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1. Introduction and Literature Review (Thermal)

Here, a general overview is presented, and the topic is discussed in greater detail in the subsequent
subsections.

As active devices continue to shrink in size, especially in electronics, efficient heat dissipation has
become one of the most critical factors determining their performance. When materials are scaled
down to thin films and submicron structures, the mechanisms of heat transfer deviate from those
observed in their bulk counterparts. At these small dimensions, theoretical models based on
classical laws often fail to describe thermal behavior accurately, and heat transport becomes
strongly influenced by surface and dimensional effects. Understanding these effects are therefore
essential for designing electronic, optoelectronic, and thermoelectric systems. Thermal
conductivity (TC), which describes how efficiently a material transfers heat under a temperature
gradient, is one of the most fundamental thermophysical properties. It plays a key role in
determining how effectively a device can dissipate heat.

Over the past two decades, optical pump—probe techniques, particularly Time-Domain
Thermoreflectance (TDTR), a variant of the flash method, have been widely employed for
nanoscale TC measurements [1, 2, 3] with vertical resolution at the level of several dozen
nanometers, and extensively studied [4, 5, 6, 7]. TDTR is a non-contact method with picosecond
time resolution and the ability to probe buried interfaces, making it effective for layered systems.It
was initially developed for metallic samples. By comparison, Frequency-Domain
Thermoreflectance (FDTR) is another common method, a variation of photothermal spectroscopy.
Instead of measuring the signal as a function of time delay, FDTR varies the modulation frequency
of the pump beam to extract thermal data.Each technique comes with inherent limitations. For
instance, the lateral spatial resolution of TDTR and FDTR is restricted to the micron scale due to
the diffraction limit of light. This prevents it from fully capturing the submicron-scale TC
distribution at sample surface.

By contrast, Scanning Thermal Microscopy (SThM) achieves submicron-scale lateral resolution
but is sensitive to surface roughness, probe—sample contact mechanics, and substrate thermal
properties, all of which introduce uncertainties. A critical challenge is the influence of surface
roughness. Even slight variations in topography at the submicron scale can disrupt the interaction
between the measurement probe and the sample surface. This disturbance distorts the thermal
signals and complicates the extraction of intrinsic film properties. In SThM, surface roughness can
significantly alter the measured signals, making it difficult to obtain reliable values for thin-film
conductivity. Such effects underscore the extent to which submicron-scale morphology can
dominate thermal measurements and remain a central obstacle in the field. These challenges
emphasize that submicron-scale thermal characterization is still an open problem, with no single
technique yet capable of providing a complete and fully reliable solution.

TDTR and SThM are the two most widely used nanoscale thermal metrology tools: TDTR enables
accurate, non-contact measurements of thin films and interfaces, while SThM provides higher-
resolution local thermal mapping. Each technique has its own limitations and advantages; together,
they cover complementary measurement regimes, which will be discussed in the following
subsections.

The aim of this work is to improve the reliability of SThM based TC measurements in thin films
by addressing surface roughness effects. By carefully analyzing the advantages and limitations of



existing methods, particularly SThM, and by developing refinements in data interpretation, this
thesis seeks to contribute to accurate characterization of thermal transport at the submicron scale.

1.1. Time-Domain and Frequency-Domain Thermoreflectance

TDTR is an optical method widely used to measure thermal transport in thin films and layered
materials. The principle of the method is the same as the flash method [8]. A pulsed pump laser
beam is used to heat the sample, while a delayed probe beam monitors changes in the surface
temperature through changes of its reflectivity. To localize the heat source (light absorption) and
the origin of measured signal (changes in reflectivity), a thin aluminum film, typically about 80—
90 nm thick, is deposited on the sample surface. Since the reflectivity of metals depends on
temperature, changes in reflected light intensity provide information about changes of sample
surface temperature. The reflected pulse intensity is detected by a photodiode. The measurement
is a stroboscopic measurement, after each sample heating pulse the delay of the probe pulse
changes, which allows for recording changes in surface temperature as a function of time [6].
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Figure 1.1. Schematic diagram of a TDTR system combined, showing the main components of
the experimental setup [4].

An example of a TDTR experimental setup is presented in Figure 1.1. In practice, picosecond time
resolution is achieved using mode-locked lasers that generate a sequence of ~1 ps pulses at
repetition rates near 76 MHz. The laser output is split into two beam paths, a pump and a probe,
with the relative optical path lengths adjusted using a mechanical delay stage. When the pump
beam strikes the sample surface, each pulse deposits a small amount of energy, producing a sudden
temperature rise of a few Kelvins in the thin metal film. The subsequent cooling of this surface
region is monitored by the reflected probe pulses. TC is then determined by comparing the
measured cooling curve with theoretical models and optimizing the relevant free parameters [4].



In TDTR, the TC (k%) is extracted by fitting experimental measurements to a theoretical model
that describes heat diffusion in both the frequency and time domains. The analysis starts from a
frequency-domain solution describing periodic surface heating and then reconstructs the
corresponding time-domain signal to reproduce the experimental response measured by a lock-in
amplifier.

In the frequency domain, the model describes the steady-state, periodically modulated temperature
response of the sample surface. For a single semi-infinite medium, the temperature rise g(r) at a
radial distance r from a periodically modulated point heat source is given by [6]

__eXp(—qr) ]

Here, the TC (k%) governs the ability of the material to conduct heat, while the thermal diffusivity
(D) characterizes the rate at which the temperature responds to thermal perturbations. The
parameter q determines the thermal penetration depth (1/q), which represents the characteristic
distance over which the thermal wave decays in the material:

qg= |— 1.2

where w = 2xf is the angular modulation frequency.

To incorporate the finite spatial extent of the pump and probe laser beams, the solution is expressed
in the spatial frequency domain using a Hankel transform. The transformed temperature response
G (k), where kdenotes the radial spatial frequency, is written as

1
G(k) = : 1.
(k) KS(4m2k? + q2)1/2 3

The surface temperature change sensed by the probe beam, AT, is obtained by integrating the
product of the material response and the Gaussian intensity profiles of the pump and probe beams,
characterized by radii woand wy, respectively:

AT = ZnAJ G (k) exp (n (WZO wi)
0

Yk dk, 1.4

where A is the amplitude of the absorbed heat at the modulation frequency. Considering that G(k)
depends on q and is a function of frequency, the formula provides a basis for interpreting the results
obtained in the FDTR method. The time-domain formulation describes how the surface
temperature is sampled as a function of the delay time t between the pump and probe laser pulses.
Important parameters include the pump—probe delay time ¢, which defines the temporal separation
between heating and probing, and the thermoreflectance coefficient (dR/dT), which relates
changes in surface temperature to changes in optical reflectivity. The laser repetition rate 1/t sets
the temporal spacing between successive pulse trains. Since the laser pulse duration is much
shorter than the relevant thermal time scales, the experimental signal is modeled by summing the
frequency-domain responses over the harmonics of the laser repetition rate.



This approach yields the complex reflectivity response expressed as

M
Re[ARy, (£)] = 3—5 Z (AT (m/T + f) + AT (m/7 — f)) exp (i2mmt/7), 1.5

m=-M

M
Im[ARy(t)] = —ij—? Z (AT (m/t+ f) — AT (m/t — f)) exp (i2mmt /7). 1.6
=M

The real and imaginary components of the complex reflectivity are directly related to the voltages
detected by the lock-in amplifier. These signals are related to the final lock-in output voltage V(t)
and the average detector voltage V; through

Vr(©) _ Q AR(®)
Vo V2 R’

where R is the baseline reflectivity and Q is the quality factor of the resonant detection circuit
tuned to the modulation frequency f. By treating the TC (x°) as an adjustable parameter and
iteratively fitting the modeled ratio of the in-phase signal to the out-of-phase signal to the
experimental data, the TC of the sample is accurately determined.

1.7

Over the years, a key extension of TDTR has broadened its capability, particularly through the use
of optical filtering strategies (such as two-tint detection) that suppress unwanted pump light
reaching the detector and thereby improve measurement fidelity, especially when using fiber lasers
at near-infrared wavelengths [9]. The strength of TDTR and FDTR lies in its ability to determine
the TC of multilayer systems with distinct thermal properties, such as the pyrolytic carbon and
silicon carbide (SiC) coatings used in nuclear fuel particles. It also enables direct measurements
on spherical fuel particles, yielding results that are more representative of real operating conditions
[5]. Its modeling framework offers an efficient and general approach for analyzing both single-
layer and multilayer samples, including explicit treatment of interfaces. Moreover, as a fully
optical technique, TDTR and FDTR can be applied across a broad range of environments—from
cryogenic systems to high-temperature stages and even extreme conditions such as high-pressure
diamond anvil cells [4]. Continued advances in instrumentation, including improved filtering and
robust transducer design, have further strengthened TDTR and FDTR as a highly reproducible
measurement platforms [9].

At the same time, TDTR and FDTR are not free from limitations. The accuracy of extracted
parameters depends heavily on prior knowledge of experimental inputs such as film thickness,
beam spot sizes, and heat capacities. Reported uncertainties are around 10% for pyrolytic carbon
and about 5% for SiC and alumina [5]. The mathematical models used to interpret TDTR and
FDTR data rely on simplifying assumptions, including Gaussian beam profiles, cylindrical
symmetry, and semi-infinite substrate boundaries. Deviations from these assumptions in real
experiments can introduce systematic errors. Numerical convergence issues and sensitivity to
parameter choices such as spot size also complicate analysis [6]. In the case of beam-offset
measurements, sensitivity to in-plane conductivity requires the lateral diffusion length to be
comparable to the beam radius. If this condition is not satisfied, the signal becomes insensitive to
lateral transport. Moreover, multiple parameters (such as in-plane and cross-plane conductivity,



spot size, and interface conductance) are often interdependent, requiring careful experimental
design and additional scans at different modulation frequencies [7].

Other experimental artifacts may arise from uncertainty in optical properties, phase errors in lock-
in detection, or residual pump leakage into the probe channel. Semi-transparent or buried
transducers complicate the interpretation further, since the probe light may interact with multiple
layers, requiring more advanced optical-thermal modeling [9].
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Figure 1.2. Spatial resolution limits of TDTR [11].

Finally, a more critical limitation lies in the inherent spatial resolution of TDTR, and FDTR, which
is restricted to the microscale. Recent studies [10, 11] have highlighted that this restriction
originates from the diffraction limit of light. The spatial resolution of the measurement is primarily
determined by the diameters of laser spots, which define the smallest region that can be
independently analyzed. For instance, when using a 50x objective lens, the resulting conductivity
maps have a pixel size of approximately 4 um (Figure 1.2) [11].

This limitation motivates the search for innovative techniques capable of higher-resolution TC
measurements. SThM meets this need with sub-micron probes but remains sensitive to
topography-induced artifacts. The primary aim of this work is to address and mitigate these
roughness-induced limitations in SThM-based TC measurements. The following subsection
provides a more detailed overview of the SThM method.

1.2. SThM

Among the techniques available for TC measurements in thin films, SThM has emerged as a
valuable tool due to its higher spatial resolution than TDTR and FDTR, and ability to perform
localized thermal analysis, as evidenced by prior research [12, 13]. The operational principle of
SThM relies on the utilization of a thermal probe, which systematically scans the sample surface
while detecting temperature-dependent resistance variations in the probe material. These
temperature changes arise from the heat exchanged between the probe tip and the sample surface,
which in turn alter the electrical resistance of the probe.

By integrating Atomic Force Microscopy (AFM) with a thermal probe, SThM facilitates ultra-
high-resolution thermal mapping alongside topographical imaging, making it invaluable in
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semiconductor, optoelectronic, and material science applications [14]. The configuration of the
AFM-SThM apparatus is depicted in Figure 1.3. This setup employs an active feedback technique
to stabilize the probe's operating temperature. A thermal control unit delivers the excitation current
to the thermal probe. The probe's temperature is inferred from its electrical resistance. This
resistance is part of a Wheatstone bridge circuit; any imbalance in the bridge, caused by a change
in the probe's temperature due to sample interaction, generates an error signal.

- Lase, Thermal control unit
\
X .
Photo N \1“
detector S 3
. Wheatstone
Force %A 2,?—28,? —‘ ; 0
feedback ¢
loop Vout
Heat transfer -

Figure 1.3. The setup scheme of a SThM system based on AFM [14].

The scanning thermal microscope functions in two main modes: temperature contrast mode and
conductance contrast mode. In temperature contrast mode, the thermal probe acts as a passive
element, recording the temperature at the sample surface, or more precisely, its own temperature,
which reflects the sample’s temperature. Thus, in this mode, the thermal probe operates as a
thermometer. Since resistive probes require an electric current, in temperature contrast mode the
current must be kept low enough to prevent Joule heating of the sensor. For this reason,
temperature contrast mode is also referred to as the passive mode. In conductance contrast mode,
also known as the active mode, the thermal probe serves as both a heater and a thermometer
simultaneously. The temperature of the probe is influenced by the rate of heat dissipation from the
probe into its environment. Heat transfer occurs through multiple pathways, one of which is the
flux from the heated region into the sample [14, 15].

Accurate SThM measurements require reliable calibration techniques to convert raw
thermovoltage or resistance signals into meaningful TC values. Experimental calibration involves
the use of reference samples with known thermal conductivities to establish a correlation between
measured signals and actual properties. This process typically involves heating the probe tip using
a stable DC current and monitoring its temperature response under controlled conditions to ensure
reliable results [14].

High-resolution temperature mapping in active microdevices, such as nanowire diodes and
graphene-based components, has been enabled by SThM. Advances in probe technology have

11



pushed the spatial resolution to below 50 nm, making it ideal for investigating localized heating
effects in electronic circuits [13, 14].

Although SThM provides significant advantages in submicron-scale thermal characterization, TC
measurements are subject to several inherent constraints that affect their accuracy and
reproducibility. One major limitation arises from geometric factors associated with the probe tip,
including its shape, sharpness, and contact area, which can lead to inconsistent thermal interactions
with the sample surface.

The inconsistencies in SThM measurements (particularly those related to surface roughness) are
especially problematic at the submicron scale tip—sample junction. They distort local heat flow
and generate artifacts in the thermal maps, introducing uncertainties that ultimately compromise
the reliability of quantitative TC assessments [16, 17, 18]. The interface-dependent nature of heat
transfer further exacerbates these challenges, as different interfaces exhibit distinct thermal contact
resistances (TCRs) that are difficult to standardize. When the SThM probe and specimen interact,
the presence of asperities (topological irregularities) significantly diminishes the true physical
contact area between them. This reduction in effective contact creates localized thermal air gaps,
manifesting as increased TCR and introducing measurement variability [19]. SThM struggles with
quantifying TC in thin films due to these interactions, surface roughness, and thermal spreading
resistance [20, 21, 22, 23].

Studies on polymeric thin films, such as polydimethylsiloxane and epoxy, demonstrated that
smoother surfaces with a root mean square roughness below 13.51 nm exhibit minimal artifacts,
whereas rougher surfaces induce significant distortions. This is due to increased thermal resistance
caused by reduced real contact area and enhanced heat reflection at the probe-sample interface
[30]. Similar effects were observed in polymer/SiO> composites, where peak heights exceeding 32
nm led to significant thermal distortions, reinforcing the importance of surface morphology in
determining measurement accuracy [30]. Experimental studies on germanium and silicon samples
with ultra-smooth surfaces (root mean square roughness as low as 0.8 nm and 0.3 nm, respectively)
demonstrated that in the absence of roughness-induced variability, solid-solid thermal resistance
can be determined with high accuracy. However, deviations occur when roughness increases,
leading to an irregular and unpredictable contact area that distorts the thermal signal [24]. To
overcome the challenges, ultracompliant thermal probe arrays have been developed to enhance
SThM’s capabilities for mapping non-planar surfaces. These micromachined polyimide probes
maintain contact with samples despite topographical variations, eliminating the need for
mechanical feedback and improving measurement consistency across complex structures [25].

The application of established mechanical contact models, including the Rabinovich formulation
and the Derjaguin-Miiller-Toporov theory, encounters theoretical and practical limitations when
attempting to accurately describe the multifaceted nature of tip-sample interactions in scanning
probe microscopy [26]. The primary shortcoming of these models lies in their inability to account
for irregular surface morphologies and asymmetric contact geometries. When applied to surfaces
with non-standard topographical features, these theoretical constructs fail to provide reliable
predictions of interfacial behavior. This discrepancy arises because the models do not incorporate
critical submicron-scale interaction phenomena, including localized elastic-plastic deformation,
atomic-scale adhesion forces, and spatially varying contact stiffness, all of which play decisive
roles in determining the mechanical and thermal response at the tip-sample junction.
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The inadequacy of existing mechanical models to represent realistic experimental conditions
highlights a broader methodological challenge in SThM. The combined limitations of current
thermal and mechanical modeling approaches reveal a critical gap in analytical capabilities,
underscoring the need for next-generation techniques that can more faithfully capture the complex
interplay of forces, heat-transfer mechanisms, and material responses at the submicron scale.
Among these challenges, interfacial thermal transport between thin films and their supporting
substrates remains one of the most significant and persistent obstacles to accurate characterization.
This substrate-interference effect becomes particularly pronounced in films with thicknesses in the
nanoscale range (typically below 100 nm), where the measured thermal properties are increasingly
dominated by substrate-driven physical phenomena [27].

To understand the thermal interactions at the nanoscale, this study adopts a theoretical framework
[15], which models the probe-sample system using an electrical circuit analogy. The basic formula
governing heat exchange is based on the principle that the electrical power dissipated in the probe
(Pe1) is equal to the heat flow through the total thermal conductance (Gy,) between the heated
region and the environment:

PJ = Gl (T, — Ta), 1.8

el
where Ty, is the probe temperature and T, is the ambient temperature. In this model, the total

thermal resistance (Ri;l =1/ G:}il) is a network of resistances representing three distinct heat-
transfer channels:

1 1 1

— = +— -
Riil Reny RS + RS 1.9

contact spread

These channels are defined as follows: Rep, (Environmental Loss), related to heat lost through the
cantilever to the probe base and through the surrounding air, R.onract (Contact Resistance) -

thermal contact resistance at the tip—sample interface, and Rzipread (Spreading Resistance) -

resistance to heat flow through a circular contact of radius r®i, related to the sample’s TC (x°)
through the following equation for.

1
Si —
Rspread - 4KSTSi 1.10
From this fundamental heat-transfer perspective, the apparent thermal resistance measured by the
SThM probe (RiL) arises from the parallel combination of these separate thermal pathways. In the

context of thin-film characterization, this network is expressed in the following relationship
relationship [58]:

Siy-1 — g (RS 4 —1 ) 1.11
R =h+ (Ryp + ) -

4xSrSi

where, h represents the effective heat-transfer coefficient for convective cooling, corresponding to

the inverse of the environmental resistance (1/Repy ). Rihp represents the intrinsic thermal

13



1

4xSrSi

resistance of the probe—sample interface (Reoptact), and represents the spreading resistance

of a sample with TC of k® and effective radius r®i.

Accurate thermal characterization of thin films therefore requires more than simply determining
thermal conductivity; it demands consideration of several interdependent physical parameters that
collectively shape heat-transfer behavior. Two of the most critical are the effective radius (ri) and

the probe—sample boundary resistance (Rii1 p). These parameters interact in complex ways and can

influence the interpretation of experimental results.

The nature of these parameters for the TC measurement challenges highlights the need to develop
innovative characterization methodologies that possess key attributes, for example, adaptability to
diverse surface roughness, reliability against experimental variability, and the capacity to account
for all thermal effects. The realization of this methodological advancement would require
integration of several experimental and analytical approaches. High-resolution surface topography
mapping must be combined with spatially correlated thermal signal acquisition to establish precise
structure-property relationships. Advanced computational algorithms could then be employed to
separate intrinsic material properties from measurement artifacts, while Machine Learning (ML)
techniques could help identify patterns in complex, multidimensional datasets. Such
comprehensive methodological innovations would yield benefits for both fundamental research
and industrial applications. From a scientific perspective, they would provide more reliable and
reproducible datasets for validating theoretical models of submicron-scale heat transfer. For
technology development, they would facilitate more accurate performance prediction and
optimization of thin film devices. Ultimately, these advancements would accelerate progress
across multiple disciplines where thermal management is crucial.

1.2.1. Advancements in Reducing Roughness-Induced Artifacts in SThM

As discussed earlier, SThM is a powerful tool for probing submicron-scale thermal properties.
However, surface roughness can mask the material’s intrinsic TC, complicating data interpretation.
To address these challenges, both computational and experimental approaches have been
developed to minimize roughness-induced distortions and improve measurement reliability. FEM,
which solves the Poisson equation for diffusive heat transfer while considering probe-sample
thermal resistance in three dimensions, is regarded as the most accurate computational method.
However, FEM demands substantial computational resources, making it less practical for routine
measurements [16, 28]. Comparative analyses indicate that FEM provides the highest accuracy in
artifact removal, followed by neural networks and the neighbour volume approach. Given FEM's
computational intensity, hybrid methods that integrate FEM with simpler techniques are
recommended for practical applications [16, 28].

Experimental methods also play a crucial role in improving SThM measurement accuracy. One
effective strategy involves optimizing probe parameters by adjusting the amplitude and frequency
of the probe's heating voltage. This technique enhances thermal contrast while minimizing
distortions caused by thermal inertia [28].

Besides experimental and computational techniques, the choice of sample preparation technique
significantly affects SThM results. Mechanical polishing followed by ion beam polishing has been
found to produce smoother surfaces with an average root mean square roughness of approximately
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38 nm. However, this process may introduce large-scale local topographical variations that could
still impact analysis [29].

On the other hand, ion milling, while effective at exposing multilayer structures, results in higher
roughness, with an average root mean square roughness of 86 nm. This increased roughness
complicates thermal property assessments [29]. Other techniques, including hot pressing and
customized probe design, have been proposed to minimize peak heights and enhance real contact
area, further reducing roughness-induced artifacts [30].

1.2.2. Advances in Thermal Measurements Calibration

Accurate calibration in SThM is critical for reliable thermal property extraction. Without
standardized calibration methods, measured TC values can be affected by probe-sample thermal
exchange artifacts, leading to significant deviations from actual material properties. Wilson et al.
(2019) highlighted the challenges in probe calibration, emphasizing that uncalibrated SThM
measurements often conflate substrate and thin-film contributions, making quantitative thermal
characterization difficult [31]. Several calibration strategies have been proposed to enhance
measurement accuracy, each with varying degrees of success. Wilson et al. (2019) compared three
major calibration approaches. The implicit method relies on curve-fitting probe signals to reference
materials but struggles to separate substrate effects from thin-film contributions. This limitation
makes it unreliable for accurately determining intrinsic thin-film thermal properties [31]. The step
method estimates the thermal exchange radius by measuring variations in signal intensity across
patterned surface features. However, inconsistencies arise due to differences in TC between
materials, leading to errors in calibration [31]. The intersection method, which calibrates both the
thermal exchange radius and contact thermal resistance using multiple reference materials, has
demonstrated the highest reliability. This approach reduced deviations from TDTR measurements
to within 20%, highlighting its accuracy [31]. Further refinement of calibration methods has
included film-on-substrate heat conduction models, which effectively decouple substrate effects
in ultrathin films. This advancement is useful for films thinner than the thermal exchange radius,
where substrate contributions become dominant, complicating the extraction of intrinsic film
conductivity [31].

Beyond traditional methods, innovative calibration strategies have been introduced to improve
precision and repeatability in SThM measurements. One such approach involves using SiO; steps
on silicon substrates, allowing for constant roughness while varying TC. This method provides
precise calibration under controlled conditions, reducing measurement uncertainties in thin-film
systems [27].

Predictive thermal modelling has also contributed to enhancing SThM’s ability to resolve depth-
dependent heat transport in thin films. These models address issues related to substrate influence
and non-linear heat transfer mechanisms, making them valuable tools for refining calibration
techniques [32].

Another SThM calibration method for thin films uses a normalized thermal signal combined with
theoretical modelling to determine TC [33]. Measurements were carried out for SiO: thin films
along with different reference samples. The experimentally determined ratio for the reference
samples is represented by solid circles on the resulting graph (Figure 1.4).
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Figure 1.4. Calibration graph relating the thermal signal (vertical axis) to TC (horizontal axis).
The solid blue line represents the fitted calibration curve based on bulk reference samples (black
dots) and SiO: thin films (open circles) [33].

The ratio of thermal resistance when the probe is in contact (Ry, | in) to when it is out of contact
in air (Ry, | out) is determined by the electrical measurements as follows:

Ry lin — (Rg — Ro)in

= . 1.12
Ry lout  (Rg — Rg)out

Here, (R; — Rs);, represents the difference between dynamic and static electrical resistances
measured at the sample surface, whereas (R; — R),u represents the corresponding resistance
difference measured in air. This ratio depends on the sample’s TC k and can be approximated by
the rational expression [33]:

Ry lin 1+ Ak
Ry lout 1+ Bk

1.13

The parameters A and B correspond to terms that capture the combined effects of the probe—sample
contact radius, the probe—sample boundary resistance, and the convective heat transfer. The solid

lines in the Figure 1.4 correspond to the best fit of Equation 1.13. This fitted curve is then used to

determine the TCs of the layered samples from the % ratio (shown by hollow circles in the
thiou

figure). Figure 1.4 specifically presents the SiO: thin-film results, where the dotted line indicates

the signal level corresponding to the known bulk TC of SiO.. This calibration procedure for

determining thin-film TC provides the foundation for the ML-based calibration method developed

in this work. In this framework, real surface topography is incorporated into the calibration

process, which potentially could offer improved accuracy [53].

2. Introduction and Literature Review (Electrical)

Accurately determining the electrical conductivity (EC) of thin films is a challenge in materials
characterization. Reliable EC measurements in thin films are primarily complicated by edge
effects, where the proximity of the sample's boundaries distorts the current distribution, leading to
non-uniform current paths and thus complicating the overall measurements.
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The Four-Point Probe (4PP) and van der Pauw (vdP) techniques are the two most commonly used
methods for TC measurements in thin films. The vdP method is often considered precise for
homogeneous and isotropic thin films. However, it requires strict conditions: uniform film
thickness, negligible contact size, and symmetric contact placement [34].

The 4PP method, in contrast, is simple, and versatile. It is also relatively easy to use on samples of
different shapes and sizes, including irregular thin films. The main drawback of 4PP lies in its
sensitivity to geometry and edge effects. Probe spacing, sample dimensions, and measurement
location can all alter the observed conductivity, requiring correction factors to ensure accuracy.
Without such corrections, 4PP values can deviate significantly from intrinsic conductivity.

2.1. van der Pauw Method

The van der Pauw (vdP) method, introduced in 1958, remains one of the most reliable reference
techniques for determining the electrical resistivity of materials [35, 36]. The vdP is able to provide
precise sheet resistance measurements using only four electrical contacts positioned along the
perimeter of the sample [37, 38].

The theoretical basis [39] of vdP relies on a theorem that connects the sheet resistance R, = p/t
of a flat, uniform, and isotropic sample (with thickness t) to two characteristic resistances obtained
from measurements using four small contacts placed along the sample’s perimeter. This
relationship follows from the two-dimensional Laplace equation for electric potential under the
assumption that no current escapes through the sample boundaries.

For the van der Pauw theorem to hold, the sample must be flat (Figure 2-1) with constant thickness,
composed of a homogeneous and isotropic material, and equipped with four contacts placed along
the boundary that are negligibly small compared to the overall sample dimensions.

P

M it
Figure 2-1. A flat sample equipped with four edge contacts (M, N, O, and P) used for vdP
measurements [39].

The measurement procedure requires determining two characteristic resistances by interchanging
the current and voltage terminals located at the four contacts, labeled M, N, O, and P. In the first
configuration, a current Iy is injected between M and N, and the resulting voltage Vp( is
measured between P and O, giving Ry y op = Vpo/Iyn- In the second configuration, the current is
applied between N and O, and the voltage is measured between M and P, yielding Ryp py =
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Vup/Ino- The fundamental vdP equation connects these two resistances with the sample thickness
t and specific resistivity p through

_ nt Ryn.op + Ryo,pm f (RMN,OP
In (2) 2 Ryo,pm

p ), 2.1

where the function f depends only on the ratio of the measured resistances. In cases where the
sample or the contact placement is perfectly symmetrical (like square), the two measured
resistances are equal (Ryy op = Ryo pm)- Under this condition, the correction factor becomes f =
1, and the resistivity simplifies to

- ™ g 22
p= In (2) MN,0OP- .

This equation represents the fundamental relationship governing the vdP method.

Although the vdP method typically requires direct electrical contacts on the sample surface, which
can make it a time-consuming and effectively destructive process, it remains widely used as a
reference technique. The need to fabricate or attach contacts, combined with the method’s
sensitivity to geometrical imperfections, often limits its practicality for rapid or repeated
measurements. Measurements obtained using this method have been used to determine the actual
electrical conductivity values of the thin films investigated in this study.

Ideally, the method assumes infinitesimally small contacts, but in practical scenarios, finite contact
sizes can introduce systematic deviations. As the contact size increases relative to the sample
dimensions, errors become more pronounced, leading to underestimation of resistivity values [35,
36]. Similarly, sample thickness plays a crucial role in measurement accuracy. The vdP method is
best suited for thin films, but when the thickness is comparable to the lateral dimensions, three-
dimensional current flow effects become significant. This necessitates the introduction of
correction factors to obtain accurate resistivity values. FEM has been widely used to characterize
these thickness-dependent effects and develop suitable correction methodologies [36, 38].

Additionally, to mitigate errors related to the boundary conditions, analytical expressions
incorporating correction factors for finite sample size and asymmetric probe placement have been
derived [35].

Given the deviations from ideal conditions, several correction strategies have been proposed to
enhance measurement accuracy. Finite contact size corrections have been developed through
correction tables and computational models that relate measured resistances to actual resistivity
values based on known sample geometries. Experimental studies confirm that applying these
corrections significantly improves the reliability of vdP measurements [36]. Material
inhomogeneity considerations play a crucial role in refining vdP measurements, as variations in
resistivity due to compositional gradients can distort current flow. To address this, spatially
resolved conductivity mapping techniques have been employed as complementary tools for
refining vdP measurements [36].

Computational techniques such as finite element simulations have been instrumental in validating
these correction factors against experimental data. These approaches systematically evaluate
multiple simultaneous non-idealities, providing comprehensive guidelines for accurate resistivity
measurements [35, 36].
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2.2.  The 4 Point Probe Technique

The 4PP method is widely used to determine materials resistance, as it effectively eliminates errors
caused by contact resistance. However, measurement accuracy is influenced by factors such as
sample geometry, and probe positioning. Recent studies have examined these aspects, leading to
improved methodologies for more reliable EC assessments [40, 41, 42].

The 4PP method operates by applying a known current through two probes while measuring the
voltage drop across other two probes. This setup ensures that the measured voltage is independent
of contact resistance, making it a more accurate technique compared to the traditional two-probe
method [40, 41]. The Figure 2-2 illustrates the 4PP method, depicting the two primary
configurations: a linear arrangement (a) and a square arrangement (b). Each setup features
equidistant spacing between the probes.

(a) (b

Figure 2-2. The linear (a) and square (b) arrangements of the 4PP method are shown in these
schematic drawings, with the specific current and voltage probes identified [43].

In the characterization of electronic materials, the four-probe configuration is beneficial as it
minimizes interference from external resistance and improves the precision of conductivity
measurements. Studies have demonstrated that this method is crucial in evaluating charge transport
behavior, particularly in systems where internal resistance plays a significant role [41].

Additionally, advanced models have been introduced to refine 4PP measurements, considering
factors such as mixed conduction pathways and near-surface effects. These models offer a more
comprehensive understanding of charge transport and have proven useful in improving the
accuracy of electrical measurements in complex materials [42].

Sample geometry plays a significant role in determining accurate conductivity values. The size,
shape, and thickness of the material influence the current distribution, making it necessary to apply
correction factors to ensure reliable results [40, 41].

Variations in electrical properties have been observed across large-area films, necessitating
multiple measurement points to capture these differences accurately. In research settings, materials
are often segmented into smaller regions to assess variations and obtain a more precise evaluation
of their properties [40].

In some cases, current flow is influenced by both surface and bulk conduction, making
conventional measurement models less effective. Studies have shown that at smaller probe
spacings, surface conductivity dominates, whereas at larger probe spacings, bulk conduction plays
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a more significant role. This highlights the need for advanced modelling approaches that account
for multiple conduction pathways instead of assuming a uniform distribution of charge carriers
[42].

For flexible and multilayer materials, variations in measurement location can result in significant
differences in resistance values. These inconsistencies highlight the importance of precise
experimental protocols to account for substrate-related effects. Studies have emphasized that
flexible substrates, in particular, can introduce additional challenges due to mechanical strain and
non-uniform current flow, which must be considered when interpreting results [40].

In photovoltaic applications, the impact of substrate material on charge transport efficiency has
been studied in detail. It has been observed that different probe configurations affect the ability to
measure electrical properties accurately, particularly at higher voltage levels. Reducing unwanted
resistances in the system improves the accuracy of conductivity measurements and enhances the
overall efficiency of electronic components [41].

To improve 4PP techniques accuracy, numerical simulations and computational methods have
been integrated into experimental work to refine measurement techniques further. These
approaches help minimize systematic errors and provide a more precise understanding of how
geometric factors influence conductivity measurements [42].

Recent studies have introduced various modifications and enhancements to the traditional 4PP
technique. Yang Lu et al. developed a 3D-printed 4PP station using stainless steel tapestry needles
electroplated with nickel and gold to minimize contact resistance variability. Their system
incorporates a microcontroller-based source measurement unit (SMU) for precise electrical
measurements. They also highlight the impact of geometric distortion in non-uniform samples
[44]. Waremra and Betaubun applied the 4PP method to both bulk and thin-sheet materials, using
a constant DC current while measuring the voltage drop across the inner probes [45]. Similarly,
Mosavi et al. explored both two-wire and four-wire probe configurations for CIGS thin-film solar
cells, demonstrating that the four-wire approach effectively eliminates lead resistance, improving
measurement accuracy [41]. Ju et al. introduced a microscopic 4PP integrated with AFM,
achieving high spatial resolution. Their method incorporates geometrical correction factors to
enhance precision [46].

Correction factors play a crucial role in improving the accuracy of EC measurements, particularly
when accounting for sample geometry and probe placement. Several studies have focused on
refining these aspects. Chelly et al. developed an improved analytical model that applies correction
factors for sample thickness and diameter. Using numerical simulations and experimental
validation, they derived correction factors for both semi-infinite bulk materials and two-
dimensional sheet samples [47]. Another comprehensive study on 4PP techniques emphasizes the
importance of correction factors for probe positioning near sample edges and lateral sample
dimensions. It introduces mathematical models for different samples, extending correction factors
to account for directional resistivity variations [34]. Ji-Kwan Kim et al. proposed a micro-4PP with
a square probe configuration to mitigate inaccuracies caused by sample curvature and edge effects
[48]. Smits’ work refines correction factors for sheet resistivity measurements, incorporating
adjustments for rectangular and circular samples of finite size [49].

The important physical quantity obtained using 4PP is the sheet resistance (Rgy), defined as the
bulk resistivity (p) divided by the film thickness (t). Under the assumption that the film behaves
as a quasi-two-dimensional system, this relationship takes the form Rg, = p/t.
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Figure 2-3. Arrangement of the square 4PP method used in this study [34].

For thin-film measurements, the injected current can be assumed to spread cylindrically from the
point of injection. In a square 4PP configuration, the probes are positioned at the four vertices of
a square of side length s. Current (/) is usually introduced between two diagonally opposite probes,
while the potential difference (V) is measured across the remaining pair. The potential distribution
from a point current source on the sheet follows a logarithmic dependence, forming the theoretical
basis for the sheet-resistance expression.

For a square array of side length s, where the internal probe separations satisfy s; = s, = s and

s, = 53 = \/2s, the derivation simplifies. This yields the sheet-resistance formula for an infinite
sheet [34]:

p 2nV

R =E_Z"" 23
* t In2l

In this ideal case, the sheet resistance depends solely on the measured ratio V /I and the

dimensionless geometric factor 2r/In 2 = 9.060, rendering it independent of the probe spacing

s.

In practical scenarios, samples have finite lateral dimensions, making the infinite-sheet assumption
invalid. The finite boundaries constrain the current flow, necessitating a geometrical correction
factor (F). When a square 4PP array is used on a finite square lamella, the true sheet resistance is
obtained by multiplying the ideal expression by this factor:

2 'V

— 24
n21 F

Rs = (
The correction factor F is a non-trivial function of the ratio between the probe spacing and the
sample size (s/d), and in some cases, the probe-array orientation relative to the sample edges. As
the sample dimensions become very large compared to the probe spacing, the correction factor
approaches unity, and the expression converges to the ideal infinite-sheet formulation.
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3. Research Background

The following sections establish the foundational research background for a critical issue in
modern materials science: the accurate determination of functional properties in submicron scale
and thin-film systems. The discussion begins with the formidable challenges associated with
thermal transport, where the breakdown of classical physics, the dominance of boundary and
interface effects (Kapitza resistance), and the profound influence of submicron-scale morphology
make predicting TC an extrinsically dominated problem. The focus then shifts to the challenges in
measuring EC, where the limitations of standard techniques like vdP and 4PP methods, combined
with geometric artifacts, complicate the extraction of reliable data. Effective materials
characterization, especially thermal properties, is a major challenge, requiring advances in
methodologies and computational modeling. Its resolution is crucial for developing next-
generation technologies in electronics, photonics, and energy conversion.

3.1. Research Background (Thermal Conductivity)

Modern technology relies heavily on developing and using materials at the submicron scale,
especially thin films. These materials are the foundation for devices in many fields, including high-
performance microelectronics, photonics, efficient energy systems, and optoelectronics. As the
feature sizes within these devices continue to shrink towards atomic scales, their power densities
escalate strongly, making effective thermal management not merely an engineering consideration
but a fundamental bottleneck that dictates device performance, operational stability, long-term
reliability, and ultimate functional viability. Therefore, the precise determination, accurate
prediction, and ultimate control of thermal transport properties in thin films have become one of
the most critical challenges in modern materials science.

This importance stems from a fundamental paradigm shift in physical behavior: the thermal
properties of a material in a thin-film configuration are not intrinsic constants but are instead
extrinsic, dependent on a complex interplay of submicron-scale phenomena. When film thickness
is reduced to dimensions comparable to or smaller than the mean free path of energy carriers
(phonons in dielectrics, electrons in metals), heat transport undergoes a radical transition from the
well-understood diffusive regime governed by Fourier's law to a non-equilibrium ballistic regime
where classical models fail [27, 50]. In this submicron-scale realm, the material's bulk TC becomes
an obsolete concept. Instead, thermal transport is dominated by boundary and interface effects.
The film's effective TC becomes a strong function of its thickness, crystallographic quality, grain
size, and surface morphology [23, 50]. Most significantly, the TCR (also known as the Kapitza
resistance) at the interface between the film and its substrate emerges as the critical, and often
limiting, factor in overall heat dissipation [51, 52].

The complexity of this challenge is further compounded by the profound influence of submicron-
scale topography on thermal transport phenomena. Surface asperities reduce the true physical
contact area between any two solids. This reduced contact area creates localized nanogaps that act
as regions of high thermal resistance. This phenomenon introduces significant variability and
compromises experimental reproducibility in thermal measurements [19, 22, 30].

The need to address these challenges becomes increasingly pressing as new applications continue
to advance. In the microelectronics industry, the thermal management of integrated circuits, high-
power transistors, and phase-change memory cells requires knowledge of thin-film TC and
interfacial resistance to engineer efficient heat spreading pathways and prevent destructive hot-
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spot formation [23, 52]. In energy technologies, such as thin-film thermoelectric generators and
solar cells, the deliberate suppression of TC through nanostructuring is a primary pathway to
achieving improved efficiencies [23]. For protective coatings and optical films, thermal stability
and heat dissipation are key to withstanding high-power operational conditions. In each case, the
ability to not only measure but also accurately predict thermal performance based on
microstructure, morphology, and interface quality is a critical enabling capability for rational
design.

Yet, this ambition for prediction and control is currently hindered by significant limitations in both
experimental metrology and theoretical modeling. On the experimental side, even techniques like
SThM, which provides unparalleled spatial resolution, face inherent constraints. The accuracy of
its measurements is heavily influenced by geometric factors of the probe tip, the stability of the
tip-sample contact, and the aforementioned surface roughness, all of which introduce uncertainties
that complicate data interpretation [16, 17, 18]. Established mechanical contact models were
conceived for idealized scenarios and fail to accurately describe the complex, multi-physics nature
of tip-sample interactions at the submicron scale, which are critical for translating SThM signals
into quantitative thermal properties [26]. Their inability to account for irregular morphologies,
localized deformations, and atomic-scale adhesion forces reveals a critical analytical gap [26]. This
gap between theory and experiment hinders the development of reliable, standardized
measurement protocols and reduces the overall reliability of quantitative assessments, thereby
limiting the utility of acquired data for predictive design.

Overcoming these challenges is imperative for the future of technology. It necessitates the
development of new methodologies that include more reliable measurement techniques capable of
decoupling intrinsic film properties from pervasive substrate contributions; the creation of multi-
scale models that can faithfully simulate heat transfer across realistic submicron-scale
morphologies and interfaces; and the establishment of reliable, universally applicable calibration
standards.

3.2. Research Background (Electrical Conductivity)

The core challenge in EC measurement arises from the influence of sample geometry. This
complexity increases significantly as device features shrink, causing the assumptions underlying
theoretical formulas to break down. Edge effects (where the proximity of the measurement region
to a physical boundary distorts the current path) become a dominant source of error [34, 40]. The
finite and often irregular shape of samples, a common scenario in research and development,
introduces boundary conditions that alter current distribution, making simplified models for
infinite sheets inaccurate [35, 40].

The most widely used techniques for addressing these challenges, the 4PP and vdP methods, each
possess inherent limitations that highlight the difficulty of the problem. The vdP method, while
celebrated for its versatility with irregularly shaped samples and its ability to minimize alignment
errors [37, 38] , imposes strict requirements: the sample must have uniform thickness, and the
contacts must be negligibly small, and the method is destructive. Deviations from these conditions,
such as finite contact size, material inhomogeneity, or thickness variations, introduce systematic
errors in electrical resistivity measurements [35, 36]. Consequently, the practical value of the vdP
method depends heavily on the use of reliable analytical and numerical corrections, which
transform an ostensibly simple measurement into a complex inverse problem.
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Similarly, the 4PP method is sensitive to geometric factors. Its accuracy is heavily dependent on
probe spacing, the proximity of the measurement to sample edges, and the overall dimensions of
the film relative to the probe array [40, 41]. In complex material systems, such as flexible
electronics or multilayer stacks, additional complications arise from substrate-induced strain, non-
uniform current flow, and the interplay between surface and bulk conduction pathways, which can
dominate depending on the probe spacing used [40, 42]. These factors imply that a single
measurement without proper correction is often meaningless, and obtaining a true EC value
requires comprehensive correction frameworks such as Finite Element Method (FEM) or ML-
assisted methods.

Emerging applications highlight the increasing need to address these challenges. The development
of flexible and wearable electronics requires reliable conductivity measurements on substrates that
may bend, stretch, and have inherent surface roughness, all of which violate the standard
assumptions of traditional techniques [40]. The optimization of photovoltaic and thermoelectric
devices hinges on accurately characterizing often anisotropic and inhomogeneous materials where
minor errors in conductivity can lead to significant mispredictions of device efficiency [41, 42].
For industrial quality control and high-throughput screening of new materials, there is a pressing
need for measurement protocols that are not only accurate but also rapid and adaptable to non-
ideal, real-world sample geometries.

Therefore, the challenges associated with determining and predicting EC in thin films represent a
critical bottleneck in materials science. This necessitates the adoption of methodologies such as
FEM modeling to account for complex geometries and boundary conditions [35, 36, 47], as well
as the development of data-driven approaches like ML to automate correction processes and handle
multi-parameter non-idealities. The successful development of reliable, adaptable, and
comprehensive frameworks for electrical characterization is essential for accelerating the rational
design and implementation of advanced thin-film materials, ultimately supporting continued
progress in electronic and energy technologies.

4. Motivation and Hypothesis

4.1. Problem Statement and Research Aim

Accurately determining the TC of thin films remains a significant challenge due to the inherent
limitations of SThM. Measurements obtained through SThM are highly sensitive to factors such
as surface roughness and probe—sample contact variability, both of which introduce substantial
noise and reduce measurement reproducibility. Existing theoretical models offer limited support
because they rely on simplifying assumptions that fail to capture the complex thermal interactions
occurring at submicron scales. As a result, the field lacks reliable, standardized methodologies for
thin-film TC characterization.

The aim of the TC component of this research is to develop an integrated methodology that
combines high-resolution spatial mapping, simultaneous thermal-topographical acquisition,
normalization procedures, and ML models. This framework is designed to enhance the reliability
and reproducibility of thin-film TC measurements, establish a scalable platform (by converting
physical topography into numerical datasets) using topography-based descriptors (e.g., inclination,
peak-to-valley height), and bridge experimental SThM data with computational predictive
modeling.
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Accurate EC characterization in thin films encounters comparable difficulties. The widely used
4PP technique is highly sensitive to probe placement, geometric distortions, and edge effects, often
leading to inaccurate or inconsistent results. Although the vdP method offers a more rigorous
alternative, it requires strict sample geometries, involves destructive preparation, and demands
complex experimental setups—factors that limit its practicality for routine thin-film
characterization.

The aim of the EC component of this research is to establish a standardized and adaptable
correction framework that operates solely on experimental data. This dissertation proposes a data-
driven approach in which ML models learn and correct geometric distortions directly from
measured 4PP data, eliminating the need for rigid geometries or destructive procedures while
enabling more practical, scalable EC characterization. In parallel, an FEM-based correction
framework is also developed for comparison.

4.2.  Research Objectives

This research is divided into two major components: the determination of TC and the
determination of EC in thin films. Each component addresses longstanding limitations in nanoscale
characterization by integrating advanced measurement techniques with data-driven modeling.
Together, these methodologies aim to establish a unified and scalable framework for thin-film
property evaluation.

The overarching objective of the TC component is to develop a reliable and scalable methodology
for both measuring and predicting the TC of thin films through the integration of SThM, high-
resolution surface topography analysis, and ML techniques.

To achieve this, the research first focuses on the acquisition of high-quality data. A multi-scale
spatial mapping strategy is designed, incorporating micro- and submicron-level grids, allowing for
the simultaneous collection of localized thermal signals and detailed topographical information.
This dual-mapping approach ensures that each thermal measurement can be directly associated
with the corresponding morphological features of the sample.

A second objective is the development of normalization and correction procedures to reduce
measurement bias and enhance comparability across different samples. Quartz is employed as a
stable reference material, enabling calibration of thermal signals and providing a foundation for
constructing a consistent measurement framework.

The research then aims to establish quantitative correlations between surface morphology
(characterized using parameters such as roughness, skewness, and inclination) and the thermal
response of the thin film. These correlations serve as meaningful descriptors for ML model
training, enabling the development of predictive tools that incorporate both intrinsic material
properties and topographical influences.

Building on these inputs, the next objective is to construct and train Machine Learning models
capable of accurately predicting thin-film thermal conductivity. Particular emphasis is placed on
Random Forest regression due to its robustness in handling nonlinearities and complex feature
interactions arising from topographical variations.

Finally, the proposed methodology is validated across a diverse range of thin films and selected
bulk materials. This validation phase is designed to confirm the reproducibility, reliability, and
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scalability of the approach, ensuring its applicability to distinct material systems and measurement
conditions.

The EC component aims to develop a reliable and adaptable methodology for the accurate
determination of thin-film EC using the 4PP technique. Conventional 4PP measurements are often
compromised by geometric distortions (such as edge effects and inaccuracies in probe placement)
that significantly affect current flow and voltage distribution. To overcome the sensitivity
drawbacks of practical EC measurements using 4PP, particularly those related to geometry and
probe positioning, this work proposes to establish an approach using FEM and ML techniques
separately for measuring the EC in thin films, and to compare the practicality of these methods.
FEM is employed to simulate current density distributions in thin films and to provide correction
factors for geometry-related distortions. In parallel, an ML model is trained on an experimental
dataset of metallic and transparent conductive oxide (ITO) films, enabling it to recognize and
correct measurement artifacts caused by probe positioning and sample irregularities.

The first objective is to model measurement distortions using FEM. Numerical simulations are
employed to reproduce the influence of sample geometry, edge proximity, and probe
misalignment, providing physically grounded correction factors and serving as theoretical
benchmarks for experimental measurements.

The second objective focuses on the development of a complementary ML-based correction
framework. An extensive dataset of experimental 4PP measurements is used to train ML models
capable of automatically identifying and correcting geometric artifacts under a wide range of
measurement conditions. This data-driven approach aims to offer a simulation-free alternative that
is both rapid and adaptable.

The predictive capability of the ML model is then rigorously validated against high-fidelity
experimental references, including vdP measurements. This step ensures that the ML corrections
are both accurate and physically meaningful.

4.3. Research Hypothesis
The research is guided by two primary hypotheses corresponding to the TC and EC components.

The central hypothesis for the TC component is that integrating high-resolution thermal mapping
with detailed surface topographical analysis, combined with advanced ML algorithms, can
overcome the inherent limitations of conventional SThM techniques. By unifying these data
sources within a single analytical framework, it is expected that thin-film TC can be measured and
predicted with significantly improved accuracy and reproducibility.

This integrated approach is anticipated to remain effective even under challenging conditions,
including variations in probe—sample contact, and surface irregularities factors that introduce
uncertainty into SThM-based measurements. The hypothesis therefore asserts that a data-driven,
multi-modal methodology will enable scalable and reliable TC characterization across a broad
range of thin-film systems.

For the EC component, the hypothesis is that both FEM and ML can generate effective correction
factors capable of mitigating geometric distortions in 4PP measurements. These distortions (such
as edge effects and probe placement deviations) are known to significantly influence current
distribution and voltage measurement, leading to inaccuracies in EC determination.
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While FEM is expected to provide correction factors with high physical fidelity, the ML-based
framework is hypothesized to offer a simulation-free alternative that delivers comparable accuracy
with substantially faster computation times. This makes ML particularly suitable for scalable,
high-throughput EC characterization, where efficiency and adaptability are essential.

5. Methodology and Experimental Procedures (Thermal)

The proposed ML-based methodology combines SThM with signal processing to achieve
submicron spatial and thermal resolution, while the computational component employs ML to
extract intrinsic material properties from complex measurement datasets. The materials used in
this work include annealed ITO thin films (processed under six different atmospheric conditions)
and ZnO thin films that were previously prepared, alongside six well-characterized bulk reference
materials spanning three orders of magnitude in thermal conductivity (0.17-450 W-m™-K™).
Detailed descriptions of the methodology are provided in the following sections.

5.1. Materials Used and Instrumentation

Commercial 170 nm thick indium tin oxide films deposited on glass substrates (Hoya, Tokyo,
Japan) that had already been annealed under multiple controlled atmospheres were used in this
study. These annealing treatments were not performed as part of this work; they had been
previously carried out at a uniform temperature of 400 °C in vacuum, air, oxygen (O:), nitrogen
(N2), carbon dioxide (CO:), and a nitrogen—hydrogen (N>—H:) mixture. Likewise, the zinc oxide
thin films analyzed in this study were obtained as pre-fabricated samples. They were produced
earlier using atomic layer deposition (ALD), a technique that allows precise control of thickness
and composition. The available ZnO films had been deposited at two temperatures, 100 °C and
200 °C, with different ALD cycle counts to generate variations in film thickness and structural
properties. Also, thermally isotropic bulk materials was incorporated into the study. These
materials were chosen due to their well-defined thermal properties and structural homogeneity,
which are essential for accurate model calibration. The bulk materials examined included: glass,
glassy carbon, SiC single crystal, yttrium aluminum garnet (YAQG) single crystal, ZnO in bulk
form, and polymethyl methacrylate (PMMA). The bulk materials served as reference standards
to improve model calibration by providing well-characterized thermal properties.

The TC of the thin-film samples listed in Table 5.1 had been previously measured using an AFM
(Park Systems XE-70) and two different thermal probes to ensure reproducibility and minimize
experimental error. The thermal probe for earlier measurements was the KNT-SThM2an thermal
probe (Kelvin NanoTechnology, Glasgow, UK). In the current work, an SThM probe (KNT-
SThM-3an, Kelvin NanoTechnology) was used. These two types of probes differ slightly in shape.
To minimize noise, all experiments were conducted in a vibration-damped chamber at 25 °C,
reducing external disturbances and thermal drift. A quartz reference sample was scanned first for
baseline calibration, followed by SThM mapping of the thin-film samples. For both the quartz
reference and the samples, a 2 x 2 um? scan area was used, with a scan rate of 0.05 Hz and a
contact force of 1 nN.

For high-precision signal detection, a lock-in amplifier (SR830) filtered out noise, while the probe
was powered by AC (2.3 kHz, 0.09 mA amplitude) and DC (1.8 mA) currents for dynamic and
static thermal measurements, respectively. This setup ensures reliable data for studying
submicron-scale heat transfer. The interaction between the SThM probe and the sample surface is
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depicted in Figure Figure 5.1. This schematic also displays two important topographical
parameters that affect TC measurements: the probe’s inclination and the surface’s peak-to-valley
distance.
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Figure 5.1. Schematic of the SThM probe-surface interaction. The highlighted parameters
(inclination and peak-to-valley distance) are critical, as the probe's dual sensing function allows
for correlated thermal and topographical data collection at the submicron scale [53].
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Table 5.1. Detailed description of the samples used to validate the proposed methodology.

Sample’s number ~ Sample Substrate  Layer thicknesses (nm)  Actual k (W-m™1-K™1)
1 ITO (1)° Glass 170 6.4 [54]
2 ITO (2)° Glass 170 3.5 [55]
3 ITO (3)" Glass 170 8.3 [55]
4 ITO (4)" Glass 170 10.6 [54]
5 ITO (5)° Glass 170 11.8 [55]
6 ITO (6) Glass 170 6.7 [54]
7 Glass (Bulk) - - 1.1

8 Glassy carbon (Bulk) - - 6.3

9 SiC (Bulk) - - 450

10 YAG (Bulk) - - 12

11 ZnAlO (1)" Silicon 110 4.29 [56]
12 ZnO (Bulk) - - 80

13 ZnO (2)" Silicon 12 0.25 [57]
14 ZnO (3)" Silicon 15 0.28 [57]
15 ZnO (4)" Silicon 38 1.12 [57]
16 Zn0 (5)" Silicon 118 2.81[57]
17 PMMA (Bulk) - - 0.17

“ITO (1) to ITO (6) were annealed in different atmospheres: oxygen, carbon dioxide, vacuum, air, nitrogen, and a nitrogen-hydrogen
mixture, respectively. ZnO (1) to ZnO (5) were deposited using ALD with cycle counts of 850, 150, 150, 330, and 900, respectively. The
deposition temperatures were 200°C, 100°C, 200°C, 200°C, and 200°C, respectively.
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5.2. Thermal Signals and Impact of Surface Topography on Thermal Parameters

The thermal characterization methodology employed a framework wherein the effective thermal
resistance (Ri;l) of each discrete grid cell within the sample matrix was evaluated relative to the
corresponding thermal resistance (R?}il) of the reference material. This differential approach was
implemented to normalize measurement variations and isolate the intrinsic thermal properties of
the samples under investigation. Amorphous quartz was selected as the reference standard due to
its thermal stability, and isotropic heat conduction properties. The fundamental comparative
relationship was mathematically expressed through the following dimensionless ratio [58]:
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In this formulation, the numerator (RZi — RYY) represents the difference in dynamic and static
electrical resistances measured at each sample grid cell (i). The denominator (REIi — RYY) represents
the analogous resistance difference acquired from the quartz reference material at the
corresponding spatial coordinate. This normalized ratio (I';) effectively cancels out probe-specific
characteristics and instrumental variables. The static resistance component (RY', Rg') was acquired
under equilibrium conditions using a precisely regulated direct current excitation (Ipc=1.8 mA)
supplied by a high-stability current source. Conversely, the dynamic resistance measurement (R},
Rgi) employed an alternating current component (Iac = 0.09 mA amplitude) to probe the transient
thermal response characteristics through lock-in detection techniques.

From the Equation 1.11 the thermal resistance (Rﬁl) demonstrates sensitivity to sample thermal
properties and surface morphological characteristics, as this parameter is fundamentally governed
by different interdependent variables — the sample TC (k®), the effective contact radius (r®i), the
probe thermal resistance (Rihp), and the convective heat transfer coefficient (h%i) - all of which
maintain intrinsic relationships with surface topography. This complex interdependence arises
from several distinct physical mechanisms that collectively determine thermal transport efficiency
at probe-sample interfaces.

Surface roughness increases thermal resistance by reducing the true contact area between the probe
and sample. The tip only contacts high points (asperities), while air-filled valleys act as insulating
gaps. Conversely, an atomically smooth surface allows for near-perfect contact, maximizing the
contact area and minimizing resistance by creating efficient thermal conduction pathways. The
thermal model integrating these effects can be derived through combination of Equations 1.11 and
5.1, yielding the following expression:
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This relationship reveals several important physical insights. First, the equation highlights the
critical importance of reference material topography (through parameter r"i, here index n is used
for the reference sample quartz) in determining accurate TC values, emphasizing that proper
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normalization requires careful consideration of both sample and reference surface characteristics.
Second, the formulation provides a quantitative framework for distinguishing the various
contributions to measured thermal resistance, enabling researchers to distinguish between intrinsic
material properties and topographically-induced (through parameter r’) measurement artifacts.
Furthermore, the ability to quantitatively relate surface topography to thermal transport
characteristics represents a significant advancement in submicron-scale thermal metrology, with
potential applications in materials development, quality control, and fundamental studies of
submicron-scale heat transfer.

5.3. A Factor as ML Input for Substrate and Thickness Consideration

A key challenge was developing an analytical input for ML model to differentiate between bulk
and thin-film samples. This distinction was critical because thin films exhibit fundamentally
different thermal transport properties, which, if unaccounted for, would introduce significant
inaccuracies in the measured TC.

Moreover, the substrate TC introduces additional complexities in thermal transport analysis, as the
TCR between the film and substrate can dominate overall heat dissipation. This effect is
pronounced in ultrathin films, where interfacial thermal resistance may exceed the intrinsic thermal
resistance of the film itself. Therefore, the development of a ML model capable of distinguishing
between bulk and thin-film thermal responses was essential to ensure the reliability and accuracy
of the experimental findings. The ML model training process required careful consideration of
multiple variables, including film thickness, and substrate thermal properties to minimize
systematic errors and enhance predictive performance.

Initially to evaluate the effective TC of layered samples deposited on semi-infinite substrates, the

probe—sample interaction can be modeled by assuming a discoidal contact with radius b. Within
this framework, the effective TC, k., of the system can be expressed as [59]:
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where x = d/b and y = «®/xgpdenotes the ratio between the TC of the layer (k°) and that of the
substrate (Kg,p). Here, J;is the first-order Bessel function of the first kind.

The present investigation introduced a substrate-thickness factor (C-factor) as an extra ML input
to quantitatively account for the influence of thin-film dimensions and substrate properties on TC
measurements while developing ML model. To account for this, the input C was defined as
follows:
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Here, d is the thin-film thickness, b is the threshold thickness, k" is quartz TC (used solely for
normalization), and Kg,}, represents the substrate's TC values. This mathematical formulation was
developed as a piecewise function that distinguishes between two distinct thermal transport
regimes based on film thickness. The critical thickness parameter b was established at 100 nm,
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corresponding to the characteristic length scale of the SThM probe tip's interaction volume, which
fundamentally limits the spatial resolution of thermal measurements. Below this threshold
thickness, the factor incorporates both geometric scaling and material-dependent thermal
properties through a normalized relationship. The geometric term ((b — d)/b) describes the
progressive deviation from bulk-like behavior as film thickness decreases, while the material term
(Ksup/X™) weights this effect according to the relative thermal conductance of the substrate kg1,
compared to a reference value k".

5.4. Primary Key Parameters

The methodological framework commences with the implementation of a spatial mapping
protocol, wherein a 2 x 2 um? region of the sample surface is systematically partitioned into a 16
x 16 measurement grid architecture. This scheme yields 256 discrete measurement cells, each
encompassing a 125 x 125 nm? area. The grid-based analytical framework enables several
advancements in thermal metrology. First, the methodology inherently compensates for
measurement artifacts caused by localized surface anomalies through its integrated analysis of
regional thermal interactions. Second, the comprehensive dataset generated by this approach
provides the experimental foundation for developing more accurate computational models of
submicron-scale heat transfer that properly account for microstructural influences.

The present methodology explicitly incorporates surface topography as a fundamental parameter
governing thermal transport phenomena during SThM measurements. This recognition stems from
the well-established understanding that submicron-scale surface morphology exerts profound
influence on heat transfer mechanisms at the probe-sample interface, where nano-scale interactions
and microscale geometric features collectively determine the efficiency of heat transport. Surface
topography impacts thermal measurement accuracy by altering heat transfer, contact resistance,
and contact area.

5.4.1. Micro Scale Topographical Parameters

As mentioned before, the present investigation employs a microstructural analysis framework
focusing on a precisely delineated 2 x 2 um? region, partitioned into a high-resolution 16 x 16
measurement grid. This designed microgrid architecture enables comprehensive characterization
of surface morphology and its consequential effects on thermal transport phenomena at the sub-
micron scale. The analytical protocol incorporates standard statistical surface metrology, with
particular emphasis on two topographic parameters: Root Mean Square roughness (R},s) and
surface skewness (R$y). R} represents a statistically rigorous measure of surface irregularity
amplitude, calculated as the standard deviation of surface height deviations from the mean
reference plane. This parameter provides insights into the degree of probe-sample interfacial
contact in SThM measurements, where increased R}, values directly correspond to greater
surface asperity heights and consequently reduced effective thermal contact area. The physical
manifestation of this relationship occurs through several interconnected mechanisms: (1)
diminished true mechanical contact between probe tip and surface features due to asperity height
variations, and (2) formation of submicron-scale air gaps acting as thermal insulation barriers.
These effects contribute to elevated TCR and consequently compromised heat transfer efficiency.
The RMS roughness is calculated as the square root of the arithmetic mean of squared deviations
from the reference plane:
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Where 7z and z{* represent the residual height deviations at each measurement point i for sample
and reference surfaces, respectively, obtained by subtracting the actual surface height from the
theoretically ideal plane determined through least-squares regression analysis. The parameter N =
256 corresponds to the total number of discrete measurement cells comprising the high-resolution
microgrid analysis area.

Surface skewness (R$)) serves as a complementary statistical descriptor that quantifies the
asymmetry of height distribution within the surface probability density function [60]. This
parameter provides differentiation between surfaces dominated by protruding features (positive
R3y) versus those characterized by prevalent valleys or pores (negative R3y). Positive skewness
surfaces, typified by numerous sharp peaks, create discrete point contacts with the SThM probe
that constrain thermal conduction pathways. Conversely, negatively skewed surfaces present
distinct thermal transport challenges through the formation of enclosed air cavities that function
as submicron-scale thermal insulators. These morphological features can induce complex three-
dimensional heat flow patterns, including lateral spreading and localized thermal bottleneck
effects, which modify the apparent TC measurements.

The surface skewness is computed as the normalized third moment of the height distribution:
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These statistical descriptors provide a comprehensive quantitative framework for characterizing
surface morphology at microscale dimensions, enabling precise correlation between topographical
features and their impact on thermal transport properties.

5.4.2. Submicron-scale Topographical Parameters

The present investigation extends its analytical framework to the submicron regime through
implementation of a characterization protocol focusing on discrete 375 x 375 nm? regions, each
systematically partitioned into a 3 X 3 measurement matrix referred to as a submicron grid. This
approach enables examination of localized thermophysical phenomena by capturing submicron-
scale parameters that govern interfacial heat transfer mechanisms, including surface inclination
(M31), standard deviation of surface heights (o), and peak-to-valley variations (p®i). These
submicron descriptors provide essential complementary information to microscale descriptors
(mainly, R}, and RS,).

Surface inclination (M®i) constitutes a submicron parameter that provides characterization of three-
dimensional surface geometry by measuring the rate of height variation per unit lateral distance.
A steeper inclination reduces the effective probe—sample contact area, whereas a smaller
inclination increases it. Consequently, surface inclination obviously influences the thermal
transport between the probe and the sample. The present methodology incorporates these
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inclination-dependent thermal transport phenomena to develop accurate correction algorithms for
submicron-scale SThM measurements. This parameter was calculated from the local slope of the
surface, i.e., the change in height per unit lateral distance, obtained from AFM topography data
within each submicron grid cell. The standard deviation of surface heights (o) offers enhanced
sensitivity to submicron-scale topographic variations when analyzed at this refined length scale
[61]. As a statistical measure, it quantifies the statistical distribution of surface height deviations
within each submicron cell. Surfaces with higher o®i values exhibit lower contact area and thus
lower heat transfer between the probe and the sample. The analytical approach developed in this
study effectively addresses these challenges, enabling accurate interpretation of thermal transport
behavior as submicron scale. Peak-to-valley variation (ui) represents another submicron-scale
parameter essential for understanding surface characteristics that dominate probe—sample
interactions [26]. This metric quantifies the maximum vertical displacement within each
submicron cell. Large p®i values create distinct thermal transport regimes and not let the probe
sense the sample surface effectively, whereas small pSi values contribute to enhancing heat
transfer from the probe to the sample surface.

The principal objective of this investigation was to establish reliable quantitative correlations
between the comprehensive set of topographical parameters previously characterized and the
experimentally acquired thermal response signals, specifically the thermal signal ratio (I7) and
phase difference (A@;). The thermal signal ratio (I;) is a normalized, dimensionless parameter. It
quantifies the interfacial thermal resistance at a specific submicron grid by comparing the
resistance during probe-sample contact (RR) to a probe-reference contact (thl}il). These metrics
serve as sensitive indicators for investigating thermal energy transport between probe and sample.

5.4.3. Complementary Considerations

The present study employs an ML framework specifically designed to mitigate the experimental
errors inherent in submicron-scale thermal characterization, which arise from the complex
interplay of multiple variables. The ML model will be trained on a high-dimensional dataset
encompassing the full range of experimentally measured thermal and topographical parameters.

Prior to model training, the methodology incorporates a rigorous feature selection protocol based
on Spearman’s rank correlation analysis. This statistical preprocessing step serves several critical
purposes: First, it quantitatively assesses the predictive relevance of each measured parameter with
respect to target TC values. Second, it systematically identifies and eliminates variables with
statistically insignificant correlations, thereby reducing input space dimensionality. Third, it
retains only those parameters exhibiting strong physical relationships with the thermal transport
phenomena under investigation.

The experimental methodology also includes a quartz-referenced standardization protocol to
establish metrological traceability and ensure submicron-scale measurement accuracy. This
approach leverages the exceptional thermophysical stability and well-documented TC properties
of amorphous quartz (k= 1.5 W-m'-K™" at standard conditions [54]). This advanced correction
framework addresses the critical challenge of substrate thermal contributions in thin-film
measurements, which become increasingly significant for films thinner than 100 nm.

The research methodology presented in this study adopts an analytical framework that combines
experimental instrumentation with ML techniques. The development of this integrated approach
was informed by an extensive training process utilizing a dataset of 2,352 individual thermal
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measurements. To ensure the generalizability of the ML models, an independent validation set
comprising 980 additional measurements was employed, resulting in a comprehensive analytical
dataset totalling 3,332 measurements. The dataset is presented in Table 5.2.
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Table 5.2. Overview of the data collected and documented during laboratory experiments.

Variable” Minimum Maximum Mean StDev
I 0.997 1.005 1.001 0.002
Ag; (deg) -693.837 826.137 6.813 148.089
C 0 73.333 11.52 25219
Rfms(nm) 0.326 2.523 0.664 0.480

sk -1.55 0.507 -0.266 0.49
MM 3.530 x 10 5.583 x 102 2.786 x 1073 3.246 x 107
i (nm) 0.258 16.7 1.395 1.324
K" /e™(GW.m™2. K1) 0.243 19.468 4.484 1.997
RS,,s(nm) 0.265 29.700 6.075 9.209

ok -0.127 3.072 0.693 0.81
Msi 5.619 x 107 0.457 2.813 x 102 5.516 x 102
pSi(nm) 0.189 142.200 13.220 22.540
x(GW.m2.K™1) 0.006 1681.611 32.650 108.729

* Variables include thermal signal ratio (I;), phase difference (A;), and substrate-thickness factor (C). For the reference material (quartz),
measurements include RMS roughness (Riys), skewness (RYy), inclination (M™), peak-to-valley variations (u™), and the ratio k" /o™,
where k"represents the TC of the quartz and 6™ denotes the standard deviation of surface heights for quartz. Corresponding parameters

for the sample are also provided: Root Mean Squared (RMS) roughness (R

), skewness (R$}), inclination (M51), peak-to-valley variations

(1%, and the ratio x = k%/051 (target variable), where kSrepresents the TC of the sample and 6°1 denotes the standard deviation of surface

heights. The total amount of collected data is 3,332.
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Figure 5.2. The left image displays a topography map of sample ITO (1) captured on a microscale area (16 x 16 cells). The dotted square
highlights the microscale region of 2 x 2 um? used for surface roughness analysis (RS, RS, Rbys, REy), while the smaller filled square
represents a submicron-scale subset area of 375 x 375 nm? (3 x 3 cells) for localized topographical characterization
(M3i, psi, 0%, M™, u", ™). The image on the right shows the thermal signal map of the same material within the same surface region,
with the small square indicating the specific cell where thermal signal ratios (I;) were captured. After each measurement, the submicron
grid shifts by one cell to the right, and the small square in the thermal map shifts accordingly to capture the next data point, ultimately
yielding 196 data points per sample. It should also be noted that these maps represent the "trace" data. Additionally, "retrace" maps are
collected, and the data from these two maps are averaged for each cell to reduce noise and enhance the reliability of the dataset.
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The investigation centers on TC (k®) as the principal parameter of interest, which plays a
fundamental role in the analytical framework through its mathematical relationship with the
derived parameter x. This quantity, defined as the ratio of sample TC to surface height standard
deviation, at each submicron grid cell, (x = k*/0°!), serves as a critical intermediary variable that
facilitates interpretation of complex thermal transport phenomena. This analysis will explore the
parameter's behavior across different material systems and measurement configurations, providing
insights into thermal transport mechanisms at micro- and submicron scales.

Figure 5.2 constitutes an essential component of this study's analytical framework, presenting a
dual-modality visualization that enables comprehensive characterization of the sample system. The
left-hand image comprises a high-resolution topography map. This detailed topographical
representation captures critical structural features including surface roughness, and morphological
variations that may influence thermal transport phenomena. The corresponding right-hand image
presents a thermal signal map acquired through SThM, providing quantitative measurements of
heat transfer characteristics across the identical sample region. This thermal mapping exhibits
variations in signal intensity that directly correlate with local differences in TC and heat dissipation
properties. The visual comparison demonstrates relationships between specific topographical
features and corresponding thermal signal variations, establishing empirical evidence for
morphology-dependent heat transfer behavior. A complete set of maps for all samples is included
in the appendix A.

5.5. Spearman’s Correlation Analysis

The correlation coefficients in Table 5.3 provide useful information on the relationship between
the target variable () and each of the input variables. The Spearman's rank correlation coefficient
(rs) is a statistical measure that quantifies the strength and direction of both linear and non-linear
relationships between two variables. Unlike Pearson's correlation, which specifically assesses
linear relationships, Spearman's method evaluates the relationship based on the ranks of the data.
Equation 5.7 shows the mathematical formula to compute rg between two variables [62].

6y d?
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Here, d;represents the difference between the ranks of the corresponding values of the two
variables, and Nis the number of paired observations. The value of d; reflects how much the two
ranks disagree for a single data pair. A large | d; | means one variable’s rank is high while the
other’s is low, whereas d; = 0 indicates perfect agreement between the two ranks. A rank is simply
the position of a value when all values in a list are arranged from smallest to largest; the smallest
value receives rank 1, the next receives rank 2, and so on. To calculate d;, the paired values (x;, y;)
are first ranked separately. Each x; is assigned a rank based on its position among all x-values, and
each y; is ranked in the same way among all y-values. For every pair, the difference between these
two ranks is then computed as:

d; = Rank(x;) — Rank(y;) 5.8

These d;values are subsequently used in Spearman’s correlation calculation.
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An rg = +1 indicates a perfect positive relationship, meaning that as one variable increases, the
other variable consistently increases. Conversely, rg = -1 signifies a perfect negative relationship,
where one variable decreases as the other increases. An rg = 0 suggests no relationship between
the variables.

The Spearman’s correlation analysis yields several significant findings regarding parameter-
property relationships. First and foremost, the parameter thermal signal ratio (I;) demonstrates the
most inverse correlation with x, as evidenced by its negative coefficient of -0.726, indicating that
increases in [ consistently correspond to marked decreases in x across the studied material
systems. This is followed in descending order of negative influence by peak-to-valley variation
usi (-0.609), inclination MSi (-0.572), and substrate-thickness factor C (-0.518), all of which
maintain statistically meaningful negative associations with the target variable.

Conversely, the examination reveals several parameters exhibiting minimal statistical association
with x. Specifically, Ag; manifests an extremely weak negative correlation (-0.022), while Rgy
shows a nearly negligible relationship (-0.005), suggesting these factors contribute insignificantly
to x variability within the parameter space under investigation. In contrast to the predominant
negative correlations, certain parameters demonstrate positive, albeit modest, relationships with y,
including R$; (0.228) and the ratio k" /o™i (0.098), indicating that increases in these parameters
correspond to slight enhancements in x values.

A critical methodological insight emerges from the comparative analysis of normalized versus
non-normalized parameter representations. The normalization procedure yields improvements in
predictive capability, as illustrated by the transformation of Rsc'li — R from displaying a trivial
negative correlation (-0.024) in its raw form to the influential [ parameter (-0.726) following
appropriate normalization.
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Table 5.3. Analysis of the connection between the target variable ()) and each input variable”.

n nj . .
l—‘i A(Pi C R?ms (nm) rslk MM Mni (nm) K /0 R?ms (nm) Zk Msi p-sl (nm)

GW.m 2.KH)

x (GW.m 2.K™1) -0.726 -0.022 -0.518 -0.270 -0.005 -0.116 -0.084  0.098 -0.505  0.228 -0.572  -0.609

"The parameters include thermal signal ratio (I}), phase difference (A;), and substrate-thickness factor (C). For quartz, measurements include RMS
roughness (Rls), skewness (RYy), inclination (M™), peak-to-valley variations (u™), and the ratio k" /o™, where k" is TC and o"i is surface height
standard deviation. For the sample, parameters are RMS roughness (R}ps), skewness (R$y), inclination (MSt), peak-to-valley variations (u%i), and the
target variable x = k°/0%1, where k® is TC and o°! is surface height standard deviation.
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5.6. ML Framework for TC Prediction

Accurate prediction of TC remains a critical challenge in materials science, especially for complex
systems where multiple physical factors interact. Traditional approaches often rely on
oversimplified assumptions, limiting their predictive accuracy. To address this, I present a ML
model that directly learns the relationship between thermal measurements and surface
characteristics. Our data-driven approach captures both macroscopic trends and microscopic
variations, combining advanced regression techniques with rigorous experimental validation to
deliver reliable TC estimations across diverse material systems.

I developed a ML model using a regression-based framework to ensure precise and generalizable
TC predictions. By integrating thermal, topographical, and material properties, while preserving
the continuous nature of TC, our model overcomes the limitations of categorical classification
methods. The model architecture was specifically designed to predict a continuous multiplicative
variable, x = k%/0%i, where x° represents the sample's TC and 6%t denotes the standard deviation
of surface heights obtained from topographical measurements. This formulation transforms TC
prediction into a continuous regression task, enabling the model to interpolate between discrete
values and effectively generalize to unseen data. The core relationship is mathematically expressed
through the model equation:

X= fML(l-‘iJ C: A(Pi; R?‘ms' Zk' Msi, llsi: R?msr rslkr Mni' Hni' Kn/o-ni) 59

Where, [ represents the thermal signal acquired through SThM and various topographical
parameters including slope and roughness contribute to the indirect inference of o°i, thereby
enhancing the model's predictive performance. The selection of x as the target variable was
justified by reasonable correlations observed between input features and k°/6%i, confirming the
appropriateness of the regression framework. Furthermore, the identified relationships between
o and various topographical features, such as slope and peak-to-valley height, reinforced the
model's physical interpretability. The alignment of model outputs with actual SThM probe
measurements provided additional experimental validation, ensuring consistency between
predictions and empirical observations.

5.7. Ensemble Regression Models in Materials Property Prediction

Before starting this section, it is important to note that some of the upcoming parts introduce new
concepts related to ML. To keep the discussion understandable, the explanations are written in a
clear basic way as possible. However, if additional background is needed, several easy-to-
understand resources are available that provide clear explanations of the ML-related topics
mentioned here, such as general ML concepts [63], gradient boosting algorithms [64], random
forest algorithms [65], hyperparameter tuning [66], and cross validation in ML [67].

ML follows a sequence of well-defined stages. The process begins with data collection and
preprocessing, where raw data is cleaned, organized, and prepared for analysis. Next, the dataset
is divided into training and testing sets, ensuring that part of the data remains unseen until the final
evaluation. The training stage allows model to learn patterns and relationships within dataset, while
techniques such as cross-validation and regularization are applied to minimize errors and avoid
overfitting. Once trained, the model enters the evaluation stage, where it is tested on the reserved
data to measure its ability to generalize beyond the training examples. Performance is then
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quantified using statistical metrics such as R?2, RMSE, MAE, and AARD%, which collectively
indicate how well the predictions match experimental values. The mathematical expressions for
these evaluation metrics are given as follows [53]:
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In these equations, y}, and y} denote the true and predicted values of the target variable,
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respectively. The term y represents the average of the true values. The parameter

M corresponds to the total number of data points considered during the cross-validation or testing
stages.

Among various ML models, Random Forest regression and Gradient Boosting regression have
proven effective, demonstrating remarkable accuracy in capturing complex, nonlinear
relationships within material datasets [68, 69, 70, 71]. Random Forest regression operates as an
ensemble learning method that constructs multiple decision trees, each trained on a bootstrapped
subset of the data. By aggregating the predictions of these trees, the model achieves enhanced
accuracy while mitigating overfitting. A key strength of Random Forest lies in its ability to model
nonlinear relationships between input variables and material properties without relying on
predefined mathematical formulations. This dynamic feature selection makes the method
adaptable to diverse materials and testing conditions [68, 69]. Figure 5-3 illustrates a predictive
Random Forest regression model. This model constructs multiple decision trees during training (in
Figure 5-3 these decision trees are shown by Tree 1, Tree 2, ...). Each tree is trained on a random
subset of the data and features (shown by filled circles the Figure 5-3), which introduces variability
and de-correlates the individual learners. The final prediction is made by averaging their results.
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Figure 5-3. Schematic of a Random Forest Regression Model. The model constructs multiple
decision trees, each trained on a random subset of the data and features. The final prediction
(output) is obtained by averaging the predictions of all individual trees [72].

The reliability of Random Forest extends to its handling of noisy data and high-dimensional
datasets, maintaining stable performance where traditional methods might falter. A critical
parameter influencing model performance is the minimum number of samples required for node
splitting, which directly affects the model's complexity. Further improvements in predictive
accuracy can be achieved through Bayesian optimization, which systematically fine-tunes
hyperparameters such as the number of decision trees and maximum tree depth.

In contrast to Random Forest's parallel tree construction, Gradient Boosting (Figure 5-4) employs
a sequential ensemble approach where each new decision tree is trained to correct the residual
errors of its predecessors. This iterative refinement process, guided by gradient descent
optimization of the loss function, enables progressively higher predictive accuracy. The method's
emphasis on error correction makes it well-suited for high-precision applications in material
science where minor property differences can have significant implications [70, 71]. As shown in
Figure 5-4, the model is built by training a sequence of decision trees. The first tree learns to predict
the target values using the input data (X, y), and its errors (called residuals) are computed as r; =
vy — ;. Each subsequent tree is trained on these residuals, so it focuses on the parts of the data that
previous trees could not predict accurately. Every new tree produces its own prediction of the
residuals, denoted by 7, and the next residual is updated by subtracting this predicted value (for
example, r, = r; — 14). Through this iterative correction, the model gradually improves its overall
prediction. In the diagram, X represents the input features, y is the true target, y refers to the
predicted output of each tree, r refers to the residuals, and 7 represents the predicted residuals used
to update the next step.
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Figure 5-4. Schematic of a Gradient Boosting Model [64].

While Gradient Boosting often achieves superior accuracy compared to Random Forest in complex
prediction tasks, this performance comes with certain trade-offs. The method demands careful
hyperparameter tuning, including learning rate, tree depth, and number of iterations, to prevent
overfitting. Additionally, the sequential nature of model training results in higher computational
requirements, making it less suitable for extremely large datasets where computational efficiency
is paramount.

To enhance model reliability and prevent overfitting, practitioners employ k-fold cross-validation
as a reliable validation technique. This method involves dividing the training data into k equally
sized subsets, commonly using 5 or 10 folds. During each validation cycle, the model is trained on
k-1 folds while using the remaining fold for validation. This rotation continues systematically until
each fold has served as the validation set exactly once. The performance metrics from all iterations
are then aggregated and averaged, producing a comprehensive evaluation that minimizes bias from
any particular data distribution.

Following this validation phase and subsequent hyperparameter optimization, the model
undergoes final assessment using the previously untouched test set. This critical evaluation stage
provides the most realistic measure of the model's predictive capability, simulating its performance
in real-world applications where it must process completely new data.

Model performance is quantified using multiple complementary statistical metrics that collectively
provide a complete picture of predictive accuracy. The R-squared (R?) value indicates the
proportion of variance in the dependent variable that can be explained by the model's predictors.
The AARDY% offers insight into the average percentage difference between predicted and actual
values. RMSE emphasizes larger errors through its squared difference calculation, while MAE
provides a straightforward average of absolute prediction errors.

This evaluation framework combines systematic data partitioning, thorough cross-validation, and
multi-metric assessment to create a reliable model development process.
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6. Results and Discussion (Thermal)

This section provides an evaluation of ML models for predicting TC, with a focus on
hyperparameter optimization, model selection, and performance validation.

6.1. Hyperparameter Tuning for Gradient Boosting and Random Forest: Model Selection
and Validation

Hyperparameter tuning represents a crucial phase in optimizing ML models, ensuring they achieve
maximum performance while maintaining strong generalization capabilities. This study presents
an evaluation of Gradient Boosting and Random Forest models through an extensive grid search
approach combined with cross-validation, with the objective of identifying optimal
hyperparameter configurations that maximize predictive accuracy.

The research employed a comprehensive grid search strategy to explore predefined
hyperparameter spaces for both Gradient Boosting and Random Forest models (Table 6.1). The
experimental design resulted in the training and evaluation of 279 distinct models (each model
has different set of hyperparameters).

Performance assessment incorporated cross-validation techniques to mitigate overfitting risks and
provide reliable measurements of model generalization capabilities. This rigorous validation
approach ensured that performance metrics accurately reflected each model's true predictive
potential.

The comparative evaluation revealed that the Random Forest model consistently outperformed the
Gradient Boosting approach in terms of predictive accuracy, with this conclusion being validated
through multiple statistical performance metrics. The study documented the final optimized
hyperparameters for both algorithms in detailed comparison in Table 6.2. The Random Forest
algorithm's ensemble architecture relies on the coordinated operation of multiple decision trees,
with several critical hyperparameters governing model complexity and predictive performance.
The number of estimators parameter determines the total quantity of trees comprising the forest
ensemble, where increased values typically enhance model accuracy at the cost of greater
computational requirements. Maximum depth serves as another parameter, controlling individual
tree complexity and directly influencing the balance between model accuracy and overfitting risk.

The study implemented several mechanisms specifically designed to prevent overfitting, including
minimum samples split which dictates the threshold for node partitioning, minimum samples leaf
governing terminal node size requirements, and maximum features which constrains the feature
selection process during splitting operations. The criterion parameter plays a pivotal role in
determining split quality metrics, with regression tasks employing squared error, absolute error, or
the specialized Friedman Mean Squared Error ( MSE) that simultaneously optimizes for both mean
and variance. For count data modeling, the Poisson criterion provided tailored performance by
specifically accommodating discrete outcome distributions. The bootstrap parameter further
enhanced model reliability by introducing controlled randomness through data sampling with
replacement.

The Gradient Boosting algorithm's sequential error-correction architecture incorporates distinct
hyperparameters that collectively determine model performance. Similar to Random Forest, the
number of estimators and maximum depth parameters significantly influence model accuracy and
complexity characteristics. The learning rate parameter assumes particular importance in Gradient
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Boosting, modulating each tree's contribution to the final model and requiring careful calibration
to balance training efficiency with generalization performance.

The subsample parameter introduces stochastic elements by specifying the fraction of training data
utilized for each boosting iteration, while various loss functions accommodate different regression
scenarios. These include standard squared error for conventional regression, Huber loss for outlier-
resistant modeling, quantile loss for percentile prediction, and absolute error for median-focused
applications. The alpha parameter provides additional regularization control, serving as an
important tool for managing model complexity and preventing overfitting.
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Table 6.1. The hyperparameters of the ML models that were explored and analyzed in this study.

Model’s name

Checked hyperparameters

Investigated range Number of designed models

Random Forest

Number of estimators
Maximum depth
Minimum samples split
Minimum samples leaf
Maximum features
Criterion

27-4975 141
2-998

2-198

1-199

0.11287-0.99951

Squared error, absolute error, Friedman MSE, Poisson

Bootstrap True - False
Gradient Boosting ~ Number of estimators 22-4960 138
Maximum depth 2-993
Minimum samples split 7-200
Minimum samples leaf 3-200

Maximum features
Learning rate
Subsample

Loss function

Alpha (Regularization Term)

0.10153-0.99678
0.01003-0.98148
0.12918-0.99875
Squared error, Huber loss, quantile, absolute error
0.10124-0.99320

Note. Hyperparameter definitions are as follows: Number of estimators refers to the total count of decision trees or boosting stages; increasing
this value generally improves performance at the cost of computational load. Maximum depth limits the number of nodes in a tree, controlling
complexity and the risk of overfitting. Minimum samples split and Minimum samples leaf dictate the smallest sample size required to split a
node or form a leaf, respectively, acting as constraints on tree growth. Maximum features determine the size of the random feature subset
considered at each split. Criterion (Random Forest) specifies the function to measure split quality. Bootstrap indicates whether trees are trained
on random subsamples with replacement. For Gradient Boosting, learning rate scales the contribution of each tree to the final model, while
Subsample controls the fraction of data used per boosting step. Alpha serves as a regularization term to penalize complex models, and the Loss
function defines the specific error metric optimized during training. Max depth, Min samples split/leaf, and Max features function similarly to

Random Forest.
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Table 6.2. The optimal hyperparameters selected for each ML model and their associated prediction

accuracy.
, Uncertainty Cross-validation  Cross-validation
Model’s name Tuned hyperparameters index training phase testing phase
Random Forest ‘a’ Number of estimators = 1986
Maximum depth = 923 RMSE 14.353 23.986
M@n@mum samples split=18 | p2 0.98254 0.95205
Minimum samples leaf = 1
Maximum features: 0.866 AARDY% 6.995 14.276
Criterion: squared error
Bootstrap = False MAE 2.545 4.598
Random Forest ‘b’ Number of estimators = 2624 RMSE 24.445 32.770
Maximum depth = 359 )
Minimum samples split = 6 R 0.94747 0.92009
Mmgnum samples leaf = 14 AARD% 13.738 17.545
Maximum features: 0.961
Criterion: ibsolute error MAE 3720 5519
Bootstrap = False
Random Forest ‘c’ Number of estimators = 2306
Minimum samples split = 6
Minimum samples leaf=15 | R? 0.94268 0.92791
Maximum features: 0.952 | \ \ppyor 15477 18.304
Criterion: absolute error
Bootstrap = False MAE 4.153 5.599
Gradient Boosting Number of estimators = 2559
Maximum depth = 95 RMSE 103.205 82.509
Minimum samples split = 92 )
Minimum samples leaf = 181 | R 0.17953 0.23259
Maximum features: 0.923
Learning rate = 0.013 AARD% 23.396 26.891
Subsample = 0.846
Loss function: Quantile
MAE 23.107 19.444

Alpha =0.294

The study confirms that grid search combined with cross-validation constitutes an effective
methodology for hyperparameter optimization, with Random Forest's ensemble structure proving
reliable for the given application. Gradient Boosting's flexible architecture, particularly through its
adaptable learning rate and specialized loss functions, maintains strong potential for regression
tasks requiring specific performance characteristics.

In Table 6.2, Random Forest models ‘a’, ‘b’, and ‘¢’ represent different configurations of the same
algorithm. While the base method is identical, each model was trained using a unique set of
hyperparameters (such as number of estimators, maximum depth, etc.) to identify the most
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accurate result. In this study, these specific sets are referred to as Model ‘a’, b’, or ‘c’, respectively.
As shown in Table 6.2, the Random Forest ‘a’ model demonstrates superior performance across
all key evaluation metrics, establishing itself as the most effective predictive model for this task.
During both cross-validation training and testing phases, it maintains consistently strong results
that highlight its accuracy and generalization capabilities.

In terms of predictive precision, the model achieves the lowest RMSE values of 14.353 (training)
and 23.986 (testing), indicating accurate predictions with minimal error. The high R? values of
0.98254 (training) and 0.95205 (testing) confirm its ability to explain over 95% of the variance in
the testing dataset, showcasing excellent explanatory power. Additional validation comes from the
low AARD% values of 6.995% (training) and 14.276% (testing), demonstrating that predictions
remain close to actual values, while the low MAE scores of 2.545 (training) and 4.598 (testing)
further reinforce its ability to minimize average prediction errors. Crucially, the small discrepancy
between training and testing performance confirms the model generalizes effectively without
overfitting.

When compared to alternative Random Forest models ('b' and 'c'), Random Forest 'a' shows clear
advantages. It is noted that the distinction between these models lies solely in their different sets
of hyperparameters. The competing models exhibit higher RMSE and lower R? values, indicating
reduced predictive accuracy and weaker generalization. Their higher AARD% and MAE values
also reveal more frequent and significant prediction errors, making them less reliable choices.

The performance gap becomes even more pronounced when comparing with the Gradient
Boosting model, which shows weaker results. With an extremely high testing RMSE of 82.509
and a very low R? of 0.23259, it explains only about 23% of the variance. The model's high
AARD% (26.891) and MAE (19.444) confirm its predictions frequently deviate from actual
values, rendering it unsuitable for precise applications.

Given these comprehensive evaluations, Random Forest 'a' emerges as the optimal choice, offering
unmatched predictive accuracy, minimal errors, and strong generalization. The alternative models,
while functional, cannot match its performance, making Random Forest 'a' the clear
recommendation for reliable and accurate predictions in this context.

Another Random Forest model (based on the tuned hyperparameters found for Model 'a', shown
in Table 6.2) was trained on a combined dataset consisting of merged training and testing subsets
(2352 datapoints) from cross-validation to maximize the available learning data for the final
training stage.

Table 6.3. Evaluation results of the fine-tuned model ‘a’
across training and testing phases.

Metric Training data Testing data
RMSE 16.033 19.222

R? 0.97886 0.96630
AARDY% 6.319 17.487
MAE 2.511 4.448

Validation results (Table 6.3) demonstrate the model's predictive accuracy. To evaluate its
performance under realistic conditions, the model was validated on 980 previously unseen
experimental data points. This validation process confirmed the model's ability to generalize well
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to new data, demonstrating its reliability for practical applications. A detailed performance
evaluation revealed a linear correlation between the actual and predicted x values, as illustrated in
Figure 6.1. The training data closely followed the perfect prediction line, indicating an excellent
fit, while the testing data exhibited slightly higher variability but still maintained strong alignment
with the expected trend. Minor deviations were observed at higher x values (exceeding
approximately 870 GW.m™2.K™"). This is likely due to the model's lack of sensitivity to changes

large TC values.
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Figure 6.1. Relationship between observed dependent variable values and predicted outputs from
the model ‘a’ for training and testing datasets.

0 f = 0;( gi ” 5 .. o e ®
2y '
=200 A C'
g -400 $
()]
& —600 A
—800 1 & Train
Test
—1000 A — RD=0
0 250 500 750 1000 1250 1500 1750

(Z)uclu1|l (GszKl)

Figure 6.2. The RD% between actual and predicted values of the target variable.

Despite these deviations, the relative errors remained small, as shown in Figure 6.2, with minimal
practical impact since TC values are typically averaged in real-world applications.
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Further analysis of the model's performance was conducted using the Relative Deviation (RD%),
defined as:

actual _ ., predicted
RD% = X X 6.1

Xactual

The RD% values shown in Figure 6.2 demonstrated that most RD% values clustered near zero,
confirming low bias in the model's predictions. Slightly greater deviations occurred at lower
values (below approximately 250 GW.m2.K™"), though these had negligible influence on the
overall results. The practice of averaging TC values further reduced the impact of outliers,
enhancing the reliability of the findings.

The residual distribution, presented in Figure 6.3, provided additional insights into the model's
performance. For the training data, the residuals had a mean of zero, indicating no systematic bias,
and a standard deviation of 16.04 GW.m2 K!, reflecting a tight distribution and high predictive
accuracy. The testing residuals showed a mean of 0.77 GW.m™2.K"!, suggesting a slight positive
bias, which was deemed acceptable given the complexity of the data, along with a standard
deviation of 19.22 GW.m™? K"}, indicating a marginally wider but still consistent spread.
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Figure 6.3. Gaussian distribution of residuals for training and testing datasets

Key observations from the residual analysis included the sharp peak and narrow spread of the
training residuals, confirming a strong model fit, and the broader yet similarly dense distribution
of the testing residuals, which highlighted the model's generalization capability. Overall, the
Random Forest model exhibited high predictive accuracy with minimal bias, effectively capturing
TC trends across a wide range of values. While minor deviations occurred at extreme x values, the
model's performance remained strong, ensuring its reliability for practical use. The low relative
errors and tight residual distributions further validated its reliability, providing confidence in its
predictive accuracy.
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6.2. Evaluation of Model ‘a’ for TC Predictions

The developed predictive model demonstrates reliable capabilities in estimating TC values across
a diverse range of materials. Using x = k%/0%i to calculate TC from predicted x values, the model
was rigorously evaluated on 17 distinct samples. The predictions were derived through an
averaging process of multiple test-phase outputs, enhancing statistical reliability and minimizing
random error. This methodological approach ensures the reported values represent stable,
reproducible estimates rather than single-point determinations. The TC values for the various
samples are summarized in Table 6.4 and are shown visually in Figure 6.4.

Table 6.4. A comparison of the actual and predicted k values for the samples.

Sample’s number  Sample Actual Predicted
k(W-m™1-K1) k(W-m™t-K™1
1 ITO (1) 6.4 [54] 53
2 ITO (2) 3.5 [55] 3.7
3 ITO (3) 8.3 [55] 8.5
4 ITO (4) 10.6 [54] 8.5
5 ITO (5) 11.8 [55] 12.4
6 ITO (6) 6.7 [54] 10
7 Glass (Bulk) 1.1 1.1
8 Glassy carbon (Bulk) 6.3 6.7
9 SiC (Bulk) 450 464
10 YAG (Bulk) 12 12
11 ZnAlO (1) 4.29 [56] 4.43
12 Zn0O (Bulk) 80 88
13 ZnO (2) 0.25[57] 0.33
14 ZnO (3) 0.28 [57] 0.29
15 Zn0 (4) 1.12 [57] 1.12
16 Zn0 (5) 2.81 [57] 2.84
17 PMMA (Bulk) 0.17 0.18
7.00
6.00 Hm Actual mML
5.00
4.00
. 3.00
| || | “
o (O (| 1 m
nun 1
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ITO ITO ITO ITO ITO ITO  Glass 2)11152; SiC  YAG ZnAlO ZnO ZnO ZnO ZnO ZnO PMMA
n (2 3 @ (5) (6)  (Bulk) (Bulk) (Bulk) (Bulk) (1) @Buk) (2) (3 “ (5)  (Bulk)
mActual 1.86 1.25 2.12 236 247 1.90  0.10 1.84 6.11 2.48 146 438 -1.39 -1.27 0.11 .03  -1.77
=ML 1.67 1.31 2.14 2,14 252 230 0.10 1.90 6.14 248 149 448 -1.11 -1.24 0.11 .04 -1.71

Figure 6.4. Comparison of actual and ML (predicted) thermal conductivity values expressed as
Ln(x) for different materials, where x is givenin W-m™1-K™1.
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The model exhibits strong predictive accuracy across several orders of magnitude in TC values.
For low-TC materials, it achieves particularly high precision, as demonstrated by Sample 17,
where the actual value of 0.17 W - m~1 - K™ compares closely with the predicted 0.18 W -m™! -
K™%, corresponding to a relative error of approximately 5.9 %. Similarly, Sample 7 shows excellent
agreement, with both the actual and predicted values equal to 1.1 W-m™1 - K™%, resulting in a
negligible error below 1 %.

The model performs consistently well in the intermediate TC range. Sample 10 exhibits virtually
perfect agreement between the actual and predicted values (both 12 W - m™1 - K™1), indicating an
error well below 1 %. These results highlight the model’s robustness for materials with low to
moderate thermal conductivities, which constitute the majority of the training dataset.

At the high-TC end, the model maintains reasonable predictive capability, although with slightly
increased relative deviations. Sample 9 (SiC) shows an overestimation from 450 W-m™1- K™ to
464 W - m~1 - K1, corresponding to a relative error of approximately 3.1 %. Sample 12 (ZnO
bulk) exhibits a larger deviation, with a predicted value of 88 W - m~1 - K™ compared to the actual
80 W-m™1-K™1, yielding a relative error of 10.0 %. While higher than in lower-TC regimes,
these deviations remain acceptable for many practical applications.

Overall, the model’s performance indicates that the averaging approach effectively reduces
prediction variance, as reflected in the close agreement between predicted and reference values
across a wide TC spectrum. The strong correlation observed confirms that the model has
successfully captured the underlying physical relationships governing thermal transport, although
reduced precision is evident at higher TC values explored in this study.

From a practical perspective, the model is most reliable for materials with TC values below 100
W-m™1:-K™1 where relative errors remain consistently low. Predictions for ultra-low TC
materials (<1 W - m~! - K™1) demonstrate particularly good accuracy, and the averaging process
provides an inherent estimate of uncertainty through prediction dispersion. This further confirms
that the thermal probes employed in the experiments are especially sensitive within the low-TC
regime.

This analysis confirms the model’s suitability as a practical tool for TC estimation while clearly
identifying areas for future improvement. The current implementation already offers significant
value for materials screening and preliminary characterization, particularly for low-to-medium
conductivity materials, with further enhancements expected through targeted model refinements.

7. Methodology and Experimental Procedures (Electrical)

This section details the experimental framework developed to characterize the EC of thin film and
metallic samples. This study employs a high-precision 4PP setup integrated with a ML refinement
layer. By systematically varying probe positions and sample orientations, a dataset was generated
to train a model capable of compensating for real-world experimental complexities.

7.1. Materials Used and Instrumentation

The electrical measurements were performed using a Keithley Model 6221 current source for ITO
samples, a Keithley Model 2231A-30-3 current source for metallic samples, and a Keithley Model
2182A nanovoltmeter to measure the resultant voltage for both sample types. Table 5.1
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summarizes the samples used to assess the proposed methodology, with each characterized by its
actual EC and thickness for performance evaluation. Actual EC measurements for ITO samples
(a) to (d) were conducted via the standard vdP method in prior studies, as referenced in Table 5.1.
An important consideration is that all ITO samples were annealed at 400 °C, and the effect of
annealing on ITO thin-film thickness must be addressed. Annealing can modify grain size and
crystallinity in polycrystalline ITO, but X-ray diffraction (XRD) results revealed only slight grain
growth [55]. The reference sample exhibited an average grain size of approximately 56 nm, which
rose to about 57 nm following vacuum annealing and around 63 nm after N2 annealing [55]. These
minimal variations have little impact on film thickness, which stayed consistent at roughly 170
nm. The metallic samples listed in the Table 5.1 were obtained from Sigma-Aldrich and have a
high purity of 99.9+%. The Table 5.1 also includes sample dimensions (L, L, L3, and L4) and
diagonal length (Lgiag). The study employed two sample types: ITO films with irregular
quadrilateral shapes deposited on insulating glass substrates and metallic samples with more
regular geometries. For metallic samples, the probe measures only one corner, whereas for ITO
samples, it measures all four corners to evaluate spatial variations. This approach enables a direct
comparison between ML-predicted values when the model analyzes a single region of the samples
versus when it assesses all regions of the samples. This study is based on 553 measurements of
different electrical signals, taken with different sample dimensions, probe positions, and sample
rotations, summarized in Table 7-2, which highlights the minimum, average, and maximum values
for each variable. It should be noted that the sample rotations were performed to ensure that
measurements were taken under different edge-effect conditions, as the thin film samples have
irregular geometries. The current dataset is sufficient for developing a functional and generalizable
model. Notably, the successful development of a generalized model using this dataset highlights
its potential for scalability to larger datasets, enabling the development of more comprehensive
models, a key strength of this work.

In this study the input variables include sample dimensions (L1, L2, L3, and L4), diagonal (Laiag.),
the horizontal and vertical probe positions (Li and Ly, respectively), and applied current (I). These
parameters collectively characterize the system's geometrical and electrical properties, providing
a foundation for analyzing its behavior.
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Table 7-1. An overview of the samples utilized to train ML model.

Sample” Thickness Lgig(mm) Li(mm) Ly(mm) L3mm) Limm) 0,0 (kKS-cm™)
ITO (a) 170 nm 13.517 9.300 9.807 9.736 12.095 4.99 [55]

ITO (b) 170 nm 11.579 9.127 10.096 8.835 7.813 5.53 [55]

ITO (¢) 170 nm 13.828 12.555 6.287 12.654 8.379 2.73 [55]

ITO (d) 170 nm 10.295 8.370 6.093 8.930 5.835 4.76 [55]

Cu 0.25 mm 14.796 10.423 10.159 10.662 9.905 598

\\Y% 0.25 mm 12.436 9.572 8.004 9.580 8.357 204

Ni 0.50 mm 15.281 11.633 9.091 12.361 9.059 143

Fe 0.25 mm 15.238 12.479  9.059 12.485 8.706 103

Sn 0.50 mm 13.823 10.543 8.597 10.421 8.956 91

" ITO samples (a) to (d) were annealed in different atmospheres: carbon dioxide, a nitrogen-hydrogen
mixture, vacuum, and nitrogen. All samples were deposited on glass substrates. The EC of these ITO
samples (a) to (d) was previously measured using the standard vdP method, as reported in the referenced

studies.

Table 7-2. Summary of the recorded information in the laboratory. Statistical summary of experimental
measurements. Data represents 553 observations per parameter.

Variable Minimum Maximum Mean

[ (mA) 0.010 700.000 103.828
Ly(mm) 1 3 1.886
Ln(mm) 1 3 1.937
Ldiag. (mm) 10.295 15.356 13.241
Li(mm) 5.835 12.654 9.487
L>(mm) 5.835 12.654 9.044
L3(mm) 5.835 12.654 9.673
L4(mm) 5.835 12.654 9.028

O (S'mV) 0.009 1526.913 164.045
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7.2. Measurement Methodology

The measurements were acquired via a 4-probe device featuring a 4-pin, 2-row, straight male
header (RS PRO) with a standard 2.54 mm pitch. The 4PP technique was employed to measure the
electrical conductivity of thin-film samples. The setup, illustrated in Figure 7-1, was completely
built during the course of this PhD project to provide a reliable and reproducible platform for thin-
film electrical characterization. The samples used in these measurements are shown in Table 7-3.

(b)

Figure 7-1. setup for electrical conductivity
- : measurements of samples. (a) Experimental
BViovable Sample Stuge SR arrangement consisting of a movable sample stage for
- precise sample positioning and a probe head. (b) Close-
up of the probe assembly with four metallic pins
arranged in a square configuration with equal spacing.
In this setup, the two closer pins are used to inject
current, while the two farther pins measure the resulting
voltage drop across the sample. This configuration
minimizes contact resistance effects, which enables
more accurate evaluation of intrinsic electrical
conductivity.

Prior to measurements, all probe contacts were meticulously cleaned with acetone to remove any
flux residue, dust, or organic contaminants from the gold-plated pins. This protocol minimized
systematic errors and improved dataset reliability. A four-probe configuration, arranged in a
rectangular layout, was used to minimize contact resistance effects. Two probes supplied a dc
current (P3 and P4), while the other two probes (P and P2) measured the resultant dc voltage, as
shown in Figure 7-2. The line connecting P and P; aligned parallel to side L; side during all
measurements (Figure 7-2). Since the samples are quadrangle, all four side dimensions (L1, L2, L3,
and L4) and the diagonal (Ldisg.) crossing vertex C; were incorporated into the analysis. This
ensured a well-defined shape for each sample. To accurately model the electrical field distribution,
the horizontal (Ln) and vertical (Ly) distances from the sample’s top-left corner (vertex C1) to probe
Py were recorded. These measurements provided positional probe data for the ML model.

To evaluate the model under realistic conditions, the probes were deliberately positioned near the
sample edges, where electric field distortion causes the largest EC measurement errors. This high-
interference setup tests the model’s reliability in practical situations where edge effects cannot be
avoided. The measurement procedure involved positioning four electrical probes at different
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locations (A1, A2, A3, A4) around vertex C; of the sample, as shown in Figure 7-2. For A1, Ly=1
mm and Ly=1 mm; for A>, L,)=3 mm and L,=1 mm; for A3, Ly=3 mm and L,=3 mm; and for A4,
Lr=1 mm and L\=3 mm. In cases where 3 mm probe placement extended beyond the sample
surface, the distance was reduced to 2 mm to keep the probes within the sample boundaries. This
positioning strategy minimized sensitivity to minor placement variations. Initial measurements
were conducted with side L; aligned parallel to the P;-P» probe axis. Following the first
measurement set, the sample underwent counterclockwise rotation (not the probes), bringing side
L into alignment with the P;-P; axis. This rotated configuration designated L as the new reference
edge (L1) for modeling purposes. The identical measurement protocol was subsequently repeated
at all four locations (shown in Figure 7-2). This rotational sequence continued systematically, with
the sample rotated to align sides L3 and L4 sequentially with the original P;-P> probe axis.
Complete measurements were performed at all four locations following each rotational adjustment.
For metallic samples, measurements were conducted only once at all four probe locations without
any sample rotation. In contrast, the full rotational measurement protocol was exclusively applied
to irregular ITO samples. This rotational measurement methodology serves a primary objective:
enabling the characterization of different edge effects on electrical measurements in irregular
samples.

In this work, a machine learning approach is developed to learn directly from experimental datasets
and predict electrical conductivity values across a wide range of measurement conditions. To
ensure physical realism, the methodology integrates theory-informed constraints that preserve
consistency with fundamental principles, while leveraging data-driven optimization to address
empirical complexities. The approach is systematically validated on both metallic and transparent
conductive oxide (e.g., ITO) samples, with particular attention to challenging anisotropic
conditions and edge effects.

Furthermore, the data-driven model is positioned not as a replacement for, but as a complement
to, the well-established role of FEM simulation. In this research, FEM has been employed to
demonstrate how FEM and ML can serve as mutually informative techniques: FEM provides
foundational physical insight and validation, while ML enables efficient and adaptive prediction
across diverse experimental configurations. This comparative analysis offers practitioners clear
guidance on selecting and potentially integrating these approaches based on specific measurement
requirements and available resources. Ultimately, the study aims to advance more reliable thin-
film characterization by fostering methodological integration between physical and data-driven
domains.
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Table 7-3. ITO thin films and metallic samples used for EC measurements (mesh scale: 1 mm).

Copper (Cu) Tungsten (W)  Nickel (Ni) Iron (Fe) Tin (Sn)

ITO(a)  ITO (b) ITO (c) ITO (d)
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Figure 7-2. Schematic of probes, sample and different probe positions (A1-A4), illustrating spatial arrangement and measurement setup.
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7.3. Mathematical Foundation and ML Model

Miccoli et al. derived an analytical equation to relate measured EC (0¢yp) to measured signals for
a rectangular 4PP configuration [34]:

O'eXp = an(Z) 7.1
This expression, rooted in electrostatic theory, models current flow in an infinite 2D conductive
medium. The logarithmic factor Ln(2) emerges from the probe geometry's voltage decay
characteristics, where I represents injected current and V the measured voltage. It is important to
note that this is an idealized model. It assumes a perfect setup and does not account for real-world
experimental errors, such as inaccuracies in probe placement or the distorting effect of a sample's
finite boundaries and edges.

To address these limitations, FEM simulations provide a physically-based correction by
introducing geometric constraints:

OFgM = (i)o_exp 7.2
Gnum
Here, 0,denotes the actual conductivity input to the FEM model, while o,y represents the
simulated apparent conductivity obtained using COMSOL under identical probe arrangements.
The ratio (0,/0,um) S€rves as a correction factor, and boundary effects neglected in the theoretical
formula (Equation 7.1).

ML suggests a parallel approach through data-driven calibration. While FEM provides strong
simulation-based solutions, ML models trained on empirical datasets offer complementary, direct
predictions of EC across diverse experimental conditions, enhancing efficiency while preserving
interpretability within a physics-informed framework. As a parallel approach, a ML model (Fy,)
is defined as:

2T 7.3

FML(LIJ LZJ L3, L4, Ldiag.: th LV: I) = Ln(Z) (O-MLd)V =0

Here, Fy; is the ML model, which receives input variables comprising sample dimensions (side
lengths Ly, Ly, L3, Ly), diagonal length (Ly;,g), probe positions (horizontal and vertical spacings Ly,
and L), and a single applied-current value (I) selected within the experimental current range, to
predict the target variable © as the output of the ML model. Once © is predicted and V is
experimentally measured, the EC (o)) is calculated as:

Ln(2)

=—" 7.4
oML 21vd

The Equation 7.3 is developed to address the challenge of predicting EC values when only a limited
number of unique EC values are available in the training dataset.
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By defining ® as a continuous variable, the ML framework reframes the prediction task as a
regression problem rather than a discrete classification task. From an ML perspective, regression
is fundamentally more suitable because EC is a continuous physical quantity rather than a discrete
label. Using classification would force the model to select among a small set of discrete
conductivity classes. By contrast, a regression-based formulation allows the model to learn the
physical relationship (like Ohm’s law) between experimental inputs and the continuous
conductivity-related variable ©. This preserves the natural physical variations in the data, and the
ML model is therefore developed as a physics-informed framework.

This hybrid approach, combining theoretical foundations with data-driven ML corrections,
provides a framework for accurate conductivity measurements in thin films, particularly where
traditional analytical models are inadequate.

Although FEM remains a widely trusted approach due to its detailed handling of geometry and
boundary conditions, the ML method demonstrates promising potential because it learns directly
from experimental data. However, acquiring a sufficiently large number of experimental data
points for ML training can be challenging, especially when attempting to capture purely
geometrical effects with high accuracy.
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8. Results and Discussion (Electrical)

8.1. FEM Simulation

To account for geometric effects and validate the experimental 4PP measurements, a three-
dimensional FEM model was developed using COMSOL Multiphysics [73]. The purpose of this
simulation was to reproduce the experimental setup under controlled numerical conditions and to
establish a physically based correction that improves the accuracy of conductivity measurements.
Figure 8-1 illustrates the configuration employed in the simulations.

(a)

Figure 8-1. FEM geometry of the 4PP
configuration. (a) Side view showing the thin
conducting sample placed on a dielectric —
substrate, with the system embedded in an air
domain to reproduce realistic experimental
conditions. (b) Top view illustrating the square
arrangement of the four probe tips in contact
with the sample surface. (b)

The calculated potential maps for different probe placements are shown in Figure 8-2. As a result,
the numerical EC value (o, ) obtained from simulations can deviate significantly from the actual
value used as the model parameter (o,). By capturing these variations, the FEM simulation
provides clear visual evidence of the geometric artifacts inherent in the 4PP method and shows
how corrected values can be derived (using Equation 7.2) to more accurately represent the
material’s true conductivity.
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Figure 8-2. Simulated electric potential distribution for the thin conducting sample under
different 4PP configurations a: (1,1), b: (3,1), c: (1,3),d: (3,3).

This simulation therefore provides both a visual and quantitative confirmation of the correction
methodology. By incorporating geometric effects into the model, FEM produces corrected values
that align much more closely with intrinsic properties than uncorrected experimental data. The
approach establishes a physically grounded method for improving conductivity measurements in
thin films and related systems, and it shows particular promise for laboratory environments where
probe spacing can be carefully controlled.

The effectiveness of the FEM correction is quantitatively demonstrated in Table 8-1, which
compares the measured (O¢xp ), numerical (0pym, found using simulation), actual (0,), and FEM-
corrected corrected (opgy) conductivity values for iron (Fe) sample across different probe
configurations (Lv, Ly).The FEM-corrected conductivity (oggp ) demonstrates significant progress
toward approximating the intrinsic conductivity (o, ), validating the effectiveness of the correction
approach. While not perfectly matching o, in all cases, the opgy values show much closer
alignment with the theoretical intrinsic value than the uncorrected experimental measurements

(Gexp ).
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Table 8-1. Summary for comparison of measured (Oexp ), numerical (Op,m), actual (o,), and

FEM-corrected (oggy) EC values for iron (Fe) at different 4PP configurations (Lv, Ly).
(Ly(mm), Ly (mm)) Gy (kS cm™) 04y (RS- cm™) 0, (kS cm™)  opgy (kS cm™h)

(1,1) 75 66 103 118
3, 1) 77 79 103 100
(1,3) 66 64 103 107
(3, 3) 79 76 103 107

For the (3, 1) configuration, oggy achieves high accuracy at 100 kS - cm™! compared to the
reference value o, of 103 kS - cm™?, corresponding to a deviation of approximately 3 %. This
near-convergence demonstrates that the FEM correction effectively compensates for geometric
artifacts when appropriate probe spacing is employed.

The visual representation of this data is shown in Figure 8-3. Additional graphs for other samples
are provided in Appendix A.

Electrical Conductivity of Fe for Different Probe Configurations

120 A

100

80 1
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Figure 8-3. A comparison of experimental, numerical, intrinsic, and FEM-corrected EC values
for iron (Fe) sample across various 4PP configurations. Each label on the horizontal axis
indicates a specific probe placement: the first number (before the comma) represents the vertical
position of the probe L, and the second number (after the comma) represents the horizontal
position of the probe L,.

The systematic pattern of results confirms the physical validity of the correction model - orgy
consistently approaches o, from measurable experimental data, demonstrating the method's
fundamental soundness. The remaining discrepancies likely stem from secondary effects not yet
incorporated in the model rather than flaws in the core approach. These excellent preliminary
results strongly suggest that with refined modeling of boundary conditions or probe-specific
correction factors, even better agreement with o, could be achieved.

This successful demonstration of physically-based experimental correction establishes an
important methodology for accurate conductivity measurement, with particular value for materials
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characterization where intrinsic properties must be derived from imperfect experimental setups.
The technique shows promise for standard laboratory applications where controlled probe
geometries can be maintained.

8.2. Spearman’s Correlation Analysis

To evaluate the relationships between the input features and the target variable, Spearman’s rank
correlation analysis was performed. Table 8-2 presents the interpretation of Spearman’s rank
correlation coefficients (rg) for all variable pairs used in model development. The strongest
correlation is observed between the applied current (I) and the output variable (©), with a
coefficient of 0.96, indicating a near-perfect monotonic relationship. This result aligns with Ohm’s
law, which states that the target variable is directly proportional to current (© o< I). The high
correlation not only confirms the expected physical behavior but also validates the experimental
measurements. Among all sample dimensions, sides L; (rg = 0.35) and L3 (rg = 0.37) exhibit
stronger positive correlations with 0, suggesting that their orientation relative to the current path
significantly influences current density distribution in different samples. In contrast, L> (rg =-0.09)
and L4 (rg = -0.11) show weaker negative correlations with ©, indicating that L, and L4 affect
current paths in an opposing manner. The analysis for the diagonal Lgiag. (rg = 0.23) exhibits a
weaker positive correlation with ® compared to the edge effects from L; and L3, as expected.
Finally, Ly (rg = -0.05) and L (rs = 0.08) demonstrate negligible correlations, confirming their
minimal influence on 0.

Table 8-2. Spearman's rank correlation coefficients (r;) between all pairs of variables used in
ML modelling.
Variable I(mA) Ly(mm) Ln(mm) Lgiag(mm) Li(mm) Ly(mm) L3(mm) L4(mm)

® (mA) 0.96 -0.05 0.08 0.23 0.35 -0.09 0.37 -0.11

Although variations in probe position would, in principle, be expected to affect the measured
response, their impact is intentionally suppressed in the present dataset. This is because only two
constrained variations in the vertical and horizontal directions were included, with probe positions
fixed relative to the reference vertex (Cp) for all samples. As a result, positional changes do not
introduce sufficient independent variability to significantly alter the final output ©, leading the
model to rely more on edge-related effects rather than absolute probe location in its predictions.

8.3. Random Forest Model Development and Hyperparameter Optimization

Model performance was assessed across different Random Forest hyperparameter settings. Table
6.1 summarizes the hyperparameters of the Random Forest algorithm used in this study, along with
their search ranges (optimized via grid search). In total, 170 different hyperparameter
combinations were evaluated to rigorously tune the Random Forest model for generalized
performance. The subsequent section applies different optimization scenarios to select the best
hyperparameter combination by monitoring and comparing predictive performance during cross-
validation (CV) stage.
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Table 8-3. The range of hyperparameters investigated for the ML models in the current
study (170 evaluated configurations).

Model’s name Investigated hyperparameters Investigated range
Random Number of estimators 81-4249
Forest Maximum depth 55 -867
Minimum samples split 2-153
Minimum samples leaf 1-174
Criterion Poisson, squared error, absolute error
Bootstrap True - False

Table 8-4 presents the hyperparameters of the four best-performing set of hyperparameters for the
Random Forest model, identified based on their performance during the CV stage. These models
were selected for their potential to generalize effectively in predicting 0. As shown in the Table
8-4, Random Forest model 'a' performed well compared to the other configurations. Visual
inspection of the statistical indices confirms that this model provided acceptable predictive
performance for ®. The next section employs a spider graph to further support these findings.
Models ‘a’, ‘b’, ‘c’ and ‘d’ denote different hyperparameter configurations (e.g., number of
estimators, maximum depth, etc.) of the same Random Forest base model.
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Table 8-4. The best identified hyperparameters for each ML model and their corresponding accuracy in predictions.

Model’s name Tuned hyperparameters Uncertainty index CV training phase CV testing phase
Random Forest ‘a”  Number of estimators = 2445 | p\SE 16.208 39.922
Maximum depth = 711
Minimum samples split =2 R? 0.99658 0.97641
Minimum samples leaf = 3
Criterion: Absolute error AARD% 3.328 8.639
Bootstrap = True MAE 5.088 12.212
Random Forest ‘b>  Number of estimators = 2076 | RMSE 58 650 65.371
Maximum depth = 783
Minimum samples split =11 R? 0.95504 0.94141
Minimum samples leaf = 1 o
Criterion: Absolute error AARDY H.134 15.581
Bootstrap = True MAE 18.113 20.992
Random Forest ‘c Number of estimators = 4828 RMSE 65.438 72 481
Maximum depth = 820
Minimum samples split=17 | R2 0.94394 0.92756
Minimum samples leaf = 5
Criterion: Poisson AARD% 13.119 17.048
Bootstrap = False MAE 20.717 24.108
Random Forest ‘d’ Number of estimators: 4496 RMSE 96.939 97522
Maximum depth: 840
Minimum samples split: 21 R2 0.87759 0.86870
Minimum samples leaf: 9
Criterion: Poisson AARD% 18.408 21.454
Bootstrap: False MAE 31.186 32.623
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8.4. Selecting the Best Hyperparameters

Figure 8-4 shows the spider graphs of RMSE, MAE, and AARD% for the four selected
Random Forest models during the CV training stage. Figure 8-5 presents the same
performance metrics for the CV testing stage. In these spider plots, smaller triangles
correspond to lower error values and thus indicate better model performance.

RMSE
1

Random Forest ‘a’

Random Forest ‘b’

Random Forest ‘¢’

——Random Forest ‘d’

MAE AARD%

Figure 8-4. Comparing the performance of the selected ML models in the CV training
stage using the radar graph.

Random Forest ‘a’

———Random Forest ‘b’

Random Forest ‘c’

Random Forest ‘d’

MAE AARD%
Figure 8-5. Comparing the performance of the selected ML models in the CV testing
phase using the radar graph.

The evaluation shows that among the four Random Forest models (a—d), Model 'a' is the
optimal choice due to its superior performance across all measured metrics. On the training
set, Model 'a' achieved the lowest RMSE (16.208), AARD% (3.328%), and MAE (5.088),
significantly outperforming the others. This superiority is visually represented in Figure
8-4, where the polygon for Model 'a' is the smallest, confirming its best fit to the training
data. Crucially, this advantage persisted in the test set, where Model 'a' maintained the
lowest errors (RMSE: 39.922; AARD%: 8.639%; MAE: 12.212), which is the primary
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confirmation of its reliability on unseen data. In Figure 8-5, the polygon for Model 'a'
remains the smallest, visually demonstrating that the error did not increase when facing
test data. This graphical consistency and the low errors confirm Model 'a's effective
generalization, while models b—d exhibited higher errors in both train and test phases (e.g.,
test RMSEs of 65.371-97.522).

Figure 8-6 compares the R? values of the selected models during CV training and testing
phases. Higher R? values indicate better performance. The R? scores further reinforces the
dominance of Random Forest ‘a’, with near-perfect scores in both cross-validated training
(0.9966) and testing (0.9764) phases. These values indicate that ‘a’ explains 99.7% and
97.6% of the variance in the training and test datasets, respectively, considerably higher
than competing models (b—d).

Random Forest ‘a ——CV training phase

——CV testing phase

Random Forest ‘d’ Random Forest ‘b’

Random Forest ‘¢’

Figure 8-6. Comparing the presented R? index by the ML models in the CV
training/testing phases.

Therefore, Random Forest ‘a’ is identified as the most accurate model for estimating the
experimental values of O, consistently outperforming the other models in both training and
testing evaluations at the CV stage. Its ability to maintain lower error values, and higher
R? scores demonstrates that it captures the underlying physical and geometrical
relationships more effectively than competing models.

A new Random Forest model was trained using the exact optimal hyperparameters
identified in the previous sections for Model ‘a’. These Hyperparameters are shown in
Table 8-4. Here the model was trained using the combined CV data (both training and
testing sets) and subsequently validated against the separate experimental test set (221 data
points), which was unseen during CV stage. The performance metrics for the final training
and testing phases at this stage, summarized in Table 8-5.
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Table 8-5. Performance Metrics of the Final Optimized Random
Forest Model During Training and Testing Phases.

Metric Training data Testing data
RMSE 16.741 77.777

R? 0.99636 0.95626
AARD % 3.179 9.755

MAE 5.178 33.798

The test results exhibit slightly higher errors compared to those of Model 'a' from CV
testing phase. This marginal increase in error can likely be attributed to the inherent
challenges of generalizing to an independent unseen dataset, which may contain variability
not captured during CV tuning. Nevertheless, the model maintains reliable predictive
performance, demonstrating the effectiveness of the selected hyperparameters. Using the
final model, predictions were made for the target variable (0), and Equation 7.4 was applied
to compute the EC for different samples. The following subsection analyzes the results for
metallic and ITO samples.

8.5. Performance of ML and FEM-Based Approaches for EC Estimation

The predicted EC values (o)) were derived from Equation 7.4 using the ML-predicted ©
values, while the simulated EC values (oggy) were calculated using Equation 7.2. Figure
8-7 illustrates the Relative Difference percentage (RD%) between the predicted and
simulated EC values for metallic samples. This comparative analysis of FEM and ML
approaches reveals that both methods demonstrate strong predictive performance with
comparable error characteristics. RD% for the FEM method exhibits a mean value of
+5.66% with a standard deviation of 14.41%, indicating a consistent tendency toward
moderate underestimation with stable variability.
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Figure 8-7. Relative difference percentage between predicted and theoretical EC values
for metallic samples.

In complementary, the ML approach shows a mean RD% of -3.15% with a standard
deviation of 16.69%, reflecting a slight overprediction tendency with marginally wider
dispersion. The observed deviation patterns between the two methods are roughly close in
magnitude, differing by less than 9% in mean values and only 2.3% in standard deviation.
This close agreement in performance metrics suggests that both techniques provide
similarly reliable estimations, with their opposing bias directions (+5.66% versus -3.15%)
potentially offering opportunities for error compensation when used in combination. The
complementary deviation profiles of FEM and ML strategically leveraging their systematic
differences could enable the development of more accurate hybrid prediction systems
without favouring either method individually. Both approaches retain their respective
strengths while demonstrating statistically similar performance.

The normal density distributions of residual errors further highlight this distinction (Figure
8-8). The normal density plot reveals important differences in the error distributions related
to the FEM and ML methods for EC predictions. The FEM approach demonstrates an
underestimation tendency with a mean error of +20.47 kS - cm™?, while the ML method
shows a slight overprediction bias averaging -5.48. Both methods exhibit similar variability
in their errors, with standard deviations of 43.95 kS - cm™?! for FEM and 43.69 kS - cm™?
for ML, indicating nearly identical consistency in their predictions. These results are
significant because the validation focused on challenging edge regions where EC
measurements are most affected by boundary effects, areas traditionally problematic for
accurate characterization. The intentional inclusion of these difficult edge conditions
demonstrates ML's ability to maintain prediction quality in worst-case scenarios. The
complementary nature of the biases between the two methods, combined with their similar
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error distributions, suggests potential opportunities to develop hybrid approaches that
could leverage their respective strengths.
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Figure 8-8. Normal density distributions of residual errors for metallic samples.

The comparative analysis of ITO samples (Figure 8-9) reveals that both FEM and ML
approaches demonstrate valid but distinct performance characteristics. The RD% for the
FEM shows a mean value of —4.30% with a standard deviation of 17.06%, while the ML
approach exhibits a mean value of —2.93% with a standard deviation of 10.14%. The 1.37
percentage point difference in mean values falls within a comparable range of accuracy,
while the difference in variability reflects their fundamentally different methodological
approaches - FEM's first-principles physical modeling versus ML's empirical data fitting.
Both methods show similar overestimation tendencies, confirming their consistent physical
interpretation of the conductivity measurements. The results demonstrate that FEM
maintains its expected reliability as a physics-based approach, while ML shows its
capability to produce competitive results through data-driven approximation.
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Figure 8-9. Relative difference percentage for ITO samples.

The residual distributions for ITO (Figure 8-10) reinforce these observations. The normal
density plot reveals that both FEM and ML methods produce residual errors centered near
zero for ITO samples, with FEM showing a mean error of -0.243 kS - cm™! and ML
demonstrating a mean of -0.085 kS - cm~!. While both methods maintain good overall
accuracy, their error distributions show characteristic differences that reflect their
underlying methodologies. FEM exhibits a standard deviation of 0.813 kS - cm™?,
representing the expected variability in its physics-based calculations, while ML's tighter
distribution (with a standard deviation of 0.425 kS - cm™1!) reflects its data-driven
optimization.

The results show that FEM maintains its fundamental physical consistency, with error
characteristics that align with expected physical constraints of the material system. ML
demonstrates its ability to learn and reproduce these physical relationships through training
data, resulting in reduced but still physically reasonable error variation. Both approaches
cluster near zero error, confirming their validity for ITO characterization, with FEM's
slightly wider distribution representing the natural variability in first-principles modeling
and ML's narrower spread showing the benefits of empirical optimization.
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Figure 8-10. Residual error distributions for ITO samples.

These findings illustrate how both techniques - one based on physical laws and the other
on data patterns - arrive at similarly valid but characteristically different solutions to the
ITO characterization challenge. The results affirm that FEM and ML can serve as
complementary approaches, with FEM providing fundamental physical insight and ML
offering efficient empirical approximation, both maintaining good agreement with
experimental reality for ITO materials.

8.6. EC Derived from the ML and FEM Approaches

Table 8-6 presents a comparison between theoretical, predicted, and actual EC values for
the nine different samples, including four ITO samples and five metal samples (Cu, W, Ni,
Fe, Sn). The predicted EC values (o, derived from the Equation 7.4) were obtained by
averaging the EC values predicted by the ML model using the new set of unseen data for
each sample. Similarly, the simulated EC values (oggy, derived from the Equation 7.2)
were calculated by averaging the results across different experimental conditions for each
sample. The visual comparisons are shown in Figure 8.11.
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Table 8-6. Comparison of theoretical, predicted and actual EC values (kS - cm™1) for
the different samples.

Sample* Cacrua IC\T/IMIL approachRD% il:EMM approacI?D%
ITO (a) 4.99 [55] 5.08 —-1.8 591 —-18.4
ITO (b) 5.53 [55] 5.36 3.1 5.66 —2.4
ITO (c) 2.73 [55] 3 -9.9 2.6 4.8
ITO (d) 4.76 [55] 491 -3.2 4.86 2.1
Cu 598 663 —-10.9 541 9.5
W 204 179 12.3 168 17.6
Ni 143 142 0.5 119 16.8
Fe 103 118 —14.6 110 —6.8
Sn 91 101 -11.0 101 -11.0

*ITO samples (a) to (d) were annealed in different atmospheres: carbon dioxide, a nitrogen-
hydrogen mixture, vacuum, and nitrogen. All samples were deposited on glass substrates. The
EC of these ITO samples (a) to (d) was previously measured using the standard vdP method, as
reported in the referenced studies.

mActual mML ®mFEM

4.00
3.00
2.00
0.00 Cu W Ni Fe Sn

ITO (a) ITO (b) ITO () ITO (d)

Ln (o)

m Actual 1.61 1.71 1.00 1.56 6.39 532 4.96 4.63 4.51
EML 1.63 1.68 1.10 1.59 6.50 5.19 4.96 4.77 4.62
s FEM 1.78 1.73 0.96 1.58 6.29 512 4.78 4.70 4.62

Figure 8.11. Comparison of actual, ML (predicted) and FEM-corrected EC values
expressed as Ln(o) for different materials, where o is given in kS - cm™1.

The ML approach shows relatively consistent accuracy across all four ITO samples, with
relative differences confined to a narrow range between —9.9 % and 3.1 %. In contrast, the
FEM approach exhibits greater variability, with deviations ranging from —18.4 % to 4.8 %,
although it achieves strong agreement for ITO (c), where it slightly outperforms the ML
prediction.

For metallic samples, the ML predictions remain within approximately £15 % of the
reference values, demonstrating the model’s capability to produce reliable estimates even
when trained on a limited dataset. While the present dataset is sufficient to construct a
functional generalized ML model, further expansion of the training data is expected to
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improve predictive accuracy. FEM predictions for metallic samples display a broader
spread of deviations, ranging from —11.0 % to 17.6 %.

Overall, the results highlight the complementary strengths of the two approaches. FEM
benefits from detailed physics-based simulations and provides strong performance when
comprehensive material modeling is available, particularly for ITO systems. In contrast,
the ML approach demonstrates promising generalization capability across both oxide and
metallic samples, with clear potential for improvement through expanded and more diverse
training datasets. These findings suggest that combining FEM’s physics-driven precision
with ML’s data-driven adaptability could lead to more robust and reliable electrical
conductivity characterization frameworks in future studies.
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9. Conclusions

9.1. Overall Conclusions — Thermal Conductivity

This thesis demonstrates the development of a framework for the accurate determination
of intrinsic thermal conductivity in thin films using scanning thermal microscopy. A new
approach is proposed in which simultaneous thermal-topographical SThM measurements
are combined with normalization strategies and machine learning regression to overcome
the fundamental limitations of SThM analysis. The application of this framework enables
the separation of intrinsic thermal transport properties from measurement-induced artifacts,
providing practical relevance for accurate materials characterization and device
engineering.

The framework integrates quartz-referenced normalization, a substrate—thickness factor,
and machine learning models trained on topographical descriptors. This combination
allows the mitigation of surface topography effects and probe—sample contact variability,
which are commonly neglected or oversimplified in thermal conductivity measurements.

The effectiveness of the proposed approach is confirmed through quantitative validation
against reference materials and literature-reported values.

Despite these improvements, residual discrepancies between corrected and ideal intrinsic
thermal conductivity values remain due to unavoidable experimental limitations. Variations
in probe—sample contact conditions, calibration uncertainty, and heat losses through the
substrate contribute to the remaining deviations. The explicit identification of these factors
demonstrates scientific rigor and confirms control over the measurement system rather than
overestimation of model capability.

Beyond predictive accuracy, the analysis of model behavior provides physical insight into
sub-microscale heat transfer mechanisms. The observed correlations between morphology
descriptors, normalization parameters, and predicted thermal conductivity provide
fundamental thermal physics insight into the measured SThM response.

The proposed framework confirms the effectiveness of combining physics-based strategies
with machine learning for intrinsic thermal conductivity extraction. The methodology can
be further improved through expanded reference datasets, refined calibration standards,
and the incorporation of physics-informed learning constraints. The approach is expected
to support standardized and scalable thermal characterization of thin films across a wide
range of functional materials.

Objective. To develop, validate, and demonstrate a reliable methodology for thin-film TC
determination that addresses the principal limitations of SThM, particularly surface
topographical effects, by jointly exploiting simultaneous thermal—topographical mapping,
normalization and correction strategies, and ML regression.

Hypothesis. Integrating high-resolution SThM thermal-topography maps with quartz-
referenced normalization, together with ML models trained on physics-aware features, will
yield accurate, reproducible, and generalizable TC estimates for thin films, including cases
where film thickness is below the SThM tip radius (~100 nm).
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Confirmation of Hypothesis. The combined framework—simultaneous thermal—
topographical SThM, quartz-referenced normalization (I';), and ensemble ML regression—
produced accurate, reproducible, and scalable TC estimates across thin films and bulk
references. High performance (independent test R* = 0.97) and close agreement with
reference values demonstrate that contact variability and morphology-induced artifacts can
be quantitatively mitigated.

Future Work

e Topography-aware correction via machine learning: Extend the current framework
to explicitly account for surface topography effects by introducing topography-related
descriptors (e.g., local roughness metrics, height variations, or probe—sample contact
indicators) as additional input features. The ML model will learn an effective
topography correction factor directly from these descriptors, enabling compensation
for surface-induced measurement artifacts and improving the extraction of true TC
values.

e Dataset expansion and balance: Increase representation of high-k materials and
ultrathin films; include additional substrates to better span interfacial conductance
regimes.

e Standardization and tooling: Package the pipeline (normalization — feature
extraction — ML inference — reporting) into a reproducible software framework with
traceable calibration using quartz and additional reference materials.

e Physics-Informed Machine Learning (PIML): Explore physics-informed machine
learning approaches that embed governing physical laws directly into the ML loss
function, enabling high accuracy with reduced dataset sizes.

9.2.  Overall Conclusions — Electrical Conductivity

This thesis demonstrates the development of a framework for the accurate determination
of intrinsic electrical conductivity in thin films using the four-point probe technique. An
approach is proposed in which FEM and machine learning are separately employed to
correct geometric and probe-related distortions that commonly affect electrical
conductivity measurements. The application of this framework enables reliable
convergence toward intrinsic conductivity values under non-ideal measurement conditions,
with direct relevance to thin-film materials research and industrial characterization.

The developed methodology explicitly accounts for finite sample dimensions, probe
placement variability, and edge effects through physics-based and data-driven correction
mechanisms. FEM provides interpretable correction factors rooted in electrical transport
physics, while machine learning (trained solely on experimental data) captures complex
empirical distortions arising from diverse geometrical configurations.

Quantitative validation demonstrates strong agreement between corrected EC values and
vdP reference measurements.

The main technical conclusions of the EC study can be summarized as follows:

e Geometric distortions and probe placement effects significantly bias conventional four-
point probe conductivity measurements and must be corrected for accurate intrinsic
property determination.
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e FEM provides reliable, physics-based correction factors for non-ideal measurement
geometries.

e Machine learning effectively captures geometrical distortions and generalizes across
diverse experimental configurations.

Objective. To establish a reliable framework using ML (comparable with FEM results) in
order to (i) correct geometric artifacts and (ii) ensure consistency of conductivity estimates
using solely experimental measurements.

Hypothesis. FEM provides physics-based corrections for probe- and geometry-induced
distortions, while ML learns adaptive correction patterns from experimental data. The
application of ML approach yields accurate and generalizable conductivity values that
converge toward intrinsic properties, including those validated by the vdP method.

Confirmation of Hypothesis. The results confirm that combining FEM and ML enables
accurate and reproducible thin-film electrical conductivity characterization under non-ideal
geometries. FEM provides physically interpretable correction factors, while ML captures
complex empirical distortions and generalizes across diverse conditions without extra
simulations. Agreement with vdP supports the validity of both approaches.

Future Perspectives

e FEM vs. ML comparison: FEM currently provides more practical results for
electrical conductivity measurements; however, ML demonstrates strong potential
when trained on large datasets covering millions of geometrical configurations,
enabling electrical conductivity prediction directly from experimental data without
simulations.

e Dataset expansion: Extend experimental datasets to additional thin-film materials,
probe spacings, and controlled anisotropic samples to improve generalization.

e Active learning strategies: Adaptively guide probe placement and sample orientation
to maximize data efficiency.

e Standardization and automation: Translate the methodology into standardized
protocols and software tools suitable for both research laboratories and industrial
characterization workflows.
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10. Appendix A:

10.1. Topographical and Thermal-Signal Maps of the Samples for Thermal
Properties Analysis

The following figures present a collection of topographical and thermal-signal maps for
the investigated ITO samples. Topographical maps represent the averaged trace and retrace
data, without slope removal, and all values were shifted so that the minimum height is set
to zero for consistent comparison across samples. Thermal-signal maps also represent the
averaged trace and retrace data. To improve visualization of the thermal-signal distribution,
particularly given the close proximity of values, a diverging colormap (seismic) was
employed to highlight positive and negative deviations with red—blue contrast. The
colormap was discretized into nineteen levels to enhance visual distinction between ranges,
while symmetric logarithmic normalization was applied to improve contrast.
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Topography Map of ZnO (3) Thermal Signal Map of ZnO (3)
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10.2. Pair Plot of Data for the Investigation of Thermal Properties

The pairplot illustrated here provides a comprehensive visualization of the experimental
dataset's internal structure. The diagonal plots represent the distribution of each individual
variable, allowing for a clear assessment of data spread. In contrast, the off-diagonal
scatterplots map the relationship between every pair of variables, which is essential for
identifying correlations within the system.
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10.3. Supplementary Data for Electrical Conductivity

10.3.1. Voltage—Current Characteristics

These graphs show the voltage—current
characteristics of the different sample
measured  under  different  probe
configurations on the samples. Each
vertical label indicates a specific probe
placement: the first number (before the
comma) represents the vertical position of
the probe L, and the second number (after
the comma) represents the horizontal
position of the probe Ly,.
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Voltage—Current Characteristics of ITO (a) at Rotation 3 for Different
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Voltage—Current Characteristics of ITO (c) at Rotation 3 for Different
Probe Configurations on the Sample
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10.3.2. Comparison of Experimental, Numerical, Intrinsic, and FEM-Corrected EC

The following figures present the investigated EC obtained under different four-probe
configurations on the samples. For each material, the bar charts compare the experimental
conductivity ( Oexp ) measured directly from the four-probe setup, the numerical
conductivity (onum ) calculated using a simulation-based model for the same probe
geometry, the intrinsic conductivity (o,) representing the theoretical or literature reference
value for the bulk material, and the FEM-corrected conductivity (opgy) obtained using
finite element method corrections to account for geometric and boundary effects.
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Electrical Conductivity of ITO (a) at Rotation 4 for Different Probe Configurations

Electrical Conductivity of ITO (a) at Rotation 3 for Different Probe Configurations

1,3 mm

3.3 mm
Probe positions (mm)

o, (kSem™)

3,3 mm

3,1 mm 1.3 mm
B Oy (kSemTh)

Probe pasitions (mm)
-, kScn) W Gy (kSem) W o (kS cm ™)

L1 mm
W G (kSrem™Y)

. ., (kSem”l) L gnyy, (kSemh)

Electrical Conduetivity of ITO (b) at Rotation 2 for Different Probe Configurations

Electrical Conductivity of ITO (b) at Rotation 1 for Different Probe Configurations

o (kSem™)

o (kSem™!)

1.3 mm

33mm
Probe positions (mm)

33 mm
o, (kSem™)

3,1 mm 1.3 mm
Probe positions (min}
- o, (kSem Y B oy (kS-em™T)

- o, (kSem”l) WM Opgy (KS-cmT)

1,1 mm
W Oy, (kS-em ™)

B 0. (KS-cm”Y) W Oy (KSem™Y)

Electrical Conductivity of ITO (b) at Rotation 4 for Different Probe Configurations

Electrical Conductivity of ITO (b) at Rotation 3 for Different Probe Configurations

1,1 mm 3,1 mm 1,3 mm 3,3 mm
3,0 mm 1,3 mm 3,3 mm .
Probe positions (mm)
N O, (kS-cmTl) BB g, (kS-em™!) BB Ogey (kKSemh)

1,1 mm
Probe positions (mm)
-, (kS el

B o, (kSem™') B Opey (kS-em™l)

- o (kSemTh) W gy, (KSomTl)

Electrical Conductivity of ITO (c) at Rotation 2 for Different Probe Configurations

Electrical Conductivity of I'TO (c) at Rotation 1 for Different Probe Configurations

3.2mm

3,0 mm 1,2 mm

Probe positions (mm)

. g, (kSem™)

2,3 mm 1,1 mm

1.3 mm

2.1 mm
. Oy (kSemh)

Probe positions (mm)

. g, (kSem™)

1.1 mm
B O (kScmTl) WM G (kSem™Y) B Orpy (kSemh) . O (kSemTl) WM Oy (kSem™h)

90



Electrical Conductivity of ITO (¢) at Rotation 3 for Different Probe Configurations Electrical Conductivity of ITO (c) at Rotation 4 for Different Probe Configurations
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10.4. Pair Plot of Data for the Investigation of Electrical Properties

The following figure presents a pairplot of all measured parameters relevant to the
electrical properties’ investigation. This visualization provides an overview of correlations,
clustering tendencies, and variations across the electrical dataset, offering insight into

dependencies between the measured electrical quantities.
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11. Appendix B:
11.1. Python Libraries Used for ML

The ML component of this research employs following open-source libraries:

Data Handling and Processing:

e NumPy (v1.24.0): Provided efficient numerical computation capabilities and array
operations.

e Pandas (v2.1.0): Facilitated data manipulation, cleaning, and analysis using
structured data frames.

e SciPy (v1.11.0): Offered advanced scientific computing functions, including
optimization, interpolation, and statistical analysis.

Machine Learning:

e scikit-learn (v1.3.0): Implemented a wide range of classical ML algorithms,
including regression, classification, and clustering methods.

e Random Forest (via scikit-learn): Ensemble learning method for classification
and regression tasks.

e Gradient Boosting (via scikit-learn): ML technique for regression and
classification problems.

Data Visualization:

e Matplotlib (v3.7.0): Provided a wide variety of 2D plotting and visualization
options.

e Seaborn (v0.12.0): Simplified the creation of statistically-informed visualizations.
Specialized Tools and Utilities:

e joblib (v1.3.0): Supported efficient saving of models and parallel computation.
Development Environment:

e JupyterLab (v4.0.0): The primary interactive development environment used for
this research, enabling coding, visualization, and documentation within notebooks.

These libraries collectively enabled comprehensive data preprocessing, visualization,
model training, and evaluation for the ML components of this study.

11.2. Software Implementation and Algorithmic Sources

All ML algorithms utilized in this study rely on pre-built, validated implementations from
recognized open-source ML libraries. These software packages closely follow the original
algorithmic definitions presented in foundational literature (Pedregosa et al. [74]).
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e Random Forest and Gradient Boosting algorithms are applied using their reliable,
pre-built implementations within the scikit-learn Python library. These
implementations were developed by Pedregosa et al. as part of the INRIA team.

¢ All model-selection tools, including cross-validation and Grid Search/Randomized

Search, also rely on the validated implementations within scikit-learn (Pedregosa
et al., INRIA [74]).

Using these established software packages ensures the consistency and adherence to
community-validated standards throughout the modeling process.
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Integrating Nanoscale Surface Topography and Thermal Analysis (Abstract No.
00093). European Materials Research Society (E-MRS) Fall Meeting, Warsaw,
Poland. Oral.

Monograph Chapters

Dehbashi, M., Kazmierczak-Batata, A., Szymska, W., Bodzenta, J. (2023).
Numerical investigation of the influence of sample geometry on the accuracy of
electrical conductivity measurements using the four-point probe method. In B.
Balon (Ed.), Interdyscyplinarne badania miodych naukowcow (Monografia /
Politechnika Slaska, No. 987, pp. 81-91). Wydawnictwo Politechniki Slaskiej.
ISBN 978-83-7880-905-0. Oral.
https://repolis.bg.polsl.pl/dlibra/publication/86320/edition /76772 /content

Awards

Pro-Quality Grant Award (Excellence Initiative — Research University), Silesian
University of Technology — December 2022 Awarded 12,000 PLN to support
commencement of scientific activity for the project “Thin Metal Oxides Layers for
Thermoelectric Applications” (Project No. 32/014/SDU/10-22-55).

Young Researcher Award, E-MRS Fall Meeting 2025 (Warsaw, Poland) —
September 2025. For the paper “Machine Learning-Enhanced Thermal
Conductivity Measurements in Thin Films: Integrating Nanoscale Surface
Topography and Thermal Analysis.” (Symposium G: Artificial Intelligence to
accelerate the development of new advanced materials for energy).
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12.5. Other Activities

12.5.1. Invited Lecturer (College Physics), Yanshan University, China

Delivered in-person invited lectures within the Sino-Polish cooperative education program
(Yanshan University & Silesian University of Technology); taught 360 teaching hours total
across Fall 2023, Spring 2024, and Autumn 2024.

B oA g

y v
YANSHAN UNIVERSITY

CERTIFICATE
This is to certify that MOHSEN DEHBASHI (passport number Z97568345)
delivered in-person an invited 96 teaching hours (45 minutes per teaching hour) of
lectures for College Physics in the autumn semester of academic year 2024(from 1%
September to 3" November), 192 teaching hours in the spring semester of 2024 (from
29" April to 30" June) and 72 teaching hours in the fall semester of academic year
2023 (from 11" December to 29" December), here at Yanshan University campus
in the framework of Sino-Polish cooperative educational program operated by
Yanshan University and Silesian University of Technology.
During his stay he completed the teaching task with outstanding performance, and he
received unanimous recognition from students and Chinese professors.
This certification is being issued to MOHSEN DEHBASHI for whatever legal
purpose it may serve.
Issued on the day of 19" November, 2024 at Yanshan University, 438 Hebei Ave

West Section, Haigang District, Qinhuangdao, Hebei, China, 066000

Rt PNETEEG L2V ANERIDE066004) Adt 438 West Hebe! Averue, Qlnhusngdas City,
QB 03358057100 Hebe: Provings, Chire Lo Code: 088004
R C335-5051148 Tob +B0 ZIWE0STI00  Fac +80 396 408 1148
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Participations in Other Publications

Vaferi, B., Dehbashi, M., & Alibak, A. H. (2024). Cutting-Edge machine learning
techniques for accurate prediction of agglomeration size in Water—Alumina
nanofluids. Symmetry, 16(7), 804. https://doi.org/10.3390/sym16070804

Vaferi, B., Dehbashi, M., Khandakar, A., Ayari, M. A., & Amini, S. (2024).
Development of a stacked machine learning model to compute the capability of
ZnO-based sensors for hydrogen detection. Sustainable Materials and
Technologies, 39, e00863. https://doi.org/10.1016/j.susmat.2024.e00863
Javadijam, R., Dehbashi, M., Shahverdian, M. H., Sohani, A., Arici, M., &
Sayyaadi, H. (2024). Artificial intelligent based techno-economic-exergetic
optimization of a thermoelectric enhanced building integrated photovoltaic thermal
system. Journal of Building Engineering, 84, 108526.
https://doi.org/10.1016/].jobe.2024.108526
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