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Abstract

Gaze estimation, a critical aspect of human-computer interaction (HCI), has various
applications in areas such as augmented reality, virtual reality, gaming, behavior analysis,
health care and assistive technology. Traditionally, eye trackers have been used within lim-
ited controlled laboratory environments, requiring the involvement of skilled professionals
and complicated setup procedures. However, in recent years, scientific research on easier-
to-use eye trackers that require no additional hardware—other than the standard cameras
in computers, tablets, and mobile devices—has aimed to make this technology accessible
to a broader audience. But these trackers have additional obstacles, such as low-resolution
images produced by a standard webcam, variable background lighting conditions, indi-
vidual appearance variances, changes in head pose, and many more. Recent studies in the
field have concentrated on each of these shortcomings in order give better gaze estimate
performances in the real-world environment. This doctoral dissertation investigates the
field of gaze estimation using standard cameras, with the goal of improving affordability of
gaze tracking systems. The primary objective of this study is to utilize standard webcams

in order to make gaze estimation technology available to a wider audience.

The purpose of this study is to address the issue of gaze tracking using a standard
webcam. Initially, a comprehensive study of the studies in the respective field was per-
formed, carefully analyzing the pros and cons of each proposed idea. Special emphasis
is placed on the challenges associated with the use of standard cameras, including lower
resolution, head pose, and varying lighting conditions. In this work, appearance based
gaze estimation method was used. These methods learn direct mapping from the image
itself to predict the point of gaze (POG) or gaze direction. In addition, cutting-edge deep
learning methodology was used in this work. Training and testing on different network
architectures was performed, especially the convolutional neural network (CNN) for gaze
estimation. This work involved optimizing different hyperparameters of the various net-
works to get the most effective model for predicting gaze. In addition, image-processing
techniques were used to enhance the results. Furthermore, a person-specific model was
built and shows that a carefully tuned network can outperform the model trained with
multiple persons data. Moving forward, transfer learning approach with limited data en-
vironment was tested and compared with model without pretrained weights. Results show

that transfer learning models perform better in limited data environment, also these mod-
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els converge faster and stabilize earlier as compared to model without pre-trained weights.



Abstract

Estymacja spojrzenia, bedaca kluczowym aspektem interakeji cztowiek—komputer (HCI),
znajduje zastosowanie w takich obszarach jak rzeczywisto$¢ rozszerzona, rzeczywisto$é
wirtualna, gry komputerowe, analiza zachowan, opieka zdrowotna oraz technologie wspo-
magajace. Tradycyjnie do tego celu wykorzystywano eye trackery w kontrolowanych war-
unkach laboratoryjnych, co wymagato udzialu wykwalifikowanych specjalistéw oraz skom-
plikowanej konfiguracji. Jednak w ostatnich latach badania naukowe skupity sie na tworzeniu
prostszych w uzyciu systemoéow $ledzenia spojrzenia, ktore nie wymagaja dodatkowego
sprzetu — poza standardowa kamera wbudowana w komputer, tablet czy urzadzenie
mobilne — w celu upowszechnienia tej technologii wéréd szerszego grona odbiorcéw.
Takie podejscie wigze sie jednak z dodatkowymi trudnosciami, takimi jak niska rozdziel-
czo$¢ obrazu z kamery internetowej, zmienne warunki oswietleniowe w tle, réznice w wy-
gladzie poszczegdlnych uzytkownikow, zmiany pozycji gtowy i wiele innych. Wspoétczesne
badania w tej dziedzinie koncentruja sie na analizie tych wyzwan, aby poprawi¢ doktad-
nos¢ estymacji spojrzenia w warunkach rzeczywistych.

Niniejsza rozprawa doktorska podejmuje temat estymacji spojrzenia z wykorzystan-
iem standardowych kamer, dazac do zwiekszenia dostepnosci i przystepnosci cenowej sys-
temow Sledzenia wzroku. Gtéwnym celem pracy jest zastosowanie standardowych kamer
internetowych w celu udostepnienia technologii estymacji spojrzenia szerszemu gronu
uzytkownikow. Celem badan bylo rozwiazanie problemu sledzenia spojrzenia przy uzy-
ciu standardowej kamery internetowej. Na poczatku przeprowadzono szczegdétows analize
istniejacych badan w tej dziedzinie, doktadnie oceniajac zalety i wady poszczegdlnych
podejsé. Szczegdlng uwage poswiecono wyzwaniom zwigzanym z wykorzystaniem stand-
ardowych kamer, takim jak niska rozdzielczo$é¢, zmienna pozycja glowy czy zmienne war-
unki oswietleniowe. W niniejszej pracy zastosowano metode estymacji spojrzenia oparta
na wygladzie (appearance-based), ktéra polega na bezposrednim odwzorowaniu obrazu
na przewidywany punkt spojrzenia (POG) lub kierunek patrzenia.

W pracy zastosowano nowoczesne metody uczenia gtebokiego. Przeprowadzono trening
i testy z uzyciem réznych architektur sieci neuronowych, w szczegélnosci konwolucyjnych
sieci neuronowych (CNN). Dokonano optymalizacji r6znych hiperparametréw tych sieci
w celu uzyskania najbardziej efektywnego modelu do przwidywania kierunku spojrzenia.

Dodatkowo zastosowano techniki przetwarzania obrazu w celu poprawy wynikéw. Ponadto

ix



zbudowano model dostosowany do konkretnej osoby (person-specific), ktory wykazal, ze
odpowiednio dostrojona sie¢ moze przewyzszy¢ model trenowany na danych pochodzacych
od wielu osob. W dalszej czesci pracy zastosowano podejscie transfer learning w srodow-
isku z ograniczong ilo$cig danych i poréwnano je z modelem trenowanym bez wstepnie
wyuczonych wag. Wyniki pokazuja, ze modele z transfer learningiem osiagaja lepsze
wyniki przy ograniczonych danych, a takze szybciej sie ucza i stabilizuja w poréwnaniu z

modelami bez pretrenowanych wag.
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Chapter 1
Introduction

In today’s world, the way humans and technological systems interact depends on their
ability to sense and engage with the environment. Humans depend on their sensory or-
gans, like eyes, ears, and skin, to collect information and move through their environment.
Similarly, machines rely on a range of sensors, including cameras, microphones, acceler-
ometers, GPS, and LIDAR, to understand and react to their environment using visual,
auditory, and other inputs.

Advancement in sensor technology have completely transformed our capacity to gather
and analyze data from our surroundings. These technologies not only allow machines to
collect information, but also give them the ability to make well-informed decisions and
interact intelligently with their surroundings. For instance, cameras have a wide range
of applications beyond capturing images. They are utilized in facial recognition and eye
tracking, which greatly improve human-computer interaction (HCI) and the performance
of autonomous systems [11]. Eye tracking, a specialized application of sensor technology,
showcases its transformative potential through its ability to accurately measure and ana-
lyze gaze behavior.

Human-computer interaction (HCI) research aims to develop interfaces that replicate
the natural way humans communicate. Understanding user intent and attention is greatly
influenced by eye gaze, which is a vital aspect of nonverbal communication. Eye-tracking
technology enables the analysis of gaze patterns, offering valuable insights into user beha-
vior and cognitive processes. This technology has a wide range of applications in various
fields such as psychology [100], marketing [17], virtual reality [112, 122], healthcare [56],
communication skills [127], gaming [10] and assistive technologies [96]. Through the ana-
lysis of eye movements, researchers have the ability to create interfaces that are highly
responsive to the needs of users, resulting in improved usability and an enhanced overall
user experience.

Eye gaze tracking studies analyze the movement of a person’s eyes. These eye move-
ments then can be used to analyze person’s attention, thinking, and mood [153]. Gaze

estimation studies utilize specialized devices known as eye-trackers, which estimate where
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a person is looking at or identify a point in the surrounding environment where the person
gaze is directed [161]. The point of gaze can be located on a 2D plane, such as the display
of an electronic device like a (laptop, desktop, tablet, or mobile screen) [23], or it can
be tracked in a 3D space [105, 113], which is referred to as the point of regard (PoR)
[58]. Currently, a wide variety of commercial eye trackers are available on the market,
each with software specifically built for eye tracking research and practical applications
[1, 126]. These commercial eye trackers provide excellent performance for marketing and
scientific research, along with comprehensive documentation and support for calibration

and usage.

Although commercial eye trackers have impressive performance, they encounter con-
siderable obstacles when it comes to accessibility and scalability. Trained operators are
necessary to operate them and they can be quite expensive, which limits their accessib-
ility to the general public. There is a strong demand for cost-effective and user-friendly
eye tracking solutions that can provide high performance without requiring specialized
hardware or software, similar to commercial models. These solutions have the potential

to make eye tracking technology more accessible to a wider range of people.

This thesis aims to investigate the potential of using common devices such as laptops,
tablets, and smartphones, along with basic webcams, for eye tracking purposes, even with
limited resources. We believe that a system utilizing these widespread devices has the
potential to completely transform user interaction. For example, an eye-tracker could be
used as a unique control mechanism similar to a mouse [81, 142]. It could also assist in
analyzing how people interact with products, even from a distance [52]. If this system
proves to be effective, it could potentially replace expensive eye-tracking tools, allowing

for eye-tracking capabilities on mobile applications and personal computers.

Our objective is to analyze person’s gaze (where a person is looking on a screen) using
standard web cameras commonly found on regular computers and under natural lighting
conditions. In this thesis, our focus is on laptops and desktops due to the fact that these
devices generally have lower-quality web cameras compared to modern smartphones which
comes with high-quality built-in cameras generally. Developing an eye tracker that can
effectively operate with low-quality images presents a considerable obstacle. The accuracy
of tracking a person’s gaze becomes increasingly challenging when the eye is not easily
visible.

The potential applications using this system could be vast, with no limits other than
the imagination of developers and researchers. For instance, in educational settings, using
cost-effective eye-tracking could offer fresh insights into student engagement and learning
patterns. In healthcare, it has the potential to aid in the diagnosis and monitoring of
neurological conditions. The potential is huge, reaching beyond our current imagination,
providing a glimpse into a future where eye tracking easily fits into our everyday techno-

logy. Although this thesis primarily focuses on gaze estimation using standard webcams,
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it is important to acknowledge that the potential implications and possibilities of this

technology are enormous and go beyond the scope of this research.

1.1 The Objectives of Thesis

The goal of this PhD dissertation is to investigate whether a person owning a standard
webcam, typically on a laptop or desktop, can perform gaze estimation on their machine
without the need for any additional software or hardware. This thesis explores gaze estim-
ation possibilities using a standard webcam because webcams generally do not provide
high-resolution images (due to the low-quality camera). This makes gaze estimation where
the person’s eyes are not clearly visible very challenging and difficult. The requirement
of having a standard camera is already met, since most commercial laptops and desktop
devices come with an in-built webcam. Developing an eye tracker that can run in real-time

on these devices will open up new possibilities and developments in the field of HCI.

In this thesis, state-of-the-art deep learning and computer vision techniques are used
to train gaze estimation models. These latest techniques were used because they have
been tested and have achieved significant success in many computer vision tasks such
as object detection, object tracking, object segmentation, face recognition, and more.
Furthermore, researchers have also achieved valuable results in eye tracking using deep
learning techniques compared to conventional methods in recent years. Due to the success
of deep learning in various fields, it has become a very popular technique, with researchers
using and publishing new deep learning methods every day.

With the above-mentioned goal in mind, this research focused on examining the lim-
itations of eye trackers and various factors, either technical or environmental, that can

affect eye tracker performance. We made our first hypothesis.

Hypothesis 1 (H1) : [t is feasible to develop a CNN-based model that classifies a
person’s gaze into screen regions using low-resolution, low-quality eye and face images

captured by a standard webcam.

This hypothesis suggests that one can estimate a person’s gaze direction on a screen
by dividing the screen into different zones and using a standard web camera and con-
volutional neural networks (CNNs). The idea depends on the belief that deep learning
techniques, particularly convolutional neural networks, have the capability to identify
complex features in facial and eye images that might not be noticeable to the human
eye. If this hypothesis is true, it has the potential to enhance the accessibility and afford-
ability of gaze estimation technology by reducing dependence on expensive, specialized
eye-tracking equipment. This could open up new possibilities for using gaze estimation
in everyday applications and devices. We aim to answer the following questions with this

hypothesis:
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o Will some data pre-processing technique affect the accuracy?
« Is it possible to classify a person’s gaze across different regions of the screen?

In real life, gaze estimation is a regression problem compared to classification. In a re-
gression technique, the goal is to predict continuous values that represent the gaze point’s
coordinates or angles. Since humans naturally shift their gaze smoothly and continuously
across different points on a screen, developing a model that can predict continuous gaze
coordinates—rather than discrete regions—is more applicable to real-world scenarios.

In geneal, gaze estimation methods are trained on multiple people data, whereas train-
ing a model for an specific person requires only data from a specific user. Training a person
specific model can have advantage in which people want to have more precise prediction
for individual user. This leads to our second hypothesis:

Hypothesis 2 (H2): A model trained on low-quality eye and face images from a
standard webcam, tailored to a specific individual, can achieve gaze estimation accuracy
comparable to that of state-of-the-art eye trackers.

This hypothesis suggests that developing a gaze estimation model specific to an indi-
vidual, as opposed to utilizing a model trained on a diverse dataset, could lead to enhanced
accuracy in results. Individual variations in facial characteristics and eye movement pose
challenges for generalized models, impacting their overall efficacy across different groups.
Working on data from an individual allows the model to more effectively represent their
distinct attributes. This methodology has the potential to enhance gaze estimation pre-
cision by utilizing only low-resolution images captured from a standard desktop webcam,
thereby ensuring accessibility and ease of use across various computer systems without
the need for additional hardware. If true, this could result in enhanced personalized and
efficient eye-tracking solutions applicable across various domains. Furthermore, we aim to

answer the following questions:

o How does the performance of a person-specific model compare to that of models

trained on multi-user datasets when using low-resolution webcam images?

o What level of accuracy can a person-specific model trained on low-quality data

achieve relative to models trained on multi-person datasets?

Transfer learning has gained significant attention in gaze estimation research. It is an
approach where knowledge from one task is transferred to another. For example, a model
trained for face classification can be used to train a model for gaze estimation. This leads
to our third hypothesis:

Hypothesis 3 (H3):Gaze estimation using low quality images collected from webcams
that utilize models pre-trained with data of multiple users and fine-tuned for a specific
person using transfer learning requires less data, and converge faster during fine-tuning

compared to models trained from scratch for the specific person.

4
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Utilizing transfer learning has the potential to enhance gaze estimation by develop-
ing models tailored to individual users, particularly in scenarios where data resources are
limited. Utilizing standard laptop webcams for gaze data collection presents an oppor-
tunity for enhanced accessibility and affordability in the technology. It is our hypothesis
that models using transfer learning will show better performance compared to those that
do not, especially regarding faster training, reduced costs, and enhanced stability when
working with smaller datasets. The idea suggests that transfer learning has the poten-
tial to enhance the efficiency and usability of real-time applications in domains such as
human-computer interaction, assistive technologies, and personalized user experiences.

This investigation aims to answer the following questions:

e Do transfer learning models offer advantages over models trained without pre-

trained weights?

o How many images are sufficient to achieve good results?

Overall, the goal of this PhD dissertation is to investigate and develop a gaze tracking
methods that maximizes its ability to learn from low quality webcam data, aiming to

deliver performance comparable to that of high-end eye-trackers.

1.2 Scope of Thesis

In this thesis, the first chapter delves into the introduction of gaze estimation. Chapter
2 presents theoretical foundations and basics of deep learning, specifically introducing ar-
tificial neural networks and convolutional neural network and their fundamental concepts.
Chapter 3 reviews the current state-of-the-art in gaze estimation.

Chapter 4 introduces a method for gaze estimation using unmodified web camera and
Convolutional Neural Networks (CNNs). In addition, we have made the dataset publicly
available for use by other researchers. Parameters of the CNN were fine-tuned, and gaze
prediction was treated as a classification task across different screen positions.

Chapter 5 focuses on person-specific gaze estimation from webcams. Here, we collected
a new dataset and approached gaze prediction as a continuous rather than a classification
problem using CNNs. Parameters of the CNN were adjusted, and results were compared
with alternative methods.

Chapter 6 explores the use of transfer learning for gaze prediction and compares its per-
formance with model without pre-trained weighs. Furthermore, we also introduce dataset
for gaze estimation task from low quality webcam.

Finally, Chapter 7 concludes the thesis, summarizing the key findings and proposing

directions for future research in gaze estimation.
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Chapter 2

Theoretical Background

Understanding where a person is looking is a crucial focus of study in the fields of
computer vision and human-computer interaction [78]. This technology has the potential
to completely transform industries such as augmented reality [121], driver assistance, and
user experience design. Even so, the issue is still complicated despite tremendous progress

made in the last ten years.

The human eye is a complex organ, and its appearance is influenced by various factors
such as head position, surrounding objects, image quality, and lighting conditions. Estim-

ating gaze direction becomes quite a challenge due to these variables.

In addition, researchers are still having problems with fundamental questions. For
example, what are the key visual cues that can indicate where a person is looking in a
natural environment, without any prior knowledge? And how can these cues be effectively
processed in real-time to deliver immediate results? Tackling these challenges is crucial in

order to create reliable and useful gaze estimation systems.

Despite significant advancements, there remains a considerable amount of work to be
undertaken in order to fully understand the complex processes of determining the direction

of an individual’s gaze.

This chapter presents foundational knowledge about the human eye and its functions.
A comprehensive understanding of the mathematical foundation of artificial neurons is
crucial in this context. The chapter dives into working of artificial neural networks (ANN),
especially focusing on Convolutional Neural Networks (CNN), which are backbone of
most of gaze estimation research. In addition, it highlights transfer learning, a powerful
machine learning technique that allows models to leverage knowledge gained from one

task to improve performance on another.



Chapter 2. Theoretical Background

2.1 Introduction to the Human Eye and Its Move-

ments

In order to understand the workings of eye trackers, it is crucial to have an under-
standing of a human eye and its structure.

The human eye is a fascinating organ that allows us to see and understand the world
around us. Light is directed onto the retina, which is located at the back of the eye. The
retina transforms incoming light into signals that can be processed by our brain, resulting
in the formation of visual images we see. Figure 2.1 illustrates the structure of the human

eye.

Sclera

Visual Axis

Optical
Nerve
Corneal Center(C)

Optical Axis

Figure 2.1: Basic structure of human eye

Our eyes are constantly in motion, allowing us to observe a variety of objects and

scenes. Below are the various eye elements, each serves a distinct purpose:

o Sclera: The sclera is the strong, white outer covering of the eye, also known as the
"white of the eye." It gives structural support and protection to the inner components

of the eye.

o Cornea: The cornea is the transparent outermost layer of the eye, which plays an
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important role in focusing light onto the retina.

e Pupil: The black, round hole in the middle of the eye is the pupil. It changes size

to control how much light enters the eye.

o Iris: Surrounding the pupil is the iris, the colored portion of the eye that is visible
from the outside. The iris functions similarly to a camera’s diaphragm, controlling

the amount of light that enters the pupil.

o Lens: Located behind the iris, the lens is a flexible and transparent structure that
directs light to the retina. The lens changes shape to enable the eye to focus on

objects at various distances, a process known as accommodation.

o Retina: The retina is the innermost layer of the eye, covering the inner surface
of the eyeball. It is where the actual image is formed and converted into electrical

signals that the brain can process.

o Fovea: The fovea is a small, central region of the retina that plays a critical role in

high-acuity vision. It is often referred to as the fovea centralis or simply the fovea.

Figure 2.1 illustrates two axes: the optical axis passes through the center of the eyeball
(E) and the center of the pupil. The visual axis, on the other hand, passes through the
fovea and a point called the corneal center (C) [41]. The fovea is not on the optical line,
which is why there is this difference. Another crucial aspect of human visual system is
eye movement. It is known that human visual attention tends to focus on objects along
the visual axis, where their images fall on the fovea. As a result, eye movements should
be interpreted as shifts in focus. In general, eye movements can be broadly categorized

into three types [37]:

o Fixations: Fixations are instances when the eyes remain relatively still, and the
focus of the attention is directed towards a particular place. Fixations involve the
processing of visual information and the collection of specific features. For example,
engaging in reading, observing a scene, or evaluating an object involves a sequence

of fixations.

e Saccades: Saccades are rapid, jerky eye movements that shift the gaze from one
point to another. They play an important role in examining the visual surroundings,
allowing individual to investigate and concentrate on specific objects or feature of

interest in their visual surroundings.

e Smooth Pursuit: A smooth pursuit is a sort of eye movement that requires tracking
a moving object in a smooth manner in order to keep one’s attention on a particular
thing. For example, a person is able to effortlessly follow a target, such as a moving

car or a flying bird, when they have the ability to perform smooth pursuit motions.
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These are the primary eye movements. However, other movements include blinking, an
involuntary action that keeps the eyes moist, cool, and clean [58]. Microsaccades are tiny,
involuntary movements that occur during fixations, helping to stabilize the visual scene
and prevent sensory adaptation. It’s crucial to identify and exclude these movements from

training and testing procedures for an eye-tracking system to operate effectively.

2.2 Artificial Neuron

Artificial neurons have an input, activation, and output. When these artificial neurons
are connected in layers, it forms what is called a neural network. In this setup, each
artificial neuron gets input from the neuron in the previous layer and passes its output
to the neuron in the next layer [14]. Figure 2.2 shows an artificial neuron. For example,

when an artificial neuron is given an input with many dimensions let’s say
X = (I‘1,$2,ZE37$4, s 7'IN)

it calculates a weighted sum of the input signals using mathematical operations like this:

X1
X2

Inputs X3 Output
X4

Xn—————

Bias b

Figure 2.2: Basic structure of an artificial neuron

Y = f(WPX +b) (2.1)

The weights associated with the inputs are denoted by
W = (w17w27w37w47 R ,UJN)

Where b represents the bias. The activation function, denoted by f, can be either linear
or non-linear, although it is generally non-linear. Activation functions are applied to the

weighted sum of the inputs to generate the output Y. There are several activation functions
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available, but only a few have gained widespread popularity and are commonly used in

artificial neurons. These popular activation functions are:

Y = sigmoid(z) (2.2)
Y = tanh(z) (2.3)
Y = max(0, 2) (2.4)
. Sigmoid Function Tanh Function
' 1.00
08 0.75
0.50
0.6 0.25
0.00
0.4
-0.25
02 -0.50
-0.75
0.0 -1.00
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
ReLU Function Leaky ReLU Function
3.0 3.0
25 25
20 20
15 15
10 10
0.5 0.5
0.0 0.0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 2.3: Commonly used activation functions

The z denotes the weighted sum of inputs in above equations. Activation function
in equation 2.2 is known as sigmoid function, this function maps any real value number
between 0 to 1. Activation function in equation 2.3 is called hyperbolic tangent function,
range of this function is between -1 to 1. This function is zero cantered function unlike
sigmoid. Equation 2.4 represents the rectified linear unit (ReLU) activation function.
ReLU function introduce non-linearity into the model, which makes model to understand
complicated pattern and correlations in the data. Because of its simplicity and efficacy,
it has become one of the most commonly used activation functions in artificial neurons.

Figure 2.3 shows the visual representation of commonly used activation functions.

11
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2.3 Artificial Neural Networks

An artificial neural network (ANN) is a system made up of connected units called
neurons. These networks are used in a variety of disciplines, including image processing,
pattern recognition, disease and financial prediction, language comprehension, and and
speech recognition.

An ANN looks like a grid of neurons connected in rows and columns. The first row
is called the input layer, and the last row is the output layer. The links between neurons
have values called weights, which act as adjustable settings.

In order to minimize the difference between the network’s predictions and the correct
responses, these weights are incrementally adjusted during the training process. This en-

ables the network to acquire the ability to provide more precise results as time progresses.

2.3.1 Architecture of Artificial Neural Network

An artificial neural network (ANN) typically consists of an input layer, an output layer,
and one or many hidden layers between the input layer and the output layer. Figure 2.4
represents the simple architecture of an artificial neural network with one hidden layer.
An ANN with multiple layers is a specific type of architecture that consists of many
interconnected nodes, or artificial neurons. The network consists of various layers, or
neurons. There are three layers in this system: the input layer, the hidden layers, and
the output layer. Each layer in the network has a weighted link between its neurons and
the neurons in other layers. Three fundamental operations are involved in artificial neural

networks with hidden layer.

e In the beginning, start with small values for the weights of each connection in the
ANN. These weights represent how strong the connection is between neurons in
the network. Positive weights indicate activation, while negative weights indicate
suppression. Since the ANN operates using matrices, the weights in the ANN are

defined as follows:

Wi:wil,wig,wig,...,wm, 1 = 1,2,3,...,N

e Once the weights have been assigned, the next step is to calculate the weighted sum
of the input." This requires multiplying each input value by its corresponding weight
and then summing them up. This operation follows a linear pattern, where a bias

or threshold value is included.It is defined as follows:

N
Yj =2 wjiwi +b

i=1

12
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Where is b is the bias or threshold.

o In the third step, we introduce non-linearity into the weighted sum Y;. Activation
functions are used to achieved this. Activation functions play a crucial role in en-
abling ANN networks to grasp and convey complex relationships within data. Here

is the definition:

Where f(.) is defined as the non-linear activation function.

Input Layer Hidden Layer

Output Layer

Inputs
Output

Figure 2.4: Artificial neural network with one hidden layer

There are no set guidelines to find the number of layers or neurons to include in each
layer of an ANN. One can make decisions based on their personal experience, knowledge
gained from reading, or through the process of experimentation with various options.Since
there’s no universal solution, what works best for you will depend on your specific situ-

ation.

2.3.2 Forward and Backward Propagation in ANN

The weights in a multilayer ANN can be optimized based on specific rules. The back-
propagation algorithm is used to optimize these weights, helping in achieving the desired
output. Before we delve into the details of the backpropagation algorithm, let’s first gain

a clear understanding of how the ANN performs forward propagation.

13
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Hidden Layer Hidden Layer

Input Layer Output Layer

Figure 2.5: Forward pass with two hidden layer

Forward Propagation

In forward propagation, the input values are influenced by various weights and biases.
As shown in Figure 2.5, when the input layer connects with the first hidden layer, each
neuron is affected by its distinct set of weights and biases. The same happens when the
first hidden layer connects to the second hidden layer.

Each hidden layer has different activation values due to the variability of weights and
biases among connections. The values shown for the hidden states in the figure are just
examples, not actual values. The activation values pass through each layer until they
arrive at the output layer , as shown in Figure 2.5. The output layer then gives a final
result. An ANN may have many outputs depending on the task; however (as shown in
Figure 2.5, it has two outputs), and it frequently gives only one.

During the forward propagation in ANN, the information flows from the input layer
to the hidden layer. For example, consider an ANN where xland bl represent the input
values and bias for the hidden unit i of layer 1. Mathematically, the resulting output from

the hidden layer can be calculated and defined as follows:

N
J

To simplify, let’s suppose b(bias)=z¢ and w;y(weight)=1,then equation for forward

propagation from layer 1 to layer 1 + 1 can be stated as follows:

M
it =1 (Zwﬁjhé) =123, M

=1
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Here, m; represents the number of neurons in layer 1, and wﬁj is the matrix of weights

from layer 1 to 14-1. The output layer will finally produce the following results:
M1
Y= f ( > wyg—lh’f—l) , 1=1,2,3,..., My (2.5)
j=1

Here, M, represents the number of output units in the ANN. m is the total number

of layers in the ANN. Y; is the output generated from the ¥ output unit.

Backpropagation

After obtaining the results from forward propagation, as shown in equation 2.5, next
step involves applying backpropagation algorithms to adjust the weights during the train-
ing process of ANN. The objective is to ensure that the output of the ANN closely matches
the output of the training sample. The backpropagation algorithm is used to obtain out-
put values that mimic the real output, while achieving an exact match is difficult. This
strategy is similar to other machine learning algorithms, in which we optimize the weights
of ANN to minimize the cost function(Y”’ —Y’) through multiple training iterations. Here,

Y represents the actual output, while Y’ represents the expected output after forward

propagation.
Forward . Backpropagation
Direction Hidden Layer Direction
_—> <
Input Layer Output Layer

Figure 2.6: Backpropagation pass with one hidden state
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The error is propagated over the entire network in accordance with the principles
mentioned above in order to modify the weights and biases. The error moves from the
output layer to the second hidden layer, then from the second hidden layer to the first
hidden layer, and finally from the first hidden layer to the input layer, as shown in Figures
2.6. The numbers shown in the figure are just random numbers just to give an idea of
how error propagated from the output layer to the input layer. These rules are applied
between each pair of layers, allowing the adjustment of weights and biases for each neuron
within the layer. This iterative procedure is performed for the entire network until the
weights and biases are optimized, resulting in final outputs that closely approximate the
actual outputs.

We can define the backpropagation error as follows:

Let’s assume that Y.* is the output of the output unit ¢ and the training sample s.

1

Therefore, appropriate weights can be calculated by minimizing the error F as follows:

M1 2
)= 5 3 (A4 - ¥ =) (Af -7 ( > wz;“th» o)
i,s i,8 Jj=
minimize E (w) for i =1,2,3,..., M.

The variable w;; represents a continuous, nonlinear, and differentiable function. To
find the minimum, we adjust the weight in the direction of the negative gradient until we
reach optimal values that meet the user-defined conditions. The gradient direction involves
computing the partial derivative of the continuous nonlinear function. Let’s assume the
revised weight after t iterations is wfj. If VE(w) # 0, then the updated weight after ¢ + 1

iterations is found by taking the partial derivative of Equation (1.13) with respect to wj;

as follows:
oE
VE(w) # 8wfj (2.7)
wf;-“l = wfj — TVE(wfj) (2.8)

2.4 Convolutional Neural Network

Convolutional Neural Networks (CNN) are a special class of deep learning models;
particularly well-suited for tasks involving spatial data, such as images and videos. CNNs
are specifically designed to learn spatial hierarchies of features through backpropagation.
Due to their feature extraction capabilities, CNN have become the backbone of many
modern computer vision tasks, achieving state-of-the-art results in areas such as image
recognition, object detection, and segmentation. Unlike traditional neural network, CNN

use convolutional layers to automatically and adaptively learn spatial features from the

16



Mohd Faizan Ansari

input data. This is achieved by utilizing various building blocks, including convolution

layers, pooling layers, and fully connected layers.

2.4.1 Architecture of CNN

A standard CNN architecture consists of several layers each of its each serving a specific

purpose and created upon mathematical concepts.

o Input Layer: The input layer consists of the raw pixel values of the image. For
example, a 224 x 224 pixel RGB image would be represented as a tensor of shape
224 x 224 x 3.

o Convolutional Layer: The convolutional layer acts as the fundamental component
of a CNN. Convolution operations are used to extract features from the input image
by employing a set of learnable filters, also known as kernels. In mathematical terms,

the convolution operation is defined as follows:

M—-1N-—

(I K)(,y)= > > I(x+iy+j) K(ij) (2.9)

=0 j5=0

—_

— Where:

The input image is denoted as I.

The filter (kernel) size is M xN.

— The coordinates (x, y) represent the current position of the filter on the input

image.

The convolution operation is denoted by the symbol *.

The resulting feature map shows different aspects of the input image, for example

edges, textures, and patterns.

e Activation Function: Following the convolution operation, an activation function
is applied to introduce non-linearity to model. The Rectified Linear Unit (ReLU) in
equation 2.4 is widely used and highly popular.

o Pooling Layer: Pooling layers are useful for reducing the spatial dimensions of
feature maps, which results in decrease computational load as well as helps to pre-
vent overfitting. One of the most frequently used pooling operations is max pooling,

which is defined as:

P(z,y) =max{I(x+i,y+7)|0<i<s0<j<s} (2.10)
— where

17
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— P(z,y) is the pooled feature map value at position (z,y).
— [ is the input feature map.

— s is the size of the pooling window,for example 2x2

o Flatten Layer: In this layer, before sending feature map to fully connected layer,
feature maps are flatten. This layer flattens the 3D feature maps into a 1D vector,

preparing it for the fully connected layer.

o Fully Connected Layer: After a series of convolutional and pooling layers, the
fully connected layers are responsible for executing the high-level reasoning. The
feature maps are transformed into a vector by flattening them, and this vector is
subsequently passed through one or more fully connected layers. The functioning of

a fully connected layer is described by equation 77?7

e Output Layer: The output layer can vary depending on the problem statement.
When dealing with a classification task, it is common practice to utilize a classifica-
tion layer. If we are dealing with a regression task, it is suitable to use a regression
layer in the CNN.

In classification tasks, the output layer usually uses a softmax activation function
to generate probability distributions across the output classes. The operation of a

output layer can be expressed as:

esi

= 2.11
SE o (2.11)

o(2);

— where:
— 0(z); represents the probability of the j-th class given the input z.
— z; is the score (logit) for the j-th class

K is the total number of classes.

The output of a regression layer can be expressed as equation 2.4.1.

g=f(z;0) =W -h+b (2.12)

— where:

— ¢: predicted output (regression result)

— x: input to the network

— f(x;0): function modeled by the neural network with parameters 6

— h: output from the penultimate layer (features before regression layer)
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— W: weights of the regression layer

— b: bias term

2.5 Transfer Learning

Transfer learning is a powerful machine learning technique that allows models to lever-
age knowledge gained from one task to improve performance on another task. It involves
reusing a pre-trained model as a starting point for a new model, saving time and re-
sources. It utilizes the knowledge acquired from solving one problem and applies it to
another problem that is related but different. This method is especially useful when deal-
ing with limited data in the target domain by utilizing the rich, learned representations

from the source domain.

2.5.1 Problem Formulation

Let’s consider Dg = {(z7,y7)}1, is the dataset from the source domain, where 27 €
Xs and y7 € Vg represent the input and output pairs, respectively. Similarly, let’s consider
Dr = {(«F,y)}17, is the dataset from the target domain, where z! € X7 and y! € Vr.

In transfer learning, the goal is to improve the learning of the target predictive function

fr : Xr — Yr by leveraging knowledge from the source domain.

2.5.2 Types of Transfer Learning

Transfer learning can be divided based on their relationship between source and target

domain.

e Inductive Transfer Learning: Inductive transfer learning is useful when target
domain is different from source domain. However, this technique is effective when

there is large amount of data is available for the source task.

o Transductive Transfer Learning: This technique is useful when target task same

as source task but the data distribution is different.

o Unsupervised Transfer Learning: This technique is useful when both target and

source task are different and no label data is available for target task.

2.5.3 Transfer Learning with Convolutional Neural Networks
(CNN)

Transfer learning is widely used in computer vision tasks, including image classifica-

tion, object detection, and segmentation. Due to its feature extraction ability CNN have
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been become the first choice for transfer learning approach. Below are the simple steps
how CNN works.

Working of CNN

Step 1: Load a Pre-Trained Model: Utilize a CNN that has been pre-trained on a
large dataset, such as ImageNet. ImageNet is an extensive collection of millions of images
spanning thousands of categories. Some well-known pre-trained CNN architectures are
VGG, ResNet, Inception, and MobileNet.

Step 2: Modify the Model

o Freeze Layers: In order to ensure that the early layers of the pre-trained model
remain unchanged during training, it is recommended to freeze their weights. These
layers include common features such as edges and textures which have practical use

in various tasks.

» Replace the Final Layer: Update the last fully connected layer(s) that match the

number of classes in the task you want to perform.

Step 3: Train the Model on the Target Dataset

e Feature Extraction: Only train the new layers on the target dataset; do not

change the layers.

e Fine-Tuning: There is the possibility of unfreezing some of the later layers of the
pre-trained model and then training them on the target dataset alongside the newly

added layers for training purposes.

Looking into Mathematical Insights

Pre-trained Model: Let’s consider fg as the parameters of the pre-trained model
S y$> ns
1

fs. The model goes through training using a source dataset Dg = {(z7, 5, in order

to minimize the loss function Lg:
ns

o1
05 = argmin — > Ls(f(x7:0),5)
ns ;5

Feature Extraction: For the target task, utilize the pre-trained model as a feature
extractor. Representing the features extracted by the pre-trained CNN is done using
g(x;0s5). Next, include extra layers of h(z;07) to effectively map these features to the

desired target classes. The model can be represented as follows:

fr(z) = h(g(x;0s); 0r)
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Training the new layers 6 requires utilizing the target dataset Dy = {(z7,yl)}17;:

1 &
Or = argmin — > Le(fr(z];0),y])

nr ;3

Transfer Learning in Gaze Estimation

Transfer learning can be effective in gaze estimation tasks, where the goal is to de-

termine where a person is looking based on images of their eyes or face. Given the limited

availability of large annotated datasets specific to gaze estimation, transfer learning helps

leverage pre-trained models on related tasks (e.g., face recognition, eye detection) to im-

prove performance.

Steps in Transfer Learning for Gaze Estimation

o Pre-Trained Model Selection: Select a pre-trained CNN model that has been

trained on a huge dataset specifically designed for face or eye detection. Popular
models include VGG, ResNet, and Inception and so on. These models are often

pre-trained on datasets like ImageNet or face-specific datasets such as VGGFace.

Feature Extraction: Utilize the pre-trained model to extract features from eye or

face images. This step utilizes the acquired knowledge from the source task.

Fine-Tuning: Refine the pre-trained model using the gaze estimation dataset. One
approach is to retrain the later layers of the model on the new dataset while keeping
the early layers fixed or changing their learning rate. This helps to maintain the

learned features.

Example workflow for Gaze Estimation

Source Task: Face Recognition

Pre-trained Model: Consider utilizing a Convolutional Neural Network (CNN) such
as ResNetb0 that has been pre-trained on either the ImageNet dataset or a face

recognition dataset.

The source dataset includes face images that are labeled with identity information.

Target Task: Gaze Estimation

o Includes images of eyes or faces along with labels indicating the direction of gaze.
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Chapter 3

Methods for Gaze Estimation: State
of the Art

This chapter walks through the state-of-the-art methods in gaze estimation and presents
a comprehensive overview. Furthermore, it examines various approaches to framing the
problem and explains the technical terms used in this field. Additionally, this chapter
provides an overview of publicly available data and discusses the applications of gaze
estimation in various domains. The rest of the chapter is organized as follows: it be-
gins with a review of gaze estimation methods, covering both conventional and the latest
techniques. This is followed by a discussion of the currently available publicly accessible

datasets. Next, the chapter presents real-world use cases of gaze estimation.

3.1 Introduction

Gaze estimation has a long history, and it has been studied for decades. Due to this,
gaze estimation has established itself in several disciplines. The concept originated in
computer vision-related assistive technology [18, 30|, and spread to Human Computer
Interaction (HCI) [78], behavior analysis [152], Augmented Reality (AR) and Virtual
Reality(VR) [121, 12], egocentric vision [124], biometric systems [75], health care [56]
and other fields [38, 103]. Figure 3.1 provides a concise timeline of the groundbreaking
gaze estimation approaches together with significant achievements. Although this only
includes the most frequently mentioned events in the chronology, there is a long and
illustrious history further down the lane. Back in 1879, first gaze estimation experiment
was conducted [76]. Later on, its necessity in human visual attention modeling pushed the
research in gaze estimation forward. In 1908, first eye tracker was produced. Furthermore,
Purkinje images [31], Bright Pupil [102] and infrared (IR) [2] based eye tracker were
developed. But these eye trackers are expensive and require specific laboratory settings

which limit their use in real world environment.
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First Gaze Estimation
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Figure 3.1: Gaze estimation research timeline

Most traditional gaze estimating methods use handmade low-level features such as
color [58], shape [58, 60], appearance [131] and specific geometrical heuristics [134] to
handle generic unconstrained settings [134, 183] in order to overcome their limits. In
2015, a paradigm shift based on deep learning has been observed in gaze estimation [176,
119, 85, 14, 20], with other computer vision task. Over the course of the past few years, the
difficulties that are connected with variations in illumination conditions, camera setup,
eye-head interaction, and other related factors have been significantly decreased thanks to
the availability of massive training datasets and models based on deep learning. Despite
this, the performance gain comes at the expense of large-scale annotated data, which is
a costly resource to acquire. In recent times, there has been a growing interest in deep
learning with minimal annotation [118, 36, 170].

In present time, most common techniques for eye tracking involve an infrared light
(IR) source and high-quality cameras. There are numerous commercial models for eye
tracking available, most of them either in the form of eye wear [138, 71] or table-mounted
devices [137, 139, 128]. Furthermore, there is also open-source software that allows end-
users to use custom hardware [5]. On the contrary, webcam-based eye trackers do not
require any specialized hardware; they make use of a standard webcam and natural light

for human gaze estimation. This thesis emphasizes eye tracking methods that can be
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utilized on a desktop or laptop with a standard webcam. The following chapter delves

into an examination of the findings by researchers in this field.

3.2 Methods for Gaze Estimation

Categorizing gaze estimation methods can be quite challenging because of the lack
of clear distinctions between different approaches and the inconsistent use of termin-
ology within the research community [41]. A well-known survey that provides a clas-
sification framework for these methods, dividing them into three main categories: 2D
regression-based, 3D model-based, and appearance-based [58]. This study utilizes a clas-
sification system and examines three main methodologies: model-based, feature-based,
and appearance-based techniques. Although it can be helpful to simplify things for the
purpose of comparison and analysis, it’s worth noting that the lines between these cat-

egories are often blurry, making it challenging to establish a clear classification [41].

o Model based method: Model-based gaze methods use parameters of a 2D or 3D
eye model as input. When working in 2D, the iris edge model can be defined by these
parameters [147]. However, in 3D, additional information such as the 3D position
of the eyeball center [23] and other face landmarks [73] can be included.

e Feature Based Method: In the feature-based approach, researchers focus on
identifying and utilizing special features associated with the eyes or face in order
to make predictions about where a person is looking. These features may consist of
the pixel positions of various key points such as the inner eye corner, iris center,
eye lid, and pupil position [13, 57]. Computer vision features like histogram of ori-
ented gradients (HOG) and local binary patterns (LBP) are commonly used in the
field [33, 99, 90, 109]. Some researcher also used technique like feature grouping and

summarize pixel intensities [42, 92, 94, 167]

o Appearance Based Method: The appearance-based method focuses on analyzing
the visual appearance of the eyes, face, or relevant regions in the image or video

frames. Pixel intensities are utilized to generate a map for gaze estimation [41].

The following sub sections provide an in-depth analysis of recent advancements in each

of these areas.

3.2.1 Model based Gaze Estimation

In general, model-based gaze estimation methods use a geometric 3D eyeball model as
the fundamental basis for determining gaze direction. The primary goal of these methods

is to recognize eye features from 2D images to accurately estimate the model’s parameters.
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Furthermore, model-based methods can be divided into two approaches: the iris contour
model and the eyeball model [41]. The iris contour model, also known as the one-circle
model, fits an ellipse around the iris region. In eyeball model, the objective is to find the
eye center [41]. Eyeball model methods work by locating center of the eyeball and then

drawing a line from there to the center of the iris to determine where a person is looking.

Applying the direct least squares method to fit ellipses to a set of points [45] has
greatly contributed to the progress of iris contour models in the area of gaze estimation.
By leveraging this approach and understanding that the circular shape of the iris can
sometimes appear as an ellipse in camera images, researchers have been able to develop
various gaze tracking techniques. In [147, 149], the authors presented an iris contour
algorithm that utilizes edge detection to identify the pixels comprising the iris boundary.
Next, an ellipse is fitted to these points. Afterwards, the ellipse is projected back into 3D
space in order to determine the contour circle of the iris. The normal vector of the iris is
utilized as the gaze direction. Their system generally has an average error of approximately

1 degree.
Wu et al. proposed two circle algorithms. They suggested that the elliptical iris con-

tours for both eyes are either on the same plane or on parallel planes in 3D. Based on this
assumption, they can estimate the gaze direction without requiring camera calibration.
Fukuda et al. [46] presented subpixel approaches for precisely predicting the iris contour
in low-resolution images. Using their approach, they achieved an average error of 3.35 de-
grees. The authors in [104] employed a support vector machine (SVM) to remove irrelevant
edge segments before fitting ellipses, resulting in an accuracy of 3.48 degrees. Huang et al.
[70] utilized a randomized Hough transformation to fit iris contours. Moreover, Zhang et
al. [172] suggested an enhanced RANSAC algorithm, which achieved an accuracy of 0.8
degrees in one direction.

Ishikawa et al. [73] use an Active Appearance Model (AAM) to track the face. They
calculate anatomical constants, such as eye geometry, using the user’s face size and the
locations of the eye corners. After this calibration, they employ template matching to
identify the iris and edge-based techniques to fine-tune its position to determine the
iris center. Their method achieves an average error of 3.2 degrees. Xie and Lin [164]
use a simple one-target calibration to find the eyeball center position and other specific
parameters, achieving a 2-degree accuracy in one direction by using the iris center and
eye corner coordinates in the image to calculate the gaze geometrically.

Chen and Ji [23] use a basic face model that includes several facial reference points,
such as the nostrils, the inner and outer corners of the eyes, and one of the eyeball centers.
They track these face points and use 3D modeling to calculate gaze accuracy, achieving
an error of 2.7 degrees. Wang et al. [150] explicitly fit a deformable eye-face model over
time, conducting a combined optimization of person-specific eye position and visual axis

offset parameters. Wood et al. [157] immediately apply the morphable model to the eye
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region to optimize both appearance and illumination. This methodology not only provides
an estimation of gaze direction but also enables the redirection of gaze, as demonstrated
in their later investigation [158].

Yamazoe et al.[169, 169] divide the pixels in the eye image into three categories:
skin, sclera, and iris. They then use these segmented areas to determine the most likely
eye position by minimizing projection errors for a given candidate. They reported an
accuracy of approximately 9 degrees. Xiong et al. [165] customize a face model for each
individual and manually designate the position of the eyeball. They then project the
identified coordinates of the iris center onto the pre-established 3D model. Wu et al. [162]
use a particle filter (PF) to monitor the contours of the iris and eyelids, employing various
appearance metrics to calculate the probability of a specific particle (candidate). Their

experimental findings achieved an average error of 3.5 degrees.

3.2.2 Feature based Gaze Estimation

In a typical computer vision process, the system first identifies features in an input
image. Algorithms then use these features to estimate more complex aspects. For gaze
estimation, methods like the ones mentioned above focus on finding features such as the
center of the iris or the area around the edge of the iris. Hansen and Ji [58] classify
these methods based on this feature detection. However, there’s an important distinction.
When methods use these features directly for estimating gaze, instead of fitting them into
a predefined geometric model, they are termed "feature-based gaze estimation" methods
[173].

In the presence of infrared light, a common method is to examine the difference between
the computer’s estimation of the center of pupil (PC) and the reflection of the infrared
light off cornea, known as corneal reflection [41]. This difference, called the PC-CR vector,
can often accurately indicate where you’re looking, provided your head is facing the screen
and remains still. Cerrolaza et al. evaluate and validate the effectiveness of these methods
[21].

The authors in [57, 59] used an Active Appearance Model (AAM) and mean-shift
techniques to track the movement of the eyes and determine the central position of the
pupil and the corners of the eye. Additionally, they employed a Gaussian Process (GP)
to estimate gaze by training it with the pupil center and eye corneal vector (PC-EC
vector) as its input. They achieved an accuracy of 1.6 degrees and validated the accuracy
of the eye tracker by testing their system within an eye-typing interface. Zhu et al. [181]
proposed a set of techniques aimed at accurately detecting the center of the iris and the eye
corner with subpixel precision. The researchers utilized a two-dimensional linear mapping
technique to estimate the gaze positions based on the feature vectors. Their experiments

demonstrated an accuracy of approximately 1.2 degrees.
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In their study, Huang et al. [68] successfully identified corneal reflection points, also
known as glints, from the display of a mobile phone. These glints were used to extract
relevant features, which were then analyzed using Gaussian Processes. Although the ef-
fectiveness of this approach has been demonstrated, there may be challenges when gener-
alizing the findings to outdoor environments and varying head-to-screen distances. These

factors could impact the applicability of the results.
Valenti et al. [144, 145] present a novel approach for identifying the positions of eye

corners. This method is integrated with a state-of-the-art eye center locator to calculate
the EC-PC vector. Inspired by the work of Zhu et al. [181], they utilized a 2D linear
mapping for gaze estimation. In their later work [143], the researchers integrated a head
pose estimator and used the resulting transformation matrix to normalize the eye regions.
The eye location information was enhanced and later used to improve the accuracy of
head pose estimation through a feedback loop. To address the issue of gaze estimation
during head movements, they proposed a method where known calibration points are
dynamically adjusted to align with the monitor coordinates whenever a change in head
pose is detected. This allows the system to recalibrate itself, ensuring accurate gaze es-
timation even with head movements. With these improvements, the researchers were able
to achieve an average error range of 2 to 5 degrees in two different experimental tasks.

Cheung et al. [28] employed Active Shape Models (ASM) to analyze pre-processed
images normalized using local sensitive histograms. By implementing novel methodologies
aimed at pinpointing the exact location of the iris center and eye corners, the researchers
achieved a remarkably low margin of error. Specifically, under controlled conditions with
the subject’s head stationary, the average error was as low as 1.28 degrees. However, with
the introduction of head movements, the margin of error increased slightly to 2.27 degrees.
Ince and Kim [72] utilized a specialized technique to track iris movement by quantifying
the displacement of the iris center across successive camera frames, enabling them to
determine gaze direction. Their system demonstrated a commendable accuracy, achieving
a precision of 3.23 degrees for both horizontal and vertical measurements.

Similarly, Nguyen et al. [108] used a comparable methodology, leveraging the center-
bias effect, which suggests that gaze distribution tends to concentrate towards the screen’s
center[79]. Their system operates without calibration by continuously calculating the av-
erage iris center position over time. Using the difference between the current and average
positions, the system estimates gaze direction, resulting in a cumulative error of 3.43
degrees in both horizontal and vertical dimensions.

Lu et al. [94, 93] proposed extracting either 8-dimensional or 15-dimensional intensity
features from the eye region, resizing the grayscale eye image to 2 x 4 or 3 x 5 pixels,
respectively. They introduced a novel subpixel alignment method for accurate gaze point
estimation in the eye region and employed adaptive linear regression (ALR) to enhance

gaze estimation accuracy. Their approach achieved an impressive accuracy of up to 0.62
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degrees. Skodras et al. [130] monitored various anchor points, including eye corners, eyelid
control points, and the iris center, during both motion and stationary conditions. They
computed vectors based on the relative positions of these points and used linear regression

to map these vectors effectively to the gaze point, resulting in an accuracy of 2.96 degrees.

3.2.3 Appearance based Gaze Estimation

In contrast to other methods that rely on models or features, appearance-based ap-
proaches utilize the image pixels as the input data. These methods utilize the pixel in-
tensities from eye images to estimate gaze. Appearance-based methods bypass the need
to detect eye feature points by directly mapping eye images to gaze targets. Appearance-
based methods have the advantage of not relying on explicit shape extraction stages,
allowing them to effectively handle low-resolution images. An initial exploration in this
field was undertaken by Baluja and Pomerleau [16]. They used a neural network to dir-
ectly calculate the precise location of on-screen gaze in pixels. In addition, they show that
training the system with inputs from different head poses enables it to even accommodate
slight head movements.

Tan et al. proposed local linear interpolation for gaze estimation [136]. In their study,
they used the nearest-neighbor method, which relies on pixel similarity. The method
involves utilizing hundreds of labeled samples along with their corresponding labels. These
samples are weighted to generate screen coordinate estimates.

One significant improvement was observed when a large amount of training data was
collected using a multi-view camera system and then synthesized using Structure-from-
Motion [134]. Ono et al.[111] conducted a comprehensive analysis of eye images, consider-
ing the effects of gaze direction, eye appearance, and image cropping shifts. They used a
decomposition technique to identify the three most similar training samples. Subsequently,
they utilized Likelihood-based Linear Interpolation (LLI) to enhance the accuracy of gaze
estimation. Their method achieved an impressive accuracy of 2.4 degrees.

Lu et al. [92] examined the effect of head pose on gaze bias and how it affects the
accuracy of gaze estimation. They discovered that the final gaze estimate results can
be enhanced by compensating for this bias. In another study, authors also presented a
technique for generating synthetic eye images based on a specific head pose [95]. They pro-
posed incorporating extra calibration samples to enhance the precision of the generated
images. Sugano et.al [135] utilized a technique called LLI (Limited Latency Interaction) to
consider the impact of head movements on the experimental tasks. The eye images are or-
ganized into clusters based on the corresponding head pose. For interpolation, samples are
selected only from clusters that have the same head pose as the current sample. The sys-
tem used in this study adopts an iterative learning approach, where the authors gathered

knowledge from user interaction through mouse clicks. This process enables the system
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to constantly improve its parameters and adjust to new head poses by incorporating

necessary clusters as needed.

Previous studies have also used the Kinect sensor for appearance-based gaze estima-
tion. This is primarily because the Kinect sensor offers valuable depth information, which
is crucial for accurately estimating the pose of the head [29, 50]. Funes Mora and Odobez
[47] used the Kinect as a capture sensor to address the issue of head pose variations. To
overcome this challenge, they implemented a technique that involved rotating the face
to a frontal position. The technique of frontolyzing faces has been further adapted to
be applicable to standard RGB cameras. However, its implementation requires accurate

detection of facial landmarks, as found by Jeni and Cohn in their study[77].

Alnajar et al. [7] propose a calibration-free method for gaze estimation. Their method
is based on the assumption that individuals tend to exhibit similar gaze patterns when
presented with identical stimuli. This approach eliminates the need for time-consuming
and potentially biased calibration procedures, making it a promising alternative for gaze
estimation in various applications. Initially, the researchers compute the initial gaze points
for a user without calibration. Then, a transformation is generated to align the user’s gaze
pattern with that of other users. For initial gaze estimation, authors commonly use two
approaches. The first approach involves reconstructing the current eye appearance by
leveraging nearest neighbors from the training set, which includes samples from other
users. The second approach projects the eye appearance onto a 2D manifold to identify

the most similar samples.

Lai et al. [87] used the Random Forest algorithm to explore the neighborhood structure
concerning joint head pose and eye appearance features (HPEA). The gaze estimation pro-
cess involves using linear interpolation techniques that leverage neighboring data points
within the random forest. The authors introduced a system that uses a Viola-Jones eye
detector and optical flow (OF) technique to detect and monitor the eye in camera images
[106, 107]. By doing the integration of these two methods, the authors successfully identify
and monitor the eye within the camera image, a vital process in a range of applications

including gaze tracking and human-computer interaction.

Once the eye image has been extracted, it is inputted into a Gaussian Process (GP)
model to accurately determine the location of the gaze point. In their study, the authors
show that by calibrating the system with various head poses multiple times, they are able
to achieve head pose invariance. Sugano et al. utilize saliency information to automatically
calibrate a gaze tracker [133]. This calibration takes place while the individual is watching
a video clip. Throughout the process, the authors choose a distinct approach. Instead of
relying on predetermined gaze positions, the researchers train the GP by utilizing gaze

probability maps that are created by combining various saliency maps.
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3.3 Deep Learning based Gaze Estimation Methods

Advancements in gaze estimation research have made significant progress thanks to the
accessibility of large-scale datasets and the use of state-of-the-art methodologies inspired
by various areas in Computer Vision[53]. Deep learning techniques have greatly acceler-
ated the progress of gaze estimation, resulting in the development of several innovative
approaches. In this section, we aim to provide an in-depth exploration of gaze estimation
techniques that harness the power of deep learning methodologies, highlighting their po-
tential and recent advancements in achieving more accurate and robust gaze estimation
systems that have captured the interest of researchers in the field. Our contribution is
well-timed, closely aligned with the current surge of interest in gaze estimation research.
In this section, we aim to provide an in-depth exploration of gaze estimation techniques
that harness the power of deep learning methodologies, highlighting their potential and

recent advancements in achieving more accurate and robust gaze estimation systems.

3.3.1 Convolution Neural Network based Methods

Numerous approaches have adopted convolutional neural network (CNN)-based
architectures [176, 178, 119, 177, 85], focusing on obtaining an end-to-end spatial repres-
entation to predict gaze accurately. These models typically derive from well-established
CNN architectures in computer vision, such as AlexNet [86], VGG [129], ResNet [62], and
DenseNet [67].

Generally, these CNN methods are categorized as single-stream [176], multi-stream
[85], and prior-based networks [119]. Single-stream CNNs are trained using a single RGB
image stream, often a face or a patch around the left or right eye. In contrast, multi-
stream CNNs utilize multiple streams, such as both face and eye patches, integrating
prior knowledge from eye anatomy or geometrical constraints.

The pioneering work on deep learning-based gaze estimation was introduced by Xucong
et al. [176]. They developed CNN architecture that utilizes grayscale eye images as input to
effectively predict gaze vectors. They used a LeNet-based Convolutional Neural Network
(CNN) architecture consisting of five convolutional layers and two fully connected layers.
Additionally, a 13-layer CNN network derived from the VGG network was utilized.

In another study, X Zhang et al. introduced the concept of full-face based gaze estim-
ation [177]. They used a spatial mechanism to identify significant facial feature locations
using a CNN architecture. This spatial mechanism includes three 1x1 convolutional layers
followed by rectified linear unit (ReLU) activation. A spatial weight module learns the
weight matrix by element-wise multiplication with the original activation function, allow-
ing the model to assign greater importance to specific regions and reduce noise impact in
input images. The authors evaluated accuracy using the 11 distance metric for both 2D

and 3D gaze estimation tasks. For 2D gaze estimation in screen coordinates, 11 distance
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measured the difference between predicted and ground truth values. Similarly, for 3D gaze
estimation, 11 distance computed differences in predicted and ground truth angle vectors.

Neeru Dubey et al. proposed Ize-Net for coarse to fine gaze representation [67]. Their
methodology partitions recorded gaze locations into distinct "gaze zones" and integrates
convolutional and primary capsule layers in the network architecture. In a separate study,
researchers introduced dilated convolutional layers [24], which maintain spatial resolution
of inputs while expanding the receptive field size without increasing model parameters.
Dilated convolutions are applied to process facial and eye regions before inferring gaze
direction. The authors used cross-entropy loss in the label space as part of their approach.

The authors introduced a pictorial gaze network for gaze estimation, which trans-
forms eye images into gazemaps and predicts gaze direction from these gazemaps [119].
Gazemaps serve as an intermediate model designed to mimic the structure and function of
the human eyeball and iris. The gaze prediction process is divided into two main phases.
Initially, gazemaps are predicted using a 3-module hourglass network. Cross-entropy loss
is used between predicted and ground truth gazemaps across all pixels in the dataset. In
the subsequent phase of the study, DenseNet, a deep learning architecture, is utilized to
accurately forecast the gaze vector based on information from the gazemaps.

In a related approach, Krafka et al. proposed a network that takes input from left eye,
right eye, facial landmarks, and face images to predict the person’s gaze on the screen [85].
Similarly, in another study, authors used a two-stream VGG network for gaze inference
[43], using left and right eye images as input data. The neural network was trained using

12 loss function between predicted and ground truth values.

3.3.2 Temporal-based Methods

Since human gaze involves dynamic eye movements like fixation, saccades, smooth pur-
suits, blinks, and micro movements, the image frame over time correlates highly with gaze
direction from previous time steps [54]. Consequently, several studies have incorporated
eye movements and temporal information into gaze estimation to improve accuracy. The
objective of these models is to predict a person’s gaze based on sequences of frames. Re-
searchers have utilized various state-of-the-art recurrent neural networks for this purpose,
including LSTM [80] and GRU [115].

Palermo et al. proposed a multimodal recurrent CNN for 3D gaze direction [113].
Their model initially learns static features from all input frames in a sequence, followed
by feeding these features into a many-to-one recurrent network to predict 3D gaze direction
for the last frame of the sequence. Zhou et al. introduced a bidirectional recurrent network
for temporal-based gaze estimation [180]. Bidirectional networks leverage both past and
future frames to enhance prediction accuracy, particularly effective for low- to mid-quality

images.
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Another innovative approach, the Pinball LSTM, was introduced to integrate contex-
tual and temporal information [80]. This method uses a bidirectional LSTM network for
video-based gaze estimation, utilizing a sequence of 7 frames to predict gaze. The authors
utilized pinball loss to measure the difference between predicted and ground truth values.

Wang et al. introduced the Dynamic Gaze Transition Network (DGTN) as an in-
novative model that utilizes a semi-Markov model to capture the dynamics of human
eye movements[151]. Their model aims to provide a comprehensive understanding of the
mechanisms governing gaze transitions. Initially, the network computes per-frame gaze
using a Convolutional Neural Network (CNN), which is then refined by incorporating
learned dynamic information.

Lemei Xiao et al. proposed the LSTM-CVFAF method, which focuses on predicting
gaze direction in dynamic videos by integrating LSTM with convolution and associated
video frame features [163]. This approach effectively captures spatial details from each
video frame by incorporating learnable central prior knowledge. LSTM analyzes temporal
changes in gaze behavior, facilitating an understanding of gaze movements over time. By
combining spatial and temporal motion information, the method generates gaze prediction
maps for dynamic videos, thereby improving accuracy in predicting the subject’s gaze

location throughout the video.

3.3.3 Transformer based Methods

The recent surge in interest in transformer models can be attributed to their excep-
tional performance across various computer vision tasks [54]. Within the realm of gaze
estimation, two distinct categories of transformers have emerged, both based on the ViT
(Vision Transformer) framework [54]. These transformer-based models for gaze estima-
tion include GazeTR-Pure [26] and GazeTR-Hybrid [26]. The former is a pure transformer
model, while the latter integrates both CNN and Transformer components.

Gaze estimation poses a challenge as a regression task, particularly in perceiving
gaze solely through local patch-based correlations. Although these transformer-based ap-
proaches represent initial explorations, significant performance enhancements have not yet
been widely documented in current literature. Further investigation is necessary to fully
explore the potential of transformer architectures in improving gaze estimation, despite
their promising capabilities.

The Disentangling Transforming Encoder-Decoder (DT-ED) framework, introduced
by Seonwook et al., uses an encoder network to map input images into a latent space
[117]. Within this space, the DT-ED model effectively disentangles three crucial factors
essential for gaze analysis: gaze direction, head orientation, and visual characteristics of
the eye region. This disentanglement is achieved by incorporating constraints related to

gaze and head pose rotations. Additionally, a decoder reconstructs the transformed image
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back to its original form, facilitating the estimation of gaze direction from the latent
embedding.

In another study authors introduced a Self-Transforming Encoder-Decoder (ST-ED)
network designed to process a pair of images, z; and x;, as inputs [179]. This network aims
to separate the subject’s invariant embeddings while incorporating pseudo-label conditions
and embedding representations. The learning objective for transformation utilizes pseudo
condition labels to accommodate additional factors when ground truth annotations are
unavailable.

Aayush et al. proposed RITnet [22], a hybrid model that combines U-Net and DenseNet
architectures within the framework of Fully Convolutional Networks (FCN). To balance
performance and computational complexity, RITnet employs 5 Down-Blocks in the en-
coder and 4 Up-Blocks in the decoder. The bottleneck layer of the encoder block serves as
the final layer. Each Up-Block establishes a skip connection to its corresponding Down-
Block, enhancing representation learning. The model is trained using several loss func-
tions: Standard Cross-Entropy Loss (CEL) categorizes pixels into background, iris, sclera,
or pupil. Generalized Dice Loss (GDL) penalizes pixels based on the overlap between
ground truth and predictions. Boundary Aware Loss (BAL) weights pixels according to
their distance from neighboring pixels, reducing confusion in CEL boundaries. Surface
Loss (SL) helps restore small areas and shapes by scaling based on distance.

The Unsupervised Gaze Redirection Network [170] aims to acquire a comprehensive
eye representation for gaze redirection. This framework takes an eye patch as input and
generates a redirected eye patch while preserving rotational disparities between the two
patches. The proposed method utilizes gaze redirection as a pretext task to facilitate

representation learning.

3.3.4 Webcam-Based Methods

Algorithms that rely on standard webcams differ significantly from classical eye-
tracking methods, which typically use infrared (IR) cameras along with an additional
IR light source to create a glint (a reflection on the eyeball) for precise eye tracking. Al-
though IR-based systems offer high accuracy in detecting eye movements, they come with
increased hardware costs. In our research, we use regular, unmodified webcams to detect
facial and eye regions, making eye tracking more accessible and cost-effective. However,
estimating gaze coordinates using webcams is considerably more challenging than with
IR-based systems. This is mainly because the pupil is not always clearly visible in the
webcam footage. Furthermore, variations in lighting, head pose, and eye orientation intro-
duce additional complexity in accurately estimating a person’s gaze using webcam-based

methods.

In this thesis, we build and train a webcam-based gaze estimation model for gaze
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estimation. There are some works that are similar to our work. For example, the authors
in [91] designed a differential gaze estimation by training a differential neural network.
However, the authors in this article used calibrated high-quality eye images to train their
network, which is different from our method because, in our approach, we used only
low-resolution images without calibration. In another work [88], the authors designed a
hardware-friendly CNN model that uses a minimum computational requirement to effi-
ciently estimate gaze on low-cost devices. However, they tested their model on MPIIgaze,
the dataset that is a calibrated dataset in which the on-screen gaze position is converted
to the 3D position in the camera coordinate system using a camera calibration procedure
from the OpenCV library.

3.4 Datasets for Gaze Estimation

Given the progress in the gaze estimation domain, a wide range of datasets have
come to light to address different gaze estimation tasks [54]. The collection methodology
for datasets has evolved over time, starting from controlled laboratory settings [112] and
expanding to unconstrained indoor environments [56, 105, 102, 131, 54], and even outdoor
settings [127]. Recent datasets are more advance in term of complexity, bias and volume.
These datasets are good for training and evaluation for gaze estimation. Below is the
description of some of the datasets.

MPIIGaze: The MPIIGaze dataset was collected by Xucong et al [178]. The authors
collected the dataset from 15 individuals in their everyday natural sitting positions in front
of a laptop. The researchers obtained a total of 213,659 images throughout the course of
three months. To collect data, a series of random points were displayed on the participants’
laptop screen. Following this, researchers have also collected the MPIIFaceGaze [177]
dataset in which the entire participant’s face is considered. The underlying assumption
is that by including the complete facial features of an individual, the prediction of their
gaze maybe be calculated more accurately.

Eyediap: Eyediap [48] dataset is characterized by its large-scale nature, which en-
compasses a wide range of subjects and exhibiting various environmental conditions. The
design of the system was specifically aimed at addressing the primary obstacles that are
commonly encountered when dealing with head pose, person, and 3-D target. The dataset
includes recordings obtained from both controlled laboratory environments and real-world
settings, thereby offering a wide array of scenarios that can be analysed.

Gaze360: The Gaze360 [80] dataset is a collection of gaze-tracking data that has
been designed for the purpose of 3D gaze estimation in images that are not subject to any
constraints. This dataset ensures estimation of gaze direction in 3D space. The dataset
include a total of 238 individuals who were observed in both indoor and outdoor settings.

The dataset includes annotated 3D gaze information, which was collected under various
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conditions involving a diverse set of head poses and distances.

ETH-XGaze: ETH-XGaze [174] dataset consists of a collection of more than one
million high-resolution images capturing a diverse range of gaze patterns exhibited by
individuals under challenging head poses. The dataset has been acquired from a total
of 110 individuals using a specialized hardware configuration. This setup consists of 18
digital single-lens reflex (SLR) cameras and allows for the adjustment of illumination
conditions. Additionally, a calibrated system has been used to record the ground truth
gaze targets.

TabletGaze: The TabletGaze dataset [69], consists of a collection of data from 51
subjects. The dataset includes observations of individuals in four distinct postures and
captures their gaze at 35 different locations. The data was collected using a tablet device
within an indoor environment.

RT-GENE: The RT-GENE [43] dataset is a collection of diverse images capturing
gaze and head pose in a natural setting. This dataset aims to tackle the challenge of
annotating ground truth by using a motion capture system to measure head pose and
mobile eye tracking glasses to track eye gaze. The dataset include recordings obtained
from 15 participants. Among these participants, there are 9 males and 6 females, with 2
individuals being recorded twice. The dataset consists of a substantial number of images,
with 122,531 labeled training images and an additional 154,755 unlabeled images. Notably,
the unlabeled images are of the same nature as the labeled ones.

CAVE: The CAVE [131] dataset is a collection of publicly available gaze data. It
include a total of 5,880 images from 56 individuals, each showing a diverse range of gaze
directions and head poses. Dataset boasts a remarkable number of images and fixed gaze
targets. Specifically, dataset have 5 head poses for each subject, with 21 gaze directions
per head pose. The study sample consisted of individuals from various ethnic backgrounds,

ensuring a diverse representation.

Table 3.1: A comparison of gaze datasets with respect to different attributes. The ab-
breviations are: In: Indoor, Out: Outdoor, Both: Indoor + Outdoor, Syn: Synthetic, Seq:
Sequence, EB: Eye Blink, GE: Gaze Event, GC: Gaze Communication.

Dataset Year | Sub Image Res- | Label Data Statistics | Env
olution

CAVE [131] 2013 | 56 5184 x 3456 3-D 5880 In
UT MV[134] 2014 | 50 1280%1020 3-D 64000 In
EYEDIAP [48] 2014 | 16 512x512 3-D 237 min In
MPIIGaze[178] 2015 |15 1280 %720 3-D, 2-D | 213,659 In
SyntheticEye[160] | 2015 | NA 120x 80 3-D 11,400 Syn
GazeFollow 2015 | 130,339 | N/A 3-D 122,143 Both
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Dataset

UnityEyes [159]
GazeCapture [85]
TableGaze[69]

InvisibleEye [141]

MPIIFaceGaze
[177]

RT-GENE [43]
RT-BENE [32]
NV Gaze [82]

Gaze 360 [80]
Vacation [40]
HUST-LEBW [65]
OpenEDS-19 [51]
OpenEDS-20 [114]

ETH-XGaze [174]
mEBAL [34]

EVE [116]

GW [84]
OPENNEEDS [39]
GOO [140]

LAEO [98]
GazeONCE [171]
RavenGaze [168]

Year

2016
2016
2017

2017
2017

2018
2019
2019

2019
2019
2019
2019
2020

2020
2020
2020
2020
2021
2021
2021
2022
2023

Sub

NA
1450
51

17
15

15
17
30

238
206,776
172

152

90

110
38

o4

19

44
100
485
10000
34

Image Res-

olution
400% 300
640x480
1280420

HxH
1280 %720

19201080
19201080

1280 %960,
640x480

4096 x 3382
640 x 360
1280 %720
640x400
640x 360

6000x 4000
1280x 720
60004000
1920% 1080
128 x71
N/A

N/A

N/A
1280x720

37

Label

3-D
2-D
2-D

2-D
3-D

3-D
EB
3-D, Seg

3-D
GC
EB
GEN
3-D

2D, 3-D

Data Statistics

1,000,000
2,445,504
816 Seq, 300,000

img.
280,000
213,659

122,531
243,714
2,500,000

172,000
96,993
963
252,690

8,960
550,400 img.

1,083,492
756,000
12,308,334
5,800,000
2,086,507
201,552
800,000
24,282
556,476

Seq.,

Env

Both

In

In

In

In

In

Both

Both
Both
Both
In

In

In

In

In

In
VR
Both
Both
N/A

In
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3.5 The Powerful Gaze: Applications of Gaze Estim-

ation Across Fields

Gaze estimation has emerged as a valuable tool across multiple domains, enabling
to predict individual’s visual focus. Through the analysis of eye movements and facial
features, valuable insights can be obtained regarding an individual’s attention, intention,
and cognitive state. Here, we have provided a selection of eye-gaze applications across

various domains.

3.5.1 Human-Computer Interaction (HCI)

Hands-free interfaces: Gaze estimation enables seamless interaction with computers
without the need for hands. Users can effortlessly control interfaces, navigate menus,
and select options using their gaze. This is especially advantageous for individuals with
disabilities or in circumstances where using the hands is not feasible [175].

Accessibility Tools: Gaze tracking is an invaluable assistive technology for people
with limited mobility, providing them with accessibility tools. It enables individuals to

use computers and other devices independently [175].

3.5.2 Virtual and Augmented Reality (VR/AR) technology

Improving User Experience: Gaze estimation enhances VR/AR experiences by
allowing objects to be activated or highlighted according to the user’s gaze. This results
in a more organic and captivating engagement [175].

Foveated Rendering: This technique uses gaze data to focus computational re-
sources on the area where the user is looking, improve graphics quality, and reduce the

processing power required for the rest of the visual field [175].

3.5.3 Marketing and User Research

Exploring User Attention: Through the analysis of eye movements on websites
or advertisements, researchers gain insights into what sparks a user’s interest and how
they navigate through information. These data are extremely valuable and can be used
to improve website design, product placement, and advertising campaigns [175].

Product Design and Development: Gaze tracking provides valuable insight into
user behavior, allowing designers to understand which features attract the most attention
and how users interact with interfaces. This can result in the development of products

that are easier to use and understand.
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3.5.4 Healthcare

Diagnostic: Eye tracking is a valuable tool for evaluating neurological conditions such
as Parkinson’s disease and autism spectrum disorder (ASD). By studying gaze patterns
and pupil dilation, researchers can gain insight into these conditions [146].

Communication Aids: Gaze estimation has the potential to greatly benefit people
with conditions such as Amyotrophic Lateral Sclerosis (ALS) by allowing them to interact
with their environment and control communication devices through their eye movements
[146].

Rehabilitation: Eye tracking technology can be seamlessly incorporated into rehab-
ilitation programs for stroke victims and individuals with visual impairments. This innov-
ative approach helps in the recovery process by helping patients regain control of their

eye movements and improve their visual function [146].

3.5.5 Education and Learning

Personalized Learning: Teachers can gain valuable insight into student learning by
observing their gaze patterns while studying. This allows educators to identify the specific
areas that students find challenging and tailor their instruction accordingly. This assists
teachers in adapting their instruction to better suits the individual needs of each student
[175] .

Realtime Feedback: Monitoring the gaze patterns of students in online classes can
provide valuable insights to teachers regarding their level of engagement and comprehen-
sion. This information can assist teachers in measuring student engagement and compre-

hension of the lesson [35] .

3.5.6 Gaming and Entertainment

Eye Tracking Gameplay: Gaze tracking has the potential to completely transform
the gaming industry by integrating eye movements into the overall gameplay experience.
For example, in a gaming experience where players can precisely aim weapons, select
targets, or activate special abilities through eye-tracking technology, enhancing both im-
mersion and strategic depth. This introduces an additional level of strategic thinking and
engagement to gaming experiences.

Data Driven Game Design: Studying the gaze patterns of players during gameplay
can provide valuable insights for game creators [89]. This information is valuable for
game developers as it allows them to enhance the gaming experience. By fine-tuning the
difficulty, designing levels more intelligently, and personalizing the game for each player,
developers can create better games.

Biometric Authentication in Games: Gaze patterns have emerged as a potential
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form of authentication in games. This innovative approach allows players to easily log in
or access specific features by directing their gaze towards designated targets [19].
Augmented Reality Experiences: AR experiences can use gaze data to enhance
the user’s view by adding extra information or content that aligns with their line of sight.
This creates a highly engaging and customized experience [175].
Virtual Reality Fitness: Gaze tracking has the potential to transform VR fitness
experiences. By simply looking at virtual objects or using eye movements to control char-

acter movement, users can enjoy a more immersive and engaging workout session [63].

3.5.7 Security and Law Enforcement

Lie Detection: Research is currently being conducted to explore the potential of eye
movements in detecting lies during questioning [146].

Security Attention Analysis: Applications of gaze tracking extend to various set-
tings, such as airports, where it can be used to identify individuals exhibiting suspicious

behavior by analyzing their eye movements [146].

3.5.8 Art and Design

Interactive Art Installations: Artists can utilize gaze tracking technology to create
art installations that respond to the viewer’s gaze, resulting in a personalized and unique
experience for everyone [175].

Eye tracking in Art History: Studying eye-tracking in art history allows researchers
to gain insights into how individuals perceive and interpret artworks. By analysing where
people direct their gaze when observing different pieces, valuable information can be

obtained citezhang2021eye.

3.5.9 Sports and Athletics

Performance Analysis: Coaches can utilize gaze tracking to analyse how athletes
observe opponents or objects during practice or games. This enables researchers to develop
more effective strategies for achieving optimal performance [120].

Training Tools: Athletes can enhance their focus and decision-making skills through
the utilization of gaze tracking in training simulations. It assists individuals in honing

their ability to focus on significant targets or specific areas of the field [120].
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Chapter 4

Gaze Tracking Using an Unmodified
Web Camera and Convolutional
Neural Network

In the previous chapter a comprehensive literature survey was conducted to understand
the progress in gaze estimation. This chapter goes through the objective of this dissertation
where a goal is to investigate whether a person owning a standard webcam, typically on
a laptop or desktop, can perform gaze estimation on their machine without the need for
any additional hardware. This chapter is based on the paper [8], which was published in
Applied Sciences Journal in 2021 (DOI: https://doi.org/10.3390/app11199068).

Gaze estimation plays a significant role in understating human behavior and in human—
computer interaction. Currently, there are many methods accessible for gaze estimation.
However, most approaches need additional hardware for data acquisition which adds an
extra cost to gaze tracking. The classic gaze tracking approaches usually require system-
atic prior knowledge. Moreover, they are fundamentally based on the characteristics of the
eye region, utilizing infrared light and iris glint to track the gaze point. It requires high
quality images and infrared cameras with particular environmental conditions and another
light source. Recent studies on appearance-based gaze estimation have demonstrated the
capability of neural networks, especially convolutional neural networks (CNN), to decode
gaze information present in eye images and achieved significantly simplified gaze estima-
tion [27]. In this chapter, a gaze estimation method that utilizes a CNN for gaze estimation
that can be applied to various platforms without additional hardware is presented. An
easy and fast data collection method is used to collect images of the face and eyes from
an unmodified desktop camera. The proposed method registered good results; it shows
that it is possible to predict the gaze with reasonable accuracy without any additional

tools. This chapter involves the classification of gaze into predefined regions on screen.
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4.1 Introduction

Gaze estimation has long been recognized as an important research topic since it
has strong real-world applications, for instance, in human—computer interfaces [101, 66],
gaze-based interfaces [25, 123], virtual reality [112, 122], health care [56], behavioural ana-
lysis [64], and communication skills [127]. Therefore, gaze estimation has become a well-
established research topic in computer vision, especially in human—computer interaction
(HCI) [74, 97] . Early gaze estimation techniques required strict conditions to calculate
gaze points, such as stabilizing a person’s head and controlling light conditions. These
restraints bounded the applications to relatively restricted laboratory environments. For
applying gaze estimation in natural environments, authors have proposed many methods
to mitigate these restraints and have uplifted gaze estimation towards being calibration-

free, without person-specific and light independent gaze tracking [15, 182].
Many eye-tracking methods on the market can be quite costly, as they typically re-

quire specialized hardware and software. Given the increasing demand for eye-tracking
applications, there is a corresponding need for affordable and widely accessible methods
to gather data on human gaze coordinates. Thus, the utilization of unmodified cameras
that are already present in most computer setups can have a significant impact on the
widespread adoption of eye-tracking technology. These cameras are readily accessible and

do not incur any additional expenses.

This chapter explores the potential of using unmodified web cameras to estimate gaze
coordinates. In modern times, it’s common for computers to come with built-in cameras
that have the potential to be used for gaze estimation. One issue that occurs is that
standard web cameras are limited to capturing images in the visible light spectrum, with
many of them coming with infrared filters. Another issue is that these cameras typically
come with a wide-angle lens and provide little to no zooming capabilities. The result is that
the image of the eyes appears to be small with a low resolution and is greatly influenced
by the surrounding light conditions. Using an unmodified camera for eye tracking poses

a significant challenge.

Algorithms that utilize unmodified cameras have a distinct advantage over classical eye
tracking algorithms. In contrast to classical eye tracker, which utilize infrared cameras and
an additional infrared light source to track the eyes by capturing the reflection from the
eyeball, algorithms that use unmodified cameras work differently. Although infrared-light-
enhanced cameras are highly accurate in detecting eyes, they do come with an added cost
for eye-tracking purposes. Our research involved utilizing standard unmodified cameras to
efficiently detect face and eye regions, resulting in a significant reduction in eye-tracking
costs. Estimating the gaze coordinate from unmodified cameras can be challenging due
to the difficulty in consistently locating the pupil. In addition, variations in lighting,

head orientation, and eye angles can pose challenges when attempting to determine the
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direction of a person’s gaze.

For this research, an unmodified web camera was used to capture an image which was
then processed by the CNN network. The network was able to generate data about the
specific area on the screen where the person was directing their gaze. The CNN network was
trained and tested using various architectures and combinations of face, eyes, and single
eyes to accurately estimate the gaze coordinate from camera images. Our experimental
results indicate that it is indeed feasible to accurately predict human gaze points using

an unmodified camera.

The main contribution of this chapter is as follows.

o This chapter introduces a dataset for gaze estimation using unmodified camera.

— This dataset is unique because it was collected "in the wild" by users on their

own laptop without any supervision.

o The dataset was used to train different neural networks for gaze estimation.

— Data was collected using a webcam, as a result, achieving high accuracy for

precise gaze point estimation was challenging.

o However, the results show that it is possible to determine with good accuracy which

of the 20 predefined screen areas the user is looking at.

4.2 Methods and Materials

This section delves into the research methodology, beginning with the procedures for
collecting data. In addition, it provides a comprehensive overview of the essential data
preprocessing steps required for successful deep learning applications. Next, the chapter
proceeds to discuss the dataset utilized in the study. Lastly, the final subsection explores

the different neural network architectures that were examined in the experiment.

4.2.1 Data Collection Methodology

This section focuses on data acquisition, a critical aspect of deep learning. The quality
of acquired data directly impacts the training process for neural networks. Any outliers or

deviations from the expected data format can negatively affect the entire training process.
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display camera

Figure 4.1: The experimental setup

Data were collected using the EyeTrackerDataCollector application, which is a desktop
application registering images from a camera. No specific hardware requirements were
made. The only hardware requirement was to have a webcam, preferably built into the top
of the laptop screen (see Figure 4.1). This assumption allowed for the acquisition of images
under real-world conditions and not typical laboratory conditions. These measures were
designed to answer the question of whether anyone owning standard webcam equipment
could use a classifier capable of determining where on the screen a person is focusing
their attention. Test subjects were asked to pay attention to the lighting during image
acquisition. A problem with the lack of robustness to this factor was noted at the outset.
Failure to adjust the lighting resulted in very low-quality, dark even black, or completely
overexposed images. The subject sat centrally facing the screen with the built-in camera
at the height of the horizontal axis of the eyes at about 35 to 50 cm from the monitor.
During every session, the subject was required to click 20 points displayed subsequently
on screen in different evenly distributed locations (in a five by four grid). After each click,
a series of three camera images was taken and stored together with information about the

point’s location.

4.2.2 Data Preprocessing

Figure 4.2 presents the image processing steps. The original images as taken from the
camera are presented on the left side of the figure, while the right side presents the images
that were additionally sharpened using a function available in the OpenCV library. Step
(1) is to take a picture with a webcam. Step (2) is to convert the image to grayscale. Step

(3) is to cut out the face detected by the Viola—Jones classifier using a proper Haar cascade
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[148]. This method was presented by Paul Viola and Michael Jones in 2001. The proposed
solution is based on machine learning and uses Haar-like features. The cascade feature
is trained on a large number of positive and negative images. It is then used to detect
objects in other images. In the first stage, the algorithm needs a large number of positive
images, i.e., images that will be targeted for detection, such as images containing a face,
and a large number of negative images that do not contain the object to be detected in a
later stage. It is important to keep the size of the images the same. To achieve this goal,
the images must be scaled appropriately to equal size. It allows the algorithm to omit
any unnecessary and meaningless factors that would also have to be considered during
learning. Once trained, such a classifier returns a value of “1” when an object is found or
“0” if an object is not found. To search for an object across the image, the classifier, in the
form of a window, moves across the image in search of the object by checking each location.
The classifier is designed to be easily expandable and modifiable. It allows searching for
objects of different sizes. Such a solution translates into the classifier’s efficiency because
the size of the input image is not required to change. To find an object of unknown size in
the image, the scanning procedure is repeated several times, and the scaling factor of the

classifier is modified each time. We used the cascades available in the OpenCV library.

Figure 4.2: Stages of image processing.
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The right and left eyes are found and marked by using another Haar cascade in step
(4). The face is detected first, and then the eyes are detected in the face image. This
approach reduced the susceptibility of misclassification of eyes in the image by detecting
objects that are confusingly similar to eyes. Step (5) is to precisely cut out the eye itself
if possible. Step (6) (the final set) is to mask the eye from the fifth stage with a white
ellipse with a black border. Performing the fifth and final sixth stages help to reduce the
influence of meaningless pixels surrounding the eye as much as possible. This approach
increases the quality of the trained neural network. The last step before using the data to
train the CNN is to resize the images. For proper operation, the neural network requires
that each of the input images should be of the same size. Therefore, all eye images were
rescaled to 60 x 30 pixels and all face images to 227 x 227 pixels using methods available
in the OpenCV library.
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Figure 4.3: An example of blink eye images for in red rectangle

The data prepared using this approach requires manual verification. The process in-
volves thoroughly examining all gathered images to ensure their accuracy and relevance.
In certain cases, the Haar cascade classifier may mistakenly identify a different element
on the image that resembles an eye. In some instances, the individual conducting the
examination may have directed their attention elsewhere. These cases should be disreg-
arded. It is also possible that the individual blinks at the moment the picture is captured,
resulting in the detection of a partially closed eye. It is important to manually remove
these deviating images from the dataset before proceeding with the neural network train-
ing process. In the future, our goal is to enhance our capabilities in identifying deviations
by implementing more advanced automated methods. Images that have been excluded
from the dataset are highlighted in red and can be seen in Figures 4.3 and 4.4. In the
first figure, it appears that the subject blinked while the image was being taken. However,
in the second figure, there seems to be a mistake made by the Haar cascade classifier. It

mistakenly identified an extra element in the image that closely resembled the eye feature.
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The identified element appears to be a small piece of the individual’s hair.

The final step of pre-processing is image value normalization. This process involves
normalizing the pixel values of an image. The images in the dataset used for training
and testing the neural network are normalized by dividing the pixel values by 255, which

ensures that each pixel value falls within the range of 0 to 1.
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Figure 4.4: An example of an extra element incorrectly detected as an eye by the classifier
in red rectangle.

4.2.3 Datasets

Two datasets were created and utilized during the training process for the neural net-
work. The initial dataset contained images obtained from a single person. There are around
6000 images in this dataset, which includes all the images obtained for the 20 points. It
suggests that there are approximately 300 sets of images for each point, which include left
and right eye images as well as a face image. The second dataset includes images obtained
from four subjects, with one subject repeating the tests twice. The first time, they did not
wear glasses (with lenses), and the second time, they wore glasses. In this set, the number
of images is more than quadrupled as each tested person was asked to provide the same
set of data.

4.2.4 Network Architecture of the Tested Model

This section details three designed models, each tailored to accept different input
images. Despite variations in input, all models share fixed elements: output layer activ-
ation functions, hidden layer activation functions, weight initialization strategy, and loss
function. These architectures represent the final, refined versions resulting from extensive
parameter testing. Each network outputs a vector of 20 values, where each value signifies
the probability of the input image corresponding to the user looking at a specific area
within a pre-defined 5x 4 grid of 20 regions.

Every network consists of three kinds of components:

« Convolutional layer (Convolution): The layer’s input is an image with some number
of channels, and the layer creates another image with the number of layers equal to
the number of filters. The number and the size of filters used to convert the image

are two parameters of such layer.
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o Pooling Layer (Subsampling): The layer’s input is an image, and the output is
the image reduced in both dimensions. Only Max Pooling layers were used, which
reduced the image by representing the area of a given size by one pixel, which is
the brightest. There is only one parameter for this layer—the size of the reduction.

Only two sizes, 2 x 2 and 3 x 3, were used.

 Fully connected layer (FC): It is a classic neural network’s layer that consists of
some number of neurons, and every neuron received a weighted combination of all

input values.

The Convolutional Neural Network (CNN) was trained using the ADAM optimizer [83]
with a starting learning rate of 0.00015. ReLU (Rectified Linear Unit) activation [166] was
employed for hidden layers, while Xavier initialization [55] provided weight initialization.
The output layer utilized a normalized Softmax exponential function Equation (4.1) for
activation. "

o(yi) = m (4.1)
where y; represents the output from the network, and K = 20 is the number of classes.

Negative Log-Likelihood (NLL) was taken as the loss function, which works well with
the Softmax activation function for solving multi-class neural network learning and image
classification problems considering a set of pixels as input. Equation (4.2) represents the

mathematical formula for the NLL function:
M
1(0) == (Yiog(c(0" X)) + (1 — Y)log(1 — o (8" X)) (4.2)
n=1

where 6 is the parameter of the function, Y denotes the output values, X represents the
features of the image, and M is the number of samples.

An identical naming convention for the neural network layers was adopted for each
experiment. The LRE symbol designation refers to layers using the right eye images, the
LLE symbol refers to layers describing the left eye, and LF refers to layers pertaining to
face images. The Convolution layers always have information about the size of the filter,
and the numbers of filters are provided in the text or tables. The Subsampling layers have
information about the reduction size. The number of neurons for each Fully Connected
layer is explained in the corresponding text. The FC symbol indicates fully connected

layers where, for example, FC-RE refers to the fully connected layer for the right eye.

One Eye Image as a Neural Network Input

For this experiment, a network architecture was set up to take in an image of a single
eye as one of its parameters. Figure 4.5 displays the architecture. The neural network is

composed of three convolutional layers, a subsampling layer with a filter size of 2 x 2,
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and a fully connected layer. The initial convolutional layer (LLE1) consists of 96 filters,
followed by LLE3 with 384 filters, and LLE4 with 256 filters. The FC1 layer consists of
256 neurons, while the final layer produces a vector of 20 values. Two models were trained:
one using left eye images and the other using right eye images, referred to as ARCH-LE
and ARCH-RE respectively.

Face Image as Neural Network Input

The neural network architecture designed for the second experiment utilizes face im-
ages as its parameters. Figure 4.6 displays the schema of the architecture. The neural
network consisted of five convolutional layers, three subsampling layers with a filter size of
3x 3, and two fully connected layers called FC1 and FC2. Table 1 provides the details of
the neural network layers. The fully connected layers had 4096 neurons for FC1 and 1000
neurons for FC2. In the following sections, we will use the term ARCH-F to refer to this

solution.
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Figure 4.5: Network architecture for processing images with one eye (ARCH-LE and
ARCH-RE).
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Figure 4.6: Network architecture for processing face images (ARCH-F).

Table 4.1: Characteristics of convolutional layers for an experiment using face image as
neural network inputs

Layer Number  of Filter Size Step
Filters

LF1 96 11 x 11 4

LF3 256 5x5 1

LF5, LF6 384 3 x3 1

LF7 256 3 x3 1
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Both Eye Images as a Neural Network Input

For this experiment, a network architecture was prepared to accept left and right eye
images as its input parameters. The schema is shown in Figure 4.7. The neural network
consists of three convolutional layers, one subsampling layer

2x 2, one concatenation layer, and three fully connected layers.
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Figure 4.7: Network architecture for the network using both eyes images.

The fully connected layers consist of a layer for each input image, i.e., FC-LE1 and
FC-RE1 with 1024 neurons, the concatenate layer, and two layers: FC1 with 2048 neurons
and FC2 with 1024 neurons. The details of the convolutional layers of the neural network
are presented in Table 2. The output of the developed neural network architecture is a
set of twenty points representing the position of the area on which the subject focuses
his/her gaze. This solution will be referred to as ARCH-LRE.

All three presented network architectures are a little bit different in terms of topology.
For instance, one eye image architecture contains only three convolutional layers, one

subsampling layer, and one fully connected layer (Figure 4.5). Face image architecture
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is more complicated and contains two sets of alternate convolutions and subsampling
layers and then again three convolutional layers, one subsampling layer, and finally two
fully connected layers (Figure 4.6). For both eyes architecture (Figure 4.7), the network
has a similar architecture as one eye network, but the outputs from the left eye and
right eye stacks are concatenated at the end and sent to two fully connected layers. All
three architectures have a different number of parameters because they all have a different
number of layers. The proposed architectures were chosen from a set of several possibilities
that were initially studied. These networks are not generic, and the search for possible

better architectures requires further studies.

Table 4.2: Characteristics of convolutional layers for an experiment using both eyes images
as neural network inputs

Layer Number of Filters Filter Size Step
LLE1l, LRE1 2 x 96 6 x 3 2
LLE3, LRE3 2 x 384 3 x3 1
LLE4, LRE4 2 x 256 3 x3 1

4.3 Experiments and Results

This section provides an overview of the research conducted and the findings obtained.
It begins by outlining the methodology used to obtain the results. The following sections
describe each of the experiments performed. The last section highlights the results and

presents the conclusions derived from the research.

4.3.1 Research Methodology

The training set and the test set were determined through an automated and random
process, with 70% of the data allocated for the training dataset and the remaining 30%
for the test dataset. In terms of numbers, this equates to around 4200 images of left and
right eyes and faces for the training set. Additionally, there are 1800 images allocated for
the test set of Dataset.

Each neural network configuration was repeatedly changed in terms of architecture
or hyperparameters and then retested. All experiments were performed on a laptop with
Intel Core i7 and 16 GB RAM hardware specifications. The prediction quality was de-
termined by the precision index built into the DeepLearning4j library calculated from the

classification accuracy of the test set.
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4.3.2 Results

In this section, we will discuss the outcomes of the tests conducted using the neural
network architectures that were specifically designed for the provided data. Our primary
objective in this research was to identify the most effective architecture for accurately
classifying the focus point of gaze. The models that were developed during the experiments
were integrated into the EyeTracker application, which was specifically designed for this
purpose. This allowed for real-time testing of their performance.

The experiments were carried out on two datasets. In the study, there were two data-
sets used. The first dataset (D1) consisted of images from one person, while the second
dataset (D2) included images from four different individuals. Additionally, one individual
participated in the test twice, once wearing contact lenses and once wearing glasses, as
explained in Section 4.2.2. All network architectures were trained for up to 70 epochs.

The first experiment was aimed at checking if the model will work better after specific
preprocessing. The first subset consisted of original grayscale images, and the second of
the images was additionally sharpened by using an algorithm available in the OpenCV
library.

This experiment was performed based on images from the dataset containing data
collected from one person (D1) and using ARCH-LRE architecture. The results of the

experiment are presented in Table 4.3 (columns two and three).

Table 4.3: Results for original and sharpened images (the latter for both D1 and D2)—
averaged accuracy for the range of training epochs

Epoch Original Images (D1) Sharpened Images (D1) Sharpened
Images
(D2)
1-10 26.01% 27.52% 16.25%
11-20 41.25% 45.92% 30.73%
21-30 56.48% 59.12% 43.04%
31-40 67.32% 68.34% 53.06%
41-50 73.62% 72.70% 54.46%
51-60 76.52% 77.68% 63.28%
61-70 77.24% 81.61% 73.28%

The second experiment compared the results for two datasets, D1 and D2. Since the
first experiment showed that the network performs better with sharpened images. The
results are shown in the Table 4.3.

The following experiment conducted the learning process of a neural network using

an architecture that utilizes complete face images as input parameters. In Figure 4.6,
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we present the schema of the ARCH-F architecture used in this experiment. Table 4.4

presents the results of the experiment for Datasets 1 and 2.

Table 4.4: Results for ARCH-F architecture—averaged accuracy for the range of training
epochs.

Epoch Dataset 1 Dataset 2
1-10 11.80% 7.42%
11-20 15.20% 38.07%
21-30 22.74% 72.66%
31-40 39.88% 80.02%
41-50 61.81% 83.99%
51-60 77.00% 66.61%
61-70 81.81% 80.81%

In the last two experiments, we aimed to assess whether it is possible to achieve similar
results by using images from only one eye, compared to a more complex network that uses
both eyes. The results of these experiments, performed on both left and right eyes in both

datasets, are summarized in Table 4.5.

Table 4.5: Results for ARCH-L and ARCH-R architectures—averaged accuracy for the
range of training epochs.

Left Eye Right Eye

Epoch Dataset 1 Dataset 2 Dataset 1 Dataset 2
1-10 34.72% 44.00% 35.93% 36.22%
11-20 68.51% 64.29% 63.86% 59.49%
21-30 80.86% 72.75% 75.85% 67.94%
31-40 84.71% 75.17% 78.65% 71.95%
41-50 87.15% 77.40% 80.58% 74.34%
51-60 87.77% 78.03% 81.51% 75.37%
61-70 88.55% 79.53% 82.30% 75.93%

4.3.3 Discussion

The experiments in section 4.3.2 demonstrate the possibilities for achieving reliable
eye-tracking results in diverse environments, even when using low-quality web cameras.
Certainly, the results are far from perfect—we only assessed if one of the 20 areas could
be identified using eye images—but this outcome might meet the requirements for various

human-computer interface (HCI) applications. In the initial experiment, it was found that
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sharpening the acquired image had a beneficial effect on subsequent classification, result-
ing in an increase in accuracy from 77% to 81%. As a result, all subsequent experiments
utilized the sharpened versions of the images. As expected, the results for Dataset 2 were
consistently inferior to those of Dataset 1 across all experiments. It is worth noting that
these results are also quite impressive, with accuracy ranging from 72% to 80% depending
on the architecture. It’s important to note that when randomly guessing among 20 classes,
the accuracy is typically around 5%. Therefore, the results obtained are significantly better
than random chance.

It is worth noting that the architecture that yielded the highest accuracy (over 88%)
was the one that exclusively utilized images of the left eye (ARCH-L) (Table 4.5). It is
likely that the main reason for this phenomenon was the complexity of the network that
utilizes two eye images and concatenates layers (ARCH-RL), coupled with the insufficient
training of only 70 epochs.

Another interesting finding was the good accuracy of the model that uses face images
instead of eyes. The model obviously has more data to analyze, but a large percentage of
this data is probably irrelevant. Due to more extensive input, this model was also more
challenging to train; the training process lasted significantly longer than for other models.
However, good results suggest that eye detection algorithms may be omitted in some

applications.

4.4 Conclusion

This chapter explores the potential of using an unmodified camera to track a person’s
gaze. Due to the high cost of commercial eye tracking devices, their availability is quite
limited. Our research introduces a cost-effective eye-tracking method that can be seam-
lessly integrated into standard desktop or laptop computers, eliminating the need for any
extra equipment. A commonly available CNN network was utilized, making use of un-
modified webcams that are typically found on computers. The images obtained from the
unmodified cameras have poor quality and are highly affected by variations in lighting.
Consequently, achieving satisfactory results proved to be quite a formidable task. Never-
theless, this study demonstrates that by using carefully crafted topology and fine-tuning
hyper-parameters, the CNN network can yield results that have potential applications
in real-world scenarios. While this study achieved noteworthy findings, it is important
to acknowledge the limitations that are also present. For example, the method used to
calculate the exact gaze point did not involve treating it as a regression problem. Instead,
it was simplified by classifying the gaze point into one of 20 areas. This approach makes it
challenging to compare with other methods. In addition, the study had a limited number
of participants and a small amount of data. It is widely recognized that deep learning

networks perform and generalize more effectively when trained on large datasets. In addi-
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tion, the study did not utilize any publicly available datasets for benchmarking purposes.

Next chapters intend to tackle the aforementioned limitations.

4.5 Contributions

After conducting all experiments presented in this chapter, the first hypothesis was
confirmed that it is feasible to develop a CNN-based model that classifies a person’s gaze
into screen regions using low-resolution, low-quality eye and face images captured by a

standard webcam.
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Chapter 5

Person-Specific (Gaze Estimation

from Low-Quality Webcam Images

In the previous chapter, we explored the feasibility of predicting a person’s gaze using
limited resources by mapping their gaze to 20 predefined regions on the screen. In this
chapter, we extend that work by developing a model capable of estimating gaze continu-
ously across the entire screen, rather than restricting it to fixed regions. We approach gaze
estimation as a regression problem, which more closely reflects real-world scenarios. Fur-
thermore, we developed person-specific models that achieved performance comparable to
high-end eye trackers. Unlike generalized models trained on data from multiple individu-
als, a person-specific gaze estimation model is trained for a single user. This personalized
approach allows for more accurate gaze predictions tailored to individual characteristics.
Importantly, our method relies solely on low-quality images captured from a standard
desktop webcam, making it applicable to any computer system without the need for ad-

ditional hardware.

We began by collecting a dataset of face and eye images using a webcam. Various
convolutional neural network (CNN) configurations were then tested, including different
learning rates and dropout rates. Our experiments show that person-specific models out-
perform generalized models when tuned with appropriate hyperparameters. Specifically,
we achieved the following Mean Absolute Errors (MAE) in pixels: 38.20 for the left eye,
36.01 for the right eye, 51.18 for both eyes combined, and 30.09 for full-face images. These
correspond to angular errors of approximately 1.45° 1.37°, 1.98°, and 1.14°, respectively.
This chapter is based on the paper [9], which was published in Sensors Journal in 2023
(DOI: https://doi.org/10.3390/s23084138).
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5.1 Introduction

Various eye trackers are available today, with desktop models offering 1-2° accuracy
and high-end commercial trackers achieving around 0.5° [49, 132]. Despite this progress,
challenges remain, including high costs [85], intrusive hardware [85], and performance
limitations in real-world settings [48, 134, 176]. These obstacles continue to hinder the
widespread adoption of eye-tracking technology across devices like desktops, laptops, and
smartphones. Our main objective is to overcome these constraints and ensure that eye-
tracking technology is accessible to all, regardless of limited resources.

We maintain a well-founded confidence in our ability to achieve this significant mile-
stone. Therefore, the goal is to develop aystem that can operate on both desktop and
mobile devices, eliminating the need for additional instruments. Our ultimate aim is to
achieve an accuracy level that is comparable to that of commercial devices. For this spe-
cific task, we opted for desktop or laptop devices. This decision was based on the fact
that mobile devices currently have exceptional built-in cameras that are capable of cap-
turing high-quality images. Our objective is to develop an eye-tracking algorithm capable
of functioning on low-quality images, such as those captured by standard cameras on
laptops or desktop devices.

Recent advances in deep learning techniques have led to significant transformation
in various fields. This includes computer vision tasks like image recognition[86], object
detection [125], object tracking [156], and segmentation [61]. Unfortunately, progress in
eye tracking is hindered by the scarcity of available data [176, 69, 134]. In this work,
we attempted gaze estimation for a specific person and collected our own dataset using
desktop application. To accomplish this, we developed our own dataset by utilizing a
desktop application. We experimented with various combinations of the left eye, right
eye, and face regions to determine their effectiveness in estimating gaze. In addition, we
conducted experiments with various CNN architectures and fine-tuned their parameters
to achieve the most optimal model.

The main contribution of this chapter as follows:

o We have gathered a dataset of eye and face images that have low-quality, which can

be utilized for training deep CNN models.

e We conducted an analysis of various hyperparameters of the CNN network and

found that their values greatly influence the results.

o We demonstrated that the model developed for a single individual yields significantly
fewer errors compared to the general models trained on data from multiple users.
Furthermore, the error rate of this model is comparable to that of commercial eye

trackers, measuring below 2 degrees of visual angle.
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5.2 Methods and Materials

This section provides details about the data collection process for the experiment, as
well as an explanation of the essential data preprocessing steps needed for deep neural
networks. In addition, this section includes details about the dataset and an overview of

the network architectures utilized in this study.

5.2.1 Data Collection

This section present data collection procedure which places significant role in deep

learning techniques.

Distance between
Screen and User @
—=30-35 Ccm=m=—

Screen

Gaze Point

o
o

Observer

Figure 5.1: The experimental setup

The data used for the experiment were collected using a desktop application called
DataCollector. This application is designed to collect images from the built-in camera of
a laptop. In this research, we utilized the MSI GF75 Thin laptop with a Core i7 9th Gen
processor. The resolution of the laptop camera during the data collection was 640 x 480
pixels. All that was needed for this data collection procedure was a webcam, preferably
positioned on the top of the desktop screen as shown in Figure 5.1 [8]. By implementing
this simple procedure, we were able to gather data in real-world situations, rather than
confining ourselves to a controlled laboratory setting. The participant was instructed to
focus on various points displayed on the screen while sitting at a distance of 30 to 35
cm from the screen. The participant was instructed to carefully consider the lighting
conditions during the data collection process, as variations in lighting can significantly

impact the image quality. Not being mindful of the lighting conditions occasionally led to
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subpar images, either completely dark or partially obscured (with one eye visible and the
other not).

The data was collected in 22 sessions over several days, at various locations, and at
different times of the day and night. Each session had a duration of one to two minutes.
This approach was designed to ensure that the dataset was diverse and included a wide
range of variability. During daytime, when the lighting conditions were optimal, the image
quality was better. However, at night, the image quality was low due to the lack of light in
the room and its surroundings. Thus, the dataset contains images captured under various
lighting conditions, allowing for comprehensive testing of the model in different environ-
ments. The variability in the dataset contributes to the robustness of the models trained
on it, resulting in more generalized results. Throughout each data collection session, the
participant was instructed to select 54 specific points on the screen.

The points were selected at random, allowing the user to click any point on the screen.
However, it was suggested to maintain an equal distribution of points across the entire
screen. Every time a click occurred, a collection of ten images capturing the person’s face
and their gaze location were stored. The dataset used for this research is unique compared
to other universal datasets that are collected from multiple users to train the model. In

this case, the dataset was specifically collected for an individual user.

5.2.2 Data Preprocessing

Once the data was collected, the subsequent task involved data preprocessing, a cru-
cial step in any machine learning or deep learning approach. Here is Figure 5.2, which
shows all the preprocessing steps. The first step in Figure 5.2a was to take an image
from the webcam, and the next step in Figure 5.2b was to detect face using the Viola—
Jones (VJ) classifier that uses the Haar cascade [148]. All incorrectly-classified images
were manually removed. In the next step, the left eye and right eye (Figure 5.2c) were
detected using another Haar cascade. This approach reduced the chance of misclassifying
eyes in images by detecting objects that are similar to eyes [8]. The average dimen-
sions for the left eye image were 55.12 x 55.12 pixels with standard deviation 8.76; for
the right eye 55.89 x 55.89 pixels with standard deviation 7.23; and for the face image
223.24 x 223.24 pixels with standard deviation 23.29. Before sending data to the CNN,
all eye images were resized to 64 x 64 pixels and face images to 224 x 224 pixels.

The data collected using this method required manual checking and verification before
being inputted into the neural network. One of the tasks involved is thoroughly examining
all images to ensure their information is correct. There have been instances where the Haar
cascade for eyes has detected objects having a resemblance to eyes. We carefully reviewed
these images and took the necessary steps to remove them from the dataset. In addition,

on certain occasions, individuals would blink or close their eyes while being recorded. We
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manually removed such images from the dataset before training.

The dataset was collected for the purpose of person-specific gaze estimation. We col-
lected a total of 11,800 images for the experiment. In addition, we created an additional
dataset by masking the area around the eyes with a white ellipse that has a black bor-
der Figure 5.2d. We implemented this procedure to assess the impact of minimizing the
influence of surrounding pixels. The dataset was divided into an 80/20 ratio for training

and testing various models.

(a) Step 1: Original image.

(b) Step 2: Face detection.

c¢) Step 3: Eye detection.

d) Step 4: Eye masking.

Figure 5.2: Pre-processing steps.

The dataset was collected for the purpose of person-specific gaze estimation. We col-
lected a total of 11,800 images for the experiment. In addition, we created an additional
dataset by masking the area around the eyes with a white ellipse that has a black bor-

der Figure 5.2d. We implemented this procedure to assess the impact of minimizing the
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influence of surrounding pixels. The dataset was divided into an 80/20 ratio for training

and testing various models.

5.2.3 Convolutional Neural Network Architecture

This section presents various architectures that have been utilized in the study. We
opted for the CNN network architecture as it is currently state of the art solution for
image data. We examined two different architectures: one with a single image as input
and another with two images as input. For one-image input, we utilized various types of
images including the left eye, right eye, both eyes and masked eyes, and full-face images.
When working with a two-image input, we merged the images from the left and right eye.
The network output consisted of a vector containing two values that indicated location
where a person was looking on the screen. Each network that was tested included five

different types of layer:

Convolutional layers are responsible for learning the feature map from the input

image.
» Pooling layers that decrease the size of the image.
« Batch normalization layers are employed to ensure stability in the neural network.

o Dropout layers are employed to mitigate the risk of over-fitting during the training

process.
« Fully connected layers that compute the ultimate output.

The network was trained using the ADAM optimizer [83] with a variety of learning
rates to fine-tune the network parameters. Once the optimal learning rate was discovered,
the network was re-trained using this value. For the activation function in the convolu-
tional and fully connected layers, we opted for the rectified linear unit (ReLu) [46]. The
weight initialization for filters was set to the default option provided by the Keras imple-
mentation. A loss function, specifically the MAE function, was utilized during training.

Equation 5.3 represents a mathematical formula for MAE.
N | =
=11y — 7l
MAE = ==L = 5.1
v (5.1
In equation, actual value is represented by ¥ , the predicted value is represented by 7

and the total number of examples represented by N.
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Figure 5.3: Architecture that takes normal eyes, mask eyes, and face image as input.

An identical naming convention was used for experiments involving a single eye, double
eye, face, single eye with ellipse (mask), and both eyes with ellipse. The symbols LE,
RE, FF, BE, LEM, REM, and BEM are used to represent different inputs for the eyes
and face. LE represents the left eye, RE represents the right eye, FF represents the full
face, BE represents both left and right eyes, LEM represents the left eye with an ellipse
(LeftEyeMasked), REM represents the right eye with an ellipse (RightEyeMasked), and
BEM represents both left and right eyes with a mask (BothEyesMasked).

The architecture for a single eye and face in CNN includes 3 convolutional layers, 1
pooling layer, 2 batch normalization layers, 1 fully connected layer (also called a dense
layer), 1 dropout layer, and 1 output layer. The output layer consists of 2 neurons that
represent the X and Y coordinates of a person’s gaze on the screen. The CNN architecture
for both eyes include multiple layers such as convolutional layers, max pooling layers, batch
normalization layers, dropout layers, concatenate layers, dense or fully connected layers,

and a final dense layer (the output layer).
The architecture used in this study, as shown in Figure 5.3 Figure 5.4 a depicts the

network architecture, which accepts either a single eye image (with or without a mask)
or a face image as input. The network architecture in Figure 5.4 takes the left eye and
right eye images as input. Figure 5.4 shows the merging of LE and RE, which combines
the outputs from the left and right networks. The results from the concatenation layer

are passed to the dense layers and ultimately to the output layer.

63



Chapter 5. Person-Specific Gaze Estimation from Low-Quality Webcam Images

**

| Batch}Jor;nalizati on | | Batchb]’or;nalizati on |
| MaxPooling | | MaxPooling |
| Batc]:mor;nalizati on | | BatchIJorI'nalizati on |
| Den se'L ayer | | Den se' Lavyer |
| Dropout | | Dropout |
Merging of LE and RE inputs

| Den se*L ayer |

| Den seTL ayer |

| Droi:n out |

| Dense Layer |

[ Dropout |

C X*_.Y 1

Figure 5.4: Architecture that takes both left and right eyes (with or without mask) as a
single input.

5.2.4 Parameter Tuning

This section presents various parameters that are tuned during the training of the
CNN network. We experimented with different parameter values and utilized the Keras
tuner library [110] to find the optimal ones. We carefully monitored the learning rate,
dropout, and various kernel sizes for both facial and eyes. We kept the number of fil-
ters (kernels) in the convolutional layers and the number of neurons in the dense layer’s
constant throughout our experiments.

We examined various dropout values and filter sizes for each learning rate in that
experiment. After extensive parameter tuning, we successfully re-trained the model us-
ing the optimal values. Table 4.2 displays the list of tuned parameters along with their
corresponding values. For example, a range of learning rate values were selected, starting
from 0.1 and going down to 0.0001. Similarly, the dropout rate was varied, ranging from
0.1 to 0.5. For the face experiment, we chose filter sizes of 3 x 3,5 x 5, and 7 x 7. As
for the eye experiments, we selected filter sizes of 3 x 3 and 5 x 5. We did not include a
7 x 7 kernel for eyes as the size of the eye image was 64 x 64 pixels. We set the number
of filters for the first layer at 32, for the second layer at 96, for the third layer at 160, and
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the number of dense units at 64. Table 4.2 shows the number of filters in each layer: the
first layer is represented by ConV1, the second layer by ConV2, and the third layer by
ConV3.

Table 5.1: List of networks’ parameters together with their values.

Parameter Name Values
Learning Rate (0.1, 0.01, 0.001, 0.0001)
Dropout (0.1, 0.2, 0.3, 0.4, 0.5)
Kernel Size (3 x3),(5x5),(7Tx7)
ConV1 Filter No. 32

ConV2 Filter No. 96

ConV3 Filter No. 160

Dense Unit 64

5.2.5 Results

This section assesses the CNN network’s performance on the person-specific dataset
for gaze estimation. The models were trained using 80% of the data and tested using the
remaining 20%. The experiments were conducted on a desktop computer equipped with
an AMD Ryzen 7 3700X 8-core processor and 16 GB of RAM. In addition, all models
were constructed using the TensorFlow library. The quality of the predictions made by
the trained models was assessed by calculating the Mean Absolute Error (MAE) value in
pixels.

Training a model on a local machine for eye and face on a desktop processor proved
to be quite time-consuming. The model using eye images took an average of 12 hours
to train, while the model using face images took over 48 hours. Nevertheless, when the
model was transferred to a machine equipped with a graphics processing unit (GPU) for
training, there was a notable decrease in training time. The eye models were trained in a
remarkably short time of just 30 minutes, while the face models took a slightly longer but
still impressive average of 1 hour and 30 minutes. Considering the time difference between
training the model on a local machine and a machine with GPU, it was a wise decision
to shift the model training to an external source. This move significantly decreased the
training time. To use the suggested method on a laptop or desktop, person need to gather
images in multiple sessions using the DataCollector application and then train the model
with them. Training the model on the images initially may require time, but once it’s
trained, it becomes capable of gaze estimation.

Our primary objective for this experiment was to discover the most effective model
for predicting a person’s gaze using low-quality images. Two different experiments were

conducted using the same dataset: one where the neighborhood of an eye was not masked,
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and another where it was masked. The OpenCV library was used to mask the eye region.
All networks were trained for up to 100 epochs. The results for both experiments are
displayed with varying learning rates, dropout values, and filter sizes. Tables 5.2-5.5

display the pixel errors for the left and right eyes, both with and without a mask.

Table 5.2: Results of LE and and RE with and without a mask (learning rate = 0.0001).

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3Ix3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 41.24 42.55 44.92 50.30 55.37 40.89 42.97 46.83 48.39 47.37

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 5 x5 5x5 5x5 5x5 5x5H 5x5 5HhxH Hhxb hxd hxbh
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 38.20 41.68 47.37 47.58 52.39 36.01 4047 4193 4583 4797

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 50.26 55.87 58.08 62.01 64.33 52.57 51.86 49.12 55.58 59.89

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 5 x5 5x5 5x5 5xXx5 5xXx5H 5xX5H5 HxH HxdH HhxdH Hhxb
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 44.32 48.26 50.07 52.77 58.54 42.34 4534 49.28 51.78 51.13

The first experiment compared the error for eyes with and without masking as input
to the network to see if masking eye-neighboring pixels affects results. The best results
are presented in Tables 5.2-5.5 for different learning rates and filter sizes, with respect to
both eyes with and without the mask. All the results are presented as MAE in pixels.

Similarly, the second experiment was intended to compare the results of the combin-
ation of both eyes with and without a mask. The best results for different learning rates
and filter sizes are presented in Table 5.6. Finally, the results for the full face as a single
input are shown in Table 5.7 with different learning rates and filter sizes.

Tables 5.2-5.5 indicate that the network performed well in both single-eye experiments,
with and without a mask, when using a learning rate of 0.0001, a filter size of 5x5, and a
dropout rate of 0.1. The best results are displayed in bold. In our analysis, it was observed
that the network with a learning rate of 0.1 exhibited the poorest performance. Based on
this experiment, it becomes clear that the learning rate plays a crucial role in determining
the performance of the network.

The objective of the second experiment was to determine if it was possible to achieve

comparable results to using single-eye input by using two-eyed images as input in a more
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Table 5.3: Results of LE and RE with and without a mask (learning rate = 0.001).

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 43.42 45.04 50.09 49.35 53.40 41.85 44.15 47.63 47.27 54.64

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 5 x5 5 x5 5x5 5x5 5x5 bxb 5x5 5x5 5xbH 5Hx5H
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 42.10 46.86 47.37 52.48 57.46 37.74 4195 4510 43.78 48.53

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 55.53 56.36 59.48 62.03 61.07 52.58 53.98 58.14 59.59 63.36

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 5 x5 5x5 5x5 5x5 5x5 x5 5x5 5xb5 5xbH 5x5H
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 48.93 50.94 54.27 51.90 57.44 43.95 4852 51.76 52.02 56.79

complex network. We discovered a comparable pattern to the single eye: the most crucial
parameter after the filter size is a small learning rate. Unfortunately, the results did not
meet expectations compared to the single eye, and the training process took significantly
more time than in the single-eye experiments.

The last experiment involved using full-face images as input to the network to predict
gaze. The findings for full-face images were unexpectedly good and comparable to eyes.
In our experiment, we found that using a 7 x 7 filter for the face image produced the best
results. This indicates that choosing for a larger filter size is more effective than using a
smaller filter size, such as 3 x 3.

In addition, we conducted experiments using varying percentages of data in the train-
ing set to observe the impact of changing the amount of training data on accuracy. Table
5.8 represent all experiments using a 3 x 3 filter size. It is evident that as the percentage
of data in the training set was reduced, there was a corresponding decrease in accuracy.
We utilized different percentages of images for training purposes, specifically 80%, 60%,
40%, and 20%.

Based on the data presented in Table 5.8, it is evident that the results obtained using
20% of the data are the worst. The reason for this is that the training images (1880)
are fewer in number compared to the test images (2360). We conducted an additional
experiment using a lower dropout rate (0.005) to assess whether there would be any

additional enhancements in accuracy. Unfortunately, it was discovered that the accuracy
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Table 5.4: Results of LE and RE with and without a mask (learning rate = 0.01).

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 47.13 49.59 50.53 52.64 55.82 5H1.11 51.03 5H7.15 57.17 54.79

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 5 x5 5 x5 5 x5 5x5H 5x5 5xH Hxb5 bxb 5HxdH 5hx5h
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 44.15 50.69 49.53 54.63 61.59 44.26 48.73 51.54 50.94 58.63

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 55.77 60.04 65.93 69.06 66.52 54.09 66.11 59.81 61.64 68.88

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 5 x5 5 X5 5 X5 5 XH HXDH HXH HXH HxXH HXH HxXDH
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 52.95 67.42 72.61 63.52 66.90 52.66 59.46 74.77 67.51 69.32

Table 5.5: Results of LE and RE with and without a mask (learning rate = 0.1).

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 95.94 280.29 272.36 354.21 279.89 93.06 389.72 308.64 184.71 250.27

Exp. Name LE LE LE LE LE RE RE RE RE RE
Filter Size 5x5 5x5 5 x5 5x5 5HxbH 5x5 Hxbh 5x5 5xb5 bHhxbd
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 140.92 131.15 183.77 260.94 369.40 111.65 172.65 291.42 389.73 277.74

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 216.23 203.84 196.29 248.68 333.17 104.11 174.99 181.81 395.73 382.74

Exp. Name LEM LEM LEM LEM LEM REM REM REM REM REM
Filter Size 5 x5 5x5 5x5 5x5 5x5 5Hxb5 bHxb 5Hhxh 5x5H 5x5h
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 96.16 173.60 184.90 327.07 366.27 150.37 278.38 319.84 350.18 393.51
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did not show any further improvement.

Table 5.6: Results of BE with and without a mask.

Learning Rate = 0.0001 Learning Rate = 0.001
Exp. Name BE BE BE BE BE BE BE BE BE BE
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 53.08 57.85 6297 61.37 70.59 @ 59.89 58.06 61.05 67.23  69.32

Filter Size 5 x5 5x5 5x5 5x5 5x5 5Hx5H bxb b5xb bxb bHx5b
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 53.85 53.46 56.36 64.00 70.28 51.18 5544 56.72 64.06 62.69

Exp. Name BEM BEM BEM BEM BEM BEM BEM BEM BEM BEM
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 66.39 66.02 73.64 73.45 85.30 64.19 71.90 76.04 78.35 82.71

Filter Size 5 x5 5x5 5x5 5x5 5x5 5Hx5H 5xb5 5xb bxb bHx5bh
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 60.83 62.75 63.90 69.83 73.56 62.06 64.87 66.76  70.06 71.80

Learning Rate = 0.01 Learning Rate = 0.1

Exp. Name BE BE BE BE BE BE BE BE BE BE
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 102.16  91.11 115.09 113.72 126.63 3680.40 368.50 373.74 368.68 368.62

Filter Size 5 x5 5 x5 5x5 5x5 5x5 5Hx5H 5xb5 5H5xb5 bHxbh bHxbH
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 94.33 106.30 125.27 102.14 121.40 370.49 370.51 370.49 372.40 370.46

Exp. Name BEM BEM BEM BEM BEM BEM BEM BEM BEM BEM
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 199.04 153.00 173.98 268.43 285.19 368.70 368.75 368.66 368.67 368.70

Filter Size 5 x5 5 x5 5x5 5x5 5x5 5Hx5H 5xb5 5H5xb5 bHxbh bHx5H
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 127.14 180.67 175.08 233.90 337.41 366.14 366.10 368.10 366.10 366.90

Given the prevalence of presenting gaze errors in degrees rather than pixels, we have
recalculated the errors to provide a more accurate representation of our model’s perform-
ance. Once the distance of a person from the camera and the screen size are known, it is

possible to convert the error in pixels to degrees using the following formula:

Ecm
Errorg., = tan™* Dist’ (5.2)

Where F.,, represents the error in centimetres resulting from the conversion from
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pixels, and Dist denotes the distance in centimetres between the screen and the viewer’s
eyes. The distance between the screen and the person can vary, as there is currently no
way to adjust it without a chin rest. Therefore, we could only make an approximation
of this distance. Following the recalculation, the minimum error for LE is approximately
1.45 degrees. The minimum error for the RE is approximately 1.37 degrees. The minimum
error for both eyes (BE) is approximately 1.98 degrees. With regards to full-face (FF),
the minimum error is approximately 1.14 degrees. Figure 5.5 shows the error of the top

models in terms of pixels.

Table 5.7: Results of full-face.

Learning Rate = 0.0001 Learning Rate = 0.001

Exp. Name FF FF FF FF FF FF FF FF FF FF
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 39.38 42.29 43.26 47.76 64.33 40.24 4549 54.17 54.42 64.33

Filter Size 5 x5 5x5 5x5 5xXx5 5x5 5Hx5H 5Xx5 HxbH 5x5 HxbH
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 37.87 43.04 39.04 49.59 59.02 37.75 55.84 62.60 61.84 77.63

Filter Size 7 x7 7Tx7 7Tx7 7Tx7 7x7 7Tx7 7x7 7x7 7x7 7x7
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 30.09 34.12 43.60 47.17 52.73 55.52 60.83 54.71 54.03 59.80

Learning Rate = 0.01 Learning Rate = 0.1

Exp. Name FF FF FF FF FF FF FF FF FF FF
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 4748 76.70 273.03 81.23 90.77 380.65 380.65 380.64 380.65 380.65

Filter Size 5 x5 5 x5 5x5 5x5 5x5 5H x5 5x5 HxbH 5x5 Hxbd
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 43.24 97.59 169.95 57.20 80.20 380.65 380.65 380.65 380.65 380.65

Filter Size 7 x7 7 x7 7Tx7 Tx7 7Tx7 7Tx7 7Tx7 7x7 7T7x7 7x7
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 53.19 77.66 7816 64.05 82.59 380.65 380.65 380.65 380.65 380.65

Where FE.,, represents the error in centimetres resulting from the conversion from
pixels, and Dist denotes the distance in centimetres between the screen and the viewer’s
eyes. The distance between the screen and the person can vary, as there is currently no
way to adjust it without a chin rest. Therefore, we could only make an approximation
of this distance. Following the recalculation, the minimum error for LE is approximately

1.45 degrees. The minimum error for the RE is approximately 1.37 degrees. The minimum
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error for both eyes (BE) is approximately 1.98 degrees. With regards to full-face (FF),
the minimum error is approximately 1.14 degrees. Figure 5.5 shows the error of the top

models in terms of pixels.

Table 5.8: Results of different training sets on face data.

Learning Rate = 0.0001 Learning Rate = 0.001

Exp. Name FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80)
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 41.88 41.87 4381 4789 60.35 45.90 52.25  52.17 5946 7587
Exp. Name FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60)
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Error 42.88 4494 49.04 53.55 60.35 47.33 54.69 55.17 60.23  74.87
Exp. Name FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40)
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 49.37 48.70 54.30 5243 5883 50.60 59.03 63.97 57.37  70.62
Exp. Name FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20)
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 56.17 59.29 67.03 6824 71.01 63.36 61.89 76.18 7496 71.11
Learning Rate = 0.01 Learning Rate = 0.1
Exp. Name FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80) FF(80)
Filter Size 3 x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 58.01 81.48  71.18 125.93 150.27 377.40 377.40 377.41 377.40 377.41
Exp. Name FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60) FF(60)
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 59.21 83.88 70.45 127.45 148.76 37741 377.40 377.41 377.40 377.41
Exp. Name FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40) FF(40)
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 53.98 114.24 125.67 82.95 136.86 382.99 382.99 382.99 382.99 382.99
Exp. Name FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20) FF(20)
Dropout 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Error 61.68 112.39 263.82 139.86 389.31 465.23 465.34 464.79 465.34 465.34

Given the prevalence of presenting gaze errors in degrees rather than pixels, we have

recalculated the errors to provide a more accurate representation of our model’s perform-

ance. Once the distance of a person from the camera and the screen size are known, it is

possible to convert the error in pixels to degrees using the following formula:

Errorgey =

tan

-1

cm

Dist’

(5.3)

Where F.,, represents the error in centimetres resulting from the conversion from
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pixels, and Dist denotes the distance in centimetres between the screen and the viewer’s
eyes. The distance between the screen and the person can vary, as there is currently no
way to adjust it without a chin rest. Therefore, we could only make an approximation
of this distance. Following the recalculation, the minimum error for LE is approximately
1.45 degrees. The minimum error for the RE is approximately 1.37 degrees. The minimum
error for both eyes (BE) is approximately 1.98 degrees. With regards to full-face (FF),
the minimum error is approximately 1.14 degrees. Figure 5.5 shows the error of the top

models in terms of pixels.
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Figure 5.5: MAE in pixels for best models.

5.2.6 Discussion

The experiments demonstrate the potential to achieve performance comparable with
commercial eye trackers, as mentioned in the introduction, ranging from 0.5 to 2 degrees.
The error for RE images was 1.37 degrees, while for FF images it was 1.14 degrees. These
results outperformed other webcam-based models found in the literature. It is interesting
to note that in paper [118], the authors were able to achieve an error of 3.14 degrees on
the MPIIGaze dataset. Similarly, in [3], the authors achieved an error of 3.94 degrees,
while in [44], the reported error was 4.8 degrees. In addition, in [119], the authors were
able to achieve a measurement of 4.5 degrees error in MPIIGaze and 10.3 degrees for the
EYEDIAP dataset and a margin of error on MPIIGaze. In a related study [6], the authors
were able to achieve an error of 2.8 degrees on the MPIIGaze dataset and 3.05 degrees

on the EYEDIAP dataset. In a recent study, researchers found that there was an error of
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3.34 degrees in the EYEDIAP dataset, as mentioned in [113].

Based on our findings, it is evident that our results surpassed those of previous re-
search. It is important to note that the results were obtained using a model that is specific
to one person and only applicable to that person’s eye/face images. However, our research
has shown that by using data from a standard webcam, we can create a person-specific
model that achieves accuracy similar to that of commercial eye trackers. Table 5.9 presents
a comparison between our proposed method and other cutting-edge techniques. It is worth
mentioning that our method was trained using data from a single user, while other meth-
ods utilized data from multiple individuals. This comparison demonstrates that training
the model with a single user can result in higher accuracy compared to models trained on

data from multiple individuals.

Table 5.9: Angular errors of our method in comparison with other state-of-the-art meth-
ods.

Method Error in Degrees
FAZE [118] 3.14
L2CS-Net [3] 3.94
RT-Gene [44] 4.8
Deep Pictorial Gaze [119] 4.5
Multi-stream CNN [6] 2.8
Recurrent CNN [113] 3.34
Ours (with RE) 1.37
Ours (with FF) 1.14

In the first experiment, the network’s performance was tested on single eyes with
and without a mask. The results, as shown in Tables 5.2-5.5, indicate that masking the
area surrounding the eyes did not improve the network’s performance compared to eyes
without masking. The highest achieved result was for LE, with an MAE of 38.20. This was
accomplished using a learning rate of 0.0001, a filter size of 5x5, and a dropout rate of 0.1.
The best result for LEM was 44.32 using the identical set of parameters. In a similar way,
the best value for RE was found to be 36.01, while for REM it was 42.34, both achieved
using the same parameter settings. Through various experiments with single-eye input,
it is evident that the network for RE consistently outperforms the others, achieving an
impressive result of 36.01. This indicates that the network has the ability to learn effective
representations in its middle layers, resulting in slightly better performance compared to
LE. On the other hand, we came across some intriguing findings. For instance, in Table 3,
we noticed that a 3x3 filter outperformed a 5x5 filter (LE at dropout 0.4). Additionally,
REM yielded better results than RE at dropout rates of 0.1, 0.2, and 0.3, when using a
filter size of 5x5.
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The results obtained from utilizing both eyes were quite satisfactory. For the BE
network, the best result was achieved with a learning rate of 0.001, filter size of 5x5,
and dropout of 0.1. This resulted in an MAE of 51.18, which outperformed the results
obtained with a learning rate of 0.0001 and a filter size of 3x3. Unfortunately, the results
were not as good as those achieved with single images. It seems that the network was
more challenging to train for both eyes, likely because of its increased complexity. Using
an extremely low learning rate of 0.0001, the network experienced a sluggish convergence,
resulting in the inability to reach the global minimum within 100 epochs. Based on the
experiments conducted, it was found that the network performed exceptionally well when
using a learning rate of 0.0001, a filter size of 5x5, and a dropout rate of 0.1.

One of the most unexpected findings from the experiments was the outcome when the
model utilized full-face images (FF) as input to the network. The CNN for FF achieved a
value of 37.87 MAE, which is comparable to the single-eye input of 36.01 (RE at 0.0001
learning rate, filter size 5x5, and dropout 0.1). In addition, the network achieved an im-
proved MAE score of 30.09 when trained with a larger filter size of 7 x 7. This intriguing
discovery demonstrates that utilizing a larger filter size yields a substantial enhancement.
The reason for this is that the face images were larger, which allowed the network to use
a larger filter size to capture more significant features. This ultimately led to improved
results for the network. Just like other models, the one with a learning rate of 0.1 per-
formed the worst. It consistently produced similar values for all filter sizes. Despite the
findings, a positive outcome for FF images indicates the potential to accurately anticipate
a person’s gaze using an entire face image. One possible explanation for the surprisingly
good performance of the FF model is the consistent use of the same face from the same

person during both the training and testing stages.

5.3 Conclusion

Our experimental results indicate that the model developed for a single person achieves
significantly lower errors compared to general models trained on data from multiple users.
We trained various CNN models using different parameter configurations on a dataset of
images captured from a laptop webcam. The findings in this chapter demonstrate the
effectiveness of a well-optimized CNN architecture in achieving good gaze estimation
results using a standard camera. These findings have significant implications for real-
world applications.

The presented results are promising, yet there are many limitations correlated with this
study. For example, we showed results for only one person, and we are still determining
how well CNN will perform for other people since different people have different eye and
facial appearances, and different image appearances affect network performance. We also

performed all the experiments on a shallow CNN.
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In the next chapter, we will overcome these limitations by developing and testing
personalized models for each user, along with a comprehensive model that can be applied
to all users. Our goal is to broaden our data collection to encompass a wider range of
subjects. This will enable us to analyze both generalized and individualized models using
transfer learning techniques. In upcoming chapter, we will delve into the transfer learning
approach, where models are initially trained on extensive datasets and subsequently fine-

tuned to adapt to individual users.

5.4 Contributions

After conducting all experiments, the second hypothesis was confirmed that a model
trained on low-quality eye and face images from a standard webcam, tailored specifically
for an individual user, can achieve gaze estimation accuracy comparable to that of state-of-
the-art eye trackers. Our experimental results demonstrated that person-specific models,
even when using low-resolution images, were capable of delivering strong gaze estimation
performance.

By fine-tuning model parameters for individual users, we successfully minimized the
performance gap between webcam-based models and professional eye-tracking systems,
thus validating the effectiveness of personalized training approaches for gaze estimation.

In addition to confirming our hypotheses, our experiments provided important in-
sights regarding the use of face images for gaze estimation. Although face-based models
proved more challenging to train compared to eye-based models, they demonstrated not-
able advantages in person-specific scenarios. In particular, our results from Chapter 5
showed that when the same person’s face is used for both training and testing, face im-
ages actually outperformed eye-only models in terms of gaze estimation accuracy. This
finding highlights the potential of using full face information to capture subtle contextual
cues that contribute to more precise gaze prediction, especially in personalized models.
Therefore, while training complexity may be higher, face-based models offer significant
performance benefits in individualized settings, supporting their practical application in

real-world gaze tracking solutions.
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Chapter 6

Exploring Transfer Learning for
Gaze Estimation: A Study on Model
Adaptability

In the previous chapter, we introduced a person-specific gaze estimation model that
achieved performance comparable to a generalized model. This chapter explores the use of
transfer learning in gaze estimation, focusing on the development of personalized models
specific for individual users. Our approach involves the collection of gaze data using stand-
ard laptop webcams, intended to work effectively within resource-limited settings, thereby
enhancing accessibility and affordability. This chapter presents a comparative analysis of
models using transfer learning with those that do not utilize pre-trained models. The
analysis includes both eye and face images, evaluating their performance across datasets
of different sizes. Our findings show that both methods produce comparable results; how-
ever, transfer learning presents notable advantages, including faster convergence, reduced
computational expenses, and enhanced stability when working with smaller datasets. The
results demonstrate the significant implications of transfer learning in gaze estimation, es-
pecially in scenarios involving limited datasets. This approach presents a more efficient and
scalable solution, enabling real-time applications across domains such as human-computer
interaction (HCI), assistive technologies, and personalized user experiences. This chapter

is based on a paper which has been submitted to a journal and is waiting for publication.

6.1 Introduction

Traditionally, gaze estimation techniques required tightly controlled settings, such as
fixed head positions or controlled lighting conditions, to accurately predict gaze direction.
This constrained the technology to laboratory environments and specialized hardware

setups. Recent efforts have aimed to address these limitations by utilizing standard web-
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cams built into laptops and desktops, providing a more accessible solution that does not
require additional hardware. However, such approaches often face challenges related to
image quality, lighting variability, and camera angles, particularly when using standard
consumer cameras.

In this context, transfer learning has emerged as a promising technique to improve the
efficiency of gaze estimation models. Rather than training models from scratch, transfer
learning enables the reuse of knowledge learned from large-scale datasets, which can then
be fine-tuned for specific tasks like personalized gaze estimation. This approach not only
accelerates model convergence but also reduces the computational resources required,
making it a practical solution for deploying gaze estimation systems on devices with
limited hardware capabilities. By leveraging pre-trained models, we can overcome some
of the inherent challenges of gaze estimation using low-resolution, low-quality images
from standard webcams, while still achieving results comparable to models trained from
scratch.

In this chapter, we investigate the application of transfer learning in developing per-
sonalized gaze estimation models. Our goal is to explore how transfer learning can enhance
the performance of gaze estimation while minimizing the need for extensive computational
resources and specialized equipment. We focused on creating a dataset from scratch and
fine-tune pre-trained deep learning models for gaze estimation task. Through this work,
we aim to contribute to the broader adoption of gaze estimation technology by develop-
ing methods that are resource-efficient, accessible, and capable of functioning in diverse
real-world scenarios.

Furthermore, this chapter investigates the performance of gaze estimation model un-
der limited data scenarios using dataset containing 500, 400, 300, 200 and 100 images.
This approach differs from our previous approach trained on a much larger dataset of
approximately 12000 images collected from a single user, achieving excellent results [9].
The smaller dataset used in this study results in higher MAE values, as expected, but the
objective is not to exceed the previous findings in terms of accuracy. Instead, we aim to
explore the feasibility of gaze estimation in situations where training data is limited; as
this is a typical situation in real world application, where collecting large dataset is not
feasible. Our findings demonstrate that although accuracy decreases with smaller dataset,
it is still possible to achieve satisfactory performance, highlighting the potential of im-
plementing gaze estimation system in environments with limited resources. The trade-off
between dataset sizes and model performance provide valuable insights for people working
with limited data. To the best of our knowledge, previous studies have not explored the
gaze estimation under limited data scenarios.

The main contributions of this chapter are as follows:

o Comparative Model Evaluation: We trained and assessed gaze estimation mod-

els for all participants, utilizing both transfer learning technique and model without
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pre-trained weights. This comparative analysis offers valuable insights with respect
to the effectiveness of transfer learning in improving model performance and adapt-
ability.

o Demonstration of Transfer Learning Advantages: Our findings illustrate the
advantages of employing transfer learning in gaze estimation, especially in con-
texts where data is limited. The findings indicate that transfer learning models
achieve accuracy levels similar to those trained without pre-trained weights, while

also demonstrating improved convergence and generalization among individuals.

e Guidance for Practical Applications: This study illustrates practical recom-
mendations for the application of gaze estimation technologies in real-world con-
texts, emphasizing the role of transfer learning in enabling quicker deployment and
customization across diverse fields such as healthcare, virtual reality, and assistive

technologies.

e Contribution to the Understanding of Model Performance: This study ad-
vances our understanding of the efficient utilization of transfer learning in gaze es-
timation task. The inclusion of empirical evidence about model performance across
varying dataset sizes significantly contributes to the present debate surrounding the

optimization of machine learning techniques in gaze estimation.

o Dataset Collection: A dataset "WebGazeLowRes: A Webcam-Based Low-Resolution
Gaze Dataset" was created, where WebGaze highlights data is webcam-based and
focus on gaze estimation and LowRes represents the low resolution nature of im-
ages. The dataset consists of gaze data from 19 participants, providing a valuable

resource for the training of deep learning models.

6.2 Methods and Materials

This section outlines the key steps that are a part of the research process. First, we
outline the methodology used in data collection, emphasizing the methods utilized to
gather data that would enhance the effectiveness of gaze estimation models. Next, we
provide the data preprocessing techniques for transforming the raw data into a suitable
format for deep learning models. Following this, we present a detailed overview of the
datasets used in this study. Finally, we provide an overview of neural network architectures

that were used in this study.
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6.2.1 Data Collection

Data collection is a crucial aspect of deep learning, as the quality of the data used for
training significantly impacts the overall performance of neural networks. In this study,
we used simple Python based desktop EyeTrackerDataCollector application to capture
images from a standard webcam. Participants were asked to look at the different parts
of the screen and click on the screen. This simple approach allowed us to gather gaze
locations data across the screen along with their face images. From the raw images, left
eye, right eye and face regions were cropped along with their gaze coordinate on screen.
The simplicity of this setup — requiring only a built-in or external webcam positioned at
the top of the screen — enabled us to collect data under real-world conditions, rather than
in a controlled laboratory environment. An abstract setup for data collecting is shown
in Figure 6.1, where a participant looks at various points on the screen. The application

captures the participant’s face and gaze coordinates when they click on a screen.

Distance between

Screen and User
Webcam  .30-50 cm ===
-

ScreenannnssdP

Figure 6.1: Basic data collection setup.

The data collection process involved participants sitting at a distance of approximately
30 to 50 cm from laptop screens, with the camera positioned at eye level. Total of 19
participant were involved in data collection. During the data collection we paid careful
attention to lighting conditions, as poor lighting could result in low-quality images — either
too dark or overexposed — which would negatively impact the network’s training process.
Each session involved the participants clicking on a series of points distributed across
the screen. For every click, a series of images was captured along with the corresponding

screen coordinates.
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Characteristics of the Dataset

The collected dataset exhibits substantial diversity in terms of ethnicity, as participants
involved in the data collection were from various regions, including Asia, Africa, and
Europe. To further enhance this diversity, data were gathered across multiple sessions (2-3
per participant) conducted in different environments, under varying lighting conditions,
and at different times of day. This approach ensured that the dataset captured a wide range
of natural variations, thereby improving the robustness and generalizability of the trained
models. FEach session lasted between one and two minutes, with participants clicking
on 54 points. Participants were free to click anywhere on the screen but encouraged
to evenly distribute their clicks across the entire screen. The resulting dataset provided
a set of images, allowing for an evaluation of the neural network models used in this
research. The images were collected on laptop with a 1920 x 1080 screen resolution.
The resolution of the captured images from EyeTrackerDataCollector application were
different across participants. To ensure consistency and facilitate analysis, all images were
resized to a uniform resolution during the preprocessing step. Specifically, eye images from
all participants were resized to 64 x 64 pixels, while face images were resized to 224 X
224 pixels.

6.2.2 Data Preprocessing

Once the data collection process was complete, the next step was data preprocessing,
essential for ensuring the quality of input data for deep learning models. Figure 6.2 outlines
the entire preprocessing steps.

Step 1 as shown in Figure 6.2 involved capturing an image from the webcam. In the
subsequent step 2, we used the Viola-Jones (VJ) classifier with a Haar cascade to detect
the face in each image [148]. The VJ classifier was chosen for its ease of use and efficiency
in detecting faces. Any images where faces were misclassified were manually reviewed and

removed from the dataset.

Step 1 Step 2 Step 3

Cropped
Left Eye
>“

Cropped
Right Eye

Figure 6.2: Preprocessing steps.

Cropped
Face

Raw Webcam Image
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In step 3, a separate Haar cascade classifier [148] was used to detect the left and right
eyes from the cropped face image as hows in Figure 6.2. This step minimized the risk of
misclassifying other objects as eyes. All eye images were resized to 64 x 64 pixels, and

face images were resized to 224 x 224 pixels before being fed into the neural network.

A manual check of all images was conducted to verify their appropriateness. Any in-
stances where the Haar cascade falsely detected eye-like objects or where subjects blinked

or closed their eyes during recording were removed to ensure the dataset’s quality.

A total of 19 participants were included in the data acquisition process, specifically
designed for person-specific gaze estimation. Processes were conducted individually for
each participant to facilitate creation of person-specific models. In total 27,413, 29,082
32,395 images were collected for left eye, right eye and face for all participants. An example
of the gaze target distribution for an individual participant is presented in Figure 6.3. This
figure demonstrates the spatial distribution of the collected points, reflecting the diversity

and coverage achieved during the data acquisition process.

Sample Gaze Point Distribution for One Participant

b [ ° ® ° ® ° o C
1000
800 9 ° ® Y [ ] ® [ ] [ ] q
@
©
x
5
2
T 600 ° ° ° ° ° ° ° L
£
o
(e}
(@]
>
& 400
e P ° ° ° ° ° o ) °
(2]
200 A °
p L] ° PS ® ) ° )
0 - - a . - —a - - . -
0 250 500 750 1000 1250 1500 1750

Screen X Coordinate (pixels)

Figure 6.3: Example of points distribution for a single participant, illustrating the spatial
arrangement of gaze estimation targets.

An overview of the number of images collected for each participant, categorized by
Left Eye, Right Eye, and Face datasets, is provided in Table 6.1.
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Table 6.1: Number of images for each participant for Left Eye, Right Eye, and Face
datasets.

Participant | Left Eye Right Eye | Face

1 044 1222 1441
2 2297 2193 2544
3 1387 1841 1929
4 1270 1170 1307
5 1768 1751 1804
6 843 1346 1528
7 1747 1607 2347
8 1231 1819 1858
9 983 1246 1581
10 1442 2556 1789
11 1088 1266 1295
12 1914 1055 1185
13 997 992 1005
14 1999 1928 2142
15 1219 1064 1284
16 960 961 981
17 985 1025 1028
18 432 316 554
19 1277 1644 1873

6.2.3 Network Architecture

This section outlines the network architecture used and evaluated in the study as
shown in Figure 6.4. The architecture describes all models that have been trained with
same hyper parameters. Each model outputs a vector of two values representing the gaze
coordinates on the screen.

The network architecture consists of three convolutional layers, one pooling layer, two
batch normalization layers, one fully connected layer, one dropout layer, and an output
layer as shown in Figure 6.4. The output layer in the model consists of two neurons
responsible for predicting the X and Y coordinates of an individual’s gaze on the screen.

The network was trained utilizing the ADAM optimizer [83], we first trained network
with different parameters to find the optimal values for best results. After finding the op-
timal value, we used them to train network for all participants. The Rectified Linear Unit
(ReLU) [4] activation function was used in the hidden layers and the fully connected layer.
Output layer contains the gaze coordinate of person’s gaze. Mean Absolute Error(MAE)

was used as loss function during training [155]. Equation 6.1 represents the mathematical
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formula of MAE.

1 & X
MAE = 3y - il (61)
i=1
where y; is the actual value, g; is the predicted value, and N is the total number of
examples.
RelL.U ReLU
Inputs Activation + Activation +  Fully
Dropout No of Filters = 128 Dropout Conncted
— Kernel Size = (3 x 3) ]
Face 4 O Predicted Gaze
/ Q Coordinates
L Flat Q ‘
N E— > X’Y
Left ten O
Eye O ‘
Right | | O
Eye o =] NN CNN + —
BatchNorm
CNN + MaxPool No of Filters = 64 No of Neurons =96

+ BatchNorm Kernel Size = (3 x 3)

No of Filters = 32
Kernel Size = (3 x 3)

Figure 6.4: Architecture of CNN network which takes the Left Eye, Right Eye or Face
images as input and the output layer with two neurons predicts the gaze coordinates.

A simple naming convention was adopted across all participants to ensure consistency
in the experiments. To ensure clarity, the experiment involving the left eye was referred
to as LeftEye, the experiment involving the right eye referred to as RightEye, and the
experiment focused on the face referred to as Face. Furthermore, the transfer learning

model is referred as TL, while the model without pre-trained weights is labeled as NT.

6.2.4 Research Methodology

The objective of these experiments was to evaluate the efficiency of transfer learning
with respect to training without pre-trained models for gaze estimation using images of
the left eye, right eye, and face.

First, a model was trained using the data from all participants for transfer learning
approach, excluding the specific participant for whom the pre-trained model weights were
later used. After this, the model was fine-tuned specifically for the excluded participant,
who had not been included in the original training set for large model. When training a
model for a specific particiapnt, participant data was divided into trainset and testset.

The evaluation of models was conducted for various training dataset sizes, specifically
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500, 400, 300, 200, and 100 images while keeping the same number of images in testset
when doing evaluation to ensure a fair comparison. This consistent approach was used to
ensure that evaluation of all models was done for same number of images in the testset.
It was also ensured that gaze location was equally distributed along with images across
training sets and testset to prevent the issue of the model overfitting to specific regions of
the screen. It was essential to ensure the equal distribution of gaze points, as ignoring this
aspect could result in a model showing strong performance in specific regions of the screen
while under performing in others. This balanced approach improved the models’ ability
to generalize effectively across the entire screen. The Figure 6.5 compares the transfer

learning approach with training from scratch for person-specific models.

VS

Scratch Approach

Transfer Learning
Approach

Figure 6.5: Schematic diagram for finetuning the model vs scratch model

The same strategy was used across all participants during the training of models for
left eye, right eye, and face images.

The Validation Mean Absolute Error(MAE) was used to evaluate model’s performance
on unseen test data. The use of this consistent approach helped in fair comparisons among
different models, participants, and dataset sizes, which allowed a comprehensive analysis

of the efficiency of transfer learning in varying data availability conditions.

6.3 Experiments and Results

This section presents a complete overview of the conducted research, along with the

relevant results obtained. It starts with a brief summary of how the results were obtained,
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followed by in-depth descriptions of the specific experiments carried out. The last section

describes the key findings and presents conclusions derived from the conducted research.

6.3.1 Left Eye Model

The performance for the LeftEye model was determined with different dataset sizes,
comparing transfer learning with training without pre-trained models. The mean MAE
was used to evaluate performance for each model.

In the LeftEye model, transfer learning demonstrated stable performance across vari-
ous dataset sizes. The investigation of 500 images revealed an average MAE of 186.83, with
a standard deviations(StD) of 41.10 as shown in Table 6.2. This metric showed a gradual
increase, reaching 224.57 with a sample size of 100 images and a standard deviation of
45.99.

Table 6.2: Experiments of Left Eye models using Transfer Learning (TL) and Models
Without Pre-trained Weights (NT). All values for MAE are given in pixels.

No. of Images ‘ Experiment with TL ‘ Experiment with NT

| MAE StD | MAE StD
500 186.83 41.10 191.99 45.61
400 190.98 41.15 196.02 45.46
300 197.65 41.77 196.40 44.29
200 206.83 43.59 211.29 45.58
100 9224.57 45.99 246.46 50.55

On the other hand, training without pre-trained models resulted in generally higher
MAE scores. The MAE for 500 images was 191.99 which increase to 246.46 when checked
with 100 images, with a higher standard deviation of 50.55 which we can be observed
in Table 6.2. The results indicate that transfer learning models show low error rates and
stable performance and even perform better when dataset is small.

A paired t-test [154] was used to determine if there is a statistically significant dif-
ference in gaze estimation accuracy between models that used pre-trained weights and
and without pre-trained weights. The difference in accuracy was statistically significant
(p < 0.05) only for 100 images shows not pre -trained models struggle to perform well
on small datasets. While the difference did not reach statistical significance for other
dataset sizes, transfer learning showed a lower average error for most experiments ex-
cept for 300 images for left eye. This suggests that although the improvement may not
be drastic, transfer learning presents a benefit in practical applications, particularly in
scenarios where data resources are limited.

We reported all our results in pixel, however, it is common to presents gaze error in
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degrees. If a distance of a person from the screen and the screen size is available (30-50

cm in our case), error in pixels can be calculated in degrees using the following formula:

ECm
FE4eg = arctan (Dist) , (6.2)

where FE,,, is the error in cm after converting from pixels and Dist is the distance between
the screen and the person’s eyes in cm. The distance from the screen to the individual
is variable due to unconstrained settings. As a result, we were restricted to providing
an approximate estimation of this distance. For example, if we convert 186.83 pixels in
to degree, first we need to convert pixels error into error in centimeters (cm) using the

formula:

Epixels
PPI

where pixels per inch (PPI) is the pixel density of the screen, which defines number

Ecm -

9,54, (6.3)

of pixels per inch. The relationship between inches and centimeters is 1 inch = 2.54 cm.
To calculate error in degrees for the error in pixels of 186.83, we first convert error in
pixels in cm using eq. (6.3) and after using the PPI value of 127 according to our screen,
we get the E.,, of approximately 3.73 cm. Next, we substitute these values in eq. (6.2),
assuming distance between screen and user’s eye is 50 cm. This gives the angular error
Egeq of approximately 4.27°. Similarly, angular error for other values can be calculated

using the same approach.

6.3.2 Right Eye Model Performance

For right eye, transfer learning, the MAE started at 164.51 for 500 images, increased
slightly to 197.47 with 100 images, as shown in Table 6.3. The steady increase shows
the model’s capability to maintain stable performance, despite a decrease in dataset size,
therefore showing the robustness of transfer learning in scenarios with limited data avail-
ability.

On the other hand, models that were not initialized with pre-trained weights showed
a sharper increase in MAE, beginning at 172.36 with 500 images and moving to 232.94
with 100 images, as shown in Table 6.3. The rise observed indicates that models lacking
pre-trained weights face difficulties in maintaining performance with limited datasets.

The performance of the right eye model shows a trend similar to the left eye, with
transfer learning achieving better results across different dataset sizes in compared to
models trained without the use of pre-trained models.

A paired t-test was also used for the right eye to determine the significance differences
in results of both experiments. The p-values for 500, 400, 300, 200, 100 are 0.476, 0.402,
0.293, 0.105, 0.009 respectively. It can be seen that, p-value for 100 images is below the
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standard threshold of 0.05, indicating a statistically significant difference between TL and
NT for the right eye model. Similar to left eye, transfer learning models showed a lower

average error for all experiments.

Table 6.3: Experiments of Right Eye models using Transfer Learning (TL) and Models
Without Pre-trained Weights (NT). All values for MAE are given in pixels.

No. of Images ‘ Experiment with TL ‘ Experiment with NT

| MAE StD | MAE StD
500 164.51 43.41 172.36 34.94
400 168.94 41.74 178.31 38.13
300 174.49 45.44 185.50 39.24
200 181.89 47.10 200.48 44.79
100 197.47 51.30 9232.94 46.03

6.3.3 Face Model Performance

The Face model demonstrated variations when comparing transfer learning to train-
ing without pre-trained models as the dataset size reduced, yet both techniques showed
comparable results.

The MAE for transfer learning model utilizing 500 images was observed to average
178.03 pixels, while for 100 images, it increased to 235.46 pixels. The standard deviation
showed a stable range, consistently falling between 34.04 and 35.11, as shown in Table
6.4.

Nonetheless, the model that was trained without pre-trained weights showed good
performance, achieving a MAE of 154.79 pixels with 500 images, which increased to 217.70
pixels with 100 images. The standard deviation has risen to 46.65 from 36.12, indicating
an increase in variability, as shown in Table 6.4. This indicates that training without
pre-trained models can produce satisfactory outcomes, particularly when large dataset
is available. The model without pre-trained wights showed good results for face data
as compared to transfer learning. However, transfer learning model demonstrates better
stability in term of standard deviation compared to model without pre-trained weights.

Similar to previous experiments, a paired t-test was also used for the Face model
to determine the significance of differences in both experiments. For the Face model p
value for 500, 400, 300, 200, 100 images are 2.56e-07, 5.25e-07, 6.97e-05, 1,83e-05, 0.002
respectively. All differences occurred to be statistically significant for Face experiments.

The models trained without pre-trained weights showed lower MAE scores compared
to transfer learning.At the same time the results of transfer learning are better clustered
around the mean. We hypothesize that the reason for the worse results of the transfer

learning model in terms of MAE is that it might have challenges with face data due to
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the high variability in facial features across the dataset, limiting the model’s ability to
generalize. On the other hand, eye features show less variation and look more similar, en-
abling more robust generalization. This may explain why transfer learning is less effective

for face data but provides better results for eye data.

Table 6.4: Experiments of Face models using Transfer Learning (TL) and Models Without
Pre-trained Weights (NT'). All values for MAE are given in pixels.

No. of Images ‘ Experiment with TL ‘ Experiment with NT

| MAE StD | MAE StD
500 178.03 34.04 154.79 36.12
400 186.63 35.72 164.98 40.62
300 196.33 34.21 173.44 41.63
200 208.55 36.83 185.70 42.78
100 235.46 35.11 217.70 46.65

The overall findings from the left eye, right eye, and face models show that transfer
learning provides enhanced performance relative to models that are trained without pre-
trained weights (except for the face models), especially in the context of smaller datasets.
Models utilizing transfer learning showed enhanced stability, characterized by a more

gradual rise in error as the dataset size was reduced.

Models that were not trained with pre-trained knowledge may require a larger dataset
to achieve performance levels comparable to those utilizing transfer learning. Additionally,
they showed increased variability and decreased reliability in situations where data is
limited. This highlights the benefits of transfer learning where quick implementation,

adaptability, and effectiveness are crucial, particularly in the context of limited datasets.

Overall, transfer learning demonstrated notable benefits, including enhanced stability,
and reduced MAE scores except for face experiments across various dataset sizes. Models
that utilized transfer learning demonstrated greater consistency in data-scare environ-
ments, whereas models trained without pre-trained weights demonstrated considerably

more errors, especially when the number of training images was reduced.

6.3.4 Further Analysis of Model Performance

This section presents additional experiments that access the model performance on
decreasing and increasing the number of images in training set. These image counts differ

from our initial experiment size which were is 500, 400, 300, 200 and 100 images.

89



Chapter 6. Transfer Learning for Gaze Estimation: A Study on Adaptability

Impact of Decreased Training Dataset Size on Model Performance

In addition to initial experiments, further testing was done to evaluate the model’s
performance with extremely limited data. Three participants were selected for the exper-
iments, and the performance of the Left Eye, Right Eye, and Face models was evaluated
using 50, 40, 30, 20, and 10 images.

Table 6.5: Experiments of Left Eye models using Transfer Learning (TL) and Models
Without Pre-trained Weights (NT) with extremely limited number of images. All values
for MAE are given in pixels.

No. of Images ‘ Experiment with TL ‘ Experiment with NT

| MAE StD | MAE StD
50 292.09 29.53 329.70 39.45
40 299.57 42.05 357.40 47.31
30 381.01 46.91 466.71 74.83
20 426.56 34.53 619.72 56.57
10 561.57 57.99 700.59 72.65

Table 6.6: Experiments of Right Eye models using Transfer Learning (TL) and Models
Without Pre-trained Weights (NT) with extremely limited number of images. All values
for MAE are given in pixels.

No. of Images ‘ Experiment with TL ‘ Experiment with NT

| MAE StD | MAE StD
50 328.57 54.73 355.69 63.22
40 334.46 62.68 421.94 103.31
30 358.46 72.38 643.26 123.51
20 377.54 47.49 734.47 66.28
10 548.48 78.63 748.44 92.07

The results indicate that, with an extremely low number of images, the models using
transfer learning demonstrated superior performance compared to those trained without
pre-trained weights. The results shown in Table 6.5 and Table 6.6 indicate that as the
number of images decreases, the performance of both models deteriorated. However, the
transfer learning model showed better MAE score, but the model without pre-trained
weights struggled to learn effectively compared to the transfer learning model. Similar

results were observed for face data as well as for those presented in Table 6.7.
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Table 6.7: Experiments of Face models using Transfer Learning (TL) and Models Without
Pre-trained Weights (NT) with extremely limited number of images. All values for MAE
are given in pixels.

No. of Images ‘ Experiment with TL ‘ Experiment with NT

| MAE StD | MAE StD
50 292.65 24.36 359.08 40.17
40 300.79 38.42 456.82 104.66
30 308.59 50.84 544.29 95.90
20 322.71 33.40 614.88 15.13
10 357.87 43.91 634.76 66.36

Impact of Increased Training Dataset Size on Model Performance

In order to evaluate the impact of dataset size on accuracy, we performed additional
experiments using increased number of images in the training set. As shown in Table 6.8,
an increase number of images in dataset size (873 for the Left Eye model, 803 for the
Right Eye model, and 1218 for the Face model) resulted in improved MAE for the Left
Eye, Right Eye, and Face models across both training configurations. These results lead
us to the conclusion that the results can be further improved by increasing the number

of training images.

Table 6.8: Experiments of the Left Eye, Right Eye, and Face models using more images as
compared to initial images with Transfer Learning (TL) and Models Without Pre-trained
Weights (NT). All values for MAE are given in pixels.

Model ‘ Experiment with TL ‘ Experiment with NT
| MAE StD | MAE StD
Left Eye (873 images) | 173.38 27.02 166.91 33.20
Right Eye (803 images) | 166.95 34.78 158.60 36.98
Face (1218 images) | 160.38 21.49 165.06 28.52

6.3.5 Convergence Analysis

This section provides an analysis of convergence, early stabilization, evaluation of
learning curves and impact of dataset amount on convergence of transfer learning models
and models without pre-trained weights.

Rate of Convergence

Although the results for transfer learning are not always significantly better, a notable

benefit of transfer learning is its ability to quickly reduce validation loss (MAE) in the
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early epochs. The graph in Figure 6.6 for the Left Eye model (similarly for the Right
Eye and Face models in Figures 6.7 and 6.8) clearly shows that during the initial few
epochs, the MAE for the transfer learning approach shows a significant decline, achieving
a considerably lower error rate in contrast to the model trained from scratch.

1400 Learning Curve for LE Experiments (Participant 2)
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Figure 6.6: Learning curves for participant 2 (Left Eye model — LE ) using TL vs NT (red)
models. Similar pattern was observed for all other participants. It is visible from curves
that transfer learning models converge faster than not pre-trained model. Also error for
transfer learning models start from lower MAE compared to not pre-trained weights.

This trend can be explained by the pre-trained weights, which already represent critical
features such as eye and facial structures derived from a comprehensive diverse dataset.
This enables the model to fine-tune these weights using only a small amount of data and
training duration.

In practical implementations, the fast convergence observed is essential as it minimizes
both the duration of training and the utilization of computational resources. In contexts
like gaze estimation for real-time systems or devices constrained by processing capabilities,
early reduction of error results in accelerated deployment and enhanced data efficiency.

In contrast, models without pre-trained weights demonstrate a slower decrease in MAE
(graph with red color) in Figure 6.6 6.7,6.8. These models have high error rates in the
early epochs and only become better over time; it frequently takes many epochs for the
error to start to drastically decrease.

Starting training from scratch requires more epochs to achieve comparable perform-
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ance levels than that are achieved through transfer learning. In situations where data is
scarce (for instance only 100-200 images), the model without pre-trained weights often
reaches a plateau at a higher error rate, as it has to learn all knowledge solely from the
raw data, lacking the advantage of pre-existing information.

1400 Learning Curve for RE Experiments (Participant 8)
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Figure 6.7: Learning curves for participant 8 (Right Eye model — RE) using TL vs NT
(red) models.

Early Stabilization

The stabilization of transfer learning models takes place significantly earlier with re-
spect to MAE. The graph in Figure 6.6 shows that following few epochs, the validation
error associated with transfer learning stabilizes at a low level, showing minimal fluctu-
ations. It indicates that the model has successfully learned its parameters and is no longer
exhibiting significant overfitting or underfitting on the validation dataset.

The early stabilization of models indicates that transfer learning can reach optimal
performance in fewer epochs, which is particularly useful for scenarios that require regular
model retraining or adaptation (such as accepting new users or varying environments).
The ability to stabilize early reduces the need for prolonged retraining efforts.

On the other hand, models trained without pre-trained weights require a longer time
to achieve stabilization.The graph (with red color) in Figure 6.6 illustrates that the MAE

for without pre-trained models shows continue fluctuations over time. After stabilization
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1400 Learning Curve for Face Experiments (Participant 20)
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Figure 6.8: Learning curves for participant 19 (Face model) using TL vs NT (red) models.

of the not pre-trained model, it is observed that it maintains a higher error rate except
for face model in comparison to the transfer learning model.

The longer stabilization periods in without pre-trained models increase the likelihood
of encountering overfitting or under-fitting issues, particularly in scenarios where training

data is scarce.

Evaluation of Learning Curves

The trajectory of the learning curve in transfer learning shows an initial decrease,
which is then followed by a plateau phase. The steep curve shows that transfer learning
give ability to rapidly acquire significant features from pre-trained weights, necessitating
only slight fine-tuning to achieve a satisfactory performance on the validation dataset.

The steep learning curve demonstrates the effectiveness of transfer learning, providing
it particularly suitable for scenarios with limited training times. The ability to show good
performance at an early stage shows transfer learning can be advantageous for iterative
development, in which models may require frequent updates with new data.

The initial learning curve for models without pre-trained weights shows a flatter tra-
jectory. The models show a long period before demonstrating improvements in MAE, with
the overall progress showing more gradual changes. This indicates that models without

pre-trained weights face greater challenges during the initial phases, as they must learn
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all features from the scratch.

In scenarios where computational efficiency and time are essential, models without
pre-trained weights show limitations. The slower learning curve indicates that without
pre-trained weights requires more epochs to achieve comparable performance levels, which

leads to increased costs with regard to both time and computational resources.

Impact of Dataset Amount on Convergence

Transfer learning demonstrates consistent convergence efficiency when applied to vari-
ous dataset sizes. The dataset, regardless of whether it consists of 500 images or merely
100, shows significant initial convergence within the first few epochs, later moved into an
early stabilization phase. This behavior demonstrates the efficiency of transfer learning in
adapting diverse data sizes.

The robustness of transfer learning in terms of variations in dataset size make it the
preferred approach for tasks that involve limited data. This holds importance in gaze
estimation, as gathering extensive participant-specific data can bring challenges.

In contrast, models trained without pre-trained weights show a greater dependence on
the size of the dataset. In scenarios where larger datasets, such as 500 images, are available,
models without pre-trained weights can ultimately reach MAE scores that are on level with
those obtained through transfer learning. However, when working with smaller datasets
(e.g., 100-200 images), models trained from scratch tend to converge at a slower rate and
demonstrate increased variability as shown in Figure 6.6. This is demonstrated by the
frequent fluctuations in MAE during the later epochs.

The high sensitivity of models without pre-trained weights to the size of the data-
set makes them less advantageous in scenarios where data availability is limited. This
highlights the significance of transfer learning in practical applications, particularly in

scenarios where datasets can be limited, noisy, or challenging to obtain.

6.4 Discussion

The following section outlines key findings and the significance of this work for gaze
estimation for practical applications as well as the impact of machine learning techniques

such as transfer learning.

6.4.1 Importance of Transfer Learning in Data-Limited Envir-

onments

This study highlights the significant impact of transfer learning in scenarios where data

availability is limited. As seen in Section 6.3, the error for TL models is lower than NT
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models in both Left Eye and Right Eye experiments. In many real-world scenarios, col-
lecting large datasets for each individual proves to be impractical, particularly in domains
such as medicine and industry, where the collection of extensive gaze data for person-
alized models can be both labor-intensive and complex in nature. Transfer learning can
addresses this limitation by allowing models to maintain good performance levels, even
when trained on smaller datasets. Moreover, transfer learning enables quick deployment
by fine-tuning using pre-trained models with minimum data, therefore lowering costs and

enabling fast adaption across users and domains.

6.4.2 Enhancing Gaze Estimation Efficiency with Transfer Learn-

ing

This study contributes to gaze estimation and machine learning by demonstrating the
effectiveness of transfer learning in overcoming common challenges. While the training
time for transfer learning and scratch models was almost identical (with transfer learning
often taking slightly less time), transfer learning models ability to quickly adapt to dif-
ferent individuals helps address challenges such as overfitting, especially in scenarios with
limited datasets, as shown in Section 6.3. Additionally, transfer learning models converge
faster with lower error take fewer epochs to achieve results comparable to NT models, as
seen in Section 6.3.5. This highlights the ability of pre-trained models to generalize effi-
ciently across a variety of users, improving reliability and robustness, and offers a practical

solutions for real-world scenarios where accuracy and adaptability are critical.

6.4.3 Significance and Broader Implications of the Study

This chapter makes valuable contributions that go beyond gaze estimation. It draws
attention to the wider possibilities of transfer learning as an effective machine learning
method. Transfer learning makes it possible for models to produce comparable results
with fewer resources as opposed to just focusing on increasing accuracy. Because of their
efficiency, machine learning models are more useful and approachable for broader applic-

ation.

By lowering the requirement for large datasets, the study contributes to the increased
accessibility of gaze estimation in a variety of domains, including assistive technology,
gaming, education, and healthcare. This approach may encourage a wider use of eye-

tracking devices in settings with limited resources.
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6.5 Conclusion

This chapter illustrates the efficiency of transfer learning in gaze estimation systems,
offering significant insights into its practical applications and advantages. The results
show that transfer learning maintains competitive performance relative to models trained
without pre-trained weights.

The analysis demonstrated benefits of transfer learning, including faster convergence
and early stabilization of validation error. Fast adaptation to different individuals reduces
the risks of overfitting and enhances the reliability of gaze estimation systems. The findings
indicate that transfer learning is capable of effectively fine-tuning pre-trained models using
limited data, thereby enabling quick deployment in a variety of applications.

It is essential to acknowledge certain limitations of this study. Although the gaze
estimating models showed encouraging outcomes, their error rates remain inferior to those
of leading commercial eye-tracking software available in the market. Our results highlight
improvements in making gaze estimation more accessible but show that there is room for
further refinement to achieve comparable accuracy of high-end systems.

This research shows the effectiveness of transfer learning in gaze estimation task,
highlighting the advantages of using pre-trained models to improve performance when
data availability is limited. The use of transfer learning in this context provides insights
into improving model performance and resource efficiency in gaze estimation, which are

applicable to similar computer vision tasks.

6.6 Contributions

After conducting all experiments, the third hypothesis was confirmed that models
utilizing transfer learning, pre-trained on large datasets, and fine-tuned with low-quality
webcam images from individual users, can outperform models trained from scratch. Our
results demonstrated that transfer learning not only improves gaze estimation accuracy
in data-limited settings, but also accelerates faster convergence and enhances training
stability.

By leveraging pre-trained knowledge and adapting it to user-specific gaze data, we
successfully reduced the amount of required training data, making the overall gaze estim-
ation pipeline more efficient and practical. These advantages are especially relevant for
real-world applications where collecting large personalized datasets is often not feasible.

In addition to validating our hypothesis, we performed a detailed analysis of the per-
formance of the model across different input numbers of images. Furthermore, as part of
this work, we introduced a new dataset specifically collected using low-resolution web-
cams, designed to support research on person-specific gaze estimation with and without

transfer learning. This dataset, along with our results, offers useful insights for creating
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eye-tracking technologies that are easy to use, affordable, and adaptable for many people.
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Chapter 7
Conclusions and Future Aspects

This PhD thesis explored challenging yet important domain of gaze estimation using
standard, low-cost hardware such as webcams. In this thesis, multiple approaches were
developed and analyzed to address the limitations of gaze estimation with webcams using
state-of-the-art deep learning techniques, especially the CNN network. The findings high-
light the potential to democratize gaze tracking technology by using commonly available
hardware and limited computational resources. This chapter summarizes our contributions

and insights that we learned during designing and implementation of each contribution.

7.1 Summary

Chapter 1 introduced the concept of gaze estimation, emphasizing its importance in
fields such as human-computer interaction (HCI), healthcare, gaming, and education.
This chapter outlined the objectives and scope of the research, focusing on accessible and
cost-effective solutions.

Chapter 2 provided the theoretical foundation, covering the anatomy of the human
eye, artificial neural networks, convolutional neural networks, and transfer learning. This
background established essential concepts necessary for understanding and implementing
gaze estimation methods.

Chapter 3 reviewed advanced methodologies for gaze estimation, including model-
based, feature-based, and appearance-based methods, highlighting their respective ad-
vantages and limitations. Advanced deep learning techniques such as single-stream CNNs,
multi-stream CNNs, prior-based networks, temporal models, and transformer-based meth-
ods were also discussed. Additionally, this chapter examined publicly available gaze data-
sets and real-world applications of gaze estimation.

Chapter 4 presented a CNN-based approach for gaze estimation using unmodified
webcams. The study treated gaze prediction as a classification task across 20 screen re-

gions and showed that reasonable performance can be achieved with careful fine-tuning
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of network parameters. The impact of image sharpening on model accuracy was also
investigated, revealing a slight improvement in overall results.

Chapter 5 extended the focus to person-specific gaze estimation. The study explored
whether building individualized models could achieve better performance compared to
models trained on data from multiple users. User-specific models were developed using
eye and face data and were systematically compared to multi-user models.

Chapter 6 investigated the applicability of transfer learning for gaze estimation in
limited data scenarios using webcam-collected datasets. Models trained with and without
pre-trained weights were compared across varying dataset sizes. The study demonstrated
that pre-trained models performed better in low-data scenarios but also converged and
stabilized more quickly. Additional experiments with very small and larger datasets rein-

forced these findings.

7.2 Contributions

This section details the original contributions made through the research work presen-
ted in this thesis. The contributions are organized according to the major objectives
addressed throughout the study.

e« Development of a CNN-Based Model that Classifies a Person’s Gaze
into Screen Regions: A convolutional neural network (CNN)-based gaze estim-
ation model was developed capable of predicting a user’s gaze region using images
captured from an unmodified, low-cost webcam. Unlike many existing systems that
require specialized and expensive hardware, this work demonstrated that reliable
gaze prediction could be achieved affordably. The model framed gaze prediction as
a classification task across 20 predefined regions on the screen, offering a practical
balance between precision and usability for real-world applications.Furthermore,
we investigated the role of image preprocessing, particularly the impact of image
sharpening, on model performance. Experimental results indicated that applying
sharpening filters enhanced feature clarity, leading to a modest but consistent im-
provement in gaze prediction accuracy. This finding highlights the importance of
lightweight, computationally inexpensive preprocessing steps in enhancing perform-

ance for webcam-based gaze estimation systems.

Based on the findings presented in Chapter 4, Hypothesis 1 (H1) is confirmed.
The development and evaluation of a CNN-based gaze estimation model using low-
quality images from an unmodified webcam demonstrate that it is feasible to clas-
sify a user’s gaze into screen regions without the need for specialized hardware. The
model’s performance across 20 predefined regions supports the hypothesis that ac-

curate gaze classification can be achieved using low quality images collected from
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webcam.

e Introduction and Evaluation of Person-Specific Gaze Estimation Mod-
els: A person-specific gaze estimation model was developed and evaluated, and it
was demonstrated that models trained on data from individual users—when com-
bined with hyperparameter optimization—can outperform those trained on multi-
user datasets. The potential benefits of personalization in gaze estimation were high-

lighted, especially in scenarios where highly accurate gaze prediction is required.

After conducting all the experiments and findings presented in Chapter 5, Hypo-
thesis 2 (H2) is confirmed. The development and evaluation of a person-specific
gaze estimation model showed that models tailored for individual users, especially
when carefully optimized hyperparameter, outperform generalized models trained
on multi-user datasets. This confirms the hypothesis that personalization enhances
gaze prediction accuracy, making it particularly valuable in applications where high

precision is essential.

« Comprehensive Study and Proposal for Scalable Gaze Estimation Solu-
tions Using Transfer Learning: A detailed analysis of the impact of transfer
learning on gaze estimation was conducted when only a limited amount of training
data was available. By comparing models trained from scratch to models initial-
ized with pre-trained weights, across different dataset sizes (500, 400, 300, 200,
and 100 images), we showed that transfer learning significantly boosts perform-
ance, enables faster convergence, and leads to more stable training outcomes. This
finding is particularly valuable for scenarios where large labeled datasets are diffi-
cult or expensive to collect.Further experiments extended the analysis to extremely
small datasets (50, 40, 30, 20, and 10 images) and larger datasets beyond 500 im-
ages. These experiments validated that pre-trained models consistently maintain
performance advantages even in highly constrained data environments. This work
underscores the robustness of transfer learning strategies for webcam-based gaze

estimation tasks.

Through the above developments, this research proposed scalable solutions to make
gaze estimation technology more accessible to a wider audience. By eliminating the
dependency on specialized hardware, leveraging lightweight preprocessing, incorpor-
ating personalization, and utilizing transfer learning, the methods developed in this

thesis collectively pave the way for practical application of gaze-based systems.

In addition to the main contributions, this thesis also proposes a practical work-
flow for building an person-specific gaze estimation model based on experimental

findings. The recommended steps are as follows:

Initially, a general gaze estimation model should be trained using eye images col-
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lected from multiple users. Experiments demonstrated that eye images are more
reliable than face images for training a general model, due to the challenges in

generalizing face-based features across individuals.

Once the general model is prepared, for any new user, a small amount of personalized
data should be collected through simple image capture sessions. This user-specific
data is then used to fine-tune the pre-trained general model. The fine-tuning pro-
cess is lightweight and efficient, making it possible even on devices with limited

computational power.

If the gaze estimation error remains high after initial fine-tuning, the users need
to gather more personalized samples or continue training for additional epochs to
further improve accuracy. The experiments conducted in this thesis confirmed that
following this workflow results in better-performing person-specific models with sig-

nificantly less effort compared to training models from scratch.

The experimental findings presented in Chapter 6 confirmed Hypothesis 3 (H3).
The conducted experiments demonstrated that transfer learning significantly en-
hances gaze estimation performance, especially when training data is limited. Mod-
els initialized with pre-trained weights performed better than those trained without
pre-trained weights across varying dataset sizes—from as few as 10 samples to over
500—showing improved accuracy, faster convergence, and more stable training be-
havior. These findings validate the hypothesis that transfer learning is an effective
strategy for improving model robustness and scalability in webcam-based gaze es-

timation, particularly in data-constrained scenarios.

7.3 Future Aspects

Webcam-based or standard camera-based gaze estimation presents important possib-
ilities for improving accessible and economical solutions in multiple fields. Nonetheless,
there are many possibilities for improvement and innovation that may accelerate the ad-
vancement of this technology.

Expanding datasets to include a broader range of environmental conditions, such as
varying lighting, diverse backgrounds, and dynamic scenarios, will improve the robustness
of gaze estimation models. Including participants from different demographic groups, such
as varying age ranges, ethnicity, and those with visual aids like glasses or contact lenses,
will help ensure inclusivity and accuracy across diverse populations. Collecting data from
real-time interactive settings, including gaming, virtual reality simulations, and remote
learning environments, will provide valuable insights into dynamic gaze behaviors.

In terms of model innovation, exploring hybrid architectures that combine CNN with

transformer-based models can capture temporal dependencies in gaze patterns, making
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them suitable for sequential gaze prediction tasks. Moreover, transfer learning, adopt-
ing self-supervised or semi-supervised learning approaches can reduce reliance on large
annotated datasets, allowing models to adapt more efficiently to new applications.

Since standard webcams generally generate low image quality compared to specialized
gaze tracking cameras, future studies should concentrate on enhancing gaze estimation
accuracy using low-resolution data. Methods like super-resolution preprocessing or fea-
ture enhancement integrated into the model architecture may reduce the effects of image
quality.

Creating efficient lightweight models for gaze estimation on resource-limited devices
is crucial. Techniques for optimization, including quantization, pruning, and knowledge
distillation, effectively minimize computational demands, allowing gaze estimation to be
performed on standard laptops, smartphones, and tablets while maintaining accuracy.
This improvement will contribute to energy efficiency, facilitating longer use in portable
systems.

There exists significant potential for the development of domain-specific applications
using gaze estimation technology. In healthcare, gaze models present opportunities for ad-
aptation in clinical diagnostics, particularly in the identification of neurological disorders
such as Parkinson’s disease or autism, as well as in the monitoring of patient recovery
throughout rehabilitation processes. In education sector, gaze tracking has the potential
to evaluate student engagement within e-learning platforms and improve training simu-
lations in essential domains like aviation and medicine. Additionally, in marketing and
consumer behavior analysis, gaze tracking has the potential to achieve real-time insights
into user attention, thereby revolutionizing product design and advertising methodologies.

Webcam-based gaze estimation can be easily included into AR/VR systems, allowing
immersive experiences without requiring further hardware. Webcam-based gaze tracking
in e-learning platforms can improve user engagement analytics. Furthermore, integrating
gaze estimation with additional modalities such as facial expressions or speech recognition
may produce highly interactive systems that intuitively respond to human intent.

With advancement of gaze estimation technology, it is essential that ethical considera-
tions are prioritized to guarantee its responsible and fair implementation. Providing user
privacy and secure data management is crucial for achieving widespread adoption. Cre-
ating strong on-device processing frameworks that remove the necessity for data transfer
to external servers can greatly reduce privacy issues. Implementing robust data security
measures, including encryption and anonymization, will improve the protection of user
information. Minimizing biases in datasets and algorithms is essential for achieving fair
results among various demographic groups, which encourages fairness and inclusivity.
Furthermore, the development of transparent algorithms and the formulation of ethical
guidelines for the implementation of gaze estimation technologies will enhance trust and

accountability, allowing their responsible application across diverse field.
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Extensive research on gaze behaviors in various contexts and tasks can enhance the
development of more customized and effective models. Through the integration of user-
specific data over time, webcam-based systems may improve performance to align with
individual behaviors.

By exploring these future directions, researchers can expand upon contribution of this
thesis to develop scalable, accessible, and ethically responsible gaze estimation solutions,

thereby transforming human-computer interaction across various sectors.
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ML — Machine Learning
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NT — No Transfer (Without Pre-trained Weights)
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