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1. Introduction and Literature Review (Thermal) 

Here, a general overview is presented, and the topic is discussed in greater detail in the subsequent 

subsections. 

As active devices continue to shrink in size, especially in electronics, efficient heat dissipation has 

become one of the most critical factors determining their performance. When materials are scaled 

down to thin films and submicron structures, the mechanisms of heat transfer deviate from those 

observed in their bulk counterparts. At these small dimensions, theoretical models based on 

classical laws often fail to describe thermal behavior accurately, and heat transport becomes 

strongly influenced by surface and dimensional effects. Understanding these effects are therefore 

essential for designing electronic, optoelectronic, and thermoelectric systems. Thermal 

conductivity (TC), which describes how efficiently a material transfers heat under a temperature 

gradient, is one of the most fundamental thermophysical properties. It plays a key role in 

determining how effectively a device can dissipate heat. 

Over the past two decades, optical pump–probe techniques, particularly Time-Domain 

Thermoreflectance (TDTR), a variant of the flash method, have been widely employed for 

nanoscale TC measurements [1 , 2 , 3] with vertical resolution at the level of several dozen 

nanometers, and extensively studied [4, 5, 6, 7]. TDTR is a non-contact method with picosecond 

time resolution and the ability to probe buried interfaces, making it effective for layered systems.It 

was initially developed for metallic samples. By comparison, Frequency-Domain 

Thermoreflectance (FDTR) is another common method, a variation of photothermal spectroscopy. 

Instead of measuring the signal as a function of time delay, FDTR varies the modulation frequency 

of the pump beam to extract thermal data.Each technique comes with inherent limitations. For 

instance, the lateral spatial resolution of TDTR and FDTR is restricted to the micron scale due to 

the diffraction limit of light. This prevents it from fully capturing the submicron-scale TC 

distribution  at sample surface.  

By contrast, Scanning Thermal Microscopy (SThM) achieves submicron-scale lateral resolution 

but is sensitive to surface roughness, probe–sample contact mechanics, and substrate thermal 

properties, all of which introduce uncertainties. A critical challenge is the influence of surface 

roughness. Even slight variations in topography at the submicron scale can disrupt the interaction 

between the measurement probe and the sample surface. This disturbance distorts the thermal 

signals and complicates the extraction of intrinsic film properties. In SThM, surface roughness can 

significantly alter the measured signals, making it difficult to obtain reliable values for thin-film 

conductivity. Such effects underscore the extent to which submicron-scale morphology can 

dominate thermal measurements and remain a central obstacle in the field. These challenges 

emphasize that submicron-scale thermal characterization is still an open problem, with no single 

technique yet capable of providing a complete and fully reliable solution. 

TDTR and SThM are the two most widely used nanoscale thermal metrology tools: TDTR enables 

accurate, non-contact measurements of thin films and interfaces, while SThM provides higher-

resolution local thermal mapping. Each technique has its own limitations and advantages; together, 

they cover complementary measurement regimes, which will be discussed in the following 

subsections. 

The aim of this work is to improve the reliability of  SThM based TC measurements in thin films 

by addressing surface roughness effects. By carefully analyzing the advantages and limitations of 
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existing methods, particularly SThM, and by developing refinements in data interpretation, this 

thesis seeks to contribute to accurate characterization of thermal transport at the submicron scale. 

1.1. Time-Domain and Frequency-Domain Thermoreflectance 

TDTR is an optical method widely used to measure thermal transport in thin films and layered 

materials. The principle of the method is the same as the flash method [8]. A pulsed pump laser 

beam is used to heat the sample, while a delayed probe beam monitors changes in the surface 

temperature through changes of its reflectivity. To localize the heat source (light absorption) and 

the origin of measured signal (changes in reflectivity), a thin aluminum film, typically about 80–

90 nm thick, is deposited on the sample surface. Since the reflectivity of metals depends on 

temperature, changes in reflected light intensity provide information about changes of sample 

surface temperature. The reflected pulse intensity is detected by a photodiode. The measurement 

is a stroboscopic measurement, after each sample heating pulse the delay of the probe pulse 

changes, which allows for recording changes in surface temperature as a function of time [6]. 

 

Figure 1.1.  Schematic diagram of a TDTR system combined, showing the main components of 

the experimental setup [4]. 

An example of a TDTR experimental setup is presented in Figure 1.1. In practice, picosecond time 

resolution is achieved using mode-locked lasers that generate a sequence of ~1 ps pulses at 

repetition rates near 76 MHz. The laser output is split into two beam paths, a pump and a probe, 

with the relative optical path lengths adjusted using a mechanical delay stage. When the pump 

beam strikes the sample surface, each pulse deposits a small amount of energy, producing a sudden 

temperature rise of a few Kelvins in the thin metal film. The subsequent cooling of this surface 

region is monitored by the reflected probe pulses. TC is then determined by comparing the 

measured cooling curve with theoretical models and optimizing the relevant free parameters [4]. 
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In TDTR, the TC (κs) is extracted by fitting experimental measurements to a theoretical model 

that describes heat diffusion in both the frequency and time domains. The analysis starts from a 

frequency-domain solution describing periodic surface heating and then reconstructs the 

corresponding time-domain signal to reproduce the experimental response measured by a lock-in 

amplifier. 

In the frequency domain, the model describes the steady-state, periodically modulated temperature 

response of the sample surface. For a single semi-infinite medium, the temperature rise 𝑔(𝑟) at a 

radial distance 𝑟 from a periodically modulated point heat source is given by [6] 

𝑔(𝑟) =
exp⁡(−𝑞𝑟)

2𝜋κs𝑟
. 1.1 

Here, the TC (κs) governs the ability of the material to conduct heat, while the thermal diffusivity 
(𝐷) characterizes the rate at which the temperature responds to thermal perturbations. The 

parameter 𝑞 determines the thermal penetration depth (1/𝑞), which represents the characteristic 

distance over which the thermal wave decays in the material: 

𝑞 = √
𝑖𝜔

𝐷
, 1.2 

where 𝜔 = 2𝜋𝑓 is the angular modulation frequency. 

To incorporate the finite spatial extent of the pump and probe laser beams, the solution is expressed 

in the spatial frequency domain using a Hankel transform. The transformed temperature response 

𝐺(𝑘), where 𝑘denotes the radial spatial frequency, is written as 

𝐺(𝑘) =
1

κs(4𝜋2𝑘2 + 𝑞2)1/2
. 1.3 

The surface temperature change sensed by the probe beam, Δ𝒯, is obtained by integrating the 

product of the material response and the Gaussian intensity profiles of the pump and probe beams, 

characterized by radii 𝑤0and 𝑤1, respectively: 

Δ𝒯 = 2𝜋𝐴 ∫ 𝐺(𝑘) exp
∞

0

(
𝜋2𝑘2(𝑤0

2 + 𝑤1
2)

2
)𝑘 𝑑𝑘, 1.4 

where 𝐴 is the amplitude of the absorbed heat at the modulation frequency. Considering that G(k) 

depends on q and is a function of frequency, the formula provides a basis for interpreting the results 

obtained in the FDTR method. The time-domain formulation describes how the surface 

temperature is sampled as a function of the delay time 𝑡 between the pump and probe laser pulses. 

Important parameters include the pump–probe delay time 𝑡, which defines the temporal separation 

between heating and probing, and the thermoreflectance coefficient (𝑑𝑅/𝑑𝑇) , which relates 

changes in surface temperature to changes in optical reflectivity. The laser repetition rate 1/𝜏 sets 

the temporal spacing between successive pulse trains. Since the laser pulse duration is much 

shorter than the relevant thermal time scales, the experimental signal is modeled by summing the 

frequency-domain responses over the harmonics of the laser repetition rate. 
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This approach yields the complex reflectivity response expressed as 

Re[Δ𝑅𝑀(𝑡)] =
𝑑𝑅

𝑑𝑇
∑ (Δ𝒯(𝑚/𝜏 + 𝑓) + Δ𝒯(𝑚/𝜏 − 𝑓))

𝑀

𝑚=−𝑀

exp⁡(𝑖2𝜋𝑚𝑡/𝜏), 1.5 

Im[Δ𝑅𝑀(𝑡)] = −𝑖
𝑑𝑅

𝑑𝑇
∑ (Δ𝒯(𝑚/𝜏 + 𝑓) − Δ𝒯(𝑚/𝜏 − 𝑓))

𝑀

𝑚=−𝑀

exp⁡(𝑖2𝜋𝑚𝑡/𝜏). 1.6 

The real and imaginary components of the complex reflectivity are directly related to the voltages 

detected by the lock-in amplifier. These signals are related to the final lock-in output voltage 𝑉𝑓(𝑡) 

and the average detector voltage 𝑉0 through 

𝑉𝑓(𝑡)

𝑉0
=

𝑄

√2

Δ𝑅(𝑡)

𝑅
, 1.7 

where 𝑅 is the baseline reflectivity and 𝑄 is the quality factor of the resonant detection circuit 

tuned to the modulation frequency 𝑓. By treating the TC (κs) as an adjustable parameter and 

iteratively fitting the modeled ratio of the in-phase signal to the out-of-phase signal to the 

experimental data, the TC of the sample is accurately determined. 

Over the years, a key extension of TDTR has broadened its capability, particularly through the use 

of optical filtering strategies (such as two-tint detection) that suppress unwanted pump light 

reaching the detector and thereby improve measurement fidelity, especially when using fiber lasers 

at near-infrared wavelengths [9]. The strength of TDTR and FDTR lies in its ability to determine 

the TC of multilayer systems with distinct thermal properties, such as the pyrolytic carbon and 

silicon carbide (SiC) coatings used in nuclear fuel particles. It also enables direct measurements 

on spherical fuel particles, yielding results that are more representative of real operating conditions 

[5]. Its modeling framework offers an efficient and general approach for analyzing both single-

layer and multilayer samples, including explicit treatment of interfaces. Moreover, as a fully 

optical technique, TDTR and FDTR can be applied across a broad range of environments—from 

cryogenic systems to high-temperature stages and even extreme conditions such as high-pressure 

diamond anvil cells [4]. Continued advances in instrumentation, including improved filtering and 

robust transducer design, have further strengthened TDTR and FDTR as a highly reproducible 

measurement platforms [9]. 

At the same time, TDTR and FDTR are not free from limitations. The accuracy of extracted 

parameters depends heavily on prior knowledge of experimental inputs such as film thickness, 

beam spot sizes, and heat capacities. Reported uncertainties are around 10% for pyrolytic carbon 

and about 5% for SiC and alumina [5]. The mathematical models used to interpret TDTR and 

FDTR data rely on simplifying assumptions, including Gaussian beam profiles, cylindrical 

symmetry, and semi-infinite substrate boundaries. Deviations from these assumptions in real 

experiments can introduce systematic errors. Numerical convergence issues and sensitivity to 

parameter choices such as spot size also complicate analysis [6]. In the case of beam-offset 

measurements, sensitivity to in-plane conductivity requires the lateral diffusion length to be 

comparable to the beam radius. If this condition is not satisfied, the signal becomes insensitive to 

lateral transport. Moreover, multiple parameters (such as in-plane and cross-plane conductivity, 
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spot size, and interface conductance) are often interdependent, requiring careful experimental 

design and additional scans at different modulation frequencies [7]. 

Other experimental artifacts may arise from uncertainty in optical properties, phase errors in lock-

in detection, or residual pump leakage into the probe channel. Semi-transparent or buried 

transducers complicate the interpretation further, since the probe light may interact with multiple 

layers, requiring more advanced optical–thermal modeling [9]. 

 

Figure 1.2.   Spatial resolution limits of TDTR [11]. 

Finally, a more critical limitation lies in the inherent spatial resolution of TDTR, and FDTR, which 

is restricted to the microscale. Recent studies [10, 11] have highlighted that this restriction 

originates from the diffraction limit of light. The spatial resolution of the measurement is primarily 

determined by the diameters of laser spots, which define the smallest region that can be 

independently analyzed. For instance, when using a 50× objective lens, the resulting conductivity 

maps have a pixel size of approximately 4 μm (Figure 1.2) [11]. 

This limitation motivates the search for innovative techniques capable of higher-resolution TC 

measurements. SThM meets this need with sub-micron probes but remains sensitive to 

topography-induced artifacts. The primary aim of this work is to address and mitigate these 

roughness-induced limitations in SThM-based TC measurements. The following subsection 

provides a more detailed overview of the SThM method. 

1.2. SThM 

Among the techniques available for TC measurements in thin films, SThM has emerged as a 

valuable tool due to its higher spatial resolution than TDTR and FDTR, and ability to perform 

localized thermal analysis, as evidenced by prior research [12, 13]. The operational principle of 

SThM relies on the utilization of a thermal probe, which systematically scans the sample surface 

while detecting temperature-dependent resistance variations in the probe material. These 

temperature changes arise from the heat exchanged between the probe tip and the sample surface, 

which in turn alter the electrical resistance of the probe. 

By integrating Atomic Force Microscopy (AFM) with a thermal probe, SThM facilitates ultra-

high-resolution thermal mapping alongside topographical imaging, making it invaluable in 
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semiconductor, optoelectronic, and material science applications [14]. The configuration of the 

AFM-SThM apparatus is depicted in Figure 1.3. This setup employs an active feedback technique 

to stabilize the probe's operating temperature. A thermal control unit delivers the excitation current 

to the thermal probe. The probe's temperature is inferred from its electrical resistance. This 

resistance is part of a Wheatstone bridge circuit; any imbalance in the bridge, caused by a change 

in the probe's temperature due to sample interaction, generates an error signal.  

 

Figure 1.3.  The setup scheme of a SThM system based on AFM [14]. 

The scanning thermal microscope functions in two main modes: temperature contrast mode and 

conductance contrast mode. In temperature contrast mode, the thermal probe acts as a passive 

element, recording the temperature at the sample surface, or more precisely, its own temperature, 

which reflects the sample’s temperature. Thus, in this mode, the thermal probe operates as a 

thermometer. Since resistive probes require an electric current, in temperature contrast mode the 

current must be kept low enough to prevent Joule heating of the sensor. For this reason, 

temperature contrast mode is also referred to as the passive mode. In conductance contrast mode, 

also known as the active mode, the thermal probe serves as both a heater and a thermometer 

simultaneously. The temperature of the probe is influenced by the rate of heat dissipation from the 

probe into its environment. Heat transfer occurs through multiple pathways, one of which is the 

flux from the heated region into the sample [14, 15]. 

Accurate SThM measurements require reliable calibration techniques to convert raw 

thermovoltage or resistance signals into meaningful TC values. Experimental calibration involves 

the use of reference samples with known thermal conductivities to establish a correlation between 

measured signals and actual properties. This process typically involves heating the probe tip using 

a stable DC current and monitoring its temperature response under controlled conditions to ensure 

reliable results [14]. 

High-resolution temperature mapping in active microdevices, such as nanowire diodes and 

graphene-based components, has been enabled by SThM. Advances in probe technology have 
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pushed the spatial resolution to below 50 nm, making it ideal for investigating localized heating 

effects in electronic circuits [13, 14]. 

Although SThM provides significant advantages in submicron-scale thermal characterization, TC 

measurements are subject to several inherent constraints that affect their accuracy and 

reproducibility. One major limitation arises from geometric factors associated with the probe tip, 

including its shape, sharpness, and contact area, which can lead to inconsistent thermal interactions 

with the sample surface. 

The inconsistencies in SThM measurements (particularly those related to surface roughness) are 

especially problematic at the submicron scale tip–sample junction. They distort local heat flow 

and generate artifacts in the thermal maps, introducing uncertainties that ultimately compromise 

the reliability of quantitative TC assessments [16, 17, 18]. The interface-dependent nature of heat 

transfer further exacerbates these challenges, as different interfaces exhibit distinct thermal contact 

resistances (TCRs) that are difficult to standardize. When the SThM probe and specimen interact, 

the presence of asperities (topological irregularities) significantly diminishes the true physical 

contact area between them. This reduction in effective contact creates localized thermal air gaps, 

manifesting as increased TCR and introducing measurement variability [19]. SThM struggles with 

quantifying TC in thin films due to these interactions, surface roughness, and thermal spreading 

resistance [20, 21, 22, 23]. 

Studies on polymeric thin films, such as polydimethylsiloxane and epoxy, demonstrated that 

smoother surfaces with a root mean square roughness below 13.51 nm exhibit minimal artifacts, 

whereas rougher surfaces induce significant distortions. This is due to increased thermal resistance 

caused by reduced real contact area and enhanced heat reflection at the probe-sample interface 

[30]. Similar effects were observed in polymer/SiO2 composites, where peak heights exceeding 32 

nm led to significant thermal distortions, reinforcing the importance of surface morphology in 

determining measurement accuracy [30]. Experimental studies on germanium and silicon samples 

with ultra-smooth surfaces (root mean square roughness as low as 0.8 nm and 0.3 nm, respectively) 

demonstrated that in the absence of roughness-induced variability, solid-solid thermal resistance 

can be determined with high accuracy. However, deviations occur when roughness increases, 

leading to an irregular and unpredictable contact area that distorts the thermal signal [24]. To 

overcome the challenges, ultracompliant thermal probe arrays have been developed to enhance 

SThM’s capabilities for mapping non-planar surfaces. These micromachined polyimide probes 

maintain contact with samples despite topographical variations, eliminating the need for 

mechanical feedback and improving measurement consistency across complex structures [25]. 

The application of established mechanical contact models, including the Rabinovich formulation 

and the Derjaguin-Müller-Toporov theory, encounters theoretical and practical limitations when 

attempting to accurately describe the multifaceted nature of tip-sample interactions in scanning 

probe microscopy [26]. The primary shortcoming of these models lies in their inability to account 

for irregular surface morphologies and asymmetric contact geometries. When applied to surfaces 

with non-standard topographical features, these theoretical constructs fail to provide reliable 

predictions of interfacial behavior. This discrepancy arises because the models do not incorporate 

critical submicron-scale interaction phenomena, including localized elastic-plastic deformation, 

atomic-scale adhesion forces, and spatially varying contact stiffness, all of which play decisive 

roles in determining the mechanical and thermal response at the tip-sample junction. 
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The inadequacy of existing mechanical models to represent realistic experimental conditions 

highlights a broader methodological challenge in SThM. The combined limitations of current 

thermal and mechanical modeling approaches reveal a critical gap in analytical capabilities, 

underscoring the need for next-generation techniques that can more faithfully capture the complex 

interplay of forces, heat-transfer mechanisms, and material responses at the submicron scale. 

Among these challenges, interfacial thermal transport between thin films and their supporting 

substrates remains one of the most significant and persistent obstacles to accurate characterization. 

This substrate-interference effect becomes particularly pronounced in films with thicknesses in the 

nanoscale range (typically below 100 nm), where the measured thermal properties are increasingly 

dominated by substrate-driven physical phenomena [27]. 

To understand the thermal interactions at the nanoscale, this study adopts a theoretical framework 

[15], which models the probe-sample system using an electrical circuit analogy. The basic formula 

governing heat exchange is based on the principle that the electrical power dissipated in the probe 

(Pel) is equal to the heat flow through the total thermal conductance (Gth) between the heated 

region and the environment: 

Pel
si = Gth

si (Tp − Ta), 1.8 

where Tp  is the probe temperature and Ta  is the ambient temperature. In this model, the total 

thermal resistance (Rth
si = 1/Gth

si ) is a network of resistances representing three distinct heat-

transfer channels:  

1

Rth
si

=
1

Renv
+

1

Rcontact
si ⁡+ Rspread

si
 1.9 

These channels are defined as follows: Renv (Environmental Loss), related to heat lost through the 

cantilever to the probe base and through the surrounding air, ⁡Rcontact  (Contact Resistance) - 

thermal contact resistance at the tip–sample interface, and Rspread
si  (Spreading Resistance) - 

resistance to heat flow through a circular contact of radius rsi, related to the sample’s TC (κs) 

through the following equation for. 

Rspread
si =

1

4κsrsi
 1.10 

From this fundamental heat-transfer perspective, the apparent thermal resistance measured by the 

SThM probe (Rth
si ) arises from the parallel combination of these separate thermal pathways. In the 

context of thin-film characterization, this network is expressed in the following relationship 

relationship [58]: 

(Rth
si )−1 = h + (Rth,P

si +
1

4κsrsi
)
−1

, 1.11 

where, h represents the effective heat-transfer coefficient for convective cooling, corresponding to 

the inverse of the environmental resistance ( 1/Renv ). Rth,p
si  represents the intrinsic thermal 
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resistance of the probe–sample interface (Rcontact), and 
1

4κsrsi
 represents the spreading resistance 

of a sample with TC of κs and effective radius rsi. 

Accurate thermal characterization of thin films therefore requires more than simply determining 

thermal conductivity; it demands consideration of several interdependent physical parameters that 

collectively shape heat-transfer behavior. Two of the most critical are the effective radius (rsi) and 

the probe–sample boundary resistance (Rth,p
si ). These parameters interact in complex ways and can 

influence the interpretation of experimental results. 

The nature of these parameters for the TC measurement challenges highlights the need to develop 

innovative characterization methodologies that possess key attributes, for example, adaptability to 

diverse surface roughness, reliability against experimental variability, and the capacity to account 

for all thermal effects. The realization of this methodological advancement would require 

integration of several experimental and analytical approaches. High-resolution surface topography 

mapping must be combined with spatially correlated thermal signal acquisition to establish precise 

structure-property relationships. Advanced computational algorithms could then be employed to 

separate intrinsic material properties from measurement artifacts, while Machine Learning (ML) 

techniques could help identify patterns in complex, multidimensional datasets. Such 

comprehensive methodological innovations would yield benefits for both fundamental research 

and industrial applications. From a scientific perspective, they would provide more reliable and 

reproducible datasets for validating theoretical models of submicron-scale heat transfer. For 

technology development, they would facilitate more accurate performance prediction and 

optimization of thin film devices. Ultimately, these advancements would accelerate progress 

across multiple disciplines where thermal management is crucial. 

1.2.1. Advancements in Reducing Roughness-Induced Artifacts in SThM 

As discussed earlier, SThM is a powerful tool for probing submicron-scale thermal properties. 

However, surface roughness can mask the material’s intrinsic TC, complicating data interpretation. 

To address these challenges, both computational and experimental approaches have been 

developed to minimize roughness-induced distortions and improve measurement reliability. FEM, 

which solves the Poisson equation for diffusive heat transfer while considering probe-sample 

thermal resistance in three dimensions, is regarded as the most accurate computational method. 

However, FEM demands substantial computational resources, making it less practical for routine 

measurements [16, 28]. Comparative analyses indicate that FEM provides the highest accuracy in 

artifact removal, followed by neural networks and the neighbour volume approach. Given FEM's 

computational intensity, hybrid methods that integrate FEM with simpler techniques are 

recommended for practical applications [16, 28]. 

Experimental methods also play a crucial role in improving SThM measurement accuracy. One 

effective strategy involves optimizing probe parameters by adjusting the amplitude and frequency 

of the probe's heating voltage. This technique enhances thermal contrast while minimizing 

distortions caused by thermal inertia [28]. 

Besides experimental and computational techniques, the choice of sample preparation technique 

significantly affects SThM results. Mechanical polishing followed by ion beam polishing has been 

found to produce smoother surfaces with an average root mean square roughness of approximately 
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38 nm. However, this process may introduce large-scale local topographical variations that could 

still impact analysis [29]. 

On the other hand, ion milling, while effective at exposing multilayer structures, results in higher 

roughness, with an average root mean square roughness of 86 nm. This increased roughness 

complicates thermal property assessments [29]. Other techniques, including hot pressing and 

customized probe design, have been proposed to minimize peak heights and enhance real contact 

area, further reducing roughness-induced artifacts [30]. 

1.2.2. Advances in Thermal Measurements Calibration 

Accurate calibration in SThM is critical for reliable thermal property extraction. Without 

standardized calibration methods, measured TC values can be affected by probe-sample thermal 

exchange artifacts, leading to significant deviations from actual material properties. Wilson et al. 

(2019) highlighted the challenges in probe calibration, emphasizing that uncalibrated SThM 

measurements often conflate substrate and thin-film contributions, making quantitative thermal 

characterization difficult [31]. Several calibration strategies have been proposed to enhance 

measurement accuracy, each with varying degrees of success. Wilson et al. (2019) compared three 

major calibration approaches. The implicit method relies on curve-fitting probe signals to reference 

materials but struggles to separate substrate effects from thin-film contributions. This limitation 

makes it unreliable for accurately determining intrinsic thin-film thermal properties [31]. The step 

method estimates the thermal exchange radius by measuring variations in signal intensity across 

patterned surface features. However, inconsistencies arise due to differences in TC between 

materials, leading to errors in calibration [31]. The intersection method, which calibrates both the 

thermal exchange radius and contact thermal resistance using multiple reference materials, has 

demonstrated the highest reliability. This approach reduced deviations from TDTR measurements 

to within 20%, highlighting its accuracy [31]. Further refinement of calibration methods has 

included film-on-substrate heat conduction models, which effectively decouple substrate effects 

in ultrathin films. This advancement is useful for films thinner than the thermal exchange radius, 

where substrate contributions become dominant, complicating the extraction of intrinsic film 

conductivity [31]. 

Beyond traditional methods, innovative calibration strategies have been introduced to improve 

precision and repeatability in SThM measurements. One such approach involves using SiO2 steps 

on silicon substrates, allowing for constant roughness while varying TC. This method provides 

precise calibration under controlled conditions, reducing measurement uncertainties in thin-film 

systems [27].  

Predictive thermal modelling has also contributed to enhancing SThM’s ability to resolve depth-

dependent heat transport in thin films. These models address issues related to substrate influence 

and non-linear heat transfer mechanisms, making them valuable tools for refining calibration 

techniques [32]. 

Another SThM calibration method for thin films uses a normalized thermal signal combined with 

theoretical modelling to determine TC [33]. Measurements were carried out for SiO₂ thin films 

along with different reference samples. The experimentally determined ratio for the reference 

samples is represented by solid circles on the resulting graph (Figure 1.4).  
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Figure 1.4. Calibration graph relating the thermal signal (vertical axis) to TC (horizontal axis). 

The solid blue line represents the fitted calibration curve based on bulk reference samples (black 

dots) and SiO₂ thin films (open circles) [33]. 

The ratio of thermal resistance when the probe is in contact (𝑅th ∣ in) to when it is out of contact 

in air (𝑅th ∣ out) is determined by the electrical measurements as follows: 

𝑅th ∣ in

𝑅th ∣ out
=

(𝑅𝑑 − 𝑅𝑠)in

(𝑅𝑑 − 𝑅𝑠)out

.  1.12 

Here, (𝑅𝑑 − 𝑅𝑠)in  represents the difference between dynamic and static electrical resistances 

measured at the sample surface, whereas (𝑅𝑑 − 𝑅𝑠)out represents the corresponding resistance 

difference measured in air. This ratio depends on the sample’s TC 𝜅 and can be approximated by 

the rational expression [33]: 

𝑅th ∣ in

𝑅th ∣ out
≈

1 + 𝐴𝜅

1 + 𝐵𝜅
 1.13 

The parameters A and B correspond to terms that capture the combined effects of the probe–sample 

contact radius, the probe–sample boundary resistance, and the convective heat transfer. The solid 

lines in the Figure 1.4 correspond to the best fit of Equation 1.13. This fitted curve is then used to 

determine the TCs of the layered samples from the 
𝑅th∣in

𝑅th∣out
 ratio (shown by hollow circles in the 

figure). Figure 1.4 specifically presents the SiO₂ thin-film results, where the dotted line indicates 

the signal level corresponding to the known bulk TC of SiO₂. This calibration procedure for 

determining thin-film TC provides the foundation for the ML-based calibration method developed 

in this work. In this framework, real surface topography is incorporated into the calibration 

process, which potentially could offer improved accuracy [53]. 

2. Introduction and Literature Review (Electrical) 

Accurately determining the electrical conductivity (EC) of thin films is a challenge in materials 

characterization. Reliable EC measurements in thin films are primarily complicated by edge 

effects, where the proximity of the sample's boundaries distorts the current distribution, leading to 

non-uniform current paths and thus complicating the overall measurements. 
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The Four-Point Probe (4PP) and van der Pauw (vdP) techniques are the two most commonly used 

methods for TC measurements in thin films. The vdP method is often considered precise for 

homogeneous and isotropic thin films. However, it requires strict conditions: uniform film 

thickness, negligible contact size, and symmetric contact placement [34]. 

The 4PP method, in contrast, is simple, and versatile. It is also relatively easy to use on samples of 

different shapes and sizes, including irregular thin films. The main drawback of 4PP lies in its 

sensitivity to geometry and edge effects. Probe spacing, sample dimensions, and measurement 

location can all alter the observed conductivity, requiring correction factors to ensure accuracy. 

Without such corrections, 4PP values can deviate significantly from intrinsic conductivity. 

2.1. van der Pauw Method 

The van der Pauw (vdP) method, introduced in 1958, remains one of the most reliable reference 

techniques for determining the electrical resistivity of materials [35, 36]. The vdP is able to provide 

precise sheet resistance measurements using only four electrical contacts positioned along the 

perimeter of the sample [37, 38].  

The theoretical basis [39] of vdP relies on a theorem that connects the sheet resistance 𝑅𝑠 = 𝜌/𝑡 

of a flat, uniform, and isotropic sample (with thickness 𝑡) to two characteristic resistances obtained 

from measurements using four small contacts placed along the sample’s perimeter. This 

relationship follows from the two-dimensional Laplace equation for electric potential under the 

assumption that no current escapes through the sample boundaries. 

For the van der Pauw theorem to hold, the sample must be flat (Figure 2-1) with constant thickness, 

composed of a homogeneous and isotropic material, and equipped with four contacts placed along 

the boundary that are negligibly small compared to the overall sample dimensions.  

 

Figure 2-1. A flat sample equipped with four edge contacts (M, N, O, and P) used for vdP 

measurements [39]. 

The measurement procedure requires determining two characteristic resistances by interchanging 

the current and voltage terminals located at the four contacts, labeled M, N, O, and P. In the first 

configuration, a current 𝐼𝑀𝑁  is injected between M and N, and the resulting voltage 𝑉𝑃𝑂  is 

measured between P and O, giving 𝑅𝑀𝑁,𝑂𝑃 = 𝑉𝑃𝑂/𝐼𝑀𝑁. In the second configuration, the current is 

applied between N and O, and the voltage is measured between M and P, yielding 𝑅𝑁𝑂,𝑃𝑀 =
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𝑉𝑀𝑃/𝐼𝑁𝑂. The fundamental vdP equation connects these two resistances with the sample thickness 

𝑡 and specific resistivity 𝜌 through 

𝜌 =
𝜋𝑡

ln⁡(2)
⋅
𝑅𝑀𝑁,𝑂𝑃 + 𝑅𝑁𝑂,𝑃𝑀

2
⋅ 𝑓 (

𝑅𝑀𝑁,𝑂𝑃

𝑅𝑁𝑂,𝑃𝑀
), 2.1 

where the function 𝑓 depends only on the ratio of the measured resistances. In cases where the 

sample or the contact placement is perfectly symmetrical (like square), the two measured 

resistances are equal (𝑅𝑀𝑁,𝑂𝑃 = 𝑅𝑁𝑂,𝑃𝑀). Under this condition, the correction factor becomes 𝑓 =
1, and the resistivity simplifies to 

𝜌 =
𝜋𝑡

ln⁡(2)
 𝑅𝑀𝑁,𝑂𝑃 . 2.2 

This equation represents the fundamental relationship governing the vdP method. 

Although the vdP method typically requires direct electrical contacts on the sample surface, which 

can make it a time-consuming and effectively destructive process, it remains widely used as a 

reference technique. The need to fabricate or attach contacts, combined with the method’s 

sensitivity to geometrical imperfections, often limits its practicality for rapid or repeated 

measurements. Measurements obtained using this method have been used to determine the actual 

electrical conductivity values of the thin films investigated in this study. 

Ideally, the method assumes infinitesimally small contacts, but in practical scenarios, finite contact 

sizes can introduce systematic deviations. As the contact size increases relative to the sample 

dimensions, errors become more pronounced, leading to underestimation of resistivity values [35, 

36]. Similarly, sample thickness plays a crucial role in measurement accuracy. The vdP method is 

best suited for thin films, but when the thickness is comparable to the lateral dimensions, three-

dimensional current flow effects become significant. This necessitates the introduction of 

correction factors to obtain accurate resistivity values. FEM has been widely used to characterize 

these thickness-dependent effects and develop suitable correction methodologies [36, 38]. 

Additionally, to mitigate errors related to the boundary conditions, analytical expressions 

incorporating correction factors for finite sample size and asymmetric probe placement have been 

derived [35]. 

Given the deviations from ideal conditions, several correction strategies have been proposed to 

enhance measurement accuracy. Finite contact size corrections have been developed through 

correction tables and computational models that relate measured resistances to actual resistivity 

values based on known sample geometries. Experimental studies confirm that applying these 

corrections significantly improves the reliability of vdP measurements [36]. Material 

inhomogeneity considerations play a crucial role in refining vdP measurements, as variations in 

resistivity due to compositional gradients can distort current flow. To address this, spatially 

resolved conductivity mapping techniques have been employed as complementary tools for 

refining vdP measurements [36]. 

Computational techniques such as finite element simulations have been instrumental in validating 

these correction factors against experimental data. These approaches systematically evaluate 

multiple simultaneous non-idealities, providing comprehensive guidelines for accurate resistivity 

measurements [35, 36]. 
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2.2. The 4 Point Probe Technique 

The 4PP method is widely used to determine materials resistance, as it effectively eliminates errors 

caused by contact resistance. However, measurement accuracy is influenced by factors such as 

sample geometry, and probe positioning. Recent studies have examined these aspects, leading to 

improved methodologies for more reliable EC assessments [40, 41, 42]. 

The 4PP method operates by applying a known current through two probes while measuring the 

voltage drop across other two probes. This setup ensures that the measured voltage is independent 

of contact resistance, making it a more accurate technique compared to the traditional two-probe 

method [40, 41]. The Figure 2-2 illustrates the 4PP method, depicting the two primary 

configurations: a linear arrangement (a) and a square arrangement (b). Each setup features 

equidistant spacing between the probes. 

 

Figure 2-2. The linear (a) and square (b) arrangements of the 4PP method are shown in these 

schematic drawings, with the specific current and voltage probes identified [43]. 

In the characterization of electronic materials, the four-probe configuration is beneficial as it 

minimizes interference from external resistance and improves the precision of conductivity 

measurements. Studies have demonstrated that this method is crucial in evaluating charge transport 

behavior, particularly in systems where internal resistance plays a significant role [41]. 

Additionally, advanced models have been introduced to refine 4PP measurements, considering 

factors such as mixed conduction pathways and near-surface effects. These models offer a more 

comprehensive understanding of charge transport and have proven useful in improving the 

accuracy of electrical measurements in complex materials [42]. 

Sample geometry plays a significant role in determining accurate conductivity values. The size, 

shape, and thickness of the material influence the current distribution, making it necessary to apply 

correction factors to ensure reliable results [40, 41]. 

Variations in electrical properties have been observed across large-area films, necessitating 

multiple measurement points to capture these differences accurately. In research settings, materials 

are often segmented into smaller regions to assess variations and obtain a more precise evaluation 

of their properties [40]. 

In some cases, current flow is influenced by both surface and bulk conduction, making 

conventional measurement models less effective. Studies have shown that at smaller probe 

spacings, surface conductivity dominates, whereas at larger probe spacings, bulk conduction plays 
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a more significant role. This highlights the need for advanced modelling approaches that account 

for multiple conduction pathways instead of assuming a uniform distribution of charge carriers 

[42]. 

For flexible and multilayer materials, variations in measurement location can result in significant 

differences in resistance values. These inconsistencies highlight the importance of precise 

experimental protocols to account for substrate-related effects. Studies have emphasized that 

flexible substrates, in particular, can introduce additional challenges due to mechanical strain and 

non-uniform current flow, which must be considered when interpreting results [40]. 

In photovoltaic applications, the impact of substrate material on charge transport efficiency has 

been studied in detail. It has been observed that different probe configurations affect the ability to 

measure electrical properties accurately, particularly at higher voltage levels. Reducing unwanted 

resistances in the system improves the accuracy of conductivity measurements and enhances the 

overall efficiency of electronic components [41]. 

To improve 4PP techniques accuracy, numerical simulations and computational methods have 

been integrated into experimental work to refine measurement techniques further. These 

approaches help minimize systematic errors and provide a more precise understanding of how 

geometric factors influence conductivity measurements [42]. 

Recent studies have introduced various modifications and enhancements to the traditional 4PP 

technique. Yang Lu et al. developed a 3D-printed 4PP station using stainless steel tapestry needles 

electroplated with nickel and gold to minimize contact resistance variability. Their system 

incorporates a microcontroller-based source measurement unit (SMU) for precise electrical 

measurements. They also highlight the impact of geometric distortion in non-uniform samples 

[44]. Waremra and Betaubun applied the 4PP method to both bulk and thin-sheet materials, using 

a constant DC current while measuring the voltage drop across the inner probes [45]. Similarly, 

Mosavi et al. explored both two-wire and four-wire probe configurations for CIGS thin-film solar 

cells, demonstrating that the four-wire approach effectively eliminates lead resistance, improving 

measurement accuracy [41]. Ju et al. introduced a microscopic 4PP integrated with AFM, 

achieving high spatial resolution. Their method incorporates geometrical correction factors to 

enhance precision [46]. 

Correction factors play a crucial role in improving the accuracy of EC measurements, particularly 

when accounting for sample geometry and probe placement. Several studies have focused on 

refining these aspects. Chelly et al. developed an improved analytical model that applies correction 

factors for sample thickness and diameter. Using numerical simulations and experimental 

validation, they derived correction factors for both semi-infinite bulk materials and two-

dimensional sheet samples [47]. Another comprehensive study on 4PP techniques emphasizes the 

importance of correction factors for probe positioning near sample edges and lateral sample 

dimensions. It introduces mathematical models for different samples, extending correction factors 

to account for directional resistivity variations [34]. Ji-Kwan Kim et al. proposed a micro-4PP with 

a square probe configuration to mitigate inaccuracies caused by sample curvature and edge effects 

[48 ]. Smits’ work refines correction factors for sheet resistivity measurements, incorporating 

adjustments for rectangular and circular samples of finite size [49].  

The important physical quantity obtained using 4PP is the sheet resistance (𝑅𝑠ℎ), defined as the 

bulk resistivity (𝜌) divided by the film thickness (𝑡). Under the assumption that the film behaves 

as a quasi-two-dimensional system, this relationship takes the form 𝑅𝑠ℎ = 𝜌/𝑡. 
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Figure 2-3. Arrangement of the square 4PP method used in this study [34]. 

For thin-film measurements, the injected current can be assumed to spread cylindrically from the 

point of injection. In a square 4PP configuration, the probes are positioned at the four vertices of 

a square of side length 𝑠. Current (𝐼) is usually introduced between two diagonally opposite probes, 

while the potential difference (𝑉) is measured across the remaining pair. The potential distribution 

from a point current source on the sheet follows a logarithmic dependence, forming the theoretical 

basis for the sheet-resistance expression. 

For a square array of side length 𝑠, where the internal probe separations satisfy 𝑠1 = 𝑠4 = 𝑠 and 

𝑠2 = 𝑠3 = √2𝑠, the derivation simplifies. This yields the sheet-resistance formula for an infinite 

sheet [34]: 

𝑅𝑠 =
𝜌

𝑡
=

2𝜋

ln 2

𝑉

𝐼
 2.3 

In this ideal case, the sheet resistance depends solely on the measured ratio 𝑉/𝐼 and the 

dimensionless geometric factor 2𝜋/ln⁡ 2 ≈ 9.060, rendering it independent of the probe spacing 

𝑠. 

In practical scenarios, samples have finite lateral dimensions, making the infinite-sheet assumption 

invalid. The finite boundaries constrain the current flow, necessitating a geometrical correction 

factor (𝐹). When a square 4PP array is used on a finite square lamella, the true sheet resistance is 

obtained by multiplying the ideal expression by this factor: 

𝑅𝑠 = (
2𝜋

𝑙𝑛 2

𝑉

𝐼
)𝐹 2.4 

The correction factor 𝐹 is a non-trivial function of the ratio between the probe spacing and the 

sample size (𝑠/𝑑), and in some cases, the probe-array orientation relative to the sample edges. As 

the sample dimensions become very large compared to the probe spacing, the correction factor 

approaches unity, and the expression converges to the ideal infinite-sheet formulation. 



22 

3. Research Background 

The following sections establish the foundational research background for a critical issue in 

modern materials science: the accurate determination of functional properties in submicron scale 

and thin-film systems. The discussion begins with the formidable challenges associated with 

thermal transport, where the breakdown of classical physics, the dominance of boundary and 

interface effects (Kapitza resistance), and the profound influence of submicron-scale morphology 

make predicting TC an extrinsically dominated problem. The focus then shifts to the challenges in 

measuring EC, where the limitations of standard techniques like vdP and 4PP methods, combined 

with geometric artifacts, complicate the extraction of reliable data. Effective materials 

characterization, especially thermal properties, is a major challenge, requiring advances in 

methodologies and computational modeling. Its resolution is crucial for developing next-

generation technologies in electronics, photonics, and energy conversion. 

3.1. Research Background (Thermal Conductivity) 

Modern technology relies heavily on developing and using materials at the submicron scale, 

especially thin films. These materials are the foundation for devices in many fields, including high-

performance microelectronics, photonics, efficient energy systems, and optoelectronics. As the 

feature sizes within these devices continue to shrink towards atomic scales, their power densities 

escalate strongly, making effective thermal management not merely an engineering consideration 

but a fundamental bottleneck that dictates device performance, operational stability, long-term 

reliability, and ultimate functional viability. Therefore, the precise determination, accurate 

prediction, and ultimate control of thermal transport properties in thin films have become one of 

the most critical challenges in modern materials science. 

This importance stems from a fundamental paradigm shift in physical behavior: the thermal 

properties of a material in a thin-film configuration are not intrinsic constants but are instead 

extrinsic, dependent on a complex interplay of submicron-scale phenomena. When film thickness 

is reduced to dimensions comparable to or smaller than the mean free path of energy carriers 

(phonons in dielectrics, electrons in metals), heat transport undergoes a radical transition from the 

well-understood diffusive regime governed by Fourier's law to a non-equilibrium ballistic regime 

where classical models fail [27, 50]. In this submicron-scale realm, the material's bulk TC becomes 

an obsolete concept. Instead, thermal transport is dominated by boundary and interface effects. 

The film's effective TC becomes a strong function of its thickness, crystallographic quality, grain 

size, and surface morphology [23, 50]. Most significantly, the TCR (also known as the Kapitza 

resistance) at the interface between the film and its substrate emerges as the critical, and often 

limiting, factor in overall heat dissipation [51, 52].  

The complexity of this challenge is further compounded by the profound influence of submicron-

scale topography on thermal transport phenomena. Surface asperities reduce the true physical 

contact area between any two solids. This reduced contact area creates localized nanogaps that act 

as regions of high thermal resistance. This phenomenon introduces significant variability and 

compromises experimental reproducibility in thermal measurements [19, 22, 30]. 

The need to address these challenges becomes increasingly pressing as new applications continue 

to advance. In the microelectronics industry, the thermal management of integrated circuits, high-

power transistors, and phase-change memory cells requires knowledge of thin-film TC and 

interfacial resistance to engineer efficient heat spreading pathways and prevent destructive hot-
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spot formation [23, 52]. In energy technologies, such as thin-film thermoelectric generators and 

solar cells, the deliberate suppression of TC through nanostructuring is a primary pathway to 

achieving improved efficiencies [23]. For protective coatings and optical films, thermal stability 

and heat dissipation are key to withstanding high-power operational conditions. In each case, the 

ability to not only measure but also accurately predict thermal performance based on 

microstructure, morphology, and interface quality is a critical enabling capability for rational 

design. 

Yet, this ambition for prediction and control is currently hindered by significant limitations in both 

experimental metrology and theoretical modeling. On the experimental side, even techniques like 

SThM, which provides unparalleled spatial resolution, face inherent constraints. The accuracy of 

its measurements is heavily influenced by geometric factors of the probe tip, the stability of the 

tip-sample contact, and the aforementioned surface roughness, all of which introduce uncertainties 

that complicate data interpretation [16, 17, 18]. Established mechanical contact models were 

conceived for idealized scenarios and fail to accurately describe the complex, multi-physics nature 

of tip-sample interactions at the submicron scale, which are critical for translating SThM signals 

into quantitative thermal properties [26]. Their inability to account for irregular morphologies, 

localized deformations, and atomic-scale adhesion forces reveals a critical analytical gap [26]. This 

gap between theory and experiment hinders the development of reliable, standardized 

measurement protocols and reduces the overall reliability of quantitative assessments, thereby 

limiting the utility of acquired data for predictive design. 

Overcoming these challenges is imperative for the future of technology. It necessitates the 

development of new methodologies that include more reliable measurement techniques capable of 

decoupling intrinsic film properties from pervasive substrate contributions; the creation of multi-

scale models that can faithfully simulate heat transfer across realistic submicron-scale 

morphologies and interfaces; and the establishment of reliable, universally applicable calibration 

standards. 

3.2. Research Background (Electrical Conductivity) 

The core challenge in EC measurement arises from the influence of sample geometry. This 

complexity increases significantly as device features shrink, causing the assumptions underlying 

theoretical formulas to break down. Edge effects (where the proximity of the measurement region 

to a physical boundary distorts the current path) become a dominant source of error [34, 40]. The 

finite and often irregular shape of samples, a common scenario in research and development, 

introduces boundary conditions that alter current distribution, making simplified models for 

infinite sheets inaccurate [35, 40]. 

The most widely used techniques for addressing these challenges, the 4PP and vdP methods, each 

possess inherent limitations that highlight the difficulty of the problem. The vdP method, while 

celebrated for its versatility with irregularly shaped samples and its ability to minimize alignment 

errors [37, 38] , imposes strict requirements: the sample must have uniform thickness, and the 

contacts must be negligibly small, and the method is destructive. Deviations from these conditions, 

such as finite contact size, material inhomogeneity, or thickness variations, introduce systematic 

errors in electrical resistivity measurements [35, 36]. Consequently, the practical value of the vdP 

method depends heavily on the use of reliable analytical and numerical corrections, which 

transform an ostensibly simple measurement into a complex inverse problem. 
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Similarly, the 4PP method is sensitive to geometric factors. Its accuracy is heavily dependent on 

probe spacing, the proximity of the measurement to sample edges, and the overall dimensions of 

the film relative to the probe array [40, 41]. In complex material systems, such as flexible 

electronics or multilayer stacks, additional complications arise from substrate-induced strain, non-

uniform current flow, and the interplay between surface and bulk conduction pathways, which can 

dominate depending on the probe spacing used [40, 42]. These factors imply that a single 

measurement without proper correction is often meaningless, and obtaining a true EC value 

requires comprehensive correction frameworks such as Finite Element Method (FEM) or ML-

assisted methods. 

Emerging applications highlight the increasing need to address these challenges. The development 

of flexible and wearable electronics requires reliable conductivity measurements on substrates that 

may bend, stretch, and have inherent surface roughness, all of which violate the standard 

assumptions of traditional techniques [40]. The optimization of photovoltaic and thermoelectric 

devices hinges on accurately characterizing often anisotropic and inhomogeneous materials where 

minor errors in conductivity can lead to significant mispredictions of device efficiency [41, 42]. 

For industrial quality control and high-throughput screening of new materials, there is a pressing 

need for measurement protocols that are not only accurate but also rapid and adaptable to non-

ideal, real-world sample geometries. 

Therefore, the challenges associated with determining and predicting EC in thin films represent a 

critical bottleneck in materials science. This necessitates the adoption of methodologies such as 

FEM modeling to account for complex geometries and boundary conditions [35, 36, 47], as well 

as the development of data-driven approaches like ML to automate correction processes and handle 

multi-parameter non-idealities. The successful development of reliable, adaptable, and 

comprehensive frameworks for electrical characterization is essential for accelerating the rational 

design and implementation of advanced thin-film materials, ultimately supporting continued 

progress in electronic and energy technologies. 

4. Motivation and Hypothesis 

4.1. Problem Statement and Research Aim 

Accurately determining the TC of thin films remains a significant challenge due to the inherent 

limitations of SThM. Measurements obtained through SThM are highly sensitive to factors such 

as surface roughness and probe–sample contact variability, both of which introduce substantial 

noise and reduce measurement reproducibility. Existing theoretical models offer limited support 

because they rely on simplifying assumptions that fail to capture the complex thermal interactions 

occurring at submicron scales. As a result, the field lacks reliable, standardized methodologies for 

thin-film TC characterization. 

The aim of the TC component of this research is to develop an integrated methodology that 

combines high-resolution spatial mapping, simultaneous thermal–topographical acquisition, 

normalization procedures, and ML models. This framework is designed to enhance the reliability 

and reproducibility of thin-film TC measurements, establish a scalable platform (by converting 

physical topography into numerical datasets) using topography-based descriptors (e.g., inclination, 

peak-to-valley height), and bridge experimental SThM data with computational predictive 

modeling. 
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Accurate EC characterization in thin films encounters comparable difficulties. The widely used 

4PP technique is highly sensitive to probe placement, geometric distortions, and edge effects, often 

leading to inaccurate or inconsistent results. Although the vdP method offers a more rigorous 

alternative, it requires strict sample geometries, involves destructive preparation, and demands 

complex experimental setups—factors that limit its practicality for routine thin-film 

characterization. 

The aim of the EC component of this research is to establish a standardized and adaptable 

correction framework that operates solely on experimental data. This dissertation proposes a data-

driven approach in which ML models learn and correct geometric distortions directly from 

measured 4PP data, eliminating the need for rigid geometries or destructive procedures while 

enabling more practical, scalable EC characterization. In parallel, an FEM–based correction 

framework is also developed for comparison. 

4.2. Research Objectives 

This research is divided into two major components: the determination of TC and the 

determination of EC in thin films. Each component addresses longstanding limitations in nanoscale 

characterization by integrating advanced measurement techniques with data-driven modeling. 

Together, these methodologies aim to establish a unified and scalable framework for thin-film 

property evaluation. 

The overarching objective of the TC component is to develop a reliable and scalable methodology 

for both measuring and predicting the TC of thin films through the integration of SThM, high-

resolution surface topography analysis, and ML techniques. 

To achieve this, the research first focuses on the acquisition of high-quality data. A multi-scale 

spatial mapping strategy is designed, incorporating micro- and submicron-level grids, allowing for 

the simultaneous collection of localized thermal signals and detailed topographical information. 

This dual-mapping approach ensures that each thermal measurement can be directly associated 

with the corresponding morphological features of the sample. 

A second objective is the development of normalization and correction procedures to reduce 

measurement bias and enhance comparability across different samples. Quartz is employed as a 

stable reference material, enabling calibration of thermal signals and providing a foundation for 

constructing a consistent measurement framework. 

The research then aims to establish quantitative correlations between surface morphology 

(characterized using parameters such as roughness, skewness, and inclination) and the thermal 

response of the thin film. These correlations serve as meaningful descriptors for ML model 

training, enabling the development of predictive tools that incorporate both intrinsic material 

properties and topographical influences. 

Building on these inputs, the next objective is to construct and train Machine Learning models 

capable of accurately predicting thin-film thermal conductivity. Particular emphasis is placed on 

Random Forest regression due to its robustness in handling nonlinearities and complex feature 

interactions arising from topographical variations. 

Finally, the proposed methodology is validated across a diverse range of thin films and selected 

bulk materials. This validation phase is designed to confirm the reproducibility, reliability, and 
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scalability of the approach, ensuring its applicability to distinct material systems and measurement 

conditions. 

The EC component aims to develop a reliable and adaptable methodology for the accurate 

determination of thin-film EC using the 4PP technique. Conventional 4PP measurements are often 

compromised by geometric distortions (such as edge effects and inaccuracies in probe placement) 

that significantly affect current flow and voltage distribution. To overcome the sensitivity 

drawbacks of practical EC measurements using 4PP, particularly those related to geometry and 

probe positioning, this work proposes to establish an approach using FEM and ML techniques 

separately for measuring the EC in thin films, and to compare the practicality of these methods. 

FEM is employed to simulate current density distributions in thin films and to provide correction 

factors for geometry-related distortions. In parallel, an ML model is trained on an experimental 

dataset of metallic and transparent conductive oxide (ITO) films, enabling it to recognize and 

correct measurement artifacts caused by probe positioning and sample irregularities. 

The first objective is to model measurement distortions using FEM. Numerical simulations are 

employed to reproduce the influence of sample geometry, edge proximity, and probe 

misalignment, providing physically grounded correction factors and serving as theoretical 

benchmarks for experimental measurements. 

The second objective focuses on the development of a complementary ML-based correction 

framework. An extensive dataset of experimental 4PP measurements is used to train ML models 

capable of automatically identifying and correcting geometric artifacts under a wide range of 

measurement conditions. This data-driven approach aims to offer a simulation-free alternative that 

is both rapid and adaptable. 

The predictive capability of the ML model is then rigorously validated against high-fidelity 

experimental references, including vdP measurements. This step ensures that the ML corrections 

are both accurate and physically meaningful. 

4.3. Research Hypothesis 

The research is guided by two primary hypotheses corresponding to the TC and EC components. 

The central hypothesis for the TC component is that integrating high-resolution thermal mapping 

with detailed surface topographical analysis, combined with advanced ML algorithms, can 

overcome the inherent limitations of conventional SThM techniques. By unifying these data 

sources within a single analytical framework, it is expected that thin-film TC can be measured and 

predicted with significantly improved accuracy and reproducibility. 

This integrated approach is anticipated to remain effective even under challenging conditions, 

including variations in probe–sample contact, and surface irregularities factors that introduce 

uncertainty into SThM-based measurements. The hypothesis therefore asserts that a data-driven, 

multi-modal methodology will enable scalable and reliable TC characterization across a broad 

range of thin-film systems. 

For the EC component, the hypothesis is that both FEM and ML can generate effective correction 

factors capable of mitigating geometric distortions in 4PP measurements. These distortions (such 

as edge effects and probe placement deviations) are known to significantly influence current 

distribution and voltage measurement, leading to inaccuracies in EC determination. 
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While FEM is expected to provide correction factors with high physical fidelity, the ML-based 

framework is hypothesized to offer a simulation-free alternative that delivers comparable accuracy 

with substantially faster computation times. This makes ML particularly suitable for scalable, 

high-throughput EC characterization, where efficiency and adaptability are essential. 

5. Methodology and Experimental Procedures (Thermal) 

The proposed ML-based methodology combines SThM with signal processing to achieve 

submicron spatial and thermal resolution, while the computational component employs ML to 

extract intrinsic material properties from complex measurement datasets. The materials used in 

this work include annealed ITO thin films (processed under six different atmospheric conditions) 

and ZnO thin films that were previously  prepared, alongside six well-characterized bulk reference 

materials spanning three orders of magnitude in thermal conductivity (0.17–450 W·m⁻¹·K⁻¹). 

Detailed descriptions of the methodology are provided in the following sections. 

5.1. Materials Used and Instrumentation  

Commercial 170 nm thick indium tin oxide films deposited on glass substrates (Hoya, Tokyo, 

Japan) that had already been annealed under multiple controlled atmospheres were used in this 

study. These annealing treatments were not performed as part of this work; they had been 

previously carried out at a uniform temperature of 400 °C in vacuum, air, oxygen (O₂), nitrogen 

(N₂), carbon dioxide (CO₂), and a nitrogen–hydrogen (N₂–H₂) mixture. Likewise, the zinc oxide 

thin films analyzed in this study were obtained as pre-fabricated samples. They were produced 

earlier using atomic layer deposition (ALD), a technique that allows precise control of thickness 

and composition. The available ZnO films had been deposited at two temperatures, 100 °C and 

200 °C, with different ALD cycle counts to generate variations in film thickness and structural 

properties. Also, thermally isotropic bulk materials was incorporated into the study. These 

materials were chosen due to their well-defined thermal properties and structural homogeneity, 

which are essential for accurate model calibration. The bulk materials examined included: glass, 

glassy carbon, SiC single crystal, yttrium aluminum garnet (YAG) single crystal, ZnO in bulk 

form, and polymethyl methacrylate (PMMA). The bulk materials served as reference standards 

to improve model calibration by providing well-characterized thermal properties. 

The TC of the thin-film samples listed in Table 5.1 had been previously measured using an AFM 

(Park Systems XE-70) and two different thermal probes to ensure reproducibility and minimize 

experimental error. The thermal probe for earlier measurements was the KNT-SThM2an thermal 

probe (Kelvin NanoTechnology, Glasgow, UK). In the current work, an SThM probe (KNT-

SThM-3an, Kelvin NanoTechnology) was used. These two types of probes differ slightly in shape. 

To minimize noise, all experiments were conducted in a vibration-damped chamber at 25 °C, 

reducing external disturbances and thermal drift. A quartz reference sample was scanned first for 

baseline calibration, followed by SThM mapping of the thin-film samples. For both the quartz 

reference and the samples, a 2 × 2 µm² scan area was used, with a scan rate of 0.05 Hz and a 

contact force of 1 nN. 

For high-precision signal detection, a lock-in amplifier (SR830) filtered out noise, while the probe 

was powered by AC (2.3 kHz, 0.09 mA amplitude) and DC (1.8 mA) currents for dynamic and 

static thermal measurements, respectively. This setup ensures reliable data for studying 

submicron-scale heat transfer. The interaction between the SThM probe and the sample surface is 
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depicted in Figure Figure 5.1. This schematic also displays two important topographical 

parameters that affect TC measurements: the probe’s inclination and the surface’s peak-to-valley 

distance. 

 

Figure 5.1. Schematic of the SThM probe-surface interaction. The highlighted parameters 

(inclination and peak-to-valley distance) are critical, as the probe's dual sensing function allows 

for correlated thermal and topographical data collection at the submicron scale [53]. 
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Table 5.1. Detailed description of the samples used to validate the proposed methodology. 

Sample’s number Sample Substrate Layer thicknesses (nm) Actual κ⁡(W · m−1 ∙ K−1⁡) 

1 ITO (1)* Glass 170 6.4 [54] 

2 ITO (2)* Glass 170 3.5 [55] 

3 ITO (3)* Glass 170 8.3 [55] 

4 ITO (4)* Glass 170 10.6 [54] 

5 ITO (5)* Glass 170 11.8 [55] 

6 ITO (6)* Glass 170 6.7 [54] 

7 Glass (Bulk) - - 1.1 

8 Glassy carbon (Bulk) - - 6.3 

9 SiC (Bulk) - - 450 

10 YAG (Bulk) - - 12 

11 ZnAlO (1)* Silicon 110 4.29 [56] 

12 ZnO (Bulk) - - 80 

13 ZnO (2)* Silicon 12 0.25 [57] 

14 ZnO (3)* Silicon 15 0.28 [57] 

15 ZnO (4)* Silicon 38 1.12 [57] 

16 ZnO (5)* Silicon 118 2.81 [57] 

17 PMMA (Bulk) - - 0.17 
* ITO (1) to ITO (6) were annealed in different atmospheres: oxygen, carbon dioxide, vacuum, air, nitrogen, and a nitrogen-hydrogen 

mixture, respectively. ZnO (1) to ZnO (5) were deposited using ALD with cycle counts of 850, 150, 150, 330, and 900, respectively. The 

deposition temperatures were 200°C, 100°C, 200°C, 200°C, and 200°C, respectively. 
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5.2. Thermal Signals and Impact of Surface Topography on Thermal Parameters 

The thermal characterization methodology employed a framework wherein the effective thermal 

resistance (Rth
si ) of each discrete grid cell within the sample matrix was evaluated relative to the 

corresponding thermal resistance (Rth
ni ) of the reference material. This differential approach was 

implemented to normalize measurement variations and isolate the intrinsic thermal properties of 

the samples under investigation. Amorphous quartz was selected as the reference standard due to 

its thermal stability, and isotropic heat conduction properties. The fundamental comparative 

relationship was mathematically expressed through the following dimensionless ratio [58]:  

Rd
si − Rs

si

Rd
ni − Rs

ni
=

Rth
si

Rth
ni

= Γi 5.1 

In this formulation, the numerator (Rd
si − Rs

si ) represents the difference in dynamic and static 

electrical resistances measured at each sample grid cell (i). The denominator (Rd
ni − Rs

ni) represents 

the analogous resistance difference acquired from the quartz reference material at the 

corresponding spatial coordinate. This normalized ratio (Γi) effectively cancels out probe-specific 

characteristics and instrumental variables. The static resistance component (Rs
si, Rs

ni) was acquired 

under equilibrium conditions using a precisely regulated direct current excitation (IDC=1.8 mA) 

supplied by a high-stability current source. Conversely, the dynamic resistance measurement (Rd
si, 

Rd
ni) employed an alternating current component (IAC = 0.09 mA amplitude) to probe the transient 

thermal response characteristics through lock-in detection techniques. 

From the Equation 1.11 the thermal resistance (Rth
si ) demonstrates sensitivity to sample thermal 

properties and surface morphological characteristics, as this parameter is fundamentally governed 

by different interdependent variables – the sample TC (κs), the effective contact radius (rsi), the 

probe thermal resistance (Rth,P
si ), and the convective heat transfer coefficient (hsi) - all of which 

maintain intrinsic relationships with surface topography. This complex interdependence arises 

from several distinct physical mechanisms that collectively determine thermal transport efficiency 

at probe-sample interfaces.  

Surface roughness increases thermal resistance by reducing the true contact area between the probe 

and sample. The tip only contacts high points (asperities), while air-filled valleys act as insulating 

gaps. Conversely, an atomically smooth surface allows for near-perfect contact, maximizing the 

contact area and minimizing resistance by creating efficient thermal conduction pathways. The 

thermal model integrating these effects can be derived through combination of Equations 1.11 and 

5.1, yielding the following expression: 

(κs)−1 = ⁡4rsi

[
 
 
 

(
h + (Rth,P

ni +
1

4κnrni
)
−1

Γi
− h)

−1

− Rth,P
si

]
 
 
 

 5.2 

This relationship reveals several important physical insights. First, the equation highlights the 

critical importance of reference material topography (through parameter rni, here index n is used 

for the reference sample quartz) in determining accurate TC values, emphasizing that proper 
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normalization requires careful consideration of both sample and reference surface characteristics. 

Second, the formulation provides a quantitative framework for distinguishing the various 

contributions to measured thermal resistance, enabling researchers to distinguish between intrinsic 

material properties and topographically-induced (through parameter rsi) measurement artifacts. 

Furthermore, the ability to quantitatively relate surface topography to thermal transport 

characteristics represents a significant advancement in submicron-scale thermal metrology, with 

potential applications in materials development, quality control, and fundamental studies of 

submicron-scale heat transfer. 

5.3. A Factor as ML Input for Substrate and Thickness Consideration 

A key challenge was developing an analytical input for ML model to differentiate between bulk 

and thin-film samples. This distinction was critical because thin films exhibit fundamentally 

different thermal transport properties, which, if unaccounted for, would introduce significant 

inaccuracies in the measured TC. 

Moreover, the substrate TC introduces additional complexities in thermal transport analysis, as the 

TCR between the film and substrate can dominate overall heat dissipation. This effect is 

pronounced in ultrathin films, where interfacial thermal resistance may exceed the intrinsic thermal 

resistance of the film itself. Therefore, the development of a ML model capable of distinguishing 

between bulk and thin-film thermal responses was essential to ensure the reliability and accuracy 

of the experimental findings. The ML model training process required careful consideration of 

multiple variables, including film thickness, and substrate thermal properties to minimize 

systematic errors and enhance predictive performance. 

Initially to evaluate the effective TC of layered samples deposited on semi-infinite substrates, the 

probe–sample interaction can be modeled by assuming a discoidal contact with radius b. Within 

this framework, the effective TC, κeff, of the system can be expressed as [59]: 

κeff =
πκs

4
[∫

(y + 1)exp⁡(γx) + (y − 1)exp⁡(−γx)

(y + 1)exp⁡(γx) − (y − 1)exp⁡(−γx)
 
J1sin⁡ y

γ2y

∞

0

 dy]−1 5.3 

where x = d/b and γ = κs/κsubdenotes the ratio between the TC of the layer (κs) and that of the 

substrate (κsub). Here, J1is the first-order Bessel function of the first kind. 

The present investigation introduced a substrate-thickness factor (C-factor) as an extra ML input 

to quantitatively account for the influence of thin-film dimensions and substrate properties on TC 

measurements while developing ML model. To account for this, the input C was defined as 

follows: 

C = {(
b − d

b
)
κsub

κn
, d < b

0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡d ≥ b
 5.4 

Here, d is the thin-film thickness, b is the threshold thickness, κn is quartz TC (used solely for 

normalization), and κsub represents the substrate's TC values.  This mathematical formulation was 

developed as a piecewise function that distinguishes between two distinct thermal transport 

regimes based on film thickness. The critical thickness parameter b was established at 100 nm, 
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corresponding to the characteristic length scale of the SThM probe tip's interaction volume, which 

fundamentally limits the spatial resolution of thermal measurements. Below this threshold 

thickness, the factor incorporates both geometric scaling and material-dependent thermal 

properties through a normalized relationship. The geometric term ((b − d) b⁄ )  describes the 

progressive deviation from bulk-like behavior as film thickness decreases, while the material term 

(κsub κn⁄ ) weights this effect according to the relative thermal conductance of the substrate κsub 

compared to a reference value κn. 

5.4. Primary Key Parameters 

The methodological framework commences with the implementation of a spatial mapping 

protocol, wherein a 2 × 2 μm² region of the sample surface is systematically partitioned into a 16 

× 16 measurement grid architecture. This scheme yields 256 discrete measurement cells, each 

encompassing a 125 × 125 nm² area. The grid-based analytical framework enables several 

advancements in thermal metrology. First, the methodology inherently compensates for 

measurement artifacts caused by localized surface anomalies through its integrated analysis of 

regional thermal interactions. Second, the comprehensive dataset generated by this approach 

provides the experimental foundation for developing more accurate computational models of 

submicron-scale heat transfer that properly account for microstructural influences. 

The present methodology explicitly incorporates surface topography as a fundamental parameter 

governing thermal transport phenomena during SThM measurements. This recognition stems from 

the well-established understanding that submicron-scale surface morphology exerts profound 

influence on heat transfer mechanisms at the probe-sample interface, where nano-scale interactions 

and microscale geometric features collectively determine the efficiency of heat transport. Surface 

topography impacts thermal measurement accuracy by altering heat transfer, contact resistance, 

and contact area. 

5.4.1. Micro Scale Topographical Parameters 

As mentioned before, the present investigation employs a microstructural analysis framework 

focusing on a precisely delineated 2 × 2 μm² region, partitioned into a high-resolution 16 × 16 

measurement grid. This designed microgrid architecture enables comprehensive characterization 

of surface morphology and its consequential effects on thermal transport phenomena at the sub-

micron scale. The analytical protocol incorporates standard statistical surface metrology, with 

particular emphasis on two topographic parameters: Root Mean Square roughness (Rrms
s ) and 

surface skewness (Rsk
s ). Rrms

s  represents a statistically rigorous measure of surface irregularity 

amplitude, calculated as the standard deviation of surface height deviations from the mean 

reference plane. This parameter provides insights into the degree of probe-sample interfacial 

contact in SThM measurements, where increased Rrms
s values directly correspond to greater 

surface asperity heights and consequently reduced effective thermal contact area. The physical 

manifestation of this relationship occurs through several interconnected mechanisms: (1) 

diminished true mechanical contact between probe tip and surface features due to asperity height 

variations, and (2) formation of submicron-scale air gaps acting as thermal insulation barriers. 

These effects contribute to elevated TCR and consequently compromised heat transfer efficiency. 

The RMS roughness is calculated as the square root of the arithmetic mean of squared deviations 

from the reference plane: 
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Rrms
s = √

1

N
∑(zi

s)2

N

i=1

, Rrms
n = √

1

N
∑(zi

n)2

N

i=1

⁡ 5.5 

Where zi
s and zi

n represent the residual height deviations at each measurement point i for sample 

and reference surfaces, respectively, obtained by subtracting the actual surface height from the 

theoretically ideal plane determined through least-squares regression analysis. The parameter N = 

256 corresponds to the total number of discrete measurement cells comprising the high-resolution 

microgrid analysis area. 

Surface skewness (Rsk
s ) serves as a complementary statistical descriptor that quantifies the 

asymmetry of height distribution within the surface probability density function [ 60 ]. This 

parameter provides differentiation between surfaces dominated by protruding features (positive 

Rsk
s ) versus those characterized by prevalent valleys or pores (negative Rsk

s ). Positive skewness 

surfaces, typified by numerous sharp peaks, create discrete point contacts with the SThM probe 

that constrain thermal conduction pathways. Conversely, negatively skewed surfaces present 

distinct thermal transport challenges through the formation of enclosed air cavities that function 

as submicron-scale thermal insulators. These morphological features can induce complex three-

dimensional heat flow patterns, including lateral spreading and localized thermal bottleneck 

effects, which modify the apparent TC measurements. 

The surface skewness is computed as the normalized third moment of the height distribution: 

Rsk
s =

1
N

∑ (zi
s)3N

i=1

(Rrms
s )3

, Rsk
n =

1
N

∑ (zi
n)3N

i=1

(Rrms
n )3

 5.6 

These statistical descriptors provide a comprehensive quantitative framework for characterizing 

surface morphology at microscale dimensions, enabling precise correlation between topographical 

features and their impact on thermal transport properties. 

5.4.2. Submicron-scale Topographical Parameters 

The present investigation extends its analytical framework to the submicron regime through 

implementation of a characterization protocol focusing on discrete 375 × 375 nm² regions, each 

systematically partitioned into a 3 × 3 measurement matrix referred to as a submicron grid. This 

approach enables examination of localized thermophysical phenomena by capturing submicron-

scale parameters that govern interfacial heat transfer mechanisms, including surface inclination 

(Msi ), standard deviation of surface heights (σsi ), and peak-to-valley variations (μsi ). These 

submicron descriptors provide essential complementary information to microscale descriptors 

(mainly, Rrms
s  and Rsk

s ). 

Surface inclination (Msi) constitutes a submicron parameter that provides characterization of three-

dimensional surface geometry by measuring the rate of height variation per unit lateral distance. 

A steeper inclination reduces the effective probe–sample contact area, whereas a smaller 

inclination increases it. Consequently, surface inclination obviously influences the thermal 

transport between the probe and the sample. The present methodology incorporates these 
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inclination-dependent thermal transport phenomena to develop accurate correction algorithms for 

submicron-scale SThM measurements. This parameter was calculated from the local slope of the 

surface, i.e., the change in height per unit lateral distance, obtained from AFM topography data 

within each submicron grid cell. The standard deviation of surface heights (σsi) offers enhanced 

sensitivity to submicron-scale topographic variations when analyzed at this refined length scale 

[61]. As a statistical measure, it quantifies the statistical distribution of surface height deviations 

within each submicron cell. Surfaces with higher σsi values exhibit lower contact area and thus 

lower heat transfer between the probe and the sample. The analytical approach developed in this 

study effectively addresses these challenges, enabling accurate interpretation of thermal transport 

behavior as submicron scale. Peak-to-valley variation (μsi) represents another submicron-scale 

parameter essential for understanding surface characteristics that dominate probe–sample 

interactions [26]. This metric quantifies the maximum vertical displacement within each 

submicron cell. Large μsi values create distinct thermal transport regimes and not let the probe 

sense the sample surface effectively, whereas small μsi  values contribute to enhancing heat 

transfer from the probe to the sample surface. 

The principal objective of this investigation was to establish reliable quantitative correlations 

between the comprehensive set of topographical parameters previously characterized and the 

experimentally acquired thermal response signals, specifically the thermal signal ratio (Γi) and 

phase difference (Δφi). The thermal signal ratio (Γi) is a normalized, dimensionless parameter. It 

quantifies the interfacial thermal resistance at a specific submicron grid by comparing the 

resistance during probe-sample contact (Rth
si ) to a probe-reference contact (Rth

ni ). These metrics 

serve as sensitive indicators for investigating thermal energy transport between probe and sample. 

5.4.3. Complementary Considerations 

The present study employs an ML framework specifically designed to mitigate the experimental 

errors inherent in submicron-scale thermal characterization, which arise from the complex 

interplay of multiple variables. The ML model will be trained on a high-dimensional dataset 

encompassing the full range of experimentally measured thermal and topographical parameters. 

Prior to model training, the methodology incorporates a rigorous feature selection protocol based 

on Spearman’s rank correlation analysis. This statistical preprocessing step serves several critical 

purposes: First, it quantitatively assesses the predictive relevance of each measured parameter with 

respect to target TC values. Second, it systematically identifies and eliminates variables with 

statistically insignificant correlations, thereby reducing input space dimensionality. Third, it 

retains only those parameters exhibiting strong physical relationships with the thermal transport 

phenomena under investigation. 

The experimental methodology also includes a quartz-referenced standardization protocol to 

establish metrological traceability and ensure submicron-scale measurement accuracy. This 

approach leverages the exceptional thermophysical stability and well-documented TC properties 

of amorphous quartz (κ = 1.5 W·m⁻¹·K⁻¹ at standard conditions [54]). This advanced correction 

framework addresses the critical challenge of substrate thermal contributions in thin-film 

measurements, which become increasingly significant for films thinner than 100 nm. 

The research methodology presented in this study adopts an analytical framework that combines 

experimental instrumentation with ML techniques. The development of this integrated approach 

was informed by an extensive training process utilizing a dataset of 2,352 individual thermal 
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measurements. To ensure the generalizability of the ML models, an independent validation set 

comprising 980 additional measurements was employed, resulting in a comprehensive analytical 

dataset totalling 3,332 measurements. The dataset is presented in Table 5.2.  
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Table 5.2. Overview of the data collected and documented during laboratory experiments. 

Variable* Minimum Maximum Mean StDev 

Γi 0.997 1.005 1.001 0.002 

Δφi (deg) -693.837 826.137 6.813 148.089 

C 0 73.333 11.52 25.219 

Rrms
n (nm) 0.326 2.523 0.664 0.480 

Rsk
n  -1.55 0.507 -0.266 0.49 

Mni 3.530 × 10-5 5.583 × 10-2 2.786 × 10-3 3.246 × 10-3 

μni(nm) 0.258 16.7 1.395 1.324 

κn/σni(GW.m−2. K−1) 0.243 19.468 4.484 1.997 

Rrms
s (nm) 0.265 29.700 6.075 9.209 

Rsk
s  -0.127 3.072 0.693 0.81 

Msi 5.619 × 10-5 0.457 2.813 × 10-2 5.516 × 10-2 

μsi(nm) 0.189 142.200 13.220 22.540 

χ(GW.m−2. K−1) 0.006 1681.611 32.650 108.729 

* Variables include thermal signal ratio (Γi), phase difference (Δφi), and substrate-thickness factor (C). For the reference material (quartz), 

measurements include RMS roughness (Rrms
n ), skewness (Rsk

n ), inclination (Mni), peak-to-valley variations (μni), and the ratio κn/σni, 

where κnrepresents the TC of the quartz and σni denotes the standard deviation of surface heights for quartz. Corresponding parameters 

for the sample are also provided: Root Mean Squared (RMS) roughness (Rrms
s ), skewness (Rsk

s ), inclination (Msi), peak-to-valley variations 

(μsi), and the ratio χ = κs/σsi  (target variable), where κsrepresents the TC of the sample and σsi denotes the standard deviation of surface 

heights. The total amount of collected data is 3,332. 
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2 × 2 µm2 Square Area 2 × 2 µm2 Square Area 

Figure 5.2. The left image displays a topography map of sample ITO (1) captured on a microscale area (16 × 16 cells). The dotted square 

highlights the microscale region of 2 × 2 µm2 used for surface roughness analysis (Rrms
s , Rsk

s , Rrms
n , Rsk

n ), while the smaller filled square 

represents a submicron-scale subset area of 375 × 375 nm² (3 × 3 cells) for localized topographical characterization 

(Msi , μsi , σsi , Mni , μni , σni). The image on the right shows the thermal signal map of the same material within the same surface region, 

with the small square indicating the specific cell where thermal signal ratios (Γi) were captured. After each measurement, the submicron 

grid shifts by one cell to the right, and the small square in the thermal map shifts accordingly to capture the next data point, ultimately 

yielding 196 data points per sample. It should also be noted that these maps represent the "trace" data. Additionally, "retrace" maps are 

collected, and the data from these two maps are averaged for each cell to reduce noise and enhance the reliability of the dataset. 



38 

The investigation centers on TC (κs ) as the principal parameter of interest, which plays a 

fundamental role in the analytical framework through its mathematical relationship with the 

derived parameter χ. This quantity, defined as the ratio of sample TC to surface height standard 

deviation, at each submicron grid cell, (χ = κs/σsi), serves as a critical intermediary variable that 

facilitates interpretation of complex thermal transport phenomena. This analysis will explore the 

parameter's behavior across different material systems and measurement configurations, providing 

insights into thermal transport mechanisms at micro- and submicron scales. 

Figure 5.2 constitutes an essential component of this study's analytical framework, presenting a 

dual-modality visualization that enables comprehensive characterization of the sample system. The 

left-hand image comprises a high-resolution topography map. This detailed topographical 

representation captures critical structural features including surface roughness, and morphological 

variations that may influence thermal transport phenomena. The corresponding right-hand image 

presents a thermal signal map acquired through SThM, providing quantitative measurements of 

heat transfer characteristics across the identical sample region. This thermal mapping exhibits 

variations in signal intensity that directly correlate with local differences in TC and heat dissipation 

properties. The visual comparison demonstrates relationships between specific topographical 

features and corresponding thermal signal variations, establishing empirical evidence for 

morphology-dependent heat transfer behavior. A complete set of maps for all samples is included 

in the appendix A. 

5.5. Spearman’s Correlation Analysis  

The correlation coefficients in Table 5.3 provide useful information on the relationship between 

the target variable (χ) and each of the input variables. The Spearman's rank correlation coefficient 

(rs) is a statistical measure that quantifies the strength and direction of both linear and non-linear 

relationships between two variables. Unlike Pearson's correlation, which specifically assesses 

linear relationships, Spearman's method evaluates the relationship based on the ranks of the data. 

Equation 5.7 shows the mathematical formula to compute rs between two variables [62]. 

rs = 1 −
6∑di

2

N(N2 − 1)
 5.7 

Here, 𝑑𝑖 represents the difference between the ranks of the corresponding values of the two 

variables, and 𝑁is the number of paired observations. The value of 𝑑𝑖 reflects how much the two 

ranks disagree for a single data pair. A large ∣ 𝑑𝑖 ∣ means one variable’s rank is high while the 

other’s is low, whereas 𝑑𝑖 = 0 indicates perfect agreement between the two ranks. A rank is simply 

the position of a value when all values in a list are arranged from smallest to largest; the smallest 

value receives rank 1, the next receives rank 2, and so on. To calculate 𝑑𝑖, the paired values (𝑥𝑖, 𝑦𝑖) 

are first ranked separately. Each 𝑥𝑖 is assigned a rank based on its position among all 𝑥-values, and 

each 𝑦𝑖 is ranked in the same way among all 𝑦-values. For every pair, the difference between these 

two ranks is then computed as: 

𝑑𝑖 = Rank(𝑥𝑖) − Rank(𝑦𝑖) 5.8 

These 𝑑𝑖values are subsequently used in Spearman’s correlation calculation. 
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An rs = +1 indicates a perfect positive relationship, meaning that as one variable increases, the 

other variable consistently increases. Conversely, rs = -1 signifies a perfect negative relationship, 

where one variable decreases as the other increases. An rs = 0 suggests no relationship between 

the variables. 

The Spearman’s correlation analysis yields several significant findings regarding parameter-

property relationships. First and foremost, the parameter thermal signal ratio (Γi) demonstrates the 

most inverse correlation with χ, as evidenced by its negative coefficient of -0.726, indicating that 

increases in Γi  consistently correspond to marked decreases in χ  across the studied material 

systems. This is followed in descending order of negative influence by peak-to-valley variation 

μsi  (-0.609), inclination Msi  (-0.572), and substrate-thickness factor C  (-0.518), all of which 

maintain statistically meaningful negative associations with the target variable. 

Conversely, the examination reveals several parameters exhibiting minimal statistical association 

with χ. Specifically, Δφi manifests an extremely weak negative correlation (-0.022), while Rsk
n  

shows a nearly negligible relationship (-0.005), suggesting these factors contribute insignificantly 

to χ variability within the parameter space under investigation. In contrast to the predominant 

negative correlations, certain parameters demonstrate positive, albeit modest, relationships with χ, 

including Rsk
s  (0.228) and the ratio κn/σni (0.098), indicating that increases in these parameters 

correspond to slight enhancements in χ values.  

A critical methodological insight emerges from the comparative analysis of normalized versus 

non-normalized parameter representations. The normalization procedure yields improvements in 

predictive capability, as illustrated by the transformation of Rd
si − Rs

si  from displaying a trivial 

negative correlation (-0.024) in its raw form to the influential Γi parameter (-0.726) following 

appropriate normalization. 
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Table 5.3. Analysis of the connection between the target variable (χ) and each input variable*. 

 Γi Δφi C Rrms
n (nm) Rsk

n  Mni μni(nm) κn/σni 
(GW.m−2. K−1) 

Rrms
s (nm) Rsk

s  Msi μsi(nm) 

χ⁡(GW. m−2. K−1) -0.726 -0.022 -0.518 -0.270 -0.005 -0.116 -0.084 0.098 -0.505 0.228 -0.572 -0.609 

*The parameters include thermal signal ratio (Γi), phase difference (Δφi), and substrate-thickness factor (C). For quartz, measurements include RMS 

roughness (Rrms
n ), skewness (Rsk

n ), inclination (Mni), peak-to-valley variations (μni), and the ratio κn/σni, where κn is TC and σni is surface height 

standard deviation. For the sample, parameters are RMS roughness (Rrms
s ), skewness (Rsk

s ), inclination (Msi), peak-to-valley variations (μsi), and the 

target variable χ = κs/σsi, where κs is TC and σsi is surface height standard deviation. 
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5.6. ML  Framework for TC Prediction 

Accurate prediction of TC remains a critical challenge in materials science, especially for complex 

systems where multiple physical factors interact. Traditional approaches often rely on 

oversimplified assumptions, limiting their predictive accuracy. To address this, I present a ML 

model that directly learns the relationship between thermal measurements and surface 

characteristics. Our data-driven approach captures both macroscopic trends and microscopic 

variations, combining advanced regression techniques with rigorous experimental validation to 

deliver reliable TC estimations across diverse material systems. 

I developed a ML model using a regression-based framework to ensure precise and generalizable 

TC predictions. By integrating thermal, topographical, and material properties, while preserving 

the continuous nature of TC, our model overcomes the limitations of categorical classification 

methods. The model architecture was specifically designed to predict a continuous multiplicative 

variable, χ = κs/σsi, where κs represents the sample's TC and σsi denotes the standard deviation 

of surface heights obtained from topographical measurements. This formulation transforms TC 

prediction into a continuous regression task, enabling the model to interpolate between discrete 

values and effectively generalize to unseen data. The core relationship is mathematically expressed 

through the model equation:  

χ = fML(Γi, C, Δφi, Rrms
s , Rsk

s , Msi , μsi , Rrms
n , Rsk

n , Mni , μni , κn/σni) 5.9 

Where, Γi  represents the thermal signal acquired through SThM and various topographical 

parameters including slope and roughness contribute to the indirect inference of σsi , thereby 

enhancing the model's predictive performance. The selection of χ  as the target variable was 

justified by reasonable correlations observed between input features and κs/σsi, confirming the 

appropriateness of the regression framework. Furthermore, the identified relationships between 

σsi  and various topographical features, such as slope and peak-to-valley height, reinforced the 

model's physical interpretability. The alignment of model outputs with actual SThM probe 

measurements provided additional experimental validation, ensuring consistency between 

predictions and empirical observations. 

5.7. Ensemble Regression Models in Materials Property Prediction 

Before starting this section, it is important to note that some of the upcoming parts introduce new 

concepts related to ML. To keep the discussion understandable, the explanations are written in a 

clear basic way as possible. However, if additional background is needed, several easy-to-

understand resources are available that provide clear explanations of the ML-related topics 

mentioned here, such as general ML concepts [63], gradient boosting algorithms [64], random 

forest algorithms [65], hyperparameter tuning [66], and cross validation in ML [67]. 

ML follows a sequence of well-defined stages. The process begins with data collection and 

preprocessing, where raw data is cleaned, organized, and prepared for analysis. Next, the dataset 

is divided into training and testing sets, ensuring that part of the data remains unseen until the final 

evaluation. The training stage allows model to learn patterns and relationships within dataset, while 

techniques such as cross-validation and regularization are applied to minimize errors and avoid 

overfitting. Once trained, the model enters the evaluation stage, where it is tested on the reserved 

data to measure its ability to generalize beyond the training examples. Performance is then 
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quantified using statistical metrics such as R², RMSE, MAE, and AARD%, which collectively 

indicate how well the predictions match experimental values. The mathematical expressions for 

these evaluation metrics are given as follows [53]: 
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In these equations, 𝑦𝑚
𝑡  and 𝑦𝑚

𝑝
 denote the true and predicted values of the target variable, 

respectively. The term 𝑦ave  represents the average of the true values. The parameter 

𝑀⁡corresponds to the total number of data points considered during the cross-validation or testing 

stages. 

Among various ML models, Random Forest regression and Gradient Boosting regression have 

proven effective, demonstrating remarkable accuracy in capturing complex, nonlinear 

relationships within material datasets [68, 69, 70, 71]. Random Forest regression operates as an 

ensemble learning method that constructs multiple decision trees, each trained on a bootstrapped 

subset of the data. By aggregating the predictions of these trees, the model achieves enhanced 

accuracy while mitigating overfitting. A key strength of Random Forest lies in its ability to model 

nonlinear relationships between input variables and material properties without relying on 

predefined mathematical formulations. This dynamic feature selection makes the method 

adaptable to diverse materials and testing conditions [68, 69]. Figure 5-3 illustrates a predictive 

Random Forest regression model. This model constructs multiple decision trees during training (in 

Figure 5-3 these decision trees are shown by Tree 1, Tree 2, …). Each tree is trained on a random 

subset of the data and features (shown by filled circles the Figure 5-3), which introduces variability 

and de-correlates the individual learners. The final prediction is made by averaging their results. 
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Figure 5-3. Schematic of a Random Forest Regression Model. The model constructs multiple 

decision trees, each trained on a random subset of the data and features. The final prediction 

(output) is obtained by averaging the predictions of all individual trees [72]. 

 

The reliability of Random Forest extends to its handling of noisy data and high-dimensional 

datasets, maintaining stable performance where traditional methods might falter. A critical 

parameter influencing model performance is the minimum number of samples required for node 

splitting, which directly affects the model's complexity. Further improvements in predictive 

accuracy can be achieved through Bayesian optimization, which systematically fine-tunes 

hyperparameters such as the number of decision trees and maximum tree depth. 

In contrast to Random Forest's parallel tree construction, Gradient Boosting (Figure 5-4) employs 

a sequential ensemble approach where each new decision tree is trained to correct the residual 

errors of its predecessors. This iterative refinement process, guided by gradient descent 

optimization of the loss function, enables progressively higher predictive accuracy. The method's 

emphasis on error correction makes it well-suited for high-precision applications in material 

science where minor property differences can have significant implications [70, 71]. As shown in 

Figure 5-4, the model is built by training a sequence of decision trees. The first tree learns to predict 

the target values using the input data (𝑋, 𝑦), and its errors (called residuals) are computed as 𝑟1 =
𝑦 − 𝑦̂1. Each subsequent tree is trained on these residuals, so it focuses on the parts of the data that 

previous trees could not predict accurately. Every new tree produces its own prediction of the 

residuals, denoted by 𝑟̂, and the next residual is updated by subtracting this predicted value (for 

example, 𝑟2 = 𝑟1 − 𝑟̂1). Through this iterative correction, the model gradually improves its overall 

prediction. In the diagram, 𝑋 represents the input features, 𝑦 is the true target, 𝑦̂ refers to the 

predicted output of each tree, 𝑟 refers to the residuals, and 𝑟̂ represents the predicted residuals used 

to update the next step. 
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Figure 5-4. Schematic of a Gradient Boosting Model [64]. 

 

While Gradient Boosting often achieves superior accuracy compared to Random Forest in complex 

prediction tasks, this performance comes with certain trade-offs. The method demands careful 

hyperparameter tuning, including learning rate, tree depth, and number of iterations, to prevent 

overfitting. Additionally, the sequential nature of model training results in higher computational 

requirements, making it less suitable for extremely large datasets where computational efficiency 

is paramount. 

To enhance model reliability and prevent overfitting, practitioners employ k-fold cross-validation 

as a reliable validation technique. This method involves dividing the training data into k equally 

sized subsets, commonly using 5 or 10 folds. During each validation cycle, the model is trained on 

k-1 folds while using the remaining fold for validation. This rotation continues systematically until 

each fold has served as the validation set exactly once. The performance metrics from all iterations 

are then aggregated and averaged, producing a comprehensive evaluation that minimizes bias from 

any particular data distribution. 

Following this validation phase and subsequent hyperparameter optimization, the model 

undergoes final assessment using the previously untouched test set. This critical evaluation stage 

provides the most realistic measure of the model's predictive capability, simulating its performance 

in real-world applications where it must process completely new data. 

Model performance is quantified using multiple complementary statistical metrics that collectively 

provide a complete picture of predictive accuracy. The R-squared (R²) value indicates the 

proportion of variance in the dependent variable that can be explained by the model's predictors. 

The AARD% offers insight into the average percentage difference between predicted and actual 

values. RMSE emphasizes larger errors through its squared difference calculation, while MAE 

provides a straightforward average of absolute prediction errors. 

This evaluation framework combines systematic data partitioning, thorough cross-validation, and 

multi-metric assessment to create a reliable model development process. 
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6. Results and Discussion (Thermal) 

This section provides an evaluation of ML models for predicting TC, with a focus on 

hyperparameter optimization, model selection, and performance validation. 

6.1. Hyperparameter Tuning for Gradient Boosting and Random Forest: Model Selection 

and Validation 

Hyperparameter tuning represents a crucial phase in optimizing ML models, ensuring they achieve 

maximum performance while maintaining strong generalization capabilities. This study presents 

an evaluation of Gradient Boosting and Random Forest models through an extensive grid search 

approach combined with cross-validation, with the objective of identifying optimal 

hyperparameter configurations that maximize predictive accuracy.  

The research employed a comprehensive grid search strategy to explore predefined 

hyperparameter spaces for both Gradient Boosting and Random Forest models (Table 6.1). The 

experimental design resulted in the training and evaluation of 279 distinct models (each  model 

has different set of hyperparameters). 

Performance assessment incorporated cross-validation techniques to mitigate overfitting risks and 

provide reliable measurements of model generalization capabilities. This rigorous validation 

approach ensured that performance metrics accurately reflected each model's true predictive 

potential.   

The comparative evaluation revealed that the Random Forest model consistently outperformed the 

Gradient Boosting approach in terms of predictive accuracy, with this conclusion being validated 

through multiple statistical performance metrics. The study documented the final optimized 

hyperparameters for both algorithms in detailed comparison in Table 6.2. The Random Forest 

algorithm's ensemble architecture relies on the coordinated operation of multiple decision trees, 

with several critical hyperparameters governing model complexity and predictive performance. 

The number of estimators parameter determines the total quantity of trees comprising the forest 

ensemble, where increased values typically enhance model accuracy at the cost of greater 

computational requirements. Maximum depth serves as another parameter, controlling individual 

tree complexity and directly influencing the balance between model accuracy and overfitting risk.  

The study implemented several mechanisms specifically designed to prevent overfitting, including 

minimum samples split which dictates the threshold for node partitioning, minimum samples leaf 

governing terminal node size requirements, and maximum features which constrains the feature 

selection process during splitting operations. The criterion parameter plays a pivotal role in 

determining split quality metrics, with regression tasks employing squared error, absolute error, or 

the specialized Friedman Mean Squared Error ( MSE) that simultaneously optimizes for both mean 

and variance. For count data modeling, the Poisson criterion provided tailored performance by 

specifically accommodating discrete outcome distributions. The bootstrap parameter further 

enhanced model reliability by introducing controlled randomness through data sampling with 

replacement.   

The Gradient Boosting algorithm's sequential error-correction architecture incorporates distinct 

hyperparameters that collectively determine model performance. Similar to Random Forest, the 

number of estimators and maximum depth parameters significantly influence model accuracy and 

complexity characteristics. The learning rate parameter assumes particular importance in Gradient 
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Boosting, modulating each tree's contribution to the final model and requiring careful calibration 

to balance training efficiency with generalization performance.   

The subsample parameter introduces stochastic elements by specifying the fraction of training data 

utilized for each boosting iteration, while various loss functions accommodate different regression 

scenarios. These include standard squared error for conventional regression, Huber loss for outlier-

resistant modeling, quantile loss for percentile prediction, and absolute error for median-focused 

applications. The alpha parameter provides additional regularization control, serving as an 

important tool for managing model complexity and preventing overfitting.   
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Table 6.1. The hyperparameters of the ML models that were explored and analyzed in this study. 

Model’s name Checked hyperparameters Investigated range Number of designed models 

Random Forest Number of estimators 

Maximum depth 

Minimum samples split 

Minimum samples leaf 

Maximum features 

Criterion 

Bootstrap 

27-4975 

2-998 

2-198 

1-199 

0.11287-0.99951 

Squared error, absolute error, Friedman MSE, Poisson 

True - False 

141 

Gradient Boosting Number of estimators 

Maximum depth 

Minimum samples split 

Minimum samples leaf 

Maximum features 

Learning rate 

Subsample 

Loss function 

Alpha (Regularization Term) 

22-4960 

2-993 

7-200 

3-200 

0.10153-0.99678 

0.01003-0.98148 

0.12918-0.99875 

Squared error, Huber loss, quantile, absolute error 

0.10124-0.99320 

138 

 

Note. Hyperparameter definitions are as follows: Number of estimators refers to the total count of decision trees or boosting stages; increasing 

this value generally improves performance at the cost of computational load. Maximum depth limits the number of nodes in a tree, controlling 

complexity and the risk of overfitting. Minimum samples split and Minimum samples leaf dictate the smallest sample size required to split a 

node or form a leaf, respectively, acting as constraints on tree growth. Maximum features determine the size of the random feature subset 

considered at each split. Criterion (Random Forest) specifies the function to measure split quality. Bootstrap indicates whether trees are trained 

on random subsamples with replacement. For Gradient Boosting, learning rate scales the contribution of each tree to the final model, while 

Subsample controls the fraction of data used per boosting step. Alpha serves as a regularization term to penalize complex models, and the Loss 

function defines the specific error metric optimized during training. Max depth, Min samples split/leaf, and Max features function similarly to 

Random Forest. 
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The study confirms that grid search combined with cross-validation constitutes an effective 

methodology for hyperparameter optimization, with Random Forest's ensemble structure proving 

reliable for the given application. Gradient Boosting's flexible architecture, particularly through its 

adaptable learning rate and specialized loss functions, maintains strong potential for regression 

tasks requiring specific performance characteristics.  

In Table 6.2, Random Forest models ‘a’, ‘b’, and ‘c’ represent different configurations of the same 

algorithm. While the base method is identical, each model was trained using a unique set of 

hyperparameters (such as number of estimators, maximum depth, etc.) to identify the most 

Table 6.2. The optimal hyperparameters selected for each  ML model and their associated prediction 

accuracy. 

Model’s name Tuned hyperparameters 
Uncertainty 

index  

Cross-validation 

training phase 

Cross-validation 

testing phase 

Random Forest ‘a’ Number of estimators = 1986 

Maximum depth = 923 

Minimum samples split = 18 

Minimum samples leaf = 1 

Maximum features: 0.866 

Criterion:  squared error 

Bootstrap = False 

RMSE 14.353 23.986 

R2 0.98254 0.95205 

AARD% 6.995 14.276 

MAE 2.545 4.598 

Random Forest ‘b’ Number of estimators = 2624 

Maximum depth = 359 

Minimum samples split = 6 

Minimum samples leaf = 14 

Maximum features: 0.961 

Criterion: absolute error 

Bootstrap = False 

RMSE 24.445 32.770 

R2 0.94747 0.92009 

AARD% 13.738 17.545 

MAE 3.720 5.519 

Random Forest ‘c’ Number of estimators = 2306 

Maximum depth = 419 

Minimum samples split = 6 

Minimum samples leaf = 15 

Maximum features: 0.952 

Criterion: absolute error 

Bootstrap = False 

RMSE 25.528 30.673 

R2 0.94268 0.92791 

AARD% 15.477 18.304 

MAE 4.153 5.599 

Gradient Boosting Number of estimators = 2559 

Maximum depth = 95  

Minimum samples split = 92 

Minimum samples leaf = 181 

Maximum features: 0.923 

Learning rate = 0.013 

Subsample = 0.846 

Loss function:  Quantile 

Alpha = 0.294 

RMSE 103.205 82.509 

R2 0.17953 0.23259 

AARD% 23.396 26.891 

MAE 23.107 19.444 
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accurate result. In this study, these specific sets are referred to as Model ‘a’, b’, or ‘c’, respectively. 

As shown in Table 6.2, the Random Forest ‘a’ model demonstrates superior performance across 

all key evaluation metrics, establishing itself as the most effective predictive model for this task. 

During both cross-validation training and testing phases, it maintains consistently strong results 

that highlight its accuracy and generalization capabilities. 

In terms of predictive precision, the model achieves the lowest RMSE values of 14.353 (training) 

and 23.986 (testing), indicating accurate predictions with minimal error. The high R² values of 

0.98254 (training) and 0.95205 (testing) confirm its ability to explain over 95% of the variance in 

the testing dataset, showcasing excellent explanatory power. Additional validation comes from the 

low AARD% values of 6.995% (training) and 14.276% (testing), demonstrating that predictions 

remain close to actual values, while the low MAE scores of 2.545 (training) and 4.598 (testing) 

further reinforce its ability to minimize average prediction errors. Crucially, the small discrepancy 

between training and testing performance confirms the model generalizes effectively without 

overfitting. 

When compared to alternative Random Forest models ('b' and 'c'), Random Forest 'a' shows clear 

advantages. It is noted that the distinction between these models lies solely in their different sets 

of hyperparameters. The competing models exhibit higher RMSE and lower R² values, indicating 

reduced predictive accuracy and weaker generalization. Their higher AARD% and MAE values 

also reveal more frequent and significant prediction errors, making them less reliable choices. 

The performance gap becomes even more pronounced when comparing with the Gradient 

Boosting model, which shows weaker results. With an extremely high testing RMSE of 82.509 

and a very low R² of 0.23259, it explains only about 23% of the variance. The model's high 

AARD% (26.891) and MAE (19.444) confirm its predictions frequently deviate from actual 

values, rendering it unsuitable for precise applications. 

Given these comprehensive evaluations, Random Forest 'a' emerges as the optimal choice, offering 

unmatched predictive accuracy, minimal errors, and strong generalization. The alternative models, 

while functional, cannot match its performance, making Random Forest 'a' the clear 

recommendation for reliable and accurate predictions in this context. 

Another Random Forest model (based on the tuned hyperparameters found for  Model 'a', shown 

in Table 6.2) was trained on a combined dataset consisting of merged training and testing subsets 

(2352 datapoints) from cross-validation to maximize the available learning data for the final 

training stage.  

Table 6.3. Evaluation results of the fine-tuned model ‘a’ 

across training and testing phases. 

Metric Training data Testing data 

RMSE 16.033 19.222 

R2 0.97886 0.96630 

AARD% 6.319 17.487 

MAE 2.511 4.448 

Validation results (Table 6.3) demonstrate the model's predictive accuracy. To evaluate its 

performance under realistic conditions, the model was validated on 980 previously unseen 

experimental data points. This validation process confirmed the model's ability to generalize well 
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to new data, demonstrating its reliability for practical applications. A detailed performance 

evaluation revealed a linear correlation between the actual and predicted χ values, as illustrated in 

Figure 6.1. The training data closely followed the perfect prediction line, indicating an excellent 

fit, while the testing data exhibited slightly higher variability but still maintained strong alignment 

with the expected trend. Minor deviations were observed at higher χ  values (exceeding 

approximately 870 GW.m-2.K-1). This is likely due to the model's lack of sensitivity to changes 

large TC values. 

 

Figure 6.1. Relationship between observed dependent variable values and predicted outputs from 

the model ‘a’ for training and testing datasets. 

 

Figure 6.2. The RD% between actual and predicted values of the target variable. 

Despite these deviations, the relative errors remained small, as shown in Figure 6.2, with minimal 

practical impact since TC values are typically averaged in real-world applications. 
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Further analysis of the model's performance was conducted using the Relative Deviation (RD%), 

defined as:  

The RD% values shown in Figure 6.2 demonstrated that most RD% values clustered near zero, 

confirming low bias in the model's predictions. Slightly greater deviations occurred at lower χ 

values (below approximately 250 GW.m-2.K-1), though these had negligible influence on the 

overall results. The practice of averaging TC values further reduced the impact of outliers, 

enhancing the reliability of the findings. 

The residual distribution, presented in Figure 6.3, provided additional insights into the model's 

performance. For the training data, the residuals had a mean of zero, indicating no systematic bias, 

and a standard deviation of 16.04 GW.m-2.K-1, reflecting a tight distribution and high predictive 

accuracy. The testing residuals showed a mean of 0.77 GW.m-2.K-1, suggesting a slight positive 

bias, which was deemed acceptable given the complexity of the data, along with a standard 

deviation of 19.22 GW.m-2.K-1, indicating a marginally wider but still consistent spread. 

 

Figure 6.3. Gaussian distribution of residuals for training and testing datasets 

Key observations from the residual analysis included the sharp peak and narrow spread of the 

training residuals, confirming a strong model fit, and the broader yet similarly dense distribution 

of the testing residuals, which highlighted the model's generalization capability. Overall, the 

Random Forest model exhibited high predictive accuracy with minimal bias, effectively capturing 

TC trends across a wide range of values. While minor deviations occurred at extreme χ values, the 

model's performance remained strong, ensuring its reliability for practical use. The low relative 

errors and tight residual distributions further validated its reliability, providing confidence in its 

predictive accuracy. 

RD% =
𝜒𝑎𝑐𝑡𝑢𝑎𝑙 − 𝜒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝜒𝑎𝑐𝑡𝑢𝑎𝑙
 6.1 
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6.2. Evaluation of Model ‘a’ for TC Predictions 

The developed predictive model demonstrates reliable capabilities in estimating TC values across 

a diverse range of materials. Using χ = κs/σsi to calculate TC from predicted χ values, the model 

was rigorously evaluated on 17 distinct samples. The predictions were derived through an 

averaging process of multiple test-phase outputs, enhancing statistical reliability and minimizing 

random error. This methodological approach ensures the reported values represent stable, 

reproducible estimates rather than single-point determinations. The TC values for the various 

samples are summarized in Table 6.4 and are shown visually in Figure 6.4. 

Table 6.4. A comparison of the actual and predicted κ values for the samples. 

Sample’s number Sample 
Actual 

 κ⁡(W · m−1 ∙ K−1⁡) 

Predicted 

⁡κ (W · m−1 ∙ K−1) 

1 ITO (1) 6.4 [54] 5.3 

2 ITO (2) 3.5 [55] 3.7 

3 ITO (3) 8.3 [55] 8.5 

4 ITO (4) 10.6 [54] 8.5 

5 ITO (5) 11.8 [55] 12.4 

6 ITO (6) 6.7 [54] 10 

7 Glass (Bulk) 1.1 1.1 

8 Glassy carbon (Bulk) 6.3 6.7 

9 SiC (Bulk) 450 464 

10 YAG (Bulk) 12 12 

11 ZnAlO (1) 4.29 [56] 4.43 

12 ZnO (Bulk) 80 88 

13 ZnO (2) 0.25 [57] 0.33 

14 ZnO (3) 0.28 [57] 0.29 

15 ZnO (4) 1.12 [57] 1.12 

16 ZnO (5) 2.81 [57] 2.84 

17 PMMA (Bulk) 0.17 0.18 

 

Figure 6.4. Comparison of actual and ML (predicted) thermal conductivity values expressed as 

Ln(κ) for different materials, where κ is given in  W · m−1 ∙ K−1. 
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The model exhibits strong predictive accuracy across several orders of magnitude in TC values. 

For low-TC materials, it achieves particularly high precision, as demonstrated by Sample 17, 

where the actual value of 0.17 W · m−1 ∙ K−1 compares closely with the predicted 0.18 W · m−1 ∙
K−1, corresponding to a relative error of approximately 5.9 %. Similarly, Sample 7 shows excellent 

agreement, with both the actual and predicted values equal to 1.1 W · m−1 ∙ K−1, resulting in a 

negligible error below 1 %. 

The model performs consistently well in the intermediate TC range. Sample 10 exhibits virtually 

perfect agreement between the actual and predicted values (both 12 W · m−1 ∙ K−1), indicating an 

error well below 1 %. These results highlight the model’s robustness for materials with low to 

moderate thermal conductivities, which constitute the majority of the training dataset. 

At the high-TC end, the model maintains reasonable predictive capability, although with slightly 

increased relative deviations. Sample 9 (SiC) shows an overestimation from 450 W · m−1 ∙ K−1 to 

464 W · m−1 ∙ K−1, corresponding to a relative error of approximately 3.1 %. Sample 12 (ZnO 

bulk) exhibits a larger deviation, with a predicted value of 88 W · m−1 ∙ K−1 compared to the actual 

80 W · m−1 ∙ K−1, yielding a relative error of 10.0 %. While higher than in lower-TC regimes, 

these deviations remain acceptable for many practical applications. 

Overall, the model’s performance indicates that the averaging approach effectively reduces 

prediction variance, as reflected in the close agreement between predicted and reference values 

across a wide TC spectrum. The strong correlation observed confirms that the model has 

successfully captured the underlying physical relationships governing thermal transport, although 

reduced precision is evident at higher TC values explored in this study. 

From a practical perspective, the model is most reliable for materials with TC values below 100 

W · m−1 ∙ K−1 , where relative errors remain consistently low. Predictions for ultra-low TC 

materials (<1 W · m−1 ∙ K−1) demonstrate particularly good accuracy, and the averaging process 

provides an inherent estimate of uncertainty through prediction dispersion. This further confirms 

that the thermal probes employed in the experiments are especially sensitive within the low-TC 

regime. 

This analysis confirms the model’s suitability as a practical tool for TC estimation while clearly 

identifying areas for future improvement. The current implementation already offers significant 

value for materials screening and preliminary characterization, particularly for low-to-medium 

conductivity materials, with further enhancements expected through targeted model refinements. 

7. Methodology and Experimental Procedures (Electrical) 

This section details the experimental framework developed to characterize the EC of thin film and 

metallic samples. This study employs a high-precision 4PP setup integrated with a ML refinement 

layer. By systematically varying probe positions and sample orientations, a dataset was generated 

to train a model capable of compensating for real-world experimental complexities. 

7.1. Materials Used and Instrumentation  

The electrical measurements were performed using a Keithley Model 6221 current source for ITO 

samples, a Keithley Model 2231A-30-3 current source for metallic samples, and a Keithley Model 

2182A nanovoltmeter to measure the resultant voltage for both sample types. Table 5.1 
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summarizes the samples used to assess the proposed methodology, with each characterized by its 

actual EC and thickness for performance evaluation. Actual EC measurements for ITO samples 

(a) to (d) were conducted via the standard vdP method in prior studies, as referenced in Table 5.1. 

An important consideration is that all ITO samples were annealed at 400 °C, and the effect of 

annealing on ITO thin-film thickness must be addressed. Annealing can modify grain size and 

crystallinity in polycrystalline ITO, but X-ray diffraction (XRD) results revealed only slight grain 

growth [55]. The reference sample exhibited an average grain size of approximately 56 nm, which 

rose to about 57 nm following vacuum annealing and around 63 nm after N₂ annealing [55]. These 

minimal variations have little impact on film thickness, which stayed consistent at roughly 170 

nm. The metallic samples listed in the Table 5.1 were obtained from Sigma-Aldrich and have a 

high purity of 99.9+%. The Table 5.1 also includes sample dimensions (L1, L2, L3, and L4) and 

diagonal length (Ldiag.). The study employed two sample types: ITO films with irregular 

quadrilateral shapes deposited on insulating glass substrates and metallic samples with more 

regular geometries. For metallic samples, the probe measures only one corner, whereas for ITO 

samples, it measures all four corners to evaluate spatial variations. This approach enables a direct 

comparison between ML-predicted values when the model analyzes a single region of the samples 

versus when it assesses all regions of the samples. This study is based on 553 measurements of 

different electrical signals, taken with different sample dimensions, probe positions, and sample 

rotations, summarized in Table 7-2, which highlights the minimum, average, and maximum values 

for each variable. It should be noted that the sample rotations were performed to ensure that 

measurements were taken under different edge-effect conditions, as the thin film samples have 

irregular geometries. The current dataset is sufficient for developing a functional and generalizable 

model. Notably, the successful development of a generalized model using this dataset highlights 

its potential for scalability to larger datasets, enabling the development of more comprehensive 

models, a key strength of this work. 

In this study the input variables include sample dimensions (L1, L2, L3, and L4), diagonal (Ldiag.), 

the horizontal and vertical probe positions (Lh and Lv, respectively), and applied current (I). These 

parameters collectively characterize the system's geometrical and electrical properties, providing 

a foundation for analyzing its behavior. 
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Table 7-1. An overview of the samples utilized to train ML model. 

Sample* Thickness Ldiag.(mm) L1(mm) L2(mm) L3(mm) L4(mm) σactual⁡(kS⋅cm−1) 

ITO (a) 170 nm 13.517 9.300 9.807 9.736 12.095 4.99 [55] 

ITO (b) 170 nm 11.579 9.127 10.096 8.835 7.813 5.53 [55] 

ITO (c) 170 nm 13.828 12.555 6.287 12.654 8.379 2.73 [55] 

ITO (d) 170 nm 10.295 8.370 6.093 8.930 5.835 4.76 [55] 

Cu 0.25 mm 14.796 10.423 10.159 10.662 9.905 598  

W 0.25 mm 12.436 9.572 8.004 9.580 8.357 204 

Ni 0.50 mm 15.281 11.633 9.091 12.361 9.059 143 

Fe 0.25 mm 15.238 12.479 9.059 12.485 8.706 103 

Sn 0.50 mm 13.823 10.543 8.597 10.421 8.956 91 
* ITO samples (a) to (d) were annealed in different atmospheres: carbon dioxide, a nitrogen-hydrogen 

mixture, vacuum, and nitrogen. All samples were deposited on glass substrates. The EC of these ITO 

samples (a) to (d) was previously measured using the standard vdP method, as reported in the referenced 

studies. 
 

 

Table 7-2. Summary of the recorded information in the laboratory. Statistical summary of experimental 

measurements. Data represents 553 observations per parameter. 

Variable Minimum Maximum Mean 

I⁡(mA) 0.010 700.000 103.828 

Lv(mm) 1 3 1.886 

Lh(mm) 1 3 1.937 

Ldiag.(mm) 10.295 15.356 13.241 

L1(mm) 5.835 12.654 9.487 

L2(mm) 5.835 12.654 9.044 

L3(mm) 5.835 12.654 9.673 

L4(mm) 5.835 12.654 9.028 

Θ⁡(S·mV ) 0.009 1526.913 164.045 
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7.2. Measurement Methodology 

The measurements were acquired via a 4-probe device featuring a 4-pin, 2-row, straight male 

header (RS PRO) with a standard 2.54 mm pitch. The 4PP technique was employed to measure the 

electrical conductivity of thin-film samples. The setup, illustrated in Figure 7-1, was completely 

built during the course of this PhD project to provide a reliable and reproducible platform for thin-

film electrical characterization. The samples used in these measurements are shown in Table 7-3. 

 

(a) 

 

(b) 

 

Figure 7-1. setup for electrical conductivity 

measurements of samples. (a) Experimental 

arrangement consisting of a movable sample stage for 

precise sample positioning and a probe head. (b) Close-

up of the probe assembly with four metallic pins 

arranged in a square configuration with equal spacing. 

In this setup, the two closer pins are used to inject 

current, while the two farther pins measure the resulting 

voltage drop across the sample. This configuration 

minimizes contact resistance effects, which enables 

more accurate evaluation of intrinsic electrical 

conductivity. 

Prior to measurements, all probe contacts were meticulously cleaned with acetone to remove any 

flux residue, dust, or organic contaminants from the gold-plated pins. This protocol minimized 

systematic errors and improved dataset reliability. A four-probe configuration, arranged in a 

rectangular layout, was used to minimize contact resistance effects. Two probes supplied a dc 

current (P3 and P4), while the other two probes (P1 and P2) measured the resultant dc voltage, as 

shown in Figure 7-2. The line connecting P1 and P2 aligned parallel to side L1 side during all 

measurements (Figure 7-2). Since the samples are quadrangle, all four side dimensions (L1, L2, L3, 

and L4) and the diagonal (Ldiag.) crossing vertex C1 were incorporated into the analysis. This 

ensured a well-defined shape for each sample. To accurately model the electrical field distribution, 

the horizontal (Lh) and vertical (Lv) distances from the sample’s top-left corner (vertex C1) to probe 

P1 were recorded. These measurements provided positional probe data for the ML model. 

To evaluate the model under realistic conditions, the probes were deliberately positioned near the 

sample edges, where electric field distortion causes the largest EC measurement errors. This high-

interference setup tests the model’s reliability in practical situations where edge effects cannot be 

avoided. The measurement procedure involved positioning four electrical probes at different 
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locations (A1, A2, A3, A4) around vertex C1 of the sample, as shown in Figure 7-2. For A1, Lh=1 

mm and Lv=1 mm; for A2, Lh=3 mm and Lv=1 mm; for A3, Lh=3 mm and Lv=3 mm; and for A4, 

Lh=1 mm and Lv=3 mm. In cases where 3 mm probe placement extended beyond the sample 

surface, the distance was reduced to 2 mm to keep the probes within the sample boundaries. This 

positioning strategy minimized sensitivity to minor placement variations. Initial measurements 

were conducted with side L1 aligned parallel to the P1-P2 probe axis. Following the first 

measurement set, the sample underwent counterclockwise rotation (not the probes), bringing side 

L2 into alignment with the P1-P2 axis. This rotated configuration designated L2 as the new reference 

edge (L1) for modeling purposes. The identical measurement protocol was subsequently repeated 

at all four locations (shown in Figure 7-2). This rotational sequence continued systematically, with 

the sample rotated to align sides L3 and L4 sequentially with the original P1-P2 probe axis. 

Complete measurements were performed at all four locations following each rotational adjustment. 

For metallic samples, measurements were conducted only once at all four probe locations without 

any sample rotation. In contrast, the full rotational measurement protocol was exclusively applied 

to irregular ITO samples. This rotational measurement methodology serves a primary objective: 

enabling the characterization of different edge effects on electrical measurements in irregular 

samples. 

In this work, a machine learning approach is developed to learn directly from experimental datasets 

and predict electrical conductivity values across a wide range of measurement conditions. To 

ensure physical realism, the methodology integrates theory-informed constraints that preserve 

consistency with fundamental principles, while leveraging data-driven optimization to address 

empirical complexities. The approach is systematically validated on both metallic and transparent 

conductive oxide (e.g., ITO) samples, with particular attention to challenging anisotropic 

conditions and edge effects. 

Furthermore, the data-driven model is positioned not as a replacement for, but as a complement 

to, the well-established role of FEM simulation. In this research, FEM has been employed to 

demonstrate how FEM and ML can serve as mutually informative techniques: FEM provides 

foundational physical insight and validation, while ML enables efficient and adaptive prediction 

across diverse experimental configurations. This comparative analysis offers practitioners clear 

guidance on selecting and potentially integrating these approaches based on specific measurement 

requirements and available resources. Ultimately, the study aims to advance more reliable thin-

film characterization by fostering methodological integration between physical and data-driven 

domains.
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Table 7-3. ITO thin films and metallic samples used for EC measurements (mesh scale: 1 mm). 

ITO (a) ITO (b) ITO (c) ITO (d) Copper (Cu)  Tungsten (W) Nickel (Ni)  Iron (Fe) Tin (Sn) 

         

 

 

Figure 7-2. Schematic of probes, sample and different probe positions (A1-A4), illustrating spatial arrangement and measurement setup.
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7.3. Mathematical Foundation and ML Model 

Miccoli et al. derived an analytical equation to relate measured EC (σexp) to measured signals for 

a rectangular 4PP configuration [34]: 

σexp =
I

2πVd
Ln(2) 

7.1 

This expression, rooted in electrostatic theory, models current flow in an infinite 2D conductive 

medium. The logarithmic factor Ln(2)  emerges from the probe geometry's voltage decay 

characteristics, where I represents injected current and V the measured voltage. It is important to 

note that this is an idealized model. It assumes a perfect setup and does not account for real-world 

experimental errors, such as inaccuracies in probe placement or the distorting effect of a sample's 

finite boundaries and edges. 

To address these limitations, FEM simulations provide a physically-based correction by 

introducing geometric constraints: 

σFEM = (
σa

σnum
)σexp⁡ 

7.2 

Here, σa denotes the actual conductivity input to the FEM model, while σnum  represents the 

simulated apparent conductivity obtained using COMSOL under identical probe arrangements. 

The ratio (σa σnum⁄ ) serves as a correction factor, and boundary effects neglected in the theoretical 

formula (Equation 7.1). 

ML suggests a parallel approach through data-driven calibration. While FEM provides strong 

simulation-based solutions, ML models trained on empirical datasets offer complementary, direct 

predictions of EC across diverse experimental conditions, enhancing efficiency while preserving 

interpretability within a physics-informed framework. As a parallel approach, a ML model (FML) 

is defined as: 

FML(L1, L2, L3, L4, Ldiag., Lh, Lv, I) =
2π

Ln(2)
(σMLd)V = Θ 

7.3 

Here, FML is the ML model, which receives input variables comprising sample dimensions (side 

lengths L1, L2, L3, L4), diagonal length (Ldiag), probe positions (horizontal and vertical spacings Lh 

and Lv), and a single applied-current value (I) selected within the experimental current range, to 

predict the target variable Θ  as the output of the ML model. Once Θ   is predicted and V is 

experimentally measured, the EC (σML)⁡is calculated as: 

σML =
Ln(2)

2πVd
Θ 7.4 

The Equation 7.3 is developed to address the challenge of predicting EC values when only a limited 

number of unique EC values are available in the training dataset.  
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By defining Θ as a continuous variable, the ML framework reframes the prediction task as a 

regression problem rather than a discrete classification task. From an ML perspective, regression 

is fundamentally more suitable because EC is a continuous physical quantity rather than a discrete 

label. Using classification would force the model to select among a small set of discrete 

conductivity classes. By contrast, a regression-based formulation allows the model to learn the 

physical relationship (like Ohm’s law) between experimental inputs and the continuous 

conductivity-related variable Θ. This preserves the natural physical variations in the data, and the 

ML model is therefore developed as a physics-informed framework. 

This hybrid approach, combining theoretical foundations with data-driven ML corrections, 

provides a framework for accurate conductivity measurements in thin films, particularly where 

traditional analytical models are inadequate. 

Although FEM remains a widely trusted approach due to its detailed handling of geometry and 

boundary conditions, the ML method demonstrates promising potential because it learns directly 

from experimental data. However, acquiring a sufficiently large number of experimental data 

points for ML training can be challenging, especially when attempting to capture purely 

geometrical effects with high accuracy. 
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8. Results and Discussion (Electrical) 

8.1. FEM Simulation 

To account for geometric effects and validate the experimental 4PP measurements, a three-

dimensional FEM model was developed using COMSOL Multiphysics [73]. The purpose of this 

simulation was to reproduce the experimental setup under controlled numerical conditions and to 

establish a physically based correction that improves the accuracy of conductivity measurements. 

Figure 8-1 illustrates the configuration employed in the simulations. 

 

 

(a) 

Figure 8-1. FEM geometry of the 4PP 

configuration. (a) Side view showing the thin 

conducting sample placed on a dielectric 

substrate, with the system embedded in an air 

domain to reproduce realistic experimental 

conditions. (b) Top view illustrating the square 

arrangement of the four probe tips in contact 

with the sample surface. 

 

(b) 

The calculated potential maps for different probe placements are shown in Figure 8-2. As a result, 

the numerical EC value (σnum) obtained from simulations can deviate significantly from the actual 

value used as the model parameter (σa ). By capturing these variations, the FEM simulation 

provides clear visual evidence of the geometric artifacts inherent in the 4PP method and shows 

how corrected values can be derived (using Equation 7.2) to more accurately represent the 

material’s true conductivity. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8-2. Simulated electric potential distribution for the thin conducting sample under 

different 4PP configurations a: (1,1), b: (3,1), c: (1,3), d: (3,3). 

This simulation therefore provides both a visual and quantitative confirmation of the correction 

methodology. By incorporating geometric effects into the model, FEM produces corrected values 

that align much more closely with intrinsic properties than uncorrected experimental data. The 

approach establishes a physically grounded method for improving conductivity measurements in 

thin films and related systems, and it shows particular promise for laboratory environments where 

probe spacing can be carefully controlled. 

The effectiveness of the FEM correction is quantitatively demonstrated in Table 8-1, which 

compares the measured (σexp⁡), numerical (σnum, found using simulation), actual (σa), and FEM-

corrected corrected  (σFEM ) conductivity values for iron (Fe) sample across different probe 

configurations (Lv , Lh ).The FEM-corrected conductivity (σFEM) demonstrates significant progress 

toward approximating the intrinsic conductivity (σa), validating the effectiveness of the correction 

approach. While not perfectly matching σa  in all cases, the σFEM  values show much closer 

alignment with the theoretical intrinsic value than the uncorrected experimental measurements 

(σexp⁡). 



63 

Table 8-1. Summary for comparison of measured (σexp⁡), numerical (σnum), actual (σa), and 

FEM-corrected (σFEM) EC values  for iron (Fe) at different 4PP configurations (Lv , Lh ). 
(Lv (mm), Lh (mm)) σexp⁡(kS⁡·⁡⁡cm

−1) σnum⁡(kS⁡·⁡⁡cm−1) σa⁡(kS⁡·⁡⁡cm
−1) σFEM⁡(kS⁡·⁡⁡cm−1) 

(1, 1) 75 66 103 118 

(3, 1) 77 79 103 100 

(1, 3) 66 64 103 107 

(3, 3) 79 76 103 107 

 

For the (3, 1) configuration, σFEM  achieves high accuracy at 100 kS⁡ ·⁡⁡cm−1  compared to the 

reference value σa of 103 kS⁡·⁡⁡cm−1, corresponding to a deviation of approximately 3 %. This 

near-convergence demonstrates that the FEM correction effectively compensates for geometric 

artifacts when appropriate probe spacing is employed.  

The visual representation of this data is shown in Figure 8-3. Additional graphs for other samples 

are provided in Appendix A. 

 

Figure 8-3. A comparison of experimental, numerical, intrinsic, and FEM-corrected EC values 

for iron (Fe) sample across various 4PP configurations. Each label on the horizontal axis 

indicates a specific probe placement: the first number (before the comma) represents the vertical 

position of the probe Lv, and the second number (after the comma) represents the horizontal 

position of the probe Lh. 

The systematic pattern of results confirms the physical validity of the correction model - σFEM 

consistently approaches σa from measurable experimental data, demonstrating the method's 

fundamental soundness. The remaining discrepancies likely stem from secondary effects not yet 

incorporated in the model rather than flaws in the core approach. These excellent preliminary 

results strongly suggest that with refined modeling of boundary conditions or probe-specific 

correction factors, even better agreement with σa could be achieved. 

This successful demonstration of physically-based experimental correction establishes an 

important methodology for accurate conductivity measurement, with particular value for materials 
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characterization where intrinsic properties must be derived from imperfect experimental setups. 

The technique shows promise for standard laboratory applications where controlled probe 

geometries can be maintained. 

8.2. Spearman’s Correlation Analysis 

To evaluate the relationships between the input features and the target variable, Spearman’s rank 

correlation analysis was performed. Table 8-2 presents the interpretation of Spearman’s rank 

correlation coefficients (rs) for all variable pairs used in model development. The strongest 

correlation is observed between the applied current (I) and the output variable (Θ ), with a 

coefficient of 0.96, indicating a near-perfect monotonic relationship. This result aligns with Ohm’s 

law, which states that the target variable is directly proportional to current (Θ  ∝ I). The high 

correlation not only confirms the expected physical behavior but also validates the experimental 

measurements. Among all sample dimensions, sides L1 (rs = 0.35) and L3 (rs = 0.37) exhibit 

stronger positive correlations with Θ, suggesting that their orientation relative to the current path 

significantly influences current density distribution in different samples. In contrast, L2 (rs = -0.09) 

and L4 (rs = -0.11) show weaker negative correlations with Θ, indicating that L2 and L4 affect 

current paths in an opposing manner. The analysis for the diagonal Ldiag. (rs = 0.23) exhibits a 

weaker positive correlation with Θ compared to the edge effects from L1 and L3, as expected. 

Finally, Lv (rs = -0.05) and Lh (rs = 0.08) demonstrate negligible correlations, confirming their 

minimal influence on Θ.  

Table 8-2.  Spearman's rank correlation coefficients (rₛ) between all pairs of variables used in 

ML modelling. 

Variable I⁡(mA) Lv(mm) Lh(mm) Ldiag.(mm) L1(mm) L2(mm) L3(mm) L4(mm) 

Θ⁡(mA) 0.96 -0.05 0.08 0.23 0.35 -0.09 0.37 -0.11 

Although variations in probe position would, in principle, be expected to affect the measured 

response, their impact is intentionally suppressed in the present dataset. This is because only two 

constrained variations in the vertical and horizontal directions were included, with probe positions 

fixed relative to the reference vertex (C1) for all samples. As a result, positional changes do not 

introduce sufficient independent variability to significantly alter the final output Θ, leading the 

model to rely more on edge-related effects rather than absolute probe location in its predictions. 

8.3. Random Forest Model Development and Hyperparameter Optimization 

Model performance was assessed across different Random Forest hyperparameter settings. Table 

6.1 summarizes the hyperparameters of the Random Forest algorithm used in this study, along with 

their search ranges (optimized via grid search). In total, 170 different hyperparameter 

combinations were evaluated to rigorously tune the Random Forest model for generalized 

performance. The subsequent section applies different optimization scenarios to select the best 

hyperparameter combination by monitoring and comparing predictive performance during  cross-

validation (CV) stage. 
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Table 8-3. The range of hyperparameters investigated for the ML models in the current 

study (170 evaluated configurations). 

Model’s name Investigated hyperparameters Investigated range 

Random 

Forest 

Number of estimators 

Maximum depth 

Minimum samples split 

Minimum samples leaf 

Criterion 

Bootstrap 

81-4249 

55 -867 

2 -153 

1 -174 

Poisson, squared error, absolute error 

True - False 

Table 8-4 presents the hyperparameters of the four best-performing set of hyperparameters for the 

Random Forest  model, identified based on their performance during the CV stage. These models 

were selected for their potential to generalize effectively in predicting Θ. As shown in the Table 

8-4, Random Forest model 'a' performed well compared to the other configurations. Visual 

inspection of the statistical indices confirms that this model provided acceptable predictive 

performance for Θ. The next section employs a spider graph to further support these findings. 

Models ‘a’, ‘b’, ‘c’ and ‘d’ denote different hyperparameter configurations (e.g., number of 

estimators, maximum depth, etc.) of the same Random Forest base model.
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Table 8-4. The best identified hyperparameters for each ML model and their corresponding accuracy in predictions. 

Model’s name Tuned hyperparameters Uncertainty index  CV training phase CV testing phase 

Random Forest ‘a’ Number of estimators = 2445 

Maximum depth = 711 

Minimum samples split = 2 

Minimum samples leaf = 3 

Criterion: Absolute error 

Bootstrap = True 

RMSE 16.208 39.922 

R2 0.99658 0.97641 

AARD% 3.328 8.639 

MAE 5.088 12.212 

Random Forest ‘b’ Number of estimators = 2076 

Maximum depth = 783 

Minimum samples split = 11 

Minimum samples leaf = 1 

Criterion: Absolute error 

Bootstrap = True 

RMSE 58.650 65.371 

R2 0.95504 0.94141 

AARD% 11.134 15.581 

MAE 18.113 20.992 

Random Forest ‘c’ Number of estimators = 4828 

Maximum depth = 820 

Minimum samples split = 17 

Minimum samples leaf = 5 

Criterion: Poisson 

Bootstrap = False 

RMSE 65.438 72.481 

R2 0.94394 0.92756 

AARD% 13.119 17.048 

MAE 20.717 24.108 

Random Forest ‘d’ Number of estimators: 4496 

Maximum depth: 840 

Minimum samples split: 21 

Minimum samples leaf: 9 

Criterion: Poisson 

Bootstrap: False 

RMSE 96.939 97.522 

R2 0.87759 0.86870 

AARD% 18.408 21.454 

MAE 31.186 32.623 
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8.4. Selecting the Best Hyperparameters 

Figure 8-4 shows the spider graphs of RMSE, MAE, and AARD% for the four selected 

Random Forest models during the CV training stage. Figure 8-5 presents the same 

performance metrics for the CV testing stage. In these spider plots, smaller triangles 

correspond to lower error values and thus indicate better model performance. 

 

Figure 8-4. Comparing the performance of the selected ML models in the CV training 

stage using the radar graph. 

 

 

Figure 8-5. Comparing the performance of the selected ML models in the CV testing 

phase using the radar graph. 

The evaluation shows that among the four Random Forest models (a–d), Model 'a' is the 

optimal choice due to its superior performance across all measured metrics. On the training 

set, Model 'a' achieved the lowest RMSE (16.208), AARD% (3.328%), and MAE (5.088), 

significantly outperforming the others. This superiority is visually represented in Figure 

8-4, where the polygon for Model 'a' is the smallest, confirming its best fit to the training 

data. Crucially, this advantage persisted in the test set, where Model 'a' maintained the 

lowest errors (RMSE: 39.922; AARD%: 8.639%; MAE: 12.212), which is the primary 
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confirmation of its reliability on unseen data. In Figure 8-5, the polygon for Model 'a' 

remains the smallest, visually demonstrating that the error did not increase when facing 

test data. This graphical consistency and the low errors confirm Model 'a's effective 

generalization, while models b–d exhibited higher errors in both train and test phases (e.g., 

test RMSEs of 65.371–97.522). 

Figure 8-6 compares the R² values of the selected models during CV training and testing 

phases. Higher R² values indicate better performance. The R² scores further reinforces the 

dominance of Random Forest ‘a’, with near-perfect scores in both cross-validated training 

(0.9966) and testing (0.9764) phases. These values indicate that ‘a’ explains 99.7% and 

97.6% of the variance in the training and test datasets, respectively, considerably higher 

than competing models (b–d). 

 

Figure 8-6. Comparing the presented R2 index by the ML models in the CV 

training/testing phases. 

Therefore, Random Forest ‘a’ is identified as the most accurate model for estimating the 

experimental values of Θ, consistently outperforming the other models in both training and 

testing evaluations at the CV stage. Its ability to maintain lower error values, and higher 

R2 scores demonstrates that it captures the underlying physical and geometrical 

relationships more effectively than competing models. 

A new Random Forest  model was trained using the exact optimal hyperparameters 

identified in the previous sections for Model ‘a’. These Hyperparameters are shown in 

Table 8-4. Here the model was trained using the combined CV data (both training and 

testing sets) and subsequently validated against the separate experimental test set (221 data 

points), which was unseen during CV stage. The performance metrics for the final training 

and testing phases at  this stage, summarized in Table 8-5.  
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Table 8-5. Performance Metrics of the Final Optimized Random 

Forest Model During Training and Testing Phases. 

Metric Training data Testing data 

RMSE 16.741 77.777 

R2 0.99636   0.95626 

AARD % 3.179 9.755 

MAE 5.178 33.798 

 

The test results exhibit slightly higher errors compared to those of Model 'a' from CV 

testing phase. This marginal increase in error can likely be attributed to the inherent 

challenges of generalizing to an independent unseen dataset, which may contain variability 

not captured during CV tuning. Nevertheless, the model maintains reliable predictive 

performance, demonstrating the effectiveness of the selected hyperparameters. Using the 

final model, predictions were made for the target variable (Θ), and Equation 7.4 was applied 

to compute the EC for different samples. The following subsection analyzes the results for 

metallic and ITO samples. 

8.5. Performance of ML and FEM-Based Approaches for EC Estimation 

The predicted EC values (σML) were derived from Equation 7.4 using the ML-predicted Θ 

values, while the simulated EC values (σFEM) were calculated using Equation 7.2. Figure 

8-7 illustrates the Relative Difference percentage (RD%) between the predicted and 

simulated EC values for metallic samples. This comparative analysis of FEM and ML 

approaches reveals that both methods demonstrate strong predictive performance with 

comparable error characteristics. RD% for the FEM method exhibits a mean value of 

+5.66% with a standard deviation of 14.41%, indicating a consistent tendency toward 

moderate underestimation with stable variability.  



70 
 

 

Figure 8-7. Relative difference percentage between predicted and theoretical EC values 

for metallic samples. 

In complementary, the ML approach shows a mean RD% of -3.15% with a standard 

deviation of 16.69%, reflecting a slight overprediction tendency with marginally wider 

dispersion. The observed deviation patterns between the two methods are roughly close in 

magnitude, differing by less than 9% in mean values and only 2.3% in standard deviation. 

This close agreement in performance metrics suggests that both techniques provide 

similarly reliable estimations, with their opposing bias directions (+5.66% versus -3.15%) 

potentially offering opportunities for error compensation when used in combination. The 

complementary deviation profiles of FEM and ML strategically leveraging their systematic 

differences could enable the development of more accurate hybrid prediction systems 

without favouring either method individually. Both approaches retain their respective 

strengths while demonstrating statistically similar performance. 

The normal density distributions of residual errors further highlight this distinction (Figure 

8-8). The normal density plot reveals important differences in the error distributions related 

to the FEM and ML methods for EC predictions. The FEM approach demonstrates an 

underestimation tendency with a mean error of +20.47 kS · cm−1, while the ML method 

shows a slight overprediction bias averaging -5.48. Both methods exhibit similar variability 

in their errors, with standard deviations of 43.95 kS · cm−1 for FEM and 43.69 kS · cm−1 

for ML, indicating nearly identical consistency in their predictions. These results are 

significant because the validation focused on challenging edge regions where EC 

measurements are most affected by boundary effects, areas traditionally problematic for 

accurate characterization. The intentional inclusion of these difficult edge conditions 

demonstrates ML's ability to maintain prediction quality in worst-case scenarios. The 

complementary nature of the biases between the two methods, combined with their similar 
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error distributions, suggests potential opportunities to develop hybrid approaches that 

could leverage their respective strengths. 

 

Figure 8-8. Normal density distributions of residual errors for metallic samples. 

The comparative analysis of ITO samples (Figure 8-9) reveals that both FEM and ML 

approaches demonstrate valid but distinct performance characteristics. The RD% for the 

FEM shows a mean value of −4.30% with a standard deviation of 17.06%, while the ML 

approach exhibits a mean value of −2.93% with a standard deviation of 10.14%. The 1.37 

percentage point difference in mean values falls within a comparable range of accuracy, 

while the difference in variability reflects their fundamentally different methodological 

approaches - FEM's first-principles physical modeling versus ML's empirical data fitting. 

Both methods show similar overestimation tendencies, confirming their consistent physical 

interpretation of the conductivity measurements. The results demonstrate that FEM 

maintains its expected reliability as a physics-based approach, while ML shows its 

capability to produce competitive results through data-driven approximation. 
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Figure 8-9. Relative difference percentage for ITO samples. 

The residual distributions for ITO (Figure 8-10) reinforce these observations. The normal 

density plot reveals that both FEM and ML methods produce residual errors centered near 

zero for ITO samples, with FEM showing a mean error of -0.243 kS · cm−1  and ML 

demonstrating a mean of -0.085 kS · cm−1. While both methods maintain good overall 

accuracy, their error distributions show characteristic differences that reflect their 

underlying methodologies. FEM exhibits a standard deviation of 0.813 kS · cm−1 , 

representing the expected variability in its physics-based calculations, while ML's tighter 

distribution (with a standard deviation of 0.425 kS · cm−1 ) reflects its data-driven 

optimization. 

The results show that FEM maintains its fundamental physical consistency, with error 

characteristics that align with expected physical constraints of the material system. ML 

demonstrates its ability to learn and reproduce these physical relationships through training 

data, resulting in reduced but still physically reasonable error variation. Both approaches 

cluster near zero error, confirming their validity for ITO characterization, with FEM's 

slightly wider distribution representing the natural variability in first-principles modeling 

and ML's narrower spread showing the benefits of empirical optimization. 
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Figure 8-10. Residual error distributions for ITO samples. 

These findings illustrate how both techniques - one based on physical laws and the other 

on data patterns - arrive at similarly valid but characteristically different solutions to the 

ITO characterization challenge. The results affirm that FEM and ML can serve as 

complementary approaches, with FEM providing fundamental physical insight and ML 

offering efficient empirical approximation, both maintaining good agreement with 

experimental reality for ITO materials. 

8.6. EC Derived from the ML and FEM Approaches 

Table 8-6 presents a comparison between theoretical, predicted, and actual EC values for 

the nine different samples, including four ITO samples and five metal samples (Cu, W, Ni, 

Fe, Sn). The predicted EC values (σML, derived from the Equation 7.4) were obtained by 

averaging the EC values predicted by the ML model using the new set of unseen data for 

each sample. Similarly, the simulated EC values (σFEM, derived from the Equation 7.2) 

were calculated by averaging the results across different experimental conditions for each 

sample. The visual comparisons are shown in Figure 8.11. 
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Table 8-6. Comparison of theoretical, predicted and actual EC values (kS · cm−1⁡) for 

the different samples. 

Sample* σactual⁡ 
ML approach FEM approach 

σML RD% σFEM RD% 

ITO (a) 4.99 [55] 5.08 −1.8 5.91 −18.4 

ITO (b) 5.53 [55] 5.36 3.1 5.66 −2.4 

ITO (c) 2.73 [55] 3 −9.9 2.6 4.8 

ITO (d) 4.76 [55] 4.91 −3.2 4.86 −2.1 

Cu 598 663 −10.9 541 9.5 

W 204 179 12.3 168 17.6 

Ni 143 142 0.5 119 16.8 

Fe 103 118 −14.6 110 −6.8 

Sn 91 101 −11.0 101 −11.0 
* ITO samples (a) to (d) were annealed in different atmospheres: carbon dioxide, a nitrogen-

hydrogen mixture, vacuum, and nitrogen. All samples were deposited on glass substrates. The 

EC of these ITO samples (a) to (d) was previously measured using the standard vdP method, as 

reported in the referenced studies. 

 

 

Figure 8.11. Comparison of actual, ML (predicted) and FEM-corrected EC values 

expressed as Ln(σ) for different materials, where σ is given in  kS · cm−1. 

The ML approach shows relatively consistent accuracy across all four ITO samples, with 

relative differences confined to a narrow range between −9.9 % and 3.1 %. In contrast, the 

FEM approach exhibits greater variability, with deviations ranging from −18.4 % to 4.8 %, 

although it achieves strong agreement for ITO (c), where it slightly outperforms the ML 

prediction. 

For metallic samples, the ML predictions remain within approximately ±15 % of the 

reference values, demonstrating the model’s capability to produce reliable estimates even 

when trained on a limited dataset. While the present dataset is sufficient to construct a 

functional generalized ML model, further expansion of the training data is expected to 
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improve predictive accuracy. FEM predictions for metallic samples display a broader 

spread of deviations, ranging from −11.0 % to 17.6 %. 

Overall, the results highlight the complementary strengths of the two approaches. FEM 

benefits from detailed physics-based simulations and provides strong performance when 

comprehensive material modeling is available, particularly for ITO systems. In contrast, 

the ML approach demonstrates promising generalization capability across both oxide and 

metallic samples, with clear potential for improvement through expanded and more diverse 

training datasets. These findings suggest that combining FEM’s physics-driven precision 

with ML’s data-driven adaptability could lead to more robust and reliable electrical 

conductivity characterization frameworks in future studies. 
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9. Conclusions 

9.1. Overall Conclusions – Thermal Conductivity 

This thesis demonstrates the development of a framework for the accurate determination 

of intrinsic thermal conductivity in thin films using scanning thermal microscopy. A new 

approach is proposed in which simultaneous thermal–topographical SThM measurements 

are combined with normalization strategies and machine learning regression to overcome 

the fundamental limitations of SThM analysis. The application of this framework enables 

the separation of intrinsic thermal transport properties from measurement-induced artifacts, 

providing practical relevance for accurate materials characterization and device 

engineering. 

The framework integrates quartz-referenced normalization, a substrate–thickness factor, 

and machine learning models trained on topographical descriptors. This combination 

allows the mitigation of surface topography effects and probe–sample contact variability, 

which are commonly neglected or oversimplified in thermal conductivity measurements. 

The effectiveness of the proposed approach is confirmed through quantitative validation 

against reference materials and literature-reported values. 

Despite these improvements, residual discrepancies between corrected and ideal intrinsic 

thermal conductivity values remain due to unavoidable experimental limitations. Variations 

in probe–sample contact conditions, calibration uncertainty, and heat losses through the 

substrate contribute to the remaining deviations. The explicit identification of these factors 

demonstrates scientific rigor and confirms control over the measurement system rather than 

overestimation of model capability. 

Beyond predictive accuracy, the analysis of model behavior provides physical insight into 

sub-microscale heat transfer mechanisms. The observed correlations between morphology 

descriptors, normalization parameters, and predicted thermal conductivity provide 

fundamental thermal physics insight into the measured SThM response. 

The proposed framework confirms the effectiveness of combining physics-based strategies 

with machine learning for intrinsic thermal conductivity extraction. The methodology can 

be further improved through expanded reference datasets, refined calibration standards, 

and the incorporation of physics-informed learning constraints. The approach is expected 

to support standardized and scalable thermal characterization of thin films across a wide 

range of functional materials. 

Objective. To develop, validate, and demonstrate a reliable methodology for thin-film TC 

determination that addresses the principal limitations of SThM, particularly surface 

topographical effects, by jointly exploiting simultaneous thermal–topographical mapping, 

normalization and correction strategies, and ML regression. 

Hypothesis. Integrating high-resolution SThM thermal–topography maps with quartz-

referenced normalization, together with ML models trained on physics-aware features, will 

yield accurate, reproducible, and generalizable TC estimates for thin films, including cases 

where film thickness is below the SThM tip radius (~100 nm). 
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Confirmation of Hypothesis. The combined framework—simultaneous thermal–

topographical SThM, quartz-referenced normalization (Γᵢ), and ensemble ML regression—

produced accurate, reproducible, and scalable TC estimates across thin films and bulk 

references. High performance (independent test R² ≈ 0.97) and close agreement with 

reference values demonstrate that contact variability and morphology-induced artifacts can 

be quantitatively mitigated. 

Future Work 

• Topography-aware correction via machine learning: Extend the current framework 

to explicitly account for surface topography effects by introducing topography-related 

descriptors (e.g., local roughness metrics, height variations, or probe–sample contact 

indicators) as additional input features. The ML model will learn an effective 

topography correction factor directly from these descriptors, enabling compensation 

for surface-induced measurement artifacts and improving the extraction of true TC 

values.  

• Dataset expansion and balance: Increase representation of high-κ materials and 

ultrathin films; include additional substrates to better span interfacial conductance 

regimes. 

• Standardization and tooling: Package the pipeline (normalization → feature 

extraction → ML inference → reporting) into a reproducible software framework with 

traceable calibration using quartz and additional reference materials. 

• Physics-Informed Machine Learning (PIML): Explore physics-informed machine 

learning approaches that embed governing physical laws directly into the ML loss 

function, enabling high accuracy with reduced dataset sizes. 

9.2. Overall Conclusions – Electrical Conductivity 

This thesis demonstrates the development of a framework for the accurate determination 

of intrinsic electrical conductivity in thin films using the four-point probe technique. An 

approach is proposed in which FEM and machine learning are separately employed to 

correct geometric and probe-related distortions that commonly affect electrical 

conductivity measurements. The application of this framework enables reliable 

convergence toward intrinsic conductivity values under non-ideal measurement conditions, 

with direct relevance to thin-film materials research and industrial characterization. 

The developed methodology explicitly accounts for finite sample dimensions, probe 

placement variability, and edge effects through physics-based and data-driven correction 

mechanisms. FEM provides interpretable correction factors rooted in electrical transport 

physics, while machine learning (trained solely on experimental data) captures complex 

empirical distortions arising from diverse geometrical configurations. 

Quantitative validation demonstrates strong agreement between corrected EC values and 

vdP reference measurements. 

The main technical conclusions of the EC study can be summarized as follows: 

• Geometric distortions and probe placement effects significantly bias conventional four-

point probe conductivity measurements and must be corrected for accurate intrinsic 

property determination. 
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• FEM provides reliable, physics-based correction factors for non-ideal measurement 

geometries. 

• Machine learning effectively captures geometrical distortions and generalizes across 

diverse experimental configurations. 

Objective. To establish a reliable framework using ML (comparable with FEM results) in 

order to (i) correct geometric artifacts and (ii) ensure consistency of conductivity estimates 

using solely experimental measurements. 

Hypothesis. FEM provides physics-based corrections for probe- and geometry-induced 

distortions, while ML learns adaptive correction patterns from experimental data. The 

application of ML approach yields accurate and generalizable conductivity values that 

converge toward intrinsic properties, including those validated by the vdP method. 

Confirmation of Hypothesis. The results confirm that combining FEM and ML enables 

accurate and reproducible thin-film electrical conductivity characterization under non-ideal 

geometries. FEM provides physically interpretable correction factors, while ML captures 

complex empirical distortions and generalizes across diverse conditions without extra 

simulations. Agreement with vdP supports the validity of both approaches. 

Future Perspectives 

• FEM vs. ML comparison: FEM currently provides more practical results for 

electrical conductivity measurements; however, ML demonstrates strong potential 

when trained on large datasets covering millions of geometrical configurations, 

enabling electrical conductivity prediction directly from experimental data without 

simulations. 

• Dataset expansion: Extend experimental datasets to additional thin-film materials, 

probe spacings, and controlled anisotropic samples to improve generalization. 

• Active learning strategies: Adaptively guide probe placement and sample orientation 

to maximize data efficiency. 

• Standardization and automation: Translate the methodology into standardized 

protocols and software tools suitable for both research laboratories and industrial 

characterization workflows. 
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10. Appendix A:  

10.1. Topographical and Thermal-Signal Maps of the Samples for Thermal 

Properties Analysis 

The following figures present a collection of topographical and thermal-signal maps for 

the investigated ITO samples. Topographical maps represent the averaged trace and retrace 

data, without slope removal, and all values were shifted so that the minimum height is set 

to zero for consistent comparison across samples. Thermal-signal maps also represent the 

averaged trace and retrace data. To improve visualization of the thermal-signal distribution, 

particularly given the close proximity of values, a diverging colormap (seismic) was 

employed to highlight positive and negative deviations with red–blue contrast. The 

colormap was discretized into nineteen levels to enhance visual distinction between ranges, 

while symmetric logarithmic normalization was applied to improve contrast. 

2 × 2 µm2 Square Area for All Maps 2 × 2 µm2 Square Area for All Maps 
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10.2. Pair Plot of Data for the Investigation of Thermal Properties 

The pairplot illustrated here provides a comprehensive visualization of the experimental 

dataset's internal structure. The diagonal plots represent the distribution of each individual 

variable, allowing for a clear assessment of data spread. In contrast, the off-diagonal 

scatterplots map the relationship between every pair of variables, which is essential for 

identifying correlations within the system. 
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10.3. Supplementary Data for Electrical Conductivity 

10.3.1. Voltage–Current Characteristics 

These graphs show the voltage–current 

characteristics of the different sample 

measured under different probe 

configurations on the samples. Each 

vertical label indicates a specific probe 

placement: the first number (before the 

comma) represents the vertical position of 

the probe Lv, and the second number (after 

the comma) represents the horizontal 

position of the probe Lh. 
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10.3.2. Comparison of Experimental, Numerical, Intrinsic, and FEM-Corrected EC 

The following figures present the investigated EC obtained under different four-probe 

configurations on the samples. For each material, the bar charts compare the experimental 

conductivity ( σexp ) measured directly from the four-probe setup, the numerical 

conductivity (σnum ) calculated using a simulation-based model for the same probe 

geometry, the intrinsic conductivity (σa) representing the theoretical or literature reference 

value for the bulk material, and the FEM-corrected conductivity (σFEM) obtained using 

finite element method corrections to account for geometric and boundary effects. 
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10.4. Pair Plot of Data for the Investigation of Electrical Properties 

The following figure presents a pairplot of all measured parameters relevant to the 

electrical properties’ investigation. This visualization provides an overview of correlations, 

clustering tendencies, and variations across the electrical dataset, offering insight into 

dependencies between the measured electrical quantities. 
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11. Appendix B:  

11.1. Python Libraries Used for ML 

 The ML component of this research employs following open-source libraries: 

Data Handling and Processing: 

• NumPy (v1.24.0): Provided efficient numerical computation capabilities and array 

operations. 

• Pandas (v2.1.0): Facilitated data manipulation, cleaning, and analysis using 

structured data frames. 

• SciPy (v1.11.0): Offered advanced scientific computing functions, including 

optimization, interpolation, and statistical analysis. 

Machine Learning: 

• scikit-learn (v1.3.0): Implemented a wide range of classical ML algorithms, 

including regression, classification, and clustering methods. 

• Random Forest (via scikit-learn): Ensemble learning method for classification 

and regression tasks. 

• Gradient Boosting (via scikit-learn): ML technique for regression and 

classification problems. 

Data Visualization: 

• Matplotlib (v3.7.0): Provided a wide variety of 2D plotting and visualization 

options. 

• Seaborn (v0.12.0): Simplified the creation of statistically-informed visualizations. 

Specialized Tools and Utilities: 

• joblib (v1.3.0): Supported efficient saving of models and parallel computation. 

Development Environment: 

• JupyterLab (v4.0.0): The primary interactive development environment used for 

this research, enabling coding, visualization, and documentation within notebooks. 

These libraries collectively enabled comprehensive data preprocessing, visualization, 

model training, and evaluation for the ML components of this study. 

11.2. Software Implementation and Algorithmic Sources 

All ML algorithms utilized in this study rely on pre-built, validated implementations from 

recognized open-source ML libraries. These software packages closely follow the original 

algorithmic definitions presented in foundational literature (Pedregosa et al. [74]). 
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• Random Forest and Gradient Boosting algorithms are applied using their reliable, 

pre-built implementations within the scikit-learn Python library. These 

implementations were developed by Pedregosa et al. as part of the INRIA team. 

• All model-selection tools, including cross-validation and Grid Search/Randomized 

Search, also rely on the validated implementations within scikit-learn (Pedregosa 

et al., INRIA [74]). 

Using these established software packages ensures the consistency and adherence to 

community-validated standards throughout the modeling process. 
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12. Appendix C:  

During my PhD studies, I have contributed to the following publications, conferences, and 

academic activities. 

12.1. List of  Publications 

1- Dehbashi, M., Kazmierczak-Balata, A., & Bodzenta, J. (2025). An approach for 

thermal conductivity measurements in thin films: Combining localized surface 

topography, thermal analysis, and machine learning techniques. International 

Journal of Heat and Mass Transfer, 248, 127215. 

https://doi.org/10.1016/j.ijheatmasstransfer.2025.127215  
2- Kaźmierczak-Bałata, A., Bodzenta, J., Dehbashi, M., Mayandi, J., & 

Venkatachalapathy, V. (2022c). Influence of post processing on thermal 

conductivity of ITO thin films. Materials, 16(1), 362. 

https://doi.org/10.3390/ma16010362  

12.2. Conferences 

1- Dehbashi, M., Kaźmierczak-Bałata, A., & Bodzenta, J. (2025, September 15–18). 

Machine Learning-Enhanced Thermal Conductivity Measurements in Thin Films: 

Integrating Nanoscale Surface Topography and Thermal Analysis (Abstract No. 

00093). European Materials Research Society (E-MRS) Fall Meeting, Warsaw, 

Poland. Oral. 

12.3. Monograph Chapters 

1- Dehbashi, M., Kaźmierczak-Bałata, A., Szymska, W., Bodzenta, J. (2023). 

Numerical investigation of the influence of sample geometry on the accuracy of 

electrical conductivity measurements using the four-point probe method. In B. 

Balon (Ed.), Interdyscyplinarne badania młodych naukowców (Monografia / 

Politechnika Śląska, No. 987, pp. 81–91). Wydawnictwo Politechniki Śląskiej. 

ISBN 978-83-7880-905-0. Oral. 
https://repolis.bg.polsl.pl/dlibra/publication/86320/edition/76772/content 

12.4. Awards 

1- Pro-Quality Grant Award (Excellence Initiative – Research University), Silesian 

University of Technology — December 2022 Awarded 12,000 PLN to support 

commencement of scientific activity for the project “Thin Metal Oxides Layers for 

Thermoelectric Applications” (Project No. 32/014/SDU/10-22-55). 

2- Young Researcher Award, E-MRS Fall Meeting 2025 (Warsaw, Poland) — 

September 2025. For the paper “Machine Learning-Enhanced Thermal 

Conductivity Measurements in Thin Films: Integrating Nanoscale Surface 

Topography and Thermal Analysis.” (Symposium G: Artificial Intelligence to 

accelerate the development of new advanced materials for energy). 

https://doi.org/10.1016/j.ijheatmasstransfer.2025.127215
https://doi.org/10.3390/ma16010362
https://repolis.bg.polsl.pl/dlibra/publication/86320/edition/76772/content
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12.5. Other Activities 

12.5.1. Invited Lecturer (College Physics), Yanshan University, China  

Delivered in-person invited lectures within the Sino-Polish cooperative education program 

(Yanshan University & Silesian University of Technology); taught 360 teaching hours total 

across Fall 2023, Spring 2024, and Autumn 2024. 
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12.5.2. Participations in Other Publications 

1- Vaferi, B., Dehbashi, M., & Alibak, A. H. (2024). Cutting-Edge machine learning 

techniques for accurate prediction of agglomeration size in Water–Alumina 

nanofluids. Symmetry, 16(7), 804. https://doi.org/10.3390/sym16070804  

2- Vaferi, B., Dehbashi, M., Khandakar, A., Ayari, M. A., & Amini, S. (2024). 

Development of a stacked machine learning model to compute the capability of 

ZnO-based sensors for hydrogen detection. Sustainable Materials and 

Technologies, 39, e00863. https://doi.org/10.1016/j.susmat.2024.e00863  

3- Javadijam, R., Dehbashi, M., Shahverdian, M. H., Sohani, A., Arıcı, M., & 

Sayyaadi, H. (2024). Artificial intelligent based techno-economic-exergetic 

optimization of a thermoelectric enhanced building integrated photovoltaic thermal 

system. Journal of Building Engineering, 84, 108526. 

https://doi.org/10.1016/j.jobe.2024.108526   

https://doi.org/10.3390/sym16070804
https://doi.org/10.1016/j.susmat.2024.e00863
https://doi.org/10.1016/j.jobe.2024.108526
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