SILESIAN UNIVERSITY OF TECHNOLOGY

FACULTY OF AUTOMATIC CONTROL, ELECTRONICS AND COMPUTER SCIENCE

PHD THESIS

DATA CLUSTERING WITH MIXTURES OF
MULTIDIMENSIONAL DISTRIBUTIONS

mgr Mateusz Kania

promoter: prof. zw dr hab inz Andrzej Polanski

The following thesis was financially supported by European Union funds project AIDA (Ap-
plied Integrative Data Analysis) POWR.03.02.00-00-1029.

Silesian University of Technology

Silesian University of Technology

Contents

1

Introduction
Tl ABR v ccoms mun soms s aa o s B e oams s aa pams ®ea §a
1.2 Theses v v v e e e e e e e e e e e e e e e e

1.3 Original elements of the thesis and publications related to the thesis

Algorithms based on mixtures of multivariate distributions
2.1 Foundation e e e e
2.1.1 Probability distribution models
2.1.2 Univariate and Multivariate Gaussian distribution
2.1.2.1 Univariate Gaussian (normal) distribution
2.1.2.2 Multivariate Gaussian (normal) distribution
2.1.2.3 Multivariable diagonal normal distribution
2.1.3 Bernoulli, binomial and multinomial distribution
2.1.3.1 Bernoulii distribution
2.1.3.2 Binomial distribution
2.1.3.3 Multinomial distribution
2.1.4 Mixture distributions
2.1.4.1 Mixtures of normal distributions
2.142 Mixtures of multinomial distributions
22 BMAIBOEIBMY o o v bos s v s s wosmie mo e 6d e e B g e S B
2.2.1 Algorithmin general form,
2.2.1.1 Hiddenvariable
2.2.1.2 Maximum-likelihood
2213 GeneralEM s ii csvisn sie s man v e m e 0 R
2.3 Multivariate Gaussian Mixture EM
23,1 Implementation e
2.3.2 Initialization L e e e e e
2.3.3 Expectationstep (E-step)
2.34 Maximization step (M-Step)
235 Convergence i e e e e
286, OpUMIZATOR! - « o v o vn oomum s o en 58 @ s w85 88 E AL s
2.3.7 Various methods of initalization and EM parameters
2.3.8 Other EMimplementallons . . o « o o o o0 v oine oomomo= oim o

Nl ol o -

24

Multinomial Mixture EM L
241 ImpIEHEntation « oo« o v 5 o b e e v % e E e e e R R e G S 6

20 TSEIEE: . 5 v wi o 55 63 i F e kS 05 i el 03
242 Inputdata e e
24.3 IntialiZation s w s ss samawas sa @ En FR WA ES &5
244 E-SP . o . o i e e e e e e e e
ZA5 MR oou enowms mas e @ s a ek oE e W E S B RS E S B
246 CONVEIZENCE v v v v e e e e e e e e e e e e e e e e e e

3 Algorithms based on distance functions

3] FOUNGAHON s sos sews S8 s Nin e EmEn s @i Sen o8
3T Input oL e e e e e e e e e
312 Varables .. ciwvwan vimiwman vam v e pam oy wan Ba

31.21 Scale
3.1.22 Differentvariables
3.1:23 Standatdizdtioh s ws v e vy wan s @y B s 55
3.1.3 Statistical distance Lo
3.1.3.1 Distance between two points

3.2 Hierarchicalclustering i e e
3.2.1 Agglomerative clusteringo
322 Divisiveclustering L e

3221 DIANA . . . e e
323 Linkagemwethods o « o v 0 wvmwninm aumem b sowom e we
32301 Smblelinkisl « jceisvs si e B BEEE B IE Bk
3232 Completelinkage
3233 Averagelinkage wvw vume @i wam @ v
3254 WAl viov5 65 95,85 B8 A 8 BF A BN B3

33 K-means e e e e e e e e e
351 LloydandFoigy . . v v v o v mic s 5 weimisn ¢ awe s
332 Hartigan-Wong L e e e e e
333 Initialization . « wos wosn o wowom e wm e wow s e m e s ww s w s s o

3A PuzzyclUSterifg - : « s s e v s s msn b mi R84 §E@ i@ s b
3.4.1 Initialization and distances

3.8 Knedolds . wv wcun samvwmen simvwan sam s e an sam s es 0

4 Study pipeline

4.1 Data preparation= « o v o w s w ua sam s @ an sam s w & a §a s an B

4.1.1 Simulateddata
4.1.1.1 Simulated multivariate normal data
4.1.1.2 Simulated multinomial data

Silesian University of Technology

26
26
26
27
27
28
28
29

30
30
30
30
30
31
31
31
32
34
34
35
35
35
35
36
36
36
37
38
38
38
38
&
40

41
41
41
42
42

4.1.1.3 Random Number Generator (RNG)
4.1.1.3.1 Computation optimization
L2 BeAldatd o5 s5 w9455 65 N 655 63 @R oEd FE e sh 85
4.1.2.1 Preparation.
4.1.2.1.1 Datasourcest
4.2 Dataprocessing i e e e e e e e e
421 Nobltralion: s o« sea enwe mas e mic mas vuwe s oo
422 Variance decomposition. Lo oL
42.2.1 Bayesian Information Criterion (BIC)
423 SCAHHE oo v v vre v s e e e e e e e e e
4.3 Clusters evaluation
4.3.1 Cluster assigment - Hungarian algorithm
432 Clustetsvalidation : v os s ws @es v @@ L@@ 53
4.3.2.1 Rand Index and Adjusted Rand Index
4.3.2.2 Jaccard and Weigted Jaccard Index
4323 AccuracyIndex .. . ¢ ivh vh o v va e s e
4324 Simple Matching Coefficient
4.3.2.5 Weighted Simple Matching Coefficient
4.3.2.6 Beta-binomial conjugate distribution
H:3.3 "VASHAMZAON o o v oovn st e o 30 io 6 % @ 26 ot W 0ok o0 B w W G R T W
4330 PCR s wowin s me syt BEEs @ IE RIS IE B S
4332 SVDandTSVD
4333 ASME .o wmvn vsmomon nomemos aomeasen 50
4334 Random projection

5 Results
5.1 SimulateddataanalysiS s v v b s b i s s e s e e e s
5.1.1 Multivariate normal mixtures
5.1.2 Multitomial MIXWEES . < o s v o vis s eo ws e s o5 ws i ss ¢35
52 Realdataanalysis
5.2.1 Somatic mutation countsl e e e s e .
522 GEnoCXPresSion - v s i3 s wsn bR P S G FEE S G bR
5.2.3 Codons frequency usage in different species
524 Sportaclivities . . . v v v v v e e e e e e e e e e e e
5.2.5 The Free Music Archive
52,6 NASAKepplers o i i e e e
527 AAYHNIA : ¢ cw e avion s @ s ns s sian nE@E sas 5s

6 Conclusions

Bibliography

Silesian University of Technology

53
53
53
57
62
62
70
77
34
93
99
102

110

112

1 Introduction

Unsupervised clustering is a group of algorithms that belong to scientific areas of data anal-
ysis, machine learning and artificial intelligence. They aim to solve problems of assigning
a certain number of objects/items into groups, on the basis of some similarity/distance cri-
terion/metrics between objects. Unsupervised clustering is a vital and fast developing area,
with numerous applications in contemporary data science algorithms. In data scientific ap-
plications unsupervised clustering can be defined as an independent problem, with suitably
specified quality criteria or as a part of some data analysis pipelines with many possible func-
tions, e.g., data filtering, estimation of data structure, computing of some quality indexes of
algorithms or their parts [1]. There are plethora of approaches to construction of unsuper-
vised clusstering algorithms [2, 3], and also many surveys devoted to comparisons between
different unsupervised algorithms [4].

Despite very intensive research already done in the area there are still problems requiring
attention and deeper studies. One of the problem, which is very often encountered by data
scientists in their research work is the choice of unsupervised clustering algorithm. With huge
number of available methods often accompanied by software implementations the choice be-
comes difficult. The expensive and tedious solution is implementing and comparing large
number of unsupervised clustering algorithms for a studied problem. The possibility, which
can support decision on the choice of the algorithm is using results of studies comparing
classes of algorithms. Two classes defined in[5] are model based clustering algorithms versus
heuristic clustering algorithms. In this thesis we distinguish similar two classes of unsuper-
vised clustering algorithms, which more rigorously are defined as follows:

- Probabilistic Model Based Algorithms: unsupervised clustering algorithms based on mix-
tures of multivariate distributions of feature vectors / observations vectors,

- Distance Function Based Algorithms: unsupervised clustering algorithms based on distance
functions defined for pairs of feature vectors / observations vectors.

The above defined classed roughly correspond to classed of algorithms defined in [5]. The
aim of the study in this thesis, as specifies below is comparison off algorithms for these two
classes.

1.1 Aim

The aim of the PhD project, which was realized and described in this document was to de-
rive, implement and compare models and related algorithms of unsupervised clustering. The
work emphasises the usage of model-based algorithms using multivariate mixture distribu-
tions. We compare them with distance-based algorithms, k-means, k-medoids, agglomerative
hierarchical clustering and fuzzy c-means.

To achieve this aim, we implemented two model based unsupervised clustering algorithms
and four distance based unsupervised clustering algorithms. First model based algorithm,
called Gaussian Mixture EM, is based on a multivariable mixture of normal distributions. The
second one, Multinomial Mixture EM, is based on a mixture of multinomial distributions.
The naming convention with EM stresses the fact that numerically these clustering algorithms
rely on using expectation maximization (EM) algorithms for mixtures [6]. Distance based
algorithms are: agglomeratvie hierarchical clustering, k-means, k-medoids, fuzzy c-means.

Along with implementing model-based and distance algorithms, we applied those algorithms
to several data sets. Part of the data was simulated mixtures of multivariable distribution,
both gaussian and multinomial. The other part, and the majority of data, consists of actual
data downloaded from various, mostly publicly available sources. Having the results, we
have used a few different metrics, like the Adjusted Rand Index, to quantify clustering results.
Then, we presented our findings graphically, along with a brief description of the results.

1.2 Theses

1. Unsupervised clustering methods based on mixtures of distributions achieve their opti-
mal performance when data statistics are consistent with true distributions.s of

2. Unsupervised clustering based on mixtures of distributions are competitive compared to
distance based methods.

3. Applicability of clustering based on mixtures of distributions to practical problems relies
on elaborating algorithmic implementation specialized for large sizes of datasets.

1.3 Original elements of the thesis and publications related to the

thesis

The original elements and contributions of the submitted theses are as follows:

» Formulating algorithms for decomposing mixtures of multivariable Gaussian and multi-
nomial distributions

* Elaborating software tools in an R language environment implementing unsupervised
clustering algorithms based on mixtures of Gaussian and multinomial distributions. Op-

Silesian University of Technology 9

timizing the elaborated implementation such that it enables clustering of large datasets
or order of hundreds of thousands of features/observations.

* Based on code sources available in the literature, implementing several distance-based
clustering algorithms.

» Elaborating software tools implementing a collection of quality indexes of clustering in
the R language environment

+ Elaborating software tools for simulating multidimensional data of Gaussian or multino-
mial distributions

* Creating a collection of the real dataset for comparison study with possible variable
structure and sizes of practical importance

* Performing comparison study for all analyzed clustering algorithms for the real and sim-
ulated dataset

Publications/conference presentation related with this thesis are:

Kania, M., Polanski, A., Unsupervised clustering for detection of gene expression pat-
terns in human cancers. 2022 , Recent Advances in Computational Oncology and Per-
sonalized Medicine, Volume 2, Silesian University of Technology Publishing House

The publication consist of the comparison of distance and model based algorithms in the
gene expression data of different human cancers. We compared how various unsupervised
algorithms can distinguish different cancer patterns.

Unsupervised clustering of gene data of TCGA patients by using mixtures of multidi-
mensional Gaussian distributions,5th Advanced Online & Onsite Course on Data Sci-
ence & Machine Learning | August 22-26, 2022, Castelnuovo Berardenga (Siena) Tus-
cany, Italy

This conference presentation describes the use of Gaussian Mixture Models, along with dis-
tance based algorithms, to compare and find patterns in various TCGA expressions.

In the papers below, unsupervised clustering techniques were used / implemented as parts of
data analysis scenarios.

Mika, J., Tobiasz, J., Zyla, J., Papiez, A., Bach, M., Werner, A., Kozielski, M., Kania, M.,
Gruca, A., Piotrowski, D. and Sobala-Szczygiel, B., 2021. Symptom-based early-stage
differentiation between SARS-CoV-2 versus other respiratory tract infections—Upper
Silesia pilot study. Scientific reports, 11(1), pp.1-13.

Henzel, J., Tobiasz, J., Kozielski, M., Bach, M., Foszner, P., Gruca, A., Kania, M., Mika,
J., Papiez, A., Werner, A. and Zyla, J., 2021. Screening Support System Based on Patient
Survey Data—Case Study on Classification of Initial, Locally Collected COVID-19 Data.
Applied Sciences, 11(22), p.10790.

Kania, M., Szymiczek, K., Labaj, W., Foszner, P., Gruca A., Szczesna A., Polanski A.,
Computational methods for modelling cancer clonal evolution, 2022, (in press), POB2,

Silesian University of Technology 10

Artificial Intelligence and Data Processing, Silesian University of Technology Publishing
House.

Silesian University of Technology 11

2 Algorithms based on mixtures of multivariate

distributions

In this chapter, we describe model-based, unsupervised clustering algorithms, using mixtures
of multivariable distributions, implemented in the thesis. In the beginning, we list probability
distribution used in modeling. Then, we introduce models of mixtures and related concepts.
Finally, we present algorithms constructed with the help of the expectation maximization
(EM) method.

2.1 Foundation

2.1.1 Probability distribution models

Probability distributions more or less accurately reflects natural phenomenons around the
world. If we want to study structure of mails to distinguish ham and spam, we can use proper-
ties of multinomial distributions [!citation]. To estimate shark attack across various seas, we
can model it with Poisson distributions [7]. Then, when it comes to biological processes, like
gene expression levels or bacteria lifespan, they tend to follow normal distributions.

The basis for unsupervised clustering is parametric, multivariate probability distribution mod-
els, which we describe in this subsection. There are two models suitable and often applied in
multivariate distributions, multivariate Gaussian distribution and multinomial distribution.

2.1.2 Univariate and Multivariate Gaussian distribution
2.1.2.1 Univariate Gaussian (normal) distribution

Normal distribution has two parameters: [which is mean value and ¢ which is a standard
deviation. Mathematical notation of normal distribution is X ~ N(u,c2). Independently of
values of mean and standard deviation, all normal distributions have symmetric, bell-curved
shape.

The standard normal distribution is related to the normal distribution and has mean equal 0 and
standard deviation equal 1. Probability density function is given by the following formula[8]:
1 e-p)?

e 22 | (2.1)

flx,n,0%) = =

12

where:x is observation, 1 is a mean, and ¢ is standard deviation

2.1.2.2 Multivariate Gaussian (normal) distribution

The multivariate normal distribution is a generalization of the univariate normal distribution.
It may have n dimensions where n € {0,00}. The multivariate normal distribution plays a
fundamental role in a multivariate analysis, thanks to its various properties. While it is true
that real data is never exactly multivariate normal, it is often useful to use normal density,
because of its close approximation to the “true” population distribution.

Due to a central limit theorem, the sampling distributions of many multivariate statistics are
approximately normal, despite of the form of the parent population. An n-dimensional ran-
dom variable X with mean vector and covariance matrix X is said to have a non-singular
multivariate normal distribution when its density function is of the form[8]:

1 N S
f(x,u,E)ZWe YERIE G (2:2)

where:

X = [x1,x2...xy] is a vector of observations

W = [H1,H2,. ..,y is vector of means
G611 O12 -+ O
G2 O22 - Owm . . .
T))) _ 1S a covariance matrix
Gym1 Om2 -+ Omm

|Z| - denotes matrix determinant

xT stands for vector x transposition.

2.1.2.3 Multivariable diagonal normal distribution

In the case of normal distributions an important aspect is high requirement for computational
power and/or memory requirement for multidimensional case. If we have an observation
given by a vector with 1000 = 10° entries, the size of the covariance matrix will be dim(X) =
10°x10?, which requires one million of records of memory space. This calls for more efficient
approaches to handle this kind of data.

We define multivariable diagonal normal distribution as multivariable normal distribution with
diagonal covariance matrix. Elements of observation vector x are uncorrelated so we use index
“U” to distinguish it. Its probability density function is therefore defined as follows

1

I S 16 2 THEb g e 20TH)
(2E)"/2|EUW28 t (2.3)

fU(-xsl’L1ZU) =

Silesian University of Technology 13

where:

x = [x1,x2...xp] is a vector of (uncorrelated) observations

W = [W1,M2,..., hu] is vector of means

6f 0 - 0

0 oy - 0| : .
Yp=) o is a diagonal covariance matrix

0 0 0 of
|Zy/| - denotes matrix determinant

xT stands for vector x transposition.

2.1.3 Bernoulli, binomial and multinomial distribution

In order to present multinomial distributions we begin from Bernoulli and binomial distribu-
tions. The reason is that binomial distribution is a generalization of Bernoulli and multinomial
generalization of the binomial distribution. We can express the values of those distributions
as non-negative integers.

2.1.3.1 Bernoulii distribution

If we consider a probabilistic experiment with two outcomes, it is called a Bernoulli trial.
The result might a success with probability p or failure, with probability | — p. An intuitive
example of a Bernoulli trial might be a quality check of products in the factory. It might cither
be a success or a failure.

2.1.3.2 Binomial distribution

Binomial distribution describes results of repeating Bernoulli trials with probability of success
p. The most common example is tossing a coin a finite number of times and more than one.
We can assume that tail is a success and the head is a failure. The following formula gives
binomial distribution probability function [8]:

Prik,n,p) = KA—-p* k=0,1,...,n (2.4)

in the above i is binomial coefficient, n is the number of trials, £ number of successes,

and p the probability of success.

Silesian University of Technology 14

2.1.3.3 Multinomial distribution

We can consider multinomial distribution as a multidimensional generalization of the bino-
mial distribution. It inherits binomial properties and introduces new ones. The name “multi”,
suggests that we have more than two categories. The typical example of multinomial distri-
bution is rolling a die fixed number of times. Whether the die is fair or not, each side, called
category, has some probability p. As a different case, consider testing the durability of an
intricate car component under crash conditions. The part may be damaged in different ways,
each with distinct probabilities. We could apply the multinomial distribution to estimate the
probability of a particular combination of failures.

The following equation describes the multinomial distribution probability function [9]:

NI M p‘:
_ * R R I I 1
Pr(N?xjp)_X{’-“‘XMlpl pM _N!;:] (xi!): (25)

in the above, N is the number of trials
x = [x1,x2...xp] is one observation vector of recorded counts of categories,

p = [p1,p2,...pum] is vector of probabilities of categories

xi+x2+..+xy=N (2.6)

pi+p+..+pu=1 2.7

2.1.4 Mixture distributions

To start with mixture distributions, it is worth to read the story of the biologist Raphael Weldon
and mathematician Karl Pearson, which presents probably the first matematical approach to a
mixture distributions [10].

The simple example of the mixture distribution might be shown upon different races of a
dogs. As we already know, there is siginificant difference between e.g labrador and chiuwawa.
Those differences accounts for weight, height, but also size of organs as well.

In general, mixture models provides broader spectrum of information than single distributions.
In the medicine they might be used to analyze gene expression data or in early drug develop-
ment [11]. They are also successfully used to approximate specificity and sensitivity in the
case of lack of golden standard. Albeit mixture models are not limited only to biology and
medicine. Fields like astronomy, psychology or engineering, to name a few, also benefits from
them. Their flexibility and usefulness is described in several books [12][11]

In our study we are focused on mixture models that are more precisely called finite mixture
models.

Silesian University of Technology 15

A mixture distributions is a mixture of at least two distributions of the same type or, possibly
of different types. As an example, the discrete case of distribution of weight in the population
of adults might be expressed as follows:

w(weight) = p(man) s wyan(weight) + p(woman)Wyoman (weight|woman)

Where the probabilities p(man), p(woman) are also called mixing probabilities w;,,, and
Wywoman are probability density functions of weights of man and woman.

For mixtures with arbitrary numbers of components and obsevation of the form of scalars or
vestoer the definition of mixture distribution can be expressed as follows. If a random variable
or random vector x, takes values in sample space, Q, a K component mixture distribution f(x)
is represented as follows:

f)=oufi(x)+--+ogfk(x) (x€Q) (2.8)
where:
o;j>0, j=1,...,K; oj+---0g=1,arecalled mixing proportions or component weights,
fi(x),j=1,...,K are probability density functions of component distributions

We say that X has a finite mixture distribution and f(x) is a finite mixture density function.

Most often component densities have forms dependent on paramters,

Ji(x) = fu(x | ©)

thus we write
K
fx]®) = fi(x | ©1)+ -+ ok fr(x | Ok) = Y oefie(x | O) (2.9)
k=1

where:
Ot~ mixing proportion of k-th component
Oy~ parameteres of of k-th component

fi(x | ©;) - probability density function of data x given parameters ©;

2.1.4.1 Mixtures of normal distributions

Mixtures that consist of only normal distributions are either univariate or multivariate. In
simple words, mixture of univariate distribution consist of one only feature, when multivariate
has many. Sometimes we distingusigh also bivariate normal distributions.

Mixture of univariate normal distribution It is a mixture where each component that be-
longs to K follows its respective normal dsistribution.

Silesian University of Technology 16

The common example of mixture of univariate normal distribution is height of some popula-
tion. Although the way of how we will create clusters and interpret them, depends on many
circumstances. Let’s consider situation, when we want to distinguish between height of a
man and a woman. When our data is labeled, we can use statistical test to check if there are
statistically significant differences. In the case of the unlabeled data, we are no longer able to
relay on statistical tests. We could no longer ask about differences between two groups, as we
are presented with one feature. At this point, the question we want to answer is whether there
are two subgroups in the given data. Potential trap here is that we will find as many clusters,
as we want, most of the time. We need further analysis to verify how significant those results
are for our research.

K
flxlu,o,00) =Y o filx|ur, ox) (2.10)
i1

where:

f(x|p,o,) is probability density function of normally distributed random variable X given
parameters,

arguments of the density function on the left hand side are
o= [, M2, .- Hk],

o = [01,02,...0k],

o = [ot), 0, ...0k],

parameters of components are

Wy is mean of component &

Gis standard deviation of component &,

O is a mixing proportion of component k

Mixture of multivariate normal distributions Each component is a multivariable normal
density function. Probability density function of the mixture is as follows

K
S, Zyo) = Y o fi(xl i, Z) (2.11)
o

where:

f(x[n,Z. o) is probability density function of normally distributed random variable X given
parameters,

arguments of the density function on the left hand side are
W = [y, U2, ...k | matrix composed of vectors of means
Y = [E,%,,...Ek] list of covariance matrices

o = [0, 0, ...0k], vector of mixing proportions

Silesian University of Technology 17

parameters of components are

Wi = [Ha1, M2, .- Hga] vector of means of component &,

Oi11 Oki2 - Okim
Gk.12 Ok22 - Okam . ..

Xp= ’)) i covariance matrix of component k,
Orm1 Okm2 ° OpmM

0418 a mixing proportion of component k

Mixture of diagonal multivariate normal distributions For the reason already stated pre-
viously we focus on the special case of multivariable normal distributions - diagonal multi-
variable normal distribution. Probability density function of the mixture is as follows

K
f(xm'szusa) = Z W—.fk(x\ukszf) (2.12)
k=1

where:

f(x[p,ZU:a) 1s probability density function of normally distributed random variable X given
parameters,

arguments of the density function on the left hand side are
W = [M1, M2, ...ux] matrix composed of vectors of means
U =2V, 2Y, .. .ZY] list of covariance matrices
o= [Otl , 0o, ...OLK], vector of mixing proportions
parameters of components are
W vector of means of component &,

ofp 0 - 0

0 of - 0

Ef = is a diagonal covariance matrix of component &,

2
0 0 0 opy
0ix1s a mixing proportion of component k

2.1.4.2 Mixtures of multinomial distributions

Mixtures of binomial distributions Binomial mixtures consist of more than one binomial
distribution and can be described by the following probability function

ph(1=p)N, 1=01,...,n, (2.13)

K
P?"(!.Np): za’k !
k=1

where

Silesian University of Technology 18

(f{v) 1s a binomial coefficient

N is number of trials

[is number of successes

Ol is a mixing proportion of k-th component
ph is probability of success

(1—pe)~
The above formula described one observation (i.e., I successes) taken from mixture of k bino-
mial distributions. We assume that we record D observations [, I»,..., Ip.

"'is probability of failure

Mixtures of multinomial distribution Below we present the formula for probability func-
tion of kcomponent mixtures of multinomial distributions

N L
Pr(N?x,p):mplj—-~p;;}‘=N!H(p}(ﬁ/ka!), (2.14)
xp! ! ok
xi+x2+...+xy=N (2.15)
Pt+p+.o.t+pu=1 (2.16)

in the above, N is the number of observations
k is the number of components in the mixture
¥= [x1 ‘,_rg...xM] is vector of observed counts of observed categories,

p = [p1,p2,...pum] is vector of probabilities of categories

2.2 EM algorithm

Clustering methods, that are based on a matrix of similarity or dissimilarity measures between
objects. The purpose was to segregate data in such way, that objects in one group were similar
to themselves but different from the other groups. However this approach still lefts many
questions unanswered. Which clustering method should we use for certain data? What to do
with outliers or objects that did not fall into any groups? How do we assess uncertainty about
clustering results?

Statistical approach that uses probability distributions might address some of those questions.
To use it for clustering problem, we can use finite mixture model (FMM). Inside this model,
each mixture component is described by a probability distribution. One of the first success-
ful method that used FMM and answered some of the questions was presented in 1950s by

Silesian University of Technology 19

Paul Felix Lazarsteld. The model was called latent class model and it was using multivariate
discrete data as input. The model was based on assumption, that within each group its char-
acteristics was statistically independent [(Lazarsfeld, 1950a,c)]. In 1963, Wolfe introduced
model for clustering continuous data, along with software NORMIX that he was developing.
It allowed to analyze mixtures of multivariate normal distributions. In his proposal, estima-
tion of model parameters was done by maximum likelihood using Expectation-Maximization
algorithm. It was followed with relevant theory in the next years (Wolfe, 1965, 1967, 1970).
[5].

Before going into the details of how the EM actually works, we can list its basic components
upon which it is built.

2.2.1 Algorithm in general form

EM gained worldwide popularity after publishing it in 1977 by Arthur Dempster, Nan Laird,
and Donald Rubin. The article “Maximum Likelihood from Incomplete Data via EM algo-
rithm” presented a structured and general way to parameter estimation based on the maximum-
likelihood method. The algorithm was called EM since each step consisted of an expectation
step, followed by a maximization step.[13].

The Expectation-Maximization (EM) algorithm is an iterative method for finding maximum
likelihood (ML) estimates in problems with latent or hidden variables. As already mentioned,
latent variables are not directly observed but are thought to impact the observed data.

The EM algorithm alternates between two steps: the E-step (Expectation), where the expected
value of the latent variables given the current estimates of the parameters is computed. Then
is the M-step (Maximization), where the parameters are re-estimated based on the expected
values of the latent variables calculated in the E-step. These two steps are repeated until
convergence occurs, i.e., the parameters’ estimates stop changing.

The EM algorithm has become popular in machine learning and statistics because it can be
applied to many models. The list includes Gaussian mixture models, hidden Markov models,
missing data, truncated distributions, censored or grouped data. As McLachlan points out,
also in statistical models such as random effects, convolutions, log-linear models, latent class
and latent variable structures. However, one of the limitations of the EM algorithm 1s that it
can be sensitive to the initial parameter estimates and may converge to a local maximum of
the likelihood function instead of the global maximum. [6].

First, all EM algorithms utilize probability distributions to carry out results. We already men-
tioned how important they are in describing natural phenomena. We are particularly interested
in the normal and multinomial distribution, as they are widely observed. In addition they allow
us to assess the uncertainty of clustering results.

The second principle, but not less important, is Bayes’s Theorem. Although Expectation-
Maximization is not using full Bayesian Inference, its expectation step is based on it. Precisely
on the following equation:

Silesian University of Technology 20

7 p(xu | ©%) Y ol pe (x| 6f)

where:

oy which is prior probability, can be though of as mixing proportion or probability of each
mixture component,

P (xM [Gf) is some probability function of xj; given guessed parameter Bf

The third important thing is iterative nature of EM. Data will be fitted during »n-th iterations
until convergence occurs.

2.2.1.1 Hidden variable

The main idea behind EM algorithms is existing of a hidden or latent variable which is never
directly observed. It is often referred to as a factor that combines several other variables and
indicators. An example of such a hidden variable is the existence of groups among obser-
vations. Given a multidimensional data matrix that does not contain labels, we do not know
to which group a given observation belongs. This information is hidden. However, we can
reproduce this variable more or less accurately using various data grouping methods. Instead
of precision, we can also look at it as a variable that sets trends in the data. It gathers around
itself the most similar observations with a similar structure. Depending on the approach, we
can use them in different ways. As in this paper, on the one hand, we can check how well we
can separate the tumours into their original groups. On the other hand, a latent variable may
suggest that certain types of cancer are more similar to each other.

2.2.1.2 Maximum-likelihood

Assume we have density function p(x | @) in which x is conditionally described by parameters
©. Data set size is Nand is described by p(x | ®). x can be for example domestic cat’s weight
measure and ® are mean [land standard deviation G parameters.

N
p(Z0)=]]rxi|®)=2(0| %) (2.18)
=l
O =argmax.Z (0 | 27) (2.19)
B

To run the algorithm, we start from initialization. Next, it iterates over two proceeding steps:
Expectation step (E-Step) and Maximization step (M-step), until it reaches convergence [14].

Silesian University of Technology 21

2.2.1.3 General EM

By general EM we the A joint density function

p(z|0)=p(x,y[O©)=p(y|x,0)p(x|©)

p(x|©) = E oipi (x| 9;)

i=1

2.3 Multivariate Gaussian Mixture EM

2.3.1 Implementation

Pseudocode

(2.20)

(2.21)

Algorithm 2.1 Gaussian Mixture Model EM

> Input:
k = int

data = Matrix(m,n)

> Parameters initialization:

temp k =
alphas =
alphas =
for i in

sample from 1l:k times m
sample 1:k from Unif(0.1,1)
alphas/sum(alphas)

1:k {

means[i] = mean(datal[temp_k == i])

vars|[i] = variance(datal[temp_k == 1i])

}

> Expectation:

while {change > change_limit & itr <= itr_limit)

alphas_old = alphas
means_old = means
vars_old = wvars

for i in 1:k{

}

(data - means([i,]) "2

= colSums(pl/vars([i,])/2
sum(log((vars([i,])))/2 - (n/2)log(2pi)

= log(alphas[i]) - p3 - p2

> Maximization:

Silesian University of Technology

22

2.3.2 Initialization

The initialization step requires first estimates of the parameters. In a multivariate normal
distribution, it will be L (mean), 0'3 (variance), T;(mixing proportion), of the kth component.
There are various ways to obtain those estimates. One of the popular ones is to use the k-
means algorithm. It might also be done randomly by other clustering methods like hierarchical
clustering using hierarchical.

2.3.3 Expectation step (E-step)

After initialization, we proceed to the expectation step of the EM-algorithm. Equation for the
E-step can be written as follows:

O f (%, i OF)
plkln) = : T (2.22)
e 310 f (n, G O)

where:
a;- probability (mixing proportion) of k-th component
i p,i,o,ﬁ) - normal density function of observation x, and paramteres u,i and cr;i

In the numerator, from the normal PDF function, we obtain the likelihoods of the values
X, (observations) over W and ;. Next, we multiply it by the probability of occurrence (or
mixing proportions). The results should be interpreted as the probability that values x, belongs
to the normal distribution with parameters \; and ;. We are repeating this step for all other
parameters. The denominator is used to normalize the results so that they can sum up to 1. It
consists of the sum of all posterior distributions.

2.3.4 Maximization step (M-step)

In the maximization step, posterior probabilities from the E-step are used to obtain new pa-
rameters

E;:]:] p(k|”)x;?

i+1
= - (2.23)
o) p(kin)
ot = Lo p(klm)x, -
k n |
1 N
O =gy Lo (] 5) (2.25)
i=1
new vazl xip (0| x;,08) |
A (2.26)

- Zi\il p(f |xi1®gj

Silesian University of Technology 23

I p (€] %, 09) (xi—ppe) (xi—upe)”

X = 2.27
“ £ p(0]%,09) e
where:
u,i“- new mean value of the kth component
6/71)2 - new variance of the kth component
e f the kth
n;+l - new probability (mixing proportion) of the kth component
Expectation and maximization step are repeated until convergence occurs.
d ¢ 1d
p (k| p) = b Je o P™) (2.28)
Yoo1 02 fic (xn, po9)
N 1. old
ae EH—LP(’*N%P“) (2.29)
o _ Zoatop (KL p™) g 2.30
M}‘ - N y b} Ty ea ey (e)
Y.aP (k| xmp(]d)
2
(opevy2 = um oW) p (K Ixnp™) g @.31)
S Yo p (k| 0, pod) T |
N 1 old
o - B (el) -
N
e _ Dt 5P (k[Xl p%) (2.33)
Hem =~y (k| x) M poldy 1T e
En:] P |xm'--:-rn P
N new \ 2 -1 old
o (x,— k|xk....x¥.
(op5)* = et (o =W) p (KL 8 P0))y 1 a4

Z;Y:lp(k [- L
2.3.5 Convergence

The algorithm finishes when convergence occurs. It might be done in several ways. One is to
use a log-likelihood function. The log-likelihood function indicates the goodness of fit. Low
changes in log-likelihood scores, like a few decimal numbers between iterations, might be the
preferred point to stop the algorithm. The log-likelihood function is presented below:

K K M
nGyp(kld)+ Y. Y namIn prmp(k|d) (2.35)
1 k=1 m=1

D
L- ¥,
d=1 |k

Silesian University of Technology 24

The log-likelihood function is also an indicator of the goodness of fit. With a higher score, we
can suspect that data is classified correctly.

2.3.6 Optimization

Despite of R language that we implemented EM algorithm, our implementation is consider-
ably fast. It 1s mostly because we are not calculating full covariance matrix, but only diagonal
variances. It comes at the slight cost of the accuracy (we are not refering specificaly to the
meteric here). We also tried to stay on the logarithmic scale as long as possible, to reduce
NUMETIC eITors.

2.3.7 Various methods of initalization and EM parameters

We wanted to verify if initial conditions influence clustering. If yes, we wanted to investigate
what kind of impact it is, like if the convergence is faster or if clustering yields better results
overall.
We investigated different types of initialization:

* random

* k-means with a random subset

* k-means with ++ initialization

Moreover we have added one EM based o k-means and set maximum iteration to 15. We
wanted to check, if and how much it will impact results and check if we should conduct an
experiment on the larger set of algorithms.

2.3.8 Other EM implementations

In addition to different types of initialization, we have also checked some of the existing GMM
algorithms’ capabilities. One of the most popular is Mclust, an excellent implementation of
the EM algorithm. However, it has a considerable drawback regarding multidimensional data.
It computes the full covariance matrix, thus, is extremally computationally demanding.
Another attractive implementation 1s called GMM in the ClusterR package. The function
itself is the wrapper around gmm_diag coming from the Armadillo library. It is worth men-
tioning that Armadillo is a C++ library for linear algebra & scientific computing. It consists
of numerous helpful functions.

GaussEM based on random initialization. What our implementations have in common is that
we used diagonal GMM. It might be a better choice than the relatively more complicated
problem of estimating GMMs with complete covariance matrices.

We presented a few variants of GaussEM. They differ regarding initialization type or encoded
number of iterations. The comparison only partially exhausts all the possibilities worth a

Silesian University of Technology 25

separate study. We chose only random initialization and two flavours of k-means because of
speed and memory management. In another case, we limited the number of iterations to 15.
We wanted to see if there is a difference in efficiency.

2.4 Multinomial Mixture EM

2.4.1 Implementation

Pseudocode

Algorithm 2.2 Multinomial Mixture Model EM
> Input:

k = int
data = Matrix(m,n)

> Parameters initialization:

temp_k = sample from 1l:k times m
alphas sample 1:k from Unif(0.1,1)
alphas alphas/sum(alphas)

for i in 1:k{

probs[i] = mean(data[temp_k == i])
probs[i] = probs[i]/sum(probs[i])

}

> Maximization:
> Expectation:

2.4.1.1 LSE trick

One of the challanges in machine learning are extremaly small numbers. Following statements
were produces in R software.

le=323 > 0; 1le-324 = 0

The first statement return TRUE, when the second statement return FALSE. In the example
above we were checking if one after 323 decimal places is bigger than zero. The result was
true, which seems correct. However in case when we tested whether one after 324 decimal
places is bigger, the result was false. Another test, now for equality between this value and
zero, returned true. This means that value le-324 was approximated to zero. Actually, R
language uses IEEE 754-2008/IEC60559:2011 standard which is called ‘binary64’ format or
double-precision floating point. Computers are using floating point to represent fractions of
values.

The problem with very small numbers is common in computer sciences and especially in
machine learning. It might occur, although it is not a rule, if the data has many dimensions,

Silesian University of Technology 26

like in multivariate datasets. Exemplary algorithm which has to address this kind of issue
is multinomial Expectation-Maximization. Because of its nature it often has to deal with
hundreds of categories. Assume that we have only ten categories and we evenly distribute
probability p between them. It means that each feature will have a p = 0.1. In case of
100 features p = 0.01. Now, it does not seem to be the problem, when the probability is
evenly distributed. However it is rarely the case. Depending on the software at some point,
computers will return 0. This is not the correct result. One solution to this problem is to
use logarithms and logarithm-based operations. Particularly useful is Log-Sum-Exp (LSE)
function. It allows for logarithms standardization, avoiding zero error at the same time. The
general formula for LSE is as below [15]:

LSE(x|,....,xy) = In(exp(xy) + ... + exp(xy)) (2.36)

where: x, is observation, log is natural logarithm, exp is exponentiaion

2.4.2 Input data

For presented cases, we treat each observation as a row, and each variable as a column.

Data points belong to N. The data shows counts of how many times observation was noted
within each variable.

ny1+np+Rm. ..+ lgm
n21 +n22 + RNy ... gy
gl + g1+ Ram - - -+ Rap (2.37)

npm + Apm + Npm - - . NpM

The usual requirement to start EM for multinomial mixture is to provide k number of clusters.
Knowing the number of subgroups in the data, we are able to initialize parameters in the first
step of an algorithm.

2.4.3 Initialization

During initialization, we need to create first guess of the parameters. In case of multinomial
mixture we need to initialize mixing proportions (o) and probabilities (p) for each catego-
ry/variable. This should be done for each mixture component k € {1..K}.

Mixing proportions indicates how much of the mixture space belong to K. Depending on the

number of components, K we need to provide equal number of ok 2.38.

oy Oy 0Oz --- Og (2.38)

Silesian University of Technology 27

Assume that we have a mixture where k = 3. In that case we need to create 3 o parameters.
We can use uniform distribution oig ~ U (0.1, 1) to obtain initial alphas. We advise to keep the
interval within [0.1, 1], because extremely low values might cause over dominance of larger
o. during estimation step. After choosing values from uniform distribution, they should be

standardized.

S " 0!.|+0‘12+.‘.+0t;(K o

G =2~ and YTp_, Gx=1
):.kzl R

Number of probabilities are equal to the number of dimensions/categories in the data. If the
dataset consist of 10 categories, we should provide probability for each category, for each
element in K.

Probabilities depict how likely given variables will occur in the given group.

putpit...+ P
P21+ pa+t ..o+ v
P+ P2t ...+ Pim (2.39)

Pkm+ Pkm+ ... PkM

2.4.4 E-step

During the E-step we calculate likelihood for each observation. It is done by multiplying
each mixing proportion parameter oy by all probabiliby successes rised to their number of
occurences in the data (respective observation). Then we standardize this value, by divinding
numerator by the sum of calculated numerators for all of the components.

nd| ey ndyy M ndyy
Ot kal ka2 X kaM aknmzlpkm

K nd) ey neyr = K M nd
Yhot QuPy, X P, X oo X P Yoo Qlln=1py,”

p(kld) = (2.40)
where

o - 18 mixing proportion of kK component

ndyy - is a count of successes for a given category

pZiM- is probability of success in 1 to M category of k component, rised to the power of ndy

2.4.5 M-step

During maximization step, parameter ¢ and probabilities are updated. We can update mixing
proportion as in the equation below:

Zfi)zl p(k|d)
D

o = (2.41)

Silesian University of Technology 28

where:

G - is vector of new mixing proportions

D - is the count of observations

In the case of probabilities, we have to calculate new probabilities for each mixture component

k separatelyu. Then, we can standardize those probabilities over all mixture components, as
presented in the following equasion:

s, o):,321 ndmp(kld)
Pkm — Zai

(2.42)
n=1 ff):l ndmp(k]d)

where:

Pum - 18 a vector of new probabilities proportions

2.4.6 Convergence

Within each iteration, the log-likelihood function should increase. If we observe a low changes
in the log-likelihood score, like after a few decimal places it might be good time to stop the
algorithm. The log-likelihood function is as presented below:

K

D
L= 3,
d=1 [k

The log-likelihood function is also an indicator of the goodness of fit. In the perfect scenario,

K M
InGyp(k|d) + Z E M 10 Pron p (k|d) (2.43)
1 k=1m=1

with a higher score, the parameters are closder to true parameters.

Silesian University of Technology 29

3 Algorithms based on distance functions

We often perceive and describe the distance between objects as we constantly use various
metric measures. For example, we need to estimate the distance between cars to know if we
can safely change lanes. When we are in a hurry, we might want to choose the shortest path
to our destination.

In this chapter, we will present four algorithms based on distance functions. Those algorithms
are based on various statistical distance metrics, like euclidean or manhattan.

3.1 Foundation

3.1.1 Input

Assume there are n objects, like trees, people, stocks etc. To gather them 1n groups, we need
some way to compare how similar or not they are. Clustering applications typically work on
either two types of structure.

In the first structure, we can describe objects with their attributes. Those might be, e.g.,
height, weight, count of words or value. We can also provide the real value for each: 165
cm, 55 kg, 15 words or 17 euros. The first structure can be arranged into an n by m matrix,
where rows correspond to objects and columns to the attributes. Tucker (1964) calls such an
objects-by-variables matrix two-mode because rows and columns differ.

The second structure is built up with the same set of objects in rows and columns. It contains
two types of proximity measures between all pairs of objects. They are called similarity and
dissimilarity. Similarity measures how much objects resemble each other, while dissimilarity
estimates how far away two objects are from each other. This second structure, object-by-
object matrix, is called one-mode.

3.1.2 Variables
3.1.2.1 Scale

Units of measures have a significant impact on clustering results in the case of vector data
points. When expressed in different scales, some coordinates of data vectors can dominate
results of clustering. Therefore, aiming at reducing / compensating for that, we apply scaling
and standardization procedures presented below.

30

3.1.2.2 Different variables

Different variables, i.e., different entries of data vectors can exhibit variability of ranges on
the basis of two factors. One factor will be the fact that they are of different type and are
measured in different units. Another factor will be the fact that even when they are measured
in the same system of units, they can exhibit physical differences leading to differences that
need to be compensated.

3.1.2.3 Standardization

Standardization makes cluster structure more shallow, by reducing effect of large samples,
since it lowers their contribution. Standardization is an attempt to achieve objectivity across
different units. Standardization makes data independent of unit measures, we can put all units
on the same scale.

In the procedure of standardization first we have to calculate the mean value of variable f
given by:

1
b= (x17 +x27 4+ +xng) (B4)

where: n is number of observations, [is a mean, x;, s is observation

Next we have to calculate the measure of dispersion in the data. One of the most commonly
used is standard deviation:

A (32

n—1
where: n is number of observations, [L is a mean, x, is observation and ¢ is standard deviation

The equation for standardization is as follows

in = : (3.3)

where:x), is observation, | is a mean, and ¢ is standard deviation

Sometimes those standardized measurements are called z-scores. They are devoid of units
measures, because both numerator and denominator are expressed in the same units.

3.1.3 Statistical distance

Statistical distance contains broad spectrum of methods in probability or information theory.
Very different measures can be used to quantify the distance between two statistical objects. It
can be a distance between two probability distributions, two random variables or samples. We

Silesian University of Technology 31

present definitions, properties of distance functions and will show most important function
measures of distance that were applied in this thesis.

Statistical distances are important notions for developing applications of grouping algorithms.
There are four properties, that will characterize them.

Property Description

d(x,y) > 0 (non-negativity) Distances are nonnegative
d(x,y)=0if and only if x =y Distance from object to itself is equa
d(x,y) = d(y,x) (symmetry) Distance from object x to object y is
d(x,z) <d(x,y)+d(v,z) (subadditivity / triangle inequality). Distance from x to y is shorter, than |

Table 3.1: Conditions to determine different types of metrics

In general, if all four conditions are met, it is a distance or metric. It is important to distinguish
between them, because when only the first and second property is satisfied, the statistical
distance is called a divergence. In algorithms that we are presenting, all four criteria are
satisfied.

3.1.3.1 Distance between two points

Important step to quantify degree of dissimilarity between objects is the choice of distance
metric. We need to compute such distance between each i, j pairs of objects. One of the
commonly used metric to do that is an Euclidean or Manhattan distance.

Euclidean distance Pythagorean famous theorem, allow us to calculate hypotenuse of a
perpendicular triangle. Since AB> 4 BC? = AC” then

AC = \WBCZ) . Basically, this straight line is the shortest distance between point A and
C. Now, lets impose the triangle on the Cartesian plane and assume that two points are single
objects. Each one is described by x and y coordinates so they are within two dimensions.
Analogically as in Pythagorean theorem, we can calculate the distance between object A and
C as (Ax1 —Cx2)? + (Ay1 — Cy1)2.

The Euclidean distance is the straight-line distance between any two points. It is a non-
negative real number such that R~ = {xeR|x > 0}.

If we consider two points from distribution X = (x1,x2...x,) and from distribution ¥ =
(¥1,¥2...yn) in Cartesian coordinates, then distance, between those points are given by gen-
eral equation:

dpuc(X,Y) = 1/ (1 =312+ (x2 = 32)2 + - (ke —) = (3.4)

(x: —y:)2 (3.5)
=1

1

Silesian University of Technology 32

where:
dguc - Euclidean distance
X.Y - variables

Xi,¥; - realizations of X and ¥

n

Y (x; —yi)?- root of sum of squares between all x; and y;

i=1
Euclidean distance is a useful and straightforward tool when it comes to finding the nearest
hospital, considering an emergency helicopter flight. It is increasingly used in a molecular
conformation in bioinformatics, localization of sensor networks, or dimensionality reduction

in statistics .

Minkowski distance Minowksi distance is a generalization of both Euclidean and Manhat-
tan distance. It is also called Lp metric and is given by equation (8) where p is any nonnega-
tive, real number.

1
n P
dpgink (X, Y) = (E |x;'_}’r'|p) (3.6)
i=1
where: dping - Minkowski distance
X, Y - variables
Xj, ¥i - realizations of X and Y
| |xi — yi|? - sum of absolute difference between all x; and y; raised to the power of p.

Minkowski distance can be considered as a generalization of Euclidean and Manhattan dis-
tance. If p = 2 it is the same as Euclidean distance and with p = 1 itis equivalent to Manthat-
tan distance

Minkowski distance is applied in fuzzy clustering and all applications from Euclidean distance
and Manhattan distance.

Manhattan distance Manhattan distance, called also city block distance, owns its peculiar
name thanks to following reasoning. Imagine a city, where streets are part of a grid, so we
have only vertical and horizontal line segments. Suppose you want to get from the block A
to block B. Then, the shortest possible distance might be described by following equation:
XA - xCl + IyA - yCl. It goes with an assumption, that we do not own a helicopter and we
cannot fly. Otherwise, the shortest path will be an euclidean distance. L. Kaufman and P.J.
Rousseeuw advise to use manhattan distance if for example a difference of 4 in first variable
and 1 in second is the same as 2 in first variable and 3 in second . Euclidean distance with

Silesian University of Technology 33

emphasize larger value, thus increasing weight of a variable.
1
dMau(Xu Y) = Z |xf =)"r'| (37)
i=1

where: dyink - Manhattan distance
X, Y - variables

X, yi - realizations of X and ¥
Applications of manhattan distance:

https://iq.opengenus.org/manhattan-distance/

3.2 Hierarchical clustering

Hierarchical clustering owns its name thanks to its structure and how it creates the clusters. It
produces a series of partitions. Specifically, data points are gathered into clusters resembling
an upside-down tree shape (pic!). The choice of a presented shape is arbitrary, as it might be
circular or graph-like (pic!). What is shared by all three pictures is a visible hierarchy. Each
data point is a part of a systematically growing cluster that incorporates all of the data at the
end. To achieve this result, we can agglomerate or divide the data. In the first case, called
the agglomerative or top-down method. individual data points are grouped into larger clusters
until they cover the data set. In the divisive or bottom-down approach, data is divided into
smaller groups up to single data points.

3.2.1 Agglomerative clustering

Agglomerative clustering is the most common approach in Hierarchical Clustering.

Before we perform clustering, we have to make two decisions. The first one is how we
measure the distance or similarity between points. It might be euclidean, Manhattan distance
or many others. The second decision is the linkage method. It dramatically influences how
data points will be clustered in consecutive iterations. Some common examples are single,
complete or average linkage. Following clustering, we can decide on any number of clusters
without repeating the calculations. It is a characteristic feature of Hierarchical Clustering not
found in other unsupervised algorithms.

In the first step, we need to measure how far points lie from each other. To do that, we can
use similarity (e.g. Jaccard index) or distance (e.g. Euclidean) metric. The choice depends on
scientific questions and the data itself. Next is the choice of linkage method. It will determine
the way how the data will be clustered together. It has a tremendous impact on the results.

The last but important thing is deciding the number of clusters we would like to see. We are
provided with two different approaches to that problem. The first one is to choose the number

Silesian University of Technology 34

of groups exactly. Another way is to cut the branches at a specific tree height. The tree’s
height depends on the largest distance between the two clusters in the data. Thus choosing
this way will give us groups of data with alike similarity or distances between them.

3.2.2 Divisive clustering

Divisive hierarchical clustering reverse the question presented in the agglomerative hierarchi-
cal clustering. It asks how to divide trivial solution with one cluster to n singleton clusters.
This approach is much less common than agglomerative methods, mostly due to the extensive
use of computational power. In divisive methods one cluster is consecutively splitted into two
smaller clusters. The challenge is how to find an optimal splitting space. Exploring all the
possibilities is computationally expensive, as in the first step there exist 2*(n-1)-1 ways to
split first cluster into two separate ones. One solution to this problem was presented in the
Dlvisive ANAlysis Clustering (DIANA).

3.2.2.1 DIANA

How it works (need tables and pictures) At the beginning, DIANA has to split up the data
into two separate groups. It is done without considering all possible divisions, but rather
iteratively. First, average distance between object and group of objects is calculated for each
of them. Then, object with largest average dissimilarity is chosen to initiate "splinter group”.
Next, average dissimilarity is calculated between object and remaining objects in the larger
group. Te results are compared with the splinter group. Object with the largest average
dissimilarity difference is then moved to the splinter group, making together one cluster.

3.2.3 Linkage methods

When the distance metric was calculated, it showed us how similar or how close the objects
are to each other. Linkage methods are used to join such objects or observations using distance
measures as a base. In other words, it is a function that creates clusters from the objects based
on their similarity. There are several linkage methods and each one of them provides slightly
different results. We will present 8§ most popular: single, complete, average, Ward’s, Ward’s
2, McQuitty, median and centroid.

3.2.3.1 Single linkage

In each step, the two clusters with the smallest minimum pairwise distance are merged.

I(X,Y)= min d(x,y) (3.8)

xeX . ycY

where:

Silesian University of Technology 35

[, - single linkage
X, Y -two sets of elements (clusters)

r)x(lin Yd(x,y) - minimal distance between the two elementsx € X andy € Y.
XEX VE

3.2.3.2 Complete linkage

In each step, the two clusters with the smallest maximum pairwise distance are merged.

LX.Y)= g;géyd(«v;)') (3.9)

where:
[- complete linkage
X, Y - two sets of elements (clusters)

max Yd(x,y) - maximum distance between the two elements x € X and y € Y.
XTA Ve

3.2.3.3 Average linkage

It might be found under name Unweighted Pair Group Method with Arithmetic Mean or
UPGMA. In this method, distance between points from both clusters is measured. Then, the
average distance is calculated and clusters with smallest average distance are merged.

1

2 d(x,y (3.10)
EEZR YR VR

|2 dez2+|¥] dy 2

{u" —_ o 3.]].
(2°UY).Z |£[+|@‘ ()

where:
l(2uy) z - average linkage
X, Y - two sets of elements (clusters)

d(x,y) - distance between the two elements x e X and y € Y.

3.2.3.4 Ward's

Ward’s method shares some similarities with analysis of variance (ANOVA). It aims to mini-
mize error sum of squares (ESS), when linking clusters together.

Nx

ESS(X)=Y

=]

1 M

Xi—— Y x; (3.12)

Silesian University of Technology 36

I(X,Y) = ESS(XY) — [ESS(X) + ESS(Y)] (3.13)

where:

ESS(X) - error sum of squares of variable X

ESS(Y) - error sum of squares of variable ¥

d(x,y) - distance between the two elements x € X andy € ¥,
Ny - number of observations in set X
https://jbhender.github.io/Stats506/F18/GP/Group10.html
https://www.statistics.com/glossary/wards-linkage/

3.3 K-means

K-means algorithm is an iterative, distance based algorithm. It is relatively fast, simple and
computationally effective. In addition, low memory usage makes it suitable for cluster detec-
tion in large data sets. This is major advantage over hierarchical clustering methods, that are
based on dissimilarity matrix. Although they allows to explore any number of clusters, they
might become huge and computationally demanding. Last but not least, k-means might be
successfully used as a starting step in other algorithms. Concrete example of that will be the
initialization part of Expectation-Maximization algorithm.

From mathematical point of view, k-means is an approximation of the normal mixture model.
Parameters are estimated using maximum likelihood method. The main idea behind the k-
means is that observations are gathered around artificially introduced centers, called cen-
troids. Centroid can be perceived as a generalization of the mean and it is a geometric center
of a convex object. In general, distance between centers and observations should be minimal.
Data points closest to the particular center are part of its cluster.

The initial number of centroids is equivalent to the number of clusters k in the data. k is
required to start the algorithm. If we have strong assumption regarding number of clusters,
we can use it. Otherwise, there are few ways to determine number of clusters experimentally.
Algorithm stops when it reaches stability, which depends on the convergence criteria. Exam-
ple of that will be creating groups with highest similarity of points within given cluster and
lowest between different clusters. In the commonly used Hartigan-Wang implementation, the
stop criterion can be satisfied in two ways. One is by minimizing the total sum of variance
within clusters (WCSS) as given in the following equation.

ko n
WCSS:ZiZ]HxU—cin (3.14)
=1 j=

where: WCSS - total sum of variance within clusters

Silesian University of Technology 37

¢; - centroid

X;j - observation ij

There are few k-means algorithms: Lloyd, Forgy, MacQueen and the one already mentioned
Hartigan-Wong. The last one is the default k-means algorithm in the R software, that we have
used in our comparison.

3.3.1 Lloyd and Forgy

Lloyd and Forgy algorithms are quite similar. They are both batch algorithms, which means
that transformation is applied to the whole data.

The key distinction between those two is that Llyod take into account discrete data distribu-
tion, when Forgy considers continuous. Consider random vector X = {x] % o IR ,x3} € %4,
where % is sample space of d dimensions. For X, algorithm tries to find k number of
centroids C = {c¢y,¢2,- - ,cx } € % that solves minimization problem:

E = }:f-"zl Z?:, d (ci,x;;), for discrete distribution (Llyod) density function and 4 is distance
metric.

Apart from that difference, the following procedure is the same.

3.3.2 Hartigan-Wong

2 2
ML el _ o Ml

SSE2 =
Ni—1 N —1

(3.15)

where:

SSE1 - sum of the squared Euclidean distances of each point to first centroid
SSE1 - sum of the squared Euclidean distances of each point to second centroid
¢; - centroid

X;j - observation ij

3.3.3 Initialization

We compared different two different types of initializations for kmeans:
» Hartigan wong, as implemented in R
* k-means++ from package ClusterR

From the results we can see that

3.4 Fuzzy clustering

Fuzzy k-means clustering, often called fuzzy c-means (FCM), can be considered a soft ver-
sion of k-means. Each observation has some set of degree of belonging to a cluster. This

Silesian University of Technology 38

is different approach than in k-means, where membership is binary and given observation
belong (1) or not (0) to particular group.

FCM centroids are the means of all observations weighted by their degree of membership to
the cluster. They can be calculated using the formula:

Yowg ()™ x x;
Ch=—= 71

Yiwg (x:)" o
where: ¢, - centroid of a cluster k,
wy - degree of membership to the cluster,
m - fuzzifier coeficient
The FCM tries to minimize objective function:
W
arg;nin 2 wij ‘x;—c;Hz, (3.17)
i=1 j=1

where: w;; indicates the degree of the belonging to the cluster. It allows to calculate the
distance between the observation and the centroid k. Formula is given by :

1
wij = . (3.18)

¢ A m=eill Y™
Y (e

where:
m - fuzzifier coeficient

The fuzzifier m playes important role in fuzziness of clusters. It can take values from [1, oo].
A large value of m results in lower degree of belonging w;;, resulting in fuzzier groups. Often
for the data without any apriori knowledge, parameter m is commonly set to 2. When the m =
1, the cluster membership should converge to 0 or 1, as in the k-means algorithms.

Due to vast similarities to k-means, FMC suffers from alike problem, it does not guarantee
convergence to the global optimum. It might get stuck in local minima. In addition, the results
heavy depends on the initial choose of weights.

3.4.1 Initialization and distances

In the case of fuzzy c-means, we have checked different initialization but also distance metrics.
As in k-means, we checked random initialization and the ++ initialization.

Moreover, a few sources report that manhattan distance might be a better choice in the case
of multidimensional data.[cite the soruces]. We made a simple comparison between c-means
with manhattan metric and euclidean. The reason 1s that those are often the subject of discus-
S10M.

Silesian University of Technology 39

We divided the results by actual and simulated data.

3.5 k-medoids

The most significant advantage of the k-means algorithm is computational efficiency. Calcu-
lating averages and assigning them to the closest mean is algebraically fast. It is relatively
easy to parallelize. Those merits make this algorithm applicable to large databases.
Unfortunately, it is based on the square of the Euclidean distance. However we are not always
interested in this kind measure of similarity. Such a measure is also susceptible to large
distances, and a single outlier can significantly affect the sum of squared distances.
PAM works similarly to k-means, except that the centres of the clusters are the cases in the
data set (called centroids or clusters). Therefore, the set of possible cluster centres in the
PAM method is much smaller than in the k-means method. Usually, the results of the PAM
method are more stable. Moreover, the k-medoid algorithm will allow us to use other distance
measures at the price of higher computational complexity. In other words k-medoids method
is an extension of the k-means method.
The k-medoids method finds such objects representing clusters (k-medoids) among the obser-
vations, to minimize the sum of the distances of all non-medoid elements from their closest
medoids.
Another difference between the k-means algorithm and the k-medoid method is how the dis-
tance between observations is defined. In the case of the k-means Euclidean distance is used,
while the PAM uses mainly Manhattan distance. In addition, k-medoids are supposed to deal
with the problem of outliers as well as noise in the data. It is considered more robust than k-
means. However, its computational usage can be considered high even by today’s standards.
It performs slowly in large data sets.
We can distinguish two phases of PAM namely construction phase and swap phase.
Construction phase consist of:

1. Split the dataset into k k clusters with k k medoids assigned

2. Calculate the distance matrix between the medoids and the other observations

3. Assign each observation (non-medoid) to the closest cluster

Swap phase:

1. Using iteration, replace one of the medoids with one of the non-medoids and check that
the distances of all non-medoids from their nearest medoids are smaller.

2. If at least one medoid swap has occurred, repeat step 3. Otherwise, end the algorithm.

Silesian University of Technology 40

4 Study pipeline

In this chapter we present full pipeline. We will start with chosing and selecting datasets.
Then, we will proceded to the filtration and scaling methods that we used. After that, we will
introduce cluster evaluation methods. It consist of methods of visualizing data as well as ways
to present algorithms performance or efficiency.

We can divide whole datasets into two main subsets. The first one consists of artificially
created data that will challenge algorithm performance in a more controlled manner. The
second one consists of real data sets chosen with the multidimensionality criterion in mind.

4.1 Data preparation

4.1.1 Simulated data

Data simulation is a vast research field with plenty of practical applications. We can use it in
data prediction and during testing new programs or algorithms, to name a few. Simulation of
data is a way to generate random numbers from the stochastic process. A stochastic process
is a time-ordered sequence of random variables or something described by probability distri-
butions. For example, we can model height population data using a mixed normal-uniform
distribution model. [7].

h; ~ Normal(lL,0)

u ~ Normal(160, 15),

G ~ Uniform(0, 10)

where h; is i-th observation,

Both) and ¢ parameters are generated from the separate distributions. First parameter, [L
is generated from the normal distribution with parameters L = 160, and ¢ = 15. Second pa-
rameter, G is generated from the uniform distribution with minimal value of 0 and maximum
value of 10. Here, our exemplary model doesn’t describe the height of any particular pop-
ulation. It is a very rough example that is within reasonable limits. Extreme values of this
model will barely go lower than 95 cm and exceed 240 cm. The reason is that the shortest
man recorded was Chandra Bahadur Dangi, who measured 54.6 cm. ["Shortest Person Ever
Declared: Chandra Bahadur Dangi". Huffington Post. 27 February 2012.] On the opposite,
the record for the tallest man recorded belongs to Robert Wadlow, with 272 cm of height.
[http://altonweb.com/history/wadlow/]

41

Data simulation can become pretty handy. The ground truth is fully known, contrary to the
actual data, when we are sometimes only partially aware of the groups in the data. We know
the exact model parameters and can compare them with the estimated values.

Some models might get exceptionally complicated by having many different parameters. It
may become untraceable to predict their effect on the data. However, since we have complete
control over model parameters, we can tune them accordingly and observe the result. In
this manner, we can perceive data simulation as a reflection of some natural system and a
controlled experiment [16].

Using data simulation techniques, we are no longer limited by actual measurements. We can
generate an almost infinite number of data with the structure and parameters we want. It
allows us to test different kinds of data. However, it might not reflect the real data accurately,
giving us false estimations of model efficiency. It is based on a few limitations. The very
special that should be taken into mind is Random Number Generation.

4.1.1.1 Simulated multivariate normal data

Mixtures were generated according to multivariate normal distribution properties. Each mix-
ture component consisted of random vector i, matrix £, mixing proportion o and a fixed
number of dimensions d, across all mixture components. Each random vector L was gener-
ated from uniform distribution such that p : U(0,10) from the interval [0,10]. £ was created
assuming that the correlation between variables (elements of data vectors) equals 0, so they
are independent. Variances were then generated from a uniform distribution from the interval
[0.1, 1] to avoid O variances. Mixing proportions were obtained from a uniform distribution
from the interval [0.1, 1] to prevent one component from dominating the mixture. The vector
of mixing ratios was standardized, to sum up to 1.

Counting different filtration and scaling, I created over 15 000 files. They contained from
2 to 10 clusters and between 5 and 1600 dimensions. Step between dimenstion was taken
arbitrally. The higher number of files than in multinomial data comes from the fact that we
have used two different PRGN packages, namely MASS and MultiRNG.

4.1.1.2 Simulated multinomial data

Mixtures were generated according to multinomial distribution properties. Each mixture com-
ponent consisted of: random vector p of probability successes, number of observations n,
mixing proportion o and d fixed across all groups. p was generated from a uniform distri-
bution from the interval [0, 1]. Then all values were standardized so that all elements sum up
to 1. n was generated from the interval [3,n]. Mixing proportions of all components were
calculated using uniform distribution from the interval [0.1,1] and standardized, to sum up to
1.

Silesian University of Technology 42

With different types of filtration, I created over 8 000 files. Similarly, as in multivariate data,
they contained from 2 to 10 clusters between 5 and 1600 dimensions with arbitrarily taken
steps between dimensions.

4.1.1.3 Random Number Generator (RNG)

As of the time of writing the thesis, there is no genuinely random number generator. Instead,
we have PRNG. The letter "P" stands for the "pseudo”. Although some efforts exist to create
such a system using quantum computers, we will focus on PRNG. It is a program, or part of
it, that generates numbers based on some initial information. This base information is called
a seed. It can use many different sources of initial data. Depending on the software, it can be
actual time, active processor time or key inputs transformed into numerical values. It is why
pseudo-random number generators don’t produce random numbers. When a seed initializes
PRNG, it can take an infinite number of different values. However, most of the time, it is
restricted by software design or by computer memory.

4.1.1.3.1 Computation optimization One of many optimisation-related parts is how fast
we can solve arithmetic equations. If we consider matrix multiplication or even more straight-
forward vector multiplication, it consists of a few steps to obtain the result. Using a high-level
programming language, or even mid-level, like c++, we can use it out of the box without the
need to code it manually. Those languages already offer such libraries.

The first to mention is BLAS. The shortcut refers to Basic Linear Algebra Subprograms.
In general, it provides classic interfaces for linear algebra calculations. Inside the BLAS
library, we can distinguish three different BLAS levels. BLLASI (level 1) allows for vector-
vector operations. BLLAS2 is responsible for matrix-vector operations. Finally, BLAS3 makes
matrix-matrix operations possible. In summary, BLAS is the computational kernel for linear
algebra and other scientific applications. If we can make BLAS optimise its libraries, the
whole application written with it will benefit.

Another essential library is LAPACK. LAPACK stands for Linear Algebra PACKage and is
used along with BLAS. The actual language that LAPACK is written in 1s Fortran 90. It
consists of routines for solving least-squares, eigenvalues or singular value decomposition.
LAPACK also handles routines for solving lower—upper (LU) decomposition, QR factorisa-
tion or Cholesky decomposition, to name a few. It handles dense and some sparse matrices,
precisely banded ones. However, it does not have routines for sparse matrices in general. In
terms of numbers, similar functionality is provided for real and complex matrices in all areas.
Both double and single precision is supported.

The relation between BLAS and LAPACK is simple. LAPACK heavily depends on BLAS as
it is built upon it. [https:/netlib.org/lapack/ ; https://www.openblas.net/]

https://csantill.github.io/RPerformanceWBILAS/ provides some results that compare mentioned

Silesian University of Technology 43

alternatives to BLAS. In this comparison, each library has its fortes. However, Intel MKL has
the highest number of the best results in all comparisons.

In our computations, we have used OpenBLAS libraries, which in comparison, performed
slightly worse. However, there are some debates about which library is better. Intel MKL
was primarily optimised under intel processors, and some users historically reported worse
performance on AMD processors.

Nevertheless, despite the library choice, alternatives offer better optimisation and gains in
performance.

R specific optimisation

There is a common idea that R is slow, which is valid to some extent. The R is high-level
programming language. Second is tahat is was designed with statistical analysis in mind.
Many functions are not created with speed and efficiency but with stability and reliability.
That being said, I will analyse mean function. First, it consists of many sanity checks, guaran-
teeing that the user provided the correct input. Secondly, it handles different data types, like
time, date, and date-time classes. All of those checks require additional time. It stacks up the
more we are executing the function. As in the presented example, the mean withouh all of the
sanity checks and internall validtions, will acheieve better calculation time.

The presented exercise concludes that deep R knowledge allows for writing efficient functions.
We can strip many functions from things that we do not use and need. However, it is still a
high-level language and optimised C code might be more efficient. As a rule of thumb, the
more we rely on some function, and the more specific data type it contains, it might be a good
idea to use lower-level language.

4.1.2 Real data
4.1.2.1 Preparation

Having the data, the first step was initial processing. All data was parsed to fixed matrix for-
mat. In each case, matrix n x d consisted of observations »n placed in rows, and variables d
in columns, to maintain consistency across all analyzed data sets. In the next step, data was
processed to select analyzed features, using different filtration methods. After this point, each
data set was clustered using unsupervised algorithms. Because of the fact that in unsupervised
clustering we do not have any labels, to prepare summary of results, we had to determine
membership of clusters. To achieve that, we have used Hungarian algorithm, which optimizes
assignment of cluster membership by maximizing value of matches. We presented results, us-
ing and comparing various visualization tools for dimensionality reduction like: umap, tSNE
and PCA. To compare algorithms efficiency, we have used common statistics like mean, me-
dian, but also more sophisticated indexes, like Dice, Jaccard or Rand. Metrics was interpreted
and wrapped in comments.

Silesian University of Technology 44

The most important part of our comparative analysis of unsupervised clustering algorithms
is computational experiments concerning some publicly available data sets. Nowadays, ex-
tensive collections of real-world datasets can be used for comparative experiments of un-
supervised clustering algorithms, e.g., [cytaty]. There are also many publications focusing
on empirical comparisons of unsupervised clustering methods. When choosing data sets for
clustering, the following criteria were used. The first criterion was dimensionality. Datasets
chosen for analyses are multivariate with a large number of attributes. The second criterion
was that features used for clustering are numerical (real or integer). The third criterion was
that data come from different areas. Two datasets (data on frequencies of somatic mutations in
genes in cancer samples, data on levels of gene expressions in cancer samples) come from the
TCGA database of mutations in cancer tissues [cytat], two datasets (data codons in different
species, data on sports activities) come from UCI database [cytat],. The fourth criterion is the
availability of information on classes in the data, establishing the ground truth.

4.1.2.1.1 Datasources

TCGA The TCGA project started in 2005, with the aim of identification of complex ge-
nomic interactions in majors cancers. Five year later, the TCGA was made available to public.
Then, in December 2013, TCGA concluded sample collection with over 20 000 biospecimens
across 32 types of cancer. The data become publicitly available for academic purposes world-
wide. .

UCI The UCI repository is a vast collection of databases and data generators. It is an open
access repository of data, which people worldwide donate. The machine learning community
generally uses it for empirically studying various ML algorithms. UCI repository was firstly
created in 1987 as an ftp archive by David Aha and students of UC Irvine. As UCI site
reports, since that time, it was cited over 1000 times, placing it among the top 100 most
quoted "papers" in all computer science.

4.2 Data processing

In the filtration part, we either did not change the data or used the variance decomposition
method to reduce the “noise” in the data.

4.2.1 No filtration

In this case, we left the datasets unchanged. Datasets contained all of the original variables.
We used it in the in the scaling step as well and in the clustering.

Silesian University of Technology 45

4,2.2 Variance decomposition.

For each variable, we have calculated its respective variance. As a result, we received a
vector of n variances with varying values of n, depending on the used dataset. We assumed
that obtained vector is, in fact, a one-dimensional mixture that contains essential variables
and additional noise. To separate them, we used a mixture decomposition technique. In this
scenario, we have used the mclust package. We tried to align mixtures containing from two
to even twenty-five components. The Bayesian Information Criterion decided upon the final
number of groups.

4.2.2.1 Bayesian Information Criterion (BIC)

Bayesian Information Criterion is a usefull tool in model selection. Given by following equa-
tion:

BIC = kIn(n) —2In(L). (4.1)

where:

[.= the maximized value of the likelihood function of the model M i.e.l. = p(x | o,M), where
0 are the parameter values that maximize the likelihood function;

x = the observed data;

n = the number of data points in x, the number of observations, or equivalently, the sample
size;

k = the number of parameters estimated by the model.

It penalizes model for using more parameters and is scalable because it takes into equation
number of observations. I have used it during variance mixture decomposition, to group
variances into k groups.

4.2.3 Scaling

We have used cenetering of variables, along with standardization. In this way, variables had
similar siginificance in the

4.3 Clusters evaluation

Cluster evaluation might take place before and after clustering. Evaluation done before is
mainly done for calculating or making expertise regarding the potential number of clusters. It
can be done visually or by brute-force clustering. If we have a one to the three-dimensional
dataset, it is relatively easy to visualize. Visualization is becoming more challenging with
more than three dimensions.

Silesian University of Technology 46

4.3.1 Cluster assigment - Hungarian algorithm

The increased number of clusters poses a few challenges. One of them is deciding the clusteri-
zation labels. Because, in principle, unsupervised clustering is done without them. Eventually,
we must decide which cluster should be assigned to which group.

One potential solution to this problem is The Hungarian matching algorithm, also called the
Kuhn-Munkres algorithm.

The typical example of KM’s usefulness is as follows. Imagine that we have three workers that
offer prices for three services: cleaning, washing, and ironing. Showing their prices together
in a single matrix, we will have the following:+

We can assign only one job to one worker, and our goal is to minimize the total cost. If we
give washing to "worker 2" (which is the cheapest service), we will have to assign ironing
to "worker 1" and cleaning to "worker 3". The total cost will be 65$. However, if we resist
the temptation and assign washing to worker 3, we can give the cleaning to "worker 2" and
ironing to "worker 3". To total cost will be equal to 55% instead of the initial 65$. Although
in the label assignment, we should maximize group observations instead of minimizing them.
We can easily do that using the same algorithm by multiplying the matrix by -1. In this way,
the highest values will become the lowest ones.

4.3.2 Clusters validation

There 1s a plethora of various metrics that allow us to compare the similarity or dissimilarity
between two clustering methods. We applied a few different to describe algorithms’ perfor-
mance by comparing created clusters with the ground truth.

4.3.2.1 Rand Index and Adjusted Rand Index

Rand index is a popular metric to measure the results of clustering. In we are presented with
two groups, we will see the following confusion 2x2 matrix.

X Y, Y» | sums
X nyp niz|oa

4.2
X2 |ny nn| a Pz

sums | by b2

In the above matrix: X are ground truth labels, ¥ are clustering labels, a is a sum of all
observations that belongs to X, b is sum of all observations that belongs to ¥,,. Then, RI is
given by following formula:

TP+TN B Hiy + 22
TP+FP+FN+TN n+m+npn+nn

Rand Index = (4.3)

Silesian University of Technology 47

where:TPand n;,- is the number of true positives; FPandny;is the number of false positives;
FNand n;7 is the number of false negatives; TNand rn7; is the number of true negatives.

The RI index takes ranges between 0 and |, including themselves. In the perfect aligment, the
term ny +ny12 = 0 and Rand Index = 1,

This scenario is sufficient only for two-class problems. If we have to estimate clustering
quality or similarity of more than two classes, the table remains squared but its dimensionalty
equals to k. Matrix below is similar to the matrix from the chapter 2. However, it shows
groups of clusters. Bold characters indicates correctly assigned observations, that are located
on the diagonal line. We will use this assumption for the rest of the thesis. Note that directly
after the clustering, groups often will be scattered on the matrix. However, we ensured that
this statement is true by assigning labels to clusters, using the Hungarian algorithm. Then,
sorting is easily done internally in the R, when creating confusion matrix.

X Y; Y, Yin Yy | sums
Xy |y ni2 M nmy | a
X; | n21 mpp noy my | az
X4 | na1 ng2 Mam Ram | dd (4.4)
Xp |np1 np2 npm NpM | ap
sums | by by by by

In the above matrix: X are ground truth labels, ¥ are clustering labels, ap is a sum of all

observations that belongs to Xp, by is sum of all observations that belongs to Yy
In this case, Adjusted Rand Index (ARI) was proposed[17]:

nj a; b; n
ARl = (4.5)
1 a; b; aj bj n
4.3.2.2 Jaccard and Weigted Jaccard Index
In simplified form for two-class case, Jaccard index takes a following formula:
TP
Jaccard = _t (4.6)

TP+FP+FN - ni +Mna21 +112

where: TP is the number of true positives; FP is the number of false positives; FN is the

number of false negatives

The basic difference from the Rand Index, is that it does not contain TN counts [18].

Silesian University of Technology

48

We implemented Weighted Jaccard index, based on the two class equation. First, we substi-
tuded denominator as in following

nii

Weighted Jaccard = ———
ay+by—ny

4.7)

where: a; and b; are respective sums of F'P and FN values of the first group

We are substracting term 5y, since both a; and b; have and we need only one. Then, we can
generalize the equation for all of the groups

npm

Weighted Jaccard = Z m— —
ap + by —npm

(4.8)

where: ap - is the sum of F'P values in any group, by;- is the sum of FN values in any group.
npp - 1s the value of TP in any group, k is the number of components and

4.3.2.3 Accuracy Index
In the simplified, two class case, the accuracy index is given by following equation.

TP+TN - ni+no
TP+FP+FN+TN nj+ny+np+nn

Accuracy = 4.9
where: TP is the number of true positives; FP is the number of false positives; FN is the
number of false negatives

In the equasion above, Accuracy index is the same as Rand index, thus sometimes it is called
Rand accuracy. In our comparison we used its variation, called Balanced Accuracy.

We used this metric to create Median Accuracy Assigment plot. It shows how on median
given algorithm assigned observations to the correct group. The higher the bar, the better. For
the bigger picture, we have added the mean as a black dot and the standard deviation from the
mean. From the perfect assignemnt we expect a mean of size 1 and 0 variance.

4.3.2.4 Simple Matching Coefficient

The SMC is easy statistic, which calculates efficiency of the clustering. To obtain this metric,
we have to divide sum of all true postivie values by all observations. As one may already
knew, this metric might not be suitable choice, when we have significalntly different number
of observations.

- TP B n +n»
" TP+FP+FN+TN nj+nyy+np+nn

SMC

where: TP is the number of true positives; FP is the number of false positives; FN is the
number of false negatives; TN is the number of true negatives

Silesian University of Technology 49

In the SMC metric we calculate numerator in a different way, than it was in the case accuracy
index.

When we calculate the value of TN it contains

4.3.2.5 Weighted Simple Matching Coefficient

The WSMC is balanced version of SMC. It accounts for different number observation in the
groups, thus might be more accurate, where the classes are not balanced.

npy
WSMC=) — /k
Lt
where TP is the number of true positives; FP is the number of false positives; FN is the

number of false negatives; TN is the number of true negatives and K is the number of classes

4.3.2.6 Beta-binomial conjugate distribution

The beta distribution is a plot created based on the beta-binomial conjugate prior. Thanks to
conjugation, we can mathematically update parameters o and with respective successes and
failures counts. Let us consider Bera(1, 1), as shown in the picture below. It shows our prior
belief about algorithm performance. That means we are assuming an equal probability for
its possible efficiency. If the algorithm assigns all observations incorrectly, we will observe a
single, high line at 0. For all correct answers, it will be one line at one. Then, for everything
in between., we will observe the distribution with different shapes, locations and standard
deviations.

The nice thing about this approach is the possibility of so-called bayesian updating. Once
we calculate the distribution parameters, we can use them as our prior distribution when new
results arrive. Thus we do not have to recalculate model efficiency over and over again. The
other helpful thing about this approach is its crystal clear structure. It is almost impossible to
cheat with this kind of metric. One thing is its robustness. Even if we give some model the
upper hand in terms of a higher probability of better performance, it will be quickly neglected
after seeing the evidence. However, if we put a substantial initial prior without any evidence,
it will be immediately visible to the reader.

4.3.3 Visualization

Dimension reduction methods allow the representation of observations in space with fewer di-
mensions than in the original data. Dimension reduction is often an intermediate step in clas-
sification, cluster analysis, or regression. In certain situations, it improves the effectiveness
of these methods, increases stability and sometimes allows the inclusion of many variables
in the analysis. The data is reduced to a two-dimensional space, making it easy to present

Silesian University of Technology 50

them on a graph. Methods from this group are also called feature extraction methods. Due to
dimension reduction, new features might be used for other issues. It is also a popular method
for visualising multidimensional variables, which we used in our study.

4.3.3.1 PCA

Its purpose is to extract the essential data from the matrix. It is then represented as a set of
new orthogonal variables called principal components to display the pattern of similarity of
the observations and the variables as points in two or three-dimensional space.

The principal component analysis defines new variables by combining their smallest possible
subset. They are linear, weighted combinations of the original data set. The aim of creating
new variables is that they will explain the total variability in the data set as much as possi-
ble. The new variables will form an orthogonal basis in the feature space. We should select
variables so that the first variable reflects as much variability in the data as possible. After
projecting the observations onto this vector, we want the variance of the projections to be the
highest. After determining the first variable, the second is orthogonal to the first and explains
as much of the remaining variability as possible. Another variable should be orthogonal to the
first two, and the procedure continues until no variable remains.

4.3.3.2 SVD and TSVD

Singular Value Decomposition (SVD) is a factorization of a real or complex matrix into three
matrices: U, ¥, and V*. The matrix U and V* are unitary matrices and X is a diagonal matrix
containing the singular values of the original matrix. Truncated Singular Value Decomposi-
tion (TSVD) is a variation of Singular Value Decomposition (SVD) that only retains a subset
of the singular values and corresponding singular vectors of a matrix. The idea behind TSVD
is to reduce the computational cost of SVD by only considering the largest singular values
that capture the most significant information of the original matrix. TSVD is commonly used
in dimension reduction, denoising, and compression tasks.

We have used TSVD to visualize datasets.

4.3.3.3 tSNE

t-SNE stands for t-Distributed Stochastic Neighbor Embedding. It is a non-linear, unsuper-
vised technique of dimensionality reduction. Its primary purpose is to explore and visualise
multidimensional data. The t-SNE algorithm computes a measure of similarity between pairs
in large- and small-dimensional spaces. For the next step, it tries to optimise both measures of
similarity. In simple terms, t-SNE tries to simplify how multidimensional data is distributed
in euclidean space. t-SNE is not designed to cluster data but primarily to explore and visualise

Silesian University of Technology 51

data. However, we can assess how many groups may be hidden in the data by visualising data
in two or three-dimensional space [19].

Several R packages can create a t-SNE map: tsne, Rtsne or cuda.ml.

We used package cuda.ml because it utilises graphic card capabilities to produce results. It
is efficient and swift. Using hundreds of cores is a huge advantage when dealing with large
datasets. The major drawback is the VRAM storage. The VRAM capacity in the average
graphic card oscillates between 4GB-8GB. The 6GB we used was insufficient for some of the
datasets, so we had to resort to RAM/CPU calculations.

4.3.3.4 Random projection

Random projection is another computational technique used for dimensionality reduction. It
is a method of representing high-dimensional data in a lower-dimensional space by using
random linear projections.

In random projection, a random matrix is generated and multiplied with the original high-
dimensional data points to produce the lower-dimensional projections. The idea behind ran-
dom projection is that, for many applications, the high-dimensional data lies on or near a
lower-dimensional subspace. The random projection provides a way to estimate this lower-
dimensional subspace. One of the critical advantages of random projection is that it is fast
and computationally efficient. Unlike dimensionality reduction techniques like principal com-
ponent analysis (PCA) or singular value decomposition (SVD), random projection does not
require eigendecomposition or singular value decomposition, which can be time-consuming.

Silesian University of Technology 52

5 Results

In the following chapter I presents results of clustering simulated multivariate and multino-
mial data, then I proceed to the real dataset. Each real dataset clustering is preceded by its
description

5.1 Simulated data analysis

5.1.1 Multivariate normal mixtures

Boxplots of ARI value across clusters

1.00 * *
S p _iu...i* M* M* J.M’ !Lw él: |
0-0.;: Seiaz Lol L -v-;-l-l’-ﬂ'; -T-M 1*&%** ++¢é'- Qﬁ'

Figure 5.1: ARI index accross clusters in Simulated Multivariate Normal Distributions

53

Probability of correct assigment with Beta-Binomial distribution

Not filtered

20

i
(]

kmeans

[
(=]

iy
[

o

Scaled High Reductian

kmeans

95}
[&

cmeans

Probability density

[
o

s
(@]

High Reduction

30

kmeans

20

10

0.3 0.4 0.5 0.6
Probability of correct cluster assigment

Figure 5.2: Various indexes accross clusters in Simulated Multivariate Normal Distributions

Silesian University of Technology 54

Median correct assigment to clusters of different algorithms

Mot filtered Scaled
1.0 gmm 1.0
0.2 0:8
: ; -6 cmedao cmedo
4
mmm mmm

cmeans cmearns
—fc i
Scaled High Reduction High Reduction
1.0 gmm 1.0 g 1.0
0.8 0-8 0.8
0.6 6 emedo ? 6 cmedo
04 4 4
0.0ymeans _ kmeans
o) @],
m

mmm

CImeans means

e he

Figure 5.3: Various indexes accross clusters in Simulated Multivariate Normal Distributions

Silesian University of Technology 55

1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4455

0.0

360

&

& 0"
&

e

Simulated Gaussian Mixtures

£
A o
& g®

Aﬂlﬂll
e Fs“
i a“
1 § 8§

&Glﬁll

& &
27 e 2 &
o o C{\c Oj{(\

® &
& o ®

Jaccard

A
i
l

<,<‘~‘e' {0& <

()

I

S
(.

@""&0 q‘{@

Figure 5.4: Various indexes accross clusters in Simulated Multivariate Normal Distributions

The metrics are highly correlated which indicates an agreement between them.

Silesian University of Technology

56

uonanpay ybiH pajeas pajess pa4s1ll) 1ICN

=

uoinpay ybiy

5.1.2 Multinomial mixtures

Boxplots of ARI value across clusters

AT

. L LAY
g *w%* é** . Lt [‘

=

g e I
0.2 u M[lrl ﬁ.].# *é* + ¥ L 2

EBE o Bl co=on= Bl kmeans
ER cmedo BE man_he BER moenmik

Figure 5.6: ARI index accross clusters in Simulated Multinomial Distributions

Silesian University of Technology 57

Probability of correct assigment with Beta-Binomial distribution

Not filtered

30

cmeans \

20

Scaled

B cmeans i

W
o

Pt
o
|

—a
o

o

Probability density

High Reduction

30 — |

0.3 0.4 05 0.6 0.7 0.8
Probability of correct cluster assigment

Figure 5.7: Various indexes accross clusters in Simulated Multinomial Distributions

In the figure 7 we can see thatthe higest result belongs to MMM-K when the data was not
filtered. In addition its probability density of mean value is the highest, altought only slightly
higher than in the case of HC-MAN. In

Silesian University of Technology 58

Median correct assigment to clusters of different algorithms

Not filtered Scaled
1.0 kmeans —1.0 kmeans —1.0
0.8 8 &
0.6 -6 ¢means 6 ¢means
0.4 4 \ 4 :
0.2 2 2
9.0man-h man-hc |
| &
! mimk A Commmk
gmm 1 gmm
cmedo crredo
Scaled High Reduction High Reduction
1.0 kmeans —1.0 kmeans. —1.0
0-8-- 0.8
6 cmeans 6 cmeans
4 s 4
2 .2

man-h
MMmmk

grmam 1 gmimn

cmedo cmedo

Figure 5.8: Various indexes accross clusters in Simulated Multinomial Distributions

Silesian University of Technology

59

Simulated Multinomial Mixtures

WSme Jaccard

i el “
|,,‘“ m
|:|””
sttt 11|
Jeli el

0.8
0.6
0.4
0.2

0.0
1.0

0.8
0.6
0.4

0.2

0.0
1.0

0.8

0.6

0.2 o

0.0 ' ¢ &
AR AL\
Q‘d\ {0’6{\ \&ﬂ(\a

s & ¢ & & A o
28 27 o) o PR A o
o < ((\6\(50@

B N e < o
CAGINN S St o R A AN
& e & & e ¢

o
UM SO SI RR

Figure 5.9: Various indexes accross clusters in Simulated Multinomial Distributions

Extremaly hight correlation of various metrics indicates, that they are in agreement regarding
the results.

Silesian University of Technology 60

uonanpay ybiH pajeas pajess paialll) ICN

=

uononpay Yoy

Correlation of metrics in Simulated Gaussian

Jaccard

beta_mean

balanced.accuracy

ARI -

Figure 5.5: Metrics correlation in Simulated
Multivariate Normal Distributions

Silesian University of Technology

61

5.2 Real data analysis

5.2.1 Somatic mutation counts

The first dataset concerned somatic muta-
tions in DNA in cancer patients. Somatic Correlation of metrics in Simulated Multinomial b
mutations in cancers is an important and
extensively researched topic. Somatic mu-
tations can be caused by exposure to ex-

Jaccard

) beta_mean
ogenous or endogenous mutagens or during
DNA replication errors. Two major types of -
somatic mutations are distinguished: driver
and passenger. Driver mutations are con- ST
sidered to confer cell growth, and related
to cancer development, while passenger mu- ARI

tations have less or no impact on cancer
growth in the organism. Very roughly, dif-
ference between driver and passenger mu-
tations can be casused by their positions in

DNA or their impact on transcripts (nRNAs,

proteins) produced. If a mutation hits exon it Figure 5.10: Metrics correlation in Simulated
is more likely to become a driver. Contrary Multinomial Distributions
mutations in introns would rather be passen-

gers. In the aspect of protein coding, substitution of the nucleotide in the DNA can be syn-
onymous or non-synonymous. Synonymous somatic mutations leave the resulting amino-acid
unchenged, while non-synonymous reault in modifying the resulting amino-acid or results in
producing no amino-acid at all. However, the problem of distinguishing between driver and
passenger mutations in much more complex. There are numerous studies trying to estimate
the impact of mutations on the risk of cancer development [20].

We wanted to cluster patients diagnosed with different cancer types, based on counts of so-
matic mutations in genes. Due to the complicated problem of distinguishing between driver
and passenger mutations, in our computational experiments we take numbers (counts) of mu-
tation occuring in genes as our observational vector data. The hypothesis behind this compu-
tational experiment is that the recorded information (mutation counts in genes) can be used
to distinguish between various types of cancer. The second goal is to determine which of
the clustering algorithms will perform best in the clustring task, when the quality criterion is
agreement between unsupervised clustering results and the ground true.

Original, raw data was taken from The Cancer Genomic Atlas (TCGA), https://portal.gdc.cancer.gov/.
For the initial analysis, BAM files that were submitted to TCGA, were converted to FASTQ
format. The alignment of DNA sequences was done using BWA-MEM or BWA-aln, depend-

Silesian University of Technology 62

ing on the read length. Human genome used as reference was in version GRCh38.d1.vd1. In
parallel to BWA algorithm, GATK was also used to improve quality of alignment. In the next
step, five Somatic Variant Callers were used: MuSE, MuTect2, VarScan2, SomaticSniper,
Pindel.

The data that we used in the experiment, was annotated using somatic variant caller Mutect2.
It is one of few popular tools to detect SNVs (Single Nucleotide Variations) and indels (inser-
tions and deletions in the DNA) [21]. According to Mutect2 probabilistic model, we filtered
predicted somatic mutations. The data that we extracted included following information: sam-
ple number, which reflects single, anonymized patient, name of the gene in which mutation
occurred and frequency of mutations. For the experiment, we chosen 10 different types of
cancer, semi-arbitrally

For each of SVC, Variant Effect Predictor was used. Ensembl database is a comprehen-
sive source of genomic data, and the Variant Effect Predictor (VEP) is a part of it. It is a
multipurpose tool to annotate possible mutation effects. It can predict whether the mutation
was synonymous, missense, or stop gained. VEP also estimates the potential impact on the
organism, which ranges from low to moderate up to high. The vital characteristic of VEP is
that it provides many predictions regarding possible gene variants or transcripts. It means that
numerous different variants might describe one mutation. In rare cases, we can obtain con-
tracting suggestions, like missense and synonymous variants of the exact mutation location.
It also provides information on possible gene mutations that occurred in the desired format.
We choose Ensembl genes over common HGNC names. The structure presented by Ensembl
seems to be more consistent and not prone to drastic changes, as in the case of HGNC - when
one gene might have had a few different aliases.

We took two different approaches to this study. In the first case, given that patient in a specific
location had more than one variant, we sum them up. Then we took the variant which occurred
the highest number of times, along with the respective gene. Assume mutation in chromosome
1 in nucleotide 144. As for the second case, we have filtered all variants with missense,
synonymous or stop gained consequence. Then, similarly to the first case, we took the variant
which appeared the highest number of times, together with its gene.

Sample ID HMCN1 | HSPG2 | HTT
TCGA-2Y-A9GU-10A-01D-A3 0 0 0
TCGA-2Y-A9GV-10A-01D-A3 1 0 0
TCGA-2Y-A9GW-10A-01D-A3 2 0 0

Table 5.1: Part of somatic mutation frequency table for one type of cancer

Next, we mixed mutations frequency information from all selected cancer types, in all possible
combinations without repetitions. In total, we created 57 mixtures consisting of 2, 3,4, 5 and
6 components. Each set consisted of almost 35 000 variables and number of observations
ranged between Since the data is categorical and data points belongs to I, we assumed that

Silesian University of Technology 63

this type of data might be described by mixture of multinomial distributions.

In the first scenario, we took only the first gene, disregarding the others. In the second one,

we took all possible genes that might be transcribed from the sequence.

pca rpro
400

200

25 0 A p
50 -200 ,
75 —i - - - .
0 100 200 300 200 0 200 400
svd tsne
0.3 '
20
0.2 - —
0 4
0.1 ; 5
a
0.0 | — f‘“
AR -20
e
i%
0.1 "
0.3 0.2 0.1 0.0 -40 20 0 20 40

Figure 5.11: t-SNE plot of Somatic Mutations Count with all variants

Silesian University of Technology

brea

ghm

luad
lusc
ov
paad
prad
stad
thca

64

Boxplots of ARI value across clusters
Nat filtered Scaled
0.2 =

4 0.4

L LI W I

2 3 4 5 (5] 2 3 4 B [

Scaled High Reduction High Reduction

Mﬁ%Mf il

=] 2 32 4 5 =]

0.2

0.0

‘ kmeans - cImeans E mmmk
E! cmedo ﬂ gmimk EI he

Figure 5.12: ARI index accross clusters in Somatic Mutations Counts

Results Looking at the chart presenting the ARI index, with varying components, we can
see that scores tend to be more condensed around the median with the increased number
of clusters. However, the slightest such differences can be seen in the case of the k-means
algorithm. Its scores are very condensed around the median from the beginning, however low
to zero values.

Silesian University of Technology 65

Probability density

30

20

30

20

30

20

30

20

Probability of correct assigment with Beta-Binomial distribution

Not filtered

cmeans

cmeans

Scaled High Reduction

r kmeans
cmear

L '
0.35 0.40 0.45

Probability of correct cluster assigment

Figure 5.13: Various indexes accross clusters in Somatic Mutations Counts

Silesian University of Technology 66

Median correct assigment to clusters of different algorithms

Mot filtered Scaled

cmeans

kmearis 3 kmearns.
gmmk Qrﬁmk
Scaled High Reduction High Reduction
1.0 mmmk_—1.0 mmmk.—1.0-
0.8 08— —k
0.6 .0 cmeans cmeans
04 ’5' 0.4 ’
0.2 [0.54]
0.0man-he (0 ‘
omedo cmedo

kmeans kmearis-

g.mmk gfnmk

Figure 5.14: Various indexes accross clusters in Somatic Mutations Counts

Silesian University of Technology

TCGA mutation

WSme smc Jaccard

£ =
o (o] e,ﬁﬁ {(\‘i—

. & M- S '
A7 @F A & h &
IR S R T AP L AR S

Figure 5.15: Various indexes accross clusters in Somatic Mutations Counts

Silesian University of Technology

) {
E
N

68

uonanpay ybiH pajeas pajess paialll) ICN

=

uononpay Yoy

In the case of somatic mutation counts, we

already saw that observations seem to mix, Correlation of metrics in TCGA mutatis
rendering finding patterns a complex pro-

cess. o

In the case of the other algorithms, we no- Jaccard

tice more diverse scores when we compare

only two or three types of cancers. In other wsrme - 081 061 061
words, when compared together, some can-

cers might show a more robust pattern of ARI 012 047 028 028

somatic mutations than others. Although
sometimes it might be caused simply by class

balanced.accuracy | B.78 04 066 045 045

imbalance (create a such experiment with

N & & &
simulated results). For example, when we v &‘§ \@é’é o %§\e@<‘
compare breast cancer to lung adenocarci- &
noma, the ARI index equals almost 0.67. Al-
beit both classes are well balanced. Figure 5.16: Metrics correlation in TCGA mu-
The other interesting situation is when we tations

receive a negative ARI index. In some

cases, it might be the fault of incorrect im-

plementation. If that is not the case, we might say that results are, in fact, less
than expected. We can witness such a situation when we compare Glioblastoma and
prostate adenocarcinoma. The ARI index is below 0. If we exclude the probability of
wrong implementation (checking a few different ones), the results are less than expected.
Some remarks were made to indicate that results might be complementary or orthogo-
nal [https://stackoverflow.com/questions/42418773/how-can-we-interpret-negative-adjusted-
rand-index].

If we mix more cancer types, those differences are gradually less observable. This situation
might be related to the homogeneity of the somatic mutation in different cancers. Taking a
large number of observations, along with the lack of an explicit probability model for selecting
an appropriate variant, we are receiving a mixture of similar mutations. https://www.nature.com/article

Apart from comparing the two clusters, we can observe that the general median 1s similar for
all groups.

GaussEM, a model-based algorithm, scored the highest of all algorithms. Our educated guess
was that mixtures of multinomial distributions might be the best model to describe somatic
mutation count data. However, the presented results show that in all cases, GaussEM per-
formed better than MultinomialEM. The third best algorithm was Hierarchical Clustering.
The ARI index picture shows a negative ARI index in the frame where we looked for patterns
in two cancer groups. There are two possible reasons for that. The first one is that implemen-
tation might contain errors. We rejected that possibility, as we tested a few implementations,

Silesian University of Technology 69

including one from the mclust package. The results were the same. The second explana-
tion is that random clustering results were less than expected. We do not observe a similar
phenomenon in the rest of the clustering groups (3-6).

Three out of four presented indexes show little differences in model-based algorithms. The
score difference was less than 1% in the ARI index, 0.2% from the WJAC and 0.6% in
SMC. The WSMC index showed that GaussEM performed better than MultinomialEM by
almost 2.1%. At the same time, the maximum difference between the lowest and the highest-
performing algorithm was about 10%. A similar situation is seen in the case of the ARI index,
at almost 13%, and WJAC, at 14.5%. The lowest distinction in performance can be seen in the
SMC index, only 4.1%. Binomial test The majority of the results are statistically significant.
In the picture, the lower score comes with better results. The picture shows that Multino-
mialEM had the lowest p-value scores, with a median below (0.25. The second one, with a
median result of about 0.3, was Gaussian Mixture EM.

5.2.2 Gene expression

Gene expression is a series of events leading to the display of the information in the cell.
Roughly speaking, we can say that gene expression lets arise phenotype, something we can
observe, from genotype.

We can consider the genome as information storage. However, it cannot pass the information
to cells on its own. To use biological information encodedsdf in the genome, enzymes and
various proteins must participate in complex biochemical reactions that lead to Genom ex-
pression. The first product of Genom expression is transcriptome, a group of RNA particles.
They come from those protein-coding genes that the cells need the most. The transcriptome
is created during the process called transcription when genes are rewritten as RNA particles.

Some of those particles are called mRNAs or messenger RNA. The primary role of mRNA
is to function as a template for translation. During this process, their sequences are first
translated to amino acids, which then build functional proteins. During various events, like
gene mutation, the expression level of mMRNA might be increased, decreased or even halted.
It can be related to multiple diseases, including cancer.

cBioPortal 1s an interactive interface to the resources such as TCGA. It provides open access
to molecular profiles and clinical attributes of different cancer genomic studies.

The data is primarily multidimensional and contains, but is not limited to, data on DNA
methylation, mRNA and microRNA expression or phosphoprotein level data (RPPA). We
used mRNA (messenger RNA) expression data for our analysis. First, we wanted to confirm
if such kind of data contains enough information to distinguish between different types of
cancer. In other words, if various cancers show different expression patterns.

The format of gene expression of cancers was already suitable for our purposes. We only
transposed the matrix to present sample numbers as observations and genes as variables. The

Silesian University of Technology 70

example is shown in the table.

We chose the data that consisted of the median expression level of RNA sequencing data.
We have chosen the same cancer types as in the case of somatic mutation frequency. How-
ever, in the case of gene expression data, we had slightly different numbers of observations
and features, as shown in table 4. In total, we again choose ten types of cancer. To cre-
ate mixtures, we randomly selected 2, 3, 4, 5 and 6 components and joined them together.
Each component represented one cancer gene expression data. In this way, we created 10 two
components mixtures, 10 three components mixtures, and up to ten six components mixtures.
Altogether, we made 50 mixtures in all possible combinations without repetitions. In the case
of data expressions, all data points belong to R, which is quite different than in the case of
“mutation counts”. Our assumption here was that mixtures of normal distributions might well
approximate data.

Sample ID HMCNI1 | HSPG2 | HTT |
TCGA-2Y-A9GU-10A-01D-A3 | 24.32 0 L.5
TCGA-2Y-A9GV-10A-01D-A3 | 124.12 25.2 0
TCGA-2Y-A9GW-10A-01D-A3 | 42.24 12.1 52.32

Table 5.2: Part of somatic mutation frequency table for one type of cancer

Silesian University of Technology 71

pca rpro

Oe.H]O | -I? . Wl - = .
2e+06
5406 '
0e+00 -
-2e+06 brca
-1e+07
gbm
lag
-4e+06 | —
luad
1e+06 De+00 1e+06 Ze+06 3e+06 det06 2e+06 0e+00 2e+06 e
svd tsne ov
paad
prad
0.1 L stad
+ thea
0.0
-0.1
-50 - - :
-0.04 -0.03 -0.02 -0.01 25 0 25
Figure 5.17: (-SNE plot of Gene Expressions
Results

The following result shows only four out of 6 algorithms, because HC and k-medoids methods
were not able to complete the tasks without numerical and memory errors.

Silesian University of Technology 72

Probability of correct assigment with Beta-Binomial distribution

Not filtered

60

40

20

60

kmaang

40

I
(o]

o

Probability density

40

20

60

40

cmeans #f

20

0.6 0.7 0.8 0.9
Probability of correct cluster assigment

Figure 5.18: Various indexes accross clusters in expressions

In the figure showing BB metric, we see that the most rightside pitch belongs to mmmk.
Moreover, it has the highest probability density, so we can be more conviced in its probability
of correct assigment, than in the case of other algorithms. In addition, it has the lowest
standard deviation.

Silesian University of Technology 73

Median correct assigment to clusters of different algorithms

Mot filtered Scaled

cmeans = cmeans

mmm mmTh

Scaled High Reduction High Reduction
1.0 man_hc — man_he -
0.8 . . X
0.6 ¢means emeans
04 \ :
0.2

krmeans

gm-n:;k'

mmm

Figure 5.19: Various indexes accross clusters in expressions

In the MCA |, we see that although mmmk perormed better overall, gmmk had advantage when
the data was scaled.

Silesian University of Technology 74

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

TCGA expression

Figure 5.20: Various indexes accross clusters in TCGA expressions

Silesian University of Technology

75

uonanpay ybiH pajeas pajess paialll) ICN

=

uononpay Yoy

Similarly to the somatic mutation counts, we Correlation of metrics in TCGA expression
can observe an initial increase in the median

ARI index with its peak at the four com- Jaceard
ponent mixtures. It follows a decrease in
scores for all algorithms but with varied im-
pacts. However, the average score difference
is much more visible in the case of cancer
gene expressions than somatic mutations, as
all of the algorithms started with a relatively
high score.

beta_mean

ARI

Wwsmdc
Contrary to the somatic mutation counts, sin-

gle scores in the first three cluster groups
covered a much broader spectrum between
0 and 1. We also noticed that almost all al-
gorithms performed the best when only four

mixture components were present. Here, Figure 5.21: Metrics correlation in TCGA ex-
"the best" means that scores gathered around pressions

the median took the highest place across all

groups of datasets. In the case of k-means

and fuzzy c-means, the median black band lies around 0.25. It is much above 0.5 in the oth-
ers. However, it might be a feature of selected datasets. (check the statistical significance of
this)

Where five or six groups were present, HC scored significantly lower than GaussianEM and
MultinomialEM. Moreover, in 6 component mixtures, both algorithms keep on a similar level
to the median score of the ARI index. However, scores of MultinomialEM were more con-
densed around a slightly lower median.

In the general ARI index perspective, both model-based algorithms and HC scores reached
values above 0.75. In the case of fuzzy c-means, we noted only one value above 0.75, and
k-means scored none. Apart from MultinomialEM, each algorithm scored some values below
0, with the k-means having the highest count.

Looking at the shape of violin plots, we notice that for the distance-based algorithms, the
bottle is wider near the lower values. In model-based algorithms, it is the other way around.
The bottle points towards lower values, being broader near the higher values. We cannot say
the exact thing about the AJAC index. It looks like the former index additionally emphasised
differences. For example, in k-means, the band near the value of 0.25 is much broader than
in the ARI index. In fuzzy c-means, we can observe the enlargement of the bottle located
between 0.5 - 0.75 value bands. At the same time, its broader part in the ARI plot near
the value of (.25 became thinner. The shape of the Hierarchical algorithm became more
streamlined than in the case of the ARI index. Also, GaussEM became less streamlined

Silesian University of Technology 76

and lost its pointer toward lower values. In fact, according to the AJAC, it did not have
any values near 0. The thicker part of MultinomialEM went between bands 0.5 and 0.75.
At the same time, its pointer became thinner, showing fewer values near 0. For both ARI
and AJAC indexes, we observe a significant difference in average performance in favour of
the model-based algorithms. It is more than two times better for the ARI index and nearly
twice for the Averaged Jaccard. In addition, looking at the AJAC, GaussianEM’s lowest
values were near the band 0.25. Although MultinomialEM scored 0, it might be related to the
random initialisation stuck in a local minimum. Overall, its mean performance was higher
than the GaussianEM above. As previously, the SMC and WSMC metrics showed better
results. Metrics from both scores seem to be more consistent, which is most likely caused
by well-balanced classes. In distance-based algorithms, we notice a steady step of about 0.04
units, starting from k-means up to HC. Then, the measure between distance and model-based
algorithms increased up to almost 0.1.

Finally, the step between MultinomialEM and GaussianEM was about 0.04 again.

5.2.3 Codons frequency usage in different species

We have 20 amino acids that are coding proteins built from codons. A single codon consists
of three DNA bases. Historicaly, DNA code was considered universal among all the species.
It meant that three nucleotides called a codon, code the same amino acid for most of them.
Currently, we know that it is not an entirely valid statement. Although the genetic code shown
in the table is used in most of the genes across almost all species, we can find many exceptions.
In particular, the mitochondria genomes’ are often using non-standard codons.

It is suggested, that the codons frequency usage may vary in different organisms.[22].

The dataset we used, was shared by Bohdan Khomtchouk, from Section of Computational
Biomedicine and Biomedical Data Science, University of Chicago. The codon frequency set,
was build using CUTG (Codon Usage Tabulated from GenBank, which is available on the site
(https://www.kazusa.or.jp/codon/). The data contains frequencies of codon usage by a number
of diverse organisms. Each organism was assigned to its respective kingdom, as shown in the
table.

The “Kingdom” is an abbrevation code consisting of 3-letter, that corresponds to the names
from CUTG database. Data from UCI slightly differs from original data, as author describes
that they manually changed class of bacteria into archaea, plasmids, and bacteria proper.

The DNAtype is coded by an integer that represents genomic composistion in the given
species. “SpeciesID” is an unique interger number, that differentiates various species, along
with the “SpeciesName”. Codons’ number in the column "Ncodons" was obtained by sum-
ming the codons for different species found in the CUTG database. Then, the number of
codons was normalized by dividing each codon (like UUU, UUA, etc.) by the codons species
sum, as listed in the "Ncodons” column. That is how frequencies of codons were obtained.
All codons columns are floats, with 5 decimal digits.

Silesian University of Technology 77

The goal of the original paper “Codon Usage Bias Levels Predict Taxonomic Identity and Ge-
netic Composition”, that used the data, was to build machine learning classifier to distinguish
between species. Meanwhile we want to determine, if we can restore the species structure, by
dividing them on their respective kingdoms basing on codon frequency with different unsu-
pervised learning algorithms.

pca rpro
0.15
0.10
0.05
0.00 -

® A

0.05 ® bct

® inv

& mam

phyg

pln

pri

0.02 ¢ rod

e vri

0.01 ® yrt
0.00
-0.01
-0.02

0.007 0.008 0.008 0.010 -50 -25 0 25 50

Figure 5.22: t-SNE of standardized Codons by animal Kingdoms
In our study, we have slightly modified the original data. We dropped plasmids as they rep-

resented the smallest group, comprising 18 of over 13026 observations. We used the column
“Ncodons” to create denormalized data closer to the original data from the CUTG. Our exper-

Silesian University of Technology 78

iment consisted of two dichotomic parts, for which we used original and denormalized data.
In its central position, we tried to retrieve the structure of different Kingdom types. Here, we
proceed as in the general pipeline. In the second part, we have used the “DNAtype” infor-
mation to check if there is a visible structure. In this case, we did not create any additional
data.

Moreover, we left only four types of DNA, as they accounted for over 98% of data observa-
tions. In addition, we repeated both parts but with modified data. Then, we tested all of the
algorithms.

Results
Boxplots of ARI value across clusters
Not filtered Scaled
0.4 0.4 | H
02 | B —= —
0.0 w# ! -~ w | * é |
2 3 4 5 6 2 3 4 5 6
Scaled High Reduction High Reduction
0.6
”
0.4 : -
0.2 i M
g2
0.0 i #
4 5 6 2 3 4 5 6

E mmmk - kmeans E fcmeans
. gimm E cmedo E he

Figure 5.23: ARI index accross clusters in Codons

Silesian University of Technology 79

From the ARI index perscpective, both gmm and mmm algorithm had almost the lowst scores.
In this comparison, fuzzy algorithm as well as hc had the highest results. Apart not filterted
files, median scores were at similiar level with increased number of clusters. It was not the
case for mmm, which had the lowest scores across the algorithms. Mixtures with two compo-
nents scored very low for all types of filtration and scaling. Then, mixtures with 3 components
had the highest spectrum of scores. Apart from two components mixture, with increased num-
ber of clusters, spectrum of results was smaller, however median was higher.

Silesian University of Technology 80

Probability of correct assigment with Beta-Binomial distribution

Not filtered

40

20

Scaled

kmeans

Probability density
B

40

20

0.40 0.45 0.50 0.55
Probability of correct cluster assigment

Figure 5.24: Beta-binomial distribution in Codons

In the case Beta-binomial distribution shows, results are quite different. We see, that the
most right peak belongs to mmmbk, but only for original data. In addition, it is only slightly
overlapped with the scores from other algorithms. In the case of scaling, mmmk was again
the last. GMM had the highest mean in the case of scaled and reduced data. However, it is
much more overlaped with other distribution. Finaly, in the case when the variables were only

Silesian University of Technology 81

reduced, mmmk had again the highest mean, however it is more overlaped than in the not

filtered data.

Median correct assigment to clusters of different algorithms

Mot filtered Scaled
10 he 1.0 he 1.0
0.2 0.8 - _0.8-
0.6 'g, 0.6 cmeda 2006 cmado
0.4 04 B 04 M
0.2 ; 02 - 0.2
0.%cmeshs H 0 fcmeans IL"{ 0
'. mmmk '. mimmk
gmm gmm
kraeans kmeans
Scaled High Reduction High Reduction
1.0 At 1.0 he 1.0 -
0.8 0.8 _ 0.8
0.6 ';, 0.6 cmeda ’g‘ 0.6 cmedo
0.4 © 04 R 0.4 ¥y
0.2 ' @1 2 .3.2.
0.0¢cmpas fof frmeanr
'. mrmk 'b MRk
krmeans kmeans

Figure 5.25: Accuracy index in Codons

Silesian University of Technology

82

The corealtion between metrics varies greatly. Correlation of metrlcs In Codons
The ARI index and accuracy are only par-
tialy correlated with other metrics. sme

Codon’s pattern might be more complex to

catch, as we already saw in the tSNE plot. In wjace

the first frame of the ARI metric, index me-

dians range from 0 to nearly 0.16. GaussEM wsmec

and HC are slightly above k-means and fuzzy

c-means. Interestingly, most of the Multi- i . 016 045 038 038

nomialEM results are at zero. We observe
only one point score above nil and one close
to 0.4. In the case of other algorithms, Il
they received only a few scores above 0.4, & <& ¢ 3
which is relatively low. The highest score
in these datasets was 0.8, which belongs to
GaussEM.

The general tendency of the median scores
seems to flatten for all algorithms. It was not
visible in the case of somatic mutation count and cancer gene expressions. In contrast to men-

Figure 5.27: Metrics correlation in Codons

tioned analysis, scores were lower in mixtures with four groups than in three for all algorithms
but HC. Notably, the HC algorithm scored highest in the three mixture components. Com-
ing to the five groups’ mixtures, we observe a slight increase in the median ARI scores for
all algorithms. The results are better for k-means and Gauss EM, but with no difference for
fuzzy c-means and lower for HC. Finally, median ARI scores are similar in the six component
groups, highest in k-means. However, GaussEM scored. Similarly to our previous analysis,
scores tend to be more concentrated around the median with increased components number.

SMC Interestingly, multinomialEM scored the highest across algorithms when class balance
does not matter and alignments are optimised. Its average performance was 0.565, which was
w 0.025 higher than the second-best algorithm in this comparison - GaussEM. HC

5.2.4 Sport activities

In recent years, the terms "smart" and especially "smartwatch" are gaining more popularity.
A simple indicator of that is a trend presented by Google. The charts below show that during
the last 18 years, the terms "smart" and "smartwatch" have increased. In the picture, a value
of 100 means that the word was the most popular, while a 50 indicates that the term was twice
as small. The value of zero means that there is insufficient data.

Smartwatches offer various functions, like phone calls, messaging, or playing music. How-
ever, they also allow measuring heart rate, calorie burn or daily steps count. Many of them
can also gather various statistics about sports activities, including distance and speed, to name

Silesian University of Technology 84

a few. More sophisticated smartwatches can automatically determine the person’s action and
record appropriate metrics accordingly.

In this comparison, we have used the data that Billur Barshan shared on the UCI platform.
He is a Yale professor from the Department of Electrical and Electronics Engineering, spe-
cialising in wearables, machine/deep learning and robotics. The data that he gathered is about
various sports activities. In experiment took part eight people. Four were males, and four
were females, all between the ages of 20 and 30. They were asked to perform 19 activities,
like jumping, cycling, running or walking. What is essential, they were not instructed on how
to do any of those exercises beforehand. Because of that, it might introduce some individual
variation among all subjects. The data was recorded using various sensors. The single unit
consisted of 9 accelerometers, gyroscopes, and magnetometers in X, y, and z coordinates. In
total, five units, one placed on the torso, both arms and legs. Sensors were calibrated to gather
the data with a 25 Hz sampling frequency. The time for each different activity was 5 minutes.
In total, we had 45 attributes and 1140000 observations.

Silesian University of Technology 85

-50

-100 -50 0

sva

0.005

0.000

-0.005

-0.0075 -0.0050 -0.0025 0.0000

Figure 5.28: Various dimensionality reduction techniques in Sport Activities

Results

50

0.0025

100

-100

-150

-10

-100

rpro

50

100

al1
a2
a03
a4
a5
al6
a7/
a08
a9
alo
all
al2
al3
a4
als
alé
al7z
al8
alg

In the case of daily sports activities, we were not able to include Hierachical Clustering and
k-medoids methods. Since even two mixture components consited of over 100 thousands

observations, minimal RAM memory allocation was over 50 GB. With up to 6 components,

it increased to even 1000 GB. Algorithms that overcomes limitation of RAM exists. However

time of completion was significantly higher than any other presented algorithms.

Silesian University of Technology

86

Boxplots of ARI value across clusters

Not filtered Scaled
1.00 i i T 1.00

0.75 0.75 *
0.50 * 0.50 .

0.25 Q , $ $ 0.25 g é é ’

0.00 i i i 0,00 D f
2 3 4 5 6 2 3 4 5 6

Scaled High Reduction High Reduction

1.00 . N == i 1.00 i .

0.75 0.75

0.50 i 0.50

0.25 = 0.25 N T

Q'] 7 s [-0

0.00 0.00 = i

2 3 4 5 6 2 3 4 5 6

E mmmk . cmeans . kmeans - gmmk

Figure 5.29: ARI index accross clusters in Sport Activities

In the case of the ARI index we can see that the gmmk has the best scores of all the algo-
rithms. What is notable, is the fact that even with increased number of clusters, it maintained
high ratio of correct assignments, comparing to the others. Scaling seemed to benefit all of
the algorithms. We can see, that the results are more focused around the median, which is
in addition higher. In case of variable reduction, algorithms performed worse, as if valuable
information was lost in the process. Again, scalling had some positive impact, but results
remained relatively low.

Silesian University of Technology 87

Probability of correct assigment with Beta-Binomial distribution

Not filtered

500

400 i

300

i 0.759
.

46

500
400

Probability density

300
200
100

500
400
300
200
100

0.5 0.6 0.7 0.8
Probability of correct cluster assigment

Figure 5.30: Various indexes accross clusters in Sport Activities

The highest and most rightside peak belongs to gmmk. When the full data was scaled, the
result was even higher, taking more advantage of kmeans initialization. In addition, its proba-
bility density was also higher than in others. It give us slighlty more credability of the result.
On the opposite, mmm algorithm had the lowest scores.

Silesian University of Technology 88

Median correct assigment to clusters of different algorithms

Mot filtered Scaled

L mmmk

kmeans kmean

cmeans _cmeans

Scaled High Reduction High Reduction

1.0 1
0.2 gk

0.6
04
0.2
0.0

—1

grmink

Moo
Mronmo

mmmk L mmmk

kmeans kmeans

cmeans Cmeans

Figure 5.31: Various indexes accross clusters in Sport Activities

Median accuracy also shows, that gmmk performed the best across all of the compared algo-
rithms.

Silesian University of Technology 89

Daily Activities

Jaccard

Figure 5.32: Various indexes accross clusters in Sport Activities

Looking at the t-SNE dimensionality reduction map, we see that although sports activities are
incredibly mixed, their distribution has some visible pattern. The immense cloud of points
in the middle is probably the initial position that has been recorded. A few activities like
running, walking, and climbing stairs share the same initial position - standing still. However,
our study does not filter any potential noise and uses all the available data.

Silesian University of Technology 90

uonanpay ybiH pajeas pajess paialll) ICN

=

uoinpay ybiy

Sports activities, due to a large number of Correlation of metrics in Daily Activitis
rows, were the first time that a different HC

method was tested. The built-in function for smc
HC calculation took too much RAM space
to work correctly. For example, creating a
table of floats 100 000 columns by 100 000
rows was supposed to occupy almost 80 GB
of RAM space [!!!check this!!!]

From the perspective of the ARI index, two-
component mixtures have the broadest spec- ARI
trum of outcomes across all datasets. It

laccard
balanced.accuracy

WSITIC

applies to all of the algorithms, excluding
multinomialEM. The multinomial model-
based algorithm performed poorly but better
than in the Codons dataset.

In the three mixture components, the me- Figure 5.33: Metrics correlation in Sport Ac-
dian score value of the distance-based al- tivities

gorithms increased. In addition, it became

denser around the median, contrary to multi-

nomialEM, in which the range of results became scattered. GaussEM median was slightly
lower, but it maintains a similar level across all mixtures. Its peek median, however, was ob-
served in the two-component mixtures. In the case of four component mixtures, we observe
another increase in the median value score along with higher condensation of scores around
it.

Finally, where the six groups were present, we noticed that the median score of the GaussEM
was the only one above 0.5 value, but only slightly. The second-best algorithm was fuzzy
c-means, with the median value slightly below 0.5. K-mean had the third highest median
value, but its maximum scores were on the same line as Gauss EM. Then, scores of multi-
nomialEM are between 0 and 0.25 without crossing these values. These scores make it the
lowest-performing algorithm according to the ARI index.

Looking at different indexes, results from multinomialEM are still the lowest. On the other
hand, indices based on the Hungarian algorithm show differences in the highest median scores
and the distribution of values. The fuzzy c-mean is minimally better than GaussEM in all three
indices, but the difference is not statistically significant. In the case of SMC and WSMC, we
can see a sizeable band for GaussEM near the values of 0.75. For the Multinomial Mixture
EM, there are two visible bands near the values of 0.50. The results of the fuzzy algorithm are
also denser around the value of 0.75, but they are smoothly distributed. K-means results are
also softly distributed but focused near a value of 0.5. However, its range and mean values are
better than those of Multinomial Mixture EM. The averaged Jaccard results are in the middle

Silesian University of Technology 91

of ARI and the rest of the indices. In general, values are smoothly spread compared to other
indices.

The majority of the results are statistically significant. However, we observe that some scores
of multiEM and k-means exceed the pvalue of 0.05.

Binomial test

Most of the results were statistically significant, with a few values above 0.05. Interestingly,
Multinomial Mixture EM scored the lowest across all algorithms. It also does not contain
values above different significance levels.

Silesian University of Technology 92

5.2.5 The Free Music Archive

-5000 -

0.01

0.00

-0.01

-0.02

0.002

pca

0.004

0

0.006

10000

0 10000 20000

tsne
100

50

-50

Classical
Electronic
Experimental
Folk

Hip-Hop
Instrumental
International
lazz
Old-Time_Historic
Pop

Rock

Spoken

Figure 5.34: Various dimensionality reduction techniques in The Free Music Archive

The Free Music Archive is a large music analysis project. The data was made publicly avail-
able around the end of 2016. Its vast library consists of 106 577 songs covered by 16,341
artists. All of that is inside 14,854 albums. The FMA delivers pre-computed audio features
jointly with user-level and track-level metadata.

Moreover, it is also possible to use full-length, high-quality audio—a complete archive weight
of around 879 GiB. However, it comes with different packages, limited to selected genres.

Silesian University of Technology

93

Over 500 features describe each song. They were pre-computed with a package librosa, a rich
python library for audio and music analysis. The package allows for low-level feature extrac-
tion, such as chromagrams, Mel spectrogram, Mel Frequency Cepstral Coefficient (MFCC),
and other spectral and rhythmic qualities. The library site https://librosa.org/doc/latest/index.html
offers more information like tutorials and documentation to create your analysis. All tracks

in the archive are organised in a hierarchical taxonomy of 161 genres like rock, jazz, pop, or
classical music.

For our analysis, we decided to reduce the data significantly for a few reasons. The first
was that roughly half of the songs were assigned to more than one genre. Because of that,
mentioned observations did not have the leading genre. We decided to exclude those songs
from our analysis as it greatly simplifies the estimation of actual values during clustering. On
top of that, we reduced our research to the twelve most frequent genres mentioned in the table.
Our cutoff value was arbitrally. The last genre in our data, "Spoken", had 423 observations;
the rest we did not include were below 194.

Our final dataset consisted of 49598 observations with 518 features. From this point, we
proceeded as in our general pipeline.

Silesian University of Technology 94

Results

Boxplots of ARI value across clusters

MNaot filtered Scaled

0.8 =n
0.6

0.4

] A é%i il
= -pﬂ L —ﬂ—* 0.0 *‘L l;lé T
2 3 4 5 & 2 3 Lt 5 (=3
Scaled High Reduction High Reduction

0.6

0.4

oM s e

5

a

- gmmk E mmimk E hc
E cmedo E fcmeans * kmeans

Figure 5.35: ARI index accross clusters in The Free Music Archive

Silesian University of Technology

95

Probability of correct assigment with Beta-Binomial distribution

Not filtered

cmeans

0

50

Scaled

i | .

i
o

(=]

Scaled High Reduction

Probability density

o kmeans

o
o

50

100

50

0.2 0.4 0.5
Probability of correct cluster assigment

Figure 5.36: Various indexes accross clusters in The Free Music Archive

Silesian University of Technology 96

Median correct assigment to clusters of different algorithms

Mot filtered
1.0 kmeans —1.0
0.2 0:8
0.4
0.2
O0man-hc [
mmmk
crrieda
gmm
Scaled High Reduction
1.0 kmeans —1.0
0.8 0-8--
0.6 6 ¢means
04 4
0.2)
0.0man-he
mmmk
cmeda

gr.r:m

Figure 5.37: Various indexes accross clusters in The Free Music Archive

Scaled

kmeans —1.0
0.8
6

cmeans

‘

S

man-he
0.5},
Commmk
cmedo
gAtMm
High Reduction
kmeans —1.0
cmeans
man-hc |
mrmmk
crmigdo

Silesian University of Technology

97

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

] o]
2 P

&

Free Music Archive

WSme smc Jaccard

=l @ T me———

= o
A

\= &
P \‘,_((“a & Cb@((\ {(\e’%{\ Beg

;,:\a‘?" &

Figure 5.38: Various indexes accross clusters in The Free Music Archive

Silesian University of Technology

98

uonanpay ybiH pajeas pajess paialll) ICN

=

uononpay Yoy

The presented metrics are slightly correlated. Forralabinn of metriesth Eres Uicsle b
The lowest correlation is observed between :
WSMC and Accuracy. There is medium cor- balanced.accuracy ! 07

relation between Adjusted Rand Index and

the others. wsmc i 076 049
Jaccard 0.56

5.2.6 NASA Kepplers
beta_mean 0.42

On 6 March 2009, The Delta IT rocket took
1_'*L‘_ASA s Kepler Space Telescope and carried —_— . e oy 0sa o
it into space. The telescope was focused on

the area with about 150,000 stars, like the & O <& A >
o) & é;a \‘f,\ Q(c» ¥
sun within our solar system. Its ultimate é@) ¥ é@é‘
i i i Rsi ’
purpose was to identify other habitable plan- \%&?‘
ets, excluding our own. Kepler’s discoveries *

contain planets that orbit in so called habit- o
Figure 5.39: Corr plot of metrics in The Free

able areas. The habitable area means, that it))
Music Archive

orbits within sufficient enough distance from

a star. Sufficient is when surface temperature

may be fit for life-giving liquid water.

The first discovery important discovery was

Kepler-22b. It is an example of a habitable zone planet found during the mission. However,
because it is almost 2.4 times the size of Earth, it is considered too large to be solid and life-
supporting. However, scientists are convinced that different habitable zone planets found by
the Kepler mission might be rocky. such as Kepler-62f, which is 40% larger than Earth. A
twin to Earth that has the same temperature and size as Earth was not yet discovered. Still, the
analysis is far from over as scientists continue to search the Kepler data for the tiny signature
of such a planet. Other Kepler discoveries include hundreds of star systems hosting multiple
planets and have established a new class of planetary systems where planets orbit more than
one sun.

The mission ended its science observations after a faulty reaction wheel affected the tele-
scope’s ability to point precisely. However, the telescope reamined in service due to its next-
generation mission proposal, called K2.

By analysing the information gathered by Kepler, scientists’ community have recognised
over 3,600 candidates considered to be planets. They confirmed that 961 are indeed plan-
ets, many as small as Earth. Findings using Kepler Space Telescope currently account for
over half of all the known exoplanets. We used the dataset that is a cumulative Activity
Table of Kepler Objects of Interest (KOI). The KOI table contains information about the sin-
gle KOI activity tables. It represents the actual results of different findings of the Kepler
light curves. The goal of the cumulative table is to gather suitable qualities and stellar and

Silesian University of Technology 99

planetary data for all KOIs, in one place. All of the data presented originates in other KOI
activity tables. The last status update was on 27 September 2018 and is considered complete.
https://www.kaggle.com/datasets/keplersmachines/kepler-labelled-time-series-data

pca rpro
1500000 - i 1e+06
Qe+00 — = - ..n..a*
1000000 v
(] .
i -1e+06 :
500000 20406
-3et06
0 Rawavoe - :
Oe+00 S5e+06 1e+07 -6e+06 -de+06 -2e+06 Qe+00
* CONFIRMED
svd tshe - FALSE_POSITIVE
0.00 —gemeree 50
005 F 25
-0.10 0
i
-0.15 95
0.20 & |
0.0 02 0.4 0.6 0.8 -30 0 30 60

Figure 5.40: Various dimensionality reduction techniques in Kepplers

Silesian University of Technology 100

Results

Probability of correct assigment with Beta-Binomial distribution

Not filtered

cmeans

60 i Ziliiy o Kmeans
40

20

Scaled

emeans

o
o

B
(]

[
o

o

60

Probability density

40

20

High Reduction

kmeans

60

40

20

05 0.6 0.7
Probability of correct cluster assigment

Figure 5.41: Various indexes accross clusters in Kepplers

Silesian University of Technology 101

Median correct assigment to clusters of different algorithms

Mot filtered Scaled

gmm_—1.0
0.8
mah_hc 6 man_hc
4 hi
T e
crmedo cimedo

cmeans cmeans

kmeans kmeans
Scaled High Reduction High Reduction

1.0

0.2

0.6 fmah_hc man_he
04

0.2

9.9 mmm M- |

omedo cmedo
CImeEans cmeans
kmeans kmeans

Figure 5.42: Various indexes accross clusters in Kepplers

5.2.7 Arrhythmia

One of the most specific heart rhythm disorders is called atrial fibrillation. Moreover, patients
with such heart conditions have five times more increased risk of stroke. At the same time,
atrial fibrillation causes almost 20% to 30% of strokes. In addition, strokes caused by atrial
fibrillation are much more severe and fatal. They led to death much more often than strokes
due to other causes. According to a study (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467327/),
in 2016, almost 7.6 million people in the European Union had atrial fibrillation. Studies esti-
mate that this number will increase by 89% to 14.4 million by 2060. The current prevalence
will rise by 22%, from 7.8% to 9.5%. Last but not least, yearly treatment consumes from
0.28% to 2.6% of European funds spent on healthcare.

The data we will explore in our thesis comes from the study whose original purpose was to
differentiate between the presence and absence of cardiac arrhythmia. After that, observations
were organized into one of the sixteen groups. The first class, 01, refers to "normal" ECG

Silesian University of Technology 102

classes. Then, the number from 02 to 15 refers to various arrhythmia categories. Finally,
category 16 refers to the rest of the unclassified ones. For the time being, a computer program
exists that classifies the data. However, there are differences between the cardiologist and the
grouping done by the program. In our study, we will use a few approaches to this issue. The
first one is to proceed as in our main pipeline. We will create many datasets and compare how
well they cluster separately from two up to six clusters. Then, we will take all the groups and
check how accurately unsupervised algorithms can differentiate between classes. Finally, we
will take all the groups but look for only two clusters. In the last part, we are creating two
class problems to check whether unsupervised methods can find a clear pattern in the presence
and absence of arrhythmia.

Silesian University of Technology 103

Results

pca rpro
1000 i i
300 | L | | . e
®
200 .
500
100
0 0 e arr 1
®
® arr 10
-100
® arr 14
-200 .. -500 ® arr 15
® ® arr 16
=200 100 0 100 200 300 -250 0 250 500 750 arr_2
arr_3
svd tsne
arr_4
300 arr_s
® arr 6
200 ® arr_7
® arr 8
100
® arr9
0
-100
-200

400 500 600 700 -10 0 10

Figure 5.43: Various dimensionality reduction techniques in Arrhythmia

Silesian University of Technology 104

Boxplots of ARI value across clusters

Not filtered Scaled
1.00 i 1.00
.75 | | 0.75
0.50 i 0.50 | | 1
: - - S 3
0.25 . - 2uzn i |
0.00 T o
2 3 4 5 & 2 3 4 5 (53
Scaled High Reduction High Reduction
1.00 1.00
Q.FS & - 0. 75
0.50 I 0.50
0.25 = - =
| I| Ak .ﬂ sl 7
0.00 . M
0.00
2 = 4 5 5] 2 3 4 S G

EI mmimk * gmimk2 - kmeanspp E emedo E he
Figure 5.44: ARI index accross clusters in Arrhythmia

The ARI index presented GMMK as having the second highest median score in comparison
with other algorithms.

Silesian University of Technology 105

Probability of correct assigment with Beta-Binomial distribution

Not filtered

10,0 T SR kmeanspp

5

50 =

2.5

0.0

Scaled

4
2
o

™
in

o
o

»
in

£
=]

J
9
fou]

Probability density

#5

5.0

Sk

0.0

High Reduction

10.0 1 ; o~ i kmeanspp B

7.5

5.0

25

0.0 -

0.2 0.4 0.6
Probability of correct cluster assigment

Figure 5.45: Various indexes accross clusters in Arrhythmia

In the case of beta distribution, GMMK scored the best results across other algorithms in the
3 filtering types. However, in case of scalling, cmeans perfomed slighly better. However,
overlap between the two is huge.

Silesian University of Technology 106

Median correct assigment to clusters of different algorithms

Mot filtered Scaled

1.0 gmnikz—— 10—
0.8 A i
0.6 : i
0.4
ez |/
gio: | §

kmédh:s-;ip_;l- kmeansﬁh_:.-

Scaled High Reduction High Reduction

: a0~
0.8 A

0.6
04 /
0.2 .". llf
0o []

goml

kmeanspp kmeanspp_

Figure 5.46: Various indexes accross clusters in Arrythmia

Silesian University of Technology

107

Arrhythmia

Scaled Scaled High Reduction High Reduction

00000000000000000000

00000000000000000000

in Arrhythmia

clusters

5.47: Various indexes accross

Figure

Metrics are highly correlated. Even ARI in- Correlation of metrics in Arrhythmia

dex, which shown very low correlation with
other metrics, in this case was more corre- accu
lated than accuracy.
beta_mean
smc
Wsmec
wjacc

>
L)
&+

Figure 5.48: Corr plot of metrics in Arrhyth-
mia

Silesian University of Technology 109

6 Conclusions

Based on appropriate versions of the EM algorithm, we formulated the algorithms for the
decomposition of Gaussiance Multivariable Mixtures and Multinomial Mixtures. We ensured
its stability by switching to the logarithmic scale whenever possible. Otherwise, we used
minor hard-coded numeric corrections to avoid division by zero.

We have created an R implementation for Multinomial Mixture Models (MultinomEM) and
Gaussian Mixture Models (GaussEM) that is openly available on the GitHub platform. One
can install it as a package. However, it still requires to undergo rigorous package testing.
Because of that, we cannot guarantee that it will work right out of the box in all machines
and configurations. More sanity and dependency checks are required. However, the algorithm
should be stable the majority of the time. We are regularly updating it, preferably to the
thoroughly tested package. We might rewrite some parts of the code in Repp or Armadillo for
efficiency in future implementations.

Based on the available source code, we have implemented a few distance-based algorithms for
the comparison test. We also have tested a few tested different scenarios for them. It includes
an experiment with manhattan/euclidean distance and different initialization of k-means.

We have implemented several metrics to compare algorithm performance and efficiency. In
some cases, presented metrics are highly correlated. It is especially true for metrics with a
common origin, like those derived with the help of the Hungarian algorithm. As we can see,
each metric has its advantages and shortcomings. Some of them, like the ARI index, are easy
to implement without additional steps. However, it may only be suitable in some cases.

On the other hand, if we want to compare if there was any correct assignment and how big it
was, we should use different metrics. We should also consider unbalanced classes, which
might significantly impact metrics. The proposed metric provides additional information
about probability density based on beta distribution. We can call it confidence in the cal-
culated probability. However, it requires more mathematical work to balance it properly.

We prepared an extensive simulation study that consists of thousands of Multivariate Gaus-
sian Mixtures and Multinomial Mixtures. To do that, we prepared an R script that allows
the creation of selected mixtures with any desired number of observations, dimensions, and
components. It allows us to compare the algorithms with a controlled number of parameters
and observe the difference in their performance with increased dimensions and clusters.

We have prepared a curated set of real datasets from various publicly available sources. Al-
though the data comes from various science fields, the most significant part consists of the

110

genomic/medical data. Based on those datasets, we prepared hundreds of different compo-
nents. Inside the same set, each group combination could occur only once. It allowed us to
check the algorithm’s performance with a controlled and differing number of components.

We have created R implementation for multinomialEM and GaussEM that is openly available
on the GitHub platform. One can install it as a package. However, it did not undergo rigorous
package testing, yey. Because of that, we cannot guarantee that it will work right out of the
box in all machines and configurations. More sanity and dependency checks are required.
However, the algorithm should be stable most of the time. We will update over time, prefer-
ably to the thoroughly tested package. In future implementations, we shall rewrite some parts
of the code in Repp or Armadillo for efficiency.

Based on the available source code we have implemented a few distance-based algorithms
that we haves used for the comparison test.

We have implemented several different metrics that allow us to compare algorithm perfor-
mance and efficiency. In general, presented metrics are highly correlated. It is especially
true for metrics with a common origin, like those derived from the Hungarian algorithm. As
we can see, each metric has its advantages and shortcomings. The ARI index does not need
additional information about labels. However, it can show us negative numbers, which are
difficult to interpret.

The model-based algorithms presented in the thesis are a powerful tool in unsupervised clus-
tering methods. In all of the datasets, they performed better than algorithms based on distance.
However, there is a pitfall. In rare cases, they might fall into local minima. We have also
shown that by using simple heuristics, we might slightly improve the results of the Gaussian
Mixture EM. The working example of that heuristic was adding new variables based on the
correlation between features. Surprisingly that sometimes Gaussian Mixture EM performed
better than Multinomial Mixture EM and vice versa. It might be an indicator that there might
be another distribution that will yield better clustering results.

Silesian University of Technology 111

Bibliography

[1] Chandan K Reddy, Data Clustering: Algorithns and Applications, Chapman and Hal-
I/CRC, 2018.

[2] Brian S Everitt, et al., “Cluster analysis S5th ed”, , 2011.

[3] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to
cluster analysis, vol. 344, John Wiley & Sons, 2009.

[4] Christian Hennig, et al., Handbook of cluster analysis, CRC Press, 2015.

[5] Charles Bouveyron, et al., Model-based clustering and classification for data science:
with applications in R, vol. 50, Cambridge University Press, 2019.

[6] Geoffrey J McLachlan and Thriyambakam Krishnan, The EM algorithin and extensions,
vol. 382, John Wiley & Sons, 2007.

[7] Richard McElreath, Statistical rethinking: A Bayesian course with examples in R and
Stan, Chapman and Hall/CRC, 2020.

[8] Nick T Thomopoulos, “Statistical distributions”, Applications and Parameter Estimates
Cham, Switzerland: Springer International Publishing, 2017.

[9] Merran Evans, et al., Statistical distributions, John Wiley & Sons, 201 1.

[10] Walter Frank Raphael Weldon, “I. Certain correlated variations in crangon vulgaris”,
Proceedings of the Royal Society of London, 51(308-314), 1892, pp. 1-21.

[11] Peter Schlattmann, Medical applications of finite mixture models., Springer, 2009,

[12] Geoffrey J Mclachlan, et al., “Finite mixture models”, Annual review of statistics and
its application, 6, 2019, pp. 355-378.

[13] Arthur P Dempster, et al., “Maximum likelihood from incomplete data via the EM algo-
rithm”, Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1977,
pp. 1-22.

[14] Jeff A Bilmes et al., “A gentle tutorial of the EM algorithm and its application to param-
eter estimation for Gaussian mixture and hidden Markov models”, International Com-
puter Science Institute, 4(510), 1998, p. 126.

[15] Pierre Blanchard, et al., “Accurately computing the log-sum-exp and softmax functions™,

IMA Journal of Numerical Analysis, 41(4), 2021, pp. 2311-2330.

[16] Marc Kéry and J Andrew Royle, Applied hierarchical modeling in ecology: Analysis of
distribution, abundance and species richness in R and BUGS: Volume 2: Dynamic and
advanced models, Academic Press, 2020.

112

[17] Lawrence Hubert and Phipps Arabie, “Comparing partitions”, Journal of classification,
2(1), 1985, pp. 193-218.

[18] Raimundo Real and Juan M Vargas, “The probabilistic basis of Jaccard’s index of simi-
larity”, Systematic biology, 45(3), 1996, pp. 380-385.

[19] Laurens Van der Maaten and Geoffrey Hinton, *“Visualizing data using t-SNE.”, Journal
of machine learning research, 9(11), 2008.

[20] Eleonore Lebeuf-Taylor, et al., “The distribution of fitness effects among synonymous
mutations in a gene under directional selection”, eLife, 8, 2019, p. e45952, URL
https://doi.org/10.7554/eLife.45952.

[21] David Benjamin, et al., “Calling somatic SNVs and indels with Mutect2”, Biorxiv, 2019,
p. 861054.

[22] Bohdan B Khomtchouk, “Codon usage bias levels predict taxonomic identity and genetic
composition”, bioRxiv, 2020.

Silesian University of Technology 113

