
Silesian University of Technology
Faculty of Civil Engineering

Department of Mechanics and Bridges

DOCTORAL DISSERTATION

Bridge health monitoring using automated FE model
updating, signal processing, and machine learning

NGUYEN CONG DUC

Dissertation supervisor: Marek Salamak
Full Professor, Ph.D., D.Sc. Eng.
Silesian University of Technology, Gliwice

Faculty of Civil Engineering
Department of Mechanics and Bridges

Dissertation supervisor: Andrzej Katunin
Associate Professor, Ph.D., D.Sc. Eng.

Silesian University of Technology, Gliwice
Faculty of Mechanical Engineering

Department of Fundamentals of Machinery Design

Gliwice, May 2024





Acknowledgements

I would like to thank my supervisors: Prof. Marek Salamak and Prof. Andrzej Katunin for
their excellent guidance, encouragement, and patience throughout these studies.

I would like to express my deepest thanks and sincere appreciation to Dr. Grzegorz Poprawa
for sharing and supporting field experimental data sets from the long-term vibration-based
structural health monitoring system of Dębica railway steel arch bridge in Poland, and for
his assistance and contributions in my conferences and papers as co-author.

I also would like to thank all the technicians in SUT’s Lab and CADmost for their industrial
projects of some bridge diagnostic load tests in Poland. I wish to extend my thanks to the whole
"family" of the Department of Mechanics and Bridges (RB5), for having made my degree
research journey.

I would like to thank accredited national laboratory LASXD-162 of the MienTrung University
of Civil Engineering managed by the Ministry of Construction of Vietnam for providing data
sets from field diagnostic load testing of some bridges, where I have been working as a lecturer
and field engineer since 2010.

My gratitude is extended to Doctoral School of Silesian University of Technology;
NAWA-Polish Government under PPN/FRC/2020/1/00034 for Polish language course at Cracow
University of Technology and BPN/FRC/2021/1/00048 for the doctoral program at Silesian
University of Technology; as part of bilateral agreements and cooperation with Vietnamese
Government for more financial support given to this work under 3416/QÐ-BGDÐT 04/11/2020;
4534/QÐ-BGDÐT 30/11/2021; Nr145/21-NG-LHS 21/6/2021; MienTrung University of Civil
Engineering for salary support of lecturer resource training program given to my study abroad.

Finally, a special thanks is extended to my wife, Nguyen Thi Ai Nuong, whose patience has
remained steadfast for four years of my research work. Therefore, this Ph.D. thesis is dedicated
to her; to my children: Nguyen Minh Phu and Nguyen Minh Nhat, who received less attention
and love than they deserve; to my wife’s mother Le Thi Xuan and father Nguyen Ngoc Anh,
who have been taking care of my two sons; particularly to my mother Nguyen Thi Hoang and
father Nguyen Van Hong, who are Vietnamese rice farmers with no scientific background but
have always encouraged me, as well as my young sister and brother.





Summary

Bridge health monitoring plays an important role in ensuring the safety, reliability, and
longevity of the road and railway bridges. This thesis investigates bridge health monitoring
using automated FE model updating, signal processing, and machine learning, which can be
categorized as the following main points.

Intelligent data processing algorithms based on ANN and ANFIS are proposed to predict
the dynamic behavior of Dębica railway steel arch bridge produced from dynamic responses of
steel hangers during the passage of trains. Field data sets were collected from the vibration-based
SHM system of the hangers and bridge deck over a nine-month period from December 2019 to
September 2020. The input variables of the ANN and ANFIS models consist of RMS values of
vibration signals installed on hangers, and the output is RMS values of dynamic responses
on each of the two bridge spans. The optimization of the ANN architecture based on
the genetic algorithm is implemented to determine the number of neurons in the hidden layers of
the ANN regression models. Optimized ANN prediction models have been shown to outperform
ANFIS regression models among the six proposed strategies.

Data-driven applications of wavelet transforms, orbit-shaped analysis and CNN using
GoogLeNet are proposed for Dębica railway bridge health monitoring in Poland.
Training and validation data sets are the dynamic behavior of the bridge deck recorded through
an IEPE vibration sensor with a sampling frequency of 100 Hz from vibration-based SHM system
during a nine-month period. Utilizing Morse, Morlet, and Bump wavelet, the vibration
signal scalogram images are produced in the time-frequency domain as the input for CNN
classification models, while the output is to predict health states based on the experimental
tension force of eight hangers using label thresholds developed by calibrated finite element model.
Moreover, the vibration-based orbit-shaped image patterns, acquired through a bidirectional
sensor on each hanger are processed with CNN classification models for automated hanger
health diagnostic.



iv

Diagnostic load testing refers to the use of the historical measured responses of the structure
in field data to better understand its dynamic and static structural behaviors. The calibration
of the full-scale FE model of the existing bridges plays an important role, in which
the representative FE model of the actual structure is determined from the optimization
procedures. The optimization variables are applied, including the cross-sectional and material
properties calibrated through the GA and PSO methods in the MATLAB software, which
interfaces with the FE modeling in the scripting of the SOFISTIK TEDDY and ANSYS APDL
softwares automatically using static and dynamic responses in the field tests. The final updated FE
modeling is used to apply truck or train load configurations according to bridge design standards,
specifications, or codes, which can predict the load limits and overloads of the existing
bridge structure more accurately and reliably. These proposed approaches can be applied to
the RC bridge, steel-concrete composite bridge as well as the railway steel arch bridge.

The developed approaches of the bridge FE model calibration using field load testing and
monitoring can equip the engineer with a useful tool to make evaluation decisions that require
less time and improve its cost effectiveness. The SHM system of the complex heavy bridges would
be tested in a more reliable way when the updated FE models are applied. The machine learning
algorithms integrated into the data-driven vibration-based SHM system are useful solutions to
analyze intelligent data processing as well as to predict the structural behavior under the different
load events. It can keep a “remote eye” on bridge structures with the smart alarm system.
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Chapter 1

Introduction

1.1 Overview

The transport infrastructure system is the lifeblood of every country. The construction,
maintenance and management of transport networks are beneficial for economic, social, political
and military purposes. Sustainable transportation improves connectivity between local regions,
transport modes, and countries. It can be seen that well-managed transportation facilitates
various activities. On the other hand, when the transportation is not well developed, everything
is delayed. Infrastructure asset operators, managers and owners have not been well functioning
the cost-effective, real-time reliable and onsite safe solutions for intelligent civil infrastructure
data processing and management to enhance smarter decision-making information.

SHM systems with embedded advanced signal processing algorithms is one of
the comprehensive and systematic ways in tracking the health condition of different civil
structures including: aerospace, offshore oil platforms, docks, rotating machinery, wind turbines,
tunnels, bridges, buildings, railways, hydroelectric dams, pavements, deep foundations,
geotechnical construction, etc. There are many research challenges and potential applications
of SHM technologies for the civil sectors, specifically complex and heavy bridges during
traffic loading events, environmental conditions, flood hazards, earthquakes, etc.

Bridge health monitoring is combined with machine learning-based approaches to predict
the health conditions of structural members under various load events and wind excitation.
The use of FE model updating will be useful for practical and industrial data-driven
SHM, because FE modeling is a standardized procedure for designing the bridge structure,
when calibrating the measured and computed responses to reproduce data used in
machine learning-assisted classification and regression models.
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1.2 Motivations for undertaking research

The motivations for engaging in research studies on bridge health monitoring approaches
can be either one or more of the following reasons:

• Why the structural diagnostic load test need to be performed? Why the SHM of the existing
heavy bridge is needed?

• There are many structural health monitoring systems on the market. What is the right
technology for bridge monitoring?

• There are so many structural members and so many sensors. Why collect structural
parameters?

• How to reduce the duration and costs of monitoring maintaining high detectability level
of possible events?

• What are the best technologies and algorithms for field bridge data processing and
management? How to acquire and process data effectively?

1.3 Aim and scope of the current work

The performed research studies within this thesis allowed providing some answers to above
questions and formulate the aims of the study on their basis. The objective of the research
topic is to propose the automated FE model updating, signal processing, and machine learning
approaches that can be used for bridge health monitoring. The topic covers issues related
to automated bridge FE model calibration using field testing, advanced signal processing for
vibration signals collected from a long-term vibration-based SHM system of railway steel arch
bridge, and machine learning techniques to predict railway bridge health conditions.

The bridge diagnostic load test consists of the load evaluation and the load test
(or proof-load test). The purpose is to use field data to calibrate the FE model for load rating.
The final calibrated FE model is proposed to integrate into the SHM system of the existing
bridge.

Bridge SHM is used to track changes over time under the various load events and weather
conditions. The vibration-based SHM system installed on the railway steel arch bridge is to
record the dynamic behavior of the hangers and the spans under train events. The vibration
measurement is useful to analyze the experimental natural frequencies of hangers, and then
determine tension forces and stresses. The objective of the development of the the long-term
SHM system is proposed to monitor on-line and remote alarms.
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The structural parameters collected in the field tests are the strains, deflections and natural
frequencies of the real bridges. These measured parameters can be used for the FE model
updating to calibrate the material and stiffness properties. The right technology for bridge testing
and monitoring is the innovative solution which makes it possible to connect the experimental
parameters with the current bridge design guide specifications and standards.

The duration and costs of bridge testing and monitoring depend more on data processing
and management than the use of many sensors in the field. Sensors can be reused in the various
bridge structures, while the data processing needs and requirements may vary depending on
the behavior of each bridge under load events.

The data processing approaches comprise FFT algorithms, wavelet transforms and machine
learning, including deep learning. The advanced signal processing technologies are implemented
for the vibration signals recorded from the SHM system to analyze the field data patterns as well as
to predict the structural behavior under the different load events.

The primary contributions of the study can be summarized as the following main issues:

• Automated FE model calibrations were proposed to update the stiffness and material
properties of bridge structures using measured static strains and natural frequencies.
Case studies consist of the highway bridges in Vietnam to demonstrate the applicability
and effectiveness of the proposed FE model updating algorithms.

• Machine learning-assisted regression models were performed to predict the dynamic
behavior of the railway bridge span under various train events. Data sets used in prediction
models that were collected from the vibration-based SHM system of the Dębica railway
steel arch bridge in Poland over a period of nine months from December 2019 to
September 2020.

• GoogLeNet CNN classification models were developed to predict the hanger health
conditions of the existing railway bridge using wavelet-based and orbit-shaped
signal images.
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1.4 Outline of the dissertation

The dissertation is divided into 7 chapters, which present an overview on the current
state-of-the-art in the topic of BHM, measurement setups, and developed procedures for
processing the acquired measurement signals. Finally, real-world examples are described in
detail to demonstrate the performance of the developed procedures. The chapters of this thesis
are organized as follows:

Chapter 2 discusses the current status and development trends of bridge health monitoring
systems. The latest trends and growing needs in bridge health monitoring are reviewed.
Market demands and needs for bridge health monitoring in Vietnam and Poland are reported.
In this chapter, advanced signal processing techniques in bridge health monitoring are discussed.
The framework of digital twins for data-driven bridge health monitoring is proposed.

Chapter 3 describes the data acquisition instruments and advanced signal processing.
It presents the bridge diagnostic load testing apparatus. The chapter also emphasizes advanced
signal processing approaches including wavelet transforms and machine learning algorithms.

Chapter 4 focuses on the railway bridge health monitoring using machine learning.
In this thesis, the object of the research is the Dębica railway steel arch bridge. Herein, the SHM
system used for Dębica bridge is described. The optimized ANN and ANFIS regression models
are developed for the vibration-based SHM of Dębica railway steel arch bridge in Poland.

Chapter 5 presents the railway bridge health diagnosis using wavelet analysis and
deep learning. Data collections from the vibration-based SHM system of the existing
Dębica railway bridge are used for developing deep learning-based classification models.
GoogLeNet CNN classification models are performed to predict structural health conditions
using wavelet scalograms achieved from vibration signals from the tested bridge. Orbit-shaped
CNN classification models are performed to assess hanger health status.

Chapter 6 describes the bridge diagnostic load ratings using automated FE model updating.
This approach is proposed to apply for the two road bridges in Vietnam. The calibrations of
the FE models are conducted for two case studies, namely, reinforced concrete and steel-concrete
composite bridges.

Chapter 7 summarizing this thesis and makes recommendations for further studies.



Chapter 2

Current status and development trends of
bridge health monitoring systems

2.1 Introduction

This chapter provides an overview of the current status and development trends of
state-of-the-art bridge health monitoring systems. In Poland and Vietnam, where the civil
infrastructure has developed rapidly, the demands and needs of the SHM market are expected
to grow significantly. All-in-one comprehensive solutions for intelligent data processing and
management of data-driven SHM systems are to implement machine learning techniques
designed with the smart alert system in real time to ensure the safety, reliability, and integrity
of bridge structures during major load events, natural hazards, and weather change risks.
Bridge SHM data management is not only intelligent data processing, but also integrating bridge
information management, referred to as virtual digital twins. Furthermore, national guidelines
and regulations for SHM of civil structures and bridges could be continuously updated to meet
international standards, codes, and specifications.

2.2 A review of the latest trends and growing needs in bridge
health monitoring

Bridge structural health monitoring, which has attracted significant attention in recent
decades, plays an important role in transportation infrastructure networks to ensure integrity
and safety operation, identify potential structural risks to prevent accidents, and allow proactive
decision-making in asset management and maintenance schedules [1], [2].
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The advantages of the long-term (live-load) SHM system are to keep a “remote eye” on
troubled structures with an alarm feature; to track changes or “dead load effects” over time such
as crack growth or tilting (rotations) of piers; to capture truck passages at highway speed; to
understand fatigue stress magnitudes and cycles; to use a smaller number of sensors [3], [4], [5].
The objectives of the diagnostic bridge test are to understand the distribution of the live load;
use data to calibrate the simplified finite element model under a truck of known load to cross
the bridge slowly; predict the stresses induced by the permit or overloaded vehicles through
the final calibrated model [6], [7].

There are many technologies for SHM systems of existing bridges depending on the types of
structure sensors, intelligent data processing and management, communications and intelligent
early warning system [8], [9]. Furthermore, the key application of the vibration-based SHM
has been designed to record dynamic responses of bridges analyzed using OMA techniques,
SSI methods, FFT algorithms, FE model updating, which associated benefits can provide useful
information to better understand the measured live-load behavior of structure [10], [11], [12],
[13], [14]. Bridge diagnostic load testing is used to measure actual responses of the structure
against known loads so that realistic calibrated FE models can be developed for critical load
ratings and service load limits [15], [16]; while bridge structural health monitoring automatically
records field data during days, months, and years to keep a remote eye focusing on potential
health problems of critical structure for the smart alert system, as well as to upload multiple field
data sources in real time to validate and adjust digital twin models for the operation, safety, and
maintenance of bridge cost-effectively [17], [18], [19], [20], [21], [22]. Bridge data management
is one of the most crucial and complex aspects of smart SHM solutions.

Although these research studies have demonstrated the effectiveness of the FE model
calibration for bridges, they were also limited by the need for large data sets and complex
railway bridge structures. The limitation is that FE simulation software, sensors and data
acquisition systems were not originally designed for updating FE model. Furthermore,
the integration of advanced signal processing into the SHM system might be limited. The users
of industrial SHM applications rely on the hardware and software configurations provided by
the manufacturer. The communication and transmission of sensor data between instruments,
hardware, SHM systems, and IoT devices may vary among different manufacturers for bridge
data management. Therefore, it is essential to explore additional solutions for signal processing
and the integration of machine learning algorithms into the SHM system.
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2.3 Market demands and needs for bridge health monitoring
in Poland and Vietnam

The economic benefits and challenges of studies on SHM for bridges using automated
FE model updating, vibration signal processing, and machine learning algorithms
include: the demands of bridge diagnostic load testing in both Poland and Vietnam; the markets
of long-term SHM in Poland and Vietnam; the potential opportunities for investments in
advanced signal processing of big data through the use of AI and machine learning algorithms
in the field.

In Poland, the development and investment in transport infrastructure have increased
significantly in recent years. In 2022, 19.394 thousand km of railway lines were operated
in Poland, 54.0% of which were single-track lines [23]. In 2022, there were more than
317.5 thousand km of hard surfaced public roads in Poland, consisting of communal roads:
48.2% and district roads: 36.4%; Voivodship roads: 9.3% of public roads; national roads:
6.1%; Motorways and expressways: 1.5% of public roads [23]. It can be seen that bridge
testing is essential when considering the existing well-defined and established Polish standards,
such as: PN–S–10040:1999 for reinforced and prestressed bridges; PN-89/S-10050 for steel
bridges [24]. Numerous studies have discussed the advantages and effectiveness of implementing
the SHM systems for bridges in Poland [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. SHM systems have been installed for some bridges in Poland, as shown in Figure 2.1.

Vietnam has 570.448 thousand km of roads, of which national highways 24.136 thousand km;
expressways 816 km; provincial roads 25.741 thousand km; district roads 58.347 thousand km;
urban roads 26.953 thousand km; commune roads 144.670 thousand km; village roads 181.188
thousand km; and inner field roads 108.597 thousand km [36]. Urban railway metro systems
were building and developing in Ha Noi capital and Ho Chi Minh city (before 1975 year:
Sai Gon city) [37]. A feasibility study of the large north-south high-speed railway project
(200-350 km/h trains) is currently underway to replace the existing century-old north-south
single track railway system [37]. SHM systems have been installed on large complex bridges
in Vietnam, for example: My Thuan cable-stayed bridge [38], [39]; Sai Gon bridge [40], [41],
Phu My cable-stayed bridge [42], [43], [43]; Bai Chay bridge [39]; three bridges: Thuan Phuoc,
Dragon and Tran Thi Ly bridge [44]. SHM systems have been installed for bridges in Vietnam,
as shown in Figure 2.2
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Figure 2.1: SHM systems for bridges in Poland informed by Dr. Grzegorz Poprawa (images of
bridges collected from Google Maps).

Figure 2.2: SHM systems for bridges in Vietnam informed by the Bridge Diagnostics Inc
in the USA and the Scientific Technical Supplies limited company in Vietnam.
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2.4 A review of advanced signal processing and machine
learning for SHM

The future of AI in SHM applications has received considerable attention for intelligent data
processing and management of various civil infrastructure sectors such as: bridges, railways,
pavements, tunnels, buildings, hydraulic structures, foundations, and construction [45], [46].
One of the major subfields of AI is machine learning in which artificial neural networks and deep
learning have presented challenges to integrate intelligent data processing and automation into
SHM systems of infrastructure [47]. The important benefits of SHM tasks are for the evaluation,
assessment, and monitoring of civil structures [48] for which machine learning-based SHM
technologies of existing bridges have recently been developed [49]. Therefore, the application of
machine learning-based algorithms for data sets of the SHM system equipped with various types
of sensors is a useful solution that could obtain valuable insights into historical responses
and predict the health status of the structure. As discussed studies, intelligent data processing
is one of important requirements for the emerging technology implemented in machine learning
approaches. The benefits of vibration measurement of structures related to all of the above topics
could bring new opportunities for researchers who are interested in the applications of AI and
machine learning for bridge structures, especially in a smart vibration-enhanced SHM system
for bridge data management.

In the context of bridge health monitoring, operational modal analysis techniques using only
accelerometers with no hammer or shaker excitation, were proposed for bridges to determine
modal parameters (natural frequencies, damping ratios and mode shapes) of structures to be
used for automatic FE model updating [50], [51], [52], [53], [54]. Cable (or hanger) force testing
and analysis were performed for cable-stayed bridges or arch bridge structures using vibration
frequencies based on the fundamental principle of the Taut cable vibration method [55], [56].

Furthermore, data-driven SHM methods with neuro-fuzzy classifier can be used to monitor
bridge health conditions in real-time and automatically without the need to develop an FE model
[57]. For example, supervised and unsupervised ML algorithms were introduced to predict
vortex-induced vibrations and other events of the long-span twin-cable stayed bridge through
RMS acceleration of the SHM system for three months [58]. In addition, machine learning
algorithms such as artificial neural networks, support vector machines, decision trees, random
forest, etc., were proposed for the prediction and early warning of excessive wind-induced
vibration of the long-span cable-supported bridge using RMS values of vertical and lateral
vibrations recorded from the SHM system [59].
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In addition, having explored the benefits of wavelet techniques have been used for analyzing
advanced vibration signal processing of bridge structural health monitoring such as: meaningful
informative feature extraction, structural damage identification, anomaly pattern detection,
scalogram image processing, signal filters, and data compression [60], [61], [62], [63], [64], [65],
[66], [67]. Supervised and semi-supervised CNN models incorporating the wavelet transform
were performed to classify anomalous or novelty data collected from acceleration measurements
of the railway bridge under train-induced loads [68]. The proposed bridge damage identification
approach combines synchrosqueezing continuous wavelet transform with MobileNet v1
and ResNet50 models to analyze benchmark vibration data from vibration-based SHM of
the Z24 bridge [69]. The wavelet-based AlexNet classification model for structural damage
detection was discussed using acceleration responses recorded from the old ADA bridge [70].

For the vibration signals recorded from the bridge SHM system, the wavelet transforms
are powerful tools for analyzing the data features in the time-frequency domain [71]. The CWT
can visualize the 2D color scalograms of the 1D vibration signals to generate the 2D images with
the time–frequency localization representations used for the CNN classification models[72].
Wavelet scalograms can provide the local time-frequency energy distribution (or density)
for each coefficient with the time as the horizontal axis and the scale (or frequency) as
the vertical axis [73]. Wavelet analysis has the time-frequency localization and offers spectral
decomposition of the short-period events [74]. Additionally, the wavelet scalograms can reveal
the time–frequency features of the vibration signal while also highlighting the components of
low energy [75]. The above studies show that the wavelet transforms have been applied to
convert vibration signals to obtain the time–frequency representations of the energy density of
the signals at different time intervals and frequency bands.

2.5 The proposed framework of digital twins for data-driven
bridge health monitoring

Intelligent bridge data management is the use of digital twin technologies to collect,
process, analyze and manage data from the field bridge infrastructure to BrIM and SHM.
The Taĳi (Tai Chi) model used to describe the integration of smart SHM digital twins for bridges,
as shown in Figure 2.3, according to the Yin and Yang principle in ancient Chinese philosophy,
has been applied in many areas of daily life. Depending on various aspects, the application
and explanation of the Yin-Yang law will be different. However, the Yin-Yang principle from
traditional Chinese philosophy and cosmology is that Yin represents black, female, moon and
night; while Yang represents white, male, sun, and light.
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The smart SHM framework for the bridge includes physical and virtual assets. The physical
asset (Yang) consists of the bridge health monitoring system, the Internet of Things,
machine learning, signal processing, and data management, while the virtual asset (Yin) contains
the finite element model, the 3D bridge information model, and simulation. According to
the Yin-Yang theory, it describes opposition but interdependence. This is the main reason
chosen to illustrate the concept of smart bridge health monitoring. If either asset is missing,
the bridge health monitoring system will not work effectively and reliably.

Figure 2.3: The Taĳi model for smart SHM digital twins.

SHM technologies have been widely applied in numerous interdisciplinary research areas
devoted to the monitoring and evaluation of structural health state and life cycle assessment
for civil structures and infrastructures with potential industrial applications, as well as latest
advances and innovations in both the intelligent data management of real-time emergency
situations and maintenance needs in recent trends, especially in the high-tech strategies of
Virtual BrIM, Internet of Things, Web of Things, Industry 4.0. Sensor data sets are managed
and transferred to the Web server for interactive display of real-time data information and
event-structural historical behaviors in the Web mapping service, in which the positions of
sensors and structures are integrated into the virtual digital twin Lab with all-in-one solution to
interface with viewers to monitor the health state of the structure. The smart alert system sets
the machine learning-based threshold values of the vibration signals to implement in the SHM
system that can send SMS messages via Telegram online, as shown in Figure 2.4 [35], [76].
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Figure 2.4: Digital twin-based intelligent SHM data management: a) Integration of machine
learning algorithms for SHM system; b) Vibration-based SHM system; c) Smart alert system
using Telegram; d) BrIM data management [35].

2.6 Concluding remarks

This chapter provided a systematic overview of the state-of-the-art SHM used for bridges.
The presentation of the latest trends and growing needs in bridge health monitoring. It will work
towards developing innovative solutions in the experimental data processing for both bridge load
testing and health monitoring. The discussion of the market demands and needs for bridge health
monitoring in Poland and Vietnam has been performed. It presented both market opportunities
and challenges to seek and recognize cutting-edge solutions to commercialize bridge health
monitoring studies.

A comprehensive overview of advanced signal processing techniques in bridge health
monitoring was provided. These ideas will help provide machine learning techniques for the field
data processing applied in the SHM system. A framework of digital twins for data-driven bridge
health monitoring was proposed. The proposed digital twin technology is demonstrated through
the integration of the visual 3D BIM models with the SHM system.

The current study is complementing ongoing research activities in the data processing and
management for the bridge testing and monitoring in the field.



Chapter 3

Data acquisition instruments and
advanced signal processing

3.1 Introduction

This chapter presents instruments for the field bridge load testing and the long-term
vibration-based SHM system used for this study. Diagnostic load tests used for the bridges
in Poland and Vietnam are introduced. The advanced signal processing methods are performed
using the Morse, Morlet, and Bump wavelet transforms to convert vibration signals into 2D
scalogram images as the input for CNN classification models to predict structural potential
problems. The GoogLeNet architecture is used to classify the feature maps for recognizing
the analyzed and collected vibration signal images. In addition, ANN, ANFIS, and random forest
are also proposed to extract the field data feature, as well as to develop regression models to
predict bridge health conditions. The input variables of the optimized ANN and ANFIS models
consist of RMS values of vibration signals installed on the hangers, and the output is RMS values
of dynamic responses on each of the two bridge spans. Additionally, evaluation metrics
are introduced for classification and regression models. R2, RMSE, MAE, MAPE, and
NSE metrics are utilized for assessing the accuracy of the regression models. F1-score,
macro F1-score, and weighted F1-score metrics are used to evaluate the performance of
the classification models addressing with imbalanced data sets.
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3.2 Bridge diagnostic load testing apparatus

3.2.1 In Poland

Bridge diagnostic load testing refers to the use of measured static and dynamic responses
in field tests to understand the distribution of static and live loads throughout the bridge
structures. There are two main types of field bridge load tests: static load testing and dynamic
testing. The main objective of static tests is to measure the vertical deflections of the span,
the displacements of the pier, and the abutment in various loading cases, as shown in
Figures 3.1 and 3.2.

The load testing vehicle is a loaded dump truck, where the number of trucks depends on
different types of structure. The positions of the load testing vehicle on the bridges consist of
three common cases: left and right eccentric positions, as well as a centric location of the section
of the bridge span. The number of train tractors used for static load testing on the railway bridge
depends on the type of structure. The dynamic tests of road and railway bridges include two main
scenarios: traveling at different speeds, and applying impact loads. The primary purpose of
dynamic testing is to determine the modal frequencies of the structure through accelerometers
installed at different locations (1/2 and 1/4 of the span length). Some common instruments
used in bridge load testing include: LVDT displacement sensors (see Figures 3.3a, b, c, d);
strain gauges (see Figures 3.3e); the telescope instrument to measure the deflection of the bridge
span and the displacement of the abutment (or pier) (see Figures 3.3f); accelerometers to record
the dynamic behavior of the bridge (see Figures 3.3g, h, i).

Figure 3.1: Field bridge diagnostic tests in Poland.
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Figure 3.2: Diagnostic load testing for steel arch bridges: a), b), c), d) Vistula railway steel arch
bridge in Kraków city; e), f) Steel arch bridge on the Kędzierzyn-Koźle (DK40).

Figure 3.3: Instruments for bridge diagnostic testing in the field: a), b), c), d) deflection
measurement; e) strain gauge sensor; f) Jenoptik Koni 007 for measuring span deflection and
abutment displacement; g), h), i) vibration measurement.
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3.2.2 In Vietnam

The wireless structural testing system (STS-WiFi) of Bridge Diagnostics Inc. from the USA
has been widely used for field load testing of different types of existing structures to implement
various sensors, including: intelligent strain transducers, accelerometers, strain gauges, LVDT
displacement sensors, and auto-clicker as shown in Figure 3.4.

• The WinSTS data acquisition software can control the WiFi data acquisition hardware
nodes and the WiFi mobile-based station to record field data from the sensors. It can display
the state of every node, such as power, signal strength, name, standby mode, or ‘sleep’
function. The monitoring sensors in real-time window that can set up the zero sensors
and access the calibrated sensor file. The sampling rate, test duration, and data file name
can be assigned to collect data.

• The mobile-based battery-powered WiFi hardware station can be directly communicated
with WinSTS data acquisition software that can control more than one WiFi data
acquisition hardware node, also connected by an Internet ethernet cable through
four ethernet ports and WiFi (see Figure 3.4b).

• The four-channel WiFi data acquisition hardware node is powered by a rechargeable battery
using wireless technology to communicate with the WiFi mobile-based hardware station,
which communicates wirelessly with a laptop and iPad for a signal range of more than
one km. This WiFi node system can implement a wide variety of sensors (see Figure 3.4c).

• Intelligent strain transducers are installed in steel members and reinforced concrete
structures (see Figure 3.4d).

• Accelerometers record the dynamic behavior of structures and concrete piers
(see Figure 3.4e).

• The micro-strain measurements are integrated by the re-usable quarter bridge foil strain
gages which can measure strain of the different materials: fibre reinforced polymer,
reinforced steel bars (see Figure 3.4f).

• The LVDT displacement sensors are used to determine the deflection of structural members
and spans (see Figure 3.4g).

• The auto-clicker is used to track the position of moving trucks at every wheel revolution,
which is placed on the driver side front wheel (see Figure 3.4h).
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Figure 3.4: The wireless structural testing system (STS-WiFi) for diagnostic load testing of
existing bridge structures [8].

3.3 Signal processing and data evaluation for railway bridge
health monitoring

3.3.1 Wavelet transforms used for vibration signals

Wavelet transforms have various applications in advanced signal processing analysis,
image analysis, many other disciplines, including biomedical signal processing applications.
The CWT, although the one of the oldest transforms, has numerous advantages, especially in
selection of wavalet functions. The analysis of signals and images of vibration signals offers
powerful and versatile techniques for practical SHM applications related to accelerometers
when performing and interpreting the time-frequency analysis of signals. The selection of
mother wavelet functions and parameters should be carefully tuned to suit the specific needs and
signal characteristics of each practical application.
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The continuous wavelet transform creates possibilities of comprehensive multi-respolution
analysis of diagnostic signals, which of the 1D input signal with real-valued wavelets is defined
as [77], [78], [79]:

CWT(𝑎, 𝑏; 𝑠(𝑡), 𝜓(𝑡)) = 1
√
𝑎

∞∫
−∞

𝑠(𝑡)𝜓∗
𝑎,𝑏 (

𝑡 − 𝑏

𝑎
)d𝑡, (3.1)

where: CWT(𝑎, 𝑏; 𝑠(𝑡), 𝜓(𝑡)) is the resulting wavelet coefficients; 𝑠(𝑡) is the continuous-time
signal; 𝜓∗ is is the complex conjugate of 𝜓 mother wavelet function; 𝑎 and 𝑏 are the scale and
shift parameters of the wavelet, respectively; d𝑡 is time steps.

The CWT offers application of a variety of wavelet functions with only little limitations.
This makes it possible to adjust specific wavelet functions to the investigated problem and
analyzed signals. In the following study, we selected three wavelets: Morse, Morlet, and Bump.
These functions have an analytic form (except for Morse, which is not exactly analytic), which
is important from the point of view of parametrization and possible hardware implementation.
Moreover, analyticity of mentioned wavelets results in decrease of the number of artifacts and
time-frequency interferences, which, in turn, resulting in correct representation of amplitude
and phase estimates. These wavelets are characterized by an advantageous ratio of the number
of vanishing moments and the effective length of the support [80]. This was also confirmed
in previous tests using these wavelets [73], where the authors demonstrated that the selected
wavelets demonstrate the best time-frequency resolution and sensitivity to damage signatures.

The generalized Morse wavelet is defined as [81], [82]:

Ψ𝑃,𝛾 =

∞∫
−∞

𝜓𝑃,𝛾 (𝑡)𝑒−𝑖𝜔𝑡d𝑡 = 𝑈 (𝜔)𝑎𝑃,𝛾𝜔
𝑃2
𝛾 𝑒−𝜔

𝛾

, (3.2)

where:Ψ𝑃,𝛾 is the frequency domain representation;𝜓𝑃,𝛾 (𝑡) is the time domain wavelet function;
𝑈 (𝜔) is the unit step function; 𝑎𝛽,𝛾 is a normalizing constant; 𝑃2 is the time-bandwidth product;
𝛾 controls the time domain decay of the wavelet; while 𝛽 controls the wavelet frequency domain
decay.

The Morse wavelet parameterized by 𝛽 and 𝛾 is defined as [83]:

Ψ𝛽,𝛾 =

∞∫
−∞

𝜓𝛽,𝛾 (𝑡)𝑒−𝑖𝜔𝑡d𝑡 = 𝑈 (𝜔)𝑎𝛽,𝛾𝜔𝛽𝑒−𝜔
𝛾

, (3.3)
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The fourier transform of analytic Morlet (Gabor) wavelet corresponds to the following
definition [84], [85]:

Ψ̂(𝜔) =
√

2𝜋
1
4

[
𝑒

−1
2 (𝜔−𝑘)2 − 𝑒

−1
2 (𝜔2+𝑘2)

]
, (3.4)

where: 𝜔 is the angular frequency; 𝑘 is parameter to determine the shape of the wavelet.
The Bump wavelet is defined as [86], [87]:

Ψ̂(𝑠𝑤) = 𝑒Θ · 𝐼⌈ 𝜇−𝜎

𝑠
,
𝜇+𝜎
𝑠 ⌉ ; Θ =

©­«1 − 1

1 − (𝑠𝜔−𝜇)21
𝜌2

ª®¬, (3.5)

where: 𝜔 is the angular frequency; 𝜇 is parameter in the range of (3, 6); 𝜎 is parameter in
the range of (0.1, 1.2); 𝐼⌈ 𝜇−𝜎

𝑠
,
𝜇+𝜎
𝑠 ⌉ is the indicator function for the interval.

The CWT function in the MATLAB software was used to extract individual vibration signal
segments with 𝑁 length samples each, in the form of 2D scalogram graphs.

3.3.2 Feature analysis and machine learning approaches

3.3.2.1 Optimization of neural network architecture

Artificial neural networks that contain multiple hidden layers, namely deep neural networks,
are computational deep learning technologies that utilize complex and non-linear mappings,
clusterings, and intelligent data analysis in big data consisting of several input and output
variables [88], [89]. In addition, there are many considerations in a wide spectrum of
classification and recognition applications, where the trained ANN output can represent
categories, predictions, simulations, and continuous variables in examples of civil infrastructure,
as well as bridge structures [90], [91], [92], [93], [94], [95].

The main purpose of optimizing the ANN architecture is to improve the performance of
training and testing the ANN model [96], where the number of neurons in hidden layers is one of
the important parameters as a way to investigate the effect of the capacity and precision of
neural networks [97], [98]. The characteristics, attitudes, and relationships of the data sets
in various systems contain different information, so the ANN architecture for the prediction
models could be distinct. Optimization of neural network architectures such as ANN, ANFIS,
and CNN models based on the GA and PSO algorithms can be found in numerous studies of
different applications [99], [100], [101].
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Furthermore, several recent studies have proposed robust optimization algorithms to optimize
the number of nodes in the hidden layers of the ANN structure [102], [103], [104], [105].
Optimization of the ANN architecture has brought new opportunities to improve the results
of training and testing data sets in optimal ANN models, making them more efficient and
reliable. In the proposed approach, ANN models have been carried out for training and testing
data sets with input parameters of experimental dynamic responses of eight steel hangers and
one output of dynamic behavior from the structural vibration signal on each span of the bridge.
ANN could more effectively predict the RMS of the vibration signal in the steel span based on
the input variables of the historical dynamic responses of eight steel hangers. ANN could be
used to describe the relationship between the input components and the prediction of the output,
as shown in Figure 3.5.

Figure 3.5: ANN architecture with RMS input and output variables [35].
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There are two main strategies for the input variables including: 16 inputs for the RMS
values of MEMS-based accelerations on the 𝑥-axis (𝐴𝑥) and 𝑦-axis (𝐴𝑦) directions; 8 inputs

for the RMS vector sums of two accelerations (𝐴 =

√︃
𝐴2
𝑥 + 𝐴2

𝑦). The ANN architecture utilized
tangent sigmoid functions in hidden layers, which the ANN structure optimization algorithm
has developed to find the best ANN models based on the objective function of the root mean
squared error in the regression analysis, as shown in Figure 3.6. Multilayer deep neural network
regression models have been trained using Levenberg-Marquardt backpropagation [106], [107].
The optimization procedure of the ANN architecture as follows:

• Data sets of accelerometers that are installed on hangers of the steel structure are collected
from the long-term SHM system of the steel bridge of the railway system. The RMS values
of dynamic responses of eight hangers from each steel span are used to forecast
the RMS values of vertical dynamic behavior of the deck during the passage of the train.

• The data sets in the ANN models are randomly split into two separate parts, including:
training (70%) and testing (30%) sets. The RMSE values of the training and testing
data sets corresponding to the number of neurons in each hidden layer are calculated to
obtain a minimum value as a criterion to evaluate the updated ANN model performance.

• Training data sets in the ANN model using the Levenberg-Marquardt algorithm
in the MATLAB software. The ANN architecture consists of hidden neurons and
hidden layers that optimizing the number of hidden neurons in the ANN structure has been
conducted to find the best models corresponding to the objective function of the lowest
RMSE values. The GA method is used to optimize these hidden neurons as parameters in
the optimization procedure. The parameters of hidden neurons are positive integers that
are set integer values of variables in the GA function.

• Testing data sets in the adjusted ANN model after each iteration step. The different
evaluation metrics of the prediction ANN model for testing data sets are calculated with
the updated hidden neurons in each hidden layer. The main goal of GA optimization
solutions is to obtain the best ANN model with the highest coefficient of determination
and the Nash-Sutcliffe efficiency values of testing data sets.

Pre-processing data sets are used to understand the characteristics of input and output data
in a structural system by statistical analysis before training and prediction. For example,
a correlation coefficient matrix could produce a pairwise comparison of multivariate data
sets. Furthermore, the random forest algorithm could be used for classification and regression
problems that are used to understand the important features and interactions of variables
by ranking.
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ANN algorithm [108] is implemented in the MATLAB functions as follows: the train
function is used for multiple inputs and outputs; the newff function in the MATLAB simulation
is to design a multilayer feedforward backpropagation neutral network and create hyperbolic
tangent and sigmoid transfer function; the sim function runs the simulation configuration
of a MATLAB Simulink model to predict the outputs from the corresponding input values.
In addition, the gamultiobj function from the MATLAB software based on a genetic algorithm
is used for the optimization problem of the ANN architecture, in which the parameters of
hidden layers are the number of neurons configured as positive integers.

Figure 3.6: Optimization approach of the ANN architecture [35].

3.3.2.2 Adaptive neuro-fuzzy inference system approach

ANFIS has emerged as a powerful data processing technique for forecasting problems of
civil structures that could provide robust learning tools for engineers and researchers with
in-depth methodologies in order to build models, make predictions, mine data and process
intelligent information across a broad range of bridge applications [109], [110], [111]. For aspects
of the current and future SHM system, ANFIS is used to model a system that could receive input
and produce output. The inputs are RMS values of the dynamic responses of eight hangers,
and the outputs are RMS values of the dynamic behavior of the bridge span. The relationships
between inputs and outputs and the representation parameters are important issues in the design
of the ANFIS architecture for diagnosing and determining dynamic behavior of the steel bridge
structure. The ANFIS models consist of (70%) training data sets and (30%) testing data sets
using the ANFIS algorithm in the MATLAB software as shown in Figure 3.7. The values
of parameters of the ANFIS architecture are well chosen in the MATLAB software using
the fuzzy C-Means (FCM) clustering algorithm [112] as shown in Table 3.1.



3.3. Signal processing and data evaluation for railway bridge health monitoring 23

Table 3.1: The parameters of the ANFIS architecture.

ANFIS parameters Value
Maximum number of training epochs 200
Training error goal 0
Initial training step size 0.01
Step-size decrease rate 0.9
Step-size increase rate 1.1
Number of clusters 15
Maximum number of iterations 200
Minimum improvement in the objective function 1e-5

Figure 3.7: The architecture of ANFIS model [35].

3.3.2.3 Random forest method

Leo Breiman’s and Adele Cutler’s random forest method [113] developed for robust
classification and regression of data problems and solutions could be used for training data sets
in the field and subsets of data in computational simulation models based on the forest of
multiple independent decision trees sampled from the input data [114], [115]. It could identify
a large number of labeled features and important attributes of randomized input parameters that
correspond to the output responses of various systems [116], [117], [118].
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For the first case study, the independent input variables in the original data sets are sixteen
RMS dynamic responses of eight hangers on bridge span 1. Moreover, the input variables
are sixteen RMS responses of eight hangers on bridge span 2. For the second case study,
the input variables are eight RMS magnitudes of the vector sum of two accelerations in the 𝑥-axis
and 𝑦-axis directions for eight hangers on span 1; eight hangers on span 2. The RMS values of
dynamic behavior on each bridge deck were collected from a long-term SHM system, which
were designed as the output variable in the RF analysis.

The schematic diagram of the RF algorithm based on decision trees, in which each training
tree is performed by random training data sets of input variables and output data, as shown in
Figure 3.8. The main idea of the RF approach is to make estimates for the dynamic responses of
hangers to dynamic behavior of the deck during passage of a train, as well as pre-processing tasks
of large data sets. As a result, it can be used for recommendations of important input variables
for training purposes in the ANN and ANFIS models to provide more accurate predictions and
improve better decision making.

Figure 3.8: Random forest with data sets of RMS dynamic responses of structure [35].
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3.3.2.4 Convolutional neural networks

CNNs are a key technology in applications such as medical imaging, audio processing,
object detection, computational finance, natural language processing, and speech recognition,
while CNN approaches are commonly used for classification and regression tasks on image data,
time series data [119], [120], [121], [122]. The benefits of using CNNs for vibration-based SHM
of civil structures are useful for signal regression and image classification tasks in processing
large amounts of data, as well as extracting important features to produce highly accurate
predictions [123], [124], [125].

The CNN consists of three main types of layers: convolutional layer; pooling layer;
fully-connected (FC) layer. Some of CNN architectures for image classification models include
AlexNet, GoogLeNet, SqueezeNet, ResNet, EfficientNet, DarkNet, ShuffleNet, Xception,
MobileNet, DenseNet, VGG [126], [127], [128], [129]. This study used the GoogLeNet CNN
architecture, which is a convolutional neural network with 22 layers deep [130]. The first layer
was selected to edit the maximum image size, with GoogleNet requiring an image size of
224×224×3 for the input images. The final layer was edited to suit the number of classes.
The utilized methods and codes have been implemented using the MATLAB software.
The data sets were divided into two subsets: 70% of training and 30% validation [131], [132].
The model was trained using Adam optimizers, with a mini-batch size of 128 and a limitation
of 30 epochs [133], [134], [135]. The cross-entropy was used as the loss function and
the training rate was 0.001 [136], [137]. The results of wavelet analysis and CNN models
were conducted using the following implementation configuration, including the MATLAB
software R2023b; Processor AMD Ryzen 5 (1600) Six-Core Processor, 3200 MHz, 6 Cores,
12 Logical Processors; Installed Physical Memory (RAM) 128 GB; NVIDIA GeForce
RTX 3060, VRAM 12 GB; and 64-bit Operating System.

3.3.2.5 Evaluation metrics for classification models

The performance of CNN-based classification models was evaluated using three common
metrics: Accuracy, Precision, and Recall. These metrics are based on a number of
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)
samples [138], [139]. As an example, the confusion matrix of two classes is a 2×2 table,
as shown in Table 3.2 [140], [141]. The accuracy, F1-score, macro F1-score and
weighted F1-score metrics of CNN models have the following definition [142], [143]:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%, (3.6)
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F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
, (3.7)

Macro F1 − score =

∑𝑁
𝑖=1(F1 − score)𝑖

𝑁
, (3.8)

Weighted F1 − score =

𝑁∑︁
𝑖=1

𝑤𝑖 ∗ (F1 − score)𝑖, (3.9)

where:

• TN: The response is actually negative and is predicted by the algorithm to be negative.

• FP: The response actually negative, the algorithm predicts it to be positive, this is known
as false positive.

• TP: The response is actually positive; the algorithm predicts it to be positive.

• FN: The response is actually positive, and the algorithm predicts it to be negative.
This is known as a false negative.

• Accuracy: The number of correct classifications made.

• Sensitivity: The proportion of positive responses is correctly identified as positive by
the classifier [144].

• Specificity: The proportion of negative responses is correctly identified as negative by
the classifier [144].

• PPV: The probability of an observation being classified as positive is truly positive.

• NPV: The probability of an observation classified as negative is truly negative.

• 𝑁 is the number of labels (or classes); the weight (𝑤𝑖) of each class is the ratio of the number
of samples in class (or label) 𝑖th divided by total number of samples in data set; the sum
of all sampled weights

∑𝑁
𝑖=1 𝑤𝑖 = 1. The weighted F1-score is used to address imbalanced

datasets.
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Table 3.2: Confusion matrix and evaluation metrics for predicted and true class.

Predicted Class
Positive Negative

True Class

Positive True Positive
(TP)

False Negative
(FN)

Sensitivity, Recall or
True Positive Rate

(TPR)
TP

TP+FN × 100%

Negative False Positive
(FP)

True Negative
(TN)

Specificity or
True Negative Rate

(TNR)
TN

TN+FP × 100%
Precision or

Positive Predictive Value
(PPV)

TP
TP+FP × 100%

Negative Predictive Value
(NPV)

TN
TN+FN × 100%

3.3.2.6 Evaluation metrics of regression models

The assessment measures of prediction regression model accuracy have been utilized
for the evaluation of optimized ANN structures and ANFIS models such as: coefficient of
determination (R2, or R-Squared), root mean squared error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE). Regression accuracy
measurements such as: R-Squared, RMSE, MAE, MAPE and NSE are the most popular metrics
used to evaluate statistical errors between predicted and actual values [145], [146], [147], [148],
[149], [150], [151], [152].

The R2 (or R-Squared) is Pearson correlation [153]. The R2 ranges from 0 to 1, the assessment
criteria of the R2 values as shown Table 3.3 [154], [155], which can be given by the equation:

R2 =

©­­­­«
∑𝑁

𝑖=1

(
𝑂𝑖 −𝑂

) (
𝑆𝑖 − 𝑆

)
√︂∑𝑁

𝑖=1

(
𝑂𝑖 −𝑂

)2
√︂∑𝑁

𝑖=1

(
𝑆𝑖 − 𝑆

)2

ª®®®®¬
2

, (3.10)

where 𝑂𝑖 are the true observed values in the field testing; 𝑆𝑖 are the predicted values of the ANN
and ANFIS models; 𝑂 is the mean of the actual observed values; 𝑆 is the mean of predicted
values; 𝑁 is the number of samples.
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Table 3.3: Evaluation metrics of R2 index.

R2 Interpretation
R2 ≥ 0.75 Substantial

0.50 ≤ R2 < 0.75 Moderate
0.25 ≤ R2 < 0.50 Weak

R2 < 0.25 Very weak

The RMSE is the square root of the average square difference between the observed and
predicted values, which can be calculated as follows [156]:

RMSE =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑂𝑖 − 𝑆𝑖)2, (3.11)

The MAE is the average of the difference between the observed and predicted values, which
can be calculated as the following equation [156]:

MAE =
1
𝑁

𝑁∑︁
𝑖=1

|𝑂𝑖 − 𝑆𝑖 | , (3.12)

The MAPE computes the average absolute percentage difference between the observed
and predicted values that Table 3.4 [157], [158] shows a description of the implementation of
the evaluation MAPE metric for the accuracy of forecast models. It can be used to forecast errors
calculated as the following equation [156]:

MAPE =
100%
𝑁

𝑁∑︁
𝑖=1

����𝑂𝑖 − 𝑆𝑖

𝑂𝑖

���� , (3.13)

Table 3.4: Evaluation measures of MAPE index.

MAPE Interpretation
MAPE < 10% High Accurate

10% ≤ MAPE ≤ 20% Good
20% ≤ MAPE ≤ 50% Reasonable

MAPE > 50% Inaccurate
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The NSE [159], whose magnitude ranges from range from -∞ to 1.0, that determines
the relative magnitude of the predicted variances in the ANN and ANFIS models compared to
the observed data variances in field measurements. The NSE values are closer to 1.0 indicate
variables that can be considered a perfect match of the predicted ANN and ANFIS models to
the observed data. If the magnitude of the NSE is greater than 0.5, it indicates that the predictions
of the optimized ANN models and the ANFIS models can be judged satisfactory [160], [161].
The NSE interpretation metric is used to assess the accurate predictions of the models, as shown
in Table 3.5 [162], [163]. The following equation can be used to calculate the NSE:

NSE = 1 −
∑𝑁

𝑖=1 (𝑆𝑖 −𝑂𝑖)2∑𝑁
𝑖=1

(
𝑂𝑖 −𝑂

)2 . (3.14)

Table 3.5: Evaluation criteria for NSE index.

NSE Interpretation
0.75 < NSE ≤ 1.0 Very Good
0.65 < NSE ≤ 0.75 Good
0.50 < NSE ≤ 0.65 Satisfactory

NSE ≤ 0.50 Unsatisfactory

3.4 Concluding remarks

This chapter presented data acquisition instruments for field bridge load testing and advanced
signal processing approaches. The intelligent data processing approaches were applied to
the data-driven bridge health monitoring system of the existing railway bridge. The primary
applications of the proposed research methods are summarized as follows:

• Optimized ANN and ANFIS algorithms were introduced for the data-driven SHM system
of the railway steel arch bridge.

• Wavelet transforms were proposed to convert 1D vibration signals from the bridge span into
scalogram images used for CNN classification models. GoogLeNet CNN classification
models were proposed to classify the hanger tension force and orbit-shaped pattern
recognition of hanger vibration signals under healthy and unhealthy structural states.

In the current studies, the evaluation metrics consisting of R2, RMSE, MAE, MAPE, and NSE
were utilized for the regression ANN and ANFIS models, while the F1-score, macro F1-score
and weighted F1-score metrics were used for the CNN classification models with the imbalanced
data sets.





Chapter 4

Railway bridge health monitoring using
machine learning

4.1 Introduction

This chapter presents vibration-based SHM of railway steel arch bridge with optimized ANN
and ANFIS regression models [35] that summarized as follows:

• Developing the ANN and ANFIS-assisted models for predicting the future RMS values
of the behavior of the bridge deck based on the historical data sets of the RMS values of
the hanger vibration responses;

• Implementing the GA-based optimization approaches for adjusting the parameters
including the number of hidden neurons in each hidden layer of ANN architectures for
various proposed prediction strategies;

• Comparing the optimized GA-integrated ANN regression models with ANFIS models
using the various performance metrics to assess the ML-based prediction models reliably
and effectively;

• Using correlation coefficient analysis and random forest-based importance scores aiming
to understand the overall relationship between the individual input features and output
variables in the prediction regression models to provide valuable insights and help reduce
the number of the input variables;

• Discussing the advantages and limitations of machine learning assisted approaches (ANN
and ANFIS) for the vibration-based SHM of the complex railway steel arch bridge structure
in Poland.



32 Chapter 4. Railway bridge health monitoring using machine learning

4.2 Bridge being the object of research: Dębica railway steel
arch bridge

In the design of the heavy steel arch bridge hangers, they are crucial structural components in
providing static and dynamic load distribution, structural stability, durability and safety service,
and long-spanning capabilities, as well as costly replacements and maintenance. Existing hanger
damage in the arches of the bridge structure can occur due to various reasons and incidents
such as: overload, fatigue stress, buckling effects, corrosion, and impacts of environmental
factors. Therefore, hanger health monitoring is necessary to identify these potential problems
for arch bridge maintenance and safety management, helping to extend the age of the structure
and ensure the safety of the steel bridge. For example, steel hanger design for some arch bridge
structures in Poland, as shown in Figure 4.1.

In the context of steel arch bridges, the hanger being the weakest link is indeed
a critical structural component responsible for transmitting and bearing tension forces,
particularly the vertical train or vehicle loads applied to the bridge [164], [165]. For example,
the impacts of the inclined and vertical hanger element replacements on the time-history
seismic structural behavior were developed for health monitoring of long-span cable-stayed
bridge under multi-support earthquake excitation [166]. As part of this related case, estimating
the tension forces of suspension bridge hanger cables was proposed using vision-based systems
and the image-based back analysis method [133]. Therefore, hanger vibration-based health
monitoring is a proactive and essential practice for the safe operation and longevity of steel
arch bridge, where the tension force of the hanger is considered one of the most important tasks
enhancing through intelligent data processing and management of the railway SHM system.

Figure 4.1: Design of hangers for some steel arch bridges in Poland: a) Viaduct bridge in
Hucisko (DW 792 km 10+785); b) Vistula railway arch bridge in Krakow; c) Steel arch bridge
on the Kędzierzyn-Koźle (DK40); d) Dębica railway steel arch bridge structure.
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The Dębica bridge is two single-track railway arch bridge structures as shown in Figure 4.2.
The steel bridge structure consists of three main bridge spans of 72.8 m length and one prestressed
concrete span of 17 m. It spans the Wisłoka River at km 108.404 of line no. 91 Kraków-Medyka
in Poland. The width of the steel structure is 5.4 m and the structural width of the railway arch
bridge is 4.4 m. The height of the railway bridge structure in the middle of the span is 13.96 m.
The steel structure is made of steel grade S355J2+N (18G2A). Table 4.1 and Figure 4.3 show
the dimensions of the structural components of the steel arch bridge spans.

Figure 4.2: The bridge information management of Dębica railway steel arch bridge in Poland.

The two main steel girders are I-shaped beams with the largest cross-sectional dimensions,
for example: section height of 1910 mm; flange width of 750 mm; web thickness of 16 mm;
flange thickness of 40 mm. The radius of the two steel arch ribs is approximately 58.98 m with
hollow rectangular cross sections whose height is 880 mm and width is 670 mm with several
different cross-sectional dimensions at different locations in the profile; the largest thickness
is 40 mm and the smallest thickness is 20 mm. There are 23 floor steel I-shaped beams that
have the highest height and width of 920 mm and 400 mm, respectively. The two steel box-shaped
beams at the end of two main girders have a height of 905 mm and a width of 920 mm
with thicknesses of 40 mm and 20 mm. The eight steel circular tube beams are weld to
connect two arch ribs that have outer and inner diameters of 508 and 486 mm, respectively.
With 20 steel circular solid hangers have diameters of 80 mm and 100 mm. The reinforced
concrete deck slab has a thickness of 300 mm.
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Figure 4.3: Design cross-sectional dimensions of structural members of steel arch bridge
span: a) arch ribs; a) transverse beams; c) arch transverse beams; d) deck transverse beams;
e) main girders.

Table 4.1: Statistical dimensions of main structural members.

Structural components Cross-sections Geometric properties Dimensions (mm)

Arch ribs Hollow rectangle or box
Outer width of the box 670
Outer height of the box 860 ÷ 880

Wall thickness 20 ÷ 40

Arch transversal beams Circular tube Inner radius of the tube 486
Outer radius of the tube 508

Main girders I-shaped section

Width of the top or bottom flanges 650, 750
Overall depth 1910

Flange thicknesses 40
Web thicknesses 16

Tie transversal beams I-shaped section

Width of the top flanges 300
Width of the bottom flanges 400

Overall depth 695 ÷ 920
Flange thicknesses 14 ÷ 20
Web thicknesses 20 ÷ 40

Transversal beams
Hollow rectangle or box

Outer width of the box 920
at the abutments or piers Outer height of the box 885; 905

Wall thickness 20; 40
Hangers Circular solid Radius 80; 100

Deck Rectangle Width 5384
Height 300 ÷ 348
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4.3 SHM system used for Dębica railway bridge

The vibration-based SHM system was installed in spans 1 and 2, with a more detailed
description as shown in Figure 4.4, including 16 double axis-𝑥 and -𝑦 sensors for 8 per
span 16 total, 1 IEPE (piezoelectric) per each span. The sampling frequency of the SHM
system was 1024 resampled to 128 for storage. Data was recorded in nine-month period between
December 2019 and September 2020. The hangers in span 1, namely: N41, N51, N61, N71, S41,
S51, S61, and S71 were equipped with one biaxial accelerometer each to record the dynamic
responses of the structure in the 𝑥- and 𝑦-directions. The other hangers in span 2, namely: N42,
N52, N62, N72, S42, S52, S62, and S72 were equipped with one biaxial accelerometer each to
collect the dynamic behavior history of the structural components under train events.

Figure 4.4: Vibration-based SHM system of Dębica railway steel arch bridge: a), b), c), d), e), f),
g), h) accelerometers for hangers; i) piezoelectric accelerometer for the deck; j) data acquisition
system; k) welded connection of hanger with I-shaped beam; l) welding connection of hanger
with arch rib; m) hangers [35].
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4.4 Vibration-based SHM of Dębica railway steel bridge with
optimized ANN and ANFIS

4.4.1 Correlation coefficient and random forest analysis of SHM data sets

4.4.1.1 Case study 1

The correlation matrix of data sets is a descriptive multivariate statistic for the correlation
analysis between various variables using the R software [167]. Pairing correlation coefficients
could be estimated any values in the range from −1 to +1, which are free units of measurement.
The values of the correlation coefficient closer to −1 indicate that the degree of correlation
is a perfect non-linear (negative) relationship. The correlation coefficients closer to +1 mean that
the level of correlation is a positive linear relationship. For example, correlation coefficients
between 0.7 and 0.89 indicate that variables could be considered as a strong correlation;
moderate correlation between 0.4 and 0.69; weak correlation between 0.1 and 0.39 as discussed
in the literature [168], [169].

Figure 4.5 shows the visualization of the correlation coefficient matrix between the RMS
of the deck bridge span 1 and the RMS of the dynamic behavior of the hangers. The deck
was strongly correlated with N41x(0.758), N41y(0.756), S51y(0.734), S61y(0.720); and
had a weak correlation with N51x(0.399) and S41x(0.167). Correlation coefficients between
0.3 and 0.5 indicated that the variables had a moderate correlation with the RMS of the deck,
such as: N71y(0.694), S51x(0.594), N61y(0.571), N71x(0.536), S71y(0.531), S41y(0.486),
N61x(0.464), S71x(0.451), N51y(0.439), S61x(0.430).

Figure 4.6 shows the correlation coefficients between the RMS values of the deck bridge
span 2 and the RMS values of the dynamic responses of the hangers. RMS magnitude of
the deck had a strong correlation with the parameters: S42y(0.843), S42x(0.782), N42y(0.779),
S52y(0.765), S52x(0.762), S72y(0.737), N42x(0.722). RMS value of the deck was weekly
correlated with S62y(0.277) and S62x(0.273). RMS value of the deck was moderately correlated
with other parameters such as: N52y(0.624), N52x(0.600), N72y(0.600), N62x(0.565),
N72x(0.561), N62y(0.539), and S72x(0.494).
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Figure 4.5: Correlation coefficient of 16 RMS dynamic responses (𝐴𝑥 and 𝐴𝑦) for 8 hangers and
RMS of the deck in bridge span 1 [35].

Figure 4.6: Correlation coefficient of 16 RMS dynamic responses (𝐴𝑥 and 𝐴𝑦) for 8 hangers and
RMS of the deck on bridge span 2 [35].
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Figure 4.7 shows the results of the variable importance measures of the RMS dynamic
responses of the hangers with the RMS dynamic behavior of the the deck in spans 1 and
2 using the random forest algorithm in the R software. From the left plot of span 1 in
Figure 4.7, it indicates that the importance measure in the simulation was highest for the variable
N41(x∼21.89, y∼20.61). The weak influences on the dynamic behavior of span 1 were in
variables N51(x∼1.52, y∼1.59); S41(x∼1.67, y∼1.81); S71(x∼1.58, y∼2.56); N61(x∼2.02,
y∼3.78). Furthermore, the variables for S51(y∼15.42) and S61(y∼13.02) had higher importance
scores in the RF analysis than other variables for N71(x∼5.22, y∼8.97); S51(x∼3.51) and
S61(x∼2.69). Based on the RF ranking that could divide into two groups, for example: (N41x,
N41y, S51y, S61y) for the most important variables and (N51x, N51y, N61x, N61y, N71x, N71y,
S41x, S41y, S51x, S61x, S71x, S71y) for subsets with lower ranking values. The right graph
in Figure 4.7 shows the results of the RF analysis for bridge span 2, in which two groups
could be described for the variables (S42y∼71.54, N42y∼41.60, S52x∼30.20, S42x∼26.77,
S52y∼23.10, N42x∼14.26, S72y∼10.18) with the highest values of the characteristic measures;
and other variables (N52x∼5.20, N52y∼4.94, N62x∼5.76, N62y∼6.4, N72y∼3.91, N72x∼3.30,
S62x∼3.00, S62y∼2.98, S72x∼5.74) with less effect on the RF scores.

Figure 4.7: The results of random forest analysis for 16 input RMS accelerometers on the bridge
spans 1 and 2 [35].
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4.4.1.2 Case study 2

Figure 4.8 reports a visualization of the correlation matrix between the RMS of the deck
bridge span 1 and the RMS of the dynamic responses of the hangers. The RMS of the deck
had a strong correlation with N41(0.778); weak correlation with S41(0.263); moderate
correlation with variables: S51(0.673), N71(0.663), S61(0.561), N61(0.529), S71(0.501),
N51(0.427). The correlation coefficients of the RMS values between the hangers ranged from
0.309 (S41-N51) to 0.828 (N71-N41). Two groups were introduced: (N41, N51, N61, N71) and
(S41, S51, S61, S71) the correlation coefficients of each group having values greater than 0.4
as moderate. The correlation coefficient values were evaluated between these two groups ranged
from more than 0.309 regarded as weak to 0.792 considered as strong.

Figure 4.9 visualizes the correlation matrix between the RMS of the deck bridge
span 2 and the RMS of the dynamic responses of the hangers. The RMS of the deck
had a strong correlation with S42(0.818), S52(0.782), N42(0.754); weak correlation with
S62(0.285); moderate correlation with variables: N52(0.646), S72(0.604), N72(0.588),
N62(0.564). The relationships between the hangers showed that the correlation coefficient
of the paired S42-N42 was 0.879 of the highest value, indicating that two paired variables
had a strong correlation, the paired S62-N62 whose magnitude was −0.053 which could be
uncorrelated when close to 0. Other paired variables of hangers had correlation coefficients of
more than 0.331 (S62-N42).

For the classification task, the RF approach was used to measure the variable importance
of individual characteristics, indicating that there were eight model parameters in each bridge
span that served as RF input features shown in Figure 4.10. According to the IncNodePurity
(Increase in Node Purity in RF algorithm) index of the left plot for span 1, the hanger N41
was very important with a value of 30.68, while the contribution of hanger S41 was the smallest
with a value of 4.44. The contribution of hangers N71 and S51 was higher than other input
variables with values equal to 18.67 and 18.5, respectively. The ranking of the contribution from
bands 6.83 to 12.27 corresponding to hangers S61, S71, N61, and N51 was less important than
hangers N41, N71, and S51. Compared to the results of the correlation analysis in Figure 4.10,
which could divide one group with correlation values greater than 0.6 and the other group with
fewer values than 0.6.
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Figure 4.8: Correlation coefficient of 8 RMS dynamic responses (𝐴 =

√︃
𝐴2
𝑥 + 𝐴2

𝑦) for 8 hangers
and RMS of the deck on bridge span 1 [35].

Figure 4.9: Correlation coefficient of 8 RMS dynamic responses (𝐴 =

√︃
𝐴2
𝑥 + 𝐴2

𝑦) for 8 hangers
and RMS of the deck on bridge span 2 [35].
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As presented in the right plot of Figure 4.10 for bridge span 2, the hangers S42, S52, and N42
had the strongest influence on the IncNodePurity values with strength values of 64.71, 55.57, and
45.63, respectively, while the hanger S62 had the lowest impact with a value of 8.82. The hangers
N52, N62, N72, and S72 also had a significant effect with IncNodePurity values of 26.54, 21.73,
18.23, and 17.14, respectively. In addition, these hangers had a moderate correlation considering
the correlation coefficient analysis. Therefore, based on these findings, the input variables could
be divided into two groups such that one group had a strong correlation (N42, S42, S52), and
the other group had a moderate and weak correlation (N52, N62, N72, S62, S72).

Figure 4.10: The results of random forest analysis for 8 input RMS variables on bridge
spans 1 and 2 [35].

4.4.2 ANN and ANFIS regression models for SHM of span 1

The predicted results of the optimized ANN models are summarized in Table 4.2 for the RMS
of dynamic behavior in the deck span 1 that were produced from the RMS values of dynamic
responses on eight hangers using the GA optimization approach of the ANN architecture
corresponding to six case studies. Based on the investigation of optimized ANN architectures,
the influence of the number of hidden units in various layers for the cases 1, 2, 3, 4, 5 and
6 as shown in Figures 4.11, 4.13, 4.15, 4.17, 4.19 and 4.21, respectively. The accuracy of
the optimized ANN structures could be determined corresponding to the lowest RMSE values
of the optimal zone in the range with the number of hidden units, such as: {1,..., 30} neurons in
the first layer, the second layer and the third layer.
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Table 4.2: The results of optimized ANN models for bridge span 1 [35].

Strategies Hidden
Layers Optimized Neurons Data Sets R2 RMSE MAE MAPE NSE

Case 1 (16 inputs):
N41x, N41y, N51x,
N51y, N61x, N61y,
N71x, N71y, S41x,
S41y, S51x, S51y, S61x,
S61y, S71x, S71y

1 {9} Training 0.83 0.0543 0.0379 15.27 0.83
Testing 0.71 0.0656 0.0391 16.22 0.70

2 {15, 12} Training 0.84 0.0518 0.0366 14.53 0.84
Testing 0.78 0.0555 0.0386 16.10 0.78

3 {17, 11, 7} Training 0.85 0.0501 0.0357 14.28 0.85
Testing 0.77 0.0570 0.0375 15.82 0.77

Case 2 (4 inputs):
N41x, N41y S51y, S61y

1 {27} Training 0.73 0.0681 0.0415 18.40 0.73
Testing 0.70 0.0662 0.0426 17.77 0.69

2 {10, 9} Training 0.80 0.0583 0.0401 16.81 0.80
Testing 0.73 0.0626 0.0419 17.54 0.72

3 {26, 16, 2} Training 0.83 0.0541 0.0384 15.34 0.83
Testing 0.74 0.0615 0.0417 18.00 0.73

Case 3 (12 inputs):
N51x, N51y, N61x,
N61y, N71x, N71y,
S41x, S41y, S51x, S61x,
S71x, S71y

1 {23} Training 0.76 0.0646 0.0403 17.08 0.76
Testing 0.69 0.0673 0.0439 18.59 0.68

2 {26, 16} Training 0.82 0.0551 0.0388 15.40 0.82
Testing 0.72 0.0631 0.0427 17.95 0.72

3 {19, 15, 10} Training 0.83 0.0532 0.0378 14.94 0.83
Testing 0.72 0.0630 0.0433 18.61 0.72

Case 4 (8 inputs): N41,
N51, N61, N71, S41,
S51, S61, S71

1 {24} Training 0.67 0.0752 0.0429 19.62 0.67
Testing 0.76 0.0587 0.0418 17.18 0.76

2 {17, 30} Training 0.79 0.0591 0.0388 15.74 0.79
Testing 0.74 0.0611 0.0419 17.65 0.74

3 {24, 10, 9} Training 0.79 0.0601 0.0400 15.79 0.79
Testing 0.73 0.0617 0.0416 17.32 0.73

Case 5 (3 inputs): N41,
N71, S51

1 {10} Training 0.65 0.0778 0.0437 20.51 0.65
Testing 0.75 0.0592 0.0429 17.75 0.75

2 {13, 17} Training 0.75 0.0655 0.0421 17.84 0.75
Testing 0.74 0.0607 0.0432 18.10 0.74

3 {20, 16, 13} Training 0.77 0.0632 0.0413 17.34 0.77
Testing 0.74 0.0613 0.0426 18.12 0.73

Case 6 (5 inputs): N51,
N61, S41, S61, S71

1 {29} Training 0.59 0.0845 0.0515 22.92 0.58
Testing 0.63 0.0730 0.0516 21.17 0.63

2 {19, 10} Training 0.72 0.0690 0.0474 19.11 0.72
Testing 0.63 0.0736 0.0512 20.92 0.62

3 {14, 23, 10} Training 0.72 0.0695 0.0470 19.40 0.72
Testing 0.64 0.0716 0.0496 20.83 0.64

For the case 1 with 16 inputs, the result of the testing data sets in which the use of
one layer (R2∼0.71 moderate, NSE∼0.70 good) could not be sufficient to provide high predictive
precision compared to the use of two layers (R2∼0.78 substantial, NSE∼0.78 very good)
and three layers (R2∼0.77 substantial, NSE∼0.77 very good). Based on the R2, MAE and
NSE values of the case 2 with 4 inputs, it can be observed that the testing data sets using
two layers (R2∼0.73 moderate, MAE∼0.0419, NSE∼0.72 good) and three layers (R2∼0.74
moderate, MAE∼0.0417, NSE∼0.73 good) in the optimal ANN architecture were better than
using one layer (R2∼0.70 moderate, MAE∼0.0426, NSE∼0.69 good). For the case 3 with 12
inputs, the best performances were obtained with optimal ANN models, which provided accurate
testing data sets for using one layer (R2∼0.69 moderate, MAPE∼18.59 good, NSE∼0.68 good),
two layers (R2∼0.72 moderate, MAPE∼17.95 good, NSE∼0.72 good) and three layers (R2∼0.72
moderate, MAPE∼18.61 good, NSE∼0.72 good).
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For the case 4 with 8 inputs, the result of testing data sets in optimized ANN models using
one layer (R2∼0.76 substantial, MAPE∼17.18 good, NSE∼0.76 very good) was better than using
two layers (R2∼0.74 moderate, MAPE∼17.65 good, NSE∼0.74 good) and three layers (R2∼0.73
moderate, MAPE∼17.32 good, NSE∼0.73 good). The results of the case 5 with 3 inputs showed
that testing data sets in optimized ANN models performed the best using one layer (R2∼0.75
moderate, MAPE∼17.75 good, NSE∼0.75 good); two layers (R2∼0.74 moderate, MAPE∼18.10
good, NSE∼0.74 good), and three layers (R2∼0.74 moderate, MAPE∼18.12 good, NSE∼0.73
good). From the case 6 with 5 inputs, there was a significant decrease in the metrics of using
one layer (R2∼0.63 moderate, MAPE∼21.17 reasonable, NSE∼0.63 satisfactory); two layers
(R2∼0.63 moderate, MAPE∼20.92 reasonable, NSE∼0.62 satisfactory); and three layers
(R2∼0.64 moderate, MAPE∼20.83 reasonable, NSE∼0.64 satisfactory). However, the training
data sets of two and three layers had a higher R2, MAPE, and NSE-value than using one layer
for the cases 4, 5 and 6.

The results of the regression graphs between the predicted and actual data sets of
the optimized ANN models for training, testing, and all data sets in cases 1, 2, 3, 4, 5 and 6
as shown in Figures 4.12, 4.14, 4.16, 4.18, 4.20, and 4.22, respectively. Overall, the optimized
ANN models performed very well with all R score values greater than 0.75 for predicting all
data sets. The performance of the case 6 achieved the lowest R value and slope of (0.75, 0.58)
one layer, (0.79, 0.67) two layers, and (0.75, 0.58) three layers, while the ANN models of
the case 3 had the best performance with the R value and slope of (0.83, 0.71), (0.84, 0.80),
and (0.86, 0.76) for one, two, and three layers, respectively. In addition, the results of the cases
1, 2, and 3 indicated that the ANN model of the case 1 had the best performance of two layers
with R values (0.86 training, 0.87 testing) and slopes (0.75 training, 0.82 testing), followed by
the case 2 with R values (0.84 training, 0.84 testing) and slopes (0.73 training, 0.79 testing) under
three layers of ANN model; the case 3 with R values (0.87 training, 0.84 testing) and slopes
(0.76 training, 0.77 testing) under three layers of optimized ANN model. With comparison of
ANN models in all cases 4, 5, and 6, it can be observed that the case 5 had the best accuracy
of updated two layers with the R scores (0.79 training, 0.84 testing) and slopes (0.74 training,
0.84 testing), followed by the case 4 with the R values (0.81 training, 0.86 testing) and slopes
(0.67 training, 0.76 testing) under two layers.
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Figure 4.11: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 1: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.12: Relationship between predicted and actual values in optimized ANN models for
the case 1: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.13: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 2: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.14: Relationship between predicted and actual values in optimized ANN models for
the case 2: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.15: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 3: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.16: Relationship between predicted and actual values in optimized ANN models for
the case 3: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.17: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 4: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.18: Relationship between predicted and actual values in optimized ANN models for
the case 4: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.19: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 5: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.20: Relationship between predicted and actual values in optimized ANN models for
the case 5: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.21: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 6: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.22: Relationship between the predicted and actual values in optimized ANN models
for the case 6: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Table 4.3 shows the results of the ANFIS models to predict the RMS value of the dynamic
behavior on the deck span 1 produced from the RMS values of the dynamic responses of
the hangers. It could be seen that the ANFIS model of the case 2 with 4 input variables
had the best prediction accuracy in testing data (R2∼0.75 substantial, MAPE∼22.63 reasonable,
NSE∼0.74 good). The ANFIS model in the case 6 had the lowest accurate prediction focused
on the testing part that the magnitudes of R2, MAPE, and NSE reach values of 0.56 moderate,
30.53 reasonable, and 0.56 satisfactory, respectively.

Based on R2 and MAPE criteria, it can be seen that all optimized ANN models showed better
results than the ANFIS models developed. For example, the R2 values of training and testing
data sets obtained from the ANFIS model for the case 1 are 0.69 and 0.72 which were lower than
the updated ANN models with three layers, are 0.85 and 0.77, respectively. In the case 2, R2 and
MAPE results of (0.71, 23.22%) and (0.75, 22.63%) were obtained for training and testing data
of the ANFIS model, respectively, where these values were (0.83, 15.34%), (0.74, 18.00%)
for the optimized ANN model with three layers, which indicated better prediction. As a result
of the case 3, R2 and MAPE of the ANFIS model were 0.67 and 25.57% for testing data,
while the values of the ANN model with three layers were 0.72 and 18.61% more accurate
compared to this ANFIS model. With the case 4, ANFIS model provided the lower value of R2,
which was 0.70, while the R2 value of the GA-based ANN model with three layers was 0.73
for testing data. The ANN model with three layers for the testing data of the case 5 produced
the highest R2 value of 0.74, while the value R2 of ANFIS model was 0.71. The lowest value of
R2 obtained from the ANFIS model whose magnitude was 0.56 for the testing data of the case 6,
while the R2 value of ANN model with three layers was 0.64.

Table 4.3: The results of ANFIS models for bridge span 1 [35].

Strategies Data Sets R2 RMSE MAE MAPE NSE
Case 1 (16 inputs): N41x, N41y, N51x, N51y, N61x, N61y, N71x,
N71y, S41x, S41y, S51x, S51y, S61x, S61y, S71x, S71y

Training 0.69 0.0717 0.0421 20.95 0.69
Testing 0.72 0.0659 0.0424 23.52 0.72

Case 2 (4 inputs): N41x, N41y S51y, S61y Training 0.71 0.0718 0.0426 23.22 0.71
Testing 0.75 0.0578 0.0413 22.63 0.74

Case 3 (12 inputs): N51x, N51y, N61x, N61y, N71x, N71y,
S41x, S41y, S51x, S61x, S71x, S71y

Training 0.64 0.0777 0.0466 24.09 0.64
Testing 0.67 0.0724 0.0479 25.57 0.67

Case 4 (8 inputs): N41, N51, N61, N71, S41,
S51, S61, S71

Training 0.67 0.0749 0.0460 24.15 0.67
Testing 0.70 0.0657 0.0471 27.14 0.70

Case 5 (3 inputs): N41, N71, S51 Training 0.66 0.0760 0.0433 23.31 0.66
Testing 0.71 0.0647 0.0438 24.08 0.71

Case 6 (5 inputs): N51, N61, S41, S61, S71 Training 0.59 0.0845 0.0527 28.42 0.59
Testing 0.56 0.0795 0.0546 30.53 0.56
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Figures 4.23 and 4.24 show that the R score values for the ANFIS models were carried out
from the case 1 to 6 with all regression plots of testing, training, and all data sets. The R score
measures the strength of the relationship between the actual and predicted samples of ANFIS
models in the range from 0 to 1. The higher R value closer to 1 indicates better prediction
regression model accuracy. Regarding the R score for all data sets, the ANFIS models performed
very well from the lowest R value of 0.76 (case 6) to the highest value of 0.84 (case 2). In terms
of the cases 1, 2, and 3, it can be observed that the result of the case 2 (R∼0.86 testing,
R∼0.84 training) had the highest prediction accuracy, the lowest performance was found for
the case 3 (R∼0.81 testing, R∼0.80 training). The comparison of all cases 4, 5, and 6 indicated
that the prediction accuracy of the case 5 (R∼0.84 testing, R∼0.81 training) was higher than
in the case 4 (R∼0.83 testing, R∼0.82 training) and the case 6 (R∼0.75 testing, R∼0.76 training).

Figure 4.23: Relationship between predicted and actual values in ANFIS models: (a), (b), (c) for
the case 1; (d), (e), (f) for the case 2; (g), (h), (i) for the case 3; (units: m/s2) [35].
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Figure 4.24: Relationship between predicted and actual values in ANFIS models: (a), (b), (c) for
the case 4; (d), (e), (f) for the case 5; (g), (h), (i) for the case 6; (units: m/s2) [35].

4.4.3 ANN and ANFIS regression models for SHM of span 2

The predicted results and the summary of the updated ANN models are shown in
Tables 4.4 for the prediction of the RMS values of the dynamic behavior in the deck span
2 based on the RMS values of the dynamic responses of the hangers. Figures 4.25, 4.27,
4.29, 4.31, 4.33, 4.35 illustrated the influence of the number of hidden neurons in various
hidden layers of ANN models for the cases 7, 8, 9, 10, 11 and 12, respectively. The lowest
RMSE values have been carried out to determine the best ANN architecture.
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Table 4.4: The results of optimized ANN models for bridge span 2 [35].

Strategies Hidden
Layers Optimized Neurons Data Sets R2 RMSE MAE MAPE NSE

Case 7 (16 inputs):
N42x, N42y, N52x,
N52y, N62x, N62y,
N72x, N72y, S42x,
S42y, S52x, S52y, S62x,
S62y, S72x, S72

1 {15} Training 0.76 0.0948 0.0612 17.90 0.76
Testing 0.78 0.0918 0.0637 18.46 0.78

2 {14, 21} Training 0.83 0.0791 0.0581 16.01 0.83
Testing 0.75 0.0979 0.0628 17.98 0.75

3 {17, 13, 11} Training 0.84 0.0770 0.0568 15.38 0.84
Testing 0.76 0.0977 0.0623 17.71 0.75

Case 8 (7 inputs):
N42x, N42y,
S42x, S42y, S52x, S52y,
S72y

1 {10} Training 0.76 0.0950 0.0635 18.48 0.76
Testing 0.76 0.0964 0.0655 18.47 0.76

2 {23, 8} Training 0.78 0.0899 0.0622 17.85 0.78
Testing 0.77 0.0936 0.0643 18.62 0.77

3 {25, 19, 11} Training 0.77 0.0915 0.0617 18.07 0.77
Testing 0.79 0.0904 0.0628 18.39 0.79

Case 9 (9 inputs): N52x,
N52y, N62x, N62y,
N72y, N72x, S62x,
S62y, S72x

1 {20} Training 0.69 0.1071 0.0679 20.39 0.69
Testing 0.72 0.1053 0.0712 20.42 0.71

2 {25, 14} Training 0.78 0.0909 0.0646 18.07 0.78
Testing 0.69 0.1124 0.0722 21.27 0.67

3 {25, 23, 13} Training 0.77 0.0929 0.0635 18.01 0.77
Testing 0.70 0.1084 0.0722 21.11 0.70

Case 10 (8 inputs): N42,
N52, N62, N72, S42,
S52, S62, S72

1 {18} Training 0.75 0.0985 0.0646 18.66 0.75
Testing 0.77 0.0902 0.0650 18.31 0.77

2 {24, 14} Training 0.74 0.0977 0.0629 18.68 0.74
Testing 0.78 0.0929 0.0653 18.45 0.78

3 {25, 18, 9} Training 0.79 0.0890 0.0605 17.08 0.79
Testing 0.74 0.1022 0.0671 19.26 0.73

Case 11 (3 inputs): N42,
S42, S52

1 {13} Training 0.73 0.0995 0.0645 19.28 0.73
Testing 0.76 0.0959 0.0663 19.29 0.76

2 {21, 2} Training 0.76 0.0950 0.0641 18.78 0.76
Testing 0.76 0.0960 0.0663 19.09 0.76

3 {21, 7, 16} Training 0.75 0.0959 0.0633 18.69 0.75
Testing 0.77 0.0935 0.0647 18.99 0.77

Case 12 (5 inputs): N52,
N62, N72, S62, S72

1 {14} Training 0.68 0.1088 0.0714 20.66 0.68
Testing 0.68 0.1111 0.0774 21.58 0.68

2 {23, 19} Training 0.69 0.1077 0.0704 20.40 0.69
Testing 0.70 0.1081 0.0753 20.93 0.70

3 {20, 18, 11} Training 0.69 0.1077 0.0708 20.68 0.69
Testing 0.70 0.1074 0.0749 20.73 0.70

For the case 7, the optimized ANN models showed the prediction accuracy of testing
data sets for one layer (R2∼0.78 substantial, MAPE∼18.46 good, NSE∼0.78 very good);
two layers (R2∼0.75 substantial, MAPE∼17.98, NSE∼0.75 good) and three layers (R2∼0.76
substantial, MAPE∼17.71 good, NSE∼0.75 good). For the case 8, the prediction accuracies of
optimized ANN models were obtained for testing data sets using one layer (R2∼0.76 substantial,
MAPE∼18.47 good, NSE∼0.76 very good); two layers (R2∼0.77 substantial, MAPE∼18.62
good, NSE∼0.77 very good) and three layers (R2∼0.79 substantial, MAPE∼18.39 good,
NSE∼0.79 very good). For the case 9, the prediction accuracy values of testing data sets in
updated ANN models were achieved for one layer (R2∼0.72 moderate, MAPE∼20.42 reasonable,
NSE∼0.71 good); two layers (R2∼0.69 moderate, MAPE∼21.27 reasonable, NSE∼0.67 good)
and three layers (R2∼0.70 moderate, MAPE∼21.11 reasonable, NSE∼0.70 good).
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Furthermore, the case 10 showed that the forecast accuracy values of the ANN models
for testing data sets with one layer (R2∼0.77 substantial, MAPE∼18.31 good, NSE∼0.77
very good); two layers (R2∼0.78 substantial, MAPE∼18.45 good, NSE∼0.78 very good)
and three layers (R2∼0.74 moderate, MAPE∼19.26 good, NSE∼0.73 good). For the case 11,
the ANN models showed the best prediction accuracy of testing data sets for one layer (R2∼0.76
substantial, MAPE∼19.29 good, NSE∼0.76 very good); two layers (R2∼0.76 substantial,
MAPE∼19.09 good, NSE∼0.76 very good) and three layers (R2∼0.77 substantial, MAPE∼18.99
good, NSE∼0.77 very good). For the case 12, the forecast accuracy values of ANN models
were collected for testing data sets using one layer (R2∼0.68 moderate, MAPE∼21.58 reasonable,
NSE∼0.68 good); two layers (R2∼0.70 moderate, MAPE∼20.93 reasonable, NSE∼0.70 good)
and three layers (R2∼0.70 moderate, MAPE∼20.73 reasonable, NSE∼0.70 good).

A visualization of the linear regression plots between predicted and observed samples in
the optimized ANN models are shown in Figures 4.26, 4.28, 4.30, 4.32, 4.34, 4.36 for the cases
7, 8, 9, 10, 11, and 12 respectively. All optimized ANN models had the best performance and
prediction accuracy of R values greater than 0.8 for all data sets under various hidden layers.
The ANN model of the case 7 provided the most accurate prediction of R value (0.89) and
slope (0.82) with three layers, while the result of the case 12 provided the lowest R value
(0.80) and slope (0.66) in the ANN model with one layer to predict all data sets. Based on
the results of the comparison in all cases 7, 8 and 9 indicating that the case 7 with three layers
had the highest R values (0.90 training, 0.88 testing) and slopes (0.82 training, 0.83 testing),
followed by the case 8 with R values (0.86 training, 0.88 testing) and slopes (0.75 training,
0.80 testing) under three layers; and then the case 9 with R values (0.83 training, 0.83 testing)
and slopes (0.71 training, 0.75 testing) under three layers. In addition, the ANN model with
three layers in the case 10 had the best performance with R values (0.89 training, 0.83 testing)
and slopes (0.80 training, 0.79 testing), while the case 11 (three layers) had high values of
R scores (0.85 training, 0.87 testing) and slopes (0.73 training, 0.80 testing) and the case 12
(three layers) with R values (0.82 training, 0.81 testing) and slopes (0.68 training, 0.72 testing).
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Figure 4.25: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 7: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.26: Relationship between predicted and actual values in optimized ANN models for
the case 7: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.27: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 8: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.28: Relationship between predicted and actual values in optimized ANN models for
the case 8: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.29: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 9: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.30: Relationship between predicted and actual values in optimized ANN models for
the case 9: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.31: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 10: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.32: Relationship between predicted and actual values in optimized ANN models for
the case 10: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.33: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 11: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.34: Relationship between predicted and actual values in optimized ANN models for
the case 11: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Figure 4.35: The influence of the number of neurons in hidden layers on RMSE index of
training data in optimized ANN models for the case 12: a) neurons in first layer versus
second layer in two hidden layers; b) first layer versus second layer; c) first layer versus third layer;
d) second layer versus third layer in three hidden layers [35].

Figure 4.36: Relationship between predicted and actual values in optimized ANN models for
the case 12: (a), (b), (c) for 1 hidden layer; (d), (e), (f) for 2 hidden layers; (g), (h), (i) for
3 hidden layers; (units: m/s2) [35].
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Table 4.5 shows the results of the ANFIS models for predicting the RMS values of
the vibration signals on the deck span 2 from the RMS values of the vibration signals of
the hangers. From the results of R2, RMSE, MAE, MAPE and NSE metrics, it can be concluded
that ANFIS models offered a less reliable and accurate prediction in optimized ANN models.
The best ANFIS model was in the case 8 with MAPE and NSE values of (22.10% reasonable, 0.82
very good) and (25.20% reasonable, 0.73 good) for training and testing data sets, respectively.
The lowest values of MAPE (29.62% reasonable) and NSE (0.68 good) were for the testing part
in the case 12, while these values of the training part were 29.76% reasonable for MAPE and
0.67 good for NSE.

From testing data sets for the case 7, the optimized ANN model (three layers) with MAPE
(17.71% good) and NSE (0.75 good) performed better than the ANFIS model with MAPE
(21.92% reasonable) and NSE (0.74 good). In the case 8 during the testing phase, the values of
MAPE and NSE were the testing samples of the ANFIS model (25.20% reasonable, 0.73 good)
lower performance prediction accuracy than the calibrated ANN model (three layers) with MAPE
and NSE values of 18.39% good and 0.79 very good, respectively. Followed by the ANFIS model
of the case 9 with values of (MAPE∼26.76% reasonable, NSE∼0.64 satisfactory) had lower
predictive ability than the ANN model (MAPE∼21.11% reasonable, NSE∼0.70 good) for
optimized three layers of testing phase.

Table 4.5: The results of ANFIS models for bridge span 2 [35].

Strategies Data Sets R2 RMSE MAE MAPE NSE
Case 7 (16 inputs): N42x, N42y, N52x, N52y, N62x, N62y, N72x,
N72y, S42x, S42y, S52x, S52y, S62x, S62y, S72x, S72

Training 0.78 0.0925 0.0597 19.82 0.78
Testing 0.75 0.0944 0.0642 21.92 0.74

Case 8 (7 inputs): N42x, N42y, S42x, S42y, S52x, S52y, S72y Training 0.82 0.0844 0.0595 22.10 0.82
Testing 0.73 0.0966 0.0654 25.20 0.73

Case 9 (9 inputs): N52x, N52y, N62x, N62y, N72y, N72x, S62x,
S62y, S72x

Training 0.69 0.1101 0.0704 24.81 0.69
Testing 0.65 0.1108 0.0730 26.76 0.64

Case 10 (8 inputs): N42, N52, N62, N72, S42, S52, S62, S72 Training 0.73 0.1018 0.0661 23.74 0.73
Testing 0.77 0.0893 0.0652 23.13 0.77

Case 11 (3 inputs): N42, S42, S52 Training 0.73 0.1023 0.0659 24.18 0.73
Testing 0.77 0.0894 0.0638 23.03 0.77

Case 12 (5 inputs): N52, N62, N72, S62, S72 Training 0.67 0.1138 0.0738 29.76 0.67
Testing 0.68 0.1063 0.0738 29.62 0.68

Generally, in terms of all cases 10, 11 and 12 revealed that the optimized ANN models
had better performance and prediction accuracy of testing samples than ANFIS models.
For example, the result of the case 10 that indicated the prediction accuracy of (MAPE∼23.13%
reasonable, NSE∼0.77 very good) for the ANFIS model was less efficient than the ANN model
(MAPE∼18.45% good, NSE∼0.78 very good) with updated two layers of the testing database.
Furthermore, the performance of the optimized ANN model (three layers) for the case 11
of the testing set had the MAPE and NSE values of 18.99% (good) and 0.77 (very good),
respectively, better prediction accuracy than the ANFIS model with statistical index values of
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MAPE (23.03% reasonable) and NSE (0.77 very good). The result of the case 12 showed that
the scores of (MAPE∼29.62% reasonable, NSE∼0.68 good) and (MAPE∼20.73% reasonable,
NSE∼0.70 good) were the lowest performance in the ANFIS and ANN models (three layers),
respectively, for the testing part.

The visualized results of the linear regression plots between the observed and predicted data
sets illustrate for all cases 7, 8, 9, 10, 11 and 12 regarding the ANFIS models as shown in Figures
4.37 and 4.38. The ANFIS model of the case 8 was the best predictive model of all data sets
with the R value of 0.89, while the lowest predictive models were in the case 9 (R∼0.82) and
the case 12 (R∼0.82). The testing performance of ANFIS models for the case 7 (R∼0.86) and
the case 8 (R∼0.85) were better prediction accuracy than the model of the case 9 (R∼0.80).
Moreover, the R value of the case 12 (R∼0.82 testing, R∼0.81 training) was slightly less than in
the case 10 (R∼0.88 testing, R∼0.85 training) and the case 11 (R∼0.88 testing, R∼0.85 training).
Therefore, the conclusion was drawn that the ANFIS models achieved the best performance
predictions with the R score greater than 0.8 in all cases verified with testing, training and
all part.

Figure 4.37: Relationship between predicted and actual values in ANFIS models: (a), (b), (c) for
the case 7; (d), (e), (f) for the case 8; (g), (h), (i) for the case 9; (units: m/s2) [35].
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Figure 4.38: Relationship between predicted and actual values in ANFIS models: (a), (b), (c) for
the case 10; (d), (e), (f) for the case 11; (g), (h), (i) for the case 12; (units: m/s2) [35].

4.5 Concluding remarks

This chapter has presented innovative techniques of the optimized GA-based ANN
architecture and the ANFIS approach to predict the RMS values of the dynamic behavior
of railway steel arch bridge based on the RMS values of dynamic responses of the hangers
collected from the long-term VSHM system. To improve the prediction accuracy of ANN
model, the GA method was utilized to determine the number of neurons in each hidden layers
of ANN structure. Data sets were collected from sixteen vibration sensors of eight hangers and
sensor of the deck on each span in which the RMS amplitudes of vibration signals were analyzed
by RF algorithm to judge various features of past data. Therefore, the main conclusions and
findings can be drawn as follows:



64 Chapter 4. Railway bridge health monitoring using machine learning

• RMS values of the vibration signals of hangers and the deck were used for training
and testing data sets based on robust ANN techniques using the Levenberg–Marquardt
algorithm with the GA approach, as well as ANFIS models have been developed and
validated to predict the dynamic behavior of the structure for bridge span 1 and span 2
with six various strategic inputs during the passage of the train.

• Implementing the proposed ML-assisted regression models for predicting future
RMS values of bridge deck from the past RMS values of vibration signals of hangers
if the trained and tested models meet the evaluation metrics and performance criteria.
Simulated scenarios where the new RMS values of the dynamic behavior of hangers
are increased or decreased, and input these variations into trained models to visualize
the corresponding RMS values of the bridge span under various health potential problems
in each hanger. Indeed, it’s possible to use data from different positions (inputs) for
predicting a localized or specific position (target or output) through the accurate and
reliable representations of trained regression models.

• The accuracy of proposed prediction models is shown by the performance results,
still limited to 85% for training and reached a maximum of 79% for testing.
The effectiveness of these proposed strategies can depend on the specific characteristics
and features of these data sets. To enhance the high accuracy, the future exploration of
principal component analysis engaged machine learning approaches could be considered.



Chapter 5

Railway bridge health diagnosis using
wavelet analysis and deep learning

5.1 Introduction

In this chapter, deep learning approaches for data-driven SHM for Dębica railway arch bridge
are proposed. In Figure 5.1, GoogLeNet CNN classification models are employed to classify
hanger health conditions under train load events and weather changes over a nine-month period.

First, wavelet-based scalograms of vibration signals recorded on the deck are used as
the image input of CNN models, whereas the output is the hanger states based on the tension force
extracted from the experimental natural frequencies of hangers. The FE model calibration of
the railway steel arch bridge is developed to reproduce the tension force values of the hangers
using the bridge design standards.

Second, orbit-shaped CNN models are developed for the dynamic behavior of each hanger
recorded in the longitudinal and transverse directions. FFT techniques of hanger vibration
signals in the discrete frequency domain are performed to convert two-axis accelerometers of
each hanger into displacement-based orbit-shaped images.
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Figure 5.1: Wavelet-based CNN-assisted SHM and vibration orbit-based image diagnostic.

5.2 Railway bridge health monitoring using orbit-shaped and
wavelet-integrated CNN

5.2.1 Data collection from vibration-based SHM system used for Dębica
bridge

The vibration-based SHM system was used to monitor two bridge spans, as shown in
Figure 5.2. In the span 1 of the Dębica bridge, these hangers are as follows: W4S, W5S, W6S,
W7S, W4N, W5N, W6N, W7N, which were equipped with one biaxial accelerometer each as
in Figure 5.2c, d and e. The bridge span 1 was instrumented with an IEPE sensor to measure
vertical vibration, labeled as "ST". The weather monitoring station was equipped on the arch rib of
the span 1 with various weather-related factors such as: wind speed, wind direction, temperature,
pressure, and humidity, as shown in Figure 5.2b.



5.2. Railway bridge health monitoring using orbit-shaped and wavelet-integrated CNN 67

Figure 5.2: Vibration-based SHM system for railway steel arch bridge: a) Overview of Dębica
railway bridge; b) Dębica bridge information modeling ; c) Bridge span 1 with hangers;
d) Biaxial accelerometer on each hanger; e) Data acquisition system.

5.2.2 Estimation of hanger tension force using the measured natural
frequency

The tension force values are in fact key parameters of the steel arch bridge that
must be carefully assessed during the building design, construction, and operation phases.
Hanger health monitoring is an essential approach to ensure safe and reliable operation of
the bridge. The vibration-based SHM of the hanger utilizes accelerometers to continuously
measure the dynamic behavior of the hanger under various loads such as wind speed,
wind direction, temperature, pressure, and train. The analysis of the vibration signal of
the hangers is to determine their natural frequencies and then to predict the tension force (𝑇)
as following equation, [56]:

𝑇 = 𝜌 𝐴

(
2 𝐿 𝑓𝑛

𝑛

)2
, (5.1)

where 𝜌 is the density of steel, kg/m3; 𝐴 is the section area, m2; 𝐿 is the hanger effective
length, m; 𝑓𝑛 is the 𝑛th natural frequency, Hz; 𝑛 = 1, 2, 3, . . .

The purpose of predicting the tension force is to gain informative insight into the historical
structural behavior of hangers. The SHM system for a railway bridge span 1, monitoring
eight hangers consisting of W4S, W5S, W6S, W7S, W4N, W5N, W6N, and W7N, for which
the vibration signals are extracted to achieve the natural frequencies for the estimation of
the tension force for each hanger. The maximum tension force among all hangers was determined
to label the representative classes of hanger health conditions.
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5.2.3 FE modeling of steel bridge structure due to lack of hanger

One of the most common limitations of using the CNN model for CWT image classification
is to assign a class label or category to an input image. To improve this problem, FE model
updating of the steel arch bridge structure is developed in the SOFISTIK software to calibrate
OMA-based parameters, as shown in Figure 5.3. The main goal of the FE model is to determine
the tension force of the hangers under the design load models of the railway loading in both
damage or overload and undamaged or healthy scenarios for healthy classification tasks.

Figure 5.3: Vibration-based diagnostic testing for bridge span 1: a) field vibration
measurement using single-axis accelerometers (PCB Piezotronics) installed at 10 positions
along the two main girders; b), d), f), h) operational modal analysis using Siemens LMS TestLab
software; c), e), g), i) FE model updating.

The 3D FE models of Dębica railway steel arch bridge were developed based on the following
assumptions and structural parameters:

◦ The steel arches, main girders, and other structural members are modeled as 3D beam
elements defined by two nodes each. The full bridge model has a total of 2204 beam
elements and 5760 shell elements. The vertical hangers are fixed at the main arches and
girders. The boundary conditions are pinned to the supports at the ends of the tie girders.



5.2. Railway bridge health monitoring using orbit-shaped and wavelet-integrated CNN 69

◦ The FE model updating was performed by minimizing the objective function:

Error =
1
𝑁

𝑁∑︁
𝑖=1

���� 𝑓 𝑖𝑚 − 𝑓 𝑖𝑐

𝑓 𝑖𝑚

���� < 10%, (5.2)

where 𝑓𝑐 and 𝑓𝑚 are the numerical and experimental natural frequencies of the 𝑖th vibration
mode; 𝑁 denotes the number of natural frequencies and mode shapes identified by
the OMA technique during the FE model updating procedure. The optimization approach
employed the genetic algorithm in the MATLAB software to optimize vibration-based FE
model automatically. Table 5.1 reports the relative differences between the experimental
and numerical frequencies of the initial and updated FE model.

◦ Table 5.2 summarizes the material properties of the FE model updating with the global
upper and lower material bounds. Two different types of stiffness parameters were chosen
to calibrate FE model, consisting of density and Young’s modulus, regarding the material
properties of the structural components of the steel bridge [8], [14], [56].

◦ Four types of the load cases include the dead load, the load model 71, the load model
SW/0, the load model SW/2 according to EN 1991-2:2003 [170], [171], as shown in
Figures 5.4 and 5.5.

Several groups of load models for railway loading scenarios are given in Figure 5.5, according
to European standards, specifically EN1991-2, which provides engineering guidelines for
the assessment of railway traffic actions specifically for railway bridge structures. The load model
71 and the load model SW/0 for continuous span bridges are used to represent normal
traffic on mainline railways, while the load model SW/2 is designed to represent heavy
train load on the bridges. The characteristic values of vertical loads shall be modified by
a factor 𝛼, when analyzing railway lines with traffic loads that are either heavier or lighter than
the standard railway traffic action. This factor 𝛼 shall be chosen from one of the following values:
0.75 − 0.83 − 0.91 − 1.00 − 1.10 − 1.21 − 1.33 − 1.46, [170], [171]. Based on this standard,
𝛼≈1.21 was used for the Dębica railway bridge.

Table 5.1: Measured and computational natural frequencies.

Natural Frequency Experimental Measurement, Hz Description of Mode Initial FE Model, Hz Final Updated Frequencies, Hz
𝑓1 2.00 1𝑠𝑡 Vertical Bending 2.25 (12.50%) 1.87 (6.5%)
𝑓2 2.95 2𝑛𝑑 Vertical Bending 3.81 (29.15%) 3.17 (7.45%)
𝑓3 4.37 1𝑠𝑡 Torsional 5.66 (29.51%) 4.69 (7.32%)
𝑓4 4.94 3𝑟𝑑 Vertical Bending 5.89 (19.23%) 4.91 (0.60%)
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Table 5.2: Stiffness parameters of steel bridge structure.

Material Properties Initial variables Young’s modulus (E); Density (𝜌) (Scaled) Final variables
𝐸 , GPa 𝜌, kg/m3 Lower Bound Upper Bound 𝐸 , GPa 𝜌, kg/m3

S355J2+N (18G2A) 210 7850 0.80 1.20 174.53 9413.1
C40/50(B50) 35 2500 28 2990.3

Figure 5.4: FE modeling of Dębica steel arch bridge span 1: a), b) for the load model 71; c), d) for
the load model SW/0; e), f) for the load model SW/2.
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Figure 5.5: Load models 71, SW/0 and SW/2 according to EN1991-2.

The results of structural damage detection due to the lack of hanger in the bridge FE model,
as shown in Figure 5.6. The objective of calculating the tension force of eight hangers subjected
to various load cases (load models 71, SW/0 and SW/2) is to determine the maximum allowable
tension force in each of (W4S, W5S, W6S, W7S, W4N, W5N, W6N, W7N) hanger group.
There are 20 damage scenarios for the lack of a single hanger, labeled as W1S (Damage 1),
W2S (Damage 2), ..., W10S, W1N, W2N, ..., W10N (Damage 20). With a removed hanger of
the FE model is applied to 49 different load cases corresponding to each load model multiplied
by a factor 𝛼, providing the tension force values as in Figure 5.6b. Furthermore, Figure 5.6a
shows the tension force values on eight hangers when there is no structural damage (or healthy,
intact). The loss of a specific hanger can have a significant impact on the load distribution
within the bridge structure and identifying potential areas of localized stress concentration
or increased tension force values for other neighboring hangers. When the load redistribution
exceeds a significant threshold, more than 82.20 tons, it can significantly affect the safety and
stability of the bridge structure. Note that the lack of a hanger is indeed used to describe
situations where a hanger is no longer functioning as expected or is not in its designed position.
It is a solution for categorizing labels such as overload or damage class (> 82.20 tons) and
intact class (< 82.20 tons) or healthy.
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Figure 5.6: The numerical FE results of tension force values for hangers under load cases:
a) intact or healthy; b) damage, unhealthy or overload.

5.2.4 Hanger health diagnostic using orbit-based image pattern
recognition

The orbit-shaped or mapped pattern recognition scheme is proposed using machine learning,
for example: convolutional neural networks, the characteristics of the input images being
extracted from the vibration signals of the hanger in the 𝑥 and 𝑦 directions corresponding
to the longitudinal and transverse axes of the bridge. The vibration behavior of the hanger
is collected over time, and orbit-shaped plots are generated from displacement data obtained
from accelerometers. Historical displacement data represent the oscillation or movement of
a specific point on hanger shaft visualized over time, corresponding to specific hanger healthy
states (i.e. damage or unhealthy, overload). The representations of the orbit-shaped image
stages are summarized in Figure 5.7. The hanger orbit-shaped feature image extraction uses
the following steps:

◦ Step 1: Collect vibration signals along the 𝑥 and 𝑦 directions for each hanger as shown in
Figures 5.7a and 5.7b, with the 𝑥-axis representing longitudinal directions and the 𝑦-axis
corresponding to the transverse direction, under different load conditions during a year.

◦ Step 2: Apply FFT algorithms to transform discrete acceleration data into
displacement data.

◦ Step 3: Generate and visualize hanger orbit-based images, with the 𝑥-axis corresponding
to the longitudinal displacement signal and the 𝑦-axis corresponding to the transverse
displacement signal.
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◦ Step 4: Categorize the geometric characteristics of these extracted orbit-shape images
with three typical classes including: healthy (circle or normal), minor healthy (ellipse or
unbalance) and unhealthy (eight, heart, banana, tornado, rubbing, line, or misalignment)
[172], [173], [174], as illustrated in Figure 5.7c, d and e.

◦ Step 5: Provide orbit-shaped images as input to CNN classification model for training and
testing image-based pattern recognition.

Figure 5.7: Some different orbit shapes of types of hanger healthy states: a) hangers;
b) accelerometers or vibration sensors; c) and d) healthy; e) unhealthy.

The benefit of identifying orbit-shaped image patterns from vibration signals is to provide
a visual representation of recorded complex vibration signal patterns and characteristics to
understand the hanger structural behavior. The representation of orbit-shaped feature images
corresponds to the potential structural identification problems such as: healthy or unhealthy.

5.2.5 Wavelet-based CNN classification models for bridge span

The first problem provides the results of CNN classification models integrated with different
wavelet families, such as Bump, Morlet, and Morse, for vibration responses of the bridge span
under dynamic train loads. Wavelet-based image data sets from vibration signals of the bridge
deck contain a total of 31460 images (224×224 pixels) as input to the CNN model and are divided
into two different categories consisting of healthy and overload classes as output determined from
the historical vibration behavior of eight hangers. The purpose of the proposed wavelet-assisted
CNN classification models is to identify hanger heath diagnostic using one vibration sensor.
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Table 5.3 shows the performance results of CNN classification models for the testing
and training data of hanger tension force thresholds with different wavelet transforms.
CNN classification models utilizing Bump, Morlet, and Morse wavelet filters were observed
to have training accuracy, which was greater than 92%, and validation accuracy, which
was greater than 83%. The highest training loss was 16%, while the validation loss was 96%.
The Bump wavelet-based CNN model classified in hanger healthy and overload states achieving
training and validation accuracies of 92.96% and 83.67%, respectively. The classification
accuracy of the Morlet wavelet-integrated CNN model had 96.87% for training and 83.11% for
validation data. The Morse wavelet-engaged CNN classification model obtained the accuracies
of 96.09% and 83.44% for training and validation, respectively. The CNN classification
models took 4117 s, 4104 s and 3904 s for training and validation data sets of Bump,
Morlet, and Morse wavelet-based scalograms, respectively. When addressing class imbalance
issue, the performance metrics of CNN models consist of the F1-score, macro F1-score and
weighted F1-score as shown in Table 5.4.

Table 5.3: The comparison results of wavelet-based CNN models for tension force classes.

Type of Wavelets Training Accuracy (%) Training Loss Validation Accuracy (%) Validation Loss Elapsed Time
Bump 92.96 0.16 83.67 0.57 1hr 8min 37s
Morlet 96.87 0.12 83.11 0.96 1hr 8min 24s
Morse 96.09 0.10 83.44 0.75 1hr 5min 4s

Table 5.4: The results of CNN models with F1-score, macro F1-score and weighted F1-score.

CNN Models Classes F1-score (%) Macro F1-score (%) Weighted F1-score (%)

Bump

Training
Healthy 95.63 95.21 95.23Overload 94.79

Validation
Healthy 85.37 83.44 83.54Overload 81.51

Morlet

Training
Healthy 98.40 98.33 98.33Overload 98.26

Validation
Healthy 83.81 83.07 83.11Overload 82.33

Morse

Training
Healthy 96.45 96.24 96.25Overload 96.02

Validation
Healthy 84.72 83.33 83.40Overload 81.94



5.2. Railway bridge health monitoring using orbit-shaped and wavelet-integrated CNN 75

Figure 5.8 presents the confusion matrix of three different CNN classification models using
wavelet-based scalograms of vibration signals from the bridge span. For the Bump wavelet-based
scalograms in the validation set consisting of 30% of the data sets in Figure 5.8b, the recall
(precision) was 90.9% (80.5%) for healthy, and 75.7% (88.2%) for overload. In Figure 5.8d,
the Morlet wavelet-based CNN model achieved a recall (precision) of 83.4% (84.3%) for
healthy state, and 82.8% (81.9%) for overload problem in the validation data. In Figure 5.8f,
the Morse wavelet-based CNN model in validation data sets, where the recall (precision)
was 87.5% (82.2%) for healthy, and 79.0% (85.1%) for overload. These outcomes show
that the healthy classes classified by the wavelet-assisted CNN approach are highly similar
to the overload classes. Therefore, the proposed wavelet-based CNN classification models
can efficiently classify bridge structural healthy cases.

Figure 5.8: Wavelet-based CNN classification models using one IEPE sensor on the bridge deck.
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5.2.6 Orbit-shaped CNN classification models for hanger dynamic
behavior

The second problem aims to automatically classify hanger health states as: healthy, ellipse
(minor healthy), and unhealth (eight, line, etc.) image-based patterns which were trained on
the CNN classification models. The data sets of orbit-shaped images were analyzed from
the dynamic behavior of the hangers recorded along the two 𝑥- and 𝑦- axis (or longitudinal
and transverse directions). The data sets for CNN models include: 30993 images (W4N);
30884 images (W4S); 30799 mages (W5N); 30738 images (W5S); 30923 images (W6N);
30341 images (W6S); 30832 images (W7N) and 30857 images (W7S), all featuring orbit-shaped
patterns. Resize images to a common size (224×224 pixels), is a common practical input
size of CNN classification model. CNN-based approach has been used for the classification
of hanger health conditions using two scenarios, 70% of training and 30% of test images.
The overall accuracy for hanger health diagnostic cases of orbit-shaped CNN classification
models is summarized in Table 5.5. The CNN classification models achieved training accuracies
of 94.53%, 100%, 97.65%, 98.43%, 98.43%, 98.43%, 99.21%, 99.21% for W4N, W4S, W5N,
W5S, W6N, W6S, W7N and W7S, respectively. The validation accuracies of the CNN models
were 88.66% (W4N), 91.36% (W4S), 90.55% (W5N), 90.76% (W5S), 90.81% (W6N), 91.19%
(W6S), 91.45% (W7N) and 90.89% (W7S). The elapsed time of the orbit-shaped CNN
classification models required 3927 s (W4N), 3905 s (W4S), 3885 s (W5N), 3789 s (W5S),
3851 s (W6N), 3778 s (W6S), 3846 s (W7N) and 3873 s (W7S). The training loss of W4N
had highest value at 23%, while the validation loss was 43%. The validation loss of W4S
reached its maximum value at 48%.

Table 5.5: The comparison results of orbit-shaped CNN classification models for hangers.

Hangers Training Accuracy (%) Training Loss Validation Accuracy (%) Validation Loss Elapsed Time
W4N 94.53 0.23 88.66 0.43 1hr 5min 27s
W4S 100 0.01 91.36 0.48 1hr 5min 5s
W5N 97.65 0.04 90.55 0.41 1hr 4min 45s
W5S 98.43 0.04 90.76 0.38 1hr 3min 9s
W6N 98.43 0.05 90.81 0.40 1hr 4min 11s
W6S 98.43 0.04 91.19 0.35 1hr 2min 58s
W7N 99.21 0.04 91.45 0.31 1hr 4min 6s
W7S 99.21 0.02 90.89 0.46 1hr 4min 33s
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Figures 5.9 to 5.12 show the confusion matrix of CNN classification models using
orbit-shaped images of bi-direction vibration signals for hangers (W4N, W4S, W5N, W5S, W6N,
W6S, W7N, W7S). The orbit-shaped CNN classification models were trained with precision
and recall scores of greater than 89%. For the hanger W4N of validation data in Figure 5.9b,
the recall (precision) was 89.2% (72.4%) for ellipse, 81.5% (86.9%) for healthy, and 90.1%
(95.0%) for unhealthy images. The W4S model in Figure 5.9d, it recorded the recall (precision)
of 65.1% (80.2%) for ellipse, 72.6% (88.7%) for healthy, and 97.6% (92.8%) for unhealthy class.

In Figure 5.10b, the recall (precision) scores of the W5N classification model were 90.1%
(87.3%), 93.2% (82.6%) and 90.3% (95.1%) for ellipse, healthy and unhealthy cases,
respectively, for the validation data sets of orbit-shaped images. The W5S model’s recall
(precision) values were 81.9% (83.6%) for ellipse, 82.3% (87.9%) for healthy, and 95.2%
(93.4%) for unhealthy labels in Figure 5.10d. Furthermore, the W6N model in Figure 5.11b
demonstrated that the recall (precision) values of validation data for the ellipse, healthy, and
unhealthy classes, were 75.8% (90.2%), 90.1% (85.0%), and 96.4% (92.5%), respectively.
The W6S model for validation data in Figure 5.11d, achieved the recall (precision) of 86.4%
(79.1%), 85.0% (85.8%), and 93.8% (96.1%) corresponding to ellipse, healthy and unhealthy
classes, respectively. The recall (precision) values of the W7N model in Figure 5.12b, were 88.7%
(80.3%) for ellipse, 86.0% (87.5%) for healthy, and 93.3% (96.4%) for unhealthy. The W7S
model for the validation data in Figure 5.12d, the recall (precision) was 76.5% (83.4%) of
ellipse, 86.6% (81.5%) of healthy and 95.3% (94.4%) of unhealthy. These results demonstrate
that the proposed CNN classification models can be applied effectively to automatically extract
particle features from orbit-shaped signal images of hanger health monitoring. For handling
imbalanced classification data sets, the obtained results for comparing all CNN models based
on F1-score, macro F1-score and weighted F1-score are illustrated in Table 5.6.

The field experimental data sets were utilized to verify the effectiveness and efficiency of
the proposed algorithms. In Figure 5.13, the different types of orbit images used for CNN
models, consisting of healthy (or circle, normal); minor healthy (or ellipse); and unhealthy
(or eight, heart, line) shapes in hanger vibration status, were caused by wind excitation and
live train loads. The representative circular and ellipse orbit shapes corresponded to bending
vibration, while other eight or heart or line orbits represented the torsional (twist) behavior
of the centerline of each hanger. The orbits were combined from the displacement data of
a pair of sensors placed at 0𝑜 and 90𝑜 out of each hanger cross-section, so that it can be
seen the presence or absence of torsional vibration, which can indicate structural steady state
or instability. The simulation dynamic behavior of the hanger validated under experimental
wind loads could also be considered to produce numerical orbit data to visualize the structural
vibration state used for CNN classification models.
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Furthermore, the kinetic and potential energies of Lagrangian dynamics [175], [65], [176],
[177] could be employed to build the bending and torsional vibration of the fixed-fixed
(or pinned-pinned) hanger, from which the analytical dynamic responses could be extracted
from the motion system under simulated force excitation, used to identify various orbit shapes.
The limitation of these orbit-shaped CNN models is to manually classify the field signal images
before pretraining in CNN classifications, that preprocessing can be performed mathematically
for the reconstructed orbit shapes [172], [174].

The vibration orbit trajectories using a pair of sensors in the time domain, were presented in
different distribution terms representing displacement, velocity, and acceleration points in the 2D
plane (𝑥- and 𝑦-directions), as shown in Figure 5.14. Utilizing displacement orbits significantly
improved the distinctiveness of the shapes compared to the representations based on acceleration
and velocity responses.

Table 5.6: The results of F1-score, macro F1-score and weighted F1-score used for CNN models.

CNN Models Classes Training Validation
F1-score (%) Macro F1-score (%) Weighted F1-score (%) F1-score Macro F1-score (%) Weighted F1-score (%)

W4N
Ellipse 94.38

96.61 97.54
79.92

85.50 88.88Healthy 96.88 84.11
Unhealthy 98.58 92.48

W4S
Ellipse 93.21

95.82 97.87
71.86

82.28 91.00Healthy 95.42 79.84
Unhealthy 98.83 95.13

W5N
Ellipse 96.84

97.09 97.63
88.67

89.63 90.61Healthy 95.85 87.58
Unhealthy 98.58 92.63

W5S
Ellipse 97.84

98.54 98.97
82.74

87.34 90.67Healthy 98.34 85.00
Unhealthy 99.44 94.29

W6N
Ellipse 96.18

97.65 98.20
82.37

88.08 90.64Healthy 97.72 87.47
Unhealthy 99.04 94.40

W6S
Ellipse 96.81

97.86 98.63
82.58

87.64 91.31Healthy 97.38 85.39
Unhealthy 99.39 94.93

W7N
Ellipse 97.47

98.33 98.76
84.29

88.61 91.52Healthy 98.24 86.74
Unhealthy 99.29 94.82

W7S
Ellipse 96.95

97.62 98.72
79.80

86.20 90.81Healthy 96.31 83.97
Unhealthy 99.59 94.84
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Figure 5.9: Orbit-shaped image CNN classification models of hanger dynamic behavior using
one bi-directional vibration sensor: a) and b) for W4N; c) and d) for W4S.

Figure 5.10: Orbit-shaped image CNN classification models of hanger dynamic behavior using
one bi-directional vibration sensor: a) and b) for W5N; c) and d) for W5S.
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Figure 5.11: Orbit-shaped image CNN classification models of hanger dynamic behavior using
one bi-directional vibration sensor: a) and b) for W6N; c) and d) for W6S.

Figure 5.12: Orbit-shaped image CNN classification models of hanger dynamic behavior using
one bi-directional vibration sensor: a) and b) for W7N; c) and d) for W7S.
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Figure 5.13: Typical orbits used for CNN classification models.
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Figure 5.14: Orbits for acceleration 𝐴𝑥 vs 𝐴𝑦; velocity 𝑉𝑥 vs 𝑉𝑦; displacement 𝑥 vs 𝑦.
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5.3 Concluding remarks

This chapter proposed the wavelet-integrated and orbit-shaped image CNN classification
approaches for automatically classifying hanger and structural health conditions.
The following findings can be obtained:

• Wavelet-attention CNN classification models were developed to predict hanger healthy
conditions. The input was wavelet-based scalograms of vibration signals of the bridge
span, while the output was to classify hanger states with two classes, consisting of healthy
and overload (or unhealthy) states based on the maximum tension force values of 8 hangers.
The FE model updating of the steel bridge was developed to determine the tension force
threshold due to the lack of a hanger to label the healthy and overload classes in these CNN
models. The trained wavelet CNN models can be utilized to identify the healthy condition
of hangers based on a signal accelerometer installed on the span. Furthermore, there may
be a dispute regarding the categorization of the "healthy" and "overload" (or unhealthy,
damage) classes, for which CNN regression models might be considered in future studies.

• Orbit-shaped CNN classification models were constructed to forecast the structural
health of each hanger on the existing railway steel arch bridge under different train
and weather events. These CNN models were trained using the input data of orbit-based
displacement signal images extracted from vibration signals measured in both longitudinal
and transverse directions of a bidirectional sensor on each hanger. The output of
these CNN models was the potential healthy problems of each hanger, denoted by labels:
healthy (circle or normal), ellipse (or minor healthy) and unhealthy (or eight, heart, line,
etc.).

• Both wavelet-assisted and orbit-shaped CNN classification models achieved macro and
weighted F1-score values greater than 82% for imbalanced validation data. These results
have been demonstrated that wavelet-assisted and orbit-shaped CNN may be a useful and
robust approach for data-driven hanger health diagnosis, as well as automated railway
bridge health monitoring performed in an accurate, reliable, and efficient way.

• The limitation of the study is the presence of vibration signal noise that
impacted or influenced the interpretation of CNN classification models. Therefore,
the misclassification rates of up to 24.3% for the Bump wavelet-based CNN model and
34.9% for the W4S orbit-shaped CNN model in image classification tasks were observed.
To reduce misclassification rates and enhance overall performance, advanced signal
processing techniques should be implemented.





Chapter 6

Bridge diagnostic load ratings using
automated FE model updating

6.1 Introduction

This chapter concerns updating the FE model using the PSO and GA optimization methods
so that the final calibrated FE models can be used for the diagnostic load testing of existing bridge
structures. The scripts and functions in MATLAB contain optimization algorithms that interface
with the CADINP language script with the FE modeling of the bridge structure implemented in
SOFISTIK TEDDY to automatically update the cross-sectional stiffness variables of structural
members [8]. The full-scale FE model updating of the existing bridge through the field-measured
natural frequencies are compared and modified with the numerical natural frequencies of
the analytical FE model implemented in the MATLAB software to communicate with the ANSYS
APDL software [14]. The main objective for producing calibrated full-scale models is to have
one realistic model to compute load rating procedures and predict load limits using the design
specifications of the American Association of State Highway and Transportation Officials
design specifications [178], which can be performed for any load configuration. The final field
calibrated models can be used to evaluate the capacities of structural members according to
design standards.
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6.2 Automated bridge FE model updating approach

The proposed methodology for updating bridge models is based on the interaction between
the ANSYS APDL software (or SOFISTIK software) and the MATLAB functions used
for optimization of the parameters of the FE model following the flowchart presented in
Figure 6.1. The process includes performing parameter analysis using field experimental
responses in the MATLAB software, structural FE modeling and analysis in the ANSYS software
(or SOFISTIK), data comparison in the objective function in the MATLAB software, and
calibration of the FE model after every step in the FE softwares. The final calibrated FE model
is used to apply load cases according to bridge design standards.

Figure 6.1: The wireless structural testing system (STS-WiFi) for diagnostic load testing in
existing bridge structures.

The objective function obtained from the error between the measured responses 𝑥𝑚 and
the computational responses 𝑥𝑐 from the FE modeling, where 𝑁 represents the number of
parameters collected from field measurements.

𝑔 (𝑧) =

𝑁∑︁
𝑖=1

(
𝑥𝑚 − 𝑥𝑐

𝑥𝑚

)2
< tolerance = 10%. (6.1)
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6.3 AASHTO bridge specifications

The AASHTO rating and posting load configurations are used to FE model the various truck
load cases according to the bridge design standards and compute the ultimate capacity of girders,
as shown in Figure 6.2. The rating factors are computed using the equation in the AASHTO
manual for the evaluation of bridge structures under load configurations [178]:

RF =
𝐶 − 𝐴1 𝐷

𝐴2 𝐿 (1 + IM) , (6.2)

where RF is member rating factor,𝐶 is structural member capacity (ultimate or allowable, 𝑀𝑛 and
𝑉𝑛), 𝐷 is dead-load (self-weight) effect, 𝐿 is live-load effect, 𝐴1 is dead-load factor (1.0 for ASD,
1.3 for LFD), 𝐴2 is live-load factor (1.0 for ASD, 2.17 for LFD inventory, 1.3 for LFD operating),
IM is live-load impact or dynamic factor (AASHTO or measured), ASD is allowable strength
design, LFD is load factor design.

Figure 6.2: Application of load rating procedures using AASHTO load configurations.

For evaluation of a steel member, 𝑀𝑛 and 𝑉𝑛 are the nominal bending moment capacity and
the shear force capacity of the structural members, respectively. In Figure 6.2, 𝐻 is the section
height of I-shaped girders, 𝑡𝑤 is web thickness, 𝐼𝑧 is the moment of inertia about the 𝑧-axis,
𝑆 is the modulus of section, 𝑧𝑐 is the neutral axis (NA) at the center (c) of the cross-section
of the I-shaped steel beam. For the steel bridge, 𝑓𝑦 is the yield stress limit state of the steel
beams (assuming 33 ksi or 227.52 MPa), 𝐴1 is 1.3, 𝐴2 is 2.17 and the impact is 33% according
to the bridge design standard. The RF is greater than 1.0, indicating that vehicles can cross
the bridge without restriction. When the RF is below 1.0, vehicles should not cross, and the load
limit is multiplied by the weight of the truck.
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Moreover, the rating factor for moment stresses is calculated as [179]:

RF =
𝜎𝐶
𝑥𝑥 − 𝜎𝐷𝐿

𝑥𝑥

𝜎𝐿𝐿
𝑥𝑥 (1 + IM)

, (6.3)

where 𝜎𝐶
𝑥𝑥 is the allowable stress capacity of structural members in flexure; 𝜎𝐷𝐿

𝑥𝑥 the maximum
flexural stresses due to dead load; 𝜎𝐿𝐿

𝑥𝑥 is the maximum flexural stresses due to live load;
IM is the impact factor with the live load effect (AASHTO or measurement).

The integration approach based on the final calibrated FE model for the load rating of
the existing bridges is comprised of four main steps:

• Step 1: Apply the design load standards to the final FE model;

• Step 2: Compute the stress level predictions of the key structural members;

• Step 3: Load rating calculation use the RF equation;

• Step 4: Check the RF ≥ 1 for the bridge pass the design loads or RF < 1 fail the legal
vehicle loads.

The rating of bridge (RT) in tons for the structural member of the diagnostic load testing,
if its RF is less than 1.0 as follows [178]:

RT = (RF) 𝑊, (6.4)

where𝑊 is the weight in tons of the nominal truck load according to design codes and standards.

6.4 Case study 1: FE model updating of RC bridge structure

6.4.1 Structure description and field test procedure

The Vietnamese ThiThac bridge is a four-simple-spans RC beam and deck bridge that
has a asphalt pavement layer surface and guardrails. The bridge is located on the old national
highway over the saltwater river that flows into ocean water. The lengths of the spans 1, 3
and 4 are 9.1 m, while the length of the span 2 is 8.05 m. The widths of the roadway and
the structure are 8.62 m and 9.58 m, respectively. The thickness of the asphalt roadway deck
is 5 cm. The thickness of the concrete deck ranges from 6 to 10 cm in center. The ThiThac
consists of eight rectangular RC girders with height 0.4 m and width 1.18 m. The girder spacing
is 1.2 m.
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Static load tests were performed by a two-axle dump truck across the bridge according
to three truck paths included centric position, eccentric position on the right and left sides.
The truck (78C02978) has a total gross weight of 8.42 tons, a weight of 3.58 tons, and a weight
of 4.84 tons in the rear. The distance between the front and rear axles is 5.6 m, while the spacing
between two wheels is 1.87 m.

The goal of the instrumentation plan was to measure the static responses of the structural
girder members and to record the dynamic behavior of the bridge. The bridge was instrumented
with reusable intelligent strain transducers and accelerometers for each span, as shown in
Figure 6.3. The structural testing system of this bridge structure in field testing uses the mobile
base station with antennas to connect with many four-channel nodes implemented as the different
types of weatherproof sensors, including intelligent strain transducers (full Wheatstone bridge
with 350 Ω foil gages, ± 4000 με, effective gage length with 76.2 mm); LVDT displacements
(± 75 mm); accelerometers (± 5 g). Each four-channel STS-WiFi node can connect to
the mobile base station by connecting the wireless network and can communicate wirelessly
with the user’s laptop. WinSTS software is used to collect field data sets in real time by
connecting to the STS-WiFi system with sample rates from 0.1 Hz to 500 Hz (max), as well as
automatically zero before the test.

Figure 6.3: Overview of the Vietnamese ThiThac bridge and instrumentation plan [8].
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6.4.2 Experimental results of field load testing

The load tests were performed by the single truck applied to the Vietnamese ThiThac RC
bridge structure as concentrated vertical centric and eccentric loads. The strain histories of
the RC girder members under three static load cases includes a centric load, an eccentric load
on the left and right sides of the center line of the bridge, as shown in Figures 6.4 and 6.5,
respectively.

The preliminary investigations were conducted directly from the field strain data with
conclusions regarding the static behavior of the existing RC bridge. The maximum strains
recorded in the longitudinal direction were +3.44 με, +8.13 με and +1.74 με at the mid-span 1
in the cross-sectional member of the girder in load cases 1, 2 and 3, respectively.
Maximum tension strains of +17.10 με, +21.42 με and +19.41 με obtained from the girders
of the span 2 in various load cases. The maximum measured strains recorded on the beams of
the span 3 were +18.95 με, +23.85 με and +18.25 με for each static load case. The largest strains
occurring at the midspan 4 of the girders were +20.25 με, +28.28 με and +13.88 με. All strains
were multiplied by the Young’s modulus of the concrete material to obtain the stresses.

Figure 6.4: The results of measured strain responses for the bridge spans 1 and 2 [8].



6.4. Case study 1: FE model updating of RC bridge structure 91

Figure 6.5: The results of experimental strain responses for bridge spans 3 and 4 [8].

6.4.3 FE model updating and analysis

The FE modeling of the Vietnamese ThiThac bridge structure is built in SOFISTIK software.
The main structural components of bridge modeling include 2-node frame elements (BEAM)
to represent eight rectangular longitudinal girders; 4-node shell elements (QUAD) for the deck
and spring elements to simulate elastic supports at bearing locations for boundary conditions,
as shown in Figure 6.6. The model is developed so that the configurations of the load testing
vehicle are reproduced in the model as the actual test truck on the bridge. The cross-sections of
the girders (height ℎ and width 𝑏) and the material properties of the concrete are assigned to
the various structural elements in the model. Stiffness properties are selected to update the FE
model including girder stiffness (𝐸𝑐 and moment of inertia 𝐼), deck stiffness (thickness 𝑡𝑑

and 𝐸𝑐). Comparison of strain values are made between analytical data and measured results.
The initial FE model is updated by modifying the various cross-sectional girders, material
properties, and boundary conditions until the results match the measured strain responses in
the field testing that the final updated FE model is acceptable, when the average percentage error
is minimized to the level of less than 10%. Note that the stress values at the bottom of the girders
that relate the installed gauge positions are determined through the neutral axis, the moment of
inertia calculations, and the bending moments. All stresses are divided by the elastic modulus of
the girders to obtain the strains in micro-strain (με) which can be used to compare the calculated
strains in the updated FE model. The NA locations are determined based on the cross-sectional
properties of the rectangular girders and the transformed deck.
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Figure 6.6: FE modeling of the RC bridge structure and modeling of truck configurations [8].

Table 6.1 contains the stiffness properties of the adjustable parameters, the lower and upper
limits, and also the initial and final values of the FE model update. The initial concrete elastic
modulus (𝐸𝑐) is 25 GPa, Poisson’s ratio is 0.25 and the density is 2500 kg/m3 assumed for
girders, deck slab, and parapets according to the EN 1992-1-1:2004. The initial height and
width of the RC girders, and the average thickness (𝑡𝑑) of the concrete deck slab are based
on the design dimensions, for which the cross-sectional groups are defined to assign them
to those girder members. The cross-sectional stiffness properties (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8)
of the RC girders are calibrated in the optimization procedure. Limits in the cross-sectional
properties of structural members are increased and decrease from the initial values of the height
and width of the RC girder, as in the examples cited here [180].

The strain comparison processing and the structural stiffness update procedure indicated
the following results for each span. The concrete elastic modulus of the final calibrated span 1
increases by 10.52%, from 25 GPa to 27.63 GPa, while the spans 2 and 3 decrease by 15.04%
and 15.92%, respectively. The elastic modulus of the span 2 climbs to 2.72%, to 25.68 GPa,
while the moment values of inertia from the beam 2 to the beam 7 drop considerably.
Some exterior beams were not made to calibrate the measured data for the stiffnesses because
the sensors were not mounted to these beams and the values were too small. Figures 6.7 to 6.10
display the initial and final values of the parameters of the stiffness properties in the first span
of the RC bridge structure.
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The variables of the FE model update in the optimization procedure are extracted to plot
all pairs of calibrated variables in the correlation coefficient matrix with the corresponding
labels with which the lower and upper bounds are illustrated in the diagrams. The results of
the stiffness parameters indicated that the calculated data are more on the moment of inertia of
the girders than on the concrete elastic modulus of the entire structural span. The optimization
process has been carried out by modifying the various height and width values of each girder in
the span as independent variables, while the elastic modulus is used to obtain the same parameter
for all components of the structure. The correlation coefficients of the stiffness parameters
range from -1.0 to +1.0. These values are less than 0.5 indicating the weak linear relationship
between two stiffness variables. There are some negative values of the correlation coefficient
that have been reflected in the relative movements of two stiffness variables, such as sloping
downward or changing in the opposite direction. Some special cases of correlation coefficient
matrix close to zero value demonstrated that the two stiffness variables have little to no linear
relationship and could be dependent.

Table 6.1: The results of FE model updating for initial and final values of parameters [8].

Stiffness
parameters

Initial
value

Lowe
limit

Upper
limit

Final Values
Span 1 Span 2 Span 3 Span 4

𝐸𝑐, [GPa] 25 21 40 27.63 21.24 21.02 25.68
𝑡𝑑 [mm] 100 − − − − − −
ℎ [mm] 400 0.15*h 2.5*h − − − −
𝑏 [mm] 1180 0.15*b 2.5*b − − − −
𝐼1, [m4] 6.29e-3 3.18e-6 0.24 12.89e-3 12.23e-3 22.49e-3 6.782e-3
𝐼2, [m4] 6.29e-3 3.18e-6 0.24 4.89e-3 70.08e-3 3.97e-3 0.030e-3
𝐼3, [m4] 6.29e-3 3.18e-6 0.24 0.75e-3 0.042e-3 4.41e-3 0.123e-3
𝐼4, [m4] 6.29e-3 3.18e-6 0.24 25.73e-3 0.006e-3 3.23e-3 0.943e-3
𝐼5, [m4] 6.29e-3 3.18e-6 0.24 12.74e-3 0.076e-3 0.92e-3 1.545e-3
𝐼6, [m4] 6.29e-3 3.18e-6 0.24 10.79e-3 0.021e-3 2.71e-3 0.607e-3
𝐼7, [m4] 6.29e-3 3.18e-6 0.24 29.14e-3 0.850e-3 0.027e-3 1.959e-3
𝐼8, [m4] 6.29e-3 3.18e-6 0.24 5.46e-3 0.025e-3 4.53e-3 11.69e-3

Percent Error [%] − − − 0.01 0.21 6.31 7.16
RF (HL93) − − − 0.36 0.05 0.09 0.10

RF (H-20, 20 tons) − − − 1.09 0.12 0.28 0.31
RF (HS-20, 36 tons) − − − 0.94 0.11 0.24 0.26
RF (Type 3, 25 tons) − − − 1.07 0.14 0.30 0.32
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Figure 6.7: The results of the adjustment of the stiffness parameters for the span 1 [8].

Figure 6.8: The results of the adjustment of the stiffness parameters for the span 2 [8].
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Figure 6.9: The results of the adjustment of the stiffness parameters for the span 3 [8].

Figure 6.10: The results of the adjustment of the stiffness parameters for the span 4 [8].
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Figure 6.11 shows the RF values for each span of the bridge in the update procedures of
the FE model, in which the rating factors of the bending stresses of the structural members
are calculated by applying the truck load configurations according to the AASHTO standards in
the final updated FE models. The spans of the bridge structure are very short spans that could not
be applied to all load configurations. Some vehicle load configurations of design standards have
been used for the final calibrated FE models, such as HL-93; H-20 (20 tons); HS-20 (36 tons)
and Type 3 (25 tons). HL-93 is combined from the truck of 32.5 tons; lane load of 9.3 kN/m
and 22 tons of vehicle with two axles so that the RF values of all spans are less than 1.0.
The span 2 is the shortest span and has the lowest RF of the entire bridge with the RF value
equal to 0.12; 0.11 and 0.14 corresponding to H-20; HS-20 and Type 3, where the loads should
decrease the actual capacity of the bridge with 2.40 tons; 3.96 tons and 3.50 tons, respectively.
From the load rating results, the spans 3 and 4 have RF values less than 1.0, therefore, these spans
are critical for H-20; HS-20 and Type 3 loading. The span 1 was rated as the best of all spans
with an RF value of approximately 1.0.

Figure 6.11: RF values of the truck load configurations according to the AASHTO codes [8].
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The results of computational strain responses of structural members under the static centric
load case 2 that has been used to calibrate the FE model with the measured data in the field testing
as shown in Figure 6.12. The numerical comparison of computed and measured strain historical
responses has been used to determine the objective function of the average percent error during
the calibration procedure. The measured strain records of the spans 1, 2 and 4 are similar to
the computed responses, while the strain value of the beam 6 in the span 3 is not similar,
and the member stiffnesses should be adjusted more because it could not be well represented.
The measured and calculated strain on the beam 4 of the span 1 had the highest strain values of
8.15 με and 8.00 με respectively, with the scale error of 1.84%. The span 2 in which the strains
at the beam 5 are 21.67 με of testing and 19.88 με of computing with the error of 8.26%.
The error value of the strain on the beam 4 of the span 3 is 2.27% compared to the measured and
computed strain with 24.14 με and 23.59 με, respectively. With the span 4, the error of strain at
the beam 4 is 5.67% with 28.35 με, respectively, for field strain, and 29.96 με for the FE method.

Figure 6.12: The numerical strain responses of the beams 3, 4, 5 and 6 in the bridge spans [8].
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Figure 6.13 shows the percentage error of the GA algorithm for the FE model updating
scenarios of all structural bridge spans with 12285; 151648; 19004 and 114695 iterations for
the span 1, 2, 3 and 4, respectively. The GA algorithm converges fast and has almost the same
convergence rate for all spans that start converging after 5000 iterations. The percentage error for
the span 1 is 0.01% (lowest), while the span 4 has the error equal to 7.16% (highest). The spans 2
and 3 have error values less than 10% with a percent error of 0.21% and 6.31%, respectively.
A good representative model would generally have a percent error value of less than 10%.

Figure 6.13: The percentage error values using the GA method for updating the FEM modeling
of the spans 1, 2, 3 and 4 [8].
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6.5 Case study 2: FE model updating of steel-concrete
composite bridge

6.5.1 Description of the structure

The Vietnamese Ruri Bridge is located on the main road that connects the provinces of
PhuYen and DakLac. The simply supported span is 18 m long and has a skew angle of 60 degrees.
The bridge structure consists of seven steel beams (rolled profiles I760) on which a reinforced
concrete slab of the deck is placed with a thickness of 15 cm. The beams are connected by five steel
crossbars and supported on abutments by steel bearings. Figure 6.14 shows the diagnostic load
testing of the existing Ruri bridge and some images in the field. The structural testing procedures
in the field include: static load testing with two trucks; dynamic testing with one truck; assessment
and evaluation for concrete and steel quality by other devices; scaffoldings for mounting sensors
(strain transducers, displacement sensors, and accelerometers).

Figure 6.14: Overview of the Vietnamese Ruri bridge [14].
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The location and description of the sensors attached to the cross-sectional girders at
the midspan are presented in Figure 6.15. LVDT displacement sensors were installed at
the bottom of the girders at the midspan and the reusable strain transducers were mounted
at the bottom and top of the girders at the midspan, where the measured data was collected
according to three static load cases. The accelerometers were located at the middle of the span to
record the dynamic behavior of the bridge, while the test truck crossed the bridge at high speed.
Intelligent sensors from the SHM system for the structural testing of the bridge were used.
In the system, the connector interfaces contain the sensor identification (ID) name and calibration
factor within a memory chip inside the sensor connectors. For example, the strain transducer
(B3934, B3924, . . . ) with “B” means strain sensor; the accelerometer (A2267, A2270, . . . ) with
“A” means acceleration sensors; the LVDT sensor (LV9804, LV9648, . . . ) with “LV” means
displacement sensor. The ID name of the sensors is used for the recognition of various types
of sensors and can also be used for the database management of sensors by the software
automatically.

Figure 6.15: Cross-sectional steel girders (in centimeters) and field instrumentation plan [14].
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6.5.2 Finite element modeling

The bridge structure was simulated in ANSYS in the form of seven longitudinal beams
and five transverse beams which were modeled using the BEAM188 element. The elastic
beam element has two nodes with twelve degrees of freedom, including axial, torsional, and
bending displacements. A concrete deck slab was modeled using the SHELL181 element, which
has four nodes with six degrees of freedom at each node, including displacements along the 𝑥,
𝑦, and 𝑧 directions, as well as rotations about the 𝑥, 𝑦, and 𝑧 axes. The BEAM188 element
is applied to implement the different I-shaped section-cross types in 3-D geometry describing
width of flange, flange thickness, web thickness and depth. The FE model of the Ruri Bridge
was developed in ANSYS with 3293 nodes and 3964 elements, assuming linear elasticity and
ignoring damping effects, with doubly pinned boundary conditions at the ends of the I-shaped
steel girders. The results of the modal analysis and natural frequencies of the FE model for
the bridge are presented in Figure 6.16. The graph also displays the two-dimensional group of
point load cases defined by the FE model, where loads are applied similar to actual load testing
and the standard AASHTO rating vehicles. The main purpose of the programming solution
with codes and commands written by MAPDL in ANSYS, is to create an own application
which can write and read data files after every loop iteration, and then update, and access to
database information of the numerical results. MATLAB will support user-friendly interfaces
with advanced optimization modules for management of results and parameter files of the FE
modeling.

Figure 6.16: The natural vibration modal shapes of the Ruri bridge [14].
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6.5.3 Results of the FE model updating

Table 6.2 shows member cross-sections and material properties to be defined for
the individual members. Deck elements are defined as concrete material with initial values for
material modulus, steel-reinforced concrete and Poisson’s ratio. Longitudinal beams are given
the same member group having the same I-shaped cross-sections and mechanical properties
of structural steel, which are also created to assign for transverse beam elements with
the same area of rectangle. The stiffness properties in the initial FE modeling are assigned
to the different groups, so they can be changed during the optimization procedure. The variables
for various types of beams are set in lower and upper bounds based on steel and concrete
standards. Poisson ratios are constant: 0.2 and 0.3 for concrete and steel materials, respectively.
Safety barriers and asphalt pavement layers on the concrete bridge deck are not considered in
the FE modeling. Dead load includes the self-weight of the structure plus 22.5 kN/m3 to account
for 5 cm of asphalt and railings not defined by the FE model applied during load rating only.

Table 6.2: Parameters of updating FE model for mechanical and section properties [14].

Parameters Initial values Lower limit Upper limit PSO method GA method Ref.
𝐸𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒, [GPa] 25 21 40 33.16 32.20

[178],
[181],
[182],
[183], [184]

𝜌𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒, kg/m3 2500 2300 2600 2502.60 2378.20
𝑡𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑑𝑒𝑐𝑘 , [mm] 150 100 300 133.14 151.91

𝐸𝐵𝑒𝑎𝑚1, [GPa]

210 178.5 220.5

220.35 178.74
𝐸𝐵𝑒𝑎𝑚2, [GPa] 220.50 179.07
𝐸𝐵𝑒𝑎𝑚3, [GPa] 220.50 179.44
𝐸𝐵𝑒𝑎𝑚4, [GPa] 195.68 184.394
𝐸𝐵𝑒𝑎𝑚5, [GPa] 182.268 191.73
𝐸𝐵𝑒𝑎𝑚6, [GPa] 178.50 218.90
𝐸𝐵𝑒𝑎𝑚7, [GPa] 178.50 202.37

𝐸𝑇𝑟𝑎𝑛𝑣𝑒𝑟𝑠𝑒 𝐵𝑒𝑎𝑚𝑠, [GPa] 203.55 216.45
𝜌𝑠𝑡𝑒𝑒𝑙 , kg/m3 7850 7750 8050 7750 7989.2

Section dimensions of longitudinal I-shaped steel beams
Section height, H, [mm] 760 532 912 534.72 540.88

Flange thickness, 𝑡 𝑓 , [mm] 30 15 60 60 37.61
𝛼, ratio 0.35 0.25 0.7 0.25 0.42
𝛽, ratio 0.66 0.5 1.0 0.92 0.57

Flange width, B, [mm] 270 𝛼.H 133.91 232
Web thickness, 𝑡𝑤, [mm] 20 𝛽.𝑡 𝑓 55.47 21.59

Section dimensions of transverse rectangular steel plate beams
Height, h, [mm] 380 𝐻/2 267.36 270.44

Thickness, t, [mm] 20 𝑡𝑤 55.47 21.59

Table 6.3 contains the initial design and final values of the natural frequencies of the PSO
and GA method, and the results of the experimental frequencies. The final analytical frequencies
are obtained from calibrated FE modeling based on PSO and GA techniques with 8.12% and
8.18% of the highest errors within 10000 steps, respectively. From the table, one can observe
that for the results of updated modal frequencies after 1000 steps, the percent errors are below
the level of 10%.
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Table 6.3: Natural frequencies (Hz) [14].

Methods First mode Second mode Third mode Fourth mode.
Measured Frequencies (Hz) 2.66 4.29 9.38 12.19
Natural Frequencies (Hz) 2.705 (-1.69%) 4.363 (-1.70%) 9.275 (1.11%) 11.920 (2.21%)

Damping (%) 2.7 1.6 2.7 0.2

1000 steps PSO 2.545 (4.31%) 4.251 (0.90%) 10.191 (-8.64%) 11.154 (8.50%)
GA 2.526 (5.01%) 4.409 (-2.78%) 10.161 (-8.32%) 11.336 (7.00%)

10000 steps PSO 2.547 (4.23%) 4.339 (-1.14%) 10.142 (-8.12%) 11.331 (7.04%)
GA 2.547 (4.22%) 4.361 (-1.66%) 10.148 (-8.18%) 11.340 (6.97%)

Figure 6.17 shows the results of the normal probability distribution of uncertain parameters
for updating the FE model obtained from the PSO and GA optimization methods. The graphs
are an effective way to verify the calibrated parameters corresponding to an approximation of
the Gaussian distribution, which can be used to monitor the tracking stiffness parameters of
the FE model updating every step that occurs in the optimization procedure. Sensitivity-based
analysis is implemented in the form of 16 vectors of uncertainty parameters of the real bridge
structure in the PSO and GA approach after 10000 generated samples. Furthermore, the concrete
deck increased from 25 GPa to 33.16 GPa in the PSO method and 32.20 GPa in the GA method,
indicating that the reinforced concrete structure behaves normally throughout the entire structure
of the interface between the slab and the beams. By modifying the master and slave variables
in the model, the calibrated height of the longitudinal I-shaped steel beam decreased from
760 mm of the initial FE modeling calculated from the PSO and GA method to 534.72 mm and
540.88 mm, respectively.

Figure 6.18 presents the graphs of the total percent error with the number of iterations,
the natural frequencies of the updated FE modeling, and the results of the moment and shear
forces RF for steel structural members under various live-load cases and dead-load using
the updated FE model. The values of the PSO method fluctuated significantly, while the variables
of the GA method remained stable after 4000 steps. The plots show in tracking important changes
of the entire optimization processing taking place step by step, where it could monitor structural
health using key RF information to predict load limits. In the RF equation above, dead-load
and live load effects were computed from the updated FE modeling at the cross-sections with
maximum bending moment and the shear force diagram corresponding to the structural members.
From the final updated FE model, the maximum numerical deflections below 63.83 tons
of two trucks were 27.48 mm and 25.65 mm from the PSO and GA methods, respectively.
The minimum RF of moment in the PSO method was 1.11 for the HL93 load case and the RF
in the GA method was 1.27 for the HL93 load case, while the RFs of other load cases were
greater than 1.0. The structural members of this bridge have the RFs for shear force much
greater than 1.0.
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Figure 6.17: Results of the probability Gaussian distribution of 16 parameters [14].
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6.6 Concluding remarks

In this chapter, the FE model updating of the existing bridges was developed to obtain
field-calibrated models that could accurately represent the actual responses of the bridge
structures and could also apply any truck load configurations to calculate realistic load ratings
according to the AASHTO design standards. The most important conclusions made from the final
updated FE models of the existing bridge structures based on the field truck load testing are drawn
as follows:

• The proposed approaches of the FE model updating could be used for different types
of bridge structures and even for other large structures by calibrating the stiffness
parameters of structural components that compare the measured data in the field testing
and the analytical data in the FE modeling to develop the representative model of the actual
structure.

• The simplified finite-element analysis of bridge structures was used with the linear behavior
assumption.

• The final calibrated FE models were a very accurate representation of the structure.
They can reproduce the actual load distributions, which are better than the initial assumed
FE models.

• The rating factors for the bridge spans were less than 1.0 indicating that this bridge
was considered critical loads to ensure structural safety and serviceability for repair and
maintenance.

• Any load configuration according to bridge design codes, standards and specifications
could be applied to the adjusted FE models to make stress level predictions as well as
being a very useful tool for increased load limits.

• Bridge load testing procedures and load ratings can be completed very quickly,
accurately, and reliably. The automated FE model calibration approach can be applied
to similar bridges, as well as complex and large railway arch bridges.
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Conclusion and future work

7.1 Conclusion

The purpose of the present work was to study automated FE model updating, advanced
signal processing, and machine learning approaches for bridge health monitoring. Field data sets
collected from bridge load diagnostic testing and railway bridge health monitoring were analyzed
to evaluate bridge health condition through FE model calibration as well as machine
learning-assisted structural health assessment. The following conclusions are drawn from
the results obtained:

(1) FE model updating plays a crucial role in reproducing numerical data when comparing
measured and computed responses, used for load ratings, load limits or permit loads, and
overloads of the existing bridges. The final calibrated FE model could be used to determine
the allowable load bearing capacity of structural members for the smart alarm system of
long-term bridge health monitoring.

(2) Deep learning-integrated applications were developed for the vibration-based SHM
system of the railway steel arch bridge. Wavelet-assisted CNN classification models
were performed to predict hanger health conditions for the Dębica railway bridge
located in Poland. The tension force values of the hangers were calculated from
experimental vibration responses and the updated FE model of the heavy railway bridge
to label the healthy and overload states on each hanger in CNN classification models.
Using trained CNN models, it is possibe to predict hanger health status under various
dynamic loading effects based on the measurements from a single accelerometer installed
on the bridge span.
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(3) Deep learning-based hanger health monitoring using orbit-shaped analysis of
the bidirectional vibration sensor was conducted to assess the bending and torsional
behavior of hangers under train load events and wind excitation. The use of orbits for
hanger condition monitoring could consider the fundamental theory of mechanics and
vibration analysis in terms of the similarity of the mechanical behavior of hangers and
machinery shafts subject to dynamic loading, including their boundary conditions.

(4) Data-driven bridge health monitoring using ANN and ANFIS algorithms was performed
to predict RMS values of Dębica bridge with various train events over a period of
nine months from December 2019 to September 2020. The trained ANN and ANFIS
models could be implemented in AI-based sensors to predict potential structural problems
in bridge structures.

Summarizing the FE model calibration based on the bridge diagnostic load testing
was efficiently proven and also applied for the SHM system. The machine learning-assisted SHM
application was demonstrated for the existing railway bridge by integrating the updated FE model
for reproducibility. The data-driven SHM using the machine learning and deep learning-attention
algorithms was established for the railway steel arch bridge. Finally, the proposed innovative
solutions would be cutting-edge technologies when machine learning-based algorithms could
be implemented into AI-based vibration sensors for the smart alert system and intelligent data
management as developed in this study.
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7.2 Future research

In the light of the results of the present investigation, it can be seen that many problems exist
and some modifications could be made. Therefore, it is recommended that the following work
be carried out:

(1) Instead of updating the FE model, the studies were conducted individually for specific
cases. It seems that this procedure of updating the FE model for all bridge structures would
be implemented in the digital twin platform to continuously and automatically calibrate
the cross-sectional stiffness and material properties of the structural members, and then
visualize the results of FE analysis.

(2) The physics-informed machine learning was used for the hanger health diagnostic of
the railway steel arch bridge. Using physics-informed ML approaches demonstrates
the potential and benefits of integrating the FE model updating into machine learning
applications.

(3) Due to the limitations of research time, this project was restricted to machine
learning-assisted data-driven SHM for railway steel arch bridge as well as automated FE
model updating for simple bridges. It is suggested that the useful results would be obtained
from similar work on data-driven SHM for complex bridge structures. The proposed
machine learning and signal processing algorithms would be integrated into the web-based
digital twin platform for data-driven bridge health monitoring, which is built to access
IFC-based 3D models for intelligent bridge data management. The installed sensors would
be visualized at their respective locations in these 3D models to access data sets and interact
with signal charts, graphs, or representations in real time. The smart alert system would
be implemented on this SHM platform to predict structural potential problems and signal
anomalies.

(4) The proposed wavelet-assisted machine learning techniques should be integrated into
the Web-based platform of intelligent data management for the data-driven vibration-based
SHM system. Machine learning-based regression models would be developed to predict
hanger health status during weather events in real time with a smart alarm system.

(5) It would be worthwhile to develop quantum machine learning algorithms for
the data-driven vibration-based SHM of the complex large railway bridge. The advantages
and limitations of QML for industrial vibration-based SHM applications could be
discussed for potential issues, such as: signal pre-processing; signal noise; signal feature
detection and extraction; classification and regression prediction models.
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Appendix A

ANN and ANFIS regression models in
MATLAB

A.1 ANFIS regression models

1 %%%%%%%% Main of ANFIS %%%%%%%%

2 % Author: Nguyen Cong Duc

3 % Email in Poland until September 2024: cong.nguyen@polsl.pl

4 % Email in Viet Nam: nguyencongduc@muce.edu.vn

5 clc;

6 clear;

7 close all;

8 % Results of Evaluation Metrics

9 Output_Metrics = fopen('Metrics_ANFIS.txt','w+');

10 % Results of Parameters of ANFIS

11 Output_Parameters = fopen('Parameters_ANFIS.txt','w+');

12 % Data sets of RMS accelerations

13 dataset = xlsread('RMS_Deck_Hangers.xlsx');

14 % Design data for input, output (targets), train and test

15 Inputs = dataset(:,:);

16 Targets = dataset(:,:);

17 TrainInputs = Inputs(:,:);

18 TrainTargets = Targets(:,:);

19 TestInputs = Inputs(:,:);

20 TestTargets = Targets(:,:);
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21 % ANFIS Structure for Training

22 PARAMS = [200; 0; 0.01; 0.9; 1.1];

23 fun = ANFIS_Models(PARAMS, TrainInputs , TrainTargets ,...

24 TestInputs , TestTargets ,...

25 Inputs, Targets,...

26 Output_Parameters , Output_Metrics);

27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

28 function Error = ANFIS_Models(PARAMS, TrainInputs , TrainTargets ,...

29 TestInputs , TestTargets ,...

30 Inputs, Targets,...

31 Output_Parameters , Output_Metrics)

32 % Setting the Parameters of FIS Generation Methods

33 nCluster = 15;

34 Exponent = 2;

35 MaxIt = 200;

36 MinImprovment = 1e-5;

37 DisplayInfo = true;

38 opt = genfisOptions('FCMClustering','NumClusters', nCluster ,..

39 'Exponent', Exponent ,...

40 'MaxNumIteration', MaxIt, 'MinImprovement',...

41 MinImprovment , 'Verbose', DisplayInfo);

42 fis=genfis(TrainInputs ,TrainTargets ,opt);

43 % Training ANFIS Structure

44 MaxEpoch = PARAMS(1);

45 ErrorGoal = PARAMS(2);

46 InitialStepSize = PARAMS(3);

47 StepSizeDecreaseRate = PARAMS(4);

48 StepSizeIncreaseRate = PARAMS(5);

49 TrainOptions = [MaxEpoch ...

50 ErrorGoal ...

51 InitialStepSize ...

52 StepSizeDecreaseRate ...

53 StepSizeIncreaseRate];

54 DisplayInfo=true;

55 DisplayError=true;

56 DisplayStepSize=true;
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57 DisplayFinalResult=true;

58 DisplayOptions=[DisplayInfo ...

59 DisplayError ...

60 DisplayStepSize ...

61 DisplayFinalResult];

62 OptimizationMethod=1;

63 % 0: Backpropagation

64 % 1: Hybrid

65 fis = anfis([TrainInputs TrainTargets],fis,...

66 TrainOptions ,DisplayOptions ,[],OptimizationMethod);

67
68 % Apply trained ANFIS to predict new data

69 Outputs = evalfis(fis,Inputs);

70 TrainOutputs = evalfis(fis,TrainInputs);

71 TestOutputs = evalfis(fis,TestInputs);

72
73 % Calculate Errors and Metrics

74 TrainErrors = TrainTargets -TrainOutputs;

75 TrainMSE = mean(TrainErrors.^2);

76 TrainRMSE = sqrt(TrainMSE);

77 TrainErrorMean = mean(TrainErrors);

78 TrainErrorSTD = std(TrainErrors);

79 TrainMAE = mae(TrainErrors);

80 TrainMAPE = mean(abs(TrainErrors)./TrainTargets)*100;

81 TrainNSE = 1-(sum((TrainOutputs -TrainTargets).^2)...

82 /sum((TrainTargets -mean(TrainTargets)).^2))

83
84 TestErrors = TestTargets -TestOutputs;

85 TestMSE = mean(TestErrors.^2);

86 TestRMSE = sqrt(TestMSE);

87 TestErrorMean = mean(TestErrors);

88 TestErrorSTD = std(TestErrors);

89 TestMAE = mae(TestErrors);

90 TestMAPE = mean(abs(TestErrors)./TestTargets)*100;

91 TestNSE = 1-(sum((TestOutputs -TestTargets).^2)...

92 /sum((TestTargets -mean(TestTargets)).^2))
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93
94 R_Train = corrcoef(TrainTargets ,TrainOutputs);

95 R_Train = R_Train(2,1);

96 R2_Train = corr(TrainTargets ,TrainOutputs).^2;

97 R2_Test = corr(TestTargets ,TestOutputs).^2;

98 R_Test = corrcoef(TestTargets ,TestOutputs);

99 R_Test = R_Test(2,1);

100 Error = TestRMSE + TrainRMSE

101
102 % Print results of training and testing of regression models

103 fprintf(Output_Metrics ,'%10.4f\t%10.4f\t%10.4f\t%10.4f\t...',...

104 Error,R2_Train, R2_Test,...

105 R_Train, R_Test, TrainRMSE , TestRMSE,...

106 TrainMAE , TestMAE, TrainMAPE , TestMAPE ,...

107 TrainNSE , TestNSE, TrainMSE , TestMSE,...

108 TrainErrorMean , TestErrorMean ,...

109 TrainErrorSTD , TestErrorSTD);

110 fprintf(Output_Metrics ,'\n');

111
112 fprintf(Output_Parameters ,'%d\t%10.4f\t%10.4f\t%10.4f\t%10.4f',...

113 MaxEpoch , ErrorGoal , InitialStepSize ,...

114 StepSizeDecreaseRate , StepSizeIncreaseRate);

115 fprintf(Output_Parameters ,'\n');

116
117 % Save the results

118 NTrain = size(TrainOutputs ,1);

119 NTest = size(TestOutputs ,1);

120 NAll = size(Outputs ,1);

121
122 Results_Test = fopen('output_TestANN.txt' ,'w+');

123 Results_Train = fopen('output_TrainANN.txt' ,'w+');

124 Results_All = fopen('output_AllANN.txt' ,'w+');

125
126 for i = 1:NTrain

127 fprintf(Results_Train ,'%10.4f\t%10.4f',...

128 TrainTargets(i), TrainOutputs(i));
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129 fprintf(Results_Train ,'\n');

130 end

131
132 for i = 1:NTest

133 fprintf(Results_Test ,'%10.4f\t%10.4f',...

134 TestTargets(i), TestOutputs(i));

135 fprintf(Results_Test ,'\n');

136 end

137
138 for i = 1:NAll

139 fprintf(Results_All ,'%10.4f\t%10.4f',...

140 Targets(i), Outputs(i));

141 fprintf(Results_All ,'\n');

142 end

143
144 end

145 % End function of ANFIS_Models



140 Chapter A. ANN and ANFIS regression models in MATLAB

A.2 Optimized ANN regression models

1 %%%%%%% Main of optimized ANN %%%%%%%%

2 % Author: Nguyen Cong Duc

3 % Email in Poland until September 2024: cong.nguyen@polsl.pl

4 % Email in Viet Nam: nguyencongduc@muce.edu.vn

5 clc;

6 clear;

7 close all;

8 % Data sets of RMS accelerations

9 dataset = xlsread('RMS_Deck_Hangers.xlsx');

10 % Design data for input, output (targets), train and test

11 Inputs = dataset(:,:);

12 Targets = dataset(:,:);

13 TrainInputs=Inputs(:,:);

14 TrainTargets=Targets(:,:);

15 TestInputs=Inputs(:,:);

16 TestTargets=Targets(:,:);

17
18 i = 3; % number of layers

19 files_metrics(i) = "output_metrics"+num2str(i)+ ".txt";

20 files_layers(i) = "output_layers"+num2str(i)+ ".txt";

21 Output_Metrics(i) = fopen(files_metrics(i),'w+');

22 Nvars_Layers(i) = fopen(files_layers(i),'w+');

23 NLayers = i;

24
25 Error = @(z)OptimizedANN(z, TrainInputs ,TrainTargets ,...

26 TestInputs ,TestTargets ,...

27 Inputs, Targets, Output_Metrics(i),...

28 Nvars_Layers(i), NLayers);

29
30 lb = 1*ones(1,i); % lower limits: the number of hidden neurons

31 ub = 30*ones(1,i); % upper limits: the number of hidden neurons

32 Varsinteger = linspace(1, i, i);

33 nvars = i;

34 options = optimoptions("gamultiobj")
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35 [x,fval] = gamultiobj(Error,nvars ,[],[],[],...

36 [],lb,ub,[], Varsinteger , options);

37
38 %%%%%%%%% Function of ANN_Models %%%%%%%%%

39 function Error = OptimizedANN(NNeurons, TrainInputs ,...

40 TrainTargets , TestInputs , TestTargets ,...

41 Inputs, Targets,...

42 Output_Metrics , Nvars_Layers , NLayers)

43 net = newff(TrainInputs ,TrainTargets ,NNeutrons ,...

44 {'tansig', , ,}); % Noted: tansig for nonlinear issues

45
46 % Train network

47 net.trainparam.epochs=200;

48 net = train(net,TrainInputs ,TrainTargets);

49 Outputs = sim(net,Inputs ');

50 TrainOutputs = sim(net,TrainInputs);

51 TestOutputs = sim(net,TestInputs);

52
53 % Calculate Metrics

54 TrainErrors = TrainTargets -TrainOutputs;

55 TrainMSE = mean(TrainErrors.^2);

56 TrainRMSE = sqrt(TrainMSE);

57 TrainErrorMean = mean(TrainErrors);

58 TrainErrorSTD = std(TrainErrors);

59 TrainMAE = mae(TrainErrors);

60 TrainMAPE = mean(abs(TrainErrors)./TrainTargets)*100;

61 TrainNSE = 1-(sum((TrainOutputs -TrainTargets).^2)...

62 /sum((TrainTargets -mean(TrainTargets)).^2))

63
64 TestErrors = TestTargets -TestOutputs;

65 TestMSE = mean(TestErrors.^2);

66 TestRMSE = sqrt(TestMSE);

67 TestErrorMean = mean(TestErrors);

68 TestErrorSTD = std(TestErrors);

69 TestMAE = mae(TestErrors);

70 TestMAPE = mean(abs(TestErrors)./TestTargets)*100;
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71 TestNSE = 1-(sum((TestOutputs -TestTargets).^2)...

72 /sum((TestTargets -mean(TestTargets)).^2))

73
74 R_Train = corrcoef(TrainTargets ', TrainOutputs ');

75 R_Train = R_Train(2,1)

76 R2_Train = corr(TrainTargets ', TrainOutputs ').^2

77 R2_Test = corr(TestTargets ', TestOutputs ').^2

78 R_Test = corrcoef(TestTargets ', TestOutputs ');

79 R_Test = R_Test(2,1)

80 Error = (TestRMSE+TrainRMSE)

81
82 % Print results of evaluation metrics of ANN models

83 fprintf(Output_Metrics ,'%10.4f\t%10.4f\t%10.4f\t...\n',...

84 Error, R2_Train, R2_Test,...

85 R_Train, R_Test, TrainRMSE , TestRMSE,...

86 TrainMAE , TestMAE, TrainMAPE , TestMAPE ,...

87 TrainNSE , TestNSE, TrainMSE , TestMSE, ...

88 TrainErrorMean , TestErrorMean ,...

89 TrainErrorSTD , TestErrorSTD);

90
91 % Print results of the number of hidden layers with neurons

92 for i =1:NLayers

93 fprintf(Nvars_Layers ,'%d', NNeurons(i));

94 fprintf(Nvars_Layers ,'\t');

95 end

96 fprintf(Nvars_Layers ,'\n');

97
98 end
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Wavelet assisted CNN models in MATLAB

B.1 Wavelet-integrated CNN classification models

1 %%%% Wavelet-based CNN classification models %%%%

2 % Author: Nguyen Cong Duc

3 % Email in Poland until September 2024: cong.nguyen@polsl.pl

4 % Email in Viet Nam: nguyencongduc@muce.edu.vn

5 % Entering command ">experimentManager" used the outputs of

6 % this "Experiment_setup" function

7 % to call and edit the trainNetwork function

8 function [imdsTrain ,layers,options] = Experiment_setup(params)

9 % Load Training Data

10 imdsTrain=imageDatastore("...\Folder_Wavelet_Images",...

11 "IncludeSubfolders", true,"LabelSource","foldernames");

12 [imdsTrain ,imdsValidation]=splitEachLabel(imdsTrain ,0.7,...

13 "randomized");

14
15 % Define Network Architecture

16 numClasses = 2; % The number of labels

17 inputSize = [224 224 3]; % Size of wavelet-based images

18 augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);

19 augimdsValidation = augmentedImageDatastore(inputSize(1:2), ...

20 imdsValidation);

21 net = googlenet;

22 layers = layerGraph(net);
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23 newLearnableLayer = fullyConnectedLayer(numClasses , ...

24 'Name','new_fc', ...

25 'WeightLearnRateFactor',10, ...

26 'BiasLearnRateFactor',10);

27 layers = replaceLayer(layers,'loss3-classifier',newLearnableLayer);

28 newClassLayer = classificationLayer('Name','new_classoutput');

29 layers = replaceLayer(layers,'output',newClassLayer);

30
31 % Specify Training Options

32 options = trainingOptions('adam', ...

33 'MaxEpochs', 30, ...

34 'Shuffle','every-epoch',...

35 'MiniBatchSize',128, ...

36 'ValidationData',augimdsValidation , ...

37 'InitialLearnRate',0.001,...

38 'ValidationFrequency',50);

39 end
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B.2 Wavelet-integrated CNN regression models

1 %%%% Wavelet-based CNN Regression models %%%%

2 % Author: Nguyen Cong Duc

3 % Email in Poland until September 2024: cong.nguyen@polsl.pl

4 % Email in Viet Nam: nguyencongduc@muce.edu.vn

5 % Create File: "Wavelet_images.txt"

6 % Begining of File

7 % D:\...\RZp-2019_12_13_00_04_15.png 53.73

8 % D:\...\RZp-2019_12_13_01_58_09.png 52.8

9 % D:\...\RZp-2019_12_13_03_30_14.png 56.99

10 % D:\...\RZp-2019_12_13_05_14_15.png 46.95

11 % D:\...\RZp-2019_12_13_05_23_13.png 53.86

12 % D:\...\RZp-2019_12_13_05_40_11.png 49.66

13 % D:\...\RZp-2019_12_13_05_54_59.png 42.26

14 % D:\...\RZp-2019_12_13_05_58_16.png 46.71

15 % D:\...\RZp-2019_12_13_06_02_24.png 53.7

16 % D:\...\RZp-2019_12_13_06_36_18.png 46.73

17 % D:\...\RZp-2019_12_13_06_37_03.png 54.59

18 % D:\...\RZp-2019_12_13_06_43_46.png 53.67

19 % D:\...\RZp-2019_12_13_07_07_18.png 52.94

20 % D:\...\RZp-2019_12_13_07_15_34.png 49

21 % ....

22 % Ending of file

23 %%%%%%%%%%%%%%

24 clc, clearvars , close all

25 Whanger = readtable('Wavelet_images.txt','Delimiter','tab');

26
27 address_images= Whanger{:,1};

28 responses_sensors = Whanger{:,2};

29 images_responses = table(address_images , responses_sensors);

30 imds = imageDatastore(images_responses{:,1});

31
32 %%% Convert images into 4D array for input

33 images4DArray = readall(imds);

34 numofImages = numel(images4DArray);
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35 [h,w,c] = size(images4DArray{1});

36 Xinput = zeros(h,w,c, numofImages);

37 for i=1:numofImages

38 Xinput(:,:,:,i) = im2double(images4DArray{i});

39 end

40
41 %%% Data for output

42 Youtput = double(images_responses{:,2});

43
44 shuffledIndices = randperm(numofImages);

45 % Use 70% of the images for training.

46 numTrain = round(0.70 * numofImages);

47 trainingIdx = shuffledIndices(1:numTrain);

48 % Use 30% of the images for validation

49 valIdx = shuffledIndices(numTrain+1:end);

50
51 % All data sets

52 Alldata = Xinput(:,:,:,:);

53 YAll = Youtput(:);

54
55 % Training data sets

56 XTrain = Xinput(:,:,:,trainingIdx);

57 YTrain = Youtput(trainingIdx);

58
59 % Testing data sets

60 XValidation = Xinput(:,:,:,valIdx);

61 YValidation = Youtput(valIdx);

62
63 % Run GoogLeNet architecture

64 net = googlenet;

65 layers = layerGraph(net);

66 layers = replaceLayer(layers,'data',...

67 imageInputLayer([224 224 3],'Name','input'));

68 layers = replaceLayer(layers,'loss3-classifier',...

69 fullyConnectedLayer(1));

70 layers = removeLayers(layers, 'output');
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71 layers = replaceLayer(layers, 'prob',regressionLayer);

72
73 % Set up Parameters of GoogLeNet architecture

74 options = trainingOptions('adam', ...

75 'MaxEpochs',30, ...

76 'Plots','training -progress', ...

77 'ValidationFrequency',50, ...

78 'ValidationData',{XValidation ,YValidation}, ...

79 'InitialLearnRate',0.001,...

80 'Verbose',false);

81
82 net = trainNetwork(XTrain,YTrain, layers,options);

83
84 % Print results

85 YPredictedTest = predict(net,XValidation);

86 YYTest = table(YValidation , YPredictedTest);

87 writetable(YYTest,'Output_Test.txt','Delimiter','tab',...

88 'WriteVariableNames', false)

89
90 YPredictedTrain = predict(net,XTrain);

91 YYTrain = table(YTrain, YPredictedTrain);

92 writetable(YYTrain,'Output_Train.txt','Delimiter','tab',...

93 'WriteVariableNames', false)

94
95 YPredictedAll = predict(net,Alldata);

96 YYAll = table(YAll, YPredictedAll);

97 writetable(YYAll,'Output_Alldata.txt','Delimiter','tab',...

98 'WriteVariableNames', false)

99 end





Appendix C

FE model updating in
MATLAB/PYTHON and
ANSYS/SOFISTIK

C.1 Interfacing MATLAB with ANSYS for FE model
updating of Vietnamese bridges

1 %%%%%%%% Main of MATLAB and ANSYS %%%%%%%%

2 % Author: Nguyen Cong Duc

3 % Email in Poland until September 2024: cong.nguyen@polsl.pl

4 % Email in Viet Nam: nguyencongduc@muce.edu.vn

5 updated_variables = fopen('output_updated_variables.txt','w+');

6 responses_FEM = fopen('output_FEMresponses.txt','w+');

7 error = fopen('output_error.txt','w+');

8
9 % Input of FE modeling of bridge

10 inputFile = 'inputFEM.txt';

11
12 % Output temporary file (macro) of ANSYS APDL

13 outputFile = 'outputFEM.txt';

14
15 % Link and Path of ANSYS software

16 ansys_path= '"C:\Program Files\...\ansys\bin\winx64\MAPDL.exe"';

17
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18 % Experimental structural responses

19 measured_responses = [, , , ];

20
21 % Objective Function with parameters

22 error = @(x)objectiveFunction(x, measured_responses ,...

23 inputFile , outputFile , updated_variables ,...

24 responses_FEM , error, ansys_path);

25
26 % Parameters/Variables with lower and upper limits

27 lb = [, , , ]; % lower limits

28 ub = [, , , ]; % upper limits

29 nvars = ; % the number of variables to update

30
31 % PSO method

32 options = optimoptions('particleswarm', 'SwarmSize', 1000,...

33 'HybridFcn',@fmincon);

34 [xn,fvaln,exitflagn ,outputn] = particleswarm(error,nvars,...

35 lb,ub,options);

36 % GA method

37 options = optimoptions('ga');

38 [xn,fvaln,exitflagn ,outputn] = ga(error,nvars ,[],[],[],[],...

39 lb,ub,[],[],options);

40
41 fclose(updated_variables);

42 fclose(responses_FEM);

43 fclose(error);

44
45 %%%%%%%%%%%%% objective Function %%%%%%%%%%%%%

46 function error = objectiveFunction(measured_responses ,...

47 inputFile , outputFile , updated_variables ,...

48 responses_FEM , error, ansys_path)

49
50 Nm = length(measured_responses); % size of measured responses

51 d = length(updated_variables); % size of parameters

52
53 % FEM from ANSYS APDL
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54 computed_responses = updated_parameters(updated_variables ,....

55 inputFile , outputFile , ansys_path);

56
57 % Error between measurement and computation

58 for i =1:Nm

59 err(i) = ((measured_responses(i)-...

60 computed_responses(i))/measured_responses(i)).^2;

61 end

62 err =sum(err)

63
64 % Print updated variables of FE model

65 fprintf(updated_variables ,'%10.5f \n',...

66 [ , , , ]);

67 % Print structural responses from FE model in ANSYS software

68 fprintf(responses_FEM ,'%10.5f \n', [ , , , ]);

69 % Print error

70 fprintf(error,'%10.10f\n', err);

71
72 end

73
74 %%%%%%%%%%%%%% Editing new file to input ANSYS APDL %%%%%%%%%%%

75 function [computed_responses] = updated_parameters(...

76 updated_variables , inputFile ,...

77 outputFile , ansys_path)

78
79 % For exmples, define parameters in new file in ANSYS APDL

80 Ec = updated_variables(1);

81 rhoc = updated_variables(2);

82 Es = updated_variables(3);

83 rhos = updated_variables(3);

84 numlines = ; %Number of lines in the input file

85
86 % Clear output file

87 [fileID] = fopen(outputFile ,'w');

88 fclose(fileID);

89
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90 % Open and change 'Input File'

91 fileID = fopen(inputFile ,'r');

92 for i=1:numlines

93 tline = fgetl(fileID);

94 Inp{i} = tline;

95 end

96 fclose(fileID);

97 Inp = Inp';

98
99 % For exmples, editing new file

100 Inp{ } = sprintf('Ec = %10.5f',Ec);

101 Inp{ } = sprintf('rhoc = %10.5f',rhoc);

102 Inp{ } = sprintf('Es = %10.5f', Es);

103 Inp{ } = sprintf('rhos = %10.5f', rhos);

104 fileID = fopen(inputFile ,'w');

105 for i = 1:numel(Inp)

106 fprintf(fileID,'%s\n', Inp{i});

107 end

108 fclose(fileID);

109
110 % Run ANSYS APDL / MAPDL

111 RunAnsysMAPDL(inputFile , ansys_path);

112
113 % Read results of computed responses from ANSYS software

114 Results_ANSYS = readtable(char(outputFile),'Delimiter','\t',...

115 'ReadVariableNames',false);

116 df = str2num(char(Results_ANSYS{:,1}));

117 computed_responses = df;

118 end

1 !%%%%%%% Input of FE modeling of bridge

2 ! inputFile = 'inputFEM.txt';

3 /CWD,'D:\FEModelUpdating'

4 /CLEAR

5 Ec = 25

6 rhoc = 2500
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7 Es = 210

8 rhos = 7850

9 /prep7

10 K,1, 0, 0, 0

11 K,2, 4.35, 0, 0

12 K,3, 8.7, 0, 0

13 K,4, 13.05, 0, 0

14 K,5, 17.4, 0, 0

15 ....

16 SOLVE

17 FINISH

18 /post1

19 ...

20 *CFOPEN,outputFEM ,txt,,

21 *VWRITE,PF(1,1),PF(1,2),PF(1,3),PF(1,4),PF(1,5),PF(1,6),PF(1,7)

22 (7(' ',E20.10))

23 *CFCLOS
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C.2 Connecting MATLAB with SOFISTIK for FE model
updating of Vietnamese bridges

1 %%%%%% Main of MATLAB and SOFISTIK %%%%%%%%

2 % Author: Nguyen Cong Duc

3 % Email in Poland until September 2024: cong.nguyen@polsl.pl

4 % Email in Viet Nam: nguyencongduc@muce.edu.vn

5
6 inputFile = 'input_FEM.dat';

7 outputerror = 'output_error.csv';

8 updated_variables = fopen('updated_variables.txt','w+');

9 updated_errors = fopen('updated_errors.txt','w+');

10
11 % Link and Path of SOFISTIK software

12 sofistik_path = "C:\Program Files\SOFiSTiK\*\sps.exe";

13
14 error = @(x)objectiveFunction(x, inputFile , outputerror ,...

15 sofistik_path , updated_variables , updated_errors);

16
17 % Parameters/Variables with lower and upper limits

18 lb = [, , , ]; % lower limits

19 ub = [, , , ]; % upper limits

20 nvars = ; % the number of variables to update

21
22 % PSO method

23 options = optimoptions('particleswarm');

24 [xn,fvaln,exitflagn ,outputn] = particleswarm(error,nvars,...

25 lb,ub,options);

26 % GA method

27 options = optimoptions('ga');

28 [xn,fvaln,exitflagn ,outputn] = ga(error,nvars ,[],[],[],[],...

29 lb,ub,[],[],options);

30
31 end

32 %%%%%% Function to run and control SOFISTIK %%%%%%%%
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33 function RunSOFISTIK(inputFile , sofistik_path)

34 cmd = sprintf('"%s" %s', sofistik_path , inputFile);

35 system(cmd);

36 end

1 !%%%%% FE model in SOFISTIK %%%%%%%%

2 ! "input_FEM.dat"

3 ! FE modeling of Bridge

4 #DEFINE Ec = 30

5 #DEFINE Es = 210

6 ....

7 ! Create text with error values for the objective function

8 let#err ((measured_responses - computed_responses)/...

9 measured_responses)^2

10 <TEXT,FILE=+output_error.csv>

11 #(#err,8.5),

12 </TEXT>

13 ...
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C.3 Integrating SOFISTIK and PYTHON for Dębica bridge
FE model updating

1 #### Main of FE model u p d a t i n g : PYTHON and SOFISTIK ####
2 #### FE model o f Rai lway s t e e l a r c h b r i g d e i n Po land ####
3 # Author : Nguyen Cong Duc
4 # Email i n Po land u n t i l Sep tember 2024 : cong . nguyen@pols l . p l
5 # Email i n V i e t Nam: nguyencongduc@muce . edu . vn
6
7 impo r t pandas as pd
8 impo r t sys , s u b p r o c e s s
9 impo r t numpy as np

10 impo r t os
11 impo r t pygad
12
13 # Update new p a r a m e t e r s
14 de f r e p l a c e _ l i n e s ( f i l e_name , Es , rhos , Ec , rhoc ) :
15 wi th open ( f i l e _n a me ) as f i l e :
16 l i n e s = f i l e . r e a d l i n e s ( )
17 l i n e s [6 −1]= ’ #DEFINE Es= ’+ s t r ( Es ) +" \ n "
18 l i n e s [7 −1]= ’ #DEFINE rho s = ’+ s t r ( r ho s ) +" \ n "
19 l i n e s [8 −1]= ’ #DEFINE Ec= ’+ s t r ( Ec ) +" \ n "
20 l i n e s [9 −1]= ’ #DEFINE rhoc = ’+ s t r ( rhoc ) +" \ n "
21 r e t u r n l i n e s
22
23 # Def ine t h e FE model
24 de f FEMmodelUpdating ( Es , rhos , Ec , rhoc ) :
25 # r e p l a c e f i l e o f FEM
26 f i l e _n a me = ’ BridgeFEModel ing . d a t ’
27 l i n e s = r e p l a c e _ l i n e s ( f i l e_name , Es , rhos , Ec , rhoc )
28 wi th open ( f i l e_name , "w" ) a s f i l e :
29 f o r l i n e i n l i n e s :
30 f i l e . w r i t e ( l i n e )
31 # run SOFISTIK
32 s o f i s t i k _ p a t h = ’ . . . . / s p s . exe ’
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33 s u b p r o c e s s . run ( [ s o f i s t i k _ p a t h , f i l e _n ame ] )
34 # r e ad r e s u t l s
35 f c = pd . r e ad_c sv ( ’ o u t p u t u p d a t i n g . csv ’ , h e ade r =None )
36 # Numer ica l f r e q u e n c i e s
37 f c1 = f c . v a l u e s [ 0 ] [ 0 ] f c2 = f c . v a l u e s [ 0 ] [ 1 ]
38 f c3 = f c . v a l u e s [ 0 ] [ 2 ] f c4 = f c . v a l u e s [ 0 ] [ 3 ]
39 # E r r o r
40 e r r o r = f c . v a l u e s [ 0 ] [ 4 ]
41 r e t u r n fc1 , fc2 , fc3 , fc4 , e r r o r
42
43 # Expe r imen t a l f r e q u e n c i e s
44 #fm1 = 2 . 0 ; fm2 = 2 .95
45 #fm3 = 4 . 3 7 ; fm4 = 4 .94
46 # Def ine t h e c o s t f u n c t i o n
47 de f f i t n e s s _ f u n c t i o n ( x , y ) :
48 Es = x [ 0 ]
49 r ho s = x [ 1 ]
50 Ec = x [ 2 ]
51 rhoc = x [ 3 ]
52 fem = FEMmodelUpdating ( Es , rhos , Ec , rhoc )
53 f c = [ fem [ 0 ] , fem [ 1 ] , fem [ 2 ] , fem [ 3 ] ]
54 e r r o r = fem [ 5 ]
55 f i t n e s s = e r r o r
56 r e t u r n f i t n e s s
57
58 # Se t lower and upper v a r i a b l e s f o r m a t e r i a l p r o p e r t i e s
59 sa = 0 .80 # lower
60 sb = 1 .20 # upper o r h i g h e r
61 gene_space = [{ ’ low ’ : 210∗ sa , ’ h igh ’ : 210∗ sb } ,
62 { ’ low ’ : 7850∗ sa , ’ h igh ’ : 7850∗ sb } ,
63 { ’ low ’ : 35∗ sa , ’ h igh ’ : 35∗ sb } ,
64 { ’ low ’ : 2500∗ sa , ’ h igh ’ : 2500∗ sb } ]
65
66 # Se t p a r a m e t e r s f o r o p t i m i z a t i o n p r o c edu r e
67 num_genes = 4
68 num_gene r a t i on s = 100
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69 num_pa ren t s_ma t ing = 5
70 so l _p e r _pop = 10
71 m u t a t i o n _ p e r c e n t _ g e n e s = 10
72 m u t a t i o n _ t y p e =None
73
74 # Run o p t i m i z a t i o n p r o c e s s
75 g a _ i n s t a n c e = pygad .GA( num_gene r a t i on s = num_gene ra t i ons ,
76 num_pa ren t s_ma t ing =num_paren t s_mat ing ,
77 f i t n e s s _ f u n c = f i t n e s s _ f u n c t i o n ,
78 so l _p e r _pop = so l_pe r_pop ,
79 num_genes=num_genes ,
80 gene_space =gene_space ,
81 gene_ type =[ f l o a t , f l o a t , f l o a t , f l o a t ] ,
82 m u t a t i o n _ p e r c e n t _ g e n e s = m u t a t i o n _ p e r c e n t _ g e n e s , )
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C.4 SOFISTIK FE modeling of Dębica bridge in Poland

1 ! File of FE model: 'BridgeFEModeling.dat'
2 ! Info Bridge: Debica Railway Steel Arch Bridge in Poland
3 ! Author: Nguyen Cong Duc
4 ! Email in Poland until September 2024: cong.nguyen@polsl.pl
5 ! Email in Viet Nam: nguyencongduc@muce.edu.vn
6 #DEFINE Es=210 ! Elastic modulus of steel

7 #DEFINE rhos=7850 ! Density of steel
8 #DEFINE Ec=35 ! Elastic modulus of concrete

9 #DEFINE rhoc=2500 ! Density of concrete
10 ...
11 ...
12 ...
13 !#!Chapter vibration analysis
14 +prog dyna urs:5
15 head natural frequencies
16 eige neig 20 type lanc lc 1001
17 ...
18
19 !#!Chapter results

20 +PROG TEMPLATE urs:6
21 HEAD Result Summary
22 let#pi 3.1415926535
23 let#nmodes 20
24
25 ! Experimental natural frequencies from OMA
26 let#f1 2.0
27 let#f2 2.95
28 let#f3 4.37
29 let#f4 4.94
30
31 ! Calculate numerical natural frequencies
32 loop#i #nmodes
33 @KEY 012 1001+#i
34 sto#omega(#i) @(7)
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35 let#fc(#i) #omega(#i)/(2*#pi)

36 endloop
37
38 ! Calculate error between measured and computed frequencies
39 let#error (ABS((#f1-#fc(1))/#f1)+ABS((#f2-#fc(4))/#f2)+ABS((#f3-#fc(6))/#f3)+ABS((#f4-#fc(7))/#f4))/4
40
41 ! Save file for frequencies after each step
42 <TEXT,FILE=+outputupdating.csv>
43 #(#fc(1) ,8.2), #(#fc(4) ,8.2), #(#fc(6) ,8.2),
44 #(#fc(7) ,8.2), #(#error ,8.4)
45 </TEXT>
46
47 ! Save file for all optimized parameters , frequenices and error
48 <TEXT,FILE=+outputdebica_parameters.csv>
49 $(Es), $(rhos), $(Ec), $(rhoc), #(#fc(1) ,8.2), #(#fc(4) ,8.2),
50 #(#fc(6) ,8.2), #(#fc(7) ,8.2), #(#error*100,8.2)
51 </TEXT>
52 ...
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