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Chapter 1

Introduction

Cardiovascular diseases are the major cause of death around the world. It is es-
timated that 20% of the population is affected by elevated arterial wall stiffness
which increases the risk of aneurysms rupture. Diminished arterial elasticity
results in reduced pulse wave reflection and can lead to left ventricular hyper-
trophy or an increase in hemodynamic pressure gradient causing an increased
cardiac load.

The stiffening of the vasculature, primarily results from aging as large elastic
arteries undergo progressive luminal dilatation, thickening of the arterial wall,
increased deposition of collagen, and combined fragmentation and degeneration
of elastin fibers [1]. Additional contributions from diabetes, renal diseases, and
other diseases are associated with coronary artery diseases, systolic hyperten-
sion, stroke, atrial fibrillation, and many other conditions |2, 3, 4].

In the normal physiological state, the elastic nature of the arteries ensures that
they easily expand to accommodate the volume of blood rapidly ejected by the
heart during systole (typically only a fraction of the time between heartbeats).
In addition to reducing the force required to pump the blood out of the heart,
the distension of the arteries stores the cardiac work as elastic energy. The
elasticity of the arteries therefore buffers the pulsatility of the flow and pres-
sure generated by the heart and sustains a nearly steady flow of blood to the
periphery. It also shields the small vascular beds from sharp pressure gradi-
ents. Thus, in the pathophysiological case of significantly stiffened arteries, the
work required to eject blood from the heart increases, which can thus stimulate
left ventricular hypertrophy and left ventricular remodeling [2]. Furthermore,
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8 CHAPTER 1. INTRODUCTION

a stiffened vasculature has a decreased buffering capacity and allows steep and
amplified forward pressure waves to penetrate into smaller vascular beds in the
kidneys and brain, promoting their damage [5].

Assessment of the stiffness of the arterial system is a valuable diagnostic index
and pathophysiological marker [6, 7, 8]. Recent studies continue to demonstrate
substantial prognostic value of aortic stiffness as a predictor of cardiovascular
morbidity and mortality. Meta-analysis and recent reviews highlight the in-
creasing recognition of stiffness assessment as a surrogate endpoint for cardio-
vascular disease. Therefore, the parameters that describe the wall stiffness and
pressure gradient are used as indicators that help to diagnose the severity of the
disease [9]. The stiffness may be assessed by measuring the pulse wave velocity
(PWYV) [10], shear wave elastography [11] or by solving an inverse problem to
estimate unknown parameters of the constitutive law suitable for the artery
wall [12].

Van Disseldorp et al. [12| assume constant thickness of the aortic wall which
highly influences the value of stiffness. Even a slight change of order 1073
mm changes the solution of the inverse problem. This thesis addresses the
issue of thickness measurement leading to more accurate estimation of Young’s
modulus. The authors point out the need for verification of the aortic stiffness
by ex-vivo bi-axial testing of the tissue. Only patients undergoing surgery would
yield samples for ez-vivo testing. Similarly to Van Daisseldorp, the artery wall
displacement is registered with ultrasound, however to check accuracy of the
proposed inverse problem methodology in this work, artery phantom undergoes
uni-axial tensile test after the displacement and pressure measurement.

The aim of the thesis is to develop a non-invasive procedure using ultrasound
and a numerical model to inversely estimate Young’s modulus of all the ultra-
sound accessible arteries.

1.1 Objectives

This work aims to develop a non-invasive procedure to estimate Young’s Modu-
lus of Left Common Carotid Artery (LCCA) based on ultrasound measurement
of the artery’s wall displacement and pressure measurement inside the artery
using applanation tonometry.

The measurements, experimental set-up as well as the data analysis and com-
putations were performed within "ENTHRAL Non-invasive in-vivo assessment
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of stiffness of human artery walls" project financed from the Norwegian Finan-
cial Mechanism 2014-2021, under grant# UMO-2019/34/H/ST8/00624 (Nor-
way Grants).

In order to achieve the goal of this thesis, a testing rig was built consisting
of artery’s phantom, pulsatile pump, and measurement devices to collect flow,
pressure, and phantom’s wall displacement data. The numerical model of the
experiment is built and validated against the experimental data. The model
is then used for the inverse problem - estimation of the stiffness defined here
as Young’s modulus of the material used as a substitute of the real artery.
The constitutive law choice is restricted by the number of parameters to es-
timate. For this reason only two models are being considered - linear elastic
and Neo-Hookean. The best model based on experimental rig’s data is cho-
sen for inverse problem solved by extended Kalman filter. This approach for
Young’s modulus estimation along with chosen constitutive law is then used for
patient’s data. Chapter 5 covers model validation, simulation results of linear
elastic and Neo-Hookean materials are compared with experimental data, and
the most appropriate model is chosen for further analysis in the next chapters.

1.2 Outline

The thesis is organized into 8 chapters.

Chapter 1 provides a literature review on existing techniques for non-invasive
estimation methods and a literature review on the proposed method of solution
of the inverse problem.

Chapter 2 introduces elements of continuum mechanics necessary to understand
the formulation of constitutive models of linear elastic and hyperelastic mate-
rials. It covers inverse problems and the most commonly used techniques to
solve these problems and Kalman filtering algorithms.

Chapter 4 is devoted to mesh sensitivity study, comparison of static and dy-
namic finite element analysis. It provides the details of the geometry, mechan-
ical properties and describes the algorithm used to process the data.

Chapter 3 discusses the experimental set-up built to collect the data for de-
veloping and testing new methods for non-invasive assessment of the common
carotid artery.

Chapter 6 provides an example based on semi-empirical data for verifying the
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extended Kalman filter code and procedure. The geometry and Young’s mod-
ulus were assumed to be known and the convergence of the filter was tested
on exactly known data. In this chapter results for the experimental rig and
patients are reported.

Chapter 7 is devoted to the discussion and conclusions. It offers potential
improvements to the proposed approach in order to implement it in real-world
applications.

Chapter 8 consists of additional materials, visualization of the working principle
of Kalman filter and Python code for data processing and implementation of
the Kalman filter.

1.3 Literature review

Young’s modulus of the artery is linked to the Pulse Wave Velocity (PWYV)
by the Moens-Korteweg equation [13, 14]. The Pulse Wave Velocity is defined
as the velocity at which pressure perturbations propagate along the vessel and
serves as an indirect measure of the average stiffness of the arteries within the
segment between two measurement points [7].

Typically, measurements are taken between the carotid and femoral arteries ab-
breviated as cfPWV and known as a golden standard. Other segments that are
investigated are heart-femoral measurements resulting in hfPWV or brachial-
ankle abbreviated as baPWV [10]. PWYV is the technique most commonly
used to characterize arterial stiffness and has been established as a statistically
reliable prognostic indicator. The measurement of local PWV relies on the
measurement of the time difference between the two characteristic points of
the cardiac cycle (for example, systolic pressure), at two points whose distance
along the vessel is known. The ratio of these differences gives the approximate
velocity of the pressure wave [15, 16].

For the pulse wave velocity, an applatation tonometer is widely used [17]. This
method provides the average velocity over a long distance suffering from inac-
curacies due to challenges in measuring vascular length [18]|. In addition, PWV
varies significantly along the entire arterial tree due to variations in geometry
and elastic properties. Pathologies originate from localized arterial stiffening
and local methods are more important to assess the state of health [19].

Shear wave elastography allows direct, non-invasive, and real-time measurement
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of the elasticity of soft tissues. Shear waves are generated by focused acoustic
radiation force emitted from a linear ultrasound probe, which itself provides lo-
cal stress and generates local displacement in the tissue [11|. Acoustic radiation
forces is a period-averaged force exerted on the medium by a sound wave and
it is produced by the change of energy of the propagating wave [20]. The prop-
agation of the shear wave is captured by fast ultrasound imaging. Shear wave
velocity ¢, distribution at each pixel is related to the shear modulus from which
Young’s modulus is derived. The shear modulus is related to the shear wave
velocity by G = pcs. Where p is the density of the investigated tissue, usually
approximated based on the literature study, are approximated as a value that
is close to the density of water. The vessel is assumed to be incompressible
v = 0.5, resulting in a simple relationship F = 3G [18, 11].

Other ways of estimating the unknown stiffness rely on running the simulations
of the mathematical model describing the material’s constitutive law until the
unknown parameter is retrieved |21, 22, 23]. The parameter estimation problem
may be solved by a variational or sequential approach. The sequential approach
is iterative in nature and requires many simulations of the forward problem,
which may be prohibitive.

With a sequential approach based on the Kalman Filter, the model prediction
is improved at every time step by measuring the discrepancy between model
output and measurements. The total computational time for the sequential
approach was shown to be of the same order of magnitude as the CPU time
needed for one forward simulation [24].

1.3.1 Kalman filtering in previous studies

A scoping review was performed using multiple keyword combinations. The
databases included for the literature search were ScienceDirect, Web of Science
and Scopus. For snowballing Google Scholar was used. Combination of key-
words consisted of Kalman filter, artery, stiffness, constitutive and soft tissue.
The search was limited to research papers relevant to hemodynamic modeling
and estimation of material constitutive law’s parameters. The articles were first
selected by title and then by abstract to fit the research questions. Next step
in the screening process was skimming through the paper in order to find the
methodology used for simulations. The papers which focused on incorporating
Kalman Filter into the Finite Element Method were discarded. Some papers
only mentioned about the Kalman Filter and the filter wasn’t applied in these
papers, these papers were removed as well.
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Initial number of found papers during search reduced from 150 to 18 upon after
screening. Tab.1.1 summarizes the results of the search and includes a detailed
string used for the search.

Keyword string Science Direct | Web of Science | Scopus
" "

"Kalma"n ﬁ'l'tel'“ "AND 19 5 .
artery" AND "stiffness

"Kalman filter" AND

"artery" AND  "constitu- 47 0 0
tive"

"Kalman filter" AND "soft 29 5 1
tissue" AND "stiffness"

Number of identified papers 135 7 8
Numb'er of papers after 1 4 5
screening

Snowballing 1

Included papers 18

Table 1.1: Process of literature review and results summary The screening
process was based on title and abstract screening during search in databases.
Then the papers with irrelevant content were excluded.

Tab.1.2 shows the models that were analyzed in a particular study and methods
which were used to estimate unknown parameters. Figure 1.1 summarizes this
table by aggregating variations of filters such as Reduced Order Kalman Filter
(ROKF) or Simplified Kalman Filter (SKF) into one group called "KF based’.
The same was done for variations of the Unscented Kalman Filter (UKF'). Based
on Fig.1.1 and tables Tab.1.2 and Tab. 1.3 an overview of the most frequently
used methods is presented.

Habibi [26] used Dynamic Mode Decomposition to reduce the computational
cost of 3D fluid flow simulations and provide a recursive linear dynamical model.
They tested the ROM-KF framework for three cases: Wommersley’s analyti-
cal solution (1D), idealized 2D cerebral aneurysm model and patient-specific
cerebral aneurysm model to reconstruct the velocity profile inside a vessel.
It was challenging however to accurately reconstruct wall shear stress (WSS)
throughout the whole heart cycle. Coupling the reduced order model with KF
is capable of reducing the reconstruction error in the near-wall region and pro-
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Author k WK | Other| Model Method
FEM (lin-
Delalleau, v’ ear elastic- | EKF
A[25] .
ity)
1D Wom-
o mersley,
Habibi, v 9D and 3D | ROKF
Milad[26] .
pulsatile
flow
Jonagova,
Alena|27] v’ 0D and 3D | UKF
Canuto ob, 1D,
Daniel| é 3| v’ v’ coupled EnKF
0D-1D
Caiazzo,
Alfonso[29] v b ROUKFE
Miiller, Lucas
0l30] v’ v’ 1D ROUKF
Lombardi[31] v’ 1D UKF
Jain,
Karan[32) v’ v’ 1D UKF
Bertoglio, v SDFSI | ROUKF
Cristobal|[33]
Riischen, KF,
Daniel[34] v 1D EKF
Hullender, Fourier se-
David A[35] v ries ERE
Shi, KF,
Pengcheng|36] v FEM EKF
. . third order
Jin, Ji[37] v’ ODE KF

Table 1.2: Overview of the methods, parameters and models analyzed in
papers. Where k represents stiffness in general, v - Poisson’s ratio, WK -
Windkessel parameters. Continued on next page.
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Number of papers
N w =1 w [=2] -~
) A A A ) .

-

UKF based KF based EKF EnKF
Method

Figure 1.1: Bar plot representing the frequency of the specific method used
in the selected papers. The methods are lumped into groups based on the
underlying filter.

duces near-wall flow results more accurate than the uncertain computational
data. Increasing noise in the experimental data to 0.3 of the maximum velocity
as standard deviation reduces the accuracy of reconstructed experimental data
during early and late stages of the cardiac cycle.

Ruschen reported in his work use of KF and EKF to estimate cardiac output
by combining experimental measurements on animals and Windkessel model.
They showed that KF underestimates the cardiac output and EKF is more
accurate and shows no systematic deviation [34].

Pengcheng developed a stochastic finite element framework to estimate myocar-
dial kinematics and material properties (Young’s modulus, Poisson’s ratio) and
MRI data of canine tissue [36].

Ji Jing [37] introduced new quantification parameters to display the pressure
waveform change caused by superimposition of wave reflection in the systolic
reflex period. Kalman filter was used to obtain an optimal estimation of the new
parameters and other parameters also describing the pressure waveform such as
early systolic period, diastolic period and pulse pressure. He also showed that
the new parameters correlate to commonly used wave reflection parameter Alx
and contain more information than Alx.

Zhang used KF to estimate the external loads on the myocardium and its
motion from magnetic resonance image sequence [38].
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Author k | v | WK | Other| Model Method

Zhang,

Heye|38] v’ 2D FEM KF

Gao, Newton’s

Zhifan|39] v second law RE

Liu convolution

Wenyan|40] v’ of pressure | SKF
waveforms

Bertoglio, v FSI ROUKF

Cristobal|41]

Song, Jialu[42] | v/ FEM EKF

Table 1.3: Overview of the methods, parameters and models analyzed in
papers. Where k represents stiffness in general, v - Poisson’s ratio, WK -
Windkessel parameters. Continued.

Zhifan Gao applied Kalman filter to predict the radial and longitudinal motion
of the carotid artery from ultrasound images. It was shown that the approach
has the same order of accuracy as the manual tracing method performed by
the medical physicians, and can hence be used to used to automate the motion
tracking of the carotid artery wall [39].

Another application of linear Kalman Filter reported by Wenyan Liu et al. was
non-invasive estimation of the aortic pressure waveform which is important for
the diagnosis of cardiovascular diseases. As stated by the authors the proposed
framework "outperforms the canonical correlation analysis (CCA), which is the
current (by 2022) state-of-art blind system identification method for the non-
invasive estimation of central aortic blood pressure" [40].

Delalleau [25] modified the EKF by introducing parameter A for fading memory
formulation of EKF. The parameter was inserted into the calculation of Kalman
gain K and posterior covariance P. The proposed algorithm was tested on ar-
tificial data simulated by finite element method software SYSTUS released in
2004. Skin fragment was modelled as linear elastic solid and the force/dis-
placement curve for uniaxial tensile test was registered. It was reported that
the EKF is able to predict the Young’s modulus and Poisson’s ratio with high
accuracy (mean error of order 1077).
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Hullender showed the application of EKF to assess the blood pressure waveform
in patients with pathologies that include hypertension and arterial stiffness.
The pressure waveform was characterized by eleven-coefficient Fourier series
with unknown frequencies and amplitudes [35].

Jialu Song [42] combined maximum likelihood theory, EKF and nonlinear Fi-
nite Element Method to identify unknown hyperelastic material (Neo-Hookean)
constants for human liver. The methodology was verified with experimental
analysis. 10x10x10 mm cube made of silicone gel with similar mechanical prop-
erties was subjected to an indentation test. Vertical time-varying force was
applied at the center of the sample’s top surface by a rigid needle. Two nodes
at the top surface were selected in the computational model to compare their
displacements in the x and y directions with experimental data.

Jonasova applied UKF to the coupled 0D three-element Windkessel model with
3D CFD simulation to find the best estimates of input parameters to the 0D
model for stenosed artery. The algorithm was demonstrated on two different
patient-specific carotid bifurcations by including data from in vivo measure-
ments provided by medical doctors [27].

Caiazzo [29] presented the UKF based on a reduced order model in the context
of 1D blood flow models. Experimental flow and pressure measurements of the
arterial network consisting of 37 silicone tubes were used to estimate Young’s
modulus and wall thickness using at most a single pressure or flow measure-
ment per vessel. The uncertainty of initial conditions were neglected resulting
in lowering the dimension of matrices to the size of the unknown parameter
space. The estimation of these parameters was conducted in three ways: only
flow data, only pressure data, combined flow and pressure data. It was shown
that for estimating arterial wall properties, flow measurements contain a larger
amount of information about the parameters.

Miiller applied UKF for the 1D blood flow model. The data was in frequency
domain since clinical measurements are often related to max/min values, aver-
age values and frequency spectra retrieved throughout the cardiac cycle. The
time step in UKF was equal to the duration of the cardiac cycle. It was shown
that the filtering in frequency domain converges faster than filtering in time
domain in the case of estimating Young’s modulus [30].

The arterial stiffness can be obtained from Pulse Wave Velocity (PWV), Lom-
bardi compared this method against Unscented Kalman Filtering and proved
that UKF is more precise. The drawback of UKF is the computational cost
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and data amount need to perform the filtering [31].

Bertoglio [33] identified the stiffness distribution of a silicon rubber aortic phan-
tom using the FSI model. The material was mechanically tested by filling the
tube with water and relating the exerted pressure by the fluid to the wall dis-
placement using a linear elastic model, which is a function of Young’s modulus,
Poisson’s ratio, tube thickness, and tube length. The estimated Young’s mod-
ulus was reported to agree with the values obtained by mechanical testing.
Additionally, the stiffness was higher in regions close to the ends of the tube
where it was fixed to non-deforming material, therefore limiting the wall’s radial
displacement. The estimation procedure was then tested on clinical data from
the aorta. It was assumed that the wall behaves according to the Mooney-
Rivlin model. It was reported that for clinical data there were issues with
convergence of the parameters to be estimated. The oscillations according to
the author compensate for modelling and data errors.
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Chapter 2

Theory

2.1 Continuum mechanics

Continuum mechanics is a subject unifying solid mechanics, fluid mechanics,
thermodynamics and heat transfer. The matter is considered as a continuum,
and we are interested in the volume-averaged behavior rather than the behavior
at a molecular level. The continuum assumption tends to be reasonable when
d/A << 1 where ¢ is a characteristic length scale of the structure and A is a
characteristic length scale of the problem of interest [43]. This section focuses on
an introduction to continuum mechanics of solid materials with a main interest
on linear elastic and hyperelastic materials. We will start with displacement
and strain definitions, introducing deformation and displacement gradient, then
follow to various stress definitions, hence building the background for defining
constitutive laws.

2.1.1 Displacement and strain

In continuum mechanics a particle is defined as a portion of the continuum body
being considered. A particle has a prescribed position in space by a vector
of origin O of the coordinate system r = [z, x92,23] = x;. By convention,
lowercase x refers to the deformed configuration and capital X to the reference
configuration, which is typically the undeformed state. Thus, a displacement
may be defined by:

u(X,t) =x(X,t) — X (2.1)

19



20 CHAPTER 2. THEORY

Considering an infinitesimal element dX we might be interested in the mapping
of the reference configuration to its new positions dx. The deformation gradient
links these two positions via:

drx =FdX (2.2)
where F is: 5
T
F=— 2.3
0X (2.3)
or in tensor notation: 5
Ty
Fi = —— 2.4
(¥ aXJ ( )

Substituting x with u+ X from Eq.2.1 we arrive with the Displacement Gradient
Tensor H also written as Vu:

o0x; B ou; + X B ou;
0X;  0X; = 0X;

Fi = +1 (2.5)

we arrive with the Displacement Gradient Tensor H also written as Vu which
is the last derivative [43, 44]:

H=Vu= (2.6)

0X;
Longitudinal strain € in the direction e is defined as a ratio of the change in
length ds of the material to the original length dsg:

s—sozds—dsozds_l (2.7)
s—0 dsg dsp dso

Where s is the length of the material after applying force in the direction e.
The derivative ddTi is called stretch A and it is the ratio between the length of

the deformed material to to length of the undeformed material. Therefore the
equation above can be written in terms of stretch:

e=A—1 (2.8)
The Lagrange strain tensor is defined as:
1 1

E=_(FF' -T)=_ (H+H' +H H) (2.9)

Substituting the definition of the displacement gradient tensor H to the def-
inition of Lagrange (Green) strain tensor, it may be rewritten in a derivative

_1 8uk 4 8’&1 i 8’LLZ 8uz
2\ 09X, 09X,  0X 00X

form:

Ex (2.10)




2.1. CONTINUUM MECHANICS 21

which will simplify in the case of small deformations to a linear relationship
(section 2.3).

2.1.2 Stress

The stress or traction vector ¢ is defined as the ratio of force F' to the area A:
t= lim — (2.11)

When the area is on in the deformed configuration, we consider the Cauchy
Stress (true stress). When the area is in the reference configuration (before the
deformation occurred) it is called the engineering stress or nominal stress. Con-
sidering an infinitesimal cube with its surfaces perpendicular to the coordinate
axes, the base vectors e being normal to cube’s surfaces. The components of
the stress vectors are denoted Ty [44]:

tr = Tire; (2.12)

The components of the stress vector t in the direction n (normal vector to
the surface on which the force acts) and in the tangent plane to the surface
A are the normal stress o and the shear stress 7 respectively. Cauchy’s stress
theorem states that the stress vector t on a surface through a particle P is
uniquely determined by the stress tensor T in the particle and the unit normal
n to the surface [44]:

t=Tn (2.13)

Where T is the Cauchy Stress Tensor. Alternative stress measures to the
Cauchy Stress Tensor are Piola - Kirchoff, Biot, Green, Naghdi or Mandel
[45]. First Piola-Kirchoff stress tensor P is defined in terms of deformation
gradient F and Cauchy’s Stress tensor T:

P=JTF T (2.14)

where J = det(F). The first Piola-Kirchoff stress tensor can be interpreted
as the force in the deformed configuration per unit area of the undeformed
configuration. Second Piola-Kirchoff stress tensor S is defined by the relation:

S=F'P=JF!TF T (2.15)

and can be viewed as the force in the undeformed configuration per unit area
of the undeformed configuration.
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2.2 Hyperelastic materials

Hyperelastic materials are materials that have the ability to store the strain
imposed on the material in the form of energy. The stored energy ¥(F) is
not dissipated to the environment when the material returns to its undeformed
state. The hyperelastic material is defined in terms of the strain energy density
function ¢ which can be expressed in terms of the deformation gradient i (F)
or the Cauchy stress tensor 1)(C). The strain energy function is required to be
zero when the material is in the reference configuration (F = I):

YF=T)=0 (2.16)

Additionally, if the body is stretched infinitely (det(F) — oo or compressed to
a point (det(F') — 0, the strain energy is required to tend to infinity [45]:

Y(F) — oo (2.17)

From equation 2.15 it follows that the Cauchy stress tensor may be rewritten
in terms of the second Piola-Kirchoff stress tensor as:

T = J 'FSFT (2.18)

given that the second Piola-Kirchoff stress tensor has a relationship with strain

energy function [45, 46]:

_ 00
S = 28_0 (2.19)

where C is the right Cauchy-Green tensor defined as:

C=F'F (2.20)
whereas left Cauchy stress tensor is:

b = FF’ (2.21)

Therefore the true (Cauchy) stress may be related to the strain and definition of
hyperelastic material in terms of strain energy function by combining equations
2.18 and 2.19. For isotropic hyperelastic material the strain energy function v
does not depend on the direction of applied force therefore it is written in terms
of the invariants of C [46]:

T = 2J Lap1b+ 4T Lpob? + 2Tl (2.22)

Where 11, )9 and 13 are the derivatives of 1) with respect to the invariants of
b; the fist (I1), second (I2) and third (I3) invariants of b respectively.
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e Incompressible material (det(F)=J=1):

I1 = tr(b) = A} + A3+ \3 (2.23)
Io = M2 4+ A2A3 + \3)\3 (2.24)
I3=XX3\ =1 (2.25)
e Compressible material (det(F) # 1):
L=J3 0\ 423+ )3) (2.26)
I = JY3 (N3 + M350+ A30)) (2.27)
I3 = X2X3)\5 # 1 (2.28)

2.2.1 Neo-Hookean Material

For compressible Neo-Hookean material, four different strain energy density
functions were found [47, 46]:

A
U= g(z'1 = 3) — pln + S (InJ)? (2.29)
U= g(h —3) +ar(J — 1)% + aslnJ (2.30)
U =20 - 3) + by 2L (2.31)
2 J2
U= g(h —3) 4+ (J?—1) (2.32)

where a1, ag, b1, ba, c1 and cy are adjustable constants. The parameters p and
A are functions of Young’s Modulus E and Poisson’s ratio v:

= ﬁ (2.33)
A= vE (2.34)

(1+v)(1—2v)

The Eq. 2.29 is the form of the strain energy density equation implemented in
the open-source software FEBio [48]. It is unknown to the author of this the-
sis why such a definition of compressible Neo-Hookean material was chosen by
the developers of the software. The implementation was tested by the authors
against analytical solution for the confined compression creep test and uncon-
fined compression stress relaxation test. For both tests a cylindrical sample was
used. It is claimed by the authors and shown that the agreement of simulated
results are in agreement with the analytical solution [48, 49|.
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2.3 Isotropic Linear Elastic Material

For small deformations and small displacements, the Green strain tensor (Eq.

2.10 simplifies to:
1 8uz ou;
E; = - -J 2.35
J 2 <8XJ * X j> ( )

The model is suitable if all of the following constraints are fulfilled [44]:

e Longitudinal strain < 0.001
e Shear strain < 0.02
e Absolute value of the volumetric strain is less than 0.03

In FEBio the isotropic linear elastic model is given in terms of strain energy
function:

1
U= 5A(trE)2 +uE:E (2.36)

2.4 Inverse problems

An inverse problem is a type of problem that relates to the determination of
unknown causes or inputs based on observation of their effects. That is the
opposite of the direct problem in which the effects or outputs are determined
based on a complete description of the inputs [50]. The inverse problem may
focus on reconstructing the boundary conditions, unknown parameters of the
governing model, reconstructing initial conditions or even reconstructing the
geometry [51, 52, 53]. In general, the direct problem is considered a well-posed
problem. The problem may be formulated as a relationship between some
property x to be estimated and the measurement z. The forward operator A is
a map that maps x to z.

Ar =z (2.37)

For the problem to be well posed it must fulfill all of the following conditions
[54, 55, 56]:

e For every measurement vector z € Z there exists a parameter solution x

e The solution must be unique
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e The solution must be stable with respect to perturbation on the right-
hand side, that is the operator A~! must be defined throughout the space
Z and be continuous

If any of the above conditions is violated the well-posed problem becomes ill-
posed problem and is unsolvable. Some techniques available to solve the inverse
problem are maximum likelihood estimation (MLE) and maximum a posteriori

(MAP).

2.4.1 Maximum Likelihood Estimation

The MLE estimates the unknown parameters from the following perspective.
Given the measurement, what are the parameters of the model from which
these observations would most likely produce the data. To solve this problem,
a likelihood function L is introduced:

L(z|z) = f(z]x) (2.38)

Thus L(x|z) represents the likelihood of the parameter = given measurement z.
Where f is the probability density function which specifies the probability of
observing data vector z given the parameter = [57, 51|. If the inverse problem
is linear and the data errors are independent and normally distributed with
known standard deviation o and mean equal to zero, then the MLE reduces to
least squares. The probability density function (PDF) for i-th measurement z;
takes the form of:

1
i(zilx) = exp(—0.5(z — (Ax)?)/o? 2.39
i) = ——emp(~0.5(z — (v} (2:39)
Given the assumption of independent measurements, the above equation can
be expressed as multiplication of PDFs for the whole data set:

f(z = (21,22, zal2) = fi(z1]2) fa(z2]x) - - - fu(2n|2) (2.40)

Taking the natural logarithm and plugging back in the normal distribution
function from Eq. 2.39 to Eq. 2.40, the expression above is then maximized to
find the the most likely parameter x:

— 2 - 2
mazx log H —0.5% = max l—0.5 Z W] (2.41)
g;

0;

Changing the sign, the problem is turned into minimization problem and the
constant 0.5 is often dropped:
z — (Az)?
iMLE = nmin Z LQ)Z (2.42)

g;
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2.4.2 Maximum a posteriori

If prior information on the parameters to be estimated is available, the infor-
mation can be used in the Maximum a posteriori (MAP) framework. The MAP
is based on Bayes’ theorem and is therefore called a Bayesian estimator. With
Bayes’s theorem, Eq.2.43, it is possible to calculate the posterior distribution
of the parameter x given new information (measurement z).

plalz) = p2d2) Pl2) (2.43)

o p(Elr) - pla)de

The denominator in the Eq. 2.43 normalizes the posterior distribution so that
it sums up to unity. The above equation is often written as a proportionality:

p(z[z) o< p(z|z) - p(x) (2.44)

Maximum a posteriori method maximizes the natural logarithm of posterior
distribution in Eq.2.44 [51, 56]:

Tpap = arg mazx {logP(m) + Z logP(zn|x)] (2.45)

2.4.3 Regularization

Small perturbations (errors) in the experimental data in Eq.2.37 often lead to
an unstable and useless solution of the inverse problem. Naive solution, by
solving the Eq. 2.37 by multiplication of both sides by the inverse of matrix A
(r = A712) or the least squares solution leads to the wrong solution far from
the expected solution.

Regularization is therefore needed to solve the issue of instability, non-uniqueness
of the solution, and results far from the exact solution [58]. A measure of the

instability of the solution is the condition number, which is defined as a ratio

of the maximum and minimum values of the singular values s (eigenvalues) of
the matrix A. The eigenvalues are obtained from the singular value decomposi-

tion (SVD) of matrix A [59], which will be discussed briefly in a moment. The

definition of condition number of matrix A is as follows:

max(s)

cond(A) = (2.46)

min(s)

The SVD is an approximation of the matrix and not all components of the
decomposition are needed for good approximation. Therefore by truncating
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the SVD it is possible to cut off the components dominated by the noise (com-
ponents with smallest eigenvalues) while keeping a good approximation. This
approach has a benefit of lowering the condition number by increasing the value
in the denominator in Eq. 2.46 therefore increasing the stability of inverse prob-
lem [51, 58, 60]. It shouldn’t be a surprise that SVD is for this reason used in
inverse problems. The shortcoming of the SVD is its computational time which
may be prohibitive for large-scale problems.

Other method which is often used for regularization and does not rely on eigen-
values is Tikhonov regularization [51]. Both methods will be briefly discussed
in the following sections.

Singular Value Decomposition

Singular Value Decomposition factors matrix A € R™" with m > n into three
matrices:

A=USVT = Z wisivl (2.47)
=1

Where
e U € R™™ is a matrix with orthonormal columns:
ulu; = 6ij (2.48)
where ¢;; is the Kronecker’s delta

e S € R™™" is the diagonal matrix of non-negative singular values with
components s satisfying:

§51>89> .. .>5,>0 (2.49)

e V € R™™ is a matrix with orthonormal columns satisfying equation 2.48

Performing SVD on matrix A and the vector of measurements z it is possible
to solve the system of equations Az = z by:

r=A"1z= Z L—v; (2.50)

When truncating the Singular Value Decomposition a truncation parameter k
is chosen such that the noise-dominated SVD coefficients are discarded. The
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condition number new matrix A which is an approximation of original matrix
A then reduces since s > s, [58, 59
S1

cond(Ay) = " (2.51)

Tikhonov regularization

As mentioned above, the SVD approach may not be the best technique for
large-scale problems due to the computational time required to perform the
decomposition. An alternative method is the Tikhonov regularization, where
the regularization parameter A is introduced into the minimization as follows:

min{|| Az — 2[|3 + ?||z|[3} (2.52)

where ||Az — z||3 is the squared Euclidean norm of the residuals. Parameter \
gives preference to solutions with smaller norms. If the parameter is set to zero,
then the problem becomes ordinary least squares, a non-zero value is known as
a ridge regression. Changing the value of X\ influences the condition number of
matrix A therefore regularizing the problem [61]. In order to choose the proper
value of A the minimization problem is solved for a range of values. The log-log
plot of the solution norm ||x||3 versus residual norm ||Az — z||3 forms an L
shaped curve referred to as L-curve [62]. The value for which the solution is
the closest to the corner of the L-curve is then selected [51].

2.5 Kalman filtering

Most of the difficulties in inverse problem arise from the ill-conditioned problem.
Regularization techniques are a solution to overcome the problem of instability
of the solution.

Bayesian inference tackles the problem from a different perspective. Rather
than looking for a single value of the parameter of interest, the solution is given
as a probability distribution [63]. The solution obtained based on Bayesian
approach may produce equivalent results to the least squares and regularized
problems [51, 64].

Kalman Filter is a special case of Recursive Bayesian Estimation, under the
assumption of a linear model and normally distributed random variables there
exists a closed-form solution to the Bayes filter [65]. Kalman filter, also called
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the linear quadratic estimator (LQE) because it minimizes the mean-squared
estimation error of a system using noisy sensor measurements [66, 67|. It pre-
dicts future state of a system based on previous and current states in two steps
which are repeated alternatively, prediction and update steps. In the predic-
tion step, the recursive mathematical model of the system is used to predict
the state in the next time step.

The predicted value is called a prior. In the update step, the prediction is
compared with the measurement by calculating the residual. The prediction
is then corrected based on the residual, therefore updating belief about the
system. The updated value is called posterior [68, 67].

The linear Kalman filter is suitable for processes governed by a linear model
with Gaussian noise. In the case where the governing equations are non-linear,
an extended Kalman filter (EKF) may be utilized to linearize the equations
about the current mean and covariance [69]. The linearization is done by ex-
panding the state function using Taylor series. That requires calculating partial
derivatives in each time step, and the filter may become too computationally
expensive.

If the model is too complicated, EKF may be not converge and other variations
of the filter are used. The unscented Kalman filter (UKF) is often a weapon
of choice for dealing with cases when EKF fails. UKF performs the Unscented
Transform for better estimation of mean and covariance passed through the
nonlinear model. It is achieved by carefully picking points called sigma points
from an arbitrary probability distribution and weights associated with each
sigma point and passing these points to the nonlinear equations. Using the
output of the nonlinear functions and chosen weights, the mean and covariance
of the output can be retrieved [70]. The visualization of the working principles
of Kalman filter is described in the appendix 8.1.

2.5.1 Linear Kalman Filter for state estimation

The Kalman filter estimates the state of a linear dynamic system. It utilises the
process and measurement model with noisy input-output measurement signals.

The algorithm has two steps, prediction and update. In the prediction step, the
Kalman Filter estimates the current state variables and their uncertainties. In
the update step, these estimates are updated using a weighted average by taking
into consideration the measurement of the real system. The mathematical
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description of the process has a form of:
T, = sz_l + Buj_1 + wi_1 (2.53)

where x is the state of the system, for example position of a vehicle. Matrix A
relates previous time step k£ — 1 to the state at the current step k. Matrix B
relates optional control input u to the state . The process noise is represented
by w and it follows Gaussian distribution with zero mean and covariance Q:

w ~ N(0,Q)

The measurement z at time step k is related to the true state of the system x
by matrix H:
2z = Hxp + v (2.54)

The v vector is a measurement noise and it follows Gaussian normal distribution
with zero mean and covariance R:

v~ N(0,R)

The whole algorithm for estimating and predicting state of the system is pre-
sented below.

e Prediction step

1. Predict current step based on previous state

x; = Azl | + Bug_ (2.55)

2. Estimate covariance

pPr=APf AT+ Q (2.56)

e Measurement update

1. Calculate Kalman gain

Ky =P, H' (HP, H' + R)™* (2.57)

2. Update state estimate

x) =z, + Ki(2x — Hay) (2.58)
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3. Update covariance
Pl =(I-KyH)P, (2.59)

where [ is the identity matrix

At first time step, the predicted state £, and covariance matrix P, have to be
initialized by guessing their values. As soon as the measurements are available
the update step can be performed. Then the algorithm runs recursively from
equation Eq.2.55 to Eq.2.59 71, 69].

2.5.2 Extended Kalman Filter state estimation

The Extended Kalman Filter (EKF) linearizes the nonlinear mapping function
f from previous time step k —1 to current time step k by utilizing Taylor series
expansion. The mapping of state system to current step has the form:

Tpe1 = flag) + wg (2.60)
The measurement function h may be also nonlinear:
21 = M(Tp41) + V1 (2.61)

The algorithm for EKF consists of following steps.

1. Initialize for £k =0

g = E[LUQ] (2.62)
Py = E|(zo — Elzo)) (20 — E[zo])"] (2.63)
EKF Algorithm for k£ =1,2,3, ..
2. State estimation

z, = f(k—1,2f ) (2.64)

3. Covariance estimation

- _ + AT

P = Agp-1 P Aj o1 + Qi1 (2.65)

where F is the linearization of the model

0f(;x)

or |, st

Aggpor = (2.66)
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4. Kalman Gain Matrix
Ky =P, H' (HP H" + Ry,)"! (2.67)

where H is the linearization of observation

Hyp1 = 82;:1:) ) (2.68)
r=a;
5. State estimation update
) =, + Klz, — h(k, x})] (2.69)
6. Covariance estimation update
Pl =P [I — Ky Hy) (2.70)

The EKF suffers from sever limitations. First order linearization of the nonlin-
ear system can be applied only if the Jacobian matrix exists. The linearization
is reliable only if the error propagation can be well approximated by a lin-
ear function. If that condition is not met, it can produce large errors in the
estimates and divergence of the filter [70].

2.6 Parameter Estimation

2.6.1 Extended Kalman Filter for parameter estimation

The general nonlinear form of recursive state transition function fi_; and non-
linear measurement function hj have the form:

zrp = fr—1(Tr—1,ur—1,6,wk_1) (2.71)

It is a function of the state at previous time step xj_1, input vector at previous
time step uj_1 and process noise wy_1 The measurement function:

2k = hk(ack,uk,@,vk) (2.72)

Where vy, represents the unknown true error assumed to be Gaussian noise with
0 mean.
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Parameter 6 is assumed to be time invariant, therefore it’s evolution is modelled
as:

Qk—i—l =0+ 11 (2.73)

The error 7 allows the filter to vary the unknown constant parameter.
The state of the system is modelled by function hj associated with error e
modeling the sensor noise and model error, therefore the measurement estimate
is calculated by:

z, = hk(xk,uk,Hk,ek) (2.74)

The measurement function has to be differentiated with respect to the parame-
ter 6, denoted as C’,f. It has to be noted that the state transition function xzj is
a function of 6, therefore it requires calculating a total derivative by the chain
rule.

o _ dhi(xp, up,0,ex)  dhy (o, ug, 0, ex) N dhi(zg, uk, 0, e) dxy,

Ch df do dzp, df (2.75)

day _ Ofp—1(zp—1, up—1,0, wp_1) N Of—1(Tp—1,up—1,0,wg_1) drg_1
db 00 0rp_1 db
If the noise is not additive, then it is required to compute the derivative of the

state transition function with respect to the modelled sensor error ey, denoted
as DZ.

(2.76)

dhk: (:Eka UL, 97 Gk)

D¢ = 2.77
: L (277)
EKF algorithm. The step by step algorithm:
1. Initialization

0" = E[f))] (2.78)
Py = E[(6o — 65)(00 + 65)"] (2.79)

d:UO
— =0 2.80
7 (2.80)
The derivative % = ( is initialized as 0 unless side information is avail-

able

2. Computation for k = 1, 2,... Parameter estimation time update

0. =0, (2.81)



34 CHAPTER 2. THEORY

Error covariance time update
Py =Py + P (2.82)
Output estimate where e is the model error
2, = hp(xg, uk, 0, e) (2.83)
Kalman gain matrix
K} = By (COTI(CO Py, (COT + (CRP- G (2.84)
Parameter estimation measurement update
9:—1 =01t KZ(Zk: — Zk) (2.85)
Error covariance measurement update

Pa—fk = - K202>P9_,k (2.86)

2.7 Simultaneous State and Parameter Estimation

2.7.1 Dual Extended Kalman Filter

The mathematical model of state dynamics explicitly includes the parameters
as the vector 0:

Ty = fr—1(Tp—1,up—1,wr_1,0) (2.87)
2k = hk(:ck,uk,,vk,ﬁ) (2.88)

For estimation of a constant set of parameters 6, it’s variation is again allowed
by adding noise term rg_1.

Or =01+ 11 (289)
The measurement is estimated by embedding Eq. 2.87 in Eq. 2.88 giving
2k = hie (fr—1(T—1, up—1,0, wk_1), ug, €k, O 1) (2.90)

The Dual state and parameter estimation algorithm similarly to parameter
estimation via EKF requires computing the total differential C’g.

dhi(wy ,ug, 0, ex)  dhp(zy ,ug, 0, er) N dhi(z, ,ug, 0, ex) dx,

do dé dr;, a2

Cp =
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dx]; . afk—l(x$_1vuk—l70awk—1) 4 afk—l(m]:—_lauk—l797wk—1) daj—k-’__l

— 2.92
do 00 8xz_1 do ( )
dxg_l _dxy e dhp—1(z_q,ur—1,0,ex) (2.93)
o~ do k-l do '
Definitions: 4 0
A, = Ifr(xk, ug, wi, ) (2.94)
dxk
A, = dfi(Tr, up, w, 0) (2.95)
dwk
dhk(xkaukaelzavk)
T _ 2.9
e - (2.96)
dhk(xkau/meavk)
z _ 2.97
i o (297)
dhk(:p_ ug, 0 ek)
Cp = B 2.98
; N (2.99)
dh(x;,. 0
dek

DEKF algorithm. The dual extended Kalman filter algorithm procedure:

1. Initialization for k = 0,

04 = E[6o] (2.100)

Py = E[(60 — 5) (00 + 67)"] (2.101)

x4 = Elxo) (2.102)

Py = El(xo — a§)(zo +a7)"] (2.103)

2. Computation for k=1,2,...
Time update for the weight filter

0, =06 | (2.104)

Py =Py + Pr (2.105)

Time update for the state filter

l’; = fk—l(m;g’__la Uk—1, 0];7 ’Uj) (2106)
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Por= Ak—lp;k—1f4£—1 + By_1Pz B}, (2.107)

Measurement update for the state filter

h= P (COCiP (Ci)" + DiPy(Di) (2.108)
zf =, + Li[zr — hi(zy , ug, 05, , 0] (2.109)
Pl = (I - LiCY)P,, (2.110)

Measurement update for the weight filter
LY = Py (CD)TCL Py (CO)T + DYP(DYT) ™! (2.111)

0F =0, + Loz — hi(ap, up, 0, €] (2.112)
Bl = (I - L{CY Py, (2.113)



Chapter 3

Experiments

The schematic representation of the experimental test setup is illustrated in
3.1.

The experimental rig was designed within ENTHRAL project to replicate the
behavior of the left common carotid artery (LCCA) and allow direct monitoring
of an elastic tube subjected to simulated cardiac pressure and flow cycles. To
emulate physiological conditions in the LCCA of an adult male, the volumetric
flow rate was maintained at approximately 0.5 1/min [72].

To maximize data collection within the physiological pressure range, measure-
ments were conducted across four systole/diastole pressure ratios while main-
taining 40 mmHg of pulse pressure: A) 110/70 mmHg, B) 120/80 mmHg, C)
135/95 mmHg, and D) 140/100 mmHg. These ratios were selected to cover
a broad spectrum of physiological values and scenarios, categorized as: A -
optimal, B - normal, C - high normal, and D - Grade 1 hypertension [73].

The flow was generated with Harvard Apparatus Pulsatile Blood Pump which
mimics the ventricular action of the heart [74]. The specification allows to set
stroke volume, stroke rate and systole/diastole ratio which were set to 15 ml,
60 r.p.m. and 35%/65% respectively.

Water served as the working fluid and its flow rate was monitored with En-
dress+ Hauser Dosimag electromagnetic flow meter [75].

Eight Harvard Apparatus Blood Pressure Transducers (APT300) with Harvard
Apparatus Compact Transducer Amplifiers were installed to measure pressure

37
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at eight points in total, four points proximal and four points distal to the

High speed camera
Top view

phantom [76].

1 Yk
| water Pulsatile Hydraulic EH | 2= ===
reservoir pump | |accumulator v |

[Water |

Needle BackLight

valve

Needle
valve

(a) Scheme of the entire testing rig.

High speed camera
Top view

H
VA

High speed
camera
Side view

y8myeg

BackLight

(b) Side view of the testing rig.

High speed camera

Top view
Inflow=0.4-0.5 Elastic tube
L/min .
— | -r_- View section - |
30 — 70—4
Inner diameter = 4.7 ——/ 12
GIGIGIG) ®OEE®
= 160 -l
BackLight

(c) Detailed schematic of the distensible tube

Figure 3.1: a) Scheme of the entire testing rig. EH refers the Endress Hauser
electromagnetic flow meters placed upstream and downstream of the phantom,
b) side view of the testing rig and c) detailed schematic of the distensible tube
with locations of the pressure gauges P. Units which are suppressed from the
scheme are in millimeters. Adapted from [77].

The data collection was controlled by custom application programmed using
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LabVIEW (National Instruments Corp., USA). The application enabled simul-
taneous acquisition of pressure and volumetric flow data from measurement
devices. Pressure and flow data were collected every 10 ms, while images
from camera were collected every 1 ms. Time synchronization of the data
was achieved by field programmable gate array (FPGA) implemented in the
cRIO 9074 controller.

The radial displacement of the tube was captured by two high-speed cameras:
a Phantom MIRO C110 and a Phantom VEO 710 [78]. The Phantom MIRO
C110 recording at 1000 frames per second (FPS) with a resolution of 1280x900,
covered 22% of the entire tube. The camera was equipped with Irix lens 79|
(150 mm f/2.8 Macro 1:1) together with a 20 mm extension tube. The Phantom
VEO 710, equipped with a NIKKOR lens (200 mm F/4.0 MACRO) and an
additional 68 mm extension tube, also recorded at 1000 FPS with a resolution
of 1280x800, covering 30% of the tube.

The cameras were positioned perpendicularly to each other to capture tube
deformations in two orthogonal directions (Fig. 3.2). Finally, two back lights
were installed to eliminate background features and enhance the edges of the
image from each camera.

For simultaneous measurement of displacement using ultrasound and camera,
the Phantom VEO camera was replaced with ultrasound probe. A GE Health-
care ultrasound Vivid STON machine with a ML6-15 linear probe was used [80].
The penetration depth was set to 1.5cm, and pixel resolution was 0.025 mm
per pixel. The images were recorded over 30-45 s with an acquisition frequency
of 59.9 FPS. For repeatability of the measurement the probe was fixed during
recording using a clamp.

3.1 Camera image processing

At the beginning of each measurement, a calibration procedure was performed
(Fig. 3.3, right upper corner). A linear scale suited for microscopy was placed
in the same position that the phantom would occupy, and each camera recorded
an image of this scale. The images were filtered with the Canny filter to detect
edges. The Canny filter was applied with high and low thresholds of 100 and
200 to produce an image with pixel values of 0 everywhere except at the edges
of the tube/linear scale. This procedure allowed to determine the mapping of
each pixel to the length in mm. For MIRO camera the median scale was 112.51
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NG

Figure 3.2: Configuration of the test rig with devices used for data acquisition
with arrows indicating various elements of the set-up. A - pulsatile pump, B -
flowmeter, C - back light, D - arterial phantom, E - top camera (MIRO), F -
reservoir tank, G - pressure transducers, H - side camera (VEO). Adapted from
[77].

pixels/mm while for VEO the median scale was 76.5 pixels/mm.

The lumen diameter was calculated by detecting the edges of the tube. Several
points were chosen on the top and bottom edges. Then the distance in pixels
between two opposite points was measured. The distance in pixels was then
converted to mm which corresponded to the outer diameter of the tube. The
average diameter at time ¢ was calculated as the mean of all distances at time
t. Finally, from the diameter change time series, the global minimum was
subtracted (diameter at diastole) resulting in displacement time series. The
workflow is represented graphically in the Fig. 3.3.

3.2 Ultrasound image processing

The ultrasound measurements and ultrasound measurements processing were
carried out by dr inz. Jan Juszczyk (SUT, Department of Medical Informatics
and Artificial Intelligence, Faculty of Biomedical Engineering).

The image processing of ultrasound measurements was carried out in six steps
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Photograph Photograph
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1
Canny Edge detection Canny Obtaining
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d(X,t) = dpjixers X scale

Figure 3.3: Workflow of the camera image processing. Adapted from [77].

and is shown in Fig.3.4 [77].

The grayscale values of the ultrasound image are first normalized (3.4a). The
contrast between the wall and lumen of the phantom of the artery was then en-
hanced by morphological operation (3.4b). The color image was then reversed
by the Otsu method (3.4¢), resulting in a white background and black edges of
the tube [81]. Lumen mask is applied to indicate the region occupied by the
phantom lumen (3.4d). The edges of the vessel (3.4e) were identified using the
Sobel filter [82]. The angle between the top and bottom edges was determined
(3.4f) using the Hough transform [83|. The phantom’s primary angle was de-
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e) f)

Figure 3.4: Ultrasound image processing, a) original image, b) grayscale ad-
justment, c) color inversion, d) lumen mask, e) internal wall edge detection,
f) internal diameter and vessel angle detection, g) rotated lumen vessel mask.

Adapted from [77].

fined as the average of the angles of the lower and upper edges.The lumen mask
is rotated such that the primiary angle is parallel to the horizonal axis of the
image (3.4g). The diameter was computed as the length of the cross-section
perpendicular to the phantom’s primary angle.
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3.3 Medical data

The data were registered using a GE Healthcare ultrasound S70N machine
with a ML6-15 linear probe [80]. Exemplary Ultrasound image for one of the
patients is shown in the Fig.3.5. The edges visible in the figure are a result of
image processing and represent the lumen of the artery. The ultrasound image
processing is described in section 3.2.

The pressure waveform was measured with Atcor Sphygmocor
CP\CVP\CPVH [84]. The data could not be exported to any file format other
than .jpg (Fig 3.6) and a PlotDigitizer was used to read the data and was
exported to a .csv file [85]. SciPy’s interpld function was used to generate data
with a sampling time of 0.01s (Fig 3.7).

The ultrasound diameter measurement was processed in the same way to match
the sampling rate of the pressure measurement. The sampling rate was chosen
to match the sampling rate of registering the phantom’s experimental data and
to ensure the convergence of the estimation algorithm.

Figure 3.5: Process ultrasound image of one the patients. The visible edges
represent the lumen of the artery.
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Average Aortic Pulse

Figure 3.6: Pressure waveform for Patient3 captured in the image format by
Atcor Atcor Sphygmocor CP/CVP/CPVH.
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Figure 3.7: Pressure waveform for Patient3 processed by PlotDigitizer and
Python.



Chapter 4

Proposed approach

Throught the entire thesis, FEBio software will be used as a Finite Element
Method solver of the governing equations of solid mechanics. The choice of a
constitutive model of the artery phantom is limited to the Linear Elastic and
Neo-Hookean models.

Verification of the proposed approach to the inverse problem based on Kalman
filtering is done using semi-experimental data. Experimental pressure wave-
forms were used to generate displacement data. The pressure waveforms reg-
istered during the experiments were used as a load on the internal wall of an
idealized hollow cylinder with exactly known dimensions. Assuming a known
value of Young’s modulus and Poisson’s ratio, the displacement of the outer
wall of the cylinder was generated using analytical solution. The displacement
data obtained from the analytical solution, was then fed to the Kalman filter,
where the transition matrix was derived for the FEBio software (treated as
a black box). Since the analytical solution is for linear elastic materials, the
constitutive law of the same material was chosen in FEBio.

4.1 Mesh sensitivity and numerical model testing

4.1.1 Geometry, boundary conditions, material constants and
mesh sensitivity

The geometry is assumed to be an idealized hollow cylinder with ends allowed
to move in radial direction only. It is a fragment of a longer tube which was

45
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Pressure load
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Figure 4.1: Pressure load for mesh sensitivity analysis (0-40 mmHg).

fixed on both ends. Its dimensions are:
e 7,y = 2.986 mm
® 7oyt = 3.33 mm
e =3 mm

The cylinder’s material is assumed to be linear elastic and the parameters of
Young’s Modulus E, Poisson’s ratio v and density of the solid material ps are
equal to:

e [ =1.3 MPa
o =041
o p, = 1000 kg/m3

The pressure waveform was taken from experimental measurements and it was

shifted by subtracting a global minimum. The resulting waveform is presented
in Fig.4.1.
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Mesh sensitivity study
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Figure 4.2: Front and side views of the investigated meshes for the sensitivity

study.

4.1.2 Mesh sensitivity

Two finite element meshes were tested, the denser mesh counts around 2.5
times more nodes than the coarse mesh. The mesh was hexahedral with HEXS
elements, which means that the nodes were located at the vertices of the cube.
Figure 4.2 shows the front and side views of the investigated meshes. Table 4.1
summarizes the number of elements and vertices count for each mesh.

Mesh  No. of elements No. of nodes
Course 1024 1440
Dense 2880 3696

Table 4.1: Summary of the tested meshes.
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These two meshes were used for both static and dynamic simulations. The
resulting displacement waveforms were compared with each other using the
formula given by the equation below|86]:

Z(zl — 2,‘)2 (4.1)

=1

RMSE =

S

where n is the number of points and Z; is the estimate of measurement point z;.
The example of outer wall displacement waveforms obtained for static analysis
of linear elastic material is presented in the Fig.4.3. The resulting errors for

Quter wall displacement

¥ course mesh
0.08 4 dense mesh
0.06 4 '
2 0.04 %
-D w
%
0.02 1{"\
0.001 ¥ k

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t[s]

Figure 4.3: Outer wall displacement waveforms from static FEA (linear elastic
model).

linear elastic and Neo-Hookean models for both static and dynamic simulations
are summarized in the Table 4.2.

The errors change for the denser mesh is negligible, therefore the course mesh
is used for further computations.
4.1.3 Static and dynamic finite element analysis

The model of the system dynamics is often written as a dynamic recursive
equation, however, it is possible to use the Kalman filter for time-independent
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Analysis Model RMSE
Static Linear 0.000933
Neo-Hookean 0.000936
) Linear 0.000937
Dynamic

Neo-Hookean 0.000938

Table 4.2: Summary of the tested meshes.

equations. One example would be finding the average resistance of a resistor
given many noisy resistance measurements [87]. For this reason, a static and
dynamic FEA was performed. If the results are the same then a static finite ele-
ment model will be chosen to reduce the computational cost of the simulations.
Since the course mesh is sufficient to achieve accurate results, the comparison
between static and dynamic FEA is performed for the coarse mesh. The results
are tabulated in Tab.4.3.

A visual proof that the curves overlap is shown in Fig.4.4 for linear elastic and
Neo-Hookean models, respectively. The discrepancy of the results is negligible
(around 0.006%) and the static FEA model is chosen for the inverse problem
involving Kalman filtering.

Model RMSE
Linear 0.005984
Neo-Hookean 0.006388

Table 4.3: Error between static and dynamic FEA.

4.1.4 Testing FEBio software for the Kalman filtering approach

It was shown in the previous section that static analysis can be used as a
governing model for the linear elastic and Neo-Hookean artery phantom. In
order to use that model successfully in the Kalman filtering procedure, it has
to be checked whether stopping the simulation, changing the pressure load
corresponding to the next time step and running the simulation again for the
duration of one time step gives the same results as applying the whole time-
varying load and not interrupting the process (e.g., Fig.4.4).

Using python programming language the test would look like:
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Static vs dynamic FEA
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Figure 4.4: Static vs dynamic FEA results for linear elastic and Neo-Hookean

model.

1 displacement = |[]

2 for p in pressures:

3 displacement .append (run_febio (1.3, p))

where the displacement is an empty list. The for loop iterates over each pressure
in a numpy array of experimental pressure values. The function run_febio takes
two parameters, the first is Young’s modulus [MPal, the second parameter is
pressure |Pa] and returns displacement of some node on the outer wall of the
cylinder. The function calls FEBio software to evaluate the displacement given
a single value of pressure. The result of the function is added to the empty list

with each iteration.

The results for linear elastic and the Neo-Hookean model are shown in the figure
Fig.4.5. The fit between these two curves - test and "regular" FEA is much
better for Neo-Hookean model. The overall fit for the linear model is 0.0002%.
The overall fit of the Neo-Hookean model is 0.009%. At systolic pressure the
relative displacement error is only 5e-5%. The worse fit of the Neo-Hookean can
be explained by looking at the relative error at systolic pressure. The "test"
displacement is higher than the "regular" FEA. The error is 0.9% at systole.

This proves that the proposed approach can be used in further analysis.

4.2 Experimental data - phantom

The geometry dimensions of the phantom artery and the pressure under which

they were tested are shown in Table 4.4
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Testing the "start-stop" procedure
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Figure 4.5: Results of the "start-stop" test.

Sample outer r [mm]| h [mm] h std [mm| pressure [mmHg]

b3 2.986 0.347 0.00429 130/90
b4 2.913 0.338 0.00961 110/70
b5 2.871 0.355 0.011 120/80
b6 2.978 0.324 0.00445 140/100

Table 4.4: Artery’s phantom geometrical data.

The sample here is treated as an artery phantom used during the experiment.
After the experiment was finished, the phantom artery (sample) was tested
for Young’s modulus and Poisson’s ratio. The Poisson’s ratio is treated as a
known parameter during for the inverse problem. The unknown quantity to be
retrieved is the Young’s modulus. The solution of the inverse problem is then

compared to the experimental Young’s modulus.

Mechanical properties of the samples were obtained with uniaxial tensile testing
(dr hab. inz. Grzegorz Kokot, SUT, Department of Computational Mechan-
ics and Engineering, Faculty of Mechanical Engineering) within ENTHRAL
project. The measurements were carried out with the use of universal testing
machine MTS Insight 10 kN [88]. The displacements were registered with the

Q400-2D Dantec Dynamics system [89].

The average material thickness was determined using X-ray within ENTHRAL
project (dr inz. fukasz Krzeminski, SUT, Nanotechnology and Materials Tech-
nology Scientific and Didactic Laboratory, Faculty of Mechanical Engineering).
The distribution of surface area vs. wall thickness is presented in Fig.4.6.
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The displacement of the outer radius was recorded with the high-speed camera
and the global minimum was assumed as the outer diastolic radius.

Thickness distribution
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Figure 4.6: Samples’ surface area vs wall thickness.

Since the the pressure and displacement curves for the analysis are averaged
the mechanical properties from Tab.4.5 were also averaged and these averaged
values were prescribed to the numerical model. The average values are listed
in Table 4.6
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Sample Ee,g [MPa|  Eypye [MPal v

b3 1 1.40 1.52 0.39
b3 2 1.47 1.62 0.41
bd 1 1.73 1.89 0.39
bd 2 1.60 1.75 0.43
b5 1 1.62 1.80 0.28
b5 2 1.39 1.53 0.31
b6 1 1.73 1.93 0.38
b6 2 1.95 2.16 0.48

Table 4.5: Mechanical properties of the samples from the end of the exper-
iment. Each sample bX from experiment was cut in two halves bX 1 and

bX_ 2.

Sample FEeng [MPa|  Eiye [MPa]  ©

b3 1.43 1.57 0.4
b4 1.66 1.82 0.41
b5 1.50 1.66 0.30
b6 1.84 2.05 0.43

Table 4.6: Average mechanical properties of the materials bX.
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4.2.1 Patients data

The study was performed based on the consent of the bioethical committee
(Resolution No 10/2021 by Bioethical Committee of the Silesian Chamber of
Physicians, dated 01.03.2021). All patients were informed of the use of the
gathered data and consented participation in the medical experiment within
ENTHRAL project.

The patients’ artery dimensions are summarized in table 4.7. For the medical
data, Poisson’s ratio is set to 0.499. The height, weight, age, sex and BMI are
report in Tab. 4.8. Investigated patients report no medication use.

Patient 7, [mm| h [mm]

patient1 2.83 0.42
patient?2 3.21 0.62
patient3 3.33 0.73

Table 4.7: Dimensions of the patients’ LCCA.

Patient Sex  Age Height [cm| Weight [kg] BMI |kg/m]

Patientl Female 32 153 H4 23
Patient2 Male 28 186 94 27.17
Patient3  Male 51 180 70 21.6

Table 4.8: Additional data of each patient.



4.2. EXPERIMENTAL DATA - PHANTOM 55

4.2.2 Experimental data processing - pressure and displace-
ment

The length of each cycle in the experimental data is not constant. To fix this
problem, the pressure and displacement data were processed the way shown in
Figure 4.7.

In step 1 the maxima (systolic pressure/displacement corresponding to systolic
pressure) were identified.

In step 2 the data was sliced into cycles using the indices (location in the numpy
array) of each maximum value found in step 1. It is shown in the figure that
at this step, the cycles vary in length.

In step 3 the cycle lengths were regularized so that each cycle has equal length.
The data of each cycle were interpolated to find a function that matched the
experimental data, then the function was used to generate data for the mean
cycle length. If a cycle was shorter, then the data were extrapolated and the
value corresponding to the end of the cycle was replaced with the value at its
beginning for continuity.

At the end, in step 4, the results were averaged. The variance of the cycles for
each sample is found in the table 4.9.

For the Kalman filtering approach, both raw and averaged data were tested.
For the raw data it was difficult to achieve convergence of the Young’s modulus
estimate and averaged data was used for the inverse problem. Python code
for the processing and creating plots such as the one in Fig.5.2 is found in
Appendix 8.2.

Sample var(p) [MPa?] var(disp) [m?|
b3 1.17E-08 6.39E-13
b4 1.54E-08 0.14E-13
b5 1.48E-08 8.91E-12
b6 2.10E-08 7.17TE-13

Table 4.9: Phantom experimental data mean noise for pressure and displace-
ment measurements.
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Figure 4.7: Data processing. Step 1 - identifying local maxima in the raw
data. Step 2 - identifying each cycle. Step 3 - regularizing cycles lengths. Step
4 - Calculating the mean



Chapter 5

Model validation

In this chapter, two constitutive laws are tested on the phantom artery data.
Two constitutive laws were tested, isotropic linear elastic and Neo-Hookean.
Based on the value of the root mean square error (RMSE) between the simulated
displacement and the measured displacement, the best constitutive law was
chosen for the inverse problem.

Each of the four phantom samples: b3, b4, b5 and b6 has its own dedicated
section where raw data are visually presented along with the averaged pressure
and displacement cycle.

The averaged pressure cycle was used as a load on the inner phantom’s wall in
FEBio simulations. The averaged displacement curve was compared with the
output of the numerical simulation.

Sample Young’s modulus Model RMSE [mm]

b3 engineering Neo-Hookean 0.0007
b4 true Linear 0.0019
b5 engineering Neo-Hookean 0.0034
b6 true Neo-Hookean 0.004

Table 5.1: Summarized results of the model validation.

The simulations were performed using an experimental Young’s modulus (Tab.
4.6) taken from the uniaxial tensile test described in section 4.2. Two values
were reported for each sample; one was engineering Young’s modulus which is

o7
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related to the reference configuration, the other is true Young’s modulus, which
is related to the current (displaced) configuration. For better readability of this
chapter, the results with the lowest RMSE are reported in table 5.1.

Based on the values in the Table 5.1 the best constitutive law based on the
simulations is a Neo-Hookean model which gives the lowest root mean square
error for three out of four cases. This model will be used as a governing model
for the inverse problem of laboratory data and medical data.

The remainder of the chapter may be treated as a report on the simulations
for each sample. This conclusion is proven in the following subsections of this
chapter.

5.1 Sample b3

Model validation, sample b3

Linear elastic Neo-Hookean
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Figure 5.1: Model validation for sample b3 - linear elastic and Neo-Hookean
for different values of Young’s modulus. Neo-Hookean model with engineering
Young’s modulus fit the laboratory data the best. The shaded area behind
the green curve (laboratory data) represents all measured displacement cycles
measured by the camera.
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RMSE [mm| RMSE [mm)|

Model Eeng Eirve
Linear 0.0012 0.0035
Neo-Hookean 0.0007 0.0024

Table 5.2: Sample b3 root mean squared error. Engineering stress value and
Neo-Hookean model are giving the best agreement with experimental data.
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Sample b3 pressure cycle variation
Normalized pressue cycles
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Figure 5.2: Pressure cycle variation for sample b3. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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Sample b3 displacement cycle variation
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Figure 5.3: Displacement cycle variation for sample b3. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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5.2 Sample b4

Model validation, sample b4

Linear elastic Neo-Hookean
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Figure 5.4: Model validation for sample b4 - linear elastic and Neo-Hookean
for different values of Young’s modulus. Linear elastic model with true stress
value taken as a Young’s Modulus, fits the laboratory data the best. The shaded
area behind the green curve (laboratory data) represents all the measured dis-
placement cycles measured by the camera.

RMSE [mm| RMSE [mm|

Model Eeng Etrue
Linear 0.0038 0.0019
Neo-Hookean 0.0047 0.0025

Table 5.3: Sample b4 root mean squared error. Engineering stress value and
Neo-Hookean model are giving the best agreement with experimental data.
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Sample b4 pressure cycle variation
Normalized pressue cycles
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Figure 5.5: Pressure cycle variation for sample b4. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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Sample b4 displacement cycle variation

Normalized displacement cycles
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Figure 5.6: Displacement cycle variation for sample b4. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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5.3 Sample b5

Model validation, sample b5

Linear elastic Neo-Hookean
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Figure 5.7: Model validation for sample b5 - linear elastic and Neo-Hookean
for different values of Young’s modulus. Neo-Hookean model with engineering
Young’s modulus fit the laboratory data the best. The shaded area behind
the green curve (laboratory data) represents all measured displacement cycles
measured by the camera.

RMSE [mm| RMSE [mm)|

Model Eeng Etrue
Linear 0.0042 0.0067
Neo-Hookean 0.0034 0.0058

Table 5.4: Sample b5 root mean squared error. Engineering stress value and
Neo-Hookean model are giving the best agreement with experimental data.
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Sample b5 pressure cycle variation
Normalized pressue cycles
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Figure 5.8: Pressure cycle variation for sample b5. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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Sample b5 displacement cycle variation

Normalized displacement cycles
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Figure 5.9: Displacement cycle variation for sample b5. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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5.4 Sample b6

Model validation, sample b6

Linear elastic Neo-Hookean
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Figure 5.10: Model validation for sample b6 - linear elastic and Neo-Hookean
for different values of Young’s modulus. Neo-Hookean model with engineering
Young’s modulus fit the laboratory data the best. The shaded area behind

the green curve (laboratory data) represents all measured displacement cycles
measured by the camera.

RMSE [mm| RMSE [mm|

Model Eeng Etrue
Linear 0.0023 0.005
Neo-Hookean 0.0011 0.004

Table 5.5: Sample b6 root mean squared error. Engineering stress value and
Neo-Hookean model are giving the best agreement with experimental data.
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Sample b6 pressure cycle variation
Normalized pressue Cycles
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Figure 5.11: Pressure cycle variation for sample b6. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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Sample b6 displacement cycle variation

Normalized displacement cycles
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Figure 5.12: Displacement cycle variation for sample b6. The top figure shows
the processed data. The bottom figure shows the raw data assuming constant
length of the cycle.
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Numerical examples and results

6.1 Testing the algorithms on semi-artificial data

To test the extended Kalman filter and the dual extended Kalman filter, dis-
placement data were generated using a thick-walled cylinder with fixed ends
solution (Eq. 6.1).

14+v Tin
E Tin 2
1= ()

Noiseless pressure (averaged laboratory data) curve was used from previous re-
search [77] and fed into the analytical equation above. Then Gaussian noise
with known parameters was added independently to the pressure and displace-
ment values. FEBio software was then used for the inverse problem procedure.

. . 2
%”+(1—2y)<”") £l

Tout Tin

u(R,t) = p(t) (6.1)

The constitutive law of the solid domain was set Isotropic Linear Elastic ma-
terial. Geometry and Poisson’s ratio was assumed to be known: inner radius
2.639 mm, outer radius 2.986 mm and Poisson’ ratio equal to 0.4. The data was
generated for £ = 1.4 MPa. The initial guess for Young’s modulus was set to
0.8 MPa. The rate of change of pressure was calculated using Savitzky-Golay
filter with window length of 9 and polynomial order of 5. The time increment
was equal to the laboratory time interval between each measurement - 0.01s.

Gaussian noise was then added to the data and Savitzky-Golay filter was used
once again to find standard deviation of the noise. The recovered noise was
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then used in Kalman filtering approach as input data. The true (controlled)
noise and estimated noise are summarized in Tab. 6.1

Variable [Unit] True std Estimated std

p [MPa] 1.00E-04  9.19E-05
9% |Mpa/s]  1.00E-03  1.92E-03
u [m] 2.00E-06  1.80E-06

Table 6.1: Gaussian noise with known standard deviation was added to the
noiseless data. Savitzky-Golay filter was used to estimate the noise in generated
noisy data.

The transition matrix A in the extended Kalman filter for state variables is:

1 dt 0
0 1 0
dp i
P=Pr_4

Where f(FE) is the Python function that runs the FEBio software. The state
vector X is given as:

Pk+1
:r;]; = | Dk+1 (6.3)
Uk+1

Where p is the pressure, p = % and u is displacement of the outer wall. The

covariance matrix P for state variables is initialized as a unit matrix for this
example and for every simulation from now on. The uncertainty in Young’s
modulus is set to 0.1. Matrix Q for state variables is set constant:

et dt®
_ dztl3 22
Q= |94 a? 0 (6.4)
0 1

The uncertainty Q associated with Young’s modulus is le-12 MPa. The follow-
ing subsections summarize the data from the filtering approach and the plots
are shown for the updated value of quantity of interest against the measurement
data.
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6.1.1 Testing Kalman filtering for parameter estimation

EKF is used to show the performance of the algorithm for Young’s Modulus
estimation only, state variables are neglected in prediction and update steps.
The graphical solution is shown in Fig. 6.1. The tabularized data will be
summarized later.

EKF example - linear elastic

Young's Modulus convergence Young's modulus std

I e B N R T 030

-/ 1A

0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00 0.00 0.25 0.50 0.75 1.00 125 150 1.75 2.00
time [s] time [s]

Figure 6.1: Example of the EKF approach for the estimation of Young’s
Modulus. Linear elasticity.

The Dual EKF predicts and updates both the state variable and the Young’s
modulus. The solution is plotted in Figures 6.2 and 6.3. Summarized solution
for each method is found in the Tab. 6.2.

The Kalman filters both EKF and DEKF were initially run for 200 time steps,
and the average standard deviation and young’s modulus of the last 50 time
steps were calculated. It reveals that the evaluation of only 150 time steps was
necessary for the convergence. The computational time of these simulations
was measured and is given in the results table 6.2.

The results and time efficiency were compared with more classical approach to
the inverse problem. One cycle was evaluated with constant Young’s modulus
throughout the whole cycle. Once the cycle is finished, the calculated displace-
ment curve is compared with the measurement. To minimize the cost function,
another guess of Young’s modulus is made, and the procedure continues until
some convergence criteria are fulfilled.
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For this technique, Scipy’s implementation of Brent’s method was used. One
of its optional outputs is the number of function calls. In the case of Brent’s
method, the total number of function calls was equal to 1300 to fulfill the
convergence criterion set to 0.001.
The cost function was:

Aug — Ay,

A (6.5)

Where Au is calculated as:
Au = maz(u) — min(u) (6.6)

which is the difference between maximum and minimum displacement for sim-
ulation results Aug and for measurement data Au,,.

EKF DEKF Brent

EO [Mpal 0.8 0.8 (0.5, 1.6)
E [Mpal 1.378  1.383 1.383
std(E [Mpal) 0.028  0.02 -
No. of function calls 300 600 1300
Time [min] 3.5 7.5 10.5

Table 6.2: Comparison of computational cost and results between EKF,
DEKF and Brent optimization method.
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Dual EKF ple - linear el
Pressure cycle Pressure std
40 0.70
35 4 0.65
30 0.60
251 0.55
=] =
I 20 T 0.50
E E
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151 0.45
10 4 0.40
5 0.35
01 0.30
0.00 025 050 075 100 125 150 175 2.00 000 025 050 075 100 125 150 175 200
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2 21425
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E E
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14,10 k
—200
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time [s] time [s]

Figure 6.2: Example solution of the Dual EKF approach - pressure and pres-
sure rate estimation.
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Dual EKF example - linear elastic

Displacement cycle

1e-7+1.7960000000e—Pisplacement std

0.07 T
— kalman 43
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0.06 in
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354
E 004 E
2 £ 301
w o
E E
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Figure 6.3: Example solution of the Dual EKF approach - displacement and
Young’s modulus estimation.
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6.2 DEKF for the laboratory and medical data

6.2.1 Laboratory data

Dual Extended Kalman filter was chosen for the estimation of the Young’s
modulus of the four experimental materials.

The simple EKF approach where only Young’s modulus is being estimated was
not satisfactory due to convergence issues. The same issues arose when the raw
data was used for both cases (DEKF, EKF), hence the averaged data was used
as the measurement data.

Small oscillations occur in the estimated "stiffness", which can be explained
by the shape of pressure and displacement waveforms. The linear elastic and
Neo-Hookean models generate a displacement waveform which has the exact
shape of the pressure waveform, which can be visually demonstrated by scaling
both curves to the same range of values, for example between 0 and 1. The
points corresponding to systolic pressure and the points nearby this peak in
both displacement and pressure waveforms do not coincide, i.e. have different
shapes.

For this reason the Young’s Modulus value exhibits bumps, each associated
with the data points in the vicinity of systolic pressure. For the rest of the
cycle the plot of Young’s modulus vs. time is flat. Figures Fig. 6.4 and Fig.
6.5 present the results for sample b3. Estimated pressure, rate of change of
pressure and displacement are plotted against the experimental data, and the
Young’s modulus convergence is shown as the last. Each of these quantities
has a corresponding standard deviation that varies with each time step and is
plotted to the right of the quantity of interest.

The retrieved Young’s modulus values for each sample are listed in the Tab. 6.3,
where Frgiman is the result of the inverse problem averaged from time equal
to 6s up to the end (10s), std(Fkaiman) is the standard deviation associated
with Young’s modulus and finally E,. is the reference value from mechanical
testing yielding the smallest RMSE for the displacement.

The discrepancy between experimental stiffness and retrieved from the filtering
approach has to follow from the fact that the samples are inhomogeneous. The
thickness varies heavily, as was shown in Fig. 4.6 representing the thickness
distribution of each sample.

In the literature, it has been reported that the Young’s modulus is a function of
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thickness, as the thickness decreases, the Young’s modulus increases [90]. The
simulations were run again with the new Young’s moduli, and the displacement
RMSE was calculated again and compared with the lowest RMSE corresponding
to the experimental Young’s modulus from uniaxial tensile testing.

The RMSE is summarized in the Tab. 6.4. The RMSE decreased for each
sample, meaning that the values retrieved by the Dual Extended Kalman Filter
are a better fit. The change for sample b3 is the smallest and the changes are
of the order of 1/100000 mm.

Sample Ekatman [Mpa] Std(Ek:alman) [Mpa] Eref [Mpa]

b3 1.45 0.0015 1.43
b4 1.99 0.0022 1.82
b5 1.38 0.0017 1.50
b6 1.78 0.0018 1.84

Table 6.3: DEKF results of Young’s Modulus E for the phantom samples.
Eraiman - kalman result, std(Ekqiman) - standard deviation of E, E,.f - best
experimental fit.

Sample RMSE,.; [mm| RMSFEqman [mm]

b3 0.0007 0.0007
b4 0.0019 0.0011
b5 0.0034 0.0024
b6 0.0011 0.0006

Table 6.4: RMSE for displacement cycle for the new Young’s modulus and
experimental for reference.

6.2.2 Medical data

Median value of Young’s modulus of carotid artery is reported to be 613.97
kPa with standard deviation of 155.24 kPa in the case of subjects with no
plaques [91]. For subjects with presence of plaques the reported values are
higher, equal to 749.01 kPa (median) and 239.39 kPa (standard deviation) [91].
The resulted data of applying Dual Extended Kalman Filter for parameter
estimation reported in the Tab. 6.5 fall into the reported interval and are
physiologically possible values of the Young’s modulus.
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Patient E [kPa| std(E) [kPa]
patientl 582 0.1
patient2 461 0.2
patient3 837 0.07

Table 6.5: Young’s modulus and its standard deviation, RMSE of the dis-
placement for the medical data

Dual EKF sample b3

Pressure cycle Pressure std
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Figure 6.4: Pressure and pressure rate of change with associated standard
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Dual EKF sample b3

Displacement cycle Displacement std
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Figure 6.5: Displacement and Young’s modulus with associated standard
deviation for sample b3.
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Discussion and Conclusions

The left common carotid artery phantom thickness was varying along its length
and perimeter. The average thickness was measured with an X-ray (Tab. 4.4,
Fig. 4.6). The thickness distribution turned out to be in some cases a bimodal
distribution.

Regardless of the difficulties, the model validation study performed in Chapter
5 revealed good agreement with the mechanical properties data from uniaxial
testing. The ultrasound measurement of the phantom displacement could not
reach its full potential due to wave reflections in the glass container and water in
which the phantom was immersed. The decision for such medium and container
material was dictated by the measurement procedure for which cameras were
used to register the displacements. The paper by Sinek, Mesek et al. [77] offers
a deeper explanation of the experimental rig and the results. In this paper,
mixed effects were used to quantify the uncertainty in measurements.

The mean difference between the measured displacement by camera and ultra-
sound was 0.0113 mm. As expected, the uncertainty of the ultrasound mea-
surement (0.03 mm) was higher than the uncertainty of the cameras (order of
le-4 mm). The ultrasound and camera-derived displacements were in agree-
ment thus confirming the experimental phantom and ultrasound to provide a
reproducible experimental model for generating data for developing and testing
new methods for non-invasive assessment of the common carotid artery.

The successful development of the experimental rig was necessary for the de-
velopment of inverse problem procedure. The chosen method was based on
extended Kalman filter, namely a dual extended Kalman filter was chosen.
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This approach consists of two filters, one is filtering the state variables such
as pressure and displacement. The second one is relying on the filtered data
and estimates Young’s modulus. The proposed method yielded results close
to the experimentally determined stiffness, and the RMSE (for displacement)
decreased in all cases. Mechanical experiments indicated Young’s modulus of
1.43, 1.82, 1.50 and 1.84 Mpa. The value retrieved with Dual EKF gave results
1.45, 1.99, 1.38 and 1.75 MPa respectively.

For the medical data, the retrieved Young’s modulus is found to be within
range of 582 - 837 kPa which falls into physiological range (613 4+ 155.24 - 988
+ 239.39 kPa) found in literature, which clearly shows the potential of applying
proposed methodology for real-time estimation.

The basic filtering approach may be used for the estimation of unknown model
parameters. In real applications, the measurements should be carefully inves-
tigated for the noise distribution.

In the case of the experimental rig the pressure transducer noise wasn’t Gaus-
sian, the distribution was narrower with a higher peak compared to the Gaus-
sian distribution [77]. This suggests that using an unscented Kalman filter does
not require derivatives of the model, but the matrices size may grow fast due to
their augmentation to incorporate the noise of each variable inside the matrix.

For a successful implementation of the proposed technique, it is required to
build a reduced order model of the artery instead of relying on external software
at each time step. This would make the simulations faster and the proposed
approach could be used in real-time.

A potential bottleneck for real-time assessment of the compliance or Young’s
modulus could be image processing of the ultrasound measurement. The de-
termination of wall thickness requires special care due to blurred image and
the difficulty in detecting the edges of the vessel. The Kalman filter could be
augmented to estimate the thickness in addition to the stiffness. In that case,
more dynamic equations should be modeled by the transition matrix.

Volumetric flowrate and velocity could be measured by Doppler ultrasound,
then the inner diameter could vary until the volumetric flowrate matches the
measured value

V =vA (7.1)

Where V is the volumetric flowrate, v is the blood velocity and A is the lumen
cross-section.
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Two way fluid-structure interaction simulation could be performed using FEBio
software since it is easy to automate and the software offers a coupled solver.
Executing external software each time step inside the Kalman filter algorithm
would be too time-consuming, therefore a reduced order model of the dynamics
would be highly recommended for such an approach.

Parallelization of the Kalman filter could be considered if one thinks of real-time
procedure [92].



84

CHAPTER 7. DISCUSSION AND CONCLUSIONS



Chapter 8

Appendix

8.1 Working principle of Kalman filter

The behind the scenes of Kalman filter are best described and visualized if one
thinks of it in terms of Bayesian filtering. The Bayesian filter is a recursive
filter and is summarized with two equations:

bel(xy,) = /p(xk|xk_1)bel(xk_1)d:1: (8.1)

bel(xy) = np(zx|zx)bel (v) (8.2)

In eq.8.1 the term bel(zy) represents the predicted probability density function
(prior) which is then corrected using measurement with eq.8.2. The updated
belief (posterior) is not a proper probability density function since it does not
sum to 1. To make it sum to 1, a constant 1 needs to be found. The integrals
in above equations are usually intractable, however if it is assumed that the
PDFs are normal and the dynamic system is linear, a closed form solution can
be derived yielding a Kalman filter [93, 65].

The following example simulates an object moving with nearly constant veloc-
ity. The velocity variation is caused by some external factors like drag force
or sensor inaccuracy. The velocity is believed to be around 1 m/s. The belief
can be described by describing the velocity as a normal distribution centered
at 1 and some variance associated with this value. Let’s assume the velocity
v ~ N(1,1). Where N is a normal distribution with parameters mean p and
variance 02, N (u, 02). At the beginning it is believed that the object is situated
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somewhere between 0 and 10 m, N ~ (5,2). These parameters constitute an
initial guess about the system. The position of the object will be updated with
each time step equal to 1 s. The prediction of position x will be performed
using simple dynamic model:

Ty =z | +vAl (8.3)
Since the time step equals 1, the above equation simplifies to:
T, =x  +v (8.4)

Substituting the Normal distributions for each variable, we arrive with sum-
mation of normal distributions. It has to recalled that a mixture of normal
distributions is also a normal distribution [94]:

N(py,077)=N(52)+ N(1,1) (8.5)

For the sum of normal distributions there fortunately exists an analytical for-
mula to evaluate new mean and variance of the new distribution [94]:

p=p1+ po (8.6)
0 =0l + 03 (8.7)

So the new mean and new variance of a normal distribution is just the sum of
the the means and variances of the the two old normal distributions. It follows
from the two above equations that the mean is just shifted on the x axis and
what is more important, the uncertainty in the prediction step increases. The
visual representation of this phenomenon is shown in the Fig. 8.1. The initial
position (blue curve) is updated with equation Eq.8.4. The result is shifted
to the right by one unit, and the spread of the distribution is wider than the
spread of the initial guess. The predicted position in the Bayesian approach is
often referred to as a prior [95].

The update step is a data assimilation step. In this step the belief about
a position of the object is updated yielding posterior probability distribution
function. The Bayes theorem states [95]:

p(zlz) - p(z)

(2) (8.8)

p(zlz) =

where:
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Prediction step - visual representation

—— previous position t,_; [m]
velocity [m/s]
—— prior position £ [m]

probability density

0.014

Figure 8.1: Graphical representation of the prediction step in Kalman filter-
ing. The blue curve may represent here either the initial guess or the posterior
(updated belief about position), the orange curve represents the belief in the
velocity of the object and the red curve is a result of summation of the two
normal probability distribution functions. The result is the prediction (prior)
of the system at the next time step tj.

e p(z|z) - conditional probability of position of the object x given measure-
ment (measured position) z

e p(z|z) - likelihood of observing the data z under hypothesis that the object
position is described by the probability density function p(x)

e p(z) - marginal probability of getting the measurement z
The other form of this equation is also given by:

p(z|z:) - p(w;)

p(xi|z) = 8.9
) = S el - pla) &)
which is a discrete form of Bayes’ Theorem. The continuous version:
p(z|x) - p(x
pa]2) = oD PE) (8.10)

[ p(ele) - pla)de

The equation 8.10 is often rewritten as a proportionality since the denominator
is a constant scaling the numerator so that the posterior sums to 1. This form
is used if the integral is intractable and in that case Markov Chain Monte Carlo
method is used to obtain the posterior distribution [95].

p(z]2) o p(z|z) - p(x) (8.11)
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Update step - visual representation

— measurement
—— predicted position
—— updated

=]
=]
w

probability density
=]
o
=

=

=]

-
i

Figure 8.2: Graphical representation of the update step in Kalman filtering.
The red curve represents the prior, green curve represent the measurement
and the black curve is the posterior (updated belief about the position of the
object). The posterior PDF has smaller standard deviation compared to the
measurement and prior, meaning that confidence about the position was gained.

If the choice of prior and likelihood is chosen to be normal there exists a closed
form solution for the posterior distribution, given by [94, 96]:

_ ofpe + ot

8.12
a% + 0% ( )
2 2
o = A2 (8.13)
o1 + ops

Given the measurement to be normally distributed random variable N ~ (10, 1.5),
the prior can be updated using the above equations. The resulting mean is
between the prior and measurement and a level of certainty in the updated
position is gained since the spread of the posterior is smaller compared to prior
and measurement. It can be expected then that as the filter progresses with
time, the uncertainty (standard variation /variance) will become lower with each
iteration. The update step is illustrated in the Fig.8.2.

With each measurement, the new posterior probability becomes a prior to
the next analysis. The described recursive process visualized was repeated
for further artificial measurements to show the behavior of the Bayesian filter
(Fig.8.3). The standard deviation indeed decreases with each measurement,
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Bayesian filtering

= updated e Y
® measurement A
144 y predicted

position [m]

time [s]
Figure 8.3: An output of the Bayesian filter (black line) against measured
data points (green) and predicted predicted positions (red triangles). The

shaded area represent the uncertainty in the filter output. It is calculated
as the output + o2,

for better visualization, the standard deviation was plotted separately in the
Fig.8.4. It was shown that Kalman filter can be derived from Bayesian filter
and it is a good educational representation of the principles of Kalman filtering

[97].
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Position standard deviation vs time
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Figure 8.4: Varying standard deviation of the posterior probability of the
object’s position.
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8.2 Data processing - Python code

Data processing function:

O 3 O U i W DN+

W W N DN DN DD DNDDNDDNDDNDDNDN = = = e e e e
—_ O © 00 IO UL WNHFHE O OWOOW-JO Uik WD H-=OO©

32
33
34

import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

from collections import defaultdict
from scipy.signal import find peaks
from scipy import interpolate

def mean data(data):
# Find maxima
peaks, = find peaks(data, distance = 90)

# Slice data into cycles
sliced = defaultdict ()
count = 0
for i in range(1,len(peaks)):
start = peaks|[i—1]
stop = peaks]|i]

minimum = np.min(data|start:stop])

sliced [count| = data|start:stop| — minimum
sliced [count|[—1| = sliced [count|[0]

count +— 1

# Mean period
period = []
for i in range(1l, len(peaks)):
period .append (peaks|[i]| — peaks[i—1])
period = np.asarray (period)
mean _period = np.mean(period) /100
round period = np.round(mean period,2)

# Regularize varying cycles into equal sized
cycles

time = np.linspace (0, round period,\

int (round period«100))

regularized = defaultdict ()
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for key in sliced.keys():

x = np.linspace (0, period[key]|/100, period [key

1)

y = sliced [key]

fill value = y|[0]

f = interpolate.interpld (x,y,\

fill _value = ’extrapolate’)

ynew = f(time)

ynew|[—1] = fill value

regularized [key| = ynew
n_cycles = len(regularized) # rows

# Returns cycles dictionary, no of rows, |
#no of columns
return regularized , n_cycles, int(round period

x100)

Plotting function:

1 def datamap(dictionary , rows, cols):
datamatrix = np.zeros ((rows, cols))
for key in dictionary.keys():

S T = W DN

datamatrix [key| = dictionary |[key]

plt.figure(figsize = (10,3))
plt .imshow (datamatrix , cmap = ’'seismic’)

8.3 EKF and DEKF - Python code

© 00 J O U = W N+~

import
import
import
import
import

numpy as np

08

subprocess

xml. etree . ElementTree as ET
matplotlib.pyplot as plt

from IPython.display import display , clear output

class

Params:

# This class initializes outer, inner radius and

Poisson’s ratio for the analytical model for
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10

11
12
13
14
15
16

17
18
19
20

21
22

23

24
25

26

27
28

29

30

31

displacement of the wall of thick walled
# cylinder and it returns displacement of the
outer wall
def  init_ (self, b, a, ni):
self .b = b # outer radius in m

self .a = a # inner radius in m
self R = b # radius to track in m
self . ni = ni # Poisson’s ratio

self.const = (1+self.ni)x(self.a/(1—(self.a/
self .b)xx2))*(self.a/self .R +
(1—2xself.ni)*((self.a/self.b)*%x2) % self.R/
self.a)
def disp(self JE,p):
return 1/Exself.constx*p

class EKF(Params):

# This class is an implementation of FExtended
Kalman Filter and Dual FExtended Kalman Filter
for the analytical model of thick walled
cylinder

# This class enherits from class Params,
additionally it takes the Young’s Modulus
initial guess E_plus in MPa to fully describe
the geometry

# and mechanical properties

# P plus, Q E, Q L — parameters controlling
behavior of the extened kalman filter

# P _plus — vartance of the estimate Young’s
modulus

# @ FE — variance of the process noise

# Q L — additional parameter controlling stability
of calculating the Kalman Gain L

# xhat — initial guess of pressure, pressure rate
of change dp/dt and displacement of the outer
wall

# mnoise — estimate of the measurement noise for

each quantity
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32
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def

# C
def
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__init__ (self , param, E_plus = 1.2, P_plus =
0.1, Q E=1e—8, Q L = 1e—10,
xhat = [0.009, 7e—3, 9.7e—5], dt =
0.01, noise = [le—5, be—4, 3e—6]):
super (). _init _ (param.b, param.a, param.ni)
#param. P state, param.P _E,

param.Q FE der, param.Rk,
param. const )

self .E_plus = E_plus

self .P_plus = P_plus

self Q E=QE

self . Q L =QL

self.xhat = np.array (|[xhat[0], xhat[1l], xhat

[2]])
self.dt = dt
self .P_state = np.eye(3)

self.Q state = np.eye(3)

self.Q state[0,0] = (dtxx4)/4

self.Q state[0,1] = self.Q state[1l,0] = (dt
*xx3) /2

self.Q state[l,1] = dt*x*2

self .Rs = np.eye(3)
self .Rs[0,0], self.Rs[1,1], self.Rs[2,2] =
noise [0]**2, noise[l]**2, noise[2]*%2

numerical

central (self ,E, p, h = le—5):

# returns numerical derivative with respect to
Young ’s modulus by central finite
difference method

return (self.disp (E+h, p) — self.disp(E-h, p))

/(2xh)

# C analytical

def

analytical (self , E, p, h = le—5):
# returns analytical derivative of the
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60
61
62
63
64
65

66
67
68
69
70

71
72
73
74

75

76
7
78

79
80
81
82
83
84

85

analytical model
return —1/(Exx2)xself.constx*p

# def F_numerical
def F _central(self , E, p, h = le—5):
# returns a numerical value for the transition
state matrix — governing dynamic recursive

model of the system
return (self.disp(E, pth) — self.disp(E, p))/h

# def F_analytical
def F_analytical(self, E, p, h = le—5):

# returns an analytical value for the
transition state matriz — governing dynamic
recursive model of the system

return 1/Exself.const

def evaluate(self , derivative method, p, z):

# returns the updated Young’s modulus,
estimated displacement and variance of
Young’s modulus

# It takes the derivative method input (string
) to choose method of calculation of the
derivative

# p — pressure

# z — experimental measurement

# This function can be used to use FEzxtended
Kalman Filter for paramter estimation only
(Young’s modulus)

derivative functions = {

"analytical ’: self.analytical |
"central ’: self.central

}

derivative function = derivative functions.get
(derivative method)
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if derivative function is None:
raise ValueError("Invalid_derivative_
method_specified")

E minus = self.E plus

P p = self.P plus + self .Q E

z_est = self.disp(E_minus, p)

#z _est = f(E_minus, p, param.const)

residual = z — z_est

C = derivative function (E_minus, p, h=le—10)

L =P _p«xCx(1/(CxP_pxC + self.Q L)) #=z_est
¥x2%(1e—17))) #

self .E_plus = E_minus + Lxresidual

self . P _plus = (1 — LxC)*P _p

return self.E plus, z _est, self.P plus

DEKF(self , method, z):

# This function is used to update the belief
in pressure, pressure rate dp/dt and
displacement , it is already coupled with
the function

# evaluate which gives the Dual Extended
Kalman Filter

F methods = {

"F _analytical ’: self.analytical,
"F _central’: self.central

}

F method = F_methods. get (method)

if F method is None:
raise ValueError("Invalid_method_specified

H)

xpred = np.array ([ self.xhat[0] + self.xhat|[1]=
self .dt, self.xhat|1l], 1/self.E plusxself.
xhat [0]])

#F = np.array ([[1, self.dt,0],[0,1,0],[1/self.
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E_plus+self.const, 0, 0]])

115 F = np.array ([[1,self.dt,0],[0,1,0],[F_method(
self .E_plus, self.xhat[0]), 0, 0]])

116 Ppred = F@self.P stateQF.T + self.Q state

117 H = np.eye(3)

118 S = HQPpred@H.T + self.Rs

119 K = (Ppred@H.T)@np. linalg . pinv(S)

120 self .xhat = xpred + KQ(z — H@xpred)

121 self .P state = (np.eye(3) — KAH)@Ppred

122

123 e = self.evaluate (method[2:],xpred[0], z[2])

124 #est_e = self.evaluate (method[2:], xzpred[0], =z
[2]) 0]

125 est_e = e[0]

126 var_e = e|[1]

127

128

129 return self.xhat, est e, var e, self.P state

130

131

132 class EKF febio():

133 # This class evaluates EKF and DEKF and the

analytical model 1s replaced by Finite FElement
open—source software FEBio

134 # Suitable for isotropic elastic and Neo—Hookean
model

135 def  init  (self, filepath , E plus = 1.2, P_plus
= 0.1, QE=1e—8, Q L = 1e—10,

136 xhat = [0.009, 7e—3, 9.7e—5]|, dt =

0.01, noise = [le—5, be—4, 3e—6]):

137

138 self.file = filepath

139 self .tree = ET.parse(self.file)

140 self.parent = os.path.dirname(self. file)

141 self . result = os.path.join(self.parent, ’jobs’

, ‘outer.csv’)
142 #print (str(self. file))

143 self . E plus = E_ plus
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144 self .P_plus = P_plus

145 self Q E=QE

146 self . Q L=Q L

147

148 self.xhat = np.array (|[xhat[0], xhat[1l], xhat
[2]])

149 #self.xzhat[0,0], self.zhat[1,1], self.zhat
[2,2] = zhat[0], zhat[1], zhat[2]

150 self.dt = dt

151 self .P_state = np.eye(3)

152

153 self.Q state = np.eye(3)

154 self.Q state[0,0] = (dtxx4)/4

155 self.Q state[0,1] = self.Q state[1,0] = (dt
xx3) /2

156 self.Q state[1,1] = dt**2

157

158 self .Rs = np.eye(3)

159 self .Rs[0,0], self.Rs[1,1], self.Rs[2,2] =
noise [0]**2, noise[l]**2, noise[2]*%2

160

161 def disp(self , E, p):

162

163 d = self.tree.find(’./Loads/surface load/
pressure )

164 p = p*leG

165 d.text = str(p)

166 e = self tree.find (7. Material /material /E")

167 E = Exle6

168 e.text = str(E)

169 self.tree.write(’cyl.feb’, encoding="iso
- 8859-1")

170 febio = subprocess.Popen(’cyl.feb’, shell=True
)

171 febio . wait ()

172 #outer = pd.read csv(self.result,

delim _whitespace=True)
173 outer = pd.read csv(’outer.csv’,
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174
175
176
177
178
179
180

181
182
183
184
185
186
187

188
189
190
191
192
193
194

195
196
197
198
199
200

201

202

def

def

def

def

delim _whitespace=True)
outer est = float (outer.iloc|[—1][’="])
#outer _est = float (outer.iloc [6][1]) #— shift

return outer est

# C numerical

central (self JE, p, h = le—5):

return (self.disp(Eth, p) — self.disp(E-h, p))
/(2xh)

# def F_numerical
dfdp (self , E, p, h = le—5):
return (self.disp(E, pth) — self.disp(E, p))/h

evaluate (self , p, z):

# EKF implementation for estimating Young’s
modulus

E minus = self.E plus

P p = self.P plus + self.Q E

z _est = self.disp (E_minus, p)

#z _est = f(E_minus, p, param.const)

residual = z — z_est

C = self.central (E_minus, p, h=le—10)

L =P pxCx(1/(C«P_pxC + self .Q L))# z_est
¥x2x(le—1)xx2))

self .E_plus = E_minus + Lxresidual

self .P plus = (1 — LxC)*P p

return self.E plus, self.P plus

DEKF(self , p, z):

# Together with method "evaluate” it is an
implementation of Dual Fxtended Kalman
Filter

xpred = np.array ([self.xhat|[0] + self.xhat[1]=
self.dt, self.xhat|[1l], self.disp(self.

E plus, self.xhat[0])])

#F = np.array ([[1, self.dt,0],[0,1,0],[1/self.

E plus+self.const, 0, 0]])
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F = np.array ([[1,self.dt,0],[0,1,0],[self.dfdp
(self .E_plus, self.xhat[0]), 0, 0]])

Ppred = F@self.P state@QF.T 4 self.Q state

H = np.eye(3)

S = HQPpred@H.T + self.Rs

K = (Ppred@H.T)@np. linalg . pinv (S)

self.xhat = xpred + KQ(z — H@Qxpred)

self .P_state = (np.eye(3) — Ka@H)@Ppred

e = self.evaluate(xpred|[0], z[2])
est_e = e[0]

var e = e|[1]

return self.xhat, est e, var e, self.P state
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Summary

Keywords: cardiovascular, soft tissue, parameter estimation, stiffness estima-
tion, Extended Kalman Filter, DEKF

Cardiovascular diseases are the major cause of death around the world. It is es-
timated that 20% of the population is affected by elevated arterial wall stiffness.
Arterial stiffening is a pathophysiological marker for prediction and severity of
cardiovascular diseases such as, myocardial infarction, heart failure, as well as
stroke, dementia, atrial fibrillation, aneurysm rupture or renal disease.

The stiffness may be assessed by measuring Pulse Wave Velocity or Shear
Wave Elastography. For the former method, length of the segment between two
points of measurements is required, e.g. between femoral and carotid artery.
This measurement is associated with large uncertainty and the resulting stiff-
ness is an average value along the chosen segment. Shear Wave Elastography
allows non-invasive and real-time measurement of the elasticity of soft tissues.
Shear waves are generated by focused acoustic radiation force from a linear
ultrasound probe. The velocity of the wave is related with Young’s modulus of
the investigated tissue.

The dissertation presents methodology for non-invasive arterial stiffness as-
sessment by combining measurement of arterial wall displacement with ultra-
sound, applanation tonometry for pressure waveform measurement and solving
inverse problem to estimate Young’s modulus. The 3D Neo-Hookean and Lin-
ear Elastic model of the artery is solved by Finite Element Method open-source
software FEBio.

For model validation and testing proposed methodology for inverse problem
based on Dual Extended Kalman Filter, experiments on artificial artery with
known mechanical properties were performed.

The proposed approach is then applied to medical data. The resulting esti-
mation of Young’s modulus falls into physiological range reported in literature.
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Summary in Polish
(Streszczenie)

Stowa kluczowe: uklad krazenia, tkanka miekka, estymacja parametrow, es-
tymacja sztywnosci, Rozszerzony Filtr Kalmana, DEKF

Choroby uktadu sercowo-naczyniowego sa glowna przyczyng zgondéw na calym
Swiecie. Szacuje sie, ze 20% populacji cierpi na zwiekszong sztywnosé Sciany
tetnic. Sztywno$é tetnic jest indykatorem umozliwiajacym predykcje i ocene
stopnia zaawansowania chorob uktadu naczyniowego, takich jak zawal, niewy-
dolnosc serca, jak rowniez udar moézgu, demencja, migotanie przedsionkéw, pek-
niecie tetniaka czy choroby nerek.

Sztywnosé Sciany tetnic moze byé zmierzona przez Pulse Wave Velocity
badz Shear Wave Elastography. Pierwsza metoda wymaga zmierzenia odcinka
pomiedzy dwoma punktami pomiarowymi, na przyktad miedzy tetnica udowa
i szyjna. Pomiar ten jest obarczony duza niepewnoscia, a otrzymana wartosé
sztywnosci jest wartoscia usredniong dla catego odcinka. Shear Wave Elastogra-
phy umozliwia bezinwazyjne badanie sztywnosci w czasie rzeczywistym. Fala
(shear wave) jest generowana poprzez skupiong fale akustyczng emitowang
przez liniowa glowice USG. Predkosé rozchodzacej sie fali w tkance jest sko-
relowana z modutem Younga badanej tkanki.

Rozprawa doktorska przedstawia metodologie bezinwazyjnego wyznacza-
nia sztywnosci tetnic poprzez pomiar USG przemieszczania $ciany tetnicy, po-
miar przebiegu cisnienia w tetnicy tonometrem aplanacyjnym wraz z rozwigza-
niem problemu odwrotnego do wyznaczenia modutu Younga. Model 3D (Neo-
Hookean i liniowe rownanie konstytutywne) tetnicy jest rozwiazywane przy uzy-
ciu oprogramowania open-source FEBio przy uzyciu metody elementéw skon-
czonych.

W celu walidacji modelu oraz przetestowaniu proponowanej metodologii dla
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problemu odwrotnego opartej na podwojnym rozszerzonym filtrze Kalmana,
przeprowadzono eksperymenty na sztucznej tetnicy o znanych wtasciwoscich
mechanicznych.

Proponowane podejscie jest nastepnie stosowane do danych medycznych.
Uzyskany modul Younga miesci sie w zakresie fizjologicznym podawanym w
literaturze.



