EXTENDED ABSTRACT

This dissertation. entitled Predicting and Analvzing the Thermal and Electrical Properties
of Materials Using Advanced Machine Learning Models. develops correction and
prediction frameworks for thermal conductivity (TC) and electrical conductivity (EC)
characterization in thin films using a combination of experimental methodology. physics-
based modelling, and advanced machine learning (ML), The work is divided into two major
components. The first addresses TC determination using Scanning Thermal Microscopy
(SThM) and focuses on reducing roughness-induced artifacts by integrating simullancous
thermal—topographical mapping, normalization strategies, and ML regression. The second
addresses EC determination using Four-Point Probe (4PP) measurements and focuses on
mitigating geometry-induced distortions using both Finite Element Method (FEM)
simulations and a data-driven ML correction framework trained solely on experimental
measurements.

The thesis is guided by two primary hypotheses. The [irst hypothesis states thal integrating
SThM thermal mapping with detailed surface topography analysis. together with ML
models trained on physically meaningful descriptors, can overcome the inherent limitations
of SThM analysis and vield accurate and reproducible thin-film TC estimates. The second
hypothesis states that both FEM and ML can generate effective correction factors for 4PP
conductivity measurements by compensating for geometric distortions such as edge effects
and probe placement sensitivity. While FEM is expected to provide high-fidelity physics-
based corrections, ML is hypothesized to offer a scalable and simulation-free alternative
capahle of comparable accuracy when trained on representative experimental datasets.,

1. Thermal conductivity: motivation, limitations of existing methods, and the SThM
challenge

Thermal conductivity & is one of the most fundamental thermophysical properties,
describing how efficiently a material transfers heat under a temperature gradient, In
submicron-scale devices. TC mecasurements are extremely affected by surlace topography.
TC characterization is tvpically performed using optical pump—probe techniques such as
Time-Domain Thermoreflectance (TDTR) and Frequency-Domain Thermorellectance
(FDTR). These methods offer accurate non-contact characterization, can probe layered
systems and buried interfaces. and have been extensively validated in the literature. In
TDTR. heat is deposited in a thin metallic transducer and the cooling response is monitored
through rellectivity changes. TC is extracted by fitting measured time-dependent cooling
curves to theoretical diffusion models, tvpically interpreted via lock-in detected in-
phase/out-of-phase signals. Despite their accuracy and versatility. TDTR/FDTR suffer
from inherent spatial resolution limitations due to the diffraction limit of light, restricting
conductivity maps to the micron scale, As a result. TDTR/FDTR cannot reliably capture
submicron-scale spatial TC variations at sample surfaces.

In contrast, Scanning Thermal Microscopy (SThM) provides submicron lateral resolution
by integrating AFM scanning with a thermal probe. SThM enables simultaneous
acquisition of topography and thermal signals, which is a powerful advantage lor local
thermal characterization in complex systems.



However, quantitative TC extraction using SThM remains challenging. The measured
thermal response is strongly affected by probe-sample interaction conditions, including
surface roughness and mechanical contact variability. Even small submicron changes 1n
topography can disturb the tip-sample contact. distort heat flux paths. and produce thermal
artifacts. Surface asperities reduce true contact area, creating localized air gaps that
increase thermal contact resistance (TCR) and alter the effective thermal resistance sensed
by the probe. The result is that SThM thermal maps often represent a complex convolution
of intrinsic TC. topography-dependent contact effects. and substratc contributions
(especially in thin [ilms with thickness below 100 nm). Mechanical contact models such as
DMT theory. although foundational. encounter limitations when applied to irregular
morphologies and asymmetric contact geometries typical of real thin-film surfaces.

This thesis identifies that the key obstacle is lack of a rcliable and scalable correction
approach that can decouple intrinsic TC from topography-induced measurement artilacts.
Therelore, the thermal component of this dissertation is designed to build an integrated
methodology  that combines SThM  thermal  mapping, correlated  topographical
characterization, normalization strategics, and ML regression.



2. Thermal methodology: normalization, topography descriptors, and ML
framework

2.1. Normalization using gquartz reference and definition of I;

One of the central methodological approach in this thesis is the implementation of a quartz-
referenced normalization procedure (o reduce probe-dependent variability and enhance
comparability across samples. Amorphous quartz is selected as a relerence material due 1o
its thermal stability and isotropic heat conduction properties, enabling reliable baseline
calibration. The SThM signal is processed by comparing the difference between dynamic
and static electrical resistances of the probe measured on the sample and on the quartz
reference at corresponding spatial coordinates. This yields a dimensionless normalized
thermal signal ratio:
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This normalized ratio cancels probe-specific and instrumental influences and captures the
cffective thermal interaction between the probe and the sample relative to a stable
reference. Ry and R, and are dynamic and static electrical resistances of the probe,
respectively. Ty is a physically meaningful parameter. This is quantitatively supported in
the thesis through correlation analysis: the raw resistance difference shows negligible
predictive relevance, while the normalized [ becomes the strongest contributor to TC
prediction.

2.2, Multi-scale mapping strategy and dataset structure

The experimental framework applies a multi-scale spatial mapping methodology. A
2 % 2 um? region of each sample is partitioned into a 16 % 16 microgrid (256 cells). This
erid-based approach provides spatial robustness against localized anomalics and generates
a dataset appropriate for ML training. Within this region, localized submicron windows of
375 x 375 nmZare analyzed and divided into 3 X 3 submicron grids. The methodology 1s
designed to establish a spatially correlated dataset linking local thermal response 1o
corresponding local topography. Both trace and retrace maps are collected and averaged to
reduce noise and improve reliability.

The thesis emphasizes that the aim is not simply to map thermal contrast but to generate a
numerical dataset that translates real surface topography into quantitative deseriptors that
can be used as ML inputs. This approach converts a metrology limitation into a structured
data problem,

2.3.  Topographical descriptors at micro and submicron scales

The framework incorporates micro-scale topographical descriptors based on statistical

surface metrology, primarily Root Mean Square roughness Rf,. and surface skewness
5. RMS roughness refleets the amplitude of surface irregularity and influences effective

contact area. Skewness describes the asymmetry of height distribution and distinguishes

peak-dominated vs valley-dominated surfaces, each imposing different thermal transport

constraints.

At the submicron scale. localized descriptors are extracted from 3 X 3 grids. including

surface inclination M*t | peak-to-valley variation p®. and local height distribution

variability. These descriptors explicitly represent local geometric effects that strongly
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influence tip—sample contact mechanics. In the thesis. these submicron parameters arc
presented as essential contributors to explaining variability in the measured thermal
resistance response,

2.4.  Substrate—thickness factor C

A key innovation in the thesis is the development ol a substrate-thickness factor € as an
ML input to distinguish bulk from thin-film behavior and incorporate substrate influence.
This distinction is crucial because thin films exhibit {undamentally different thermal
transport regimes, and substrate contributions dominate especially below a threshold
thickness comparable to the SThM interaction length scale (~ 100 nm). The thesis defines
C as a plecewisc function:
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where d is film thickness, b is the threshold thickness, kg, is substrate TC. and k™ is
quartz TC used for normalization. This formulation mathematically encodes the shift from
lavered substrate-dominated transport to bulk-like transport.

3. Thermal ML target definition and feature relevance

Instead of directly predicting TC as a single value from local measurements (which can be

unstable due to contact variability), the thesis defines a continuous physical target varable:
H:..'-:
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Here, o is the standard deviation of surface heights within a localized submicron cell.
This choice transforms TC prediction into a continuous regression task with improved
generalization capability, enabling the model to interpolate between values and lcarn
meaningful patterns from multidimensional features.
Feature selection is performed using Spearman’s rank correlation coeflicient. The thesis
reports that I} exhibits the strongest inverse correlation with y(r; = —0.726). confirming
that normalized thermal interaction is the dominant predictor, Submicron topographical
descriptors such as p%(—0.609) and M*1(—0.572) also show strong negative relationships,
reinforcing the thesis conclusion that roughness-induced effects are not secondary
disturbances but dominant drivers of measurement distortion. The substrate—thickness
factor Calso shows meaningful negative association (—0.518). In contrast, the phase
difference Ag; shows negligible correlation (—0.022) and thus contributes minimally to
predictive capability under the studied conditions.
This quantitative relevance analysis supports the core thesis claim that the measured TC
cannot be reliably extracted without explicitly accounting for surface morphology and
substrate regime elfects.

4. Thermal ML model development and results

A dataset of 3.332 thermal measurements is used in the analysis. including 2,352
measurements for model development and cross-validation and 980 for independent
validation. The dataset includes annealed ITO thin films deposited on glass substrates and
ZnO thin films deposited on silicon substrates. along with bulk reference materials
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spanning a wide TC range from 0.17to 450 Wm™'K~". Thermal measurcments are
performed using AFM-based SThM (Park Systems XE-70) with calibrated probe currents
and lock-in amplification for signal stability. Two probe types are discussed lo support
reproducibility, and all experiments are conducted in a vibration-damped chamber at 25°C.
The thesis compares Random Forest regression and Gradient Boosting regression models,
Hyperparameter tuning is performed through extensive grid search combined with cross-
validation, resulting in the evaluation of 279 distinct models. The Random Forest approach
consistently outperforms Gradient Boosting in predictive accuracy and generalization, and
the best Random Forest model is selected as Model ‘a’. The reported predictive
performance of Model “a” demonstrates high reliability. with strong R?* and low RMSE
values. A final model trained on combined cross-validation data is validated against an
independent test set of 980 unsecen measurements, confimming generalization.

Using the predicted y. TC values are derived and compared against known reference values
for 17 materials (thin films and bulk). The predicted TC values demonstrate strong
agreement across several orders of magnitude. Low and moderate TC materials exhibit
particularly high precision, with near-perfect agreement for glass and YAG and excellent
accuracy for PMMA. High TC systems such as SiC and bulk ZnO show slightly larger
deviations but remain within acceptable ranges, consistent with the thesis observation that
model sensitivity decreases at extreme yvalues due to training dataset distribution,

5. Electrical conductivity: motivation, limitations, and correction need

Accurately determining EC in thin films is complicated by geometric distortions,
particularly edge efTects, which distort current distribution and invalidate ideal theoretical
assumptions. Two widely used techniques are the van der Pauw method (vdP) and the 4PP
technique. vdP provides reliable sheet resistance for homogeneous isotropic films but
requires strict conditions such as uniform thickness, negligible contact size. and contact
placement along boundaries. It is also time-consuming and effectively destructive due to
contact fabrication requirements. Therefore, while vdP is used as a reference technique in
this thesis, it is not ideal lor routine scalable characterization.

The 4PP method is simpler and more versatile but strongly sensitive to sample geometry,
probe spacing. and measurement position. Without corrections, measured EC can deviate
significantly from intrinsic conductivity, Therefore, a reliable correction framework is
required.

6. Electrical methodology: experimental framework, FEM correction, and ML

correction

6.1.  Experimental dataset and measurement protocol

Electrical measurements are performed using a dedicated 4PP setup built during the PhD
work. Keithley current sources and a nanovoltmeter are used to measure voltage response
under controlled current injection. The dataset contains 553 measurements under varied
conditions including sample dimensions, probe positions, and sample rotations. The
samples include irregular quadrilateral ITO thin films deposited on glass substrates and
metallic samples (Cu, W, Ni. Fe, Sn). For [TO samples. measurements are performed at
multiple probe positions A;—A, and repeated after systemaltic counterclockwise sample
rotations. ensuring that multiple edge-effect regimes are captured. For metallic samples,
measurements are performed once at defined probe positions without rotation.
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The ML input variables include sample dimensions Ly, Lo, Ly, La. diagonal Lgj,e . probe
position coordinates Ly, Ly, and applied current /.

6.2. FEM correction framework

To validate and correct geometric effects, a 3D FEM model is developed in COMSOL
Multiphysics. The simulations reproduce the experimental geometry: a thin conducting
sample on a dielectric substrale embedded in air. Electric potential distributions are
senerated for different probe placements. visually demonstrating how current distortion
increases near edges. FEM produces a correction factor based on the relationship between
simulated apparent conductivity oy, and intrinsic conductivity gy - vielding FEM-

corrected conductivity:
0
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The thesis shows that gpgy consistently approaches g, validating the physical correction
methodology.

6.3. ML correction framework and definition of ©
To develop a purely experimental correction approach, the thesis introduces a ML
formulation that defines a continuous target variable ©. enabling regression learning
despite limited distinct EC values. Using the ideal analytical relationship between current,
voltage. and conductivity in a rectangular 4PP geometry. the thesis defines the ML model
as;

Fav(ly, Lo, La, Ly, Lgiag. Lo L 1) = ©,
and then calculates ML-derived conductivity through:
In (2) o
2nVd
This lormulation transforms the problem from a discrete conductivity class prediction into
a continuous physics-informed regression task.
Spearman correlation analysis for the electrical datasct confirms that current [has the
strongest monotonic relationship with @(r, = 0.96), consistent with the formulation,
Random Forest regression is selected and optimized through evaluation of 170
hyperparameter combinations, The best model (Model "a’) is 1dentified using cross-
validation metrics.

Tm =

7. Electrical results: FEM vs ML performance and EC prediction

The thesis compares FEM-corrected results and ML-derived results for both metallic and
ITO samples using Relative Difference percentage (RD%) analysis and residual
distributions. Both approaches demonstrate strong perlormance under challenging
measurement conditions intentionally focused on edge regions where artifacts are
strongest.

For metallic samples, FEM shows a mean RD% of +5.66% while ML shows —3.15%,
with similar variability. This indicates that both methods yield comparably reliable results
but with opposite bias directions. For ITO samples, FEM shows mean RD% of —4.30%
and ML shows —2.93%, with ML demonstrating tighter error distributions.
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Final EC comparisons across nine samples show that ML predictions remain within
approximately +15%of reference values and produce particularly consistent performance
across 1TO samples. FEM results also demonstrate strong agreement, though variability
can increase depending on geometry and boundary conditions.

The electrical component confirms the hypothesis that hoth FEM and ML can ellectively
mitigate geometry-induced crrors in 4PP measurements. FEM provides physics-based
correction with high interpretability, while ML demonstrates strong potential as a scalable
cimulation-free correction framework when trained on sufficiently representative datasets.



