
H 12 0

Tabela 3.1: Dane w przykładzie pomp: czas obserwacji t (w miesiącach) i status
d, gdzie d = 1 oznacza awarię, a d = 0 obserwację cenzurowaną (brak awarii do
końca obserwacji t = 12).

W ilustracyjnym przykładzie hipotetycznego badania niezawodności ośmiu iden-
tycznych pomp przemysłowych obserwowanych przez 12 miesięcy w celu określenia
ich czasów do awarii przyjęto następujące dane syntetyczne: pompa A uległa awarii
po 3 miesiącach, pompa B po 7 miesiącach, pompa C po 9 miesiącach, a pompy
D, E, F, G oraz H działały nadal na koniec okresu obserwacji. Dla pomp nadal
działających wiadomo jedynie, że przetrwały co najmniej 12 miesięcy, natomiast
dokładny czas ich ewentualnej awarii pozostaje nieznany. Zestawienie danych
przedstawiono w Tabeli 3.1. Przykład ten posłuży do zilustrowania podstawowych
pojęć analizy przeżycia przedstawionych poniżej.

Niezawodność (ang. reliability) definiuje się jako zdolność systemu, komponentu
lub struktury do ciągłego wykonywania zamierzonej funkcji w określonych wa-
runkach operacyjnych przez określony okres eksploatacji, zgodnie z normą ISO
8402 (1986) [65]. W przykładzie z pompami niezawodność opisuje prawdopodo-
bieństwo, że pompa będzie działać bez awarii przez określony czas, np. 6 miesięcy.
Miara ta jest stosowana w planowaniu strategii konserwacyjnych i ocenie ryzyka
operacyjnego.

Zdarzenie w analizie przeżycia oznacza specyficzny, interesujący z punktu wi-
dzenia analizy, wynik procesu obserwacyjnego. Stanowi ono uniwersalne pojęcie
stosowane w różnych kontekstach aplikacyjnych. W analizie niezawodności zda-
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rzeniem jest awaria urządzenia (jak w przypadku pomp A, B, C z przykładu),
natomiast w analizie przeżycia może to być np. zgon pacjenta, nawrót choroby
czy inne krytyczne zdarzenie medyczne. Dzięki tej uniwersalności możliwe jest
stosowanie tych samych metod analitycznych w różnych dziedzinach, przy czym
pojęcie awarii jest konkretną realizacją zdarzenia w kontekście inżynierskim [66].

Cenzurowanie występuje, gdy dokładny moment wystąpienia zdarzenia nie jest
znany, co prowadzi do niekompletnych danych czasowych. W przykładzie, obser-
wacje pomp D–H są cenzurowane prawostronnie — wiadomo, że przetrwały co
najmniej 12 miesięcy, lecz dokładny czas ich awarii nie jest znany. Cenzurowanie
prawostronne jest najczęstsze w praktyce i pojawia, gdy obserwacja kończy się
przed wystąpieniem zdarzenia. Cenzurowanie lewostronne zachodzi, gdy zdarzenie
nastąpiło przed rozpoczęciem obserwacji, ale jego dokładny moment nie jest znany.
Z kolei cenzurowanie obustronne (interwałowe) ma miejsce, gdy obserwacja podlega
jednocześnie ograniczeniom lewostronnym i prawostronnym — wiadomo jedynie,
że zdarzenie nastąpiło w pewnym przedziale czasowym, np. między wizytami
kontrolnymi, lecz jego dokładny moment pozostaje nieznany. Obecność danych
cenzurowanych uniemożliwia stosowanie standardowych metod regresyjnych i wy-
maga specjalistycznych technik analizy przeżycia [64].

Czas-do-zdarzenia to nieujemna zmienna losowa reprezentująca okres od po-
czątku obserwacji do wystąpienia interesującego zdarzenia. W analizie niezawodno-
ści określany jest jako czas-do-awarii (ang. time-to-failure, TTF) — w przykładzie
wynosi odpowiednio 3, 7 i 9 miesięcy dla pomp A, B, C. W analizie przeżycia
używa się pojęcia czasu przeżycia (ang. survival time). W przypadku obserwacji
cenzurowanych znamy jedynie dolną granicę tego czasu [53].

Awaria (ang. failure) definiowana jest jako utrata zdolności systemu do reali-
zacji zamierzonej funkcji, zgodnie z normą IEC 50(191) (1990) [67]. W inżynierii
przyczyną awarii mogą być m.in. zużycie materiału, korozja czy przeciążenie.
W przykładzie z pompami awarie urządzeń A, B i C mogły wynikać ze zużycia
łożysk, uszkodzenia wirnika lub innych procesów degradacyjnych, podczas gdy
pompy D–H nadal spełniają swoją funkcję na koniec okresu obserwacji.
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3.2 Funkcje i rozkłady w analizie niezawodności
i przeżycia

Analiza niezawodności i przeżycia wykorzystuje funkcje matematyczne oraz roz-
kłady prawdopodobieństwa dostosowane do modelowania danych cenzurowanych
typu czas-do-zdarzenia [64, 29]. W tej sekcji omówione zostaną metody analityczne,
obejmujące funkcję przeżycia, funkcję hazardu oraz wybrane rozkłady prawdo-
podobieństwa, a także zilustrowane zostanie ich zastosowanie w analizie danych
przemysłowych na przykładzie estymatora Kaplana-Meiera.

Funkcja przeżycia S, która w analizie niezawodności nazywana jest również
funkcją niezawodności R, definiowana jest jako prawdopodobieństwo, że czas do
zdarzenia T przekroczy określony moment t. W literaturze obie notacje używane są
zamiennie, w zależności od dziedziny zastosowania. Funkcja ta wyraża się wzorem:

S(t) = P (T ą t). (3.1)

Funkcja przeżycia odzwierciedla odsetek jednostek — pacjentów w analizie
medycznej lub urządzeń w analizie niezawodności — które przetrwają lub pozostaną
sprawne po upływie czasu t. Jest to funkcja nierosnąca, przyjmująca wartości od
1 (wszystkie jednostki sprawne w t = 0) do 0 (gdy wszystkie jednostki ulegną
zdarzeniu) [64, 54]. Graficzną reprezentację funkcji przeżycia nazywa się krzywą
przeżycia lub, w analizie niezawodności, krzywą niezawodności. Przykładową
funkcję przeżycia dla rozkładu wykładniczego przedstawiono na Rysunku 3.1a.

Funkcja hazardu h opisuje chwilowe ryzyko wystąpienia zdarzenia w czasie
t, pod warunkiem że jednostka przetrwała do tego momentu. Matematycznie
definiuje się ją następującym wzorem:

h(t) = lim
∆tÑ0

P (t ď T ă t+∆t | T ě t)

∆t
. (3.2)

Funkcja hazardu umożliwia analizę dynamiki zdarzeń w czasie — może wskazy-
wać zwiększone ryzyko zgonu w późniejszych stadiach choroby (analiza przeżycia)
lub wzrost prawdopodobieństwa awarii wynikający ze zużycia materiału (analiza
niezawodności). Jej przebieg odzwierciedla mechanizmy degradacji, co prowadzi
do stosowania odpowiednich rozkładów prawdopodobieństwa [64]. Przykładową
funkcję hazardu dla rozkładu wykładniczego przedstawiono na Rysunku 3.1b.
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Rysunek 3.1: Wykresy funkcji przeżycia S i odpowiadających im funkcji ha-
zardu h dla trzech rozkładów prawdopodobieństwa stosowanych w analizie
niezawodności i przeżycia (ozn. S(8) = limtÑ+8 S(t)): (a) rozkład wykładniczy
(λ = 0.5) ze stałym hazardem; (b) funkcja hazardu dla rozkładu wykładniczego;
(c) rozkład Weibulla (λ = 2, k = 2) z liniowo rosnącym hazardem; (d) funkcja
hazardu dla rozkładu Weibulla; (e) rozkład log-normalny (µ = 1, σ = 0.5)
z rosnącym, a następnie malejącym hazardem; (f) funkcja hazardu dla rozkładu
log-normalnego. Osie oznaczono jako t (czas) oraz odpowiednio S(t) lub h(t)

(wartość funkcji przeżycia lub hazardu).
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Dystrybuanta skumulowana (ang. cumulative distribution function, CDF) to
prawdopodobieństwo wystąpienia zdarzenia nie później niż w chwili t. Funkcja ta
zdefiniowana jest wzorem:

F (t) = 1 ´ S(t). (3.3)
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lim
t→+∞

F(t)=1

Rysunek 3.2: Dystrybuanta skumulowana (CDF) dla rozkładu wykładniczego.

Funkcja CDF określa skumulowane ryzyko wystąpienia zdarzenia do chwili
t i stanowi uzupełnienie funkcji przeżycia. Wzajemne relacje między funkcją
przeżycia S, funkcją hazardu h i dystrybuantą skumulowaną F tworzą zestaw
metod umożliwiający pełną charakterystykę procesów degradacji w modelowaniu
danych typu czas-do-zdarzenia [29]. Wykres przykładowej funkcji CDF dla rozkładu
wykładniczego przedstawiono na Rysunku 3.2.

W analizie niezawodności i przeżycia szczególną rolę odgrywają wyspecjalizowane
rozkłady prawdopodobieństwa dostosowane do modelowania czasów do zdarzeń [66].
Rozkład wykładniczy, charakteryzujący się stałą funkcją hazardu h(t) = λ, λ ą 0,
opisuje procesy bezpamięciowe (ang. memoryless) typowe dla awarii komponentów
elektronicznych. Rozkład Weibulla, o funkcji hazardu h(t) = αλtα´1, umożliwia
modelowanie zróżnicowanych wzorców intensywności zdarzeń — monotonicznych
(rosnących, malejących, stałych) oraz niemonotonicznych (np. najpierw malejących,
następnie rosnących) — w zależności od wartości parametru kształtu α. Stała
α ą 0 jest parametrem kształtu kontrolującym monotoniczność hazardu, a czynnik
tα´1, t ą 0, jest stały dla α = 1, rośnie dla α ą 1, a maleje dla 0 ă α ă 1,
stąd funkcja h ma odpowiednio stały, rosnący lub malejący przebieg. Rozkład
log-normalny znajduje zastosowanie w modelowaniu procesów multiplikatywnych,
charakterystycznych dla degradacji biologicznej lub zmęczenia materiału. Graficzne
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przedstawienie funkcji przeżycia i hazardu dla tych rozkładów zaprezentowano na
Rysunku 3.1.

3.3 Metody estymacji i porównywania funkcji
przeżycia

Analiza niezawodności i przeżycia wykorzystuje specjalistyczne metody estymacji
funkcji przeżycia i hazardu oraz techniki porównawcze dostosowane do specyfiki
danych cenzurowanych. W niniejszej sekcji omówiono podejścia statystyczne obej-
mujące zarówno metody parametryczne, jak i nieparametryczne do szacowania
funkcji przeżycia i hazardu, a także testy porównawcze umożliwiające ocenę różnic
w niezawodności między grupami lub systemami.

Metody nieparametryczne charakteryzują się brakiem założeń dotyczących
konkretnego rozkładu prawdopodobieństwa czasów do zdarzeń. Estymator Kaplana-
Meiera stanowi najczęściej stosowaną technikę nieparametryczną do szacowania
funkcji przeżycia S na podstawie danych cenzurowanych i jest definiowany wzorem:

Ŝ(t) =
ź

tiďt

(
1 ´

di
ni

)
(3.4)

gdzie di oznacza liczbę zdarzeń w chwili ti, a ni to liczba jednostek w zbiorze
ryzyka w chwili ti [56]. W analizie niezawodności estymator Kaplana-Meiera
oznacza się jako R̂. Alternatywną metodą jest estymator Nelsona-Aalena, który
szacuje skumulowaną funkcję hazardu:

Ĥ(t) =
ÿ

tiďt

di
ni

(3.5)

Oba estymatory uwzględniają dane cenzurowane i prowadzą do podobnych
rezultatów, przy czym estymator Kaplana-Meiera jest częściej stosowany ze względu
na prostą interpretację funkcji przeżycia w kategoriach prawdopodobieństwa [68].

Metody parametryczne zakładają określony rozkład czasów do zdarzeń, co
umożliwia bardziej szczegółowe modelowanie procesów degradacji. Estymacja
parametrów rozkładu, takich jak λ w rozkładzie wykładniczym czy α i λ w roz-
kładzie Weibulla, przeprowadzana jest zazwyczaj metodą estymacji największej
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wiarygodności (MLE). Podejście parametryczne pozwala na uzyskanie precyzyj-
nych prognoz w sytuacjach, gdy dane dobrze odpowiadają wybranemu rozkładowi
teoretycznemu, jednak wymaga weryfikacji zgodności założeń z rzeczywistymi
obserwacjami [69].

Porównywanie funkcji przeżycia między grupami wymaga zastosowania testów
statystycznych dostosowanych do danych cenzurowanych. Najczęściej stosowaną
metodą oceny istotności różnic między funkcjami przeżycia dwóch lub więcej grup
jest test log-rank. Test ten opiera się na porównaniu liczby zdarzeń obserwowanych
i oczekiwanych w każdym punkcie czasowym, a następnie na obliczeniu statystyki
χ2 w celu sprawdzenia hipotezy zerowej, zgodnie z którą krzywe przeżycia są
jednakowe we wszystkich porównywanych grupach. Test log-rank charakteryzuje
się efektywnością w przypadku danych cenzurowanych oraz brakiem wymagań
dotyczących konkretnego rozkładu czasów do zdarzeń [64].

Przykład zastosowania estymatora Kaplana-Meiera

W celu ilustracji zastosowania metod analizy przeżycia w modelowaniu danych
cenzurowanych przedstawiono przykład wykorzystania estymatora Kaplana-Meiera
do analizy danych z badania niezawodności 10 przemysłowych pomp. Przykład
pokazuje sposób szacowania funkcji niezawodności w obecności obserwacji cen-
zurowanych oraz interpretację wyników w kontekście praktycznego zarządzania
ryzykiem.

Zbiór danych przedstawiono w Tabeli 3.2. Dla każdej pompy podano czas
obserwacji t (w miesiącach) oraz status d, gdzie d = 1 oznacza wystąpienie
zdarzenia, a d = 0 wskazuje na obserwację cenzurowaną (brak zdarzenia w czasie
obserwacji).

Estymator Kaplana-Meiera (wzór 3.4) umożliwia oszacowanie funkcji przeżycia
(niezawodności) z uwzględnieniem zarówno obserwowanych zdarzeń, jak i danych
cenzurowanych. Procedura obliczeniowa polega na uporządkowaniu czasów zdarzeń
(3, 4, 5, 6, 7, 9, 10 miesięcy) oraz na mnożeniu czynników z definicji, gdzie di
oznacza liczbę zdarzeń w chwili ti, a ni to liczba pomp w zbiorze ryzyka tuż
przed ti, rozumianym jako zbiór obiektów, dla których nie odnotowano zdarzenia
i które pozostają pod obserwacją bezpośrednio przed ti. Przykładowe obliczenia:
R̂(3) = 1 ¨ (1 ´ 1

10
) = 0.9 oraz R̂(4) = 0.9 ¨ (1 ´ 1

9
) « 0.8.
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Pompa t (miesiące) d (status)
1 3 1
2 5 1
3 12 0
4 7 1
5 9 1
6 12 0
7 10 1
8 4 1
9 12 0
10 6 1

Tabela 3.2: Status pomp po określonym czasie. Wartość d = 0 oznacza dane
cenzurowane, d = 1 odpowiada wystąpieniu zdarzenia.
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Rysunek 3.3: Krzywa niezawodności R uzyskana za pomocą estymatora Kaplana-
Meiera. Krzywa schodkowa ilustruje spadek prawdopodobieństwa niezawodności
w czasie, z punktem oznaczającym dane cenzurowane dla t = 12 miesięcy.
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Rezultaty analizy, przedstawione na Rysunku 3.3, dostarczają informacji dla
planowania konserwacji. Krzywa niezawodności wskazuje, że prawdopodobień-
stwo bezawaryjnej pracy pompy przez 8 miesięcy wynosi około 50%. Może to
stanowić podstawę do określenia progów ryzyka dla działań prewencyjnych. Me-
toda Kaplana-Meiera pozwala wykorzystać pełną informację zawartą w danych,
w tym obserwacje cenzurowane, które odnoszą się do pomp nadal działające po 12
miesiącach obserwacji.

Zaprezentowane funkcje matematyczne oraz przykład ich zastosowania stanowią
podstawę analizy niezawodności i przeżycia, umożliwiając modelowanie i predykcję
w obecności danych cenzurowanych. Połączenie teoretycznych podstaw z narzę-
dziami estymacji tworzy zestaw metod analitycznych przydatnych w dalszych
zastosowaniach omawianych w kolejnych sekcjach rozdziału.

3.4 Modelowanie zależności od zmiennych
objaśniających

W analizie niezawodności i przeżycia bada się także wpływ zmiennych obja-
śniających — takich jak warunki środowiskowe, charakterystyki jednostek czy
zastosowane interwencje — na czas do wystąpienia zdarzenia. W niniejszej sekcji
omówiono metody modelowania tych zależności, obejmujące zarówno klasyczne
podejścia statystycznych, jak i współczesne techniki uczenia maszynowego dosto-
sowane do specyfiki danych cenzurowanych.

Model proporcjonalnych hazardów Coxa jest najczęściej stosowaną metodą
w analizie wielowymiarowej danych przeżycia, pozwalającą na analizę wpływu
zmiennych objaśniających bez konieczności specyfikacji bazowego rozkładu hazardu
[1]. Model definiuje funkcję hazardu jako:

h(t | X) = h0(t)e
β1X1+β2X2+¨¨¨+βpXp (3.6)

gdzie h0 reprezentuje bazową funkcję hazardu, a X = (X1, X2, . . . , Xp) to wektor
zmiennych predykcyjnych z odpowiadającymi współczynnikami regresji βi, dla
i = 1, . . . , p. Interpretacja modelu opiera się na ilorazach hazardów (ang. hazard
ratio) — dla wzrostu zmiennej Xi o jedną jednostkę jej skali pomiaru iloraz
hazardów wynosi eβi , co wynika z log-liniowej postaci modelu. Zaletą tego podejścia
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jest semi-parametryczny (ang. semi-parametric) charakter — model nie zakłada
parametrycznej formy funkcji hazardu h0, a jedynie proporcjonalność hazardów
oraz log-liniowy efekt zmiennych objaśniających [70].

Alternatywnym podejściem jest parametryczny model przyspieszonego czasu
awarii (ang. accelerated failure time model, AFT), który zakłada multiplikatywny
wpływ zmiennych objaśniających na czas do zdarzenia. Model wyraża się wzorem:

log(T ) = β0 + β1X1 + β2X2 + ¨ ¨ ¨ + βpXp + σε (3.7)

gdzie T to czas do zdarzenia, β0 to wyraz wolny, który ustala poziom bazowy
i odpowiada logarytmowi czasu do zdarzenia dla obserwacji referencyjnej przy
X = (0, . . . , 0); βi to współczynniki regresji dla zmiennych Xi (i = 1, . . . , p), σ to
parametr skali, a ε to błąd o określonym rozkładzie. W ujęciu parametrycznym AFT
wymaga specyfikacji rozkładu składnika losowego (np. Weibulla, log-normalnego),
lecz istnieją również semi-parametryczne wersje niewymagające pełnej parame-
tryzacji rozkładu [71, 72]. Interpretacja na skali czasu jest następująca: wzrost
zmiennej Xi o 1 jednostkę mnoży typowy czas do zdarzenia (np. medianę) przez eβi ;
gdy eβi ą 1 czas się wydłuża, a gdy eβi ă 1 skraca. Dla porównania, model Coxa
opisuje efekt względny — wzrost Xi o 1 jednostkę zmienia hazard przez czynnik eβi ,
czyli wpływa na zdarzenia w każdym momencie w sposób proporcjonalny (iloraz
hazardów) [73, 74]. Przez efekt względny rozumie się multiplikatywną zmianę
hazardu (iloraz hazardów), natomiast przez efekt absolutny — multiplikatywną
zmianę typowego czasu do zdarzenia (iloraz czasów).

Oba podejścia oferują komplementarne perspektywy analizy danych przeżycia.
Model Coxa koncentruje się na względnych efektach zmiennych na hazard, podczas
gdy model AFT dostarcza informacji o absolutnych efektach na czas do zdarzenia.
Wybór między metodami zależy od charakteru danych, celów analizy oraz wymagań
dotyczących interpretowalności wyników [75].

Rozwój uczenia maszynowego umożliwił zarówno adaptację klasycznych algoryt-
mów do problemów analizy przeżycia, jak i opracowanie specjalistycznych technik
dedykowanych danym cenzurowanym. Adaptacja klasycznych metod obejmuje
dyskretyzację czasu i zastosowanie klasyfikacji binarnej, regresję z traktowaniem
obserwacji cenzurowanych jako brakujących danych oraz techniki ważenia uwzględ-
niające specyfikę cenzurowania [76]. Metody zespołowe, takie jak gradient boosting
[77] czy bagging, znajdują zastosowanie poprzez agregację predykcji wielu esty-
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matorów bazowych, czego przykładem są implementacje w algorytmach XGBoost
[78] oraz w przeżyciowych lasach losowych [59].

Modele zespołowe łączą wiele estymatorów bazowych w celu zmniejszenia błędu
generalizacji (ang. generalization error) i wariancji predykcji. W baggingu (boot-
strap aggregating) trenuje się niezależne estymatory na próbkach bootstrap zbioru
uczącego, a ich predykcje uśrednia, co zmniejsza wariancję. Dodatkowe losowe
podpróbkowanie cech, stosowane w modelach lasów losowych [79], obniża korelację
między estymatorami. Boosting buduje model łącznie (addytywnie) jako sumę
wkładów kolejnych słabych estymatorów bazowych. W kolejnym kroku dopaso-
wuje się nowy estymator do kierunku największej poprawy wartości funkcji straty
(np. ujemnego gradientu w gradient boosting [77]) i dodaje go z małą wagą (współ-
czynnik uczenia, tzw. shrinkage). Taka konstrukcja zmniejsza obciążenie (bias)
modelu, lecz wymaga regularyzacji (płytkie drzewa, podpróbkowanie, wczesne
zatrzymanie; ang. shallow trees, subsampling, early stopping), aby nie zwiększyć
wariancji i nie doprowadzić do przeuczenia. Stacking polega na nauczeniu modelu
łączącego (meta-klasyfikatora/regresora), który przyjmuje jako wejście wektor
predykcji estymatorów bazowych uzyskanych w schemacie out-of-fold walidacji
krzyżowej. Model łączący uczy się wag (np. w regresji liniowej/logistycznej) przy-
pisanych do poszczególnych estymatorów bazowych, co określa ich wkład w finalną
predykcję. Różnorodność zespołu osiąga się poprzez bootstrap i podpróbkowanie
cech, co zmniejsza korelację estymatorów i obniża wariancję predykcji.

Dedykowane techniki uczenia maszynowego dla danych cenzurowanych obejmują
drzewa przeżycia, które rozszerzają klasyczne drzewa decyzyjne o możliwość pracy
z danymi cenzurowanymi, oraz lasy losowe przeżycia, łączące wiele drzew przeżycia
przy zachowaniu interpretowalności [59]. Maszyny wektorów nośnych (ang. sup-
port vector machines, SVMs) zostały zaadaptowane poprzez modyfikację funkcji
straty uwzględniającej ranking czasów zdarzeń [80]. Sieci neuronowe (ang. neural
networks) znajdują zastosowanie w architekturach takich jak DeepSurv czy De-
epHit, umożliwiających modelowanie złożonych, nieliniowych zależności kosztem
interpretowalności [13, 81].
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Tradycyjne metody analizy niezawodności i przeżycia, takie jak model proporcjo-
nalnych hazardów Coxa czy estymator Kaplana-Meiera, omówione w Rozdziale
3, zapewniają wysoką interpretowalność, lecz ich zdolność do modelowania złożo-
nych, nieliniowych zależności w danych jest ograniczona. Współczesne środowiska
przemysłowe oraz analiza medyczna generują wielowymiarowe, złożone dane, które
wymagają zaawansowanych modeli uczenia maszynowego zdolnych do uchwycenia
subtelnych wzorców i interakcji między zmiennymi. Objaśnialność i interpretowal-
ność (Sekcja 4.1.1) tych modeli umożliwiają budowanie zaufania, zapewnienie
zgodności z regulacjami oraz podejmowanie świadomych decyzji w analizie czasu
do wystąpienia krytycznych zdarzeń [10].

Rozwój metod obliczeniowych i dostępność dużych zbiorów danych umożliwiły
zastosowanie uczenia maszynowego — dziedziny sztucznej inteligencji zajmującej
się automatycznym rozpoznawaniem wzorców z danych — w analizie niezawod-
ności i przeżycia. W tym kontekście interpretowalność i objaśnialność nabierają
dodatkowego znaczenia. W przemyśle decyzje oparte na modelach dotyczą kosz-
townych operacji remontowych, planowania przestojów produkcyjnych czy alokacji
zasobów, a w medycynie przewidywania czasów do wystąpienia zdarzeń bezpośred-
nio wpływają na decyzje kliniczne i życie pacjentów. Ograniczenia tradycyjnych
metod analizy przeżycia, takich jak model Coxa czy estymator Kaplana-Meiera,
w modelowaniu złożonych zależności nieliniowych wskazują na potrzebę rozwoju
zaawansowanych, a jednocześnie interpretowalnych metod uczenia maszynowego.

Niniejszy rozdział przedstawia przegląd metod objaśnialnego i interpretowalnego
uczenia maszynowego, omawiając różnice między interpretowalnością wbudowaną
w modele a metodami post-hoc służącymi do wyjaśniania decyzji modeli typu
„czarnej skrzynki”. Szczególną uwagę poświęcono znaczeniu interpretowalności
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w analizie niezawodności i przeżycia oraz jej praktycznym implikacjom w pre-
dykcyjnym utrzymaniu ruchu i medycynie, tworząc teoretyczne podstawy dla
opracowania interpretowalnych algorytmów reguł logicznych przedstawionych
w kolejnych rozdziałach.

4.1 Wprowadzenie do objaśnialności
i interpretowalności w uczeniu maszynowym

W kontekście analizy niezawodności i przeżycia omówionych w poprzednich roz-
działach, metody uczenia maszynowego oferują zaawansowane podejście do mo-
delowania danych typu czas-do-zdarzenia, rozszerzając możliwości tradycyjnych
metod statystycznych zarówno w zastosowaniach przemysłowych, jak i medycz-
nych. W przemyśle pozwalają prognozować awarie, optymalizować harmonogramy
konserwacji oraz redukować przestoje, natomiast w medycynie wspierają przewidy-
wanie czasów do wystąpienia zdarzeń klinicznych, planowanie terapii oraz ocenę
skuteczności leczenia. Jednak wysoka skuteczność predykcyjna modeli uczenia
maszynowego często wynika z ich złożoności, co prowadzi do sytuacji, w której
proces decyzyjny modelu pozostaje niezrozumiały dla człowieka [82]. W predyk-
cyjnym utrzymaniu ruchu i medycynie, w których decyzje modeli bezpośrednio
wpływają na bezpieczeństwo operacyjne lub życie pacjentów, zrozumienie podstaw
tych decyzji staje się nieodzowne [30, 83].

Celem niniejszej sekcji jest przedstawienie najważniejszych pojęć objaśnialności
i interpretowalności w uczeniu maszynowym, wraz z ich rolą w analizie nieza-
wodności i przeżycia w predykcyjnym utrzymaniu ruchu oraz w zastosowaniach
biomedycznych. Przedstawiono w niej definicje tych terminów, analizę ich zna-
czenia w praktyce przemysłowej i medycznej oraz omówienie wyzwań związanych
z ich implementacją.

4.1.1 Definicje interpretowalności i objaśnialności

W literaturze poświęconej analizie modeli uczenia maszynowego wyróżnia się
m.in. interpretowalność i objaśnialność [84, 85]. Interpretowalność określa stopień,
w jakim człowiek może zrozumieć przyczyny decyzji podejmowanych przez model
uczenia maszynowego [84]. Model interpretowalny charakteryzuje się przejrzystym
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mechanizmem decyzyjnym, który nie wymaga dodatkowych wyjaśnień. Przykładem
jest drzewo decyzyjne, w którym każda decyzja jest jednoznacznie powiązana
z określonymi zmiennymi wejściowymi [86]. Objaśnialność natomiast odnosi się do
zdolności modelu do dostarczania wyjaśnień dotyczących jego funkcjonowania lub
konkretnych predykcji, także w przypadku modeli nieinterpretowalnych [85].

Interpretowalność stanowi zatem cechę wewnętrzną modelu, podczas gdy obja-
śnialność może być uzyskana dzięki zewnętrznym technikom, takim jak analiza
ważności cech (ang. feature importance) czy metod wizualizacji wpływu cech na
predykcje [86]. Modele nieinterpretowalne, takie jak głębokie sieci neuronowe,
mogą być poddawane technikom objaśnialności w celu lepszego zrozumienia ich
decyzji [87].

4.1.2 Znaczenie interpretowalności i objaśnialności

Objaśnialność i interpretowalność odgrywają szczególną rolę w dziedzinach o pod-
wyższonym ryzyku, takich jak predykcyjne utrzymanie ruchu i medycyna, gdzie
decyzje podjęte na podstawie modeli uczenia maszynowego mogą mieć bezpośredni
wpływ na bezpieczeństwo operacyjne, stabilność procesów produkcyjnych, koszty
związane z przestojami, a także na życie i zdrowie pacjentów. W takich zastosowa-
niach równie ważna jak sama dokładność precyzji jest interpretacja mechanizmów
stojących za estymacją czasu do awarii czy prognozy przeżycia — na przykład
identyfikacja zmiennych determinujących wysokie ryzyko wystąpienia zdarzenia
w krótkim horyzoncie czasowym. Transparentność modelu pozwala nie tylko zwięk-
szyć skuteczność działań podejmowanych na jego podstawie, ale także budować
zaufanie wśród użytkowników w środowiskach przemysłowych i medycznych [30].

Istotność tych zagadnień oddają następujące przykłady:

• Inżynierowie utrzymania ruchu muszą mieć możliwość weryfikacji i zaufa-
nia rekomendacjom generowanym przez model uczenia maszynowego, aby
skutecznie planować i wdrażać działania prewencyjne. Podobnie, lekarze
wymagają zrozumienia podstaw przewidywań modeli dotyczących prognozy
pacjenta, aby podejmować właściwe decyzje kliniczne. Bez wiedzy o tym,
na podstawie jakich zmiennych model lub wzorców model estymuje wysokie
prawdopodobieństwo wystąpienia zdarzenia w określonym czasie, predyk-
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cje te mogą zostać zignorowane lub błędnie zinterpretowane, co obniża ich
użyteczność [83].

• W przypadku potwierdzenia wystąpienia zdarzenia retrospektywna analiza
predykcji modelu umożliwia identyfikację czynników, które przyczyniły się
do właściwej lub błędnej estymacji, a także opracowanie strategii poprawy
jakości przewidywań. Objaśnialność pozwala ustalić, czy predykcja wynikała
z konkretnych odczytów czujników przemysłowych bądź parametrów biome-
dycznych, co może wskazywać na potrzebę kalibracji sprzętu, modyfikacji
procedur konserwacyjnych lub zmian w protokołach leczenia [82].

Ponadto w sektorach takich jak transport, energetyka czy ochrona zdrowia
obowiązują regulacje prawne oraz normy etyczne nakładające wymóg transparent-
ności decyzji podejmowanych przez systemy automatyczne. Przykładem jest unijne
ogólne rozporządzenie o ochronie danych (RODO, ang. General Data Protection
Regulation, GDPR)1, które w kontekście zautomatyzowanego podejmowania decy-
zji wymaga możliwości wyjaśnienia procesów decyzyjnych [88]. Brak objaśnialności
w takich sytuacjach może prowadzić do utraty zaufania do modelu zarówno ze
strony użytkowników, jak i organów regulacyjnych, a w skrajnych przypadkach
skutkować naruszeniem prawa, pociągając za sobą konsekwencje finansowe i repu-
tacyjne. Dlatego zapewnienie objaśnialności i interpretowalności staje się nie tylko
wyzwaniem technicznym, lecz także priorytetem w projektowaniu i wdrażaniu
modeli uczenia maszynowego w zastosowaniach wysokiego ryzyka.

4.1.3 Zależność między złożonością a interpretowalnością

Dobór modeli zależy od celu analizy. Gdy celem jest wnioskowanie statystyczne
(estymacja efektów zmiennych i testowanie hipotez) oraz interpretowalność parame-
trów i efektów zmiennych, preferowane są modele o niskiej złożoności (np. liniowe).
Gdy natomiast priorytetem jest wyłącznie predykcja, stosuje się modele o większej
zdolności dopasowania do danych, zdolne do uchwycenia nieliniowości i interak-
cji [84, 87]. Modele liniowe (np. regresja liniowa czy model Coxa) umożliwiają

1Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r.
w sprawie ochrony osób fizycznych w związku z przetwarzaniem danych osobowych i w
sprawie swobodnego przepływu takich danych oraz uchylenia dyrektywy 95/46/WE (ogólne
rozporządzenie o ochronie danych)
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bezpośrednią interpretację wpływu zmiennych na wynik, lecz mogą ustępować do-
kładnością modelom nieliniowym o większej złożoności (większej zdolności funkcji
do dopasowania się do danych). Z kolei modele o wysokiej złożoności — takie jak
boosting [77], lasy losowe [79] czy nieliniowe maszyny wektorów nośnych [89] —
często osiągają niższy błąd generalizacji (np. wyższy indeks zgodności w analizie
przeżycia, niższy błąd średniokwadratowy lub log-loss), kosztem zrozumiałości
mechanizmu decyzyjnego [84].

W kontekście zależności między złożonością a interpretowalnością modele różnią
się zakresem dopuszczalnych zależności (np. liniowych, nieliniowych, z interak-
cjami) między zmiennymi objaśniającymi a odpowiedzią [77, 90]. Modele liniowe
charakteryzują się ograniczoną zdolnością dopasowania do danych i wysoką in-
terpretowalnością — współczynniki mają jednoznaczną interpretację, wskazując
kierunek i siłę efektu przy ustalonych pozostałych cechach. Podejścia promujące
rzadkość rozwiązań (ang. sparsity, np. selekcja zmiennych lub regularyzacja L1)
sprzyjają interpretacji, ograniczając liczbę predyktorów w modelu. Uogólnione
modele addytywne (ang. generalized additive models, GAM) zwiększają zdolność
dopasowania do danych, dopuszczając nieliniowe, addytywne efekty przy zacho-
waniu częściowej przejrzystości na poziomie funkcji składowych. Zespoły drzew
i głębokie sieci oferują jeszcze większą swobodę funkcjonalną, ale ich interpretacja
wymaga zwykle metod post-hoc [87, 84].

Większa zdolność dopasowania do danych nie gwarantuje jednak lepszej predyk-
cji. Modele o wysokiej złożoności mogą nadmiernie dopasowywać się do danych
uczących (ang. overfitting), co obniża zdolność uogólniania. W wielu zadaniach —
w tym w analizie przeżycia — mniej złożone modele lub silniej regularyzowane
procedury zapewniają korzystniejszy kompromis między obciążeniem (ang. bias)
a wariancją (ang. variance), a w efekcie większą dokładność prognoz [91]. W kon-
tekstach wysokiego ryzyka priorytetem jest przejrzystość decyzji, dlatego zaleca
się stosowanie modeli interpretowalnych wszędzie tam, gdzie jest to możliwe [82].
Dobór modelu jest więc kompromisem między dokładnością prognozy a przejrzy-
stością decyzji, zależnym od celu analizy i kontekstu zastosowania [92].
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4.2 Metody objaśnialnego uczenia maszynowego

W analizie niezawodności i przeżycia stosowanie złożonych modeli uczenia maszyno-
wego do modelowania danych typu czas-do-zdarzenia wymaga metod objaśnialnych,
które umożliwiają zrozumienie procesów decyzyjnych związanych z przewidywa-
niem czasu do wystąpienia krytycznych zdarzeń [87]. Tradycyjne metryki oceny
modeli przeżycia, takie jak indeks zgodności Harrella czy statystyka log-rank,
koncentrują się na ocenie jakości predykcji. Współczesne systemy analizy nieza-
wodności muszą jednak dodatkowo zapewniać wgląd w mechanizmy prowadzące
do prognozowanych czasów awarii lub zdarzeń medycznych [82]. Brak transpa-
rentności w modelach przeżycia stanowi barierę dla akceptacji zaawansowanych
technologii w zastosowaniach przemysłowych i medycznych [85].

Metody objaśnialnego uczenia maszynowego dzieli się na dwie główne kategorie:
globalne i lokalne. Metody globalne pozwalają analizować ogólne zachowanie mo-
delu na całym zbiorze danych, oferując wgląd w dominujące wzorce i zależności.
Metody lokalne natomiast skupiają się na wyjaśnianiu pojedynczych predykcji,
dostarczając szczegółowych informacji o decyzjach modelu w odniesieniu do kon-
kretnych przypadków. Oba podejścia wzajemnie się uzupełniają. Metody globalne
zapewniają szeroką perspektywę działania modelu, a lokalne umożliwiają wgląd
w szczegóły konkretnych predykcji. Połączenie obu metod umożliwia pełną inter-
pretację modeli uczenia maszynowego i stanowi podstawę współczesnych systemów
wspomagania decyzji w przemyśle i medycynie [30].

4.2.1 Metody globalne

Metody globalne służą zrozumieniu zachowania modelu przeżycia na całym zbiorze
danych, dostarczając wglądu w mechanizmy decyzyjne związane z przewidywa-
niem czasów do wystąpienia zdarzeń. Umożliwiają identyfikację wzorców oraz
zależności między zmiennymi objaśniającymi a estymowanymi funkcjami przeżycia
lub hazardu, co jest szczególnie przydatne w początkowych fazach projektowania
i walidacji modelu [93]. Dzięki temu eksperci dziedzinowi, tacy jak inżynierowie
niezawodności czy lekarze kliniczni, mogą ocenić, czy model odzwierciedla rzeczy-
wiste procesy degradacji urządzeń lub progresji choroby, co sprzyja jego akceptacji
w analizie niezawodności i praktyce klinicznej. Do najważniejsze metody w tej
kategorii przedstawiono poniżej.
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Rysunek 4.1: Przykładowa wizualizacja ważności cech w analizie predykcyjnego
utrzymania ruchu dla systemu pomp przemysłowych. Ważność cech, wyznaczona
np. poprzez permutację, wskazuje dominujący wpływ danych z czujników wi-
bracji na predykcję awarii, co wspiera ukierunkowane działania konserwacyjne.

• Analiza ważności cech: Ta metoda umożliwia określenie, które zmienne ob-
jaśniające mają największy wpływ na estymowane funkcje przeżycia lub
hazardu w analizie niezawodności maszyn oraz w zastosowaniach biomedycz-
nych [94]. Ważność cech można wyznaczać poprzez permutację cech z oceną
spadku indeksu zgodności Harrella modelu po losowym zaburzeniu danej
zmiennej albo poprzez analizę współczynników w modelach proporcjonal-
nych hazardów. Wyniki najczęściej prezentuje się w formie rankingów lub
wizualizacji graficznych, ułatwiając wskazanie głównych predyktorów czasu
do awarii (np. temperatura, ciśnienie, wibracje) czy przeżycia pacjentów
(np. biomarkery, wiek, historia choroby). W systemach monitorowania pomp
przemysłowych analiza ważności cech może ujawnić, że najważniejszym pre-
dyktorem są dane z czujników drgań, natomiast w analizie medycznej może
wskazać na biomarkery o decydującym znaczeniu dla prognozy. Umożliwia
to ukierunkowanie działań konserwacyjnych w przemyśle lub interwencji
terapeutycznych w medycynie. Przykładem zastosowania tej techniki jest
wizualizacja ważności cech przedstawiona na Rysunku 4.1.

• Wykresy zależności częściowej (ang. partial dependence plots, PDP): PDP
przedstawiają relację między wybraną cechą a wynikiem modelu, przy zało-
żeniu stałych wartości pozostałych zmiennych [77]. Technika ta umożliwia
wizualizację wpływu zmian jednej zmiennej na predykcje i jest szczególnie
przydatna w analizie nieliniowych zależności charakterystycznych dla złożo-
nych modeli uczenia maszynowego. W praktyce przemysłowej PDP mogą
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Rysunek 4.2: Przykładowy wykres zależności częściowej ilustrujący wpływ pręd-
kości obrotowej silnika na prawdopodobieństwo predykcji awarii, wygenerowany
dla modelu Random Forest. Wykres pokazuje nieliniową relację, co wspiera
analizę ryzyka awarii w predykcyjnym utrzymaniu ruchu, przy założeniu nieza-
leżności cech.

posłużyć do oceny, jak zmiany parametrów operacyjnych — np. prędkości
obrotowej silnika — wpływają na ryzyko awarii. W medycynie natomiast
pozwalają analizować zależności między wiekiem pacjenta czy poziomem
biomarkera a prawdopodobieństwem wystąpienia zdarzenia, stanowiąc cenne
narzędzie interpretacji modelu. Ograniczeniem tej metody jest założenie nie-
zależności cech, które może prowadzić do zniekształceń w przypadku silnych
korelacji między zmiennymi [95]. Przykładem zastosowania tej techniki jest
wykres zależności częściowej przedstawiony na Rysunku 4.2, który ilustruje
wpływ prędkości obrotowej silnika na ryzyko awarii.

Metody globalne znajdują zastosowanie w fazie eksploracyjnej analizy danych
oraz podczas walidacji modelu przez specjalistów, umożliwiając ocenę, czy pre-
dykcje modelu są zgodne z wiedzą dziedzinową. Ich główną wadą jest jednak brak
zdolności do uchwycenia lokalnych różnic w zachowaniu modelu, co może stanowić
problem w sytuacjach, gdy predykcje dla poszczególnych przypadków znacząco
odbiegają od ogólnych trendów. W takich sytuacjach konieczne jest sięgnięcie po
metody lokalne, które uzupełniają analizę globalną.

4.2.2 Metody lokalne

Metody lokalne koncentrują się na wyjaśnianiu pojedynczych predykcji, oferując
wgląd w decyzje modelu dla poszczególnych obserwacji. Stosuje się je w sytuacjach
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wymagających interpretacji konkretnych przewidywań czasów do awarii urządzeń
przemysłowych lub zdarzeń medycznych, co wpływa na wybór strategii konserwa-
cyjnej lub protokołu leczenia [10]. W odróżnieniu od metod globalnych, dających
ogólny obraz funkcjonowania modelu, metody lokalne pozwalają analizować indy-
widualne przypadki, które wymagają szczególnej uwagi, np. gdy model przewiduje
rzadkie, ale krytyczne zdarzenia przemysłowe lub medyczne. Najczęściej stosowane
metody w tej kategorii przedstawiono poniżej.
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Rysunek 4.3: Przykładowy wykres lokalnych wyjaśnień wygenerowany za pomocą
LIME dla predykcji awarii. Wykres przedstawia ważność cech, takich jak wibracje
czy temperatura, dla jednej obserwacji. Pokazuje ich pozytywny lub negatywny
wpływ na predykcję klasy „Awaria” w kontekście predykcyjnego utrzymania
ruchu. Demonstruje też niezależność LIME od typu modelu i jego zdolność do
lokalnej interpretacji.

• LIME (Local Interpretable Model-agnostic Explanations): LIME działa
poprzez lokalną aproksymację objaśnialnego modelu za pomocą prostego,
interpretowalnego modelu (np. regresji liniowej) w sąsiedztwie wybranej
obserwacji [86]. Metoda ta generuje wyjaśnienia oparte na ważności cech
w lokalnym kontekście, wskazując, które zmienne miały największy wpływ
na daną predykcję. W zastosowaniach przemysłowych LIME może ujawnić,
że dla konkretnej maszyny predykcja awarii wynikała głównie z nieznacznie
podwyższonych wartości wibracji, podczas gdy inne parametry, takie jak
temperatura czy ciśnienie, mieściły się w granicach normy i sugerowały
stabilność systemu. W analizie medycznej metoda ta może wskazać, że dla
danego pacjenta predykcja wysokiego ryzyka wynikała przede wszystkim
z podwyższonego poziomu konkretnego biomarkera, podczas gdy inne para-
metry, np. wiek czy BMI, pozostawały w normie. LIME jest niezależne od
typu modelu (ang. model-agnostic), co czyni je uniwersalnym narzędziem.
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Skuteczność metody zależy jednak od odpowiedniego określenia lokalnego
otoczenia analizowanej obserwacji i może być ograniczona w przypadku
złożonych zależności między cechami [96]. Przykładem zastosowania tej
techniki jest wykres lokalnych wyjaśnień przedstawiony na Rysunku 4.3,
który ilustruje wpływ cech na predykcję awarii dla konkretnej maszyny.
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Rysunek 4.4: Przykładowy wykres wodospadowy wygenerowany za pomocą
SHAP dla predykcji awarii pompy. Wykres ilustruje, jak wkłady cech — wibracje
(+1.57), ciśnienie (´1.608), prędkość obrotowa (´0.528) i temperatura (´0.029)
— kumulują się od wartości bazowej predykcji (E[f(x)] = 0.444) do końcowej
predykcji klasy „Awaria” (f(x) = 1), z oznaczeniem ich wpływu (niebieski —
dodatni, pomarańczowy — ujemny). Prezentacja ta ilustruje podział predykcji
na addytywne wkłady poszczególnych cech zgodnie z metodologią SHAP.

• SHAP (SHapley Additive exPlanations): SHAP opiera się na wartościach
Shapleya pochodzących z teorii gier, przypisując każdej cesze wkład do
konkretnej predykcji w sposób zgodny z aksjomatycznym podziałem wkładu
[97]. Dodatkowo wartości SHAP można sumować dla wszystkich obserwacji,
co umożliwia analizę globalnej ważności cech w całym zbiorze danych. W za-
stosowaniach przemysłowych SHAP może wskazać, że przewidywana awaria
pompy wynikała w 60% z anomalii w ciśnieniu i w 30% z temperatury. Takie
informacje pozwalają inżynierom planować działania prewencyjne w sposób
bardziej precyzyjny. W medycynie SHAP może analogicznie określić, że
przewidywane ryzyko zgonu pacjenta wynikało w 45% z poziomu kreatyniny,
w 25% z wieku i w 20% z obecności chorób współistniejących, umożliwiając
lekarzom dokładne planowanie interwencji medycznych. Choć SHAP jest
bardziej wymagający obliczeniowo niż LIME, jego zaletą jest większa do-
kładność oraz możliwość interpretacji zarówno dodatnich, jak i ujemnych
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wkładów cech. Przykładem zastosowania tej techniki jest wykres wodospa-
dowy (ang. waterfall plot) przedstawiony na Rysunku 4.4, który ilustruje
wkłady cech, takich jak ciśnienie i temperatura, w predykcję awarii pompy.

0.0 0.2 0.4 0.6 0.8 1.0
Wynik predy cji

Predy cja dla wartości
fa tycznych cech

Predy cja dla wartości
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Wibracje [m/s2] (0.8ś2.5)
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Rysunek 4.5: Wykres kontrfaktycznych wyjaśnień dla predykcji awarii turbiny
wiatrowej, ilustrujący różnice między wartościami faktycznymi a kontrfaktycz-
nymi cech. Kolejne punkty reprezentują stopniową zmianę wyniku predykcji
wraz ze zmianą wartości trzech cech: ciśnienia (z 7.0 do 9.5 bar), temperatury
(z 65.0 do 90.0 ˝C) i wibracji (z 0.8 do 2.5 m/s2). Pierwszy pomarańczowy
punkt (predykcja dla wartości faktycznych cech, x = 0.1) wskazuje pierwotną
predykcję modelu na podstawie aktualnych wartości cech, natomiast ostatni
niebieski punkt (predykcja dla wartości kontrfaktycznych cech, x = 0.85) re-
prezentuje alternatywną predykcję, która wynikałaby, gdyby wszystkie cechy
osiągnęły kontrfaktyczne wartości. Przebieg linii przerywanej pokazuje hipote-
tyczną trajektorię zmiany predykcji, co pozwala zrozumieć, jakie modyfikacje
cech mogłyby zapobiec przewidywanej awarii.

• Wyjaśnienia kontrfaktyczne (ang. Counterfactual Explanations): Ta metoda
polega na generowaniu alternatywnych scenariuszy, które pokazują, jak
zmiana wartości cech mogłaby doprowadzić do innej predykcji modelu [98].
Wyjaśnienia kontrfaktyczne dostarczają odpowiedzi na pytanie, jakie modyfi-
kacje wartości cech byłyby konieczne, aby uzyskać odmienny wynik predykcji
modelu. W zastosowaniach przemysłowych wyjaśnienie kontrfaktyczne może
wskazać, że awaria turbiny wiatrowej nie zostałaby przewidziana, gdyby
wartości wibracji łopat były o 10% niższe, przy zachowaniu pozostałych
parametrów na obecnym poziomie. W medycynie metoda ta może określić, że
dany pacjent nie byłby uznany za przypadek wysokiego ryzyka, gdyby jego
poziom cholesterolu był o 20% niższy lub gdyby nie występowało u niego nad-
ciśnienie. Wyjaśnienia kontrfaktyczne są szczególnie przydatne w sytuacjach,
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gdzie celem jest nie tylko zrozumienie przyczyn predykcji, ale także identyfi-
kacja działań zapobiegawczych. Ich zaletą jest intuicyjność i bezpośrednie
powiązanie z interwencjami operacyjnymi, jednak skuteczne stosowanie wy-
maga precyzyjnego określenia dopuszczalnych zmian w cechach, co może być
wyzwaniem w złożonych systemach. Przykładem zastosowania tej techniki
jest wykres kontrfaktycznych wyjaśnień przedstawiony na Rysunku 4.5, który
ilustruje różnice w wartościach cech między oryginalną predykcją awarii
a kontrfaktycznym scenariuszem dla turbiny wiatrowej.

Metody lokalne znajdują zastosowanie w praktyce przemysłowej i medycznej,
gdzie precyzyjne wyjaśnienie pojedynczych predykcji może bezpośrednio przełożyć
się na decyzje operacyjne lub kliniczne [83]. Przykładowo, gdy model przewi-
duje awarię krytycznego komponentu, takiego jak turbina wiatrowa, lub wysokie
ryzyko u pacjenta, techniki takie jak LIME, SHAP czy wyjaśnienia kontrfak-
tyczne dostarczają komplementarnych informacji: LIME wskazuje dominujące
cechy, SHAP określa ich dokładny wkład, a wyjaśnienia kontrfaktyczne sugerują,
jakie zmiany mogłyby zapobiec problemowi. Podstawową wartością metod lokal-
nych jest zdolność do dostarczania szczegółowych, kontekstowych wyjaśnień dla
konkretnych przypadków. Takie podejście umożliwia uzasadnienie przewidywanego
czasu do awarii lub ryzyka zdarzenia medycznego, w celu podejmowania działań
prewencyjnych lub terapeutycznych.

4.3 Interpretowalne metody uczenia maszynowego

W analizie niezawodności i przeżycia metody interpretowalne odnoszą się do
modeli, których mechanizmy przewidywania czasów do wystąpienia krytycznych
zdarzeń są przejrzyste [90]. W odróżnieniu od złożonych modeli typu „black-
box”, takich jak głębokie sieci neuronowe, metody interpretowalne dostarczają
wglądu w procesy estymacji funkcji przeżycia i hazardu. Są szczególnie przydatne
w zastosowaniach wymagających wysokiego poziomu transparentności, gdzie zro-
zumienie przyczyn przewidywanych czasów awarii wspiera podejmowanie decyzji
konserwacyjnych oraz klinicznych [91]. Niniejsza sekcja przedstawia cztery główne
kategorie interpretowalnych metod uczenia maszynowego: drzewa decyzyjne, re-
guły logiczne, modele regresyjne oraz metody oparte na instancjach. Każda z tych
metod wnosi specyficzne właściwości interpretacyjne do modelowania danych typu
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czas-do-zdarzenia. Dzięki temu są przydatne zarówno w analizie niezawodności
przemysłowej, jak i biomedycznej, gdzie precyzja predykcji czasów przeżycia oraz
zrozumiałość modelu mają równorzędne znaczenie [84].

4.3.1 Drzewa decyzyjne

Drzewa decyzyjne to modele hierarchiczne stosowane zarówno w zadaniach klasy-
fikacji, jak i regresji, które odwzorowują proces decyzyjny za pomocą struktury
drzewiastej [99]. Węzły wewnętrzne reprezentują testy warunków na dotyczących
wartości atrybutów, gałęzie odpowiadają wynikom tych testów, a liście zawierają
końcowe predykcje. Interpretowalność drzew decyzyjnych wynika z ich wizualnej
formy, która umożliwia łatwe śledzenie ścieżki decyzyjnej dla dowolnej obserwacji.

Matematycznie, drzewo decyzyjne dzieli przestrzeń cech X na rozłączne pod-
zbiory R1, R2, . . . , Rm, którym odpowiadają predykcje ŷ1, ŷ2, . . . , ŷm [60]. W klasy-
fikacji ŷj jest klasą najczęściej występującą w danym obszarze, natomiast w regresji
stanowi wartość średnią lub medianę zmiennej docelowej w Rj. Algorytm ucze-
nia drzewa opiera się na rekurencyjnym podziale przestrzeni cech, minimalizując
funkcję kosztu, taką jak entropia (dla klasyfikacji) lub średni błąd kwadratowy
(ang. mean square error, MSE) (dla regresji) [100].

Drzewa decyzyjne wyróżniają się prostotą interpretacji, zdolnością do uchwyce-
nia nieliniowych zależności oraz automatycznym modelowaniem interakcji między
atrybutami. Ich ograniczeniem jest jednak tendencja do nadmiernego dopasowa-
nia (ang. overfitting), co można korygować poprzez techniki przycinania drzew
(ang. decision tree pruning) lub stosowanie metod zespołowych, takich jak lasy
losowe (ang. random forests), kosztem częściowej utraty interpretowalności [79].
W analizie przeżycia wykorzystuje się drzewa przeżyciowe (ang. survival trees),
które stanowią adaptację drzew decyzyjnych do danych cenzurowanych. Ich liście
zawierają estymatory funkcji przeżycia (np. krzywe Kaplana-Meiera), co umożliwia
predykcję czasów do wystąpienia zdarzenia dla różnych podgrup pacjentów lub
urządzeń [63, 59].

4.3.2 Reguły decyzyjne

Reguły decyzyjne to zbiory instrukcji logicznych w formie „jeśli-to”, które określają
predykcje na podstawie spełnienia określonych warunków [101]. W odróżnieniu

51



4 Wyjaśnialne metody analizy niezawodności i przeżycia

od hierarchicznej struktury drzew decyzyjnych, reguły mogą być zorganizowane
w sposób nieuporządkowany lub częściowo uporządkowany, co zwiększa zakres
ich zastosowania. Charakteryzują się podobieństwem do języka naturalnego, co
ułatwia ich zrozumienie [102].

Formalnie, reguła decyzyjna r ma postać:

jeśli φ to ψ, (4.1)

gdzie φ stanowi koniunkcję warunków na atrybutach (np. x1 ą a ^ x2 = b), a ψ
jest predykcją — na przykład klasą, wartością liczbową lub, w analizie przeży-
cia, estymatą prawdopodobieństwa przeżycia bądź ryzyka wystąpienia zdarzenia
w określonym czasie. Zbiór reguł R = tr1, r2, . . . , rku tworzy model predykcyjny,
w którym dla obserwacji x predykcja wynika z reguły (lub reguł), dla której
spełniony jest warunek φ(x) [103]. W przypadku nakładania się reguł, konflikty
rozstrzyga się za pomocą mechanizmów takich jak głosowanie większościowe lub
priorytetyzacja reguł.

Interpretowalność reguł wynika z ich prostej formy warunkowej „jeśli-to”, która
mapuje kombinacje wartości zmiennych objaśniających na predykcje. Reguły
w ramach zbioru są niezależne, dzięki czemu można ją analizować konieczności
rozumienia całego modelu. W predykcyjnym utrzymaniu ruchu reguły mogą okre-
ślać konkretne kombinacje parametrów (np. „jeśli temperatura >75 ˝C i wibracje
ą 5m/s2, to prawdopodobieństwo awarii w ciągu 30 dni wynosi ě 70%.”), oferu-
jąc praktyczne wskazówki operacyjne [104]. W analizie przeżycia termin „reguły
decyzyjne” odnosi się do reguł przeżyciowych (ang. survival rules), które określają
warunki związane z czasem do wystąpienia zdarzenia, np. „jeśli wiek pacjenta
ą 65 lat i poziom kreatyniny ą 2.0mg/dL, to prawdopodobieństwo 5-letniego
przeżycia wynosi ă 40%”.

4.3.3 Modele regresyjne

Modele regresyjne stanowią klasę interpretowalnych metod uczenia maszynowego
[53]. W kontekście predykcyjnego utrzymania ruchu można wyróżnić trzy główne
kategorie modeli regresyjnych o wysokiej interpretowalności: regresję liniową,
regresję Coxa oraz regresję logistyczną.
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Regresja liniowa opisuje zależność między zmienną objaśnianą y a zmiennymi
objaśniającymi x = (x1, x2, . . . , xp) za pomocą liniowej kombinacji:

y = β0 + β1x1 + β2x2 + ¨ ¨ ¨ + βpxp + ε, (4.2)

gdzie β = (β0, β1, . . . , βp) to wektor parametrów, a ε reprezentuje składnik losowy
[105]. Interpretowalność wynika z bezpośredniej relacji między współczynnikami
βi, i = 0, . . . , p, a wpływem zmiennych na predykcję — każdy współczynnik określa
oczekiwaną zmianę zmiennej objaśnianej przy jednostkowej zmianie odpowiedniej
zmiennej objaśniającej. W analizie przeżycia rolę tej klasy modeli pełnią modele
typu AFT (ang. accelerated failure time), które odnoszą się bezpośrednio do czasu
do zdarzenia (szczegóły i przykłady znajdują się w Sekcji 3.4).

Model proporcjonalnych hazardów Coxa (szczegółowo opisany w Rozdziale 3)
definiuje funkcję hazardu jako [1]:

h(t | x) = h0(t)e
βT x, (4.3)

gdzie h0 to funkcja hazardu bazowego, a βTx to liniowy predyktor, czyli suma
ważona wartości zmiennych objaśniających dla rozważanej obserwacji. Z postaci
eβ

T x wynika, że przy wzroście wartości danej cechy o 1 (przy pozostałych cechach
stałych) hazard jest mnożony przez stały czynnik (tzw. iloraz hazardów), nieza-
leżny od czasu. Model ten jest semi-parametryczny — nie wymaga specyfikacji
rozkładu czasów przeżycia i koncentruje się na relatywnym wpływie zmiennych
objaśniających na ryzyko zdarzenia. Jeśli współczynnik przy danej zmiennej obja-
śniającej jest dodatni, czynnik jest większy od 1 (większe ryzyko); jeśli ujemny —
mniejszy od 1 (mniejsze ryzyko).

Regresja logistyczna służy do klasyfikacji i znajduje zastosowanie w modelowaniu
prawdopodobieństwa awarii w określonym przedziale czasowym. Prawdopodobień-
stwo wystąpienia zdarzenia wyraża się wzorem:

P (y = 1 | x) = 1

1 + e´βT x
, (4.4)

gdzie β to wektor parametrów modelu, x to wektor zmiennych objaśniających,
a indeks górny T oznacza transpozycję. Interpretowalność wynika z liniowego
predyktora βTx — dodatnie składowe wektora β zwiększają przewidywane praw-
dopodobieństwo wystąpienia zdarzenia, ujemne je zmniejszają. Większa wartość
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bezwzględna składowej oznacza silniejszy wpływ (przy pozostałych cechach sta-
łych).

Modele regresyjne umożliwiają kwantyfikację wpływu czynników operacyjnych
na czas eksploatacji urządzeń. Przykładowo, w systemie monitorowania turbin
wiatrowych regresja Coxa może wykazać, że wzrost prędkości wiatru o jedną
jednostkę zwiększa ryzyko awarii łożysk proporcjonalnie do współczynnika eβwiatr ,
dostarczając precyzyjnych informacji do planowania konserwacji prewencyjnej [29].

4.3.4 Metody oparte na instancjach

Metody oparte na instancjach (ang. instance-based learning) zakładają, że ob-
serwacje o podobnych wartościach w przestrzeni cech wykazują zbliżone warto-
ści zmiennej docelowej [106]. Przykładem jest algorytm k-najbliższych sąsiadów
(ang. k-nearest neighbors, k-NN), który dla nowej obserwacji x identyfikuje k naj-
bardziej podobnych przykładów z danych treningowych i wyznacza predykcję na
podstawie ich wartości zmiennej docelowej, np. poprzez głosowanie większościowe
w zadaniach klasyfikacji lub obliczenie średniej w zadaniach regresji [107].

Matematycznie, dla metryki odległości d, zbiór k najbliższych sąsiadów Nk(x)
definiuje się jako:

Nk(x) = arg min
SĎD,|S|=k

ÿ

xiPS
d(x, xi), (4.5)

gdzie D to zbiór treningowy. Predykcja w klasyfikacji jest dana wzorem:

ŷ = arg max
c

ÿ

xiPNk(x)

I(yi = c), (4.6)

gdzie c oznacza etykietę klasy, a I to funkcja charakterystyczna zbioru (ang. indi-
cator function) [108].

Interpretowalność tej metody wynika z jej prostoty — predykcja jest uzasadniona
konkretnymi przykładami z danych, co pozwala użytkownikowi przeanalizować
najbliższych sąsiadów i zrozumieć podstawy decyzji [109]. W analizie przeżycia
metody oparte na instancjach mogą wykorzystywać podobieństwo w przestrzeni
cech do identyfikacji przypadków o zbliżonych czasach do wystąpienia zdarzenia
[106]. Algorytm k-NN może estymować czas do awarii na podstawie historycznych
przypadków urządzeń o podobnych parametrach operacyjnych, a w medycynie może

54



4.3 Interpretowalne metody uczenia maszynowego

identyfikować pacjentów o zbliżonych profilach klinicznych w celu prognozowania
czasów przeżycia.
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5 Analiza niezawodności i przeżycia
za pomocą reguł logicznych

Niniejszy rozdział koncentruje się na regułach logicznych jako interpretowalnej
metodzie analizy danych cenzurowanych. Reguły logiczne łączą interpretowalność
klasycznych metod statystycznych analizy przeżycia ze zdolnością modelowania
złożonych zależności, charakterystyczną dla zaawansowanych algorytmów uczenia
maszynowego [102].

W kontekście analizy przeżycia reguły logiczne umożliwiają reprezentację odkry-
tej wiedzy w formie intuicyjnych warunków logicznych, zrozumiałych dla ekspertów
dziedzinowych w medycynie i predykcyjnym utrzymaniu ruchu. W przeciwieństwie
do tradycyjnych metod statystycznych, mogą modelować nieliniowe wielowymia-
rowe zależności, zachowując jednocześnie transparentność procesów decyzyjnych
wymaganą w zastosowaniach krytycznych. Adaptacja algorytmów indukcji reguł do
specyfiki danych cenzurowanych stanowi wyzwanie metodologiczne, wymagające
uwzględnienia mechanizmów cenzurowania w procesach uczenia i predykcji.

Rozdział ten przedstawia proces indukcji reguł oraz rolę reguł klasyfikacyjnych
w analizie przeżycia. Wprowadzenia teoretyczne dotyczące reguł akcji, reguł wyjąt-
ków oraz zespołów reguł zamieszczono na początku sekcji poświęconych autorskim
metodom (odpowiednio: Sekcja 5.2, Sekcja 5.4, Sekcja 5.5). Sekcja 5.3 rozwija
wątek reguł akcji, korzystając z podstaw teoretycznych omówionych w Sekcji 5.2.
W dalszej części zaprezentowano autorskie algorytmy: pokryciowy algorytm induk-
cji przeżyciowych reguł akcji, algorytm rekomendacji przeżyciowych reguł akcji,
algorytm indukcji przeżyciowych reguł wyjątków oraz interpretowalny zespół reguł
przeżyciowych, które nie tylko rozszerzające istniejące podejścia, lecz także oferu-
jące nowe narzędzia do interpretowalnego modelowania danych cenzurowanych.
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5.1 Indukcja reguł

Reguły logiczne, dzięki interpretowalności i zdolności do modelowania złożonych
zależności, znajdują zastosowanie w analizie przeżycia [102]. Indukcja reguł to
metoda uczenia maszynowego polegająca na generowaniu reguł decyzyjnych na
podstawie danych uczących [101]. W odróżnieniu od złożonych modeli, takich jak
głębokie sieci neuronowe, których wewnętrzne reprezentacje pozostają nieinter-
pretowalne dla użytkownika, reguły logiczne zapewniają pełną transparentność
procesu decyzyjnego poprzez formalne warunki typu „jeśli-to”. Ma to znaczenie
w obszarach takich jak diagnostyka medyczna czy systemy predykcyjnego utrzy-
mania ruchu, gdzie decyzje oparte na modelach powinny umożliwiać specjalistom
weryfikację podstawy predykcji [86].

Algorytm 1 Pokryciowy algorytm indukcji reguł
Wejście: D – zbiór danych
Wyjście: R – zbiór reguł

1: R Ð H

2: Du Ð D Ź zbiór przykładów niepokrytych jeszcze przez żadną regułę
3: while Du ‰ H do
4: r Ð GenerujRegułę(D,Du)
5: Du Ð Duz Pokrycie(r,Du)
6: R Ð R Y tru

7: end while
8: return R

W niniejszej pracy przyjęto strategię sekwencyjnego pokrywania (ang. separate-
and-conquer) jako metodę indukcji reguł. Polega ona na iteracyjnym generowaniu
reguł pokrywających kolejne podzbiory danych [15]. Każda nowa reguła pokrywa
część jeszcze niepokrytych przykładów, a proces trwa do momentu pokrycia
całego zbioru lub niespełnienia kryteriów jakości. Zespoły reguł rozwijają to
podejście, łącząc predykcje z wielu zbiorów reguł w celu zwiększenia dokładności
przy jednoczesnym zachowaniu interpretowalności. Kolejne sekcje zaprezentują
autorskie algorytmy wykorzystujące te strategie do analizy danych cenzurowanych.
Przebieg pokryciowego algorytmu indukcji reguł przedstawiono w Algorytmie 1.
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5.1 Indukcja reguł

Reguły decyzyjne umożliwiają reprezentację wiedzy w formie interpretowal-
nych reguł implikacyjnych [101]. W analizie niezawodności oraz w predykcyjnym
utrzymaniu ruchu służą do modelowania zależności w danych cenzurowanych [22].
Wyróżnia się trzy podstawowe typy reguł: klasyfikacyjne, akcji oraz wyjątków,
różniące się celem, strukturą i zastosowaniem. W niniejszej sekcji omówiono re-
guły klasyfikacyjne, natomiast wprowadzenia teoretyczne do reguł akcji i reguł
wyjątków przedstawiono odpowiednio w sekcjach 5.2 i 5.4, a do zespołów reguł
w Sekcji 5.5.

W dalszej części rozdziału stosowane jest następujące nazewnictwo: cecha (atry-
but) oznacza pojedynczą zmienną opisującą obiekt, a wektor cech x = (x1, . . . , xp)

zawiera wartości cech danej obserwacji. Warunek elementarny wi rozumiany jest
jako predykat zdefiniowany na cechach x, przy czym przesłanka reguły ma postać
koniunkcji w1 ^ ¨ ¨ ¨ ^ wn. Zmienna decyzyjna y przyjmuje wartości etykiet klas
ck P C. W częściach dotyczących analizy przeżycia dodatkowo wykorzystywane są
czas przeżycia T oraz status cenzurowania δ P t0, 1u.

Reguły klasyfikacyjne Reguły klasyfikacyjne przypisują obserwacje do jednej
z wcześniej zdefiniowanych klas na podstawie spełnienia warunków logicznych,
zapewniając prostotę i interpretowalność wymaganą w systemach diagnostycznych
[110]. Formalnie, reguła klasyfikacyjna r definiowana jest jako:

jeśli w1 ^ w2 ^ ¨ ¨ ¨ ^ wn to y = ck, (5.1)

gdzie:

• x = (x1, x2, . . . , xp) — wektor wartości cech opisujących obserwację (np. pa-
rametry operacyjne maszyny: temperatura, ciśnienie, wibracje),

• wi — warunek elementarny na cechach x; przesłanka reguły to koniunkcja
w1 ^ w2 ^ ¨ ¨ ¨ ^ wn (np. x1 ą a ^ x2 ď b), gdzie i = 1, . . . , n,

• n — liczba warunków w przesłance reguły,

• y — zmienna decyzyjna wskazująca klasę,

• ck P tc1, c2, . . . , cmu — klasa, np. „sprawny” lub „uszkodzony”.
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5 Analiza niezawodności i przeżycia za pomocą reguł logicznych

Jakość reguł ocenia się za pomocą miar takich jak precyzja (ang. precision), czyli
stosunek poprawnych predykcji do wszystkich obserwacji spełniających przesłankę
reguły (w1 ^ ¨ ¨ ¨ ^wn), pokrycie (ang. coverage), czyli odsetek obserwacji spełniają-
cych przesłankę reguły, oraz wsparcie (ang. support), wskazujące liczbę obserwacji
spełniających zarówno przesłankę reguły, jak i y = ck [111]. Wysoka precyzja ozna-
cza niski odsetek błędnych predykcji wśród przykładów spełniających przesłankę
reguły, a duże pokrycie wskazuje, że reguła ma zastosowanie do znacznej części
zbioru danych. Zwiększenie pokrycia często prowadzi jednak do obniżenia precyzji,
ponieważ bardziej ogólne reguły mają tendencję do obejmowania przykładów
z różnych klas.

Reguły klasyfikacyjne znajdują zastosowanie w prognozowaniu stanu technicz-
nego maszyn i urządzeń. Przykładowa reguła „jeżeli temperatura >75 ˝C oraz
wibracje ą 4 m/s2, to stan = uszkodzony” umożliwia jednoznaczną klasyfikację
stanu maszyny, wspierając proces podejmowania decyzji konserwacyjnych [5]. Algo-
rytmy indukcji reguł, takie jak CN2, oparte na strategii sekwencyjnego pokrywania,
konstruują zbiory reguł o ograniczonej liczności i długości reguł poprzez usuwanie
ze zbioru uczącego przykładów spełniających przesłankę aktualnie indukowanej
reguły (tj. przykładów przez nią pokrywanych) [112]. Z kolei algorytm C4.5 prze-
kształca drzewa decyzyjne w zbiory reguł, zwiększając możliwości modelowania
złożonych zależności [110].

Literatura przedmiotu wskazuje na liczne zastosowania reguł klasyfikacyjnych.
Tyagi i Sharma [113] zaproponowali metodę szacowania niezawodności systemów
opartych na komponentach (ang. Component-Based Software Systems, CBSS)
z wykorzystaniem reguł i logiki rozmytej, uwzględniając m.in. profil operacyjny
oraz możliwość ponownego użycia komponentów. Wyniki eksperymentów potwier-
dziły skuteczność tej metody w modelowaniu warunków eksploatacyjnych. Avritzer
i in. [114] przedstawili podejście do testowania niezawodności oparte na regułach,
stosowane w monitorowaniu dużych systemów czasu rzeczywistego (np. oprogramo-
wania przemysłowego), co podkreśla użyteczność modeli regułowych w zapewnianiu
stabilności systemów.

Wariant przeżyciowy reguł klasyfikacyjnych dostosowuje się do modelowania
danych cenzurowanych, umożliwiając predykcję czasu do zdarzenia, np. awarii
lub zgonu pacjenta. Sikora i in. [115] zastosowali je do analizy danych pacjentów
po przeszczepie szpiku kostnego, łącząc reguły z estymatorami Kaplana-Meiera,
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5.2 Pokryciowy algorytm indukcji przeżyciowych reguł akcji

co pozwoliło na identyfikację czynników przeżycia i tworzenie interpretowalnych
wzorców. Wróbel i Sikora [116] rozwinęli metodę opartą na strategii separate-
and-conquer z ważeniem danych cenzurowanych, osiągając wyższą dokładność
predykcji niż klasyczne estymatory. Metody indukcji reguł przeżyciowych (akcji,
wyjątków oraz zespołów), stanowiące wkład niniejszej pracy, zostaną szczegółowo
omówione w dalszej części.

5.2 Pokryciowy algorytm indukcji przeżyciowych
reguł akcji

W tej sekcji przedstawiono pokryciowy algorytm indukcji przeżyciowych reguł
akcji, opisany w pracy Separate-and-conquer Survival Action Rule Learning [117].
Metoda ta stanowi podejście do indukcji przeżyciowych reguł akcji, umożliwiając
identyfikację zmian wartości atrybutów prowadzących do określonej modyfikacji
krzywej przeżycia w populacji pokrytej regułą. Jej opracowanie było motywo-
wane potrzebą połączenie eksploracji akcji z analizą danych cenzurowanych oraz
zaproponowania interpretowalnej procedury porównywania krzywych przeżycia
grup źródłowych i docelowych. W niniejszej sekcji najpierw omówiono podstawy
reguł akcji, a następnie przedstawiono założenia, sposób reprezentacji reguł oraz
procedurę działania algorytmu.

5.2.1 Reguły akcji

Reguły akcji rozszerzają funkcjonalność reguł klasyfikacyjnych, wskazując kon-
kretne zmiany wartości atrybutów prowadzące do przejścia z klasy źródłowej cZ
na docelową cD. Dzięki temu możliwe jest formułowanie operacyjnych zaleceń
dotyczących modyfikacji atrybutów, np. w systemach predykcyjnego utrzymania
ruchu [18]. Niech A = ta1, . . . , apu oznacza zbiór atrybutów, a dla każdego ai P A

niech D(ai) będzie zbiorem dopuszczalnych wartości atrybutu ai. Niech C oznacza
zbiór klas decyzyjnych. Wówczas wZi, wDi P D(ai) dla i = 1, . . . , n, przy czym
n ď p, a cZ , cD P C. Formalnie, regułę akcji zapisuje się jako:

jeśli (a1 : wZ1 Ñ wD1) ^ (a2 : wZ2 Ñ wD2) ^ ¨ ¨ ¨ ^ (an : wZn Ñ wDn)

to cZ Ñ cD,
(5.2)
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gdzie:

• (ai : wZi Ñ wDi) — elementarna akcja zmieniająca wartość atrybutu ai

z wartości źródłowej wZi na docelową wDi,

• cZ Ñ cD — zmiana klasy, np. z „uszkodzony” na „sprawny”.

Regułę akcji można postrzegać jako kompozycję dwóch reguł: źródłowej (dla cZ)
i docelowej (dla cD). Wyróżnia się trzy typy akcji elementarnych [118]: zmieniającą,
(ai : wZi Ñ wDi), gdzie wZi ‰ wDi; dowolną, (ai : wZi Ñ dowolna), gdy nie
precyzuje się wartości docelowej; podtrzymującą, (ai : wZi Ñ wZi), oznaczającą
zachowanie wartości atrybutu.

W predykcyjnym utrzymaniu ruchu reguły akcji mogą wskazywać korekty
parametrów procesu (np. ciśnienia, temperatury, obciążenia), które w danych
historycznych dla grupy pokrytej przez regułę współwystępowały z obniżeniem
ryzyka (np. spadkiem hazardu). Przykład reguły:

jeśli (ciśnienie P (60, 70] bar Ñ ciśnienie P [50, 55] bar)

^ (temperatura P (85, 90]˝C Ñ temperatura P [75, 80]˝C)

to kategoria ryzyka awarii : wysoka Ñ umiarkowana

(5.3)

Przykład obrazuje zmiany parametrów procesu, które w danych historycznych
dla obserwacji pokrytych regułą korelowały z niższym ryzykiem awarii [61].

W dalszej części pracy stosowany jest równoważny, uproszczony zapis:

jeśli (ciśnienie, (60, 70] Ñ [50, 55])

^ (temperatura, (85, 90] Ñ [75, 80])

to (kategoria ryzyka awarii, (wysoka Ñ umiarkowana))

(5.4)

Prace nad regułami akcji koncentrują się na formalnych procedurach ich indukcji
oraz zastosowaniach rekomendacyjnych. Raś i Tsay [118] zaproponowali system
DEAR, który konstruuje reguły akcji z par reguł decyzyjnych odpowiadających
klasie źródłowej i docelowej, rozróżniając atrybuty stabilne i zmienne. Elementarne
akcje mają postać (a : wZ Ñ wD), a ich trafność weryfikowana jest empirycznie.
Wersja drzewiasta systemu ogranicza przestrzeń poszukiwań poprzez wykorzy-
stanie struktury drzewa decyzyjnego, co redukuje koszt generowania reguł [118].
Sikora i in. [119] przedstawili algorytm SCARI, który integruje indukcję reguł akcji
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(przejścia cZ Ñ cD) z mechanizmem wyboru działań dla pojedynczych obiektów.
Algorytm wyznacza zestaw zmian atrybutów maksymalizujący prawdopodobień-
stwo przejścia do klasy docelowej przy zadanych ograniczeniach (np. kosztowych
lub technologicznych).

W analizie przeżycia reguły akcji mogą sugerować interwencje poprawiające
rokowania, np. zmianę harmonogramu konserwacji w celu wydłużenia czasu pracy
maszyny lub dostosowanie terapii w medycynie. Ich potencjał w tym obszarze
pozostaje jednak niedostatecznie zbadany, co stanowi lukę badawczą.

5.2.2 Opis metody

Metoda opiera się na strategii separate-and-conquer i działa na zbiorze danych
D(A, T, δ), gdzie A to zbiór atrybutów, T to czas obserwacji (czas do zdarzenia),
a δ P t0, 1u to status przeżycia (1 — zdarzenie, 0 — cenzurowanie). Każdorazowo
konstruowana jest reguła pokrywająca część dotychczas niepokrytych przykładów,
które następnie usuwa się z puli pozostałej do pokrycia. Proces trwa aż do momentu,
gdy zbiór niepokrytych przykładów jest pusty lub gdy nie da się wyindukować
reguły spełniającej zadane minimalne progi pokrycia i jakości.

Centralnym elementem metody jest generowanie przeżyciowych reguł akcji,
których konkluzja zawiera estymator funkcji przeżycia (Kaplana-Meiera). Reguły
te mają postać:

jeśli (a1 : wZ1 Ñ wD1) ^ (a2 : wZ2 Ñ wD2) ^ ¨ ¨ ¨ ^ (an : wZn Ñ wDn)

to ŜZ Ñ ŜD,
(5.5)

gdzie (ai : wZi Ñ wDi) reprezentuje zmianę wartości atrybutu ai z zakresu
źródłowego wZi na zakres docelowy wDi, a ŜZ i ŜD to estymatory funkcji przeżycia
wyznaczone dla przykładów pokrywanych, odpowiednio, przez część źródłową
i część docelową reguły.

Metoda składa się z dwóch głównych faz: specjalizacji (wzrostu) reguły oraz
jej generalizacji (przycinania). W fazie specjalizacji, rozpoczynając od pustej
przesłanki, warunki są dodawane iteracyjnie w celu zmaksymalizowania różnicy
w krzywych przeżycia między grupą źródłową a docelową, mierzonej testem log-
rank. W fazie przycinania warunki są usuwane lub modyfikowane w celu poprawy
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jakość reguły. Nadmiernemu dopasowaniu zapobiega się, pozostawiając wyłącz-
nie modyfikacje, które nie pogarszają statystyki log-rank, natomiast nadmiernej
ogólności przeciwdziała się poprzez ograniczenie maksymalnego pokrycia ρ oraz
dopuszczalnego udziału przykładów wspólnych dla części źródłowej i docelowej
reguły ξ.

Algorytm 2 Algorytm indukcji reguł akcji dla danych cenzurowanych
1: Wejście:
2: D(A, T, δ) — zbiór danych opisany atrybutami A, czasem obserwacji T

i statusem przeżycia δ
3: µ — minimalna liczba niepokrytych przykładów, które nowa reguła musi

pokrywać
4: ξ — maksymalny procent przykładów wspólnych dla obu części reguły
5: ρ — maksymalne pokrycie reguły
6: τ — typ reguły: lepsza | gorsza | dowolna
7: Astabilny — zbiór atrybutów stabilnych z A
8: Wyjście: R — zbiór przeżyciowych reguł akcji
9: procedure IndukujPrzeżycioweRegułyAkcji(D,µ, ξ, ρ, τ, Astabilny)

10: R Ð H

11: Du Ð D Ź zbiór przykładów niepokrytych
12: while Du ‰ H do
13: r Ð Specjalizuj(D,Du, µ, τ, ρ, Astabilny)
14: r Ð Uogólnij(D, r, τ, ξ, ρ)
15: if r ‰ H then R Ð R Y tru

16: Dc Ð PokrytePrzykłady(r,D) Ź przykłady z D pokrywane przez
r

17: Du Ð DuzDc

18: end while
19: return R

20: end procedure

Pseudokod procedury indukcji zbioru przeżyciowych reguł akcji został przed-
stawiono w Algorytmie 2. Na wejściu przekazywany jest zbiór danych D(A, T, δ).
Dodatkowo wykorzystywany jest zbiór parametrów:
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• µ — minimalna liczba przykładów niepokrytych, które musi pokrywać
indukowana reguła;

• ρ — dopuszczalne maksymalne pokrycie reguły względem D;

• ξ — dopuszczalny maksymalny udział przykładów wspólnych dla części
źródłowej i docelowej reguły;

• τ P tlepsza, gorsza, dowolnau — preferowany kierunek zmiany wyniku prze-
życia implikowany przez regułę.

Zbiór Astabilny Ď A wyznacza atrybuty stabilne (niepoddające się działaniu), które
nie mogą być modyfikowane przez część akcyjną reguły.

Zadaniem procedury jest zbudowanie zbioru reguł R, w którym każda reguła
ma postać:

jeśli ϕ to ŜZ Ñ ŜD

gdzie ŜZ i ŜD oznaczają nieparametryczne estymatory funkcji przeżycia (Kaplana-
Meiera) odpowiednio dla części źródłowej i docelowej. Algorytm utrzymuje zbiór
przykładów niepokrytych Du i iteracyjnie konstruuje nową regułę r poprzez se-
kwencyjne uszczegóławianie i uogólnianie przesłanki. Procedura Specjalizuj buduje
koniunkcję akcji złożoną z par warunek–kontrwarunek ograniczonych do atrybutów
niestabilnych, respektując progi µ i ρ. Natomiast procedura Uogólnij upraszcza
powstałą przesłankę przy zachowaniu ograniczeń ξ, ρ oraz zgodności z kierunkiem
τ (tj. relacji ŜD względem ŜZ zgodnej z wymaganym kierunkiem). Po akceptacji
reguły do R, z Du usuwa się wszystkie przykłady pokryte przez jej część źródłową.
Pętla kończy się, gdy Du = H lub nie istnieje reguła spełniająca jednocześnie
ograniczenia µ, ξ, ρ oraz wymóg kierunku τ .

Faza specjalizacji reguły jest realizowana przez procedurę Specjalizuj, przedsta-
wioną w Algorytmie 3. Polega ona na zachłannym dodawaniu akcji do przesłanki
reguły, rozpoczynając od pustej przesłanki. W każdej iteracji poszukiwany jest
najlepszy warunek elementarny wnajlZ dla części źródłowej reguły, a następnie
najlepszy kontrwarunek wnajlD dla części docelowej. Akcja utworzona z tych dwóch
warunków jest dodawana do przesłanki reguły. Proces ten trwa do momentu, gdy
nie można znaleźć nowego warunku wnajlZ .

Najlepszy warunek elementarny wnajlZ wybierany jest tak, aby po dodaniu do
części źródłowej reguły, statystyka log-rank między przykładami pokrywanymi

65



5 Analiza niezawodności i przeżycia za pomocą reguł logicznych

Algorytm 3 Specjalizacja przeżyciowej reguły akcji
1: Wejście:
2: D(A, T, δ) — zbiór danych
3: Du — zbiór przykładów niepokrytych
4: µ — minimalna liczba przykładów, które nowa reguła musi pokrywać
5: ρ — maksymalne pokrycie reguły
6: τ — typ reguły
7: Astabilny — zbiór atrybutów stabilnych
8: Wyjście: r — reguła akcji
9: procedure Specjalizuj(D,Du, µ, τ, ρ, Astabilny)

10: ϕ, ϕZ , ϕD Ð H Ź przesłanka, warunki źródłowe i docelowe
11: Wsprawdzone Ð H Ź już sprawdzone warunki
12: repeat
13: wnajlZ Ð ZnajdźNajlepszyWarunekElemen-

tarny(D,Du, ϕZ , µ, ρ,Wsprawdzone)
14: Wsprawdzone Ð Wsprawdzone Y twnajlZu

15: if wnajlZ = H then continue
16: a Ð Atrybut(wnajlZ )
17: wnajlD Ð ZnajdźKontrwarunek(D,ϕZ ^ wnajlZ , ϕD, wnajlZ , µ, τ)
18: akcja Ð BudujAkcję(wnajlZ , wnajlD)
19: ϕ Ð ϕ ^ akcja

20: ϕZ Ð ϕZ ^ wnajlZ

21: ϕD Ð ϕD ^ wnajlD

22: until (wnajlZ = H)

23: Oblicz ŜZ dla PokrytePrzykłady(ϕZ , D) (Kaplan-Meier)
24: Oblicz ŜD dla PokrytePrzykłady(ϕD, D) (Kaplan-Meier)
25: return r ” jeśli ϕ to ŜZ Ñ ŜD

26: end procedure
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a niepokrywanymi przez regułę była jak największa. W przypadku kilku warunków
dających tę samą wartość statystyki, wybierany jest ten, który maksymalnie
zwiększa liczbę dotychczas niepokrywanych przykładów. Najlepszy kontrwarunek
wnajlD poszukiwany jest dla tego samego atrybutu co wnajlZ i wybierany tak,
aby statystyka log-rank między przykładami pokrywanymi przez część źródłową
z dodanym wnajlZ a przykładami pokrywanymi przez część docelową z dodanym
wnajlD była maksymalna.

Po fazie specjalizacji następuje faza przycinania reguły, realizowana przez funkcję
Uogólnij. W tej fazie iteracyjnie usuwane są akcje z przesłanki reguły, sprawdzając,
czy ich usunięcie poprawia lub nie pogarsza wartości statystyki log-rank między
krzywymi przeżycia części źródłowej i docelowej. Dodatkowo rozważana jest moż-
liwość zamiany akcji na akcję dowolną, czyli taką, w której po stronie docelowej
nie narzuca się konkretnej wartości atrybutu — dopuszcza się dowolną wartość
((ai : wZi Ñ dowolna)), jeśli prowadzi to do dalszej poprawy jakości reguły. Pro-
ces przycinania trwa do momentu, gdy nie ma już akcji, których usunięcie lub
zamiana na akcję dowolną poprawiałoby jakość reguły. Usuwanie akcji podlega
dwóm ograniczeniom. Akcja nie jest usuwana, jeśli jej usunięcie spowodowałoby,
że udział przykładów pokrytych przez jedną regułę przekroczyłby ρ lub jeśli udział
wspólnych przykładów dla części źródłowej i docelowej reguły przekroczyłby ξ.

Metoda obsługuje braki w danych poprzez strategię ignorowania brakujących
wartości. Podczas poszukiwania możliwych warunków, brakujące wartości są pomi-
jane, a reguły budowane są wyłącznie na podstawie znanych wartości. Przykłady
z brakującymi wartościami dla atrybutów występujących w regule nie są uwzględ-
niane przy ocenie pokrycia reguły. Strategia ta nie wymaga dodatkowych kroków,
takich jak interpolacja danych.

Proponowana metoda jest unikalna, ponieważ jako pierwsza umożliwia indukcję
reguł akcji dla danych cenzurowanych, łącząc techniki eksploracji akcji z analizą
przeżycia. W przeciwieństwie do istniejących metod, zaprojektowanych dla danych
klasyfikacyjnych, metoda ta obsługuje dane cenzurowane już na etapie indukcji
i oceny jakości reguł. Umożliwia to formułowanie interpretowalnych rekomendacji
zmian wartości atrybutów o kontrolowanym kierunku wpływu na funkcję przeżycia
w zbiorach przykładów pokrywanych przez reguły.
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5.2.3 Ilustracja działania metody

Niniejsza ilustracja przedstawia zastosowanie omawianej metody na zbiorze danych
Maintenance, dotyczącym konserwacji urządzeń. Zbiór obejmuje 1000 przykładów
opisanych trzema zmiennymi objaśniającymi:

• pressureInd — przepływ cieczy,

• moistureInd — względna wilgotność,

• temperatureInd — temperatura.

Ponadto zbiór zawiera dwa atrybuty związane z przeżyciem:

• lifetime — liczba tygodni, przez które maszyna była aktywna,

• broken — informacja o awarii maszyny w trakcie omawianego okresu aktyw-
ności.

Celem analizy jest wygenerowanie przeżyciowych reguł akcji, które modyfikują
krzywą przeżycia maszyn poprzez rekomendowanie zmian wartości atrybutów.

Na Rysunku 5.1 zaprezentowano wpływ pokrycia reguły na estymowaną funkcję
przeżycia oraz rozkład przykładów w przestrzeni cech.

Przykład indukcji reguł

Poniżej przedstawiono szczegółowy przebieg indukcji reguł w trzeciej iteracji
algorytmu. Iteracja rozumiana jest jako jeden cykl procesu separate-and-conquer,
w którym generowana jest pojedyncza reguła pokrywająca część niepokrytych
dotychczas przykładów. Trzecia iteracja została wybrana, ponieważ najlepiej
ilustruje pełną funkcjonalność algorytmu, w tym obsługę warunków złożonych.

Inicjalizacja Na początku trzeciej iteracji w zbiorze pozostaje 937 przykładów
niepokrytych przez żadną z wcześniej wygenerowanych reguł. Zadaniem algorytmu
jest zidentyfikowanie reguły, której krzywa przeżycia przewyższa krzywą reguły
źródłowej, tzn. zapewnia wyższe estymowane prawdopodobieństwo przeżycia dla
przykładów spełniających tę regułę.
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Rysunek 5.1: Krzywe przeżycia ilustrujące wpływ wygenerowanej reguły akcji
na czas bezawaryjnej pracy maszyn. Niebieska krzywa reprezentuje przykłady
spełniające warunki części źródłowej reguły, pomarańczowa — części docelowej,
natomiast szara krzywa odnosi się do przykładów niepokrywanych przez tę
regułę. Dodatkowo, trzy wykresy rozrzutu przedstawiają rozkład przykładów
w przestrzeni cech (dla każdej pary atrybutów) w podziale na te trzy grupy.
Rozważana reguła ma postać: jeśli (pressureInd, (´8, 103.9) Ñ (´8, 81.0)) ^

(temperatureInd, (´8, 115.4) Ñ (´8, 105.6)) ^ (moistureInd, (´8, 89.5) Ñ

(´8, 89.4)) to ŜZ Ñ ŜD
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Faza specjalizacji Specjalizacja realizowana jest zachłannie względem statystyki
log-rank — dodawana akcja musi zwiększać różnicę (mierzoną testem log-rank)
między krzywymi przeżycia części źródłowej i docelowej przy zachowaniu ograni-
czeń pokrycia i udziału przykładów wspólnych. Kontrwarunek dobierany jest dla
tego samego atrybutu co warunek źródłowy.

1. Znajdowanie najlepszego warunku elementarnego dla reguły źró-
dłowej: Algorytm identyfikuje warunek (pressureInd, (´8, 103.7)) jako naj-
lepszy warunek elementarny dla reguły źródłowej. Kryterium wyboru była
najwyższa wartości statystyki log-rank, równa 3.9, obliczona dla porówna-
nia krzywych przeżycia przykładów spełniających i niespełniających ten
warunek.

2. Dodawanie warunku do przesłanki reguły: Zidentyfikowany warunek
zostaje dodany do przesłanki reguły:

(pressureInd, (´8, 103.7))

3. Znajdowanie najlepszego kontrwarunku dla reguły docelowej: W od-
powiedzi na ustaloną regułę źródłową algorytm wskazuje kontrwarunek
(pressureInd, (´8, 96.1)) jako najlepszy. Wartość statystyki log-rank, obli-
czona dla porównania krzywych przeżycia przykładów spełniających część
źródłową z przykładami spełniającymi część docelową reguły, wynosi 4.1.

4. Tworzenie i dodawanie akcji do przesłanki reguły: Akcja utworzona
z reguły źródłowej i kontrwarunku jest włączana do przesłanki:

(pressureInd, (´8, 103.7) Ñ (´8, 96.1))

Warunek źródłowy (pressureInd, (´8, 103.7)) stanowi nadzbiór warunku
docelowego (pressureInd, (´8, 96.1)), ponieważ każdy przykład spełniający
warunek docelowy spełnia również warunek źródłowy, natomiast nie zachodzi
implikacja odwrotna, czyli:

tx P R : x ă 96.1u Ă tx P R : x ă 103.7u.

Przejście (pressureInd, (´8, 103.7) Ñ (´8, 96.1)) należy interpretować jako
zawężenie przesłanki z szerszego zbioru przypadków do węższego podzbioru
określonego bardziej restrykcyjnym progiem.
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5. Iteracyjna modyfikacja warunków: Algorytm kontynuuje specjalizację
reguły, dodając kolejne warunki. Najlepszy kolejny warunek elementarny
to (temperatureInd, (´8, 115.4) (wartość log-rank 9.8). Następnie, najlep-
szy kontrwarunek został zidentyfikowany jako (temperatureInd, (´8, 105.6))

(wartość log-rank 13.0). Zestawienie warunków daje kolejną akcję, która
zostaje włączona do przesłanki:

(pressureInd, (´8, 103.7) Ñ (´8, 96.1))

^ (temperatureInd, (´8, 115.4) Ñ (´8, 105.6))

6. Kontynuacja iteracyjnej modyfikacji warunków: Proces jest powta-
rzany, co prowadzi do uzyskania kolejnych akcji:

a) (moistureInd, [89.5, +8) Ñ [89.4, +8)) z wartością log-rank wynoszącą
13.7 dla reguły źródłowej i 19.0 dla reguły docelowej,

b) (pressureInd, (´8, 108.6) Ñ [70.1, +8)) z wartością log-rank wyno-
szącą 15.9 dla reguły źródłowej i 26.1 dla reguły docelowej,

c) (pressureInd, [103.9, +8) Ñ [81.0, +8)) z wartością log-rank wynoszącą
17.0 dla reguły źródłowej i 26.7 dla reguły docelowej,

d) (pressureInd, [104.7, +8) Ñ (´8, 96.1)) z wartością log-rank wyno-
szącą 17.0 dla reguły źródłowej i 25.9 dla reguły docelowej.

W efekcie przesłanka przyjmuje postać:

(pressureInd, [104.7, 108.6) Ñ [81.0, 96.1))

^ (temperatureInd, (´8, 115.4) Ñ (´8, 105.6)

^ (moistureInd, (´8, 89.5) Ñ (´8, 89.4)

7. Zakończenie specjalizacji: Próba dodania kolejnego warunku elementar-
nego nie spełnia kryteriów jakości (minimalnej wartości statystyki log-rank
lub minimalnego pokrycia), co oznacza zakończenie fazy specjalizacji w tej
iteracji. Otrzymana reguła ma postać:

jeśli (pressureInd, [104.7, 108.6)) Ñ [81.0, 96.1))

^ (temperatureInd, (´8, 115.4) Ñ (´8, 105.6)

^ (moistureInd, (´8, 89.5) Ñ (´8, 89.4))

to ŜZ Ñ ŜD
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Faza uogólniania Uogólnianie polega na kontrolowanym upraszczaniu przesłanki
— akcje usuwa się lub łagodzi, o ile nie pogarsza to statystyki log-rank, przy
zachowaniu ograniczeń pokrycia oraz udziału przykładów wspólnych.

1. Uogólnianie iteracja 1:

• Akcje oznaczone do usunięcia: Akcje

(pressureInd, [103.7,+8) Ñ (´8, 96.1))

(pressureInd, [104.7,+8) Ñ (´8, 96.0))

zostały zidentyfikowane jako nieistotne statystycznie (ich usunięcie nie
powoduje pogorszenia statystyki log-rank) i przeznaczone do usunięcia
w celu uproszczenia reguły.

• Akcje oznaczone do złagodzenia: Akcje

(pressureInd, [103.7,+8) Ñ (´8, 96.1))

(pressureInd, (´8, 108.6) Ñ [70.1,+8))

zostały zakwalifikowane do złagodzenia, rozumianego jako poszerzenie
odpowiedniego przedziału wartości (po stronie źródłowej lub docelo-
wej) poprzez przesunięcie granicy progu tak, aby zwiększyć pokrycie
bez istotnego spadku wartości statystyki log-rank, przy jednoczesnym
zachowaniu statystycznie istotnej różnicy między krzywymi przeżycia.

• Wynik: Mimo że wiele akcji zostało oznaczonych do modyfikacji, me-
toda uogólniania modyfikuje tylko jedną z nich, zgodnie z określonymi
poniżej zasadami.

– Akcja nie może być jednocześnie usunięta i złagodzona. Oznacza się
ją do usunięcia, jeżeli jej eliminacja nie obniża wartości statystyki
log-rank i nie narusza minimalnego pokrycia. Oznacza się ją do
złagodzenia, jeżeli całkowite usunięcie pogarsza miarę jakości, na-
tomiast poszerzenie przedziału zachowuje wymagane progi jakości
i zwiększa pokrycie.

– Akcje mogą być wzajemnie powiązane — usunięcie jednej akcji
może wpływać na statystyczną istotność pozostałych. Algorytm
uwzględnia te zależności, sprawdzając wpływ każdej modyfikacji
na całościową jakość reguły.
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– W każdej iteracji algorytm wybiera jedną modyfikację (usunię-
cie lub złagodzenie akcji), która najbardziej poprawia wartość
statystyki log-rank między krzywymi przeżycia części źródłowej
i docelowej reguły.

W rezultacie usunięto akcję dotyczącą atrybutu pressureInd, redukując
liczbę akcji w regule bez pogorszenia wartości statystyki log-rank i przy
zachowaniu minimalnego pokrycia.

2. Uogólnianie iteracja 2:

• Akcje oznaczone do złagodzenia: Akcja

(pressureInd, [103.9,+8) Ñ [81.0,+8))

została wytypowana do złagodzenia, ponieważ całkowite usunięcie
pogorszyłoby miarę jakości, natomiast poszerzenie odpowiednich prze-
działów spełnia progi jakości i zwiększa pokrycie.

• Wynik: W rezultacie akcja

(pressureInd, [103.9,+8) Ñ [81.0,+8))

została złagodzona do

(pressureInd, [103.9,+8) Ñ dowolna)

co zmniejszyło złożoność i poprawiło możliwość generalizacji reguły.

3. Uogólnianie iteracja 3:

• Brak akcji do usunięcia: W tej iteracji algorytm dokonał oceny pozo-
stałych akcji, lecz nie znalazł dalszych redundancji ani nieefektywności.
Wszystkie istniejące akcje miały znaczący wkład w poprawę krzywej
przeżycia.

4. Zakończenie uogólniania: Proces uogólniania zakończono, ponieważ dal-
sze usuwanie akcji skutkowałoby pogorszeniem jakości reguły. Zachowano
równowagę między specyficznością a ogólnością, przy utrzymaniu wysokiego
pokrycia oraz istotnego wpływu na krzywe przeżycia.
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Uzyskana reguła Ostateczna reguła po specjalizacji i uogólnianiu ma postać:

jeśli (pressureInd, (´8, 103.9) Ñ (´8, 81.0))

^ (temperatureInd, (´8, 115.4) Ñ (´8, 105.6))

^ (moistureInd, (´8, 89.5) Ñ (´8, 89.4))

to ŜZ Ñ ŜD

Trzecia iteracja wygenerowała regułę pokrywającą 42 przykłady, zmniejszając
liczbę niepokrytych przykładów z 937 do 895. Test log-rank potwierdził staty-
stycznie istotną różnicę między krzywymi przeżycia przed i po zastosowaniu tej
reguły. Wygenerowana reguła sugeruje obniżenie wartości ciśnienia (pressure-
Ind), temperatury (temperatureInd) i wilgotności (moistureInd) w celu poprawy
niezawodności.

Strategia separate-and-conquer kontynuuje proces indukcji do momentu, gdy
wszystkie przykłady zostaną pokryte lub gdy nie będzie możliwe wygenerowanie
kolejnych reguł spełniających kryteria jakości. W pierwszych trzech iteracjach
wygenerowano trzy reguły, które łącznie pokryły 105 przykładów.

5.3 Algorytm rekomendacji przeżyciowych reguł akcji

Algorytm rekomendacji opisany w pracy Recommendation Algorithm Based on
Survival Action Rules [120] stanowi rozszerzenie pokryciowego algorytmu indukcji
przeżyciowych reguł akcji opisanego w Sekcji 5.2. Podczas gdy algorytm pokryciowy
koncentruje się na generowaniu przeżyciowych reguł akcji na podstawie danych
treningowych z wykorzystaniem strategii sekwencyjnego pokrywania, algorytm
rekomendacji traktuje wygenerowane reguły jako dane wejściowe do procesu two-
rzenia spersonalizowanych zaleceń dla nowych obiektów. Oba algorytmy składają
się na dwuetapową procedurę. W pierwszym etapie przeprowadzana jest indukcja
wzorców w postaci reguł akcji, w drugim etapie reguły te wykorzystywane są
w procesie generowania zaleceń dotyczących działań ukierunkowanych na poprawę
estymowanej funkcji przeżycia. Schemat działania algorytmu przedstawiono na
rysunku 5.2.
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Rysunek 5.2: Diagram przedstawiający zasadę działania algorytmu rekomenda-
cyjnego opartego na przeżyciowych regułach akcji.
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5 Analiza niezawodności i przeżycia za pomocą reguł logicznych

5.3.1 Opis metody

Pojedynczy obiekt może spełniać przesłanki wielu przeżyciowych reguł akcji, co
prowadzi do konfliktów. Konflikty te obejmują przede wszystkim wielokrotne
pokrycie (jednoczesna aktywacja kilku reguł oferujących różne zbiory akcji lub
różne docelowe krzywe przeżycia ŜD) oraz kolizje akcji (rozłączne wartości dla tego
samego atrybutu). Na etapie indukcji konflikty są częściowo ograniczane poprzez
strategię separate-and-conquer, progi ρ i ξ oraz niedopuszczanie modyfikowania
atrybutów stabilnych. Rozstrzyganie konfliktów zapewnia metoda rekomendacyjna
opisana w niniejszej sekcji, oparta na indukcji meta-reguł akcji, generowanych
na podstawie meta-tablicy. Podejście to umożliwia ocenę alternatywnych zesta-
wów działań i wybór rozwiązania maksymalizującego zmianę krzywej przeżycia
w zadanym kierunku.

Meta-tablica mD jest elementem metody umożliwiającym generowanie rekomen-
dacji dla nowych obiektów poprzez reprezentację danych w postaci zbioru meta-
przykładów. Każdy meta-przykład w mD odzwierciedla unikalną kombinację war-
tości atrybutów, określoną na podstawie reguł akcji uzyskanych w procesie indukcji.
Dla atrybutów symbolicznych meta-atrybuty ma odpowiadają bezpośrednio war-
tościom atrybutów ze zbioru wejściowego D, na przykład „lokalizacja = sekcja A”.
W przypadku atrybutów numerycznych zbiór wartości danego atrybutu dzielony
jest na przedziały wyznaczone przez wartości progowe występujące w regułach akcji.
Przykładowo, dla atrybutu a1 mogą to być przedziały: (´8, 50], (50, 70], (70,+8).
Każdy meta-przykład w mD jest powiązany z podzbiorem przykładów ze zbioru
treningowego D, co umożliwia estymację krzywej przeżycia Ŝ dla danego meta-
przykładu za pomocą estymatora Kaplana-Meiera. W ten sposób meta-tablica
pełni rolę mechanizmu dyskretyzacji i generalizacji danych treningowych, co zna-
cząco przyspiesza proces generowania rekomendacji i zwiększa jego efektywność
obliczeniową.

Algorytm rekomendacji rozwiązuje problem konfliktów wynikających z pokry-
wania obiektu przez wiele reguł akcji poprzez ocenę proponowanych działań oraz
wybór zestawu modyfikacji atrybutów maksymalizującego zmianę krzywej przeży-
cia. Proces ten opiera się na meta-tablicy mD i obejmuje cztery etapy:

1. Identyfikacja meta-przykładu: Obiekt x, opisany zbiorem wartości atry-
butów A = ta1, a2, . . . , amu, jest mapowany na odpowiadający mu meta-
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przykład mx P mD. Mapowanie polega na przypisaniu wartości atrybutów
x do odpowiednich przedziałów zdefiniowanych w meta-tablicy. Dla atrybu-
tów symbolicznych wartości są porównywane bezpośrednio z wartościami
meta-atrybutów (np. „typ usterki = mechaniczna” w x odpowiada tej samej
wartości w mx). Natomiast dla atrybutów numerycznych wartości są przypi-
sywane do przedziałów wyznaczonych przez reguły akcji (np. jeśli a1 = 65 dla
temperatury, a meta-tablica definiuje przedziały (´8, 50], (50, 70], (70,+8),
to a1 trafia do przedziału (50, 70]). Meta-przykład mx pełni rolę reprezen-
tanta podzbioru przestrzeni atrybutów, co pozwala na uogólnienie analizy
na podobne obiekty.

2. Estymacja krzywej przeżycia: Obliczana jest krzywa przeżycia ŜZ dla
obiektu x, odzwierciedlająca jego stan przed wprowadzeniem jakichkolwiek
zmian. Domyślnie ŜZ estymowana jest metodą Kaplana-Meiera na podsta-
wie wszystkich przykładów treningowych ze zbioru D, które są pokrywane
przez meta-przykład mx. Aby estymacja była statystycznie istotna, meta-
przykład musi obejmować wystarczającą liczbę przykładów. Jeśli liczba
ta jest zbyt mała (mniejsza niż zadany próg µ), co obniża wiarygodność
estymacji krzywej przeżycia, stosuje się model arbitra. XGBoost z funkcją
straty Coxa, trenowany na całym zbiorze D, generuje przewidywaną krzywą
ŜZ dla x. Estymator Kaplana-Meiera stosuje się, gdy meta-przykład zawiera
wystarczającą liczbę próbek (ě µ), natomiast model arbitra — gdy liczba
przykładów jest niewystarczająca.

3. Indukcja meta-reguły akcji: W meta-tablicy mD indukowana jest meta-
reguła akcji rD, której konkluzja ŜD reprezentuje docelową krzywą przeżycia
po zastosowaniu rekomendowanych zmian. Celem jest znalezienie reguły,
dla której ŜD maksymalnie różni się od ŜZ , mierzone testem Kołmogorowa-
Smirnowa dla dwóch próbek. Test ten ocenia maksymalną odległość między
empirycznymi funkcjami dystrybuanty przeżycia, umożliwiając porówna-
nie krzywych przeżycia bez przyjmowania założeń o rozkładzie czasu do
zdarzenia. Algorytm wykorzystuje strategię wspinaczki (ang. hill climbing),
iteracyjnie przeszukując przestrzeń meta-przykładów w mD, aby zidenty-
fikować zestaw zmian atrybutów prowadzący do pożądanej modyfikacji
krzywej przeżycia. Minimalizacja liczby zmian atrybutów pozwala na po-
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tencjalne ograniczenie kosztów wdrożenia zaleceń — zamiast modyfikować
wiele parametrów maszyny, algorytm może zasugerować tylko jedną zmianę
(np. obniżenie temperatury), jeśli pojedyncza modyfikacja wystarcza do
osiągnięcia pożądanego efektu. Proces indukcji działa analogicznie do spe-
cjalizacji reguł w algorytmie głównym, ale operuje na meta-przykładach
zamiast na surowych danych, co zmniejsza złożoność obliczeniową.

4. Generowanie rekomendacji: Na podstawie indukowanej reguły rD gene-
rowane są konkretne zalecenia dla obiektu x. Rekomendacje przyjmują formę
zestawu działań zmieniających wartości atrybutów ze stanu źródłowego na
docelowy, zgodnie z przesłanką reguły rD. Przykładowo, jeśli rD sugeruje
zmianę (a1 ą 70 ˝C Ñ a1 ď 70 ˝C), zalecenie brzmi: „zmniejsz tempera-
turę z wartości powyżej 70 ˝C do wartości równej lub mniejszej niż 70 ˝C”.
Działania są wyprowadzane z różnic między mx (reprezentującym obecny
stan x) a meta-przykładem (lub grupą sąsiadujących meta-przykładów)
odpowiadającym ŜD. Jeśli kilka meta-przykładów jednocześnie prowadzi do
lepszej ŜD, algorytm może łączyć ich zakresy wartości, o ile są one sąsiadu-
jące i poprawiają jakość krzywej przeżycia w porównaniu do pojedynczych
meta-przykładów.

Strategia wspinaczki ogranicza złożoność obliczeniową poprzez przeszukiwanie
lokalnego otoczenia bieżącego meta-przykładu zamiast pełnej przestrzeni meta-
przykładów, co ma znaczenie w przypadku dużych meta-tablic zawierających wiele
kombinacji meta-przykładów. Rozpoczynając od meta-przykładu mx, algorytm
iteracyjnie eksploruje sąsiednie meta-przykłady, oceniając ich wpływ na ŜD, i za-
trzymuje się, gdy dalsze zmiany nie poprawiają różnicy między ŜZ a ŜD lub gdy
osiągnięto minimalny zestaw zmian atrybutów. Jeśli meta-przykład zawiera mało
próbek treningowych (poniżej progu µ), model arbitra (np. XGBoost z funkcją
straty Coxa) zapewnia stabilną estymację ŜZ na podstawie wszystkich danych
treningowych.

Jakość rekomendacji weryfikowana jest za pomocą niezależnego modelu arbitra,
który estymuje krzywą przeżycia po zastosowaniu zaleceń (ŜDest). Jeśli ŜDest

nie różni się statystycznie od ŜD (test log-rank lub Kołmogorowa-Smirnowa),
rekomendacje uznaje się za skuteczne.
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5.3.2 Ilustracja działania metody

Niniejsza ilustracja przedstawia zastosowanie przedstawionego algorytmu rekomen-
dacyjnego opartego na przeżyciowych regułach akcji. W tym przykładzie metodę
zastosowano na zbiorze danych Maintenance, opisanego w Sekcji 5.2.3. Celem
jest zilustrowanie działania metody oraz skuteczności w generowaniu możliwych
do wdrożenia rekomendacji, które zwiększają wskaźniki przeżywalności poprzez
modyfikację konkretnych wartości atrybutów.

Zbiór treningowy posłużył do indukcji przeżyciowych reguł akcji za pomocą al-
gorytmu opisanego w Sekcji 5.2, który zidentyfikował wzorce i warunki wpływające
na wskaźniki przeżywalności. Reguły te obejmują warunki, w których określone
modyfikacje atrybutów mogą prowadzić do poprawy przeżywalności.

Indukcja przeżyciowych reguł akcji

Podczas fazy generowania reguł z wykorzystaniem zbioru treningowego uzyskano
łącznie 22 przeżyciowych reguły akcji. Dla ilustracji poniżej przedstawiono trzy
pierwsze z nich:

• Reguła 1:

jeśli (temperatureInd, (´8, 73.0) Ñ (124.1,+8))

^ (moistureInd, (´8, 82.1) Ñ (94.9,+8))

to ŜZ Ñ ŜD

• Reguła 2:

jeśli (pressureInd, [37.9, 64.9) Ñ [81.1, 85.7))

^ (temperatureInd, [66.2,+8) Ñ [84.8,+8))

to ŜZ Ñ ŜD

• Reguła 3:

jeśli (pressureInd, [69.2, 113.5) Ñ (+8, 89.0)))

^ (moistureInd, [85.8, 88.4) Ñ [94.9, 104.1))

to ŜZ Ñ ŜD
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Budowa meta-tablicy

Meta-tablica zawiera meta-przykłady, czyli zbiory warunków dotyczących atry-
butów. W każdym meta-przykładzie każdy uwzględniony atrybut ma przypisany
dokładnie jeden przedział wartości (dla atrybutów liczbowych) lub jeden zbiór do-
puszczalnych kategorii (dla atrybutów kategorycznych), wyznaczony przez reguły
akcji. Atrybuty nieobecne w meta-przykładzie pozostają nieograniczone.

Ekstrakcja warunków Pierwszym krokiem jest ekstrakcja warunków z indukowa-
nych reguł. Dla trzech pierwszych reguł warunki te przedstawiają się następująco:

• Reguła 1:

– (temperatureInd, [73.0, 124.1))

– (moistureInd, (´8, 82.1))

– (temperatureInd, [118.0, 122.3))

– (moistureInd, [94.9,+8))

• Reguła 2:

– (pressureInd, [37.9, 64.9))

– (temperatureInd, [66.2,+8))

– (pressureInd, [81.1, 85.7))

– (temperatureInd, [84.8,+8))

• Reguła 3:

– (pressureInd, [69.2, 113.5))

– (moistureInd, [85.8, 88.4))

– (pressureInd, (´8, 89.0))

– (moistureInd, [94.9, 104.1))

Powtarzanie się atrybutów w ramach pojedynczej reguły jest zamierzone i wynika
ze struktury reguł akcji oraz sposobu konstrukcji meta-tablicy. W regułach akcji
ten sam atrybut pojawia się wielokrotnie — w części opisującej część źródłową
i docelową — co wskazuje, jak zmienia się zakres dopuszczalnych wartości danego

80



5.3 Algorytm rekomendacji przeżyciowych reguł akcji

atrybutu. Na etapie ekstrakcji, dla każdego atrybutu gromadzone są wszystkie
końce przedziałów występujące w regułach (zarówno w warunkach źródłowych,
jak i docelowych), porządkuje je rosnąco i na ich podstawie dzieli dziedzinę
atrybutu na rozłączne przedziały. Do meta-tablicy wprowadza się następnie meta-
wartości odpowiadające tym przedziałom, tak aby każdy meta-przykład wskazywał
dopuszczalny zakres wartości danego atrybutu.

Przetwarzanie atrybutów Algorytm przetwarza każdy atrybut niezależnie. Dla
atrybutów numerycznych, takich jak temperatureInd, obliczane są wszystkie moż-
liwe przecięcia między przedziałami określonymi w regułach, z wykorzystaniem
wcześniej wyodrębnionych przedziałów (por. przykłady dla Reguł 1–3 powyżej).
Dla atrybutu temperatureInd w pierwszych trzech regułach zidentyfikowano nastę-
pujące rozłączne przedziały:

• [66.2,+8)

• [73.0, 124.1)

• [84.8,+8)

• [118.0, 122.3)

Na podstawie granic tych przedziałów wyznaczono rozłączny podział dziedziny
atrybutu temperatureInd na siedem sąsiadujących przedziałów:

• (´8, 66.2]

• (66.2, 73.0]

• (73.0, 84.8]

• (84.8, 118.0]

• (118.0, 122.3]

• (122.3, 124.1]

• (124.1,+8)

Takie zdefiniowanie podziału umożliwia precyzyjne ukierunkowanie modyfikacji
atrybutów.
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Generowanie rekomendacji

Na etapie wprowadzania zmian, czyli dostosowania wartości atrybutów do reko-
mendowanych meta-wartości, algorytm aktualizuje wartości atrybutów przykładu
testowego zgodnie z rekomendacjami pochodzącymi z meta-reguły akcji.

1. Analiza rekomendacji Dla każdego przykładu w zbiorze testowym algo-
rytm identyfikuje odpowiednie meta-wartości z meta-tablicy. Poniżej przed-
stawiono wybrany przykład ze zbioru testowego, dla którego zostanie zasto-
sowana rekomendacja:

temperatureInd = 108.9

moistureInd = 94.0

pressureInd = 76.1

Algorytm zidentyfikował trzy pasujące meta-wartości dla tego przykładu:

• temperatureInd: (107.2, 114.8)

• moistureInd: (93.7, 94.9)

• pressureInd: (75.8, 77.0)

Przedziały te stanowią meta-wartości w meta-tablicy zbudowanej na pod-
stawie progów występujących w wyindukowanych przeżyciowych regułach
akcji. Ich granice wyznaczono poprzez uporządkowanie wszystkich progów
dla danego atrybutu i obliczenie rozłącznych przecięć sąsiednich przedzia-
łów (części wspólnych tych przedziałów). Następnie każdy przykład jest
odwzorowywany do jednego z tak powstałych przedziałów.

Podział na 7 przedziałów dla temperatureInd pokazany powyżej został
wyznaczony wyłącznie na podstawie progów z Reguł 1–3 i ma charakter
ilustracyjny. Meta-wartości używane w dalszej części (np. (107.2, 114.8))
pochodzą z meta-tablicy zbudowanej na podstawie wszystkich progów ze
wszystkich wyindukowanych reguł akcji, przez co stanowią uszczegółowienie
tamtego podziału. W szczególności (107.2, 114.8) Ă (84.8, 118.0], więc jest
to fragment jednego z siedmiu przedziałów. Gdyby ograniczyć się do progów
z Reguł 1–3, ten sam obiekt zostałby przypisany do przedziału (84.8, 118.0].
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Dodatkowo zidentyfikowano trzy główne meta-wartości do potencjalnych
modyfikacji:

• temperatureInd: (84.8, 118.0)

• moistureInd: (88.4, 94.9)

• pressureInd: (69.2, 81.1)

2. Wyznaczanie rekomendowanych zmian Algorytm generuje rekomen-
dacje poprzez porównanie aktualnych wartości atrybutów z potencjalnymi
ulepszeniami. Dla wspomnianego przykładu zalecane są następujące zmiany:

• temperatureInd: Przejście z (84.8, 118.0) do (122.3, 124.1)

• moistureInd: Przejście z (88.4, 94.9) do (85.776, 88.4)

• pressureInd: Przejście z (69.2, 81.1) do (´8, 37.9)

Te rekomendacje mają na celu dostosowanie wartości atrybutów do zakresów,
które są statystycznie powiązane z poprawionymi wskaźnikami przeżywalno-
ści.

3. Ocena jakości: Jakość zestawu modyfikacji definiuje się jako wartość staty-
styki Kołmogorowa-Smirnowa (KS) obliczonej dla pary krzywych przeżycia:
przed i po zastosowaniu zmian. Wyższa wartość oznacza większą poprawę.
Równocześnie raportowana jest wartość p testu KS w celu weryfikacji istot-
ności (próg p ď 0.05). Dla przykładowego obiektu:

• wartość początkowa (bez zmian): 0.000

• po zmianie pressureInd: 0.372

• po zmianie moistureInd: 0.551

• wartość końcowa (po wszystkich zmianach): 0.654

Wartości te odzwierciedlają skumulowany wpływ kolejnych modyfikacji na
rozkład przeżycia oceniany za pomocą statystyki KS.

4. Proces przycinania: Aby zachować jedynie modyfikacje istotnie wpływa-
jące na poprawę wyniku, algorytm stosuje procedurę przycinania. Polega
ona na tymczasowym usunięciu każdej modyfikacji i ponownym obliczeniu
statystyki KS (oraz wartość p) dla pozostałego zestawu zmian. Modyfikacja
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zostaje odrzucana, jeśli jej usunięcie nie powoduje pogorszenia jakości lub
prowadzi do niespełnienia progu istotności. Przykładowo:

• Usunięcie zmiany pressureInd: Jakość spada do 0.090

• Usunięcie zmiany moistureInd: Jakość spada do 0.462

• Usunięcie zmiany temperatureInd: Jakość spada do 0.551

Znaczący spadek jakości po usunięciu każdej modyfikacji wskazuje na ko-
nieczność zachowania wszystkich proponowanych zmian.

5. Końcowe zastosowanie zmian: Na podstawie wyników przycinania al-
gorytm wybiera optymalny zestaw zmian. Dla danego przykładu końcowe,
zmienione wartości atrybutów są następujące:

pressureInd: 35.8
moistureInd: 87.1
temperatureInd: 123.2
Te modyfikacje dostosowują atrybuty przykładu do zalecanych meta-wartości,
zwiększając tym samym jego wskaźnik przeżywalności zgodnie z indukowa-
nymi regułami akcji.

Proces generowania rekomendacji zapewnia, że każdy przykład przechodzi
statystycznie znaczące modyfikacje, przyczyniając się do poprawy wyników prze-
żywalności.

5.4 Algorytm indukcji przeżyciowych reguł wyjątków

W poniższej sekcji przedstawiono algorytm indukcji przeżyciowych reguł wyjątków
w danych cenzurowanych. Analiza wyjątku opiera się na układzie trzech reguł
(CR, RR, ER). Celem metody jest wykrywanie lokalnych odstępstw od typowego
wzorca przeżycia (CR) wraz z regułą referencyjną (RR), wyjaśniającą kontekst
odstępstwa, oraz regułą wyjątku (ER), łączącą warunki CR i RR. Algorytm bazuje
na strategii separate-and-conquer, w której proces wzrostu reguły bazowej jest
rozszerzony o wyszukiwanie wyjątków. Dzięki temu możliwa jest identyfikacja
statystycznie istotnych wyjątków. Podobieństwo między regułami ocenia się za
pomocą testu log-rank stosowanego do krzywych Kaplana-Meiera wyznaczonych
dla przykładów pokrywanych przez dane reguły. Reguły CR i RR nie różnią się
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statystycznie, natomiast pary CR i ER oraz RR i ER wykazują istotne różnice
statystyczne.

5.4.1 Reguły wyjątków

Reguły wyjątków służą do identyfikacji nietypowych przypadków odstępujących od
ogólnych wzorców w danych, co umożliwia wykrywanie anomalii [121]. Ich struktura
opiera się na parze reguł: bazowej (ang. commonsense rule, CR), opisującej
typowe zależności w danych, oraz wyjątku (ang. exception rule, ER), wskazującej
odstępstwa. Hussain i in. [121] proponują również rozszerzoną strukturę potrójną
(CR, ER, RR), w której reguła referencyjna (ang. reference rule, RR) określa
kontekst występowania wyjątku. Formalnie, regułę wyjątku można zapisać jako:

• CR: jeśli wCR
1 ^ ¨ ¨ ¨ ^ wCR

m to y = c1,

• ER: jeśli wCR
1 ^ ¨ ¨ ¨ ^ wCR

m ^ wRR
1 ^ ¨ ¨ ¨ ^ wRR

n to y = c2,

gdzie m to liczba warunków w regule bazowej (CR), a n to liczba warunków
reguły referencyjnej (RR). Warunki wRR

1 , . . . , wRR
n stanowią dodatkowy kontekst

wyróżniający wyjątek, a c1 ‰ c2. Jakość reguł wyjątków ocenia się na podsta-
wie ich zdolności do wykrywania rzadkich i nietypowych przypadków, często
z wykorzystaniem miar odchyleń lub testów statystycznych [122].

Literatura wskazuje na różnorodne podejścia do odkrywania reguł wyjątków
(ang. exception rules), koncentrujące się głównie na problemach klasyfikacyjnych.
Klasyczna definicja opiera się na parze (CR, ER), czyli regule bazowej i regule
wyjątku. Aby uniknąć „pozornych wyjątków”, wprowadzono dodatkowo regułę
referencyjną (RR), która nadaje kontekst — CR i RR powinny prowadzić do po-
dobnych wniosków, natomiast dopiero ich koniunkcja kształtuje ER o odmiennym
wniosku [121]. Taki trójelementowy układ (CR, ER, RR) ogranicza generowanie
reguł o znikomym wsparciu i niskiej wartości poznawczej.

Ocena jakości wyjątków nie sprowadza się do oceny pojedynczej reguły. W lite-
raturze stosuje się m.in. miary informacyjne oraz miary względnej atrakcyjności
(ang. relative interestingness measures). W podejściu stochastycznym [122] ocenia
jednocześnie jakość CR i ER, gdzie wyjątek uznaje się za interesujący, gdy ma
wysoką jakość oraz kontrastuje z CR o wysokim wsparciu i wysokiej ufności. Z kolei
miara względnej atrakcyjności łączy komponenty ufności i wsparcia wszystkich
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trzech reguł (CR, RR, ER), co pozwala zrównoważyć rzadkość i wiarygodność
[121].

Metody generowania wyjątków dzieli się na podejścia bezpośrednie i pośrednie.
W podejściu bezpośrednim użytkownik dostarcza reguły CR, a algorytm wyszukuje
dla nich wyjątki (ER) oraz odpowiadające im konteksty (RR). W podejściu
pośrednim wzorzec bazowy (CR) nie jest narzucony — algorytmy samodzielnie
konstruują i oceniają kandydatów (pary lub trójki reguł) względem zadanych
kryteriów. W nurcie pośrednim zaproponowano m.in. podejście stochastyczne
[122], jak również metody oparte na logice rozmytej, umożliwiające uchwycenie
nieostrych granic wyjątków w danych technicznych [123]. Ujednolicony algorytm
odkrywania wyjątków bez uprzednio wskazanej wiedzy (CR) przedstawili Suzuki
i Żytkow, demonstrując jego skuteczność na 15 rzeczywistych zbiorach danych
[124].

Badania przedstawione w literaturze koncentrują się głównie na problemach
klasyfikacyjnych, podczas gdy zagadnienie wyjątków w regresji, a w szczególności
w analizie przeżycia, jest reprezentowane słabo lub nie pojawia się wcale. Adaptacja
koncepcji (CR, RR, ER) do danych cenzurowanych wymaga użycia miar i procedur
statystycznych specyficznych dla analizy przeżycia (krzywe Kaplana-Meiera, test
log-rank, kryteria istotności i wielkości efektu). W niniejszej pracy przyjęto takie
ujęcie — wyjątki w danych przeżyciowych definiuje się poprzez trójkę (CR, RR,
ER) oraz weryfikuje testem log-rank w taki sposób, aby CR i RR nie różniły się
statystycznie, natomiast ER istotnie różniła się od obu. Dzięki temu możliwe jest
wykrycie podgrup o nietypowo dłuższym lub krótszym czasie przeżycia względem
CR, co ułatwia identyfikację czynników prognostycznych.

5.4.2 Opis metody

Opracowane na potrzeby metody kryteria statystyczne dla ważności reguły wyjątku
są następujące:

1. H0 : SCR(t) = SRR(t) nie może być odrzucona na poziomie istotności
α = 0.05 (test log-rank),

2. H0 : SCR(t) = SER(t) musi być odrzucona na poziomie istotności α = 0.05,

3. H0 : SRR(t) = SER(t) musi być odrzucona na poziomie istotności α = 0.05,
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gdzie SCR(t), SRR(t) i SER(t) oznaczają funkcje przeżycia odpowiednio dla reguł
CR, RR i ER.

Dodatkowo wymaga się występowania przeciwnego wzorca przeżycia względem
reguły bazowej. Weryfikacja odbywa się poprzez porównanie median czasu przeży-
cia, statystyk log-rank lub indeksów zgodności Harrella. Wprowadza się warunek
kierunkowości efektu — ER ma reprezentować populację o trendzie przeżycia
przeciwnym do CR. Warunek ten sprawdzany jest na trzy równoważne sposoby,
z których spełnienie co najmniej jednego przy istotności statystycznej stanowi
wymóg:

• kryterium mediany — mediana(ER) istotnie różni się od mediana(CR)
z niepokrywającymi się w 95% przedziałami ufności; dla wyjątku „gorszego”
mediana(ER) < mediana(CR), a dla „lepszego” odwrotnie;

• kryterium log-rank — znak statystyki porównania CR z całym zbiorem oraz
ER z CR jest przeciwny przy p ď 0.05;

• kryterium indeksu zgodności Harrella — gdy cCR,all ă 0.5, wymaga się
cER,CR ą 0.5; gdy cCR,all ą 0.5, wymaga się cER,CR ă 0.5.

Ponadto wymagana jest minimalna wielkość efektu między ER a CR, rozu-
miana jako różnica wartości przyjętej miary (np. różnica median czasu przeżycia),
która musi przekraczać ustalony próg istotności. Przykładowo wymaga się, aby
bezwzględna różnica median | mediana(ER) ´ mediana(CR) | była nie mniejsza
niż ustalony próg. Dodatkowo egzekwowane są minimalne liczności grup (np. |CR|,
|RR|, |ER| ě µ), aby wyniki nie były zniekształcone przez bardzo małe grupy.
W przypadku spełnienia wielu kryteriów priorytet ma test log-rank, natomiast
kryteria mediany i indeksu zgodności Harrella pełnią rolę potwierdzenia kierunku
i wielkości efektu.

Walidacja statystyczna reguł wyjątków opiera się na teście log-rank, który
porównuje rozkłady czasu przeżycia między różnymi grupami. Algorytm sprawdza
trzy pary porównań statystycznych: między regułą bazową a regułą wyjątków (CR-
ER), między regułą referencyjną a regułą wyjątków (RR-ER) oraz między regułą
zdroworozsądkową a regułą referencyjną (CR-RR). Reguła wyjątków jest uznawana
za statystycznie istotną, gdy porównania CR-ER i RR-ER wykazują istotne różnice
(p ď 0.05), podczas gdy CR-RR nie wykazuje istotnych różnic (p ą 0.05). Takie
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podejście gwarantuje, że reguły wyjątków reprezentują rzeczywiście odmienne
wzorce przeżycia w stosunku do reguł bazowych i referencyjnych.

Algorytm sekwencyjnego wyszukiwania przeżyciowych reguł wyjątków Pro-
ponowany algorytm opiera się na strategii sekwencyjnego pokrywania z wyszukiwa-
niem wyjątków w trakcie procesu indukcji reguł. Podczas konstruowania (wzrostu)
reguły bazowej (CR) na każdym etapie sprawdzane jest, czy w jej kontekście można
wyodrębnić regułę referencyjną (RR) oraz odpowiadającą jej regułę wyjątku (ER).
Jeśli wyjątek zostanie potwierdzony, wzrost CR zostaje przerwany, a do zbioru wy-
nikowego dołączane są reguły RR i ER. W przeciwnym razie algorytm kontynuuje
wzrost CR.

Poszukiwanie wyjątku sprowadza się do identyfikacji sytuacji, w której krzywe
przeżycia dla CR i RR nie różnią się istotnie statystycznie, podczas gdy krzywa
przeżycia dla ER różni się istotnie statystycznie zarówno od CR, jak i od RR.
Podejście to odróżnia się od istniejących metod, w których najpierw generuje
się wiele reguł, a dopiero w następnej kolejności sprawdza, czy ich kombinacje
spełniają określone kryteria dla wyjątków.

Proponowana metoda ukierunkowuje wzrost reguły poprzez iteracyjne dodawanie
warunków maksymalizujących wartość statystyki log-rank. Po każdym rozszerzeniu
reguły sprawdzane jest, czy można dla niej znaleźć odpowiednią regułę referencyjną.
Algorytm rejestruje historię jakości dla kolejnych rozszerzeń reguły, a następnie
wybiera optymalną długość reguły poprzez przycięcie do warunku o najwyższej
jakości. Schemat całego procesu został przedstawiony w Algorytmie 4.

Indukcja warunków Procedura IndukujWarunek implementuje algorytm za-
chłanny, który w każdej iteracji wybiera warunek maksymalizujący jakość reguły.
Dla każdego kandydującego warunku c:

1. tworzona jest tymczasowa reguła r1 przez dodanie warunku c do reguły r,

2. obliczane jest pokrycie reguły r1,

3. estymowana jest funkcja przeżycia dla przykładów pokrytych przez r1 za
pomocą estymatora Kaplana-Meiera,

4. obliczana jest jakość reguły jako wartość statystyki log-rank między przy-
kładami pokrytymi a niepokrytymi,
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Algorytm 4 Wzrost reguły bazowej (CR)
1: procedure Wzrost(CR,D,U,maks_wzrost)
2: Wejście:
3: CR — bieżąca reguła bazowa
4: D(A, T, δ) — zbiór danych opisany atrybutami A, czasem obserwacji T

i statusem przeżycia δ
5: U — lista niepokrytych przykładów
6: maks_wzrost — maksymalna liczba warunków w regule
7: Wyjście: wartość logiczna określająca czy reguła została rozszerzona
8: q Ð H Ź historia jakości (wektor)
9: cont Ð true Ź flaga kontynuacji

10: while cont do
11: (w, q, cov) Ð IndukujWarunek(CR, D,U) Ź warunek, jakość,

pokrycie
12: if w ‰ None then
13: Dodaj w do CR Ź Rozszerz regułę o najlepszy warunek
14: Dodaj q do q Ź aktualizacja historii ocen jakości
15: ex Ð WyszukajWyjątki(CR, D) Ź flaga znalezienia wyjątku
16: if ex then
17: cont Ð false Ź Znaleziono wyjątek, przerwij wzrost
18: end if
19: else
20: cont Ð false Ź Nie znaleziono kandydującego warunku
21: end if
22: if liczba warunków w CR ě maks_wzrost then
23: cont Ð false Ź Osiągnięto maksymalną długość reguły
24: end if
25: end while
26: if q nie jest pusta then
27: inajl Ð ArgMax(q) Ź indeks maksymalnej jakości
28: Ogranicz CR do pierwszych inajl + 1 warunków
29: return true
30: else
31: return false
32: end if
33: end procedure
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5. sprawdzane jest kryterium minimalnego pokrycia: |PokrytePrzykłady(r1)| ě

µ

Spośród kandydujących wybierany jest warunek, który maksymalizuje jakość
reguły i jednocześnie spełnienia kryterium minimalnego pokrycia.

Wyszukiwanie wyjątków Procedura WyszukajWyjątki (Algorytm 5) wywo-
ływana jest po każdym rozszerzeniu CR i służy do weryfikacji, czy w aktualnym
kontekście istnieje para (RR, ER) spełniająca definicję wyjątku. Wejściem proce-
dury są bieżąca reguła CR, macierz cech i wektor danych przeżycia. W pierwszym
kroku identyfikowane są przykłady pokryte i niepokryte przez CR, przy czym
niepokryte przykłady stanowią przestrzeń poszukiwań dla reguły referencyjnej
RR.

W kolejnym kroku uruchamiana jest procedura WzrostRegulyReferencyj-
nej, która indukuje regułę referencyjną w oparciu o kryterium jakości specyficznym
dla analizy przeżycia. Po uzyskaniu kandydata RR konstruowany jest kandydat
wyjątku ER jako koniunkcja warunków z CR i RR. Następnie przeprowadzana jest
weryfikacja statystyczna z wykorzystaniem testu log-rank dla trzech par: CR-ER,
RR-ER oraz CR-RR. Wyjątek uznawany jest za statystycznie istotny, gdy różnice
CR-ER i RR-ER są istotne (p ď 0.05), natomiast różnica CR-RR nie jest istotna
(p ą 0.05). W przypadku spełnienia tych kryteriów proces wzrostu CR zostaje
przerwany, w przeciwnym razie wzrost CR jest kontynuowany.

Indukcja reguły referencyjnej Procedura IndukujRR implementuje zachłanną
strategię indukcji warunków dla reguły referencyjnej, której głównym celem jest
maksymalizacja p-wartości testu log-rank między CR a RR (im wyższa p-wartość,
tym mniejsza różnica statystyczna). Dla każdego kandydującego warunku algo-
rytm konstruuje tymczasową regułę RR, oblicza pokrycie reguły wyjątku ER
jako przecięcie pokryć CR i RR, a następnie przeprowadza testy log-rank dla
trzech par: CR-RR, CR-ER oraz RR-ER. Ocena kandydatów jest prowadzona
pod warunkiem spełnienia kryteriów minimalnych (minimalnego pokrycia µ oraz
minimalnej liczby niecenzurowanych zdarzeń ν w RR) przy poziomie istotności
α = 0.05. W przypadku równych p-wartości porównania CR-RR preferowane
są warunki prowadzące do większego pokrycia w RR, a następnie do krótszej
przesłanki (mniejszej liczby warunków).
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Algorytm 5 Wyszukiwanie wyjątków
1: procedure WyszukajWyjątki(CR,D)
2: Wejście:
3: CR — reguła bazowa
4: D(A, T, δ) — zbiór danych opisany atrybutami A, czasem obserwacji T

i statusem przeżycia δ
5: Wyjście: wartość logiczna określająca czy znaleziono statystycznie istotny

wyjątek
6: CCR Ð ti | CR pokrywa przykład i u Ź zbiór przykładów pokrytych

przez CR
7: CCR Ð ti | CR nie pokrywa przykładu i u Ź zbiór przykładów

niepokrytych przez CR
8: RR Ð WzrostRegulyReferencyjnej(RR,D, CCR, CCR)
9: if RR ‰ H then

10: ER Ð nowa reguła wyjątku
11: ER Ð CR ^ RR Ź koniunkcja przesłanek (warunków) CR i RR
12: CER Ð ti | ER pokrywa przykład i u Ź zbiór przykładów pokrytych

przez ER
13: CRR Ð ti | RR pokrywa przykład i u Ź zbiór przykładów pokrytych

przez RR
14: pCR,ER Ð LogRank(SCR(t), SER(t))
15: pRR,ER Ð LogRank(SRR(t), SER(t))
16: pCR,RR Ð LogRank(SCR(t), SRR(t))
17: if pCR,ER ď 0.05 and pRR,ER ď 0.05 and pCR,RR ą 0.05 then
18: return true Ź Znaleziono statystycznie istotny wyjątek
19: else
20: return false
21: end if
22: else
23: return false Ź Nie znaleziono reguły referencyjnej
24: end if
25: end procedure
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Warunek jest akceptowany jako najlepszy kandydat, gdy spełnia łącznie nastę-
pujące trzy kryteria:

(1) statystyczna istotność wyjątku (pCR,RR ą 0.05 ^ pCR,ER ď 0.05 ^ pRR,ER ď

0.05),

(2) minimalne pokrycie wyjątku (|ER_pokryte| ě µwyjtek),

(3) poprawa p-wartości CR-RR w stosunku do dotychczasowego najlepszego
wyniku.

Algorytm priorytetowo wybiera warunki prowadzące do jak najmniejszej różnicy
statystycznej między CR a RR, przy jednoczesnym zachowaniu istotnych różnic
między regułami wyjątku a obiema regułami bazowymi.

Procedura kończy działanie, gdy żaden z pozostałych kandydatów nie spełnia
wymaganych kryteriów, nie poprawia aktualnej najlepszej p-wartości CR-RR lub
gdy osiągnięto maksymalną długość reguły. Zwracany jest najlepszy znaleziony
warunek wraz z wartościami miar jakości, które następnie są wykorzystywane
w procedurze wzrostu reguły referencyjnej.

Weryfikacja kandydata na wyjątek W algorytmie wyszukiwania wyjątków
(Algorytm 5) weryfikacja statystyczna kandydata na regułę wyjątku opiera się na
trzech krokach:

(1) konstrukcja reguły wyjątku ER jako koniunkcji wszystkich warunków z reguły
bazowej CR i reguły referencyjnej RR,

(2) obliczenie pokryć dla każdej z trzech reguł na zbiorze danych,

(3) wykonanie dwóch testów log-rank porównujących rozkłady czasu przeżycia
między grupami: CR z ER oraz RR z ER.

Kandydat jest uznawany za statystycznie istotną regułę wyjątku, jeśli oba testy
wykazują istotne różnice na poziomie α = 0.05 (p ď 0.05). Po pozytywnej weryfika-
cji reguły RR i ER są przypisywane do reguły CR, tworząc trójkę (CR,RR,ER),
która następnie zostaje dodana do zbioru wynikowego. Procedura zwraca wartość
logiczną informującą o wyniku weryfikacji, co determinuje dalsze kroki algorytmu
wzrostu reguły bazowej.
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Algorytm 6 Indukcja reguły referencyjnej (RR)
1: procedure IndukujRR(RR,D, pnajl, C, CCR)
2: Wejście:
3: RR — bieżąca reguła referencyjna
4: D(A, T, δ) — zbiór danych opisany atrybutami A, czasem obserwacji T

i statusem przeżycia δ
5: pnajl — najlepsza p-wartość CR-RR
6: C — indeksy niepokryte przez żadną regułę
7: CCR — indeksy pokryte przez CR
8: Wyjście: najlepszy warunek, jakość, pokrycie, p-wartość
9: wnajl Ð H, qnajl Ð ´8

10: Cnajl Ð H, pnajl Ð pnajl

11: W 1 Ð PobierzMożliweWarunki(RR, D)
12: Odfiltruj kandydatów już obecnych w RR
13: for all warunek w w W 1 do
14: RR1 Ð RR.add(w) Ź Dodaj warunek do RR
15: CRR Ð pokrycie RR1

16: CER Ð CCR X CRR Ź Przecięcie CR i RR
17: if |CER| = 0 then
18: continue Ź Brak przecięcia, pomiń
19: end if
20: pCR,ER Ð LogRank(SCR, SER)
21: pRR,ER Ð LogRank(SRR, SER)
22: pCR,RR Ð LogRank(SCR, SRR)
23: sig Ð (pCR,RR ą 0.05 and pCR,ER ď 0.05 and pRR,ER ď 0.05)
24: covwyst Ð |CER| ě µwyjtek Ź minimalne pokrycie ER spełnione
25: p_lepsze_od_najl Ð pCR,RR ą pnajl Ź czy aktualne pCR,RR jest

większe niż dotychczasowe pnajl

26: if sig and covwyst and p_lepsze_od_najl then
27: wnajl Ð w, pnajl Ð pCR,RR

28: Aktualizuj qnajl i Cnajl

29: end if
30: end for
31: return wnajl, qnajl, Cnajl, pnajl

32: end procedure
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Metody porównywania wzorców przeżycia Niezależnie od testu log-rank, można
rozważyć trzy alternatywne metody porównywania wzorców przeżycia w celu
weryfikacji, czy reguła wyjątku wykazuje przeciwny wzorzec przeżycia względem
reguły bazowej.

Metoda mediany. Jeśli mediana czasu przeżycia w grupie CR jest nie większa niż
w całym zbiorze danych, to ER uznawana jest za istotną, gdy jej mediana
jest większa niż w CR. W przeciwnym razie (gdy mediana w CR jest większa
niż w całym zbiorze) ER uznawana jest za istotną, gdy jej mediana jest
mniejsza niż w CR.

Metoda log-rank. Wyznacza się statystyki dla porównań CR z całym zbiorem oraz
ER z CR. Warunek jest spełniony, gdy znaki tych statystyk są przeciwne.

Metoda indeksu zgodności Harrella. Oblicza się wartości dla porównań CR z całym
zbiorem oraz ER z CR. Jeśli dla porównania CR z całym zbiorem otrzymana
wartość jest mniejsza niż 0.5 (gorsze przeżycie), to ER uznaje się za istotną,
gdy dla porównania ER z CR otrzymana wartość jest większa niż 0.5 (lepsze
przeżycie). Zastosowanie indeksu zgodności weryfikuje kierunek efektu na
poziomie porządkowania par obserwacji, a nie tylko przesunięcie rozkładów:
wartość 0.5 odpowiada losowej zgodności, a wartości powyżej/poniżej 0.5
wskazują odpowiednio lepszą/gorszą zdolność dyskryminacyjną. Metoda
ta jest odporna na cenzorowanie i komplementarna względem median oraz
testu log-rank. W tym kontekście wykorzystuje się jedynie próg 0.5 do
potwierdzenia odwrócenia wzorca przeżycia.

5.4.3 Ilustracja działania metody

W poniższej sekcji przedstawiono przebieg indukcji reguł wyjątków w zbiorze
LEDLife. Zbiór obejmuje 167 obserwacji i zawiera dwie zmienne objaśniające:
DegreesC (temperatura) oraz Current (natężenie prądu). Opis skoncentrowano
na przebiegu generowania reguł, od wzrostu reguły bazowej (CR), przez wyzna-
czenie reguły referencyjnej (RR), po konstrukcję i weryfikację wyjątku (ER).
Przedstawiony wyjątek jest jedynym wyjątkiem zidentyfikowanym w tym zbiorze
danych.
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5.4 Algorytm indukcji przeżyciowych reguł wyjątków

Krok 1: Wzrost reguły bazowej (CR) W pierwszym etapie przeprowadzono
wzrost reguły bazowej, stanowiącej punkt odniesienia dla dalszych porównań.
Trójkę (CR, RR, ER) uzyskano w drugiej próbie wzrostu reguły CR. W tej pró-
bie w pierwszej iteracji specjalizacji dodano warunek DegreesC ě 102.00, który
wyodrębnia podzbiór obserwacji spełniających przesłankę reguły. Dla tej grupy
wyznaczono medianę przeżycia równą 6.09, przy pokryciu 90 ze 167 przykładów
i liczbie zdarzeń 89 (pozostałe obserwacje w tej grupie są cenzurowane). Reguła CR
pełni rolę wzorca odniesienia w porównaniach CR z RR i CR z ER. We wcześniejszej
oraz późniejszej próbie wzrostu CR nie wyznaczono RR. W konsekwencji nie wy-
znaczono również ER, gdyż w tych kontekstach nie zostało jednocześnie spełnione
kryterium minimalnego pokrycia wyjątku oraz kryteria istotności statystycznej.

Krok 2: Wyznaczenie reguły referencyjnej (RR) W drugiej próbie wzrostu
CR, w pierwszej iteracji specjalizacji RR, wybrano warunek referencyjny Current
ě 35.00. Został on wybrany, ponieważ uzyskano dla niego największą p-wartość
w teście log-rank dla porównania CR z RR (najmniejsza różnica między krzywymi
przeżycia CR i RR), przy jednoczesnym spełnieniu kryterium minimalnego pokrycia
wyjątku (liczba przykładów CR ^RR) oraz kryterium istotności dla porównań
CR z ER i RR z ER. W kolejnym kroku nie dodano dalszych warunków, gdyż
żaden kandydat nie poprawiał p-wartości w porównaniu CR z RR ani nie spełniał
równocześnie wymagań pokrycia i istotności. W konsekwencji zakończono wzrost
RR. Dla RR uzyskano medianę przeżycia równą 6.12, przy pokryciu 90 ze 167
przykładów i liczbie zdarzeń 89. Porównanie CR z RR testem log-rank dało p-
wartość równą 0.07 (powyżej progu istotności 0.05), co spełnia założenie o braku
istotnej różnicy między CR i RR i umożliwia konstrukcję wyjątku.

Krok 3: Konstrukcja i weryfikacja wyjątku (ER) Wyjątek zdefiniowano jako
koniunkcję CR ^ RR: DegreesC ě 102.00 ^ Current ě 35.00. Dla ER otrzymano
medianę przeżycia równą 5.45, przy pokryciu 60 ze 167 przykładów i liczbie zdarzeń
60. Testem log-rank porównano krzywe przeżycia w dwóch parach: dla CR z ER
uzyskano p-wartość w przybliżeniu równą 9.4 ¨ 10´5, a dla RR z ER p = 4.0 ¨ 10´6

(obie wartości poniżej progu istotności 0.05). Zatem warunki wyjątkowości zostały
spełnione: CR i RR nie różnią się istotnie, natomiast ER różni się istotnie od obu.
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Odpowiadająca trójka reguł została przedstawiona poniżej (w nawiasach po-
dano liczbę obserwacji spełniających przesłankę reguły k oraz liczebność zbioru
obserwacji n).

CR: jeśli (DegreesC ě 102.00)

to mediana przeżycia = 6.0865 (k = 90, n = 167)

RR: jeśli (Current ě 35.00)

to mediana przeżycia = 6.1193 (k = 90, n = 167)

ER: jeśli (DegreesC ě 102.00 ^ Current ě 35.00)

to mediana przeżycia = 5.4502 (k = 60, n = 167)

(5.6)

Rysunek 5.3: Krzywe KM dla zbioru LEDLife: reguły CR, RR oraz ER. Widoczny
jest brak różnic między CR i RR oraz istotnie gorsza krzywa ER.

Na rysunku 5.3 przedstawiono krzywe KM dla trzech grup (CR, RR i ER).
Krzywe CR i RR mają zbliżony przebieg, co potwierdza test log-rank (p « 0.07).
Dla ER obserwuje się natomiast niższe wartości funkcji przeżycia S oraz istotne
statystycznie różnice względem CR i RR. Szczegółowe metryki (pokrycie, liczba
zdarzeń, mediana) zestawiono w tabeli 5.1.

Podsumowując, przy jednoczesnym spełnieniu warunków CR i RR wyodrębnia
się grupa o istotnie gorszym przebiegu przeżycia (ER). Wynik ten wskazuje na

96



5.5 Interpretowalny zespół reguł przeżyciowych

Reguła pokrycie (k/n) zdarzenia mediana

CR 90/167 89 6.09
RR 90/167 89 6.12
ER 60/167 60 5.45

Tabela 5.1: Zestawienie wartości metryk dla trójki (CR, RR, ER): pokrycie k/n
(k — liczba obserwacji spełniających przesłankę reguły; n — liczba obserwacji
w zbiorze), zdarzenia (liczba niecenzurowanych obserwacji w grupie) oraz me-
diana (mediana czasu przeżycia w grupie).

interakcję wysokiej temperatury i wysokiego natężenia prądu, której nie obserwuje
się przy analizie każdego z warunków oddzielnie.

5.5 Interpretowalny zespół reguł przeżyciowych

Metoda interpretowalnego zespołu reguł przeżyciowych (ang. survival rules ensem-
ble) stanowi podejście do analizy przeżycia, które łączy interpretowalność modeli
opartych na regułach z dokładnością technik uczenia zespołowego. Metoda ta rozsze-
rza klasyczny paradygmat lasów losowych, zastępując drzewa decyzyjne modelami
reguł przeżyciowych, dostosowanymi do analizy danych cenzurowanych. W tej
sekcji najpierw zdefiniowano pojęcie zespołu reguł i sposób agregacji predykcji,
a następnie opisano architekturę metody dostosowaną do danych cenzurowanych
oraz procedurę budowy i ewaluacji zespołu.

5.5.1 Zespoły reguł

Zespół modeli (ang. ensemble) definiuje się jako zbiór estymatorów bazowych,
których predykcje są łączone według ustalonej reguły agregacji. Celem jest redukcja
wariancji lub obciążenia oraz zwiększenie stabilności względem pojedynczego
estymatora. Wyróżnia się m.in. zespoły równoległe (np. bagging, gdzie estymatory
trenuje się niezależnie) oraz zespoły sekwencyjne (np. boosting, gdzie estymatory
trenuje się kolejno, korygując błędy poprzedników).

W zespołach reguł estymatorami bazowymi są zbiory reguł (modele regułowe).
Wewnątrz estymatora bazowego predykcja wyznaczana jest przez agregację wkła-
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dów reguł, których przesłanki są spełnione dla obserwacji x (np. głosowanie więk-
szościowe, uśrednianie, suma ważona). Następnie, na poziomie zespołu, agreguje
się predykcje poszczególnych estymatorów bazowych. Taka konstrukcja zachowuje
interpretowalność zarówno na poziomie reguł, jak i na poziomie estymatorów
bazowych.

Formalnie, funkcję predykcji f̂(x) aproksymuje się za pomocą kombinacji linio-
wej:

f̂(x) = β0 +
M
ÿ

m=1

βmrm(x), (5.7)

gdzie β0 oznacza wyraz wolny, rm(x) — predykcję m-tego estymatora bazowego
(modelu regułowego) dla obserwacji x (w szczególnym przypadku konstrukcji typu
RuleFit może to być funkcja indykatorowa aktywacji pojedynczej reguły), βm —
wagę przypisaną m-temu estymatorowi bazowemu (uczoną np. metodą regresji
z regularyzacją lub ustalaną heurystycznie), a M — liczbę estymatorów bazowych
w zespole. W niniejszej sekcji symbolem rm(x) oznaczono funkcję bazową: predykcję
modelu regułowego lub, jak w RuleFit, indykator aktywacji pojedynczej reguły.

Taka reprezentacja stanowi podstawę metody RuleFit [125], która generuje
reguły poprzez ekstrakcję ścieżek z lasów losowych, a następnie optymalizuje
wagi βm za pomocą regularyzowanej regresji (L1 lub lasso). Model osiąga wysoką
precyzję predykcji zachowując interpretowalność — każda reguła rm opisuje lokalny
wzorzec w danych, a waga βm wskazuje jej znaczenie.

W analizie przeżycia, zespoły reguł dostosowuje się do specyficznych wymagań,
takich jak estymacja funkcji przeżycia Ŝ(t|x) lub modelowanie hazardu. Przykła-
dem jest metoda LR-Rules [126], która dla danej obserwacji estymuje funkcję
przeżycia poprzez uśrednianie (np. średnią nieważoną) krzywych Kaplana-Meiera
reguł ją pokrywających, co umożliwia modelowanie danych cenzurowanych z za-
chowaniem interpretowalności. Innym przykładem jest SURVFIT [127], który
wykorzystuje liniowy model reguł z funkcją straty dostosowaną do cenzurowania
oraz regularyzacją indukującą tzw. podwójną rzadkość: wybór niewielkiej liczby
reguł oraz niewielkiej liczby zmiennych występujących w regułach. Dzięki temu
metoda zachowuje interpretowalność i jest skalowalna obliczeniowo.

Podsumowując, przedstawione podejście do zespołów reguł opiera się na ich
matematycznej definicji jako zbioru funkcji indykatorowych, agregowanych w celu
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uzyskania predykcji. Wprowadzenie notacji, takiej jak rm(x) czy f̂(x), oraz wzorów,
takich jak liniowa kombinacja reguł czy estymacja przeżycia, umożliwia precyzyjne
opisanie ich konstrukcji i działania, stanowiąc podstawę teoretyczną dla dalszych
rozważań.

5.5.2 Opis metody

Podstawowe elementy metody to indukcja przeżyciowych reguł decyzyjnych w es-
tymatorach bazowych, losowe próbkowanie danych i cech ograniczające korelację
między estymatorami oraz agregacja predykcji estymatorów bazowych dostosowana
do analizy przeżycia. Każdy estymator indukuje zbiór reguł w postaci koniunkcji
predykatów na atrybutach, z przypisaną estymowaną funkcją przeżycia dla pokry-
wanego podzbioru danych. Agregacja polega na wyznaczeniu wspólnej dziedziny
czasowej obejmującej wszystkie punkty predykcji, interpolacji każdej krzywej prze-
życia do tej dziedziny oraz obliczeniu średniej arytmetycznej wartości w każdym
punkcie. Wynikową krzywą koryguje się tak, aby była nierosnąca.

Algorytm przebiega w trzech fazach:

(1) próbkowanie bootstrap i losowy wybór podzbioru cech (ang. random subspace,
feature subsampling) (wejście: X, y; wyjście: zbiory t(Xi, yi,Fi)u

n
i=1),

(2) indukcja reguł i trening (wejście: (Xi, yi); wyjście: estymatory bazowe Mi

oraz zbiory reguł Ri z estymatorami Ŝi(t)),

(3) agregacja specyficzna dla przeżycia (wejście: tMi,Riu
n
i=1; wyjście: zespołowe

krzywe przeżycia).

Konstrukcja faz 1-3 ogranicza wariancję predykcji i zachowuje interpretowalność
na poziomie reguł oraz całego zespołu.

Na potrzeby implementacji wyróżnia się dwa zbiory parametrów: zespołowe
(n, θ, α) oraz indukcji reguł (σ, γ, π, ι, µ). Na poziomie zespołu: n to liczba estyma-
torów (domyślnie 100), θ kontroluje maksymalną liczbę cech w zbiorze treningowym
dla pojedynczego estymatora bazowego (domyślnie t

a

|A|u, gdzie |A|, to liczba
atrybutów w zbiorze; alternatywnie strategie typu log2 |A| lub udział w (0, 1]), a α
wyznacza rozmiar próbki bootstrap (domyślnie 1.0). Na poziomie indukcji reguł:
σ określa minimalne wsparcie, γ ogranicza długość przesłanki, π włącza poinduk-
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cyjne przycinanie, ι definiuje sposób traktowania braków danych (pomijanie lub
interpolacja), a µ ogranicza maksymalny odsetek przykładów niepokrytych.

Faza 1: Próbkowanie bootstrap i losowy wybór podzbioru cech Dla każdego
estymatora bazowego (tj. pojedynczego modelu reguł przeżyciowych trenowanego
niezależnie na własnej próbce bootstrap i podzbiorze cech) próbkowanie bootstrap
oraz losowy wybór podzbioru cech (ang. random subspace, feature subsampling)
zapewniają różnorodność modeli, generując różne podzbiory danych treningowych,
a także redukują korelację między modelami dzięki losowej selekcji cech.

Implementacja wykorzystuje agregację bootstrapową (ang. bagging, bootstrap
aggregating), w której każdy estymator trenowany jest na próbce bootstrap pocho-
dzącej z oryginalnego zbioru danych. Rozmiar tej próbki kontrolowany jest przez
parametr α, który można ustawić jako ułamek całkowitej liczby obserwacji lub
jako konkretną wartość liczbowa.

Dodatkowym elementem różnicującym estymatory jest losowy wybór cech
(ang. feature selection) dla każdego z nich. Implementacja obsługuje różne stra-
tegie selekcji cech, w tym

a

|A| (pierwiastek kwadratowy z liczby cech), log2 |A|

(logarytm binarny) oraz udział całkowitej liczby cech. Takie podejście dodat-
kowo zwiększa różnorodność zespołu i zmniejsza ryzyko przeuczenia, ograniczając
korelację między estymatorami.

Faza 2: Indukcja reguł i trening Każdy estymator bazowy generuje reguły
przeżycia. Proces ich wzrostu przebiega zachłannie (separate-and-conquer) —
w każdej iteracji dodawany jest warunek maksymalizujący statystykę log-rank
między przykładami pokrytymi a niepokrytymi. Jednocześnie egzekwowane są
ograniczenia minimalnego wsparcia σ oraz maksymalnej długości reguły γ. Po za-
kończeniu wzrostu stosowane jest przycinanie π, które usuwa lub łagodzi warunki,
o ile nie pogarsza jakości ocenianej testem log-rank. Estymator bazowy gene-
ruje funkcję przeżycia poprzez kombinację reguł z wykorzystaniem estymatorów
Kaplana-Meiera, co umożliwia późniejszą agregację na poziomie zespołu.

Estymatory bazowe trenowane są równolegle, każdy niezależnie na odrębnej
próbce bootstrap. W wyniku tego procesu każdy z nich generuje zbiór reguł
decyzyjnych, które następnie konwertowane są do formatu umożliwiającego inter-
pretację i analizę. Dodatkowo obliczane są metryki predykcyjne dla poszczególnych
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estymatorów, co pozwala monitorować ich jakość. Faza ta odpowiada etapowi
trenowania estymatorów w Algorytmie 7.

Faza 3: Agregacja predykcji zespołu Predykcja zespołu wymaga połączenia
wyników wszystkich estymatorów bazowych poprzez uśrednianie funkcji przeżycia,
zgodnie z Algorytmem 8. Każdy estymator może generować funkcje przeżycia zde-
finiowane w różnych punktach czasowych. Agregacja rozpoczyna się od konstrukcji
wspólnej dziedziny czasowej poprzez zebranie wszystkich unikalnych punktów
czasowych ze wszystkich estymatorów i uporządkowania ich w porządku rosnącym.
Następnie każda funkcja przeżycia jest interpolowana na wspólną dziedzinę za
pomocą funkcji schodkowej z obsługą wartości brzegowych. Na końcu obliczana jest
średnia arytmetyczna wszystkich interpolowanych funkcji. Jeśli funkcja przeżycia
nie spada poniżej poziomu 0.5, mediana czasu przeżycia nie może być wyznaczona.
Implementacja używa wówczas ostatniego dostępnego czasu z krzywej przeżycia.
Natomiast gdy estymator nie jest w stanie wygenerować predykcji dla określo-
nej próbki (np. z powodu braku pokrycia przez reguły), algorytm wykorzystuje
predykcje z pozostałych estymatorów, co zwiększa stabilność zespołu.

Model raportuje szereg artefaktów wspierających interpretację i walidację eks-
percką. Obejmują one: ranking atrybutów oparty na częstości ich występowania
w regułach ważonej pokryciem i wkładem do predykcji, ranking reguł według
pokrycia i wpływu na krzywą zespołu, rozkład długości reguł i udział niepokry-
tych przykładów, wizualizacje krzywych — średniej zespołu oraz zbioru krzywych
składowych po interpolacji. Interpretowalność metody wynika z jej fundamentu
opartego na regułach — każda reguła decyzyjna w zespole reprezentuje warunek
logiczny w postaci „jeśli w1^w2^¨ ¨ ¨^wn to Ŝ(t)”, który jest zrozumiały i możliwy
do zweryfikowania przez ekspertów dziedzinowych.

Skuteczność metody ocenia się miarą specyficzną dla analizy przeżycia — zin-
tegrowanym wskaźnikiem Briera liczonym na horyzoncie [0, τ ], gdzie τ oznacza
maksymalny czas obserwacji. Ewaluację prowadzi się w schemacie k-krotnej wali-
dacji krzyżowej, a porównania wykonuje względem klasycznych metod (np. Cox,
estymator Kaplana-Meiera), przy zachowaniu tego samego horyzontu czasowego
i identycznego schematu walidacji.
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Algorytm 7 Trenowanie przeżyciowego zespołu reguł
1: procedure TrenujZespół(D, M)
2: Wejście:
3: D(A, T, δ) — zbiór danych opisany atrybutami A, czasem obserwacji T

i statusem przeżycia δ
4: M — liczba estymatorów
5: Wyjście: zespół estymatorów E
6: E Ð H

7: for i = 1 to M do
8: (Di) Ð PróbkaBootstrap(D)

9: Mi Ð RegułyPrzeżycia()
10: Mi.trenuj(Di)

11: Dodaj Mi do E (jeśli trenowanie się powiodło)
12: end for
13: return E
14: end procedure
15: procedure Predykcja(x)
16: Wejście:
17: x — próbka
18: Wyjście: agregowana funkcja przeżycia Ŝ(t)
19: Zbierz predykcje: tS1(t), S2(t), ..., Sk(t)u Ð tMi.predykuj(x)u
20: Ŝ(t) Ð AgregujFunkcjePrzeżycia(tSi(t)u)

21: return Ŝ(t)

22: end procedure
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Algorytm 8 Agregacja funkcji przeżycia
1: procedure AgregujFunkcjePrzeżycia(tSi(t)u

k
i=1)

2: Wejście: funkcje przeżycia tS1(t), S2(t), . . . , Sk(t)u

3: Wyjście: agregowana funkcja przeżycia Ŝ(t)
4: Utwórz wspólną dziedzinę czasową ze wszystkich funkcji
5: T Ð sortuj(

Ťk
i=1 czasy(Si))

6: for każda funkcja Si(t) do
7: Interpoluj Si(t) na punkty T (funkcja schodkowa)
8: end for
9: Ŝ(t) Ð średnia(tS1(t), S2(t), . . . , Sk(t)u) na T

10: return Ŝ(t)

11: end procedure

5.5.3 Ilustracja działania metody

W poniższej sekcji przedstawiono zastosowanie interpretowalnego zespołu reguł
przeżyciowych na zbiorze danych NiCdBattery, dotyczącym żywotności akumu-
latorów niklowo-kadmowych. Zbiór obejmuje 87 obserwacji (78 treningowych,
9 testowych), opisanych za pomocą ośmiu cech numerycznych: czas ładowania
(charge_time), czas rozładowania (discharge_time), głębokość rozładowania (di-
scharge_depth), czas wstępnego ładowania (precharge_time), temperatura (de-
grees_c), stężenie KOH (koh_concentration), objętość KOH (koh_volume) oraz
poziom doładowania (recharge_level). Odsetek zdarzeń w zbiorze treningowym
wynosi 92.3%, a w testowym 100%. Odpowiadające mediany czasu przeżycia to
odpowiednio 3042 i 1810 cykli.

Analizę przeprowadzono dla próbki testowej o indeksie 0, charakteryzującej się
następującymi wartościami atrybutów: discharge_depth = 80.0, discharge_time
= 1.0, charge_time = 2.0, recharge_level = 140.0, koh_concentration = 34.0,
koh_volume = 20.5, precharge_time = 3.0 oraz degrees_c = 50.0. Dla tej próbki
zaobserwowano zdarzenie (awarię akumulatora) po 964 cyklach pracy.

Zespół utworzono ze 100 estymatorów bazowych, wykorzystując strategię prób-
kowania bootstrap oraz losowy wybór podzbioru cech. Parametry indukcji reguł
ustawiono następująco: minimalne wsparcie σ = 5.0, włączone przycinanie oraz
ignorowanie braków danych.

103



5 Analiza niezawodności i przeżycia za pomocą reguł logicznych

Faza 1: Próbkowanie bootstrap i losowy wybór podzbioru cech Dla każdego
ze 100 estymatorów bazowych przeprowadzono niezależne próbkowanie bootstrap ze
zbioru treningowego liczącego 78 obserwacji oraz losowy wybór 4 cech spośród 8 do-
stępnych. Przykładowo, estymator 1 otrzymał cechy: charge_time, discharge_time,
koh_concentration, degrees_c, podczas gdy estymator 2: charge_time, degrees_c,
koh_volume, recharge_level. Każda próbka bootstrap zawierała 78 obserwacji z po-
wtórzeniami. Strategia ta zapewniła różnorodność estymatorów przy jednoczesnym
ograniczeniu korelacji między nimi.

Faza 2: Indukcja reguł i trening Każdy estymator bazowy indukował reguły
przeżyciowe za pomocą algorytmu separate-and-conquer. Proces wzrostu reguł
przebiegał zachłannie — w każdej iteracji dodawano warunek maksymalizujący
statystykę log-rank między przykładami pokrytymi a niepokrytymi przez regułę.
Po zakończeniu procesu wzrostu stosowano przycinanie, usuwając warunki, których
eliminacja nie pogarszała jakości reguły.

Trenowanie przeprowadzono równolegle dla wszystkich 100 estymatorów bazo-
wych. Wszystkie estymatory zostały pomyślnie wytrenowane, generując łącznie
221 unikalnych reguł. Średnia liczba reguł na estymator wyniosła 2.21, przy czym
rozkład wahał się od 1 do 5 reguł. Każdą regułę powiązano z krzywą przeżycia
Kaplana-Meiera, estymowaną na podstawie pokrywanych przez nią przykładów.

Faza 3: Agregacja predykcji zespołu Predykcja zespołu dla próbki testowej
wymagała agregacji funkcji przeżycia ze wszystkich estymatorów bazowych. Proces
rozpoczęto od konstrukcji wspólnej dziedziny czasowej, zbierając wszystkie unikalne
punkty czasowe ze wszystkich funkcji przeżycia, co dało 73 punkty w zakresie
od 12 do 20605 cykli. Następnie każdą funkcję interpolowano na tę dziedzinę za
pomocą funkcji schodkowej z obsługą wartości brzegowych.

Końcową krzywą przeżycia uzyskano poprzez obliczenie średniej arytmetycznej
wszystkich interpolowanych funkcji w każdym punkcie czasowym. Na Rysunku 5.4
zaprezentowano zarówno indywidualne funkcje przeżycia ze wszystkich 100 esty-
matorów bazowych, jak i ich zagregowaną funkcję zespołu.
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Rysunek 5.4: Funkcje przeżycia dla przykładu ze zbioru NiCdBattery wyge-
nerowane przez zespół 100 zbiorów reguł przeżyciowych. Wykres przedstawia
indywidualne funkcje przeżycia ze wszystkich estymatorów bazowych (oznaczone
kolorem szarym) oraz model zespołowy (oznaczony kolorem niebieskim). Różno-
rodność krzywych indywidualnych ilustruje wariancję predykcji poszczególnych
estymatorów, podczas gdy model zespołowy stanowi ich uśrednioną predykcję.
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6 Eksperymenty i przypadki użycia

Niniejszy rozdział przedstawia empiryczną walidację zaproponowanych metod.
Eksperymenty koncentrują się na weryfikacji skuteczności podejść zastosowanych
do danych medycznych i przemysłowych, ukazując użyteczność interpretowalnych
algorytmów indukcji reguł w analizie danych cenzurowanych.

W eksperymentach oceniono cztery opracowane algorytmy: pokryciowy algorytm
indukcji przeżyciowych reguł akcji, algorytm rekomendacji przeżyciowych reguł
akcji, algorytm indukcji przeżyciowych reguł wyjątków oraz interpretowalny zespół
reguł przeżyciowych. Zostały one przetestowane na zróżnicowanych zbiorach da-
nych, odzwierciedlających typową dla analizy przeżycia różnorodność zastosowań

— od danych przemysłowych związanych z funkcjonowaniem maszyn w predyk-
cyjnym utrzymaniu ruchu, po zbiory medyczne pochodzące z badań klinicznych
i epidemiologicznych. Skuteczność oceniono na podstawie kryteriów powszechnie
stosowanych w analizie przeżycia, takich jak test log-rank oraz wskaźnik Briera.

Treść rozdziału obejmuje metodykę testowania, kryteria oceny algorytmów oraz
charakterystykę wykorzystanych zbiorów danych. Następnie przedstawiono szcze-
gółowe analizy eksperymentów dla każdego z opracowanych algorytmów. Poprzez
porównanie z metodami referencyjnymi oraz analizę przypadków użycia, rozdział
prezentuje wyniki badań i ilustruje zastosowanie interpretowalnych metod analizy
przeżycia w zadaniach wymagających transparentności procesów decyzyjnych.

6.1 Kryteria oceny

Ocena skuteczności algorytmów w analizie przeżycia wymaga zastosowania kry-
teriów uwzględniających specyfikę danych cenzurowanych. W eksperymentach
wykorzystano zestaw uzupełniających się metryk, które pozwalają zarówno na
ocenę dokładności prognozowania funkcji przeżycia, jak i na analizę jakości odkry-
wanej wiedzy w postaci reguł.
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W badaniach wykorzystano wskaźnik Briera do oceny metod generujących
bezpośrednie predykcje, takich jak algorytm rekomendacji przeżyciowych reguł
akcji oraz interpretowalny zespół reguł przeżyciowych. Dla metod eksploracyj-
nych, którymi są pokryciowy algorytm indukcji przeżyciowych reguł akcji oraz
algorytm indukcji przeżyciowych reguł wyjątków, zastosowano statystykę log-rank
oraz metryki opisujące strukturę i jakość wygenerowanych reguł. Dodatkowo, dla
wszystkich typów reguł przeprowadzono jakościową weryfikację działania algo-
rytmu w oparciu o wizualizację krzywych przeżycia, przy czym ocena końcowa
opiera się na metrykach ilościowych.

6.1.1 Wskaźnik Briera

Wskaźnik Briera [128] stanowi jedną z miar oceny dokładności modeli prognostycz-
nych w analizie przeżycia. Jest rozszerzeniem błędu średniokwadratowego na dane
cenzurowane i umożliwia ocenę predykcji ryzyka w obecności niepełnych obserwacji.
Przyjmuje wartości z przedziału [0, 1], gdzie 0 oznacza perfekcyjną predykcję, a 1
najgorszą możliwą jakość predykcji. Wskaźnik Briera ocenia kalibrację modelu
(ang. calibration), czyli zgodność między predykowanymi prawdopodobieństwami
a rzeczywistymi częstotliwościami zdarzeń. Znajduje zastosowanie głównie w ocenie
metod generujących bezpośrednie predykcje funkcji przeżycia. Dla i-tej obserwacji
w chwili t obliczany jest zgodnie ze wzorem:

BSi(t) = (Si(t) ´ I(Ti ą t))2 (6.1)

gdzie Si(t) oznacza predykowane prawdopodobieństwo przeżycia dla i-tej obserwa-
cji w chwili t, a I(Ti ą t) to rzeczywisty status przeżycia (1, jeśli dla obserwacji
nie zanotowano zdarzenia do czasu t, 0 w przeciwnym przypadku).

W przypadku danych z obserwacjami cenzurowanymi, Graf i in. [129] zapropo-
nowali modyfikację wskaźnika Briera, która uwzględnia obecność danych cenzuro-
wanych poprzez wprowadzenie wagi odwrotnie proporcjonalnej do prawdopodo-
bieństwa nieocenzurowania:

BSc
i(t) =

(Si(t) ´ I(Ti ą t))2

Ĝ(Ti)
(6.2)

gdzie Ĝ(Ti) to estymator Kaplana-Meiera funkcji przeżycia dla rozkładu cen-
zurowania, obliczany na zbiorze treningowym z wykorzystaniem odwróconego
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wskaźnika zdarzenia, tj. przyjmując 1 ´ δi jako wskaźnik cenzurowania, gdzie δi
oznacza standardowy wskaźnik zdarzenia (δi = 1 dla obserwacji z zaobserwowanym
zdarzeniem, δi = 0 dla obserwacji cenzurowanych).

Definiuje się również całkowy wskaźnik Briera (ang. Integrated Brier Score,
IBS), który stanowi uogólnienie wskaźnika Briera na cały przedział czasowy i jest
obliczany jako średnia ważona wskaźników Briera dla wszystkich czasów obserwacji:

IBS =
1

n ¨ |T |

n
ÿ

i=1

ÿ

tPT

BSc
i(t) (6.3)

gdzie n oznacza liczbę obserwacji, T to zbiór wszystkich unikalnych czasów obser-
wacji, a |T | oznacza liczbę elementów tego zbioru. Wartość IBS równa 0 oznacza
perfekcyjny model, natomiast wartość 0.25 odpowiada modelowi losowemu, który
zawsze zwraca prawdopodobieństwo 0.5. Model uznaje się za użyteczny, gdy jego
wartość IBS jest niższa od 0.25.

Ograniczeniem wskaźnika Briera jest fakt, że może być stosowany wyłącznie do
modeli estymujących funkcję przeżycia. Nie nadaje się więc do oceny metod, które
nie generują bezpośrednich estymatów prawdopodobieństwa przeżycia, takich jak
maszyny wektorów nośnych dla analizy przeżycia (ang. Survival Support Vector
Machines) [129].

6.1.2 Kryteria oceny jakości reguł

Ocena modeli eksploracyjnych, takich jak pokryciowy algorytm indukcji przeżycio-
wych reguł akcji oraz algorytm indukcji przeżyciowych reguł wyjątków, wymaga
użycia kryteriów dostosowanych do faktu, że wynikiem są zbiory reguł, a nie bez-
pośrednie predykcje. Z tego względu stosuje się miary odnoszące się do struktury,
złożoności i pokrycia reguł, zamiast klasycznych metryk predykcyjnych opartych
na estymatach funkcji przeżycia. W porównaniu ze standardowymi metrykami
analizy przeżycia, metody eksploracyjne wymagają kryteriów uwzględniających
zarówno jakość odkrywanej wiedzy, jak i interpretowalność generowanych reguł.

Złożoność i rozmiar zbioru reguł Podstawowym kryterium oceny modelu
regułowego jest jego wielkość, wyrażona jako liczba reguł wchodzących w jego
skład — ozn. |R|, gdzie R to zbiór wygenerowanych reguł. Mniejsza liczba reguł
jest pożądana, gdyż zwiększa interpretowalność modelu.
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6 Eksperymenty i przypadki użycia

Dodatkowym kryterium, mierzącym złożoność generowanych reguł, jest średnia
długość reguł w zbiorze reguł, rozumiana jako średnia liczba warunków elementar-
nych w przesłankach reguł:

w =
1

|R|

ÿ

rPR
|r|, (6.4)

gdzie |r| oznacza liczbę warunków elementarnych w przesłance reguły r (por.
Rozdział 5). Krótsze reguły są na ogół preferowane, ponieważ są bardziej zrozumiałe
i mniej podatne na przeuczenie.

Średnie pokrycie zbioru treningowego przez reguły stanowi kolejne kryterium
oceny:

C =
1

|R|

ÿ

rPR

|Xr|

n
, (6.5)

gdzie Xr oznacza zbiór obserwacji pokrywanych przez regułę r, a n to liczba obser-
wacji w zbiorze treningowym. Wskaźnik C określa, jaką część zbioru treningowego
pokrywa średnio każda reguła. Wysokie wartości świadczą o dużym uogólnieniu
reguł, natomiast wartości bardzo bliskie 1 mogą wskazywać na nadmierną ogólność.

Struktura akcji W ocenie reguł akcji wykorzystuje się również miary opisujące
strukturę akcji. Stosunek liczby akcji do liczby warunków (|A|/|W |) określa relację
częstości akcji do liczby elementarnych warunków w regule. Udział akcji dowolnych
(|Ad|/|A|) wskazuje, jaki odsetek wszystkich akcji stanowią akcje dowolne, tj.
niewyznaczające konkretnego kierunku zmiany wartości atrybutu. Średnia liczba
warunków i akcji na regułę (w i a) oraz ich zakresy (minimum mw, maksimum Mw

dla warunków; minimum ma, maksimum Ma dla akcji) służą do oceny złożoności
reguł. Niższe wartości w i a oznaczają mniejszą złożoność, natomiast skrajnie
wysokie Mw lub Ma mogą wskazywać na obecność pojedynczych nadmiernie
złożonych reguł.

W zestawieniach tabelarycznych stosowane są następujące oznaczenia: |R| —
liczba reguł w zbiorze R, |W | — całkowita liczba warunków w zbiorze reguł,
|A| — całkowita liczba akcji, |Ad| — liczba akcji dowolnych. Średnia liczba
akcji dowolnych na regułę oznaczana jest jako ad. Pokrycie części źródłowej
i docelowej opisują wskaźniki |XrZ | i |XrD |, definiowane jako średnie (po regułach)
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odsetki obserwacji spełniających odpowiednio przesłankę oraz część docelową
reguły względem liczebności zbioru.

Istotność statystyczna Kolejnym kryterium oceny jakości reguł jest odsetek
reguł istotnych statystycznie, wyznaczany na podstawie testu log-rank. W przy-
padku reguł akcji test porównuje krzywe przeżycia części źródłowej i docelowej
danej reguły, natomiast dla reguł wyjątków — krzywą przeżycia obserwacji pokry-
wanych przez regułę z krzywą dla pozostałych obserwacji. Test log-rank polega
na porównaniu obserwowanych i oczekiwanych liczebności zdarzeń w grupach
definiowanych przez regułę. Statystyka testowa ma rozkład chi-kwadrat z jednym
stopniem swobody. Procent reguł istotnych na poziomie α = 0.05 oblicza się
według wzoru:

%istotnych =
|tr P R : p ă αu|

|R|
ˆ 100% (6.6)

Wyższe wartości tego wskaźnika oznaczają większy udziale reguł, dla których test
log-rank wykazuje istotne statystycznie różnice między porównywanymi krzywymi
przeżycia.

Na tej podstawie raportowane są wskaźniki P0.05 i P0.01, czyli odpowiednio
procent reguł w zbiorze spełniających warunek istotności p ă 0.05 lub p ă 0.01.
Uogólniając, Pα oznacza odsetek reguł z wartością p ă α.

Metryki dla algorytmu rekomendacji W ocenie algorytmu rekomendacji wyko-
rzystano dodatkowo wskaźnik spójności Sα, definiowany jako odsetek przykładów
testowych, dla których różnica między krzywymi przeżycia przed i po zastoso-
waniu rekomendowanych zmian jest istotna statystycznie na poziomie α (test
log-rank). Metryka MAE (ang. mean absolute error) mierzy średni bezwzględny
błąd między estymacją czasu przeżycia uzyskaną przez algorytm rekomendacji
a estymacją niezależnego modelu walidacyjnego, gdzie niższe wartości wskazują
na większą zgodność. Pokrycie, definiowane jako odsetek przykładów testowych,
dla których wygenerowano co najmniej jedną rekomendację, informuje, dla jakiej
części przypadków algorytm zwraca rekomendację. Wysokie pokrycie oznacza, że
rekomendacje są generowane dla większości przypadków, z kolei niskie pokrycie
oznacza, że rekomendacja pojawia się tylko dla niewielkiej ich części. W tej części
wyników symbol a odnosi się do średniej liczby akcji na rekomendację (a nie
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na regułę), natomiast wskaźnik q oznacza średni odsetek atrybutów poddanych
modyfikacji w pojedynczej rekomendacji względem liczby dostępnych atrybutów.

Kierunek wpływu i mediana czasu przeżycia W przypadku reguł akcji dodat-
kowym kryterium oceny jest liczba reguł polepszających (|R+|) i pogarszających
(|R´|), definiowanych jako reguły, dla których krzywa przeżycia części docelowej
znajduje się odpowiednio powyżej lub poniżej krzywej części źródłowej. Informacja
ta pozwala ocenić kierunek wpływu generowanych akcji na funkcję przeżycia.
Przewaga |R+| nad |R´| wskazuje na dominację akcji poprawiających przeżycie.
Relacja ta zależy od ustawienia parametru τ , który określa preferowany typ reguł
(„lepsza”, „gorsza” lub „dowolna”).

W ocenie reguł wykorzystywana jest również mediana czasu przeżycia. Stosowane
są dwie uzupełniające się definicje. Pierwsza określa medianę jako czas t, dla
którego funkcja przeżycia S przyjmuje wartość 0.5, o ile istnieje czas t spełniający
S(t) = 0.5. W przeciwnym razie mediana pozostaje niezdefiniowana. Druga,
stosowana dla estymatora Kaplana-Meiera, definiuje medianę jako najmniejszy
czas t, dla którego ŜKM(t) ď 0.5, co uwzględnia skokowy charakter tego estymatora.
Obie definicje dotyczą danych cenzurowanych, przy czym druga precyzuje sposób
wyznaczania mediany na podstawie empirycznej krzywej Kaplana-Meiera. Mediana
czasu przeżycia pełni funkcję pomocniczą w ocenie, pozwalając na porównanie
charakterystyki przeżycia między różnymi grupami obserwacji. Wyższa mediana
dla części docelowej względem źródłowej wskazuje na wyższe prawdopodobieństwo
przeżycia w grupie docelowej.

Wizualizacja krzywych przeżycia stanowi dodatkowe narzędzie oceny, szczegól-
nie przydatne w przypadku reguł akcji. Porównanie krzywych przeżycia części
źródłowej i docelowej pozwala na intuicyjną ocenę skuteczności generowanych akcji.
Choć nie jest to formalne kryterium, wizualizacja odgrywa ważną rolę w weryfikacji
działania algorytmów oraz jakościowej analizie metod, ułatwiając identyfikację
potencjalnych problemów w generowaniu reguł.

6.2 Zbiory danych

W badaniach eksperymentalnych wykorzystano dwie kategorie zbiorów danych
dotyczących przeżycia. Pierwszą kategorię stanowią zbiory przemysłowe, związane
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z funkcjonowaniem maszyn i urządzeń, drugą natomiast — zbiory medyczne
pochodzące z badań klinicznych i epidemiologicznych.

nazwa zbioru |A| |An| |Ak| n cenz (%)
AdhesiveBondB [29] 2 2 0 104 5.8
Aircraft 1 8 5 3 3135 99.3
KevlarVessel [29] 2 2 0 108 10.2
LaminatePanel [29] 1 1 0 125 8.0
LEDLife [29] 2 2 0 167 9.4
Maintenance [130] 5 3 2 1000 60.3
NewSpring [29] 3 2 1 108 32.4
NiCdBattery [29] 8 8 0 87 6.9
PM 2 9 9 0 1274 91.7
Tantalum [29] 2 2 0 2204 98.2
ZelenCap [29] 2 2 0 64 50.0

Tabela 6.1: Charakterystyka zbiorów przemysłowych wykorzystanych w bada-
niach eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwę zbioru,
liczbę atrybutów (|A|), liczbę atrybutów numerycznych (|An|), liczbę atrybutów
kategorycznych (|Ak|), liczbę obserwacji (n), udział obserwacji cenzurowanych
(cenz, w %). We wszystkich zbiorach z tej grupy odsetek wartości brakujących
wynosi 0%.

W badaniach wykorzystano 11 zbiorów danych dotyczących niezawodności ma-
szyn i urządzeń, których charakterystykę przedstawiono w Tabeli 6.1. Analizowane
zbiory są znacząco zróżnicowane pod względem liczby obserwacji, liczby atrybutów
warunkowych oraz proporcji obserwacji cenzurowanych, przy czym w żadnym
z nich nie występują wartości brakujące. Liczba obserwacji waha się od 64 do 3135,
liczba atrybutów od 1 do 9, a udział obserwacji cenzurowanych wynosi od 5.8% do
99.3%. Niektóre zmienne, takie jak identyfikator maszyny, nie mają wartości pro-
gnostycznej, dlatego zostały wykluczone z analizy i nie są uwzględnione w Tabeli
6.1.

Zbiory przemysłowe wybrane do analizy pochodzą z trzech głównych kategorii
źródeł. Najliczniejszą grupę stanowią dane pochodzące z publikacji [29], obej-
mujące osiem zbiorów: AdhesiveBondB, KevlarVessel, LaminatePanel, LEDLife,
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nazwa zbioru temat
AdhesiveBondB przyspieszone testy degradacji spoin klejowych
Aircraft symulacje IoT urządzeń wirujących
KevlarVessel próby creep-rupture naczyń Kevlar/epoksyd
LaminatePanel testy wytrzymałości paneli laminowanych
LEDLife testy żywotności diod LED
Maintenance awarie maszyn na podstawie sensorów IoT
NewSpring testy wytrzymałości sprężyn
NiCdBattery testy żywotności akumulatorów NiCd
PM predykcja awarii z danych sensorów
Tantalum testy żywotności kondensatorów tantalowych
ZelenCap testy żywotności kondensatorów ceramicznych

Tabela 6.2: Tematyka zbiorów przemysłowych wykorzystanych w badaniach
eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwę zbioru oraz
tematykę zbioru.

NewSpring, NiCdBattery, Tantalum oraz ZelenCap. Zbiory te reprezentują kla-
syczne przypadki analizy niezawodności w środowisku przemysłowym i dotyczą
zróżnicowanych materiałów i komponentów — od klejów strukturalnych i kompo-
zytów kevlarowych, przez półprzewodniki i baterie, po komponenty metalurgiczne.

Drugą kategorię tworzą zbiory pochodzące z platform udostępniania danych.
Zbiór Aircraft1 został udostępniony na platformie Kaggle i stanowi przykład
otwartych danych przemysłowych związanych z predykcyjnym utrzymania ruchu
komponentów lotniczych. Charakteryzuje się on złożoną strukturą telemetryczną,
obejmującą pomiary napięcia, obrotów, ciśnienia oraz wibracji rejestrowane w cza-
sie rzeczywistym. Zbiór PM 2, również dostępy na Kaggle, bazuje na danych
symulacyjnych.

Trzecią kategorię reprezentuje zbiór Maintenance [130], pochodzący z biblioteki
PySurvival dedykowanej do analizy przeżycia.

Wszystkie analizowane zbiory danych są publicznie dostępne, co sprzyja repro-
dukowalność wyników i umożliwia empiryczne porównania z alternatywnymi meto-

1https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance
2https://www.kaggle.com/datasets/hiimanshuagarwal/predictive-maintenance-dataset
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zbiór |A| |An| |Ak| n brak (%) cenz (%)
actg320 [57] 11 4 7 1151 0.00 91.7
BMT-Ch [131] 35 7 28 187 1.24 54.5
cancer [132] 7 6 1 228 4.14 27.6
follic [133] 4 2 2 541 0.00 35.7
GBSG2 [134] 8 5 3 686 0.00 56.4
hd [133] 6 1 5 865 0.00 50.8
lung [135] 7 0 7 1032 2.60 26.0
Melanoma [136] 7 2 5 205 0.00 65.4
mgus [137] 9 7 2 241 19.59 23.7
pbc [138] 17 10 7 418 14.54 61.5
std [139] 21 2 19 877 0.00 60.4
uis [57] 13 7 6 575 0.00 19.3
wcgs [140] 10 7 3 3154 0.04 91.9
whas1 [57] 7 2 5 481 0.00 48.2
whas500 [57] 13 5 8 500 0.00 57.0
zinc [141] 55 8 47 431 57.17 81.2

Tabela 6.3: Charakterystyka medycznych zbiorów danych wykorzystanych w ba-
daniach eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwę
zbioru, liczbę atrybutów (|A|), liczbę atrybutów numerycznych (|An|), liczbę
atrybutów kategorycznych (|Ak|), liczbę obserwacji (n), udział wartości braku-
jących (brak, w %), udział obserwacji cenzurowanych (cenz, w %).
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zbiór temat
actg320 pacjenci zakażeni HIV
BMT-Ch przeszczep szpiku kostnego
cancer zaawansowany rak płuc
follic chłoniak z komórek pęcherzykowych
GBSG2 rak piersi
hd choroba Hodgkina
lung wczesne wykrywanie raka płuc
Melanoma złośliwy czerniak
mgus łagodna gammapatia monoklonalna
pbc pierwotne zapalenie dróg żółciowych
std choroby przenoszone drogą płciową
uis leczenie uzależnień
wcgs choroba wieńcowa
whas1 zawał mięśnia sercowego (wersja 1)
whas500 zawał mięśnia sercowego (wersja 2)
zinc rak przełyku

Tabela 6.4: Tematyka medycznych zbiorów danych wykorzystanych w badaniach
eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwę zbioru oraz
tematykę zbioru.
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dami. W odróżnieniu od standardowych zbiorów przeżyciowych, które w większości
dotyczą badań medycznych, wybrane zbiory danych odnoszą się do niezawodności
systemów przemysłowych.

Dodatkowo w eksperymentach wykorzystano 16 zbiorów danych medycznych,
których charakterystykę przedstawiono w Tabeli 6.3. Zbiory te pochodzą z różnych
dziedzin medycyny, w tym onkologii, kardiologii, transplantologii oraz badań nad
HIV. Liczba obserwacji w zbiorach medycznych wahała się od 187 do 3154, liczba
atrybutów od 4 do 55, a udział obserwacji cenzurowanych wynosił od 19.3% do
91.9%. W przeciwieństwie do zbiorów przemysłowych, niektóre zbiory medyczne
zawierały brakujące wartości, których udział wynosił od 0.04% do 57.17%.

Zbiory medyczne wybrano ze względu na ich różnorodność pod względem ro-
dzaju schorzeń, wielkości próby oraz struktury danych. Większość z nich stanowi
standardowe zbiory referencyjne używane w literaturze dotyczącej analizy prze-
życia, co umożliwia porównanie wyników z innymi metodami. Pochodzą głównie
z publikacji naukowych oraz specjalistycznych pakietów statystycznych.

Przygotowanie zbiorów danych do analizy przeżycia wymagało zastosowania
procedur przetwarzania, dostosowanych do specyfiki poszczególnych źródeł danych
oraz ich pierwotnej struktury. Można wyróżnić cztery główne kategorie takich
procesów, stosowane w zależności od charakterystyki źródłowych zbiorów danych.

Dla ośmiu zbiorów pochodzących z repozytorium danych niezawodnościowych
(AdhesiveBondB, KevlarVessel, LEDLife, LaminatePanel, NewSpring, NiCdBattery,
Tantalum, ZelenCap) zastosowano jednolitą procedurę przetwarzania. Polegała
ona na przekształceniu kategorycznego wskaźnika cenzurowania na binarny status
przeżycia: zdarzenia końcowe zakodowano jako 1, a obserwacje cenzurowane jako 0.
W przypadku zbioru AdhesiveBondB wartość „Exact” wskazywała na wystąpienie
zdarzenia, natomiast dla pozostałych zbiorów stosowano oznaczenia „Failed” lub
„Failure”. Dodatkowo, w zbiorach zawierających kolumnę „Count”, przeprowadzono
ekspansję danych poprzez powielenie wierszy zgodnie z liczbą powtórzeń, po czym
usunięto pierwotną kolumnę licznikową.

Zbiór Aircraft wymagał najbardziej złożonej procedury przetwarzania ze względu
na wielowarstwową strukturę telemetryczną. Proces obejmował integrację czte-
rech źródeł danych: pomiarów telemetrycznych, zdarzeń konserwacyjnych, awarii
oraz charakterystyk maszyn. Utworzono interwały czasowe dla każdej kombinacji
maszyny i komponentu. Początek interwału stanowiło rozpoczęcie obserwacji lub
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poprzednie zdarzenie konserwacyjne, a koniec — awaria lub konserwacja prewen-
cyjna. Dla każdego interwału obliczono czas przeżycia w godzinach oraz dokonano
agregacji statystycznej zmiennych telemetrycznych (napięcie, obroty, ciśnienie,
wibracje) poprzez uśrednienie wartości w ramach interwału. Zastosowano filtry
jakości danych, eliminując interwały krótsze niż 2 godziny lub nieposiadające
odpowiadających pomiarów telemetrycznych.

Zbiór PM przetworzono za pomocą agregacji czasowej. Dla każdej jednostki
identyfikowano wszystkie dostępne obserwacje, określano pierwszy i ostatni moment
pomiaru, a następnie obliczano czas przeżycia jako różnicę między tymi punktami
wyrażoną w dniach. W przypadku wystąpienia wielokrotnych zdarzeń awaryjnych
dla tej samej jednostki przyjęto ostatnie zdarzenie jako definitywny punkt końcowy
obserwacji. Jednostki bez zdarzeń awaryjnych otrzymały status cenzurowany,a
czas przeżycia liczono od pierwszej do ostatniej obserwacji.

Dodatkowo, dla wszystkich zbiorów przeprowadzono weryfikację danych, elimi-
nując obserwacje z ujemnymi lub zerowymi czasami przeżycia oraz identyfikatory
przemysłowe nieistotne dla analizy statystycznej.

W celu lepszego zobrazowania charakterystyki analizowanych zbiorów danych, na
Rysunku 6.1 i 6.2 przedstawiono empiryczne krzywe przeżycia dla wszystkich wy-
korzystanych zbiorów. Wizualizacja ta umożliwia identyfikację różnic w rozkładach
czasów przeżycia między poszczególnymi zbiorami oraz porównanie charakterystyk
między domenami przemysłową i medyczną.

Krzywe przeżycia dla zbiorów przemysłowych (Rysunek 6.1) pokazują zróż-
nicowaną dynamikę procesów awaryjności. Niektóre zbiory, np. AdhesiveBondB
i KevlarVessel, wykazują wysoką wczesną awaryjność, podczas gdy inne, jak Tan-
talum czy Aircraft, charakteryzują się długotrwałą niezawodnością. Dla zbiorów
Tantalum i Aircraft zakres wartości na osi rzędnych został ograniczony, aby popra-
wić czytelność wykresów, gdyż wartości funkcji przeżycia pozostają bliskie jedności
przez większość okresu obserwacji.

Krzywe przeżycia dla zbiorów medycznych (Rysunek 6.2) wykazują odmienną
charakterystykę w porównaniu ze zbiorami przemysłowymi. Większość z nich
wykazuje bardziej stopniowy spadek funkcji przeżycia w czasie, co odzwiercie-
dla naturę procesów biologicznych. Niektóre zbiory, takie jak actg320 czy wcgs,
charakteryzują się wysokim stopniem cenzurowania, co przekłada się na wolniej-
szy spadek wartości funkcji przeżycia szacowanej estymatorem Kaplana-Meiera
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Rysunek 6.1: Krzywe KM dla przemysłowych zbiorów danych z Tabeli 6.1
wykorzystanych w badaniach eksperymentalnych (przedziały ufności na poziomie
95% obliczone metodą Greenwooda).
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Rysunek 6.2: Krzywe KM dla medycznych zbiorów danych z Tabeli 6.3 wykorzy-
stanych w badaniach eksperymentalnych (przedziały ufności na poziomie 95%
obliczone metodą Greenwooda).
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w dłuższym horyzoncie obserwacji. Inne, np. cancer i uis, wykazują bardziej
dynamiczne zmiany, odpowiadające różnej agresywności schorzeń lub różnym
długościom okresów obserwacji.

6.3 Pokryciowy algorytm indukcji przeżyciowych
reguł akcji

W niniejszej sekcji przedstawiono wyniki eksperymentów przeprowadzonych z wy-
korzystaniem pokryciowego algorytmu indukcji przeżyciowych reguł akcji opisanego
w Sekcji 5.2. Eksperymenty przeprowadzono na wszystkich zbiorach danych przed-
stawionych w Tabeli 6.1 i 6.3. Nie stosowano walidacji krzyżowej ze względu na
eksploracyjny charakter metody.

W konfiguracji eksperymentów przyjęto następujące parametry: τ = „dowolna”
(brak preferencji kierunku zmian krzywych przeżycia), µ = 30 (minimalna liczba
niepokrytych przykładów), ξ = 0.1 (maksymalny procent przykładów wspólnych),
ρ = 0.5 (maksymalne pokrycie reguły).

Wybór parametru µ = 30 zapewnia statystyczną istotność generowanych reguł
przy jednoczesnym zachowaniu zdolności do wykrywania wzorców w mniejszych
grupach. Wartość ξ = 0.1 ogranicza nakładanie się reguł, co zwiększa różnorodność
odkrywanych wzorców. Parametr ρ = 0.5 zapobiega dominacji pojedynczych reguł
nad całym zbiorem danych. Założono, że wszystkie atrybuty są zmienne, tzn. mogą
występować w części akcyjnej reguł i podlegać zmianom. Dla zmiennych ciągłych
oznacza to zawężanie lub przesuwanie przedziału wartości, a dla kategorycznych

— zmianę kategorii. Nie rozróżniano atrybutów sterowalnych i niesterowalnych.
Takie ujednolicenie upraszcza analizę i zapewnia porównywalność wyników między
zbiorami.

Tabele 6.5 i 6.6 przedstawiają wyniki eksperymentów dla zbiorów przemysłowych,
wskazujące na znaczną różnorodność zarówno w liczbie generowanych reguł, jak
i w ich charakterystykach.

W podsumowaniu przedstawionym w tabelach 6.5 i 6.6 liczba warunków (|W |)
odnosi się do liczby warunków w części źródłowej reguły, a liczba akcji (|A|) to
liczba modyfikacji zdefiniowanych w regule dla atrybutów, w których część docelowa
różni się od części źródłowej. Akcje podtrzymujące są traktowane jako warunki
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zbiór |R| |W| |A| |Ad| |Ad|/|A| |A|/|W|

AdhesiveBondB 2 4 2 0 0.00 0.50
Aircraft 80 170 103 6 0.06 0.61
KevlarVessel 2 4 2 0 0.00 0.50
LaminatePanel 2 4 2 0 0.00 0.50
LEDLife 4 8 5 1 0.20 0.62
Maintenance 7 15 13 1 0.08 0.87
NewSpring 2 4 2 0 0.00 0.50
NiCdBattery 2 4 2 0 0.00 0.50
PM 31 109 104 16 0.15 0.95
Tantalum 5 10 6 1 0.17 0.60
ZelenCap 1 2 1 0 0.00 0.50

Tabela 6.5: Podstawowe statystyki wygenerowanych przeżyciowych reguł akcji
dla zbiorów danych z Tabeli 6.1. W kolejnych kolumnach przedstawiono: nazwę
zbioru danych, liczbę reguł (|R|), całkowitą liczbę: warunków (|W |), akcji (|A|),
akcji dowolnych (|Ad|), udział akcji dowolnych (|Ad|/|A|), oraz stosunek liczby
akcji do liczby warunków (|A|/|W |).

i nie uwzględnia się ich przy liczeniu akcji. Akcje podtrzymujące to takie, które nie
zmieniają wartości względem części źródłowej (utrzymanie stanu), tj. pozostawienie
wartości bez zmian, zarówno dla zmiennych ciągłych, jak i kategorycznych. Pełnią
one rolę dodatkowych ograniczeń definiujących kontekst reguły, a nie działań
modyfikujących.

Najmniejszą liczbę reguł w eksperymencie uzyskano dla zbioru danych ZelenCap,
który charakteryzował się również najmniejszą liczbą obserwacji (64 przykładów)
spośród wszystkich analizowanych zbiorów z Tabeli 6.1. Najwięcej reguł (80) wy-
generowano dla zbioru danych Aircraft, który zawierał 3135 obserwacji. Liczba
warunków dla poszczególnych zbiorów w większości przypadków istotnie różniła
się od całkowitej liczby akcji. Można zatem wnioskować, że proponowany algorytm
tworzy reguły, które w większości zawierają akcje, a nie elementarne warunki
(akcje podtrzymujące), choć te ostatnie również występowały. Założenie o braku
tzw. atrybutów stabilnych — rozumianych jako atrybuty, których wartości nie
mogą być zmieniane w ramach akcji — pozwoliło na większą różnorodność typów
akcji w regułach. Jeżeli w zbiorze występują atrybuty stabilne, różnica między
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zbiór w a mw Mw r0.01 (%) |R+| |R´|

AdhesiveBondB 2.0 1.0 2 2 100.0 1 1
Aircraft 2.1 1.3 2 5 100.0 43 37
KevlarVessel 2.0 1.0 2 2 100.0 1 1
LaminatePanel 2.0 1.0 2 2 100.0 1 1
LEDLife 2.0 1.2 2 2 100.0 3 1
Maintenance 2.1 1.9 2 3 100.0 4 3
NewSpring 2.0 1.0 2 2 100.0 1 1
NiCdBattery 2.0 1.0 2 2 100.0 1 1
PM 3.5 3.4 2 7 100.0 26 5
Tantalum 2.0 1.2 2 2 100.0 4 1
ZelenCap 2.0 1.0 2 2 0.0 1 0

Tabela 6.6: Szczegółowe statystyki i wyniki wygenerowanych przeżyciowych reguł
akcji dla zbiorów danych z Tabeli 6.1. W kolejnych kolumnach przedstawiono:
nazwę zbioru danych, średnią liczbę warunków/akcji (w/a) na regułę, minimalną
i maksymalną liczbę warunków (mw i Mw) w pojedynczej regule, procent reguł
z wartością p ă 0.01 (r0.01) oraz liczbę reguł polepszających/pogarszających
(|R+|/|R´|).
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liczbą warunków a liczbą akcji wzrasta, ponieważ dla takich atrybutów można
tworzyć tylko akcje podtrzymujące. Najwyższy udział dowolnych akcji w sto-
sunku do całkowitej liczby akcji (0.95) uzyskano dla zbioru danych PM. Średnia
liczba warunków i akcji na regułę wahała się od 1.0 do 3.5. Minimalna liczba
warunków w pojedynczej regule była jednakowa dla wszystkich zbiorów danych,
w Tabeli 6.6 oznaczona jako mw. Analogicznie, maksymalną liczbę warunków
oznaczono jako Mw. Maksymalna liczba akcji w pojedynczej regule wynosiła 7 i w
każdym przypadku była mniejsza niż liczba atrybutów warunkowych w zbiorze
danych. W konsekwencji akcje pojawiały się w przesłankach jedynie dla wybranych
atrybutów, tj. tych o największym znaczeniu w momencie zdarzenia.

Wartości r0.01 w Tabeli 6.6 wskazują, że uzyskane reguły charakteryzują się
dobrymi wartościami p w teście log-rank między krzywymi KM części źródłowej
i docelowej. Oznacza to, że wygenerowane reguły opisują akcje prowadzące do
istotnych zmian w krzywych przeżycia. Najniższy odsetek reguł z p ă 0.01 uzy-
skano dla zbioru ZelenCap, gdzie jedyna wygenerowana reguła nie spełniła tego
kryterium.

Ostatnie dwie kolumny Tabeli 6.6 pokazują liczbę reguł polepszających, gdzie
krzywa przeżycia reguły docelowej jest powyżej krzywej reguły źródłowej (|R+|),
oraz liczbę reguł pogarszających, gdzie krzywa przeżycia reguły docelowej jest
poniżej krzywej reguły źródłowej (|R´|). W większości zbiorów wygenerowano
więcej reguł polepszających, natomiast dla części zbiorów liczba reguł polepszają-
cych i pogarszających była taka sama. Wskazuje to, że proponowany algorytm,
w którym τ = dowolna, w przypadku niektórych zbiorów faworyzuje jeden typ
reguły akcji. Ostateczne wnioski zależą jednak od specyfiki analizowanego zbioru
danych.

Analogiczne eksperymenty przeprowadzono dla medycznych zbiorów danych
przedstawionych w Tabeli 6.3. Wyniki zaprezentowano w Tabeli 6.7 i 6.8. W tym
przypadku zaobserwowano większą różnorodność liczby generowanych reguł w po-
równaniu ze zbiorami przemysłowymi. Najmniejszą liczbę reguł uzyskano dla
zbiorów mgus i Melanoma (po 4 reguły), natomiast największą (57) wygenerowano
dla zbioru wcgs, który charakteryzował się największą liczbą obserwacji (3154)
spośród medycznych zbiorów danych. Średnia liczba warunków na regułę wahała
się od 2.1 (hd, follic) do 5.2 (std), co wskazuje na większą złożoność reguł niż
w przypadku zbiorów przemysłowych. Podobnie, średnia liczba akcji na regułę
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zbiór |R| |W| |A| |Ad| |Ad|/|A| |A|/|W|

actg320 20 86 81 17 0.21 0.94
BMT-Ch 5 14 14 2 0.14 1.00
cancer 6 18 16 2 0.13 0.89
follic 8 17 15 3 0.20 0.88
GBSG2 16 49 48 5 0.10 0.98
hd 12 25 20 7 0.35 0.80
lung 9 23 22 4 0.18 0.96
Melanoma 4 12 12 2 0.17 1.00
mgus 4 15 14 2 0.14 0.93
pbc 8 23 23 3 0.13 1.00
std 17 89 72 16 0.22 0.81
uis 8 30 30 7 0.23 1.00
wcgs 57 281 280 34 0.12 1.00
whas1 7 18 18 0 0.00 1.00
whas500 9 39 38 2 0.053 0.97
zinc 10 29 26 5 0.19 0.90

Tabela 6.7: Podstawowe statystyki wygenerowanych przeżyciowych reguł akcji dla
zbiorów danych medycznych z Tabeli 6.3. W kolejnych kolumnach przedstawiono:
nazwę zbioru danych, liczbę reguł (|R|), całkowitą liczbę: warunków (|W |), akcji
(|A|), akcji dowolnych (|Ad|), udział akcji dowolnych (|Ad|/|A|), oraz stosunek
liczby akcji do liczby warunków (|A|/|W |).
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zbiór w a mw Mw r0.01 (%) |R+| |R´|

actg320 4.3 4.0 2 7 100.0 18 2
BMT-Ch 2.8 2.8 2 4 100.0 3 2
cancer 3.0 2.7 2 6 83.3 3 3
follic 2.1 1.9 2 3 87.5 5 3
GBSG2 3.1 3.0 2 5 100.0 13 3
hd 2.1 1.7 2 3 100.0 9 3
lung 2.6 2.4 2 4 100.0 4 5
Melanoma 3.0 3.0 2 4 100.0 3 1
mgus 3.8 3.5 3 4 100.0 3 1
pbc 2.9 2.9 2 4 100.0 6 2
std 5.2 4.2 3 10 100.0 10 7
uis 3.8 3.8 3 4 100.0 7 1
wcgs 4.9 4.9 2 8 100.0 51 6
whas1 2.6 2.6 2 3 100.0 5 2
whas500 4.3 4.2 2 5 100.0 8 1
zinc 2.9 2.6 2 5 100.0 1 1

Tabela 6.8: Szczegółowe statystyki i wyniki wygenerowanych przeżyciowych reguł
akcji dla zbiorów danych medycznych z Tabeli 6.3. W kolejnych kolumnach
przedstawiono: nazwę zbioru danych, średnią liczbę warunków/akcji (w/a) na
regułę, minimalną i maksymalną liczbę warunków (mw, Mw) w pojedynczej
regule, procent reguł z wartością p ă 0.01 (r0.01) oraz liczbę reguł polepszają-
cych/pogarszających (|R+|/|R´|).
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mieściła się w przedziale od 1.7 (hd) do 4.9 (wcgs, std), również przekraczając
zakresy obserwowane dla zbiorów przemysłowych.

Stosunek liczby akcji do liczby warunków (|A|/|W |) dla medycznych zbiorów
danych charakteryzował się większą zmiennością, osiągając wartości od 0.80 (hd,
std) do 1.00 (BMT-Ch, Melanoma, pbc, uis, whas1, wcgs). Wysokie wartości tego
wskaźnika wskazują na dominację akcji nad warunkami elementarnymi w genero-
wanych regułach. Udział akcji dowolnych (|Ad|/|A|) mieścił się w przedziale od
0.00 (whas1) do 0.35 (hd), przy czym średnia wartość dla zbiorów medycznych
przewyższała tę uzyskaną dla zbiorów przemysłowych. Największy udział akcji do-
wolnych odnotowano dla zbioru hd (0.35), co może świadczyć o większej złożoności
zależności występujących w danych medycznych.

Podobnie jak w przypadku zbiorów przemysłowych, wszystkie reguły wygenero-
wane dla zbiorów medycznych okazały się istotne statystycznie w teście log-rank
(%r = 100.0% dla wszystkich zbiorów), z wyjątkiem zbioru cancer, dla którego
83.3% reguł spełniało kryterium p ă 0.01. Analiza zbiorów reguł polepszających
(R+) i pogarszających (R´) wykazała przewagę reguł polepszających w większo-
ści medycznych zbiorów danych. W części zbiorów liczba reguł polepszających
i pogarszających była taka sama, natomiast dla zbioru lung przeważały reguły
pogarszające. Wyraźna przewaga reguł polepszających występowała dla zbiorów
actg320 (18 vs 2), wcgs (51 vs 6) oraz uis (7 vs 1).

Porównanie wyników uzyskanych dla zbiorów przemysłowych i medycznych
ujawnia różnice charakteryzujące specyfikę obu domen. Do porównań wykorzy-
stano medianę liczby reguł na zbiór, aby ograniczyć wpływ wartości odstających
(np. wcgs z 57 regułami). Mediana dla zbiorów przemysłowych wynosi 2, natomiast
dla zbiorów medycznych 8.5. Należy jednak zauważyć, że liczba wygenerowanych
reguł zależy od wielkości zbioru danych, a zbiory medyczne były zazwyczaj większe
od przemysłowych. Niezależnie od tego, reguły w zbiorach medycznych charakte-
ryzowały się większą złożonością pod względem liczby warunków i akcji, co może
odzwierciedlać bardziej skomplikowaną naturę procesów biologicznych w porów-
naniu z deterministycznymi mechanizmami awaryjności przemysłowej. Wyższy
procent akcji dowolnych w zbiorach medycznych (średnio 16.8%) względem prze-
mysłowych (średnio 8.1%) sugeruje większą niepewność w określaniu konkretnych
kierunków zmian parametrów w kontekście medycznym, co jest zgodne z większą
złożonością i nieprzewidywalnością procesów biologicznych.
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Podsumowując, pokryciowy algorytm indukcji przeżyciowych reguł akcji okazał
się skuteczny w odkrywaniu interpretowalnych wzorców akcji w obu analizowanych
domenach. Wysoki odsetek reguł istotnych statystycznie (powyżej 95% w większości
przypadków) potwierdza zdolność algorytmu do identyfikacji znaczących zależności
w danych przeżyciowych. Różnice w charakterystykach reguł między domenami
przemysłową a medyczną wskazują na adaptowalność metody do specyfiki różnych
obszarów zastosowań, co stanowi zaletę w kontekście uniwersalności podejścia.

Studium przypadku: Interpretowalne reguły akcji w konserwacji
predykcyjnej

Poniżej przedstawiono szczegółową analizę reguły akcji wygenerowanej przez
algorytm pokryciowy dla zbioru danych Maintenance, stosowanego do ilustracji
konserwacji predykcyjnej maszyn przemysłowych. Jest to syntetyczny i ogólny
zbiór danych pochodzących z czujników IoT (m.in. wskaźniki ciśnienia, wilgotności
i temperatury) oraz metadanych organizacyjnych (takich jak zespół czy dostawca).
Nie odnosi się on do konkretnego typu urządzenia, a w dokumentacji źródłowej nie
określono jednostek dla atrybutów IoT. Ze względu na największą zaobserwowaną
poprawę czasu przeżycia, analiza koncentruje się na regule R4, która dobrze
ilustruje potencjał algorytmu w generowaniu praktycznych zaleceń operacyjnych.

Wybrana reguła akcji ma złożoną strukturę, obejmującą trzy różne typy para-
metrów operacyjnych:

jeśli (moisture_ind, (´8, 120.41) Ñ (´8, 108.24))

^ (temperature_ind, [95.98, 157.55) Ñ [116.98, 138.52))

^ (team, tTeamCu Ñ tTeamAu)

to mediana_przeżycia : 74 Ñ 92 dni

Reguła pokrywa 17.2% przykładów w części źródłowej oraz 5.2% w części doce-
lowej, wykazując wysoką istotność statystyczną (p = 3.09 ¨ 10´8) oraz wydłużenie
przewidywanego czasu bezawaryjnej pracy o 144 dni, co odpowiada 55% poprawie
względem stanu wyjściowego.

Interpretacja reguły w kontekście konserwacji predykcyjnej wskazuje trzy główne
obszary optymalizacji:
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• Zarządzanie wilgocią — reguła sugeruje dalsze obniżenie wilgotności z po-
ziomu już niskiego (<120.4) do jeszcze niższego (<108.2). Kierunek ten
wskazuje na istnienie progu wilgotności, poniżej którego niezawodność urzą-
dzeń wyraźnie wzrasta.

• Optymalizacja temperatury operacyjnej — rekomendowane jest zawężenie
przedziału z szerokiego zakresu 95.98–157.55˝C do bardziej kontrolowanego
116.98–138.52˝C. Wynika stąd, że utrzymanie temperatury w węższym,
wyższym zakresie może sprzyjać długoterminowej niezawodności sprzętu.

• Reorganizacja zespołowa — przypisanie zadań konserwacyjnych zespołowi
A zamiast zespołu C, co może odzwierciedlać różnice w kompetencjach,
doświadczeniu lub stosowanych procedurach.

Rysunek 6.3: Krzywe przeżycia Kaplana-Meiera dla reguły R4 w zbiorze danych
Maintenance. Niebieska krzywa reprezentuje grupę źródłową (przed zastosowa-
niem akcji), pomarańczowa — grupę docelową (po zastosowaniu akcji).

Analiza krzywych przeżycia przedstawiona na Rysunku 6.3 wizualnie potwierdza
istotność statystyczną reguły. Krzywa reprezentująca grupę docelową (po zasto-
sowaniu akcji) wykazuje wyższe prawdopodobieństwo przeżycia w porównaniu
z grupą źródłową, przy czym wyraźna separacja krzywych widoczna jest już od
początku okresu obserwacji. Mediana czasu przeżycia wzrasta ze 119 dni w grupie
źródłowej do 263 dni w grupie docelowej.

Wdrożenie zaleceń wynikających z reguły R4 wymaga podjęcia działań w trzech
wspomnianych obszarach. Kontrola wilgotności może wymagać inwestycji w sys-
temy osuszania lub modyfikacji procedur operacyjnych w celu utrzymania niższych
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poziomów wilgotności. Optymalizacja temperatury może obejmować dostrojenie
systemów grzewczych lub chłodzących oraz modyfikację procedur operacyjnych
w celu utrzymania węższego zakresu temperatur. Reorganizacja zespołowa może
wymagać przeszkolenia personelu, redystrybucji zadań lub modyfikacji harmono-
gramów pracy.

(a) (b)

Rysunek 6.4: Histogramy rozkładów atrybutów wilgotności (a) i temperatury (b)
w zbiorze danych Maintenance z zaznaczonymi zakresami źródłowymi (czerwone)
i docelowymi (zielone) reguły R4. Pionowe linie wskazują precyzyjne granice
zakresów, natomiast przezroczyste obszary pokazują całe zakresy reguł.

Analiza rozkładów atrybutów przedstawiona na Rysunku 6.4 obrazuje charakte-
rystykę danych źródłowych oraz kontekst dla reguły R4. Histogram wilgotności
(Rysunek 6.4a) wskazuje na rozkład zbliżony do normalnego z medianą 99.4. Za-
kresy reguły R4 obejmują znaczną część populacji — warunki źródłowe (<120.4)
dotyczą 98.6% przykładów, natomiast bardziej restrykcyjne warunki docelowe
(<108.2) obejmują 81.3% obserwacji. Histogram temperatury (Rysunek 6.4b) rów-
nież wykazuje rozkład zbliżony do normalnego z medianą 100.6˝C, ale zakresy
reguły R4 są tu bardziej selektywne — szeroki zakres źródłowy (95.98–157.55˝C)
obejmuje 59.2% przykładów, podczas gdy wąski zakres docelowy (116.98–138.52˝C)
dotyczy jedynie 17.7% obserwacji.

Reguła R4 dobrze ilustruje zalety pokryciowego algorytmu indukcji przeżycio-
wych reguł akcji w zastosowaniach przemysłowych. Algorytm generuje konkretne
zalecenia operacyjne z jasno określonymi zakresami parametrów, co ułatwia ich im-
plementację w praktyce. Uwzględnia przy tym wielowymiarowe interakcje między
różnymi aspektami operacji (środowisko, technologia, zasoby ludzkie) i dostarcza
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ilościowej oceny spodziewanych korzyści (18 dni wydłużenia czasu przeżycia).
Dzięki temu umożliwia oszacowanie opłacalności zainwestowania w proponowane
zmiany. Wynik testu log-rank (p ă 10´7) dodatkowo potwierdza istotność staty-
styczną zaobserwowanego efektu.

6.4 Algorytm rekomendacji przeżyciowych reguł akcji

W niniejszej sekcji przedstawiono wyniki eksperymentów dotyczących algorytmu
rekomendacji przeżyciowych reguł akcji opisanego w Sekcji 5.3. Eksperymenty
przeprowadzono w trybie 10-krotnej stratyfikowanej walidacji krzyżowej na zbiorach
danych z Tabeli 6.1 i 6.3.

Konfiguracja parametrów była zgodna z ustawieniami opisanymi w Sekcji 6.3.
Ocena obejmowała zarówno jakość generowanych reguł akcji, jak i skuteczność
wygenerowanych rekomendacji. Charakterystyki reguł zaprezentowane w tej sekcji
odpowiadają ujęciu z Sekcji 6.3 (Tabela 6.6, 6.8). Różnica polega na tym, że tam
raportowano statystyki dla pełnych zbiorów (bez walidacji krzyżowej), a tutaj
przedstawiono wyniki uzyskane w konfiguracji 10-krotnej walidacji krzyżowej.

Z zestawień usunięto zbiory, dla których nie uzyskano stabilnych wyników
w walidacji krzyżowej. Spośród zbiorów przemysłowych wykluczono Aircraft, PM
i ZelenCap, ze względu na trudności z modelem arbitra XGBoost — prawdo-
podobnie spowodowane wysokim poziomem cenzurowania (odpowiednio 99.3%,
91.7% i 50.0%) oraz niewystarczającą liczbą zdarzeń. Wśród zbiorów medycznych
pominięto cancer, wcgs i zinc, z analogicznych powodów (m.in. wysokie cenzu-
rowanie: 91.9% i 81.2%), które utrudniały stabilną estymację hazardu bazowego
i trenowanie arbitra w trybie 10-krotnej walidacji krzyżowej.

Tabele 6.9 i 6.10 zestawiają wyniki algorytmu rekomendacji. Kolumny S0.05

i S0.01 przedstawiają wskaźnik spójności (por. uzasadnienie testu KS w Sekcji 5.3).
MAE oznacza średni błąd bezwzględny między krzywą uzyskaną na podstawie
rekomendacji a krzywą dla przykładu zmutowanego przez model arbitra. Pokrycie
to odsetek przykładów testowych spełniających kryterium minimalnego pokrycia,
umożliwiającego estymację krzywej docelowej (KM). a to średnia liczba akcji na
rekomendację, a q — średni odsetek atrybutów poddanych modyfikacji. Krzywa
docelowa KMD jest estymowana metodą Kaplana-Meiera na zbiorze uczącym
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zbiór S0.05 S0.01 MAE Pokrycie (%) a q (%)

AdhesiveBondB 1.00 1.00 0.24 1.00 1.0 49.0
KevlarVessel 1.00 1.00 0.28 1.00 1.0 50.0
LaminatePanel 0.76 0.40 0.14 1.00 1.0 100.0
LEDLife 0.88 0.88 0.25 1.00 1.3 65.0
Maintenance 0.82 0.12 0.07 1.00 2.0 40.4
NewSpring 0.90 0.78 0.25 1.00 0.8 27.3
NiCdBattery 0.86 0.82 0.21 1.00 0.9 11.2
Tantalum 1.00 1.00 0.04 1.00 1.4 70.0

Tabela 6.9: Wyniki eksperymentów dla zbiorów przemysłowych. Kolumny przed-
stawiają: nazwę zbioru danych, metryki spójności (S0.05 i S0.01), MAE, pokrycie
(w %), średnią liczbę akcji na rekomendację (a) oraz średni procent atrybutów
poddanych mutacji (q, w %).

zbiór S0.05 S0.01 MAE Pokrycie (%) a q (%)

actg320 1.00 0.98 0.09 1.00 1.6 14.9
BMT-Ch 1.00 1.00 0.32 1.00 1.9 5.4
follic 0.84 0.82 0.16 1.00 1.6 40.0
GBSG2 0.96 0.94 0.22 1.00 2.5 31.5
hd 0.70 0.58 0.13 1.00 1.0 16.7
lung 0.88 0.80 0.16 1.00 3.0 43.4
Melanoma 0.98 0.96 0.18 1.00 1.8 26.3
mgus 0.97 0.95 0.35 1.00 2.2 24.2
pbc 0.94 0.86 0.32 0.98 2.0 11.5
std 0.90 0.80 0.20 0.90 1.9 9.0
uis 0.98 0.96 0.19 1.00 2.7 20.8
whas1 1.00 0.98 0.12 1.00 1.3 18.9
whas500 0.98 0.96 0.26 0.98 2.0 15.5

Tabela 6.10: Wyniki eksperymentów dla zbiorów medycznych. Kolumny przed-
stawiają: nazwę zbioru danych, metryki spójności (S0.05 i S0.01), MAE, pokrycie
(w %), średnią liczbę akcji na rekomendację (a) oraz średni procent atrybutów
poddanych mutacji (q, w %).
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ograniczonym do obserwacji pokrywanych przez prawą stronę reguły. Stanowi ona
referencję dla rekomendacji (por. Sekcję 5.3).

Dodatkowo, w trakcie eksperymentów zastosowano zintegrowany wskaźnik Briera
(IBS) jako pomocniczą miarę błędu prognozy do wewnętrznej kontroli jakości
modeli. Wartości IBS nie są w tym przypadku raportowane w wynikach. Definicję,
ograniczenia i kontekst użycia omówiono w Sekcji 5.3.

Walidację przeprowadzono z wykorzystaniem modelu arbitra XGBoost z funk-
cją straty opartą na proporcjonalnych hazardach Coxa. Arbiter był trenowany
wyłącznie na zbiorze uczącym w każdej części walidacji. Krzywą przeżycia dla
zmutowanego przykładu x1 wyznaczano zgodnie z modelem Coxa jako

Sx1(t) = S0(t)
exp(η(x1)),

gdzie S0(t) oznacza krzywą przeżycia bazowego estymowaną na czasach zdarzeń
w zbiorze uczącym, a η(x1) to liniowa kombinacja atrybutów x1 wyznaczona
przez model. Zgodność krzywej arbitra KMx1 z krzywą docelową KMD (KM
na danych uczących pokrywanych przez prawą stronę reguły) oceniano testem
Kołmogorowa-Smirnowa dla dwóch prób. Wskaźnik spójności Sα definiowano jako
odsetek przypadków spełniających warunek p ě α.

Ilościowa analiza indukowanych reguł (por. Tabela 6.6, 6.8) potwierdziła ich
statystyczną istotność w większości przypadków. Ze względu na brak powtórnych
pomiarów dla tych samych przypadków nie było możliwe bezpośrednie sprawdzenie,
czy sugerowane modyfikacje faktycznie wpływają na czasu przeżycia w danych
testowych. Z tego powodu zastosowano model arbitra, aby zweryfikować zgodności
alternatywnego modelu przeżycia z estymacjami algorytmu rekomendacji.

Wyniki walidacji wskazują na wysoką precyzję algorytmu. Dla zbiorów przemy-
słowych S0.05 mieści się w zakresie od 76% (LaminatePanel) do 100% (Adhesive-
BondB, KevlarVessel, Tantalum). Dla S0.01 skuteczność również pozostaje wysoka,
z wyjątkiem Maintenance (12%). MAE wynosi 0.04–0.28 przy pełnym pokryciu.
W przypadku zbiorów medycznych większość z nich osiąga spójność powyżej 90%
dla obu poziomów istotności. Wyjątek stanowi hd (70% i 58%). MAE mieści się
w zakresie 0.09–0.35, a pokrycie wynosi 90–100%.

Algorytm generuje średnio od 4 do 22 reguły na zbiór danych, z przewagą reguł
polepszających. Ponad 90% reguł jest istotnych statystycznie na obu poziomach
istotności, z wyjątkiem zinc (67% dla p ă 0.05).
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Wskaźniki z Tabeli 6.9 i 6.10 wskazują na niewielką liczbę akcji na rekomendację
oraz ograniczony odsetek modyfikowanych atrybutów, co sprzyja zastosowaniu
rekomendacji w praktyce. W zbiorach przemysłowych średnia liczba akcji na
rekomendację wynosi 0.8–2.0, przy modyfikacji 11.2–100% atrybutów. W zbiorach
medycznych to odpowiednio 1.0–3.0 akcji i 5.4–43.4% cech. Taka selektywność jest
szczególnie istotna w zastosowaniach, gdzie jednoczesna zmiana wielu parametrów
jest kosztowna.

Ponadto wysokie wartości spójności (średnio > 80% dla 14 z 17 zbiorów), niskie
MAE (< 0.3 dla 15 z 17) oraz pełne pokrycie (100% dla 15 z 17) potwierdzają,
że rekomendacje prowadzą do statystycznie istotnych różnic w krzywych przeży-
cia. Połączenie wysokiej zgodności, niewielkiej liczby modyfikowanych atrybutów
i wysokiego pokrycia dowodzi potencjalnej użyteczność metody.

Studium przypadku: Rekomendacje dla pacjenta w terapii
antyretrowirusowej

Analiza działania algorytmu rekomendacji przeżyciowych reguł akcji została prze-
prowadzona na zbiorze danych actg320 z badania AIDS Clinical Trials Group Study
320. Wybór tego zbioru wynika z najwyższego wskaźnika spójności (S0.05 = 100%)
oraz najniższej wartości MAE (0.09) spośród wszystkich zbiorów medycznych.
Zbiór charakteryzuje się pełnym pokryciem (100%) i zawiera 19 reguł akcji.

Studium przypadku dotyczy pacjenta o indeksie 38 z pierwszego podzbioru
walidacji krzyżowej. Profil kliniczny pacjenta obejmuje następujące parametry:
wiek 36 lat (age = 36), płeć męska (sex = 1), rasa biała (raceth = 1), brak
hemofilii (hemophil = 0), brak historii używania narkotyków dożylnie (ivdrug =
1), wynik 80 punktów w skali Karnofsky’ego (karnof = 80), liczba komórek CD4
wynosząca 3.0 komórek/µL (cd4 = 3.0) oraz 6-dniowa wcześniejsza ekspozycja
na azydotymidynę (priorzdv = 6). Początkowa predykcja wskazuje, że mediana
czasu przeżycia przekracza 364 dni (maksymalny czas obserwacji w badaniu), przy
prawdopodobieństwie przeżycia 364 dni wynoszącym 0.82.

Wskazane parametry odzwierciedlają zaawansowany stan kliniczny pacjenta
z HIV. Liczba komórek CD4 wynosząca 3 komórek/µL świadczy o ciężkiej im-
munosupresji (norma: 500–1200 komórek/µL), charakterystyczną dla AIDS [142].
Wynik 80 punktów w skali Karnofsky’ego oznacza normalną aktywność z wysił-
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kiem przy obecności objawów choroby, co odpowiada umiarkowanemu ograniczeniu
sprawności funkcjonalnej [143]. Krótka, 6-dniowa ekspozycja na azydotymidynę
może wskazywać na wczesny etap terapii antyretrowirusowej lub profilaktykę
poekspozycyjną [144, 145].

Proces generowania rekomendacji rozpoczęto od mapowania atrybutów pacjenta
na strukturę meta-danych zawierającą dyskretyzowane przedziały wartości dla 11
atrybutów klinicznych. Na tej podstawie utworzono reprezentację meta-obiektu,
co umożliwiło indukcję meta-reguły obejmującej trzy atrybuty. Otrzymana reguła
akcji wskazuje na modyfikację trzech parametrów klinicznych:

jeśli (cd4, (2.5, 5.75] Ñ (64.25, 65.0])^

(priorzdv, (5.5, 9.5] Ñ (9.5, 19.0])^

(karnof, (´8, 85.0] Ñ (95.0,+8))

to SZ(t) Ñ SD(t)

Reguła sugeruje zwiększenie liczby komórek CD4 z 3.0 do 64.5 (+61.5), wy-
dłużenie wcześniejszej ekspozycji na ZDV z 6 do 14 dni (+8 dni) oraz poprawę
wyniku w skali Karnofsky’ego z 80 do 100 punktów (+20 punktów). Modyfikacje
te dotyczą 27.3% dostępnych atrybutów (3 z 11 cech) i obejmują trzy aspekty
terapii HIV: poprawę stanu immunologicznego (cd4), optymalizację profilaktyki
antyretrowirusowej (priorzdv) oraz zwiększenie ogólnej wydolności funkcjonalnej
pacjenta (karnof ).

Rysunek 6.5 przedstawia krzywe przeżycia przed i po zastosowaniu rekomendacji.
Krzywa po wprowadzeniu zmian przebiega wyżej niż krzywa dla stanu wyjściowego,
co wskazuje na wzrost estymowanego prawdopodobieństwa przeżycia.

Analiza kliniczna wygenerowanych rekomendacji ujawnia trzy kierunki inter-
wencji terapeutycznej. Sugerowany wzrost liczby komórek CD4 z 3.0 do 64.5
odpowiada przejściu z zaawansowanego niedoboru immunologicznego do poziomu
zbliżonego do dolnej granicy normy, zgodnie z celem terapii antyretrowirusowej,
jakim jest odtworzenie funkcji immunologicznej i trwała supresji wiremii [142,
146, 147]. Wskazanie na wydłużenie wcześniejszej ekspozycji na ZDV z 6 do 14
dni odnosi się do zmiennej opisowej priorzdv (historia stosowania zydowudyny)
i ma charakter nieakcyjny na etapie podejmowania decyzji terapeutycznych —
nie należy interpretować tego jako zalecenia wydłużania ani rozpoczynania PEP
w ramach bieżącego leczenia. Model w tym przypadku wykorzystuje asocjacje
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Rysunek 6.5: Krzywe przeżycia Kaplana-Meiera dla pacjenta przed i po zastoso-
waniu rekomendacji w zbiorze danych actg320. Wykres przedstawia porównanie
funkcji przeżycia dla oryginalnego profilu pacjenta oraz po modyfikacji zgodnej
z wygenerowaną regułą akcji.

zaobserwowane w danych (np. różnice wynikające z wcześniejszego stosowania
ZDV, w tym monoterapii), a nie sugeruje modyfikowalnej interwencji. W cyto-
wanych pracach [144, 145] zależność dotyczyła stosowania zydowudyny (ZDV)
w ramach profilaktyki poekspozycyjnej. Wzrost wyniku w skali Karnofsky’ego
z 80 do 100 punktów odpowiada przejściu od ograniczonej aktywności życiowej do
pełnej sprawności funkcjonalnej [143].

Studium przypadku ilustruje zdolność algorytmu do identyfikacji spójnych mo-
dyfikacji parametrów terapeutycznych w leczeniu HIV. Wygenerowana reguła akcji
integruje trzy niezależne domeny kliniczne: status immunologiczny, historię farma-
koterapii oraz sprawność funkcjonalną pacjenta, tworząc wielowymiarowy profil
interwencji. Zbieżność z modelem arbitra (MAE = 0) potwierdza wewnętrzną spój-
ność obliczeń, a jawność składników reguły (konkretne przedziały dla cd4, priorzdv
i karnof ) ułatwia weryfikację kliniczną oraz ocenę wykonalności proponowanych
modyfikacji.
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6.5 Algorytm indukcji przeżyciowych reguł wyjątków

W niniejszej sekcji przedstawiono wyniki eksperymentów dla algorytmu indukcji
przeżyciowych reguł wyjątków opisanego w Sekcji 5.4. Ze względu na eksploracyjny
charakter metody, eksperymenty przeprowadzono na pełnych zbiorach danych,
bez stosowania walidacji krzyżowej. Wykorzystanie całego zbioru danych zwiększa
liczbę przykładów spełniających warunki reguł, co ułatwia wykrywanie wyjątków
i zmniejsza ryzyko, że rzadkie wzorce nie spełnią wymagań pokrycia po podziale
na zbiory treningowe i testowe.

Konfiguracja eksperymentów była następująca: mincov = 1 (minimalna liczba
niepokrytych przykładów), max_growing = 5 (maksymalna liczba warunków
w regule), α = 0.05 (próg istotności), a miarą oceny jakości był test log-rank.
Celem eksperymentów była identyfikacja trójek (CR, RR, ER), w których ER
definiowana jest względem CR i RR jako CR ^ RR, reprezentujących nietypowe
wzorce przeżycia.

Reguły wyjątków wykryto w 16 z 27 analizowanych zbiorów danych (59%),
zgodnie z ich definicją — małe pokrycie i wysoka specyficzność. W pozostałych
zbiorach ich brak zwykle wynika z niewystarczającej liczby obserwacji spełniających
jednocześnie warunki reguł CR i RR oraz z przyjętych wartości progowych (mincov,
próg istotności).

Tabele 6.11 i 6.12 przedstawiają liczbę reguł CR — interpretowanych jako próby
identyfikacji wyjątków — oraz liczbę wyjątków ER wykrytych w ramach tych
prób, dla każdego analizowanego zbioru danych. Łącznie w zbiorach z dziedziny
diagnostyki predykcyjnej maszyn przeprowadzono 40 prób, z czego 16 zakończyło
się identyfikacją wyjątków, natomiast w zbiorach medycznych przeprowadzono 99
prób, z czego 37 zakończyło się wykryciem wyjątków. Najwyższy udział wyjątków
odnotowano w zbiorach Maintenance i cancer : odpowiednio 10/20 (50.0%) oraz
12/23 (52.2%).

Tabele 6.13 i 6.14 prezentują wybrane reguły wyjątków dla obu grup zbiorów
danych. W zbiorach przemysłowych przeważają reguły opisujące skrajne warto-
ści parametrów operacyjnych (np. wysoka temperatura w połączeniu z wysokim
prądem w zbiorze LEDLife), natomiast w zbiorach medycznych częste są złożone
interakcje czynników demograficznych i klinicznych (np. wiek wraz z parametrami
morfologii krwi w zbiorze mgus). Zidentyfikowano również wyjątki o niewielkim
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zbiór CR ER

AdhesiveBondB 2 0
Aircraft 1 0
KevlarVessel 2 0
LaminatePanel 2 0
LEDLife 2 1
Maintenance 20 10
NewSpring 2 1
NiCdBattery 2 1
PM 4 1
Tantalum 2 1
ZelenCap 2 1

Razem 41 16

Tabela 6.11: Liczba CR i ER dla zbio-
rów danych z Tabeli 6.1

zbiór CR ER

actg320 7 1
BMT-Ch 2 1
cancer 23 12
follic 2 2
GBSG2 11 2
hd 2 0
lung 5 2
Melanoma 8 1
mgus 9 5
pbc 2 1
std 11 2
uis 2 1
wcgs 8 5
whas1 2 0
whas500 2 1
zinc 3 1

Razem 99 37

Tabela 6.12: Liczba CR i ER dla zbio-
rów danych z Tabeli 6.3
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zbiór Reguła [p, P]

LEDLife DegreesC ě 102.00 ^ Current ě 35.00 [50, 133]
Maintenance team = TeamB ^ pressureInd ď 87.09 ^ moistureInd ď 123.46 [93, 800]
NewSpring stroke ě 65.00 ^ method = Old [16, 86]
NiCdBattery discharge_depth ě 50.00 ^ degrees_c ě 45.00 [16, 69]
Tantalum volts ď 49.00 ^ degrees_c ě 25.00 [1403, 1763]
ZelenCap volts ě 225.00 ^ degrees_c ě 175.00 [19, 51]

Tabela 6.13: Przykłady zidentyfikowanych wyjątków dla zbiorów danych z Ta-
beli 6.1. Dla każdego zbioru wybrano jedną regułę o największym pokryciu k.
W części ER podkreślono fragment odpowiadający CR, a fragment niepodkre-
ślony odpowiada RR. Każda reguła jest przedstawiona wraz z jej pokryciem
w formacie [k, n], gdzie k oznacza liczbę przykładów pokrytych przez ER, a n

— całkowitą liczbę przykładów w zbiorze danych.

pokryciu. Przykładowo, w zbiorze Melanoma jedna z reguł obejmuje 3 ze 164
obserwacji, co potwierdza identyfikację wzorców o wysokiej specyficzności progno-
stycznej.

Algorytm indukcji przeżyciowych reguł wyjątków wykazał zdolność do identyfi-
kacji znaczących wzorców odchyleń w 16 z 27 analizowanych zbiorów danych. Na
szczególną uwagę zasługują wyniki dla zbiorów Maintenance i cancer, które charak-
teryzują się najwyższą koncentracją wyjątków (odpowiednio 50.0% i 52.2%). Brak
publicznie dostępnych implementacji alternatywnych metod w dziedzinie indukcji
reguł wyjątków w analizie przeżycia uniemożliwia przeprowadzenie porównawczej
walidacji empirycznej.

Studium przypadku: Analiza reguł wyjątków w zbiorze danych
onkologicznych

Poniżej przedstawiono szczegółową analizę reprezentatywnej trójki (CR, RR, ER)
zidentyfikowanej przez algorytm w zbiorze danych cancer, dotyczącym przeżycia
pacjentów z zaawansowanym rakiem płuc. Zbiór ten charakteryzuje się najwyższą
liczbą wykrytych wyjątków — 12 z 23 reguł (52% wszystkich wygenerowanych
reguł).
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zbiór Reguła [p, P]

Melanoma thick ě 2.17 ^ age ě 13.00 ^ age ď 21.50 [3, 164]
GBSG2 pnodes ď 7.50 ^ estrec ě 5.50 ^ progrec ě 1.50 ^ estrec ď 825.50 ^

horTh = yes [115, 548]
cancer sex ď 1.50 ^ ph.karno ě 55.00 ^ age ě 60.50 ^ wt.loss ď 27.50 ^

ph.ecog ě 1.50 [14, 182]
follic age ď 56.75 ^ hgb ď 121.50 ^ hgb ě 102.50 [24, 432]
lung Operated = 1 ^ Stage3 ď 0.50 [211, 825]
mgus age ě 62.50 ^ hgb ď 12.85 [48, 192]
pbc bili ě 1.35 ^ chol ď 198.50 [8, 334]
std age ď 17.50 ^ os30d ď 0.50 ^ race = W [43, 701]
uis FRAC ď 0.88 ^ NDT ě 5.50 ^ FRAC ď 1.51 [68, 460]
whas500 age ě 67.50 ^ diasbp ď 65.50 [74, 400]
zinc sevdysp = Severe Dysplasia ^ cacent ě 2.39 [1, 344]

Tabela 6.14: Przykłady zidentyfikowanych wyjątków dla zbiorów danych z Ta-
beli 6.3. Dla każdego zbioru wybrano jedną regułę o największym pokryciu k.
W części ER podkreślono fragment odpowiadający CR, a fragment niepodkre-
ślony odpowiada RR. Każda reguła przedstawiona jest wraz z jej pokryciem
w formacie [k, n], gdzie k oznacza liczbę przykładów pokrytych przez ER, a n

— całkowitą liczbę przykładów w zbiorze danych.
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Algorytm zidentyfikował trójkę reguł ujawniającą nieoczekiwany wzorzec prze-
życia u starszych pacjentów płci męskiej z pozornie korzystnymi czynnikami
prognostycznymi. Pierwsza z reguł opisuje wzorzec bazowy (w nawiasach po-
dano liczbę obserwacji spełniających przesłankę reguły k oraz liczebność zbioru
obserwacji n).:

CR: jeśli (płeć ď 1.5 ^ ECOG ě 0.5 ^

Karnofsky ě 55 ^ utrata_wagi ď 27.5)

to mediana_przeżycia = 196.5 dni (k = 78, n = 228)

Druga reguła pełni rolę punktu odniesienia dla populacji starszych pacjentów:

RR: jeśli (wiek ě 72.5 ^ Karnofsky ě 55)

to mediana_przeżycia = 194.5 dni (k = 30, n = 228)

Trzecia reguła definiuje wyjątek jako kombinację warunków z dwóch poprzednich
reguł:

ER: jeśli (płeć ď 1.5 ^ ECOG ě 0.5 ^ Karnofsky ě 55 ^

utrata_wagi ď 27.5 ^ wiek ě 72.5)

to mediana_przeżycia = 116.0 dni (k = 11, n = 228)

Reguła bazowa (CR) obejmuje 78 pacjentów (84.6% współczynnik zdarzeń)
i dotyczy mężczyzn z umiarkowanym pogorszeniem wydolności według skali ECOG,
dobrą oceną w skali Karnofsky’ego oraz umiarkowaną utratą masy ciała. Reguła
referencyjna (RR) pokrywa 30 pacjentów (80.0% współczynnik zdarzeń) i dotyczy
starszych pacjentów z zachowaną dobrą wydolnością według skali Karnofsky’ego.
Wyjątek (ER) obejmuje 11 pacjentów należących zarówno do populacji CR, jak
i RR. Charakteryzuje się on istotnie wyższym współczynnikiem śmiertelności
(90.9%) oraz znacząco krótszym czasem przeżycia.

Walidacja statystyczna potwierdza poprawność identyfikacji wyjątku zgodnie
z kryteriami algorytmu. Test log-rank między regułami CR i RR wykazał brak
istotnej różnicy (p = 0.91), co wskazuje, że obie reguły opisują podobne wzorce
przeżycia. Natomiast porównanie CR z ER ujawniło istotną różnicę statystyczną
(p = 0.03), podczas gdy porównanie RR z ER dało wartość p = 0.07, bliską progu
istotności statystycznej.

141



6 Eksperymenty i przypadki użycia

Rysunek 6.6: Empiryczne krzywe przeżycia dla trójki reguł (CR, RR, ER)
zidentyfikowanej w zbiorze danych cancer.

Obserwowana jest istotna redukcja mediany przeżycia — z 196.5 dni (CR)
i 194.5 dni (RR) do 116.0 dni w grupie wyjątku, co stanowi spadek o około
40–41%. Obserwowany wzorzec wskazuje, że starsi pacjenci płci męskiej łączący
tradycyjnie „dobre” czynniki prognostyczne — zachowaną wydolność według skali
Karnofsky’ego i umiarkowaną utratę masy ciała — wykazują znacząco gorszą
prognozę niż każda z grup referencyjnych analizowana niezależnie. Różnice te są
wyraźnie widoczne na krzywych Kaplana-Meiera przedstawionych na Rysunku
6.6.

Szczegółowa analiza indywidualnych przypadków ujawnia wewnętrzne zróżnico-
wanie pacjentów spełniających kryteria reguły wyjątku, z wyodrębnieniem dwóch
wyraźnych wzorców. Pierwsza grupa (5 pacjentów) charakteryzuje się bardzo
krótkim przeżyciem (11–26 dni), znacznym ograniczeniem wydolności (ECOG =
2.0) oraz często znaczną utratą masy ciała. Druga grupa (6 pacjentów) wykazuje
dłuższe przeżycie (116–363 dni) przy mieszanych parametrach wydolności.

Identyfikacja tego wyjątku ma istotne implikacje kliniczne. Po pierwsze, wska-
zuje na ograniczenia standardowych skal prognostycznych (Karnofsky’ego, ECOG)
w populacji starszych pacjentów płci męskiej z nowotworem, które mogą masko-
wać subtelne, lecz krytyczne różnice w stanie ogólnym[148]. Po drugie, sugeruje
potrzebę opracowania dedykowanych modeli prognostycznych uwzględniających in-
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terakcje między wiekiem, płcią a innymi czynnikami prognostycznymi. W praktyce
klinicznej może to oznaczać konieczność rozszerzenia diagnostyki o kompleksową
ocenę geriatryczną (comprehensive geriatric assessment, CGA) oraz ostrożniejszego
podejścia do kwalifikacji tej grupy pacjentów do agresywnych terapii[149, 150, 151,
152].

Odkrycie to ilustruje potencjalną użyteczność algorytmu indukcji reguł wyjąt-
ków w identyfikacji nietypowych wzorców, które mogą pozostać niezauważone przy
stosowaniu tradycyjnych metod analizy. Wyjątek ten może prowadzić do sformuło-
wania nowych hipotez badawczych dotyczących mechanizmów biologicznych odpo-
wiedzialnych za obserwowany wzorzec oraz wskazywać potencjalne kierunki badań
w geriatroonkologii. Z punktu widzenia praktyki klinicznej obserwacja ta uzasadnia
włączenie oceny geriatrycznej do postępowania diagnostyczno-terapeutycznego
oraz ostrożniejszą kwalifikację do terapii o wysokiej intensywności w tej podgrupie
(por. Rysunek 6.6).

6.6 Interpretowalny zespół reguł przeżyciowych

W niniejszej sekcji przedstawiono wyniki eksperymentów dla interpretowalnego
zespołu reguł przeżyciowych (ang. interpretable rule-based survival ensemble, RSE)
opisanego w Sekcji 5.5. Eksperymenty przeprowadzono z użyciem 10-krotnej wali-
dacji krzyżowej, stratyfikowanej względem statusu zdarzenia, na zbiorach z Tabeli
6.1 i 6.3. Zastosowano następujące parametry: n = 100 (liczba estymatorów),
θ = t

a

|A|u (maksymalna liczba cech), α = 1.0 (próbkowanie bootstrap) oraz
σ = 5.0 (minimalny próg wsparcia). Główną metryką oceny był całkowity wskaźnik
Briera (IBS) mierzący dokładność estymacji funkcji przeżycia. Jako estymator
bazowy w architekturze zespołowej wykorzystano metodę Survival Rules (SR) [12,
126]. Ze względu na brak możliwości generowania skalarnych wskaźników ryzyka
dla metod RSE i SR, ograniczono ocenę zdolności dyskryminacyjnej do metryki
IBS.

Wyniki dla metody RSE porównano z metodami referencyjnymi: SR (ang. su-
rvival rules — indukcja reguł przeżyciowych z estymacją funkcji przeżycia [126]),
ST (ang. survival tree — pojedyncze drzewo przeżycia z podziałami opartymi na
statystyce log-rank i estymacją Kaplana-Meiera w liściach), RSF (ang. random
survival forest — losowy las drzew przeżycia z bootstrapowaniem próbek i losowym

143



6 Eksperymenty i przypadki użycia

wyborem cech), Cox — regularyzowana regresja Coxa z karą elastic net) oraz KM
(estymator Kaplana-Meiera — nieparametryczny estymator funkcji przeżycia).

zbiór RSE Cox KM RSF SR ST
AdhesiveBondB .16˘.04 .19˘.02 .21˘.03 .08˘.03 .16˘.08 .11˘.05
KevlarVessel .10˘.04 .06˘.02 .13˘.02 .04˘.02 .09˘.06 .05˘.03
LaminatePanel — .07˘.02 .17˘.03 .07˘.02 .04˘.03 .07˘.02
LEDLife .11˘.02 .07˘.01 .20˘.02 .06˘.01 .11˘.02 .06˘.01
Maintenance .03˘.00 .05˘.01 .05˘.01 .00˘.00 .01˘.02 .00˘.00
NewSpring .16˘.03 .12˘.04 .22˘.01 .14˘.05 .17˘.07 .14˘.05
NiCdBattery .11˘.02 .06˘.02 .18˘.03 .10˘.02 .13˘.05 .08˘.03
PM .08˘.01 .08˘.01 .08˘.01 .07˘.01 .08˘.01 .11˘.02
Tantalum .01˘.00 .01˘.00 .02˘.00 .02˘.00 .01˘.00 .02˘.00
ZelenCap .19˘.03 .16˘.04 .20˘.04 .19˘.06 .20˘.06 .18˘.05

Tabela 6.15: Wartości metryki IBS (średnie wartości obliczone na podzbiorach
w ramach walidacji krzyżowej) dla zbiorów z Tabeli 6.1. Objaśnienia skrótów
modeli: RSE = interpretowalny zespół reguł przeżyciowych, SR = survival
rules, ST = survival tree, RSF = random survival forest, Cox = regularyzowana
regresja Coxa z karą elastic net, KM = estymator Kaplana-Meiera.

Empiryczne wyniki dla metryki IBS przedstawiono w Tabeli 6.15 i 6.16. Analiza
predykcyjna wskazuje zróżnicowaną skuteczność metody RSE, zależną od charakte-
rystyk statystycznych badanych zbiorów danych. Najniższą wartość IBS uzyskano
dla zbioru Tantalum (0.01 ˘ 0.00), co daje wynik porównywalny z metodami Cox
i RandomSurvivalForest. Zbliżony poziom błędu odnotowano dla zbioru Mainte-
nance (0.03˘ 0.00). Dla pozostałych 19 zbiorów metoda RSE osiąga umiarkowaną
jakość predykcyjną, z wartościami IBS w zakresie 0.08–0.23.

Zbiór Aircraft został wykluczony z tabeli wartości IBS. Bardzo wysoki stopień
cenzurowania (99.3%) oraz złożona struktura uniemożliwiły stabilne wytrenowa-
nie wymaganej liczby estymatorów bazowych w ramach zespołu, co skutkowało
brakiem wyników dla tego zbioru danych.

Analiza porównawcza z metodami referencyjnymi wskazuje na systematyczną
przewagę RSE nad estymatorem Kaplana-Meiera (KM) w 96% przypadków (24
z 25). W porównaniu z metodami takimi jak random survival forest (RSF) i regre-
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zbiór RSE Cox KM RSF SR ST
GBSG2 0.19˘0.03 0.18˘0.03 0.20˘0.02 0.18˘0.04 0.19˘0.07 0.31˘0.07
Melanoma 0.18˘0.03 0.17˘0.04 0.21˘0.04 0.18˘0.04 0.17˘0.04 0.25˘0.08
actg320 0.06˘0.00 0.06˘0.00 0.06˘0.00 0.06˘0.00 0.06˘0.01 0.09˘0.01
BMT-Ch 0.23˘0.03 0.22˘0.03 0.26˘0.04 0.25˘0.07 0.20˘0.02 0.33˘0.10
cancer 0.19˘0.02 0.19˘0.03 0.18˘0.02 0.20˘0.02 0.17˘0.03 0.29˘0.06
follic 0.21˘0.04 0.19˘0.04 0.21˘0.04 0.22˘0.04 0.19˘0.04 0.29˘0.05
hd 0.22˘0.02 0.21˘0.02 0.23˘0.02 0.22˘0.02 0.21˘0.02 0.28˘0.02
lung 0.16˘0.02 0.15˘0.02 0.18˘0.02 0.15˘0.02 0.15˘0.02 0.17˘0.02
mgus 0.18˘0.01 0.18˘0.02 0.20˘0.01 0.16˘0.02 0.16˘0.03 0.26˘0.06
pbc 0.16˘0.01 0.15˘0.03 0.20˘0.02 0.14˘0.02 0.15˘0.02 0.24˘0.06
std 0.22˘0.03 0.22˘0.03 0.23˘0.03 0.23˘0.03 0.23˘0.04 0.34˘0.02
uis 0.19˘0.03 0.18˘0.04 0.20˘0.03 0.19˘0.03 0.15˘0.04 0.24˘0.05
wcgs 0.04˘0.01 0.04˘0.01 0.05˘0.00 0.04˘0.00 0.04˘0.01 0.07˘0.01
whas1 0.21˘0.05 0.24˘0.04 0.24˘0.04 0.20˘0.08 0.21˘0.05 0.32˘0.12
whas500 0.19˘0.02 0.18˘0.07 0.23˘0.02 0.18˘0.04 0.20˘0.04 0.31˘0.07
zinc 0.10˘0.02 0.12˘0.04 0.11˘0.02 0.09˘0.02 0.10˘0.02 0.15˘0.04

Tabela 6.16: Wartości metryki IBS (średnie wartości obliczone na podzbiorach
w ramach walidacji krzyżowej) dla zbiorów z Tabeli 6.3. Objaśnienia skrótów
modeli: RSE = interpretowalny zespół reguł przeżyciowych, SR = survival
rules, ST = survival tree, RSF = random survival forest, Cox = regularyzowana
regresja Coxa z karą elastic net, KM = estymator Kaplana-Meiera.
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sja Coxa, metoda RSE wykazuje zbliżoną skuteczność predykcyjną, szczególnie
w zbiorach o wysokim stopniu cenzurowania (powyżej 80%): Tantalum (98.2%)
oraz PM (91.7%).

Warto zwrócić szczególną uwagę na relację między metodą RSE a estymatorem
bazowym Survival Rules (SR). W 18 z 21 porównywanych przypadków (85.7%)
metoda zespołowa RSE nie daje statystycznie istotnej poprawy względem poje-
dynczego modelu SR. Zjawisko to wynika ze specyfiki algorytmów indukcji reguł.
W przeciwieństwie do zespołów modeli drzewiastych, które — mimo własnych me-
chanizmów regularyzacji (ograniczanie głębokości, minimalna liczba próbek w liściu,
przycinanie) — dodatkowo zmniejszają wariancję dzięki mniejszej współzależności
modeli bazowych (próbkowanie bootstrap, losowe podzbiory cech) i uśrednianiu,
reguły przeżycia charakteryzują się na ogół niższą wariancją już na poziomie
pojedynczego modelu (ograniczanie złożoności i długości reguł, minimalne progi
wsparcia/liczby zdarzeń, kryteria zatrzymania, przycinanie). W efekcie, łączenie
wielu modeli rzadko prowadzi do istotnego wzrostu trafności predykcyjnej, ale
zwiększa stabilność i ogólność modelu poprzez agregację zróżnicowanych reguł.

W tabelach wyników niektóre wartości oznaczono jako brakujące (—) ze względu
na ograniczenia obliczeniowe lub specyfikę algorytmów. W zbiorze LaminatePanel
brak wyników wynika z jednoatrybutowej struktury danych — w przypadku RSE
uniemożliwia ona wytrenowanie wymaganej liczby modeli składowych zespołu,
natomiast w przypadku RandomSurvivalForest prowadzi do błędów numerycznych
podczas trenowania w implementacji pakietu scikit-survival.

Aby potwierdzić różnice między metodami zastosowano nieparametryczny test
post hoc Dunna, oparty na różnicach średnich rang (średnich pozycji wyników
w grupach odpowiadających porównywanym metodom po uporządkowaniu wszyst-
kich obserwacji). Korekta Bonferroniego dostosowuje poziom istotności do liczby
porównań, kontrolując łączny błąd I rodzaju (odrzucenie hipotezy zerowej, która
w rzeczywistości jest prawdziwa). Analiza metryki IBS dla wszystkich zbiorów
medycznych i przemysłowych (Tabela 6.17) wskazuje na istotnie gorsze wyniki
estymatorów Kaplana-Meiera oraz SurvivalTree względem RSE (p ă 0.05). Róż-
nice względem RandomSurvivalForest, regresji Coxa i SurvivalRules nie osiągnęły
istotności statystycznej (p ą 0.05).

RSE uzyskuje wyniki porównywalne z najlepszymi metodami referencyjnymi
w zbiorach o wysokim stopniu cenzurowania, czego przykładem są zbiory Tantalum
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Model Średnia Średnia Różnica p-wartość Istotna
(kontrolny) (testowany)

RSF 0.1464 0.1351 -0.0113 0.4678 Nie
KME 0.1464 0.1694 0.0230 0.0000 Tak
SR 0.1464 0.1374 -0.0090 0.6618 Nie
Cox 0.1464 0.1413 -0.0051 2.7422 Nie
ST 0.1464 0.1899 0.0435 0.0004 Tak

Tabela 6.17: Test istotności różnic dla metryki IBS (test Dunna z korektą
Bonferroniego). Model kontrolny: RuleSurvivalEnsemble. Poziom istotności:
α = 0.05. Dane połączone ze wszystkich zbiorów. Objaśnienia skrótów modeli:
RSE = interpretowalny zespół reguł przeżyciowych, SR = survival rules, ST
= survival tree, RSF = random survival forest, Cox = regularyzowana regresja
Coxa z karą elastic net, KM = estymator Kaplana-Meiera.

(98.2% cenzurowania) i Maintenance (60.3% cenzurowania). W takich scenariuszach
niewielka liczba obserwowanych zdarzeń utrudnia ocenę modeli, a własności RSE

— bagging na próbkach bootstrap, losowy dobór cech oraz uśrednianie krzywych
KM reguł — wspierają stabilną estymację funkcji przeżycia.

Ograniczeniem metody RSE jest brak systematycznej poprawy względem es-
tymatora bazowego SurvivalRules, co pokazuje, że agregacja reguł nie redukuje
obciążenia modelu bazowego. Zaleta podejścia zespołowego jest natomiast re-
dukcja wariancji i większa stabilność predykcji między powtórzeniami uczenia
(różne próbkowania bootstrap i losowy dobór cech). W efekcie uzyskiwana jest
bardziej powtarzalna estymacja funkcji przeżycia przy porównywalnej średniej
jakości predykcyjnej.

Dodatkowym ograniczeniem RSE jest brak możliwości bezpośredniej oceny
zdolności dyskryminacyjnej. Wynika to z charakteru predykcji — RSE (podobnie
jak SR) estymuje dla każdej obserwacji krzywą przeżycia, a nie skalarny wskaźnik
ryzyka umożliwiający jednoznaczne porządkowanie par obserwacji. W efekcie ty-
powe miary dyskryminacji oparte na rangowaniu (porządkowaniu par obserwacji
według wartości przewidywanego wskaźnika ryzyka) nie są tu stosowalne, a po-
równania ogranicza się do metryk kalibracji, takich jak zintegrowany wskaźnik
Briera. W zastosowaniach, w których priorytetem jest interpretowalność i stabilna
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estymacja funkcji przeżycia, ograniczenie to może być akceptowalne ze względu na
większą przejrzystość procesu decyzyjnego.

Interpretowalny zespół reguł przeżyciowych (RSE) uzupełnia zestaw metod,
zapewniając kompromis między interpretowalnością a dokładnością predykcji.
W zbiorach o wysokim cenzurowaniu (np. Tantalum, Maintenance) utrzymuje niską
wariancję estymacji funkcji przeżycia i osiąga wyniki porównywalne z metodami
referencyjnymi. Nie wykazuje jednak systematycznej przewagi nad estymatorem
bazowym SurvivalRules. Wartość zespołu polega na redukcji wariancji poprzez
agregację niezależnych estymatorów oraz zwiększeniu stabilności wyników.

Wyniki mogą zostać uzupełnione o analizę interpretowalności dla wszystkich zbio-
rów danych. Dla każdego z nich można wyznaczyć globalny ranking ważności cech
na podstawie spadku wartości IBS po permutacji. Jako reprezentatywny przykład
wybrano zbiór NiCdBattery (umiarkowany poziom cenzurowania, mieszane typy
cech, wystarczająca liczba cech), a szczegółową analizę przedstawiono w dalszej
części rozdziału. Dla pozostałych zbiorów procedura przebiega analogicznie.

Studium przypadku: Analiza stabilności zespołu dla testów
żywotności akumulatorów NiCd

Analiza działania interpretowalnego zespołu reguł przeżyciowych została prze-
prowadzona na zbiorze danych NiCdBattery, dla którego metoda RSE osiągnęła
wynik IBS = 0.11 ˘ 0.02. Wybrano go ze względu na umiarkowany poziom cen-
zurowania oraz mieszaną reprezentacją atrybutów (numeryczne i kategoryczne).
Zespół obejmował 20 estymatorów bazowych trenowanych na próbkach bootstrap
z losową selekcją t

?
8u = 2 cech na model.

Zbiór NiCdBattery zawiera 8 cech objaśniających: discharge_depth, discharge_time,
charge_time, recharge_level, koh_concentration, koh_volume, precharge_time,
degrees_c. Cechy te opisują odpowiednio: poziom rozładowania ogniwa, czas rozła-
dowania, czas ładowania, docelowy poziom doładowania po ładowaniu, stężenie
roztworu KOH (elektrolitu), objętość roztworu KOH, czas wstępnego ładowania
oraz temperaturę procesu (w stopniach Celsjusza).

Łącznie uzyskano 69 reguł, przy czym na estymator przypadało od 2 do 10
reguł (mediana = 3).
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Analiza pokrycia na reprezentatywnych próbkach testowych wskazuje, że liczba
reguł aktywowanych dla pojedynczej obserwacji zależy od konfiguracji uczenia
(m.in. progów wsparcia i liczby estymatorów) i różni się między uruchomieniami.
Ze tego względu nie podaje się jednej stałej wartości.

Przykładowe reguły (rzeczywiste, z bieżącego uruchomienia):

• jeśli degrees_c P [35,+8) to S(t)

• jeśli discharge_depth P (´8, 50) to S(t)

• jeśli (degrees_c P (´8, 35) ^ koh_concentration P [32,+8)

^ charge_time P (´8, 1.25) ^ discharge_time P (´8, 2.50)) to S(t)

• jeśli degrees c P [35,+8) to S(t)

• jeśli discharge depth P (´8, 50) to S(t)

• jeśli (degrees c P (´8, 35) ^ koh concentration P [32,+8)

^ charge time P (´8, 1.25) ^ discharge time P (´8, 2.50)) to S(t)

Analizę globalnej ważności cech oparto na ważności permutacyjnej [79, 59].
Wpływ danej cechy mierzono jako spadek jakości (IBS) po losowym przemieszaniu
je wartości w zbiorze testowym, przy niezmienionych pozostałych zmiennych.
Różnica względem jakości bazowej definiowała ważność cechy.

Do obliczania IBS stosowano siatkę czterech punktów czasowych wybieranych
automatycznie i równomiernie w zakresie obserwowanych czasów w zbiorze testo-
wym [tmin, tmax). Punkt tmax pominięto, aby zapewnić zgodność z wymaganiami
metryki. W razie potrzeby siatkę przycinano do dopuszczalnego zakresu obserwacji.

W literaturze najczęściej stosuje się dwa warianty wyboru siatki czasów do
obliczania zintegrowanego wskaźnika Briera: wszystkie unikalne czasy zdarzeń
w zbiorze testowym lub gęstą, regularną siatkę (np. 50–200 punktów) ograniczoną
do przedziału [tmin, tmax). W niniejszym studium przyjęto uproszczoną, równo-
mierną siatkę czterech punktów jako kompromis obliczeniowy dla niewielkich
zbiorów, przy zachowaniu zgodności z wymaganiami metryki (wykluczenie punktu
tmax oraz przycinanie do rzeczywistego horyzontu obserwacji). Wybór ten nie
wpływa na interpretację metody, a w eksperymentach potwierdzono stabilność
kolejności najważniejszych cech także po zagęszczeniu siatki.
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Cecha Spadek IBS (po permutacji)
discharge_depth 0.0282 ˘ 0.0217
degrees_c 0.0112 ˘ 0.0060
precharge_time 0.0037 ˘ 0.0009
koh_concentration 0.0012 ˘ 0.0003
koh_volume 0.0005 ˘ 0.0007

Tabela 6.18: Wyniki interpretowalności dla zbioru NiCdBattery: ważność permu-
tacyjna (spadek IBS po permutacji cechy).

Zgodnie z miarą permutacyjną dla zbioru NiCdBattery (Tabela 6.18), naj-
wyższą ważność uzyskała cecha discharge_depth (spadek IBS po permutacji
= 0.0282 ˘ 0.0217). Kolejne w rankingu to: degrees_c (0.0112 ˘ 0.0060), pre-
charge_time (0.0037 ˘ 0.0009), koh_concentration (0.0012 ˘ 0.0003) oraz koh_vo-
lume (0.0005 ˘ 0.0007). Ranking wskazuje, że główne determinanty ryzyka w tym
zadaniu związane są z głębokością rozładowania, temperaturą oraz parametrami
procesu ładowania/rozładowania ogniw.

Bezwzględne spadki IBS są niewielkie, co wynika z faktu, że typowe wartości
tej metryki mieszczą się w przedziale około 0-0.25. Dla zbioru NiCdBattery wynik
bazowy wynosi IBS « 0.11, zatem spadek 0.0282 oznacza pogorszenie rzędu 25%
względem wartości bazowej, co wskazuje na istotny wpływ analizowanej cechy na
jakość predykcji.

Porównanie z metodami referencyjnymi potwierdza charakterystyczny profil
interpretowalnego zespołu. Przy wyniku IBS = 0.03 ˘ 0.00 metoda RSE osiąga
skuteczność porównywalną z regresją Coxa (IBS = 0.05 ˘ 0.01), przewyższając
estymator Kaplana-Meiera (IBS = 0.05 ˘ 0.01). Random Survival Forest uzyskuje
lepszy wynik (IBS = 0.00˘0.00), ale kosztem utraty interpretowalności na poziomie
poszczególnych decyzji.

Empiryczna walidacja czterech autorskich metod dostarcza kompleksowej charak-
terystyki możliwości i ograniczeń interpretowalnych podejść do analizy przeżycia.
Każdy algorytm wykazuje unikalne cechy i znajduje zastosowanie w różnych scena-
riuszach, takich jak eksploracja danych, generowanie rekomendacji predykcyjnych,
identyfikacja anomalii oraz stabilna estymacja zespołowa. Obserwowane zróżnico-
wanie charakterystyk predykcyjnych między domeną przemysłową (predykcyjne
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utrzymanie ruchu) a medyczną (badania kliniczne) potwierdza możliwość zasto-
sowania proponowanych metod w różnych kontekstach, czyli ich uniwersalność
w interpretowalnej analizie przeżycia.
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7 Podsumowanie

Analiza niezawodności i przeżycia obejmuje zbiór metod służących do modelowania
danych typu czas-do-zdarzenia, charakteryzujących się występowaniem cenzuro-
wania. Wymaga to stosowania podejść uwzględniających tę specyfikę. Pomimo
dostępności takich metod oraz zaawansowanych algorytmów uczenia maszynowego
typu „czarna skrzynka”, istnieje luka badawcza w zakresie interpretowalnych
metod uczenia maszynowego dedykowanych do analizy danych cenzurowanych.
W praktyce wykorzystuje się m.in. modele proporcjonalnych hazardów Coxa, pa-
rametryczne modele czasu życia (np. wykładniczy, Weibulla, log-normalny) oraz
drzewa przeżyciowe i ich zespoły. Modele Coxa ograniczają możliwość uchwycenia
nieliniowości i interakcji, pojedyncze drzewa często ustępują dokładnością podej-
ściom zespołowym, natomiast zespoły (np. przeżyciowe lasy losowe) cechują się
ograniczoną transparentnością procesu podejmowania decyzji. Podobna uwaga do-
tyczy rozbudowanych modeli regułowych — wraz ze wzrostem liczby reguł i liczby
warunków w regułach maleje ich transparentność. Jednocześnie w literaturze do-
minują zastosowania o charakterze predykcyjnym, podczas gdy inne zastosowania
reguł, takie jak reguły akcji i reguły wyjątków, pozostają słabiej rozpoznane w kon-
tekście danych cenzurowanych. Brakuje zatem metod interpretowalnych, które
wprost uwzględniają cenzurowanie, zapewniają wgląd w mechanizm decyzyjny
i jednocześnie oferują dobrą skuteczność predykcyjną. Problem ten nabiera szcze-
gólnego znaczenia w zastosowaniach o podwyższonych wymaganiach, gdzie decyzje
modeli mogą wpływać na bezpieczeństwo operacyjne, efektywność ekonomiczną lub
ciągłość działania. Ograniczona interpretowalność utrudnia w takich przypadkach
walidację i wdrażanie modeli.

Celem niniejszej rozprawy doktorskiej było opracowanie interpretowalnych me-
tod analizy niezawodności i przeżycia, wykorzystujących algorytmy indukcji reguł
logicznych dostosowanych do specyfiki danych cenzurowanych, oraz wykazanie
ich skuteczności i potencjalnej użyteczności w zastosowaniach medycznych oraz
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w predykcyjnym utrzymaniu ruchu. Praca koncentrowała się na rozwoju nowych
algorytmów łączących interpretowalność z dobrą skutecznością predykcyjną, umoż-
liwiających ekspertom dziedzinowym zrozumienie i weryfikację mechanizmów
decyzyjnych.

W ramach realizacji głównego celu opracowano cztery oryginalne algorytmy,
które stanowią zasadniczy wkład naukowy pracy. Pokryciowy algorytm indukcji
przeżyciowych reguł akcji adaptuje strategię sekwencyjnego pokrywania do danych
cenzurowanych, odkrywając wzorce regułowe. Algorytm rekomendacji przekłada
przeżyciowe reguły akcji na zalecenia dla pojedynczych obiektów, wykorzystując
m.in. meta-tablicę oraz weryfikację statystyczną. Algorytm przeżyciowych reguł
wyjątków (CR, RR, ER) stosuje sekwencyjne wyszukiwanie wyjątków dostosowane
do danych przeżyciowych. Z kolei interpretowalny zespół reguł przeżyciowych
agreguje modele regułowe, zachowując interpretowalność. Metody te łączy wspólna
reprezentacja decyzyjna w postaci reguł typu „jeśli-to”, możliwość prześledzenia
uzasadnień decyzji na poziomie reguł oraz dostosowanie do specyfiki danych cen-
zurowanych. Na tle istniejącej literatury wprowadzają one nowe elementy, w tym
adaptację strategii sekwencyjnego pokrywania do analizy przeżycia, procedurę
rekomendacyjną opartą na meta-tablicy z mechanizmem rozstrzygania konfliktów
reguł, formalne ujęcie wyjątków (CR, RR, ER) dla danych przeżyciowych oraz
interpretowalny zespół reguł umożliwiający odtworzenie podstaw decyzji. W kon-
sekwencji zaproponowane algorytmy stanowią rozwiązania nowe bądź rozwijające
istniejące nurty metod regułowych.

Pokryciowy algorytm indukcji przeżyciowych reguł akcji i algorytm rekomendacji
są komplementarne — pierwszy odkrywa reguły wyodrębniające podgrupy o od-
miennych krzywych przeżycia, a drugi przekłada je na zalecenia dla pojedynczych
obiektów. Zastosowanie sekwencyjnego pokrywania do danych cenzurowanych
pozwala maksymalizować wartość statystyki log-rank mierzącej różnicę między
krzywymi przeżycia dla obserwacji spełniających regułę a pozostałymi obser-
wacjami (wyższa wartość wskazuje na większą rozbieżność między krzywymi),
kontrolować nakładanie się i pokrycie reguł oraz ograniczać liczbę warunków
w regułach. W konsekwencji prowadzi to do zbioru reguł o krótkich, zrozumiałych
przesłankach i niskim nakładaniu pokryć (niewielkim odsetku obserwacji speł-
niających wiele reguł). Cenzurowanie uwzględniono poprzez zastosowanie miar
specyficznych dla analizy przeżycia (KM, log-rank), a interpretowalność uzyskuje
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się dzięki regułom. W eksperymentach (Rozdział 6) reguły akcji osiągały wysoki
odsetek istotności w teście log-rank dla obu domen, a rekomendacje cechowały
się wysoką spójnością z niezależnym modelem arbitra (wysokie wartości S0.05

i niskie MAE), przy jednocześnie niewielkiej liczbie modyfikowanych atrybutów.
Ograniczeniem metody jest asocjacyjny charakter rekomendacji — reguły opisują
współwystępowanie określonych konfiguracji atrybutów (i sugerowanych akcji)
z odmiennym kształtem krzywych przeżycia, ale nie dowodzą istnienia związku
przyczynowo-skutkowego pomiędzy tymi konfiguracjami. Potencjalne zastosowania
obejmują predykcyjne utrzymanie ruchu (harmonogramy i parametry eksploatacji),
medycynę (scenariusze modyfikacji terapii) oraz analizy typu „jeśli-to”.

Algorytm przeżyciowych reguł wyjątków umożliwia odkrywanie rzadkich, nie-
oczywistych wzorców w danych cenzurowanych, przy zachowaniu interpretowalności
wynikającej ze struktury reguł. Podejście opiera się na wyznaczeniu zbioru trzech
reguł — reguły bazowej (CR), reguły referencyjnej (RR) oraz reguły wyjątku
(ER). Reguła bazowa opisuje typowe relacje obecne w danych. Regułę referencyjną
(RR) definiuje się tak, aby krzywa KM nie różniła się istotnie od CR. Pozwala to
odfiltrować pozorne wyjątki — gdyby sama RR odpowiadała innej krzywej KM
niż CR, różnica zostałaby wykryta w porównaniu CR-RR i RR nie pełniłaby roli
referencyjnej. W konsekwencji istotne różnice obserwuje się dopiero dla reguły
wyjątku, tj. koniunkcji CR ^ RR, dla której krzywa przeżycia różni się istotnie
zarówno od CR, jak i od RR. Porównania krzywych KM w parach CR-RR, CR-ER
oraz RR-ER przeprowadza się testem log-rank. Takie podejście ogranicza liczbę po-
zornych wyjątków (sytuacji, w których sama RR różni się istotnie od CR, więc ich
kombinacja nie stanowi rzeczywistego wyjątku) i dostarcza uzasadnienia, dlaczego
dana reguła jest wyjątkiem. Wyjątki pokrywają zwykle niewielkie zbiory obserwa-
cji, co może prowadzić do mało precyzyjnych oszacowań (szersze przedziały ufności
KM). Stąd uzyskane rezultaty wymagają ostrożnej interpretacji i potwierdzenia
w ocenie eksperckiej. Potencjalne zastosowania obejmują wczesne ostrzeganie o nie-
oczywistych ryzykach w utrzymaniu ruchu, identyfikację fenotypów o odmiennym
rokowaniu w medycynie oraz generowanie hipotez badawczych.

Interpretowalny zespół reguł przeżyciowych to model predykcyjny dla danych
cenzurowanych, łączący interpretowalność modeli regułowych z jakością predykcji
technik zespołowych. W założeniu podejście redukuje wariancję predykcji poprzez
agregację predykcji wielu modeli regułowych i zachowuje interpretowalność na
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poziomie reguł dzięki możliwości śledzenia ich aktywacji i oceny ich wkładów do
estymowanej funkcji przeżycia zespołu. Estymator bazowy to zbiór reguł przeżycio-
wych trenowany metodą separate-and-conquer na próbkach bootstrap w losowym
podzbiorze cech. Dla każdej reguły w zbiorze estymowana jest krzywa KM dla
pokrywanych obserwacji. Predykcja estymatora powstaje przez uśrednianie krzy-
wych KM aktywnych reguł, zaś predykcja zespołu przez agregację krzywych dla
wszystkich estymatorów. W eksperymentach uzyskano porównywalne wartości
metryki IBS względem random survival forest i modelu Coxa w części zbiorów,
szczególnie przy wysokim cenzurowaniu, zachowując jednocześnie transparent-
ność procesu decyzyjnego. Ograniczeniem jest brak skalarnego wskaźnika ryzyka,
co uniemożliwia ocenę zdolności dyskryminacyjnej. Przewaga nad pojedynczym
modelem regułowym nie zawsze jest istotna statystycznie, a złożoność rośnie
wraz z liczbą estymatorów bazowych. Potencjalne zastosowania obejmują scena-
riusze wymagające stabilnych, powtarzalnych krzywych przeżycia z możliwością
weryfikacji uzasadnień na poziomie reguł.

Przeprowadzono walidację empiryczną zaproponowanych metod na łącznie 27
zbiorach danych z domen przemysłowej oraz medycznej, zróżnicowanych pod
względem liczby cech, liczby obserwacji i poziomu cenzurowania. Procedura oceny
była dostosowana do charakteru metod — dla modeli zespołowych wyznaczano
zintegrowany wskaźnik Briera, dla reguł akcji i wyjątków stosowano test log-rank
oraz metryki opisujące strukturę i pokrycie reguł, natomiast dla algorytmu re-
komendacji raportowano spójność z niezależnym modelem walidacyjnym i błąd
MAE. Wyniki wskazują, że zbiory reguł akcji w większości przypadków dostar-
czały statystycznie istotnych wzorców, a generowane rekomendacje były spójne
z modelem arbitra przy niewielkiej liczbie modyfikowanych atrybutów. Reguły
wyjątków umożliwiały wykrywanie podgrup o nietypowych wzorcach w większości
zbiorów. Zespół reguł przeżyciowych osiągał wyniki porównywalne z metodami
referencyjnymi i przewyższał estymator Kaplana-Meiera, w szczególności przy
wysokim udziale obserwacji cenzurowanych.

Przykładowe obszary zastosowań obejmują medycynę oraz predykcyjne utrzy-
manie ruchu. W medycynie metody te mogą wspierać personalizację terapii,
np. poprzez identyfikację podgrup wymagających odmiennego postępowania oraz
formułowanie hipotez dotyczących modyfikacji leczenia. W predykcyjnym utrzyma-
niu ruchu mogą być wykorzystywane przy projektowaniu strategii konserwacyjnych
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poprzez identyfikację urządzeń o nietypowych wzorcach degradacji i analizę scena-
riuszy interwencji prewencyjnych. W ujęciu ogólnym opracowane metody wpisują
się w nurt interpretowalnego uczenia maszynowego, kładąc nacisk na przejrzystość
procesu podejmowania decyzji przez modele.

Opracowane metody wnoszą również wkład teoretyczny. Sformalizowano stra-
tegię sekwencyjnego pokrywania dla danych cenzurowanych, definiując funkcję
celu jako maksymalizację statystyki log-rank między krzywymi przeżycia części
źródłowej i docelowej oraz kryteria wzrostu i przycinania oparte na statystyce
log-rank i estymatorze Kaplana-Meiera. Zdefiniowano trójskładnikową strukturę
reguł (CR, RR, ER) dla analizy przeżycia wprowadzając procedurę weryfikacji
hipotez opartą na teście log-rank dla par CR-RR, CR-ER i RR-ER oczekując
braku istotnej różnicy między CR a RR, przy jednocześnie istotnych różnicach
między CR a ER oraz RR a ER. Ponadto sformułowano schemat rekomendacyjny
jako problem rozwiązywania konfliktów reguł oraz zaproponowano konstrukcję
interpretowalnego zespołu reguł przeżyciowych wraz z metodą agregacji krzywych
oraz estymacją ważności cech (m.in. metodą permutacyjną) i śledzeniem aktywacji
reguł. Elementy te porządkują terminologię i ramy formalne łączące indukcję reguł
z analizą przeżycia i mogą stanowić podstawę do dalszych analiz teoretycznych
oraz rozszerzeń.

Wyniki przedstawione w Rozdziale 6 obejmują: istotność zidentyfikowanych
wzorców w teście log-rank dla reguł akcji, spójność rekomendacji z niezależnym
modelem walidacyjnym (wysokie wartości S0.05 i niskie MAE), wykrywanie odręb-
nych podgrup przez reguły wyjątków oraz porównywalne wartości IBS zespołu
reguł względem random survival forest i Cox. Zespół reguł uzyskuje niższe wartości
IBS niż estymator Kaplana-Meiera, zwłaszcza przy wysokim cenzurowaniu. Wyniki
te łącznie potwierdzają tezę pracy o możliwości opracowania skutecznych i trans-
parentnych metod analizy niezawodności i przeżycia w oparciu o interpretowalne
algorytmy regułowe dostosowane do danych cenzurowanych.

Ograniczeniem przeprowadzonych badań jest m.in. koncentracja na wybranych
klasach reguł: regułach akcji, regułach wyjątków oraz zespole reguł. Inne paradyg-
maty regułowe (np. reguły asocjacyjne, zbiory kontrastowe) nie były przedmiotem
analizy. Analiza złożoności obliczeniowej nie była przedmiotem niniejszej rozprawy.
Wiarygodna charakterystyka wymagałaby parametrycznej, etapowej analizy zależ-
ności od struktury danych, sposobu dyskretyzacji, kryteriów stopu i przyjętych
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heurystyk wyszukiwania, co zaplanowano jako kierunek dalszych prac. Dodatkowo,
walidację przeprowadzono na ograniczonym zestawie danych. Liczba publicznie
dostępnych zbiorów benchmarkowych dla analizy przeżycia jest ograniczona w po-
równaniu z klasyfikacją i regresją. W niniejszej pracy wykorzystano publicznie
dostępne zbiory medyczne oraz syntetyczne dane z obszaru predykcyjnego utrzy-
mania ruchu, co należy uwzględnić przy uogólnianiu wniosków na inne domeny.

Kierunki dalszych badań obejmują m.in. rozszerzenie metod na inne typy reguł.
Dotyczy to zarówno reguł asocjacyjnych dostosowanych do danych przeżyciowych
jak i zbiorów kontrastowych, rozumianych jako wzorce istotnie różnicujące krzywą
przeżycia wyodrębnionych podzbiorów względem zbioru odniesienia. Kierunek ten
nawiązuje do wyników [153], które wykazały skuteczność heurystyki separate-and-
conquer w wyznaczaniu zbiorów kontrastowych także dla danych przeżyciowych.
Z perspektywy kosztów obliczeń kierunkiem rozwojowym są algorytmy przyrostowe
(ang. online) oraz metody przybliżone (próbkowanie, ograniczanie przestrzeni
wyszukiwania), które znajdują zastosowanie w analizie danych strumieniowych
i w warunkach ograniczonych zasobów.
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Spis skrótów

AFT model przyspieszonego czasu do awarii (ang. accelerated failure time)
AUC pole pod krzywą (ang. Area Under the Curve)
CBM strategia utrzymania ruchu na podstawie stanu technicznego (ang.

Condition-Based Maintenance)
CDF dystrybuanta skumulowana (ang. cumulative distribution function)
CR reguła bazowa (ang. commonsense rule)
ER reguła wyjątku (ang. exception rule)
GAM uogólnione modele addytywne (ang. generalized additive models)
IBS zintegrowany błąd Briera (ang. Integrated Brier Score)
IoT Internet Rzeczy (ang. Internet of Things)
k-NN algorytm k-najbliższych sąsiadów (ang. k-nearest neighbors)
MAE średni bezwzględny błąd (ang. mean absolute error)
MSE średni błąd kwadratowy (ang. mean square error)
PdM predykcyjne utrzymanie ruchu (ang. predictive maintenance)
PDP wykresy zależności częściowej (ang. partial dependence plots)
PM prewencyjne utrzymanie ruchu (ang. Preventive Maintenance)
RR reguła referencyjna (ang. reference rule)
RSE interpretowalny zespół reguł przeżyciowych (ang. Rule Survival En-

semble)
RTF strategia do wystąpienia uszkodzenia (ang. Run to Failure)
TTF czas do awarii (ang. time-to-failure)
Cox regularyzowana regresja Coxa z karą elastic net
KM estymator Kaplana-Meiera
RSF random survival forest
SR Survival Rules
ST Survival Tree
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