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1 Introduction

Low Complexity Regions (LCRs) are common protein fragments of little amino

acid diversity. The definition is imprecise, and scientists agree that they are simple

sequences composed of homopolymers, Short Tandem Repeats (STRs) and irregular

fragments characterized by low amino acid diversity [9, 86, 89]. Their exact number

depends on a method used for identification. Examples of different LCR types are

shown in the Figure 1.1. Although they look like simple sequences containing very

little information, they are common, and thus we should consider them as important

protein fragments. Numerous research studies have already demonstrated their

functional and structural properties. For instance, they exhibit binding properties

and exist in domains that fold amyloid structures [42, 56, 111]. For a long time,

however, scientists believed that LCRs are biologically irrelevant fragments of proteins

that evolved in a neutral way [35]. They mainly studied High Complexity Regions

(HCRs), and even masked LCRs to improve homology searches [102]. This leads to

a hypothesis that commonly available protein clustering and searching tools were

designed towards HCRs and they are not reliable to analyze similarity between LCRs.

Researchers began studying LCRs when they discovered that these regions are the

root cause of evolutionary irrelevant proteins sequence alignments hits in protein

similarity search methods. That is why Wootton & Federhen introduced SEG

method in their article on low complexity region statistics [119]. The method has

been further added to BLAST method as a solution to frequent false positive hits.

Promponas et al. assumed that only the most frequently occurring residues in

LCRs lead to misalignments and developed CAST method. This method detects

compositionally biased residues in LCRs and masks them for protein similarity

searching purposes [87]. Alba et al. adapted a SIMPLE method, initially created for

DNA sequences, to proteins, and argued that this method could be used to study the

evolution and function of LCRs [3]. Li & Kahveci published an approach to LCRs

that them recognizes the repetitions in these regions as an important factor for better

understanding their biological roles [63]. Harrison wrote in 2017 an article about

4



1 Introduction

fLPS, which is a method for identifying compositional biases in LCRs [37]. This

method was created to facilitate functional reasoning of identified fragment of proteins.

Recently, Cascarina et al. published LCD-Composer method that detects LCRs with

regularly distributed common residues [17]. In parallel to scientific advances related

to LCRs, scientists studied tandem repeats in proteins. Homopolymers and STRs,

which can be clear or blurred, are subsets of LCRs. Other methods which are able

to detect these fragments include XSTREAM and T-REKS [47,78]. Looking at the

evolution of LCR identification methods, it is clear that they were initially intended

to mask LCRs and recently to discover their biological roles.

The most popular method for searching for similar protein sequences is BLAST.

It uses Smith-Waterman algorithm to align the sequences and a heurictic that uses

High Scoring Parts of the sequence to speed up computation [6, 105]. In the past,

SEG method has been used to mask LCRs to improve homology searches [119].

This method was then replaced with composition-based scoring matrix correction

that reduces the score of frequently occurring residues [125]. This compositional

bias is mainly introduced by frequent residues in LCRs and therefore the score of

these amino acids is simply decreased. In the meantime, BLAST has begun to use

BLOSUM and PAM families of scoring matrices to improve the search for distant

homologies [39]. Subsequently, new methods were developed to find more distant

evolutionary relationships between proteins. These methods look for similar proteins

that are used to create Multiple Sequence Alignment (MSA) and use them as a

replacement for the scoring matrix. This group of methods includes PSI-BLAST,

HHblits and HMMER [7,24,92]. These methods also mask LCRs by decreasing their

alignment score. For instance, in HHblits, the default score increases the significance

of rare amino acids because they are harder to introduce by chance and are thus

considered important for protein evolution [106]. Selected methods for similarity

analysis of protein sequences are described in the ,,Protein similarity comparison

methods” section. The mentioned methods and their improvements support the

hypothesis about the direction of development and specialization of these methods

toward HCRs ignoring or even excluding LCRs from similarity analyses.

1.0.1 Motivation and goals

In this thesis I set the following goals:

� Analyse existing methods for LCR identification and visualise their results.

5



1 Introduction

� Analyse existing methods for similarity analysis of LCRs.

� Improve searching for similar LCRs.

� Improve clustering of similar LCRs.

Several methods for LCR identification exist. We know that all of these methods

can mask LCRs for better homology searches, and they can discover different types

of biologically relevant proteins. Some of them can detect methionine-rich prion-like

domains [4]. Others can be used to analyze polar LCRs [70]. However, to the best of

my knowledge, a detailed comparison of them is missing in the scientific literature,

which could also be used to combine them to produce new results. As part of

this dissertation, I compare existing methods for LCR identification and

introduce a consensus method that uses the analyzed tools.

The biological roles of some LCRs have already been discovered but are not as well

described as HCRs. Scientists can discover their functional and structural properties

through time-consuming and expensive wet-lab experimental methods. We can speed

up this process by making initial assumptions about properties of a protein fragment

based on inferences about other similar fragments whose role is already known. If

we find similar LCRs with a known function, we can reduce the number of research

scenarios and reduce the cost of experimental methods. Therefore, in silico methods

have the potential to work in cooperation with experimental methods. Currently,

we can use LCR identification methods to retrieve LCRs from databases, but we

lack methods for their efficient comparison. The main goal of this dissertation

is to check whether existing methods for similarity analysis of protein

sequences can be used to compare LCRs, and to develop new methods

for their analysis.

1.0.2 Thesis structure

This work is divided into eight main parts which are: Introduction, Description

of sequence analysis methods, Low complexity identification methods, Analysis

of canonical methods for protein sequence analysis in the case of LCRs, LCR-

BLAST - searching for low complexity regions, GBSC - clustering short tandem

repeats, Applications and Summary and conclusions. ,,Introduction” leads the

reader through the background information and settles objectives of this thesis.

,,Description of sequence analysis methods” describes used in this thesis methods for

6



1 Introduction

LCR identification and sequence similaritycomparison methods. ,,Low complexity

identification methods” chapter compares selected LCR identification methods and

demonstrates an approach to visually analyse these fragments. In the ,,Analysis

of canonical methods for protein sequence analysis in the case of LCRs” chapter,

I compare three state-of-the-art methods of protein sequence similarity analysis

for fragments of low complexity. These methods are BLAST, HHblits and CD-

HIT [6,62,92]. In the ,,LCR-BLAST - searching for low complexity regions” chapter,

I present LCR-BLAST method which is a new modification to BLAST for searching

for similar LCRs. GBSC - clustering short tandem repeats chapter describes a new

method for identifying and clustering STRs by similar repetitive patterns. Presented

methods were already applied for several LCR analyses. Therefore, in ,,Applications”

chapter I describe them to show usefulness of presented methods.

1.0.3 Most important results

In this thesis, I present new methods of LCR identification, visualization and

comparison. New methods for LCR identification include the consensus method,

which uses relationships among other methods, and GBSC, which identifies STRs.

For LCR comparison, researchers can use LCR-BLAST, which is a new modification

of BLAST method, and for clustering, they can use the newly developed GBSC.

These methods were evaluated by comparing them with other solutions and using

them in case studies.

As a result, I published two articles in scientific journals as the first author.

The first article entitled ,,PlaToLoCo: the first web meta-server for visualization

and annotation of low complexity regions in proteins” is published in Nucleic Acid

Research. This work combines selected methods for LCR identification into a

consensus, and visualize the results [44]. The second article is ,,Insights from analyses

of low complexity regions with canonical methods for protein sequence comparison”

is published in Briefings in Bioinformatics [46]. This article provides HHblits and

CD-HIT parameter sets methods for more efficient LCR analysis. It also warns

the scientific community that even if we use optimized parameter sets, we still

need to be aware of false positive hits caused by core design assumptions towards

HCRs in these methods. I also published a conference paper at the International

Conference on Man-Machine Interactions (ICMMI 2019) as the first author. The

article entitled ,,LCR-BLAST—a new modification of BLAST to search for similar

7



1 Introduction

low complexity regions in protein sequences” introduces a new modification to

BLAST method for LCRs [45]. I propose there an optimal set of parameters for

these fragments and an additional metric as an alternative to the E-value which

sort the results independently of the LCR lengths. I am also co-author of three

other articles that used the methods for similarity analysis of protein sequences

presented in this thesis. These articles are: ,,Tandem repeats lead to sequence

assembly errors and impose multi-level challenges for genome and protein databases”

by Tørresen et al., ,,Common low complexity regions for SARS-CoV-2 and human

proteomes as a potential multidirectional risk factor in vaccine development” by

Gruca et al. and ,,Quantitative conformational analysis of functionally important

electrostatic interactions in the intrinsically disordered region of the delta subunit

of bacterial RNA polymerase” by Kubáň et al. These articles were published in

Nucleic Acid Research, BMC Bioinformatics and Journal of American Chemical

Society respectively [34,55,113]. GBSC method, which I designed and developed in

the scope of this work, is included in the OPUS grant number 2020/39/B/ST6/03447

in which I am co-investigator. Additionaly, I used my experience from analyses of

already existing methods for protein similarity comparison to design a new methods,

which are part of PRELUDIUM grant number 2021/41/N/ST6/01919 of which I am

the principal investigator.
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1 Introduction
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QGAKEAYEHV LAQNQHHAKV LQQLGCLYGM SNVQFYDPQK ALDYLLKSLE

ADPSDATTWY

HLGRVHMIRT DYTAAYDAFQ QAVNRDSRNP IFWCSIGVLY YQISQYRDAL

DAYTRAIRLN

PYISEVWYDL GTLYETCNNQ LSDALDAYKQ AARLDVNNVH IRERLEALTK

QLENPGNINK

SNGAPTNASP APPPVILQPT LQPNDQGNPL NTRISAQSAN ATASMVQQQH

PAQQTPINSS

ATMYSNGASP QLQAQAQAQA QAQAQAQAQA QAQAQAQAQA QAQAQAQAQA

QAQAQAHAQA

QAQAQAQAQA QAQAQAQQQQ QQQQQQQQQQ QQQQQQQQQQ QQQQQQQLQP

LPRQQLQQKG

VSVQMLNPQQ GQPYITQPTV IQAHQLQPFS TQAMEHPQSS QLPPQQQQLQ

SVQHPQQLQG

QPQAQAPQPL IQHNVEQNVL PQKRYMEGAI HTLVDAAVSS STHTENNTKS

PRQPTHAIPT

QAPATGITNA EPQVKKQKLN SPNSNINKLV NTATSIEENA KSEVSNQSPA

VVESNTNNTS

QEEKPVKANS IPSVIGAQEP PQEASPAEEA TKAASVSPST KPLNTEPESS

SVQPTVSSES

STTKANDQST AETIELSTAT VPAEASPVED EVRQHSKEEN GTTEASAPST

EEAEPAASRD

AEKQQDETAA TTITVIKPTL ETMETVKEEA KMREEEQTSQ EKSPQENTLP

RENVVRQVEE

DENYDD

Figure 1.1: Protein sequence with low complexity parts highlighted in red. It

contain homopolymeric repeat of glutamine at the begining of the sequence. In

the middle there is short tandem repeat of glutamine and alanine followed by

homopolymeric repeat of glutamine. Irregular LCRs are at the end of the sequence.

LCRs were identified using SEG method with default parameters.
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2 Description of sequence analysis

methods

2.1 Identification methods

In this section, I describe existing identification methods for different kinds of LCRs.

CAST and fLPS are methods for identifying fragments with a strong bias to one or

more residues. SEG and LCD-Composer detect fragments consisting of up to a few

residue types. SIMPLE searches for STRs, while XSTREAM and T-REKS search

more broadly for Tandem Repeats (TRs).

2.1.1 fLPS

fLPS is a tool which has been successfully used for a wide range of protein sequence

analyses of non-standard amino acid composition fragments [37]. Authors propose

parameter sets for long fragments of compositionally biased and short fragments

of low complexity. It uses a scanning window to find highly biased domains below

a given probability threshold. At the begining the method uses a long window

length and then tries to shorten it keeping the same number of biased residues. The

algorithm scans for low probability sequences using a short window. When multiple

sequences overlap then only these with high fraction of biased residue types remain.

Also, these with higher P-value are rejected. Subsequences of single residue type

which overlap with fragments of different residue type are merged. Finally, merged

fragments are then shrunk and extended to find these with the best P-value. Input

sequences must be in FASTA format. The output format may be changed using the

method’s parameter. fLPS, depending on used parameters, may be comparable to

CAST or SEG method. The method does not provide information about repeats in

the identified subsequences. It is fast and able to analyze large databases. fLPS was

used e.g. for analysis of prion-like protein and intrinsically disordered regions [32].

10



2 Description of sequence analysis methods

2.1.2 CAST

CAST is a commonly used method designed to identify and mask compositionally

biased LCRs [87]. When used for masking it only hides biased residue types only.

Therefore, it masks only these residues which may cause false positive alignments.

At the same time, it leaves residues that can reveal homology relevance. For each

sequence in the database, the algorithm creates 20 homopolymeric sequences from

all 20 canonical amino acid types. It uses these homopolymeric sequences to perform

a single forward pass in the parsing sequence. For each residue, it computes non-

negative cumulative score by adding the previous score to the score of the actual

residue pair. The actual pair score is calculated using a scoring matrix. Identified

LCRs range from the first positive cumulative score to its maximal value. As input,

CAST processes FASTA formatted sequences. As a result, it produces the same

sequences with biased residues changed to X and their range with the type of residue

it is biased to. Therefore, LCRs identified by this tool is comparable to these known

from fLPS. It is able to handle large databases of protein sequences in a reliable time.

The method has been used in many biological analyses [61].

2.1.3 SEG

SEG is the most popular method for LCR identification [119]. It is embedded in

BLAST and can be turned on for LCR masking to improve homology searches between

proteins. By design, it determines whether a protein fragment is low complexity

using Shannon entropy. It scans a sequence using a window of a given length (W

parameter) and checks whether the first threshold (locut) is met. If it is then the

fragment is extended to the left and to the right until it reaches the second threshold

(hicut). Input to the algorithm is FASTA formatted dataset. Output may be either

masked sequences or positions of identified LCRs. This method searches for low

entropy fragments of protein sequences, thus it may be comparable to LCR-Composer.

The method has been already applied to many biological studies, but some research

warns about its limitations to complexity measure only [88,115].

2.1.4 LCD-Composer

LCD-Composer is a new LCR identification method [17]. It focuses entirely on

biologically relevant domains rather than masking non-homologous domains. It

11



2 Description of sequence analysis methods

assumes that residue distribution and composition are key factors in the biological

roles of LCRs. It uses a scanning window to find fragments that meet the composition

threshold and linear dispersion. The composition threshold is a user-specified

percentage of a certain type of residue in the window. The user must specify residue

types to be analyzed. Linear dispersion determines how the selected residue type

is distributed in the window. High linear dispersion values mean that analyzing

residues are regularly spread in the window. Overlapping identified fragments are

merged and residues from the head and tail of the sequence that are out of thresholds

are removed. The remaining residues form the identified LCR. It accepts sequences

in FASTA format as input. The output displays detailed information about the

composition of identified fragments. To obtain information about all residues, the

algorithm must be run for each residue separately. Together with the description,

the authors provided their implementation in python.

2.1.5 SIMPLE

SIMPLE is a method first published in 1986 by Tautz et al. for DNA sequences,

further improved by Hancock & Armstrong in 1994 [112] [36]. In 2002, Alba et al.

published the third version of SIMPLE and used it to analyze protein sequences [3].

This method focuses on the importance of STRs rather than on masking them. It

works by scanning the sequences using a specified window. For each window, the

algorithm checks how many times the central residue occurs in it. The number of

occurrences is multiplied by user-specified parameters and stored as a simplicity

score. The final score is calculated as a ratio of expected probability calculated from

the simplicity score of randomly shuffled sequences and observed probability from

the simplicity score of the query sequence. The central residue can be extended to

short motifs to analyze STRs. As input, the tool takes FASTA formatted sequence.

Output are ranges of STR locations. The method works on a fixed window length

thus it may not be specic enough when reporting ranges, but it is sensitive for STR

detection [119]. It was already used to study e.g. IDRs and transcription factor

proteins [77].

2.1.6 T-REKS

T-REKS is the choice for tandem repeats that are strongly degenerated [47]. It

can be applied for both DNA and protein sequences. It is designed to analyze the

12



2 Description of sequence analysis methods

biological roles of tandem repeats. The algorithm filters out homorepeats considering

them as well-studied. For protein sequences, it searches for short strings of length

2. The distances between them are grouped according to similar values where, the

similarity threshold is given as a parameter. These groups are then clustered using

K-means algorithm to handle the case where a single sequence contains multiple

TRs of the same type. The length of the repeats is determined by finding a similar

distance between repeating units of the same length. This action handles the case

where a repeating unit is consists of multiple copies of the same short string. The

maximum distance between repetitions is a parameter entered by the user. Finally,

an MSA is created from each tandem repeat unit. If the similarity score is below a

certain threshold, the algorithm removes the irrelevant flanking unit and re-evaluates

the MSA. For MSA, it uses a ,,center-star” algorithm but also accepts external tools.

As input, the tool accepts parameters with FASTA formatted sequences. As a result,

it shows the repeating unit, consensus sequence, MSA and a range of repeating units

in the original sequence. The method is comparable to XSTREAM. It has several

parameters that must be specified and depend on the length of the sequence and the

characteristics of the repetitive unit. Compared to other tools for TR identification,

it is able to identify STRs. The method has already been used for many biological

analyses. Among others, it was used to analyze TRs in plants [97].

2.1.7 XSTREAM

XSTREAM is a popular method for tandem repeats identification [78]. It is designed

to also detect tandem repeats that are highly degenerated. Therefore it identifies

neutrally-evolved TRs. The method is also designed to identify TRs of all repeating

unit lengths. The algorithm is complex and uses repeat seeds to find TRs. Each

seed has to pass several steps to test repeats and transform them. These steps are:

preprocessing, detection, characterization and postprocessing. As preprocessing it

detects seeds that are short repeating subsequences. Neighboring seeds are extended

and compared using fractions of identical residues. TR domains, which are made up

of two units are then expanded to join more similar units which occur in tandem.

Resulting domain is then maximised joining residues which create repetitive units

and lay at both ends of the domain. Identified domain location is masked to

prevent identification of the same domain in the future. Identified domains are

then characterized by dividing them into repetitive units. These repetitive units are
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aligned using a multiple sequence alignment algorithm. From generated MSA, the

method calculates the consensus sequence. Units at domain ends are compared to

consensus and trimmed if the similarity to consensus is below user-defined threshold.

Finally, neighboring TRs are compared using consensus sequence and merged if

they are similar. Input to the method is a FASTA formatted sequence. Output is

presented in HTML. It shows identified domains and similarity analysis of repetitive

units. Since the method identifies degenerated repeats it is comparable to T-REKS.

The method has complex architecture but is able to compute results in a reasonable

time. It was successively used for the analysis of different kinds of TRs [69].

2.1.8 GBA

GBA is a graph-based method for LCR identification [63]. The method focuses on

tandem, interspread and cryptic repeats. It introduces a modified Shannon entropy

metric that relies on residue similarity. The similarity between residues is indicated

by BLOSUM62 scoring matrix. The first step in identifying LCRs is to construct

a directed, unweighted and acyclic graph. Nodes in this graph represent similar

residue pairs that occur in a sliding window. Edges connect residue types that occur

in the same repeating units. To determine repetitive patterns, GBA uses three

distance thresholds. The algorithm finds the longest path in the constructed graph.

It uses a modified Dijkstra algorithm to find the longest path. The longest identified

paths represent the core of identified LCRs. This core is further extended using

the modified Shannon entropy metric. Finally, the post-processing steps select the

fragments consisting of LCRs. Selection is based on a statistical analysis of repeats

from UniprotKB/Swiss-Prot. The method processes FASTA formatted sequences

and reports LCR locations. The approach to LCRs has evolved from SEG, therefore

the results of both methods should be comparable when analyzing LCRs. GBA uses

canonical residue types, which complicates the use of an extended alphabet. On

the other hand, both complexity and residual relationships are taken into account

during LCR analyses. The method has already been used in practice to analyze the

function of protein domains [108].
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2.2 Protein similarity comparison methods

In this section, I describe methods for similarity analysis of protein sequences. We

distinguish two groups of them. The first group searches for similar protein sequence

fragments, while the second clusters similar sequences.

2.2.1 BLAST

BLAST is the most popular method for similar protein and nucleotide searches. It

is designed to find local similarities between sequences. At its core, it performs

Smith-Waterman algorithm, but this time-consuming operation is executed only

on sequences with a high probability of similarity. To achieve this, the query and

database sequences are divided into k -mers. K -mers that are similar to both query

and database sequences are marked as High Scoring Words. High Scoring Words are

used to find potential matches that consist of similar subsequences. These words are

compared to fragments of the query sequence and are extended until they encounter a

negative score. Fragments obtained from this operation are called High Scoring Parts

(HSP). Finally, Smith-Waterman is performed on merged HSPs, and alignments

with E-value above a given threshold are reported. The heuristic associated with

HSP significantly speeds up the calculations, making the method able to handle

huge protein and nucleotide databases. On the other hand, it makes the method

suboptimal, and therefore better results may exist. BLAST is the successor of FASTA

method and is widely used by other algorithms where protein similarity is required

e.g. protein sequence clustering [6, 85].

2.2.2 HHblits

HHblits is a broadly used tool for sensitive protein similarity searches. It is based on

profile-profile comparison and is a response to common race to create a tool that finds

sequences characterized by distinct similarity but which still share similar biological

properties. Profile-profile comparison is a time-consuming process thus HHblits, like

BLAST, uses prefiltering steps to filter out profiles that are most probably out of the

similarity threshold. Before searching, the database of Hidden Markov Model (HMM)

profiles must be created from FASTA file. In the pipeline for database of HMM

profiles creation, MMseqs method clusters database of interest by sequence similarity.

Then it creates MSA from each generated cluster using Clustal Omega [104]. Finally,
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each MSA is converted to the profile of HMM. For searching, HHblits firstly converts

the input sequence to a profile of HMM for HMM-HMM comparison. Then it scans

the database and compares HMM profiles which were selected by prefiltering steps.

HMM profiles that are above a given E-value threshold update the query profile of

HMM and the next iteration begins. After the last iteration, the method reports the

best hits that are above a given threshold. Even if this method need improvements

in derivative analysis like secondary structure prediction it is frequently compared

with PSI-BLAST as a faster and more sensitive [92].

2.2.3 CD-HIT

CD-HIT is a method designed for clustering large protein sequence databases in

a short amount of time. It is based on local alignment between sequences. The

method significantly decreases calculation time by limiting the number of performed

alignments. It calculates sequence alignments between incoming sequences and

sequences representing clusters. First, the method sorts the input database descending

by sequence length. It selects the first (longest) sequence and creates a new cluster

from it, marking this sequence as the cluster’s representative. The second sequence is

compared to the representative sequence of the first cluster. If the sequence similarity

is above a certain threshold then the sequence is joined to this cluster, if not, then

a new cluster is created with that sequence as a representative. All subsequent

incoming sequences are treated the same way. The algorithm first checks whether

the sequence is similar to any of the representative sequences. If similarity has been

detected, then the sequence joins the cluster whose representative is similar to the

sequence. If not, then the sequence becomes representative of the newly created

cluster. As with other methods, the algorithm checks whether two sequences are

likely to be similar before performing a final alignment. CD-HIT uses short word

filtering for this purpose. Finally, the method reports clusters of similar sequences

with similarity value to its representative. Other methods for protein sequence

clustering include Uclust, MMseqs and MCL. CD-HIT was successively used to

remove redundancy from protein databases, protein family classification, and for

protein function analysis [62].
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2.2.4 MMseqs2

MMseqs2 is a method for fast, sensitive searching, and clustering. Protein-protein

comparison consists of three stages which are short word match, vectorized ungapped

alignment and gapped alignment. Two sequences are considered to be similar if

they pass all three stages. These stages are ordered from fastest and less accurate

to slow but precise. Therefore, short word match is able to filter out pairs that are

obviously dissimilar. It makes the method able to handle large datasets in a short

time compared to other tools. Alignment stages provide detailed information about

the similarity between proteins and filter out non-obvious cases that have passed

previous stages. For clustering, the method reduces the alphabet. From sequences, it

retrieves 20 k -mers characterized by a high probability to share significant homology

information with other sequences. Input dataset is clustered by identical k -mers.

This step is performed using a reduced alphabet, thus the number of significant hits

is increased. In such created groups, the method marks the longest sequences as

clusters’ centroids. It compares each centroid sequence to other sequences in the

cluster using the three-stage comparison. If the similarity is significant, the sequence

is joined to the cluster. Finally, the method reports similar sequences to the query

with corresponding statistics or provides a list of similar clusters [110]. The method

has been already used by projects like UniProtKB and AlphaFold [1, 48].

2.2.5 MCL

MCL is a method designed to cluster objects described by a similarity metrics.

Therefore, it is able to cluster protein sequences by similarity as we can use, for

example, E-values to describe the distance between sequences. Enright et al. show

that it is able to cluster large protein datasets into families. MCL can parse BLAST

output and use it to create the initial network. The network is stored in a square

matrix which is then processed by expansion and inflation operations until no changes

are made. The algorithm is based on the assumption that by choosing a random

node and moving through the transition to the neighboring node we will most likely

move to another node in the same cluster. In other words, we assume that nodes in

the same cluster are connected with many transitions, while inter-cluster connections

are sparse and weak (low transition weight). In the algorithm, random walks in the

network are called expansion. Inflation is an operation that boosts the probabilities

of walks located in the cluster. The output of the method is pairs of similar sequences

17



2 Description of sequence analysis methods

that form clusters. The method clusters similar protein sequences into families,

thus it is comparable to CD-HIT and MMseqs. The algorithm uses randomness

which makes it non-deterministic, but is able to run in parallel and handle large

datasets [28]. The method has already been applied to many studies that have

investigated the similarity between proteins [20, 116].
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3 Low complexity identification

methods

3.1 Introduction

Scientists have already developed several methods to identify LCRs for different

purposes. Some methods have been developed to mask LCRs for better homology

searches, while others have been developed to discover their biological roles. These

methods rely on complexity metric, repetitive patterns and composition biases. It is

known that repeats may be relevant to protein structure. For instance, collagen is

often a residual triplet where one residue in the pattern is glycine [107]. Prion proteins

may contain five runs of P(H/Q)GG(-/G/S/T)WGQ pattern [124] Composition bias

can also lead to the function of a protein fragment. For example, an argine-rich motif

is key in a protein for binding to RNA [38]. Some efforts have already been made to

link LCRs with disordered regions. However, it has been shown that combining a

complexity metric along with the composition biases to one or more residue types

can lead to a particular structure with a greater probability. [16,57,94] In 2020, Mier

et al. published an article in which they attempted to characterize different types of

LCRs based on their composition, periodicity and structure [75]. They also described

SEG, CAST and SIMPLE methods separately, using a set of well-defined 21 protein

sequences which represent a wide range of LCR roles and types. However, we have

more methods of LCR identification, the results of which more or less overlap with

each other. For instance, we have two methods to identify compositionally biased

fragments. These methods are CAST and fLPS, and they are popular for biological

analyses. Consider a scenario where a researchers have a compositionally biased

fragment of a protein and want to identify more such fragments in a particular

dataset. Then which of the two methods should they use? Scientific literature lack of

comparison of these two methods. Therefore, in this chapter, I explore a wide range
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of LCR identification methods. I will show what kinds of fragments each method is

able to recognize and how they overlap.

3.2 Methods

In this section, I present the approach to the analysis of LCR identification methods.

First, I explain workflow of the analysis, then overlap between methods and finally

I describe possible use of the consensus method. I use the following methods for

the comparison: SEG, CAST, SIMPLE, GBA, XSTREAM, T-REKS, fLPS, LCD-

Composer and GBSC [3,17,37,47,63,78,87,119]. An article about the last method

is in preparation, but the method is described in the chapter ,,GBSC - clustering

short tandem repeats”.

3.2.1 Workflow

The workflow of the analysis is presented in the Figure 3.1. As an input dataset I used

canonical sequences from UniProtKB/Swiss-Prot version 2022 05. I used it to extract

different types of LCRs from sequences using selected methods. For SIMPLE, GBA,

XSTREAM and fLPS methods I adjusted the default parameters for the analysis.

In the case of SIMPLE, I use the parameter set recommended in the PlaToLoCo

service [44]. The GBA parameters are the same as the authors used in their analysis

when publishing an article about it (t1 “ 15, t2 “ 3, t3 “ 5) [63]. For XSTREAM

I changed the minimum period to 1 which by default is set to 3 and thus excludes

STRs. Parameters of the fLPS method are adjusted for LCRs as recommended by

the authors [37]. For the rest of the methods, I used the default parameter sets.

Selected methods have been developed independently, hence their input and output

format is non-standardized. Therefore, I unified the output of all methods to fasta

formatted sequence fragments with additional information in the header. I then

examined the results of the methods by plotting their length distribution, amino

acid content and overlap. The amino acid content is also calculated for the input

dataset for comparison. Finally, I used the overlap to select and analyse interesting

cases in details.
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3 Low complexity identification methods

Figure 3.2: Domain overlap types are: in residues, in border residues, out border

residues and out residues.

3.2.2 Overlap analyses

The selected methods are designed to identify different types of LCRs. SEG and

LCD-Composer identify fragments of several residue types, CAST and fLPS are used

for compositionally biases while the rest identifies tandem repeats. To demonstrate

how these methods relate to each other, I create the overlap of their results. It shows

how many residues were recognized as LCRs by the two methods and how many

were not. To make the overlap more informative, I distinguish between residues in a

domain that is fully covered by a domain from another method, partial overlap, and

the case where the domain is identified by only one of the two methods. This helps

determine whether two methods found similar or different domains, and whether one

method is more specific than another. Figure 3.2 shows all four types of overlap in

detail. I also used all these overlap types to pick interesting cases to describe each

method and relationships between them.

3.2.3 Consensus

Each of the LCR identification methods separately provides a value for biological

analyses. In this study, I show that we can combine them to produce new results.

For instance, the intersection of several tandem repeat identification methods can

report domains consisting of a clear pattern of tandem repeats, while the union of all

methods can yield a wide range of tandem repeats, from clear repetitive patterns to

all sorts of fuzzy patterns. In this method, researchers can choose the methods for

consensus and its type. Possible consensus types are union and intersection. I use

exploration and overlap analysis to characterize the relationship between selected

pairs of methods.
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3.3 Results

3.3.1 Data exploration

Length distribution

Figure 3.3: Compositionally biased domains are well distributed over the chart

while other types of LCRs are focused around a single point where they have

identified the highest number of domains. The chart presents the number of

detected domains by their lengths.

As presented in the Figure 3.3, LCR domain lengths depend on the chosen method,

and consequently on LCR types. These methods identify compositionally biases,

short tandem repeats and fragments composed of several types of residues. Intuitively,

perfect tandem repeats of short repetitive units should be shorter than fragments that

are only compositionally biased to a certain residue, or at least because compositional

biases can cover a wide range of complexity. To investigate how the results of the

methods vary in length, I generated a length distribution plot presented in the Figure

3.3. There we see methods whose line is flat and whose results are accumulated near

a single point. Methods with flat length distribution line are CAST and fLPS, which

are designed to detect compositional biases. These methods identified the largest

number of amino acids. Our results confirm previous conclusions that compositionally

biased domains are superset of other types of LCR domains [73]. Even if CAST

and fLPS detect fewer short domains than other methods, multiple short domains

can be contained within one long compositionally biased domain. On the other
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hand, methods with accumulated length distribution near a single point rely on

a sliding window of fixed size. These methods often extend the identified region

until predefined condition is met. Depending on the method, this may be the upper

complexity threshold (SEG) or the end of a repeatable pattern (GBSC). To analyze

the selected methods, I grouped them according to the type of domains they are

designed to identify. GBSC identifies STRs which are often short runs of a simple

repetitive pattern, thus the method mainly identifies short domains. SEG has a more

relaxed approach, and also allows for irregular LCRs. Therefore, the accumulation

of its length distribution is shifted to the right, but it is not the only reson. GBSC is

able to distinguish between two different types of adjacent STRs. An example of this

is presented in the Figure 1.1, second LCR. SEG identified it as a single LCR, but

GBSC will split it into two different STRs, which are STR of glutamine and alanine,

and homopolymer of glutamine. Therefore, it is counted in SEG as a single long

fragment while GBSC counts it as two shorter fragmetns. LCD-Composer lengths

as excepted to partially overlap with SEG lengths and to partially be on the left

side of SEG lengths since this method also may distinguish adjacent LCR types.

The distribution GBA method is interesting since the function has two maximum

extremas. The first is low, and equal to 4, while the second is around 18 residues.

SIMPLE method identifies repetitive fragments which are slightly longer or equal to

window size, and that is the reason why its length distribution is shifted far to the

right in comparison to ther repeat identification methods. We can also suppose here

that if SIMPLE identifies almost fixed-length domains, it will either skip some results

or specify domain boundaries outside of their actual positions. GBSC, XSTREAM,

T-REKS and SIMPLE methods can be used to identify repeats. From the chart

we can see that XSTREAM fully covers GBSC results, but T-REKS and SIMPLE

identified longer repeats, therefore they can be considered as method to identify

different types of repeats. In detail, the differetces between these methods will be

revealed in the ,,Detailed analysis” section of this chapter.

Amino acid frequencies

Individual amino acids are more likely to occur in regions of low complexity than

others. The average difference between methods and database frequencies is as

follow: fLPS (0.013), CAST (0.014), SEG (0.014), XSTREAM (0.015), GBA (0.016),

LCD-Composer (0.016), T-REKS (0.019), SIMPLE (0.024), GBSC-relaxed (0.028).

fLPS frequencies are the closest to these in the database while GBSC frequencies are
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Figure 3.4: Domains identified by selected methods have different amino acid

frequencies than database they were used on. The chart present frequencies of

each residue type for each method. Random frequency is 0.05.

the most outliers. The above methods are sorted by deviation, but also from those

that allow the most diverse composition of residues in the domains to these prefering

homogeneity and order. For instance, SEG and LCD-Composer are considered as

methods for similar low complexity domain identification, but LCD-Composer also

requires domains to be above dispersion parameter, which consequently increases

their regularity. The exceptions here are XSTREAM and T-REKS, which indeed

identify tandem repeats, but they also accept long patterns in domains.

Some amino acids are more likely to form short tandem repeats than others. For

comparison, residues more common in the UniProtKB/Swiss-Prot database than

in the GBSC results by a chance are: W (7.7 times), F (5.2), I (4.9), Y (3.9), M

(3.7) and V (3.3). These residues are present in the UniProtKB/Swiss-Prot in the

following percentages compared to all residues: 1.1% (W), 3.9% (F), 5.9%(I), 2.9%(Y),

2.4 %(M) and 6.9%(V). This contrasts with the highest GBSC frequencies versus

UniProtKB/Swiss-Prot: S (1.89 times), N (1.85), Q (1.83), P (1.82), A (1.63) and G

(1.57). We can see that the difference is significant and is also visible in the residue

popularity. In the database, these residues have the following occurrence chance: 6.6%
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(S), 4.1% (N), 3.9% (Q), 4.7% (P), 8.3% (A) and 7.1% (G). Interestingly, the rare

residues in the database are even rarer in the GBSC results. This is especially evident

in tryptophan and tyrosine. On the other hand, residues that are overrepresented in

repeats are also common in average sequences. However this is not the rule. Valine

has a higher occurrence rate than serine in the database, but is rare in STRs. If

we look at the SR protein family, which is, among others, important for binding to

RNA then we notice interesting thing about SR repeats [101]. Phylogenetic tree

analyses suggest that SR repeats are important in the evolution of the family [29].

Therefore, we would expect from these residues to be frequent in the GBSC results.

Even if this is true for serine, argine is much less common in GBSC results than in

the UniProtKB/Swiss-Prot.

Asparagine and glutamine are residues that have similar frequencies in some

methods and databases, while different in others. Methods with similar frequencies

include CAST, fLPS, GBA, LCD-Composer, SEG, T-REKS and XSTREAM. GBSC

and SIMPLE, which search for STR, obtained higher values for these amino acids.

Additionally, if we change the GBSC parameters to identify more pure repeats, the

difference becomes even more visible. It seems that these residues tends to occur in

simple sequences. In the GBSC results, 79% of glutamine is present in the Poly-Q

domain, 81% of asparagine in Poly-N domains, while, for instance, only 54% of

glycine is in the poly-G domains. Interestingly, glutamine is already well studied in

homopolymers and is known to be the root cause of some disorders, thus it is rather

expected to be less common in nature [15,72,117]. Glycine, on the other hand, is an

important amino acid commonly found in collagen domains composed of repeating

triplets [14]. Similar amino acid preferences were also observed in LCD-Composer by

Cascarina et al. [17].

Overlap between methods
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CAST, fLPS and SEG identified significantly more residues than GBA, GBSC,

LCD-Composer, SIMPLE, T-REKS and XSTREAM. This is justified by the fact that

the first group of methods has a loose approach to LCR identification. They check

whether one or more residues occur in a given protein fragment more often than

in the average sequence (CAST, fLPS) or whether the complexity of the fragment

is below a certain threshold. On the other hand, the second group of methods is

finding patterns in protein sequences. LCD-Composer ensures that rare residues are

well distributed in the detected domain, while other methods detect tandem repeats.

CAST identified the highest number of residues of all the selected methods. This

method aligns all types of homopolymers to the sequence and checks whether it

contains fragments with high alignment score to identify compositionally biased

domains [87]. As a result, It found over 18.1 milion residues. Interestingly, the

overlap with fLPS, which identified more than 13.8 million residues, is only nearly

7.4 million, and CAST covers only about 53.5% of fLPS residues. However, these

two methods are considered to detect the same LCR type, thus I also investigate

them in the ,,Detailed analysis” section. CAST covers fewer residues of SEG that is

about 42.0%. It is reasonable since CAST identifies compositionally biased LCRs,

while SEG identifies LCR based on their complexity. CAST covers 66.4% of the

results reported by LCD-Composer. This value is higher than in the case of fLPS,

but I must point out that LCD-Composer identified less residues than fLPS, which

makes it easier to cover more results of LCD-Composer. The overlap between CAST

and GBA was expected to be lower than between CAST and SEG or fLPS, but it

is extremaly low and requires further investigation. T-REKS and XSTREAM have

a similar number of residues overlapping with CAST. However, these two methods

also identified a different number of residues in repeats, and T-REKS domains are

covered in 60.6% by CAST regions while XSTREAM domains in only 48.0%. From

the Figure 3.3 we can see that XSTREAM identified short repeats, while T-REKS

rather longer, which is closer to CAST behavior. Probably for the same reason,

CAST largely overlaps with SIMPLE. Moreover, the definition of LCR by these two

methods is similar: a given fragment of a protein sequence should be sufficiently

enriched with a certain type of residue to detect it as LCR. However the SIMPLE

method identified significantly lower number of residues than CAST since it detects

biases in a window of fixed length. SIMPLE results are covered in about 85.8% by

CAST. Results of GBSC, which identifies repeats, are covered in 79.9% by CAST.

In summary, the method is sensitive to longer compositionally biases fragments.
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The second method by the number of residues identified is fLPS. According to the

authors, the set of parameters used for the analysis should identify short fragments

of compositionally bias, [37]. The method uses scanning window of variable length

to find highly biased domains below a given probability threshold. Even though it

identified fewer residues than CAST by about 23.8%, it has higher overlap with the

rest of the methods excluding SIMPLE and T-REKS. It has the greatest overlap

with LCD-Composer, thus we can define a large part of the fLPS results as consisting

of well-spaced residual types in the window. The overlap between the two methods

is about 78.7%, which is about 12.3% more than between CAST and LCD-Composer.

This suggests that these methods may complement each other if the domains identified

by one method are insufficient. GBA and SEG results poorly overlap as it was in the

case of CAST method. Interestingly, fLPS has less overlapped residues with SIMPLE

(76.4%) compared to CAST and higher with GBSC (95.8%). Simmilar situation,

but less visible is with T-REKS and XSTREAM. Clues about the relationship

between the two cases can be read from the length distributions of the detected

domains. First of all, it is worth recalling that GBSC and SIMPLE are methods

for STR, while T-REKS and XSTREAM are for TR. In the Figure 3.3 we see that

fLPS detects domains shorter than CAST, GBSC shorter than SIMPLE, and finally

XSTREAM shorter than T-REKS. The above statements suggest that fLPS, GBSC

and XSTREAM should be used for shorter domains, while CAST, SIMPLE and

T-REKS for longer. Alternatively, fLPS can be used with CAST to identify a wide

range of domain lengths. For the same purposes, GBSC can be used with SIMPLE

and XSTREAM with T-REKS.

SEG is the only method that fully relies on complexity measurement when detecting

domains. It uses Shanon entropy with two thresholds to find the LCR seed and

expand it. This method with fLPS identified 20,035,132 residues, of which 31.1%

belong to SEG only, 39.8% were found by fLPS only, and common results account

for 29.0% of results. Additionally, both methods have a large overlap with repeats

identified by GBSC, which are 93.5% and 95.8% for SEG and fLPS, respectively.

Therefore, both methods identify STR, most probably irregular LCR consisting of

several residue types and domains specific to both methods, which I will detail in the

next section. The overlap between SEG and LCD-Composer is lower than between

LCD-Composer and fLPS, but it is still high, providing additional insights into the

intersection of SEG and fLPS. Intriguingly, the intersection between SEG and GBA

is small since GBA uses a modified SEG metric. The SEG results cover only 28.8%
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of the GBA results. I already mentioned that fLPS includes fewer results from

T-REKS than CAST, but more results from XSTREAM. In the case of SEG, this

trend continues and the method overlaps with even fewer T-REKS results than fLPS

and even more XSTREAM results. Although the LCR approach of the SIMPLE

method is more similar to fLPS than SEG, the last method retains high overlap with

it.

LCD-Composer identifies protein sequence fragments based on the percentage

of a given type of amino acid in the window and its dispersion. Its approach to

LCR detection is similar to that of CAST, fLPS and SIMPLE. It has the greatest

overlap with fLPS, accounting for 78.7% of LCD-Composer results. CAST requires

a score above a certain threshold to recognize the domain as LCR. This leads to

different minimum LCR lengths of different residues, where they are treated equally

in LCD-Composer. Therefore, CAST can skip short LCRs composed of residues

with low score assigned in BLOSUM matrix surrounded by HCRs. CAST identified

a greater number of amino acids than fLPS, but includes fewer residues detected

by LCD-Composer. I would expect LCD-Composer to have a high overlap with

SIMPLE, as both methods examine the abundance of a certain residue type in a

given window, but the first method only covers 68.3% of the residues identified

by the second method. It has a slightly greater overlap with GBSC, resulting in

72.7% coverage. Due to the dispersion parameter, it omits LCRs composed of two

or more short adjacent LCRs that are included in the SEG results. For instance, it

will omit the ,,AAAAAAPPPP” LCR that occur in the Retrotransposon-derived

protein (Q86TG7). To find only such cases, both methods can be used to exclude the

LCD-Composer results from the SEG results. Lower coverage, which is less than 50%,

the method has with GBA, T-REKS and XSTREAM, which is later investigated in

detailed analyses. However, it is worth noting that GBA coverage is extremely low

at around 16.7%.

In theory, GBA searches for repetitive domains and further extends them using

modified Shannon entropy. It has the lowest overlap with other selected methods.

The highest overlap it has with fLPS, but it is only 29.8%. The difference to other

methods is huge, and therefore I cannot provide more insights without a detailed

analysis.

XSTREAM and T-REKS identified comparable domains that similarly overlap

with other methods. XSTREAM is a complex method that identifies repeat seeds

and extends domains left and right according to residual similarity. T-REKS, like
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XSTREAM, identifies repeat seeds, but determines the final domains by comparing

the distances between them using k-means algorithm. These methods aim to find

TRs in protein sequences. Since the pattern of repeats can be either short or long,

the overlap with LCR identification methods should be moderate. They overlap

with other methods when detecting short tandem repeat, but diverge when detecting

long tandem repeats. Quantitatively, the methods overlap comparably with CAST,

fLPS, LCD-Composer and SEG, but differ from SIMPLE and GBSC, which are

also designed for repetitions. T-REKS contains 41.2% and 30.1% fewer residues

identified by SIMPLE and T-REKS, respectively. In addition, the overlap between

these methods is small at approximately 47.0% of the T-REKS results. Detailed

analysis is required to reveal the differences between the methods.

SIMPLE generated the fewest results. Its overlap with other methods is as follows:

CAST - 85.8%, fLPS - 76.4%, SEG - 72.0%, LCD-Composer - 68.3%, XSTREAM

- 48.5%, T-REKS - 46.3%, GBSC - 40.3% and GBA - 21.3%. Excluding GBA,

these methods are sorted by the number of identified LCR residues, thus overlap

analysis does not provide meaningful conclusions about this method. Interestingly,

this method regularly overlaps with the repeat identification methods. However, the

expectation is that this method should overlap more with the repeat identification

methods. The characteristics of the results of this method require detailed analysis.

GBSC largely overlaps with all methods except GBA, SIMPLE and T-REKS.

High overlap, that is even greater than with CAST which detected the most residues,

GBSC method has with fLPS and SEG which are 95.8% and 93.5% respectively.

Moderate overlap it has with CAST - 79.9%, XSTREAM - 73.8% and LCD-Composer

- 72.7%. GBSC overlaps with 5 methods that cover its results above 70% It has a slight

overlap with GBA and surprisingly with the repeat identification methods which

are T-REKS and SIMPLE. This may be due to the fact that T-REKS and SIMPLE

focus on longer domain identification, as shown in the Figure 3.3. XSTREAM and

T-REKS are methods for tandem repeat detection in protein sequences. Therefore,

moderate and low overlap with GBSC should not be surprising. The high overlap

with fLPS and SEG can lead to useful combination of these methods for consensus

investigation. For example, one may identify domains using SEG and GBSC, and

remove GBSC results from SEG to analyze non-repetitive, low-complexity sequences.

On the other hand, when combined with T-REKS, it can identify both short and

long tandem repeats.
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This exploratory analysis of domains length distribution, amino acid frequency

and overlap between results lead to conclusions about how each method works and

how they can be combined for better results. Unfortunately, it cannot answer some

important questions. For instance, ,,why is GBA overlap with other methods so

poor?” or ,,why SIMPLE method does not show a striking similarity to the repeat

identification methods?”. Therefore, in the next section, I provide a detailed analysis

of selected examples to unravel the mysteries.

3.3.2 Detailed analysis

In this section, I analyze non-obvious combinations of methods for which exploratory

analysis is insufficient to fully describe them.

(a)
>sp|Q8R5F7|204|294|S

EDNTDLANSSHRDGPAANECLLPAVDESSLETEAWNVDDILPEASCTDSSVTTESDTSLAEGSVSCFDES

LGHNSNMGRDSGTMGSDSDESV

>sp|Q3L1C9|626|680|K

NSKKTSKKKAAELMLEELRKLPPLATPAFPRPKSKIQMNKKKNRNLIKSELQQQKA

(b)
>sp|D2Y2E2|8|81|C

CLVWMMAMMELVSCECWSQADCSDGHCCAGSSFSKNCRPYGGDGEQCEPRNKYEVYSTGCPCEENLMCSV

INRC

>sp|Q2ILE0|127|130|P

PPPP

Figure 3.5: CAST versus fLPS comparison. (a) demonstrate two sequences identi-

fied by CAST which are missing in fLPS results. (b) on the other hand, shows

example sequences identified by fLPS and missed by CAST. The first sequence in

this panel is compositionaly biased to cysteine while the second is short poly-P

fragment.

CAST and fLPS are designed to detect protein fragments with a compositional

bias. Taking into account that these methods are designed to identify the similar

type of LCRs, there is little overlap between them. The Figure 3.5 show example

LCRs identified by either CAST or fLPS. Sequences identified only by CAST are

generally out of fLPS threshold. In the first example of the panel (a), serine is an
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overrepresented residue, but it is not the only reason why CAST tagged this fragment

as LCR. It uses a scoring matrix to denote similarity between residues. Since this

fragment is rich in serine and similar residues, which are threonine and analine, the

alignment to the poly-S sequence is above the default threshold, and thus the method

tagged this fragment as compositionally biased to serine. In the second example, we

have a similar situation with lysine. This residue is overrepresented in the fragment,

but there are also similar residues that increase the fragment score. On the other

hand, the first example in the panel (b) shows a sequence where the cysteine is

overrepresented, but no other residues are similar. Therefore, fLPS was able to

recognize this fragment due to the number of cysteines, but CAST assigned this

fragment a score below the default threshold. The second sequence from the same

figure is a short poly-P fragment. CAST skipped this fragment because its score is 27,

which is below the default threshold of 40. The only such short homopolymer that

CAST is able to recognize is poly-W, as four runs of this residue give an alignment

score of 44.

(a)
>sp|Q814H0|48|81|

EAQKRKEEKDAAAELENAKELKETLEKLTVELKAK

>sp|P51912|52|80|

LLVLLTVAAVVAGVGLGLGVSAAGGADALG

(b)
>sp|Q9NRJ4|1223|1296|P

PAVVLQPLYPPSLSYCTLPPMYPGSSTCSSLQLPPVALHPWSSYSACPPMQNPQGTLPPKPHLVVEKPLVSPPPA

>sp|Q6NZL8|767|806|CH

CEAKVHCSPGHHYNTTTHRCIRCPVGTYQPEFGQNHCISCP

Figure 3.6: Example protein fragments which show differences between SEG and

fLPS. (a) presents protein fragments from fLPS results which cannot be found in

SEG results, while panel (a), gives two examples which were identified by SEG

method, but were skiped by fLPS.

SEG is a classic approach to LCRs detection that is based on Shannon entropy.

This terminology is still close to fLPS method, which identified slightly more residues

in domains of low complexity. Figure 3.6 (a) shows the SEG results that are not

present in the fLPS results. Both fragments that do not belong to the fLPS results
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are highly enriched in four residues. The first domain is rich in alanine, glutamic

acid, lysine and leucine. In the second, the dominant residues are: alanine, glycine,

leucine and valine. I overviewed the results and noticed that most of the sequences

are of this kind. This is rational since fragments enriched equally in four residues

are less biased. Sometimes degenerate homopolymers also appear in the results, but

this may just be an artifact introduced in the latest version of the implementation,

since in the previous version the method correctly identifies these fragments. On

the other hand, Figure ?? (b) shows sample protein sequence fragments detected by

fLPS that were missed by SEG. Both sequences are biased, but also contain a large

variation of the rest residues. The first fragment is abundant in proline, but also

contains residues such as valine, leucine, alanine, glutamine, tyrosine, methionine,

glycine, serine, threonine, cysteine, histidine, tryptophan, glutamic acid and lysine.

That is a huge number of different residues and does not fit SEG definition of LCRs.

The second sequence is biased to cysteine and histidine, which are rare residues. As

the first sequence, the second is rich in other types of residues. In short, the results

contain many irregular domains that are equally biased to several residues, or are

biased to some residue types, but also contain random types.

(a)
>sp|P33972|171|189|

LVTVVWLVYPVWWLVGSEG

>sp|P69216|124|137|

PLNAFAVPLLNTAV

(b)
>sp|B7IE26|415|426|

VLEKVLEDVLFE

>sp|Q8WWL7|805|869|

QEEPSIEKEAVLKEPTIDTEAHFKEPLALQEEPSTEKEAVLKEPSVDTEAHFKETLALQEKPSIE

Figure 3.7: Comparison of T-REKS with XSTREAM. (a) shows two protein

sequence fragments with repeats of LV and PL seeds respectively identified by

T-REKS and missed by XSTREAM. (b) presents sequences skipped by T-REKS,

but identified by XSTREAM. The first sequence is STR while the second is LTR.

T-REKS and XSTREAM are methods for identifying short and long tandem

repeats. However, there is small overlap between these methods, less than 50In
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addition, both methods differ in the length of the identified domains, which can be

seen in the Figure 3.3. Therefore, I selected examples to show the differences between

them. In the Figure 3.7 (a) I present T-REKS results that were not reported by

XSTREAM. The first look at the sequences may confuse someone as to whether there

are any repetitions in the sequences. But if we look at these sequences from a method

design perspective, we see evenly spaced seed repeats. The first sequence contains

three repeats of LV residues, where the distance between them is approximately

equal. One may also notice the repetition of VW residues in the first two runs. The

second fragment consists of ,,PLXXXAV” pattern, where X is a random residue.

The review of the results also confirmed that T-REKS excludes homopolymers from

the analysis, as claimed by the authors [47]. On the other hand, XSTREAM, whose

results are shown in the Figute 3.7 (b), generally identified short fragments, but

also identified some long repeats. An example of a short repeat is shown in the first

sequence, but it is not the shortest repeat the method can identify. It also identifies

simple patterns like ,,AAAA” and ,,ALALA”. XSTREAM is a complex method that

in later stages extends the detected domain left and right to find neighbouring part

of the pattern as well. In the second sequence, we can observe this feature as it

shows two repetitions and partly a third.

In the Figure 3.3, which shows the length distribution of the identified domains, we

can see that the SIMPLE domains strongly depend on the window size, and almost

all results are focused in a single point. This results in hits that are partially out of

the STR regions. For example, the Q05049 protein presented in the Figure 3.8 (a)

contains a Poly-T region of 21 residues. This fragment was correctly identified by

GBSC as seen in the first sequence. The second sequence is the domain identified

by SIMPlE where we can also see the appended trailing residues due to the fixed

window size. This additional fragment is irregular and contains only two serines

out of ten residues, which are the only ones similar to a threonine. Figure 3.8 (b)

shows repeats identified by GBSC only. The first is poly-N region. A review of the

results shows that SIMPLE method skiped many homopolymers. The second is the

ST/SD repeat domain. This domain is 37 residues long, thus we cannot state that it

is out of the SIMPLE window size. Both protein fragments undoubtedly are STRs.

Figure 3.8 (c) on the other hand shows repeats identified only by SIMPLE method.

Both sequences consist of degenerate repeats. The first sequence has several PA

repeats, while the second is a highly mutated homopolymer of glycine. The distance

between the repetitions makes the fragments undetectable for the GBSC parameter
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(a)
>sp|Q05049|501|522|

TTTPTTTTTTTTTTKATTTTT

>sp|Q05049|501|532|

TTTPTTTTTTTTTTKATTTTTSGECKMEPSK

(b)
>sp|Q54ZX8|151|167|NN-NN

NNNNNNNNNNNNNNNNN

>sp|Q2FDK5|2042|2078|SD-DS_ST-TS

STSDSTSISDSESLSTSDSDSTSTSTSDSTSGSTSTS

(c)
>sp|Q23933|DEC_DROER Defective chorion protein (Fragments) OS=Drosophila erecta OX=7220 GN=dec PE=3 SV=2|184|215|

PAPAPAATPLAPAPAADPPAAPVPDAAQPAI

>sp|Q06587|RING1_HUMAN E3 ubiquitin-protein ligase RING1 OS=Homo sapiens OX=9606 GN=RING1 PE=1 SV=2|206|237|

GAGGSSVGTGGGGTGGVGGGAGSEDSGDRGG

Figure 3.8: Selected exaples showing differences between GBSC and SIMPLE

methods. (a) shows the same fragment of Integumentary mucin C.1 protein

identified by GBSC and SIMPLE respectively. (b) presents sequences identified

by GBSC, which are missing in SIMPLE results. The first sequence is poly-N

fragment. The second is short tandem repeat rich in SDT residues. And panel

(c) shows sequences found by SIMPLE, but not by GBSC. Both sequences are

degenerous repeats.

set used. In conclusion, SIMPLE is a method with reasonable sensitivity for STRs,

but unsatisfactory specificity for their exact location, however it skips some obvious

STRs.

SEG results include almost all GBSC results. However, it is worth seeing examples

of which regions have been identified only by GBSC and which have been omitted.

In the Figure 3.9 I provide examples to characterize the overlap of these methods. In

the panel (a), I have included two sample repeats that have been identified by the

GBSC but are out of SEG complexity threshold. The pattern of the first sequence

can be written using the following regular expression: TTLSPDL[SG][HQ]. The

second sequence pattern is QEVXXVQLQP where X is a random residue. These
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(a)
>sp|Q9GLP1|FA5_PIG Coagulation factor V OS=Sus scrofa OX=9823 GN=F5 PE=2 SV=1|1195|1271|LS-SP_SP-PD_TL-LS_TT-TL

TLSPDLSQTTLSPDLSHTTLSPDLGHTTLSPDLSHTTLSPDLSQTTLSPDLSHTTLSPDLGHTTLSPDLSHTTLSPD

>sp|Q8CJ78|ZN628_MOUSE Zinc finger protein 628 OS=Mus musculus OX=10090 GN=Znf628 PE=1 SV=2|806|848|LQ-QP_QE-EV_QL-LQ_VQ-QL

QEVSGVQLQPAQEVATVQLQPAQEVTTVQLQPAQEVTTVQLQP

(b)
>sp|E9PYH6|441|460|GG-GG

GGGGGGSGGGGGGGGGGGGG

>sp|E9PYH6|427|463|

PPASEAPPPEPPEPGGGGGGSGGGGGGGGGGGGGAPSP

(c)
>sp|Q8N697|92|131|

GGWLADARLGRARAILLSLALYLLGMLAFPLLAAPATRAAL

>sp|Q9JLA3|27|41|

LLIALALLCLFSLAEA

Figure 3.9: Selected examples for comparison of GBSC with SEG methods. (a)

shows sequences identified by GBSC only, (b) fragment detected by GBSC and

SEG respectively, and (c) by SEG method only.

patterns consist of 9 and 10 residues, which is too far for SEG method. The panel

(b) shows two variants of a single protein fragment that is recognized differently by

the two methods. The first fragment is identified by GBSC which identified only

homopolymer of glycine with a single serine insertion. This domain, however, is

surrounded by proline-rich regions that were detected by SEG and shown in the

second sequence of the same panel. The last panel demonstrate sequences from

SEG results only. Both sequences consist of several types of residues, but they are

arranged irregularly and lack repetitions.

In the exploratory analysis, I found that it is difficult to characterize GBA results

and a more detailed analysis is needed. Therefore, I tried to find its features and

compare it with other methods. I supposed the comparison would help find the

actual type of LCR that the method is capable of detecting. I compared it with SEG

and GBSC methods since these methods finds well-established domains. SEG is

based on Shannon entropy while GBSC finds STR in which it allows some mutations.

Figure 3.10 demonstrate exapmle sequences from these methods. The sequences in (a)
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(a)
>sp|P27799|334|362|

GFVVFSILGFMAQEQGLPISEVAESGPGLA

>sp|A2R9P6|69|99|

ALAALDAMISRMQGLKRKMENLHQEERKIQEQ

(b)
>sp|P14043|62|92|EP-PE_PE-EP

PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP

>sp|Q54U87|33|66|QQ-QQ

QQQQLQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

(c)
>sp|P23746|275|320|EE-EK_EK-KE_KE-EE_KE-EK

KEEEEKEKEKEKEKEEKEKEEKEKEKEEKEKEEKEKEEKEEKEEEK

>sp|P14196|302|361|NN-NN_NN-NT_NT-TN_TN-NN

NNNNNNNSNNNNNSSNNNNNNNNSTNNNTNNNNNNTNNNTNNNNNNINNNNNNTNNNNNN

Figure 3.10: Selected examples from GBA, SEG and GBSC which aims to help with

GBA method characterisation. Panel (a) shows regions out of SEG scope. Panel

(b) presents results from GBA and GBSC intersection. (c) contains sequences

which are low compexity and contain repetitions.

are GBA results that are missed in the SEG results. The complexity of these domains

is quite high as for LCRs. The composition of the first sequence is comparable to

UniProtKB/Swiss-Prot. The only over-represented residue is glycine, which occurs

in the sequence with a probability of about 0.17, while in UniProtKB/Swiss-Prot

it is about 0.7. However, this difference is insufficient to call this sequence ,,low

complexity”. The panel (b) in the Figure 3.10 contains the sequences reported by

GBA and GBSC. These sequences consist of clear repetitive patterns. The panel (c),

on the other hand, shows the sequences recognized by GBSC and ignored by GBA.

I deliberately chose sequences that have repeats with mutations to show that it is

still not possible to characterize GBA results. This is because GBA detects clear

repeats and sequences that are questionable LCRs, but does not recognize repeats

with several mutations. In conclusion, the exploratory analysis together with the
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study of selected examples does not provide enough information to describe the types

of LCR that the GBA identifies.

(a)
>sp|A1IGV8|170|181|NP-PD

NPDNPDNPDNPD

>sp|P32103|109|134|AK-_KK-_SA-

SAKKASARKSSAKKPAKGGKKKSAKK

(b)
>sp|Q6YZW0|543|588|

QPQLVVQAQLQQPQVILQAQLQQPQVVVQAQLQQTQPSVQSHTVLQ

>sp|P29458|867|906|

FREQSSTRLDASDFEACLGAFREQSSTRLDASDFEACLGA

Figure 3.11: Example sequences which demonstrate differences between GBSC and

T-REKS. Panel (a) provides sequences identified by GBSC, but not by T-REKS.

Panel (b) shows reversed case in which T-REKS identified domains missed by

GBSC.

Both GBSC and T-REKS are designed for short tandem repeats, but T-REKS

is also capable of identifying long repeats. Examination of the results revealed

that T-REKS omits the detection of homopolymers, which was also claimed by the

authors [47]. This may partly explain the difference in the overlap between the two

methods. In the Figure 3.11 I present selected fragments to show the differences

between these two methods with examples. Panel (a) contains sequences identified

only by GBSC. The first sequence is a clear STR and it is interesting why T-REKS

missed it, but there are just few such cases in the results. The second sequence,

however, is common in the results. It consists of a blurred SAKK pattern. Sequences

identified only by T-REKS are shown in the panel (b). In the first one may see

several repetitions of QPQ, LQ and more generally Q The second sequence shows

an example of a long tandem repeat of two patterns This detailed investigation

of selected examples provides information about why the overlap between the two

methods is moderate. The intersection of GBSC and T-REKS consists mostly of

clear STRs excluding homopolymers.
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(a)
>sp|Q3IMY2|232|256|EE-

EEVIEEETEAEAVEEVAEEEIIDEE

>sp|Q5UQ16|323|338|AK-

AKAKPVAKTAKKTPAK

(b)
>sp|Q26307|222|229|

QRKKQRKK

>sp|Q5GC94|50|229|

KRSAEEQNLAEDLVKRGSNKGFNFMVDMIQALSNGKRSAEEQDLAEDLVTRGSNKGFNFMVDMINALSNG

KRSAEEQDLAEDLVKRGSNKGFNFMVDMINALSNGKRSAEEQDLAEDLVTRRSNKGFNFMVDMIQALSKG

KRSAEDQDLAEDLVTRGSNKGFNFMVDMIQALSKGKRSAE

Figure 3.12: Example sequences which demonstrate differences between GBSC and

XSTREAM. (a) shows sequences identified by GBSC only, while (b) seuqnces

detected only by XSTREAM.

In order to fully characterize the identification part of GBSC method, which is

introduced in the scope of this thesis, I also compare it with XSTREAM method,

which is designed for TR detection in general. Therefore, in the Figure 3.12 I show

example domains identified by (a) GBSC and (b) XSTREAM. For both cases, results

are presented that are missing in the results of the other method. In the panel (a),

the first sequence is a poly-E fragment containing several mutations regularly spaced

throughout the fragment. The second sequence contains 5 repeats of AK residues.

In conclusion, XSTREAM lacks degenerate repeats in its results. XSTREAM, on

the other hand, identified many short repeats of just two runs. For example, such

a repeat is ,,HPHPH” in the kappa-casein protein (P50425) at positions 119-123.

Figure 3.12 (b) contains another example where the ,,QRKK” pattern occurs twice.

The second sequence is long tandem repeat. The length of the pattern in this sequence

is 70 residues. Since both methods identify clear and low degenerate repeats, they

can be used together to analyze consensus results. Consensus can be the sum to find

a wide range of TR types or intersection to find clear STRs.
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3.3.3 Visualisation

I visualized the LCR results of identification methods on the PlaToLoCo web service

for meta-analyses. The visualization is presented in the Figure 3.13. Researchers can

explore LCRs using PlaToLoCo by comparing the merged identified fragments of

each method between proteins and view individual records for detailed exploration.

The overview is shown in the Figure 3.13 (A). They can see all identified fragments

along with Shannon entropy, Phobius signals, transmembranes and Pfam domains.

All information is presented in a single Feature-Viewer (Figure 3.13 (B)), which

makes it easy to compare the fragment of interest with many information in one

view [81]. Since LCRs are biased to one or more residue types, one may want to

see the amino acid frequency for a given protein or a fragment of it. The chart for

its analysis is presented in the Figure 3.13 (C). It is integrated with the Feature-

Viewer. By default, the chart shows the residual frequencies for the entire protein.

Selecting one of the detected fragments or a custom interval in the Feature-Viewer

recalculates the chart for the selection. The identification methods described in

this chapter and how they overlap can be combined into a consensus method. It

is visualised in the Figure 3.13 (D) and allows to select the consensus type and

methods. The available consensus types are union and intersection. The detected

fragment, Pfam and PDB details are shown in the Figure 3.13 panels (E) and (F).

The service where I implemented the presented visualization methods is available at

https://platoloco.aei.polsl.pl.

3.4 Discussion

In this chapter, I compared existing LCR identification methods, which are SEG,

CAST, SIMPLE, GBA, XSTREAM, T-REKS, fLPS and LCD-Composer [3, 17,

37, 47, 63, 78, 87, 119]. I also add GBSC to the analysis, which is described in the

GBSC - clustering short tandem repeats chapter. The main expected outcome of

the comparison is to provide an overview of each method and to guide researchers

when to use which method. In addition, it provides insight on how to combine these

methods for even more ways to identify LCRs. Another outcome of this work are

LCR visualization approaches to facilitate their exploratory analyses.

Comparison of LCR identification methods brought us closer to their definition.

Each method provides its own definition of LCRs. Mier et al. have already made
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Figure 3.13: LCR identification methods visualization. (A) list of input proteins

summary with identified LCRs, (B) sequence details consisting of identified

fragments, sequence entropy, Pfam and Phobius domains, (C) amino acid chart

for the sequence or selected fragment, (D) selected methods consensus, (E) Pfam

& PDB details, and (F) details about identified fragments. Source: Jarnot et

al., PlaToLoCo: the first web meta-server for visualization and annotation of low

complexity regions in proteins, Nucleic Acid Research.
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some effort to describe these fragments using an LC diagram. They also attempted

to characterize LCR features using 21 different proteins containing low complexity

domains and analyze them relative to disordered proteins [75]. In the same year,

Cascarina et al. showed that only a complexity measure along with residue types the

fragment is compositionally biased to, can provide more accurate data to conclude

about domain structures [16]. This, together with the results of this chapter, leads

to the conclusion that combining SEG with either CAST or fLPS may improve

identification of such domains. Sequence complexity is often combined with other

sequence attributes, including residual composition, hydrophobicity, charge and

other [43]. Therefore, mixing two or even more methods and visualizing their results

can provide more information on the biological significance of protein domains.

All methods are important for discovering the biological significance of LCRs.

T-REKS, XSTREAM and GBSC can be used to detect sequences containing short

tandem repeats. These domains often coexist with specific protein structures and

functions. For instance, they can form a coiled coil structure or be responsible for

binding through RGG boxes [67,120]. CAST and fLPS are methods for detecting bias

in LCRs. This type of LCRs also plays a crucial roles in proteins. For example, the

lysine-rich region is required to regulate proliferation and senescence [68]. Therefore,

we cannot choose one method as the gold standard for LCR identification. It is

believed that understanding how these methods work and knowing the differences

between them makes it easier to choose the right method for a particular problem.

Some of the results collected by identification methods are unexpected. The main

reason for including GBA in the analysis is that this method and GBSC are based

on graphs. The graphs they produce are different, but I hypothesized that using a

similar tool to design the algorithm for a similar problem might lead to comparable

results. However, the overlap between these methods is small, and this applies not

only to the overlap between GBA and GBSC but also to overlap between GBA and

all other methods. Furthermore, detailed analysis did not reveal the characteristics

of the protein fragments identified by the method. The method described in the

article is interesting and seems relevant to LCRs [63]. I would rather look for an

implementation issue. Another surprising result is the low intersection between

CAST and fLPS, as with methods that detect protein fragments overrepresented by

one or more residues. However, this finding shows the importance of a consensus

method that can be used to find either strong compositional biases in the sequence

or relaxed. The same conclusions can also be drawn from the repeat identification
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methods. A similar approach that use consensus of methods is TRAL. This is a

Python package that combines several methods to annotate short tandem repeats

in proteins [98]. However, HHrepID method, which is one of its components, is

no longer available [12]. T-REKS and XSTREAM, which have been analyzed in

the scope of this chapter are also part of the TRAL method. An example of the

consensus method output developed in the scope of this chapter is presented in the

Figure 3.13 (E)

LCR visualization can improve the exploration of protein sequences and their

potential roles. It has already been shown that the proposed LCR visualization

method can, for instance, help in proteomic analysis of heat-stable proteins or phase

separation [83,93]. There are also other approaches to facilitate LCR analysis. LCR-

eXXXplorer uses pre-calculated results from SEG and CAST to show them with

UniProtKB annotations. However, in this service, researchers cannot submit their

own sequences [53]. The recently published method LCD-Composer also has its own

service where scientists can submit their sequences and download the results. But

no additional visualization has been added to this tool [18].

To summarize, in this chapter I presented exploratory analysis of selected methods

for LCR identification. I compared the results, and for not obvious cases I provide

a detailed analysis of selected examples. I also discussed possible combinations of

methods for the consensus method and finally presented a method for visual analysis

of low complexity domains in protein sequences.
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4 Analysis of canonical methods for

protein sequence analysis in the

case of LCRs

4.1 Introduction

Scientists are able to infer the function and structure of proteins based on similar

sequences with already known properties. It can speed up lab experiments by

reducing the number of scenarios and can decrease their cost. Several methods for

protein sequences comparison already exist. These methods are used to cluster and

search for similar proteins. State-of-the-art methods have two approaches regarding

searching for similar protein sequences [6, 25]. The first is based on local pairwise

alignment, for instance Smith-Waterman algorithm [105]. In the second approach,

the methods iteratively search for similar sequences, create MSA, which they use

in the next iteration to search for more sequences. Both approaches aim to find

homologous proteins. For a long time, scientists were mainly interested in HCR

of sequences, considering LCRs to be junk sequences that evolved neutrally [35].

Although today we know that LCRs may play a key role in protein function, the

similarity comparison methods were designed primarily for HCRs, therefore the

hypothesis is that they are not applicable to LCRs. In this chapter, I analyze three

state-of-the-art protein similarity comparison methods in the case of LCRs to prove

the hypothesis. These methods are BLAST, HHblits and CD-HIT [6,62,92].
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Figure 4.1: Firstly, I divide input dataset into HCR and LCR. Then, I execute all

three methods on them. Finally, I explore results and examine selected examples.

This diagram show workflow of the analysis. Source: Jarnot et al. Insights from

analyses of low complexity regions with canonical methods for protein sequence

comparison. Briefings in Bioinformatics.

46



4 Analysis of canonical methods for protein sequence analysis in the case of LCRs

4.2 Methods

4.2.1 Workflow

For the analysis of selected methods of protein sequence similarity, I used the

UniProtKB/Swiss-Prot database. I extracted LCRs from the database sequences

and generated two distinct datasets of LCRs and HCRs. I also enriched the fasta-

formatted sequences with information about protein families. From the datasets

created this way, I generated specific databases for the methods where it was needed.

Next, I executed all the methods to search for HCRs and LCRs. Finally, I explored

results and examined selected examples to show the advantages and disadvantages

of each method for LCRs. The workflow of the analysis is shown in the Figure 4.1.

4.2.2 Data preparation

Figure 4.2: The division of example sequence into LCR and HCR parts. Source:

Jarnot et al. Insights from analyses of low complexity regions with canonical

methods for protein sequence comparison. Briefings in Bioinformatics.

I used the Swiss-Prot subset of the UniProtKB version 2020 04 as the source for

the protein sequences [8]. This dataset contains high-quality and manually curated

data which I use to examine proteins in detail. Importantly, the database also

ensures that protein sequences lack redundancy. In this research, I execute selected
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methods for LCRs and HCRs. I use the LCR results to check whether the methods

are suitable for LCRs, and the HCR results as a reference. Therefore, I have divided

this database into HCR and LCR datasets. For this purpose, I extracted the LCRs

from the sequences using SEG method and created the LCR dataset. I then merged

the remaining parts of each sequence into a single HCR and created the second

dataset. As a consequence, I divided a single sequence into multiple LCRs and one

HCR. An example of sequence division is presented in the Figure 4.2

4.2.3 LCR extraction

Several methods have already been developed to identify LCRs in protein sequences.

However, none of these methods have been established as the gold standard. For

this work, I used SEG method as it is the most popular tool, which was also used in

BLAST for LCR masking [119]. It uses a sliding window to find protein fragments

with Shannon entropy below a given locut threshold. When a fragment is identified

as a low complexity then it is exteded left and right joining residues that cause

the window’s entropy to be below the hicut threshold. By design, the algorithm

should be able to extend the identified low complexity fragment, thus the locut value

should be less than the hicut. This method covers a wide variety of LCRs that are

homopolymers, short tandem repeats and irregular regions containing just a few

residue types. For this work, I used a strict parameter set (locut: 1.5, hicut: 1.8,

window: 15), which has already been used for several biological analyses [89, 90].

4.2.4 Family assignment

Proteins are grouped into families that share similar properties and common evolu-

tionary origins. Even though some proteins lack family assignment, the knowledge

about how protein families depend on HCR and LCR can provide new insights

about methods for searching for similar proteins. Theoretically, LCRs often play

secondary roles in proteins, and the impact of HCRs on a protein family should be

greater than that of LCRs. To check this using protein similarity search methods,

I assigned families to sequences in the LCR and HCR datasets. From analyzes

where this information is required, I have excluded protein sequences without family

assignment. I used the families to compare the created datasets, checking how many

similar sequences found by the selected methods belong to different protein families

in both datasets. I also analyzed selected examples in terms of their composition and
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biological properties. To select non-obvious cases, I used pairs of similar sequences

belonging to different families.

4.2.5 Selection of similarity search methods

To check whether commonly used methods for protein similarity analyses can handle

LCRs, I test three state-of-the-art methods for three different types of similarity

analysis. These methods are BLAST, HHblits and CD-HIT. BLAST is the most

popular tool for protein similarity searching based on local alignment. HHblits

is the choice when more distant evolutionary relationships between proteins are

needed. CD-HIT has been successfully to cluster sequences into families and remove

redundancies from protein databases. Using this analysis, conclusions can be drawn

about a wide range of protein similarity analysis tools as they have similar statistical

models. For example, using HHblits results infer HMMER while BLAST results can

be used to infer FASTA method.

4.2.6 Input dataset preparation

Before running the selected methods, I pre-processed the input datasets as required

by each method. I downloaded the input dataset in fasta format, which is one of the

standard protein sequence formats. This format stores sequences in plain text, which

simplifies manual investigation of sequences, but is inefficient in terms of disk space

usage. Indexing in this format is not supported, thus most similarity search methods

require input dataset in their own format, which can be easily generated from fasta.

BLAST calculates High Scoring Parts of sequences, and thus requires converting

fasta formatted dataset to its specific format which is indexed and significantly

increases performance.

HHblits performs an HMM-HMM comparison to report similarity between se-

quences. Since it compares HMM profiles, which are a condensed form of MSA, it

will require high computing power to compute the profiles on the fly. Therefore,

the database of HMM profiles is built before searching. The dedicated way to build

the database is to use the available pipeline which uses MMseqs to create clusters

of similar sequences which are then converted to HMM profiles [76]. It is worth

mentioning that creating MSA for LCRs has an issue with aligning the LCR in the

right position. The issue is shown in the Figure 4.3 and is known as shift error [59].

49



4 Analysis of canonical methods for protein sequence analysis in the case of LCRs

Figure 4.3: MSA of LCRs can be created in several ways. LCRs comes from the

following proteins Q9V727, D3ZKD3 and Q5BGE2, respectively. These MSA are

used to create profiles of HMMs for HHblits. Each MSA is created by different tool

which are: (A) MUSCLE, (B) Kalign and (C) Clustal Omega. Source: Jarnot et

al. Insights from analyses of low complexity regions with canonical methods for

protein sequence comparison. Briefings in Bioinformatics.

For LCRs, the pipeline needs to adjust the parameters. MMseqs is a method

for protein sequence clustering and is indirectly used in this research to build the

database for HHblits. Like other methods, it was designed to analyze similarity

between proteins, focusing on HCRs. Therefore, I changed the mask and comp-

bias-corr parameters. The first parameter changes the masking strategy and is

responsible for masking the LCRs. The second, corrects locally biased composition

of residues. As a result, the pipeline generates three databases for three different

identity thresholds, which are 10%, 20% and 30%. I chose Uniboost 30, which is

created with the highest identity threshold. The rationale for this choice is that

LCRs are not yet well-characterised, thus closer similarity should be investigated

first.

4.2.7 Parameter adjustment

All methods are designed to analyze the similarity between HCRs. Therefore, in

the case of LCRs, I adjusted the parameters for all methods, while for HCRs I left

the default parameters. Since they are intended to reduce the significance of the

LCRs, I changed them to get more results with reasonable quality. To adjust them,

I read their description to select the best candidates and confirmed the selected

parameters by looking at the results with and without changes. Frequently used

statistic to assess the evolutionary significance between protein sequences is the

E-value. Intuitively, it tells how many times one may expect the same or better

alignment simply by chance. I set its value to 0.0001 in BLAST and HHblits, as this

value has been used in many biological analyses [31,109].
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Additionally, I changed the following BLAST parameters: max target seqs, task

and comp based stats. By default, BLAST reports 250 best hits, which is sufficient

in most cases. In this work, I search for similarities to all sequences, thus I turned

off this filter by setting its value to the highest possible which is 1,073,741,798. This

should include results for proteins that have many similar sequences. One of the

BLAST parameters that has a large impact on the results is task. It accepts the

following values: blastp, blastp-fast and blastp-short. This is a meta parameter that

affects other parameters by setting them to the optimal values for a given task.

blastp is the default value, blastp-fast changes parameters to speed up calculation

and blastp-short optimizes parameters for short sequences. For LCRs, I used the last

task since these regions are often short, as can be seen from the length distribution

figure 3.3. blastp-short changes the default scoring matrix to PAM30 [84]. It also

affects the parameters related to gaps by setting its open cost to 9 and extension cost

to 1. To skip potentially dissimilar sequences, BLAST uses pre-filtering, which is

disabled in this blastp-short. This option also changes the E-value, which is however

explicitly overwritten in this study to 0.0001. The next parameter is comp based stats.

LCRs are known to cause false positive homology hits due to their striking similarity

between non-homologous proteins. Therefore, in the previous versions of BLAST, it

used SEG to mask the LCRs. Currently, by default it recalculates the scoring matrix

by increasing frequently occurring values and decreasing values of residues that are

rare in the query sequence. In conclusion, this greatly diminishes the importance of

LCRs that I investigate in this study, thus I just disabled the feature.

In the case of HHblits, when analyzing the LCR dataset, I changed the following

parameters: noprefilt, sc, norealign, diff and id. All these parameters affect the

number of results and/or their quality. HMM-HMM comparison is a computationally

complex process, and to speed up the search, HHblits filters HMM profile pairs that

are considered dissimilar. Unlike HCRs, for LCRs this pre-filter rejects many true

positives, thus I disabled it with the noprefilt parameter. The method provides

various equations for calculating the score, which can be changed using the sc

parameter. I analyzed all the possible values and evaluated their quality and quantity

of results in order to select the appropriate equation. As a result, I chose the equation

described by the Formula 4.1.

S “ log2

ÿ tja ˚ qia
pa

(4.1)
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Where tjpaq is the template score at j position, qipaq is the query score at position

i, and ppaq is the background frequency [92]. HHblits also uses MAC algorithm

to handle repeats in proteins. We classify repeats in proteins as tandem and non-

tandem or short and long, where short repeats are an integral part of the LCRs. The

MAC algorithm uses TMscore, which, according to the authors of the algorithm,

incorrectly evaluates repeat units shorter than 15 and is intended for highly divergent

protein repeats [12]. Disabling this algorithm for LCRs with the norealign parameter

increases the number of results reported by the method. The id and diff parameters

control query MSA growth by filtering out very similar sequences. Since LCRs are

often very similar to each other, I turned off these filters.

In contrast to previous methods, CD-HIT lacks of parameters to control fragments

of low complexity. The only thing I set for LCR analysis is the minimum length of

accepted sequences. By default, l is set to 10. I changed this value to the minimum,

which is 4 residues. Another parameter that may be useful for LCR analysis is s,

which controls the maximum length difference between incoming and representative

sequences. In this work, I omit this parameter since it greatly reduces the number

of results and introduces other cases where two sequences differing in the length of

only one residue belong to different clusters. I described the analysis of all changed

parameters and their impact on the results in the results section.

4.2.8 Methods execution

After preprocessing the data and adjusting the parameters, I run the selected methods.

Selected methods can be used to analyze various aspects of similarity between protein

sequences. BLAST and Hhblits are search algorithms, while CD-HIT is a clustering

algorithm. To make the results comparable, I unified the output of all methods. It

consists of similar pairs of sequences. To achieve this, for BLAST and Hhblits, I run

methods on each sequence in the LCR and HCR datasets. I created pairs of similar

sequences by combining the query sequence with all the sequences reported by the

methods as similar. For CD-HIT, I created similar sequence pairs by combining all

sequences belonging to the same cluster.

4.2.9 Results analysis

To explore the results, I caluclated the number of similar pairs identified by each

method, the overlap between their results and plotted the relationships between
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alignment features. I analyzed the LCR and HCR datasets for two cases. The first

case applies to all generated results, and the second excludes sequence pairs where

both sequences belong to the same family. This visual and statistical exploration

of the results provides an overview that can be used to draw some conclusions and

formulate new hypotheses. Because data exploration provides an overview of the

results, I will analyze selected examples in detail to draw new conclusions and confirm

those already drawn. For the analysis of interesting examples, I chose these that

come from different families for BLAST and Hhblits. For CD-HIT, I used all the

results since the insights are generic and family independent. I analyzed example

sequences by looking at their composition and biological roles. I also analyzed the

results, paying attention to the features of methods that work very well on the HCR

dataset, but prevent effective LCR similarity analysis.

4.3 Results

I investigated the results of each method using an exploratory analysis approach

and looking at selected examples. As an exploratory analysis, I summarized the

number of results, created a Venn diagram, compared the dependence of E-value on

alignment length, number of alignments and sequence identity using line plots. As

part of selected sample studies, I showed which kind of LCRs are handled by the

methods correctly using the proposed set of parameters I also provide ill-matched

examples to show the features of each method that need improvement. I examined

all cases from a biological point of view, looking for evidences that could confirm or

reject similar sequence roles, and I examined them from a compositional point of

view to see whether the LCRs are properly matched according to their definitions.

4.3.1 Number of results

The proportion of results collected from each method varies between HCR and LCR

as can be seen in the Table 4.1. HHblits is a tool designed to sensitively search for

similar sequences using HMM-HMM profile comparison. This tool identified the

largest number of similar pairs in the HCR dataset, representing more than 75% of

the total number of similar pairs identified by all methods. Next is BLAST, which

identified about 16% of all results. The method uses Smith-Waterman algorithm to

report alignments, thus it reports closer sequence similarities than HHblits. CD-HIT
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HCR LCR
HCRs without

same families in pairs

LCRs without

same families in pairs

BLAST 3,205,592 (15.83%) 11,507,921 (71.58%) 46,413 (0.65%) 4,550,663 (67.56%)

HHblits 15,296,119 (75.55%) 4,331,254 (26.94%) 7,096,205 (99.32%) 2,105,748 (31.26%)

CD-HIT 1,745,171 (8.62%) 237,782 (1.48%) 2,477 (0.03%) 79,705 (1.18%)

Total 20,246,882 (100%) 16,076,957 (100%) 7,145,095 (100%) 6,736,116 (100%)

Table 4.1: HHblits found 4.77x more alignments than BLAST for HCRs. For LCRs

it is different and HHblits found only 0.38x of BLAST results size. In CD-HIT

removing pairs with sequences from the same family remove almost all results from

HCRs, but for LCRs it removes only 66%. Table presents total number of similar

sequence pairs found by all three methods. Source: Jarnot et al. Insights from

analyses of low complexity regions with canonical methods for protein sequence

comparison. Briefings in Bioinformatics.

cluster sequences with the highest probability of redundancy, thus it identified the

fewest number of sequence similarities. It identified almost 9% of all results. For

LCR results, the proportion is different. HHblits idnetified 27%, BLAST 71.5% and

CD-HIT only 1.5%. BLAST found many more similarities than other methods. This

is a huge difference between HCR and LCR results. The difference may occur because

LCRs are conserved parts of proteins and do not have more distinct similarities.

The small number of LCR results compared to HCR results is due to the algorithm

that assigns sequences to clusters. It creates a separate cluster for the sequence,

even if it can be assigned to an already existing cluster containing similar sequences.

This behavior is discussed in more detail in the section devoted to the analysis of

selected CD-HIT examples. A significant difference between the size of both dataset

results can be observed when we remove pairs of similar sequences whose proteins

belong to the same family. We can explain the HCR results by referring to the

design assumptions of each tool. BLAST is a tool designed to find homologous

sequences, therefore it reduce the ratio of similar sequence pairs from 16% to 0.5%

when removing sequence pairs where both sequences belong to the same family.

CD-HIT is used to remove redundancy in protein databases and group proteins

into families. Taking these assumptions into account leads to the conclusion that

the decrease from 8.6% of the results to slightly above zero after removing pairs

belonging to the same family is also reasonable. HHblits is designed to search for

distant homologies. Unfortunately, the risk of finding non-homologous sequences
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increases with sensitivity. These false positives explain why HHblits results contain

almost all similar pairs belonging to different families. The above explanations are

not applicable for LCRs. The ratio of the number of results before and after removal

of pairs of similar sequences assigned to the same family is similar. Changes in the

ratio of all methods is small. This may suggest that protein families are irrelevant to

LCR similarity.

4.3.2 Overlap analysis

HHblits found unique results, while BLAST and CD-HIT share some similar sequence

pairs. Figure 4.4 presents Venn diagrams that help in analyzing the overlap of selected

methods. Researchers often use different methods of protein similarity analysis to

see whether the results overlap. For the purpose of increasing the chance of similar

protein properties, they can check whether the two methods find the same proteins

as similar, or if the results of one method are not satisfactory, they can use other

methods to find more similarities. The intersection of all the selected methods

is slight, suggesting that these methods are intended for different purposes. The

overlap between HHblits and CD-HIT is extremely small. As a matter of fact,

these two methods have two opposing goals. The first method searches for distant

similarities and even filters out the most similar ones, while the second method

detects redundancy in databases by focusing on very similar sequences. BLAST with

HHblits also share a small number of results for both LCRs and HCRs. However,

I would consider these methods in terms of complementary rather than different

design purpose. Indeed, BLAST is capable of finding similar proteins, but HHblits

find more distant similarities, thus researchers looking for variety of similarities

would use the results of both methods. The only noticeable overlap is seen between

BLAST and CD-HIT. For the HCR dataset, almost half of the CD-HIT results are

also included in the BLAST results. For LCRs, however, this proportion changes

and almost all CD-HIT results are included in BLAST. In the case of HCRs, when

removing sequences from the same family, all overlaps disappear, leaving only the

sequences identified by HHblits. This confirms the above claims. At the same time,

the LCR overlap keep similar proportions.
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Figure 4.4: The overlap among all methods is small. Common similarities can be

seen only between BLAST and CD-HIT. (A) shows results for HCRs, (B) for

LCRs, (C) for HCRs without pairs where sequences comes from the same families,

(D) for LCRs excluding sequence pairs from the same families. Source: Jarnot et

al. Insights from analyses of low complexity regions with canonical methods for

protein sequence comparison. Briefings in Bioinformatics.
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(a) y “ x (b) y “ 3sinx (c) y “ 5{x

(d) y “ x (e) y “ 3sinx (f) y “ 5{x

Figure 4.5: Relationship between E-value and alignment count, mean length and

the number of identical residues for BLAST. When BLAST E-value is out of float

range, the method assigns 0 which is skiped in this figure.

4.3.3 E-value and alignment analysis

E-value behaves differently for HCRs and LCRs. In order to illustrate the differences,

I will refer to the Figure 4.5. We can see that the E-value in the HCR results varies

significantly between BLAST and HHblits. We may encounter many sequences with

high E-value and fewer but still significant numbers of lower E-value results. In the

case of LCRs results are concentrated near highest E-value because these domains are

mostly short and E-value is length dependent. For logpE ´ valueq below -75, HCR

results of BLAST cover about 66.39% while for LCRs it is only about 0.01%. From

charts (b, c, e and f) we can read that LCR alignments are shorter, but on average

they consist of more identical residues. The high deviation in the LCR plots below

-75 logpE´ valueq is due to the low number of alignments. For HCRs, as the E-value

decreases, the identity increases logarithmically. On the other hand, in the LCR

results, in the alignments for logpE ´ valueq belog -30 is higher than in HCR, but it

is starting to decrease. In the case of HHblits, presented in the Figure 4.6, the results

for both datasets, most of the results are assigned to the higher logpE ´ valueq. For
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(a) y “ x (b) y “ 3sinx (c) y “ 5{x

(d) y “ x (e) y “ 3sinx (f) y “ 5{x

Figure 4.6: Relationship between E-value and alignment count, mean length and

the number of identical residues for HHblits.

HCRs, most of the logpE ´ valueq of the results are above -100 while for LCRs they

are mostly above -30. The alignment identity and length increase logarithmically as

logpE ´ valueq decreases. In the case of LCRs, the identity behaves the same as in

the case of HCR. The chart of alignment length has significantly lower values for

LCRs in comparison to HCRs. On the other hand, LCRs for the same E-value are

more identical.

4.3.4 BLAST example alignments

BLAST assigns an E-value to alignments that inconsistently evaluate differences in

sequence lengths and their types. Local pairwise alignment provides a similar E-value

when both sequences are of the same and different length. Figure 4.7 shows these

issues in the examples. In the alignment (a) both sequences are poly-A and their

lengths are the same. However, in (b) the aligned sequences are Poly-H of the same

length, but the E-value of both alignment vary significantly. The E-value of the first

alignment is 3.8 ˚ 10´6 while the E-value of the second alignment is 3.5 ˚ 10´12. The

difference is introduced by different scores in the BLOSUM scoring matrix. Even if

58



4 Analysis of canonical methods for protein sequence analysis in the case of LCRs

P31361 103 AAAAAAAAAAAA 114

AAAAAAAAAAAA

Q2MJS2 151 AAAAAAAAAAAA 162

E-value: 3.79259e-06

(a)

G3V7L5 174 HHHHHHHHHHHH 185

HHHHHHHHHHHH

P97838 222 HHHHHHHHHHHH 233

E-value: 3.49068e-12

(b)

G3V7L5 174 HHHHHHHHHHHH 185

HHHHHHHHHHHH

Q1XH10 337 HHHHHHHHHHHHHHH 351

E-value: 4.70105e-12

(c)

Figure 4.7: Same length different E-value. POU transcription factor family Class-3

subfamily (P31361). IRF2BP family (Q2MJS2). POU transcription factor family

Class-4 subfamily (G3V7L5). SAPAP family (P97838). DACH/dachshund family

(Q1XH10).

this helps to find evolutionary related sequences, it cannot be used to demonstrate

the relevance of different LCR types. In the example (c) both sequences are also

poly-H domains, but their lengths are different. The first sequence (G3V7L5) is

shorter than the second (Q1XH10). However, the E-value is very similar to the

previous case, being about 4.7 ˚ 10´12

4.3.5 HHblits example alignments

HHblits reported similarity between distant sequences. Figure 4.8 shows example

alignments collected from HHblits. The first example is 22 amino acids long and the

rest is 15 amino acids long. Alignments (a) and (b) were also reported by BLAST,

while (c) and (d) were reported only by HHblits. These reported by both methods

have higher similarity and identity than alignments reported by HHblits alone. The

identity of (a) and (b) is approximately 59% and 60% respectively. This is higher

than in alignments (c) and (d), which are 53% and 40%, respectively. The similarity

also follows this pattern. It is 77% and 93% for the first two alignments, and 67% and

47% for the last two. Similarity in mutations is indicated by a positive score of Viterbi

algorithm [92]. The above observations may lead to the conclusion that HHblits

report more distant similarities, some of which are common to BLAST. However,

HHblits evaluated these pairs of sequences differently, consistent with Hidden Markov
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(a)
>consensus_sp|Q8ST25|5f229009737a9faef0170d8a

Probab=99.77 E-value=1.7e-24 Score=79.71 Aligned_cols=22

Q Q54FP8 1 NNKNNKNNNNNNNNKTNKNNNN 22 (22)

Q Consensus 1 ˜˜˜nnsnnnnnn˜n˜nn˜nnnn 22 (22)

||||+||||||||||||+|+||

T Consensus 1 ns˜ns˜nnnnn˜snn˜˜˜n˜nn 22 (22)

T consensus_sp|Q 1 NSNNSNNNNNNNSNNNNSNSNN 22 (22)

(b)
>consensus_sp|Q7ZY40|5f229009737a9faef016a8ed

Probab=98.72 E-value=5.4e-13 Score=45.14 Aligned_cols=17

Q Q9EST5 1 DEDEEDEDEDEDEEEEE 17 (17)

Q Consensus 1 eEeeeeeeeeeeeeeee 17 (17)

|++||+||||||+||+|

T Consensus 1 ed˜˜e˜eee˜˜ede˜de 17 (22)

T consensus_sp|Q 1 EDDEEGEEEEEEDEEDE 17 (22)

(c)
>consensus_sp|A5E203|5f229009737a9faef016fdfa

Probab=98.74 E-value=4.1e-13 Score=48.24 Aligned_cols=15

Q P29029 8 SSGSTSSGSTSSDST 22 (22)

Q Consensus 8 SSsssSssssSssSs 22 (22)

||.|+|||+||||||

T Consensus 2 sSds˜ssS˜˜ss˜˜s 16 (19)

T consensus_sp|A 2 SSDSDSSSDSSSSSS 16 (19)

(d)
>consensus_sp|Q920D3|5f229009737a9faef016edb9

Probab=98.87 E-value=8.1e-14 Score=49.70 Aligned_cols=15

Q E9PZQ0 6 EPPKKTPPPPPPKKE 20 (21)

Q Consensus 6 ˜pp˜p˜˜P˜Ppp˜˜˜ 20 (21)

||||||||||.+|-|

T Consensus 2 ˜pp˜pppp˜pg˜pgq 16 (16)

T consensus_sp|Q 2 PPPPPPPPPPGLPGQ 16 (16)

Figure 4.8: HHblits alignments. (a) and (b) are common with BLAST. (c) and

(d) were identified by HHblits only.
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Model profiles. Therefore, the profile used to construct the (d) alignment reported

better similarity accoding to E-value and score than the (b) alignment.

4.3.6 CD-HIT example clusters

In the case of CD-HIT, I analyzed clusters using all sequences without excluding these

belonging to the same families. The CD-HIT method requires a different approach to

similarity analysis than BLAST and HHblits since it is a protein sequence clustering

method. It is easy to exclude pairs of similar sequences belonging to the same family,

but it is more difficult when considering a group of similar sequences. In addition,

the number of CD-HIT results is relatively smaller compared to other methods.

Therefore, I decided to analyze the results of this method unchanged.

The way CD-HIT evaluates similarity and length between sequences cause as-

signment of similar sequences to different clusters and different sequences to the

same cluster. In the Figure 4.9 I have shown examples that help to demonstrate

the issues. In the first example, the representative sequence consists of sub-LCRs,

which may also exist separately. These sub-LCRs are mainly poly-A and poly-G

sequences. Therefore, when CD-HIT will search the cluster for a poly-A or poly-G

LCRs, it is highly possible that these sequences will join this cluster as shown in (a).

Such representative sequences consisting of adjacent LCRs are common since they

are longer than atomic LCRs. This wrong assignment is caused by an alignment

method that only compare LCR to a part of the representative sequence consisting

of sub-LCRs. The example (b) is two similar sequences of the same length that form

separate clusters. The statement about similarity between sequences is supported

by biological properties because both sequences create the same domain which is

Coiled-Coil in Probable serine/threonine-protein kinase fhkB (Q1ZXH2) and Alpha-

protein kinase 1 (Q54DK4) proteins. Since the sequences are similar, they form the

same structure and both sequences are kinases they most likely should join the same

cluster. This example shows that sequences of similar length have lower chance to

create the same cluster due to several random mutations. On the other hand, they

are more likely to be joined by a short poly-Q fragment if it will not be joined by a

longer poly-Q fragment beforehand. This case is unexpected, because a significant

difference in the length of the sequences may realize different functions [58]. The

difference in length is shown in the example (c) where three poly-N LCRs with

significantly different lengths were assigned to the same cluster.
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(a)
>Cluster 301

0 71aa, >sp|E9Q4N7|5f229009737a9faef016a8a3... *

GAGGGGGGGGGGGGSGGGGGGGGAGGAGGAAAAAAGAGAVAAAAAAAAAAAAAAGGGGGGGYGSSSSGYGV

1 15aa, >sp|P35453|5f229009737a9faef016a941... at 93.33%

AAAAAAAAAAAAAAA

7 17aa, >sp|O77215|5f229009737a9faef016ad58... at 94.12%

GGGGGGGGGTGGGGGGG

(b)
>Cluster 264

0 75aa, >sp|Q1ZXH2|5f229009737a9faef016aabe... *

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQCQPQQQQTQQQQQQQQQQQQQQQQQQQQQQQQQQTQQQQQQPQ

>Cluster 271

1 75aa, >sp|Q54DK4|5f229009737a9faef0170790... *

QLNQQQQHLQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQNQQQNQQQNQQQQQQQQQQQQQQQN

(c)
100 63aa, >sp|Q54ZP8|5f229009737a9faef016c96d... at 90.48%

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTNTNNN

188 232aa, >sp|Q54L50|5f229009737a9faef016e962... *

NNNGNNLNNSNNNNNNNNSNSSSNNNNNNSSSNNSSSNNNSNNNNINNNNNNGNNNNNMGNNNNNMG

NNNMGNNNMGNNNMNNNNMNNNNINNNNSNNNNNNNMNNNNNSNNNSNNMNNNNNNSNSNNNNNNNN

NNNNNNNNMNNNNMNNNNNNNNNNMNNNNNNNNNNNNNNNNNNNMNNNNNMNMNNNMNNNNMNNNNN

NNMNNNNMNNNNMNNNNMNNNNVNNNNMINN

123 18aa, >sp|Q55DD4|5f229009737a9faef016d095... at 100.00%

NNNNNNNNNNNNNNNNNN

Figure 4.9: Two cases which show wrong assignment to clusters. (a) The cluster

contain sequences which different. (b) The cluster contain sequences of which the

length differ. (b) Highly similar sequences belong to different clusters.
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4.3.7 HHblits parameters analysis

For the LCR analysis, I adjusted the HHblits parameters, while for the HCRs I

left them unchanged, since the method is designed to detect the similarity between

HCRs. In this section, I propose a set of parameters that can be used for LCR

analyses. I also provide a number of results and example alignments illustrating their

quality. To adjust them, I first read the method manual and selected parameters

that potentially affect LCR similarity. Then I run the method with the full set of

parameters and sets, of which I removed a single one. This approach helps to assess

whether a parameter has a positive or negative impact on the LCRs.

# Parameter set Missing parame-

ter in compari-

son to #1

Number of

similar pairs

1* -id 100 -diff 0 -norealign -sc 0 -noprefilt 4 331 254

2 -diff 0 -norealign -sc 0 -noprefilt -id 100 4 357 676

3 -id 100 -norealign -sc 0 -noprefilt -diff 0 4 354 196

4 -id 100 -diff 0 -sc 0 -noprefilt -norealign 623 205

5 -id 100 -diff 0 -norealign -noprefilt -sc 0 4 002

6 -id 100 -diff 0 -norealign -sc 0 -noprefilt 2 309 843

Table 4.2: Number of alignments reported by HHblits for given parameter sets.

Source: Jarnot et al. Insights from analyses of low complexity regions with

canonical methods for protein sequence comparison. Briefings in Bioinformatics.

The first parameter I choose is diff. It introduces MSA diversity in the results. This

feature improves the search for more distant similarities in HCR results. However,

LCRs are still poorly investigated and I disabled the parameter to get more similar

results instead. Another parameter that limits the most similar alignments is id.

It filters out the specified percentage of alignments with the best score from the

analysis to discard the most obvious cases. However, in the case of LCRs, it is not

known how distant similarities may share biological properties, thus I set its value

to 100. Changing diff and id to their proposed values increase quality of reported

alignments. Figure 4.10 presents examples of alignments that were removed when

these parameters were applied. Both alignments matched weakly similar sequences.

Because the similarity is unclear and we do not yet know whether this kind of

similarity also leads to functional or structural similarities. The first example relies
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on the similarity between asparagine and serine. The similarity between these two

residues was scored with value 1 according to BLOSUM62. The second example

relies on the similarity between glutamic acid and lysine, which also has a similarity

value of 1 according to BLOSUM62. Regarding the Table 4.2, these parameters do

not affect the number of reported alignments.

NNNNNNNNNNNSNNNSS

+|+.+|+++++|+|.||

SSSGGSGNSSGSSSRSS

(a)

EELEEEEELEEEEEEELGED

.|+|+.||+|++|++++.||

KEKEKKKDKEKKEKKRKRED

(b)

Figure 4.10: Example alignments which were removed from results after changing

-diff 0 (a) and -id 100 (b) parameters. Source: Jarnot et al. Insights from analyses

of low complexity regions with canonical methods for protein sequence comparison.

Briefings in Bioinformatics.

Parameters that increase the number of similar pairs are norealign, sc and noprefilt.

The first disables MAC algorithm, which is used in addition to Viterbi algorithm for

HMM-HMM profiles comparison [92] [12]. Disabling the MAC algorithm increases

the number of alignments by approximately 695%. This is huge number and rational

behind it is that according to authors, the MAC algorithm wrongly handles STRs

which are a large portion of LCRs. In the set of rejected alignments by the algorithm,

we can see such alignments as in the Figure 4.11 (a). In this alignment, we can

notice some matches of glutamic and aspartic acids. In addition, we see there

substitutions from aspartic acid to glutamic acid, which are scored with a value of

2 by BLOSUM62 and are considered highly similar. The sc parameter determines

how the score is calculated. Available approaches consider rare amino acids as

these which are harder to reproduce by a chance and therefore the assigned score

obtained from their matches should be higher [106]. However, LCRs are naturally

composed of a few amino acids types and rarely occuring residues in these domains

are rather considered as random mutations. Therefore, lowering the score obtained

from frequently occurring residues underestimates the LCR alignment. For this

reason, I changed the score calculation to a basic approach based on background

frequencies. This change significantly increased the number of reported alignments

by 108,227%. Figure 4.11 (b) is an example alignment where both sequences are

similar. The last changed parameter is norefilt. Pre-filtering steps have been added

to HHblits because HMM-HMM comparison is a highly computationally complex
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and fast method that is able to estimate whether two HMM profiles are likely to be

similar. If the probability of two profiles being similar is low, the match is ignored

and the similarity is rejected. As it is shown in the Table 4.2 and in the Figure 4.11

(c) the number of results increases while keeping their high quality.

ELEDDRDDDDDDD

||||++||||+||

EEEEEEEDEEKDD

(a)

SSSSSSLSSSSSNSM

||||||+||||||||

SLSSSSIKSGSSSSS

(b)

AAVAAAPVAADAAPAA

|+||||||.|||||+|

AEKAKAAALAAAAADA

(c)

Figure 4.11: Example alignments which were removed from results after changing

-diff 0 (a) and -id 100 (b) parameters. Source: Jarnot et al. Insights from analyses

of low complexity regions with canonical methods for protein sequence comparison.

Briefings in Bioinformatics.

4.3.8 CD-HIT parameters analysis

I adjusted CD-HIT parameters to increase the number of results when clustering

LCRs. In this method, most of the parameters are irrelevant to the complexity, and

finally I changed only one parameter. As in the case of HHblits, I provide the number

of similar pairs that the method provides when changing parameters and analyzing

the quality of selected examples.

# Parameters Number of similar pairs

1* -l 4 237 782

2 default 206 367

3 -l 4 -s 0.7 32 039

Table 4.3: Number of similar pairs generated from CD-HIT clusters. Source: Jarnot

et al. Insights from analyses of low complexity regions with canonical methods for

protein sequence comparison. Briefings in Bioinformatics.

This method has two parameters that can be changed when clustering LCRs. These

parameters are l and s. The first specifies the minimum sequence length for clustering.

LCRs are short sequences, as it can be seen in the Figure 3.3. Disabling this filtering

is not supported, and therefore I just set it to the minimum value. Setting this

parameter joined short sequences to already existing clusters. The s parameter
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limits the maximum difference between sequences and cluster representative for

comparison. For example, if the value is set to 0.7, the maximum difference between

the representative sequence and other sequences is 70%. Even though this solves

the issue of large length differences in clusters, which can lead to different biological

functions, it also assigns two highly similar sequences to different clusters and

therefore significantly decrease number of similar pairs (Table 4.3). An example of

highly similar sequences that were assigned to different clusters is presented in the

Table 4.4. The LCR identified in the sequence from Anaphase-promoting complex

subunit 4 protein (Q54NI1) and in Probable serine/threonine-protein kinase tsuA

protein (Q54NI1) are very similar, differing only in the length of one residue, but

were joined to different clusters.

Cluster Sequence UniprotACC

1

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQ
Q559R1

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQQ
Q498D1

QAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQPQQPAPTQQ
Q4P209

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQ
Q54NI1

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQQ
P0CB66

HQQQQQHQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQ
Q551F8

2

QQKQQQQQQQQQQQQQQQQQQQQQQQQHQQQ

QQHQQQQQHQQQQQHQQQQQQ
Q6CPW4

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQ
P58462

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQ
Q55FT4

Table 4.4: Example clusters which are highly similar to each other.
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4.4 Discussion

The analysis shows that BLAST, HHblits and CD-HIT are methods designed to

compare HCRs and need improvements to properly handle similar LCRs. By default,

BLAST and HHblits underestimate the role of LCRs, significantly decreasing the

score assigned to frequently occurring residues. Disabling LCR masking significantly

increases the number of results collected by these methods. However, other parameters

and futures are also optimized for HCRs including local alignment and general purpose

scoring matrices. I have already proposed parameters that can be used for LCR

analysis. In this section, I will discuss the characteristics that cannot be changed

with parameters and that are core of the methods.

General-purpose scoring matrices may cause missleading comparison of alignments

of different LCR types and are not suitable for LCR analyses. Examples of such

matrices available in the BLAST tool are BLOSUM and PAM. They were generated

from MSA of HCRs, thus they mainly indicate whether substitutions of one amino

acid for another occur frequently in evolutionarily related sequences. These should

not be applied to LCRs since these fragments have different structural and functional

preferences than HCRs [57] [114]. For instance, LCRs are often associated with

disordered regions, which can be seen in H-rich and P-rich regions. On the other

hand, they can also form secondary structures such as alpha-helices in the A-rich and

L-rich regions [16]. The use of specialized scoring matrices is recommended whenever

possible. For example, when analyzing transmembrane proteins, the PHAT matrix

developed by Ng et al. can be used because transmembrane proteins are known to

contain LCR [79] [118].

HMM profiles are a condensed form of MSA, which are difficult to create for

LCRs. MSAs are used to perform phylogenetic analyzes based on the evolutionary

relationship between proteins. However, LCRs often evolve neutrally, and the same

LCR types can be found in different proteins and play different roles [96] The alanine-

rich fragment found in two Streptococcus gordonii M5 antigen I/II proteins (SspA

and SspB) interacts differently with salivary glycoproteins [23]. In addition, LCRs

are often impossible to align without knowledge of their evolution since we lack the

ancestral sequences [10]. Figure 4.3 presents a case with multiple possibilities to

align seuqences, especially the first sequence to the others. Such alignment errors, in

the literature are called shift errors [59]. Unfortunately, MSA creation is an open

problem and is even present in HCRs [91]. Hubley et al. used blastx to show that the
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consensus between automatically generated and manually curated MSAs differs [41].

For their work, they used selected sequences from UniProtKB/Swiss-Prot. These

evidences confirm that MSA should be manually curated whenever possible, and

external study is needed to assess usefulness of MSA methods for LCRs.

The E-value helps to determine whether two sequences are evolutionarily related,

therefore it is irrelevant to LCR comparison. This metric, by definition, indicate

how often one may see a similar hit by chance. A lower value means that similar

and better matches are less likely to occur or, to put it differently, higher probability

that the hit is evolutionary related. In the case of LCRs, the number of similar

LCRs of one type differs significantly from the number of LCRs of another type.

Furthermore, as shown in the Figure 3.4, LCRs have different frequencies compared

to the database. These findings suggest to mainly focus on other metrices including

score and identity, when comparing LCRs.

Local pairwise alignment and HMM-HMM profile comparison used in BLAST and

HHblits report a perfect alignment when the hit sequence is longer than the query

and both are of the same LCR type. As seen in the Figure 4.7 (b, c), increasing the

length of the hit sequence only slightly changes the E-value introduced by the target

length in the equation 5.1. Local alignment accurately searches for similar domains

between two highly complex sequences. Nevertheless, the LCRs are already local

sequence fragments and thus it should be considered to compare them globally. This

conclusion is supported by studies showing that LCRs can gain their functions if

they reach a certain length [5]. For example, homopolymer of glutamine is the root

cause of neurological disease when its length exceeds the threshold [58].

CD-HIT clusters are based on representative sequences, and therefore, the method

forms clusters where the LCR sequences are different. The method parses the

database sequences, starting with the longest, and compares them to the longest

sequences in the clusters. If the algorithm detects a similarity, it appends the

sequence to the cluster or otherwise creates a new cluster. To determine whether the

sequences are similar or not, CD-HIT aligns a shorter sequence to local fragment of

a longer sequence. In this approach, sequences in clusters may not be similar to each

other. This scenario is presented in the Figure 4.9 (a) where the homopolymer of

alanine and glycine are in the same cluster. Another issue with comparing similarities

in CD-HIT may be that it joins locally similar sequences that differ significantly

in length. This can be corrected with the s parameter, as shown in the CD-HIT

parameter analysis section. Unfortunately, the use of this parameter is a dilemma

68



4 Analysis of canonical methods for protein sequence analysis in the case of LCRs

because it greatly reduces the number of similar sequences and appends two sequences

that differ by only one residue to different clusters. An example is presented in the

Table 4.4.

This chapter shows that existing methods are not efficient enough to search for

similar LCRs. I run the analysis for LCRs and HCRs. For LCRs, I adjusted the

parameters to increase the number of results and their quality. I explored the results

by creating the Venn diagram of the selected methods results and analyzing the

relationships between the characteristics of the methods. I showed problematic

examples of selected alignments and clusters. Next, I discussed issues related to the

features of methods that cannot be improved with their parameters. The discussion

led to the conclusion that these LCR comparison methods should be improved or

new ones should be developed for this purpose. Even if this study cover analysis

of only three canonical tools, the other tools are often based on solutions used in

selected methods.
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5 LCR-BLAST - searching for low

complexity regions

5.1 Introduction

Proteins may follow the rule of transitivity. In other words, two similar sequences

from two different proteins may share similar properties. If we have two similar

proteins, one of which is well described then we can use it to conclude about function

of the second protein or its fragments. It is helpful to have many similar sequences if

we want to discover the biological role of a protein without annotations. Then we can

significantly reduce the cost and time of wet lab experimental methods to determine

its real role. In this way, the search for similar protein sequences can help discover

new functions and structures. BLAST is the most popular tool for finding similar

protein sequences. For a long time, scientists focused mainly on high complexity

parts of protein sequences. We know from the previous chapter that BLAST is

designed to detect similarities in HCRs. In this chapter, I propose LCR-BLAST,

which is able to search for similar LCRs more efficiently.

5.2 Methods

In this study, I analyze the parameters introduced in the previous chapter and add

new propositions to improve BLAST. Each parameter is discussed with a hypothetical

influence on LCR results. For convenience, I provide the following notation for each

set of parameters:

� DEF-BLAST – default parameters

� SHORT-BLAST – switched task parameter to blastp-short

� COMP-BLAST – switched off compositional based scoring matrix recalculation
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� SHORT-COMP-BLAST – switched task parameter to blastp-short and switched

off compositional based scoring matrix recalculation

� LCR-BLAST – switched task parameter to blastp-short and switched off

compositional based scoring matrix recalculation. Additionally, simplified

scoring matrix and introduced mean score.

5.2.1 Short sequences

The average protein length in the UniProtKB/Swiss-Prot is 361 residues. Low

complexity regions, however, are short parts of protein sequences and the average

LCR, according to SEG, is 24 residues long. The task is a meta-parameter that

adjusts other parameters to be optimal for different types of searches. blastp are the

default parameters, blastp-fast is a set of parameters optimized for searching large

datasets, and blastp-short is optimized for short sequences. The last value, which

I used in LCR-BLAST, changes the gap open and extension penalties to 9 and 1

respectively. It also changes the scoring matrix to PAM30, E-value threshold, word

size to 2 and clear filter options.

5.2.2 Compositional based statistics

Composition-based scoring matrix recalculation was introduced to BLAST as a

response to the many false positive hits caused by LCRs. This parameter by default

recalculates the scoring matrix based on amino acid frequenceies in the query sequence.

It decreases the score of frequently occurring residues and increases the score of rare

residues considering them biologically important [125]. Since LCRs consist of several

types of residues, their significance is reduced. To effectively analyze LCRs, I disable

this parameter in COMP-BLAST, SHORT-COMP-BLAST and LCR-BLAST.

5.2.3 Mean score

BLAST calculates E-value as the main statistic for comparing protein sequences.

The following equation describes how to calculate it.

E “ pn ˚mq{p2S1

q (5.1)

Where n is the total number of residues in the database and m is the length of

the query sequence. S 1 is a bit score that shows the similarity between two protein
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or nucleotide sequences. The main principle of E-value is to estimate whether two

sequences share a common ancestor. Intuitively answers the question: How many

times one may expect by a chance alignment with similar or better score? Therefore,

the smaller the value, the more likely the two sequences share a common ancestor.

However, a particular type of LCRs can often be found in proteins being important

to their function [52]. Therefore, the bit score is more informative for fragments

of low-complexity than the E-value. The bit score is the normalized version of the

raw score resulted from alignment methods and can be described by the following

formula.

S 1 “ pλ ˚ S–lnpKqq{lnp2q (5.2)

In this equation, λ and K are used to make the normalized score independent of

the parameters used to create the scoring matrix and gap penalties. Finally, the bit

score can be compared between alignments created using different parameters. Short

LCRs often play an important roles in proteins [30]. But when analysing similar

sequences, the bit score reports hits in the following order. First, it reports long

identical sequences to the query. It then reports sequences with few mismatches,

and then it decreases the alignment length as the number of mutations in the long

alignments increases. A researcher who analyses low-complexity domains may be

interested in shorter perfect matches instead of highly mutated long matches. One

solution to make the alignment score independent from its length is to divide the bit

score by its length which results with the following equation.

M “ S 1{L (5.3)

Where M is the mean score, S 1 bit score, and L is the alignment length. To verify

this equation, I compared it with the results collected using E-value.

5.2.4 Identity scoring matrix

Commonly used scoring matrices for alignment-based methods have been developed

to better assess how to align sequences considering their residuals and evolutionary

relationships. All 20 residues are not equally similar to each other. For instance,

glutamic acid is very similar to aspartic acid because both are negatively charged.

They differ from lysine and arginine, which are positively charged. Therefore,

scoring matrices assign positive values to residues that have similar properties
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and often mutate among themselves in evolutionarily related proteins. A negative

score is assigned to pairs of residues that are different and non-interchangeable

in evolutionarily related proteins. We have already discussed that LCRs may be

responsible for an important protein function without being homologous. Therefore,

common matrices such as BLOSUM and PAM should not be used for LCR analysis

as they are general purpose matrices for HCRs [114]. In this work, I introduce an

identity scoring matrix and compare it with the results collected with BLOSUM62

and PAM30 to see if a general purpose scoring matrix for LCRs is needed.

5.2.5 Workflow

Figure 5.1: Firstly I prepared dataset (blue), then run each BLAST modification

(red) and finally compared and analysed results (green). This figure show workflow

of the analysis. Source: Jarnot et al., International Conference on Man-Machine

Interaction, 2020.

The workflow for BLAST analyzes is similar to the workflow for comparing

canonical methods. Therefore, I review and discuss the differences between them.

I downloaded UniProtKB/Swiss-Prot version 04 2019 as input dataset. To extract
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the LCRs from the database sequences, I used the SEG tool with a strict set of

parameters (window=15, locut=1.5, hicut=1.8) [89, 90]. BLAST requires a database

in its format, thus I converted the LCR dataset to BLAST format. Then I run all

BLAST modifications on each extracted LCR as a query sequence. Finally, I analyzed

the results using an exploratory approach and examination of selected examples.

Unlike the workflow in the previous chapter, I omit running these modifications

on the HCR dataset since I have adjusted BLAST for LCRs and consider these

modifications not applicable to HCRs.

5.3 Results and analysis

In this section, I compare all the modifications made to BLAST for LCR similarity

comparison. For an exploratory analysis of these results, I use Figures 5.3, 5.4 and

5.5. All of these figures help to quantify each BLAST modification and check their

relationships.

5.3.1 Data exploration

LCR-BLAST is the only modification that follows the LCR length distribution.

To demonstrate this, I use Figure 5.2 and 5.3. The first shows the number of

LCRs identified by SEG of a given length. We can see that the LCRs are short

fragments and most of them contain between 5 and 40 residues. This is a huge

difference compared to HCR parts, which are highly deviated. The second figure

shows distribution of BLAST alignment lengths for each modification. We can see

that most of the methods draw a flat line when we put them on the same plot

with LCR-BLAST. By analyzing the LCR and alignment lengths, we can notice

that the LCR-BLAST alignment distribution follows the pattern drawn by the LCR

distribution. Interestingly, if we look at COMPOSITION-BLAST and SHORT-

COMPOSITION-BLAST, we can see that the second modification line touches the

first and is high for short alignments where the COMPOSITION-BLAST line is low.

To conclude, blastp-short parameter set works for LCRs as expected.

The overlap of method modifications determines whether they have increased

the number of results and whether they produce distinct results. Overlap between

BLAST variants occur when when two or more methods have aligned the same

LCR regardless of how they were aligned. Venn diagram is shown in the Figure
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Figure 5.2: Most of the LCRs fall into interval between 10 and 30 residues. LCRs

were identified using SEG with strict parameters (window=15, locut=1.5, hi-

cut=1.8). The chart show number of LCRs by their length. Source: Jarnot et al.,

International Conference on Man-Machine Interaction, 2020.

5.4. The number of similar pairs identified by each modification is as follows:

BLAST - 5,260 sequences; SHORT-BLAST - 19,749; COMPOSITION-BLAST -

922,561; SHORT-COMPOSITION-BLAST - 2,123,087 and LCR-BLAST - 3,354,493.

The total overlap contains 3,337 pairs, which is approximately 63.4% of all pairs

identified by BLAST with the default parameter set. This value is quite high

and reasonable as all results were calculated using alignment approach that is the

core of BLAST. Interestingly, if we remove SHORT-BLAST from consideration,

the number of similar pairs increases to 4,805 ( 91.3% of BLAST). The difference

between BLAST and COMPOSITION-BLAST is 917,301 pairs. Therefore, the

number of results increased by about 17,539% after turning off the scoring matrix

recalculation. Knowing that this recalculation aims to filter LCRs, the fact that

disabling the parameter results in the greatest increase in the number of results is

expected. Changing the task parameter set to blastp-short increased the number of

results by 14,489 ( 375%), while adding it to COMPOSITION-BLAST resulted in

1,200,526 ( 230%) new pairs. Quantitatively, this meta-parameter has a similar effect
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Figure 5.3: For LCR-BLAST, we can observe a pick in the alignment lengths

characteristic also to LCR lengths, while other modifications are deviated. The

chart shows distribution of alignment lengths found by BLAST modification.

Source: Jarnot et al., International Conference on Man-Machine Interaction, 2020.

on BLAST as it has on COMPOSITION-BLAST. Because both SHORT-BLAST

and COMPOSITION-BLAST increased the number of results compared to BLAST

itself, thus SHORT-COMPOSITION-BLAST gives the largest number of pairs I

was able to achieve by changing only the parameters. If we only look at SHORT-

COMPOSITION-BLAST and LCR-BLAST, the percentage of pairs reported by

LCR-BLAST that are missed by SHORT-COMPOSITION-BLAST is almost 55.6%,

for LCR-BLAST about 29.8% and the overlap contains 14.7% pairs. Therefore, both

BLAST modifications identified more pairs than overlap with the other method. Even

though LCR-BLAST found more sequences than SHORT-COMPOSITION-BLAST,

the second modification found 29.8% of similarities, in other words approximately

1,422,063 pairs. In the ,,Selected examples analysis”, I characterize similar pairs

belonging to these results.

Figure 5.5 shows the improvements of each approach applied to the BLAST method

with default parameters. (a) shows results with blastp-short parameter set, (b) after

turning off composition correction, (c) shows both changes and (d) comparison to

LCR-BLAST. In (a) 31.6% of alignments were not reported by SHORT-BLAST.

This is the highest value among all the presented overlaps, which suggests that the

blastp-short parameter set increases the number of reported LCRs, but also detect

different LCRs characteristics. They change gap penalties and the scoring matrix.
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Figure 5.4: LCR-BLAST identified highest number of results which partialy overlap

with other methods. COMPOSITION-BLAST and SHORT-COMPOSITION-

BLAST identified many alignments only by these methods. Detailed analysis is

needed to check whether these alignments are significant. Venn diagram show over-

lap between each modification results. Adapted from: Jarnot et al., International

Conference on Man-Machine Interaction, 2020.
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a) b)

c) d)

Figure 5.5: BLAST is the most popular method for searching for similar protein

sequences. This methods is efficient for HCR searches, however all presented

modifications to this method improves searching for similar LCRs. All modifi-

cations extend results rejecting some alignments. Adapted from: Jarnot et al.,

International Conference on Man-Machine Interaction, 2020.

COMPOSITION-BLAST, shown in (b), has the highest common part with BLAST.

Only 4.7% of BLAST alignments are missed if we disable scoring matrix correction

using composition based statistics. Changing the default parameters to blastp-short

set, increases the number of missing alignments as shown in the Figure 5.5 (c). The

reason is the same as in the (a) diagram, but has less impact due to the number

of alignments. LCR-BLAST from the panel (d) missed more records from BLAST

which is due to the greater sensitivity to mutations in longer sequences.

5.3.2 Selected examples analysis

In this section, I show the most interesting examples of alignments collected from

all BLAST variants. To simplify the examples, I used alignments in which the

query (upper) protein is CD2 homolog (P0C9V8). This protein was found in the
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African swine fever virus and is present in the results of all modifications. The

protein has several functions. Among others, it can cause faster replication by

suppressing the immune system and cell penetration in the host organism [13] [122].

As examples, I chose alignments of very similar sequences and alignments where

sequence similarity is debatable. The total number of alignments to this protein

is as follows: BLAST (5), SHORT-BLAST (2), COMPOSITION-BLAST (271),

SHORT-COMPOSITION-BLAST (57), LCR-BLAST (5).

P0C9V8 PCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKP

P P KP P KP P KP P KP P KP P KP P KP

P16053 PASPEKPRTPEKPASPEKPATPEKPRTPEKPATPEKPRSPEKP

P0C9V8 PCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCP

P +P P P+P P +P +P P P+P P+P P P

Q2US45 PASRPTPKPQPLPQSQPATA-QPIPAPQPAAVPRPVPQP

P0C9V8 PNPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

P PCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

P0C9V6 PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

Figure 5.6: In the first two examples BLAST with default parameters aligned

LCR from CD2 homolog protein (P0C9V8) to sequences with low identity and

similarity. These alignments report similar compowitionaly bias only. It also

identifies almost perfect matches as presented in the last example. Source: Jarnot

et al., International Conference on Man-Machine Interaction, 2020.

BLAST with default parameters found 5,260 alignments, which is the lowest

number of all proposed modifications. For analysis in the Figure 5.6, I present

three of the five identified alignments to the CD2 homolog protein (P0C9V8). The

first compares the reference protein with the Neurofilament medium polypeptide

protein (P16053) found in the Gallus gallus (Chicken) organism. In the organism,

this protein is involved in maintenance of neuronal caliber and may help to create

neuronal filamentous networks [126]. The first sequence in the alignment (P0C9V8)

consists of KPCPPP repeats. The second sequence is also built from a repetitive

pattern, but different which is PEKP[R/A]T. It is possible to align at most three

residues in both patters, thus the identity of two sequences composed of these repeats
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is about 50%. In the second alignment, the query is aligned to the Myosin-1 protein

(Q2US45), which is a motor protein involved in generating tension in the muscles.

The aligned part of the protein sequence is an irregular LCR compositionally biased

to proline. The midline shows that only the prolines were matched to some other

residues as similar. In conclusion, such sequences were aligned only because both are

compositionally biased to proline. The last alignment is almost a perfect match to

the sequence that comes from the same protein sampled at a different time and place.

In summary, BLAST with default parameters aligned repeats with the same unit

length but a different pattern and compositionally biased residues of irregular LCR.

P0C9V8 PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

PKPCPPPKPCPPPKPCPPPKPCPP KPCPPP

P0C9V7 PKPCPPPKPCPPPKPCPPPKPCPPSKPCPPP

P0C9V8 PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCSSP

PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPC P

P0C9V6 PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

Figure 5.7: BLAST with ’short’ setting identified only two alignments for the LCR

from CD2 homolog protein (P0C9V8). These alignments are almost perfect matches.

Source: Jarnot et al., International Conference on Man-Machine Interaction, 2020.

SHORT-BLAST aligned more sequences than BLAST, but found only two similar

sequences to the query presented in the Figure 5.7. However, these sequences are

almost perfectly aligned. This modification discarded the questionable sequences

presented in the first two alignments in the Figure 5.6. These alignments were

rejected due to lower mismatch values in the PAM30 scoring matrix. On the other

hand, the sequences are very similar and they belong to the same protein of the same

organism. The only difference is that their samples were collected in different time

and place. The results contain only strikingly similar pairs of sequences, but they

lack of false positive hits. It can therefore be concluded that changing the parameter

set to short improved the quality of the results and slightly increased their number.

By disabling recalculation of the scoring matrix with composition-based adjustment

in the default parameters, I significantly increased the number of results. The default

value of this parameter is the main reason why BLAST skips many positive alignments.

The alignments for COMPOSITION-BLAST are shown in the Figure 5.8. In the
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P0C9V8 PNPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

P PCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

P0C9V6 PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

P0C9V8 PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKP

P+P P P+P P P+P P P+P P P+P P P+P

P06915 PQPQPRPQPQPQPQPQPQPQPQPQPRPQPQPQP

P0C9V8 PCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPK

P PPP P PPP P PPP P PPP P PPP P PPP P PPP+

P12978 PLPPPPPPPPPPPPPPPPPPPPPPP-PPPSPPPPPPPPPPPQ

Figure 5.8: Turing off compositional based correction yelded in more results, but

these results contain ill aligned records. In the last two examples SHORT-BLAST

aligned different kind of STRs/homopolymers. Adapted from: Jarnot et al.,

International Conference on Man-Machine Interaction, 2020.

first alignment, the method still identifies almost perfect matches. I have shown

this here because some methods or parameters can mask the most similar sequences

and provide only distant similarities. An example of such a method is HHblits.

The second alignment compares two short tandem repeats containing sequences.

The first is already known, and its repeating unit is KPCPPP. The second is short

tandem repeat of proline and glutamine. Both sequences have been aligned even

though they consist of different pattern composition and length. This situation is

a common mistake in alignment-based methods, since they look at both sequences

from a statistical point of view and ignore their patterns. The alignment relies

on proline matches that are abundant in the query sequence and on the similarity

between lysine and glutamine according to BLOSUM62. Circumsporozoite protein

(P06915) can be found in Plasmodium berghei, which is the parasite responsible for

malaria in vertebrates. In the last example, the query is aligned to a homopolymer

of proline. This is another wrong way how alignment based on methods match

sequences. The query sequence is rich in prolie, which are 4 out of 6 residues in the

repeat pattern. For this reason, homopolymers of proline are good candidates for

alignment. Epstein-Barr nuclear antigen 2 (P12978) protein occur in Epstein-Barr
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virus (strain B95-8) (HHV-4) (Human herpesvirus 4) organism. This protein plays

an important role in transcription activation and causes chromosomal instability in

the host organism [40] [82]. Disabling composition biased correction increases the

number of results, but also introduced alignments of potentially irrelevant sequences.

P0C9V8 PFPLPNPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPC

PFPLP PCPPPKPCPPPKPCPPPKPCPPPKPC PPKPC

Q89501 PFPLPKPCPPPKPCPPPKPCPPPKPCPPPKPCSPPKPC

P0C9V8 PCPPPKPCPPPKPCPPP--KPCPPPKPCPPP--KPCPPPKPCPPP--KPCSSP

P PPP P PPP P PPP P PPP P PPP P PPP P PPP P S P

Q84ZL0 PSPPPPPSPPPPP-PPPGARPGPPPP-PPPPGARPGPPPPP-PPPGGRP-SAP

P0C9V8 PPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKP

PPP P PPP P PPP P PPP PPP P PPP P PPP P

P12978 PPPPPPPPPPPPPPPPPPPPP---PPPPPSPPPPPPPPPPP

Figure 5.9: In the first alignment it is visible that SHORT-COMPOSITION-

BLAST modification identify highly similar alignments. It also align STRs to

Poly-P sequences. Source: Jarnot et al., International Conference on Man-Machine

Interaction, 2020.

SHORT-COMPOSITION-BLAST collected the largest number of alignments

obtained only by changing the BLAST parameters. It generated 2,123,086 alignments.

Example alignments are shown in the Figure 5.9, where the first aligns the query

to a similar sequence. This is another sample of the same organism collected in a

different place and time. In the second example, the hit is a poly-P sequence linked

with two GARPG motifs. The alignment relies on proline matches. Therefore, before

each the linker the method added two gaps in the query sequences to align more

prolines. The Formin-like protein 5 (Q84ZL0) protein in Oryza sativa subsp. japonica

(Rice) affect cell expansion and biological process of plant shape development [123].

The last alignment is the homopolymer known from the Figure 5.8. The algorithm

inserted a longer gap into homopolymer to omit a single KPC motif in the query

and align one more proline at the end. On the other hand, COMPOSITION-BLAST

found that lysine is similar to glutamine and thus can cause a shorter gap. Note

that COMPOSITION-BLAST uses BLOSUM62 scoring matrix that assigns 1 to
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mutations between lysine and glutamine. A positive value between residues means

that they are similar. SHORT-COMPOSITION-BLAST however use PAM30 and

assign -3 which is considered dissimilar.

P0C9V8 PKPCPPPKPCPPPKPCPPPKPCPPPKPCP

PK CPPPKPCPPPKPCPPPKPCPPPKPCP

P0C9V9 PKLCPPPKPCPPPKPCPPPKPCPPPKPCP

P0C9V8 PPKPCPPPKPCPPPKPCPPPKPCPPPKPCPPPKPCP

PPKPC PPKPCPPPKPCPPPKPCPPPKPCPP KPCP

Q89501 PPKPCRPPKPCPPPKPCPPPKPCPPPKPCPPSKPCP

P0C9V8 PKPCPPPKPCPPPKPCPPPKPCPPPKPCPPP

PKPCPPPKPCPPPKPCPPPKPCPP KPCPPP

P0C9V7 PKPCPPPKPCPPPKPCPPPKPCPPSKPCPPP

Figure 5.10: LCR-BLAST identifies well aligned sequences regardless of the align-

ment length. Source: Jarnot et al., International Conference on Man-Machine

Interaction, 2020.

LCR-BLAST found more sequences than BLAST with any of the analysed param-

eter sets, which are more similar at the same time. The method found 5 matches

to the query. All these matches come from the same protein and again come from

different samples. In this method, the threshold is the mean score value. Along with

decreasing it, the method finds more distant results. The current threshold value is

4.7, and accepts 2.1 mutations for every 10 residues. This value allows for some muta-

tions in the LCRs, ensuring that the short tandem repeats are also well aligned, since

it rejects sequences with mutations in each repeat unit. LCR-BLAST alignments

are also better in terms of quality. Compared to BLAST with default parameters,

it rejects sequences that are strikingly different. SHORT-BLAST missed several

alignment which are obviously similar to the query that LCR-BLAST included in the

results. COMPOSITION-BLAST aligned sequences consisting of different repetitive

patters, while the new method rejected them. SHORT-COMPOSITION-BLAST

identifies sequences that are compositionally biased to the query. LCR-BLAST,

on the other hand, also is easier to configure for STR comparison and other LCR
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types since the mean score is intuitive for these purposes, while E-value depends on

multiple variables including sequence length.

5.4 Discussion

In this chapter I introduced LCR-BLAST, a modification of BLAST that is capable

of handling LCRs. I presented the description of the method along with its analysis,

and compared with BLAST for different parameter settings. All new features of the

method are analysed including changed parameters, scoring matrix and mean score

statistic.

I showed step by step how LCR-BLAST was developed and how individual changes

affect the results. Each presented modification increased the number of results. blastp-

short parameters also increase results quality, while disabling composition based

adjustment additionaly includes distant results that are less likely to be biologically

significant. The final version, LCR-BLAST, provides a large number of results while

maintaining reasonable quality of alignment. I showed that COMPOSITION-BALST

and SHORT-COMPOSITION-BLAST badly aligned some sequences. However, these

sequences were rejected in LCR-BLAST by the mean score threshold. Quantitatively,

this can be seen in the Figure 5.4, where such alignments are out of overlap with

LCR-BLAST. In the Figures 5.2 and 5.3 is shown that LCR-BLAST is the only

method where alignment lengths consistently match LCR lengths.

LCRs have different residual preferences than HCRs and therefore a new scoring

matrix for LCRs is needed [16]. Wherever possible, dedicated scoring matrix should

be used to find sequences with similar functional or structural properties. However, we

lack a scoring matrix dedicated to analyze similarities between LCRs [114]. Therefore,

I introduced identity scoring matrix which ignores evolutionary relationships between

proteins. I will continue development of a new scoring matrix that will reflect

amino acid preferences of LCRs as a part of the PRELUDIUM grant number

2021/41/N/ST6/01919.

In the core of BLAST is Smith-Waterman algorithm, which may result in incorrect

alignment of sequences with different lengths [105]. Because it is a local alignment

algorithm, it cuts longer sequences than query without information that the length

of sequences differ. However, this information may be crucial to conclude on protein

function by similarity to another sequence fragment. In the ,,??” section I present a
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detailed analysis of this issue. Solution to this issue is covered by the PRELUDIUM

grant number 2021/41/N/ST6/01919.

E-value is a metric designed to find evolutionary related proteins. By default,

BLAST masks LCRs using composition based correction. This is because LCRs are

often the cause of false positive hits. Similar LCRs playing the same function may be

evolutionarily related, but this is not the rule. For instance, Schaefer et al. in their

work published in 2012, they concluded that, most likely, Zebrafish poly-P regions

in different locations evolved independently [96]. If we chose the bit score as the

threshold metric then longer sequences will have a greater chance of being similar,

resulting in an alignments as in the Figure 5.9. I introduced the mean score to make

the threshold metric independent of the sequence length. The intuition behind this

is simple and indicate the minimal score value in average for a single aligned residue.

Examination of selected examples presented in the Figure 5.10 shows that it helps to

find similar LCRs that share similar compositional properties and repeating patterns.

To summarize, I improved and analyzed several BLAST variants for LCR compar-

ison. I optimized the available BLAST parameters to search for similar LCRs. I also

introduced the mean score and the identity scoring matrix, which are more efficient

in similarity comparison of LCRs by their composition.
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repeats

6.1 Introduction

Several methods for LCR identification already exists, which are presented in the

,,Low complexity identification methods” chapter. These methods are important in

protein sequence analyses since sequence complexity, composition and regularity can

affect protein properties [49,50,65]. Additional value can be added if we use similarity

comparison methods to find similar protein sequences. The three state-of-the-art

methods were used for LCR analyzes and compared [46]. These methods can be used

for LCRs but definitely need improvements. Therefore, LCR-BLAST was introduced

as a modification of BLAST method for LCRs [45]. LCRs are domains that can be

divided into STRs (including homopolymers) and sequences with an irregular order

of residues. The same sequence composition with a different arrangement of amino

acids can result in different biological properties [51]. Therefore, such a division

is justified. We already know that methods based on statistical models incorrectly

compare STRs in sequences [46]. In particular, we lack a method that properly

cluster short tandem repeats not by their composition, but by the repetitive patterns

they consist of. In this chapter, I describe a new method for clustering similar STRs,

which identifies them in protein sequences, builds a corresponding graph model and

cluster them by similar patterns. Comparison with LCR identification methods is

described in the ,,Low complexity identification methods” chapter, hence this chapter

focuses only on cluster analysis and comparison with other methods.

6.2 Methods

Graph Based on Sequence Clustering (GBSC) method is designed to identify STRs

in protein sequences and cluster them according to similar patterns. It scans the
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sequence, identifies repetitions and tags them with the corresponding graph model of

repetitive pattern. The detected domains are then clustered according to a similar

graph model. Additionally, it can identify and cluster repeats using reduced alphabet.

For clustering, it also handles adjacent STRs. I compared GBSC with other protein

clustering methods.

6.2.1 Identification

GBSC identifies STRs by scanning the sequence and building De Bruijn-like graphs

that represent the STRs [22]. To identify the STRs, GBSC iterates over the k -mers

of the sequence in the order they appear. In each iteration, it creates a node from the

current k -mer and connects the previous node to the current one, creating an edge

between them. Each edge has a lifetime and a weight with initial values of 0 and

1, respectively. The lifetime increases on all existing edges each time the algorithm

jumps to the next k -mer. If the lifetime reaches a user-specified threshold then it

disappears. In case an edge between the current and previous k -mers already exists,

the edge lifetime is reset to 0 and its weight increments. If a vanishing edge has

a weight assigned above a user-specified threshold then all of these edges form a

graph representing the STR. The first and last k -mers, which belong to the graph,

define the boundaries of the identified STR. For an infinite lifetime threshold, the

algorithm creates a weighted De Bruijn graph of the sequence and removes edges

with a weight below the threshold. The result of this process are identified STRs

and graphs representing each domain.

6.2.2 Identification parameters

The identification process has several parameters that can be changed to detect

different STR types. In the algorithm, nodes can behave the same way as edges. This

change includes more degenerate STRs. Lifetime determines the maximum distance

between edge occurrence, therefore it limits the maximum gap length between

repeating units and the maximum length of repeating units. The weight threshold

corresponds to the minimum number of repeats that must occur to treat them as

STR. I also added four parameters for post-filtering which determine whether the

identified STR will be reported. The first parameter is the maximum gap length that

can be used to detect STRs with a limited number of insertions between repetitions.

This option is useful when detecting TRs with a longer repeat unit by increasing
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the lifetime parameter to keep gaps between repeats short. The algorithm can filter

out homopolymers, considering them well-studied for some researches [74]. It also

enables specifying maximum and minimum number of nodes in the domain model.

6.2.3 Identification example

Figure 6.1: An exemplary process of identifying STRs and creating a graph model

of repetitions. (A) shows the state after processing the first five k -mers and

approaching the poly-A domain. In (B), the method handles valine insertion, and

in (C) leaves the poly-A domain.

Figure 6.1 presents the identification of a poly-A domain with a single valine

insertion. The algorithm successively processes the k -mers as nodes. At the beginning,

it creates new nodes and connects them with edges, processing non-repetitive residues.

Next, it approaches the poly-A region, adding weight to self-loop of AA-node, as

shown in the panel (A). It then moves forward, deleting nodes that exceed the

lifetime threshold. It also creates nodes to overcome the valine insertion and goes

back to increasing the self-loop weight of AA-node. The processes of deleting nodes

and handling insertions are shown in the panel (B). After several iterations, the

algorithm removes the nodes created for valine insertion. Finally, the algorithm exits
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the homopolymer, tags it as a region containing repeats with 12 as the weight value,

and assigns the graph to the poly-A fragment. This is shown in the panel (C).

6.2.4 Clustering

The GBSC clustering is the next step in the STR analysis, which is based on the

identified fragments and their assigned models. Having fragments of STRs with

their graph representation assigned, the algorithm clusters the sequences by the

corresponding graphs. This ensures that each cluster contains sequences consisting

of a similar pattern. On the other hand, it allows sequence diversity in clusters,

which is introduced by random residues in repeating patterns. Such random residues

sometimes follow a fixed pattern in the STR domain, thus they can be considered

an integral part of the STR [107]. Another common STR configuration is when one

type of STR is side by side with another type. An example of such an adjacent STR

can be seen in the Figure 1.1 where QA repeats are followed by a poly-Q domain.

GBSC handles adjacent STRs by assigning them to clusters of their separate and

combined types. In the case where STR A is followed by STR B, these STRs will

join three clusters: A, B and A-B. These operations make GBSC able to cluster

protein fragments by a wide variety of STRs.

6.2.5 Alphabet reduction

The method may optionally reduce the alphabet of residues by merging similar amino

acids to identify and cluster STRs. Some amino acids share similar biochemical and

biophysical properties. Among others, Li et al. showed that reducing the alphabet of

canonical amino acids to nine groups performs well for protein contact interactions ??.

GBSC reduces the alphabet just before creating the model during identification.

Using this approach, it produces as output untouched sequences and GBSC models

built from a reduced alphabet.

6.2.6 Clustering comparison

I compared GBSC with other methods for protein sequence clustering. For compari-

son, I chose the commonly used methods, which are MMseqs and CD-HIT [62,110].

They compare sequence composition between sequences, while GBSC clusters se-

quences according to similar repetitive patterns. The selected methods accept fasta
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Figure 6.2: I identified STRs using GBSC. I then run GBSC, MMseqs and CD-HIT

on identified fragments. Finally, I analyzed results. The figure presents workflow

of the analysis.

formatted sequences as input. I used STRs identified by GBSC to make the input to

all methods unified and focus only on clustering characteristics. I compared these

methods by exploring the results and examining selected examples. For exploration,

I provide statistics describing the clusters, and use a Venn diagram to show the

quantitative relationships between the sets resulting from each method. These re-

lationships demonstrate how the results of one method overlap with the results of

other methods. I generated overlap by combining all sequences in all clusters into

pairs of similar sequences. For instance, a cluster containing three sequences(S1, S2

and S3), will generate three pairs of similar sequences, which are S1-S2, S1-S3 and

S2-S3. I use these pairs to calculate all areas of the Venn diagram. To show what

similarities exist in the different areas of the Venn diagram, I also selected examples

from Venn areas and described them. The workflow of cluster comparison is shown

in the Figure 6.2.

I used two sets of parameters to show how GBSC clustering relates to other

methods when the input consists of clear and degenerate repetitions. To get clear

90



6 GBSC - clustering short tandem repeats

Method
Identification

parameters

Cluster

count

Orphan

cluster

count

Mean

sequence

count

Std dev.

of sequence

count

GBSC
Strict 2,609 1,754 15.0 193.9

Relaxed 5,511 3,571 16.0 201.4

MMseqs
Strict 6,502 5,066 6.0 63.3

Relaxed 28,765 20,832 3.0 29.9

CD-HIT
Strict 1,979 900 19.7 184.3

Relaxed 14,152 7,278 6.2 65.3

Table 6.1: Statistics for a brief description of clusters. The columns contain (1)

the name of the method, (2) the number of clusters, (3) the number of clusters

containing only one sequence, (4) the average number of sequences per cluster and

(5) the standard deviation of the number of sequences per cluster.

repetitions, I used a strict set of parameters. This set of parameters changes the

weight threshold (w) to 4, the edge lifetime (l) to 10, the maximum gap length (m)

between repetitions to 2 and the maximum number of nodes (x) to 6. For degenerate

repeats I used relaxed parameters. Compared to the strict parameters, I changed

the lifetime (l) to 20, increased the maximal gap length (m) to 3 and allowed the

nodes behave as edges (n).

6.3 Results

6.3.1 Data exploration

A summary of the generated clusters can be read from Table 6.1. Along with relaxing

the parameters, most of the cluster statistics changed significantly. The number

of GBSC clusters increased by 211%, but this is the smallest change compared to

other methods. For MMseqs, the number of clusters increased by 442%, and for

CD-HIT by as much as 715%. The rationale for this is that relaxing the parameters

increases the number of mutations between repeats, which may vary from sequence

to sequence. GBSC omits these mutations for comparison, hence the increase in the

number of clusters for this method is smaller than for the other methods. The rest

of the statistics also follow this rule. For compositional based methods, the average
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Strict STRs Relaxed STRs

GBSC 49,323,736 (97.4%) 112,374,211 (94.8%)

MMseqs 13,130,732 (25.9%) 12,979,339 (10.9%)

CD-HIT 33,957,979 (67.0%) 30,428,496 (25.7%)

Total 50,643,618 (100%) 118,540,331 (100%)

Table 6.2: Total number of pairs of similar sequences identified by each method for

strict and relaxed GBSC parameters.

and standard deviation of the number of sequences per cluster are much smaller,

which is due to the greater difference between the sequences.

GBSC found the largest number of similar pairs, the second was CD-HIT and

the lowest number of similar pairs, but still high, found MMseqs. The Table 6.2

contains the number of pairs of similar sequences identified by each method. The

obtained results cannot be directly compared with those known from the chapter

,,Analysis of canonical methods for protein sequence analysis in the case of LCRs”

since I used different methods for LCR identification. There I used SEG method

while here I used GBSC method. However, overall 25.9% for strict parameters and

10.9% for relaxed parameters for MMseqs is high since the intersection of BLAST,

HHblits and CD-HIT is close to 0%. Therefore, the methods compared in this work

are designed for a similar purpose. Intuitively, relaxing the parameters of GBSC

method which is used for identification will result in more similar pairs. This is

true for GBSC, but the other methods found fewer pairs. However, this does not

lead to any conclusions as the sequences used for clustering are identified by GBSC,

and each sequence initially has assigned a repetitive model for GBSC clustering. In

addition, the relaxed parameters may extend the fragments identified by the strict

parameters, and thus may belong to different clusters. Moreover, if one sequence

is moved from a large cluster to a small cluster, the total number of similar pairs

decreases, but the sequences are better distributed across the clusters. Therefore,

the quantitative results of the number of similar pairs are only illustrative.

Method intersection in strict parameters is large, while for relaxed parameters

MMseqs and CD-HIT deviate from GBSC. The overlap is shown in the Figure 6.3.

Relaxing the parameters in GBSC introduces more mutations and therefore the

sequences are more diverse in composition. GBSC method finds similar patterns

in STRs, while the rest of the methods compare the composition of two fragments.
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(a) (b)

Figure 6.3: For strict STRs, GBSC has more overlapping sequences with other

methods than for relaxed STRs. The diagrams present overlap among GBSC,

MMseqs and CD-HIT.

In theory, if the mutations between STRs differ, GBSC will ignore them while the

other methods will take them into account. This is particularly noticeable when

comparing strict and relaxed parameters. For strict parameters, the intersection

between MMseqs and CD-HIT is 31.3% of similar pairs, while for relaxed parameters

it is 27.5%. The difference in the intersection of these methods between strict and

relaxed parameters is 2.7%. This is small compared to the difference between GBSC

and CD-HIT, which is 43.6%. Therefore, GBSC responds differently to inter-repeat

mutations than MMseqs and CD-HIT.

6.3.2 Selected examples examination

Data exploration provides an overview of the results from which some conclusions

can be drawn, while the examination of selected examples provides their details.

We can quantitatively compare methods and observe their trends as parameters

change, but we ignore detailed differences. On the other hand, the examination of

selected examples shows the detailed characteristics of the methods, but it lacks a

comprehensive overview. In this section, I provide an analysis of selected examples

to show what STR types each method supports.
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GBSC pattern: GR�RG�GG

Sequence: GRGGRGGYGRGRGGYGGRGG

Sequence: RGRGRGRGRGRG

GBSC pattern: GR�RG�GR

GBSC pattern: AA�AA

Sequence: AAAAAAA

Sequence: PAAAPAPAAAAPAPAAAAPAPAPAPAAAPAAAPAA

GBSC pattern: PA�AA�AA�AP�PA

Figure 6.4: Two similar pairs identified by CD-HIT only for strict and relaxed

parameter sets, respectively.

The Figure 6.4 presents two example pairs of sequences belonging to the same

clusters; found only in CD-HIT results. The first pair are sequences composed of

RGG and RG repeats, respectively, where the first is degenerate and the second is a

perfect repeat. The GBSC assigned them to different clusters represented by RGG

and RG repeats. Sequences from second pairs are also different kinds of repeats.

However, in this case the first sequence is a poly-A fragment while the second can

be represented as a regular expression by PA* pattern. It consists of proline and a

varying number of alanines. For alignment algorithms that do not recognize repeats,

both pairs of sequences are similar, thus CD-HIT assigned them to the same clusters.

Similar sequence pairs identified only by MMseqs are shown in the Figure 6.5.

The first pair consists of the poly-N sequence and MNNNN pattern. For alignment

algorithms, it is difficult to compare such sequences properly because the poly-N

and MNNNN repeats are identical in 80%. Such statistical approaches cannot

handle these cases because if we adjust the parameters to handle it, then it will

only find nearly identical matches, but for sequence comparison we want to allow

some mutations. The sequences in the second pair are rich in serine, but the first

sequence also contains some threonines. These threonines form irregular repeats of

TS patterns, while both residues may occur multiple times in the pattern. MMseqs

classified both sequences as similar, even if their identity is only 58.8%. On the other

hand, GBSC identified the first sequence fragment as a degenerate TS repeat. In this

case, we cannot indisputably judge which method correctly classified the sequences.
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GBSC pattern: NN�NN

Sequence: NNNNNNNNNNNN

Sequence: MNNNNMNNNNMNNNNMNNNNMNNNNMNNNNMN

GBSC pattern: MN�NN�NN�NM�MN

GBSC pattern: SS ST TS

Sequence: TSSTTSTTSSTSTSSSS

Sequence: SSSSSSSSSSSSSSSSSS

GBSC pattern: SS�SS

Figure 6.5: Similar pairs identified by MMseqs only for strict and relaxed parameters,

respectively.

This is because it depends on the application. Protein fragments may be required

for protein function due to their composition, repetitiveness, complexity etc. GBSC

clasifies these sequences by repeats. On the other hand, MMseqs classifies them by

composition, and this is rational since serine and threonine are similar residues, and

MMseqs uses a reduced alphabet. GBSC, for different parameter settings, is also

able to treat these sequences as two homopolymers of hydroxylic residues.

GBSC pattern: PQ�QQ�QQ�QP�PQ

Sequence: QQQPQQQPQQQQPQQQQPQQQQPQQQQQQQPQQQQQPQQQ

Sequence: QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

GBSC pattern: QQ�QQ

GBSC pattern: AA

Sequence: AAPAAAAA

Sequence: AAAAPAAAAA

GBSC pattern: AA�AA

Figure 6.6: Similar pairs identified by MMseqs and CD-HIT but not by GBSC for

strict and relaxed parameters, respectively.

In the Figure 6.6, I show what kind of pairs of similar sequences were clustered by

MMseqs and CD-HIT but missed by GBSC. The first pair is glutamine-rich, but the
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first sequence also contains several proline insertions that create repeats of a single

proline residue and multiple glutamines. The number of glutamines varies between

repeat runs. This shows that the issue of classifying different repeat types into the

same cluster is common to MMseqs and CD-HIT. The second pair consists of two

similar sequences of similar composition and even a single proline insertion, but the

first sequence is two amino acids shorter than the second sequence. Therefore, I

provide the second example to illustrate the GBSC issue with the relaxed parameter

set. If one of the sequences is shorter and its length is on the verge of detecting it as

a repeating node or self-loop, it can be assigned to different clusters. The solution to

this issue is to postprocess the clusters and move such sequences from one cluster

to another, or to place such sequences in multiple clusters, or simply delete them,

or leave unchanged. Nevertheless, the solution is independent of the algorithm core

and depends in particular on the dataset being analyzed. Therefore, I would like

to just warn about it. These cases can be easily handled since GBSC assigns graph

models to clusters, and such sequences can be located by looking at specific clusters.

GBSC pattern: AP�PA�AP

Sequence: APAAAPAAPAAGAPAPAPAPAAPAPAPA

Sequence: APAPAPAAAPAPAPA

GBSC pattern: AP�PA�AP

GBSC pattern: EL

Sequence: ELAAELDELESEEL

Sequence: ELLELVELEVREL

GBSC pattern: EL

GBSC pattern: NN�NN GN�NG�GN

Sequence: NNNNNNGNGNGNGNGN

Sequence: NNNNNNNNNGNGNGNGNGN

GBSC pattern: NN�NN GN�NG�GN

Figure 6.7: Similar pairs identified by GBSC only for strict and relaxed parameters,

respectively.
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The Figure 6.7 shows examples found only by GBSC and no other methods. The

first two pairs of similar sequences represent repeats identified by strict and relaxed

parameters, respectively. The first pair is an irregular repatitive fragment composed

of proline and varying numbers of alanines. The second pair is more irregular with

more insertions between repetitions. These examples demonstrate the usefulness

of GBSC method for comparing irregular repetitions over other methods. A final

example is two adjacent sequences, the first is homopolymer of asparagine and the

second is tandem repeat of glycine and asparagine. In addition, both subsequences are

also assigned separately to poly-N and GN repeat clusters. Such adjacent sequences

are handled in this way only by GBSC method. In the MMseqs and CD-HIT results,

these subsequences are assigned only to homopolymer of asparagine and the cluster

containing the GN repeats. It is worth noting that in the SEG results from ,,Analysis

of canonical methods for protein sequence analysis in the case of LCRs” chapter,

if CD-HIT method created a cluster from such adjacent LCRs, then all types of

sub-LCRs were also included in this cluster. As described in the mentioned chapter,

this leads to a situation where dissimilar sequences are assigned to the same cluster.

In summary, canonical methods handle adjacent LCRs in different ways depending

on the method used for identification.

GBSC pattern: GG�GM�MG�GG

Sequence: GGMGGMGGMGGMGGMGGMGGM

Sequence: GGMGGGMGGMGGMGGMGG

GBSC pattern: GG�GM�MG�GG

GBSC pattern: CK SC

Sequence: SCKCKDCKCASCKKSCCSC

Sequence: SCKCKECKCTSCKKSCCSC

GBSC pattern: CK SC

Figure 6.8: Similar pairs identified by GBSC and MMseqs but not by CD-HIT for

strict and relaxed parameters, respectively.

The next examples, shown in the Figure 6.8, comes from the GBSC and MMseqs

overlap. The first pair consists of a clear GGM pattern with a single repetition

longer in the second sequence. CD-HIT added these sequences to different clusters
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because they were similar to different cluster representatives. Similarity between

these sequences was not checked by this method. The second pair consists of irregular

repeats in sequences. Both sequences differ in some residues between repeats and

were assigned to different clusters by CD-HIT for the same reason as the first pair.

GBSC pattern: RS�SR�RS

Sequence: RSRSRSWSRSRSRSRRYSRSRSR

Sequence: RSRSPSSSRSRSRSRSRS

GBSC pattern: RS�SR�RS

GBSC pattern: AA

Sequence: AAAAVPAAA

Sequence: AAHAVAAAA

GBSC pattern: AA

Figure 6.9: Similar pairs identified by GBSC and CD-HIT but not by MMseqs for

strict and relaxed parameters, respectively.

The Figure 6.9 presents two pairs of similar sequences clustered only by GBSC

and CD-HIT. These pairs are serine/arginine-rich, consisting of RS repeats, and

are alanine-rich, which are homopolymers of alanine with two insertions in each

sequence. The longer RS repeat sequence has three mutations while the shorter

sequence has two mutations. These sequences belong to different clusters in MMseqs

because they formed multiple clusters for RS repeats. Interestingly, MMseqs appends

exact repetitions of the RS pattern of the same length to different clusters. The only

difference in these sequences is that in one cluster the sequences start with serine

while in the other clusters the sequences start with arginine. The alanine-rich pair

has two mutations in both sequences, where one mutation is a valine, which is at

the same position in both LCRs. The second mutation is proline in the first STR

and histidine in the second STR. Proline and histidine mutations occur at different

positions. The sequences in the cluster containing the first sequence can be described

by the formula AAA[A][A][A]VXAAA where X is a random amino acid. The cluster

with the second sequence has only identical LCRs. The first cluster contains 17

sequences and the second 26. In conclusion, MMseqs divide similar sequences into
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multiple clusters, which explains why this method found the least number of similar

pairs (Table 6.2).

GBSC model: EP�PE�EP

Sequence: PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP

Sequence: PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP

GBSC model: EP�PE�EP

GBSC model: EL

Sequence: ELLELVELEVREL

Sequence: ELLELVELEVREL

GBSC model: EL

Figure 6.10: Similar pairs identified by all methods for strict and relaxed parameters,

respectively.

The last set of sample pairs is shown in the Figure 6.10 and they were clustered by

all methods. These pairs consist of exact PE repeats and irregular EL repeats. The

first pair was found in cluster of STRs identified by strict GBSC parameters, and the

second by relaxed. From a compositional point of view, both sequences are perfect

matches. The only difference between the sequences is the length in the first pair,

where the short sequence is 26.2% shorter than the longer sequence. To summarize,

the intersection area of Venn diagrams presented in the Figure 6.3 contains highly

similar pairs of sequences.

6.4 Discussion

In this chapter I introduced a new method of identifying and clustering STRs.

Depending on the configuration, this method can handle exact and degenerate

repetition of short motifs. In the ,,Low complexity identification methods” chapter, I

compared the identification feature of GBSC with a wide range of LCR identification

methods. Therefore, in this chapter I have focused on clustering and compared this

method with the state-of-the-art statistical methods of clustering protein sequences.

I explored the data to overview the results and examined selected examples to

demonstrate the differences between the methods in detail.
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GBSC accepts different insertions between repeats. The method clusters similar

sequences by repetitive pattern that it finds during identification. Therefore, unlike

other protein sequence clustering methods that are analyzed in this work, GBSC

handles repeats that partly contain a specific pattern and partly accept random

residues. Alignment based on methods count these random residues as mismatches

and therefore treat them as different STRs. GBSC allows gaps between repeating

units. It has already been found that STR can be composed of conserved and

unconserved parts. For example, the KSPXXX/KSPXK repeat can be found in

neurofilament heavy polypeptide protein [71,100]. The first part of this repeating

pattern consists of conserved Lys-Ala-Pro motif. The second part is flexible and

consists of random residues of various lengths, but most units contain three random

residues. However, to also take the residues that are between the repeat units,

researchers can generate MSA from clusters ??.

GBSC handles adjacent STRs when clustering. This type of STRs is generally

problematic for canonical methods of protein sequence clustering. These methods ei-

ther produce a cluster containing all subtypes of STRs, as shown in the Figure 4.9 (a),

or compare them globally. To properly handle this type of STRs, we need a more

sophisticated method that is aware of such sub-LCRs. Since GBSC first identifies

STRs, builds a representation model from it, and uses it for clustering, thus it is

aware of STR types and their distance from each other. Therefore, it is able to

properly handle such adjacent STRs. The practical application of this feature is

demonstrated in the next chapter in the case of DNA-directed RNA polymerase

subunit delta [55].

Alphabet reduction enables identifying and clustering repetitive patterns of physic-

ochemical properties of residues. For instance, aspartic acid and glutamic acid have

very similar properties, thus in some research can be treated identically [95]. It is

also possible to analyze tandem repeats of negatively and positively charged residues.

In the RNA-binding RGG box, an RGG repeat unit often occurs with YGG [19]. By

reducing arginine and tyrosine to a single amino acid group, GBSC can identify such

domains as exact matches. Alphabet reduction can also be used to detect collagen

structures that require glycine and two random residues [103]. The collagen repeat

can be described by the GXX pattern, where X stands for random residue. Therefore,

one can keep the glycine unchanged and reduce the rest of the amino acids to one

group in order to cluster all the collagen-like domains. In the next chapter, I show

how to use GBSC with alphabet reduction in practice to find K-DE motifs.
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GBSC tags identified and clustered sequences using interpretable graph models that

describe the identified domains. Most LCR identification methods lack information

on why the fragment was identified. Also protein similarity analysis methods cluster

sequences with similar compositions without labeling produced clusters. Such labels

can be crucial in choosing the right algorithm for a given analysis, even if the

performance of uninterpretable models is better [66]. For example, T-REKS is a

method for identifying highly degenerate tandem repeats. The method lacks labels

describing the detected domains, and it is sometimes difficult to find repeats in these

sequences. Examples of such degenerate repeats are shown in the Figure 3.7 (a).

Protein sequence clustering methods also suffer from the same issue. The sequences in

the first pair shown in the Figure 6.9 belong to different clusters in MMseqs method.

These clusters contain similar sequences, and thus could be merged. However, such

clusters are difficult to find because they lack labels of clusters. Relaxing the MMseqs

parameters is also not a solution as the method already assigns sequences of different

repeats to the same clusters as shown in the Figure 6.5 in the first pair. Therefore,

GBSC may be especially a choice when interpretability of repeats is an important

factor.

In this chapter, I introduced a new method for identifying and clustering STRs

in protein sequences. This method can use alphabet reduction when building the

model for clustering, and identifying degenerate repeats. It also handles adjacent

repeats that may be relevant to the biological properties of LCRs [55]. In the next

chapter, I show how this method can be used in practice.
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7.1 Introduction

In the scope of this thesis, I introduced two methods for the similarity comparison

of protein sequences. The first is LCR-BLAST, which is for searching for similar

LCRs using local alignment. And the other is GBSC; a method for clustering STRs

according to their repeating patterns. I have already compare them with other

solutions, but did not check whether these new methods can be applied to biological

analyses. In this chapter, I present examples of such biological analyzes where the

above methods have helped to study protein sequence datasets. These analyzes are

aimed at finding possible assembly errors in STRs, searching for similar fragments

to K-D/E domain from Delta Subunit of Bacterial RNA Polymerase and finding

common epitopes for SARS-COV-2 and the human genome.

7.2 Assembly errors in STRs

To create protein sequence databases, scientists extract the genome from organisms

and use specialized technology and methods to read it. Such technologies include

the Illumina sequencing platform (Illumina), Single Molecule Real Time Sequencing

(PacBio) or Nanopore Sequencing (Nanopore) [11,26,80] Excluding simple organisms

like viruses, we lack technology that can read whole genomes without complications.

They all have their advantages and disadvantages. Illumina has a relatively low error

rate but reads genomes in short chunks (¡250 bp). PacBio and Nanopore, on the

other hand, have a higher error rate, are more expensive, but are able to read longer

sequence fragments (usually 10-40 kbp). In the next step, computational methods

assemblies these reads into a single genome sequence [?, 54]. Short read sequencing

technologies can be affected by sequence assembly errors. This is due to the fact

that if we have two repetitive regions of the same type that occur in different parts

of the genome, and the reads do not cover entire such regions, then we do not know
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which repetitive region the reads should belong to. The hypothesis is that existing

genomes and their products are affected by sequence assembly errors in databases.

Protein sequences stored in databases are often translated from genes. Several

genome annotation methods already exist which mark gene positions [27]. The genes

are further translated to RNA and then to protein sequences. Therefore, sequence

assembly errors in genomes also affect protein databases. In this study, I checked

whether such errors possibly exist in protein seqeunces by investigating the STRs.

7.2.1 STR length variation in different sequence versions

NGPVGDQLSLLFGDVTSLKSFDSLTGCGDIIAEQDMDSMTDSMASGGQRANRDGTKRSSC

NGPVGDQLSLLFGDVTSLKSFDSLTGCGDIIAEQDMDSMTDSMASGGQRANRDGTKRSSC

LVTYQGGGEEMALPDDDDNDDEEEEEEEEKKKKKKKKKKKKKKKK---------------

LVTYQGGGEEMALPDDDDNDDEEEEEEEEEEEEEEEEEEEEEEEEEEEELLEDEEEVKDG

------------------------------------------------------------

EENDDLEYLWASAQIYPRFNMNLGYHTAISPSHQGYMLLDPVQSYPNLGLGELLTPQSDQ

Figure 7.1: The older (upper) version of the sequence in the Poly-E fragment

becomes Poly-K and finally terminates, while the newer version of the sequence

continues with Poly-E and then turns into a high-complexity sequence. The

figure shows fragment of a pairwise alignment of protein sequences in two different

versions. The sequences comes from APC membrane recruitment protein 1, Mus

musculus (Mouse) (Q7TS75). Adapted from: Tørresen et al., Tandem repeats

lead to sequence assembly errors and impose multi-level challenges for genome and

protein databases, Nucleic Acids Research.

In this part of the analysis, I examined the variation in length between different

versions of sequences in the UniProtKB/Swiss-Prot [8]. For this purpose, I down-

loaded the first and last versions of each sequence. I rejected sequences with only one

version. Within each pair of sequences, I identified STRs using GBSC with a strict

parameter set (w:4, l:10, g:2, x:6). Then I also rejected proteins without STRs in at

least one version. Next I aligned both versions of sequences using Kalign method

with the default parameters [60]. I checked if the aligned STRs differ in length and

computed the differences. In case only one version contains STR, I count it as a
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difference in length. An example alignment with identified STR is presented in the

Figuer 7.1.

Proteins (n)

Proteins with

different

sequence

between

versions (n)

Proteins with

different

repetitive

region

lengths (n)

Average/standard

deviation of the

length of repetitive

regions in original

version of the

sequence

Average/standard

deviation of the

length of repetitive

regions in the

version 2018 06

of the sequence

Average/standard

deviation of the

difference in

lengths of

repetitive regions

554 241 74 434 1 669 31.14/72.09 35.20/84.08 13.57/45.69

Table 7.1: Protein sequence versions with different lengths of STRs occur in the

UniProtKB/Swiss-Prot database. Source: Tørresen et al., Tandem repeats lead to

sequence assembly errors and impose multi-level challenges for genome and protein

databases, Nucleic Acids Research.

The results of the analysis are placed in the Table 7.1. The input dataset consists of

554,241 sequences, of which 74,434 have multiple sequence versions. GBSC identified

1,669 sequences where the repeat regions differ between versions. The average length

of the first versions is shorter than the average length of the last versions. Even if

this does not yet mean that we have found 1,669 sequences with assembly errors,

since both collected genome samples may simply be different, it is a good overview

which supports stated hypothesis.

7.2.2 STR length variation in different taxonomies

Another approach to prove or disprove the hypothesis is to check variability of STRs

in taxonomies. To calculate it, I used the UniProtKB/Swiss-Prot database and

the taxonomic division of sequences from the UniProtKB [8]. I used this data to

divide the protein sequence database into taxonomies and analyze them separately.

The UniProtKB divides sequences into the following taxonomies: archaea, bacteria,

fungi, human, invertebrates, mammals, plants, rodents, vertebrates and viruses.

In this division, the vertebrate taxonomy does not contain entries for mammalian,

which does not contain entries for human and rodents. Invertebrates, on the other

hand, contain eukaryotic records excluding vertebrates, fungi and plants. Therefore,

I combined the division of UniProtKB into the following taxonomies: archaea,

bacteria, fungi, invertebrates, vertebrates, plants and viruses. In these subdatabases,
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Database name

Number

of

proteins

Number of

proteins

with STRs

% of

proteins

with STRs

Median Average
Standard

deviation

Number

of

clusters

UniProtKB/

Swiss-Prot (total)
554 241 28003 5.05% 14.75 15.14 3.69 6237

Archaea 19 525 351 1.80% 10.71 10.63 1.27 45

Bacteria 333 691 6794 2.04% 17.38 17.45 2.66 1048

Euk: Fungi 33 613 3996 11.89% 13.46 13.79 3.65 893

Euk: Invertebrata 27 607 3372 12.21% 17.34 18.62 7.95 812

Euk: Vertebrata 18 292 1461 7.99% 13.66 13.90 2.42 1801

Euk: Plants 42 101 3601 8.55% 12.51 12.82 2.98 795

Viruses 16 852 889 5.28% 14.07 14.15 2.57 203

Table 7.2: STRs in protein sequences in the UniProtKB/Swiss-Prot database divided

by taxonomy. Source: Tørresen et al., Tandem repeats lead to sequence assembly

errors and impose multi-level challenges for genome and protein databases, Nucleic

Acids Research.

I identified STRs using GBSC method and clustered them by similar pattern. Finally,

I calculated a summary for each dataset presented in the Table 7.2.

Invertebrates have in avarage long STRs with a high standard deviation. Inter-

estingly, in bacteria, GBSC identified STRs in a low percentage of STRs, but these

domains are long with a low length variability. We can conclude that bacterial

genomes, if they contain STR, are stable. Vertebrate taxonomy consists of the most

diverse set of STRs. In archaea, the number of STRs is low as expected. In all cases,

the median is close to the average. Although the results do not the show error rate

of STRs in the UniProtKB/Swiss-Prot database, they demonstrate that variations in

repeat lengths are common and errors might often be unnoticed. This is especially

crucial in databases that are not as well curated as UniProtKB/Swiss-Prot.

7.3 Polymerase

Intrinsically disordered proteins, which frequently overlap with LCRs, often use

electrostatic interactions in their functional mechanisms [16, 121]. An example of

such a protein is Delta Subunit of Bacterial RNA Polymerase. Its sequence is

presented in the Figure 7.2. This protein contains the IDR of adjacent LCRs, the

first of which is positively charged, followed by an acidic LCR. Experimental methods
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supported by computational methods are able to precisely describe the structural

properties of the K-D/E motif. In this research, the experimental methods were

supported by computational analysis of similar protein sequences to check whether

such motifs occur frequently in proteins and have similar properties.

>sp|P12464|RPOE BACSU DNA-directed RNA polymerase subunit

delta MGIKQYSQEELKEMALVEIAHELFEEHKKPVPFQELLNEIASLLGVKKEELGDRIAQFYT

DLNIDGRFLALSDQTWGLRSWYPYDQLDEETQPTVKAKKKKAKKAVEEDLDLDEFEEIDE

DDLDLDEVEEELDLEADDFDEEDLDEDDDDLEIEEDIIDEDDEDYDDEEEEIK

Figure 7.2: DNA-directed RNA polymerase subunit delta (P12464) with K and

D/E LCRs highlighted in red and blue, respectively. The first part of the motif is

positively charged, the second is acidic.

7.3.1 Methods

In this section, I demonstrate how to use LCR-BLAST and GBSC to find similar-

ities to K-D/E motif with potentially known properties. As a dataset, I used the

UniprotKB/Swiss-Prot. I left the default parameters of LCR-BLAST unchanged.

For GBSC, I adjusted the parameters to identify the K-D/E motif of polymerase,

and used them to cluster the database by similar repeats. The changed parameters

are: alphabet reduction (a), nodes behave the same as edges (n), weight threshold

(w), lifetime (l) and maximum number of insertions between adjacent LCRs (max-

linked-strs-gap). I reduced the alphabet by merging {D, E} to {D} and changed

node behavior (n) since the D/E motif is irregular. The first part of the motif is

short, thus the weight threshold also must be low, and I changed it to 3. The LCR is

irregular and may have some insertions in between the sub-LCRs, thus I changed the

lifetime to 12 I set the maximum number of insertions between adjacent LCRs to 5 in

order to allow more insertions than in the query motif. For LCR-BLAST, the query

sequences are both LCRs highlighted in the Figure [?] which I used to search the

database. I used both sub-LCRs separately since LCR-BLAST uses local alignment

which aligns whole LCR to sub-LCRs only. In the research published in the Journal

of American Chemical Society, MotifLCR (Ziemska-Legiecka et al., in preparation)

method was also used to search for similar protein fragments [55]. After adjusting

the parameters, I analyzed the results collected from LCR-BLAST and GBSC, and
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proposed common regular expression for all three methods to identify and present

the most similar examples. These examples were further manually curated.

7.3.2 Results

GBSC identified 153 LCRs of K-D/E motif, and LCR-BLAST found 126 proteins

containing both K and D/E LCRs. The motif contains mutations that can form

repetitive patterns. Even the D/K-rich fragment of RNA polymerase shown in the

Figure 7.2 contains several mutations to leucine that may be considered repetitive.

Therefore, the motifs can join multiple GBSC clusters. In total, 153 sequences found

by GBSC were placed in 31 clusters with similar labels. It is worth mentioning that

GBSC parameters used in this study were more relaxed than those used in the ,,GBSC

- clustering short tandem repeats” chapter. The LCRs found by LCR-BLAST provide

more information on motifs rich in lysine or both acidic residues. The results of this

method, compared to GBSC, were limited by the composition of the query sequence.

To put in other words, the query sequence contains mutations to leucine, thus if

database sequences do not contain such mutations, they are penalized. LCR-BLAST

could be additionally adjusted to this specific problem. For instance, it could produce

better results by changing the scoring matrix in the way that mutations between

glutamic acid and aspartic acid are not penalized, or by creating an artificial query

sequence without mutations and use it for search. However, the current results

provide sufficient data for further analysis.

As a result, we identified K-D/E motifs in 51 proteins, the best matches of which

are presented in the Table 7.3. We analyzed the results collected from all three

methods, i.e. GBSC, LCR-BLAST and MotifLCR, and created a regular expression

that unifies the results from all methods. The regular expression has the following

form: K2.,4K2.*[DE]5,. It requires each motif to contain at least four lysines, which

can be separated by up to four insertions, and a D/E region of at least 5 residues. The

results were further manually curated, annotated and used for similarity analyses.

7.3.3 Conclusions

I used the methods introduced in this thesis, which are GBSC and LCR-BLAST, to

find a similar protein fragments to the K-D/E motif from the DNA-directed RNA

polymerase subunit delta. GBSC was used to identify and cluster sequences by a

similar pattern, while LCR-BLAST searched for well-aligned protein fragments. The
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Uniprot AC K-D/E motif

Q93148

KLKKKKKVVASSDEDEDDEDDEEEGRKEMQ GFIADEDDEEEDARSEKSDRSRRSEINDEL

DDEDLDLIDENLDRQGERKKNRVRLGDSSD EDEPIRRSNQDDDDLQSERGSDDGDKRRGH

GGRGGGGYDSDSDRSEDDFIEDDGDAPRRH RKRHRGDEHIPEGAEDDARDVFGVEDFNFD

EFYDDDDGEEGLEDEEEEIIEDDGE

Q54MB8 KKKKKKSKKNKNRHSTEEDETMEDANENLD FATGAGEEEEEEEPE

O60841

KKKKDKKKKKGEKEEKEKEKKKGPSKATVK AMQEALAKLKEEEERQKREEEERIKRLEEL

EAKRKEEERLEQEKRERKKQKEKERKERLK KEGKLLTKSQREARARAEATLKLLQAQGVE

VPSKDSLPKKRPIYEDKKRKKIPQQLESKE VSESMELCAAVEVMEQGVPEKEETPPPVEP

EEEEDTEDAGLDDWEAMASDEETEKVEGNK VHIEVKENPEEEEEEEEEEEEDEESEEEEE

EE

P30681

KKGKKKDPNAPKRPPSAFFLFCSENRPKIK IEHPGLSIGDTAKKLGEMWSEQSAKDKQPY

EQKAAKLKEKYEKDIAAYRAKGKSEAGKKG PGRPTGSKKKNEPEDEEEEEEEEEEEDDEE

EEEDEE

O13741 KSKKKKKKLNDSSDDIEGKYFEELLAEEDE EKDKD

Q8BTT6
KKQKKHLRDFGEEHPFYDRVSKKEAKPQIC QLPESSDSSHSESESESEQEHVSGYHRLLA

TLKNVSEEEEEEEEEEEEEEEEEEEEEEEE EDD

A7TJM9
KKGKKNDPVKINGNGDEVAEDLNPDFRFNI DGGELSTNFQGWDFVGDQKENDDDMKKDVD

LDGIIRRKGGLLNMAHIEVAEEEEEEEEEE EEEEEEEEEE

Q84MH1 KKKNKKKKSKKTNLKQKKAAEPKPPRDTDD DEDDEEEADDD

Q8VZE7 KKKKKKKSKKVIVKKDKVKSKSIPEDDFDT EDEDLDFED

Q26486
KKAKPDKKAGKNSAPAAESDSDDDDEDQLQ KFLDGEDIDTDENDESFKMNTSAEGDDSDE

EDDDEDEEDEEDDDEDDEEEEE

B4MR46 KKKKKTKKRKRKSSDDDDDESSSSDSESSS SSEEEEDEEE

Q70Z19
KKKPKKGSKNAKPITKTEQCESFFNFFSPP QVPEDEEDIDEDAAEELQSLMEQDYDIGST

IRDKIISHAVSWFTGEAAEDDFADLEDDDD DDEEDDDDEDEEEEDDEDDEDEEDEDD

Q70Z18
KKKPKKGSKNAKPITKTEQCESFFNFFSPP QVPEDEEDIDEDAAEELQNLMEQDYDIGST

IRDKIIPHAVSWFTGEAAEDDYAELEDDED EDDDEEDDEDEDEEEEDEEDDEDEEEDEDE

Q70Z17
KKKPKKGSKNSKPITKIEQCESFFNFFSPP QVPDDEEDIDEDAAEELQNLMEQDYDIGST

IRDKIIPHAVSWFTGEAAQDEDYIDLEDDE DEEDDEDEDEDEEDEEEEDEDEDDDDEDE

Q5VND6
KKKPKKGSKNAKPITKTEVCESFFNFFSPP QVPDDDEDIDEDTADELQGQMEHDYDIGTT

IRDKIIPHAVSWFTGEAVQAEDFDDMEDDE EDDEDDDEDEEEEEEDEDEDEDDEEE

Q9VNG1 KKLKKKKKKDEKKNLLHRQCDDTEANESDE EEEELRNEELDLEEESQMQHEELSD

A3LXX5
KDKKKHKKRRRRQYDDDVPKDSETKEAAED DEEEEDGEFDENNLENEEDVEDDLAEIDTA

NIITTGRRTRRKVIDFAKAAKELDAENGVV REDDEEEEDGEFEVKE

Q9U7C9
KKKFSQKKNHLLNLKKSYQDPEIIAHSRPR KSSGGVSLVEALSDHANYISNLDGFKYYAR

ANKSSLNSNATTSGGNNRSIKLNEYKYDDE EEDEEDEDEEDEEEDEEEEEEEEEEEED

Q6S003 KGKKKKKSSSPDSLSPNKDDDSSIMIDEDE EDDEEDEDDD

Q23FE2 KPKKKKKKSKKDKQQGDTEKKEEEEGEAED EEEDEEDEEEEE

Q86IZ4 KDKKKKKKNLKIHMRSDSDDNDDNEDEDED ETEE

Table 7.3: Selected K-D/E motifs from the UniProtKB/Swiss-Prot. Adapted from:

Kuban et al., Quantitative Conformational Analysis of Functionally Important

Electrostatic Interactions in the Intrinsically Disordered Region of Delta Subunit

of Bacterial RNA Polymerase, Journal of the American Chemical Society.
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results, along with those from MotifLCR, were used to create a common regular ex-

pression representing found motifs. The similarities found with the known properties

were then used to draw other conclusions about the electrostatic interactions of the

K-D/E motif.

7.4 SARS-COV-2

At the end of 2019, a new strain of coronavirus was discovered in the city of Wuhan,

China. The virus causes severe acute respiratory syndrome, and was spreading

rapidly, causing many deaths. The situation was serious, which is why the World

Health Organization declared a global pandemic on January 30, 2020. To fight

the pandemic, scientists have started a race to create effective vaccines and drugs.

These vaccines and drugs are frequently targetted to particular fragment of the

viral proteome, known as epitopes. Severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) has a moderate mutation rate [99]. Therefore, epitopes to which

antigens bind should be selected from stable protein fragments that are exposed

to antigens. Additionally, similar protein fragments should not exist in the human

proteome. Such similarity, known as mimicry, can lead to autoimmune disease [21].

This study aimed to list LCRs in the SARS-CoV-2 proteome and point out these

fragments whose similar LCRs can be found in the human proteome.

7.4.1 Results

GBSC, LCR-BLAST and MotifLCR (Ziemska-Legiecka et al., in preparation) were

used to search for similar LCRs. GBSC method designed to identify and cluster

STR, thus it was run independently on the SARS-CoV-2 and human proteomes.

LCR-BLAST needs a method for LCR identification to generate query sequences

for search. Therefore, SEG with the default parameters was used to retrieve them.

Then, LCR-BLAST and MotifLCR were used for all LCRs from the both proteomes.

SEG found LCRs in the following proteins: nsp2 (one LCR), nsp3 (six LCRs), nsp4

(one LCR), nsp6 (one LCR), nsp7 (two LCRs), nsp8 (two LCRs), S protein (two

LCRs), E protein (one LCR), orf7a (one LCR), orf7b (one LCR), N protein (four

LCRs) and orf14 (one LCR). In total, the viral proteome contains 23 LCRs, where 5

of them are similar to the human proteome. These 5 LCRs overlap with the 27 B-cell
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# LCR sequence potein

Number

of

similar

B-cell

epitopes

Number

of

similar

T-cell

epitopes

1 PPDEDEEEGDCEEEEFE nsp3 5 2

2 QPEEEQEEDWLDDDSQ nsp3 3 0

3 MLCCMTSCCSCLKGCCSCGSCC S protein 2 2

4 GSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSP N protein 10 9

5 KTFPPTEPKKDKKKKADE N protein 6 8

Table 7.4: LCRs from SARS-CoV-2 which are also similar in human proteome.

Adapted from: Gruca et al., Common low complexity regions for SARS-CoV-2 and

human proteomes as potential multidirectional risk factor in vaccine development,

BMC Bioinformatics

and 21 T-cell epitopes found by [2,33,64] The table 7.4 shows all LCRs common to

virus and human proteomes.

The first two LCRs are located near the N-terminal of the nsp3 protein. Both LCRs

are compositionally biased to aspartic and glutamic acids, which are considered to be

similar. The first LCR is similar to 5 B-cell epitopes and 2 T-cell epitopes while the

second is similar to only 3 B-cell epitopes. For both LCRs, the maximum coverage

is with B-cell epitopes which is equal to 90% and 70%, respectively. The third LCR

is located at the C-terminal of the Spike protein and has two similar epitopes in

both B-cell and T-cell epitopes. It fully covers two T-cell epitopes. The LCR is

compositionally biased to cysteine, which is interesting because it is a rare residue

in proteomes. Therefore, the probability of a biological role for this fragment in

both organisms is relatively high. Serine/arginine-rich proteins often play important

roles in proteins, including maintaining gene expression and RNA interactions [101].

Such a fragment is the fourth identified LCR. Due to critical biological roles, this

type of LCRs is abundant in proteomes. The LCR is located in the N protein, and

overlaps with as many as 10 B-cell epitopes and 9 T-cell epitopes in the list of human

proteome. In addition, it fully covers most epitopes. The last LCR is rich in lysine.

It also has a large overlap with several epitopes. It covers 6 B-cell and 8 T-cell

epitopes, where two B-cell and three T-cell epitopes are fully covered.
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7.4.2 Conclusions

GBSC and LCR-BLAST methods described in this thesis were used to search for

similar LCRs in the SARS-CoV-2 and human proteome. Together with MotifLCR,

these methods found 5 LCRs in three proteins that are similar to LCRs in the human

proteome. 27 B-cells and 21 T-cells epitopes have been found to coincide with the

LCRs in the human proteome and should not be considered as targets for vaccine

and drug design. This is because vaccines and drugs that target these epitopes may

be ineffective or cause autoimmune diseases.
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As part of the work, I introduced three methods for LCR analyses in proteins and

compared existing solutions. At the beginning, I compared existing methods for LCR

identification and showed how to combine them to obtain new results using consensus.

The selected methods, along with the consensus method, were also used to develop a

visualization approach for LCR exploration. Scientists can use visual exploratory

analyzes of LCRs to formulate new hypotheses about the biological properties of

proteins. LCRs have been ignored for a long time, leading to the hypothesis that

existing methods for protein similarity analyses are designed mainly to analyse

HCRs of protein sequences. Therefore, I then analyzed three state-of-the-art protein

sequence comparison methods to check whether the hypothesis was correct. The

results confirmed this hypothesis, showing that these methods were developed for

protein domains of high complexity and are not efficient enough to compare LCRs,

even if we optimize their parameters. This should be taken into account when using

these methods to search for similar protein sequences containing fragments of low

complexity. I then showed how to adjust the BLAST parameters to better search for

similar LCRs and described LCR-BLAST, which is a BLAST modification for these

protein fragments. I demonstrated that each of the proposed modifications changes

the method in such a way that it gives better results for LCR. Then I introduced

GBSC, which is a new method for identifying and clustering STRs. The method

is capable of analyzing a wide range of STRs, from very clear to highly degenerate

covering a wide variety of LCR types. Finally, I presented three studies in which I

used LCR-BLAST and GBSC in practice. These studies are related to sequencing

assembly errors in tandem repeats, electrostatic interactions in RNA Polymerase

and common LCRs to human and SARS-CoV-2 proteomes. In the first study, I

used GBSC to show differences in STR fragments between protein sequence versions

and STR diversity in chosen taxonomies. To analyze the K-D/E domain in RNA

polymerase, I used LCR-BLAST and GBSC to find this motif in other proteins.

I also showed that GBSC is able to detect irregular LCRs in the case of a D/E
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sub-LCR. In the last study, related to SARS-CoV-2, both methods were used to find

common LCRs in human and viral proteomes to warn scientists of the possible risk

of selecting certain epitopes for drugs and vaccines. I believe that I have already

made a valuable scientific contribution to the knowledge about LCRs and methods

for their analyses, which I will continue in the coming years.
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