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Abstract

Artificial intelligence (AI) is transforming many fields, including entertainment,
daily life, and industry. It is also becoming an important tool in medicine. Modern
healthcare faces challenges such as high workloads and staff shortages, leading to long
waiting times for test results. Al can help by pre-analyzing medical data, making di-
agnostics more efficient. It can guide doctors in their analysis and highlight important
medical information, improving patient care.

Computed Tomography (CT) is an advanced imaging technique that creates de-
tailed three-dimensional images of tissues. It has greatly improved diagnostics in vari-
ous medical fields. In pulmonology, CT is especially valuable, as it allows the detection
of lung lesions in areas that cannot be directly examined by doctors.

Chronic obstructive pulmonary disease (COPD) is a growing health concern linked
to rising air pollution and tobacco smoking. It is characterized by emphysema, a condi-
tion in which parts of the lung tissue are permanently damaged and destroyed, reducing
lung function.

The dissertation examined the potential of artificial intelligence (AI) for detect-
ing and quantifying emphysema. The study used CT images from the COPDGene
database and the MOLTEST bis project. It provided a detailed analysis of the biolog-
ical background of emphysema and the methods used for its segmentation. Based on
it, a processing pipeline was developed, including lung segmentation, airway segmen-
tation, lesion segmentation, and their quantification and differential analysis. A novel
airway segmentation method was introduced, using iterative propagation from land-
marks based on two dominant features. To ensure explainability and alignment with
medical practices, an automatic thresholding method based on Gaussian mixtures was
proposed for emphysema segmentation. For qualitative and quantitative assessment of
emphysema, a set of features has been calculated which can be compared with other
similar cases based on the created two-dimensional embedding.

The analysis demonstrates the potential of the proposed methods for practical use.
However, further validation and expansion of the database with additional data are
needed before application in an industrial setting.






Streszczenie

Sztuczna inteligencja (Al) wywiera istotny wplyw na liczne obszary, w tym rozrywke,
zycie codzienne oraz przemyst. Coraz czesciej znajduje réwniez zastosowanie w medy-
cynie, stajac sie kluczowym narzedziem wspierajacym procesy diagnostyczne i terapeu-
tyczne. Wspotczesna opieka zdrowotna mierzy sie z wieloma wyzwaniami, takimi jak
nadmierne obcigzenie praca personelu medycznego oraz jego niedobory, co skutkuje
wydhuzonym czasem oczekiwania na wyniki badan. Zastosowanie sztucznej inteligencji
umozliwia wstepna analize danych medycznych, przyczyniajac sie do zwiekszenia efek-
tywnosci diagnostyki. Ponadto Al wspomaga lekarzy w interpretacji wynikéw badan,
identyfikujac kluczowe informacje medyczne, co w konsekwencji prowadzi do poprawy
jakosci opieki nad pacjentem.

Tomografia komputerowa (TK) stanowi zaawansowana metode obrazowania me-
dycznego, umozliwiajaca uzyskanie szczegdtowych tréjwymiarowych rekonstrukeji struk-
tur tkankowych. Technika ta znaczaco przyczynita sie do postepu w diagnostyce wielu
dziedzin medycyny. W pulmonologii tomografia komputerowa odgrywa szczegodlnie istotng
role, gdyz pozwala na wykrywanie zmian patologicznych w obrebie ptuc.

Przewlekta obturacyjna choroba ptuc (POChP) stanowi narastajacy problem zdro-
wotny, ktorego rozwoj jest Scisle zwigzany z rosnacym zanieczyszczeniem powietrza oraz
paleniem tytoniu. Schorzenie to charakteryzuje sie wystepowaniem rozedmy ptuc, czyli
stanu patologicznego prowadzacego do trwalego uszkodzenia oraz destrukcji tkanki
phucnej, co skutkuje stopniowym obnizeniem ich funkcji.

Rozprawa doktorska bada potencjal sztucznej inteligencji (Al) w wykrywaniu i ilo-
$ciowym okreslaniu rozedmy ptuc, wykorzystujac obrazy tomografii komputerowej (TK)
z baz danych COPDGene i MOLTEST bis. Przedstawiono analize biologicznych pod-
staw rozedmy oraz metod segmentacji, opracowujac potok przetwarzania obejmujacy
segmentacje ptuc, drog oddechowych i zmian chorobowych, ich kwantyfikacje i analize
roznicowa. Wprowadzono nowa metode segmentacji drog oddechowych oparta na itera-
cyjnej propagacji z punktami orientacyjnymi. Zastosowano automatyczne progowanie
segmentacji rozedmy oparte na mieszaninach Gaussa, a takze obliczono cechy umozli-
wiajace poréwnanie przypadkow za pomoca dwuwymiarowego osadzenia.

Przeprowadzona analiza wskazuje na potencjalna uzytecznosé¢ proponowanych me-
tod w praktycznych zastosowaniach. Niemniej jednak, przed ich wdrozeniem w wa-
runkach przemystowych konieczna jest dalsza walidacja oraz rozszerzenie bazy danych
o dodatkowe dane TK.
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Chapter 1

Introduction

1.1 Motivation

Chronic Obstructive Pulmonary Disease (COPD) is a progressive disorder obstruct-
ing airflow, causing severe shortness of breath, coughing, excessive mucus production,
and may result in total respiratory failure. It causes permanent damage to the lung
parenchyma called emphysema and inflammation in the airways. The disease is at-
tributed mainly to cigarette smoking [1, 2| and poor air quality [3, 4]. Cigarettes
contain nicotine, the addictive substance, which is a major reason why many people
continue to smoke despite knowing the health risks, while according to recent studies,
air pollution is increasing year by year [5]. As a result, COPD remains a widespread
and serious health issue [1|. Early diagnosis and appropriate treatment are the keys
to slowing or halting the progression of the disease, making artificial intelligence and

machine learning a potential support for the treatment process.

Machine learning and artificial intelligence are currently developing rapidly, with
various tools capable of generating detailed graphics from text [6], recommending mu-
sic based on user preferences |7, 8|, and engaging in conversations that closely resemble
human interaction [9]. Most systems in the entertainment industry rely on deep learn-
ing due to the large availability of annotated data and the relatively stable nature of
the tasks. However, in the medical field, the situation is different. Here, patient health

is critical, and there is often a lack of labelled data, which calls for a different approach.

The emphysematous changes seen in COPD vary in location, shape, and severity.

Although CT scans use a standardised scale of Hounsfield units, comparing scans from
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different hospitals often reveals technical differences. Those differences result from the
manufacturer of the scanner, scanner parameters, experience of radiologists and the
applied scanning protocol. The effectiveness of a deep learning model is highly depen-
dent on the quality of the training data it receives. Manually creating segmentations of
3D emphysematous changes is an extremely time-intensive task, which is infrequently
undertaken. Moreover, such data is rarely shared publicly. This lack of available data
undermines the reliability of deep learning solutions. This is a setting where the classi-
cal methods shine; with the knowledge gathered by the experts about the properties of
certain lesions or abnormalities, large annotated dataset requirements can be bypassed.
Also, with proper tuning and tests, a much more robust method can be created, or it

is possible to define clear boundaries or requirements for the method to work.

1.2 Scope of the dissertation

The dissertation focuses on the analysis of emphysematous changes in chest CT
scans of patients with Chronic Obstructive Pulmonary Disease (COPD). The primary
aim is to design a method to locate and quantify the abnormal disease patterns de-
spite the lack of hand-made annotations and inter-institutional variability in imaging

protocols.

The low attenuation category was selected, with emphasis on COPD-related lesions,
as a subject of this dissertation due to the availability of C'T data accompanied by quan-
titative and qualitative assessments of disease progression. This information allowed
for an evaluation of the segmentation quality produced by the proposed methodology.
The segmentation and classification of high attenuation patterns also gained signif-
icant attention during the COVID-19 pandemic (2020-2023), leading to substantial
research advancements in this area. In contrast, the segmentation and evaluation of

low attenuation patterns have received less attention in recent scientific literature.

1.3 Aim of the work and thesis

This work proposes the establishment of an automated pipeline for the analysis of
Computed Tomography images, with the objective of detecting and quantifying low

attenuation lesions. The primary focus of this study is on images of patients diagnosed



Chapter 1: Introduction 1.3 Aim of the work and thesis

with Chronic Obstructive Pulmonary Disease (COPD). The disease is characterised
by emphysematous changes, i.e. permanent destruction of air bubbles, and small air-
way disease. The overarching objective of this study is to develop a system that can

quantitatively analyse the nature of these changes.

This research concentrates on classical methods, which have shown better gener-
alisation abilities than neural networks. The algorithms created are intended to be
efficient but also explainable, and it is planned to implement and improve solutions
familiar to radiologists that are used in medical practice. The pipeline comprises four
distinct steps: lung segmentation, airway segmentation, emphysematous lesion segmen-
tation and quantification with stratification. The lung segmentation problem has been
extensively discussed in numerous publications; therefore, the objective is to evaluate
the performance of existing solutions in relation to segmentations performed with clas-
sical methods. The goal of airway segmentation is to remove voxels that have similar
Hounsfield Unit (HU) values to emphysematous lesions. A further aim of segmenta-
tion is to isolate bronchial walls for later automatic thickness analysis. The primary
objective of emphysematous lesion segmentation is to identify the region affected by
emphysema or other low-attenuation patterns. Quantification and stratification aim to
describe the lesions numerically. Using created numerical descriptors, a 2D space will
be created where patients are placed in the form of dots. This facilitates a compar-
ative analysis of different cases, enabling the refinement of treatment strategies. The
analyses conducted as part of the dissertation enabled the formulation of the following

theses:

1. Unsupervised learning techniques demonstrate potential in the detection of low-
attenuation lesions in computed tomography (CT) imaging, offering an effective
alternative to supervised approaches by leveraging intrinsic data structures with-

out the need for annotated training datasets.

2. The volume and spatial distribution of emphysematous regions identified through
automated detection processes can serve as a preliminary estimate of COPD
progression. These regions exhibit a quantitative and qualitative relationship

with GOLD-defined spirometric measures.

3. To minimise false positives in the segmentation of low-attenuation and emphyse-
matous lesions, it is crucial to construct a three-dimensional model of the airway

structure.
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1.4 Structure

Chapter two serves as an introduction to the technical foundation of this thesis. It
addresses the subject of Computed Tomography imaging by describing the concepts
of series and study, emphasising the critical parameters of CT images, and identifying

factors that affect the quality of the scans.

Chapter three addresses the biological dimensions of the thesis. It provides an
examination of the anatomical structure of the lungs and describes the respiratory
process. Furthermore, it introduces the pulmonary abnormalities that constitute the

focus of the study while evaluating current techniques for their quantification.

Chapter four describes the materials employed in this thesis. It outlines the datasets
employed during the experimental processes, specifying the number of studies and series

in the following datasets, along with the locations where the datasets were applied.

Chapter five addresses the segmentation process of the lungs and lobes, examin-
ing the availability of various methodologies and their efficacy in distinguishing lung
parenchyma from other anatomical structures present in computed tomography (CT)

images.

Chapter six describes methods for the segmentation of airways. It includes a review
of state-of-the-art methods, talks about their relevance in the context of COPD, and
discusses reasons for airway segmentation. In this chapter, the novel, unsupervised

airways segmentation method is proposed.

Chapter seven covers the core of the dissertation, the segmentation of low-attenuation
patterns. It begins with a description of current state-of-the-art methods in this do-
main, followed by an analysis of the scope of the lesions identified for segmentation
within this study. Then, two distinct methods for segmenting low-attenuation pat-

terns are introduced and evaluated.

Chapter eight presents the final component of the proposed pipeline, which in-
volves grouping low-attenuation changes. Beginning with the state-of-the-art analysis,
a method is proposed for assessing segmentation results by embedding their features

into a 2D space and evaluating the effectiveness of the grouping.



Chapter 2

Technical background

2.1 Computed Tomography

Computed tomography is an imaging method that allows one to gather information
on the amount and type of material present inside an object in a non-invasive way
(Figure . For this, X-ray radiation is used [10], a form of high-energy wave prop-
agating through space, interacting with the encountered atoms. As an X-ray beam
passes through an object, it is gradually absorbed or scattered. What remains reaches
the detector placed on the opposite side of the object. X-rays are passed through the
object at various angles, allowing the image to be reconstructed in three dimensions
(Figure . The technique has gained great popularity in the medical field because

it allows a precise analysis of a selected body part.

(a) (b)

Figure 2.1: Example Computed Tomography scanner and ideogram showing core
working principles a) Siemens SOMATOM Force CT scanner [11], b) X-ray generator
rotates over the patient’s body emitting X-ray beams which are scattered and
absorbed by patient’s tissues reaching the detector on the opposite side [12].
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2.2 Hounsfield units

Hounsfield units (HU) scale is a quantification metric scale that describes the ra-
diodensity of tissues and substances on the CT image. It is adjusted to the nominal
value of water and air under standard temperature and pressure (STP), which is 0
degrees Celsius and a pressure of 100 kPa. This results in a normalised scale where
water is represented by the value 0 HU and air is represented by -1000 HU. Hounsfield
units result from the linear transformation of the measured attenuation coefficient of
structures in the patient’s body, which is a measure of the extent to which the radiation

beam is weakened by passing through the material [13].

Typically, in chest CT images, Hounsfield voxel values range from -1024 to about
2000. Values around -1024 represent air; in the lungs, despite being largely filled with
air, HU values ranging from -900 to -500 are observed. This is due to the presence
of alveoli, which are denser than air. The majority of tissues and muscles lie in the
range of -100 to 100 HU. Values above 100 HU are reserved for bones and other dense

materials that may appear during the scanning procedure [14].

2.3 Storage standard

CT images are stored on the disk using the DICOM file standard. DICOM (Digital
Imaging and Communications in Medicine) is a file type created for storing, managing,
and diagnosing medical images. DICOM files consist of the image and the header,
which stores metadata. The CT series is stored in separate DICOM files, slice by slice,

each file connects to the next and previous by information stored in the header.

2.4 Patient, study and series

When a Computed Tomography study is stored on disk, a unique patient identifier
is assigned or associated with the patient. The study is characterised by a unique
identifier called the 'Study Instance UID’; additionally, it is identified by ’Accession
Number’ for human consumption. A study usually consists of multiple CT series, such
as CT scans reconstructed using different reconstruction methods, in-plane view pro-
jections, image copies divided into subareas, segmentations and studies with contrast

in different phases. In addition, descriptions of the disease or a report of the radiation
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dose to which the patient was subjected during the examination are included. Each
series has its unique identifier called ’Series Instance UID’. Each mentioned identifier
is unique in the scope of the facility; although it is highly unlikely that two different
facilities would have different studies with the same identifier, this option cannot be

ruled out.

2.5 Slice thickness

A 3D CT image is created by assembling axial cross-sections stored within the
DICOM files. Cross-sections in the form of 2D images are taken at a certain distance
from each other; the distance at which they lie in physical space is called slice thickness.
Slice thickness directly affects the amount of information contained in a CT image. A
high slice thickness value can cause clinically relevant lesions to be missed. However,
setting a lower layer thickness leads to exposing the patient to a higher radiation dose.
Therefore, the layer thickness is adjusted according to the purpose of the radiographic

examination [15].

2.6 Scanner parameters

Scanner parameters are dictated by the investigated body part, the patient’s con-
dition, scanner capabilities, and the desire to minimise the radiation dose absorbed by
the patient. Differences in the parameters of CT scans create the greatest differences
in the quality of the patient’s tissue image. Many studies can be found in the literature
that discuss the importance and effects of appropriate parameter selection |16} |17} |18,
19]. Parameters with the greatest impact on image quality include detector configura-
tion, tube current, tube potential, reconstruction algorithm, patient positioning, scan

range, reconstructed slice thickness, and pitch [19].

The parameters most commonly tweaked are the kilovoltage peak (kVp) and mil-
liampere seconds (mA) because they have to be adjusted for each patient individually
|20, 21]. The aforementioned kVp is related to the potential of the X-ray tube ac-
celerating electrons travelling from the cathode to the anode. Controls the quantity
and quality of the protons generated. The mAs measure tube current in the span of

1 millisecond. When other parameters are constant, the higher the mAs value, the
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more electrons in the tube are gathered, which results in more X-ray photons passing
through the patient, leading to better image quality with less noise but increasing the
radiation dose. In contrast, lower mA values reduce the radiation dose but can increase
image noise and potentially lower image quality |16, |17]. Those two parameters have
the greatest influence on the radiation dose to which the patient is exposed during

examination.

The radiation dose absorbed by the patient during the examination is an important
topic in radiology [22} 23|. The kVp and mAs are one of the most important parameters
influencing the strength of the radiation beam. Therefore, depending on the exam
goal, different parameters are used. In the scope of the dissertation, it is important to
differentiate between so-called low-dose studies and high-dose studies (standard dose),

which are discussed in more detail later in the work.

2.7 Scanner model

The market today features a wide array of Computed Tomography scanner manu-
facturers, including notable names such as SIEMENS, Philips, Toshiba, UIH, and GE
Medical Systems. Each of them has its own set of reconstruction kernels, filters, radia-
tion beam optimisation methods, and different scanner designs. Consequently, each is
different. Competition is good for progress; however, it also has its negative sides, one

of which is the lack of homogeneity.

2.8 Convolution Kernel

Each manufacturer has its own set of convolution kernels. A convolution kernel is
a mathematical matrix or algorithm applied to CT data during image reconstruction
to emphasise specific image characteristics, such as edges or soft tissue contrast. It
directly affects the sharpness and noise of the reconstructed CT images |24, 25]. The
convolution kernels can be divided into three groups: sharp kernels, smooth kernels,

and standard kernels.

Sharp kernels enhance the edges of structures and high-frequency details. They
are commonly used in bone imaging and lung imaging when the lung nodules are the

subject of investigation. Examples of the sharp convolution kernels are SIEMENS
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B70s, Toshiba FC81 or GE SHARP. The disadvantage of sharp kernels is that they

increase the noise in the CT image [25].

Smooth kernels reduce noise and smooth the image while maintaining overall con-
trast, making them ideal for detecting subtle differences in tissue densities. They are
used for soft tissue imaging like abdominal organs, the brain, the liver, the kidneys,
and some parenchymal structures. Examples of smooth kernels are SIEMENS B30s,
Toshiba FC03 or GE SOFT. Kernels from this group might blur fine details |25].

Standard kernels provide a compromise between spatial resolution and noise. This is
a general-purpose group of kernels which can be used for analysis of all body structures.
Examples of standard kernels are SIEMENS B40s, Toshiba FC08 or GE STANDARD
[25].

While this is not a rule, most manufacturers give the kernel name values where the
higher the value, the sharper the kernel. Notably, GE names their convolution kernels

using the name of the group they belong to.

2.9 High and Low dose CT

High-dose and low-dose CT differ, as the name suggests, in the amount of radiation
dose delivered to the patient during the examination. The negative effects of X-rays on
the human body are well known. It is important to minimise the amount of radiation
the patient is exposed to during the examination. However, the amount of radiation
translates into the quality of the resulting image. Therefore, to make the study effective
and safe, the X-ray beam’s strength must be properly tuned. There are many standards
in which CT examinations are performed, but their general division can be limited to

two groups, high-dose and low-dose examinations [25].

High-dose examinations are also known as high-resolution CT (HRCT). They are
performed when an accurate picture of the patient’s lesions is needed because the

abnormal lesions are not known or the surgeon must plan the surgery [26].

Low-dose CT (LDCT) examinations are recommended, especially when a patient
belongs to a group with a high risk of cancer development and are commonly used for

screening 27, 28].

Regarding the series characteristics, HRCTs typically have a lower slice layer thick-

ness and, therefore, more cross-sections. LDCTs typically have about twice the thick-
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ness of the slice layer compared to HRCTs, which translates to a much lower number
of cross-sections. HRCTs, compared to LDCTs, have significantly fewer occlusions;
the image is much clearer, and the structures present in the patient’s lungs are better
defined [19].

2.10 Anatomical factors influencing results

The above-mentioned technical factors impact the resulting appearance of the CT
image. It is necessary to tailor the scanning protocol parameters to suit the patient’s
physical condition. Aside from the patient’s health status, two important considera-

tions are emphasised during the examination: the patient’s age and size.

The patient’s age is a proven strong factor that influences the amount of airspace.
This translates directly into the values of the CT density parameters [29]. This is
a factor considered in most long-term studies. This is confirmed by a 5-year study
conducted in a group of healthy people where their respiratory capacity was tested
each year. The percentage of relative lung fragment area was shown to be less than
-960 HU, which increases with age [30].

As the passing radiation beam through the patient’s body is attenuated, naturally,
the size of the scanned object has an impact on the result. The parameters of the
CT scanners must be adjusted to the patient’s size. Usually, it is done by analysing
the patient’s BMI index [20]. This results in the tweak of the kilovoltage peak (kVp)
parameter and a change of the milliampere-second (mA) parameters, changing the

strength of the beam.

10



Chapter 3
Biological background

To support this thesis, a basic understanding of lung anatomy is necessary. Since the
research focuses on detecting lung abnormalities, it is important to examine their origin,
appearance, and methods of measurement. This section will cover the medical aspects
of the study, primarily discussing the human respiratory system as seen in computed
tomography (CT) images. It will first explain lung function and the CT imaging
process. Then, it will define lung abnormalities and describe their characteristics. The
discussion will also include an analysis of lung diseases relevant to the thesis. Finally,

it will explore methods for measuring disease severity.

3.1 About human lungs

Lungs are pyramid-shaped paired organs located in the human thorax, bordered
from below by a diaphragm. They are elastic structures that expand and contract to
suck in and drive out gases. The average weight of the lungs is 850 grams for a man
and 750 grams for a woman. The right lung is divided into three lobes: upper, middle,
and lower, while the left lung is divided into two lobes: upper and lower. Fissures
separate lobes. The lung’s main function is to support the exchange of oxygen and
carbon dioxide. They are connected to the outside by the trachea, which conducts
the gases and distributes them using the right and left bronchi. There are no solid
attachments between the lungs and the walls of the chest cage (except the place where
the hilum connects to the mediastinum). Instead, lungs are held in the chest by the

thin layer of pleural fluid which envelops them, keeping them in place but allowing free
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expansion and contraction of the organ [31] 32, [33].

3.2 Lung Parenchyma and Intersitium

Lung parenchyma is the functional part of the lungs responsible for gas exchange.
It consists of multiple spherical structures called alveolar sacs in which carbon dioxide
is exchanged for oxygen. Alveolar sacs are connected through alveolar ducts, airways,

and trachea to the esophagus [34].

The lung parenchyma is supported by a connective tissue called the lung intersti-
tium [35]. It could be assumed as a composition of several components. The peribron-
chovascular interstitium is a system of connective tissues enclosing the bronchi and
pulmonary arteries. The centrilobular interstitium is a peripheral continuum of the in-
terstitial fibre system. Peribronchovascular interstitium and centrilobular interstitium
make up the so-called “axial fibre system” extending from the pulmonary hila to the
alveolar ducts and sacs. The intralobular interstitium is a network of fibres filling the
gap between the centre of lobules and the interlobular septa. The interlobular septa
and subpleural interstitium are a part of the “peripheral fibre system”. Subpleural in-
terstitium envelops the lung; it mainly contains small vessels, which are involved in the
formation of pleural fluid. Subpleural septa extend inward from the pleural surface and
carry pulmonary veins and lymphatics. It separates lobules, forming borders between
them.

3.3 Airways

In the lung interstitium lie the airways. They are a series of branching tubes which
become shorter and narrower as they go deeper into the interstitium. The respiratory
passages start with the trachea outside the lungs, splitting into the right and left main
bronchi. These further divide into lobar and segmental bronchi before finally branching
into bronchioles. In an adult human lung, there are typically twenty-three branching
points before reaching the gas exchange regions known as alveoli. The airways are
classified as either bronchi or bronchioles. The bronchi are tubes which have more
than 0.1 ¢cm in diameter and have cartilaginous walls, while the bronchioles do not

have cartilaginous walls and have less than 0.1 cm in diameter [36].
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The airways could be divided by their function into conducting, transitional and
respiratory zones presented in Figure[3.Tal The conducting zone consists of the trachea,
bronchi, bronchioles and terminal bronchioles. Its goal is to deliver inspired air to the
gas-exchanging region. The transitional and respiratory zones consist of respiratory
bronchioles, alveolar ducts and alveolar sacs. The alveolar region is the region of gas
exchange. The conducting zone is an anatomic dead space; it does not take part in the
gas exchange and has a volume of about 150 ml. The transitional zone, as the name
suggests, serves as a transition between the conducting and respiratory zones. It is
interspersed with the budding of alveoli; the closer the alveolar sacs are, the denser the
alveoli. The alveolar sacs in the transitional and respiratory zones are responsible for
gas exchange. The transitional and respiratory zones account for approximately 2.5 to

3 litres of the lung’s volume [37].

(a) Structural diagram of the structure of
bronchial tree. (b) Human bronchi 3D visualisation.

Figure 3.1: Airways of the Human lung with the airways division ideogram according

to the Weible [37].
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3.4 Pulmonary arteries and veins

Running alongside the bronchus, the pulmonary arteries and veins are located,
which facilitate the circulation of blood between the lungs and the heart. Pulmonary
arteries carry deoxygenated blood from the heart to the lungs, while pulmonary veins
carry oxygenated blood from the lungs to the heart. They branch in multiple direc-
tions and follow bronchi. As the pulmonary artery nears the alveoli, it becomes a
pulmonary capillary network, consisting of tiny vessels with thin walls without muscle
fibres. Enveloping the alveoli, the pulmonary capillary creates the respiratory mem-

brane responsible for the gas exchange [38].

3.5 Blood-Gas barrier exchange

The blood flows from the high-pressure arteriole carrying carbon dioxide to the
lower-pressure venule to where oxygen is distributed. Then the pulmonary capillary
branches to the pulmonary vein, which transports the oxygenated blood to the heart,
which distributes it to the other parts of the body. Pulmonary capillaries are extremely
thin structures located in the walls of the alveoli. The total area ranges between 50 and
100 m?, with half featuring a thickness of 0.2 to 0.3 um, creating an optimal setting

for diffusion.

3.6 Abnormal patterns in lungs

This section is intended to highlight the main abnormal lesions studied. Detection
of lung abnormalities is the main topic of the dissertation. Lung abnormalities refer to
any alterations linked to diseases impacting the lung parenchyma, visible in Computed
Tomography scans. A variety of abnormal lung patterns exist, but for ease of discussion,
they can mostly be categorised into two groups: low-attenuation patterns and high-

attenuation patterns.

Low-attenuation patterns are visible on CT as darker patterns (lower value) than the
surrounding lung parenchyma. Usually present as a result of obliteration of the alveoli
or excessive presence of air in the enclosed pocket. To this category of abnormalities

belong emphysema and air trapping [39, [40].
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High-attenuation patterns are visible on CT as brighter patterns (higher value)
than the surrounding lung parenchyma. Usually present due to flooding of the alveoli
and bronchi with fluid such as water or blood, calcification, fungal infections, cancer,

or the presence of foreign bodies [41, |42, |39).

The proposed division into high and low attenuation patterns is not fair, as shape,
location, and surroundings are important in the categorisation of abnormal lesions. Es-
pecially in the case of the high-attenuation group, which has more underlying patterns
than the low-attenuation group. In medical literature, the high attenuation patterns
are usually additionally split into subcategories [43|. Separate categories are given for
the opacification resulting from fluids, lung nodules, and foreign bodies, where the

nodules are then additionally divided.

Within the scope of this study, access to data is limited, preventing the evaluation
of the algorithm introduced in this thesis on all types of abnormal lesions. The analysis
was focused on emphysema and air trapping. An algorithm was developed and tested
specifically for these two abnormalities. Furthermore, it is assumed that the medical
practitioner examining a patient has a preliminary suspicion of the condition based on

external tests or physical examination.

3.6.1 Emphysema

Emphysema is defined as a permanent abnormal enlargement of the air spaces
distal to the terminal bronchioles, accompanied by destruction of the walls of the
occupied air spaces |26]. Emphysema can be accurately diagnosed by HRCT [44, 45|
or, with less precision, detected by low-dose CT [46, 47|. It results in focal areas of
very low attenuation that can be visually contrasted with the surrounding normal lung
parenchyma with higher attenuation if sufficiently low window values are used (-700 to
-950 Hounsfield units [HU]). Although some types of emphysema may have walls visible
on HRCT, they are usually inconspicuous. In the case of the low-dose CT, the walls
are not visible at all, which makes it easy to confuse emphysema with air trapping.
Based on the High Resolution Computed Tomography image, it is possible to classify

emphysema into subcategories [44].
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Cenrilobular Emphysema

Centrilobular emphysema (CLE) is the most common subtype of emphysema. It
is characterised by the destruction of the alveolar septa in the centres of alveoli and
pulmonary lobules. The CLE usually affects the posterior segments of the upper lungs
[48]. On CT images, they show up as round black holes (low attenuating) that are
evenly distributed in the lung. Usually, even on HRCT images, CLE walls are not

visible [26] (Figure [3.24)).

Panlobular Emphysema

Panlobular emphysema is usually the result of severe or confluent CLE. It is char-
acterised by uniform destruction of the alveolar septa in the lung parenchyma distal to
pulmonary bronchioles [48]. On the CT image, it shows up as a large dark area where
the pulmonary vessels are not visible [26] (Figure [3.2D)).

Paraseptal Emphysema

Paraseptal emphysema, while it can be an isolated abnormality, usually appears
with the presence of CLE. It is characterised by the destruction of the most distant
alveoli in the subpleural space, sparing the respiratory bronchioles. On CT images, it

shows up as subpleural lucencies with very thin but visible walls on the HRCT image

[48, 26] (Figure [3.2¢).

(a) (b) (c)

Figure 3.2: Emphysema sub-types ideograms a) centrilobular emphysema; b)
panlobular emphysema; c) paraseptal emphysema [49].
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Bullae and Bullous Emphysema

Bullous emphysema, also referred to as vanishing lung syndrome [50], is a large
pathology that is not directly related to any other subtype of emphysema. It is charac-
terised by a sharply delimited region of emphysema seen as a large dark region, at least
1 ¢m in diameter, with thin walls around 1 mm. Bullae can go up to 20 ¢cm in diameter
but usually have about 5 to 8 cm [50]. It is asymmetric and usually has clearly defined
walls, making it hard to distinguish it from the lung cyst [51} 26] (Figure [3.34).

3.6.2 Air trapping

In its advanced stages, emphysema can cause what is known as air trapping. This
is an abnormal lesion defined as the retention of excess gas in the lungs, causing respi-
ratory obstruction. On CT images, it manifests itself as an area of reduced attenuation
that is strictly separated from the rest of the lung parenchyma. In addition, vessel oc-
clusion is usually observed in this area (Figure [3.3b). While it is very similar to bullae
emphysema, this area usually is not delimited by fibrosis; also bullae emphysema tends
to be a result of paraseptal emphysema, meaning that it usually occurs on the lung’s

parenchyma border. The differences could be observed in Figure [3.3

(a) (b)

Figure 3.3: Side by side comparison between a) subpleural bullae emphysema [52],
and b) air trapping [53], on the Computed Tomography images.
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3.7 Chronic Obstructive Pulmonary Disease

Chronic obstructive lung disease (COPD) is a progressive lung disorder that ob-
structs the airflow. Symptoms of COPD are coughing, production of mucus, short-
ness of breath (especially during exercise), wheezing, tightness in the chest, fatigue,
and frequent respiratory infections. Key characteristics of the disease include irre-
versible airflow limitation, progressive nature if untreated, and periodic exacerbations
of symptoms (for example, coughing fits and excessive mucus production). COPD is

characterised by two disease entities: small airway inflammation and emphysema.

Many studies identify smoking as the predominant factor causing COPD and a sig-
nificant contributor to COPD mortality in developed countries. Lundbéck et al. study
identified that nearly 50% of chronic smokers develop COPD [2|. Air pollution, in-
cluding particulate matter, is another important risk factor for COPD. Both cigarette
smoking and air pollution have been identified as significant factors for COPD develop-
ment. Yet the difference in their prevalence lies in the geographical location; in highly
developed countries, cigarette smoking constitutes 70% of the COPD burden, while
in middle-to-low developed countries, environmental exposures account for 60% of the
COPD burden [1]. This difference is due to poor planning decisions of cities from low-
to middle-developed countries regarding factory and residential area placement, poor
living conditions, and the popularity of biomass burners |1, |3, 4]. Aside from lifestyle
and environmental factors, the deficit of alpha-l-antitrypsin (AAT) is also a proven

risk factor [54]. But in contrast to the previously mentioned factors, it is not a direct
cause of COPD.

Tobacco smoke contains many harmful substances that damage the bronchial and
alveolar epithelial cells, causing inflammation. Sources state that the onset of COPD
is the aforementioned inflammation of the small airways, which is a common feature
with asthma [55]. However, the inflammation in COPD differs from that in asthma;
in COPD an infiltration of inflammatory cells such as neutrophils, macrophages and T
lymphocytes is observed, particularly in the small airways and lung parenchyma [56|. In
asthma, eosinophils and mast cells predominate [57]. An important difference between
COPD and asthma is the presence of emphysema. It occurs through an imbalance
between protease and antiprotease. Protease is an enzyme that breaks down proteins,
including elastin, an important component of connective tissue in the lungs. Smoking
increases the production of proteases such as neutrophil elastase |58, 59]. Alpha-1-

antitrypsin (AAT) is the main inhibitor of elastase in the lung. AAT binds to elastase
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and neutralises its action, protecting lung tissue from degradation. Therefore, people
with AAT deficiency are more likely to suffer from the effects of COPD. The degradation
of elastin contributes to the loss of alveolar elasticity, resulting in alveolar destruction.
Alveolar destruction leads to a reduction in the total surface area available for gas
exchange (oxygen and carbon dioxide). Loss of elasticity, alveolar destruction, and
reduced gas exchange surface area lead to impaired lung function and the formation of
emphysema |60, 61}, 62].

As COPD is an untreatable disease, external medications and treatment can only
improve life quality and halt disease progression. Of the medicines popularly used,
drugs from the bronchodilator group are commonly recommended to relax airway mus-
cles, improving airflow. Additionally, corticosteroids are used as accompanying or
independent of bronchodilators |63, 64]. Other than that, oxygen therapy is often rec-
ommended to maintain adequate oxygen levels. Additionally, patients are instructed
to exercise and follow a healthy lifestyle to soften the COPD symptoms. The most im-
portant factor in reducing the severity of symptoms is to cease smoking or not smoke

cigarettes; yet it does not remove symptoms completely |3, 62].

3.8 Quantification of emphysema and COPD

Quantification of COPD refers to measuring and evaluating the severity and impact
of COPD. This quantification involves using clinical, physiological, and imaging tools
to assess the degree of impairment of lung function and structural changes in the lungs,

allowing personalised disease management and monitoring.

3.8.1 Spirometry

Spirometry is a method that is used to measure the limitations of airflow. The test
is performed using a spirometer into which the patient blows air. It is one of the first
tests carried out when COPD is suspected, as it is relatively simple, noninvasive, and
does not expose the patient to harmful radiation. The test results in 2 coefficients,
FEV; (forced expiratory volume in 1 second), the amount of air exhaled in the first
second of a forceful breath, and FVC' (Forced Vital Capacity), the total amount of

FEV;

air exhaled during the test. The 77 ratio is a key indicator of the severity of COPD

disease, and a graded scale of disease severity called the GOLD standard has been
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created concerning this indicator.

The GOLD (Global Initiative for Chronic Obstructive Lung Disease) standard is a
numerical scale ranging from 1 to 4 that represents the severity of emphysema. Based
on FEV1 in relation to the reference value (the value expected for a healthy person
with similar parameters such as age, sex, and height), the GOLD value standard is
assigned to the patient. The GOLD 1 (mild COPD), where FEV1 is 80% of the
reference value. At this stage, the disease may be asymptomatic, or there may be mild
breathlessness on greater exertion. The GOLD 2 (moderate COPD), where FEV1
ranges from 50% to 79% of the reference value. More breathlessness occurs, especially
during physical activity, along with a chronic cough and sputum production. The
GOLD 3 (severe COPD), where FEV1 is between 30% and 49% of the reference value.
Symptoms become more severe, and breathlessness occurs even during low exertion.
GOLD 4 (very severe COPD) where FEV1 < 30% of the reference value or < 50% of
the reference value with chronic respiratory failure. At this stage, patients are severely

limited in their ability to perform daily activities and may require oxygen therapy [65].

3.8.2 Symptomatic and quality of life check

Another example of a non-invasive method of determining the condition of a pa-
tient with suspected COPD is the symptomatic assessment and surveys that check the
patient’s quality of life. There are two leading methods for conducting such a survey,
the first is the COPD Assessment Test (CAT) recommended in the GOLD 2011 guide-
lines and the second is called the modified Medical Research Council (mMRC) dyspnea
scale. CAT is a self-administered survey designed to measure and quantify symptoms
and the impact of COPD on health-related quality of life. It consists of 8 questions,
each rated on a 6-point scale (0 to 5), giving a total score of 40. Scores of 0-10 indicate
mild COPD, 11-20 moderate COPD, 21-30 severe COPD, and 31-40 very severe COPD
[66]. The mMRC scale, on the other hand, is a 5-point (0 to 4) scale that rates the

severity of breathlessness. It is an old scale composed of simple questions [67].

3.8.3 Macroscopy and microscopy

Macroscopy Evaluation of Emphysema refers to quantifying abnormal patterns
using 'naked eye’ or low magnification tools. Macroscopy quantification is usually

based on the lung section or the radiogram of the patient’s lung. An example of the
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macroscopy approach is the point counting method proposed by Dunil et al. |68] where
on the lung section, the transparent sheet of glass with the grid is laid. Based on the
overlayed grid, the proportion of the emphysematous lesion is calculated in relation
to the healthy lung. Another example of macroscopic evaluation is the panel grading
method proposed by Thurlbeck et al. [69] where a paper lung section is used and scored
from 0-100, reflecting the severity of the emphysema. Similarly to both methods, the
Ryder Grid method [70], where the lung section is overlayed with a transparent radi-
ating grid placed along the greatest fissure, based on which the extent of emphysema
is graded from 0 to 5, reflecting the extent of emphysema. All mentioned methods
originate from the years 1960 to 1970, so they are relatively old. It is now known that
a single lung section is insufficient to measure the extent of emphysematous changes
[71]. Additionally, the focus is on the early detection of changes in living specimens
rather than postmortem analysis. Modern macroscopic methods rely on medical imag-

ing techniques.

Microscopy methods analyse lung tissue on a cellular level, often revealing more
subtle changes that are not visible macroscopically. The evaluation is usually based
on the lung biopsy or histology image analysed under the light microscope or electron
microscope. As the patterns of the disease are more subtle, the measures that quantify
them are more diverse. There is the mean linear intercept (Lm) measure describing
the number of walls of alveoli crossed by the test line placed on the sample [68]. The
airspace wall per unit volume (AWUV) measures the surface area of the alveoli per unit
volume of the lungs |72|. The destruction index (DI) measures the level of alveolar de-
struction by representing it as a percentage value |73|. In the scope of this dissertation,
microscopy quantification metrics will not be used, as the imaging type required for

these types of measurements does not involve computed tomography.

The goal of microscopy and microscopy quantification methods is the same, but the
way they achieve their goal is different. For clarity, the main differences are listed in
Table B.11

3.8.4 Image analysis

Chest CT is the most common imaging technique used in clinical practice to analyse
lung lesions. This non-invasive method exposes the patient to harmful radiation in

exchange for a detailed image of the lungs. It detects subtle structural changes in the
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Aspect Macroscopy Microscopy

Scale Large-scale (visible to the naked Small-scale (cellular and tissue
eye) level)

Tools Used Naked eye, low magnification, CT Light or electron microscope
scans

Focus Overall lung structure and gross Cellular and tissue-level damage
damage

Findings Emphysema, bullae, loss of tissue Alveolar wall destruction, en-

larged airspaces

Purpose To evaluate the extent and distri- To understand the structural and
bution of the disease cellular changes

Usage Clinical imaging, surgery, au- Biopsy, research, detailed

topsy histopathological evaluation

Table 3.1: Summarisation of the differences between macroscopy and microscopy
quantification methods.

lung parenchyma, such as emphysema, thickening of the airway wall, and air trapping.
Experienced radiologists do not mark the locations of the lesions when describing the
images and can easily identify them. However, they often need information on the
distribution and volume of the lesions to plan further treatment. To partly automate
the process, physicians and medical scientists tend to use simple solutions, such as the
use of fixed cutoff thresholds for voxel intensity values in Hounsfield units or the use
of the nth cutoff percentile in the attenuation distribution curve to create a density

mask. From such a density mask the different metrics can be calculated.

The most commonly seen is a metric called the "low attenuation area" (LAA),
which is the volume of the low attenuation area divided by the total volume of the
lungs represented as a percentage (%). Usually, it appears with the specific threshold
used, for example, -950 HU is denoted as LAA_g50. Another less common metric is
the fractal dimension, which measures the wellness of the fit of fractals in the space
of the given volume. It is used to describe shapes and structures of an irregular form.
It is used for the analysis of cluster voxels that creates emphysematous lesions and to

evaluate the progression of the disease |74, [75].

Many studies in the literature suggest optimal cut-off thresholds for finding disease
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masks. The first study to analyse differences in grey level intensity between healthy
tissue and emphysematous lesions was that of Hayhurst et al. |76], which showed sta-
tistical differences in grey level distributions in the lung parenchyma between healthy
subjects and those with multiple emphysematous changes. The scientists noticed that
the values characterising the emphysematous lesions were found on the left side of the
CT histogram, allowing segmentation using a low threshold in the HU space. Since
then, many studies have attempted to find a single universal cut-off point for emphy-

sematous lesions.

The study by Muller et al. [77] suggests the use of a cut-off threshold of -910 HU
with a section thickness of 10 mm, supporting the conclusions with a correlation of
the lesion density mask and the visual assessment of lesions. A study by Gevenois et
al. analysed cross-sections of 63 patients for whom thresholds of -900 to -970 HU were
checked and concluded that a threshold of -950 HU should be used for objective quan-
tification of emphysema |78|. Madani et al. |79] studied 80 patients with images taken
with multi-detector row CT with 1.25-mm-thick sections. She tested different fixed
cut-off thresholds and thresholds determined from percentiles of voxel intensity values.
The authors recommend using cut-off thresholds of -960 HU or -970 HU. The findings
support the correlation with microscopic and macroscopic evaluations of lesions. A
study by Bankier et al. analysed CT cross-sections taken from 62 patients and the
density mask correlations with macroscopic morphometry findings. The authors used
a cutoff point of -950 HU [80] in the study. Studies using remarkably high thresholds
such as -900 HU can also be found in the literature. Kishi et al. [81] studied the cor-
relation between the occurrence of lung cancer and emphysema. The study involved
1,520 people; however, 24 people diagnosed with lung cancer and 84 healthy individuals
were used for the correlation analysis. The study used a threshold of -900 HU values
to separate emphysema from the rest of the lung. A study by Maldonado et al. [82]
investigated the correlation between emphysematous changes seen on CT and airflow
obstruction in 64 patients with lung cancer and 377 control patients. A threshold of
-900 HU was also used to define areas of emphysema. Stern et al. [83] in their study
on the challenges of diagnosing and quantifying pulmonary emphysema, employed a
range of Hounsfield Unit (HU) values between -900 and -1000 as the thresholds for
evaluating segmentation of emphysematous lesions. The study found that a threshold

of -900 HU resulted in the most precise density masks.

As mentioned, in addition to fixed cut-off values, thresholds based on the percentile

of the lung density histogram are also used. The study mentioned earlier by Madani
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et al. |79|, in addition to proposing fixed cut-off thresholds, as an alternative suggests
using the 1st percentile of the lung density histogram as the cut-off value. Dirksen et al.
[84] in their study, in which they investigated the presence of emphysema in patients
with aj-antitrypsin deficiency using CT images thresholded by the 10th percentile of
the lung density histogram. Three years later, also under the guidance of Dirksen et
al. [85], this time in a study related to the effect of aj-antitrypsin supplementation on
the behaviour of emphysematous changes, they used a threshold of 15 percentiles of

the lung density histogram.

The mentioned studies show that it is difficult to find a universal, single cut-off
threshold for emphysematous lesions. The experiments were conducted in different
years, with the technology moving forward and scanning parameters changing. Dif-
ferent layer thicknesses were used between studies, different numbers of cross-sections
were tested, and scanners of different brands were used. The severity of emphyse-
matous changes also varied between studies; small areas and early appearances of
emphysema mean less destruction of the alveolar walls, leading to higher HU values,
which may not be included in thresholds such as -950 HU or -970 HU. However, when
there is a severe case of emphysema, a high threshold, such as -900 HU, can lead to
over-segmentations. A fixed threshold ensures that a specific percentage of lesions will
be accurately detected, though a significant number of over-segmentations and under-
segmentations accompany it. The bronchial tree stands as an instance of systematic
over-segmentation within the explored HU unit range, containing pure air that fluctu-
ates around -1000 HU values. When it comes to the accurate separation and analysis of
emphysematous changes in the lungs of patients and the early diagnosis of emphysema,

the use of fixed thresholds or percentile-based determination is insufficient.
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Materials

The Materials section will discuss the datasets used in the dissertation’s scope.
All described datasets contain CT images of the chest. The dissertation used both
high-resolution computed tomography (HRCT) and low-dose computed tomography
(LDCT). LDCT was used mainly during the development of the airways modelling
algorithm. As HRCT is the main subject of the thesis, HRCT images were used to

develop an algorithm to seek emphysematous changes and used for their quantification.

4.1 COPDGene

The COPDGene dataset results from a study carried out by a group of researchers
from 21 institutes in the USA [86]. The study was divided into four phases and was
carried out over many years, during which the researchers prepared the dataset. The
original dataset consists primarily of genetic data and CT scan images taken in patients’
full inspiration and expiration. Additionally, the dataset contains information such as
age, sex, ancestry, scanner model, convolutional kernel, and GOLD classification of
the patient. In the dissertation, 6078 CT series comprising 2243 unique patients were
considered, as summarised in Table 4.1}
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Manufacturer Slice thickness [mm|  Number of series
0.625 2414
GE Medical Systems
1.25 121
0.75 3412
SIEMENS
1.0 75
Philips 0.9 o6

Table 4.1: COPDGene summary of the computed tomography series used in the
study.

The series are evenly distributed between those taken on inspiration and those
taken on expiration, with smoothing restoration kernels (STD) slightly outnumbering
those taken on inspiration, in both cases as presented in Figure [4.1] The number of
series included in a given GOLD standard is not evenly distributed, the most common

classification being 2 and the least common 1, as presented in Figure [.2]

Figure 4.1: COPDGene used dataset CT series count divided based on the
respiratory phase and convolution kernel.
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Figure 4.2: COPDGene used dataset CT series count divided based on the GOLD
standard classification.

4.2 MOLTEST-BIS subset

The MOLTEST-BIS dataset is derived from a lung cancer screening study con-
ducted between January 2016 and December 2018 |87, [88]. The study included patients
in the 50-79 age range with a long-term smoking history. The study examined 6631
patients for whom at least one CT imaging study was performed. The study protocol
was based on the United Kingdom Lung Screen protocol, with a follow-up after one
year [89].

The dissertation used a subset of 1110 CT examinations from the MOLTEST BIS
collection. It focused on patients whose C'T images showed evidence of emphysematous
lesions. In the scope of the dissertation, the dataset subset was used to test and validate
the performance of the airways extraction method. Each scan considered in the study
was made with a GE Medical Systems scanner with a STANDARD reconstruction

kernel and 2.5 mm slice thickness.
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Lungs and Lobes segmentation

5.1 Motivation

The first and foremost important step in analysing pulmonary abnormalities in CT
images is lung segmentation [90]. In this dissertation, lung segmentation refers to the
accurate and automated extraction of the left and right lungs from the surrounding
thoracic tissue. It is crucial to understand the significance of precision in this context,
as any inaccuracies in lung segmentation could significantly affect subsequent analyses.
Any tissue incorporated beyond lung tissue would be regarded as noise, potentially
reducing the accuracy of the diagnosis. Conversely, omitting lung tissue might result
in the loss of vital information concerning the disease progression and lower accuracy
or confidence of diagnosis [91]. Lung segmentation is challenging due to the hetero-
geneous nature of the patient’s condition and study environment. The appearance of
abnormalities in lung tissues, resulting from ongoing or past diseases, may be omitted
by segmentation algorithms due to the difference in the form and texture of the healthy

lung.

In the case of lobes segmentation, in the scope of this dissertation, it serves as
additional location information for automatic disease quantification. It is not vital for
the start of the analysis, but it is important for the precise determination of the disease

entity or sub-entity.
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5.2 State of the art

In the literature, lung segmentation methods are distinguished into five categories:
thresholding-based, region-based, shape- or model-based, anatomy-guided, and machine-
learning-based [92, 93|. Thresholding methods are relatively fast but lack accuracy due
to the vessels in the mediastinum, trachea, and other structures, which are confounding
factors. They are rarely seen in modern literature because of the problems mentioned
above. The thresholding is usually done automatically based on the given data with
some additional processing [94, 95| 96]. Although there are not many practical use
cases in automated systems, medical specialists still use thresholding methods in com-
mercial applications and medical analysis programs to roughly segment the lung area
during diagnosis. In addition, they can be used as a preprocessing step for the other
methods.

Region-based methods are based on the assumption that neighbouring voxels on
the CT image of the lung parenchyma have similar values. Their main advantages are
the lack of supervision required and low computational complexity; on the other hand,
they are susceptible to noise in the image, and some are heavily dependent on the initial
seed. Before the rise of Deep Learning, region-based methods were the most popular
lung segmentation approaches. The most popular method was the seed region growing
algorithm [97], which segmented the region similar to the given seed voxel. Watershed
is another popular region-based segmentation algorithm [98]|, treating pixel intensity
values as topographical features and simulates a flooding process, where basins are
formed around intensity minima, separating different objects in the image. Graph cut
is another example of a segmentation algorithm in this category [99] it partitions an
image into regions by optimising a graph-based representation of the image to find the
optimal cut that separates objects or regions of interest. Although graph cuts were a
popular image segmentation method in general, they were not widely used in the case

of the lung segmentation problem.

Shape- and model-based methods were another step in the progress of lung seg-
mentation systems. They used prior information about the shape or appearance of
the lungs for segmentation purposes. They were the closest method to the currently
most popular used deep learning approach and could handle mild and low-affected
lung parenchyma [92]. Shape-based methods also called boundary-based, consist of
methods employing algorithms like active contours [100, 101], snakes [102] or level-sets

[103]. The above methods manipulate a preset contour based on user-defined forces
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derived from image properties such as the gradient. Forces acting on the contour must
be created to reproduce the target image, in this case, the lung parenchyma, which
is one of the main challenges of this method [103|. This category consisted of super-
vised methods that were often taught in more than one CT series. The algorithms
were taught the shape and texture of the lungs and, using the level set segmentation
methods [100} [101], the lung parenchyma was extracted [104, [105, |106].

Anatomy-guided methods took a different route than other methods; instead of
looking for the lungs, they analysed their vicinity looking for structures such as the
carcass, heart, spine, liver, and mediastinum [107, 108, [109]. Based on the given
locations or segmentation of other organs, methods in this class limit the search area
of the lung parenchyma and then create its mask. This was the first group of lung
segmentation methods that handled well the heavily afflicted lung [108|, such as the
cases with pleural fluid or extensive atelectasis. The disadvantage of these methods
is that they assume that there are no abnormal lesions or diseases in the organs and

structures near the lung area being examined.

The group of machine learning methods concerns all algorithms that learn from
data. Based on the given samples, methods adjust internal parameters aimed at locat-
ing lung parenchyma in the CT series despite present abnormalities. As noted in the
work of Carmo et al. [92], there is a need to additionally distinguish two subcategories

in this category: traditional machine learning and deep learning.

Traditional machine learning was based on the extraction of features. In the train
set, the region of the lungs was given a priori and based on it, algorithms extracted
meaningful features, learning them in the process. Based on the learned features (pa-
rameters), the lung parenchyma was extracted. The early work focused on texture
classification, which could be achieved by analysis of whole 3D series [110] or 2D series
slices [111]. The most straightforward feature of the lung parenchyma is its attenua-
tion value. Most of the developed algorithms used this property in conjunction with
other features, which included local binary patterns, wavelets, grey-level statistics, and
neighbouring structures [112} 113} |114].

Deep learning is currently the most popular method for lung segmentation. Many
papers have been written on this subject, including papers describing per-slice ap-
proaches, i.e., based on a 2D slice of a CT image, and papers using a full 3D image of
the series. The most commonly used architecture for this task is U-Net [115]. Estab-

lished in 2015, it revolutionised the field of image segmentation by introducing so-called

30



Chapter 5: Lungs and Lobes segmentation 5.2 State of the art

skip-connections. U-Net, as shown in Figure consists of two paths across the con-
tracting and expansive paths. The first one gradually reduces the feature space by
reducing the image’s resolution while increasing its depth, creating the so-called image
feature space. The second path receives the feature space from the contracting path
and gradually increases its resolution while varying its depth. The expansive path’s
task is to create a mask of the target object based on the extracted features from
the contracting path. The aforementioned skip-connection combines the correspond-
ing block of layers in the contracting and expansive paths, passing the input from the
contracting path to the expansive path. This provides additional information about the
original object, provided the feature space is intended to describe the searched object,
and the additional information provided directly by the contracting path allows it to
be better located in space.
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Figure 5.1: U-Net architecture overview [115].

There are many approaches utilising the U-Net original architecture either in the 2D
form [116} (117,118,119} 120} |121] or in 3D form [122,|123, 124}, 125| 126]. The difference

between 2D and 3D U-Net networks is the form of convolution that occurs. In the case

of 2D networks, convolutions are made with a rectangular window, while in the case
of 3D networks, the convolution window is a cube. Each mentioned approach brings

novelty in another form, experiment preparation, preprocessing of the C'T data, or the
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U-Net architecture modifications. In some cases, modifications to the method involve
external support for network prediction through, for example, superpixel segmentation
and contour refinement [127]. U-Net networks are most often modified by adding
attention blocks, either a single block, for example, at the beginning of the network [128|
or multiple blocks, for example, within residual connections [129]. Another example of
U-Net modification is the addition of some additional layers, like Inception-based blocks
hidden between the standard U-Net blocks [130]. U-Net is not the only network used
for this task; models like ResNet18 [131], VGG-18 |132], or the ensemble of multiple

architectures |133| are also used.

In the case of the lung segmentation task, there are a lot of public datasets with
annotations available online, and the hand-annotation of the CT images for this task
is not particularly hard. Although works that cover lung segmentation usually do
not share a common benchmark, it is very hard to decide which solution is the best
solely based on the provided in-paper scoring. Recent studies have questioned the
need for additional modification of the U-Net, whether by attention modules or by
adding additional blocks. The network no-new-Unet, which, as the name suggests, was
a classic U-Net 3D architecture, proved that with a sufficiently diverse set, the U-Net
network can outperform its modifications or extensions [134]. This further supports the
claim made in the paper mentioned in the motivation by Hofmanninger et al., stating
the significantly higher relevance of a diverse training set than the neural network
architecture [135].

5.3 Results

Lung segmentation is a crucial step in the segmentation or detection of changes
occurring in the lung parenchyma. Isolating this region reduces distortions that may
affect the final result. A significant portion of the lung consists of voxels with low
Hounsfield unit values, similar to those of air. However, certain structures within
the lung parenchyma, such as blood vessels, exhibit high Hounsfield unit values. If
only these structures fell within the high voxel value range, a simple thresholding
method would be the most appropriate approach. However, abnormal changes in the
pulmonary parenchyma, including consolidations and ground-glass opacities, also have
high Hounsfield unit values. Although blood vessels are not required for analysis,

eliminating any class of abnormalities at this stage would be a critical error.
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To evaluate the hypothesis that segmentation based solely on thresholding of the
grey-level intensity in CT images is insufficient, the effectiveness of classical threshold-
ing was tested using the Otsu thresholding method. In addition to the Otsu method,
the two areas containing the highest number of voxels were selected through an analysis
of the merged regions, and the mask was refined using a morphological closure method.

An example of the segmentation result is presented in Figure [5.2]

Figure 5.2: Example slices from patients with mild and severe abnormal parenchymal
changes with overlayed results of the lung segmentation using the Otsu thresholding
method.

A literature analysis showed that, in addition to thresholding methods and morpho-
logical operations, proliferation-based and level-set methods are also applicable to the
task of lung area segmentation. Using the region-growing algorithm, lung segmentation
was performed, where 5000 points were chosen from the thresholding-based method as
starting points. The resulting mask was subjected to the same cleaning procedure as

for the thresholding-based method. An example of the segmentation result can be seen
in Figure 5.3

The operation of the level-set method was examined using the Fast Marching algo-
rithm as an example. This method functions similarly to region growing but relies on
differences between neighbouring pixels rather than intensity differences. Its growth

is controlled by a velocity map provided as input. In this case, the velocity map was
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Figure 5.3: Example slices from patients with mild and severe abnormal parenchymal
changes with overlayed results of the lung segmentation using the region growing
method.

defined as an image gradient, scaled and constrained to a value of 1. An example of

the segmentation result is shown in Figure [5.4]

Finally, the performance of neural networks was evaluated using the network de-
signed and trained by Hofmanninger et al. [135]. The selection of this network from
the available approaches was based on three main factors: the dataset used for training,
the accessibility of the solution, and the relative simplicity of the proposed network.
As discussed in the literature review, the U-Net 2D network was trained on a diverse
dataset. The authors ensured that scans from different imaging machines and convo-
lution kernels were included in the training set. Additionally, lungs affected by various
types of lesions were incorporated to improve generalizability. The network is easily
accessible, and the provided Python code is well-structured and robust against pack-
age conflicts. An example of the U-Net’s segmentation result is shown in Figure [5.5
Compared to more complex architectures such as ViT [136], U-Net 2D is relatively sim-
ple, but its effectiveness is largely driven by the quality and diversity of the training

dataset.
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Figure 5.4: Example slices from patients with mild and severe abnormal parenchymal
changes with overlayed results of the lung segmentation using the Fast Marching
algorithm.

5.4 Discussion

Tests conducted using classical image processing methods have shown that this
is a complex problem. Although voxel intensity levels exhibit regular structure and
homogeneity, changes in the parenchyma disrupt the tissue’s natural characteristics.
Classical algorithms are sensitive to such disturbances and require adaptation. No
classical image processing algorithm was found to perform well in the presence of

abnormal structures in the lung parenchyma.

This dissertation focuses on exploring the use of classical methods. While deep
learning is currently the most popular approach, classical methods are still useful, es-
pecially when there is not enough diverse, labelled data. This often happens in tasks
like segmenting lesions or muscle groups, where manual labelling is difficult. In con-
trast, the lungs are easier to identify in CT scans because they are separated from
surrounding tissue. Additionally, the COVID-19 pandemic led to increased research
on lung diseases, resulting in many new tools and labelled datasets. Since lung seg-
mentation is already well-studied and serves mainly as a preliminary step for analysing

lesions, this work uses an existing lung segmentation solution.
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Figure 5.5: Example slices from patients with mild and severe abnormal parenchymal
changes with overlayed results of the lung segmentation using U-Net 2D.

As part of the neural network tests, the effectiveness of the method proposed by
Hofmanninger et al. [135] was evaluated. This method was selected because it met
a critical condition: it had been trained on a diverse dataset and tested on a variety
of diseases. Other approaches were not considered, as none of them met the required
criteria. Some methods either did not analyse the lungs affected by lesions [116] 118,
120} 121}, |122} (123} 125, |128| [130| or had issues with algorithm availability [127] [129].
Additionally, the method by Hofmanninger et al. [135] proved to be effective. Since the
analysis of differences between lung segmentation methods was not the primary focus

of the dissertation, this method was incorporated into the final processing pipeline.
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Chapter 6
Alrways

This chapter describes the method used for segmenting airways from the lungs.
The primary objective is to remove the airways before proceeding to the next stage of

analysis. A secondary objective is to analyse the airway regions.

The airway segmentation method utilises three key features of the airways. First,
their tubular structure is considered. Second, the characteristic voxel intensities of
their filling are taken into account. Third, the fact that the airways are enclosed by
solid tissue walls is used as a distinguishing feature. Based on these properties, the
method relies on the dual-gradient map fast marching algorithm, which is bounded by

the estimated airway walls.

6.1 Motivation

Chronic Obstructive Pulmonary Disease (COPD) is characterised by two particular
changes in the chest image of the lungs. The first is pulmonary emphysema, which
is a reduced attenuation of the lung parenchyma due to the destruction of the lung
parenchyma. The second is small airway inflammation (bronchiolitis), which causes

narrowing or loss of the airway lumen (Figure [6.1)).

It was originally believed that small airway disease only manifests itself in advanced
stages of COPD. However, the study by Niewoehner et al. [138] was the first to show
that it also occurs in young smokers. They carried out an analysis of the lungs of
deceased smokers of a similar age (under 40) eliminating those with visible emphy-

sematous changes from the study. The study indicated a link between smoking and
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Figure 6.1: a) Healthy small airways; b) Airways blocked by connective tissue and
restricting its lumen, resulting from inflammation [137].

pathological changes in the peripheral airways, which the authors identified as poten-
tial indications of more severe pathological changes. Since then, more studies have
appeared analysing this problem. In 1978, Cosio et al. [139] created a scoring system
to determine the extent of pathological changes in small airways based on lung biopsy
findings. They considered the lesion initially indicative of small airway disease to be
a progressive inflammatory reaction leading to fibrosis with deposition of connective
tissue in the airway walls. Further independent studies have emphasised the relevance
and impact of small airway lesions on the development and progression of COPD [140,
141].

Even in the presence of emphysema, airway inflammation appears to have a sig-
nificant impact on the functional health deterioration of patients with COPD. It is
further emphasised by the work of Wright et al. [142] who examined non-smokers,
smokers and ex-smokers. The respiratory bronchioles of smokers appeared to be signif-
icantly more inflated and had significantly decreased goblet cell pigment compared to
ex-smokers. But what is even more important in the scope of the thesis is that the wall
thickness of membranous and respiratory bronchioles was significantly larger in the
smokers’ group than in the ex-smokers’ group. His study found that smoking increases
bronchial wall thickness, regardless of airway size or the amount of emphysema. Other
studies confirmed these findings by showing a correlation between airflow limitation

and the average airway diameter [143, |144].

Inflammation of the airways and emphysema have a complex relationship. Stud-

ies have proven that the presence of emphysematous changes does not always directly
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mean that the airways are inflamed. Small airway disease seems to affect people with
centrilobular emphysematous (CLE) changes when, in people with predominant pan-
lobular emphysematous (PLE) changes, airway inflammation is less frequently noted
[145, 146]. Research indicates that PLE and CLE are different from the start and indi-
cate different disease progression paths. Patients with CLE show more muscularization
and airway wall thickening than patients with PLE. It has been observed, in patients
with CLE, that the upper small airways are significantly more occupied than the lower
airways [147] (Figure and, importantly, that changes in the small airways precede

the appearance of emphysema [139).

Figure 6.2: a) Photograph of a mid-sagittal slice of a lung removed from a patient
who received a lung transplant for COPD from the work of Hogg et. al [137].
CLE-related changes resulting in highly inflamed upper lungs; b) Similar specimen
from a patient who received a lung transplant also from the work of Hogg et. al [137].
Less severe PLE but the lower lungs are highly involved.

These studies demonstrate the importance of analysing the bronchial condition in
COPD. Using it, physicians can assess the degree of damage and plan treatment, define
the type of disease, and even potentially prevent further damage to the bronchioles.
From the point of view of automated image analysis, the bronchi are also a potential
confounder. If the aim is to segment emphysematous lesions, the bronchial tree makes
this task much more difficult by having similar voxel intensity values to lesions. There-
fore, bronchial segmentation, in addition to the direct benefit of increased diagnostic

accuracy, potentially facilitates further steps in the automatic analysis of the condition.
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6.2 State of the art

The airways or bronchi have distinctive features commonly exploited by various al-
gorithms. It is a tree-shaped structure that extends from the mediastinum and branch-
ing through the lung parenchyma up to 23 times. On a standard-dose CT image, trained
physicians can see up to 7 branchings. Each branching results in a smaller branch where
each branch is a narrowing tube-like structure filled with low-level grey-intensity vox-
els surrounded by walls with relatively high-level grey-intensity voxels. Many methods
emerged discussing the problem of airway segmentation and proposing solutions to this
issue. Usually, they use a combination of several airways’ characteristics, where one
characteristic serves as the base for the main novelty of the method. In response to the
tree-like structure of airways, researchers use growing methods starting from the base
to the terminal branches. They noticed that the tubularity of the tree can be mathe-
matically described by the Hessian matrix. The characteristic grey level intensities can
be exploited by thresholding methods. The narrowing of the airway structure can be
detected by bottom-up iterative analysis of the structure. Based on those observations,
airway segmentation methods can be divided into general categories: Hessian-based,

growing, morphological, and neural network-based methods.

Hessian-based methods are one of the most commonly seen in older approaches.
They exploit the tubular structure of the bronchiole by analysing Hessian eigenvalues
convolved with the Gaussian filter of predefined standard deviation o (for in-depth
explanation refer to 7?7). One of the first such approaches was proposed by Sato et al.
and called the Sato filter [148| followed by the Frangi filter [149], Meijering filter [150],
Jerman filter [151] and Zhang filter [152]. While neither of them specifically talked
about airway segmentation from CT thorax scans, part of them proved their ability to
differentiate those structures from the lung parenchyma as an additional ability. They
also laid the foundation for other great works related to this topic [153}, 154, [155].

The growing-based methods are also popular due to the commonly seen problem in
the airway automatic segmentation field, the so-called leakages. The bronchus extends
inside the lung parenchyma; its goal is to distribute air to the alveoli located inside
the lung. Leakages in the segmentations occur when the bronchi blend into the lung
parenchyma and become indistinguishable; some methods like thresholding or morpho-
logical methods may, as a result, contain the voxels of the lungs, which are adjacent
to the bronchi and not divided by the airway wall. Growing methods usually consist

of guided, step-by-step growth of the airway mask area while trying to avoid leakages.
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Such methods may use a region-growing algorithm for evolution [97] (156, 157, |158],
159, 160] while some of them are semiautomatic, as in the Bartz et al. study [159]
which requires defining a manual seed point in the trachea while using 3D growing
with template matching. The region-growing method is typically combined with other
novel approaches or algorithms to address the problem of airway extraction. Lo et
al. [160] introduced a method in which the primary innovation lies in utilising vessel
orientation for airway identification, with region-growing serving as a substep of the

process.

In addition to region-growing, the fast-marching algorithm is commonly applied to
this problem. This algorithm is based on the propagation of a wavefront from a given
point or multiple points on the velocity map. It has been demonstrated to be effective
in analysing subsequent fronts and filtering leakages [161], 162, 163|. The regular shape
of the propagation front provides several advantages, such as enabling the extraction of
a minimum path from the root to terminal points, known as the centerline [163} [164].
Additionally, this structured propagation allows for a stepwise analysis of the growing
process |165]. The method can also serve as a final step in the analysis to complete the

airway tree segmentation process [161} 162, [166].

Neural network-based solutions are widely used due to their high accuracy and
ability to function without manual adjustments. However, several challenges exist. A
large dataset with precise masks is required, and the dataset must encompass diverse
CT image features. There are a few publicly available datasets dedicated to the task
of airway segmentation. The most popular of these is the EXACT’09 dataset [167],
consisting of 40 CT series containing CT images of the lungs, of different patients
taken by different scanners and possessing respective bronchial masks. For training
and testing, the dataset was divided into two equal parts. However, in the literature,
a common approach is to allocate 70% for training and 30% for testing and validation
[168]. Additionally, to enhance the dataset, internally labelled data were used with the
assistance of other segmentation tools and under specialist supervision. However, these
datasets were not made publicly available [169, [170]. Among the available neural net-
works, convolutional neural networks (CNNs) with 3D kernels are the most commonly
used [171, 172, |173] [168]|. An alternative approach was proposed by Yun et al. [169],
in which three cross-sections are analysed collectively for voxel classification. Another
notable solution is the method introduced by Charbonnier et al. [168], which is not
directly used for segmentation but rather for detecting leaks in segmentations gener-

ated by proliferative segmentation methods. Other methods found in the literature are
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largely based on the UNet and VNet architectures, which have been repeatedly proven
to perform well in image segmentation tasks [115|. Garcia-Uceda et al. have proposed
several solutions based on the U-Net architecture. One approach utilises large data
patches and various augmentation techniques [174]. Another method combines U-Net
with graph neural networks (GNN) [175]. Additionally, a patch-based solution incor-
porating a 3D U-Net was introduced, leveraging a large and diverse dataset [173|. The
graph-based structure of the airways drives methods of Jin et al. [176] and Meng et al.
[177], who used the U-Net architecture but applied convolutions along the extracted
centerlines. Qin et al. [178] and Zhao et al. [179] also exploit the fact that airways form
a fully connected structure, using voxel connectivity analysis or tracking the airway
length through the application of a 3D U-Net architecture. Later, Qin et al. [180] pro-
posed an approach for airway segmentation that incorporates feature recalibration and
an attention module, using the U-Net architecture as a base. Nadeem et al. introduced
an iterative "freeze-and-grow" method using U-Net, where the airway segmentation is
repeatedly passed through the U-Net network, gradually growing the airways up to the

terminal bronchioles.

Despite so many approaches, only a few have been shared as a ready-to-run product.
Making it hard to reproduce and test. Although neural network approaches appear to
be the most prominent, they usually use internal datasets for training. The lack of data
makes it impossible to achieve the same results as the authors. Following that, a novel,
easy-to-implement method for airway extraction with an emphasis on the correctness
of the resulting segmentation was proposed. It is based on the properties of the Hessian

matrix eigenvalues, connectivity analysis and iterative growth of the segmentation.

6.3 Methods

6.3.1 Mediastinum segmentation

Mediastinal segmentation is needed to initiate and perform the bronchial modelling
procedure. For this purpose, a convex hull of a lung mask was calculated. To separate
the lung mask from the mediastinum, the lung mask was subtracted from the resultant
convex hull mask. A morphological opening operation was performed to eliminate any
residual noise in the image. From the resulting mask, the largest object was selected

using the connected components method, thus obtaining the mediastinal mask.
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6.3.2 Trachea segmentation

The trachea connects the esophagus and the bronchial tree, diffusing into the lung
parenchyma. The tracheal mask is required to start the bronchial modelling procedure
and outline the trend line controlling the modelling process. Based on the results of
the Vegas-Sanchez-Ferrero et al. [181] study showing the theoretical median values of
Haunsfield units (HU) in the trachea, the cut-off values were set at -1024 HU and -920
HU. The threshold resulted in a set of non-connected objects (masks) in 3D space.
The trachea is one of the largest objects in the set. Still, since there are cases in which
the diaphragm turns out to be larger, the object to be searched must be as close as
possible to the centre of the 3D matrix, which defines the space in which the objects
are located. To detect an object corresponding to the trachea within the set, an object
was identified that maximised two conditions: its size and its position relative to the

centre. Example trachea segmentation is shown in Figure [6.3]

Figure 6.3: Trachea mask resulting from described methodology.

6.3.3 Rough High and Low attenuation elements segmentation

The rough mask of high and low attenuation elements was created using the Gaus-
sian Mixture model method. The segmented lung area served as an input signal from
which the distributions were derived. The number of components for this part was fixed
to 3. The first component was supposed to be reserved for air, but when the patient
suffers from severe emphysema, this component covers the emphysematous changes.
The second component was a supporting component, reserved also for the air in most
cases, but could also contain mild ground glass opacities. The third component was
reserved for high-attenuation objects like solids, walls, fluids, consolidations, and ves-

sels. The intersections of the Gaussian distributions were marked as thresholds which
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were applied to the image. This resulted in 3 thresholds and 4 segmentations. First
and second segmentations were joined, creating a low attenuation rough segmentation
(LARS). The third and fourth components were also joined, creating a high attenuation
rough segmentation (HARS).

6.3.4 Speed map creation

The final speed map image is a combination of two other maps, both made based
on the low attenuation rough segmentation (LARS). The first map was created by
calculating the gradient magnitude from the LARS Eq. and passing it through
the bounded inverse function Eq. [6.2] This way preserving the LARS structure and

penalizing the narrowing.

IVI(z,y,2)| = \/(%)2 - (g—;)z + (%)2 (6.1)

/ 1
I =
L+ [|VI(z,y,2)|

(6.2)

The second map was created by passing the air mask through a Sato filter. Sato
vesselness filter is a Hessian-based method designed to highlight bright tubular struc-
tures [148|. Hessian matrix of the 3D image at point p = (x,y, z) is defined in Eq.
6.5

821 821 821
Lio(p) Luy(0) ILea(p) ) 2l 210
_ 2 _ _ | 8?1 921 021
Hp) = VW) = | 1e) Tu(e) L:)| = |58 B8 52| (69)
021 921 021
1:0) L) L0)] |G G2 2

It is important to note that to calculate the Hessian matrix for a 3D image, it
must be continuous and twice-differentiable. However, the images are digital, non-
continuous, and non-differentiable. Therefore, before calculating the Hessian matrix,
the image is convolved by the Gaussian filter Eq. [6.4]
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I?(p) = G(p; o) * 1(p) (6.4)

Where G(x;0) is a Gaussian kernel of scale o and * is a convolution operation. This
creates a relation between vessel size and the scale of the Gaussian filter; only vessels as
thick as the scale will be considered by the filter. The multi-scale space representation
of the image was created; using its properties, the equation can be rewritten [182]. As

an example, an equation in the new form is shown for I..(p; o) Eq. .

2 2

Lai0) = 5 (650 T} = { 456l o) b 1) (65

Now, the Hessian matrix equation can also be rewritten.

H(p;o) = VI(p;o) = L.(p;o) 1y(pio) I,.(p;o) (6.6)

L.(pio) Ly(p;o) L.(p;o)

Let eigenvectors of the Hessian matrix be e1(p;0), es(p;o) and ez(p; o) with
eigenvalues A\ (p; ), A2(p; o) and A3(p; o). Calculating eigenvalues for every voxel in
an image results in collections A\;, Ay and A3 (A} < Ay < A3). If the vessels in the image

are represented by the light tubular structures present on the dark background, they
express properties [6.7]

A a0 and X\~ N3 <0 (6.7)

Sato vesselness filter builds on these properties, starting by sorting eigenvalues \;
SO A1 = Xy > A3. Then the eigenvector e; is associated with the main direction of
the vessel and the eigenvectors e, and ez are associated with a tube’s cross-section.
Following that, the eigenvalues A\ and A3 represent the size of a cross-section and
A1 length of a tube. Sato proposed a formula based on the sign of A\; with control

parameters oy and as Eq. ?77.
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Where A\, = min(—MXa, —A3).

The created Sato useless image was normalised, values less than 0.05 were clipped,
and the image was multiplied by the air mask. The image created contains high
values in the tube-like voxel complex and low values elsewhere. For the Sato filter,
the following values of o0=[2, 3, 5| were taken as Gaussian filter scales. The speed
image resulting from a combination of LARS’s gradient magnitude and Sato filtering
is presented in Figure [6.4]

Figure 6.4: Final speed map image resulting from the multiplication of speed
components.

6.3.5 Seed points generation

Thresholding LARS determines the seed points for the fast marching algorithm
with the mean value of the voxels in the trachea. Voxels located in the airways have
significantly lower HU values than voxels located in the lungs, even though their in-
tensities indicate the presence of air according to the Hounsfield scale. This is because
there are alveoli in the lungs. The walls of the alveoli have a higher density than the
air, which increases the attenuation coefficient and increases the voxel HU values. The

average of the air present in the trachea was calculated to obtain the initial values for
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the fast-marching algorithm. From this value, the original image was multiplied by
the air mask and was thresholded below the calculated mean, yielding a set of initial

values for the fast marching algorithm.

6.3.6 Fast Marching segmentation

The created speed image and seed points image served as an input to the Fast
Marching algorithm. The output time crossing map was limited to a maximum cross-
ing time value of 10 and is binarised for further analysis. To find the mask’s element
representing the airway approximation, the mask was labelled using the connected com-
ponents method. Each component’s mask was then compared to the trachea segmen-
tation using the Jaccard index. The most similar component mask was then selected

as the airways approximation.

6.3.7 Airways wall guided segmentation

The segmentation from the previous step (Fast Marching segmentation) may include
over-segmentations due to the marching front extending beyond the lung surface. To
remove these segments, the algorithm assumed that airways were surrounded by highly
attenuated walls. The airway walls were found by applying a dilation operation with
a sphere-shaped structuring element of radius 3. Airway walls were obtained when
the dilation result was multiplied by the processed mask created from the third GMM
component. After that, to the resulting wall mask, the morphological closing operation
was applied. Multiplying the resulting mask with the original airways mask returns the
final airways mask. Both airways and their walls were marked on the output segmen-

tation mask. The example airways model before and after wall guided segmentation is
shown in Figure [6.5]

6.3.8 Over and Under segmentation detection

The proposed method is unsupervised, making it difficult to evaluate the quality
of the results. Therefore, an unsupervised method for faulty segmentation detection
was proposed based on the Hubert outliers [183] detection method. The resulting
segmentations of the bronchial trees were marked with values from 1 to 9. Mark 5

indicates proper segmentation, marks 1 to 4 indicate under-segmentation, and marks
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Figure 6.5: First subplot, airways mask after the Fast Marching segmentation, second
subplot, final airways mask after wall-guided segmentation.

6 to 9 indicate over-segmentation. Segmentations marked 1-3 and 7-9 are considered
incorrect. Segments marked 4 and 6, despite the absence of some branches or minor

leakages into the lung parenchyma, are considered sufficient.

From each resulting segmentation, a set of features was calculated. This set includes
basic properties of the segmented airways, such as the number of voxels and volume in
millilitres, as well as characteristics of the airway’s final branches. The final branches
were segmented using the following operations. A convex hull was created from the
airway segmentation. The convex hull was then eroded using a cube structuring el-
ement of size 10. The result of the erosion was subtracted from the convex hull and
multiplied by the airways, resulting in an image containing the end-airway branches.
Each independent branch was labelled, and the following features were calculated for
each branch: area, major axis length, equivalent diameter area, Fuler’s number, ex-
tent, and the area filled by the convex hull. The branch features were aggregated using
the maximum, minimum, mean, and standard deviation functions so that a single
value per feature represented each segmentation. Additionally, the number of labelled

components was added to the feature set.

To find the feature that best represents the quality of the segregation, the Spearman
correlation between the calculated feature and the created marks was counted. The
feature with the highest correlation coefficient was used to calculate box and whiskers
using the Hubert method [183]. The data points outside of the whiskers were considered

outliers, either over or under segmentations.

48



Chapter 6: Airways 6.4 Results

Figure 6.6: Example airways segmentations from each mark, 1-4 under-segmentation,
5 proper segmentation and 6-9 over-segmentation.

6.4 Results

The resulting segmentations were marked with values from 1 to 9, where 5 indi-
cated proper segmentation, 4 and 6 sufficient segmentation, and 1-3 and 7-9 faulty

segmentation. Example segmentations of each mark are shown in Figure [6.6]

Most of the airway segmentations are of proper quality, that is, they belong to
group 5, comprising 614 images, which represents 55.22% of the total set. The suitable
quality segmentations, labelled 4 and 6, consist of 163 (14.66%) and 201 (18.26%)
segmentations, respectively. Fourteen 14 ( 0.01%) segmentations were included in the
group, consisting of segmentations with under-segmentations, denoted by values 1-3.

The group of images with visible over-segmentations, denoted by 7-9, included 118
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(11.85%) segmentations. The resulting distribution of airway segmentation quality

values is presented in Figure [6.7

Figure 6.7: Distribution of airway segmentations’ marks, the majority of
segmentations are of good quality (5) or sufficient quality (4, 6).

The segmentation features were calculated, including volume features (number of
voxels, volume in mm) and terminal branch features (area, major axis length, equivalent
diameter area, Euler’s number, and extent). Spearman’s rank correlation was calcu-

lated between features and marks. The resulting correlation coefficients are shown in
Figure 6.8
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Figure 6.8: Barplot showing correlation coefficients of the features tested against the
grade of the airways segmentation.

The highest positive correlation coefficients have features derived from the number
of objects, reflecting the number of final branches of the segmentation. The second-
highest correlation score has a feature related to the volume of the segmented airways
mask. Close to the value of 0.3 are features related to the Euler number, that means,
the number of objects minus tunnels and holes in the mask. The median length of the
main object vectors and the minimum value of the Euler number of objects have the

highest negative correlation coefficients, see Figure

To detect faulty segmentation, the Hubert outlier detection method [183] was used.
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The over and under segmentations (faulty segmentations) were marked as 1-3 or 7-9,
respectively, whereas those marked as 4, 5 and 6 were considered proper segmentations.
Based on the feature with the highest correlation coefficient, a boxplot was created
whose whiskers were determined using the Hubert method presented in Figure [6.9]
Segmentations outside the whiskers are considered abnormal, whereas those between
the whiskers are considered normal. The summary of the results was included in Table

0. 11

Figure 6.9: Boxplot, where the whiskers were calculated using Hubert et al. |183],
and used for filtration of the faulty (outlying) airways segmentations.

Grade 1 2 3 4 5 6 7 8 9

Counts 1 3 10 163 614 203 95 35 28

Accuracy [%] 100  66.7 20 994 995 509 971 964  96.4

Table 6.1: Outlaying segmentations detection accuracy is shown per grade in the
table. Grades 1-3 and 7-9 represent faulty and 4-6 proper segmentations. The system
assigns 0 to faulty and 1 to proper segmentations.
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6.5 Disscussion

A three-component Gaussian Mixture Model (GMM) method was developed for
initial low and high attenuation patterns distinction. The decision was made mainly
based on the presence of two dominant structures in the lung parenchyma: air and
fluids like blood. The third component was reserved for abnormal changes. However,
alternative methods for voxel grouping could be considered. For instance, when work-
ing on airway detection with COVID-19-related inflammation, more components could
be considered due to the presence of ground glass opacities. These types of inflamma-
tion, characterised by varying tissue densities, could confound the initial low and high

attenuation tissue distinction process.

There are cases of airway segmentation where the terminal branches of the bronchial
tree are not accurately delineated. This is because the farther into the pulmonary
parenchyma the branches of the bronchial tree are drawn, the higher their HU values
become, more and more similar to the HU values of the pulmonary parenchyma. The
boundary between them and the parenchyma becomes blurred, and leaks, or direct
connections to the branches to the alveoli, also become more frequent. In its current
form, the method works well enough for the task set before it: to process CT im-
ages before the next processing steps. The next steps are automatic thresholding and
quantification of emphysematous changes. So the method’s main goal is not to remove
fragments of the bronchial tree with HU values close to the HU values of the lung

parenchyma.

The method employed the Sato filter [148] to generate a velocity map, selected
for its resistance to noise and its ability to control the size of detected structures by
adjusting the sigma parameter. The Frangi [149] and Meijering |150] filters were also
tested during method development. The Frangi filter struggled to filter out structures
at the high noise levels typical of LDCT scans and performed poorly in detecting small
structures. The Meijering filter was overly sensitive to narrow, smaller tree fragments
but less effective with thicker structures. To determine the most effective filter, further
investigation into their performance and the influence of their parameters on the results
would be required. It is possible that one of these filters could address the issue of

accurately segmenting terminal bronchial segments.

Regarding the correlation of features with groups and their ability to distinguish

over-segmentation and under-segmentation groups using the Hubert method [183], it
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was initially expected that the most strongly correlated features would be the volume
of the entire bronchial tree, the Euler number of the borders, and the length of the main
axis of the borders. The volume feature was indeed one of the most correlated features,
providing good filtering of edge case groups from group 5. However, the volume feature
did not perform as well with features closer to group 5. The Euler number of the edge
also considers the holes that often occur with poor segmentations, but these were less
frequent in groups closer to 5, possibly explaining the lower correlation. The length of
the major axis of the edges could have yielded greater values for Tukey filtering if the
end bronchioles (branches) had been segmented more accurately. The rationale behind
edge analysis is that the end bronchioles should be tube-shaped. However, the method-
ology employed in this study does not ensure accurate segmentation of these structures.
Achieving such accuracy would have required a branch-by-branch analysis of the tree
until no further connections were found in the analysed branch. This approach was
not chosen, as over-segmentation cases often result in closed loops of branches, which
could lead to erroneous identification of terminal bronchioles. Additionally, such an
analysis would have been highly time-consuming. Therefore, a simplified version of the

method was adopted.

In COPD, the terminal bronchial wall has significant diagnostic information. The
method presented here returns a mask of the wall in addition to the airways themselves.
This allows diagnosticians to accurately analyse the thickness and assess the progression
of the disease. This can be particularly useful for treatment planning in patients with

impaired respiratory capacity but no visible emphysematous changes.
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This chapter discusses and describes low-attenuation pattern segmentation methods
based on computed tomography images of the thorax. The main goal of this segmen-
tation pipeline is to find and mark voxels of specific areas of lung parenchyma that are
afflicted with emphysematous changes. The sub-goal is splitting the afflicted regions

into sub-regions based on their connectivity and position.

Methods presented in this chapter are based on adaptive thresholding and the key
assumption that healthy structures visible on lung CT scans, similar in value to the
areas being searched for, are removed before the method starts. Analysis of the CT
scans is performed per-slice, for which Gaussian mixture models are created at the
intersections of which cut-off thresholds defining separate clusters are determined. As
low-attenuation values characterise emphysematous lesions, the first cluster contains
voxels that are considered to be emphysematous lesions. Within a single CT series,

the lesions are further clustered based on their location and degree of connectivity.

7.1 Motivation

In the case of low attenuation patterns, as mentioned previously, in the scope of the
study, the main emphasis was placed on emphysematous changes related to chronic ob-
structive lung disease. In clinical practice, the degree of lung destruction by pulmonary
emphysema is measured by the pulmonary function test (PFT), which is primarily a
spirometric test. The test result is compared with the expected lung function values.

However, PFT is only effective in severe cases. Studies have shown that for a spiro-
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metric test to yield an alarming result, a significant amount of lung tissue must be
destroyed [184]. Practical medicine lacks a tool for the early detection of COPD with
sufficient sensitivity. In addition, PFT does not provide precise information on the ex-
tent and location of the changes, which is crucial for further treatment as centrilobular

and panlobular emphysema are fundamentally different [145] 146].

7.2 State of the art

Methods for identifying changes belonging to the group of low-attenuation patterns
are mostly unsupervised. The first automatic systems for analysing emphysema were
developed in the 1990s, using simple techniques like thresholding [185], region-growing
algorithms [186], or dividing the lung into areas from top to bottom [187|. The statistics
and characteristics of these areas were then calculated. These numerical values were
used in classifiers to either identify disease areas or assess the severity of damage.
Despite the simplicity of these methods, they achieved high accuracy in classification

and were able to distinguish different stages of emphysema.

In the following years, researchers attempted to solve the problem of detecting
or segmenting emphysematous lesions of the lung parenchyma. They proposed new
systems or built on previous work, adding modules to increase the accuracy of the
method. Older approaches tended to lack variety in the origin of the data due to the
limited possibilities in the data transfer. As data transportation became an issue of
the past, more and more studies have found that previous systems tend to be biased
toward data of similar origin. This raised the need to universalise the approaches by
making them resistant to the effects of differences in reconstruction kernels, CT scan
layer thickness, and scanner manufacturer. An example is the work of Vegas-Sanchez-
Ferrero et al.[188|, which enables the use of the same cutoff thresholds to segment lesions
on CT images from different centres by harmonising CT grey level values. A similar
threshold-based solution was proposed by Hame et al. [189] they also noticed that
fixed cutoff thresholds are not applicable if the studies come from different cohorts or
centres. They proposed using a parametric intensity distribution model and a hidden
Markov measure field model to detect areas of the lung affected by emphysematous
changes. The paper Almeida et al. [190] is based on the idea of top-down division of
the lung parenchyma. They have analysed many CT images by dividing them into top-

down cubic regions based on these, creating a pattern to characterise emphysematous
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lesions. The detection task reduces the problem of detecting anomalies by comparing
the image being studied with a healthy reference model. An interesting variation of
this solution is the method proposed by Mirela T. Cazzolato et al. [191], where the
authors propose turning cubes into superpixels, which become supervoxels in the case
of 3D images. By analysing each area and calculating metrics and features, they create
a heat map that allows them to pinpoint areas affected by emphysematous lesions and
other types of lesions. The patch-based approach was also used in the work of Ling
Cheng et al. [192], where the lungs were divided into cube volumes of interest (VOI)
and analysed by the graph convolution neural network. Patch-based approaches do
not segment the lung parenchyma but classify the supposedly infected areas. Li et al.
[193] took a similar approach, also divided the lungs into zones, and analysed them

using a graph convolutional neural network.

Graph neural networks are not the only neural network type finding application
in this problem; the work of Suzuki et al. [194] uses 2D UNet networks to segment
emphysematous lesions from the lung parenchyma. The authors report the use of a
rich dataset consisting of single-detector cross-sections of approximately 400 patients
for training. Unfortunately, the dataset has not been shared for public use. The work
of Peng et al. [195], due to the lack of fully labelled data, proposed a semi-supervised
approach in which only part of the data was annotated and missing annotations were
made online during the training process. The lack of labelling in the data is one of
the main reasons why, despite the importance of the task, the topic of segmentation
of emphysematous lesions is not often addressed. In the literature, the classification of
lesions is more frequently found [196} (197, 198, 199].

A literature review reveals the biggest problem holding back the further devel-
opment of emphysematous lesion segmentation methods, namely the lack of labelled
data. This is a common problem; rarely are even the largest consortia able to tag
enough diverse CT data to train a network that can be uniquely applied to this prob-
lem. Therefore, as part of this dissertation, the performance of an algorithm based
on unsupervised learning was tested. As described in the "Anatomy" chapter and the
"State-of-the-art" sub-section, emphysematous lesions are heterogeneous in position
and shape but homogeneous in grey-level intensity. It is hypothesised that threshold-
ing methods can be used to determine the intensity level of the lesions in the patient’s
lung parenchyma. This class of methods was effective in the 1990s, but with advance-
ments in image quality, the homogeneity of grey-level intensity has been partially lost.

Adaptive thresholding has been chosen for the proposed method. The only structure
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with similar intensities of Hounsfield units are the airways, which were removed using
the approach outlined in the Chapter [6] "Airways". The approach presented in this

chapter results in the creation of a mask for emphysematous changes.

7.3 Methods

Two methods for adaptive thresholding of a CT series were tested and compared.
The first method, the Approximate Threshold Estimation (ATE), was based on the
Mimseg method from the work of Binczyk et al. [200]. The pipeline of the method is
presented in Figure[7.I] The second method tested was the Exact Threshold Estimation
(ETE) method; the pipeline of the method is presented in Figure

) - GMM

> Slice 1 71 decomposition I
) - GMM . Membership y

> Slice 2 P| jecomposition ]—»[ Grouping Hmncﬁon creation]—)[ Final thresholds ]
) - | GMM

h’\____jl.lf:‘lﬁ"‘ "1 decomposition I

Figure 7.1: Approximate Threshold Estimation (ATE) pipeline.

Both methods aim to use Gaussian mixture models (GMM) decomposition to es-
timate segmentation thresholds for the image. Both methods analyse the 3D image
section by section by decomposing it into Gaussian components represented by the
normal distribution parameters. The main difference between the methods concerns
the point at which the components are clustered. In the ATE method, the cluster-
ing occurs after the Gaussian components have been separated in 3D space, while in
the ETE method, the thresholds for the cross-sections are determined first, which are
clustered between the cross-sections instead of the distribution parameters. Detailed

descriptions of the methods are given below.
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Figure 7.2: Exact Threshold Estimation (ETE) pipeline.

7.3.1 Preprocessing

The lung region was extracted from the original CT series and the bronchial tree
was removed based on previously developed algorithms. The image prepared in this
way, denoted by S, was iteratively analysed in the axial direction, where cross sections
in which the lung parenchyma represented only 10% or less of the total area were

eliminated.

7.3.2 GMM decomposition

The prepared cross-sections were decomposed into a set of normal distributions
using Gaussian mixture modelling (GMM). Given the signal (density of the voxel grey
levels) GMM aims to decompose it into a collection of Gaussian distributions called
components. The probability density function for each distribution in the GMM is
defined by the Eq[7.1]

N(X|p,0) = e~ (e=n)"/207 (7.1)

o\ 2w

Where X is an input data, x is an input data point, p is the mean of the Gaus-
sian distribution, and sigma is the standard deviation of the Gaussian distribution.
Assuming there are K different distributions, the probability density function for the
Gaussian Mixture Model is defined by Eq. [7.2]

p(X) = Z@kN(X’,Uk, o) (7.2)
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Where the o symbol denotes a mixing coefficient of k£ distribution. The following

steps make up the mixture modelling process:

1. Initialise values of u, 0 and « for every distribution,
Values can be initialised randomly, can be given manually or can be created by
an algorithm, like for example k-means.

2. Expectation step - calculating p(6x|X),

Parameters of the distributions in the mixture are estimated using the Expec-

tation Maximisation algorithm. It calculates the likelihood function of the data
given the parameters (Eq. .

£ = p(Xljue. o) = [ ) = [T D 0o (ale o) (7.3)

To simplify the computations the likelihood function is transformed into the log-
likelihood function (Eq. [7.4)).

N K
LL=In(L)= Z lnz aplN (Xn |k, %) (7.4)
k=1

n=1

Assuming that 6 is a set of attributes for k-th component. To estimate parameters

based on log-likelihood, hidden variables based on the Bayesian Theorem are
computed using Eq.

apN (X g, ox)

T K (7.5)
2 k1 N (X, 1)

p(6xX)

3. Maximization step - calculate p1, o1 and a**1,

To find the maximum log-likelihood function, the derivatives over LL parameters

i, o and « are calculated, the derivatives then have to be 0. Equations are shown
below for following u Eq. [7.6] 0 Eq. [7.7 and o Eq. [7.§

i+l _ 25:1 p(0r|X) s,
M peX) =
(it1y? = Lo POLX) n — 1) -

> P(0xX)
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it1 27]:[:1 p(0k|X)
W TN

4. Calculate log-likelihood for new parameters,

5. If convergence stops, else go to step 2.

Multiple numbers of desired mixtures/distributions k& were tested from 3 to 10. For
each k Bayesian inference criterion (BIC) was calculated. Bayesian inference criterion
(BIC) [201] is a measure used in statistics; it grades model quality considering the
complexity of the model and its fit to the data. It is used mainly to compare multiple

models to select the best one by balancing the number of parameters and the likelihood

of fit (Eq. [7.9).

BIC = kIn(n) — 2In(L) (7.9)

k - number of model parameters (in the GMM case, number of mixtures),

n - number of observations,

L - the likelihood of parameter fit (in GMM case, defined by .

A lower BIC value indicates a better model; the model fits the data well with a min-
imal number of parameters. BIC is a similar measure to the AIC (Akaike Information

Criterion), but in comparison, BIC penalises the model more for its complexity.

The optimal number of mixtures was determined by the selection of the model with
the lowest BIC. Once the optimal Gaussian mixture model for the cross section was
obtained, each resulting distribution was analysed, eliminating distributions where the
value of « is less than 0.01. As a result, for the series, the collection of i, o and o was

obtained with the indication for which slice the parameters were estimated.

7.3.3 Grouping

The grouping phase is performed in the different parts of the pipeline for ATE and
ETE methods. For ATE, the grouping was performed in the middle of the pipeline,
right after the per-slice GMM decomposition; for ETE, it is a pre-last step of the

pipeline, performed after the derivation of the slice thresholds.
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Gaussian Mixture Models (GMM) were used for the ATE, grouping was performed
in the 3D space of a;, ;4 and 0. The GMM was initialised with a full covariance matrix
and weighted by 2 in the u feature space. An optimal number n of clusters was derived

using the BIC criterion, where n with the smallest BIC score was selected.

K-means was used for the ETE, grouping was performed in the space of the thresh-
old derived later in the pipeline. Cluster centres were initialised using the kmeans+-+
method. The optimal number of clusters n was calculated based on the inertia, that
is, on the sum of the squares of the cluster points’ distances from their centre. The
inertia is tracked through the changing n, and the point of the largest change between

consecutive inertia values is selected as the optimal n.

7.3.4 Membership function creation

A membership space was created from the Gaussian mixtures. The membership
space consists of a x vector and y array, the x vector stores sorted values ranging
from a minimum value of the voxel in the series to the maximum value of the voxel
in the series with a 0.1 step difference between consecutive numbers. The array y
contains Gaussian probability density functions calculated based on the vector x and
the parameters of the mixtures. The values stored in y were normalised at each point
x; where min(S) < i < max(S) so that at each Z?Zl yi; = L.

7.3.5 Slice thresholds

For the ETE, the cut-off thresholds were derived for each cross-section based on
the membership function. The order in which the cross-sections are processed was
irrelevant; therefore, the operation was performed in parallel. After obtaining a set of
thresholds for all cross-sections in the series, the thresholds stored in the matrix are

subjected to a clustering operation.

7.3.6 Final Thresholds

Cut-off thresholds are determined at the intersections of the curves of the mem-
bership function. For ATE, the final cut-off thresholds were derived based on the
membership function created from the clusters created in the «, p, and o space, as

shown in Figure (7.3
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Figure 7.3: Three-dimensional space of normal distribution parameters (mean, std
and alpha) showing final clusters coloured by threshold resulting from the ATE
method.

For ETE, the final cut-off thresholds were obtained by taking the x-value of the

centroids of the clusters from the grouping phase, as shown in Figure [7.4]
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Figure 7.4: Final clusters and threshold resulting from the ETE method.

7.3.7 Comparative analysis of methods

From the set of COPDGene images, those with clear emphysematous changes and
those without were collected. The sum of the segmentation HU distribution values for
both methods was calculated and normalised by the number of patients. Expected
values were derived based on the summed distributions; the expected value of the no-
changes group marked the threshold that indicated a lack of emphysematous lesions
in the patients lung parenchyma. The CT series without emphysematous lesions were

removed from the comparative analysis of methods.

The difference between ATE and ETE emphysema threshold values was calculated.
A Jarque-Bera test at a significance level of o = 0.05 was applied, with the null
hypothesis stating that a normal distribution can model the distribution of the given
samples. The selection of the Jarque-Bera test was motivated by the large sample size.
Following that, either the Mann-Whitney U Test or the Wilcoxon tests were conducted.
The selection of the test depended on the outcome of the Jarque-Bera test. The Paired
T-test would have been conducted if the null hypothesis of the Jarque-Bera test was
not rejected, and the Wilcoxon test would have been conducted if the null hypothesis
of the Jarque-Bera test was rejected. Both tests were executed at a significance level of
a = 0.05, with the null hypothesis suggesting equivalency in the means/medians of the

compared groups. Both test results were supported by the effect size in the form of a
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rank-biserial correlation. If a significant difference was found, the tests were conducted
independently on the GOLD groups within the scope of the COPDGene dataset.

It is important to note that the number of samples per GOLD group is different,
thus the p-values resulting from the test cannot be compared. In such a situation, it
is recommended to analyse the significance of the results based on the effect size E'S.
Based on the work of Cohen et al. [202] the Wilcoxon test assumes that differences be-
tween values are negligible when |ES| € [0,0.125], are small when |ES| € [0.125,0.304],
are medium when |ES| € [0.304, 0.465] and are large when |ES| € [0.465, 1]. The sign
of ES indicates the direction of the effect. If the effect is positive, then the ranks of the
first group’s values are larger; if it is negative, then the second group’s ranks are larger.
Given the data analysed, a positive ES value means that the ATE method has lower
thresholds, and a negative ES value means that the ETE method has lower thresholds.

At this stage of the analysis, it is assumed that only images containing emphysema-
tous lesions are analysed. This assumption results from the first step of the analysis.
This means that any differences in thresholds will indicate an overestimation or un-
derestimation of the lesion area by one of the methods. To determine whether there
is an overestimation or underestimation, this part of the analysis was paired with a
trend analysis of the volume of change in the group. Regarding the analysis of the
COPDGene data, it must be kept in mind that GOLD values do not directly indicate
the presence or absence of changes. Therefore, GOLD values and lesion volumes are
not expected to be directly correlated. However, a trend indicating an increase in lesion
volume with the GOLD standard is expected.

7.4 Results

The lung area was extracted from chest CT scans, and the bronchial tree, delin-
eated by the methods detailed earlier, was excluded. These modified images were then
processed using an adaptive thresholding technique. This procedure resulted in a seg-
mentation divided into n segments, where n differed among patients. For ATE, the
thresholds are drawn at the intersections of the membership functions; the average
value of the number of thresholds is 3.66 with a standard deviation of 1.14. For ETE,
the thresholds are drawn from the centroids of the clusters; the average value of the
number of thresholds is 4.81 with a standard deviation of 1.24. This results in an

anticipated outcome of 4 to 6 segments appearing on the output segmentation for both
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(a) GOLD 0 (b) GOLD 1 (¢) GOLD 2

(d) GOLD 3 (e) GOLD 4

Figure 7.5: Example results of ATE segmentation method shown on CT patient
images with each GOLD standard classification a) GOLD 0, b) GOLD 1, ¢) GOLD 2,
d) GOLD 3, e) GOLD 4.

methods. Despite the large amount of information, only the first and second segments
were analysed. The first segment contains the tissue with the lowest attenuation val-
ues, the air. As described in the Anatomy chapter, emphysematous lesions lead to the
destruction of alveoli, causing them to merge and create a hollow area. The space is
then filled with air, hence the low attenuation values. The second segment contains
healthy lung parenchyma with alveoli whose walls increase the attenuation coefficient.
The rest of the segments represent other structures present in the lung such as vessels,

interlobular septa, and other lesions. Example segmentation results are presented in
Figure [7.5]

The methods described in this chapter are used for automatic and unsupervised
segmentation of emphysematous lesions. In their absence, the determined threshold
should describe the HU values of the lung parenchyma. To determine the value of this

threshold, 171 images from the GOLD 0 group, which did not contain emphysema,
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and 330 images from the other groups, which contained emphysematous lesions, were
selected from the COPDGene collection. Based on the calculated segmentations in
both methods, a histogram of these segmentations, ranging from -1000 HU to -800
HU was plotted. Histograms were graphed based on lesion occurrence, and then the
histogram bar values were summed and divided by the number of patients in the group.
This produced two curves with expected values defined by their peak and intersecting

at one point.

(a) Emphysema segmentations ATE HU (b) Emphysema segmentations ATE HU
values distributions of patients with values distributions of patients with
changes (red) and without changes changes (red) and without changes

(green). (green).

Figure 7.6: Distibutions of HU values in the segmentations done by ATE and ETE
methods in patients with and without emphysema.

The expected value for the ATE method in the case of the Emphysema class is -970
HU and in the No emphysema class is -900 HU[7.6al The ETE method’s expected value
in the Emphysema class is -958 HU and in the No emphysema class is -899 HU [7.6b|
The literature reveals that emphysema changes fall within the threshold range of -900
HU to -1000 HU (Chapter [3.8.4). Based on the results and literature, the threshold
deciding whether the emphysema is present was set to -900 HU. This suggests all series

with thresholds over -900 HU do not contain emphysematous changes.

Before competitive analysis, the series with threshold values over the -900 HU were
separated from the set resulting in the data with a sample size of 1029. The difference d
between the thresholds ¢ from ATE and ETE methods was calculated d = t orr —terE.
The Jarque-Bera test for normality indicated that the data significantly deviates from

a normal distribution, p < 1075, W = 126.771. Because the sample size is large, the
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normality test results could be wrong. In addition, the qqplot was made and is shown
in Figure[7.7 Most samples deviate greatly from the diagonal and are not included in

the confidence intervals. Therefore, the assumption of normality is violated.

oo

Ordered quantiles

R?=0.949

-3 -2 —1 0 1 2 3
Theoretical quantiles

Figure 7.7: The qqgplot of the differences between AT E — ET E methods shows that it
is not normally distributed data.

The non-parametric Wilcoxon test revealed a significant difference between the two
thresholds (p = 0.0146, RBC = —0.0953). The Wilcoxon test was repeated for each
group to see differences in cut-off thresholds between groups. Significant differences
in cut-off thresholds were observed for the first three GOLD grades, GOLD 0 with
p-value = 0.029500 and RBC = 0.240367, for GOLD 1 p-value = 0.013416 and RBC
= —0.394775, for GOLD 2 p-value = 0.041328 and RBC = —0.140190. For GOLD 3
and GOLD 4, the p-values indicated no difference between the threshold values, with
GOLD 3 p-value = 0.177675 with RBC = —0.097215 and GOLD 4 p-value = 0.058607
and RBC = —0.163969. Figure[7.8|shows differences between thresholds per the GOLD

standard.

The non-parametric Wilcoxon was performed per GOLD group, where the effect size
RBC was emphasised and analysis was paired with emphysema volume trend analysis
(Figure . Additionally, the box plot of differences was plotted in Figure The
results of the Wilcoxon test with the sample sizes of groups were stored in Table[7.1] All
RBC values are negative, indicating lower thresholds in the ETE method. In the GOLD
0 group |RBC| < 0.125 which indicates a negligible difference in method thresholds.
As can be seen in Figure the median value of the difference is close to zero, but

their interquartile range is the largest relative to the other groups. Its upper quantile is

68



Chapter 7: Low attenuation patterns 7.4 Results

Figure 7.8: Boxplots showing the difference in the thresholds between the ATE and
ETE method per-GOLD standard group.

GOLD N p-value \)\% RBC
GOLD 0 Wilcoxon | 144 | 0.776266 5077.0 -0.027395
GOLD 1 Wilcoxon 57 0.025055 544.0 -0.341803
GOLD 2 Wilcoxon | 342 | 0.002034 | 23388.5 | -0.193083

GOLD 3 Wilcoxon | 289 | 0.001806 | 16515.0 | -0.211789
GOLD 4 Wilcoxon | 197 | 0.065725 8276.5 -0.151259

Table 7.1: Non-parametric Wilcoxon test results showing the strength of the
thresholds difference in ATE and ETE methods.

close to the value of 18.79, and its lower quantile is -13.95, indicating greater variation
in the threshold values of the ATE method. GOLD 1 0.304 < |RBC| < 0.465 indi-
cates a medium effect; the ETE method is more sensitive and returns lower threshold
values. Lower threshold values result in small segmented regions. In the GOLD 2 group
0.125 < |RBC| < 0.304 indicates a small effect, meaning there are small differences in
thresholds. In the difference boxplot shown in Figure[7.8, GOLD 2 has the largest and
most outliers, with values as high as 100 and as low as -100. The GOLD 3 group and
GOLD 4 both have 0.125 < |[RBC| < 0.304, indicating a small effect in both groups.

They both have narrow standard deviations, as shown in Figure [7.8|

The calculated thresholds were used to segment the lesions after the removal of the

bronchial tree. Volumes were calculated from the segmentations created and subjected
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Figure 7.9: Segmented masks’ volumes using ATE and ETE methods.

to trend analysis. Figure shows boxplots of lesion volumes segmented by GOLD
and by the method. The result of the Jonckheere-Terpstra test indicated an increasing
trend for the ATE (p—wvalue < 1%107%) and ETE (p—wvalue < 1%107%) methods. Both
methods have a positive trend and similar distances between group medians. Therefore,
it was checked how many lesions are clinically significant, i.e. make up at least 5% of
the total lung volume. The results of the ATE method consist of 91.042% clinically
relevant segmentations, whereas the ETE method consists of 89.638% clinically relevant
segmentations. The analysis shows that the ETE method has a higher tendency to

under-segment.

Both methods give promising results, but based on the analysis of cut-off threshold
differences and segmentation volume trends, the ATE method is the better choice. In

the case of method ETE, there is a risk of under-segmentation.

7.5 Discussion

The cut-off threshold for images without emphysematous changes was determined
based on the analysis of the distributions of individuals with and without changes pre-
sented in Figure[7.6] It was assumed that if the cut-off threshold is greater than -900
HU, then no change is assumed. The threshold value was determined for statistical
analysis to minimise False Positives (FP). However, this is not a universal threshold
value. Figure shows two cases of GOLD 3 images with a cut-off of (a) -888 and
(b) -893. Both cases have extensive emphysematous lesions and their lung images were
taken on inspiration and with a standard reconstruction kernel. However, presumably

due to a poor choice of parameters concerning the patient’s carcasses, or deliberately
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underestimating the radiation intensity due to the patient’s health status, the emphy-
sematous lesions seen in the cross-sectional images have higher HU values than in the

other cases.

(a) Patient COPDGene A76645 GOLD (b) Patient COPDGene (G46462 GOLD
3, CT scan taken at inspiration with the 3, CT scan taken at inspiration with
standard kernel. standard kernel.

Figure 7.10: Example CT images’ axial slices of patients from the GOLD 3 group
with emphysematous changes whose thresholds were above -900 HU values.

In addition to emphysema, the method can segment other lesions such as consol-
idations or ground-glass opacities. The method returns a range of cut-off thresholds
indicating different tissues. Once the input has been appropriately adjusted and the
thresholds analysed to detect an automatically appropriate range of Hounsfield unit

values, the method can potentially be used with other diseases.
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Chapter 8
Quantification and mapping

This chapter describes the method for quantification of the emphysematous changes.
The main goal of quantification is to summarise findings, in this case, abnormal lung

changes, into a format from which quick conclusions can be drawn.

A novel emphysema quantification method is introduced. It operates by utilising
the segmentation results discussed in the prior chapter, "Low attenuation patterns."
The approach involves extracting features from the ROI and mapping them onto a 2D
space to illustrate patient differences and similarities. Subsequently, this quantification

technique is compared with the GOLD standard value derived from spirometry results.

8.1 Motivation

Providing only a baseline mask of emphysematous lesions in the output is insuffi-
cient for diagnostic purposes. From the point of view of the medical practitioner, it
is crucial to determine the type, distribution, and extent of parenchymal destruction.
Most of the available methods for assessing the severity of COPD are limited to en-
vironmental interviews or spirometric examinations. When it comes to assessing the
lesions visible on CT scans, the analysis is usually limited to calculating the volume of
the lesions in relation to the total lung area, that is, determining the low attenuation
area (LAA) mentioned in the "Biological background" Subsection "Quantification
of emphysema and COPD". Using information derived from the COPDGene dataset
in the form of radiomic features, the dissertation aims to visualise similarities between

different cases of emphysema. This approach will enable better and faster adaptation
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of treatment to the patient’s needs.

8.2 State of the art

Most of the classical methods for the quantification of emphysema used by medical
practitioners have been outlined in the chapter "Biological Background". The major-
ity of the methods mentioned require supervision or depend on manual labour. In
this state-of-the-art analysis, the emphasis will be put on the methods for automatic

quantification of changes.

COPD progresses differently from patient to patient. Treatment must be adjusted
according to the type of changes present in the parenchyma. In the Chapter 3| "Bi-
ological Background" Subsection [3.6.1] "Emphysema", three categories of emphysema
were introduced: centrilobular, panlobular, and paraseptal emphysema. Each is char-
acterised by a different extent, texture, and distribution. When evaluating the severity
of the changes based on LAA, not all features of the emphysema subtypes are taken

into account.

Many research papers have been produced that address the problem of automatic
quantification of emphysematous lesions. These usually come down to two stages,
the first being the description of the lesions by characteristics and the second being
the classification of the lesions or their recognition. It all started with the texture
features of the lesions proposed by Uppaluri et al. to classify emphysema [203|. From
this, the quantification of emphysema lesions slowly gained traction, and researchers
tested approaches using local binary patterns (LBP) [204] or its developed version, local
ternary patterns (LTP) [205], mixing them with Gabor filters [206], or using different
kernels for feature extraction [207]. However, the most popular solutions are currently
based on radiomic features and neural networks. Radiomic features [208} 209], in other
words, are a set of multiple values describing a mask-selected piece of tissue in a medical

image. The set of radiomic features includes:

e First order features - basic statistics like mean and standard deviation,
e Shape features - for example, volume, size, sphericity of the object,

e Grey level co-occurrence matrix (GLCM) features - textural features based on

the voxels’ placement in space,
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e Grey level size zone matrix (GLSZM) - size of the specific grey level zones,

e Grey level run length matrix (GLRLM) - length of consecutive voxels with the

specific grey level,

e Neighboring grey-tone difference matrix (NGTDM) - quantifies differences be-

tween the neighbouring voxels,

e Grey level dependence matrix (GLDM) - describing the local texture information.

The radiomic features listed were tested in many ways; Cheplygina et al. proposed
using a logistic classifier to assign patients to healthy and diseased groups [210]. Li
et al. used the SVM algorithm for this task by giving the calculated lung radiomic
features as input and additionally distinguishing between subtypes of COPD [211].
Yang et al. proposed two approaches to address this problem. The first approach
involves selecting meaningful radiomic features of the lungs using the Lasso method,
followed by dividing the images into subcategories using a multi-layer perceptron [212].
The second approach also selects differentiating features using the Lasso method, but
the final classification is performed using a graph neural network [213]. Amudala et al.
focused on the features of the lungs and bronchial tree by analysing their texture and
shape and then using an algorithm from the Gradient Boosting family to perform the
classification into healthy and COPD lungs [214].

The alternative for radiomic features are neural networks which, when trained prop-
erly, can encapsulate meaningful information from the image about the target against
which they are trained. Gonzéalez et al. analysed a cohort of patients with a smoking
history and COPD using a CNN network. The input was compromised from the 4
canonical CT views and trained according to the data set, either to predict the pres-
ence of COPD or to detect the GOLD stage [215]. Singla et al. trained a generative
network with the latent space connected to the discriminator with the attention mod-
ule. The goal was to predict FEV1 and FEV1/FVC scores indicating the spirometric
capacity of the lungs [216]. Xu et al. trained the CNN network and used it purely as
a feature extractor. Then, after feature dimension reduction by PCA, they fed them
into k-Nearest-Neighbour, multiple-instance support vector machine, and expectation-
maximisation diverse density. The goal was to identify and stage COPD disease [217].
Du et al. decided to evaluate the bronchial tree instead of the whole lung volume, as
COPD damages it. They used CNN with Bayesian optimisation for feature extraction
and a voting classifier to group the results into COPD and healthy classes [218]. Tang
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et al. used a deep residual neural network to predict COPD presence defined based on
the spirometry data. Input to the network were whole C'T images split into the regions
[219]. Ho et al. used parametric response mapping to highlight regions of emphysema,
functional small-airway disease and normal lungs. Then, using CNN they classified the
CT scans into COPD and healthy [220]. Chen et al. proposed a solution based on the
graph convolutional neural network where C'T scans were sliced into smaller cubes and
whole volumes were classified into COPD and non-COPD classes [221]. Zhang et al.
trained two DenseNet-201 CNN networks to decide whether a given patient has COPD
or not. The difference is the first lung volume accepted by the network as input and
the second bronchial walls as input. Information from networks was then combined
by the logistic classifier [222]. Wu et al. used the snapshots of the lungs and bronchi
tree in 3D to train their CNN network for COPD detection [223|. Sun et al. used
the ResNet 18 architecture with an attention module to distinguish lungs with COPD
from those without COPD. They sliced CT images in the axial plane and used them
as input to the model [224]. Li et al. graph convolutional neural network classifying
the COPD and non-COPD states. They automatically determined ROIs in the lung
parenchyma and created spatial connections between them using a graph employing
both spatial (location) and temporal (grey-level intensity values of ROIs) information
in the learning process |225]. Wu et al. created attention-based neural networks which
used three different input information: the slices of the C'T image, the lung mask and
the bronchi mask. Based on their output, the logistic classifier assigned labels of COPD
or non-COPD state [223]. Xue et al. used a multiple-instance learning approach with
an attention mechanism. The slices of the CT scan were iteratively passed to the net-
work input, features were extracted, the attention mechanism assigned a weight to the
slice, and then all slices were fused creating both information about the patient state
(COPD or not) and CT slice where the disease is the most prevalent [226]. Yu et al.
proposed a self-supervised neural network using a contrastive learning strategy for the

emphysema detection task [227].
The mentioned works mostly use ECLIPSE [228] and COPDEGene [86] datasets

or use their own CT scan collections. The papers focus on a binary classification into
COPD and non-COPD, in some cases a multi-label classification into, for example, non-
COPD, GOLD 1, GOLD 2, GOLD 3 and GOLD 4. There is a single paper considering
the regression task on the output values of FEV1 and FEV1 / FVC spirometry. The
articles use raw CT images of lung masks and/or bronchial masks as input data for

both the radiomics and neural networks.
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Doctors and medical professionals approach any Al solution with caution. A tool
that provides just a label with the conclusion is not sufficient. The patient’s well-being
and life are on the line, so it is important to explain the Al results [229, 230]. Some
methods presented in the articles use xAl tools to provide visualisations of network
activations indicating locations on CT scans based on which the neural network based
its result [216, 218, 220| |222, [223} 224, 226|. This approach is promising but raises con-
cerns about trust in the case of controversial xAl results. For instance, if the activation
map extends into the background but still includes some abnormal changes, it becomes
unclear whether the decision is based more on the background or the changes. It is pos-
sible that, in many training cases, changes were typically present in that specific region,
or the training images from a particular imaging centre might have had characteris-
tic background values. The neural network approach is not yet suited for diagnostic
purposes, but with a sufficiently diverse dataset and high NPV, PPV, sensitivity, and
specificity values, they can be used as a screening tool [27, 28]. Radiomic-based ap-
proaches do not suffer from such problems as neural networks have, yet extraction of
radiomic features from the whole lung volume may lead to the omission of less prevalent

changes.

Due to the mentioned problems, the quantification method presented in this dis-
sertation will rely on the created emphysema masks. By including a resultant mask,
the medical practitioner will be able to view the area against which the calculations
are made and be assured that only those voxels are the essence of the analysis. In
addition, the resulting quantification decision will not be a class; it will be a map of
relationships between cases. The presented quantification method aims not to make
decisions for the physician, but only to support his/her diagnostic abilities by depicting
the relationships between different cases of COPD in 2D space.

8.3 Methods

The proposed method aims to show the relationship between the different cases of
COPD. It is based on radiomic features, which, after undergoing a series of operations
such as preprocessing, feature selection, and embedding, are finally presented in 2D

space.

76



Chapter 8: Quantification and mapping 8.3 Methods

8.3.1 Splitting emphysema mask to ROIs

A full emphysematous lesion mask can include multiple lobes and can occur in
both the left and right lungs. To extract features from the masks that reflect the
character of the lesions, the mask was divided into regions of interest (ROI). The first
step was to divide the lesion mask into lobes. Subsequently, in each patch, sub-areas
were separated using the K-Means algorithm, where clustering took place in the 3D
space of the standardised coordinates of the mask’s voxels. The number of components
for K-Means was selected automatically using the elbow method, where the measured
value was inertia, for example, the sum of the square of the distance of a point and the
centroid of its cluster. The result was a mask that contained N clusters divided into

two lungs and 5 lung lobes.

8.3.2 Features Extraction

Three sets of features were calculated; the first set was radiomic features [208|, 209]
extracted from the ROI. The contours were drawn in the 3-voxel space around the
ROI, from which the second set of radiomic features was calculated. The third set of
features was related to the spatial position of the ROI. A vector was drawn from the
lung’s weighted centre to the ROI’s centre; the angle in x, y, and z, and the magnitude

of the vector directions were recorded. In total, 156 features were calculated per ROI.

For radiomic features calculation, the pyRadiomics package was used; it contains
7 feature groups amounting in total to 110 features. The first group is First-Order
Statistics, which quantifies the distribution of voxel intensities within the region of
interest (ROI). They are used to assess the overall intensity patterns of the ROI. The
second group is Shape-Based Features, which describes the geometric properties of the
ROI. This set was not calculated for the contour features. The third group is Grey
Level Co-occurrence Matrix (GLCM) Features, which measure texture by analysing the
spatial relationship between pairs of voxel intensities. It evaluates fine textures and
spatial intensity variations. The fourth group is the Grey Level Run Length Matrix
(GLRLM) Features group, which quantifies the length of consecutive voxels with the
same intensity along a specified direction, which is evaluated at multiple angles. It is
used to detect uniform textural patterns. The fifth group belongs to Grey Level Size
Zone Matrix (GLSZM) Features, which measure the size of connected regions (zones) of

voxels with the same intensity. It has a similar usage as GLRLM; it also quantifies the
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appearance of the same intensity values, but it is done in zones rather than in a specific
direction. The sixth group is Grey Level Dependence Matrix (GLDM) Features, which
measure the degree of voxel intensity dependence within the ROI. It analyses how a
voxel in the centre affects its neighbourhood. The final seventh group, Neighbouring
Grey Tone Difference Matrix (NGTDM) Features, analyses the contrast and texture

by assessing the difference between a voxel’s intensity and its neighbours.

Sets of features were recorded for each patient for each region of interest (ROI)
within the patient’s segmentation. To aggregate information per patient, the mean,
median, minimum, maximum, and standard deviation were calculated for each feature

per patient. This expanded the number of features from 156 to 780.

8.3.3 Preprocessing

Initially, features with zero variance were removed from the complete set in the
method’s pipeline. The features that remained were standardised using the features’
mean and standard deviation. The PCA technique was then employed for the initial

dimension reduction, selecting components that accounted for 90% of the variance.

Principal Components Analysis (PCA) is a linear dimensionality reduction tech-
nique. PCA identifies the directions (principal components) along which the variance
in the data is maximised, transforming the data into a new coordinate system where
the dimensions are uncorrelated. The following steps can describe the whole transfor-

mation process:

Assuming that X € R™ where n is a number of observations, p is a number of

features, and k is the desired number of components.

1. Data standardisation - it is an important step because if features have different
scales (for example, were measured in different units), those with larger mag-
nitudes will dominate the principal components. For scaling, usually z-score
normalisation is used Eq. 8.1}

(8.1)

Where z is a feature sample, p is the feature mean and o is the feature standard

deviation.
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2. Calculation of covariance matrix - it is a symmetric matrix capturing the pairwise

relationships between features Eq. [8.2]

1

T i) b= ) (52

i=1

Y=

3. The eigenvalues \; and eigenvectors v; of principal component directions j are
then computed using property Eq. and solving the Eq.

det(S — A1) =0 (8.3)

ZVj = /\jVj (84)

The eigenvalues A1, Ag,..., A; (sorted in descending order) represent the variance

explained by the corresponding principal components.

4. Projection on the eigenvectors - the top k£ components are selected based on the

eigenvalues, and the matrix W of v eigenvectors is formed Eq. [8.5

W = [v1,0vs,...,0;] € RP¥F, (8.5)
Original data X into the new k-dimensional subspace Eq. [8.6]
Z=XW, (8.6)

where Z € R™ ¥ is the transformed dataset, where each row of Z represent new

sample basis.

8.3.4 Embedding

The Uniform Manifold Approximation and Projection (UMAP) method [231] was
used to create embeddings for dimension reduction. UMAP is a dimensionality reduc-
tion technique that models high-dimensional data by constructing a weighted graph
representing its local structure. Using a cost function optimises a low-dimensional rep-
resentation by minimising the difference between the high- and low-dimensional graphs.

The method has many hyperparameters; among the most influential on the final result
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are the distance metric d(...), the number of neighbours k, and the minimum distance
between points d,,;,. The UMAP development process is based on a solid mathematical
foundation and draws from graph theory, differential geometry, and topology theory.
The paper will present the general idea of how the method works, which can be divided

into three main steps:

1. Construction of a weighted neighbourhood graph in a high-dimensional space

Let the input dataset be X = {x,z9,...,2x} for each point, its distance from
other points in space is calculated using a chosen metric, such as Euclidean

distance. The sets of k-nearest neighbours for each point are thus determined.

For each x;, p; and o; are defined. Where p; provides a connection between z;
and at least one other data point Eq. [8.7]

pi = min{d(z;, z;;) | 1 < j <k, d(x,2;;) > 0} (8.7)

The parameter o; is a local scaling factor determining how "wide’ the local neigh-
bourhood area around point z; is. In practice, o; is adjusted so that the number
of neighbours of a given point in the graph corresponds to the desired value of
the k neighbours Eq. [8.8

g;

;1 exp (_ max(d(z: ;),0) = pi) = log, (k) (8.8)

The parameter ¢ introduces local differences in space, meaning that at each point

x; the data space is viewed from the perspective of the local distance ’scale’.

Finally, the equation for the weight of edges in a weighted graph can be written
for the point x; Eq. 8.9

—max(d(z;, z4,),0) — pi) (8.9)

w(xi,l"ij) = exp (
0;

Notably, any points z; and z; have a bidirectional relation on a weighted graph.

Their weights must be symmetrised (b the resulting symmetric value) using Eq.

5. 1OL

bij = wij + wji — wyj - wy; (8.10)

80



Chapter 8: Quantification and mapping 8.3 Methods

2. Low-dimensional space construction

The low-dimensional space is created using the Spectral Embedding method.
This is a non-linear method to reduce the dimensionality of data presented as
a weighted graph [232|. Like PCA, Spectral Embedding uses eigenvalues and
eigenvectors for this purpose; however, it does not operate on the covariance
matrix; it uses the Laplacian graph L. Under the assumption that A represents a
weighted adjacency matrix (containing symmetrized weights) and D is a diagonal
degree matrix for a graph A (sum of edges’ weights connected to the nodes in
each diagonal element), then Laplacian can be calculated using Eq.

L= DY*(D— A)D"? (8.11)

Then the eigenvalues and eigenvectors are calculated by solving Eq. [8.12] and

sorted in descending order.

Lv = ADv (8.12)

The top n eigenvalues represent the new embedding space.

3. Low-dimensional space optimisation

UMAP use the attraction and repulsion forces to optimise the low-embedding
space. For each neighbourhood, the sample is selected from which the attraction
and repulsion are calculated. This is done due to the computational power con-
straints. The convergence is guaranteed due to slowly decreasing attraction and

repulsion forces.

The UMAP was configured with a cosine distance, 70 minimum neighbours, and a
minimum distance of 0.3. As a result, a 2D embedding of features was acquired; the X
and Y axes were denoted as Ul and U2. To enable the transformation of external data
into the UMAP space, a fully connected neural network was designed for regression.
PCA components were input to the model, and two resulting UMAP dimensions were
the desired output. Various network configurations were tested, including 2 to 6 layers,
layer sizes ranging from 200 to 20 neurons, and learning rates between 1073 and 1075,

The training was performed using 5-fold cross-validation, and the best network was
chosen based on its R? value, as defined in Eq. [8.13]
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M . 2
R2 _ ZZEO (ytruei y_predi )2 (8 13)
Zi:ﬂ (Yerue; — Jtrue)

8.3.5 Features significance

To measure the features’ significance in the UMAP creation process, the SHAP
values were used. Another neural network model was trained; the input to the network
was the set of standardised features, while the output was the Ul and U2 values of
the UMAP embedding. The neural network contained 5 dense layers with an ELU
activation function [233] and 2 dropout layers with a 0.3 rate in between dense layers.
The number of neurons ranged from 200 to 50 in the network’s backbone and 2 at the
input. The Adam optimiser was used with a learning rate of 0.001 and for the loss

function, mean absolute error was selected. The network was trained for 100 epochs.

SHAP values are based on game theory and are used to explain feature significance
in model prediction. The features I’ are analysed one by one on the feature subsets
S where S C F. Two models are compared during the analysis of a single feature.
The first model is trained on the feature space S, which does not contain the analysed
feature 7 and is denoted fg. The second model is trained on the subset S U i, which
holds the analysed feature, and the model is denoted as fs ;. The SHAP values are
then calculated using Eq.

oo 3 |S|!(|F|‘;’|'S|—1)! (o) — f55) o
SCF\{i} '

The positive SHAP value means that the feature increases the prediction; the neg-

ative value means it decreases the prediction.

The SHAP values are then analysed in the Ul and U2 spaces. For the most in-
fluential features, the CT series were found that correspond to the extreme points.
These were visualised and, if possible, voxel-based radiomic features were calculated.
Unlike traditional region-based radiomics, which summarises features over an entire
segmented region, voxel-based radiomics captures local heterogeneity and spatial vari-

ations by computing features for each voxel in its local neighbourhood.
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8.4 Results

The feature set was preprocessed and inputted to the PCA method, from which
components explaining 90 % of the variance were selected. This resulted in the 29
components, which were linear combinations of original features. UMAP created based
on the PCA components is shown in Figure [8.1] as a density map with subplots showing
the distribution of patients from each GOLD group. On each subfigure, clusters formed
by a high concentration of points in one place were noted as C(GOLD)(cluster number
left-right). For GOLD 0 patients, three clusters were formed (C00, C01, C02); for
GOLD 1 patients, two clusters of similar size were formed (C10, C11); for GOLD 2
patients, two clusters were also formed (C20, C21), but of different sizes; for GOLD 3
(C30) and GOLD 4 (C40) patients, one cluster was formed.

Figure 8.1: Density plots of resulting UMAP embedding shown on different subplots.
For each GOLD group, areas of the largest densities have been found and named
following the convention C(GOLD)(cluster number left-right).

There is a slight overlap with the placement of the clusters for GOLD groups 0,
1, and 2. Notably, the clusters C00 and C02 are positioned slightly higher than the
clusters C10, C11, C20 and C21. Cluster C10 is positioned between C00 and CO01,
and cluster C11 is situated between CO01 and C02. Cluster C20 overlaps with C10 but
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seems to miss cluster CO0 and CO01. Cluster C21 is situated over cluster C11 and in
the lower part of C02. Clusters for C30 and C40 are quite close, but the C40 cluster’s
largest density is visible below the C30 cluster. The number of clusters in the GOLD
groups or their blurring suggests the non-homogeneity in the groups. However, the non-
homogeneity is not due to the disease analysed but to differences between individual
patients. It is noticeable that the clusters become more homogeneous with the increase

of the GOLD value. Each cluster was be visualised and analysed to prove it.

The CO0 cluster example image is shown in the second subplot of Figure 8.2l These
changes are identified by low-attenuation values, around -982 HU. The abnormalities
in the images are found near the lung border or close to blood vessels, which typically
have higher density values. The thin alveoli walls can be seen on the presented scans,
suggesting the scans’ high resolution. The C01 example image is shown in the third
subplot of Figure [8.2l This cluster includes patients with no noticeable changes and
those with visible emphysematous alterations. It is characterised by a large volume
of segmented areas, with density values around -910 HU. The segmented regions are
not located near the lung borders; if adjacent to blood vessels, only a small portion of
the segmentation area is in contact. The C02 example image is shown in the fourth
subplot of Figure Image series within these clusters have unusually high threshold
values reaching approximately -788 HU. Despite this, the lungs are not fully outlined,
suggesting either an issue with the scanning protocol or the presence of high-attenuation
patterns. Some images in this cluster are of low quality, with noise reducing the
visibility of alveolar edges. The lung segmentations extend to the edges of the chest,
suggesting that contour features may play a significant role in this region of the UMAP
embedding.

Figure 8.2: UMAP embedding density plot for GOLD 0 group with example images
taken from the centre of each cluster.
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The C10 example images are shown in the second subplot of Figure[8.3] The images
included in this cluster have emphysematous lesions with little volume but a high degree
of diffusion. The lesions are in contact with the lung walls and vessels more than once.
The threshold values are not homogeneous, ranging from -900 to about -940, while
the voxel values in the segmentations seem homogeneous. The C11 example image is
shown in the third subplot of Figure[8.3] The threshold values in the cluster vary from
-850 to -910 HU. The images contain a large volume of abnormal changes and a low
degree of diffusion; changes are usually packed closely together. The segmented areas

appear to be heterogeneous in terms of voxel HU values.

Figure 8.3: UMAP embedding density plot for GOLD 1 group with example images
taken from the centre of each cluster.

The C20, a larger and more diffuse cluster example image, is shown in the second
subplot of Figure [8.4] The cluster contains segmentations acquired with thresholds
ranging from -915 to even -990. This high variation in threshold values results from
the large area of the cluster. It contains images with moderate amounts of changes,
raising in value while moving down on the y-axis in the embedding. It is characterised
by high diffusion of changes and homogeneity of the voxel values. The C21, small
cluster example image is shown in the third subplot of Figure [8.4] The images within
the clusters have relatively high threshold values, which translates to their high volume.
The HU values in the segmentations are heterogeneous. Segmentations are compact

and tend to share a border with the lung’s edges.

The C30 example image from a cluster with the highest density is shown in the
second subplot of Figure The images within the cluster have a large volume of
emphysematous lesions. The distribution of the changes varies and does not present any

pattern. The segmentation HU values overall are heterogeneous, but the segmentation
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Figure 8.4: UMAP embedding density plot for GOLD 2 group with example images
taken from the centre of each cluster.

surfaces show clear, larger patches of emphysematous lesions separated by thicker white

lines.

Figure 8.5: UMAP embedding density plot for GOLD 3 group with example image
taken from the centre of the cluster.

The C40 main cluster example image is shown in the second subplot of Figure [8.6]
The images are characterised by widespread, large homogeneous patches of emphyse-
matous changes resulting from the destruction of alveoli walls. The segmented regions
sometimes share borders with the vessels and lung walls or are separated by fissures or

reticulations.

A visual analysis of the UMAP embedding content presents a diagram of the nature
of the segmentation. At the top left, images with not much segmentation area, whose
grey level intensity values are homogeneous, are arranged. The further to the right,
the more changes, at first characterised by strong dispersion, but tending towards

more homogeneous areas. To the right, the character of the changes is much more
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Figure 8.6: UMAP embedding density plot for GOLD 4 group with example image
taken from the centre of the cluster.

heterogeneous in terms of segmentation grey levels. There are also areas bordered
by lung walls. Moving slowly downwards from this point, the segmentations move
away from the lung walls. The lower one goes, the UMAP narrows more and more,
at first presenting progressively more homogeneous areas, at the same time locating
images with less and more scattered segmentation on the left and right. Finally, at
the very bottom of the UMAP embedding, the segmentations show large patches of

homogeneous regions, suggesting large destruction of alveoli walls.

To further understand the features with the most influence on UMAP embedding,
a detailed backward feature analysis was conducted. The most influential features were
distinguished by calculating SHAP values based on the trained neural network model.
The absolute mean of SHAP values for both UMAP dimensions was plotted and shown

in Figure [8.7]

Figure 8.7: SHAP median values of features across samples showing features’ impact

on the UMAP 1 (Ul) and UMAP 2 (U2) axis.

The minimum of run entropy feature is the most significant feature in the Ul
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(X) axis, and the standard deviation of minor axis length is most significant in the U2
(Y) axis. Other features have their SHAP values distributed evenly.

8.5 Discussion

In this section, the effect of features on the UMAP embedding will be discussed.
The UMAPs with the example slices from the CT series with low and high feature
values will be shown. Additionally, the voxel-based radiomic features were calculated
from the given volumes and shown under each slice. It is important to note that
each low-attenuation pattern segmentation resulting from the method presented in
this dissertation was split into ROIs with respect to the lung lobes. The radiomic
features were calculated per ROI and then summarised using a difference aggregation

function.

8.5.1 UMAP 1

The minimum of Run Entropy is the most influential feature in Ul; it is a texture
feature derived from the Grey Level Run Length Matrix (GLRLM). It measures the
randomness in the distribution of run lengths for different intensity levels in an image.
A higher Run Entropy indicates a more complex texture with varied run lengths, while a
lower Run Entropy suggests a more uniform or structured pattern. The example series
with high and low run entropy features are shown in Figure .8 In the series with
GOLD 0 and 1, emphysema was present in small, uniform regions. If the algorithm
did not indicate emphysema, then the mask was occupied by an area of the lung
which was not uniform. Hence, it is presumed that the minimum run entropy feature
differentiates between emphysematous and non-emphysematous cases of patients with
low GOLD values.
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Figure 8.8: Minimum of Run Entropy distribution across the UMAP embedding
(reference GOLD distribution in bottom-left corner). Example images with low and
high feature values with their voxel-based feature heatmaps.

The Run Entropy feature can be seen for the second time on the significance chart.
The standard deviation of the Run entropy is the fifth most significant feature. Even
though the feature origin is the same, the difference between its minimum (Figure
and standard deviation ( Figure is apparent. The gradient of feature changes has

been reversed, but the overall trend persists.

Figure 8.9: Standard deviation of Run Entropy distribution across the UMAP
embedding (reference GOLD distribution in bottom-left corner). Example images
with low and high feature values with their voxel-based feature heatmaps.

The standard deviation of contour Small Area Emphasis is the second most influen-
tial feature in U1; contour features were derived based on the outer surface of the ROIs.

The Small Area Emphasis is a texture feature calculated from the Grey Level Size Zone
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Matrix (GLSZM). It quantifies the distribution of small homogeneous zones (clusters
of connected voxels with the same intensity). A high value means that the image has
many small uniform regions. A low-value image has larger non-uniform regions. Since
the standard deviation was used to aggregate the Small Area Emphasis, a higher value
indicates greater variation in contour size and texture, while a lower value suggests less
variation. The high variation of the contour values and sizes usually appears when the
emphysematous lesion is found in the central areas of the lung parenchyma. The low
variation of the contour values and sizes appears when the mask is located on the lung

borders. This can be seen on the example images in Figure [8.10}

Figure 8.10: Standard deviation of Contours’ Small Area Emphasis distribution across
the UMAP embedding (reference GOLD distribution in bottom-left corner). Example
images with low and high feature values with their voxel-based feature heatmaps.

The mean Surface Area is the third most influential feature in Ul; it is a shape-
based feature and refers to the total outer surface of a 3D ROI. It represents the sum
of all the areas of the individual faces that make up the 3D object’s boundary. Its
average value directly indicates the size of the segmented masks. The example series

with high and low mean surface area features are shown in Figure |8.11
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Figure 8.11: Mean of ROIs’ Surface Area distribution across the UMAP embedding
(reference GOLD distribution in bottom-left corner). Example images with low and
high feature values, with and without overlaid segmentations’ contours.

8.5.2 UMAP 2

The standard deviation of Minor Axis Length is the most influential feature in U2;
it is a shape-based feature that represents the shortest axis of the best-fitting ellipse
(or ellipsoid in 3D) that encloses the segmented region of interest (ROI). The feature
calculation is done separately for several ROIs determined by grouping neighbouring
areas within lobes. A large std Minor Axis Length value means many emphysematous
lesions, most likely scattered throughout the lung area, of different sizes. The low value
of std Minor Axis Length indicates that either there are not that many ROIs in the
lung volume or the ROIs are similarly sized. The example series slices with a high and

low standard deviation of Minor Axis Length are shown in Figure [8.12
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Figure 8.12: Standard deviation of Minor Axis Length distribution across the UMAP
embedding (reference GOLD distribution in bottom-left corner). Example images
with low and high feature values, with and without overlaid segmentations’ contours.

The minimum of Run Percentage has the second most influence on U2; it is a texture
feature derived from the Grey Level Run Length Matrix (GLRLM). It quantifies the
density of homogeneous runs (consecutive voxels with the same grey level) in an image.
This means that when the value is high, there is more transition between grey levels
in the ROI. A low value indicates that there are fewer transitions between grey level
regions; the regions are more homogeneous. Higher homogeneity of regions is typical in

emphysematous lesions. The example series and their slices are shown in Figure [8.13]

Figure 8.13: Minimum of Run Percentage distribution across the UMAP embedding
(reference GOLD distribution in bottom-left corner). Example images with low and
high feature values with their voxel-based feature heatmaps.

The minimum of Run Length Non-Uniformity Normalised is the third most influ-
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ential feature in U2; it is a texture feature derived from the grey Level Run Length
Matrix. It quantifies the variation in run lengths across the image. A high feature
value means that the run lengths are uniformly distributed. A low feature value means
that some run lengths dominate over others, making the texture less uniform. In the
case of the emphysematous lesion, the domination of low attenuation is prevalent as
shown in Figure [8.14]

Figure 8.14: Minimum of Run Length Non-Uniformity Normalised distribution across
the UMAP embedding (reference GOLD distribution in bottom-left corner). Example
images with low and high feature values with their voxel-based feature heatmaps.

Both the maximum of Long Run Emphasis (LRE) and the minimum of Short
Run Emphasis (SRE) are important features for U2; they are texture features derived
from the Grey Level Run Length Matrix (GLRLM). They describe the distribution of
run lengths in an image. Long Run Emphasis high values mean more homogeneous
texture and low values mean less homogeneous texture. Similarly, Short Run Emphasis
high values mean less homogeneous texture and low values mean more homogeneous
texture. The emphysematous regions are homogeneous, so the LRE were aggregated by
maximum (indicating homogeneity) and SRE were aggregated by minimum (indicating
homogeneity). It might appear that they carry the same information; information is
indeed similar, yet the subject of analysis is different. One analyses structure in a
larger, global context and the other in a smaller, local context, supplementing each
other. The example series slices are presented for LRE in Figure and SRE in
Figure [8.16|
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Figure 8.15: Maximum of Long Run Emphasis (LRE) distribution across the UMAP
embedding (reference GOLD distribution in bottom-left corner). Example images
with low and high feature values with their voxel-based feature heatmaps.

Figure 8.16: Minimum of Short Run Emphasis (SRE) distribution across the UMAP
embedding (reference GOLD distribution in bottom-left corner). Example images
with low and high feature values with their voxel-based feature heatmaps.
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8.5.3 UMAP features significance conclusion

The first UMAP component UMAP 1 (U1), seems to indirectly cover the location
and size of the ROIs while also partly covering the extent of low grey level zones
(emphysema). Run Entropy differentiates patients based on the randomness of values
in the ROIL. The bigger the ROI and the less it contains emphysema, the larger the
randomness is, covering two important aspects: the presence of emphysema and its
extent. The standard deviation of the contour’s Small Area Emphasis indicates whether
the ROI is located near the lung border, also covering its extent. If it is a small ROI
near the lung border but has a small volume, the calculated feature has a high std; if
it is near the lung border but has a high volume, it reaches the fissure, resulting in a

smaller std. The mean Surface Area directly informs about the extent of changes.

The second UMAP component UMAP 2 (U2), seems to cover the extent and in-
tensity of the low grey level zones (emphysema) in ROIs. Minor Axis Length informs
about the extent of ROIs; its std value informs how many different ROIs the segmenta-
tion contains. The emphysematous changes, if prevalent over the whole lung volume,
are heterogeneous, which is identified by this feature. Run Percentage directly informs
about ROIs’ homogeneity, where large emphysematous regions are highly homogeneous.
The Run Length Non-Uniformity Normalised is also a measure informing about ROIs’
homogeneity. The goal of both Long Run Emphasis (LRE) and Short Run Emphasis
(SRE), as explained in this context, is also to measure homogeneity in local and global

contexts.
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Works done in the scope of the doctoral dissertation aimed to demonstrate the po-
tential of unsupervised methods in the low-attenuation lesion detection on the chest
Computed Tomography (CT) images. The created algorithm was mainly based on the
COPDGene database, consisting of 2243 unique patients and their GOLD classifica-
tions indicating the severity of respiratory impairment. The dataset consists of images
taken with different scanners, parameters, and reconstruction kernels. Of the available
series, the focus was on images with a standard reconstruction kernel guaranteeing the
least amount of noise, but including images from different scanners and with different

layer thicknesses in the analysis.

Accurate delineation of emphysematous lesions is a challenge. They are hetero-
geneous in shape and distribution. There is no set with enough manually labelled
emphysematous areas to use neural networks to segment them. In medical practice,
thresholding based on a single cut-off threshold is used. However, as the literature re-
view has shown, no universal threshold guarantees ideal segmentation. Following that,

the automatic thresholding method was proposed based on a single CT.

Segmentation of emphysema using a fixed-threshold method has yet another limi-
tation; the bronchial tree has a similar range of Hounsfield units (HU), which makes
it appear along with emphysema on the resulting segmentation. To overcome this is-
sue, a new method has been developed to generate the patient’s airway mask. This
method utilises two velocity maps to iteratively extend airway branches into the lung
parenchyma. Additionally, bronchial wall structures help validate the segmentation.

A technique for detecting segmentation errors has also been introduced, allowing the
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identification and removal of both under-segmented and over-segmented airways. As
the lesion segmentation algorithm assumes an adaptive cut-off threshold for the lung
image, the proposed bronchial segmentation method effectively reduces the number of

false positives by restricting the area with similar HU values to emphysematous lesions.

The proposed method for automatic lesion segmentation was based on Gaussian
mixtures. The per-slice approach ensures the sensitivity of the method to small le-
sions appearing in the lung parenchyma. Two methods were compared, clustering the
components of the mixtures and clustering the cut-off thresholds determined from the
mixtures. Both methods could separate damaged alveoli from healthy alveoli, but the
first method was chosen for further analysis. The method showed a clearer trend of
emphysema volume and greater differences in the mean HU values of the segmenta-
tion. Thus, presenting a viable substitute for deep learning in the identification of

emphysematous lesions on the chest CT images of patients.

To quantify this, a method was introduced that generates a UMAP embedding to
capture relationships derived from patients’ emphysematous lesion features. Common
radiomic features, contour features, and positional features were analysed. Radiomic
and contour features showed the ability to extract characteristic subgroups of changes
in the UMAP embedding space. In particular, features relating to the size of the
changes, their neighbouring grey levels, and changes in grey levels stood out. The
created embedding was confronted with the GOLD classification of the images. UMAP
embedding creates clearly defined clusters for each of the GOLD subgroups, showing a

quantitative and qualitative relationship between GOLD groups and segmented regions.

The premise of the project was to explore the potential of unsupervised classical
machine learning and image processing methods for the segmentation and quantifica-
tion of emphysematous lesions. Both airway and lesion segmentation can be performed
in an unsupervised manner by using mechanisms known to medics that characterise
the structures. Only when it comes to lung segmentation is the use of deep learn-
ing techniques recommended. This guarantees working with an accurate image of the
lungs without missing any structure. The methods presented allow easy interpretation
of the results and traceability of the decision-making process. The created graphical
interpretation of the results in the form of 2D embedding allows differential diagnosis

and potential analysis of disease progression.
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