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1 Woprowadzenie

Analiza niezawodnosci (ang. reliability analysis) i analiza przezycia (ang. survival
analysis) to dziedziny inzynierii i statystyki, ktérych przedmiotem jest modelowanie
danych typu czas-do-zdarzenia (ang. time-to-event). W odréznieniu od klasycznych
probleméw klasyfikacji i regresji, opierajacych sie na obserwacjach kompletnych,
metody analizy niezawodno$ci i przezycia umozliwiaja prace z danymi niepelnymi.
W przypadku takich danych informacja o momencie wystapienia zdarzenia beda-
cego przedmiotem zainteresowania jest dla cze$ci obserwacji niekompletna. Dane
tego typu okreslane sg jako cenzurowane (ang. censored), poniewaz obserwacja
zdarzenia zostaje przerwana przed jego wystapieniem z przyczyn niezaleznych od
badanego procesu [1, 2]. Zastosowanie klasycznych metod klasyfikacji i regresji do
danych cenzurowanych wymagatoby odrzucenia takich obserwacji, co prowadzitoby
do utraty informacji o procesie degradacji oraz do obcigzenia wynikéw analizy.
Ta réznica metodologiczna sprawia, ze analiza przezycia wymaga zastosowania
specjalistycznych technik statystycznych oraz algorytmow uczenia maszynowego
(ang. machine learning, ML).

Analiza niezawodnosci, jako zbiér metod analitycznych, dotyczy badania trwalo-
Sci 1 funkcjonalnosci systemow technicznych i koncentruje sie na analizie czasow do
awarii maszyn, urzadzen i komponentow, co umozliwia prognozowanie ich zywot-
nosci oraz planowanie strategii konserwacji [3]. Analiza przezycia, wywodzaca sie
ze statystyki medycznej, czyli dziedziny biostatystyki, zajmuje sie modelowaniem
czaséw do wystapienia okreslonych zdarzen medycznych, takich jak nawrot choroby
czy zgon pacjenta [4]. Pomimo réznego pochodzenia i kontekstow zastosowan,
oba podejscia opieraja si¢ na podobnych fundamentach matematycznych i stosuja
analogiczne metody statystyczne do modelowania proceséow czasowych, w ktérych
znaczenie ma obecnos¢ danych cenzurowanych.

Metody analizy niezawodno$ci i przezycia znajduja zastosowanie w réznych

dziedzinach nauki i przemystu. W medycynie wykorzystuje sie je do oceny sku-



1 Wprowadzenie

tecznosci terapii i analizy czynnikéw prognostycznych [1], natomiast w inzynierii
niezawodnosci wspomagaja projektowanie systeméw oraz planowanie konserwacji
[5, 6]. W ekonomii i finansach umozliwiaja modelowanie ryzyka kredytowego
i analize czasu do bankructwa [7], a w socjologii i demografii stuza do badania
momentoéw wystgpienia zdarzen spotecznych, takich jak znalezienie pracy, rozpad
zwiazku czy zakoriczenie edukacji [7, 8, 9]. Szczegdlnie waznym obszarem zasto-
sowan jest predykcyjne utrzymanie ruchu (ang. Predictive Maintenance, PdM),
w ktérym metody te wykorzystywane sa do przewidywania wystgpienia awarii
maszyn i urzadzen przemystowych [10] 3].

Charakterystyczna cechg danych w analizie niezawodnosci i przezycia jest ich
cenzurowany charakter, wynikajacy z ograniczen czasowych badan, zréznicowanych
warunkow obserwacji oraz heterogenicznosci analizowanych obiektow. W predykeyj-
nym utrzymaniu ruchu cenzurowanie oznacza, ze dla czedci urzadzen nie obserwuje
sie awarii w analizowanym okresie: moga by¢ one nadal eksploatowane, wymie-
nione profilaktycznie lub wycofane z innych przyczyn. Podobnie w medycynie,
pacjenci moga opusci¢ badanie przed wystapieniem interesujacego zdarzenia, a w
analizach ekonomicznych przedsigbiorstwa moga kontynuowaé¢ dziatalnos¢ poza
horyzont czasowy obserwacji. Ta niepelna informacja o czasach zdarzen stanowi
wyzwanie metodologiczne, ktorego tradycyjne metody klasyfikacyjne i regresyjne
nie sa w stanie odpowiednio uwzgledni¢, co prowadzi do obciazonych estymacji
i nieadekwatnego modelowania [2].

W obszarze analizy niezawodnosci i przezycia wyrdznia sie kilka gtéwnych ka-
tegorii metod, odmiennych pod wzgledem podejscia metodologicznego, poziomu
ztozono$ci oraz stopnia interpretowalnoéci. Przy czym, przyjeto rozroéznienie dwéch
powiazanych poje¢: interpretowalno$é¢ (ang. interpretability) oraz objasnialno$é
(ang. explainability). Interpretowalnosé jest cecha modelu i oznacza, ze mechanizm
generowania predykcji jest dla cztowieka zrozumiaty bez potrzeby dodatkowych
wyjasnien (np. drzewa decyzyjne, reguty). Objasnialno$¢ natomiast odnosi sie do
technik post-hoc, ktére dostarczaja wyjasnien dla modeli nieinterpretowalnych lub
dla pojedynczych predykeji (np. LIME, SHAP). W dalszej czeSci pracy konsekwent-
nie stosuje sie oba pojecia: w odniesieniu do modeli o przejrzystym mechanizmie
dziatania uzywa sie¢ terminu interpretowalne, natomiast w odniesieniu do wyja-
$nienn modeli typu ,czarna skrzynka” (ang. black box) lub wyjasnienn pojedynczych

predykcji — terminu objasnialne (por. Rozdzial .



Klasyczne metody statystyczne, reprezentowane przez estymator Kaplana-
Meiera oraz model proporcjonalnych hazardéw Coxa, stanowia podstawy analizy
przezycia [1]. Estymator Kaplana-Meiera umozliwia nieparametryczna estymacje
funkcji przezycia, czyli funkcji opisujacej prawdopodobienstwo niewystapienia
zdarzenia (np. awarii urzadzenia, zgonu pacjenta) przed okreslonym momentem
czasowym. Z kolei model Coxa pozwala analizowa¢ wplyw zmiennych objasnia-
jacych na funkcje hazardu, opisujacg chwilowe ryzyko wystapienia zdarzenia
w danym momencie, pod warunkiem ze nie wystapito ono wczesniej, przy zatoze-
niu proporcjonalnosci hazardow. Metody te cechujg sie wysoka interpretowalnoscia
i sy szeroko akceptowane zarowno w srodowisku akademickim, jak i w praktyce
przemystowej ze wzgledu na przejrzystos¢ procesu wnioskowania statystycznego.

Rozwéj uczenia maszynowego umozliwit zastosowanie zaawansowanych algoryt-
mow do probleméw analizy przezycia. Wsrod interpretowalnych metod w tej dzie-
dzinie dominuja przezyciowe drzewa decyzyjne [11] i przezyciowe reguly logiczne
[12], przystosowane do specyfiki danych cenzurowanych. Réwnolegle rozwijane sa
bardziej ztozone, nieinterpretowalne metody, takie jak przezyciowe glebokie sieci
neuronowe, zespoly klasyfikatoréw oraz metody kernelowe [13] [10], ktére oferuja
wysoka skutecznosé predykeyjna kosztem transparentnosci modeli.

Klasyczne metody statystyczne charakteryzujg sie interpretowalnoscig, ale napo-
tykaja na ograniczenia w modelowaniu wielowymiarowych, nieliniowych zaleznosci
typowych dla wspotczesnych danych przemystowych i medycznych. Model Coxa
zaktada proporcjonalnosé¢ hazardéow oraz liniowos¢ wpltywu zmiennych objasniaja-
cych na logarytm funkcji hazardu, co moze okazaé¢ si¢ nieadekwatne w przypadku
ztozonych proceséw degradacyjnych. Z kolei estymator Kaplana-Meiera, jako me-
toda nieparametryczna, nie uwzglednia wptywu zmiennych towarzyszacych na
funkcje przezycia, co ogranicza jego mozliwosci predykcyjne w analizach wielowy-
miarowych.

Zaawansowane metody uczenia maszynowego, takie jak gtebokie sieci neuronowe
czy zespoty klasyfikatorow, cho¢ oferuja wysoka skutecznos$é w modelowaniu zto-
zonych wzorcéw danych, klasyfikowane sg jako systemy typu ,,czarna skrzynka” ze
wzgledu na brak transparentnosci proceséw decyzyjnych [14]. W zastosowaniach
krytycznych, gdzie decyzje modeli majg bezposredni wpltyw na bezpieczenstwo,
efektywnosé ekonomiczna lub zycie ludzkie, brak zrozumienia mechanizméw decy-

zyjnych stanowi bariere we wdrazaniu tych technologii.



1 Wprowadzenie

W kontekscie potrzeby taczenia wysokiej skutecznosci predykeyjnej z interpreto-
walno$cig modeli, szczegdlne znaczenie w analizie przezycia zyskuja zaawansowane
metody regutowe i drzewiaste. Metody te umozliwiajg modelowanie nieliniowych,
wielowymiarowych zaleznosci przy zachowaniu transparentnosci proceséw wnio-
skowania.

Drzewa decyzyjne (ang. decision trees) mozna interpretowac jako hierarchicznie
uporzadkowany zbioér regut, gdzie kazda $ciezka od korzenia do lidcia odpowiada
pojedynczej regule. Z kolei reguty logiczne oferujg wiekszg swobode w modelowaniu
zaleznosci miedzy atrybutami, eliminujac ograniczenia typowe dla drzew. W prze-
ciwienstwie do drzew decyzyjnych, ktére wymagaja przejscia przez wszystkie wezty
na $ciezce od korzenia do liscia, reguty umozliwiaja wnioskowanie bez stalej ko-
lejnosci warunkoéw oraz moga opierac sie na podzbiorach atrybutéow. Moga one
opisywaé przecinajace sie zbiory przyktadow, podczas gdy drzewa charakteryzuja
sie roztacznym podziatem przestrzeni decyzyjnej, co moze ograniczaé¢ zdolnosé
modelowania zlozonych wzorcéw w danych. Dodatkowo, reguty logiczne lepiej
radzg sobie z brakami danych, bez koniecznosci stosowania podziatéow zastepczych
(ang. surrogate splits) charakterystycznych dla drzew, ulatwiajac interpretacje
modelu. Gtéwna wada metod regutowych jest zazwyczaj wyzsza ztozonos¢ oblicze-
niowa procesu indukcji w poréwnaniu z rekursywnym algorytmem budowy drzew,
jednak oferuja one wigksza réznorodnosé reprezentacji odkrytej wiedzy [15].

Uwzgledniajac powyzsze rozwazania, niniejsza praca koncentruje si¢ na interpre-
towalnych modelach w postaci regut logicznych jako alternatywie dla tradycyjnych
metod statystycznych oraz zaawansowanych algorytmow uczenia maszynowego
typu ,czarna skrzynka”. Reguty logiczne stanowia kompromis miedzy interpreto-
walnoscig a zdolnosciag modelowania ztozonych zaleznosci, oferujac jednoczeénie
kompatybilno$¢ z procedurami operacyjnymi stosowanymi w sSrodowiskach prze-
mystowych i medycznych.

W analizie niezawodnosci i przezycia reguly logiczne stosuje sie gtéwnie do bu-
dowy modeli predykcyjnych umozliwiajacych przewidywanie czasow do wystapienia
zdarzen. Jedyna znang implementacja dedykowana do danych cenzurowanych jest
biblioteka RuleKit [12], rozwijana przez naukowcéw z Politechniki Slaskiej. Zawiera
ona podstawowe algorytmy indukcji regut przezyciowych. Natomiast w zadaniach
klasyfikacyjnych reguty logiczne znajduja szersze zastosowanie, obejmujace od-

krywanie podgrup (ang. subgroup discovery) [16| [17], reguty akcji (ang. action



rules) |18, |19], reguly wyjatkéw (ang. exception rules) |20], zbiory kontrastowe
(ang. contrast-sets) [21] oraz reguly asocjacyjne (ang. association rules) (22} 23].

Reguly akcji formalizuja rekomendacje dotyczace zmian wartosci atrybutéw
w celu osiggniecia pozadanego rezultatu. Transformacje te reprezentowane sg przez
reguty postaci ,jesli (X,a — b) to (Y,c — d)”, gdzie modyfikacja atrybutu X
z wartosci a do b powoduje zmiang atrybutu Y z wartosci ¢ do d. Reguty wyjatkéw
identyfikujg nietypowe wzorce w danych poprzez kontrast miedzy reguta bazows
(opisujaca typowe zaleznosci w danych) a reguta wyjatku (opisujaca odstepstwa
od tej normy). Odkrywanie podgrup koncentruje sie na identyfikacji specyficznych
grup obserwacji wyrédzniajacych sie nietypowymi warto$ciami wzgledem zmiennej
celu. Zbiory kontrastowe opisuja réznice miedzy grupami, identyfikujgc atrybuty
o znaczaco réoznych rozktadach. Reguty asocjacyjne odkrywaja wspotwystepowanie
zdarzen lub wartosci atrybutéw w danych transakcyjnych [24].

W predykcyjnym utrzymaniu ruchu, a takze w innych obszarach, takich jak
medycyna, szczegdlng role petnig reguty akcji oraz reguty wyjatkéw ze wzgledu na
ich uzytecznos¢ w podejmowaniu decyzji operacyjnych. Reguty akcji umozliwiaja
generowanie konkretnych rekomendacji dotyczacych interwencji prewencyjnych,
np. ,,jesli temperatura tozyska przekroczy 80°C, a wibracje pozostang ponizej
5 mm/s, to zwiekszenie czestotliwosci smarowania z miesiecznej na tygodniowa
moze przedhuzy¢ czas do awarii z 30 do 90 dni”. W medycynie analogiczne reguty
moga sugerowa¢ modyfikacje terapii, np. ,,jesli pacjent zmieni dawke leku z 10mg
na 15mg dziennie, to prawdopodobienistwo remisji wzrosnie z 60% do 85%".

Regulty wyjatkéw identyfikuja sytuacje wymagajace szczegoélnej uwagi, dotyczace
np. urzadzen wykazujacych nietypowe wzorce degradacji lub pacjentéw o niestan-
dardowej odpowiedzi na terapie. W srodowiskach przemystowych umozliwia to
wykrywanie przypadkéw wymagajacych indywidualnego podejscia do konserwacji,
a w medycynie wspiera identyfikacje pacjentéw wymagajacych spersonalizowanych
protokotéw leczenia [23].

W analizie przezycia dodatkowym kierunkiem rozwoju metod regutowych sa
zespoly regut (ang. rule ensembles), ktore tacza zalety uczenia zespotowego (ang. en-
semble learning) z transparentnoscia modeli opartych na regutach. Zespoty regut
mogg przewyzszaé pojedyncze reguty pod wzgledem doktadnosci predykcyjnej,

zachowujac jednocze$nie mozliwos¢ analizy mechanizmoéw podejmowania decyzji.
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W przeciwienstwie do klasycznych metod zespotowych, zespoty regut umozliwiaja
weglad w proces agregacji predykeji na poziomie poszczegdlnych regut sktadowych.

Wyzwaniem w rozwoju interpretowalnych metod analizy niezawodnosci i prze-
zycia jest ich zastosowanie dla rzeczywistych danych, ktore cechuje wysoka hetero-
genicznos¢, wielowymiarowosé oraz ztozonos$é¢ procesow degradacyjnych. Walida-
cja skutecznosci takich metod w warunkach rzeczywistych zastosowan wymaga
uwzglednienia nie tylko doktadnosci predykeji, ale rowniez mozliwosci zrozumie-
nia mechanizméw prowadzacych do przewidywanych zdarzen przez ekspertéw
odpowiedzialnych za podejmowanie decyzji operacyjnych.

Wspétczesny przemyst charakteryzuje sie wysoka ztozonoscia maszyn oraz rosna-
cym znaczeniem technologii cyfrowych. Wymaga to zastosowania zaawansowanych
metod analitycznych do optymalizacji proceséw utrzymania ruchu [3]. Era Przemy-
shu 4.0 integruje fizyczne procesy produkcyjne z cyfrowymi systemami sterowania
typu SCADA (ang. Supervisory Control and Data Acquisition) oraz Internetem
Rzeczy (ang. Internet of Things, IoT) otwierajac nowe mozliwosci dla zastosowania
interpretowalnych metod analizy niezawodnosci w praktyce przemystowej [25].
Rosnaca ilos¢ danych generowanych przez czujniki IoT oraz systemy monitorowa-
nia stwarza potrzebe rozwoju metod analitycznych taczacych wysoka skutecznosé
predykcyjna z transparentnoscia procesow decyzyjnych, niezbedna w srodowiskach
przemystowych [10].

Problem interpretowalnosci w systemach analizy niezawodnosci nabiera szczegdl-
nego znaczenia dla odpowiedzialnos$ci prawnej, regulacji branzowych oraz koniecz-
nosci budowania zaufania personelu operacyjnego do systeméw automatycznych.
Decyzje podejmowane na podstawie analiz niezawodnosci czesto dotycza kosztow-
nych operacji remontowych, planowania przestojéow produkecyjnych czy alokacji
zasobow. W takich sytuacjach zrozumienie podstaw decyzji modelu umozliwia
efektywne zarzadzanie ryzykiem operacyjnym.

W kontekscie transparentnosci modeli uczenia maszynowego (szczegétowo omo-
wionej w Rozdziale [d}), w niniejszej pracy skupiono sie na modelach interpreto-
walnych, opracowujac interpretowalne metody analizy niezawodnosci i przezycia

oparte na regutach logicznych.
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1.1 Motywacja

1.1 Motywacja

Przeglad literatury naukowej ujawnia luke badawczg w zakresie interpretowalnych
metod uczenia maszynowego dedykowanych do analizy niezawodno$ci i przezycia.
Wickszos¢ istniejacych badan koncentruje si¢ na trzech gtéwnych nurtach: tra-
dycyjnych metodach statystycznych analizy przezycia, podstawowych metodach
interpretowalnych (takich jak proste drzewa i reguty przezyciowe) oraz zaawanso-
wanych algorytmach uczenia maszynowego o wysokiej ztozonosci. Istotny obszar
zaawansowanych interpretowalnych metod przystosowanych do specyfiki danych
cenzurowanych pozostaje jednak pomijany. W obszarach takich jak medycyna
i inzynieria niezawodnosci czesta obecnosé niepelnych obserwacji wymaga zastoso-
wania dedykowanych metod analitycznych. Dostepne interpretowalne metody nie
wykorzystuja w petni potencjatu zaawansowanych technik regutowych, takich jak
reguly akcji czy reguty wyjatkéw, co ogranicza ich zastosowanie w srodowiskach
wymagajacych wysokiej interpretowalnosci.

W nurcie statystycznym dominujg klasyczne podejscia oparte na estymatorze
Kaplana-Meiera, modelu Coxa oraz parametrycznych rozktadach przezycia, ktore
zapewniaja wysoka interpretowalnosé¢, lecz majg ograniczenia w modelowaniu zto-
zonych zaleznosci [1]. Proste metody interpretowalne, takie jak drzewa przezyciowe
i reguty przezyciowe, lepiej dostosowuja sie do réznorodnych wzorcéw danych, ale
wciaz charakteryzuja sie ograniczeniami w zakresie regut akcji, regut wyjatkow czy
interpretowalnych zespoléw. Natomiast w nurcie zaawansowanych metod uczenia
maszynowego przewazaja podejscia oparte na gtebokich sieci neuronowych, zespo-
tach klasyfikatoréw oraz metodach kernelowych, ktore oferuja wysoka skutecznosé
predykeyjna kosztem transparentnosci proceséow decyzyjnych [13].

Szczegdlnie zauwazalna jest nieobecnos¢ systematycznych badan nad zaawan-
sowanymi algorytmami indukcji regut dedykowanych dla danych cenzurowanych.
Cho¢ reguty logiczne znajduja zastosowanie w klasycznych problemach klasyfi-
kacji i regresji [22], ich adaptacja do analizy przezycia pozostaje w duzej mierze
nieopracowana. Istnieja co prawda implementacje podstawowych regut przezycio-
wych, takie jak biblioteka RuleKit [12], ale brakuje kompleksowego podejscia do
zaawansowanych mechanizméw regut akeji, algorytméw indukeji regut wyjatkéw

oraz interpretowalnych zespoléw regutowych w analizie przezycia [23] 24].
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1 Wprowadzenie

Motywacja do podjecia badan opisanych w niniejszej rozprawie jest potrzeba
rozszerzenia istniejacych interpretowalnych metod analizy niezawodnosci i przezy-
cia o zaawansowane mechanizmy regut akcji, algorytmy obstugi wyjatkow oraz
interpretowalne zespoly regutowe. Cho¢ podstawowe metody wykorzystujace re-
guty przezyciowe sg dostepne, istnieje potrzeba opracowania zaawansowanych
rozwigzan do generowania rekomendacji opartych na regutach akcji, identyfikacji
wyjatkéow w danych cenzurowanych oraz taczenia interpretowalnosci z niezawodno-
Scig zespotéw modeli. Rozwoj dziedzin stosujacych analize przezycia oraz rosnace
wymagania dotyczace transparentnosci systemow automatycznych generuja po-
trzebe nowej klasy narzedzi analitycznych o dobrej skutecznoéci i interpretowalnosci.
Opracowanie algorytmoéw indukcji regut dedykowanych do danych cenzurowanych
oraz integracja metod analizy przezycia z technikami uczenia maszynowego moze
przyczynic¢ sie do rozwoju interpretowalnych metod analizy niezawodno$ci. Takie
podejscie oferuje narzedzia skuteczne i zrozumiate dla uzytkownikéw koncowych

w medycynie, inzynierii niezawodnosci oraz w predykcyjnym utrzymaniu ruchu.

1.2 Cel i teza pracy

Gtownym celem niniejszej pracy jest opracowanie interpretowalnych metod ana-
lizy niezawodno$ci i przezycia oraz przedstawienie ich potencjalnej uzytecznosci
w zastosowaniach medycznych oraz w predykcyjnym utrzymaniu ruchu. Praca
koncentruje sie¢ na rozwoju nowych algorytméw indukeji regut, uwzgledniajacych
specyfike danych cenzurowanych i taczacych tradycyjne techniki analizy przezycia
z regutami logicznymi jako interpretowalnymi modelami uczenia maszynowego.
Opracowane metody majg zapewni¢ zaréwno dobrg skutecznosé predykcyjng, jak
i interpretowalnos¢, umozliwiajaca ekspertom dziedzinowym zrozumienie i weryfi-
kacje mechanizméw decyzyjnych w obszarach wykorzystujacych analize przezycia.

W ramach realizacji celu gtéwnego sformutowano nastepujace cele szczegdtowe:

1. Rozszerzenie podstaw teoretycznych integracji analizy przezycia z indukcja
regut poprzez ujednolicenie definicji i interpretacji regut dla danych cenzu-
rowanych oraz zdefiniowanie kryteriow oceny, selekcji i agregacji predykcji

w modelach i zespotach.
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1.3 Elementy oryginalne i wktad naukowy

2. Rozwdj pokryciowego algorytmu indukcji przezyciowych regut akcji oraz

algorytmu rekomendacji opartych na przezyciowych regutach akcji.

3. Opracowanie algorytmu indukcji przezyciowych regut wyjatkéw umozliwia-

jacego identyfikacje nietypowych wzorcéw w danych cenzurowanych.

4. Stworzenie interpretowalnego zespotu regut przezyciowych, taczacego zalety

uczenia zespotowego z transparentnoscia modeli regutowych.

5. Walidacja opracowanych metod na zréznicowanych zbiorach danych prze-
mystowych i medycznych, odzwierciedlajacych réznorodnosé i ztozonosé

problemow analizy przezycia.

6. Demonstracja potencjalnej uzytecznosci zaproponowanych metod poprzez
analize przypadkéw zastosowan w medycynie oraz w srodowiskach przemy-

stowych.

Na podstawie sformutowanych celéw gtéwna teza pracy brzmi nastepujaco:

Zastosowanie interpretowalnych metod uczenia maszynowego, w szcze-
g6lnosci algorytmoéw indukcji regul dostosowanych do specyfiki danych
cenzurowanych, umozliwia opracowanie skutecznych i transparentnych
narzedzi analizy niezawodnoSci i przezycia o szerokim zakresie zastoso-
wan, czego potwierdzeniem jest ich potencjalna uzytecznos$¢ w medycy-

nie oraz w predykcyjnym utrzymaniu ruchu.

1.3 Elementy oryginalne i wktad naukowy

Niniejsza praca wnosi wktad w rozwdéj dziedziny poprzez opracowanie nowych,
interpretowalnych metod analizy niezawodno$ci i przezycia, ktore wypekiaja
zidentyfikowang luke badawczg w obszarze taczacym analize przezycia z inter-
pretowalnym uczeniem maszynowym. Gléwne elementy oryginalnosci i wktadu

naukowego dotycza przede wszystkim aspektow metodologicznych:

1. Algorytmy przezyciowych regut akcji: Opracowano pierwszy w litera-
turze pokryciowy algorytm indukcji regut akcji, umozliwiajacy zastosowanie
strategii sekwencyjnego pokrywania do danych cenzurowanych, oraz komple-

mentarny algorytm rekomendacji, ktory wykorzystuje wygenerowane reguty
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1 Wprowadzenie

akcji do tworzenia interpretowalnych rekomendacji poprzez rozwiazywanie

konfliktéw miedzy pokrywajacymi sie regutami.

2. Algorytm indukcji przezyciowych regul wyjatkéw: Opracowano orygi-
nalny algorytm stanowiacy rozszerzenie klasyfikacyjnych regut wyjatkow na
potrzeby analizy przezycia, ktory indukuje reguty ztozone z trzech elementéw
(reguly bazowej, reguly referencyjnej oraz reguty wyjatku) i wykorzystuje

sekwencyjne wyszukiwanie wyjatkow w procesie indukcji regut.

3. Interpretowalny zespdl regul przezyciowych: Zaproponowano pierwszy
algorytm taczacy interpretowalno$¢ modeli regutowych z niezawodno$cia
technik uczenia zespotowego, ktory rozszerza paradygmat lasow losowych
poprzez zastapienie drzew decyzyjnych modelami regut przezyciowych z wy-

korzystaniem probkowania bootstrap i agregacji funkcji przezycia.

Ponadto praca zawiera zarowno elementy teoretyczne — w tym rozszerzenie
istniejacych algorytméw indukcji regut o nowe mechanizmy dedykowane do analizy
przezycia — jak i praktyczne, obejmujace demonstracje potencjalnej uzytecz-
nosci opracowanych metod w rzeczywistych zastosowaniach medycznych oraz
w predykcyjnym utrzymaniu ruchu.

Zgodnie z najlepsza wiedzg autora, przedstawione w pracy algorytmy stanowia
pierwsze tak kompleksowe badania w zakresie pokryciowych algorytmoéw indukeji
regut akcji, regut wyjatkow oraz zespoléw regut stosowanych do analizy przezycia.
Opracowane metody otwierajg nowy kierunek badan w obszarze taczacym inter-
pretowalne uczenie maszynowe z analizg niezawodnosci i przezycia, dostarczajac
podstaw do budowy narzedzi dla ekspertow dziedzinowych i wyznaczajac punkt

wyjscia dla dalszych prac badawczych w tej dziedzinie.

1.4 Uktad pracy

Prezentowana rozprawa doktorska sktada si¢ z siedmiu rozdzialéow, w ktorych
przedstawiono podstawy teoretyczne, metodologie, implementacje oraz poten-
cjalne zastosowania interpretowalnych metod analizy niezawodno$ci i przezycia
w medycynie oraz w predykcyjnym utrzymaniu ruchu.

Rozdzial [2| wprowadza kontekst zastosowan analizy niezawodnosci i przezy-

cia w srodowisku przemystowym, ze szczegdlnym uwzglednieniem predykcyjnego
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1.4 Uktad pracy

utrzymaniu ruchu jako strategii eksploatacyjnej wykorzystujacej zaawansowane
metody analizy danych typu czas-do-zdarzenia. Omdéwiono w nim strategie utrzy-
mania ruchu, stosowane technologie i metody, specyfike danych przemystowych
o naturalnie cenzurowanym charakterze oraz przyktady zastosowan metod analizy
przezycia w obszarze przemystowym i medycznym.

Rozdzial |3|stanowi podstawe teoretyczna rozprawy. Przedstawiono w nim podsta-
wowe pojecia analizy niezawodnosci jako dziedziny inzynierii oraz analizy przezycia
jako zestawu metod statystycznych. Oméwiono podobienistwa i réznice miedzy tymi
dziedzinami, funkcje statystyczne, rozktady prawdopodobienstwa oraz metody
estymacji stosowane w analizie niezawodnosci i przezycia. Rozdzial zawiera takze
szczegOtowa prezentacje klasycznych metod analizy przezycia, w tym estymatora
Kaplana-Meiera, modelu proporcjonalnych hazardéw Coxa oraz parametrycznych
modeli przezycia. Przedstawiono w nim ponadto zastosowania metod analizy
przezycia w inzynierii niezawodnosci, w tym przyktad wykorzystania estymatora
Kaplana-Meiera w analizie trwatosci pomp przemystowych. Stanowi to podstawe
dla dalszych analiz i zastosowan omawianych w kolejnych czesciach pracy.

Rozdzial [4] koncentruje sie na problematyce objasnialnosci i interpretowalnosci
W uczeniu maszynowym, ze szczegolnym uwzglednieniem ich znaczenia w predyk-
cyjnym utrzymaniu ruchu. Przedstawiono w nim przeglad metod objasnialnego
i interpretowalnego uczenia maszynowego, omawiajac podstawowe pojecia oraz ich
praktyczne implikacje. Rozdzial szczegdétowo analizuje réznice miedzy modelami
interpretowalnymi a modelami typu ,czarnej skrzynki”, prezentuje wspotczesne
techniki wyjasniania decyzji modeli uczenia maszynowego i podkresla znaczenie
interpretowalnosci w praktyce przemystowej, zwlaszcza dla odpowiedzialnosci
prawnej i budowania zaufania do systeméw automatycznych.

Rozdziat [5| rozwija zagadnienia przedstawione we wczesniejszych rozdziatach,
koncentrujac sie na regutach logicznych jako interpretowalnej metodzie analizy
danych cenzurowanych i predykcji awarii. Oméwiono w nim klasyczne metody
indukcji regut oraz zespotow regul, przedstawiajac szczegotowy przeglad literatury
dotyczacy zastosowan w analizie niezawodnosci i przezycia. Rozdzial zawiera takze
teoretyczne podstawy integracji metod analizy przezycia z algorytmami indukcji re-
gul oraz szczegdtowy opis czterech autorskich algorytmow opracowanych w ramach
pracy doktorskiej, kazdy przedstawiony z formalnym opisem matematycznym oraz

pseudokodem.
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1 Wprowadzenie

Rozdzial [0] prezentuje wyniki eksperymentéw oraz analize przypadkéw uzycia,
ktore stanowig empiryczng walidacje teorii i metod omowionych we wczesniej-
szych czesciach pracy. Bazujac na teoretycznych podstawach analizy niezawodnosci
i przezycia, roli objasnialnosci w modelach uczenia maszynowego oraz interpreto-
walnych metodach opisanych wczes$niej, eksperymenty koncentrujg sie na ocenie
skutecznosci zaproponowanych podej$¢ w medycynie i predykcyjnym utrzymaniu
ruchu. Przeprowadzono testy algorytméw na zréznicowanych zbiorach danych
odzwierciedlajacych typowe wyzwania w analizie przezycia i niezawodnosci, a wy-
niki eksperymentéw dla kazdego z czterech autorskich algorytmow zestawiono
z metodami referencyjnymi.

Rozdzial [7] stanowi podsumowanie pracy doktorskiej, przedstawiajac synteze
najwazniejszych wynikéw, wnioskow oraz wktadu do dziedziny. Omoéwiono w nim
gtowne osiggniecia w zakresie rozwoju interpretowalnych metod analizy niezawod-
nosci i przezycia oraz zakres potencjalnych zastosowan w medycynie i predyk-
cyjnym utrzymaniu ruchu oraz kierunki dalszych badan. Podkreslono znaczenie
integracji metod statystycznych z technikami uczenia maszynowego w kontekscie
interpretowalnosci, wskazano otwarte problemy badawcze wymagajace dalszych
prac, a takze przedstawiono refleksje nad ograniczeniami opracowanych metod

i propozycje ich przysztego rozwoju.
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2 Predykcyjne utrzymanie ruchu

Interpretowalne metody uczenia maszynowego znajduja zastosowanie w predyk-
cyjnym utrzymaniu ruchu, ktore stanowi wazny obszar analizy niezawodno$ci
i przezycia. Metody modelowania danych typu czas-do-zdarzenia dostarczaja
narzedzi statystycznych niezbednych do opisu proceséw degradacji urzadzen prze-
mystowych, przy jednoczesnym uwzglednieniu charakterystycznej dla srodowisk
przemystowych obecnosci danych cenzurowanych [3]. We wspétezesnym przemysle,
ktory charakteryzuje sie rosnaca ztozonoscig maszyn i dynamicznym rozwojem tech-
nologii cyfrowych, predykcyjne utrzymanie ruchu stanowi strategie eksploatacyjna,
umozliwiajaca optymalizacje harmonograméw konserwacji poprzez przewidywanie
momentow wystgpienia awarii.

Era Przemystu 4.0, wraz z powszechnym wdrazaniem rozwiazan Internetu Rzeczy
i systemow SCADA, umozliwita gromadzenie duzych ilosci danych operacyjnych
W czasie rzeczywistym, co stworzylo podstawe do implementacji zaawansowanych
strategii predykcyjnych opartych na metodach analizy niezawodnosci |25} [10]. Przej-
Scie ku Przemystowi 5.0 dodatkowo podkresla znaczenie predykcyjnego utrzymania
ruchu jako waznego elementu zréwnowazonego, zorientowanego na cztowieka podej-
Scia do zarzadzania produkcja [26]. Integracja fizycznych proceséw produkcyjnych
z cyfrowymi systemami zarzadzania umozliwia cigglte monitorowanie parametréw
technicznych maszyn i urzadzen, generujac dane o naturalnie cenzurowanym cha-
rakterze, typowym dla analizy przezycia. Niniejszy rozdzial przedstawia strategie
utrzymania ruchu, technologie i metody stosowane w predykcyjnym utrzymaniu
ruchu, charakterystyke danych przemystowych oraz zastosowania metod analizy

przezycia w srodowisku przemystowym.
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2 Predykcyjne utrzymanie ruchu

2.1 Strategie utrzymania ruchu

Wspétcezesne podejécia do zarzadzania utrzymaniem ruchu mozna systematyzowacé
zgodnie z norma PN-EN 13306:2018 27|, wyrézniajac cztery podstawowe strategie

eksploatacyjne:

strategia do wystapienia uszkodzenia,

strategia prewencyjnego utrzymania ruchu,

strategia utrzymania na podstawie stanu technicznego,

strategia predykcyjnego utrzymania ruchu.

Kazda z tych strategii charakteryzuje sie specyficznym podej$ciem do planowania
dziatan konserwacyjnych, ré6znym poziomem zaawansowania technologicznego oraz
odmiennymi skutkami ekonomicznymi i operacyjnymi. Wyboér odpowiedniej strate-
gii zalezy od charakterystyki eksploatowanych urzadzen, wymagan bezpieczenstwa,
dostepnosci zasobéw oraz celéw biznesowych organizacji [28].

Strategia do wystapienia uszkodzenia (ang. Run to Failure, RTF'), nazywana row-
niez konserwacja reaktywna (ang. Reactive Maintenance), polega na eksploatacji
urzadzen do momentu wystapienia awarii, bez podejmowania dziatan prewen-
cyjnych. Podejscie to charakteryzuje sie niskimi kosztami biezacej eksploatacji,
ale wiaze sie z wysokim ryzykiem nieplanowanych przestojéw oraz potencjalnie
wysokimi kosztami napraw w przypadku awarii. RTF znajduje uzasadnienie eko-
nomiczne w przypadku urzadzen o niskiej krytycznosci dla procesu produkcyjnego,
tatwej wymienialnosci oraz niskich kosztach zakupu, gdy koszt monitorowania
i konserwacji prewencyjnej przekraczalby korzysci z uniknigcia awarii.

Strategia prewencyjnego utrzymania ruchu (ang. Preventive Maintenance, PM)
polega na planowaniu dziatan konserwacyjnych w regularnych odstepach czasowych
lub po osiggnieciu okreslonych progow eksploatacyjnych, niezaleznie od rzeczywi-
stego stanu technicznego urzadzenia. Harmonogramy konserwacji sa ustalane na
podstawie zalecenn producentéw, danych historycznych lub norm branzowych [29].
PM umozliwia planowanie dziatan konserwacyjnych i alokacje zasobow, jednak
moze prowadzi¢ do nadmiernego serwisowania urzadzen znajdujacych si¢ w dobrym
stanie technicznym lub do niewystarczajacej konserwacji, gdy procesy degradacji

przebiegaja szybciej niz przewidziano w harmonogramie.
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2.2 Metody i technologie predykcyjnego utrzymania ruchu

Strategia utrzymania na podstawie stanu technicznego (ang. Condition Based
Maintenance, CBM) wykorzystuje ciggte lub okresowe monitorowanie parametrow
technicznych urzadzen w celu podejmowania decyzji dotyczacych prac konserwacyj-
nych. Dzialania prewencyjne sa inicjowane w momencie przekroczenia okreslonych
progéw alarmowych, ktore wskazuja na pogorszenie stanu technicznego. CBM
wymaga wdrozenia systemow monitorowania oraz ustalenia kryteriéw decyzyj-
nych, ale pozwala na optymalizacje czestotliwosci konserwacji, dostosowujac je do
rzeczywistego stanu urzadzen.

Strategia predykcyjnego utrzymania ruchu stanowi najbardziej zaawansowane
podejscie, ktore wykorzystuje modelowanie predykcyjne do przewidywania przy-
sztego stanu technicznego urzadzen. Predykcyjne utrzymanie ruchu integruje dane
z systemOw monitorowania z zaawansowanymi metodami analitycznymi, takimi
jak uczenie maszynowe czy analiza przezycia, co umozliwia prognozowanie czaséw
do awarii oraz optymalizacje harmonograméw konserwacji [30, 31]. Strategia ta po-
zwala na minimalizacje zaréwno kosztéw utrzymania, jak i ryzyka nieplanowanych
przestojow, dzieki planowaniu dziatan prewencyjnych w momencie optymalnym

wzgledem przewidywanej awarii.

2.2 Metody i technologie predykcyjnego utrzymania

ruchu

Predykcyjne utrzymanie ruchu wykorzystuje szerokie spektrum metod analitycz-
nych i technologii monitorowania, dopasowanych do rodzaju urzadzen oraz charak-
teru procesow degradacyjnych. Wspotcezesne systemy predykcyjnego utrzymania
ruchu tacza tradycyjne techniki inzynierskie z zaawansowanymi metodami analizy
danych, tworzac kompleksowe rozwigzania umozliwiajace skuteczne przewidywanie
awarii oraz optymalizacje strategii konserwacyjnych.

Tradycyjne metody analizy technicznej w predykcyjnym utrzymaniu ruchu obej-
mujg szeroki zakres technik diagnostycznych dostosowanych do rodzaju urzadzen
przemystowych. Analiza wibracji stanowi podstawowa metode diagnozowania stanu
tozysk, przektadni, sprzegiet oraz elementow wirujacych, umozliwiajac wykrywa-
nie niezrownowazenia, wspotosiowosci czy luzéw mechanicznych na podstawie

charakterystycznych czestotliwosci sygnatéw wibracyjnych [32].
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2 Predykcyjne utrzymanie ruchu

Termografia wykorzystuje promieniowanie podczerwone do identyfikacji pro-
bleméw zwiazanych z przegrzewaniem komponentéw elektrycznych, potaczen,
uktadéw chlodzenia oraz elementéw mechanicznych, pozwalajac na bezkontaktows,
ocene rozktadu temperatury na powierzchni urzadzen [33, [34} 35]. Analiza oleju
umozliwia ocene stanu uktadéw smarowania poprzez badanie wtasciwosci fizycz-
nych i chemicznych ptynéw eksploatacyjnych oraz wykrywanie czastek zuzycia
pochodzacych z wewnetrznych elementéw maszyn [36].

Uzupetieniem tradycyjnych metod sa analiza cisnienia w uktadach hydraulicz-
nych i pneumatycznych [37, 38|, monitoring natezenia pradu i napiecia w systemach
elektrycznych [39] oraz badania ultradZzwiekowe stuzace do wykrywania nieszczel-
nosci, wytadowan elektrycznych czy probleméw z tozyskami na wczesnym etapie
degradacji [40, 41]. Metody te charakteryzuja sie wysoka specjalizacja i wymagaja
eksperckiej wiedzy do interpretacji wynikéw, lecz jednoczes$nie zapewniajg wglad
w specyficzne mechanizmy degradacji, charakterystyczne dla réznych klas urzadzen
przemystowych [3].

Rozwd6j technologii [oT umozliwit implementacje zaawansowanych systemow
czujnikéw, ktore zapewniaja ciggle monitorowanie parametréw operacyjnych ma-
szyn i urzadzen w czasie rzeczywistym. Nowoczesne czujniki bezprzewodowe mierza
m.in. wibracje, temperature, ci$nienie, prad, napiecie, przepltyw oraz inne parame-
try fizyczne, a nastepnie przesylaja dane do centralnych systemoéow analitycznych
za posrednictwem protokotéow komunikacyjnych, takich jak LoRaWAN, Zigbee
czy bG [42, |43]. Integracja z systemami typu SCADA pozwala taczyé dane z po-
ziomu urzadzen przemystowych z nadrzednymi systemami zarzadzania produkcja,
tworzac kompleksowa infrastrukture monitorowania. Platformy loT wspieraja za-
rowno przetwarzanie danych w chmurze obliczeniowej, jak i wykorzystanie technik
przetwarzania brzegowego (ang. edge computing) do analizy w czasie rzeczywistym,
co stanowi podstawe zaawansowanych analiz predykcyjnych obejmujacych cate
zaktady przemystowe [30]. Mozliwos¢ integracji danych z wielu Zrédet — od pro-
stych czujnikéw temperatury po ztozone systemy wizyjne — zapewnia algorytmom
w predykcyjnym utrzymaniu ruchu dostep do zréznicowanych informacji. Coraz
czesciej do symulacji i predykceji zachowania urzadzen w réznych scenariuszach
operacyjnych stosuje si¢ takze technologie cyfrowych blizniakéw (ang. digital twins)
[44, 45].
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Metody uczenia maszynowego znajduja coraz szersze zastosowanie w predykcyj-
nym utrzymaniu ruchu, umozliwiajac automatyczne wykrywanie wzorcow degra-
dacji oraz przewidywanie awarii na podstawie danych historycznych i biezacych
pomiaréw [46, [10]. Algorytmy klasyfikacji stuza do kategoryzowania stanéw tech-
nicznych urzadzen, natomiast metody regresji umozliwiaja przewidywanie wartosci
parametrow technicznych w czasie. Techniki glebokiego uczenia — w szczegdlnosci
sieci LSTM (ang. long short-term memory) oraz konwolucyjne (ang. convolutional
neural network, CNN) — pozwalaja na modelowanie ztozonych zaleznosci w wie-
lowymiarowych szeregach czasowych pochodzacych z systeméw monitorowania
[47]. Z kolei metody zespotowe [48] oraz zaawansowane metody inzynierii cech,
takie jak transformacje falkowe (ang. continuous wavelet transform, CWT) [49] czy
analiza glownych sktadowych [50], zwiekszaja doktadnos$é predykeji, uwzgledniajac
jednoczesnie niepewno$¢ modeli i zmienno$é warunkéw operacyjnych [51].

Analiza anomalii w predykcyjnym utrzymaniu koncentruje sie na identyfika-
¢ji odstepstw od typowych wzorcow operacyjnych. Obejmuje zaréwno podejscia
statystyczne, jak i techniki uczenia maszynowego dostosowane do analizy szere-
géw czasowych, co umozliwia wezesne wykrywanie symptomow degradacji przed

wystapieniem krytycznych awarii [52].

2.3 Charakterystyka danych w predykcyjnym

utrzymaniu ruchu

Dane gromadzone w systemach predykcyjnego utrzymania ruchu charakteryzuja
sie specyficznymi cechami, ktére wynikajg z natury procesow przemystowych oraz
ograniczen praktycznych zwigzanych z monitorowaniem urzadzen w warunkach
operacyjnych. Zrozumienie charakterystyki tych danych pomaga w wyborze odpo-
wiednich metod analitycznych oraz skutecznego wdrazania strategii predykcyjnego
utrzymania ruchu w srodowiskach przemystowych.

Charakterystyczng cechg danych w predykcyjnym utrzymaniu ruchu jest ich
cenzurowany charakter, wynikajacy z faktu, ze w analizowanym okresie znaczna
czesci urzadzen nie ulega awarii. Urzadzenia te moga pozostawaé w eksploatacji do
korica okresu obserwacji, zosta¢ wymienione profilaktycznie w ramach planowanych

modernizacji lub wycofane z uzycia z przyczyn niezwiazanych z awarig techniczna.
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2 Predykcyjne utrzymanie ruchu

Taka niekompletna informacja o czasach awarii stanowi wyzwanie metodologiczne,
poniewaz tradycyjne metody analizy danych zakladajg dostepnosé kompletnych
obserwacji dla wszystkich analizowanych przypadkéw |2, 53]. Problematyka danych
cenzurowanych jest dobrze znana w niezawodno$ci przemystowej oraz w analizie
danych gwarancyjnych [54].

Ignorowanie cenzurowanego charakteru danych przemystowych w analizach
predykcyjnych prowadzi do btedéw w estymacji czaséw do awarii. Pominiecie
obserwacji cenzurowanych skutkuje utrata informacji o trwatosci urzadzen, ktore
pracowaly bezawaryjnie przez caly okres obserwacji, co prowadzi do pesymistycz-
nego obcigzenia modeli w kierunku zanizania przewidywanych czasow eksploatacji.
Z kolei traktowanie obserwacji cenzurowanych jako kompletnych, poprzez przypi-
sanie im czasu obserwacji jako momentu awarii, wprowadza btad w przeciwnym
kierunku — prowadzi do niedoszacowania ryzyka awarii [55].

Specyfika danych cenzurowanych w predykcyjnym utrzymaniu ruchu uzasadnia
stosowanie metod analizy przezycia, opracowanych specjalnie do pracy z niekom-
pletnymi obserwacjami czaséw do zdarzen [56, 1]. Metody te pozwalaja wykorzystaé
pelng informacje zawartg w danych, obejmujac zaréwno obserwowane awarie, jak
i okresy bezawaryjnego funkcjonowania urzadzen. Integracja analizy przezycia
z danymi przemystowymi umozliwia tworzenie modeli predykcyjnych, ktore szacuja
prawdopodobienstwo awarii oraz pozostaty czas uzytkowania urzadzen, uwzgled-
niajac niepewno$é¢ wynikajaca z cenzurowania danych [57].

Dane w systemach predykcyjnego utrzymaniu ruchu czesto charakteryzuja sie
wysoka wielowymiarowoscia, obejmujaca parametry operacyjne (temperatura,
ci$nienie, predko$é¢ obrotowa), warunki $rodowiskowe (temperatura otoczenia,
wilgotnosé), dane eksploatacyjne (czas pracy, liczba cykli) oraz informacje kontek-
stowe (typ urzadzenia, wiek, historia konserwacji). Taka struktura danych wymaga
budowy modeli predykcyjnych, ktore uwzgledniaja wpltyw wielu czynnikéow na pro-
cesy degradacji oraz zastosowania odpowiednich metod analizy wielowymiarowej

dostosowanych do specyfiki danych cenzurowanych [58].
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2.4 Przyktad zastosowania drzewa przezyciowego

w analizie danych przemystowych

W celu ilustracji zastosowania metod analizy przezycia w predykcyjnym utrzyma-
niu ruchu przedstawiono przyktad analizy danych pochodzacych z monitorowania
15 przemystowych pomp wirowych. Analiza wykorzystuje drzewo przezyciowe jako
interpretowalng metode uczenia maszynowego, ktora uwzglednia wpltyw warunkéw
operacyjnych na niezawodno$¢ urzadzen |11, [59]. Zbiér danych obejmuje zaréwno
obserwacje awarii, jak i dane cenzurowane. Drzewa przezyciowe stanowia rozsze-
rzenie klasycznych drzew decyzyjnych do analizy danych typu czas-do-zdarzenia
[60].

Zbior danych zawiera informacje o czasach obserwacji (w miesigcach), statusie
urzadzenia (awaria lub brak informacji o awarii, tj. cenzurowanie) oraz trzech
zmiennych objasniajacych: temperaturze pracy (°C), wilgotnosci wzglednej srodo-
wiska (%) oraz obciazeniu roboczym (% mocy nominalnej). Dane te odzwierciedlaja
typowe parametry monitorowane w systemach predykcyjnego utrzymania ruchu
oraz ilustruja wptyw warunkow operacyjnych na niezawodnos¢ urzadzen przemy-
stowych [61]. Podobne analizy niezawodno$ci, uwzgledniajace wpltyw warunkéw

srodowiskowych, stosuje sie réwniez w przypadku turbin gazowych [62].

T (°C) <= 74.8
n = 1000
y =10.6
True False
0 (%) <= 59.7 0 (%) <= 80.0
n = 499 n =501
y=13.4 y=179
W (%) <= 73.0 W (%) <= 64.9 0 (%) <= 66.2 W (%) <= 65.1
n =207 n = 292 n = 352 n =149
y =182 y =10.1
n =174 n =33 n =178 n =114 n = 246 n =106 n =92 n =57
y=183| [y=17.4| |y=119| |y=72 y=09.1 y =87 y=6.0 y=4.0

Rysunek 2.1: Drzewo przezyciowe dla zbioru danych pomp wirowych. Oznaczenia:
T — temperatura pracy (°C), O — obciazenie robocze (%), W — wilgotnosé
wzgledna (%), n — liczba obserwacji w wezle, § — przewidywana mediana

czasu przezycia (miesiace).
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Drzewo przezyciowe wygenerowane dla tego zbioru danych, przedstawione na
Rysunku[2.1] charakteryzuje si¢ hierarchiczng struktura podzialéw opartych na pro-
gowych warto$ciach zmiennych objasniajacych. Gtowny podzial w korzeniu drzewa
nastepuje na podstawie temperatury pracy, gdzie prog 74.8 °C oddziela pompy
pracujace w wysokiej temperaturze (>74.8°C) od urzadzen eksploatowanych
w standardowych warunkach termicznych (<74.8°C). Podzial ten odzwierciedla
krytyczny wpltyw temperatury na trwatos¢ komponentow mechanicznych oraz
efektywnos$¢ smarowania.

W weztach potomnych drzewo wprowadza dalsze podziaty na podstawie obcia-
zenia roboczego oraz wilgotnosci wzglednej. Dla pomp pracujacych w nizszej tem-
peraturze (<74.8°C) prég obciazenia wynosi 59.7% mocy nominalnej, z kolejnymi
podziatami przy wilgotnosci 73.0% i 64.9%. Dla pomp w wyzszej temperaturze
(>74.8°C) gléwny podzial nastepuje przy obciazeniu 80.0%, z dodatkowymi po-
dzialami przy obcigzeniu 66.2% oraz wilgotnosci 65.1%, ktore stanowig czynniki
ryzyka wplywajace na procesy degradacyjne.

Liscie drzewa reprezentuja grupy pomp o podobnych profilach niezawodnosci,
z oszacowanymi funkcjami przezycia specyficznymi dla kazdej kombinacji warun-
kéw operacyjnych. Grupa o najwyzszym ryzyku, reprezentowana przez skrajna
prawg Sciezke w drzewie, charakteryzuje sie mediang czasu do awarii wynoszaca 4.0
miesigce. Najbardziej niezawodna grupe stanowia pompy eksploatowane w najko-
rzystniejszych warunkach operacyjnych (skrajna lewa $ciezka), dla ktérych mediana
czasu do awarii wynosi 18.3 miesiaca. Pozostate liScie drzewa odpowiadaja grupom
o posrednich poziomach niezawodnosci, z medianami w zakresie od 6.0 do 17.4
miesiecy.

Drzewo przezyciowe jest modelem interpretowalnym, ktorego struktura podzia-
tow umozliwia priorytetyzacje dziatan konserwacyjnych na podstawie rzeczywistych
warunkow operacyjnych urzadzen. Struktura drzewa pozwala identyfikowaé kry-
tyczne kombinacje czynnikow wplywajgcych na niezawodnosé, co umozliwia opty-
malizacje harmonogramoéw konserwacji oraz modyfikacje warunkéw eksploatacji
w celu przedtuzenia zywotnosci urzadzen. Metoda ta taczy zalety interpretowal-
nosci charakterystycznej dla tradycyjnych podej$é inzynierskich z mozliwosciami
modelowania ztozonych zaleznosci oferowanymi przez uczenie maszynowe. Dalsze
rozszerzenia tej metodologii obejmuja zespolty drzew przezyciowych oraz zaawan-

sowane techniki typu boosting dostosowane do danych cenzurowanych [63].
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Analiza niezawodnosci i przezycia — wprowadzona w Rozdziale [1]i ilustrowana
przyktadami PDM w Rozdziale [2| — dostarcza podstaw teoretycznych do modelo-
wania danych typu czas-do-zdarzenia w kontekstach technicznych i medycznych
[5, 64]. To podejécie analityczne rozwijato sie poczatkowo w medycynie, gdzie
stuzyto do analizy dtugoterminowych wynikéw leczenia pacjentéw. Nastepnie zna-
lazto réwniez zastosowanie w inzynierii niezawodnosci, gdzie umozliwia precyzyjne
modelowanie proceséw degradacji urzadzen przemystowych. Wspolne fundamenty
teoretyczne obu zastosowan sprzyjaja transferowi wiedzy i metod pomiedzy domeng
medyczng a techniczna, gdyz podstawowy problem badawczy — modelowanie
czasu do wystapienia krytycznego zdarzenia w obecno$ci niepetnych obserwacji —
pozostaje taki sam niezaleznie od obszaru zastosowan. Uniwersalnosé¢ tego podej-
Scia sprawia, ze metody analizy przezycia znajduja zastosowanie w zarzadzaniu
ryzykiem operacyjnym, planowaniu strategii konserwacyjnych oraz optymalizacji
cykli zycia systemow technicznych.

Ze wzgledu na cenzurowany charakter danych (opisany w Rozdziale , trady-
cyjne metody klasyfikacyjne i regresyjne nie sg odpowiednie do analizy danych
przezyciowych, co uzasadnia potrzebe zastosowania dedykowanych metod. Cenzuro-
wanie stanowi wyzwanie metodologiczne, poniewaz dla czeéci obserwacji informacja
o czasie wystapienia zdarzenia jest niepetna — wiemy jedynie, ze zdarzenie nie
wystapito do momentu zakonczenia obserwacji lub ze nastgpito w okreslonym
przedziale czasowym. Ignorowanie obserwacji cenzurowanych prowadzi do obcigze-
nia estymatoréw w kierunku zanizania czasu pozostatego do wystapienia zdarzen,
co w praktyce przemystowej moze skutkowaé nieadekwatnym planowaniem kon-
serwacji i zwiekszonym ryzykiem nieplanowanych przestojéw. Z kolei prostsze
podejscia alternatywne, takie jak traktowanie obserwacji cenzurowanych jako
kompletnych na podstawie ostatniego znanego czasu obserwacji, prowadza do prze-

ciwnego rodzaju obcigzenia — przeszacowania rzeczywistych czaséw wystapienia

25



3 Analiza niezawodnosci i przezycia

zdarzen. Specjalistyczne metody analizy przezycia rozwiazuja te problemy poprzez
modelowanie procesu cenzurowania i wykorzystanie petnej dostepnej informac;ji,
w tym takze informacji zawartej w obserwacjach niekompletnych.

Ro6znice miedzy tradycyjnymi danymi regresyjnymi a danymi cenzurowanymi
mozna zilustrowac prostym przyktadem. W badaniu trwatosci 6 urzadzen, w pierw-
szym scenariuszu obserwowane sg wszystkie awarie — urzadzenia uleglty awarii
odpowiednio po 12, 18, 24, 30, 36 oraz 42 miesigcach eksploatacji. Dla takich
kompletnych danych mozna zastosowac¢ standardowa regresje liniowa, uzyskujac
Sredni czas do awarii wynoszacy 27 miesiecy. W drugim scenariuszu, czesciej
spotykanym w praktyce, u czesci obiektow wystepuje cenzurowanie prawostronne
(obserwacje zakonczono przed wystapieniem zdarzenia) — badanie koniczy sie po
30 miesigcach, w wyniku czego obserwowane sa awarie tylko trzech pierwszych
urzadzen (12, 18, 24 miesiace), podczas gdy pozostate trzy nadal funkcjonuja (dane
cenzurowane). Zastosowanie standardowej regresji tylko do obserwowanych awarii
datoby sredni czas 18 miesiecy, co stanowi znaczgce niedoszacowanie w porownaniu
z rzeczywistg wartoscig 27 miesiecy. Pominiecie obserwacji cenzurowanych skutkuje
wiec systematycznym btedem w kierunku zanizania czaséw do zdarzen.

Zaprezentowany przyktad ilustruje potrzebe stosowania specjalistycznych metod
analizy przezycia, ktore wykorzystuja informacje zawarta w obserwacjach cenzuro-
wanych. W rzeczywistych zastosowaniach odsetek takich obserwacji moze siggac
kilkudziesieciu procent, co sprawia, ze nie mozna ich pominaé — w szczegdlno-
Sci w przypadku kosztownych badan medycznych czy dtugoterminowych analiz
przemystowych. Niniejszy rozdziatl przedstawia teoretyczne fundamenty analizy
niezawodnosci i przezycia, omawiajac podstawowe pojecia, funkcje statystyczne,
rozktady prawdopodobienstwa oraz metody estymacji stosowane w modelowaniu
danych cenzurowanych. Stanowia one punkt wyjscia dla opracowania interpretowal-
nych algorytméw uczenia maszynowego, ktore zostang zaprezentowane w dalszych

czedciach pracy.

3.1 Podstawowe pojecia

Analiza niezawodnosci i analiza przezycia, mimo odmiennych obszaréow zasto-
sowania, opieraja sie na wspolnych fundamentach teoretycznych i wykorzystuja

analogiczne metody statystyczne do modelowania danych typu czas-do-zdarzenia.
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3.1 Podstawowe pojecia

W tej sekcji zostana wprowadzone podstawowe pojecia dla obu podejéé, ktore

zostang zilustrowane przyktadem badania niezawodnosci.

pompa ¢ (miesiace) d (status)

A 3 1
B 7 1
C 9 1
D 12 0
B 12 0
F 12 0
G 12 0
H 12 0

Tabela 3.1: Dane w przykladzie pomp: czas obserwacji ¢ (w miesigcach) i status
d, gdzie d = 1 oznacza awarie, a d = 0 obserwacje cenzurowang (brak awarii do

korica obserwacji t = 12).

W ilustracyjnym przyktadzie hipotetycznego badania niezawodnosci o$miu iden-
tycznych pomp przemystowych obserwowanych przez 12 miesiecy w celu okreslenia
ich czasow do awarii przyjeto nastepujace dane syntetyczne: pompa A ulegta awarii
po 3 miesigcach, pompa B po 7 miesigcach, pompa C po 9 miesigcach, a pompy
D, E, F, G oraz H dziataly nadal na koniec okresu obserwacji. Dla pomp nadal
dziatajacych wiadomo jedynie, ze przetrwaly co najmniej 12 miesiecy, natomiast
doktadny czas ich ewentualnej awarii pozostaje nieznany. Zestawienie danych
przedstawiono w Tabeli [3.1] Przyktad ten postuzy do zilustrowania podstawowych
poje¢ analizy przezycia przedstawionych ponizej.

Niezawodno$é (ang. reliability) definiuje sie jako zdolnosé systemu, komponentu
lub struktury do ciggtego wykonywania zamierzonej funkcji w okreslonych wa-
runkach operacyjnych przez okreslony okres eksploatacji, zgodnie z norma SO
8402 (1986) [65]. W przyktadzie z pompami niezawodnos$é opisuje prawdopodo-
bienstwo, ze pompa bedzie dziata¢ bez awarii przez okreslony czas, np. 6 miesiecy.
Miara ta jest stosowana w planowaniu strategii konserwacyjnych i ocenie ryzyka
operacyjnego.

Zdarzenie w analizie przezycia oznacza specyficzny, interesujacy z punktu wi-
dzenia analizy, wynik procesu obserwacyjnego. Stanowi ono uniwersalne pojecie

stosowane w réznych kontekstach aplikacyjnych. W analizie niezawodnos$ci zda-
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rzeniem jest awaria urzadzenia (jak w przypadku pomp A, B, C z przyktadu),
natomiast w analizie przezycia moze to byé¢ np. zgon pacjenta, nawrot choroby
czy inne krytyczne zdarzenie medyczne. Dzieki tej uniwersalnosci mozliwe jest
stosowanie tych samych metod analitycznych w réznych dziedzinach, przy czym
pojecie awarii jest konkretna realizacja zdarzenia w kontekscie inzynierskim [66).

Cenzurowanie wystepuje, gdy doktadny moment wystapienia zdarzenia nie jest
znany, co prowadzi do niekompletnych danych czasowych. W przyktadzie, obser-
wacje pomp D-H sa cenzurowane prawostronnie — wiadomo, ze przetrwaty co
najmniej 12 miesiecy, lecz doktadny czas ich awarii nie jest znany. Cenzurowanie
prawostronne jest najczestsze w praktyce i pojawia, gdy obserwacja konczy sie
przed wystgpieniem zdarzenia. Cenzurowanie lewostronne zachodzi, gdy zdarzenie
nastapito przed rozpoczeciem obserwacji, ale jego doktadny moment nie jest znany.
Z kolei cenzurowanie obustronne (interwalowe) ma miejsce, gdy obserwacja podlega
jednoczesnie ograniczeniom lewostronnym i prawostronnym — wiadomo jedynie,
ze zdarzenie nastgpito w pewnym przedziale czasowym, np. miedzy wizytami
kontrolnymi, lecz jego doktadny moment pozostaje nieznany. Obecnosé danych
cenzurowanych uniemozliwia stosowanie standardowych metod regresyjnych i wy-
maga specjalistycznych technik analizy przezycia [64].

Czas-do-zdarzenia to nieujemna zmienna losowa reprezentujgca okres od po-
czatku obserwacji do wystapienia interesujacego zdarzenia. W analizie niezawodno-
Sci okreslany jest jako czas-do-awarii (ang. time-to-failure, TTF) — w przyktadzie
wynosi odpowiednio 3, 7 i 9 miesiecy dla pomp A, B, C. W analizie przezycia
uzywa sie pojecia czasu przezycia (ang. survival time). W przypadku obserwacji
cenzurowanych znamy jedynie dolng granice tego czasu [53].

Awaria (ang. failure) definiowana jest jako utrata zdolnosci systemu do reali-
zacji zamierzonej funkcji, zgodnie z norma IEC 50(191) (1990) [67]. W inzynierii
przyczyna awarii moga by¢ m.in. zuzycie materiatu, korozja czy przeciazenie.
W przyktadzie z pompami awarie urzadzen A, B i C mogly wynikaé¢ ze zuzycia
tozysk, uszkodzenia wirnika lub innych proceséw degradacyjnych, podczas gdy

pompy D—H nadal spetniajg swoja funkcje na koniec okresu obserwacji.
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3.2 Funkcje i rozktady w analizie niezawodnosci
| przezycia

Analiza niezawodnosci i przezycia wykorzystuje funkcje matematyczne oraz roz-
ktady prawdopodobienstwa dostosowane do modelowania danych cenzurowanych
typu czas-do-zdarzenia |64} 29]. W tej sekcji oméwione zostana metody analityczne,
obejmujace funkcje przezycia, funkcje hazardu oraz wybrane rozktady prawdo-
podobienstwa, a takze zilustrowane zostanie ich zastosowanie w analizie danych
przemystowych na przyktadzie estymatora Kaplana-Meiera.

Funkcja przezycia S, ktéra w analizie niezawodnosci nazywana jest rowniez
funkcja niezawodnosci R, definiowana jest jako prawdopodobienstwo, ze czas do
zdarzenia T' przekroczy okreslony moment ¢. W literaturze obie notacje uzywane sg

zamiennie, w zaleznosci od dziedziny zastosowania. Funkcja ta wyraza sie wzorem:

S(t) = P(T > t). (3.1)

Funkcja przezycia odzwierciedla odsetek jednostek — pacjentéw w analizie
medycznej lub urzadzen w analizie niezawodnosci — ktore przetrwaja lub pozostang
sprawne po uplywie czasu t. Jest to funkcja nierosngca, przyjmujaca wartosci od
1 (wszystkie jednostki sprawne w ¢ = 0) do 0 (gdy wszystkie jednostki ulegna
zdarzeniu) (64, 54]. Graficzna reprezentacje funkcji przezycia nazywa sie krzywa
przezycia lub, w analizie niezawodnosci, krzywa niezawodnosci. Przyktadowsg
funkcje przezycia dla rozktadu wyktadniczego przedstawiono na Rysunku [3.1a]

Funkcja hazardu h opisuje chwilowe ryzyko wystapienia zdarzenia w czasie
t, pod warunkiem ze jednostka przetrwata do tego momentu. Matematycznie

definiuje sie ja nastepujacym wzorem:

. Pt<T<t+At|T=>=1)
At—0 At .
Funkcja hazardu umozliwia analize dynamiki zdarzen w czasie — moze wskazy-

(3.2)

wacé zwigkszone ryzyko zgonu w pdzniejszych stadiach choroby (analiza przezycia)
lub wzrost prawdopodobienstwa awarii wynikajacy ze zuzycia materiatu (analiza
niezawodnosci). Jej przebieg odzwierciedla mechanizmy degradacji, co prowadzi
do stosowania odpowiednich rozktadéw prawdopodobienstwa [64]. Przyktadowa
funkcje hazardu dla rozktadu wyktadniczego przedstawiono na Rysunku [3.1b]
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Rysunek 3.1: Wykresy funkcji przezycia S i odpowiadajacych im funkcji ha-
zardu h dla trzech rozktadéw prawdopodobienstwa stosowanych w analizie
niezawodnosci i przezycia (ozn. S(o0) = limy_,, S(t)): (a) rozktad wyktadniczy
(A = 0.5) ze stalym hazardem; (b) funkcja hazardu dla rozkladu wyktadniczego;
(c) rozktad Weibulla (A = 2, k = 2) z liniowo rosnacym hazardem; (d) funkcja
hazardu dla rozkladu Weibulla; (e) rozklad log-normalny (u = 1, o = 0.5)
z rosngcym, a nastepnie malejacym hazardem; (f) funkcja hazardu dla rozktadu
log-normalnego. Osie oznaczono jako t (czas) oraz odpowiednio S(t) lub h(t)

(wartosé funkeji przezycia lub hazardu).
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Dystrybuanta skumulowana (ang. cumulative distribution function, CDF) to
prawdopodobienstwo wystapienia zdarzenia nie pdzniej niz w chwili ¢. Funkcja ta

zdefiniowana jest wzorem:

F(t)=1-5(t). (3.3)

1
lim F(t)=1
to>+o

T
F(0)=0
0
0 10
t

Rysunek 3.2: Dystrybuanta skumulowana (CDF) dla rozktadu wykladniczego.

Funkcja CDF okresla skumulowane ryzyko wystapienia zdarzenia do chwili
t i stanowi uzupekienie funkcji przezycia. Wzajemne relacje miedzy funkcja
przezycia S, funkcja hazardu h i dystrybuanta skumulowana F' tworza zestaw
metod umozliwiajacy petlng charakterystyke proceséw degradacji w modelowaniu
danych typu czas-do-zdarzenia [29]. Wykres przyktadowej funkcji CDF dla rozktadu
wyktadniczego przedstawiono na Rysunku |3.2}

W analizie niezawodno$ci i przezycia szczegdlng role odgrywaja wyspecjalizowane
rozktady prawdopodobienistwa dostosowane do modelowania czaséw do zdarzen [66).
Rozktad wyktadniczy, charakteryzujacy sie stala funkcja hazardu h(t) = A, A > 0,
opisuje procesy bezpamieciowe (ang. memoryless) typowe dla awarii komponentow
elektronicznych. Rozklad Weibulla, o funkcji hazardu h(t) = aAt*"!, umozliwia
modelowanie zréznicowanych wzorcow intensywnosci zdarzen — monotonicznych
(rosngcych, malejacych, statych) oraz niemonotonicznych (np. najpierw malejacych,
nastepnie rosnacych) — w zaleznosci od wartosci parametru ksztattu «. Stata
a > 0 jest parametrem ksztattu kontrolujacym monotonicznos¢ hazardu, a czynnik
t*=1 ¢t > 0, jest staly dla o = 1, roénie dla o > 1, a maleje dla 0 < o < 1,
stad funkcja h ma odpowiednio staly, rosnacy lub malejacy przebieg. Rozktad
log-normalny znajduje zastosowanie w modelowaniu proceséw multiplikatywnych,

charakterystycznych dla degradacji biologicznej lub zmeczenia materiatu. Graficzne
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przedstawienie funkcji przezycia i hazardu dla tych rozktadow zaprezentowano na

Rysunku [3.1}

3.3 Metody estymacji i poré6wnywania funkcji
przezycia

Analiza niezawodnosci i przezycia wykorzystuje specjalistyczne metody estymacji
funkcji przezycia i hazardu oraz techniki poréwnawcze dostosowane do specyfiki
danych cenzurowanych. W niniejszej sekcji omoéwiono podejscia statystyczne obej-
mujace zarowno metody parametryczne, jak i nieparametryczne do szacowania
funkcji przezycia i hazardu, a takze testy porownawcze umozliwiajace oceng réznic
w niezawodnosci miedzy grupami lub systemami.

Metody nieparametryczne charakteryzuja si¢ brakiem zalozen dotyczacych
konkretnego rozktadu prawdopodobienstwa czasow do zdarzen. Estymator Kaplana-
Meiera stanowi najczesciej stosowang technike nieparametryczng do szacowania

funkcji przezycia S na podstawie danych cenzurowanych i jest definiowany wzorem:

St =] (1 - Z—) (3.4)

ti<t
gdzie d; oznacza liczbe zdarzen w chwili ¢;, a n; to liczba jednostek w zbiorze
ryzyka w chwili ¢; [56]. W analizie niezawodnosci estymator Kaplana-Meiera
oznacza si¢ jako R. Alternatywna metoda jest estymator Nelsona-Aalena, ktory

szacuje skumulowana funkcje hazardu:

i =Y Z_ (3.5)

Oba estymatory uwzgledniaja dane cenzurowane i prowadza do podobnych
rezultatéw, przy czym estymator Kaplana-Meiera jest czesciej stosowany ze wzgledu
na prosta interpretacje funkeji przezycia w kategoriach prawdopodobienstwa [68].

Metody parametryczne zakladaja okreslony rozktad czasow do zdarzen, co
umozliwia bardziej szczegdétowe modelowanie proceséw degradacji. Estymacja
parametrow rozktadu, takich jak A w rozktadzie wyktadniczym czy a i A w roz-

ktadzie Weibulla, przeprowadzana jest zazwyczaj metoda estymacji najwiekszej
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wiarygodnosci (MLE). Podejécie parametryczne pozwala na uzyskanie precyzyj-
nych prognoz w sytuacjach, gdy dane dobrze odpowiadaja wybranemu rozktadowi
teoretycznemu, jednak wymaga weryfikacji zgodnosci zatozen z rzeczywistymi
obserwacjami [69].

Poréwnywanie funkcji przezycia miedzy grupami wymaga zastosowania testow
statystycznych dostosowanych do danych cenzurowanych. Najcze$ciej stosowang
metoda oceny istotnosci roznic miedzy funkcjami przezycia dwoch lub wiecej grup
jest test log-rank. Test ten opiera si¢ na poréwnaniu liczby zdarzen obserwowanych
i oczekiwanych w kazdym punkcie czasowym, a nastepnie na obliczeniu statystyki
x? w celu sprawdzenia hipotezy zerowej, zgodnie z ktéra krzywe przezycia sa
jednakowe we wszystkich poréwnywanych grupach. Test log-rank charakteryzuje
sie efektywnoscig w przypadku danych cenzurowanych oraz brakiem wymagan

dotyczacych konkretnego rozktadu czaséw do zdarzen [64].

Przyktad zastosowania estymatora Kaplana-Meiera

W celu ilustracji zastosowania metod analizy przezycia w modelowaniu danych
cenzurowanych przedstawiono przyktad wykorzystania estymatora Kaplana-Meiera
do analizy danych z badania niezawodno$ci 10 przemystowych pomp. Przyktad
pokazuje sposéb szacowania funkcji niezawodno$ci w obecno$ci obserwacji cen-
zurowanych oraz interpretacje wynikow w kontekscie praktycznego zarzadzania
ryzykiem.

Zbior danych przedstawiono w Tabeli [3.2, Dla kazdej pompy podano czas
obserwacji ¢ (w miesigcach) oraz status d, gdzie d = 1 oznacza wystapienie
zdarzenia, a d = 0 wskazuje na obserwacje cenzurowana (brak zdarzenia w czasie
obserwacji).

Estymator Kaplana-Meiera (wzdr umozliwia oszacowanie funkcji przezycia
(niezawodno$ci) z uwzglednieniem zaréwno obserwowanych zdarzen, jak i danych
cenzurowanych. Procedura obliczeniowa polega na uporzadkowaniu czaséw zdarzen
(3,4, 5,6, 7,9, 10 miesiecy) oraz na mnozeniu czynnikéw z definicji, gdzie d;
oznacza liczbe zdarzen w chwili ¢;, a n; to liczba pomp w zbiorze ryzyka tuz
przed t;, rozumianym jako zbior obiektow, dla ktorych nie odnotowano zdarzenia
i ktore pozostaja pod obserwacjg bezposrednio przed t;. Przyktadowe obliczenia:
R(B)=1-(1—%)=0.9o0raz R(4) =09 (1 - %)~ 0.8.
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Pompa ¢ (miesiace) d (status)
1 3 1

)

12

12
10

O[O0 | N[O | T =W N

12

k=l i = Y =

—_
)
(@)

Tabela 3.2: Status pomp po okreslonym czasie. Warto$é¢ d = 0 oznacza dane

cenzurowane, d = 1 odpowiada wystgpieniu zdarzenia.

——- Zakonczenie badania
© Dane cenzurowane (3 obiekty)

R(12) =0.3!

0 t
0 12

t

Rysunek 3.3: Krzywa niezawodnosci R uzyskana za pomoca estymatora Kaplana-
Meiera. Krzywa schodkowa ilustruje spadek prawdopodobienstwa niezawodno$ci

w czasie, z punktem oznaczajacym dane cenzurowane dla ¢ = 12 miesiecy.
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Rezultaty analizy, przedstawione na Rysunku [3.3] dostarczaja informacji dla
planowania konserwacji. Krzywa niezawodnosci wskazuje, ze prawdopodobien-
stwo bezawaryjnej pracy pompy przez 8 miesiecy wynosi okoto 50%. Moze to
stanowi¢ podstawe do okreslenia progéw ryzyka dla dziatan prewencyjnych. Me-
toda Kaplana-Meiera pozwala wykorzysta¢ pelng informacje zawarta w danych,
w tym obserwacje cenzurowane, ktére odnosza sie do pomp nadal dziatajace po 12
miesigcach obserwacji.

Zaprezentowane funkcje matematyczne oraz przyktad ich zastosowania stanowia
podstawe analizy niezawodnosci i przezycia, umozliwiajac modelowanie i predykcje
w obecnosci danych cenzurowanych. Potaczenie teoretycznych podstaw z narze-
dziami estymacji tworzy zestaw metod analitycznych przydatnych w dalszych

zastosowaniach omawianych w kolejnych sekcjach rozdziatu.

3.4 Modelowanie zaleznos$ci od zmiennych
objasniajacych

W analizie niezawodnosci i przezycia bada sie takze wplyw zmiennych obja-
$niajacych — takich jak warunki srodowiskowe, charakterystyki jednostek czy
zastosowane interwencje — na czas do wystapienia zdarzenia. W niniejszej sekcji
oméwiono metody modelowania tych zaleznosci, obejmujace zaréwno klasyczne
podejscia statystycznych, jak i wspotezesne techniki uczenia maszynowego dosto-
sowane do specyfiki danych cenzurowanych.

Model proporcjonalnych hazardéw Coxa jest najczesciej stosowana metoda
w analizie wielowymiarowej danych przezycia, pozwalajacag na analize wpltywu
zmiennych objasniajacych bez koniecznosci specyfikacji bazowego rozktadu hazardu

[1]. Model definiuje funkcje hazardu jako:

h(t | X) = ho(t)ePrXrPaXet+5Xp (3.6)

gdzie hg reprezentuje bazows funkcje hazardu, a X = (X3, Xs,..., X,) to wektor
zmiennych predykcyjnych z odpowiadajacymi wspdétczynnikami regresji 3;, dla
i=1,...,p. Interpretacja modelu opiera sie na ilorazach hazardéw (ang. hazard
ratio) — dla wzrostu zmiennej X; o jedna jednostke jej skali pomiaru iloraz

hazardéw wynosi €%, co wynika z log-liniowej postaci modelu. Zaleta tego podejécia
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jest semi-parametryczny (ang. semi-parametric) charakter — model nie zaklada
parametrycznej formy funkcji hazardu hg, a jedynie proporcjonalno$é¢ hazardéw
oraz log-liniowy efekt zmiennych objasniajacych [70].

Alternatywnym podejéciem jest parametryczny model przyspieszonego czasu
awarii (ang. accelerated failure time model, AFT), ktéry zaktada multiplikatywny

wplyw zmiennych objasniajacych na czas do zdarzenia. Model wyraza sie wzorem:

log(T) = Bo + 51 X1 + BoXo + - + B, X, + o€ (3.7)

gdzie T to czas do zdarzenia, By to wyraz wolny, ktory ustala poziom bazowy
i odpowiada logarytmowi czasu do zdarzenia dla obserwacji referencyjnej przy
X =(0,...,0); B; to wspotezynniki regresji dla zmiennych X; (i =1,...,p), o to
parametr skali, a € to btad o okreslonym rozktadzie. W ujeciu parametrycznym AFT
wymaga specyfikacji rozktadu sktadnika losowego (np. Weibulla, log-normalnego),
lecz istnieja réwniez semi-parametryczne wersje niewymagajace petnej parame-
tryzacji rozkladu |71} [72]. Interpretacja na skali czasu jest nastepujaca: wzrost
zmiennej X; o 1 jednostke mnozy typowy czas do zdarzenia (np. mediang) przez e”;
gdy e > 1 czas sie wydtuza, a gdy e < 1 skraca. Dla poréwnania, model Coxa
opisuje efekt wzgledny — wzrost X; o 1 jednostke zmienia hazard przez czynnik e,
czyli wpltywa na zdarzenia w kazdym momencie w sposéb proporcjonalny (iloraz
hazardéw) (73, |74]. Przez efekt wzgledny rozumie sie multiplikatywna zmiane
hazardu (iloraz hazardéw), natomiast przez efekt absolutny — multiplikatywna
zmiane typowego czasu do zdarzenia (iloraz czaséw).

Oba podejscia oferuja komplementarne perspektywy analizy danych przezycia.
Model Coxa koncentruje sie na wzglednych efektach zmiennych na hazard, podczas
gdy model AFT dostarcza informacji o absolutnych efektach na czas do zdarzenia.
Wyboér miedzy metodami zalezy od charakteru danych, celéow analizy oraz wymagan
dotyczacych interpretowalnosci wynikéw [75].

Rozwdj uczenia maszynowego umozliwit zaréwno adaptacje klasycznych algoryt-
moéw do probleméw analizy przezycia, jak i opracowanie specjalistycznych technik
dedykowanych danym cenzurowanym. Adaptacja klasycznych metod obejmuje
dyskretyzacje czasu i zastosowanie klasyfikacji binarnej, regresje z traktowaniem
obserwacji cenzurowanych jako brakujacych danych oraz techniki wazenia uwzgled-
niajace specyfike cenzurowania [76]. Metody zespotowe, takie jak gradient boosting

[77] czy bagging, znajduja zastosowanie poprzez agregacje predykeji wielu esty-
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matoréw bazowych, czego przyktadem sga implementacje w algorytmach XGBoost
[78] oraz w przezyciowych lasach losowych [59].

Modele zespotowe taczg wiele estymatoréow bazowych w celu zmniejszenia btedu
generalizacji (ang. generalization error) i wariancji predykcji. W baggingu (boot-
strap aggregating) trenuje sie niezalezne estymatory na probkach bootstrap zbioru
uczacego, a ich predykcje usrednia, co zmniejsza wariancje. Dodatkowe losowe
podprébkowanie cech, stosowane w modelach laséw losowych [79], obniza korelacje
miedzy estymatorami. Boosting buduje model lacznie (addytywnie) jako sume
wktadow kolejnych stabych estymatoréw bazowych. W kolejnym kroku dopaso-
wuje sie¢ nowy estymator do kierunku najwiekszej poprawy wartosci funkcji straty
(np. ujemnego gradientu w gradient boosting |77]) i dodaje go z mata waga (wspdt-
czynnik uczenia, tzw. shrinkage). Taka konstrukcja zmniejsza obciazenie (bias)
modelu, lecz wymaga regularyzacji (plytkie drzewa, podprébkowanie, wczesne
zatrzymanie; ang. shallow trees, subsampling, early stopping), aby nie zwiekszy¢
wariancji i nie doprowadzi¢ do przeuczenia. Stacking polega na nauczeniu modelu
laczacego (meta-klasyfikatora/regresora), ktéry przyjmuje jako wejscie wektor
predykcji estymatoréow bazowych uzyskanych w schemacie out-of-fold walidacji
krzyzowej. Model taczacy uczy sie wag (np. w regresji liniowej/logistycznej) przy-
pisanych do poszczegdlnych estymatoréw bazowych, co okresla ich wktad w finalng
predykcje. Réznorodnos¢ zespotu osiaga sie poprzez bootstrap i podprébkowanie
cech, co zmniejsza korelacje estymatoréw i obniza wariancje predykcji.

Dedykowane techniki uczenia maszynowego dla danych cenzurowanych obejmuja
drzewa przezycia, ktore rozszerzaja klasyczne drzewa decyzyjne o mozliwosé pracy
z danymi cenzurowanymi, oraz lasy losowe przezycia, taczace wiele drzew przezycia
przy zachowaniu interpretowalnosci [59]. Maszyny wektoréw noénych (ang. sup-
port vector machines, SVMs) zostaly zaadaptowane poprzez modyfikacje funkcji
straty uwzgledniajacej ranking czaséw zdarzen [80]. Sieci neuronowe (ang. neural
networks) znajduja zastosowanie w architekturach takich jak DeepSurv czy De-
epHit, umozliwiajacych modelowanie ztozonych, nieliniowych zaleznosci kosztem

interpretowalnosci |13} [81].
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niezawodnosci i przezycia

Tradycyjne metody analizy niezawodnosci i przezycia, takie jak model proporcjo-
nalnych hazardéw Coxa czy estymator Kaplana-Meiera, oméwione w Rozdziale
zapewniaja wysoka interpretowalnosé, lecz ich zdolnos¢ do modelowania ztozo-
nych, nieliniowych zaleznosci w danych jest ograniczona. Wspoétczesne srodowiska
przemystowe oraz analiza medyczna generuja wielowymiarowe, ztozone dane, ktére
wymagaja zaawansowanych modeli uczenia maszynowego zdolnych do uchwycenia
subtelnych wzorcow i interakcji miedzy zmiennymi. Objasnialnosé i interpretowal-
nosé (Sekcja tych modeli umozliwiaja budowanie zaufania, zapewnienie
zgodnosci z regulacjami oraz podejmowanie $wiadomych decyzji w analizie czasu
do wystapienia krytycznych zdarzen [10].

Rozwdj metod obliczeniowych i dostepno$é¢ duzych zbiorow danych umozliwity
zastosowanie uczenia maszynowego — dziedziny sztucznej inteligencji zajmujacej
sie automatycznym rozpoznawaniem wzorcéOw z danych — w analizie niezawod-
nosci i przezycia. W tym kontekécie interpretowalnosé i objasnialno$é nabieraja
dodatkowego znaczenia. W przemysle decyzje oparte na modelach dotycza kosz-
townych operacji remontowych, planowania przestojow produkcyjnych czy alokacji
zasobow, a w medycynie przewidywania czaséw do wystapienia zdarzen bezposred-
nio wptywaja na decyzje kliniczne i zycie pacjentéw. Ograniczenia tradycyjnych
metod analizy przezycia, takich jak model Coxa czy estymator Kaplana-Meiera,
w modelowaniu ztozonych zaleznosci nieliniowych wskazuja na potrzebe rozwoju
zaawansowanych, a jednoczesnie interpretowalnych metod uczenia maszynowego.

Niniejszy rozdzial przedstawia przeglad metod objasnialnego i interpretowalnego
uczenia maszynowego, omawiajac roznice miedzy interpretowalnosciag wbudowana
w modele a metodami post-hoc stuzacymi do wyjasniania decyzji modeli typu

,czarnej skrzynki”. Szczegdlna uwage poswiecono znaczeniu interpretowalnosci
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w analizie niezawodnosci i przezycia oraz jej praktycznym implikacjom w pre-
dykcyjnym utrzymaniu ruchu i medycynie, tworzac teoretyczne podstawy dla
opracowania interpretowalnych algorytméw regut logicznych przedstawionych

w kolejnych rozdziatach.

4.1 Wprowadzenie do objasnialnoSci

i interpretowalnosci w uczeniu maszynowym

W kontekscie analizy niezawodnosci i przezycia oméwionych w poprzednich roz-
dziatach, metody uczenia maszynowego oferuja zaawansowane podejscie do mo-
delowania danych typu czas-do-zdarzenia, rozszerzajac mozliwosci tradycyjnych
metod statystycznych zarowno w zastosowaniach przemystowych, jak i medycz-
nych. W przemysle pozwalaja prognozowaé awarie, optymalizowa¢ harmonogramy
konserwacji oraz redukowaé przestoje, natomiast w medycynie wspieraja przewidy-
wanie czasow do wystapienia zdarzen klinicznych, planowanie terapii oraz ocene
skutecznosci leczenia. Jednak wysoka skutecznosé¢ predykcyjna modeli uczenia
maszynowego czesto wynika z ich ztozonosci, co prowadzi do sytuacji, w ktorej
proces decyzyjny modelu pozostaje niezrozumiaty dla czltowieka [82]. W predyk-
cyjnym utrzymaniu ruchu i medycynie, w ktérych decyzje modeli bezposrednio
wplywaja na bezpieczenstwo operacyjne lub zycie pacjentow, zrozumienie podstaw
tych decyzji staje sie nieodzowne |30, |83].

Celem niniejszej sekcji jest przedstawienie najwazniejszych poje¢ objasnialnosci
i interpretowalnos$ci w uczeniu maszynowym, wraz z ich rola w analizie nieza-
wodnosci i przezycia w predykcyjnym utrzymaniu ruchu oraz w zastosowaniach
biomedycznych. Przedstawiono w niej definicje tych terminéw, analize ich zna-
czenia w praktyce przemystowej i medycznej oraz omoéwienie wyzwan zwigzanych

z ich implementacjq.

4.1.1 Definicje interpretowalnosci i objasnialnosci

W literaturze poswieconej analizie modeli uczenia maszynowego wyrdznia sie
m.in. interpretowalno$é i objasnialnosé (84} |85]. Interpretowalno$é okresla stopien,
w jakim cztowiek moze zrozumieé¢ przyczyny decyzji podejmowanych przez model

uczenia maszynowego [84]. Model interpretowalny charakteryzuje sie przejrzystym
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mechanizmem decyzyjnym, ktéry nie wymaga dodatkowych wyjasnien. Przyktadem
jest drzewo decyzyjne, w ktorym kazda decyzja jest jednoznacznie powigzana
z okreslonymi zmiennymi wejsciowymi [86]. Obja$nialno$é natomiast odnosi sie do
zdolnosci modelu do dostarczania wyjasnien dotyczacych jego funkcjonowania lub
konkretnych predykeji, takze w przypadku modeli nieinterpretowalnych [85].

Interpretowalnos¢ stanowi zatem ceche wewnetrzng modelu, podczas gdy obja-
$nialno$¢ moze by¢ uzyskana dzieki zewnetrznym technikom, takim jak analiza
waznosci cech (ang. feature importance) czy metod wizualizacji wpltywu cech na
predykcje [86]. Modele nieinterpretowalne, takie jak gtebokie sieci neuronowe,
mogg by¢ poddawane technikom objasnialnos$ci w celu lepszego zrozumienia ich
decyzji [87].

4.1.2 Znaczenie interpretowalnosci i objasnialnosci

Objasnialnos¢ i interpretowalno$¢ odgrywaja szczegdlna role w dziedzinach o pod-
wyzszonym ryzyku, takich jak predykcyjne utrzymanie ruchu i medycyna, gdzie
decyzje podjete na podstawie modeli uczenia maszynowego moga mieé¢ bezposredni
wplyw na bezpieczenstwo operacyjne, stabilnosé¢ proceséw produkeyjnych, koszty
zwigzane z przestojami, a takze na zycie i zdrowie pacjentow. W takich zastosowa-
niach réwnie wazna jak sama doktadnos¢ precyzji jest interpretacja mechanizmow
stojacych za estymacja czasu do awarii czy prognozy przezycia — na przyktad
identyfikacja zmiennych determinujacych wysokie ryzyko wystapienia zdarzenia
w krotkim horyzoncie czasowym. Transparentno$é modelu pozwala nie tylko zwiek-
szy¢ skutecznosé dziatan podejmowanych na jego podstawie, ale takze budowad
zaufanie wéréd uzytkownikéw w srodowiskach przemystowych i medycznych [30].

Istotnos¢ tych zagadnien oddaja nastepujace przyktady:

o Inzynierowie utrzymania ruchu muszg mie¢ mozliwo$¢ weryfikacji i zaufa-
nia rekomendacjom generowanym przez model uczenia maszynowego, aby
skutecznie planowa¢ i wdraza¢ dzialania prewencyjne. Podobnie, lekarze
wymagaja zrozumienia podstaw przewidywan modeli dotyczacych prognozy
pacjenta, aby podejmowaé wtasciwe decyzje kliniczne. Bez wiedzy o tym,
na podstawie jakich zmiennych model lub wzorcéow model estymuje wysokie

prawdopodobienstwo wystapienia zdarzenia w okreslonym czasie, predyk-
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cje te moga zosta¢ zignorowane lub btednie zinterpretowane, co obniza ich

uzytecznosé [83].

o W przypadku potwierdzenia wystapienia zdarzenia retrospektywna analiza
predykcji modelu umozliwia identyfikacje czynnikow, ktére przyczynity sie
do witasciwej lub btednej estymacji, a takze opracowanie strategii poprawy
jakosci przewidywan. Objasnialnos¢ pozwala ustali¢, czy predykcja wynikata
z konkretnych odczytéw czujnikow przemystowych badz parametréw biome-
dycznych, co moze wskazywac¢ na potrzebe kalibracji sprzetu, modyfikacji

procedur konserwacyjnych lub zmian w protokotach leczenia [82].

Ponadto w sektorach takich jak transport, energetyka czy ochrona zdrowia
obowiazuja regulacje prawne oraz normy etyczne naktadajace wymog transparent-
nosci decyzji podejmowanych przez systemy automatyczne. Przyktadem jest unijne
og6lne rozporzadzenie o ochronie danych (RODO, ang. General Data Protection
Regulation, GDPR)E], ktore w kontekscie zautomatyzowanego podejmowania decy-
zji wymaga mozliwosci wyjas$nienia proceséw decyzyjnych [88]. Brak objasnialnosci
w takich sytuacjach moze prowadzi¢ do utraty zaufania do modelu zaréwno ze
strony uzytkownikéw, jak i organéw regulacyjnych, a w skrajnych przypadkach
skutkowaé¢ naruszeniem prawa, pociagajac za soba konsekwencje finansowe i repu-
tacyjne. Dlatego zapewnienie objasnialnosci i interpretowalnosci staje si¢ nie tylko
wyzwaniem technicznym, lecz takze priorytetem w projektowaniu i wdrazaniu

modeli uczenia maszynowego w zastosowaniach wysokiego ryzyka.

4.1.3 Zalezno$¢ miedzy zfozonoscig a interpretowalnoscia

Dobér modeli zalezy od celu analizy. Gdy celem jest wnioskowanie statystyczne
(estymacja efektéw zmiennych i testowanie hipotez) oraz interpretowalno$é¢ parame-
tréw i efektéw zmiennych, preferowane sa modele o niskiej ztozonosci (np. liniowe).
Gdy natomiast priorytetem jest wytacznie predykcja, stosuje sie modele o wiekszej
zdolnosci dopasowania do danych, zdolne do uchwycenia nieliniowosci i interak-

cji |84 [87]. Modele liniowe (np. regresja liniowa czy model Coxa) umozliwiaja

'Rozporzadzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r.
w sprawie ochrony oséb fizycznych w zwiazku z przetwarzaniem danych osobowych i w
sprawie swobodnego przeplywu takich danych oraz uchylenia dyrektywy 95/46/WE (ogdlne

rozporzadzenie o ochronie danych)
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bezposrednig interpretacje wpltywu zmiennych na wynik, lecz moga ustepowaé do-
ktadnoscia modelom nieliniowym o wiekszej ztozonosci (wigkszej zdolnosci funkcji
do dopasowania sie do danych). Z kolei modele o wysokiej ztozonosci — takie jak
boosting [77], lasy losowe [79] czy nieliniowe maszyny wektoréw nosnych [89] —
czesto osiagaja nizszy blad generalizacji (np. wyzszy indeks zgodnosci w analizie
przezycia, nizszy btad sredniokwadratowy lub log-loss), kosztem zrozumialosci
mechanizmu decyzyjnego [84].

W kontekscie zaleznosci miedzy ztozonoscia a interpretowalnoscig modele r6znig,
sie zakresem dopuszczalnych zaleznoscei (np. liniowych, nieliniowych, z interak-
cjami) miedzy zmiennymi objasniajacymi a odpowiedzia [77,|90]. Modele liniowe
charakteryzuja sie ograniczong zdolno$ciag dopasowania do danych i wysoka in-
terpretowalnoscig — wspotczynniki maja jednoznaczng interpretacje, wskazujac
kierunek i site efektu przy ustalonych pozostatych cechach. Podej$cia promujace
rzadkos¢ rozwiazan (ang. sparsity, np. selekcja zmiennych lub regularyzacja L1)
sprzyjaja interpretacji, ograniczajac liczbe predyktorow w modelu. Uogélnione
modele addytywne (ang. generalized additive models, GAM) zwiekszaja zdolnosé
dopasowania do danych, dopuszczajgc nieliniowe, addytywne efekty przy zacho-
waniu czesciowej przejrzystosci na poziomie funkcji sktadowych. Zespoty drzew
i gtebokie sieci oferuja jeszcze wigksza swobode funkcjonalng, ale ich interpretacja
wymaga zwykle metod post-hoc [87) 84].

Wigksza zdolno$é¢ dopasowania do danych nie gwarantuje jednak lepszej predyk-
cji. Modele o wysokiej ztozonosci moga nadmiernie dopasowywaé sie do danych
uczacych (ang. overfitting), co obniza zdolno$¢ uogélniania. W wielu zadaniach —
w tym w analizie przezycia — mniej ztozone modele lub silniej regularyzowane
procedury zapewniaja korzystniejszy kompromis miedzy obciazeniem (ang. bias)
a wariancja (ang. variance), a w efekcie wieksza dokladnosé prognoz [91]. W kon-
tekstach wysokiego ryzyka priorytetem jest przejrzystosé decyzji, dlatego zaleca
sie stosowanie modeli interpretowalnych wszedzie tam, gdzie jest to mozliwe [82].
Dobér modelu jest wiec kompromisem miedzy doktadno$cia prognozy a przejrzy-

stoScia decyzji, zaleznym od celu analizy i kontekstu zastosowania [92].
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4.2 Metody objasnialnego uczenia maszynowego

W analizie niezawodno$ci i przezycia stosowanie ztozonych modeli uczenia maszyno-
wego do modelowania danych typu czas-do-zdarzenia wymaga metod objasnialnych,
ktore umozliwiaja zrozumienie proceséw decyzyjnych zwiazanych z przewidywa-
niem czasu do wystapienia krytycznych zdarzen [87]. Tradycyjne metryki oceny
modeli przezycia, takie jak indeks zgodnos$ci Harrella czy statystyka log-rank,
koncentruja sie na ocenie jakosci predykcji. Wspotczesne systemy analizy nieza-
wodnosci muszg jednak dodatkowo zapewnia¢ wglad w mechanizmy prowadzace
do prognozowanych czaséw awarii lub zdarzeri medycznych [82]. Brak transpa-
rentno$ci w modelach przezycia stanowi bariere dla akceptacji zaawansowanych
technologii w zastosowaniach przemystowych i medycznych [85].

Metody objasnialnego uczenia maszynowego dzieli si¢ na dwie gltéwne kategorie:
globalne i lokalne. Metody globalne pozwalaja analizowa¢ ogdlne zachowanie mo-
delu na calym zbiorze danych, oferujac wglad w dominujace wzorce i zaleznosci.
Metody lokalne natomiast skupiaja si¢ na wyjasnianiu pojedynczych predykc;ji,
dostarczajac szczegdtowych informacji o decyzjach modelu w odniesieniu do kon-
kretnych przypadkéw. Oba podejscia wzajemnie sie uzupetniaja. Metody globalne
zapewniajg szeroka perspektywe dziatania modelu, a lokalne umozliwiaja wglad
w szczegoty konkretnych predykeji. Potaczenie obu metod umozliwia pelng inter-
pretacje modeli uczenia maszynowego i stanowi podstawe wspdtczesnych systemow

wspomagania decyzji w przemysle i medycynie [30].

4.2.1 Metody globalne

Metody globalne stuza zrozumieniu zachowania modelu przezycia na catym zbiorze
danych, dostarczajac wgladu w mechanizmy decyzyjne zwigzane z przewidywa-
niem czaséow do wystapienia zdarzen. Umozliwiaja identyfikacje wzorcoéw oraz
zalezno$ci miedzy zmiennymi objasniajacymi a estymowanymi funkcjami przezycia
lub hazardu, co jest szczegdlnie przydatne w poczatkowych fazach projektowania
i walidacji modelu [93]. Dzieki temu eksperci dziedzinowi, tacy jak inzynierowie
niezawodnosci czy lekarze kliniczni, moga oceni¢, czy model odzwierciedla rzeczy-
wiste procesy degradacji urzadzen lub progresji choroby, co sprzyja jego akceptacji
w analizie niezawodnos$ci i praktyce klinicznej. Do najwazniejsze metody w tej

kategorii przedstawiono ponizej.
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Przeptyw

Predkos$¢ obrotowa
Cisnienie
Temperatura

Nazwa cechy

Wibracje

00 01 02 03 04
Waznos¢ cechy

Rysunek 4.1: Przyktadowa wizualizacja waznosci cech w analizie predykcyjnego
utrzymania ruchu dla systemu pomp przemystowych. Waznos¢ cech, wyznaczona
np. poprzez permutacje, wskazuje dominujacy wptyw danych z czujnikoéw wi-

bracji na predykcje awarii, co wspiera ukierunkowane dziatania konserwacyjne.

o Analiza waznosci cech: Ta metoda umozliwia okreslenie, ktére zmienne ob-
jasniajace maja najwiekszy wplyw na estymowane funkcje przezycia lub
hazardu w analizie niezawodnosci maszyn oraz w zastosowaniach biomedycz-
nych . Waznosé cech mozna wyznaczaé¢ poprzez permutacje cech z oceng
spadku indeksu zgodnosci Harrella modelu po losowym zaburzeniu danej
zmiennej albo poprzez analize wspoétczynnikéw w modelach proporcjonal-
nych hazardéw. Wyniki najczesciej prezentuje si¢ w formie rankingéw lub
wizualizacji graficznych, utatwiajac wskazanie gtéwnych predyktoréw czasu
do awarii (np. temperatura, ciSnienie, wibracje) czy przezycia pacjentéw
(np. biomarkery, wiek, historia choroby). W systemach monitorowania pomp
przemystowych analiza waznosci cech moze ujawnic, ze najwazniejszym pre-
dyktorem sg dane z czujnikéw drgan, natomiast w analizie medycznej moze
wskaza¢ na biomarkery o decydujacym znaczeniu dla prognozy. Umozliwia
to ukierunkowanie dziatan konserwacyjnych w przemysle lub interwencji
terapeutycznych w medycynie. Przyktadem zastosowania tej techniki jest

wizualizacja waznosci cech przedstawiona na Rysunku .1}

o Wykresy zalezno$ci czeSciowej (ang. partial dependence plots, PDP): PDP
przedstawiaja relacje miedzy wybrana cecha a wynikiem modelu, przy zato-
zeniu statych wartosci pozostatych zmiennych . Technika ta umozliwia
wizualizacje wptywu zmian jednej zmiennej na predykcje i jest szczegdlnie
przydatna w analizie nieliniowych zaleznosci charakterystycznych dla ztozo-

nych modeli uczenia maszynowego. W praktyce przemystowej PDP moga
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Rysunek 4.2: Przyktadowy wykres zaleznosci czesciowej ilustrujacy wplyw pred-
kosci obrotowej silnika na prawdopodobienstwo predykcji awarii, wygenerowany
dla modelu Random Forest. Wykres pokazuje nieliniowa relacje¢, co wspiera
analiz¢ ryzyka awarii w predykcyjnym utrzymaniu ruchu, przy zatozeniu nieza-

leznodci cech.

postuzy¢ do oceny, jak zmiany parametréw operacyjnych — np. predkosci
obrotowej silnika — wptywajg na ryzyko awarii. W medycynie natomiast
pozwalajg analizowaé¢ zaleznosci migdzy wiekiem pacjenta czy poziomem
biomarkera a prawdopodobienstwem wystapienia zdarzenia, stanowiac cenne
narzedzie interpretacji modelu. Ograniczeniem tej metody jest zalozenie nie-
zaleznosci cech, ktore moze prowadzi¢ do znieksztatcen w przypadku silnych
korelacji miedzy zmiennymi [95]. Przyktadem zastosowania tej techniki jest
wykres zaleznosci czedciowe]j przedstawiony na Rysunku [4.2] ktéry ilustruje

wpltyw predkosci obrotowej silnika na ryzyko awarii.

Metody globalne znajduja zastosowanie w fazie eksploracyjnej analizy danych
oraz podczas walidacji modelu przez specjalistow, umozliwiajac ocene, czy pre-
dykcje modelu sg zgodne z wiedza dziedzinowa. Ich gtéwng wada jest jednak brak
zdolnosci do uchwycenia lokalnych réznic w zachowaniu modelu, co moze stanowic
problem w sytuacjach, gdy predykcje dla poszczegdlnych przypadkéw znaczaco
odbiegaja od ogdlnych trendéw. W takich sytuacjach konieczne jest siegniecie po

metody lokalne, ktére uzupetniaja analize globalna.

4.2.2 Metody lokalne

Metody lokalne koncentrujg sie na wyjasnianiu pojedynczych predykeji, oferujac

wglad w decyzje modelu dla poszczegdlnych obserwacji. Stosuje sie je w sytuacjach
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wymagajacych interpretacji konkretnych przewidywan czasow do awarii urzadzen
przemystowych lub zdarzen medycznych, co wptywa na wybodr strategii konserwa-
cyjnej lub protokotu leczenia [10]. W odréznieniu od metod globalnych, dajacych
ogblny obraz funkcjonowania modelu, metody lokalne pozwalaja analizowaé indy-
widualne przypadki, ktére wymagaja szczegdlnej uwagi, np. gdy model przewiduje
rzadkie, ale krytyczne zdarzenia przemystowe lub medyczne. Najczedciej stosowane

metody w tej kategorii przedstawiono ponizej.

Cisnienie > 0.99
Wibracje = —1.02 A

Predkos$¢ obrotowa = — 0.52 A

Nazwa cechy

—0.46 < Temperatura < 0.05 +

00 01 02 03
Wptyw na predykcje awarii
Rysunek 4.3: Przyktadowy wykres lokalnych wyjasnien wygenerowany za pomoca
LIME dla predykcji awarii. Wykres przedstawia waznos¢ cech, takich jak wibracje
czy temperatura, dla jednej obserwacji. Pokazuje ich pozytywny lub negatywny
wplyw na predykcje klasy ,,Awaria” w kontekécie predykcyjnego utrzymania
ruchu. Demonstruje tez niezaleznos¢ LIME od typu modelu i jego zdolnos¢ do

lokalnej interpretacji.

o LIME (Local Interpretable Model-agnostic Explanations): LIME dziata
poprzez lokalng aproksymacje objasnialnego modelu za pomocg prostego,
interpretowalnego modelu (np. regresji liniowej) w sasiedztwie wybranej
obserwacji [86]. Metoda ta generuje wyjasnienia oparte na waznosci cech
w lokalnym kontekscie, wskazujac, ktére zmienne mialty najwickszy wptyw
na dang predykcje. W zastosowaniach przemystowych LIME moze ujawnic,
ze dla konkretnej maszyny predykcja awarii wynikata gtéwnie z nieznacznie
podwyzszonych wartosci wibracji, podczas gdy inne parametry, takie jak
temperatura czy cisnienie, mieScily sie w granicach normy i sugerowaty
stabilno$¢ systemu. W analizie medycznej metoda ta moze wskazaé, ze dla
danego pacjenta predykcja wysokiego ryzyka wynikalta przede wszystkim
z podwyzszonego poziomu konkretnego biomarkera, podczas gdy inne para-
metry, np. wiek czy BMI, pozostawaly w normie. LIME jest niezalezne od

typu modelu (ang. model-agnostic), co czyni je uniwersalnym narzedziem.
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Skutecznos$¢ metody zalezy jednak od odpowiedniego okreslenia lokalnego
otoczenia analizowanej obserwacji i moze by¢ ograniczona w przypadku
ztozonych zaleznosci miedzy cechami [96]. Przykladem zastosowania tej
techniki jest wykres lokalnych wyjasnien przedstawiony na Rysunku 4.3}

ktory ilustruje wptyw cech na predykcje awarii dla konkretnej maszyny.

f(x)

wibracje
Cisnienie

Predkos$¢ obrotowa +0.1

Temperatura

0.4 0.6 0.8 1.0
ELf(X)]

Rysunek 4.4: Przyktadowy wykres wodospadowy wygenerowany za pomocg

SHAP dla predykcji awarii pompy. Wykres ilustruje, jak wktady cech — wibracje

(+1.57), ci$nienie (—1.608), predkosé obrotowa (—0.528) i temperatura (—0.029)
— kumuluja sie od wartosci bazowej predykeji (E[f(x)] = 0.444) do koncowej

predykeji klasy ,,Awaria” (f(x) = 1), z oznaczeniem ich wplywu (niebieski —
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dodatni, pomaranczowy — ujemny). Prezentacja ta ilustruje podzial predykeji

na addytywne wklady poszczegdlnych cech zgodnie z metodologia SHAP.

« SHAP (SHapley Additive exPlanations): SHAP opiera si¢ na wartosciach

Shapleya pochodzacych z teorii gier, przypisujac kazdej cesze wktad do
konkretnej predykeji w sposob zgodny z aksjomatycznym podziatem wktadu
[97]. Dodatkowo warto$ci SHAP mozna sumowaé dla wszystkich obserwacji,
co umozliwia analize globalnej waznosci cech w catym zbiorze danych. W za-
stosowaniach przemystowych SHAP moze wskazaé, ze przewidywana awaria
pompy wynikata w 60% z anomalii w ci$nieniu i w 30% z temperatury. Takie
informacje pozwalaja inzynierom planowaé dzialania prewencyjne w sposob
bardziej precyzyjny. W medycynie SHAP moze analogicznie okredli¢, ze
przewidywane ryzyko zgonu pacjenta wynikalo w 45% z poziomu kreatyniny,
w 25% z wieku i w 20% z obecnoéci choréb wspdlistniejacych, umozliwiajac
lekarzom dokltadne planowanie interwencji medycznych. Cho¢ SHAP jest
bardziej wymagajacy obliczeniowo niz LIME, jego zaleta jest wigksza do-

ktadnos¢ oraz mozliwosé interpretacji zarowno dodatnich, jak i ujemnych



4.2 Metody objasnialnego uczenia maszynowego

wkladéw cech. Przyktadem zastosowania tej techniki jest wykres wodospa-
dowy (ang. waterfall plot) przedstawiony na Rysunku , ktory ilustruje

wktady cech, takich jak ci$nienie i temperatura, w predykcje awarii pompy.

Predykcja dla wartosci

-1 kontrfaktycznych cech
Cisnienie [bar] (7.0 »9.5) //_,
Temperatura [°C] (65.0 - 90.0) e :
Wibracje [m/s*] (0.8~2.5) | .+ o1 i
Wartosci faktyczne cech o !
0.0 0.2 0.4 0.6 0.8 1.0

Wynik predykgji

Rysunek 4.5: Wykres kontrfaktycznych wyjasnien dla predykcji awarii turbiny
wiatrowej, ilustrujacy roéznice miedzy wartosciami faktycznymi a kontrfaktycz-
nymi cech. Kolejne punkty reprezentuja stopniowa zmiane wyniku predykcji
wraz ze zmiana wartosci trzech cech: ci$nienia (z 7.0 do 9.5 bar), temperatury
(z 65.0 do 90.0°C) i wibracji (z 0.8 do 2.5 m/s?). Pierwszy pomaraticzowy
punkt (predykcja dla wartosci faktycznych cech, x = 0.1) wskazuje pierwotna
predykcje modelu na podstawie aktualnych wartosci cech, natomiast ostatni
niebieski punkt (predykcja dla wartosci kontrfaktycznych cech, z = 0.85) re-
prezentuje alternatywna predykcje, ktéra wynikataby, gdyby wszystkie cechy
osiagnety kontrfaktyczne wartosci. Przebieg linii przerywanej pokazuje hipote-
tyczna trajektorie zmiany predykcji, co pozwala zrozumie¢, jakie modyfikacje

cech moglyby zapobiec przewidywanej awarii.

« Wyjasnienia kontrfaktyczne (ang. Counterfactual Explanations): Ta metoda
polega na generowaniu alternatywnych scenariuszy, ktére pokazuja, jak
zmiana wartoéci cech moglaby doprowadzié¢ do innej predykeji modelu [98].
Wyjaénienia kontrfaktyczne dostarczaja odpowiedzi na pytanie, jakie modyfi-
kacje wartosci cech bytyby konieczne, aby uzyska¢ odmienny wynik predykeji
modelu. W zastosowaniach przemystowych wyjasnienie kontrfaktyczne moze
wskazacé, ze awaria turbiny wiatrowej nie zostataby przewidziana, gdyby
wartosci wibracji topat byly o 10% nizsze, przy zachowaniu pozostalych
parametrow na obecnym poziomie. W medycynie metoda ta moze okresli¢, ze
dany pacjent nie bytby uznany za przypadek wysokiego ryzyka, gdyby jego
poziom cholesterolu byt o 20% nizszy lub gdyby nie wystepowalo u niego nad-

ci$nienie. Wyjasnienia kontrfaktyczne sg szczegélnie przydatne w sytuacjach,
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4 Wyjasnialne metody analizy niezawodnosci i przezycia

gdzie celem jest nie tylko zrozumienie przyczyn predykcji, ale takze identyfi-
kacja dziatan zapobiegawczych. Ich zaleta jest intuicyjnos¢ i bezposrednie
powigzanie z interwencjami operacyjnymi, jednak skuteczne stosowanie wy-
maga precyzyjnego okreslenia dopuszczalnych zmian w cechach, co moze by¢
wyzwaniem w ztozonych systemach. Przyktadem zastosowania tej techniki
jest wykres kontrfaktycznych wyjasnien przedstawiony na Rysunku [4.5] ktéry
ilustruje réznice w wartosciach cech miedzy oryginalng predykcja awarii

a kontrfaktycznym scenariuszem dla turbiny wiatrowe;.

Metody lokalne znajduja zastosowanie w praktyce przemystowej i medycznej,
gdzie precyzyjne wyjasnienie pojedynczych predykecji moze bezposrednio przetozyc
sie na decyzje operacyjne lub kliniczne [83]. Przyktadowo, gdy model przewi-
duje awarie krytycznego komponentu, takiego jak turbina wiatrowa, lub wysokie
ryzyko u pacjenta, techniki takie jak LIME, SHAP czy wyja$nienia kontrfak-
tyczne dostarczaja komplementarnych informacji: LIME wskazuje dominujace
cechy, SHAP okresla ich doktadny wktad, a wyjasnienia kontrfaktyczne sugeruja,
jakie zmiany mogtyby zapobiec problemowi. Podstawowa wartoscia metod lokal-
nych jest zdolnos¢ do dostarczania szczegdétowych, kontekstowych wyjasnien dla
konkretnych przypadkow. Takie podejscie umozliwia uzasadnienie przewidywanego
czasu do awarii lub ryzyka zdarzenia medycznego, w celu podejmowania dziatan

prewencyjnych lub terapeutycznych.

4.3 Interpretowalne metody uczenia maszynowego

W analizie niezawodnosci i przezycia metody interpretowalne odnosza si¢ do
modeli, ktorych mechanizmy przewidywania czasow do wystapienia krytycznych
zdarzen sa przejrzyste [90]. W odréznieniu od ztozonych modeli typu ,black-
box”, takich jak glebokie sieci neuronowe, metody interpretowalne dostarczaja
wgladu w procesy estymacji funkcji przezycia i hazardu. Sa szczegdlnie przydatne
w zastosowaniach wymagajacych wysokiego poziomu transparentnosci, gdzie zro-
zumienie przyczyn przewidywanych czaséw awarii wspiera podejmowanie decyzji
konserwacyjnych oraz klinicznych [91]. Niniejsza sekcja przedstawia cztery gtéwne
kategorie interpretowalnych metod uczenia maszynowego: drzewa decyzyjne, re-
guty logiczne, modele regresyjne oraz metody oparte na instancjach. Kazda z tych

metod wnosi specyficzne wtasciwosci interpretacyjne do modelowania danych typu
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4.3 Interpretowalne metody uczenia maszynowego

czas-do-zdarzenia. Dzigki temu sg przydatne zaréwno w analizie niezawodno$ci
przemystowej, jak i biomedycznej, gdzie precyzja predykeji czasow przezycia oraz

zrozumialto$¢ modelu maja réwnorzedne znaczenie [84].

4.3.1 Drzewa decyzyjne

Drzewa decyzyjne to modele hierarchiczne stosowane zaréwno w zadaniach klasy-
fikacji, jak i regresji, ktore odwzorowuja proces decyzyjny za pomoca struktury
drzewiastej [99]. Wezly wewnetrzne reprezentuja testy warunkéw na dotyczacych
wartosci atrybutow, gatezie odpowiadaja wynikom tych testow, a liscie zawieraja
koncowe predykcje. Interpretowalnos¢ drzew decyzyjnych wynika z ich wizualnej
formy, ktéra umozliwia tatwe Sledzenie $ciezki decyzyjnej dla dowolnej obserwacji.

Matematycznie, drzewo decyzyjne dzieli przestrzen cech X na roztaczne pod-
zbiory Ry, R, ..., Ry, ktérym odpowiadaja predykcje 91, 9s, - - ., Um [60]. W klasy-
fikacji ; jest klasa najczesciej wystepujacag w danym obszarze, natomiast w regresji
stanowi wartos¢ Srednig lub median¢ zmiennej docelowej w R;. Algorytm ucze-
nia drzewa opiera si¢ na rekurencyjnym podziale przestrzeni cech, minimalizujac
funkcje kosztu, taka jak entropia (dla klasyfikacji) lub éredni btad kwadratowy
(ang. mean square error, MSE) (dla regresji) [100].

Drzewa decyzyjne wyrdzniajg sie prostota interpretacji, zdolnoscig do uchwyce-
nia nieliniowych zaleznosci oraz automatycznym modelowaniem interakcji miedzy
atrybutami. Ich ograniczeniem jest jednak tendencja do nadmiernego dopasowa-
nia (ang. overfitting), co mozna korygowaé poprzez techniki przycinania drzew
(ang. decision tree pruning) lub stosowanie metod zespotowych, takich jak lasy
losowe (ang. random forests), kosztem czesciowej utraty interpretowalnosci |79].
W analizie przezycia wykorzystuje sie drzewa przezyciowe (ang. survival trees),
ktore stanowia adaptacje drzew decyzyjnych do danych cenzurowanych. Ich liscie
zawieraja estymatory funkcji przezycia (np. krzywe Kaplana-Meiera), co umozliwia
predykcje czaséw do wystapienia zdarzenia dla réznych podgrup pacjentéw lub
urzadzen (63} |59).

4.3.2 Reguty decyzyjne

Reguly decyzyjne to zbiory instrukeji logicznych w formie ,,jesli-to”, ktére okreslaja

predykcje na podstawie spelnienia okre$lonych warunkéw [101]. W odréznieniu
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4 Wyjasnialne metody analizy niezawodnosci i przezycia

od hierarchicznej struktury drzew decyzyjnych, reguty moga by¢ zorganizowane
w sposOb nieuporzadkowany lub czesciowo uporzadkowany, co zwigksza zakres
ich zastosowania. Charakteryzuja sie podobienstwem do jezyka naturalnego, co
utatwia ich zrozumienie [102].

Formalnie, reguta decyzyjna r ma postac:

jesli ¢ to 1, (4.1)

gdzie ¢ stanowi koniunkcje warunkéw na atrybutach (np. 27 > a A xe =0), a1
jest predykcja — na przyktad klasa, wartoscia liczbowsg lub, w analizie przezy-
cia, estymatg prawdopodobienstwa przezycia badz ryzyka wystapienia zdarzenia
w okre$lonym czasie. Zbior regut R = {ry,rs,..., 7} tworzy model predykcyjny,
w ktorym dla obserwacji x predykcja wynika z reguly (lub regut), dla ktoérej
spelniony jest warunek ¢(x) [103]. W przypadku nakladania sie regul, konflikty
rozstrzyga sie za pomocg mechanizméw takich jak gtosowanie wiekszo$ciowe lub
priorytetyzacja regut.

Interpretowalnos¢ regut wynika z ich prostej formy warunkowej , jesli-to”, ktéra
mapuje kombinacje wartosci zmiennych objasniajacych na predykcje. Reguty
w ramach zbioru sg niezalezne, dzieki czemu mozna ja analizowaé koniecznosci
rozumienia catego modelu. W predykcyjnym utrzymaniu ruchu reguty moga okre-
sla¢ konkretne kombinacje parametréw (np. ,jesli temperatura >75°C i wibracje
> 5m/s?, to prawdopodobieristwo awarii w ciagu 30 dni wynosi > 70%.”), oferu-
jac praktyczne wskazowki operacyjne [104]. W analizie przezycia termin ,reguty
decyzyjne” odnosi sie do regut przezyciowych (ang. survival rules), ktére okreslaja
warunki zwigzane z czasem do wystapienia zdarzenia, np. ,,jesli wiek pacjenta
> 65 lat i poziom kreatyniny > 2.0mg/dL, to prawdopodobienistwo 5-letniego

przezycia wynosi < 40%”.

4.3.3 Modele regresyjne

Modele regresyjne stanowig klase interpretowalnych metod uczenia maszynowego
[53]. W kontekscie predykcyjnego utrzymania ruchu mozna wyréznié trzy gtoéwne
kategorie modeli regresyjnych o wysokiej interpretowalnosci: regresje liniowa,

regresje Coxa oraz regresje logistyczna.
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4.3 Interpretowalne metody uczenia maszynowego

Regresja liniowa opisuje zalezno$¢ miedzy zmienna objasniang y a zmiennymi

objasniajacymi x = (21,2, ...,2,) za pomocy liniowej kombinacji:
y = fo+ Bizr + Bara + -+ By, + e, (4.2)
gdzie B = (Bo, 1, - - -, Bp) to wektor parametréw, a e reprezentuje sktadnik losowy

[105]. Interpretowalno$é wynika z bezposredniej relacji miedzy wspétezynnikami
Biyi=0,...,p, a wplywem zmiennych na predykcje — kazdy wspotczynnik okresla
oczekiwang zmian¢ zmiennej objasnianej przy jednostkowej zmianie odpowiedniej
zmiennej objasniajacej. W analizie przezycia role tej klasy modeli petnig modele
typu AFT (ang. accelerated failure time), ktére odnosza sie bezposrednio do czasu
do zdarzenia (szczegdly i przyktady znajduja sie w Sekcji .

Model proporcjonalnych hazardéw Coxa (szczegétowo opisany w Rozdziale [3))

definiuje funkcje hazardu jako [1]:

h(t | x) = ho(t)e® ™, (4.3)

gdzie hy to funkcja hazardu bazowego, a 87 x to liniowy predyktor, czyli suma
wazona wartosci zmiennych objasniajacych dla rozwazanej obserwacji. Z postaci
ePx wynika, ze przy wzroscie wartosci danej cechy o 1 (przy pozostatych cechach
statych) hazard jest mnozony przez staty czynnik (tzw. iloraz hazardéw), nieza-
lezny od czasu. Model ten jest semi-parametryczny — nie wymaga specyfikacji
rozktadu czaséw przezycia i koncentruje sie na relatywnym wptywie zmiennych
objasniajacych na ryzyko zdarzenia. Jesli wspoétczynnik przy danej zmiennej obja-
$niajacej jest dodatni, czynnik jest wiekszy od 1 (wieksze ryzyko); jesli ujemny —
mniejszy od 1 (mniejsze ryzyko).

Regresja logistyczna stuzy do klasyfikacji i znajduje zastosowanie w modelowaniu
prawdopodobienstwa awarii w okreslonym przedziale czasowym. Prawdopodobien-

stwo wystapienia zdarzenia wyraza sie wzorem:

1
14 =B
gdzie B to wektor parametréw modelu, x to wektor zmiennych objasniajacych,

Ply=1]x) = (4.4)

a indeks goérny T' oznacza transpozycje. Interpretowalnosé¢ wynika z liniowego
predyktora B7x — dodatnie sktadowe wektora B zwickszaja przewidywane praw-

dopodobienstwo wystapienia zdarzenia, ujemne je zmniejszaja. Wicksza wartosé
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4 Wyjasnialne metody analizy niezawodnosci i przezycia

bezwzgledna sktadowej oznacza silniejszy wptyw (przy pozostatych cechach sta-
tych).

Modele regresyjne umozliwiajg kwantyfikacje wptywu czynnikéw operacyjnych
na czas eksploatacji urzadzen. Przyktadowo, w systemie monitorowania turbin
wiatrowych regresja Coxa moze wykazaé, ze wzrost predkosci wiatru o jedna
jednostke zwieksza ryzyko awarii tozysk proporcjonalnie do wspétezynnika efwiasr

dostarczajac precyzyjnych informacji do planowania konserwacji prewencyjnej [29].

4.3.4 Metody oparte na instancjach

Metody oparte na instancjach (ang. instance-based learning) zakladaja, ze ob-
serwacje o podobnych warto$ciach w przestrzeni cech wykazujg zblizone warto-
Sci zmiennej docelowej [106]. Przyktadem jest algorytm k-najblizszych sasiadéw
(ang. k-nearest neighbors, k-NN), ktéry dla nowej obserwacji x identyfikuje &k naj-
bardziej podobnych przyktadéw z danych treningowych i wyznacza predykcje na
podstawie ich wartosci zmiennej docelowej, np. poprzez gtosowanie wigkszosciowe
w zadaniach klasyfikacji lub obliczenie Sredniej w zadaniach regresji [107].

Matematycznie, dla metryki odlegtosci d, zbiér k najblizszych sasiadéw Ny (x)
definiuje sie jako:

Ni(x) = chlllgl ;s Z d(x,x;), (4.5)

gdzie D to zbiér treningowy. Predykcja w klasyﬁkacp jest dana wzorem:

§ = argmax Z I(y; = ¢), (4.6)

gdzie ¢ oznacza etykiete klasy, a I to funkcja charakterystyczna zbioru (ang. indi-
cator function) [108].

Interpretowalno$¢ tej metody wynika z jej prostoty — predykcja jest uzasadniona
konkretnymi przyktadami z danych, co pozwala uzytkownikowi przeanalizowacé
najblizszych sasiadéw i zrozumieé¢ podstawy decyzji [109]. W analizie przezycia
metody oparte na instancjach moga wykorzystywaé¢ podobienstwo w przestrzeni
cech do identyfikacji przypadkéw o zblizonych czasach do wystapienia zdarzenia
[106]. Algorytm k-NN moze estymowaé czas do awarii na podstawie historycznych

przypadkoéw urzadzen o podobnych parametrach operacyjnych, a w medycynie moze
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4.3 Interpretowalne metody uczenia maszynowego

identyfikowaé¢ pacjentéw o zblizonych profilach klinicznych w celu prognozowania

czasOw przezycia.
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5 Analiza niezawodnosci i przezycia

za pomocyg regut logicznych

Niniejszy rozdziat koncentruje sie na regutach logicznych jako interpretowalne;j
metodzie analizy danych cenzurowanych. Reguty logiczne tacza interpretowalnosé
klasycznych metod statystycznych analizy przezycia ze zdolnoscig modelowania
ztozonych zaleznosci, charakterystyczna dla zaawansowanych algorytmow uczenia
maszynowego |102].

W kontekscie analizy przezycia reguly logiczne umozliwiajg reprezentacje odkry-
tej wiedzy w formie intuicyjnych warunkow logicznych, zrozumiatych dla ekspertéw
dziedzinowych w medycynie i predykcyjnym utrzymaniu ruchu. W przeciwienstwie
do tradycyjnych metod statystycznych, moga modelowaé nieliniowe wielowymia-
rowe zaleznosci, zachowujac jednoczesnie transparentnos¢ proceséw decyzyjnych
wymagang w zastosowaniach krytycznych. Adaptacja algorytméw indukceji regut do
specyfiki danych cenzurowanych stanowi wyzwanie metodologiczne, wymagajace
uwzglednienia mechanizmoéw cenzurowania w procesach uczenia i predykeji.

Rozdziat ten przedstawia proces indukcji regut oraz role regut klasyfikacyjnych
w analizie przezycia. Wprowadzenia teoretyczne dotyczace regutl akcji, regut wyjat-
kow oraz zespoltow regul zamieszczono na poczatku sekeji poswieconych autorskim
metodom (odpowiednio: Sekcja Sekcja , Sekcja . Sekcja rozwija
watek regul akeji, korzystajac z podstaw teoretycznych oméwionych w Sekcji [5.2]
W dalszej czesci zaprezentowano autorskie algorytmy: pokryciowy algorytm induk-
cji przezyciowych regut akcji, algorytm rekomendacji przezyciowych regut akcji,
algorytm indukcji przezyciowych regut wyjatkow oraz interpretowalny zespot regut
przezyciowych, ktore nie tylko rozszerzajace istniejace podejscia, lecz takze oferu-

jace nowe narzedzia do interpretowalnego modelowania danych cenzurowanych.
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

5.1 Indukcja regut

Reguty logiczne, dzigki interpretowalnosci i zdolno$ci do modelowania ztozonych
zalezno$ci, znajduja zastosowanie w analizie przezycia [102]. Indukcja regul to
metoda uczenia maszynowego polegajaca na generowaniu regut decyzyjnych na
podstawie danych uczacych [101]. W odréznieniu od ztozonych modeli, takich jak
gtebokie sieci neuronowe, ktérych wewnetrzne reprezentacje pozostaja nieinter-
pretowalne dla uzytkownika, reguty logiczne zapewniaja pelng transparentnosé
procesu decyzyjnego poprzez formalne warunki typu ,,jesli-to”. Ma to znaczenie
w obszarach takich jak diagnostyka medyczna czy systemy predykcyjnego utrzy-
mania ruchu, gdzie decyzje oparte na modelach powinny umozliwiaé¢ specjalistom

weryfikacje podstawy predykeji [86].

Algorytm 1 Pokryciowy algorytm indukcji regut

Wejscie: D — zbiér danych
Wyjscie: R — zbior regut
. R—
2: D, < D > zbiér przyktadéw niepokrytych jeszcze przez zadna regute
3: while D, # ¢J do
4 r < GENERUJREGULE(D, D,)
5: D, < D,\ POKRYCIE(r, D,,)
6 R— Ru{r}
7. end while
8

: return R

W niniejszej pracy przyjeto strategie sekwencyjnego pokrywania (ang. separate-
and-conquer) jako metode indukcji regut. Polega ona na iteracyjnym generowaniu
regul pokrywajacych kolejne podzbiory danych [15]. Kazda nowa reguta pokrywa
czeSé jeszcze niepokrytych przykladéw, a proces trwa do momentu pokrycia
catego zbioru lub niespetnienia kryteriow jakosci. Zespoty regut rozwijaja to
podejscie, taczac predykcje z wielu zbioréow regut w celu zwigkszenia doktadnosci
przy jednoczesnym zachowaniu interpretowalnosci. Kolejne sekcje zaprezentuja
autorskie algorytmy wykorzystujace te strategie do analizy danych cenzurowanych.

Przebieg pokryciowego algorytmu indukcji regut przedstawiono w Algorytmie
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5.1 Indukcja regut

Reguly decyzyjne umozliwiaja reprezentacje wiedzy w formie interpretowal-
nych regul implikacyjnych [101]. W analizie niezawodnosci oraz w predykcyjnym
utrzymaniu ruchu stuza do modelowania zaleznosci w danych cenzurowanych [22].
Wyrdznia sie trzy podstawowe typy regul: klasyfikacyjne, akcji oraz wyjatkow,
rézniace sie celem, strukturg i zastosowaniem. W niniejszej sekcji oméwiono re-
guly klasyfikacyjne, natomiast wprowadzenia teoretyczne do regut akcji i regut
wyjatkow przedstawiono odpowiednio w sekcjach i a do zespolow regut
w Sekcji [5.5]

W dalszej czesci rozdziatu stosowane jest nastepujace nazewnictwo: cecha (atry-
but) oznacza pojedyncza zmienng opisujaca obiekt, a wektor cech x = (x1, ..., xp)
zawiera wartosci cech danej obserwacji. Warunek elementarny w; rozumiany jest
jako predykat zdefiniowany na cechach x, przy czym przestanka reguly ma postaé
koniunkcji wy A -+ A w,. Zmienna decyzyjna y przyjmuje wartosci etykiet klas
cr € C. W czesciach dotyczacych analizy przezycia dodatkowo wykorzystywane sg

czas przezycia T oraz status cenzurowania § € {0, 1}.

Reguty klasyfikacyjne Reguty klasyfikacyjne przypisuja obserwacje do jednej
z wezedniej zdefiniowanych klas na podstawie spetnienia warunkow logicznych,
zapewniajac prostote i interpretowalnos¢ wymagang w systemach diagnostycznych

[110]. Formalnie, reguta klasyfikacyjna r definiowana jest jako:

jesli wy A wg A -+ A wy, to Yy = ¢y, (5.1)

gdzie:

x = (1,29, ...,1,) — wektor wartodci cech opisujacych obserwacje (np. pa-

rametry operacyjne maszyny: temperatura, ci$nienie, wibracje),

e w; — warunek elementarny na cechach x; przestanka reguty to koniunkcja

Wy AwWe A Awy, (Mp. 21 >a Axg <), gdziei =1,...,n,
o n — liczba warunkow w przestance reguty,
« y — zmienna decyzyjna wskazujaca klase,

o cp€{cy,c9,. .., ¢t — Kklasa, np. sprawny” lub ,uszkodzony”.
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

Jako$¢ regut ocenia sie za pomoca miar takich jak precyzja (ang. precision), czyli
stosunek poprawnych predykcji do wszystkich obserwacji spetniajacych przestanke
reguly (wy A -+ - Awy,), pokrycie (ang. coverage), czyli odsetek obserwacji spetniaja-
cych przestanke reguly, oraz wsparcie (ang. support), wskazujace liczbe obserwacji
spetniajacych zaréwno przestanke reguly, jak i y = ¢, |[111]. Wysoka precyzja ozna-
cza niski odsetek btednych predykeji wsréd przyktadéw spehiajacych przestanke
reguty, a duze pokrycie wskazuje, ze reguta ma zastosowanie do znacznej czesci
zbioru danych. Zwigkszenie pokrycia czesto prowadzi jednak do obnizenia precyzji,
poniewaz bardziej ogdlne reguty maja tendencje do obejmowania przyktadow
z réznych klas.

Reguty klasyfikacyjne znajduja zastosowanie w prognozowaniu stanu technicz-
nego maszyn i urzadzen. Przyktadowa reguta , jezeli temperatura >75°C oraz
wibracje > 4 m/ %, to stan = uszkodzony” umozliwia jednoznaczng klasyfikacje
stanu maszyny, wspierajac proces podejmowania decyzji konserwacyjnych [5]. Algo-
rytmy indukcji regut, takie jak CN2, oparte na strategii sekwencyjnego pokrywania,
konstruuja zbiory regut o ograniczonej licznosci i dtugosci regut poprzez usuwanie
ze zbioru uczacego przykladéw spetiajacych przestanke aktualnie indukowanej
reguty (tj. przyktadéw przez nia pokrywanych) [112]. Z kolei algorytm C4.5 prze-
ksztatca drzewa decyzyjne w zbiory regutl, zwiekszajac mozliwo$ci modelowania
ztozonych zaleznosci [110].

Literatura przedmiotu wskazuje na liczne zastosowania regut klasyfikacyjnych.
Tyagi i Sharma [113] zaproponowali metode szacowania niezawodnosci systeméw
opartych na komponentach (ang. Component-Based Software Systems, CBSS)
z wykorzystaniem regut i logiki rozmytej, uwzgledniajac m.in. profil operacyjny
oraz mozliwos¢ ponownego uzycia komponentéw. Wyniki eksperymentéw potwier-
dzity skutecznos¢ tej metody w modelowaniu warunkow eksploatacyjnych. Avritzer
i in. |114] przedstawili podejscie do testowania niezawodno$ci oparte na regutach,
stosowane w monitorowaniu duzych systeméw czasu rzeczywistego (np. oprogramo-
wania przemystowego), co podkresla uzytecznosé modeli regutowych w zapewnianiu
stabilnosci systemow.

Wariant przezyciowy regut klasyfikacyjnych dostosowuje sie do modelowania
danych cenzurowanych, umozliwiajac predykcje czasu do zdarzenia, np. awarii
lub zgonu pacjenta. Sikora i in. [115] zastosowali je do analizy danych pacjentéw

po przeszczepie szpiku kostnego, taczac reguly z estymatorami Kaplana-Meiera,
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5.2 Pokryciowy algorytm indukcji przezyciowych regut akcji

co pozwolito na identyfikacje czynnikow przezycia i tworzenie interpretowalnych
wzorcow. Wrébel i Sikora [116] rozwineli metode oparta na strategii separate-
and-conquer z wazeniem danych cenzurowanych, osiggajac wyzszg doktadnosé
predykcji niz klasyczne estymatory. Metody indukcji regut przezyciowych (akeji,
wyjatkéw oraz zespoléw), stanowiace wklad niniejszej pracy, zostana szczegétowo

omoéwione w dalszej czesci.

5.2 Pokryciowy algorytm indukcji przezyciowych
regut akcji

W tej sekcji przedstawiono pokryciowy algorytm indukcji przezyciowych regut
akcji, opisany w pracy Separate-and-conquer Survival Action Rule Learning [117].
Metoda ta stanowi podejscie do indukcji przezyciowych regut akcji, umozliwiajac
identyfikacje zmian wartosci atrybutéw prowadzacych do okreslonej modyfikacji
krzywej przezycia w populacji pokrytej reguta. Jej opracowanie byto motywo-
wane potrzeba potaczenie eksploracji akcji z analizg danych cenzurowanych oraz
zaproponowania interpretowalnej procedury poréwnywania krzywych przezycia
grup zrédtowych i docelowych. W niniejszej sekcji najpierw oméwiono podstawy
regut akcji, a nastepnie przedstawiono zaltozenia, sposdb reprezentacji regut oraz

procedure dziatania algorytmu.

5.2.1 Reguty akcji

Reguly akcji rozszerzaja funkcjonalnosé¢ regut klasyfikacyjnych, wskazujac kon-
kretne zmiany wartosci atrybutow prowadzace do przejscia z klasy zrodlowej cy
na docelowa cp. Dzieki temu mozliwe jest formutowanie operacyjnych zalecen
dotyczacych modyfikacji atrybutéw, np. w systemach predykcyjnego utrzymania
ruchu [18]. Niech A = {ay, ..., a,} oznacza zbiér atrybutéw, a dla kazdego a; € A
niech D(a;) bedzie zbiorem dopuszczalnych wartosci atrybutu a;. Niech C' oznacza
zbior klas decyzyjnych. Wéwcezas wz;, wp; € D(a;) dla i = 1,...,n, przy czym

n < p, a cz,cp € C. Formalnie, regute akcji zapisuje sie jako:

jesli (ay s wz1 — wp1) A (ag : wWza — wpa) A -+ A (G 1 Wzp — Wpp) 5:2)

to c; — cp,
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

gdzie:

e (a; : wy; — wp;) — elementarna akcja zmieniajaca warto$é atrybutu a;

z wartosci zrodtowej wz; na docelows wp;,
: 2 2
e ¢y — cp — zmiana klasy, np. z ,,uszkodzony” na ,sprawny”.

Regute akeji mozna postrzegaé jako kompozycje dwéch regul: zrédtowej (dla cz)
i docelowej (dla c¢p). Wyrédznia sie trzy typy akeji elementarnych |118]: zmieniajaca,
(a; : wz; — wpy), gdzie wy; # wp;; dowolna, (a; : wz; — dowolna), gdy nie
precyzuje sie wartosci docelowej; podtrzymujaca, (a; : wz; — wyz;), oznaczajaca
zachowanie wartosci atrybutu.

W predykcyjnym utrzymaniu ruchu reguty akcji moga wskazywaé korekty
parametréw procesu (np. ci$nienia, temperatury, obciazenia), ktére w danych
historycznych dla grupy pokrytej przez regute wspotwystepowaly z obnizeniem
ryzyka (np. spadkiem hazardu). Przyktad reguty:

jesli (cisnienie € (60, 70] bar — cisnienie € [50, 55] bar)
A (temperatura € (85,90]°C — temperatura € [75,80]°C) (5.3)
to kategoria ryzyka awarii : wysoka — umiarkowana

Przyktad obrazuje zmiany parametréw procesu, ktore w danych historycznych
dla obserwacji pokrytych reguta korelowaly z nizszym ryzykiem awarii [61].

W dalszej czesci pracy stosowany jest rownowazny, uproszczony zapis:

jesli (cisnienie, (60, 70] — [50, 55])
A (temperatura, (85,90] — [75,80]) (5.4)
to (kategoria ryzyka awarii, (wysoka — umiarkowana))

Prace nad regutami akcji koncentrujg sie na formalnych procedurach ich indukcji
oraz zastosowaniach rekomendacyjnych. Ras i Tsay [118] zaproponowali system
DEAR, ktéry konstruuje reguty akcji z par regut decyzyjnych odpowiadajacych
klasie zrodtowej i docelowej, rozrozniajac atrybuty stabilne i zmienne. Elementarne
akcje maja postaé (a : wy — wp), a ich trafno$¢ weryfikowana jest empirycznie.
Wersja drzewiasta systemu ogranicza przestrzen poszukiwan poprzez wykorzy-
stanie struktury drzewa decyzyjnego, co redukuje koszt generowania regul |11§].

Sikora i in. [119] przedstawili algorytm SCARI, ktéry integruje indukcje regut akeji
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5.2 Pokryciowy algorytm indukcji przezyciowych regut akcji

(przejscia ¢z — ¢p) z mechanizmem wyboru dziatan dla pojedynczych obiektéw.
Algorytm wyznacza zestaw zmian atrybutéw maksymalizujacy prawdopodobien-
stwo przejécia do klasy docelowej przy zadanych ograniczeniach (np. kosztowych
lub technologicznych).

W analizie przezycia reguty akcji moga sugerowaé interwencje poprawiajace
rokowania, np. zmiane harmonogramu konserwacji w celu wydtuzenia czasu pracy
maszyny lub dostosowanie terapii w medycynie. Ich potencjatl w tym obszarze

pozostaje jednak niedostatecznie zbadany, co stanowi luke badawcza.

5.2.2 Opis metody

Metoda opiera sie na strategii separate-and-conquer i dziata na zbiorze danych
D(A,T.,9), gdzie A to zbior atrybutéw, T' to czas obserwacji (czas do zdarzenia),
a 0 € {0, 1} to status przezycia (1 — zdarzenie, 0 — cenzurowanie). Kazdorazowo
konstruowana jest reguta pokrywajaca cze$¢ dotychczas niepokrytych przyktaddw,
ktére nastepnie usuwa si¢ z puli pozostatej do pokrycia. Proces trwa az do momentu,
gdy zbidr niepokrytych przyktadow jest pusty lub gdy nie da sie wyindukowaé
reguty spetiajacej zadane minimalne progi pokrycia i jakosci.

Centralnym elementem metody jest generowanie przezyciowych regut akcji,
ktorych konkluzja zawiera estymator funkcji przezycia (Kaplana-Meiera). Reguly

te majg postac:

jesli (ay : wz1 — wp1) A (ag : wze — wpe) A+ A (G 2 Wz — Wpy)

. A (5.5)
to SZ — SD,

gdzie (a; : wz — wp;) reprezentuje zmiane wartosci atrybutu a; z zakresu
zrodtowego wyz; na zakres docelowy wp;, a S, 18p to estymatory funkcji przezycia
wyznaczone dla przyktadéw pokrywanych, odpowiednio, przez czesé zrodtows
i czes¢ docelows reguty.

Metoda sktada sie z dwdch gltéwnych faz: specjalizacji (wzrostu) reguly oraz
jej generalizacji (przycinania). W fazie specjalizacji, rozpoczynajac od pustej
przestanki, warunki sa dodawane iteracyjnie w celu zmaksymalizowania réznicy
w krzywych przezycia miedzy grupa zrédtowa a docelowa, mierzonej testem log-

rank. W fazie przycinania warunki sg usuwane lub modyfikowane w celu poprawy
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jakos¢ reguty. Nadmiernemu dopasowaniu zapobiega si¢, pozostawiajac wytacz-
nie modyfikacje, ktore nie pogarszaja statystyki log-rank, natomiast nadmiernej
ogblnosci przeciwdziata sie poprzez ograniczenie maksymalnego pokrycia p oraz

dopuszczalnego udziatu przyktadow wspoélnych dla czesci zrédtowej i docelowej

reguty &.

Algorytm 2 Algorytm indukcji regut akcji dla danych cenzurowanych

1: Wejscie:
2:  D(A,T,0) — zbioér danych opisany atrybutami A, czasem obserwacji T'
i statusem przezycia o

3:  p — minimalna liczba niepokrytych przyktadéw, ktére nowa reguta musi

pokrywaé

4: & — maksymalny procent przyktadow wspoélnych dla obu czesci reguty

5:  p — maksymalne pokrycie reguty

6: 7 — typ reguly: lepsza | gorsza | dowolna

70 Astabilny — zbior atrybutéw stabilnych z A

8: Wyjscie: R — zbidér przezyciowych regut akcji

9: procedure INDUKUJPRZEZYCIOWEREGULYAKCIL(D, 1, &, p, T, Astaviing)

10: R—U

11: D, —D > zbiér przyktadéw niepokrytych

12: while D, # & do

13: 7« SPECJALIZUI(D, Dy, t, T, p, Astabiiny)

14: r — UoGOLNLI(D, 1, 7,&, p)

15: if r # & then R — R u {r}

16: D, < POKRYTEPRZYKLADY(r, D) = przyklady z D pokrywane przez
r

17: D, <~ D,\D,

18: end while

19: return R

20: end procedure

Pseudokod procedury indukcji zbioru przezyciowych regut akcji zostat przed-
stawiono w Algorytmie [2] Na wejsciu przekazywany jest zbiér danych D(A, T, ).

Dodatkowo wykorzystywany jest zbiér parametrow:
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5.2 Pokryciowy algorytm indukcji przezyciowych regut akcji

e 1 — minimalna liczba przyktadéw niepokrytych, ktére musi pokrywaé

indukowana reguta;
e p — dopuszczalne maksymalne pokrycie reguty wzgledem D;

o ¢ — dopuszczalny maksymalny udziat przyktadéw wspélnych dla czesci

zrodtowej i docelowej reguty;

o 7 € {lepsza, gorsza, dowolna} — preferowany kierunek zmiany wyniku prze-

zycia implikowany przez regute.

Zbiér Agiapiiny S A wyznacza atrybuty stabilne (niepoddajace sie dziataniu), ktére
nie moga by¢ modyfikowane przez czes¢ akcyjng reguty.

Zadaniem procedury jest zbudowanie zbioru regut R, w ktérym kazda reguta
ma postac:

jesli ¢ to S‘Z — S’D

gdzie S 71 S p oznaczaja nieparametryczne estymatory funkeji przezycia (Kaplana-
Meiera) odpowiednio dla czesci zZzrédtowej i docelowej. Algorytm utrzymuje zbiér
przyktadow niepokrytych D, i iteracyjnie konstruuje nowg regute r poprzez se-
kwencyjne uszczegotawianie i uogdlnianie przestanki. Procedura Specjalizuj buduje
koniunkcje akeji ztozong z par warunek—kontrwarunek ograniczonych do atrybutéw
niestabilnych, respektujac progi i i p. Natomiast procedura Uogdlnij upraszcza
powstata przestanke przy zachowaniu ograniczen &, p oraz zgodno$ci z kierunkiem
T (tj. relacji Sh wzgledem S, zgodnej z wymaganym kierunkiem). Po akceptacji
reguty do R, z D, usuwa sie wszystkie przyktady pokryte przez jej czes¢ zrédtowa.
Petla koncezy sie, gdy D, = ¢ lub nie istnieje reguta spekliajaca jednoczesnie
ograniczenia u, £, p oraz wymog kierunku 7.

Faza specjalizacji reguty jest realizowana przez procedure Specjalizuj, przedsta-
wiona w Algorytmie [3] Polega ona na zachtannym dodawaniu akcji do przestanki
reguty, rozpoczynajac od pustej przestanki. W kazdej iteracji poszukiwany jest
najlepszy warunek elementarny wyqj, dla czesci zrodtowej reguly, a nastepnie
najlepszy kontrwarunek w,,q;;,, dla czesci docelowej. Akcja utworzona z tych dwoéch
warunkéw jest dodawana do przestanki reguty. Proces ten trwa do momentu, gdy
nie mozna znalez¢ nowego warunku Wi, -

Najlepszy warunek elementarny wy.j, wybierany jest tak, aby po dodaniu do

czesci zrodlowej reguty, statystyka log-rank miedzy przyktadami pokrywanymi
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Algorytm 3 Specjalizacja przezyciowej reguty akcji

1: Wejscie:
D(A,T,§) — zbiér danych
D, — zbiér przyktadéw niepokrytych
1 — minimalna liczba przyktadow, ktore nowa reguta musi pokrywac

p — maksymalne pokrycie reguty

Astabiing — zbior atrybutéw stabilnych

2
3
4
5
6: T — typ reguly
T
8: Wyjscie: r — reguta akcji
9

: procedure SPECJALIZUI(D, D, i1, T, p, Astabiiny)

10: 0, 07,0p — & > przestanka, warunki zrédtowe i docelowe

11: Wsprawdzone < & > juz sprawdzone warunki

12: repeat

13: Wnajly, — ZNAJDZNAJLEPSZY WARUNEKELEMEN-
TARNY(D, Dy, 9z, it, p, Wsprawdzone)

14: Weprawdzone < Wsprawdzone Y {Wnaji, }

15: if wnej, = J then continue

16: a «— ATRYBUT(Wyqji,)

17: Whajlp < ZNAJDZKONTRWARUNEK(D, 07 A Whajly s PDs Wnajiy s 4 T)

18: akcja «— BUDUJAKCIE(Wnaji,  Wnajly, )

19: Y — @ A akcja

20: Pz < Pz N Wnajiy,

21 YD < PD A Wngjip

22: until (Wnej, = )

23: Oblicz S dla POKRYTEPRZYKEADY (¢, D) (Kaplan-Meier)

24: Oblicz Sp dla POKRYTEPRZYKEADY (pp, D) (Kaplan-Meier)

25: return r = jesli ¢ to SZ — S’D

26: end procedure
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a niepokrywanymi przez regute byla jak najwieksza. W przypadku kilku warunkéw
dajacych te samg wartos¢ statystyki, wybierany jest ten, ktéry maksymalnie
zwieksza liczbe dotychczas niepokrywanych przyktadéw. Najlepszy kontrwarunek
Wnaji,, poszukiwany jest dla tego samego atrybutu co wy,j, i wybierany tak,
aby statystyka log-rank miedzy przyktadami pokrywanymi przez czesé¢ zroédtowa
z dodanym wp,j;, a przykladami pokrywanymi przez cze¢$¢ docelowa z dodanym
Wnaji, byla maksymalna.

Po fazie specjalizacji nastepuje faza przycinania reguty, realizowana przez funkcje
Uogolnij. W tej fazie iteracyjnie usuwane sa akcje z przestanki reguty, sprawdzajac,
czy ich usuniecie poprawia lub nie pogarsza wartosci statystyki log-rank miedzy
krzywymi przezycia czesci zrédtowej i docelowej. Dodatkowo rozwazana jest moz-
liwos¢ zamiany akcji na akcje dowolna, czyli taka, w ktorej po stronie docelowe;j
nie narzuca sie konkretnej wartosci atrybutu — dopuszcza si¢ dowolng wartosé
((a; : wz; — dowolna)), jesli prowadzi to do dalszej poprawy jakosci reguty. Pro-
ces przycinania trwa do momentu, gdy nie ma juz akcji, ktérych usuniecie lub
zamiana na akcje dowolng poprawiatoby jakos$é¢ reguty. Usuwanie akcji podlega
dwoém ograniczeniom. Akcja nie jest usuwana, jesli jej usuniecie spowodowatoby,
ze udzial przykladéw pokrytych przez jedna regute przekroczytby p lub jesli udziat
wspolnych przyktadow dla czesci zrodtowej i docelowej reguty przekroczytby &.

Metoda obstuguje braki w danych poprzez strategie ignorowania brakujacych
wartosci. Podczas poszukiwania mozliwych warunkéw, brakujace wartosci sa pomi-
jane, a reguty budowane sa wytacznie na podstawie znanych wartosci. Przyktady
z brakujacymi wartosciami dla atrybutéw wystepujacych w regule nie sa uwzgled-
niane przy ocenie pokrycia reguty. Strategia ta nie wymaga dodatkowych krokdéw,
takich jak interpolacja danych.

Proponowana metoda jest unikalna, poniewaz jako pierwsza umozliwia indukcje
regutl akcji dla danych cenzurowanych, taczac techniki eksploracji akcji z analizg
przezycia. W przeciwienstwie do istniejacych metod, zaprojektowanych dla danych
klasyfikacyjnych, metoda ta obstuguje dane cenzurowane juz na etapie indukcji
i oceny jakosci regut. Umozliwia to formutowanie interpretowalnych rekomendac;ji
zmian wartosci atrybutow o kontrolowanym kierunku wplywu na funkcje przezycia

w zbiorach przyktadéw pokrywanych przez reguty.
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5.2.3 llustracja dziatania metody

Niniejsza ilustracja przedstawia zastosowanie omawianej metody na zbiorze danych
Maintenance, dotyczacym konserwacji urzadzen. Zbior obejmuje 1000 przyktadow

opisanych trzema zmiennymi objasniajacymi:
o pressurelnd — przeptyw cieczy,
o moisturelnd — wzgledna wilgotnosc,

o temperaturelnd — temperatura.

Ponadto zbiér zawiera dwa atrybuty zwiazane z przezyciem:
e lifetime — liczba tygodni, przez ktére maszyna byta aktywna,

e broken — informacja o awarii maszyny w trakcie omawianego okresu aktyw-

nosci.

Celem analizy jest wygenerowanie przezyciowych regut akcji, ktére modyfikuja
krzywa przezycia maszyn poprzez rekomendowanie zmian wartosci atrybutéw.
Na Rysunku zaprezentowano wplyw pokrycia reguty na estymowana funkcje

przezycia oraz rozktad przyktadow w przestrzeni cech.

Przyktad indukcji regut

Ponizej przedstawiono szczegdtowy przebieg indukcji regut w trzeciej iteracji
algorytmu. Iteracja rozumiana jest jako jeden cykl procesu separate-and-conquer,
w ktorym generowana jest pojedyncza reguta pokrywajaca czes¢ niepokrytych
dotychczas przyktadéw. Trzecia iteracja zostata wybrana, poniewaz najlepiej

ilustruje pelng funkcjonalnosé algorytmu, w tym obstuge warunkow ztozonych.

Inicjalizacja Na poczatku trzeciej iteracji w zbiorze pozostaje 937 przyktadéow
niepokrytych przez zadna z wczesniej wygenerowanych regut. Zadaniem algorytmu
jest zidentyfikowanie reguty, ktoérej krzywa przezycia przewyzsza krzywa reguty
zrodtowej, tzn. zapewnia wyzsze estymowane prawdopodobienstwo przezycia dla

przyktadow spehliajacych te regute.
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Rysunek 5.1: Krzywe przezycia ilustrujace wpltyw wygenerowanej reguty akcji
na czas bezawaryjnej pracy maszyn. Niebieska krzywa reprezentuje przyktady
spetniajace warunki czesci zrodtowej reguty, pomaranczowa — czesci docelowej,
natomiast szara krzywa odnosi sie do przyktadéw niepokrywanych przez te
regute. Dodatkowo, trzy wykresy rozrzutu przedstawiaja rozktad przyktadow
w przestrzeni cech (dla kazdej pary atrybutéw) w podziale na te trzy grupy.
Rozwazana reguta ma postaé: jesli (pressurelnd, (—o0,103.9) — (—0,81.0)) A

(temperaturelnd, (—o0,115.4) — (—00,105.6)) A (moisturelnd, (—o0,89.5) —
(—0,89.4)) to Sz — Sp
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

Faza specjalizacji Specjalizacja realizowana jest zachtannie wzgledem statystyki

log-rank — dodawana akcja musi zwiekszaé¢ réznice (mierzong testem log-rank)

miedzy krzywymi przezycia czedci zrodtowej i docelowej przy zachowaniu ograni-

czen pokrycia i udziatu przyktadéw wspolnych. Kontrwarunek dobierany jest dla

tego samego atrybutu co warunek zrodtowy.

1.

70

Znajdowanie najlepszego warunku elementarnego dla reguty zro-
dlowej: Algorytm identyfikuje warunek (pressurelnd, (—o0,103.7)) jako naj-
lepszy warunek elementarny dla reguty zZrédtowej. Kryterium wyboru byta
najwyzsza wartosci statystyki log-rank, réwna 3.9, obliczona dla poréwna-
nia krzywych przezycia przyktadéw speiniajacych i niespetniajacych ten

warunek.

. Dodawanie warunku do przestanki reguly: Zidentyfikowany warunek

zostaje dodany do przestanki reguty:

(pressurelnd, (—o0, 103.7))

Znajdowanie najlepszego kontrwarunku dla reguty docelowej: W od-
powiedzi na ustalong regute zrédtowa algorytm wskazuje kontrwarunek
(pressurelnd, (—o0,96.1)) jako najlepszy. Wartos¢ statystyki log-rank, obli-
czona dla poréwnania krzywych przezycia przyktadow speliajacych czesé

zrodtowa z przyktadami spetniajacymi czesé docelowa regutly, wynosi 4.1.

Tworzenie i dodawanie akcji do przestanki reguty: Akcja utworzona

z reguty zrodtowej i kontrwarunku jest wlaczana do przestanki:

(pressurelnd, (—o0, 103.7) — (—00,96.1))

Warunek zréodtowy (pressurelnd, (—o0,103.7)) stanowi nadzbiér warunku
docelowego (pressurelnd, (—o0,96.1)), poniewaz kazdy przyktad spemiajacy
warunek docelowy spetnia rowniez warunek zrodtowy, natomiast nie zachodzi

implikacja odwrotna, czyli:
{freR:2<96.1} c {reR:z<103.7}.

Przejscie (pressurelnd, (—oo,103.7) — (—00,96.1)) nalezy interpretowaé jako
zawezenie przestanki z szerszego zbioru przypadkéw do wezszego podzbioru

okreslonego bardziej restrykcyjnym progiem.



5.2 Pokryciowy algorytm indukcji przezyciowych regut akcji

5. Iteracyjna modyfikacja warunkéw: Algorytm kontynuuje specjalizacje
reguty, dodajac kolejne warunki. Najlepszy kolejny warunek elementarny
to (temperaturelnd, (—o0,115.4) (wartosé log-rank 9.8). Nastepnie, najlep-
szy kontrwarunek zostal zidentyfikowany jako (temperaturelnd, (—oo,105.6))
(warto$é log-rank 13.0). Zestawienie warunkéw daje kolejna akcje, ktéra
zostaje wlaczona do przestanki:

(pressurelnd, (—o0,103.7) — (—00,96.1))
A (temperaturelnd, (—oo,115.4) — (—00,105.6))

6. Kontynuacja iteracyjnej modyfikacji warunkéw: Proces jest powta-

rzany, co prowadzi do uzyskania kolejnych akcji:

a) (moisturelnd, [89.5, +00) — [89.4, +0)) z wartoscia log-rank wynoszaca
13.7 dla reguty zrédtowej i 19.0 dla reguty docelowej,

b) (pressurelnd, (—oo, 108.6) — [70.1, +0)) z wartoscia log-rank wyno-
szaca 15.9 dla reguty zrédtowej i 26.1 dla reguty docelowej,

¢) (pressurelnd, [103.9, +00) — [81.0, +0)) z wartoscia log-rank wynoszaca
17.0 dla reguty zrédtowej i 26.7 dla reguty docelowej,

d) (pressurelnd, [104.7, +0) — (—o0, 96.1)) z wartoscia log-rank wyno-
szaca 17.0 dla reguty zrédtowej i 25.9 dla reguty docelowe;.

W efekcie przestanka przyjmuje postac:

(pressurelnd, [104.7,108.6) — [81.0,96.1))
A (temperatureInd, (—o0,115.4) — (—o0,105.6)
A (moisturelnd, (—o0,89.5) — (—00,89.4)

7. Zakonczenie specjalizacji: Proba dodania kolejnego warunku elementar-
nego nie spetnia kryteriéw jakosci (minimalnej wartosci statystyki log-rank
lub minimalnego pokrycia), co oznacza zakoriczenie fazy specjalizacji w tej
iteracji. Otrzymana reguta ma postac:

jesli (pressurelnd, [104.7,108.6)) — [81.0,96.1))
temperaturelnd, (—o0,115.4) — (—00,105.6)

A (moisturelnd, (—o0,89.5) — (—00,89.4))

to SA’Z_>S(D

(
(

A
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

Faza uogolniania Uogolnianie polega na kontrolowanym upraszczaniu przestanki

— akcje usuwa sie lub tagodzi, o ile nie pogarsza to statystyki log-rank, przy

zachowaniu ograniczen pokrycia oraz udzialu przyktadéw wspélnych.

72

1. Uogdlnianie iteracja 1:

» Akcje oznaczone do usuniecia: Akcje

(pressurelnd, [103.7,4-00) — (—0,96.1))
(pressurelnd, [104.7,400) — (—00,96.0))

zostaly zidentyfikowane jako nieistotne statystycznie (ich usuniecie nie
powoduje pogorszenia statystyki log-rank) i przeznaczone do usuniecia

w celu uproszczenia reguty.

Akcje oznaczone do ztagodzenia: Akcje

(pressurelnd, [103.7,4-00) — (—0,96.1))
(pressurelnd, (—o0, 108.6) — [70.1, 4+00))

zostaty zakwalifikowane do ztagodzenia, rozumianego jako poszerzenie
odpowiedniego przedziatu wartosci (po stronie zZrédtowej lub docelo-
wej) poprzez przesuniecie granicy progu tak, aby zwiekszy¢ pokrycie
bez istotnego spadku wartosci statystyki log-rank, przy jednoczesnym

zachowaniu statystycznie istotnej roznicy miedzy krzywymi przezycia.

Wynik: Mimo ze wiele akcji zostato oznaczonych do modyfikacji, me-
toda uogdlniania modyfikuje tylko jedna z nich, zgodnie z okreslonymi

ponizej zasadami.

— Akcja nie moze by¢ jednocze$nie usunieta i ztagodzona. Oznacza sie
ja do usuniecia, jezeli jej eliminacja nie obniza wartosci statystyki
log-rank i nie narusza minimalnego pokrycia. Oznacza sie ja do
ztagodzenia, jezeli catkowite usunigcie pogarsza miare jakosci, na-
tomiast poszerzenie przedziatu zachowuje wymagane progi jakosci

i zwicksza pokrycie.

— Akcje moga by¢ wzajemnie powigzane — usuniecie jednej akcji
moze wplywaé na statystyczna istotno$¢ pozostatych. Algorytm
uwzglednia te zaleznosci, sprawdzajac wpltyw kazdej modyfikacji

na catosciows jako$¢ reguty.



5.2 Pokryciowy algorytm indukcji przezyciowych regut akcji

— W kazdej iteracji algorytm wybiera jedna modyfikacje (usunie-
cie lub ztagodzenie akcji), ktéra najbardziej poprawia wartosé
statystyki log-rank miedzy krzywymi przezycia czedci zrodtowej

i docelowej reguty.
W rezultacie usunieto akcje dotyczaca atrybutu pressurelnd, redukujac
liczbe akcji w regule bez pogorszenia wartosci statystyki log-rank i przy
zachowaniu minimalnego pokrycia.
2. Uogélnianie iteracja 2:

o Akcje oznaczone do zlagodzenia: Akcja
(pressurelnd, [103.9, 400) — [81.0, +00))

zostala wytypowana do ztagodzenia, poniewaz catkowite usuniecie
pogorszytoby miare jakosci, natomiast poszerzenie odpowiednich prze-

dzialow spetnia progi jakosci i zwieksza pokrycie.

e Wynik: W rezultacie akcja
(pressurelnd, [103.9, +0) — [81.0,400))
zostata ztagodzona do
(pressurelnd, [103.9, 400) — dowolna)
co zmniejszyto ztozonos¢ i poprawito mozliwos¢ generalizacji reguty.

3. Uogdlnianie iteracja 3:

o Brak akcji do usuniecia: W tej iteracji algorytm dokonat oceny pozo-
statych akcji, lecz nie znalazt dalszych redundancji ani nieefektywnosci.
Wszystkie istniejace akcje miaty znaczacy wktad w poprawe krzywej

przezycia.

4. Zakonczenie uogélniania: Proces uogélniania zakonczono, poniewaz dal-
sze usuwanie akcji skutkowatoby pogorszeniem jakosci reguty. Zachowano
rownowage miedzy specyficznoscig a ogolnoscig, przy utrzymaniu wysokiego

pokrycia oraz istotnego wptywu na krzywe przezycia.
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

Uzyskana reguta Ostateczna reguta po specjalizacji i uogélnianiu ma postac:

(pressurelnd, (—0, 103.9) — (—o0,81.0))

A (temperaturelnd, (—oo,115.4) — (—00,105.6))
A (moisturelnd, (—o0,89.5) — (—0,89.4))

to 5’2 — S‘D

jesli

Trzecia iteracja wygenerowala regute pokrywajaca 42 przyktady, zmniejszajac
liczbe niepokrytych przyktadéw z 937 do 895. Test log-rank potwierdzit staty-
stycznie istotng réznice miedzy krzywymi przezycia przed i po zastosowaniu tej
reguty. Wygenerowana reguta sugeruje obnizenie wartosci ci$nienia (pressure-
Ind), temperatury (temperaturelnd) i wilgotnosci (moisturelnd) w celu poprawy
niezawodno$ci.

Strategia separate-and-conquer kontynuuje proces indukcji do momentu, gdy
wszystkie przyktady zostang pokryte lub gdy nie bedzie mozliwe wygenerowanie
kolejnych regut spetiajacych kryteria jakosci. W pierwszych trzech iteracjach
wygenerowano trzy reguty, ktore tacznie pokryty 105 przyktadow.

5.3 Algorytm rekomendacji przezyciowych regut akcji

Algorytm rekomendacji opisany w pracy Recommendation Algorithm Based on
Survival Action Rules [120] stanowi rozszerzenie pokryciowego algorytmu indukcji
przezyciowych regul akcji opisanego w Sekejif.2l Podczas gdy algorytm pokryciowy
koncentruje si¢ na generowaniu przezyciowych regut akcji na podstawie danych
treningowych z wykorzystaniem strategii sekwencyjnego pokrywania, algorytm
rekomendacji traktuje wygenerowane reguty jako dane wejsciowe do procesu two-
rzenia spersonalizowanych zalecent dla nowych obiektéw. Oba algorytmy sktadaja
sie na dwuetapowa procedure. W pierwszym etapie przeprowadzana jest indukcja
wzorcow w postaci regut akcji, w drugim etapie reguty te wykorzystywane sa
w procesie generowania zalecen dotyczacych dziatan ukierunkowanych na poprawe
estymowanej funkcji przezycia. Schemat dziatania algorytmu przedstawiono na

rysunku [5.2
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Rysunek 5.2: Diagram przedstawiajacy zasade dziatania algorytmu rekomenda-

cyjnego opartego na przezyciowych regutach akcji.
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5.3.1 Opis metody

Pojedynczy obiekt moze spetnia¢ przestanki wielu przezyciowych regut akcji, co
prowadzi do konfliktow. Konflikty te obejmuja przede wszystkim wielokrotne
pokrycie (jednoczesna aktywacja kilku regut oferujacych rézne zbiory akcji lub
rozne docelowe krzywe przezycia S p) oraz kolizje akcji (roztaczne wartosci dla tego
samego atrybutu). Na etapie indukcji konflikty sa cze$ciowo ograniczane poprzez
strategie separate-and-conquer, progi p i & oraz niedopuszczanie modyfikowania
atrybutow stabilnych. Rozstrzyganie konfliktow zapewnia metoda rekomendacyjna
opisana w niniejszej sekcji, oparta na indukcji meta-regut akcji, generowanych
na podstawie meta-tablicy. Podejscie to umozliwia ocene alternatywnych zesta-
wow dziatan i wybor rozwiazania maksymalizujacego zmiane krzywej przezycia
w zadanym kierunku.

Meta-tablica mD jest elementem metody umozliwiajacym generowanie rekomen-
dacji dla nowych obiektoéw poprzez reprezentacje danych w postaci zbioru meta-
przyktadéw. Kazdy meta-przyktad w mD odzwierciedla unikalna kombinacje war-
tosci atrybutow, okreslona na podstawie regut akcji uzyskanych w procesie indukeji.
Dla atrybutéw symbolicznych meta-atrybuty ma odpowiadaja bezposrednio war-
toéciom atrybutéw ze zbioru wejsciowego D, na przyktad ,lokalizacja = sekcja A”.
W przypadku atrybutéw numerycznych zbiér wartoéci danego atrybutu dzielony
jest na przedzialy wyznaczone przez wartosci progowe wystepujace w regutach akcji.
Przyktadowo, dla atrybutu a; moga to by¢ przedziaty: (—oo, 50, (50, 70], (70, +00).
Kazdy meta-przyktad w mD jest powigzany z podzbiorem przyktadow ze zbioru
treningowego D, co umozliwia estymacje krzywej przezycia S dla danego meta-
przyktadu za pomoca estymatora Kaplana-Meiera. W ten sposéb meta-tablica
petni role mechanizmu dyskretyzacji i generalizacji danych treningowych, co zna-
czaco przyspiesza proces generowania rekomendacji i zwieksza jego efektywnosé
obliczeniowy.

Algorytm rekomendacji rozwiazuje problem konfliktéw wynikajacych z pokry-
wania obiektu przez wiele regut akcji poprzez ocene proponowanych dziatan oraz
wybor zestawu modyfikacji atrybutéw maksymalizujacego zmiane krzywej przezy-

cia. Proces ten opiera si¢ na meta-tablicy mD i obejmuje cztery etapy:

1. Identyfikacja meta-przyktadu: Obiekt x, opisany zbiorem wartosci atry-

butéw A = {ay,as,...,a,}, jest mapowany na odpowiadajacy mu meta-
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5.3 Algorytm rekomendacji przezyciowych regut akcji

przyktad max € mD. Mapowanie polega na przypisaniu wartosci atrybutow
x do odpowiednich przedziatéw zdefiniowanych w meta-tablicy. Dla atrybu-
téw symbolicznych wartosci sg poréwnywane bezposrednio z wartosciami
meta-atrybutéw (np. ,typ usterki = mechaniczna” w = odpowiada tej samej
wartoéci w mx). Natomiast dla atrybutéw numerycznych wartosci sa przypi-
sywane do przedziatéw wyznaczonych przez reguty akcji (np. jesli a; = 65 dla
temperatury, a meta-tablica definiuje przedzialy (—oo, 50, (50, 70], (70, +o0),
to a; trafia do przedziatu (50, 70]). Meta-przyktad maz peni role reprezen-
tanta podzbioru przestrzeni atrybutéw, co pozwala na uogdlnienie analizy

na podobne obiekty.

. Estymacja krzywej przezycia: Obliczana jest krzywa przezycia S, dla
obiektu z, odzwierciedlajaca jego stan przed wprowadzeniem jakichkolwiek
zmian. Domy$lnie Sy estymowana jest metoda Kaplana-Meiera na podsta-
wie wszystkich przyktadéw treningowych ze zbioru D, ktére sg pokrywane
przez meta-przyktad mz. Aby estymacja byta statystycznie istotna, meta-
przyktad musi obejmowaé¢ wystarczajaca liczbe przyktadow. Jesli liczba
ta jest zbyt mala (mniejsza niz zadany prég i), co obniza wiarygodnosé
estymacji krzywej przezycia, stosuje sie model arbitra. XGBoost z funkcja
straty Coxa, trenowany na catym zbiorze D, generuje przewidywana krzywa,
Sy, dla . Estymator Kaplana-Meiera stosuje sie, gdy meta-przyktad zawiera
wystarczajaca liczbe prébek (= p), natomiast model arbitra — gdy liczba

przyktadow jest niewystarczajaca.

. Indukcja meta-reguly akcji: W meta-tablicy mD indukowana jest meta-
reguta akcji rp, ktérej konkluzja Sp reprezentuje docelowa krzywa przezycia
po zastosowaniu rekomendowanych zmian. Celem jest znalezienie reguty,
dla ktoérej Sp maksymalnie rézni sie od S, mierzone testem Kotmogorowa-
Smirnowa dla dwoch prébek. Test ten ocenia maksymalna odlegtosé miedzy
empirycznymi funkcjami dystrybuanty przezycia, umozliwiajac poroéwna-
nie krzywych przezycia bez przyjmowania zalozen o rozktadzie czasu do
zdarzenia. Algorytm wykorzystuje strategie wspinaczki (ang. hill climbing),
iteracyjnie przeszukujac przestrzen meta-przyktadow w mD, aby zidenty-
fikowaé¢ zestaw zmian atrybutéw prowadzacy do pozadanej modyfikacji

krzywej przezycia. Minimalizacja liczby zmian atrybutéw pozwala na po-
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tencjalne ograniczenie kosztow wdrozenia zalecen — zamiast modyfikowaé
wiele parametréow maszyny, algorytm moze zasugerowaé tylko jedng zmiane
(np. obnizenie temperatury), jesli pojedyncza modyfikacja wystarcza do
osiagniecia pozadanego efektu. Proces indukcji dziata analogicznie do spe-
cjalizacji regul w algorytmie gtéwnym, ale operuje na meta-przyktadach

zamiast na surowych danych, co zmniejsza ztozono$é¢ obliczeniows.

4. Generowanie rekomendacji: Na podstawie indukowanej reguty rp gene-
rowane sa konkretne zalecenia dla obiektu z. Rekomendacje przyjmuja forme
zestawu dziatan zmieniajacych wartosci atrybutéw ze stanu zréodtowego na
docelowy, zgodnie z przestankg reguty rp. Przyktadowo, jesli rp sugeruje
zmiane (a; > 70°C — a; < 70°C), zalecenie brzmi: ,zmniejsz tempera-
ture z wartosci powyzej 70 °C do wartosci réwnej lub mniejszej niz 70 °C”.
Dzialania sa wyprowadzane z réznic miedzy ma (reprezentujacym obecny
stan x) a meta-przyktadem (lub grupa sasiadujacych meta-przyktadow)
odpowiadajacym Sp. Jesli kilka meta-przyktadéw jednocze$nie prowadzi do
lepszej Sp, algorytm moze taczy¢ ich zakresy wartosci, o ile sa one sasiadu-
jace i poprawiaja jakos$¢ krzywej przezycia w poréwnaniu do pojedynczych

meta-przyktadow.

Strategia wspinaczki ogranicza ztozono$¢ obliczeniowa poprzez przeszukiwanie
lokalnego otoczenia biezacego meta-przyktadu zamiast pelnej przestrzeni meta-
przyktadéw, co ma znaczenie w przypadku duzych meta-tablic zawierajacych wiele
kombinacji meta-przyktadéw. Rozpoczynajac od meta-przyktadu mz, algorytm
iteracyjnie eksploruje sasiednie meta-przyktady, oceniajac ich wptyw na S D, 1 za-
trzymuje sie, gdy dalsze zmiany nie poprawiajg réznicy miedzy S, a Sp lub gdy
osiaggnieto minimalny zestaw zmian atrybutéw. Jesli meta-przyktad zawiera mato
prébek treningowych (ponizej progu p), model arbitra (np. XGBoost z funkcja
straty Coxa) zapewnia stabilna estymacje S, na podstawie wszystkich danych
treningowych.

Jakos¢ rekomendacji weryfikowana jest za pomoca niezaleznego modelu arbitra,
ktory estymuje krzywa przezycia po zastosowaniu zalecen (S Dews ). JeSli S Dear
nie rézni si¢ statystycznie od Sh (test log-rank lub Kolmogorowa-Smirnowa),

rekomendacje uznaje si¢ za skuteczne.
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5.3.2 llustracja dziatania metody

Niniejsza ilustracja przedstawia zastosowanie przedstawionego algorytmu rekomen-
dacyjnego opartego na przezyciowych regutach akcji. W tym przyktadzie metode
zastosowano na zbiorze danych Maintenance, opisanego w Sekcji [5.2.3] Celem
jest zilustrowanie dzialania metody oraz skuteczno$ci w generowaniu mozliwych
do wdrozenia rekomendacji, ktore zwickszaja wskazniki przezywalnosci poprzez
modyfikacje konkretnych wartosci atrybutéw.

Zbiér treningowy postuzyt do indukcji przezyciowych regut akcji za pomoca al-
gorytmu opisanego w Sekcji[5.2] ktéry zidentyfikowal wzorce i warunki wplywajace
na wskazniki przezywalnosci. Reguly te obejmujg warunki, w ktorych okreslone

modyfikacje atrybutéw moga prowadzi¢ do poprawy przezywalno$ci.

Indukcja przezyciowych regut akcji

Podczas fazy generowania regut z wykorzystaniem zbioru treningowego uzyskano
tacznie 22 przezyciowych reguty akcji. Dla ilustracji ponizej przedstawiono trzy

pierwsze z nich:

e Regutla 1:
jesli (temperaturelnd, (—o0,73.0) — (124.1, 4+00))
A (moisturelnd, (—o0,82.1) — (94.9,40))
to gz — SD
e Reguta 2:
jesli (pressurelnd, [37.9,64.9) — [81.1,85.7))
A (temperaturelnd, [66.2, +00) — [84.8, +0))
to S’Z I SD
 Reguta 3:

jesli (pressurelnd, [69.2,113.5) — (+00,89.0)))
A (moisturelnd, [85.8,88.4) — [94.9,104.1))
to SZ — S’D
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Budowa meta-tablicy

Meta-tablica zawiera meta-przyktady, czyli zbiory warunkéw dotyczacych atry-
butéw. W kazdym meta-przyktadzie kazdy uwzgledniony atrybut ma przypisany
dokladnie jeden przedzial wartosci (dla atrybutéw liczbowych) lub jeden zbiér do-
puszczalnych kategorii (dla atrybutéw kategorycznych), wyznaczony przez reguty

akcji. Atrybuty nieobecne w meta-przyktadzie pozostajg nieograniczone.

Ekstrakcja warunkéw Pierwszym krokiem jest ekstrakcja warunkow z indukowa-

nych regut. Dla trzech pierwszych regul warunki te przedstawiajag si¢ nastepujaco:

 Regutla 1:
— (temperaturelnd, [73.0,124.1))
— (moisturelnd, (—o0, 82.1))
— (temperaturelnd, [118.0,122.3))
— (moisturelnd, [94.9, 4+0))

e Reguta 2:
— (pressurelnd, [37.9,64.9))
— (temperaturelnd, [66.2, +00))
— (pressurelnd, [81.1,85.7))
— (temperaturelnd, [84.8, +o0))

 Regutla 3:
— (pressurelnd, [69.2,113.5))
— (moisturelnd, [85.8,88.4))
— (pressurelnd, (—o0, 89.0))
— (moisturelnd, [94.9,104.1))
Powtarzanie si¢ atrybutéw w ramach pojedynczej reguty jest zamierzone i wynika
ze struktury regut akcji oraz sposobu konstrukeji meta-tablicy. W regutach akcji

ten sam atrybut pojawia sie¢ wielokrotnie — w czesci opisujacej czesé zrodtows

i docelowg — co wskazuje, jak zmienia sie zakres dopuszczalnych wartosci danego
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atrybutu. Na etapie ekstrakcji, dla kazdego atrybutu gromadzone sa wszystkie
konice przedzialéw wystepujace w regutach (zaréwno w warunkach Zrédtowych,
jak 1 docelowych), porzadkuje je rosnaco i na ich podstawie dzieli dziedzine
atrybutu na roztaczne przedziaty. Do meta-tablicy wprowadza si¢ nastepnie meta-
wartosci odpowiadajace tym przedziatom, tak aby kazdy meta-przyktad wskazywat

dopuszczalny zakres wartosci danego atrybutu.

Przetwarzanie atrybutéow Algorytm przetwarza kazdy atrybut niezaleznie. Dla
atrybutow numerycznych, takich jak temperaturelnd, obliczane sg wszystkie moz-
liwe przeciecia miedzy przedziatami okreslonymi w regutach, z wykorzystaniem
wezesniej wyodrebnionych przedziatéw (por. przyktady dla Regut 1-3 powyzej).
Dla atrybutu temperaturelnd w pierwszych trzech regutach zidentyfikowano naste-

pujace roztaczne przedzialy:

e [66.2, +00)
. [73.0,124.1)
o [84.8,4+)

. [118.0,122.3)

Na podstawie granic tych przedzialéw wyznaczono roztaczny podziat dziedziny

atrybutu temperaturelnd na siedem sasiadujacych przedziatow:

o (—0,66.2]

« (66.2,73.0]

o (73.0,84.8]

o (84.8,118.0]

« (118.0,122.3]

o (122.3,124.1]

o (124.1,+0)

Takie zdefiniowanie podziatu umozliwia precyzyjne ukierunkowanie modyfikacji

atrybutow.
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Generowanie rekomendacji

Na etapie wprowadzania zmian, czyli dostosowania wartosci atrybutéw do reko-

mendowanych meta-wartosci, algorytm aktualizuje wartosci atrybutow przyktadu

testowego zgodnie z rekomendacjami pochodzacymi z meta-reguty akcji.
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1. Analiza rekomendacji Dla kazdego przyktadu w zbiorze testowym algo-

rytm identyfikuje odpowiednie meta-wartosci z meta-tablicy. Ponizej przed-
stawiono wybrany przyktad ze zbioru testowego, dla ktorego zostanie zasto-

sowana rekomendacja:

temperaturelnd = 108.9
moisturelnd = 94.0

pressurelnd = 76.1

Algorytm zidentyfikowal trzy pasujgce meta-wartosci dla tego przyktadu:
o temperaturelnd: (107.2,114.8)
» moisturelnd: (93.7,94.9)
o pressurelnd: (75.8,77.0)

Przedziaty te stanowig meta-wartosci w meta-tablicy zbudowanej na pod-
stawie progéw wystepujacych w wyindukowanych przezyciowych regutach
akcji. Ich granice wyznaczono poprzez uporzadkowanie wszystkich progéw
dla danego atrybutu i obliczenie roztacznych przecie¢ sasiednich przedzia-
téw (czesci wspdlnych tych przedzialéw). Nastepnie kazdy przyklad jest

odwzorowywany do jednego z tak powstalych przedziatow.

Podzial na 7 przedziatow dla temperaturelnd pokazany powyzej zostat
wyznaczony wyltacznie na podstawie progéw z Regut 1-3 i ma charakter
ilustracyjny. Meta-wartosci uzywane w dalszej czeéci (np. (107.2,114.8))
pochodza z meta-tablicy zbudowanej na podstawie wszystkich progéw ze
wszystkich wyindukowanych regut akcji, przez co stanowia uszczegdtowienie
tamtego podziatu. W szczegdlnosei (107.2,114.8) < (84.8,118.0], wiec jest
to fragment jednego z siedmiu przedziatow. Gdyby ograniczy¢ sie do progéw

z Regut 1-3, ten sam obiekt zostalby przypisany do przedziatu (84.8,118.0].



5.3 Algorytm rekomendacji przezyciowych regut akcji

Dodatkowo zidentyfikowano trzy gtéwne meta-wartosci do potencjalnych

modyfikacji:
o temperaturelnd: (84.8,118.0)
 moisturelnd: (88.4,94.9)
o pressurelnd: (69.2,81.1)
. Wyznaczanie rekomendowanych zmian Algorytm generuje rekomen-

dacje poprzez poroéwnanie aktualnych wartosci atrybutéow z potencjalnymi

ulepszeniami. Dla wspomnianego przyktadu zalecane sa nastepujace zmiany:
o temperatureInd: Przejscie z (84.8,118.0) do (122.3,124.1)
 moisturelnd: Przejscie z (88.4,94.9) do (85.776,88.4)
« pressurelnd: Przejscie z (69.2,81.1) do (—o0,37.9)

Te rekomendacje maja na celu dostosowanie wartosci atrybutéw do zakreséw,
ktore sa statystycznie powigzane z poprawionymi wskaznikami przezywalno-

$ci.

. Ocena jakosci: Jako$¢ zestawu modyfikacji definiuje sie jako wartosé¢ staty-
styki Kolmogorowa-Smirnowa (KS) obliczonej dla pary krzywych przezycia:
przed i po zastosowaniu zmian. Wyzsza warto$é¢ oznacza wieksza poprawe.
Réwnocze$nie raportowana jest wartosé p testu KS w celu weryfikacji istot-

nosci (proég p < 0.05). Dla przyktadowego obiektu:
» warto$¢ poczatkowa (bez zmian): 0.000
e po zmianie pressurelnd: 0.372
e po zmianie moisturelnd: 0.551
o warto$¢ konicowa (po wszystkich zmianach): 0.654
Wartosci te odzwierciedlaja skumulowany wplyw kolejnych modyfikacji na

rozktad przezycia oceniany za pomoca statystyki KS.

. Proces przycinania: Aby zachowa¢ jedynie modyfikacje istotnie wplywa-
jace na poprawe wyniku, algorytm stosuje procedure przycinania. Polega
ona na tymczasowym usunieciu kazdej modyfikacji i ponownym obliczeniu

statystyki KS (oraz wartos¢ p) dla pozostatego zestawu zmian. Modyfikacja
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zostaje odrzucana, jesli jej usuniecie nie powoduje pogorszenia jakosci lub

prowadzi do niespetnienia progu istotnosci. Przyktadowo:
o Usuniecie zmiany pressurelnd: Jakos¢ spada do 0.090
o Usuniecie zmiany moisturelnd: Jako$¢ spada do 0.462
o Usuniecie zmiany temperaturelnd: Jakosé spada do 0.551

Zmaczacy spadek jakosci po usunieciu kazdej modyfikacji wskazuje na ko-

niecznos$¢ zachowania wszystkich proponowanych zmian.

5. Koncowe zastosowanie zmian: Na podstawie wynikéw przycinania al-
gorytm wybiera optymalny zestaw zmian. Dla danego przyktadu koncowe,

zmienione wartosci atrybutéw sa nastepujace:

pressurelnd: 35.8

moisturelnd: 87.1

temperaturelnd: 123.2

Te modyfikacje dostosowuja atrybuty przyktadu do zalecanych meta-wartosci,
zwiekszajac tym samym jego wskaznik przezywalnosci zgodnie z indukowa-

nymi regutami akcji.

Proces generowania rekomendacji zapewnia, ze kazdy przyktad przechodzi
statystycznie znaczgce modyfikacje, przyczyniajac sie do poprawy wynikow prze-

zywalnosci.

5.4 Algorytm indukcji przezyciowych regut wyjatkow

W ponizszej sekcji przedstawiono algorytm indukcji przezyciowych regut wyjatkow
w danych cenzurowanych. Analiza wyjatku opiera sie na uktadzie trzech regut
(CR, RR, ER). Celem metody jest wykrywanie lokalnych odstepstw od typowego
wzorca przezycia (CR) wraz z reguta referencyjna (RR), wyjasniajaca kontekst
odstepstwa, oraz reguta wyjatku (ER), taczaca warunki CR i RR. Algorytm bazuje
na strategii separate-and-conquer, w ktérej proces wzrostu reguty bazowej jest
rozszerzony o wyszukiwanie wyjatkéow. Dzigki temu mozliwa jest identyfikacja
statystycznie istotnych wyjatkow. Podobienstwo miedzy regutami ocenia si¢ za
pomoca testu log-rank stosowanego do krzywych Kaplana-Meiera wyznaczonych

dla przyktadéw pokrywanych przez dane reguty. Reguty CR i RR nie r6znig sie
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statystycznie, natomiast pary CR i ER oraz RR i ER wykazuja istotne réznice

statystyczne.

5.4.1 Reguty wyjatkéw

Reguly wyjatkéw stuza do identyfikacji nietypowych przypadkéw odstepujacych od
ogdlnych wzorcéw w danych, co umozliwia wykrywanie anomalii [121]. Ich struktura
opiera si¢ na parze regul: bazowej (ang. commonsense rule, CR), opisujacej
typowe zalezno$ci w danych, oraz wyjatku (ang. exception rule, ER), wskazujacej
odstepstwa. Hussain i in. [121] proponuja réwniez rozszerzong strukture potrdjna
(CR, ER, RR), w ktérej reguta referencyjna (ang. reference rule, RR) okresla

kontekst wystepowania wyjatku. Formalnie, regute wyjatku mozna zapisa¢ jako:
o CR:jesli w{B A AwlE toy = ¢,
o ER:jedli wlE A A wlB A wRE A A wBE to y = ey,

gdzie m to liczba warunkéw w regule bazowej (CR), a n to liczba warunkéw
reguty referencyjnej (RR). Warunki witf ... w2 stanowiag dodatkowy kontekst
wyrozniajacy wyjatek, a ¢; # co. Jako$¢ regut wyjatkéw ocenia sie na podsta-
wie ich zdolnosci do wykrywania rzadkich i nietypowych przypadkéw, czesto
z wykorzystaniem miar odchylen lub testéw statystycznych [122].

Literatura wskazuje na réznorodne podejscia do odkrywania regut wyjatkow
(ang. exception rules), koncentrujace sie gtéwnie na problemach klasyfikacyjnych.
Klasyczna definicja opiera si¢ na parze (CR, ER), czyli regule bazowej i regule
wyjatku. Aby uniknaé¢ ,,pozornych wyjatkéow”, wprowadzono dodatkowo regute
referencyjna (RR), ktéra nadaje kontekst — CR i RR powinny prowadzi¢ do po-
dobnych wnioskéw, natomiast dopiero ich koniunkcja ksztattuje ER o odmiennym
wniosku [121]. Taki tréjelementowy uklad (CR, ER, RR) ogranicza generowanie
regut o znikomym wsparciu i niskiej wartosci poznawcze;j.

Ocena jakosci wyjatkéw nie sprowadza sie do oceny pojedynczej regulty. W lite-
raturze stosuje sie m.in. miary informacyjne oraz miary wzglednej atrakcyjnosci
(ang. relative interestingness measures). W podejsciu stochastycznym [122] ocenia
jednoczesnie jakos¢ CR i ER, gdzie wyjatek uznaje sie za interesujacy, gdy ma
wysoka jakosé¢ oraz kontrastuje z CR o wysokim wsparciu i wysokiej ufnosci. 7 kolei

miara wzglednej atrakcyjnosci taczy komponenty ufnosci i wsparcia wszystkich
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trzech regut (CR, RR, ER), co pozwala zrownowazy¢ rzadkosé i wiarygodnosé
[121].

Metody generowania wyjatkéw dzieli sie na podejscia bezposrednie i posrednie.
W podejéciu bezposrednim uzytkownik dostarcza reguty CR, a algorytm wyszukuje
dla nich wyjatki (ER) oraz odpowiadajace im konteksty (RR). W podejsciu
posrednim wzorzec bazowy (CR) nie jest narzucony — algorytmy samodzielnie
konstruuja i oceniaja kandydatéow (pary lub tréjki regut) wzgledem zadanych
kryteriow. W nurcie posrednim zaproponowano m.in. podejscie stochastyczne
[122], jak réwniez metody oparte na logice rozmytej, umozliwiajace uchwycenie
nieostrych granic wyjatkéw w danych technicznych [123]. Ujednolicony algorytm
odkrywania wyjatkéw bez uprzednio wskazanej wiedzy (CR) przedstawili Suzuki
i Zytkow, demonstrujac jego skuteczno$é na 15 rzeczywistych zbiorach danych
[124].

Badania przedstawione w literaturze koncentruja sie gtéwnie na problemach
klasyfikacyjnych, podczas gdy zagadnienie wyjatkéw w regresji, a w szczegdlnosci
w analizie przezycia, jest reprezentowane stabo lub nie pojawia sie wcale. Adaptacja
koncepcji (CR, RR, ER) do danych cenzurowanych wymaga uzycia miar i procedur
statystycznych specyficznych dla analizy przezycia (krzywe Kaplana-Meiera, test
log-rank, kryteria istotnosci i wielkosci efektu). W niniejszej pracy przyjeto takie
ujecie — wyjatki w danych przezyciowych definiuje sie poprzez trojke (CR, RR,
ER) oraz weryfikuje testem log-rank w taki sposéb, aby CR i RR nie réznity sie
statystycznie, natomiast ER istotnie réznita sie od obu. Dzieki temu mozliwe jest
wykrycie podgrup o nietypowo dtuzszym lub krotszym czasie przezycia wzgledem

CR, co utatwia identyfikacje czynnikéw prognostycznych.

5.4.2 Opis metody

Opracowane na potrzeby metody kryteria statystyczne dla waznosci reguty wyjatku

sa nastepujace:

1. Hy : Scr(t) = Sgrgr(t) nie moze by¢ odrzucona na poziomie istotnosci
a = 0.05 (test log-rank),

2. Hy: Scr(t) = Sggr(t) musi by¢ odrzucona na poziomie istotnosci a = 0.05,

3. Hy: Sgr(t) = Sgr(t) musi by¢ odrzucona na poziomie istotnosci a = 0.05,
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gdzie Scr(t), Srr(t) i Spr(t) oznaczaja funkcje przezycia odpowiednio dla regut
CR, RR i ER.

Dodatkowo wymaga sie wystepowania przeciwnego wzorca przezycia wzgledem
reguly bazowej. Weryfikacja odbywa sie poprzez poréwnanie median czasu przezy-
cia, statystyk log-rank lub indekséw zgodnosci Harrella. Wprowadza sie warunek
kierunkowosci efektu — ER ma reprezentowa¢ populacje o trendzie przezycia
przeciwnym do CR. Warunek ten sprawdzany jest na trzy réwnowazne sposoby,
z ktoérych spehienie co najmniej jednego przy istotnosci statystycznej stanowi

wymog:

o kryterium mediany — mediana(ER) istotnie rézni si¢ od mediana(CR)
z niepokrywajgcymi sie w 95% przedzialami ufnosci; dla wyjatku ., gorszego”

mediana(ER) < mediana(CR), a dla ,lepszego” odwrotnie;

o kryterium log-rank — znak statystyki poréwnania CR z calym zbiorem oraz

ER z CR jest przeciwny przy p < 0.05;

o kryterium indeksu zgodno$ci Harrella — gdy cora < 0.5, wymaga sie

cercr > 0.5; gdy cora > 0.5, wymaga si¢ cprcor < 0.5.

Ponadto wymagana jest minimalna wielko$¢ efektu miedzy ER a CR, rozu-
miana jako réznica wartosci przyjetej miary (np. réznica median czasu przezycia),
ktora musi przekracza¢ ustalony prog istotnosci. Przyktadowo wymaga sie, aby
bezwzgledna réznica median | mediana(ER) — mediana(CR) | byta nie mniejsza
niz ustalony prog. Dodatkowo egzekwowane sa minimalne licznosci grup (np. |CR/,
IRR|, |ER| = u), aby wyniki nie byly znieksztalcone przez bardzo mate grupy.
W przypadku spetnienia wielu kryteriéw priorytet ma test log-rank, natomiast
kryteria mediany i indeksu zgodnosci Harrella petnig role potwierdzenia kierunku
i wielkosci efektu.

Walidacja statystyczna regul wyjatkéw opiera sie na tedcie log-rank, ktory
poréwnuje rozklady czasu przezycia miedzy réznymi grupami. Algorytm sprawdza
trzy pary poréwnan statystycznych: miedzy reguly bazowa a reguta wyjatkéow (CR-
ER), miedzy reguta referencyjna a reguta wyjatkéw (RR-ER) oraz miedzy regula
zdroworozsadkowa a reguta referencyjna (CR-RR). Reguta wyjatkéw jest uznawana
za statystycznie istotna, gdy poréwnania CR-ER i RR-ER wykazuja istotne réznice
(p < 0.05), podczas gdy CR-RR nie wykazuje istotnych réznic (p > 0.05). Takie
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podejscie gwarantuje, ze reguly wyjatkéw reprezentuja rzeczywiscie odmienne

wzorce przezycia w stosunku do regut bazowych i referencyjnych.

Algorytm sekwencyjnego wyszukiwania przezyciowych regut wyjatkow Pro-
ponowany algorytm opiera sie na strategii sekwencyjnego pokrywania z wyszukiwa-
niem wyjatkéw w trakcie procesu indukeji regut. Podczas konstruowania (wzrostu)
reguty bazowej (CR) na kazdym etapie sprawdzane jest, czy w jej kontekscie mozna
wyodrebnié regute referencyjna (RR) oraz odpowiadajaca jej regute wyjatku (ER).
Jesli wyjatek zostanie potwierdzony, wzrost CR zostaje przerwany, a do zbioru wy-
nikowego dotaczane sg reguty RR i ER. W przeciwnym razie algorytm kontynuuje
wzrost CR.

Poszukiwanie wyjatku sprowadza sie do identyfikacji sytuacji, w ktorej krzywe
przezycia dla CR i RR nie réznig sie istotnie statystycznie, podczas gdy krzywa
przezycia dla ER rézni sie istotnie statystycznie zaréwno od CR, jak i od RR.
Podejscie to odroznia si¢ od istniejacych metod, w ktorych najpierw generuje
sie wiele regul, a dopiero w nastepnej kolejnosci sprawdza, czy ich kombinacje
spetniaja okreslone kryteria dla wyjatkow.

Proponowana metoda ukierunkowuje wzrost reguty poprzez iteracyjne dodawanie
warunkéw maksymalizujacych wartos$é statystyki log-rank. Po kazdym rozszerzeniu
reguty sprawdzane jest, czy mozna dla niej znalez¢ odpowiednia regute referencyjna.
Algorytm rejestruje historie jakosci dla kolejnych rozszerzen reguty, a nastepnie
wybiera optymalng dhugosé¢ reguly poprzez przyciecie do warunku o najwyzszej

jakosci. Schemat catego procesu zostal przedstawiony w Algorytmie [4

Indukcja warunkéw Procedura INDUKUJWARUNEK implementuje algorytm za-
chtanny, ktory w kazdej iteracji wybiera warunek maksymalizujacy jakos¢ reguty.

Dla kazdego kandydujacego warunku c:
1. tworzona jest tymczasowa regula r’ przez dodanie warunku ¢ do reguty r,
2. obliczane jest pokrycie reguty r/,

3. estymowana jest funkcja przezycia dla przyktadéw pokrytych przez r’ za

pomoca estymatora Kaplana-Meiera,

4. obliczana jest jakos¢ reguty jako wartos¢ statystyki log-rank miedzy przy-

ktadami pokrytymi a niepokrytymi,

88



5.4 Algorytm indukcji przezyciowych regut wyjatkow

Algorytm 4 Wzrost reguty bazowej (CR)

1: procedure WZROST(CR, D, U, maks_ wzrost)

2:
3:
4:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

Wejscie:
CR — biezgca reguta bazowa

D(A,T,§) — zbiér danych opisany atrybutami A, czasem obserwacji T'

i statusem przezycia o

pokrycie

U — lista niepokrytych przyktadéw
maks_wzrost — maksymalna liczba warunkéw w regule
Wy jscie: wartos$¢ logiczna okreslajaca czy reguta zostala rozszerzona
q— = historia jakosci (wektor)
cont « true > flaga kontynuacji
while cont do
(w, q,cov) < INDUKUIWARUNEK(CR, D, U) > warunek, jakos¢,
if w # None then
Dodaj w do CR > Rozszerz regule o najlepszy warunek
Dodaj q do q > aktualizacja historii ocen jakosSci
ex — WYSZUKAIJWYJATKI(CR, D) = flaga znalezienia wyjatku
if ex then
cont « false > Zmaleziono wyjatek, przerwij wzrost
end if
else
cont «— false > Nie znaleziono kandydujacego warunku
end if
if liczba warunkéw w CR > maks_wzrost then
cont — false > Osiggnieto maksymalng dtugosé reguty
end if
end while
if q nie jest pusta then
inajl — ARGMAX(q) = indeks maksymalnej jakosci
Ogranicz CR do pierwszych iy, + 1 warunkéw
return true
else
return false
end if

33: end procedure
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

5. sprawdzane jest kryterium minimalnego pokrycia: |PokrytePrzyklady(r’)| >

I

Sposrdod kandydujacych wybierany jest warunek, ktéry maksymalizuje jakosé

reguty i jednoczesnie spetienia kryterium minimalnego pokrycia.

Wyszukiwanie wyjatkéw Procedura WyszuKAIJWYJATKI (Algorytm [5) wywo-
tywana jest po kazdym rozszerzeniu CR i stuzy do weryfikacji, czy w aktualnym
kontekscie istnieje para (RR, ER) spehiajaca definicje wyjatku. Wejsciem proce-
dury sa biezaca reguta CR, macierz cech i wektor danych przezycia. W pierwszym
kroku identyfikowane sa przyktady pokryte i niepokryte przez CR, przy czym
niepokryte przyktady stanowig przestrzen poszukiwan dla reguty referencyjnej
RR.

W kolejnym kroku uruchamiana jest procedura WzZROSTREGULYREFERENCYJ-
NEJ, ktora indukuje regute referencyjna w oparciu o kryterium jakosci specyficznym
dla analizy przezycia. Po uzyskaniu kandydata RR konstruowany jest kandydat
wyjatku ER jako koniunkcja warunkéw z CR i RR. Nastepnie przeprowadzana jest
weryfikacja statystyczna z wykorzystaniem testu log-rank dla trzech par: CR-ER,
RR-ER oraz CR-RR. Wyjatek uznawany jest za statystycznie istotny, gdy roéznice
CR-ER i RR-ER sa istotne (p < 0.05), natomiast réznica CR-RR nie jest istotna
(p > 0.05). W przypadku spelienia tych kryteriéw proces wzrostu CR zostaje

przerwany, w przeciwnym razie wzrost CR jest kontynuowany.

Indukcja reguty referencyjnej Procedura INDUKUJRR implementuje zachtanng
strategie indukcji warunkow dla reguty referencyjnej, ktérej gtownym celem jest
maksymalizacja p-wartosci testu log-rank miedzy CR a RR (im wyzsza p-wartos¢,
tym mniejsza r6znica statystyczna). Dla kazdego kandydujacego warunku algo-
rytm konstruuje tymczasows regute RR, oblicza pokrycie reguly wyjatku ER
jako przeciecie pokry¢é CR i RR, a nastepnie przeprowadza testy log-rank dla
trzech par: CR-RR, CR-ER oraz RR-ER. Ocena kandydatow jest prowadzona
pod warunkiem spelnienia kryteriéw minimalnych (minimalnego pokrycia p oraz
minimalnej liczby niecenzurowanych zdarzen v w RR) przy poziomie istotnosci
a = 0.05. W przypadku rownych p-warto$ci poréwnania CR-RR preferowane
sa warunki prowadzace do wiekszego pokrycia w RR, a nastepnie do krotszej

przestanki (mniejszej liczby warunkow).
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5.4 Algorytm indukcji przezyciowych regut wyjatkow

Algorytm 5 Wyszukiwanie wyjatkéw

1:
2:
3:
4:

10:
11:
12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

procedure WYSZUKAJWYJATKI(CR, D)
Wejscie:
CR — reguta bazowa
D(A,T,§) — zbiér danych opisany atrybutami A, czasem obserwacji T’
i statusem przezycia o

Wyjscie: wartosé logiczna okreslajaca czy znaleziono statystycznie istotny

wyjatek

Ccr < {i | CR pokrywa przyktad i } = zbiér przyktadéw pokrytych
przez CR

Ccr < {i | CR nie pokrywa przyktadu i } > zbiér przyktadéw

niepokrytych przez CR
RR « WZROSTREGULYREFERENCYJINEJ(RR, D,Ccr,Ccor)
if RR # ¢ then
ER < nowa reguta wyjatku
ER —CRARR > koniunkcja przestanek (warunkéw) CR i RR
Crr < {i | ER pokrywa przyklad i } = zbiér przyktadéw pokrytych
przez ER
Crr < {i | RR pokrywa przyklad i } = zbiér przykladéw pokrytych
przez RR
pcr,er < LOGRANK(Scr(), Ser(t))
PrR,ER < LOGRANK(SgR(t), Spr(t))
pcr,rr < LOGRANK(ScR(t), Srr(t))
if pcr.pr < 0.05 and prr er < 0.05 and pcgr rr > 0.05 then
return true > Znaleziono statystycznie istotny wyjatek
else
return false
end if
else
return false > Nie znaleziono reguly referencyjnej
end if

end procedure
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

Warunek jest akceptowany jako najlepszy kandydat, gdy speinia tacznie naste-
pujace trzy kryteria:

(1) statystyczna istotno$é¢ wyjatku (pcrrr > 0.05 A perer < 0.05 A prr.ER <
0.05),

(2) minimalne pokrycie wyjatku (|[ER_pokryte| = fyyiter),

(3) poprawa p-wartoéci CR-RR w stosunku do dotychczasowego najlepszego

wyniku.

Algorytm priorytetowo wybiera warunki prowadzace do jak najmniejszej roznicy
statystycznej miedzy CR a RR, przy jednoczesnym zachowaniu istotnych réznic
miedzy regutami wyjatku a obiema regutami bazowymi.

Procedura konczy dziatanie, gdy zaden z pozostalych kandydatéow nie spelia
wymaganych kryteriow, nie poprawia aktualnej najlepszej p-wartosci CR-RR lub
gdy osiagnieto maksymalng dtugosé reguty. Zwracany jest najlepszy znaleziony
warunek wraz z wartosciami miar jakosci, ktore nastepnie sg wykorzystywane

w procedurze wzrostu reguly referencyjnej.

Weryfikacja kandydata na wyjatek W algorytmie wyszukiwania wyjatkow
(Algorytm |5) weryfikacja statystyczna kandydata na regule wyjatku opiera sie na
trzech krokach:

(1) konstrukcja reguty wyjatku ER jako koniunkcji wszystkich warunkéw z reguty
bazowej CR i reguly referencyjnej RR,

(2) obliczenie pokry¢ dla kazdej z trzech regul na zbiorze danych,

(3) wykonanie dwéch testéw log-rank poréwnujacych rozktady czasu przezycia
miedzy grupami: CR z ER oraz RR z ER.

Kandydat jest uznawany za statystycznie istotng regute wyjatku, jesli oba testy
wykazuja istotne réznice na poziomie a = 0.05 (p < 0.05). Po pozytywnej weryfika-
cji regulty RR i ER sg przypisywane do reguly CR, tworzac tréjke (CR, RR, ER),
ktora nastepnie zostaje dodana do zbioru wynikowego. Procedura zwraca wartosé
logiczna informujaca o wyniku weryfikacji, co determinuje dalsze kroki algorytmu

wzrostu reguly bazowej.
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5.4 Algorytm indukcji przezyciowych regut wyjatkow

Algorytm 6 Indukcja reguly referencyjnej (RR)

1: procedure INDUKUIRR(RR, D, ppaji, C, Cor)

2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:

Wejscie:

RR — biezaca reguta referencyjna

D(A, T, ) — zbiér danych opisany atrybutami A, czasem obserwacji T’

i statusem przezycia o

Praji — Najlepsza p-wartos¢ CR-RR
C' — indeksy niepokryte przez zadng regute
Ccr — indeksy pokryte przez CR

Wyjscie: najlepszy warunek, jakos$¢, pokrycie, p-wartosé
Whajl < &, Qnaji < —O

Chajt < &, Pnajl < Pnaji

W' «— POBIERZMOZLIWEWARUNKI(RR, D)

Odfiltruj kandydatow juz obecnych w RR

for all warunek w w W’ do

RR' «— RR.add(w) > Dodaj warunek do RR
Cgrgr < pokrycie RR’
Cigr < Cor n Crpr > Przeciecie CR i RR
if |Cgr| =0 then

continue > Brak przeciecia, pomin
end if

por.er <— LOGRANK(Scr, SgR)

Prr,ER <— LOGRANK(SRR, SER)

por.rr < LOGRANK(Scr, Srr)

sig < (pcr.rr > 0.05 and peg pr < 0.05 and prr er < 0.05)

coVyyst — |CER| = wyjtek > minimalne pokrycie ER spelnione

p_lepsze od najl <~ por rR > Dnajl > czy aktualne por rpr jest

wigksze niz dotychczasowe ppaji

if sig and cov,ys; and p_lepsze _od najl then
Wnajl <= W, Pnajl <~ PCR,RR
Aktualizuj gnq i 1 Craji

end if

end for

return Wnajls Gnagls Cnajla Pnajl

32: end procedure
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

Metody poréwnywania wzorcoéw przezycia Niezaleznie od testu log-rank, mozna
rozwazy¢ trzy alternatywne metody poréwnywania wzorcéw przezycia w celu
weryfikacji, czy reguta wyjatku wykazuje przeciwny wzorzec przezycia wzgledem

reguty bazowe;j.

Metoda mediany. Jesli mediana czasu przezycia w grupie CR jest nie wieksza niz
w catym zbiorze danych, to ER uznawana jest za istotna, gdy jej mediana
jest wieksza niz w CR. W przeciwnym razie (gdy mediana w C'R jest wieksza
niz w calym zbiorze) ER uznawana jest za istotna, gdy jej mediana jest

mniejsza niz w CR.

Metoda log-rank. Wyznacza sie statystyki dla poréwnan CR z calym zbiorem oraz

ER z CR. Warunek jest spetniony, gdy znaki tych statystyk sa przeciwne.

Metoda indeksu zgodnosci Harrella. Oblicza sie wartosci dla poréwnan CR z calym
zbiorem oraz ER z CR. Jedli dla poréwnania CR z catym zbiorem otrzymana
wartos¢ jest mniejsza niz 0.5 (gorsze przezycie), to ER uznaje sie za istotna,
gdy dla poréwnania ER z CR otrzymana wartos¢ jest wieksza niz 0.5 (lepsze
przezycie). Zastosowanie indeksu zgodnosci weryfikuje kierunek efektu na
poziomie porzadkowania par obserwacji, a nie tylko przesuniecie rozktadow:
warto$é¢ 0.5 odpowiada losowej zgodnosci, a wartosci powyzej/ponizej 0.5
wskazuja odpowiednio lepsza/gorsza zdolno$é dyskryminacyjna. Metoda
ta jest odporna na cenzorowanie i komplementarna wzgledem median oraz
testu log-rank. W tym kontekscie wykorzystuje si¢ jedynie prog 0.5 do

potwierdzenia odwrdcenia wzorca przezycia.

5.4.3 llustracja dziatania metody

W ponizszej sekcji przedstawiono przebieg indukcji regut wyjatkéw w zbiorze
LEDLife. Zbiér obejmuje 167 obserwacji i zawiera dwie zmienne objasniajace:
DegreesC' (temperatura) oraz Current (natezenie pradu). Opis skoncentrowano
na przebiegu generowania regut, od wzrostu reguty bazowej (CR), przez wyzna-
czenie reguly referencyjnej (RR), po konstrukcje i weryfikacje wyjatku (ER).
Przedstawiony wyjatek jest jedynym wyjatkiem zidentyfikowanym w tym zbiorze
danych.
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5.4 Algorytm indukcji przezyciowych regut wyjatkow

Krok 1: Wzrost reguty bazowej (CR) W pierwszym etapie przeprowadzono
wzrost reguty bazowej, stanowigcej punkt odniesienia dla dalszych pordéwnan.
Trojke (CR, RR, ER) uzyskano w drugiej probie wzrostu reguty CR. W tej pro-
bie w pierwszej iteracji specjalizacji dodano warunek DegreesC = 102.00, ktéry
wyodrebnia podzbiér obserwacji spetniajacych przestanke reguty. Dla tej grupy
wyznaczono mediang przezycia rowng 6.09, przy pokryciu 90 ze 167 przyktadéw
i liczbie zdarzen 89 (pozostate obserwacje w tej grupie sa cenzurowane). Reguta CR
pelni role wzorca odniesienia w poréwnaniach CR z RR i CR z ER. We wczesniejszej
oraz pézniejszej probie wzrostu CR nie wyznaczono RR. W konsekwencji nie wy-
znaczono réwniez ER, gdyz w tych kontekstach nie zostato jednoczesnie spetnione

kryterium minimalnego pokrycia wyjatku oraz kryteria istotnosci statystycznej.

Krok 2: Wyznaczenie reguty referencyjnej (RR) W drugiej prébie wzrostu
CR, w pierwszej iteracji specjalizacji RR, wybrano warunek referencyjny Current
> 35.00. Zostal on wybrany, poniewaz uzyskano dla niego najwieksza p-wartosé
w tescie log-rank dla poréwnania CR z RR (najmniejsza réznica miedzy krzywymi
przezycia CR i RR), przy jednoczesnym spetnieniu kryterium minimalnego pokrycia
wyjatku (liczba przykltadéw C'R A RR) oraz kryterium istotnosci dla poréwnan
CR z ER i RR z ER. W kolejnym kroku nie dodano dalszych warunkow, gdyz
zaden kandydat nie poprawial p-wartosci w poréwnaniu CR z RR ani nie spetniat
rownoczesnie wymagan pokrycia i istotnosci. W konsekwencji zakoriczono wzrost
RR. Dla RR uzyskano mediane przezycia réwna 6.12, przy pokryciu 90 ze 167
przyktadow i liczbie zdarzen 89. Poréwnanie CR z RR testem log-rank dalo p-
warto$é réwna 0.07 (powyzej progu istotnoscei 0.05), co spenia zatozenie o braku

istotnej roznicy miedzy CR i RR i umozliwia konstrukcje wyjatku.

Krok 3: Konstrukcja i weryfikacja wyjatku (ER) Wyjatek zdefiniowano jako
koniunkcje CR A RR: DegreesC' = 102.00 A Current = 35.00. Dla ER otrzymano
mediang przezycia réwnag 5.45, przy pokryciu 60 ze 167 przyktadow i liczbie zdarzen
60. Testem log-rank poréwnano krzywe przezycia w dwoch parach: dla CR z ER
uzyskano p-warto$¢ w przyblizeniu réwng 9.4 - 1075, a dla RR z ER p =4.0-107°
(obie wartosci ponizej progu istotnosci 0.05). Zatem warunki wyjatkowosci zostaty

spelione: CR i RR nie r6znig sie istotnie, natomiast ER rézni sie istotnie od obu.
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

Odpowiadajaca tréjka regut zostata przedstawiona ponizej (w nawiasach po-
dano liczbe obserwacji spetniajacych przestanke reguty k oraz liczebnosé zbioru

obserwacji n).

CR: jesli (DegreesC = 102.00)

to mediana przezycia = 6.0865 (k= 90,n = 167)
RR: jesli (Current = 35.00)

to mediana przezycia = 6.1193 (k= 90,n = 167)
ER: jesli (DegreesC = 102.00 A Current = 35.00)

to mediana przezycia = 5.4502 (k= 60,n = 167)

(5.6)

1.0
0.8 1
0.6
[}
0.4
—— Przyktady pokrywane przez ER
0.2 Przyktady pokrywane przez CR
—— Przyktady pokrywane przez RR
—— Wszystkie przyktady
0.0 T T T T T
0 2 4 6 8 10

Rysunek 5.3: Krzywe KM dla zbioru LEDLife: reguty CR, RR oraz ER. Widoczny
jest brak réznic miedzy CR i RR oraz istotnie gorsza krzywa ER.

Na rysunku przedstawiono krzywe KM dla trzech grup (CR, RR i ER).
Krzywe CR i RR maja zblizony przebieg, co potwierdza test log-rank (p ~ 0.07).
Dla ER obserwuje si¢ natomiast nizsze wartosci funkcji przezycia S oraz istotne
statystycznie réznice wzgledem CR i RR. Szczegdtowe metryki (pokrycie, liczba
zdarzen, mediana) zestawiono w tabeli |5.1

Podsumowujac, przy jednoczesnym speklieniu warunkéw CR i RR wyodrebnia

sie grupa o istotnie gorszym przebiegu przezycia (ER). Wynik ten wskazuje na
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5.5 Interpretowalny zespot regut przezyciowych

Reguta pokrycie (k/n) zdarzenia mediana

CR 90/167 89 6.09
RR 90/167 89 6.12
ER 60/167 60 5.45

Tabela 5.1: Zestawienie wartosci metryk dla tréjki (CR, RR, ER): pokrycie k/n
(k — liczba obserwacji spetniajacych przestanke reguty; n — liczba obserwac;ji
w zbiorze), zdarzenia (liczba niecenzurowanych obserwacji w grupie) oraz me-

diana (mediana czasu przezycia w grupie).

interakcje wysokiej temperatury i wysokiego natezenia pradu, ktérej nie obserwuje

sie przy analizie kazdego z warunkéw oddzielnie.

5.5 Interpretowalny zespo6t regut przezyciowych

Metoda interpretowalnego zespotu regut przezyciowych (ang. survival rules ensem-
ble) stanowi podejscie do analizy przezycia, ktore taczy interpretowalno$é modeli
opartych na regutach z doktadnoscia technik uczenia zespotowego. Metoda ta rozsze-
rza klasyczny paradygmat laséw losowych, zastepujac drzewa decyzyjne modelami
regut przezyciowych, dostosowanymi do analizy danych cenzurowanych. W tej
sekcji najpierw zdefiniowano pojecie zespotu regut i sposéb agregacji predykeji,
a nastepnie opisano architekture metody dostosowang do danych cenzurowanych

oraz procedure budowy i ewaluacji zespotu.

5.5.1 Zespoty regut

Zespol modeli (ang. ensemble) definiuje sie jako zbiér estymatoréw bazowych,
ktérych predykcje sa taczone wedtug ustalonej reguty agregacji. Celem jest redukcja
wariancji lub obciazenia oraz zwickszenie stabilnosci wzgledem pojedynczego
estymatora. Wyrdznia si¢ m.in. zespoty réwnolegle (np. bagging, gdzie estymatory
trenuje sie niezaleznie) oraz zespoty sekwencyjne (np. boosting, gdzie estymatory
trenuje sie kolejno, korygujac btedy poprzednikow).

W zespotach regutl estymatorami bazowymi sa zbiory regut (modele regutowe).

Wewnatrz estymatora bazowego predykcja wyznaczana jest przez agregacje wkta-
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5 Analiza niezawodnosci i przezycia za pomoca regut logicznych

déw regul, ktérych przestanki sa spetnione dla obserwacji x (np. gtosowanie wiek-
szosciowe, usrednianie, suma wazona). Nastepnie, na poziomie zespotu, agreguje
sie predykcje poszczegdlnych estymatoréow bazowych. Taka konstrukcja zachowuje
interpretowalnos¢ zaréwno na poziomie regut, jak i na poziomie estymatoréw
bazowych.

Formalnie, funkcje predykcji f (x) aproksymuje sie za pomoca kombinacji linio-

wej:

f(X) = Bo + Z erm(x)v (57)

gdzie fy oznacza wyraz wolny, r,,(x) — predykcje m-tego estymatora bazowego
(modelu regutowego) dla obserwacji x (w szczegdélnym przypadku konstrukeji typu
RuleFit moze to by¢ funkcja indykatorowa aktywacji pojedynczej reguly), S, —
wage przypisana m-temu estymatorowi bazowemu (uczona np. metoda regresji
z regularyzacja lub ustalana heurystycznie), a M — liczbe estymatoréw bazowych
w zespole. W niniejszej sekcji symbolem r,, (x) oznaczono funkcje bazowa: predykeje
modelu regutowego lub, jak w RuleFit, indykator aktywacji pojedynczej reguty.

Taka reprezentacja stanowi podstawe metody RuleFit [125], ktéra generuje
reguty poprzez ekstrakcje $ciezek z lasow losowych, a nastepnie optymalizuje
wagi [, za pomoca regularyzowanej regresji (L1 lub lasso). Model osiaga wysoka
precyzje predykcji zachowujac interpretowalnos¢ — kazda reguta r,, opisuje lokalny
wzorzec w danych, a waga 3, wskazuje jej znaczenie.

W analizie przezycia, zespoty regut dostosowuje sie do specyficznych wymagan,
takich jak estymacja funkcji przezycia S(¢/x) lub modelowanie hazardu. Przykla-
dem jest metoda LR-Rules [126], ktéra dla danej obserwacji estymuje funkcje
przezycia poprzez usrednianie (np. $rednia niewazona) krzywych Kaplana-Meiera
regul ja pokrywajacych, co umozliwia modelowanie danych cenzurowanych z za-
chowaniem interpretowalnosci. Innym przyktadem jest SURVFIT [127], ktéry
wykorzystuje liniowy model regut z funkcjg straty dostosowang do cenzurowania
oraz regularyzacja indukujaca tzw. podwdjng rzadkosé: wybor niewielkiej liczby
regut oraz niewielkiej liczby zmiennych wystepujacych w regutach. Dzigki temu
metoda zachowuje interpretowalnosé i jest skalowalna obliczeniowo.

Podsumowujac, przedstawione podejscie do zespotéw regut opiera si¢ na ich

matematycznej definicji jako zbioru funkcji indykatorowych, agregowanych w celu
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uzyskania predykeji. Wprowadzenie notacji, takiej jak 7, (x) czy f(x), oraz wzoréw,
takich jak liniowa kombinacja regut czy estymacja przezycia, umozliwia precyzyjne
opisanie ich konstrukcji i dziatania, stanowiac podstawe teoretycznag dla dalszych

rozwazan.

5.5.2 Opis metody

Podstawowe elementy metody to indukcja przezyciowych regut decyzyjnych w es-
tymatorach bazowych, losowe prébkowanie danych i cech ograniczajace korelacje
miedzy estymatorami oraz agregacja predykcji estymatoréow bazowych dostosowana
do analizy przezycia. Kazdy estymator indukuje zbiér regut w postaci koniunkcji
predykatow na atrybutach, z przypisang estymowang funkcja przezycia dla pokry-
wanego podzbioru danych. Agregacja polega na wyznaczeniu wspélnej dziedziny
czasowej obejmujacej wszystkie punkty predykeji, interpolacji kazdej krzywej prze-
zycia do tej dziedziny oraz obliczeniu sredniej arytmetycznej wartosci w kazdym
punkcie. Wynikowa krzywa koryguje si¢ tak, aby byta nierosnaca.
Algorytm przebiega w trzech fazach:

(1) prébkowanie bootstrap i losowy wybdr podzbioru cech (ang. random subspace,

feature subsampling) (wejscie: X, y; wyjscie: zbiory {(X;,y:, Fi)}iy),

(2) indukcja regutl i trening (wejscie: (X;,y;); wyjscie: estymatory bazowe M;

oraz zbiory regul R; z estymatorami S’l(t)),

(3) agregacja specyficzna dla przezycia (wejscie: {M;, R;}*_,; wyjscie: zespotowe

krzywe przezycia).

Konstrukcja faz 1-3 ogranicza wariancje predykcji i zachowuje interpretowalnosé
na poziomie regut oraz catego zespotu.

Na potrzeby implementacji wyrdznia sie dwa zbiory parametrow: zespoltowe
(n, 0, ) oraz indukcji regut (o, 7,7, ¢, ). Na poziomie zespotu: n to liczba estyma-
toréw (domyslnie 100), @ kontroluje maksymalng liczbe cech w zbiorze treningowym
dla pojedynczego estymatora bazowego (domyslnie [MJ, gdzie |A|, to liczba
atrybutow w zbiorze; alternatywnie strategie typu log, |A| lub udziat w (0,1]), a «
wyznacza rozmiar probki bootstrap (domyslnie 1.0). Na poziomie indukeji regul:

o okre$la minimalne wsparcie, v ogranicza dtugosé¢ przestanki, m wtacza poinduk-
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cyjne przycinanie, ¢ definiuje sposéb traktowania brakéw danych (pomijanie lub

interpolacja), a p ogranicza maksymalny odsetek przyktadéw niepokrytych.

Faza 1: Probkowanie bootstrap i losowy wybodr podzbioru cech Dla kazdego
estymatora bazowego (tj. pojedynczego modelu regul przezyciowych trenowanego
niezaleznie na wtasnej probce bootstrap i podzbiorze cech) prébkowanie bootstrap
oraz losowy wybér podzbioru cech (ang. random subspace, feature subsampling)
zapewniajg roznorodno$¢ modeli, generujac rézne podzbiory danych treningowych,
a takze redukujg korelacje miedzy modelami dzigki losowej selekcji cech.

Implementacja wykorzystuje agregacje bootstrapowa (ang. bagging, bootstrap
aggregating), w ktérej kazdy estymator trenowany jest na prébce bootstrap pocho-
dzacej z oryginalnego zbioru danych. Rozmiar tej probki kontrolowany jest przez
parametr «, ktory mozna ustawi¢ jako utamek catkowitej liczby obserwacji lub
jako konkretna wartos$¢ liczbowa.

Dodatkowym elementem réznicujacym estymatory jest losowy wybor cech
(ang. feature selection) dla kazdego z nich. Implementacja obstuguje rézne stra-
tegie selekcji cech, w tym \/W (pierwiastek kwadratowy z liczby cech), log, | A|
(logarytm binarny) oraz udzial catkowitej liczby cech. Takie podejscie dodat-
kowo zwigksza réznorodnos¢ zespotu i zmniejsza ryzyko przeuczenia, ograniczajac

korelacje miedzy estymatorami.

Faza 2: Indukcja regut i trening Kazdy estymator bazowy generuje reguty
przezycia. Proces ich wzrostu przebiega zachlannie (separate-and-conquer) —
w kazdej iteracji dodawany jest warunek maksymalizujacy statystyke log-rank
miedzy przyktadami pokrytymi a niepokrytymi. Jednoczednie egzekwowane sa
ograniczenia minimalnego wsparcia ¢ oraz maksymalnej dtugosci reguty . Po za-
konczeniu wzrostu stosowane jest przycinanie 7, ktore usuwa lub tagodzi warunki,
o ile nie pogarsza jakosci ocenianej testem log-rank. Estymator bazowy gene-
ruje funkcje przezycia poprzez kombinacje regut z wykorzystaniem estymatoréw
Kaplana-Meiera, co umozliwia pdzniejsza agregacje na poziomie zespohu.
Estymatory bazowe trenowane sa rownolegle, kazdy niezaleznie na odrebnej
prébee bootstrap. W wyniku tego procesu kazdy z nich generuje zbiér regut
decyzyjnych, ktore nastepnie konwertowane sa do formatu umozliwiajacego inter-

pretacje i analize. Dodatkowo obliczane sg metryki predykcyjne dla poszczegdlnych
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estymatoréw, co pozwala monitorowac ich jakos¢. Faza ta odpowiada etapowi

trenowania estymatoréw w Algorytmie

Faza 3: Agregacja predykcji zespotu Predykcja zespotu wymaga potaczenia
wynikéw wszystkich estymatoréw bazowych poprzez usrednianie funkcji przezycia,
zgodnie z Algorytmem [§ Kazdy estymator moze generowaé funkcje przezycia zde-
finiowane w réznych punktach czasowych. Agregacja rozpoczyna sie od konstrukeji
wspolnej dziedziny czasowej poprzez zebranie wszystkich unikalnych punktéw
czasowych ze wszystkich estymatorow i uporzadkowania ich w porzadku rosngcym.
Nastepnie kazda funkcja przezycia jest interpolowana na wspdlng dziedzine za
pomocg funkeji schodkowej z obstugg wartosci brzegowych. Na koncu obliczana jest
Srednia arytmetyczna wszystkich interpolowanych funkcji. Jesli funkcja przezycia
nie spada ponizej poziomu 0.5, mediana czasu przezycia nie moze by¢ wyznaczona.
Implementacja uzywa wéwczas ostatniego dostepnego czasu z krzywej przezycia.
Natomiast gdy estymator nie jest w stanie wygenerowaé predykcji dla okreslo-
nej prébki (np. z powodu braku pokrycia przez reguly), algorytm wykorzystuje
predykcje z pozostatych estymatoréw, co zwieksza stabilnosé zespotu.

Model raportuje szereg artefaktow wspierajacych interpretacje i walidacje eks-
percka. Obejmuja one: ranking atrybutéw oparty na czestosci ich wystepowania
w regutach wazonej pokryciem i wktadem do predykcji, ranking regut wedtug
pokrycia i wptywu na krzywa zespotu, rozktad dhugosci regut i udziat niepokry-
tych przyktadéow, wizualizacje krzywych — $redniej zespotu oraz zbioru krzywych
sktadowych po interpolacji. Interpretowalno$é¢ metody wynika z jej fundamentu
opartego na regutach — kazda reguta decyzyjna w zespole reprezentuje warunek
logiczny w postaci ,,jesli wy Awa A -+ - Aw, to S’(t)”, ktory jest zrozumialy i mozliwy
do zweryfikowania przez ekspertow dziedzinowych.

Skutecznos¢ metody ocenia sie miarg specyficzng dla analizy przezycia — zin-
tegrowanym wskaznikiem Briera liczonym na horyzoncie [0, 7], gdzie 7 oznacza
maksymalny czas obserwacji. Ewaluacje prowadzi sie w schemacie k-krotnej wali-
dacji krzyzowej, a poréwnania wykonuje wzgledem klasycznych metod (np. Cox,
estymator Kaplana-Meiera), przy zachowaniu tego samego horyzontu czasowego

i identycznego schematu walidacji.
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Algorytm 7 Trenowanie przezyciowego zespotu regut

1: procedure TRENUJZESPOL(D, M)
2: Wejscie:
3: D(A,T,§) — zbiér danych opisany atrybutami A, czasem obserwacji T

i statusem przezycia o

4: M — liczba estymatorow

5: Wyjscie: zespot estymatoréw £

6: E—g

7 for i =1to M do

8: (D;) < PrébkaBootstrap(D)

9: M, — RegulyPrzezycia()

10: M, trenuj(D;)

11: Dodaj M; do & (jesli trenowanie si¢ powiodlo)
12: end for

13: return &

14: end procedure

15: procedure PREDYKCJA(X)

16: Wejscie:

17: x — prébka

18: Wyjécie: agregowana funkcja przezycia S(t)

19: Zbierz predykcje: {S1(t), Sa(t), ..., Sk(t)} « {M,.predykuj(x)}
20: S(t) «— AgregujFunkcjePrzezycia({S;(t)})

21: return S(t)

22: end procedure
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Algorytm 8 Agregacja funkcji przezycia

1: procedure AGREGUJFUNKCIEPRZEZYCIA({S;(t)}F,)

2: Wejscie: funkcje przezycia {S1(t), Sa(t), ..., Sk(t)}

3 Wyjscie: agregowana funkcja przezycia S (1)

4: Utworz wspdélng dziedzine czasows ze wszystkich funkcji
5: T — sortuj(|Ji_, czasy(S;))

6 for kazda funkcja S;(t) do

7 Interpoluj S;(t) na punkty 7 (funkcja schodkowa)

8 end for

9:  S(t) «— érednia({Sy(t), Sa(t), ..., Sk(t)}) na T

10 return S(t)

11: end procedure

5.5.3 llustracja dziatania metody

W ponizszej sekcji przedstawiono zastosowanie interpretowalnego zespotu regut
przezyciowych na zbiorze danych NiCdBattery, dotyczacym zywotnosci akumu-
latoréw niklowo-kadmowych. Zbiér obejmuje 87 obserwacji (78 treningowych,
9 testowych), opisanych za pomoca oSmiu cech numerycznych: czas tadowania
(charge__time), czas roztadowania (discharge_time), gtebokos¢ roztadowania (di-
scharge__depth), czas wstepnego tadowania (precharge _time), temperatura (de-
grees__c), stezenie KOH (koh__concentration), objetos¢ KOH (koh__volume) oraz
poziom dotadowania (recharge_level). Odsetek zdarzen w zbiorze treningowym
wynosi 92.3%, a w testowym 100%. Odpowiadajace mediany czasu przezycia to
odpowiednio 3042 i 1810 cykli.

Analize przeprowadzono dla probki testowej o indeksie 0, charakteryzujacej sie
nastepujacymi wartosciami atrybutéw: discharge depth = 80.0, discharge_time
= 1.0, charge_time = 2.0, recharge_level = 140.0, koh__concentration = 34.0,
koh__volume = 20.5, precharge__time = 3.0 oraz degrees_c¢ = 50.0. Dla tej probki
zaobserwowano zdarzenie (awarie akumulatora) po 964 cyklach pracy.

Zespot utworzono ze 100 estymatorow bazowych, wykorzystujac strategie prob-
kowania bootstrap oraz losowy wybor podzbioru cech. Parametry indukcji regut
ustawiono nastepujaco: minimalne wsparcie o = 5.0, wlaczone przycinanie oraz

ignorowanie brakéw danych.
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Faza 1: Probkowanie bootstrap i losowy wybdr podzbioru cech Dla kazdego
ze 100 estymatorow bazowych przeprowadzono niezalezne prébkowanie bootstrap ze
zbioru treningowego liczacego 78 obserwacji oraz losowy wybor 4 cech sposréd 8 do-
stepnych. Przyktadowo, estymator 1 otrzymal cechy: charge time, discharge_time,
koh__concentration, degrees c, podczas gdy estymator 2: charge_time, degrees c,
koh__volume, recharge__level. Kazda prébka bootstrap zawierata 78 obserwacji z po-
wtoérzeniami. Strategia ta zapewnita roznorodnosé estymatoréw przy jednoczesnym

ograniczeniu korelacji miedzy nimi.

Faza 2: Indukcja regut i trening Kazdy estymator bazowy indukowat reguty
przezyciowe za pomoca algorytmu separate-and-conquer. Proces wzrostu regut
przebiegal zachtannie — w kazdej iteracji dodawano warunek maksymalizujacy
statystyke log-rank miedzy przyktadami pokrytymi a niepokrytymi przez regute.
Po zakoniczeniu procesu wzrostu stosowano przycinanie, usuwajac warunki, ktorych
eliminacja nie pogarszata jakosci reguty.

Trenowanie przeprowadzono réwnolegle dla wszystkich 100 estymatoréw bazo-
wych. Wszystkie estymatory zostaly pomyslnie wytrenowane, generujac tacznie
221 unikalnych regut. Srednia liczba regut na estymator wyniosta 2.21, przy czym
rozktad wahat sie od 1 do 5 regul. Kazda regute powiazano z krzywa przezycia

Kaplana-Meiera, estymowang na podstawie pokrywanych przez nig przyktaddow.

Faza 3: Agregacja predykcji zespotu Predykcja zespotu dla prébki testowej
wymagata agregacji funkcji przezycia ze wszystkich estymatoréw bazowych. Proces
rozpoczeto od konstrukeji wspolnej dziedziny czasowej, zbierajac wszystkie unikalne
punkty czasowe ze wszystkich funkcji przezycia, co dato 73 punkty w zakresie
od 12 do 20605 cykli. Nastepnie kazda funkcje interpolowano na te dziedzine za
pomoca funkeji schodkowej z obstuga wartosci brzegowych.

Konicowa krzywa przezycia uzyskano poprzez obliczenie $redniej arytmetycznej
wszystkich interpolowanych funkcji w kazdym punkcie czasowym. Na Rysunku
zaprezentowano zaréwno indywidualne funkcje przezycia ze wszystkich 100 esty-

matoréw bazowych, jak i ich zagregowana funkcje zespotu.
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Estymatory bazowe
= Model zespotowy

S(t)
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Rysunek 5.4: Funkcje przezycia dla przyktadu ze zbioru NiCdBattery wyge-
nerowane przez zespot 100 zbioréw regul przezyciowych. Wykres przedstawia
indywidualne funkcje przezycia ze wszystkich estymatoréw bazowych (oznaczone
kolorem szarym) oraz model zespotowy (oznaczony kolorem niebieskim). Rézno-
rodnosé¢ krzywych indywidualnych ilustruje wariancje predykeji poszcezegdlnych

estymatoréw, podczas gdy model zespotowy stanowi ich usredniong predykcje.
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6 Eksperymenty i przypadki uzycia

Niniejszy rozdzial przedstawia empiryczng walidacje zaproponowanych metod.
Eksperymenty koncentruja si¢ na weryfikacji skutecznosci podejsé zastosowanych
do danych medycznych i przemystowych, ukazujac uzytecznosé interpretowalnych
algorytmow indukeji regut w analizie danych cenzurowanych.

W eksperymentach oceniono cztery opracowane algorytmy: pokryciowy algorytm
indukcji przezyciowych regut akcji, algorytm rekomendacji przezyciowych regut
akcji, algorytm indukcji przezyciowych regut wyjatkéw oraz interpretowalny zespot
regut przezyciowych. Zostaty one przetestowane na zréznicowanych zbiorach da-
nych, odzwierciedlajacych typowsa dla analizy przezycia roznorodnosé zastosowan

— od danych przemystowych zwigzanych z funkcjonowaniem maszyn w predyk-
cyjnym utrzymaniu ruchu, po zbiory medyczne pochodzace z badan klinicznych
i epidemiologicznych. Skutecznos¢ oceniono na podstawie kryteriéw powszechnie
stosowanych w analizie przezycia, takich jak test log-rank oraz wskaznik Briera.

Tres¢ rozdziatu obejmuje metodyke testowania, kryteria oceny algorytmow oraz
charakterystyke wykorzystanych zbioréw danych. Nastepnie przedstawiono szcze-
gotowe analizy eksperymentow dla kazdego z opracowanych algorytméw. Poprzez
poréwnanie z metodami referencyjnymi oraz analize przypadkéw uzycia, rozdziat
prezentuje wyniki badan i ilustruje zastosowanie interpretowalnych metod analizy

przezycia w zadaniach wymagajacych transparentnosci proceséw decyzyjnych.

6.1 Kryteria oceny

Ocena skutecznosci algorytmoéow w analizie przezycia wymaga zastosowania kry-
teriéw uwzgledniajacych specyfike danych cenzurowanych. W eksperymentach
wykorzystano zestaw uzupetniajacych sie metryk, ktére pozwalaja zaréwno na
ocene doktadnosci prognozowania funkcji przezycia, jak i na analize jakosci odkry-

wanej wiedzy w postaci regut.
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W badaniach wykorzystano wskaznik Briera do oceny metod generujacych
bezposrednie predykcje, takich jak algorytm rekomendacji przezyciowych regut
akcji oraz interpretowalny zespoét regut przezyciowych. Dla metod eksploracyj-
nych, ktérymi sg pokryciowy algorytm indukcji przezyciowych regut akcji oraz
algorytm indukcji przezyciowych regut wyjatkow, zastosowano statystyke log-rank
oraz metryki opisujace strukture i jako$¢ wygenerowanych regut. Dodatkowo, dla
wszystkich typéw regul przeprowadzono jakosciowa weryfikacje dziatania algo-
rytmu w oparciu o wizualizacje krzywych przezycia, przy czym ocena koncowa

opiera si¢ na metrykach iloSciowych.

6.1.1 Wskaznik Briera

Wskaznik Briera [128] stanowi jedna z miar oceny dokladnosci modeli prognostycz-
nych w analizie przezycia. Jest rozszerzeniem btedu sredniokwadratowego na dane
cenzurowane i umozliwia ocene predykcji ryzyka w obecnosci niepetnych obserwacji.
Przyjmuje wartosci z przedziatu [0, 1], gdzie 0 oznacza perfekeyjna predykeje, a 1
najgorsza mozliwa jako$¢ predykcji. Wskaznik Briera ocenia kalibracje modelu
(ang. calibration), czyli zgodnos$é miedzy predykowanymi prawdopodobiefistwami
a rzeczywistymi czestotliwo$ciami zdarzen. Znajduje zastosowanie gtéwnie w ocenie
metod generujacych bezposrednie predykcje funkcji przezycia. Dla i-tej obserwacji

w chwili ¢ obliczany jest zgodnie ze wzorem:

BSi(t) = (Si(t) — I(T} > 1))? (6.1)

gdzie S;(t) oznacza predykowane prawdopodobienstwo przezycia dla i-tej obserwa-
cji w chwili ¢, a I(T; > t) to rzeczywisty status przezycia (1, jesli dla obserwacji
nie zanotowano zdarzenia do czasu t, 0 w przeciwnym przypadku).

W przypadku danych z obserwacjami cenzurowanymi, Graf i in. [129] zapropo-
nowali modyfikacje wskaznika Briera, ktéra uwzglednia obecnosé danych cenzuro-
wanych poprzez wprowadzenie wagi odwrotnie proporcjonalnej do prawdopodo-

bienistwa nieocenzurowania:
(Si(t) — I(T; > 1))?
G(T))

gdzie @(ﬂ) to estymator Kaplana-Meiera funkcji przezycia dla rozktadu cen-

BSS(t) = (6.2)

zurowania, obliczany na zbiorze treningowym z wykorzystaniem odwrdconego
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wskaznika zdarzenia, tj. przyjmujac 1 — 9; jako wskaznik cenzurowania, gdzie 9;
oznacza standardowy wskaznik zdarzenia (0; = 1 dla obserwacji z zaobserwowanym
zdarzeniem, §; = 0 dla obserwacji cenzurowanych).

Definiuje sie réwniez catkowy wskaznik Briera (ang. Integrated Brier Score,
[BS), ktory stanowi uogélnienie wskaznika Briera na caly przedzial czasowy i jest

obliczany jako Srednia wazona wskaznikow Briera dla wszystkich czaséw obserwacji:

IBS = lT iEBsg(t) (6.3)

n- [T i=1teT
gdzie n oznacza liczbe obserwacji, T to zbiér wszystkich unikalnych czaséw obser-
wacji, a |T'| oznacza liczbe elementéw tego zbioru. Wartosé IBS réwna 0 oznacza
perfekcyjny model, natomiast wartosé¢ 0.25 odpowiada modelowi losowemu, ktory
zawsze zwraca prawdopodobienstwo 0.5. Model uznaje si¢ za uzyteczny, gdy jego
warto$¢ IBS jest nizsza od 0.25.

Ograniczeniem wskaznika Briera jest fakt, ze moze by¢ stosowany wytacznie do
modeli estymujacych funkcje przezycia. Nie nadaje sie wiec do oceny metod, ktére
nie generujg bezposrednich estymatow prawdopodobienstwa przezycia, takich jak
maszyny wektoréw nosnych dla analizy przezycia (ang. Survival Support Vector
Machines) |129).

6.1.2 Kryteria oceny jakosci regut

Ocena modeli eksploracyjnych, takich jak pokryciowy algorytm indukcji przezycio-
wych regut akcji oraz algorytm indukcji przezyciowych regut wyjatkow, wymaga
uzycia kryteriow dostosowanych do faktu, ze wynikiem sa zbiory regul, a nie bez-
posrednie predykcje. Z tego wzgledu stosuje si¢ miary odnoszace sie do struktury,
ztozonosci i pokrycia regut, zamiast klasycznych metryk predykcyjnych opartych
na estymatach funkcji przezycia. W poréwnaniu ze standardowymi metrykami
analizy przezycia, metody eksploracyjne wymagaja kryteriéw uwzgledniajacych

zaréwno jakos$¢ odkrywanej wiedzy, jak i interpretowalno$¢ generowanych regut.

ZtozonoS¢ i rozmiar zbioru regut Podstawowym kryterium oceny modelu
regutowego jest jego wielkos¢, wyrazona jako liczba regut wchodzacych w jego
sktad — ozn. |R/|, gdzie R to zbiér wygenerowanych regut. Mniejsza liczba regut

jest pozadana, gdyz zwigksza interpretowalno$é¢ modelu.
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6 Eksperymenty i przypadki uzycia

Dodatkowym kryterium, mierzacym ztozonosé generowanych regut, jest srednia
dtugosé regut w zbiorze regut, rozumiana jako $rednia liczba warunkéow elementar-

nych w przestankach regut:

o= % S, (6.4)

reR
gdzie |r| oznacza liczbe warunkéw elementarnych w przestance regulty r (por.
Rozdzial. Krotsze reguty sg na ogot preferowane, poniewaz sg bardziej zrozumiate
i mniej podatne na przeuczenie.

Srednie pokrycie zbioru treningowego przez reguly stanowi kolejne kryterium

oceny:

—=_ 1 ¢ X
C—WZ -, (6.5)

reR
gdzie X, oznacza zbiér obserwacji pokrywanych przez regute r, a n to liczba obser-
wacji w zbiorze treningowym. Wskaznik C' okreéla, jaka cze$é zbioru treningowego
pokrywa $rednio kazda reguta. Wysokie wartosci $wiadcza o duzym uogdlnieniu

regut, natomiast wartosci bardzo bliskie 1 moga wskazywaé na nadmierng og6lnosc.

Struktura akcji W ocenie regut akcji wykorzystuje sie réwniez miary opisujace
strukture akeji. Stosunek liczby akeji do liczby warunkéw (|.A|/|WV|) okredla relacje
czestosci akeji do liczby elementarnych warunkow w regule. Udziat akeji dowolnych
(|Aal/|A]) wskazuje, jaki odsetek wszystkich akcji stanowia akcje dowolne, tj.
niewyznaczajace konkretnego kierunku zmiany wartoéci atrybutu. Srednia liczba
warunkow i akcji na regute (w i @) oraz ich zakresy (minimum m,,, maksimum M,
dla warunkéw; minimum m,, maksimum M, dla akcji) stuza do oceny zlozonosci
regut. Nizsze wartosci w i @ oznaczaja mniejsza ztozonosé, natomiast skrajnie
wysokie M,, lub M, moga wskazywaé¢ na obecno$¢ pojedynczych nadmiernie
ztozonych regut.

W zestawieniach tabelarycznych stosowane sa nastepujace oznaczenia: |R| —
liczba regul w zbiorze R, |W| — calkowita liczba warunkéw w zbiorze regut,
|A| — catkowita liczba akeji, |Ag| — liczba akeji dowolnych. Srednia liczba
akcji dowolnych na regule oznaczana jest jako a,. Pokrycie czesci zrodtowej

i docelowej opisuja wskazniki | X, | i |X,,|, definiowane jako $rednie (po regutach)
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odsetki obserwacji spetiajacych odpowiednio przestanke oraz czes¢ docelowy

reguty wzgledem liczebnosci zbioru.

Istotno$¢ statystyczna Kolejnym kryterium oceny jakosci regut jest odsetek
regut istotnych statystycznie, wyznaczany na podstawie testu log-rank. W przy-
padku regut akcji test porownuje krzywe przezycia czesci zrodtowej i docelowej
danej reguty, natomiast dla regut wyjatkow — krzywa przezycia obserwacji pokry-
wanych przez regute z krzywa dla pozostalych obserwacji. Test log-rank polega
na poréwnaniu obserwowanych i oczekiwanych liczebnoéci zdarzen w grupach
definiowanych przez regute. Statystyka testowa ma rozktad chi-kwadrat z jednym
stopniem swobody. Procent regut istotnych na poziomie v = 0.05 oblicza sie
wedtug wzoru:

R :
%istotnych = |{r c |R]|) = 05}‘ x 100% (66)

Wyzsze wartosci tego wskaznika oznaczaja wiekszy udziale regut, dla ktorych test
log-rank wykazuje istotne statystycznie réznice miedzy poréwnywanymi krzywymi
przezycia.

Na tej podstawie raportowane sa wskazniki Py o5 i Fpo1, czyli odpowiednio
procent regut w zbiorze speliajacych warunek istotnosci p < 0.05 lub p < 0.01.

Uogélniajac, P, oznacza odsetek regul z wartoscia p < a.

Metryki dla algorytmu rekomendacji W ocenie algorytmu rekomendacji wyko-
rzystano dodatkowo wskaznik spdjnosci S,, definiowany jako odsetek przyktadéw
testowych, dla ktérych roéznica miedzy krzywymi przezycia przed i po zastoso-
waniu rekomendowanych zmian jest istotna statystycznie na poziomie « (test
log-rank). Metryka MAE (ang. mean absolute error) mierzy sredni bezwzgledny
btad miedzy estymacja czasu przezycia uzyskang przez algorytm rekomendacji
a estymacja niezaleznego modelu walidacyjnego, gdzie nizsze wartosci wskazuja
na wieksza zgodnos¢. Pokrycie, definiowane jako odsetek przyktadow testowych,
dla ktorych wygenerowano co najmniej jedng rekomendacje, informuje, dla jakiej
czesci przypadkéw algorytm zwraca rekomendacje. Wysokie pokrycie oznacza, ze
rekomendacje sa generowane dla wickszosci przypadkow, z kolei niskie pokrycie
oznacza, ze rekomendacja pojawia sie tylko dla niewielkiej ich czesci. W tej czesci

wynikéw symbol @ odnosi sie do $redniej liczby akcji na rekomendacje (a nie
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na regule), natomiast wskaznik g oznacza sredni odsetek atrybutéw poddanych

modyfikacji w pojedynczej rekomendacji wzgledem liczby dostepnych atrybutow.

Kierunek wptywu i mediana czasu przezycia W przypadku regut akcji dodat-
kowym kryterium oceny jest liczba regul polepszajacych (|R.|) i pogarszajacych
(|R_]), definiowanych jako regutly, dla ktérych krzywa przezycia czesci docelowej
znajduje sie odpowiednio powyzej lub ponizej krzywej czesdci zrédtowej. Informacja
ta pozwala oceni¢ kierunek wplywu generowanych akcji na funkcje przezycia.
Przewaga |R.| nad |R_| wskazuje na dominacje akcji poprawiajacych przezycie.
Relacja ta zalezy od ustawienia parametru 7, ktéry okresla preferowany typ regut
(,lepsza”, | gorsza” lub  dowolna”).

W ocenie regut wykorzystywana jest rowniez mediana czasu przezycia. Stosowane
sg dwie uzupelniajace sie definicje. Pierwsza okresla mediane jako czas t, dla
ktérego funkcja przezycia S przyjmuje wartos¢ 0.5, o ile istnieje czas t spelniajacy
S(t) = 0.5. W przeciwnym razie mediana pozostaje niezdefiniowana. Druga,
stosowana dla estymatora Kaplana-Meiera, definiuje mediane jako najmniejszy
czas t, dla ktorego S’KM(t) < 0.5, co uwzglednia skokowy charakter tego estymatora.
Obie definicje dotycza danych cenzurowanych, przy czym druga precyzuje sposob
wyznaczania mediany na podstawie empirycznej krzywej Kaplana-Meiera. Mediana
czasu przezycia petni funkcje pomocniczg w ocenie, pozwalajac na porownanie
charakterystyki przezycia miedzy réznymi grupami obserwacji. Wyzsza mediana
dla czesci docelowej wzgledem Zrodlowej wskazuje na wyzsze prawdopodobienstwo
przezycia w grupie docelowej.

Wizualizacja krzywych przezycia stanowi dodatkowe narzedzie oceny, szczegdl-
nie przydatne w przypadku regut akcji. Poréwnanie krzywych przezycia czesci
zrodtowej i docelowej pozwala na intuicyjng ocene skutecznosci generowanych akeji.
Cho¢ nie jest to formalne kryterium, wizualizacja odgrywa wazna role w weryfikacji
dziatania algorytméw oraz jakosciowej analizie metod, utatwiajac identyfikacje

potencjalnych probleméw w generowaniu regut.

6.2 Zbiory danych

W badaniach eksperymentalnych wykorzystano dwie kategorie zbioréw danych

dotyczacych przezycia. Pierwszg kategorie stanowig zbiory przemystowe, zwiazane
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z funkcjonowaniem maszyn i urzadzen, drugag natomiast — zbiory medyczne

pochodzace z badan klinicznych i epidemiologicznych.

nazwa zbioru Al |AL | Ag] n  cenz (%)
AdhesiveBondB [29] 2 2 0 104 5.8
Aircraft [| 8 5 3 313 99.3
KevlarVessel [29] 2 2 0 108 10.2
LaminatePanel [29)] 1 1 0 125 8.0
LEDLife [29) 2 2 0 167 9.4
Maintenance [130] 5 3 2 1000 60.3
NewSpring [29] 3 2 1 108 32.4
NiCdBattery [29) § 8 0 87 6.9
PM] 9 9 0 1274 91.7
Tantalum [29)] 2 2 0 2204 98.2
ZelenCap [29] 2 2 0 64 50.0

Tabela 6.1: Charakterystyka zbiorow przemystowych wykorzystanych w bada-
niach eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwe zbioru,
liczbe atrybutéw (|A|), liczbe atrybutéw numerycznych (|A,|), liczbe atrybutéw
kategorycznych (|Ag|), liczbe obserwacji (n), udzial obserwacji cenzurowanych
(cenz, w %). We wszystkich zbiorach z tej grupy odsetek wartosci brakujacych
wynosi 0%.

W badaniach wykorzystano 11 zbioréw danych dotyczacych niezawodnosci ma-
szyn i urzadzen, ktérych charakterystyke przedstawiono w Tabeli[6.1] Analizowane
zbiory sg znaczaco zréznicowane pod wzgledem liczby obserwacji, liczby atrybutow
warunkowych oraz proporcji obserwacji cenzurowanych, przy czym w zadnym
z nich nie wystepujg wartosci brakujace. Liczba obserwacji waha sie od 64 do 3135,
liczba atrybutéw od 1 do 9, a udzial obserwacji cenzurowanych wynosi od 5.8% do
99.3%. Niektére zmienne, takie jak identyfikator maszyny, nie majg wartosci pro-
gnostycznej, dlatego zostaly wykluczone z analizy i nie sg uwzglednione w Tabeli
6.11

Zbiory przemystowe wybrane do analizy pochodza z trzech gtéwnych kategorii
zrédet. Najliczniejsza grupe stanowia dane pochodzace z publikacji [29], obej-

mujace osiem zbioréw: AdhesiveBondB, KevlarVessel, LaminatePanel, LEDLife,
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nazwa zbioru temat

AdhesiveBondB  przyspieszone testy degradacji spoin klejowych
Aircraft symulacje IoT urzadzen wirujacych
KevlarVessel proby creep-rupture naczyi Kevlar/epoksyd

LaminatePanel  testy wytrzymaltosci paneli laminowanych

LEDLife testy zywotnosci diod LED

Maintenance awarie maszyn na podstawie sensoréw IoT
NewSpring testy wytrzymatosci sprezyn

NiCdBattery testy zywotnosci akumulatoréw NiCd

PM predykcja awarii z danych sensoréw
Tantalum testy zywotnosci kondensatorow tantalowych
ZelenCap testy zywotnosci kondensatoréw ceramicznych

Tabela 6.2: Tematyka zbioréw przemystowych wykorzystanych w badaniach
eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwe zbioru oraz

tematyke zbioru.

NewSpring, NiCdBattery, Tantalum oraz ZelenCap. Zbiory te reprezentuja kla-
syczne przypadki analizy niezawodnosci w $rodowisku przemystowym i dotycza
zroznicowanych materiatow i komponentéw — od klejow strukturalnych i kompo-
zytéw kevlarowych, przez potprzewodniki i baterie, po komponenty metalurgiczne.

Druga kategorie tworza zbiory pochodzace z platform udostepniania danych.
Zbior Az’rcmﬁﬂ zostal udostepniony na platformie Kaggle i stanowi przyktad
otwartych danych przemystowych zwigzanych z predykcyjnym utrzymania ruchu
komponentéw lotniczych. Charakteryzuje si¢ on ztozong struktura telemetryczna,
obejmujaca pomiary napiecia, obrotow, ci$nienia oraz wibracji rejestrowane w cza-
sie rzeczywistym. Zbior PMEI, rowniez dostepy na Kaggle, bazuje na danych
symulacyjnych.

Trzecia kategorie reprezentuje zbior Maintenance |130], pochodzacy z biblioteki
PySurvival dedykowanej do analizy przezycia.

Wszystkie analizowane zbiory danych sa publicznie dostepne, co sprzyja repro-

dukowalnosé¢ wynikéw i umozliwia empiryczne poréwnania z alternatywnymi meto-

"https://www.kaggle.com/datasets/arnabbiswasl/microsoft-azure-predictive-maintenance
’https://www.kaggle.com/datasets/hiimanshuagarwal/predictive-maintenance-dataset
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zbior Al AL |Ag n  brak (%) cenz (%)
actg320 [57] 11 4 7 1151 0.00 91.7
BMT-Ch [131] 35 7 28 187 1.24 54.5
cancer [132] 76 1 228 4.14 27.6
follic [133] 4 2 2 54 0.00 35.7
GBSG2 [134] 8 D 3 686 0.00 56.4
hd [133] 6 1 5 865 0.00 50.8
lung [135] 70 7 1032 2.60 26.0
Melanoma [136] 7 2 5 205 0.00 65.4
mgus [137] 9 7 2 241 19.59 23.7
pbe [138] 17 10 7 418 1454 61.5
std [139] 21 2 19 877 0.00 60.4
uis [57] 13 7 6 975 0.00 19.3
wegs [140] 10 7 3 3154 0.04 91.9
whas [57] 72 481 0.00 48.2
whas500 [57] 13 > 200 0.00 57.0
zine [141] 55 8 47 431 57.17 81.2

Tabela 6.3: Charakterystyka medycznych zbioréw danych wykorzystanych w ba-
daniach eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwe
zbioru, liczbe atrybutéw (|A]), liczbe atrybutéw numerycznych (|A,|), liczbe
atrybutéw kategorycznych (|Ag|), liczbe obserwacji (n), udzial wartosci braku-

jacych (brak, w %), udzial obserwacji cenzurowanych (cenz, w %).

115



6 Eksperymenty i przypadki uzycia

Tabela 6.4: Tematyka medycznych zbioréw danych wykorzystanych w badaniach

eksperymentalnych. W kolejnych kolumnach przedstawiono: nazwe zbioru oraz

zbibr temat

actg320 pacjenci zakazeni HIV

BMT-Ch  przeszczep szpiku kostnego

cancer zaawansowany rak ptuc

follic chtoniak z komoérek pecherzykowych
GBSG2 rak piersi

hd choroba Hodgkina

lung wczesne wykrywanie raka ptuc
Melanoma ztodliwy czerniak

mgus tagodna gammapatia monoklonalna
pbc pierwotne zapalenie drég zétciowych
std choroby przenoszone droga ptciows
uis leczenie uzaleznien

wcgs choroba wiencowa

whasl zawal miednia sercowego (wersja 1)
whasb00 zawal miednia sercowego (wersja 2)
zinc rak przetyku

tematyke zbioru.
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dami. W odréznieniu od standardowych zbiorow przezyciowych, ktére w wiekszosci
dotycza badan medycznych, wybrane zbiory danych odnosza sie do niezawodnosci
systemow przemystowych.

Dodatkowo w eksperymentach wykorzystano 16 zbioréw danych medycznych,
ktoérych charakterystyke przedstawiono w Tabeli (6.3 Zbiory te pochodza z r6znych
dziedzin medycyny, w tym onkologii, kardiologii, transplantologii oraz badan nad
HIV. Liczba obserwacji w zbiorach medycznych wahata sie od 187 do 3154, liczba
atrybutéw od 4 do 55, a udzial obserwacji cenzurowanych wynosit od 19.3% do
91.9%. W przeciwienstwie do zbioréw przemystowych, niektore zbiory medyczne
zawieraly brakujace wartosci, ktérych udzial wynosit od 0.04% do 57.17%.

Zbiory medyczne wybrano ze wzgledu na ich réznorodno$é pod wzgledem ro-
dzaju schorzen, wielkosci préoby oraz struktury danych. Wigkszo$é¢ z nich stanowi
standardowe zbiory referencyjne uzywane w literaturze dotyczacej analizy prze-
zycia, co umozliwia poréwnanie wynikéow z innymi metodami. Pochodza gtéwnie
z publikacji naukowych oraz specjalistycznych pakietéw statystycznych.

Przygotowanie zbiorow danych do analizy przezycia wymagato zastosowania
procedur przetwarzania, dostosowanych do specyfiki poszczegdélnych zrédet danych
oraz ich pierwotnej struktury. Mozna wyrdznié¢ cztery gtéwne kategorie takich
proceséw, stosowane w zaleznosci od charakterystyki Zrodtowych zbioréow danych.

Dla osmiu zbiorow pochodzacych z repozytorium danych niezawodnosciowych
(AdhesiveBondB, KevlarVessel, LEDLife, LaminatePanel, NewSpring, NiCdBattery,
Tantalum, ZelenCap) zastosowano jednolita procedure przetwarzania. Polegata
ona na przeksztatceniu kategorycznego wskaznika cenzurowania na binarny status
przezycia: zdarzenia koncowe zakodowano jako 1, a obserwacje cenzurowane jako 0.
W przypadku zbioru AdhesiveBondB wartosé¢ ,Exact” wskazywala na wystapienie
zdarzenia, natomiast dla pozostalych zbiorow stosowano oznaczenia , Failed” lub
,Failure”. Dodatkowo, w zbiorach zawierajacych kolumne ,,Count”, przeprowadzono
ekspansje danych poprzez powielenie wierszy zgodnie z liczba powtorzen, po czym
usunieto pierwotng kolumne licznikows.

Zbiér Aircraft wymagal najbardziej ztozonej procedury przetwarzania ze wzgledu
na wielowarstwowsg strukture telemetryczng. Proces obejmowat integracje czte-
rech Zrodet danych: pomiaréow telemetrycznych, zdarzen konserwacyjnych, awarii
oraz charakterystyk maszyn. Utworzono interwaty czasowe dla kazdej kombinacji

maszyny i komponentu. Poczatek interwatu stanowito rozpoczecie obserwacji lub

117



6 Eksperymenty i przypadki uzycia

poprzednie zdarzenie konserwacyjne, a koniec — awaria lub konserwacja prewen-
cyjna. Dla kazdego interwatu obliczono czas przezycia w godzinach oraz dokonano
agregacji statystycznej zmiennych telemetrycznych (napiecie, obroty, ci$nienie,
wibracje) poprzez usrednienie warto$ci w ramach interwatu. Zastosowano filtry
jakosci danych, eliminujac interwaly krétsze niz 2 godziny lub nieposiadajace
odpowiadajacych pomiaréow telemetrycznych.

Zbiér PM przetworzono za pomoca agregacji czasowej. Dla kazdej jednostki
identyfikowano wszystkie dostepne obserwacje, okreslano pierwszy i ostatni moment
pomiaru, a nastepnie obliczano czas przezycia jako réznice miedzy tymi punktami
wyrazona w dniach. W przypadku wystapienia wielokrotnych zdarzen awaryjnych
dla tej samej jednostki przyjeto ostatnie zdarzenie jako definitywny punkt koncowy
obserwacji. Jednostki bez zdarzen awaryjnych otrzymaly status cenzurowany,a
czas przezycia liczono od pierwszej do ostatniej obserwacji.

Dodatkowo, dla wszystkich zbioréw przeprowadzono weryfikacje danych, elimi-
nujgc obserwacje z ujemnymi lub zerowymi czasami przezycia oraz identyfikatory
przemystowe nieistotne dla analizy statystycznej.

W celu lepszego zobrazowania charakterystyki analizowanych zbioréw danych, na
Rysunku i przedstawiono empiryczne krzywe przezycia dla wszystkich wy-
korzystanych zbiorow. Wizualizacja ta umozliwia identyfikacje réznic w rozktadach
czasOw przezycia miedzy poszczegdlnymi zbiorami oraz poréwnanie charakterystyk
miedzy domenami przemystowa i medyczng.

Krzywe przezycia dla zbioréw przemystowych (Rysunek pokazuja zroz-
nicowana dynamike proceséw awaryjnosci. Niektore zbiory, np. AdhesiveBondB
i KevlarVessel, wykazuja wysoka wczesng awaryjnosé, podczas gdy inne, jak Tan-
talum czy Aircraft, charakteryzuja sie dlugotrwatla niezawodnoscig. Dla zbioréw
Tantalum i Aircraft zakres wartosci na osi rzednych zostal ograniczony, aby popra-
wié czytelnosé wykresow, gdyz wartosci funkeji przezycia pozostaja bliskie jednosci
przez wiekszo$¢ okresu obserwacji.

Krzywe przezycia dla zbior6w medycznych (Rysunek wykazuja odmienng
charakterystyke w poréwnaniu ze zbiorami przemystowymi. Wiekszos¢ z nich
wykazuje bardziej stopniowy spadek funkcji przezycia w czasie, co odzwiercie-
dla nature proceséw biologicznych. Niektore zbiory, takie jak actg320 czy wcgs,
charakteryzuja si¢ wysokim stopniem cenzurowania, co przektada si¢ na wolniej-

szy spadek wartosci funkcji przezycia szacowanej estymatorem Kaplana-Meiera
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6.2 Zbiory danych
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Rysunek 6.1: Krzywe KM dla przemystowych zbioréw danych z Tabeli |6.1
wykorzystanych w badaniach eksperymentalnych (przedziaty ufnosci na poziomie

95% obliczone metoda Greenwooda).
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6.3 Pokryciowy algorytm indukcji przezyciowych regut akcji

w dluzszym horyzoncie obserwacji. Inne, np. cancer i uis, wykazuja bardziej
dynamiczne zmiany, odpowiadajace réznej agresywnosci schorzen lub réznym

dtugosciom okreséw obserwacji.

6.3 Pokryciowy algorytm indukcji przezyciowych
regut akgcji

W niniejszej sekcji przedstawiono wyniki eksperymentéw przeprowadzonych z wy-
korzystaniem pokryciowego algorytmu indukcji przezyciowych regut akcji opisanego
w Sekcji 5.2} Eksperymenty przeprowadzono na wszystkich zbiorach danych przed-
stawionych w Tabeli i Nie stosowano walidacji krzyzowej ze wzgledu na
eksploracyjny charakter metody.

W konfiguracji eksperymentéw przyjeto nastepujace parametry: 7 = ,dowolna”
(brak preferencji kierunku zmian krzywych przezycia), p = 30 (minimalna liczba
niepokrytych przyktadow), & = 0.1 (maksymalny procent przyktadéw wspélnych),
p = 0.5 (maksymalne pokrycie reguty).

Wybér parametru g = 30 zapewnia statystyczna istotno$¢ generowanych regut
przy jednoczesnym zachowaniu zdolnosci do wykrywania wzorcow w mniejszych
grupach. Wartosé¢ € = 0.1 ogranicza naktadanie sie regut, co zwigksza réznorodnosé
odkrywanych wzorcow. Parametr p = 0.5 zapobiega dominacji pojedynczych regut
nad catym zbiorem danych. Zatozono, ze wszystkie atrybuty sa zmienne, tzn. moga
wystepowaé w czesci akeyjnej regut i podlega¢ zmianom. Dla zmiennych ciggtych
oznacza to zawezanie lub przesuwanie przedziatu wartosci, a dla kategorycznych
— zmiane¢ kategorii. Nie rozrézniano atrybutéw sterowalnych i niesterowalnych.
Takie ujednolicenie upraszcza analize i zapewnia poréwnywalnosé¢ wynikéw miedzy
zbiorami.

Tabele[6.5]16.6| przedstawiaja wyniki eksperymentow dla zbioréow przemystowych,
wskazujace na znaczna réznorodnosé zaréwno w liczbie generowanych regut, jak
i w ich charakterystykach.

W podsumowaniu przedstawionym w tabelach [6.5]1[6.6] liczba warunkéw (JW))
odnosi sie do liczby warunkéw w czesci zrodlowej reguly, a liczba akeji (|A|) to
liczba modyfikacji zdefiniowanych w regule dla atrybutéw, w ktorych czesé docelowa

rézni sie od czedci zrodtowej. Akcje podtrzymujace sg traktowane jako warunki
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6 Eksperymenty i przypadki uzycia

zbi6r Rl WV AL Agl [ Aal/[AL A/ IV
AdhesiveBondB 2 4 2 0 0.00 0.50
Aircraft 80 170 103 6 0.06 0.61
KevlarVessel 2 4 2 0 0.00 0.50
LaminatePanel 2 4 2 0 0.00 0.50
LEDLife 4 8 5 1 0.20 0.62
Maintenance 7 15 13 1 0.08 0.87
NewSpring 2 4 2 0 0.00 0.50
NiCdBattery 2 4 2 0 0.00 0.50
PM 31 109 104 16 0.15 0.95
Tantalum 5 10 6 1 0.17 0.60
ZelenCap 1 2 1 0 0.00 0.50

Tabela 6.5: Podstawowe statystyki wygenerowanych przezyciowych regut akcji
dla zbioréw danych z Tabeli [6.I} W kolejnych kolumnach przedstawiono: nazwe
zbioru danych, liczbe regut (|R|), catkowita liczbe: warunkéw (|W)), akeji (|.A]),
akcji dowolnych (].A4|), udzial akcji dowolnych (].A4|/|Al), oraz stosunek liczby
akcji do liczby warunkéw (| A|/|W)).

i nie uwzglednia sie¢ ich przy liczeniu akcji. Akcje podtrzymujace to takie, ktére nie
zmieniaja wartosci wzgledem czesci Zrédtowej (utrzymanie stanu), tj. pozostawienie
wartosci bez zmian, zarowno dla zmiennych ciggtych, jak i kategorycznych. Petnig
one role dodatkowych ograniczen definiujacych kontekst reguty, a nie dziatan
modyfikujacych.

Najmniejsza liczbe regut w eksperymencie uzyskano dla zbioru danych ZelenCap,
ktéry charakteryzowal sie réwniez najmniejsza liczba obserwacji (64 przyktaddw)
sposrod wszystkich analizowanych zbiorow z Tabeli . Najwiecej regut (80) wy-
generowano dla zbioru danych Aircraft, ktéry zawierat 3135 obserwacji. Liczba
warunkow dla poszczegdlnych zbioréw w wigkszosci przypadkow istotnie roznita
sie od catkowitej liczby akcji. Mozna zatem wnioskowaé, ze proponowany algorytm
tworzy reguly, ktore w wiekszosci zawieraja akcje, a nie elementarne warunki
(akcje podtrzymujace), cho¢ te ostatnie réwniez wystepowaly. Zatozenie o braku
tzw. atrybutow stabilnych — rozumianych jako atrybuty, ktérych wartosci nie
moga by¢ zmieniane w ramach akcji — pozwolito na wickszg réznorodnosé typow

akcji w regutach. Jezeli w zbiorze wystepuja atrybuty stabilne, réznica miedzy
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6.3 Pokryciowy algorytm indukcji przezyciowych regut akcji

zbior woa my My ron (%) |R+| |R-|
AdhesiveBondB 2.0 1.0 2 2 100.0 1 1
Aircraft 21 1.3 2 5 100.0 43 37
KevlarVessel 20 1.0 2 2 100.0 1 1
LaminatePanel 2.0 1.0 2 2 100.0 1 1
LEDLife 20 1.2 2 2 100.0 3 1
Maintenance 21 19 2 3 100.0 4 3
NewSpring 20 1.0 2 2 100.0 1 1
NiCdBattery 20 1.0 2 2 100.0 1 1
PM 35 34 2 7 100.0 26 5
Tantalum 20 1.2 2 2 100.0 4 1
ZelenCap 20 1.0 2 2 0.0 1 0

Tabela 6.6: Szczegotowe statystyki i wyniki wygenerowanych przezyciowych regut
akcji dla zbioréw danych z Tabeli 6.1} W kolejnych kolumnach przedstawiono:
nazwe zbioru danych, srednia liczbe warunkéw/akeji (w/a@) na regule, minimalna
i maksymalng liczbe warunkéw (m,, i M,,) w pojedynczej regule, procent regut
z wartoscia p < 0.01 (r9.01) oraz liczbe regul polepszajacych/pogarszajacych
(IR ]/ R-]).
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6 Eksperymenty i przypadki uzycia

liczba warunkow a liczba akcji wzrasta, poniewaz dla takich atrybutéw mozna
tworzy¢ tylko akcje podtrzymujace. Najwyzszy udzial dowolnych akcji w sto-
sunku do catkowitej liczby akcji (0.95) uzyskano dla zbioru danych PM. Srednia
liczba warunkéw i akcji na regute wahata sie od 1.0 do 3.5. Minimalna liczba
warunkow w pojedynczej regule byta jednakowa dla wszystkich zbiorow danych,
w Tabeli oznaczona jako m,,. Analogicznie, maksymalng liczbe warunkéw
oznaczono jako M,,. Maksymalna liczba akcji w pojedynczej regule wynosita 7 i w
kazdym przypadku byta mniejsza niz liczba atrybutéw warunkowych w zbiorze
danych. W konsekwencji akcje pojawiaty sie w przestankach jedynie dla wybranych
atrybutéw, tj. tych o najwickszym znaczeniu w momencie zdarzenia.

Wartosci rg.91 w Tabeli wskazuja, ze uzyskane reguty charakteryzuja sie
dobrymi wartosciami p w tescie log-rank miedzy krzywymi KM czesci zrédtowe;j
i docelowej. Oznacza to, ze wygenerowane reguly opisuja akcje prowadzace do
istotnych zmian w krzywych przezycia. Najnizszy odsetek regut z p < 0.01 uzy-
skano dla zbioru ZelenCap, gdzie jedyna wygenerowana reguta nie spetnita tego
kryterium.

Ostatnie dwie kolumny Tabeli pokazuja liczbe regut polepszajacych, gdzie
krzywa przezycia reguly docelowej jest powyzej krzywej reguty Zréodtowej (|R.|),
oraz liczbe regut pogarszajacych, gdzie krzywa przezycia reguty docelowej jest
ponizej krzywej regulty zrédlowej (|R_|). W wiekszosci zbioréw wygenerowano
wiecej regut polepszajacych, natomiast dla czesci zbioréw liczba regut polepszaja-
cych i pogarszajacych byla taka sama. Wskazuje to, ze proponowany algorytm,
w ktorym 7 = dowolna, w przypadku niektérych zbioréow faworyzuje jeden typ
reguty akcji. Ostateczne wnioski zalezg jednak od specyfiki analizowanego zbioru
danych.

Analogiczne eksperymenty przeprowadzono dla medycznych zbioréw danych
przedstawionych w Tabeli [6.3] Wyniki zaprezentowano w Tabeli [6.71[6.8f W tym
przypadku zaobserwowano wieksza réznorodnosé liczby generowanych regut w po-
rownaniu ze zbiorami przemystowymi. Najmniejsza liczbe regut uzyskano dla
zbior6w mgus i Melanoma (po 4 reguly), natomiast najwieksza (57) wygenerowano
dla zbioru wegs, ktéry charakteryzowal sie najwieksza liczba obserwacji (3154)
sposréd medycznych zbioréw danych. Srednia liczba warunkéw na regute wahala
sie od 2.1 (hd, follic) do 5.2 (std), co wskazuje na wieksza ztozonosé regut niz

w przypadku zbioréw przemystowych. Podobnie, srednia liczba akcji na regute
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6.3 Pokryciowy algorytm indukcji przezyciowych regut akcji

zbiér Rl WAL Aal - [Adl/[AL ALV
actg320 20 8 81 17 0.21 0.94
BMT-Ch 5 14 14 2 0.14 1.00
cancer 6 18 16 2 0.13 0.89
follic 8 17 15 3 0.20 0.88
GBSG2 16 49 48 5 0.10 0.98
hd 12 25 20 7 0.35 0.80
lung 9 23 22 4 0.18 0.96
Melanoma 4 12 12 2 0.17 1.00
mgus 4 15 14 2 0.14 0.93
pbc 8 23 23 3 0.13 1.00
std 17 89 72 16 0.22 0.81
uis 8 30 30 7 0.23 1.00
wCgs 57 281 280 34 0.12 1.00
whasl1 7 18 18 0 0.00 1.00
whas500 9 39 38 2 0.053 0.97
zinc 10 29 26 5 0.19 0.90

Tabela 6.7: Podstawowe statystyki wygenerowanych przezyciowych regut akcji dla
zbioréw danych medycznych z Tabeli[6.3. W kolejnych kolumnach przedstawiono:
nazwe zbioru danych, liczbe regut (|R]), catkowita liczbe: warunkow (JW)), akeji
(] A]), akeji dowolnych (|.Ag4|), udzial akcji dowolnych (|.A4]/|A]), oraz stosunek
liczby akeji do liczby warunkéw (|A|/|W)).
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6 Eksperymenty i przypadki uzycia

Tabela 6.8: Szczegotowe statystyki i wyniki wygenerowanych przezyciowych regut
akcji dla zbioréw danych medycznych z Tabeli [6.3] W kolejnych kolumnach
przedstawiono: nazwe zbioru danych, srednia liczbe warunkéw/akeji (w/a) na
regute, minimalng i maksymalng liczbe warunkéw (m,,, M,) w pojedynczej

regule, procent regul z wartoscia p < 0.01 (rg;) oraz liczbe regut polepszaja-

zbior wa my My roor (%) |Ry| |R-|
actg320 4.3 4.0 2 7 100.0 18 2
BMT-Ch 2.8 28 2 4 100.0 3 2
cancer 3.0 27 2 6 83.3 3 3
follic 21 19 2 3 87.5 5 3
GBSG2 3.1 3.0 2 5 100.0 13 3
hd 21 1.7 2 3 100.0 9 3
lung 26 24 2 4 100.0 4 5
Melanoma 3.0 3.0 2 4 100.0 3 1
mgus 3.8 35 3 4 100.0 3 1
pbc 29 29 2 4 100.0 6 2
std 52 4.2 3 10 100.0 10 7
uis 3.8 38 3 4 100.0 7 1
wegs 49 49 2 8 100.0 51 6
whas1 26 26 2 3 100.0 5 2
whas500 4.3 4.2 2 5 100.0 1
zinc 29 26 2 5 100.0 1

cych/pogarszajacych (|Ri|/|R-]).
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6.3 Pokryciowy algorytm indukcji przezyciowych regut akcji

miescita si¢ w przedziale od 1.7 (hd) do 4.9 (wcgs, std), réwniez przekraczajac
zakresy obserwowane dla zbioréw przemystowych.

Stosunek liczby akeji do liczby warunkéw (|.A|/|W]) dla medycznych zbioréw
danych charakteryzowal sie wieksza zmiennoscia, osiagajac wartosci od 0.80 (hd,
std) do 1.00 (BMT-Ch, Melanoma, pbc, uis, whas1, wegs). Wysokie wartosci tego
wskaznika wskazujg na dominacje akcji nad warunkami elementarnymi w genero-
wanych regutach. Udziat akcji dowolnych (|.A4]/|.A|) miedcil si¢ w przedziale od
0.00 (whas1) do 0.35 (hd), przy czym Srednia wartos¢ dla zbioréw medycznych
przewyzszata te uzyskang dla zbiorow przemystowych. Najwickszy udziat akcji do-
wolnych odnotowano dla zbioru hd (0.35), co moze Swiadczy¢ o wigkszej ztozonosci
zaleznosci wystepujacych w danych medycznych.

Podobnie jak w przypadku zbioréw przemystowych, wszystkie reguty wygenero-
wane dla zbiorow medycznych okazaly si¢ istotne statystycznie w tescie log-rank
(%r = 100.0% dla wszystkich zbior6w), z wyjatkiem zbioru cancer, dla ktérego
83.3% regul spelnialo kryterium p < 0.01. Analiza zbioréw regut polepszajacych
(Ry) i pogarszajacych (R_) wykazala przewage regul polepszajacych w wiekszo-
$ci medycznych zbioréow danych. W czesci zbioréw liczba regul polepszajacych
i pogarszajacych byta taka sama, natomiast dla zbioru lung przewazaly reguty
pogarszajace. Wyrazna przewaga regul polepszajacych wystepowalta dla zbioréw
actg320 (18 vs 2), wegs (51 vs 6) oraz uis (7 vs 1).

Porownanie wynikéw uzyskanych dla zbioréw przemystowych i medycznych
ujawnia roznice charakteryzujace specyfike obu domen. Do poréwnan wykorzy-
stano mediang liczby regut na zbiér, aby ograniczy¢ wpltyw wartosci odstajacych
(np. wegs z 57 regutami). Mediana dla zbior6w przemystowych wynosi 2, natomiast
dla zbioréw medycznych 8.5. Nalezy jednak zauwazy¢, ze liczba wygenerowanych
regut zalezy od wielkosci zbioru danych, a zbiory medyczne byly zazwyczaj wicksze
od przemystowych. Niezaleznie od tego, reguty w zbiorach medycznych charakte-
ryzowaly sie wieksza ztozonoscia pod wzgledem liczby warunkdéw i akeji, co moze
odzwierciedla¢ bardziej skomplikowang nature proceséw biologicznych w poréw-
naniu z deterministycznymi mechanizmami awaryjnosci przemystowej. Wyzszy
procent akcji dowolnych w zbiorach medycznych ($rednio 16.8%) wzgledem prze-
mystowych ($rednio 8.1%) sugeruje wieksza niepewnosé w okreslaniu konkretnych
kierunkéw zmian parametréw w kontekscie medycznym, co jest zgodne z wicksza

ztozonoscig i nieprzewidywalnoscia proceséw biologicznych.
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6 Eksperymenty i przypadki uzycia

Podsumowujac, pokryciowy algorytm indukcji przezyciowych regut akcji okazat
sie skuteczny w odkrywaniu interpretowalnych wzorcow akcji w obu analizowanych
domenach. Wysoki odsetek regut istotnych statystycznie (powyzej 95% w wigkszosci
przypadkéw) potwierdza zdolnosé algorytmu do identyfikacji znaczacych zaleznosci
w danych przezyciowych. Roznice w charakterystykach regut miedzy domenami
przemystowa a medyczng wskazujg na adaptowalno$é¢ metody do specyfiki réznych

obszarow zastosowan, co stanowi zalete w kontekscie uniwersalnosci podejscia.

Studium przypadku: Interpretowalne reguty akcji w konserwacji
predykcyjnej

Ponizej przedstawiono szczegbélowa analize reguly akcji wygenerowanej przez
algorytm pokryciowy dla zbioru danych Maintenance, stosowanego do ilustracji
konserwacji predykcyjnej maszyn przemystowych. Jest to syntetyczny i ogélny
zbiér danych pochodzacych z czujnikéw [oT (m.in. wskazniki ci$nienia, wilgotnosci
i temperatury) oraz metadanych organizacyjnych (takich jak zespét czy dostawca).
Nie odnosi si¢ on do konkretnego typu urzadzenia, a w dokumentacji zrédtowej nie
okreslono jednostek dla atrybutow IoT. Ze wzgledu na najwigksza zaobserwowana
poprawe czasu przezycia, analiza koncentruje sie¢ na regule R4, ktéra dobrze
ilustruje potencjal algorytmu w generowaniu praktycznych zalecen operacyjnych.

Wybrana reguta akcji ma ztozong strukture, obejmujaca trzy rézne typy para-

metréw operacyjnych:

jesli (moisture_ind, (—o0,120.41) — (—c0, 108.24))
A (temperature_ind, [95.98,157.55) — [116.98, 138.52))
A (team,{TeamC} — {TeamA})
to mediana_przezycia : 74 — 92 dni

Reguta pokrywa 17.2% przykladéw w czesci zrodlowej oraz 5.2% w czesci doce-
lowej, wykazujac wysoka istotnodé statystyczna (p = 3.09 - 107%) oraz wydtuzenie
przewidywanego czasu bezawaryjnej pracy o 144 dni, co odpowiada 55% poprawie
wzgledem stanu wyjsciowego.

Interpretacja reguty w kontekscie konserwacji predykcyjnej wskazuje trzy gtéwne

obszary optymalizacji:
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o Zarzadzanie wilgociag — reguta sugeruje dalsze obnizenie wilgotnosci z po-
ziomu juz niskiego (<120.4) do jeszcze nizszego (<108.2). Kierunek ten
wskazuje na istnienie progu wilgotnosci, ponizej ktorego niezawodnosé urza-

dzen wyraznie wzrasta.

« Optymalizacja temperatury operacyjnej — rekomendowane jest zawezenie
przedziatu z szerokiego zakresu 95.98-157.55°C do bardziej kontrolowanego
116.98-138.52°C. Wynika stad, ze utrzymanie temperatury w wezszym,

wyzszym zakresie moze sprzyja¢ dtugoterminowej niezawodnosci sprzetu.

« Reorganizacja zespotowa — przypisanie zadan konserwacyjnych zespotowi
A zamiast zespotu C, co moze odzwierciedla¢ réznice w kompetencjach,

doswiadczeniu lub stosowanych procedurach.

1.0
—— Zzrodtowa (mediana: 119 dni)

0.8 docelowa (mediana: 263 dni)

0.0

0 100 200 300 400 500 600
t [dni]

Rysunek 6.3: Krzywe przezycia Kaplana-Meiera dla reguty R4 w zbiorze danych
Maintenance. Niebieska krzywa reprezentuje grupe zrédtowa (przed zastosowa-

niem akeji), pomaranczowa — grupe docelowa (po zastosowaniu akcji).

Analiza krzywych przezycia przedstawiona na Rysunku [6.3| wizualnie potwierdza
istotno$¢ statystyczng reguty. Krzywa reprezentujaca grupe docelows (po zasto-
sowaniu akcji) wykazuje wyzsze prawdopodobienistwo przezycia w poréwnaniu
z grupa zrodlowa, przy czym wyrazna separacja krzywych widoczna jest juz od
poczatku okresu obserwacji. Mediana czasu przezycia wzrasta ze 119 dni w grupie
zrodtowej do 263 dni w grupie docelowe;j.

Wdrozenie zalecen wynikajacych z reguty R4 wymaga podjecia dziatan w trzech
wspomnianych obszarach. Kontrola wilgotnosci moze wymagaé¢ inwestycji w sys-

temy osuszania lub modyfikacji procedur operacyjnych w celu utrzymania nizszych
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6 Eksperymenty i przypadki uzycia

poziomow wilgotnosci. Optymalizacja temperatury moze obejmowac¢ dostrojenie
systeméw grzewczych lub chtodzacych oraz modyfikacje procedur operacyjnych
w celu utrzymania wezszego zakresu temperatur. Reorganizacja zespotowa moze
wymagadé przeszkolenia personelu, redystrybucji zadan lub modyfikacji harmono-

gramoOw pracy.
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Rysunek 6.4: Histogramy rozktadow atrybutéw wilgotnoscei (a) i temperatury (b)
w zbiorze danych Maintenance z zaznaczonymi zakresami zrédtowymi (czerwone)
i docelowymi (zielone) reguly R4. Pionowe linie wskazuja precyzyjne granice

zakreséw, natomiast przezroczyste obszary pokazuja cate zakresy regut.

Analiza rozktadow atrybutéw przedstawiona na Rysunku obrazuje charakte-
rystyke danych zrodlowych oraz kontekst dla reguty R4. Histogram wilgotnosci
(Rysunek wskazuje na rozktad zblizony do normalnego z mediana 99.4. Za-
kresy reguly R4 obejmuja znaczna cze$é populacji — warunki zrédtowe (<120.4)
dotyczag 98.6% przyktaddéw, natomiast bardziej restrykcyjne warunki docelowe
(<108.2) obejmuja 81.3% obserwacji. Histogram temperatury (Rysunek row-
niez wykazuje rozktad zblizony do normalnego z mediana 100.6°C, ale zakresy
reguty R4 sa tu bardziej selektywne — szeroki zakres zrodtowy (95.98-157.55°C)
obejmuje 59.2% przyktadéw, podczas gdy waski zakres docelowy (116.98-138.52°C)
dotyczy jedynie 17.7% obserwacji.

Reguta R4 dobrze ilustruje zalety pokryciowego algorytmu indukcji przezycio-
wych regul akcji w zastosowaniach przemystowych. Algorytm generuje konkretne
zalecenia operacyjne z jasno okreslonymi zakresami parametrow, co utatwia ich im-
plementacje w praktyce. Uwzglednia przy tym wielowymiarowe interakcje miedzy

réznymi aspektami operacji (Srodowisko, technologia, zasoby ludzkie) i dostarcza
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6.4 Algorytm rekomendacji przezyciowych regut akcji

ilosciowej oceny spodziewanych korzysci (18 dni wydluzenia czasu przezycia).
Dzigki temu umozliwia oszacowanie optacalnosci zainwestowania w proponowane
zmiany. Wynik testu log-rank (p < 1077) dodatkowo potwierdza istotnos¢ staty-

styczng zaobserwowanego efektu.

6.4 Algorytm rekomendacji przezyciowych regut akcji

W niniejszej sekcji przedstawiono wyniki eksperymentow dotyczacych algorytmu
rekomendacji przezyciowych regul akeji opisanego w Sekeji 5.3} Eksperymenty
przeprowadzono w trybie 10-krotnej stratyfikowanej walidacji krzyzowej na zbiorach
danych z Tabeli i[6.3

Konfiguracja parametréw byla zgodna z ustawieniami opisanymi w Sekeji [6.3]
Ocena obejmowata zarowno jakos¢ generowanych regut akcji, jak i skutecznosé
wygenerowanych rekomendacji. Charakterystyki regut zaprezentowane w tej sekcji
odpowiadajg ujeciu z Sekcji (Tabela , . Réznica polega na tym, ze tam
raportowano statystyki dla pelnych zbioréw (bez walidacji krzyzowej), a tutaj
przedstawiono wyniki uzyskane w konfiguracji 10-krotnej walidacji krzyzowej.

7 zestawien usunieto zbiory, dla ktorych nie uzyskano stabilnych wynikéw
w walidacji krzyzowej. Sposréd zbioréw przemystowych wykluczono Aircraft, PM
i ZelenCap, ze wzgledu na trudnosci z modelem arbitra XGBoost — prawdo-
podobnie spowodowane wysokim poziomem cenzurowania (odpowiednio 99.3%,
91.7% i 50.0%) oraz niewystarczajaca liczba zdarzen. Wéréd zbior6w medycznych
pominieto cancer, wcgs i zine, z analogicznych powodéw (m.in. wysokie cenzu-
rowanie: 91.9% i 81.2%), ktére utrudniaty stabilna estymacje hazardu bazowego
i trenowanie arbitra w trybie 10-krotnej walidacji krzyzowe;.

Tabele i zestawiaja wyniki algorytmu rekomendacji. Kolumny S o5
i Sp.01 przedstawiaja wskaznik spdjnosci (por. uzasadnienie testu KS w Sekcji .
MAE oznacza $redni blad bezwzgledny miedzy krzywa uzyskang na podstawie
rekomendacji a krzywa dla przyktadu zmutowanego przez model arbitra. Pokrycie
to odsetek przyktadow testowych spetniajacych kryterium minimalnego pokrycia,
umozliwiajacego estymacje krzywej docelowej (KM). @ to érednia liczba akcji na
rekomendacje, a § — $redni odsetek atrybutéw poddanych modyfikacji. Krzywa

docelowa K Mp jest estymowana metoda Kaplana-Meiera na zbiorze uczacym
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6 Eksperymenty i przypadki uzycia

zbiér Soos Soor MAE  Pokrycie (%) a g (%)
AdhesiveBondB  1.00 1.00 0.24 1.00 1.0 49.0
KevlarVessel 1.00 1.00 0.28 1.00 1.0  50.0
LaminatePanel  0.76 0.40 0.14 1.00 1.0 100.0
LEDLife 0.88 0.88 0.25 1.00 1.3  65.0
Maintenance 0.82 0.12 0.07 1.00 2.0 40.4
NewSpring 0.90 0.78 0.25 1.00 0.8 27.3
NiCdBattery 0.86 0.82 0.21 1.00 09 11.2
Tantalum 1.00 1.00 0.04 1.00 1.4  70.0

Tabela 6.9: Wyniki eksperymentéw dla zbiorow przemystowych. Kolumny przed-
stawiaja: nazwe zbioru danych, metryki spéjnosci (So5 1 So.01), MAE, pokrycie
(w %), $rednig liczbe akcji na rekomendacje (@) oraz $redni procent atrybutéw

poddanych mutacji (g, w %).

zbidr Soos Soor MAE  Pokrycie (%) @ g (%)
actg320 1.00 0.98 0.09 1.00 1.6 149
BMT-Ch  1.00 1.00 0.32 1.00 1.9 5.4
follic 0.84 0.82 0.16 1.00 1.6  40.0
GBSG2 096 094 0.22 1.00 2.5 315
hd 0.70 0.58 0.13 1.00 1.0 16.7
lung 0.88 0.80 0.16 1.00 3.0 434
Melanoma 0.98 0.96 0.18 1.00 1.8  26.3
mgus 097 095 0.35 1.00 2.2 242
pbc 094 086 0.32 0.98 2.0 115
std 0.90 0.80 0.20 0.90 1.9 9.0
uis 098 096 0.19 1.00 2.7  20.8
whas1 1.00 098 0.12 1.00 1.3 18.9
whasb00 098 0.96 0.26 098 2.0 155

Tabela 6.10: Wyniki eksperymentéw dla zbiorow medycznych. Kolumny przed-
stawiaja: nazwe zbioru danych, metryki sp6jnosci (So.o5 1 So.01), MAE, pokrycie
(w %), érednig liczbe akcji na rekomendacje (@) oraz $redni procent atrybutéw

poddanych mutacji (g, w %).
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ograniczonym do obserwacji pokrywanych przez prawa strone reguty. Stanowi ona
referencje dla rekomendacji (por. Sekcje [5.3)).

Dodatkowo, w trakcie eksperymentéw zastosowano zintegrowany wskaznik Briera
(IBS) jako pomocnicza miare bledu prognozy do wewnetrznej kontroli jakosci
modeli. Wartosci IBS nie sa w tym przypadku raportowane w wynikach. Definicje,
ograniczenia i kontekst uzycia oméwiono w Sekcji

Walidacje przeprowadzono z wykorzystaniem modelu arbitra XGBoost z funk-
cja straty oparta na proporcjonalnych hazardach Coxa. Arbiter byl trenowany
wyltacznie na zbiorze uczacym w kazdej czesci walidacji. Krzywa przezycia dla

zmutowanego przyktadu =’ wyznaczano zgodnie z modelem Coxa jako
Sy (t) = So(t)exp(n(w’))’

gdzie Sy(t) oznacza krzywa przezycia bazowego estymowana na czasach zdarzen
w zbiorze uczacym, a n(z’) to liniowa kombinacja atrybutéw z’ wyznaczona
przez model. Zgodno$é krzywej arbitra KM, z krzywa docelowa KMp (KM
na danych uczacych pokrywanych przez prawa strone reguly) oceniano testem
Kolmogorowa-Smirnowa dla dwoch préob. Wskaznik spéjnosci S, definiowano jako
odsetek przypadkéw spetniajacych warunek p > a.

[oéciowa analiza indukowanych regut (por. Tabela potwierdzita ich
statystyczna istotnosé¢ w wiekszosci przypadkow. Ze wzgledu na brak powtornych
pomiarow dla tych samych przypadkdéw nie byto mozliwe bezposrednie sprawdzenie,
czy sugerowane modyfikacje faktycznie wplywaja na czasu przezycia w danych
testowych. Z tego powodu zastosowano model arbitra, aby zweryfikowaé zgodnosci
alternatywnego modelu przezycia z estymacjami algorytmu rekomendacji.

Wryniki walidacji wskazuja na wysoka precyzje algorytmu. Dla zbioréw przemy-
stowych Sp o5 miesci sie w zakresie od 76% (LaminatePanel) do 100% (Adhesive-
BondB, KevlarVessel, Tantalum). Dla Sy skutecznosé réwniez pozostaje wysoka,
z wyjatkiem Maintenance (12%). MAE wynosi 0.04-0.28 przy pelnym pokryciu.
W przypadku zbioréw medycznych wiekszo$¢ z nich osigga spdjnosé powyzej 90%
dla obu pozioméw istotnosci. Wyjatek stanowi hd (70% i 58%). MAE miesci sie
w zakresie 0.09-0.35, a pokrycie wynosi 90-100%.

Algorytm generuje srednio od 4 do 22 reguty na zbioér danych, z przewagg regut
polepszajacych. Ponad 90% regul jest istotnych statystycznie na obu poziomach
istotnosci, z wyjatkiem zinc (67% dla p < 0.05).
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6 Eksperymenty i przypadki uzycia

Wskazniki z Tabeli[6.9]i wskazuja na niewielkg liczbe akcji na rekomendacje
oraz ograniczony odsetek modyfikowanych atrybutéw, co sprzyja zastosowaniu
rekomendacji w praktyce. W zbiorach przemystowych srednia liczba akcji na
rekomendacje wynosi 0.8-2.0, przy modyfikacji 11.2-100% atrybutéw. W zbiorach
medycznych to odpowiednio 1.0-3.0 akcji i 5.4-43.4% cech. Taka selektywnosé jest
szczegblnie istotna w zastosowaniach, gdzie jednoczesna zmiana wielu parametrow
jest kosztowna.

Ponadto wysokie wartosci sp6jnosci (Srednio > 80% dla 14 z 17 zbioréw), niskie
MAE (< 0.3 dla 15 z 17) oraz pelne pokrycie (100% dla 15 z 17) potwierdzaja,
ze rekomendacje prowadza do statystycznie istotnych réznic w krzywych przezy-
cia. Polaczenie wysokiej zgodnosci, niewielkiej liczby modyfikowanych atrybutéw

i wysokiego pokrycia dowodzi potencjalnej uzytecznosé metody.

Studium przypadku: Rekomendacje dla pacjenta w terapii

antyretrowirusowej

Analiza dziatania algorytmu rekomendacji przezyciowych regut akcji zostata prze-
prowadzona na zbiorze danych actg320 z badania AIDS Clinical Trials Group Study
320. Wybor tego zbioru wynika z najwyzszego wskaznika sp6jnosci (Sp.05 = 100%)
oraz najnizszej wartosci MAE (0.09) spos$réd wszystkich zbioréw medycznych.
Zbiér charakteryzuje sie pelnym pokryciem (100%) i zawiera 19 regut akcji.

Studium przypadku dotyczy pacjenta o indeksie 38 z pierwszego podzbioru
walidacji krzyzowej. Profil kliniczny pacjenta obejmuje nastepujace parametry:
wiek 36 lat (age = 36), pte¢ meska (sex = 1), rasa biala (raceth = 1), brak
hemofilii (hemophil = 0), brak historii uzywania narkotykéw dozylnie (ivdrug =
1), wynik 80 punktéw w skali Karnofsky’ego (karnof = 80), liczba komérek CD4
wynoszaca 3.0 komérek/pli (ed4 = 3.0) oraz 6-dniowa wezedniejsza ekspozycja
na azydotymidyne (priorzdv = 6). Poczatkowa predykcja wskazuje, ze mediana
czasu przezycia przekracza 364 dni (maksymalny czas obserwacji w badaniu), przy
prawdopodobienstwie przezycia 364 dni wynoszacym 0.82.

Wskazane parametry odzwierciedlaja zaawansowany stan kliniczny pacjenta
z HIV. Liczba komérek CD4 wynoszaca 3 komérek/pli $wiadezy o ciezkiej im-
munosupresji (norma: 500-1200 komérek /nlL), charakterystyczna dla AIDS [142].

Wynik 80 punktéw w skali Karnofsky’ego oznacza normalna aktywnosé z wysit-
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kiem przy obecnosci objawoéw choroby, co odpowiada umiarkowanemu ograniczeniu
sprawno$ci funkcjonalnej [143]. Krétka, 6-dniowa ekspozycja na azydotymidyne
moze wskazywaé¢ na wczesny etap terapii antyretrowirusowej lub profilaktyke
poekspozycyjna [144) 145].

Proces generowania rekomendacji rozpoczeto od mapowania atrybutéw pacjenta
na strukture meta-danych zawierajaca dyskretyzowane przedzialy wartosci dla 11
atrybutéw klinicznych. Na tej podstawie utworzono reprezentacje meta-obiektu,
co umozliwito indukcje meta-reguty obejmujacej trzy atrybuty. Otrzymana reguta

akcji wskazuje na modyfikacje trzech parametrow klinicznych:

jedli (cdd, (2.5,5.75] — (64.25,65.0]) A
(priorzdv, (5.5,9.5] — (9.5,19.0]) A
(karnof, (—o0,85.0] — (95.0, +0))

to Sz (t) — Sp(t)

Reguta sugeruje zwigkszenie liczby komérek CD4 z 3.0 do 64.5 (+61.5), wy-
dluzenie wezesniejszej ekspozycji na ZDV z 6 do 14 dni (+8 dni) oraz poprawe
wyniku w skali Karnofsky’ego z 80 do 100 punktéw (420 punktéw). Modyfikacje
te dotycza 27.3% dostepnych atrybutéw (3 z 11 cech) i obejmuja trzy aspekty
terapii HIV: poprawe stanu immunologicznego (cd/), optymalizacje profilaktyki
antyretrowirusowej (priorzdv) oraz zwiekszenie ogblnej wydolnosci funkcjonalne;j
pacjenta (karnof).

Rysunek [6.5] przedstawia krzywe przezycia przed i po zastosowaniu rekomendacji.
Krzywa po wprowadzeniu zmian przebiega wyzej niz krzywa dla stanu wyjsciowego,
co wskazuje na wzrost estymowanego prawdopodobienstwa przezycia.

Analiza kliniczna wygenerowanych rekomendacji ujawnia trzy kierunki inter-
wencji terapeutycznej. Sugerowany wzrost liczby komérek CD4 z 3.0 do 64.5
odpowiada przejsciu z zaawansowanego niedoboru immunologicznego do poziomu
zblizonego do dolnej granicy normy, zgodnie z celem terapii antyretrowirusowej,
jakim jest odtworzenie funkcji immunologicznej i trwata supresji wiremii [142}
146, 147]. Wskazanie na wydtuzenie wezesniejszej ekspozycji na ZDV z 6 do 14
dni odnosi sie do zmiennej opisowej priorzdv (historia stosowania zydowudyny)
i ma charakter nieakcyjny na etapie podejmowania decyzji terapeutycznych —
nie nalezy interpretowaé tego jako zalecenia wydtuzania ani rozpoczynania PEP

w ramach biezacego leczenia. Model w tym przypadku wykorzystuje asocjacje
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Rysunek 6.5: Krzywe przezycia Kaplana-Meiera dla pacjenta przed i po zastoso-
waniu rekomendacji w zbiorze danych actg320. Wykres przedstawia poréwnanie
funkcji przezycia dla oryginalnego profilu pacjenta oraz po modyfikacji zgodnej

z wygenerowang reguty akcji.

zaobserwowane w danych (np. réznice wynikajace z wezesniejszego stosowania
ZDV, w tym monoterapii), a nie sugeruje modyfikowalnej interwencji. W cyto-
wanych pracach [144, 145] zalezno$é dotyczyta stosowania zydowudyny (ZDV)
w ramach profilaktyki poekspozycyjnej. Wzrost wyniku w skali Karnofsky’ego
z 80 do 100 punktéw odpowiada przejsciu od ograniczonej aktywnosci zyciowej do
pelnej sprawnosci funkcjonalnej |143].

Studium przypadku ilustruje zdolno$¢ algorytmu do identyfikacji spéjnych mo-
dyfikacji parametréw terapeutycznych w leczeniu HIV. Wygenerowana reguta akcji
integruje trzy niezalezne domeny kliniczne: status immunologiczny, historie farma-
koterapii oraz sprawnos¢ funkcjonalng pacjenta, tworzac wielowymiarowy profil
interwencji. Zbieznosé z modelem arbitra (MAE = 0) potwierdza wewnetrzna spdj-
no$¢ obliczen, a jawnos¢ sktadnikéw reguty (konkretne przedziaty dla cd4, priorzdv
i karnof) utatwia weryfikacje kliniczna oraz ocene wykonalno$ci proponowanych

modyfikacji.
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6.5 Algorytm indukcji przezyciowych regut wyjatkow

W niniejszej sekcji przedstawiono wyniki eksperymentéw dla algorytmu indukcji
przezyciowych regut wyjatkow opisanego w Sekcji Ze wzgledu na eksploracyjny
charakter metody, eksperymenty przeprowadzono na petnych zbiorach danych,
bez stosowania walidacji krzyzowej. Wykorzystanie catego zbioru danych zwieksza
liczbe przyktadéw speliajacych warunki regut, co utatwia wykrywanie wyjatkow
i zmniejsza ryzyko, ze rzadkie wzorce nie spelnig wymagan pokrycia po podziale
na zbiory treningowe i testowe.

Konfiguracja eksperymentéw byta nastepujaca: mincov = 1 (minimalna liczba
niepokrytych przyktadéw), maz growing = 5 (maksymalna liczba warunkéw
w regule), a = 0.05 (prég istotnosci), a miara oceny jakosci byl test log-rank.
Celem eksperymentéw byta identyfikacja tréjek (CR, RR, ER), w ktérych ER
definiowana jest wzgledem CR i RR jako CR A RR, reprezentujacych nietypowe
Wzorce przezycia.

Reguly wyjatkow wykryto w 16 z 27 analizowanych zbioréw danych (59%),
zgodnie z ich definicjg — male pokrycie i wysoka specyficznosé. W pozostatych
zbiorach ich brak zwykle wynika z niewystarczajacej liczby obserwacji spetniajacych
jednoczesnie warunki regut CR i RR oraz z przyjetych wartosci progowych (mincov,
prog istotnosci).

Tabele i przedstawiaja liczbe regut CR — interpretowanych jako préby
identyfikacji wyjatkéw — oraz liczbe wyjatkow ER wykrytych w ramach tych
préb, dla kazdego analizowanego zbioru danych. Lacznie w zbiorach z dziedziny
diagnostyki predykcyjnej maszyn przeprowadzono 40 prob, z czego 16 zakonczyto
sie identyfikacja wyjatkéw, natomiast w zbiorach medycznych przeprowadzono 99
prob, z czego 37 zakonczyto si¢ wykryciem wyjatkéw. Najwyzszy udziat wyjatkow
odnotowano w zbiorach Maintenance i cancer: odpowiednio 10/20 (50.0%) oraz
12/23 (52.2%).

Tabele i prezentuja wybrane reguty wyjatkéw dla obu grup zbiorow
danych. W zbiorach przemystowych przewazaja reguly opisujace skrajne warto-
$ci parametréw operacyjnych (np. wysoka temperatura w potaczeniu z wysokim
pradem w zbiorze LEDLife), natomiast w zbiorach medycznych czeste sa ztozone
interakcje czynnikéw demograficznych i klinicznych (np. wiek wraz z parametrami

morfologii krwi w zbiorze mgus). Zidentyfikowano réwniez wyjatki o niewielkim
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zbior CR ER
actg320 7 1
zbiér CR ER BMT-Ch 2 1
] cancer 23 12
AdhesiveBondB 2 0 )
) follic 2 2
Aircraft 1 0
GBSG2 11 2
KevlarVessel 2 0
_ hd 2 0
LaminatePanel 2 0
. lung ) 2
LEDLife 2 1
] Melanoma 8 1
Maintenance 20 10
) mgus 9 D
NewSpring 2 1
. pbc 2 1
NiCdBattery 2 1
std 11 2
PM 4 1 )
uis 2 1
Tantalum 2 1
wcegs 8 5)
ZelenCap 2 1
whas1 2 0
Razem 41 16 whasb00 2 1
zinc 3 1
Tabela 6.11: Liczba CR i ER dla zbio-
réw danych z Tabeli Razem 99 37

Tabela 6.12: Liczba CR i ER dla zbio-
réw danych z Tabeli
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6.5 Algorytm indukcji przezyciowych regut wyjatkow

zbibr Regula [p, P]
LEDLife DegreesC = 102.00 A Current = 35.00 [50, 133]
Maintenance team = TeamB A pressurelnd < 87.09 A moisturelnd < 123.46 [93, 800]

NewSpring stroke = 65.00 A method = Old [16, 86]

NiCdBattery  discharge__depth = 50.00 A degrees_c¢ > 45.00 [16, 69]
Tantalum volts < 49.00 A degrees ¢ > 25.00 [1403, 1763]
ZelenCap volts = 225.00 A degrees ¢ = 175.00 [19, 51]

Tabela 6.13: Przyktady zidentyfikowanych wyjatkéw dla zbiorow danych z Ta-
beli [6.1] Dla kazdego zbioru wybrano jedna regute o najwickszym pokryciu k.
W czesci ER podkreslono fragment odpowiadajacy CR, a fragment niepodkre-
Slony odpowiada RR. Kazda reguta jest przedstawiona wraz z jej pokryciem
w formacie [k, n], gdzie k oznacza liczbe przyktadéw pokrytych przez ER, a n
— calkowitg liczbe przyktadéw w zbiorze danych.

pokryciu. Przyktadowo, w zbiorze Melanoma jedna z regut obejmuje 3 ze 164
obserwacji, co potwierdza identyfikacje wzorcéw o wysokiej specyficznosci progno-
stycznej.

Algorytm indukcji przezyciowych regut wyjatkow wykazal zdolnosé do identyfi-
kacji znaczacych wzorcow odchylen w 16 z 27 analizowanych zbioréw danych. Na
szczegblng uwage zastuguja wyniki dla zbioréw Maintenance i cancer, ktore charak-
teryzujg sie najwyzsza koncentracja wyjatkéw (odpowiednio 50.0% i 52.2%). Brak
publicznie dostepnych implementacji alternatywnych metod w dziedzinie indukcji
regut wyjatkow w analizie przezycia uniemozliwia przeprowadzenie poréwnawczej

walidacji empiryczne;j.

Studium przypadku: Analiza regut wyjatkéw w zbiorze danych

onkologicznych

Ponizej przedstawiono szczegétowa analize reprezentatywnej trojki (CR, RR, ER)
zidentyfikowanej przez algorytm w zbiorze danych cancer, dotyczgcym przezycia
pacjentow z zaawansowanym rakiem ptuc. Zbiér ten charakteryzuje sie najwyzsza
liczba wykrytych wyjatkéw — 12 z 23 regut (52% wszystkich wygenerowanych
regul).
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6 Eksperymenty i przypadki uzycia

zbibr Reguta [p, P]

Melanoma  thick = 2.17 A age = 13.00 A age < 21.50 [3, 164]

GBSG2 pnodes < 7.50 A estrec = 5.50 A progrec = 1.50 A estrec < 825.50 A
horTh = yes [115, 548§]

cancer ser < 1.50 A ph.karno = 55.00 A age = 60.50 A wt.loss < 27.50 A
ph.ecog = 1.50 [14, 182]

follic age < 56.75 A hgb < 121.50 A hgb = 102.50 [24, 432]

lung Operated = 1 A Stage3 < 0.50 [211, 825]

mgus age = 62.50 A hgb < 12.85 [48, 192]

pbc bili > 1.35 A chol < 198.50 [8, 334]

std age < 17.50 A 0s30d < 0.50 A race = W [43, 701]

uis FRAC <€ 0.88 A NDT > 5.50 A FRAC < 1.51 [68, 460]

whas500 age = 67.50 A diasbp < 65.50 [74, 400]

zine sevdysp = Severe Dysplasia A cacent = 2.39 [1, 344]

Tabela 6.14: Przyktady zidentyfikowanych wyjatkéw dla zbioréw danych z Ta-

beli [6.3] Dla kazdego zbioru wybrano jedng regute o najwiekszym pokryciu k.

W czeséci ER podkreslono fragment odpowiadajacy CR, a fragment niepodkre-

Slony odpowiada RR. Kazda reguta przedstawiona jest wraz z jej pokryciem

w formacie [k, n], gdzie k oznacza liczbe przyktadéw pokrytych przez ER, a n

— catkowita liczbe przyktadéw w zbiorze danych.
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6.5 Algorytm indukcji przezyciowych regut wyjatkow

Algorytm zidentyfikowal tréjke regut ujawniajaca nieoczekiwany wzorzec prze-
zycia u starszych pacjentéw plei meskiej z pozornie korzystnymi czynnikami
prognostycznymi. Pierwsza z regul opisuje wzorzec bazowy (w nawiasach po-
dano liczbe obserwacji spetniajacych przestanke reguty k oraz liczebnos¢ zbioru

obserwacji n).:

CR: jedli (ple¢ < 1.5 A ECOG = 0.5 A
Karnofsky = 55 A utrata__wagi < 27.5)
to mediana__przezycia = 196.5 dni  (k = 78, n = 228)

Druga reguta petni role punktu odniesienia dla populacji starszych pacjentow:

RR: jesli (wiek = 72.5 A Karnofsky = 55)
to mediana__przezycia = 194.5 dni  (k = 30,n = 228)

Trzecia reguta definiuje wyjatek jako kombinacje warunkéow z dwoch poprzednich

regul:

ER: jesli (ple¢ < 1.5 A ECOG = 0.5 A Karnofsky = 55 A
utrata__wagi < 27.5 A wiek = 72.5)
to mediana_ przezycia = 116.0 dni  (k = 11,n = 228)

Reguta bazowa (CR) obejmuje 78 pacjentéw (84.6% wspdtczynnik zdarzen)
i dotyczy mezezyzn z umiarkowanym pogorszeniem wydolnosci wedtug skali ECOG,
dobrg ocena w skali Karnofsky’ego oraz umiarkowang utratg masy ciata. Reguta
referencyjna (RR) pokrywa 30 pacjentéw (80.0% wspotezynnik zdarzen) i dotyczy
starszych pacjentéow z zachowang dobrg wydolnoscig wedhug skali Karnofsky’ego.
Wyjatek (ER) obejmuje 11 pacjentéw nalezacych zaréwno do populacji CR, jak
i RR. Charakteryzuje sie on istotnie wyzszym wspotczynnikiem $miertelnodci
(90.9%) oraz znaczaco krétszym czasem przezycia.

Walidacja statystyczna potwierdza poprawno$¢ identyfikacji wyjatku zgodnie
z kryteriami algorytmu. Test log-rank miedzy regutami CR i RR wykazat brak
istotnej réznicy (p = 0.91), co wskazuje, ze obie reguly opisuja podobne wzorce
przezycia. Natomiast poréwnanie CR z ER ujawnilo istotna réznice statystyczng
(p = 0.03), podczas gdy poréwnanie RR z ER dalo warto$é p = 0.07, bliska progu

istotnosci statystycznej.
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Rysunek 6.6: Empiryczne krzywe przezycia dla trojki regut (CR, RR, ER)

zidentyfikowanej w zbiorze danych cancer.

Obserwowana jest istotna redukcja mediany przezycia — z 196.5 dni (CR)
i 194.5 dni (RR) do 116.0 dni w grupie wyjatku, co stanowi spadek o okoto
40-41%. Obserwowany wzorzec wskazuje, ze starsi pacjenci ptci meskiej taczacy
tradycyjnie ,dobre” czynniki prognostyczne — zachowana wydolnos¢ wedtug skali
Karnofsky’ego i umiarkowang utrate masy ciata — wykazuja znaczaco gorsza
prognoze niz kazda z grup referencyjnych analizowana niezaleznie. Réznice te sa
wyraznie widoczne na krzywych Kaplana-Meiera przedstawionych na Rysunku
6.6l

Szczegdtowa analiza indywidualnych przypadkow ujawnia wewnetrzne zréznico-
wanie pacjentow spetniajacych kryteria reguty wyjatku, z wyodrebnieniem dwéch
wyraznych wzorcow. Pierwsza grupa (5 pacjentéw) charakteryzuje sie bardzo
krotkim przezyciem (11-26 dni), znacznym ograniczeniem wydolnosci (ECOG =
2.0) oraz czesto znaczng utrata masy ciata. Druga grupa (6 pacjentéow) wykazuje
dtuzsze przezycie (116-363 dni) przy mieszanych parametrach wydolnosci.

Identyfikacja tego wyjatku ma istotne implikacje kliniczne. Po pierwsze, wska-
zuje na ograniczenia standardowych skal prognostycznych (Karnofsky’ego, ECOG)
w populacji starszych pacjentéw plci meskiej z nowotworem, ktére moga masko-
waé subtelne, lecz krytyczne réznice w stanie ogélnym|[148]. Po drugie, sugeruje

potrzebe opracowania dedykowanych modeli prognostycznych uwzgledniajacych in-
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6.6 Interpretowalny zespot regut przezyciowych

terakcje miedzy wiekiem, ptcia a innymi czynnikami prognostycznymi. W praktyce
klinicznej moze to oznacza¢ koniecznosé rozszerzenia diagnostyki o kompleksowsq
oceng geriatryczna (comprehensive geriatric assessment, CGA) oraz ostrozniejszego
podejscia do kwalifikacji tej grupy pacjentéw do agresywnych terapii|[149, 150} |151}
152].

Odkrycie to ilustruje potencjalna uzytecznosé algorytmu indukcji regut wyjat-
kow w identyfikacji nietypowych wzorcow, ktére moga pozostac¢ niezauwazone przy
stosowaniu tradycyjnych metod analizy. Wyjatek ten moze prowadzi¢ do sformuto-
wania nowych hipotez badawczych dotyczacych mechanizméw biologicznych odpo-
wiedzialnych za obserwowany wzorzec oraz wskazywac¢ potencjalne kierunki badan
w geriatroonkologii. Z punktu widzenia praktyki klinicznej obserwacja ta uzasadnia
wlaczenie oceny geriatrycznej do postepowania diagnostyczno-terapeutycznego
oraz ostrozniejszg kwalifikacje do terapii o wysokiej intensywnosci w tej podgrupie

(por. Rysunek [6.6)).

6.6 Interpretowalny zesp6t regut przezyciowych

W niniejszej sekcji przedstawiono wyniki eksperymentow dla interpretowalnego
zespotu regut przezyciowych (ang. interpretable rule-based survival ensemble, RSE)
opisanego w Sekeji 5.5 Eksperymenty przeprowadzono z uzyciem 10-krotnej wali-
dacji krzyzowej, stratyfikowanej wzgledem statusu zdarzenia, na zbiorach z Tabeli
i [6.3] Zastosowano nastepujace parametry: n = 100 (liczba estymatoréw),
0 = |\/]A]| (maksymalna liczba cech), a = 1.0 (prébkowanie bootstrap) oraz
o = 5.0 (minimalny prég wsparcia). Gtéwna metryka oceny byt catkowity wskaznik
Briera (IBS) mierzacy doktadnosé estymacji funkcji przezycia. Jako estymator
bazowy w architekturze zespolowej wykorzystano metode Survival Rules (SR) |12,
126]. Ze wzgledu na brak mozliwosci generowania skalarnych wskaznikéw ryzyka
dla metod RSE i SR, ograniczono oceng zdolnosci dyskryminacyjnej do metryki
IBS.

Wyniki dla metody RSE poréwnano z metodami referencyjnymi: SR (ang. su-
rvival rules — indukcja regut przezyciowych z estymacja funkcji przezycia [126]),
ST (ang. survival tree — pojedyncze drzewo przezycia z podziatami opartymi na
statystyce log-rank i estymacja Kaplana-Meiera w liciach), RSF (ang. random

survival forest — losowy las drzew przezycia z bootstrapowaniem probek i losowym
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6 Eksperymenty i przypadki uzycia

wyborem cech), Cox — regularyzowana regresja Coxa z kara elastic net) oraz KM

(estymator Kaplana-Meiera — nieparametryczny estymator funkeji przezycia).

zbidr RSE Cox KM RSF SR ST
AdhesiveBondB  .16+.04 .194+.02 .21+.03 .08+.03 .16+.08 .11+.05
KevlarVessel 10+.04  .06+£.02 .13+£.02 .04+.02 .09+.06 .05+.03
LaminatePanel — .07+£.02 .17£.03 .07£.02 .04+.03 .07+.02
LEDLife A11+.02 .07+£.01 .20£.02 .06+.01 .114+.02 .06+.01
Maintenance .03+£.00 .05+£.01 .05£.01 .00£.00 .01£.02 .00+.00
NewSpring 16+.03  .12+.04 .22+.01 .144+.05 .17+.07 .14+.05
NiCdBattery A1+.02  .06+.02 .18+.03 .10+.02 .13+.05 .08+.03
PM .08+.01 .08+.01 .08+.01 .07+.01 .08+.01 .11+4.02
Tantalum .01+.00 .01+.00 .02£.00 .02£.00 .014+.00 .02+.00
ZelenCap 19+.03  .16+.04 .20+.04 .194+.06 .20+.06 .18+.05

Tabela 6.15: Wartosci metryki IBS (Srednie wartosci obliczone na podzbiorach
w ramach walidacji krzyzowej) dla zbioréw z Tabeli . Objasnienia skrotow
modeli: RSE = interpretowalny zespét regut przezyciowych, SR = survival
rules, ST = survival tree, RSF = random survival forest, Cox = regularyzowana

regresja Coxa z karg elastic net, KM = estymator Kaplana-Meiera.

Empiryczne wyniki dla metryki IBS przedstawiono w Tabeli i Analiza
predykecyjna wskazuje zroznicowana skutecznos¢ metody RSE, zalezng od charakte-
rystyk statystycznych badanych zbiorow danych. Najnizsza warto$é¢ IBS uzyskano
dla zbioru Tantalum (0.01 + 0.00), co daje wynik poréwnywalny z metodami Cox
i RandomSurvivalForest. Zblizony poziom btedu odnotowano dla zbioru Mainte-
nance (0.03 = 0.00). Dla pozostalych 19 zbioréw metoda RSE osiaga umiarkowana
jakosé predykeyjna, z wartosciami IBS w zakresie 0.08-0.23.

Zbiér Aircraft zostal wykluczony z tabeli wartosci IBS. Bardzo wysoki stopien
cenzurowania (99.3%) oraz ztozona struktura uniemozliwity stabilne wytrenowa-
nie wymaganej liczby estymatorow bazowych w ramach zespohu, co skutkowato
brakiem wynikéw dla tego zbioru danych.

Analiza poréwnawcza z metodami referencyjnymi wskazuje na systematyczna
przewage RSE nad estymatorem Kaplana-Meiera (KM) w 96% przypadkéw (24

z 25). W poréwnaniu z metodami takimi jak random survival forest (RSF) i regre-
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zbibr RSE Cox KM RSF SR ST
GBSG2 0.19£0.03 0.184+0.03 0.20£0.02 0.184+0.04 0.19£0.07 0.31£0.07
Melanoma 0.18+0.03 0.17+0.04 0.21£0.04 0.18+0.04 0.17+0.04 0.25%0.08
actg320 0.06+0.00 0.064+0.00 0.0640.00 0.064+0.00 0.064+0.01 0.0940.01
BMT-Ch  0.2340.03 0.2240.03 0.2640.04 0.2540.07 0.2040.02 0.3340.10
cancer 0.1940.02 0.1940.03 0.18+0.02 0.20£0.02 0.17+0.03 0.29+0.06
follic 0.21+0.04 0.1940.04 0.21+£0.04 0.22+0.04 0.19+0.04 0.29+0.05
hd 0.2240.02 0.21+0.02 0.23£0.02 0.22£0.02 0.21+0.02 0.28+0.02
lung 0.16£0.02 0.15+0.02 0.18%£0.02 0.15+0.02 0.15+0.02 0.17£0.02
mgus 0.18¢0.01 0.18%0.02 0.20£0.01 0.16+£0.02 0.16+£0.03 0.26%£0.06
pbc 0.16+£0.01 0.15+0.03 0.20£0.02 0.14+0.02 0.15£0.02 0.24£0.06
std 0.22+0.03 0.22+0.03 0.23£0.03 0.23£0.03 0.23£0.04 0.34+0.02
uis 0.1940.03 0.1840.04 0.20£0.03 0.194£0.03 0.15+0.04 0.24+0.05
wegs 0.04+0.01 0.044+0.01 0.05+0.00 0.044+0.00 0.044+0.01 0.0740.01
whas1 0.21+£0.05 0.24+0.04 0.24+0.04 0.20£0.08 0.21£0.05 0.32£0.12
whas500 0.194£0.02 0.184+0.07 0.23£0.02 0.184+0.04 0.20£0.04 0.31£0.07
zinc 0.10£0.02 0.12£0.04 0.11£0.02 0.09£0.02 0.10£0.02 0.15%£0.04

Tabela 6.16: Warto$ci metryki IBS (Srednie wartosci obliczone na podzbiorach

w ramach walidacji krzyzowej) dla zbioréw z Tabeli [6.3] Objasnienia skrétéw

modeli: RSE = interpretowalny zespét regut przezyciowych, SR = survival

rules, ST = survival tree, RSF = random survival forest, Cox = regularyzowana

regresja Coxa z karg elastic net, KM = estymator Kaplana-Meiera.
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6 Eksperymenty i przypadki uzycia

sja Coxa, metoda RSE wykazuje zblizona skutecznos$¢ predykcyjna, szczegdlnie
w zbiorach o wysokim stopniu cenzurowania (powyzej 80%): Tantalum (98.2%)
oraz PM (91.7%).

Warto zwroci¢ szczegdlng uwage na relacje miedzy metodg RSE a estymatorem
bazowym Survival Rules (SR). W 18 z 21 poréwnywanych przypadkéw (85.7%)
metoda zespotowa RSE nie daje statystycznie istotnej poprawy wzgledem poje-
dynczego modelu SR. Zjawisko to wynika ze specyfiki algorytmoéow indukeji regut.
W przeciwienstwie do zespotéw modeli drzewiastych, ktére — mimo wtasnych me-
chanizméw regularyzacji (ograniczanie glebokosci, minimalna liczba prébek w lisciu,
przycinanie) — dodatkowo zmniejszaja wariancje dzieki mniejszej wspétzaleznosci
modeli bazowych (prébkowanie bootstrap, losowe podzbiory cech) i uérednianiu,
reguty przezycia charakteryzuja si¢ na ogdt nizsza wariancja juz na poziomie
pojedynczego modelu (ograniczanie ztozonosci i dtugosci regut, minimalne progi
wsparcia/liczby zdarzen, kryteria zatrzymania, przycinanie). W efekcie, taczenie
wielu modeli rzadko prowadzi do istotnego wzrostu trafnosci predykcyjnej, ale
zwigksza stabilnos$¢ i ogbélnosé modelu poprzez agregacje zréoznicowanych regut.

W tabelach wynikéw niektére wartodci oznaczono jako brakujace (—) ze wzgledu
na ograniczenia obliczeniowe lub specyfike algorytméw. W zbiorze LaminatePanel
brak wynikow wynika z jednoatrybutowej struktury danych — w przypadku RSE
uniemozliwia ona wytrenowanie wymaganej liczby modeli sktadowych zespotu,
natomiast w przypadku RandomSurvivalForest prowadzi do btedéw numerycznych
podczas trenowania w implementacji pakietu scikit-survival.

Aby potwierdzié¢ réznice miedzy metodami zastosowano nieparametryczny test
post hoc Dunna, oparty na réznicach srednich rang ($rednich pozycji wynikéw
w grupach odpowiadajacych poréwnywanym metodom po uporzadkowaniu wszyst-
kich obserwacji). Korekta Bonferroniego dostosowuje poziom istotnosci do liczby
poréwnan, kontrolujac taczny btad I rodzaju (odrzucenie hipotezy zerowej, ktora
w rzeczywistodci jest prawdziwa). Analiza metryki IBS dla wszystkich zbioréw
medycznych i przemystowych (Tabela wskazuje na istotnie gorsze wyniki
estymatoréw Kaplana-Meiera oraz SurvivalTree wzgledem RSE (p < 0.05). Réz-
nice wzgledem RandomSurvivalForest, regresji Coxa i SurvivalRules nie osiagnety
istotnosci statystycznej (p > 0.05).

RSE uzyskuje wyniki porownywalne z najlepszymi metodami referencyjnymi

w zbiorach o wysokim stopniu cenzurowania, czego przyktadem sg zbiory Tantalum
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Model Srednia Srednia Roéznica p-wartoéé Istotna
(kontrolny) (testowany)

RSF 0.1464 0.1351  -0.0113 0.4678 Nie

KME 0.1464 0.1694  0.0230 0.0000 Tak

SR 0.1464 0.1374  -0.0090 0.6618 Nie

Cox 0.1464 0.1413  -0.0051 2.7422 Nie

ST 0.1464 0.1899  0.0435 0.0004 Tak

Tabela 6.17: Test istotnosci réznic dla metryki IBS (test Dunna z korekta
Bonferroniego). Model kontrolny: RuleSurvivalEnsemble. Poziom istotnosci:
a = 0.05. Dane potaczone ze wszystkich zbioréw. Objasnienia skrétéw modeli:
RSE = interpretowalny zespét regut przezyciowych, SR = survival rules, ST
= survival tree, RSF = random survival forest, Cox = regularyzowana regresja

Coxa z karg elastic net, KM = estymator Kaplana-Meiera.

(98.2% cenzurowania) i Maintenance (60.3% cenzurowania). W takich scenariuszach
niewielka liczba obserwowanych zdarzen utrudnia ocene modeli, a wlasno$ci RSE
— bagging na probkach bootstrap, losowy dobér cech oraz usrednianie krzywych
KM regut — wspierajg stabilng estymacje funkcji przezycia.

Ograniczeniem metody RSE jest brak systematycznej poprawy wzgledem es-
tymatora bazowego SurvivalRules, co pokazuje, ze agregacja regul nie redukuje
obcigzenia modelu bazowego. Zaleta podejscia zespotowego jest natomiast re-
dukcja wariancji i wigksza stabilno$é¢ predykeji miedzy powtdérzeniami uczenia
(r6zne prébkowania bootstrap i losowy dobdér cech). W efekcie uzyskiwana jest
bardziej powtarzalna estymacja funkcji przezycia przy porownywalnej sredniej
jakosci predykcyjnej.

Dodatkowym ograniczeniem RSE jest brak mozliwosci bezposredniej oceny
zdolnosci dyskryminacyjnej. Wynika to z charakteru predykeji — RSE (podobnie
jak SR) estymuje dla kazdej obserwacji krzywa przezycia, a nie skalarny wskaznik
ryzyka umozliwiajacy jednoznaczne porzadkowanie par obserwacji. W efekcie ty-
powe miary dyskryminacji oparte na rangowaniu (porzadkowaniu par obserwacji
wedlug wartosci przewidywanego wskaznika ryzyka) nie sa tu stosowalne, a po-
réwnania ogranicza sie do metryk kalibracji, takich jak zintegrowany wskaznik

Briera. W zastosowaniach, w ktérych priorytetem jest interpretowalnosé i stabilna
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estymacja funkcji przezycia, ograniczenie to moze by¢ akceptowalne ze wzgledu na
wieksza przejrzysto$é procesu decyzyjnego.

Interpretowalny zespét regut przezyciowych (RSE) uzupelnia zestaw metod,
zapewniajac kompromis miedzy interpretowalnoscia a doktadnoscia predykcji.
W zbiorach o wysokim cenzurowaniu (np. Tantalum, Maintenance) utrzymuje niska
wariancje estymacji funkcji przezycia i osigga wyniki poréwnywalne z metodami
referencyjnymi. Nie wykazuje jednak systematycznej przewagi nad estymatorem
bazowym SurvivalRules. Warto$é¢ zespotu polega na redukcji wariancji poprzez
agregacje niezaleznych estymatoréw oraz zwigkszeniu stabilno$ci wynikow.

Wyniki moga zosta¢ uzupetnione o analize interpretowalnosci dla wszystkich zbio-
row danych. Dla kazdego z nich mozna wyznaczy¢ globalny ranking waznosci cech
na podstawie spadku wartosci IBS po permutacji. Jako reprezentatywny przyktad
wybrano zbiér NiCdBattery (umiarkowany poziom cenzurowania, mieszane typy
cech, wystarczajaca liczba cech), a szczegbétowa analize przedstawiono w dalszej

czescl rozdziatu. Dla pozostatych zbiorow procedura przebiega analogicznie.

Studium przypadku: Analiza stabilnosci zespotfu dla testéw

zywotnos$ci akumulatorow NiCd

Analiza dziatania interpretowalnego zespohtu regut przezyciowych zostala prze-
prowadzona na zbiorze danych NiCdBattery, dla ktorego metoda RSE osiggneta
wynik IBS = 0.11 £+ 0.02. Wybrano go ze wzgledu na umiarkowany poziom cen-
zurowania oraz mieszang reprezentacja atrybutéw (numeryczne i kategoryczne).
Zesp6t obejmowat 20 estymatoréw bazowych trenowanych na prébkach bootstrap
z losowa selekcja [v/8] = 2 cech na model.

Zbiér NiCdBattery zawiera 8 cech objasniajacych: discharge depth, discharge_time,
charge__time, recharge__level, koh__concentration, koh__volume, precharge time,
degrees _c. Cechy te opisuja odpowiednio: poziom roztadowania ogniwa, czas rozta-
dowania, czas tadowania, docelowy poziom dotadowania po tadowaniu, stezenie
roztworu KOH (elektrolitu), objetosé roztworu KOH, czas wstepnego tadowania
oraz temperature procesu (w stopniach Celsjusza).

Lacznie uzyskano 69 regul, przy czym na estymator przypadalo od 2 do 10

regul (mediana = 3).
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Analiza pokrycia na reprezentatywnych probkach testowych wskazuje, ze liczba
regut aktywowanych dla pojedynczej obserwacji zalezy od konfiguracji uczenia
(m.in. progéw wsparcia i liczby estymatoréw) i rézni sie miedzy uruchomieniami.
Ze tego wzgledu nie podaje sie jednej statej wartosci.

Przyktadowe reguly (rzeczywiste, z biezacego uruchomienia):
o jesli degrees c € [35,40) to S(t)
o jesli discharge_depth € (—o0,50) to S(t)

o jesli (degrees c € (—20,35) A koh__concentration € [32,40)

A charge__time € (—0,1.25) A discharge__time € (—o0,2.50)) to S(t)
o jesli degrees c € [35,40) to S(t)
o jesli discharge depth € (—o0,50) to S(t)

o jesli (degrees ¢ € (—0,35) A koh concentration € [32,40)

A charge time € (—0,1.25) A discharge time € (—0,2.50)) to S(t)

Analize globalnej waznosci cech oparto na waznosci permutacyjnej 79, 59].
Wplyw danej cechy mierzono jako spadek jakosci (IBS) po losowym przemieszaniu
je wartosci w zbiorze testowym, przy niezmienionych pozostatych zmiennych.
Roéznica wzgledem jakosci bazowej definiowata waznosé cechy.

Do obliczania IBS stosowano siatke czterech punktéw czasowych wybieranych
automatycznie i rownomiernie w zakresie obserwowanych czaséw w zbiorze testo-
WY [tmin, tmax ). Punkt ¢, pominieto, aby zapewnié zgodno$é z wymaganiami
metryki. W razie potrzeby siatke przycinano do dopuszczalnego zakresu obserwacji.

W literaturze najczesciej stosuje sie dwa warianty wyboru siatki czaséw do
obliczania zintegrowanego wskaznika Briera: wszystkie unikalne czasy zdarzen
w zbiorze testowym lub gesta, regularna siatke (np. 50-200 punktéw) ograniczona
do przedziatu [tmin, tmax)- W niniejszym studium przyjeto uproszczona, réwno-
mierng siatke czterech punktéw jako kompromis obliczeniowy dla niewielkich
zbioréw, przy zachowaniu zgodnosci z wymaganiami metryki (wykluczenie punktu
tmax Oraz przycinanie do rzeczywistego horyzontu obserwacji). Wybor ten nie
wplywa na interpretacje metody, a w eksperymentach potwierdzono stabilno$é

kolejnosci najwazniejszych cech takze po zageszczeniu siatki.
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Cecha Spadek IBS (po permutacji)
discharge__depth 0.0282 £+ 0.0217
degrees_c 0.0112 + 0.0060
precharge__time 0.0037 £ 0.0009
koh__concentration 0.0012 + 0.0003
koh__volume 0.0005 + 0.0007

Tabela 6.18: Wyniki interpretowalnoéci dla zbioru NiCdBattery: waznosé permu-

tacyjna (spadek IBS po permutacji cechy).

Zgodnie z miara permutacyjna dla zbioru NiCdBattery (Tabela , naj-
wyzsza waznosé uzyskala cecha discharge depth (spadek IBS po permutacji
= 0.0282 + 0.0217). Kolejne w rankingu to: degrees_c (0.0112 + 0.0060), pre-
charge__time (0.0037 4+ 0.0009), koh__concentration (0.0012 + 0.0003) oraz koh_ vo-
lume (0.0005 + 0.0007). Ranking wskazuje, ze gléwne determinanty ryzyka w tym
zadaniu zwigzane sg z gltebokoscia roztadowania, temperaturg oraz parametrami
procesu tadowania/roztadowania ogniw.

Bezwzgledne spadki IBS sa niewielkie, co wynika z faktu, ze typowe wartosci
tej metryki mieszczg sie w przedziale okoto 0-0.25. Dla zbioru NiCdBattery wynik
bazowy wynosi IBS ~ 0.11, zatem spadek 0.0282 oznacza pogorszenie rzedu 25%
wzgledem wartosci bazowej, co wskazuje na istotny wplyw analizowanej cechy na
jakosé predykcji.

Poréwnanie z metodami referencyjnymi potwierdza charakterystyczny profil
interpretowalnego zespotu. Przy wyniku IBS = 0.03 + 0.00 metoda RSE osigga
skuteczno$é poréwnywalna z regresja Coxa (IBS = 0.05 + 0.01), przewyzszajac
estymator Kaplana-Meiera (IBS = 0.05 + 0.01). Random Survival Forest uzyskuje
lepszy wynik (IBS = 0.00+0.00), ale kosztem utraty interpretowalnosci na poziomie
poszczegolnych decyzji.

Empiryczna walidacja czterech autorskich metod dostarcza kompleksowej charak-
terystyki mozliwosci i ograniczen interpretowalnych podejs¢ do analizy przezycia.
Kazdy algorytm wykazuje unikalne cechy i znajduje zastosowanie w réznych scena-
riuszach, takich jak eksploracja danych, generowanie rekomendacji predykcyjnych,
identyfikacja anomalii oraz stabilna estymacja zespotowa. Obserwowane zréznico-

wanie charakterystyk predykcyjnych miedzy domena przemystows (predykcyjne
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utrzymanie ruchu) a medyczna (badania kliniczne) potwierdza mozliwosé zasto-
sowania proponowanych metod w réznych kontekstach, czyli ich uniwersalno$é

w interpretowalnej analizie przezycia.
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Analiza niezawodno$ci i przezycia obejmuje zbiér metod stuzacych do modelowania
danych typu czas-do-zdarzenia, charakteryzujacych sie wystepowaniem cenzuro-
wania. Wymaga to stosowania podej$¢ uwzgledniajacych te specyfike. Pomimo
dostepnosci takich metod oraz zaawansowanych algorytméw uczenia maszynowego
typu ,,czarna skrzynka”, istnieje luka badawcza w zakresie interpretowalnych
metod uczenia maszynowego dedykowanych do analizy danych cenzurowanych.
W praktyce wykorzystuje si¢ m.in. modele proporcjonalnych hazardéw Coxa, pa-
rametryczne modele czasu zycia (np. wykladniczy, Weibulla, log-normalny) oraz
drzewa przezyciowe i ich zespoty. Modele Coxa ograniczaja mozliwos¢ uchwycenia
nieliniowosci i interakcji, pojedyncze drzewa czesto ustepuja doktadnoscia podej-
Sciom zespolowym, natomiast zespoty (np. przezyciowe lasy losowe) cechuja sie
ograniczong transparentnoscia procesu podejmowania decyzji. Podobna uwaga do-
tyczy rozbudowanych modeli regutowych — wraz ze wzrostem liczby regut i liczby
warunkéw w regutach maleje ich transparentnosé. Jednocze$nie w literaturze do-
minuja zastosowania o charakterze predykcyjnym, podczas gdy inne zastosowania
regul, takie jak reguty akcji i reguty wyjatkéw, pozostaja stabiej rozpoznane w kon-
tekscie danych cenzurowanych. Brakuje zatem metod interpretowalnych, ktore
wprost uwzgledniajg cenzurowanie, zapewniaja wglad w mechanizm decyzyjny
i jednoczesnie oferuja dobra skuteczno$é predykeyjna. Problem ten nabiera szcze-
gblnego znaczenia w zastosowaniach o podwyzszonych wymaganiach, gdzie decyzje
modeli moga wptywaé na bezpieczenstwo operacyjne, efektywnos¢ ekonomiczng lub
ciggloé¢ dziatania. Ograniczona interpretowalnos¢ utrudnia w takich przypadkach
walidacje i wdrazanie modeli.

Celem niniejszej rozprawy doktorskiej byto opracowanie interpretowalnych me-
tod analizy niezawodno$ci i przezycia, wykorzystujacych algorytmy indukcji regut
logicznych dostosowanych do specyfiki danych cenzurowanych, oraz wykazanie

ich skutecznosci i potencjalnej uzytecznosci w zastosowaniach medycznych oraz
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w predykcyjnym utrzymaniu ruchu. Praca koncentrowalta si¢ na rozwoju nowych
algorytmow taczacych interpretowalnos¢ z dobrg skutecznoscia predykcyjna, umoz-
liwiajacych ekspertom dziedzinowym zrozumienie i weryfikacje mechanizmoéow
decyzyjnych.

W ramach realizacji gtéwnego celu opracowano cztery oryginalne algorytmy,
ktore stanowia zasadniczy wktad naukowy pracy. Pokryciowy algorytm indukcji
przezyciowych regut akcji adaptuje strategie sekwencyjnego pokrywania do danych
cenzurowanych, odkrywajac wzorce regutowe. Algorytm rekomendacji przektada
przezyciowe reguty akcji na zalecenia dla pojedynczych obiektow, wykorzystujac
m.in. meta-tablice oraz weryfikacje statystycznag. Algorytm przezyciowych regut
wyjatkéw (CR, RR, ER) stosuje sekwencyjne wyszukiwanie wyjatkéw dostosowane
do danych przezyciowych. Z kolei interpretowalny zespot regut przezyciowych
agreguje modele regutowe, zachowujac interpretowalno$é¢. Metody te taczy wspolna
reprezentacja decyzyjna w postaci regut typu ,,jesli-to”, mozliwo$é¢ przesledzenia
uzasadnien decyzji na poziomie regut oraz dostosowanie do specyfiki danych cen-
zurowanych. Na tle istniejacej literatury wprowadzaja one nowe elementy, w tym
adaptacje strategii sekwencyjnego pokrywania do analizy przezycia, procedure
rekomendacyjng oparta na meta-tablicy z mechanizmem rozstrzygania konfliktéw
regul, formalne ujecie wyjatkéw (CR, RR, ER) dla danych przezyciowych oraz
interpretowalny zesp6t regut umozliwiajacy odtworzenie podstaw decyzji. W kon-
sekwencji zaproponowane algorytmy stanowig rozwigzania nowe badz rozwijajace
istniejgce nurty metod regutowych.

Pokryciowy algorytm indukcji przezyciowych regut akcji i algorytm rekomendacji
sg komplementarne — pierwszy odkrywa reguly wyodrebniajace podgrupy o od-
miennych krzywych przezycia, a drugi przektada je na zalecenia dla pojedynczych
obiektow. Zastosowanie sekwencyjnego pokrywania do danych cenzurowanych
pozwala maksymalizowaé¢ wartos¢ statystyki log-rank mierzacej réznice miedzy
krzywymi przezycia dla obserwacji spetniajacych regute a pozostalymi obser-
wacjami (wyzsza warto$¢ wskazuje na wieksza rozbiezno$é miedzy krzywymi),
kontrolowa¢ naktadanie sie i pokrycie regut oraz ogranicza¢ liczbe warunkow
w regutach. W konsekwencji prowadzi to do zbioru regut o krétkich, zrozumiatych
przestankach i niskim naktadaniu pokry¢ (niewielkim odsetku obserwacji spet-
niajacych wiele regut). Cenzurowanie uwzgledniono poprzez zastosowanie miar

specyficznych dla analizy przezycia (KM, log-rank), a interpretowalnos¢ uzyskuje
y y y y g ySKuj
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si¢ dzigki regutom. W eksperymentach (Rozdziat @ reguty akcji osiagaty wysoki
odsetek istotnosci w tescie log-rank dla obu domen, a rekomendacje cechowaly
siec wysoka spéjnoécia z niezaleznym modelem arbitra (wysokie wartosci Sp.os
i niskie MAE), przy jednoczesnie niewielkiej liczbie modyfikowanych atrybutéw.
Ograniczeniem metody jest asocjacyjny charakter rekomendacji — reguty opisuja
wspétwystepowanie okreslonych konfiguracji atrybutéw (i sugerowanych akeji)
z odmiennym ksztaltem krzywych przezycia, ale nie dowodza istnienia zwigzku
przyczynowo-skutkowego pomiedzy tymi konfiguracjami. Potencjalne zastosowania
obejmuja predykcyjne utrzymanie ruchu (harmonogramy i parametry eksploatacji),
medycyne (scenariusze modyfikacji terapii) oraz analizy typu ,jesli-to”.

Algorytm przezyciowych regut wyjatkow umozliwia odkrywanie rzadkich, nie-
oczywistych wzorcéw w danych cenzurowanych, przy zachowaniu interpretowalnosci
wynikajacej ze struktury regut. Podejscie opiera si¢ na wyznaczeniu zbioru trzech
regut — reguty bazowej (CR), reguly referencyjnej (RR) oraz reguly wyjatku
(ER). Reguta bazowa opisuje typowe relacje obecne w danych. Regute referencyjna
(RR) definiuje sie tak, aby krzywa KM nie réznita sie istotnie od CR. Pozwala to
odfiltrowaé pozorne wyjatki — gdyby sama RR odpowiadala innej krzywej KM
niz CR, réznica zostataby wykryta w poréwnaniu CR-RR i RR nie petitaby roli
referencyjnej. W konsekwencji istotne réznice obserwuje sie dopiero dla reguty
wyjatku, tj. koniunkcji CR A RR, dla ktorej krzywa przezycia rézni sie istotnie
zaréwno od CR, jak i od RR. Poréwnania krzywych KM w parach CR-RR, CR-ER
oraz RR-ER przeprowadza sie¢ testem log-rank. Takie podejscie ogranicza liczbe po-
zornych wyjatkow (sytuacji, w ktérych sama RR rézni si¢ istotnie od CR, wiec ich
kombinacja nie stanowi rzeczywistego wyjatku) i dostarcza uzasadnienia, dlaczego
dana regula jest wyjatkiem. Wyjatki pokrywaja zwykle niewielkie zbiory obserwa-
cji, co moze prowadzi¢ do mato precyzyjnych oszacowan (szersze przedziaty ufnosci
KM). Stad uzyskane rezultaty wymagaja ostroznej interpretacji i potwierdzenia
w ocenie eksperckiej. Potencjalne zastosowania obejmuja wczesne ostrzeganie o nie-
oczywistych ryzykach w utrzymaniu ruchu, identyfikacje fenotypéw o odmiennym
rokowaniu w medycynie oraz generowanie hipotez badawczych.

Interpretowalny zespot regut przezyciowych to model predykcyjny dla danych
cenzurowanych, taczacy interpretowalnosé modeli regutowych z jakoscia predykcji
technik zespotowych. W zatozeniu podejscie redukuje wariancj¢ predykcji poprzez

agregacje predykecji wielu modeli regutowych i zachowuje interpretowalnosé¢ na
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poziomie regut dzigki mozliwosci sledzenia ich aktywacji i oceny ich wktadow do
estymowanej funkcji przezycia zespotu. Estymator bazowy to zbiér regut przezycio-
wych trenowany metoda separate-and-conquer na probkach bootstrap w losowym
podzbiorze cech. Dla kazdej reguly w zbiorze estymowana jest krzywa KM dla
pokrywanych obserwacji. Predykcja estymatora powstaje przez usrednianie krzy-
wych KM aktywnych regut, zas predykcja zespotu przez agregacje krzywych dla
wszystkich estymatoréw. W eksperymentach uzyskano poréwnywalne wartosci
metryki IBS wzgledem random survival forest i modelu Coxa w czesci zbiorow,
szczegOlnie przy wysokim cenzurowaniu, zachowujac jednoczesnie transparent-
no$¢ procesu decyzyjnego. Ograniczeniem jest brak skalarnego wskaznika ryzyka,
co uniemozliwia ocene zdolnosci dyskryminacyjnej. Przewaga nad pojedynczym
modelem regutowym nie zawsze jest istotna statystycznie, a ztozono$¢ rosnie
wraz z liczba estymatoréw bazowych. Potencjalne zastosowania obejmuja scena-
riusze wymagajace stabilnych, powtarzalnych krzywych przezycia z mozliwoscig
weryfikacji uzasadnien na poziomie regut.

Przeprowadzono walidacje empiryczng zaproponowanych metod na tacznie 27
zbiorach danych z domen przemystowej oraz medycznej, zréznicowanych pod
wzgledem liczby cech, liczby obserwacji i poziomu cenzurowania. Procedura oceny
byta dostosowana do charakteru metod — dla modeli zespotowych wyznaczano
zintegrowany wskaznik Briera, dla regul akcji i wyjatkow stosowano test log-rank
oraz metryki opisujace strukture i pokrycie regul, natomiast dla algorytmu re-
komendacji raportowano spojnosé¢ z niezaleznym modelem walidacyjnym i btad
MAE. Wyniki wskazuja, ze zbiory regul akcji w wiekszosci przypadkow dostar-
czaly statystycznie istotnych wzorcow, a generowane rekomendacje byty spdjne
z modelem arbitra przy niewielkiej liczbie modyfikowanych atrybutéw. Reguty
wyjatkow umozliwialy wykrywanie podgrup o nietypowych wzorcach w wigkszosci
zbioréw. Zespét regut przezyciowych osiggat wyniki porownywalne z metodami
referencyjnymi i przewyzszal estymator Kaplana-Meiera, w szczegdlnosci przy
wysokim udziale obserwacji cenzurowanych.

Przyktadowe obszary zastosowan obejmuja medycyne oraz predykcyjne utrzy-
manie ruchu. W medycynie metody te moga wspiera¢ personalizacje terapii,
np. poprzez identyfikacje podgrup wymagajacych odmiennego postepowania oraz
formutowanie hipotez dotyczacych modyfikacji leczenia. W predykcyjnym utrzyma-

niu ruchu mogg by¢ wykorzystywane przy projektowaniu strategii konserwacyjnych
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poprzez identyfikacje urzadzen o nietypowych wzorcach degradacji i analize scena-
riuszy interwencji prewencyjnych. W ujeciu ogélnym opracowane metody wpisuja
sie w nurt interpretowalnego uczenia maszynowego, ktadac nacisk na przejrzystosé
procesu podejmowania decyzji przez modele.

Opracowane metody wnosza rowniez wktad teoretyczny. Sformalizowano stra-
tegie sekwencyjnego pokrywania dla danych cenzurowanych, definiujac funkcje
celu jako maksymalizacje statystyki log-rank miedzy krzywymi przezycia czesci
zrodtowej i docelowej oraz kryteria wzrostu i przycinania oparte na statystyce
log-rank i estymatorze Kaplana-Meiera. Zdefiniowano trojsktadnikows strukture
regut (CR, RR, ER) dla analizy przezycia wprowadzajac procedure weryfikacji
hipotez opartg na tescie log-rank dla par CR-RR, CR-ER i RR-ER oczekujac
braku istotnej réznicy miedzy CR a RR, przy jednocze$nie istotnych réznicach
miedzy CR a ER oraz RR a ER. Ponadto sformutowano schemat rekomendacyjny
jako problem rozwigzywania konfliktéw regut oraz zaproponowano konstrukcje
interpretowalnego zespotu regut przezyciowych wraz z metoda agregacji krzywych
oraz estymacja waznosci cech (m.in. metoda permutacyjna) i sledzeniem aktywacji
regul. Elementy te porzadkuja terminologie i ramy formalne taczace indukcje regut
z analizg przezycia i moga stanowi¢ podstawe do dalszych analiz teoretycznych
oraz rozszerzen.

Wyniki przedstawione w Rozdziale [6] obejmuja: istotnos¢ zidentyfikowanych
wzorcoOw w tescie log-rank dla regut akcji, spojnosé rekomendacji z niezaleznym
modelem walidacyjnym (wysokie wartosci Sg g5 i niskie MAE), wykrywanie odreb-
nych podgrup przez reguty wyjatkéw oraz porownywalne wartosci IBS zespotu
regut wzgledem random survival forest i Cox. Zespot regut uzyskuje nizsze wartosci
IBS niz estymator Kaplana-Meiera, zwtaszcza przy wysokim cenzurowaniu. Wyniki
te tacznie potwierdzaja teze pracy o mozliwosci opracowania skutecznych i trans-
parentnych metod analizy niezawodnosci i przezycia w oparciu o interpretowalne
algorytmy regutowe dostosowane do danych cenzurowanych.

Ograniczeniem przeprowadzonych badan jest m.in. koncentracja na wybranych
klasach regut: regutach akcji, regutach wyjatkéw oraz zespole regut. Inne paradyg-
maty regutowe (np. reguty asocjacyjne, zbiory kontrastowe) nie byly przedmiotem
analizy. Analiza ztozono$ci obliczeniowej nie byta przedmiotem niniejszej rozprawy.
Wiarygodna charakterystyka wymagataby parametrycznej, etapowej analizy zalez-

nosci od struktury danych, sposobu dyskretyzacji, kryteriow stopu i przyjetych
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7 Podsumowanie

heurystyk wyszukiwania, co zaplanowano jako kierunek dalszych prac. Dodatkowo,
walidacje przeprowadzono na ograniczonym zestawie danych. Liczba publicznie
dostepnych zbioréw benchmarkowych dla analizy przezycia jest ograniczona w po-
rownaniu z klasyfikacja i regresja. W niniejszej pracy wykorzystano publicznie
dostepne zbiory medyczne oraz syntetyczne dane z obszaru predykcyjnego utrzy-
mania ruchu, co nalezy uwzgledni¢ przy uogoélnianiu wnioskoéw na inne domeny.
Kierunki dalszych badan obejmuja m.in. rozszerzenie metod na inne typy regut.
Dotyczy to zaréwno regul asocjacyjnych dostosowanych do danych przezyciowych
jak i zbioréw kontrastowych, rozumianych jako wzorce istotnie réznicujace krzywa
przezycia wyodrebnionych podzbioréw wzgledem zbioru odniesienia. Kierunek ten
nawiazuje do wynikéw [153], ktére wykazaty skuteczno$¢ heurystyki separate-and-
conquer w wyznaczaniu zbioréw kontrastowych takze dla danych przezyciowych.
7 perspektywy kosztéw obliczen kierunkiem rozwojowym sg algorytmy przyrostowe
(ang. online) oraz metody przyblizone (prébkowanie, ograniczanie przestrzeni
wyszukiwania), ktére znajduja zastosowanie w analizie danych strumieniowych

i w warunkach ograniczonych zasobow.
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Spis skrotow

AFT
AUC
cBM

CDF
CR
ER
GAM
IBS
loT
k-NN
MAE
MSE
PdM
PDP
PM
RR
RSE

RTF
TTF
Cox
KM
RSF
SR
ST

model przyspieszonego czasu do awarii (ang. accelerated failure time)
pole pod krzywa (ang. Area Under the Curve)

strategia utrzymania ruchu na podstawie stanu technicznego (ang.
Condition-Based Maintenance)

dystrybuanta skumulowana (ang. cumulative distribution function)
reguta bazowa (ang. commonsense rule)

reguta wyjatku (ang. exception rule)

uogdlnione modele addytywne (ang. generalized additive models)
zintegrowany btad Briera (ang. Integrated Brier Score)

Internet Rzeczy (ang. Internet of Things)

algorytm k-najblizszych sasiadéw (ang. k-nearest neighbors)

sredni bezwzgledny btad (ang. mean absolute error)

sredni btad kwadratowy (ang. mean square error)

predykeyjne utrzymanie ruchu (ang. predictive maintenance)
wykresy zaleznosci czesciowej (ang. partial dependence plots)
prewencyjne utrzymanie ruchu (ang. Preventive Maintenance)
reguta referencyjna (ang. reference rule)

interpretowalny zespét regul przezyciowych (ang. Rule Survival En-
semble)

strategia do wystapienia uszkodzenia (ang. Run to Failure)

czas do awarii (ang. time-to-failure)

regularyzowana regresja Coxa z karg elastic net

estymator Kaplana-Meiera

random survival forest

Survival Rules

Survival Tree
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