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Abstract

Cancer is one of the leading causes of death worldwide. Risk factors are often tied to
lifestyle changes in developed countries, making cancer a significant research focus. The
advent of Next Generation Sequencing (NGS) made molecular cancer data more available
than ever and allowed scientists to unravel many molecular mechanisms that characterize
cancer cells. Despite these advancements, effective anti-cancer therapy preventing the
evolution towards drug resistance and relapse remains a challenge. Understanding the
mechanisms that drive tumor evolution, mutagenesis, and selection may bring us closer
to effective anti-cancer treatments.

Bulk DNA sequencing allows us to identify variants in tumor genomes and measure
their allelic frequencies (VAF). It has been shown that processes of mutagenesis and selec-
tion shape the distribution of VAFs in the sample. Models were proposed that fit the VAF
distribution with a mixture of power-law-shaped and binomial distributions. The power-
law component models the neutral tail of variants, containing primarily neutral variants
occurring in all cells, while the binomial components model the clones and selectively
advantageous subclones. The parameters of these components reflect the evolutionary
dynamics of the tumor.

We developed a new R package cevomod capable of fitting the mixture of the power-
law and binomial components to the whole exome sequencing data, which previously
could not be analyzed with other well-known algorithms due to the strict data quality
requirements. cevomod allows one to choose between two types of models, a neutral-
like one with the power-law exponent equal to 2 and an optimized model, in which the
exponent is optimized to fit the data best. While the first model uses the assumptions of
exponential tumor growth and constant mutation rate, the second one allows for validating
these assumptions.

Using our new package and the collected data from 4 cancer types, we show that bulk
DNA sequencing can be used to quantify the changes in the evolutionary dynamics of
cancer upon progression, metastasis, and relapse. To prove that, we analyzed the DNA
sequencing data from patients with Acute Myeloid Leukaemia, including samples from the
time-points of diagnosis and relapse, patients with Breast Cancer and Laryngeal Cancer,
including samples from the primary tumors and lymph node metastases, and two whole
organ maps of Bladder Cancer, including the urothelial cancer samples along with the
pre-malignant samples with different stage of disease progression.
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We found significant differences in the evolutionary parameters between samples from
the same tumor, such as the predominant increase of the mutation rate in lymph node
metastases of laryngeal cancers, compared to the primary tumors or common upward and
downward changes of mutation rate in the recurrent leukaemias.

Finally, we show that the assumptions underlying the most frequently used models
used to estimate the parameters of tumor evolution may be violated in many cancers. We
identified significant deviations of the neutral tail power-law exponent from the expected
value of 2 that may indicate the non-exponential tumor growth, changing mutation rate,
or presence of selectively advantageous micro-clones. We proposed a mathematical explan-
ation for the observed phenomena, relating the deviations to the non-constant mutation
rate.

We believe that our results can contribute to the understanding of processes respons-
ible for the evolution of cancer.
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Chapter 1

Introduction

1.1 Motivation

Cancer is one of the leading causes of death worldwide, and as such, it receives partic-
ular attention from the research community. The advent of Next Generation Sequencing
(NGS) made molecular cancer data more available than ever before. It empowered the
scientists with the tools necessary for in-depth investigation of mechanisms driving the
initiation and progression of cancer. In the last decade, most of this research was focused
on unraveling the molecular mechanisms that allow the tumor to grow, which seemed
the shortest path to finding the right cures. During that time, we learned that tumors
continuously evolve, which allows them to develop resistance to the treatment, recur and
metastasize. Understanding the mechanisms that drive tumor evolution, mutagenesis and
selection may bring us closer to effective anti-cancer treatment.

As DNA sequencing has become popular and made the data more available, many
interesting studies have been conducted. A number of them proposed great algorithms for
reconstructing the tumor subclonal structure. They allow identifying the subpopulations
of cells in the tumor with different sets of mutations and sometimes try to infer the phylo-
genetic tree of the tumor evolution. However, they usually do not estimate any parameters
of tumor evolution, such as mutation rates or selection coefficients. Other studies proposed
excellent mathematical models of tumor evolution that associate the tumor characteristics
with the evolutionary parameters but did not develop software allowing other researchers
to use it on their own data easily. Finally, some recent papers introduced the models
and the appropriate software packages for fitting them. At least 3 of them were used to
assess the role of selection across all the cancer cases in The Cancer Genome Atlas. Their
assumptions and results were, however, questioned [117, 11, 83]. MOBSTER is probably
the best-known of these algorithms. It estimates the parameters of tumor evolution based
on assumptions of exponential tumor growth and constant mutation rate, which should
result in a characteristic, power-law-shaped distribution of neutral mutations called the
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neutral tail. These assumptions are not always fulfilled, though. Indeed, we observed and
described in this thesis frequent deviations from the theoretical shape of the neutral tail
and tried to investigate them. MOBSTER also requires deeply sequenced Whole Genome
Sequencing input data to recognize the neutral tail properly; thus, its application is lim-
ited to top-quality data. We do not know any publicly-shared algorithm dedicated to the
analysis of cheaper and more common Whole Exome Sequencing data.

The importance of mutagenesis and selection in cancer evolution, including recurrence
and metastasis, is still an open question. In this thesis, we want to contribute to this area
of cancer research.

1.2 Goals

The first goal of this thesis is to determine the role of mutagenesis and selection in
tumor progression, metastasis, and recurrence. We used the sequencing data from 4 types
of cancer, consisting of multiple samples obtained from each patient. Our data included
the diagnostic and relapse samples from acute myeloid leukemia (AML), primary tumors,
and lymph node metastases from breast cancers (BRCA) and laryngeal cancers (BRCA),
and whole-organ mapping of bladder cancer (BLCA) specimens, including regions with
early stages of disease progression.

Due to strict data quality requirements, the primary goal could not be achieved using
the well-known MOBSTER algorithm. For this reason, the development of a new package
became the second goal of the thesis. The new package should be applicable to Whole
Exome Sequencing data and data with lower sequencing depth, both resulting in the
under-representation of the low-frequency mutations in the expected neutral tails.

The third goal of the thesis was to check the validity of common model assumptions.
Since the power-law-shaped neutral tails should follow the 1/f 2 statistic under the as-
sumptions of exponential growth rate, constant mutation rate, and lack of competing
micro-clones, we compared the theoretical fits with the optimum ones. We also investig-
ated the possible causes of the identified deviations.

1.3 Hypothesis

We state the following thesis:

Changes in the evolutionary dynamics of cancer upon metastasis and recurrence can be
quantified from the bulk DNA sequencing data.

2
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1.4 Plan of the thesis

Introduction. In this chapter, we introduce the motivation, hypothesis, and goals of
the work.

Cancer evolution. The second chapter presents the fundamentals of molecular biology
that underlie cancer evolution. We introduce the central dogma of molecular biology and
its role in the maintenance of the cell state. Then, we describe the role of DNA, genes,
and mutations and characterize the main categories of mutations. Finally, we describe
the most important theories of tumor evolution, including Darwinian and non-Darwinian
evolution, clonal evolution, punctuated evolution, field effect, and the theory of cancer
stem cells.

Analysis of cancer genomes and cancer evolution. In this chapter, we first describe
what underlies most of the modern cancer research: the development of DNA sequencing
methods. We describe the 3 generations of sequencing methods, the fundamentals of
sequencing data analysis, and the mathematical approaches in the analysis of cancer evol-
ution. We also list the most important software algorithms and summarise the discussion
raised in the scientific community by some publications.

Data and methods. This chapter describes the data and methods used in this thesis.
We describe the two model fitting approaches that we implemented and present an R
package cevomod, Cancer Evolutionary Models, which we developed.

Results. We divided the Results chapter into two sections. The first one describes
mostly the results of our work in the project A systems approach to cancer progression
and prognosis: New models and statistics for genomic data analysis funded by the Polish
National Science Center. In this project, we analyze the data from the primary tumors
and lymph node metastases in BRCA and LSCC cohorts. We also parallelly included the
study of the AML cohort in this section, although this data does not originate from our
project and was downloaded from European Genome-Phenome Database. In the second
section, we describe the results of our collaboration with the group of Dr. Bogdan Czerniak
from MD Anderson Cancer Center in Houston. Together with his group, we investigated
the origins of bladder cancer and showed how it develops from the mucosal field effect.
This section is based on our paper Bondaruk et al. The origin of bladder cancer from
mucosal field effect [10]; however, we added the more recent analyses made with our
package cevomod, absent in the paper.

Summary. In the final chapter of the thesis, we summarise the study’s achievements and
limitations. We refer to the dissertation thesis we have proved and indicate the possible
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paths for future research.
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Chapter 2

Cancer evolution

Cancer is one of the leading causes of death in the world, even though more than seven
decades have passed since Sidney Farber’s early chemotherapy trials in Boston in the late
1940s [108]. According to the World Health Organization, cancer caused nearly 10 million
deaths worldwide in 2020. In the same year, the five most common types of cancer (breast,
lung, colorectal, prostate and skin) accounted for over 9 million of new cases, and about
400 000 cancer cases were diagnosed in children [16]. In Poland, over 170 000 new cancer
cases and over 100 000 cancer-related deaths were reported in 2019 [42]. Many of the cancer
risk factors are related to the recent changes in the human lifestyle: tobacco use, alcohol
consumption, obesity, unhealthy diet and low physical activity, occupational exposure to
carcinogens, or to infection with cancer-causing viruses, such as human papillomavirus
(HPV) [16]. Efforts made in cancer research over the last few decades let scientists to
unravel a number of molecular mechanisms underlying the biology of cancer [47, 48], and
many advanced therapies have been introduced. Despite these advances, treatment of
cancer patients which would prevent the development of therapy resistance and disease
recurrence remains a challenge for the medicine. Our ability to treat or prevent cancer is
limited, similarily as our understanding of the mechanisms underlying tumor initiation and
progression. Since humans are more prone to cancer than many longer-living organisms
with larger body-sizes than humans [9], cancer susceptability might be connected with
complexity of human genome and its rapid evolution.

2.1 Biology of cancer

2.1.1 Hallmarks of cancer

Cancer is a general term that describes a number of diseases. Cancer cells can form
tumors in different tissues and locations in the body, which can be solid or liquid, highly
aggressive or benign, but all tumors tend to share a number of hallmarks. The hallmarks
are directly related to the loss of the organism’s control over cell growth and proliferation

5



Chapter 2. Cancer evolution

and the tissue homeostasis. The first set of hallmarks was published in 2000 and consisted
of: acquisition of the limitless replicative potential, self-sufficiency in growth signalling,
resistance to anti-growth signaling, evading cell death, induction of angiogenesis, and
ability to tissue invasion and metastasis [47]. However, a number of new mechanisms have
been proposed as the new hallmarks in the following years, such as the deregulation of
cellular energetics, evasion of immune destruction, genome instability, inflammation [48],
or dysregulation of cell differentiation [25]. The list is still growing.

2.1.2 Central dogma of molecular biology

All the molecular mechanisms that control the cell cycle and maintain the tissue
homeostasis depend on the interactions of proteins with proteins or other molecules. For
this reason, protein expression is the key process in the regulation of the activity of
molecular pathways. In this process, the genetic information stored in the nucleus, in
the form of a double stranded sequence of DNA (deoxyribonucleic acid) is transcribed
into messenger RNA (single stranded ribonucleic acid), transferred to the cytoplasm, and
translated by ribosomes into an amino acid chain. The latter becomes a protein following
additional post-translational modifications (PTM) and folding. The process is usually
one-way, the fact known as the central dogma of molecular biology [26] (Fig. 2.1).

Figure 2.1: Central Dogma of Molecular Biology

The dogma implies among other that cell behaviour, which is mainly controlled by
proteins and their interactions, can be influenced at any stage of the gene expression. Pro-
tein properties can be altered even at the very end of the process by the post-translational
modifications, such as phosphorylation (addition of the phosphate group). Protein con-
centration levels can be modified earlier in the process, by controlling the transcription
and translation processes. Transcription can be regulated, among other, by the action of
transcription factors or transcription repressors, or by epigenetic DNA modifications such
as methylation (binding of methyl groups to the DNA sequences), and translation can be
silenced by the expression of certain micro-RNAs. Finally, the protein structure can be
modified by mutations in the DNA, which can be inherited by all the descendant cells
and are therefore fundamental for the evolution of the tumor genomes.
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2.1.3 DNA, genome and genes

DNA is a double stranded helix consisting of two complementary sequences of nucle-
otides (G - guanine, C - cytosine, A - adenine, and T - thymine). In eukaryotic cells it is
organised into a number of linear chromosomes. In humans, the genome (the total DNA
sequence of each cell) consists of 23 pairs of chromosomes: 22 pairs of autosomal chromo-
somes numbered from 1 to 22, and 1 pair of sex chromosomes: X and Y in males and a pair
of X chromosomes in females. The total length of the human diploid genome (consisting
of pairs of chromosomes) exceeds 6 × 109 nucleotides (nt, or base-pairs, bp). However, not
all of the entire DNA sequence encodes proteins - in human, the protein coding sequence
constitutes only about 1 percent of the genome and is organized into approximately 25,000
of DNA fragments called genes. Genes vary in their length: from less than 1000, to more
than 2 million nucleotides, and their coding sequences (exons) are usually interspersed
with non-coding regions (introns). Non-coding sequences such as introns and intergenic
regions can play an important role in the regulation of gene expression since they include
regulatory sequences such as promoters, enhancers, and other.

Cancer driver genes

Some proteins, especially those involved in hallmarks of cancer, are important for
the control of the cells’ growth and proliferation. For this reason genes encoding these
proteins are particularly often mutated in tumor cells, and are referred to as the cancer
driver genes. Analyses of the mutation frequencies in genomes of different tumor types,
such as these listed in The Cancer Genome Atlas, allowed to identify a number of such
genes. Some of them are frequently mutated in the particular types of cancer, and some
in all cancers. Cancer driver genes are divided into two groups: tumor suppressor genes
and oncogenes.

Tumor suppressor genes encode proteins which action protects organisms from the
developing cancer. For example, the TP53 gene plays a crucial role in the decision-making
during the DNA damage response. If the DNA damage is too severe for the cell to divide,
TP53 can block the cell-cycle until the damage is repaired. If repair fails, TP53 activates
the apoptosis - programmed cell death. For this role in the DNA-status control, TP53
is called ‘the guardian of the genome‘. TP53 is also one of the most frequently mutated
genes across all cancer types, approximately in 35% of all new cancer cases [85]. Other
examples tumor suppressor genes are RB, which transduces the pro-growth signalling from
the outside of cell [48], APC, or BRCA1/2, a pair of genes engaged in the homologous
recombination - one of the basic pathways of the DNA damage repair. Often at least two
mutations need to occur to deactivate both copies of the tumor suppressor gene (Two-hit
hypothesis [64]). Tumor suppressor genes may be silenced by epigenetic mechanisms, with
the most commonly reported being DNA methylation [61].
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Second group of the cancer driver genes, the oncogenes, are genes whose abnormal
expression shows a protumorigenic effect on the cell, for example via contribution to the
pro-growth signaling. Oncogenes can be activated by point mutations or amplifications
which may lead to their overexpression. Some examples of the oncogenes are: KRAS gene,
frequently mutated in pancreatic, colorectal and lung cancers [135], which can be activated
by point mutations and leads to cell proliferation and migration [35]; ERBB2 gene, whose
malignant amplification and overexpression is frequent in breast cancers and is associated
with proliferation, loss of cell polarity and invasion [89]; or MYC, gene most often mutated
in ovarian or uterine cancers, whose activation is associated with the cancer growth and
contributes to the evasion of immune system response [32].

The list of tumor suppressor genes and oncogenes in cancer types analyzed in the
thesis is included in Appendix A.

Cancer essential genes

While some genes need to be mutated for cancer to growth, there are also genes which
are necessary for both normal and tumor cells to survive. These genes called cell-essential
genes are rarely mutated in tumor cells and their loss-of-function mutations lead to the
fitness depletion and/or cell death. Genome-wide screening projects using gene editing
systems like CRISPR allowed identifying many such genes, engaged in the regulation of
cell cycle, protein homeostasis, DNA-damage response and other molecular mechanisms:
CDK4, CDK6, MEK1, HDAC1, and a number of other [20, 124].

2.1.4 Mutations

Alterations in the DNA sequence of an organism are called mutations. Mutations can
occur at any moment of the cell life and although most mutations do not result in a
measurable change in the organism fitness, some of them can have beneficial or disad-
vantageous effect on the affected cells. Mutations that occur in germline cells (germline
mutations) can affect all the cells of the offspring, and may increase the risk of cancer
or other disorders. If a mutation occurs in non-germline cell (somatic mutations), it will
affect only the cell and its descendants, but it can lead to the development of cancer if suf-
ficient number of fitness-increasing mutations accumulate in one cell. If mutation affects
the coding sequence of the gene, may lead to the loss, gain, or change of function of the
protein. If it occurred in the non-coding sequence, it may alter gene expression when it
affects regulatory sequences of the gene, such as promoters or enhancers. DNA sequence
can be altered by many types of genetic alterations (Fig. 2.2):

• Single Nucleotide Variants (SNV) - one nucleotide is replaced by another one. SNVs
may or may not lead to the alteration in the encoded protein because of the degen-
eracy of the human genetic code: the SNV is silent if the new codon encodes the
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Figure 2.2: Types of mutations.

same amino acid, or missense if the encoded amino acid has changed. SNVs can
also lead to the gain (or loss) of start or stop codons, and therefore result in severe
or complete inactivation of the protein, or can occur in the gene regulatory ele-
ments (promoters, enhancers etc.) and affect the gene expression levels. Contiguous
SNVs are often referred to as DNV (Double-Nucleotide Variants) or MNV (Multiple
Nucleotide Variants)

• Insertions and Deletions (jointly called Indels) - cell gains or loses one or more
nucleotides in its genome. Effect of an indel depends on the number of nucleotides
inserted or lost, when this number is not a multiple of three and mutation occurs
in the gene coding sequence, indel results in the frameshift: polymerase reads in-
correct nucleotide triplets and the amino acid chain of downstream protein changes
completely

• Copy Number Variants (CNV) - are large-scale events in which cell gains additional
copies of large fragments of its DNA sequence, or loses them. CNVs alter the numbers
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of gene copies in the cell, leading to the gene overexpression if copies are gained, or to
gene silencing if copies are lost. CNVs can vary in size: from thousands of nucleotides
to whole chromosome gains or loses and Whole Genome Doublings (WGD)

• Structural Variants (SV): duplications - when short DNA sequence is duplicated,
translocations - when sequence is moved to another site in the genome, and inver-
sions - sequence is placed in its own locus, but its orientation is changed

Different classes of variants are known to play different roles across the tumor types.
For example, Copy Number changes drive early evolution of breast cancers [39], but occur
late in the evolution of kidney or lung cancers and melanomas [40]. Reciprocal transloca-
tion of fragments of chromosomes 9 and 22, known as the Philadelphia chromosome, is a
hallmark of chronic myeloid leukemia [59].

Mutations occur during the entire organism’s lifetime and can be induced by various
concurrent mutational processes. Recent advances in methods of tumor genome analysis
allowed to gather collections of cancer associated somatic mutations larger than ever be-
fore, and identify a number of mutational signatures: fingerprints of mutational processes
affecting the genome of cells. Works of Alexandrov et al. [3, 4] identified over 80 mutational
signatures for SNVs, DNVs and Indels, and associated many of them with mutational pro-
cesses. Those processes include endogenous mechanisms like spontaneous deamination of
5-methylcytosine, which results in numerous C to T substitutions and is correlated with
patient’s age at diagnosis; activity of APOBEC, family of cytidine deaminases, also result-
ing in C to T mutations; defective homologous recombination process (signature enriched
in short Indels) and activity of other double strand break (DBS) repair mechanisms such
as non-homologous end joining (NHEJ); but also the processes of exogenous origin, such
as ultraviolet light exposure and tobacco smoking.

2.1.5 Tumor heterogeneity and evolution

Tumors differs not only among patients and cancer types, but also show significant
intratumor heterogeneity, which is a result of ongoing mutational processes and tumor
evolution. Tumor starts from a single mutated cell that gained proliferation advantage
over the healthy tissue cells, but its descendant cells gain new mutations during their
lifetime, giving rise to the new clones and subclones. As the time passes, some of the
lineages become extinct, outcompeted by more successful clones or by chance, due to the
genetic drift. If one cell lineage completely replaces others, it’s founder cell becomes the
most recent common ancestor and its mutations (unless mutation is lost due to another
genetic event) are found present in all cells of the tumor, along with mutations newly
obtained by the sub-lineages.

Both phenomena: tumor heterogeneity and constant evolution are key features of
cancer that lead to the evolution of therapy resistance and disease relapses.
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2.2 Modes of cancer evolution

2.2.1 Darwinian and non-Darwinian evolution

The process of species evolution proposed by Charles Darwin in 1859 is driven by
the processes of mutagenesis and natural selection. Mutagenesis introduces new genetic
variants to the population, increasing its genetic (and phenotypic) diversity. If the newly
emerged cells or specimens are better suited to the environment, they perform better and
have a better chance to proliferate, passing their genetic information to the offspring.
This process, known as positive selection, increases the frequency of advantageous ge-
netic variants in the entire population. Also, if the new cells bear mutations that are
disadvantageous for their phenotype, they have a bigger chance to die and proliferate less
frequently. This is called negative selection, and has a purifying effect on the population,
clearing it of the unfavorable variants or keeping them rare. Thus, negative selection in
its decreasing genetic diversity is complementary to the process of mutagenesis.

The importance of Darwinian selection in tumor evolution is an open question receiv-
ing increasing attention. Some works report an extensive genomic intra-tumor diversity
that exceeds the diversity predicted under the Darwinian model with negative selection
[79]. Other studies report the lack of positive selection as well. In asexually reproducing
populations such as cancer cells, the positive selection leads to the emergence of new,
distinct clones. As time passes, the fitter clones increase their frequency and eventually
completely replace their ancestral populations, which is known as the selective sweep. A
recent study of over 300 colorectal glands (structures of the glandular epithelium) reported
the absence of selective sweeps in the 15 analyzed colorectal tumors [110].

Positive selection is not the only process that changes the frequencies of variants in
populations. In neutrally evolving populations, especially if the population size remains
constant, variant frequencies can increase or decrease by chance, due to random sampling
of specimens to die or proliferate. This so-called genetic drift also affects the frequencies
of non-neutral variants and might lead to the loss of the advantageous variants or the
fixation of the disadvantageous ones. In some cases, it is not easy to dissolve the effects
of genetic drift and positive selection.

As more and more sequencing data gets available, new methods for testing the hy-
pothesis of evolution neutrality appear [130, 82, 131, 18], leading to discussions on their
biological, mathematical and technical assumptions [117, 52, 11, 120]. An overview of
modeling approaches will be described in Chapter 3.3.2.

2.2.2 Clonal cancer evolution

The model of clonal cancer evolution is a model of gradual evolution (Fig. 2.4a and
2.4b). In this model, cancer originates from a single malignant cell that starts to proliferate
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Figure 2.3: Model of clonal cancer evolution.

out of the organism’s control and forms the original clone. New driver mutations occurring
in the tumor initiate new subclones which grow faster than the original one, and eventually
replace it (selective sweep). The evolution might be linear, if the new subclones originate
from the most recent ones, or branching, if number of subclones originate from the same
parental subclone (Fig. 2.4).

2.2.3 Big Bang model of cancer evolution

The big bang model of cancer evolution (also known as punctuated cancer evolution)
(Fig. 2.4c and 2.5) claims that all the driver mutations occur early at the beginning of
the tumor evolution. In this model, subclones born at the beginning of tumor progression
coexist in the tumor mass and grow together in a single expansion, with no selective
sweeps and no later emergence of new subclones. The model was proposed by Sottoriva
et al. as the model of human colorectal tumor growth [110] and explains phenomena such
as the presence of the same subclone on the opposite sides of the tumor. Subclones born
early can easily mix in early malignancies with disrupted cell adhesion and thus be spread
in various regions as the tumor expands.

In another study, Wang et al. found that most copy number changes in breast can-
cers also occur early in tumor development, in contrast to SNV mutations which arise
later [126]. It makes the big bang model a correct description of some cases of CNV het-
erogeneity evolution and chromothripsis - events of complex chromosomal rearrangement
affecting one or few chromosomes that occur in a single event.

The Big Bang model states, that mutations responsible for tumor invasion, metastasis,
or evolution of the therapy resistance, may already be present in the malignancy from
the beginning, although they might be too rare to be detected. In such a case, therapy
which eliminates the most abundant clones, makes space for the future progression of the
resistant ones.
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(a) Linear (b) Branching

(c) Big Bang

Figure 2.4: Different cancer phylogenies.

2.2.4 Cancer Stem Cells model

The Cancer Stem Cells (CSC) model postulates that not only a small fraction of tumor
cells have a stem-like ability of self-renewal and limitless proliferation potential (Fig. 2.6).
Those cells, called the cancer stem cells, give origin to the entire tumor mass [30] and
are capable of reproducing the tumor after the therapy or transplantation into another
organism. The CSC model mirrors the origin of many normal tissues, such as blood or
intestinal epithelium, which originates from the haematopoietic stem cells and intestinal
stem cells, respectively. CSCs have been identified in leukaemia, breast cancer, colorectal
cancer, and glioblastoma [30, 70]. According to this model, successful treatment of cancer
must target the niches of CSCs in order to prevent the relapse.

2.2.5 Evolution from a cancerization field

Not all cancers are found to be initiated by a single cell. Some cancers are recog-
nized as multifocal, consisting of multiple independently initiated tumors; for such cases
field cancerization (field effect) model was proposed. According to the field cancerization
model cells in the histomorfologically normal tissue can carry severe mutations and exper-
ience clonal expansions of genetically mutated but healthy cells without the immediate
manifestation of cancer. Such tissues are preconditioned for development of cancer and
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Figure 2.5: Big Bang model of cancer evolution.

Figure 2.6: Cancer Stem Cells model. Source: www.wikipedia.org [17]

can promote it, leading to the emergence of many concurrent tumors. Field effect models
apply particularly to the tissues with direct exposure to the mutagens and mutagenic
environment: such as UV (skin) [91] or smoking (mouth skin and bladder mucosa) [129].
Evidence for the field effect model was identified, among others, in oral squamous cell
carcinomas [109] and prostate cancers [14]. In [10] we also support the field effect model
of cancer initiation in bladder cancers.

2.2.6 Clonal cooperation

The phenomena of clonal cooperation occurs when tumor clones are more tumorigenic
when intermixed together than in the absence of the other one. An interesting case of
clonal cooperation was described by Cleary et al. [23] in Wnt-driven mouse mammary
tumors. Those tumors are composed of a mixture of the basal and luminal tumor cells; in
some of them Cleary et al. observed that the basal cells carry driver mutation in the Hras
gene and the luminal ones do not, thus both cell types represent different lineages. They
found that both those lineages need to be transplanted to result in the tumor growth in
the recipient mouse. Although the mouse model does not fully represent the complexity
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of the human tumors which evolve much longer, it is an evidence that cancer clones might
cooperate in general.
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Chapter 3

Analysis of cancer genomes and
cancer evolution

3.1 DNA sequencing

Rapid progress observed in the research on the cancer genome evolution during the
last two decades was possible as the consequence of advancements made in the field of
genome (and transcriptome) sequencing. DNA sequencing is the process of determining
the order of nucleotides in the sequence of the DNA molecule. The ability to read the
DNA sequence is crucial to the development of modern molecular sciences. It is the first
step towards the identification of functional elements in the genome, such as the genes
and their regulatory elements. Comparison of the normal and tumor genomes allows us
to identify the genomic events that drive tumorigenesis. Comparison of the genomes of
many related specimens allows us to infer their evolutionary tree. In the case of multiple
cancer genomes - it allows tracking the evolution of the genome in time. The history of
DNA sequencing dates back to the 1970s, and three major stages can be distinguished in
its development [51].

3.1.1 The first generation DNA sequencing

Although the few-nucleotide long sequences of DNA could already be sequenced in the
1960s [53], the first big breakthrough came in 1977, when Sanger et al. developed a new
sequencing method with the chain-terminating inhibitors [101]. In their technique, the
analyzed DNA is placed in four samples along with the mixture of deoxyribonucleotides
(dNTPs) of all bases: A, G, C, and T. Also, the radiolabelled dideoxynucleotides (ddNTPs)
are intermixed in low concentrations, with one base type for each sample. dNTPs are the
monomers of DNA, which in the reaction of DNA extension can form a chain of nucleotides
complementary to the analyzed template. ddNTPs are modified dNTPs that lack the
hydroxyl group necessary for further chain elongation. When the ddNTP is synthesized
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Figure 3.1: Sanger sequencing. Fragments of various length, terminated an known base
type, are ordered by length in the process of electrophoresis. Source: www.wikipedia.org
[102]

.

into the chain, the reaction stops, resulting in many sequences of various lengths in each
sample, all terminated at the same type of base. Finally, the fragments from all 4 parallel
reactions can be sorted by the length in the process of electrophoresis, and the order
of nucleotides can be read (Fig. 3.1). The Sanger method allowed sequencing the DNA
sequences as long as 1000 nt. It was also the primary method used in the Human Genome
Project [24], which was run from 1990 to 2003, and resulted in the sequencing of about
92% of the human genome [55].

3.1.2 Next Generation Sequencing

The next breakthrough came with the development of Next Generation Sequencing
(NGS), also called High-Throughput Sequencing (HTS)[51]. NGS methods are a massively
parallel approach, enabling the simultaneous sequencing of millions of sequences, which
drastically decreased the time and cost of sequencing. The Human Genome Project took 13
years to complete and cost $2.7 billion [119]; the introduction of NGS enabled sequencing
of the human genome within a day, and decreased its price to approximately $400 (Fig.
3.2) [127].

In the last years, Illumina became the major provider of NGS [51]. In Illumina’s
method, the DNA is fragmented into smaller pieces, synthesized with the adapter se-
quences, amplified in the Polymerase Chain Reaction (PCR), and bound to the flow cells.
Next, the sequences are amplified in the process called ’bridge PCR’ to create clusters
of identical sequences, spatially separated from other clusters. Finally, the fragments are
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Figure 3.2: Sequencing cost of one human genome. Data: www.genome.gov [127]
.

synchronously sequenced by the synthesis of dNTPs with the fluorescent reversible ter-
minators. In each cycle, the new dNTP is synthesized and scanned to recognize the base,
before the terminator is removed to enable the synthesis of another dNTP. NGS usually
allows the sequencing of up to several hundreds of nucleotides from one or both ends of
the sequence. These sequences, known as reads, are then aligned to the reference genome,
or assembled de novo to create a complete genome sequence.

Several types of NGS can be distinguished:

Whole Genome Sequencing (WGS) . It is the most general type of sequencing,
in which the entire organism’s genome undergoes sequencing. It allows the detection the
mutations in all coding and non-coding sequences and provides a quite uniform read
coverage along the sequence. The latter supports the CNV analysis since the amplified
(gained) regions will show higher read coverage when aligned to the reference genome.
Similarly, the coverage of lost sequences is lower than the average coverage of the genome.

Whole Exome Sequencing (WXS, or WES). This type of NGS is focused on the
protein-coding sequence only, which constitutes 1-2% of the genome. This reduces the
price of single-sample sequencing and allows to increase in the number of samples or
the depth of sequencing - a number of reads covering each targeted region - to detect
the rare mutations. However, it also requires an additional step of the target regions’
capture. It makes the sequencing coverage less uniform due to sequence-specific biases
and technological limitations [8], which makes the CNV analysis less accurate.

Target sequencing. Target sequencing is the most restricted type of NGS, in which
only the selected regions, such as a set of genes of interest, are subjected to sequencing.
Similarly to the WXS, target sequencing lowers the costs of sequencing a single sample.,
but requires the step of the target regions’ capture.
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RNA sequencing. NGS methods can be used to sequence the RNA as well. In RNA
sequencing the main purpose of the experiment is the quantification of the gene expres-
sion levels. Although the variant-detection is still possible, it strongly depends on the
expression of a given gene, and lowly expressed genes may be covered by an insufficient
number of reads to perform the detection of variants.

3.1.3 Third generation DNA sequencing

The third-generation sequencing methods overcome the main limitations of NGS: the
short read length, and the necessity of DNA amplification. One of the most popular
third-generation methods is the Single Molecule, Real-Time (SMRT) sequencing by Pacific
Biosciences [51, 98]. In SMRT, special hairpin adapters are synthesized to both ends of the
double-stranded DNA, resulting in a library of single-stranded circular DNA templates.
Then the primers and the polymerases are added, and the libraries are placed in special
wells, called zero-mode waveguides (ZMW). There the sequencing by synthesis takes place,
using the fluorescently labeled dNTPs. Since the diameter of ZMW is smaller than the
wavelength of the laser light used to excite the fluorescent dNTPs, it is possible to excite
only the one dNTP that is being synthesized. This allows to track the sequencing of
particular molecules in real-time. Long reads provided by the third-generation sequencers
make the proper assembly of highly repetitive regions of the genome possible, and the
PacBio solution was used by the Telomere-to-Telomere (T2T) Consortium in the first
complete, telomere-to-telomere assembly of the human genome [95].

3.1.4 Limitations of bulk sequencing

Bulk sequencing methods such as the Sanger methods and NGS provide information
on the genome sequence which is averaged over the millions of cells from which the DNA
was extracted and sequenced. When the reads are aligned to the reference genome (or
assembled de novo), one can find the mutation sites by comparing the reads to the ref-
erence genome, or the sequence of the control sample. The ratio of the numbers of reads
supporting the alternate and the reference alleles provides the statistics called Variant Al-
lele Frequency (VAF), associated with the Mutated Cells Frequency (MCF) (see Section
3.2.2). However, bulk sequencing does not allow for determining which variants co-occur
in the same sub-populations of cells. This information, necessary for the accurate recon-
struction of the tumor clonal structure [113], is lost when the DNA from the population
of cells is mixed and sequenced together. Clusters of mutations with similar VAFs may
not be singular clones, but a mixture of clones with similar MCF, which cannot be separ-
ated based on the bulk sequencing results. Also, the proper recognition of cancer clones
and subclones is further complicated by tumor purity issues (contamination of the tu-
mor sample with the normal cells), and copy number changes [113], which can elevate or
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decrease the observed VAFs .

3.1.5 Single Cell Sequencing

The limitations of bulk sequencing have led to the development of single-cell se-
quencing methods, alongside third-generation single-molecule sequencing methods. Most
single-cell sequencing methods start with the isolation of the individual cells, followed
by the barcoding of all cell DNA (or RNA) with the unique barcode sequence. The se-
quences can then be pooled (multiplexed) and sequenced together using NGS methods.
The barcodes allow in silico separation of the sequences from different cells. The earlier
the multiplexing is performed in the library preparation process, the less work needs to
be done on each cell separately.

Single-cell RNA sequencing (scRNAseq) has rapidly become a popular method, en-
abling sequencing of RNA from millions of single cells after less than 10 years of scRNAseq
techniques development [114]. In contrast, the development of single-cell DNA sequencing
(scDNAseq) progressed more slowly. It requires an additional step of whole genome amp-
lification (WGA), as there are only two copies of each DNA fragment present in each cell
(in the diploid genomes), contrary to abundant RNA transcripts from actively expressed
genes. All the biases and errors introduced by WGA affect the analysis of the sequencing
results. Uneven sequence amplification complicates theCNV analysis. Sequencing errors
(false positive mutations) that occurred during the WGA are hard to distinguish from the
true variants [80], and many true variants can get lost when a sequence is not amplified
[28].

Several different amplification methods have become particularly popular. The degen-
erate oligonucleotide-primed PCR (DOP-PCR) [118] is one of the oldest ones, and it has
been successfully used in some CNV-focused studies [39, 19]. However, due to the large
number of introduced false positives, it does not apply to the SNV-focused studies. An-
other method, the Multiple Displacement Amplification (MDA) [74], offers an accurate
sequence amplification and can be used in the studies focused on SNVs, but the sequence
amplification is not uniform enough for the CNV analysis.

Two more recent methods, the Multiple Annealing and Looping-Based Amplification
Cycles (MALBAC) [136], and Linear Amplification via Transposon Insertion (LIANTI)
[21] offer a more complete, accurate, and uniform genome amplification [125], and their
popularization may greatly improve the quality of the scDNAseq data.

The final limitation of the scDNAseq is the low number of cells sequenced. The cell
selection bias creates a risk, that the rare but important subclones are missed and un-
detected in the study [113].
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Figure 3.3: A generalized scheme of the in silico NGS data analysis.

3.2 NGS data analysis

The results of the DNA sequencing undergo a multistep in silico analysis 3.3:

Quality control. First, the results are checked for possible data quality issues. FastQC
[5] and FastQ Screen [132] are among the most popular tools for the quality control of
the NGS data. FastQC detects the problems such as low sequence quality scores, a high
number of PCR duplicates, unexpected nucleotide composition, and others. FastQ Screen,
in turn, was designed to detect the possible contamination of the sample with the foreign
DNA (eg. bacteria).

Alignment. In the next step, the reads are aligned to the reference genome or assembled
de novo. The alignment is a challenging process due to the huge number of reads to align,
the short read length (50 to several hundred), the large genome size, and the presence
of repetitive sequences, polymorphisms, and mutations. Several specialized aligners have
been developed, such as BWA [78] and Bowtie [73]. The alignment may be followed by
another step of quality control. Many tools from the RSeQC toolkit [123] are to be run
on the aligned sequencing reads and can detect issues such as the short input sequencing
size or the uneven coverage of the gene sequence.

Variant Calling (DNAseq). The aligned reads can be subjected to the process of
variant calling. Algorithms such as GATK/Mutect2 [29], Strelka2 [62], or VarScan2 [65]
can be used to compare pairs of tumor and normal samples, or tumor samples against
the pool of normals, to detect the somatic SNVs and Indels present in the tumor. ASCAT
[121] and FACETS [106] are popular choices for detecting CNVs in WGS and WXS data,
respectively. Manta [22] is an example of software that offers structural variant detection.
Variant calling algorithms try reliably distinguish the true algorithms from the sequencing
errors and noise.
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Variant annotation. Finally, algorithms such as the Variant Effect Predictor [84] can
be used to predict the effects of variants. Prediction tools use the information on the
structure and location of protein-coding and regulatory elements of the genome. They
may also use tools such as PolyPhen [1] to predict the possible impact of amino acid
substitution on the function of the protein and annotate the known variants with their
frequencies from, for example. the 1000 Genomes Project [6].

The results of variant calling can be used in many different types of analysis, such as
the analysis of mutational signatures, identification of driver mutations, reconstruction
of the clonal structure, and others. The approaches focused on the main purpose of this
thesis, the evaluation of the role of selection and mutagenesis will be described in Section
3.3.

3.2.1 Reference genomes

The accuracy of the reference genome is a factor that limits the accuracy of most if not
all, the genome studies. Genome Reference Consortium is an international organization
that assembles, improves, and releases reference genome assemblies. The main human
genome assemblies are the GRCh37, released in 2009, and the GRch38, released in 2013,
with its latest version patched in 2022 (GRCh38.p14). Both those releases are incomplete,
with GRCh38 missing approximately 8% of the total genome length [95]. The Telomere-
to-Telomere (T2T) genome, released by the Telomere-to-Telomere Consortium at the
beginning of 2022 [95] is the first complete assembly of the human genome. It includes
the genome regions unsequenced before, such as the centromeric regions or short arms
of chromosomes 13, 14, 15, 21, and 22. The assembly of these regions has finally gotten
possible with the development of the 3rd generation sequencing methods, providing long,
continuous reads from the individual DNA molecules.

Although the T2T genome assembly has finally got available, it will take time until
the bioinformatic databases get updated with the information for this new assembly. Also,
many bioinformatic tools need to be updated to support the new genome. For this reason,
the GRCh38 genome still is and will be used, in many ongoing studies.

Usage of an incomplete reference genome affects the accuracy of the variant detection
[2]. Reads originating from the missing sequences, such as the unknown paralogs of the
known genes, might be aligned to incorrect sites in the genome, increasing the number of
false positive variants [95]. Also, the true variants present in the missing regions cannot
be detected. This highlights the need for further updating of existing reference genomes.
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3.2.2 Variant Allele Frequency (VAF)

The basic statistic that DNA sequencing provides for each mutation is the Variant
Allele Frequency (VAF):

V AF = Nalt

Nalt + Nref

(3.1)

where Nalt and Nref are the numbers of reads supporting the alternate and reference
alleles, respectively. The sum of Nalt and Nref is the depth of variant sequencing:

DP = Nalt + Nref (3.2)

If we consider the bulk DNA sequencing in terms of drawing random sequences from the
pool of DNA extracted from the wildtype and mutated cells, alt can be described by the
binomial distribution:

Nalt ∼ B(DP, p) (3.3)

where p is the frequency of the mutated allele in the sample, equal to

p = MCF · CNnut

MCF · CNtot · (1 − MCF ) · CNnorm

(3.4)

where MCF is the Mutated Cell Frequency, the fraction of cells in the sample that have
the mutation, CNmut is the number of copies of the mutant allele in the mutant cells,
CNtot is the total copy number in the mutated cells, and CNnorm is the ploidy of the
normal cells. In the purely diploid population, where CNmut is equal to 1, and CNtot and
CNnorm are equal to 2, p equals:

p = MCF

2 (3.5)

and

V AF ∼ MCF/2 (3.6)

Because of this, due to the complexity associated with the estimation of allele-specific
copy numbers, many methods use VAF as an approximate measure of the MCF. In par-
ticular, VAF spectra, which represent the distributions of observed allelic frequencies for
all variants in a sample, have been found useful in the modeling of neutrality and selection
in cancer research.
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3.3 Modelling of cancer growth and evolution

Mathematical modelling approaches are a powerful tool to test hypotheses and explain
observations. Over the years many different types of models were applied in cancer research
to understand the mechanisms underlying the initiation and progression of cancer, as well
as to predict its future progression. In this section we will describe the selected models of
tumor growth and evolution, including methods measuring the role of mutagenesis and
selection.

3.3.1 Models of tumor growth

A number of models different models were proposed for the tumor growth. The simplest
model of exponential tumor growth assumes constant growth rate, and infinite environ-
ment capacity. In this model number of cells in the population N in at time t can be
described as:

N(t) = eλt (3.7)

where λ is the growth rate. It was found to be the best fit for some breast cancers [115].
If the capacity of environment, or availability of nutrients is limited, population growth
can be described with the logistic model:

N(t) = K

1 + ae−bλt
(3.8)

where M is the capacity of the environment, and b and c are the positive parameters, or
the Gompertz model:

N(t) = ae−be−ct (3.9)

where a, b, and c are the positive parameters of the model. In both those models, the
growth rate decreases as the population size is approaching the upper limit. Both those
models were found the best fit for other cases of breast cancers [111, 94]. If lack of nutrients
availability and/or space limits the growth of cells mostly in the center of the tumor
but cells on its surface grow freely (surface-growth model), population growth follows
a power law [49]. Modes of tumor growth may also change depending on the stage of
tumor development: slow at the beginning of cancer progression, accelerate after the
vascularization (exponential law), and slow down again when the tumor becomes large
(Gompertz/logistic model) [12]. Models of tumor population growth, particularly the
exponential growth model, are key elements of some methods for modelling the neutrality
and selection in the tumor evolution.
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Figure 3.4: Example VAF spectrum
.

3.3.2 Modelling of selection and neutrality

The theory of neutral tumor evolution was proposed for the first time by Kimura, who
found that the mutation rate of mammalian genomes would be too high to be tolerated
by any species if all the mutations were non-neutral [63]. Kimura has proposed that the
majority of mutations have a negligible effect on the organism, and many of them become
fixed not by selection but by genetic drift. Kimura also has shown, that for selectively
neutral sequences, the rate of substitutions per generation K is equal to the average
mutation rate µ [63]:

K = 1/N ∗ Nµ = µ (3.10)

where 1/N is the probability of fixation of a new variant in the population of size N , and
Nµ is the number of new variants occurring in the population. Since the advantageous
mutations have a bigger chance of fixation, for sequences under the positive selection K

is greater than µ. Similarly for the sequences under the negative selection, where most
mutations would be disadvantageous and have a smaller chance of being fixed, K must
be smaller than µ [36].

This property is being used by the methods that analyse the ratio of the nonsynonym-
ous and synonymous mutations in sequences in order to detect the cancer driver genes,
such as dNdScv [82].

3.3.3 VAF spectra and the neutral tails

Important methods detecting the selection and neutrality in tumor evolution are based
on the VAF spectra. The spectra often present a multi-modal distribution of VAF in the
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sample (Fig. 3.4).
High-frequency peaks usually consist of the clonal and subclonal variants, present in

a fraction of cells two times higher than the mean VAF of variants in the peak (Eq. 3.6),
if the genome is diploid. Peaks are called clonal if they represent the mutations of the
Most Recent Common Ancestor (MRCA), which are present in all cancer cells in the
sample. The mean VAF of those variants equals 0.5 in the pure cancer sample. However,
if no selective sweep has occurred before, and the number of clonal mutations is low,
this peak can be undetectable in the VAF spectrum. Subclonal peaks, in turn, consist
of mutations possessed by the emerging subclones which have a selective advantage over
the background of clonal cells. Those peaks can eventually merge with the clonal peaks
(or create one) when the selective sweep is done. The random-sampling nature of bulk
sequencing methods (Eq. 3.3) explains the binomial shape of the clonal and subclonal
peaks.

The components of the spectrum with the lowest VAF are called the neutral tails and
consist of the somatic mutations that occured at different times during the tumor growth.
Most of those mutations are neutral or provide the very little selective advantage, and their
MCF depends mostly on the number of tumor cells when the mutation occured. They may
also contain the mutations of rare subclones whose low MCF results from the insufficient
time that passed from the subclone initiation. Such subclones, indistinguishable from the
neutral tail at present, can be responsible for the future progression, relapse, or therapy
resistance [113].

3.3.4 Stochastic models of the neutral tail

A few models were proposed to describe the number of mutations and the shape of the
neutral tail. Stochastic approaches utilize the Site Frequency Spectrum, an alternative to
the VAF spectrum that counts the number of variants present in a given number of cells,
contrary to the VAF spectrum utilizing the discrete intervals of VAF. In 2013, Durrett
proposed a convenient approximation [37] of the earlier Griffiths and Tavaré [43] formula
for the number of variants present in k-th bin of SFS. The formula uses the Infinite Sites
Model (ISM), a statement that the number of sites where the mutation can occur is
infinite, thus the same mutation is unlikely to occur twice. In Durrett’s approximation,
under the ISM and an assumption of exponential tumor growth, the number of variants
S(k) present in k cells is:

ESn(k) = θ

λ

n

k(k − 1) , k = 2, ..., n − 1 (3.11)

and
ESn(1) ∼ θnln(λN)

λ
(3.12)
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where θ is the mutation rate, λ is the growth rate, n is the size of the sample, and N is
the present population size.

In this thesis, we will call θ/λ the reduced mutation rate and denote it as µ.

3.3.5 Williams’s test of neutrality.

Another approach was proposed by Williams et al. [130], who used the differential
equation describing the number of new mutations that occur in exponentially growing
tumor (Eq. 3.7) per unit time. Williams has shown that in neutrally evolving tumors the
relationship between the number of mutations with VAF greater than f and the reciprocal
of f is linear:

M(f) = θ

β
( 1
f

− 1
fmax

) (3.13)

where θ is the mutation rate, β - fraction of successful cell divisions, and fmax - maximum
f over which the model is fitted. The equation corresponds to the power-law distribution
of neutral mutations in the mutation frequency spectrum, with the power coefficient equal
to 2:

N(f) ∼ θ

β

1
f 2 (3.14)

which is approximately equal to the Durrett’s expression [37] (Section 3.3.4). Williams
proposed an approach for the detection of selection in tumors that fits a linear model to
the statistic described by Equation 3.13, and rejects the null hypothesis of the neutral
evolution, if the R2 metrics of the fit is lower than 0.98. This approach was implemented in
an R package neutralitytestr and used to evaluate the mode of evolution of the tumors in
The Cancer Genome Atlas (TCGA) Consortium [130]. Out of over 800 individual tumors,
approximately 30% were found neutral, with the R2 goodness-of-fit of the neutral model
exceeding 0.98.

3.3.6 neutralitytestr model criticism

The results and the testing methodology of Williams [130] were met with significant
criticism in the scientific community. Tarabichi et al. [117] have pointed 4 issues of the
test, which were answered by Heide et al. [52]:

1. estimation of MCF requires the accurate estimation of local copy numbers and the
purity of the sample, and the restriction of the test to the narrow range of VAF
between 0.12 and 0.24, what the neutralitytestr does by default, is insufficient to
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make the test robust to the copy number changes. Heide agreed that the proposed
threshold is not universal and in some cases needs to be adjusted.

2. failure to reject the hypothesis of the neutral evolution does not prove that the null
hypothesis is correct. While the statement is true, Heide claimed that the neutrality
hypothesis is a reasonable null model in molecular evolution.

3. stochastic models of tumor growth are more realistic than the deterministic model
used by Williams. However, Heide has shown that the stochastic simulations are not
contradictory to their deterministic model, and the power-law shape of the neutral
tail finds support the stochastic derivations [37].

4. dNdScv package [82], which detects the selection using the ratio of non-synonymous
and synonymous mutations at the population-level, was able to find the significant
positive selection in the tumors classified by neutralitytestr as neutral. Heide has
shown, that dNdScv results can be due to the misclassification of particular samples
and that both tools can complement each other in the evolutionary studies at the
population and sample level.

Few other papers discussed also other aspects of the method proposed by Williams.
McDonald et al. [83] have simulated a number of neutral and selective tumors and have
shown, that the R2 values of the linear M(f) ∼ 1/f fit were in many cases similar. For
this reason, they argue that the linearity of this relationship cannot be used to distinguish
the selective tumors from the neutral ones. In other paper, Bozic et al. [11] has shown
that the time between the emergence of new selected subclone until it gets fixed in the
population is short. In their simulations, they considered a two-type model of tumor that
starts from a single transformed cells, and grows following the branching process with
the birth rate b, death rate d, and growth rate λ = b − d Cells in this model can gain a
driver mutation at rate µ to become the type 1. Type 1 cells have the birth rate b1, death
rate d1, and the growth rate λ1 = b1 − d1, so that the λ1 > λ. Bozic et al. have shown,
that in most cases the frequency of the driver mutations is biased towards 0 or 1, and the
probability of observing it at intermediate frequencies was in many cases below 30%, and
never exceeded 60%.

3.3.7 Williams’s model improvements

Williams et al. improved their modelling approach in the following years. New model
was fitted to the entire VAF spectrum, instead of the M(f) ∼ 1/f statistic. It also con-
sisted of the neutral power-law component complemented with the binomial components
corresponding to the peaks of clonal and subclonal mutations, diluted by random sampling
(see Eq. 3.3):
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N(f) ∼ A

f 2 +
i=K∑
i=1

Nk · binomial(n, fk) (3.15)

where
K - number of clones and subclones
Nk - number of mutations in (sub)clone k

fk - true allelic frequency of mutations in (sub)clone k

A - constant proportional to the effective mutation rate defined in [130].

This improved model was first implemented by Williams in 2018 as Julia package
SubClonalSelection.jl, using the computationally expensive and time consuming Bayesian
approach [131] instead of previously criticized R2 statistic. Two years later Williams and
Caravagna developed much faster, machine learning based approach and implemented
it in R package MOBSTER [18]. Both these packages fit the data with a number of
neutral and selective models and evaluate them using the Bayesian Information Criterium
(BIC), which addreses the second of the issues raised by Tarabichi [117] in response to
neutralitytestr [130].

Both these packages also provide the equations to estimate the evolutionary paramet-
ers of fitted subclones: the emergence times and the selection coefficients. The selection
coefficient s is defined as:

s = λs

λc

− 1 (3.16)

where λs is the subclone growth rate, and λc is the growth rate of the ancestral clone.
Williams shows [131], that s can be calculated as:

s =
λct1 + ln

(
fsub

1−fsub

)
λc(tend − t1)

(3.17)

where fsub, the subclone cell fraction, can be estimated from the parameters of the fitted
binomial distribution, tend, tumor age in population doublings, can be derived from the
final population size Nend:

tend = ln(1 − fsub × Nend) (3.18)

and t1, the subclone emergence time, can be calculated from the number of subclonal
mutations Ns and tumor mutation rate:

t1 = Ns

2log(2) × µ
(3.19)
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3.3.8 Tung and Durrett’s two-type model and the selection of
micro-clones

The two-type model simulated by Bozic et al. [11] was further investigated by Tung
and Durrett in their work published in 2021 [120]. They presented a mathematical proof
for the observation of Bozic that the probability of observing the diver mutations after
they emerge from the neutral tail and before they get fixed in the population is low.
However, they also showed that the existence of the selected micro-clones in the tumor
tail alters its shape. In the considered two-type model, cells in the host population (type
0) proliferate at rate λ0, accumulate neutral mutations at rate µ, and mutate to type 1 at
rate v. Type 1 cells proliferate at λ1 > λ0 and accumulate neutral mutations at the same
rate µ. They proved that the power-law tail in this model is described by the equation:

SFS(f) = C

fα
(3.20)

where f is the variant frequency, and C is a positive constant, and α depends on the ratio
of the types’ growth rates:

α = λ0

λ1
+ 1 (3.21)

If λ0 and λ1 are equal, α equals 2, as in Williams [130] and Durrett [37]. However, if
λ1 > λ0, the selection among micro-clones is manifested by α < 2.

The presence of the selected micro-clones is not the only phenomenon that influences
the power coefficient α, though. In Section 4.3, we describe another model in which the
mutation rate is not constant, leading to α different from 2.

3.3.9 Reconstruction of the clonal tumor structure

In addition to the development of population genetics-based methods for estimating
evolutionary dynamics parameters, a group of algorithms has emerged for reconstructing
clonal tumor structure and phylogeny. Some of the best-known algorithms in this group are
SciClone [88], PyClone [99], PhyloWGS [31], and DPclust [92]. The primary goal of these
algorithms is to identify subpopulations of cells with shared genotypes in NGS data. To
achieve this, they combine VAF information for short variants (SNVs, Indels) with copy
number data from CNV callers, clustering mutations with similar cellular frequencies.
Typically, these algorithms can simultaneously analyze multiple samples from the same
tumor to increase the resolution. In addition, PhyloWGS also determines the phylogenetic
structure of the tumor.

In our work [68], we compared the results of different combinations and settings of tools
used in such analyses. We used 2 different CNV callers: FACETS [106] and TitanCNA
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[46], and 2 algorithms for clonal structure reconstruction: PyClone [99] and PhyloWGS
[31]. We also ran the analysis with and without the tumor purity estimates provided by
CNV callers. We analyzed a subset of the data used in this thesis with all 8 combinations
of these 3 elements (CNV caller, reconstruction algorithm, purity) and found very high
variability in the obtained results. The differences were generated at each step of the
analysis: FACETS and TitanCNA provided different estimates of purity and ploidy and
varying sets of CNV calls; the numbers of clones identified by the pipelines were highly
variable; there were substantial differences in mutation assignment to clones.

Although these tools can be useful, the quality of their results depends on the quality
of the input data. Usually, they do not distinguish between the true clones and the neutral
tail, classifying the low-VAF variants as a single subclone with low cellular frequency. It
is an oversimplification since the mutations occur in all cells, and bulk DNA sequencing
does not allow distinguishing whether the rare variants coexist in the same subset of cells
or if they occurred in different cell lineages. As Caravagna et al. show, identification of
the correct tumor phylogenies requires the removal of neutral tail variants, which can be
achieved using population-based algorithms, such as MOBSTER [18].

3.3.10 Summary

The emergence of the Next Generation Sequencing methods was a breakthrough in
cancer research. The popularization of NGS methods, which followed the decrease of its
price, provided data that enabled the studies of the dysregulated molecular mechanisms
in cancer and tumor evolution. One fundamental statistic the DNA sequencing provides
for each detected variant is its allelic frequency VAF, related to the frequency of mutated
cells (MCF) in the sample and frequently treated as a proxy measure of it. As Durrett
[37], Williams [130], and others have shown, the spectra of MCF (and its proxy measure,
VAF) reflect the evolutionary dynamics of tumors and allow us to estimate the paramet-
ers of tumor evolution, such as the effective/reduced mutation rates, subclonal selection
coefficients, and subclone emergence times.

In this thesis, we analyze the VAF spectra of the primary and secondary tumor samples
and apply the model consisting of a mixture of power-law shaped and binomial compon-
ents (Equation 3.15) to study the evolutionary dynamics in these tumors. Whereas the
power-law component has a power coefficient α equal to 2 in this model, certain biological
processes, such as the presence of competing micro-clones or varying mutation rates, can
lead to different values of α (Sections 3.3.8 and 4.3). To investigate such cases, we imple-
ment a second type of model, in which α is not fixed, but we optimize it to find the value
that most accurately describes the observed data.

In the following chapter, we introduce the datasets utilized in this work and outline
the methods employed.

32



Chapter 4

Data and methods

4.1 Data

To address our thesis, we collected the Next Generation Sequencing data from 4 differ-
ent cancer types, including the data from at least two tumor samples from each patient.
We analyzed the evolutionary dynamics of recurrent cancers on the example of Acute
Myeloid Leukaemia, using the whole genome sequencing data from the study of Shlush
[107]. Evolutionary dynamics of metastatic cancers was investigated on example of breast
and laryngeal cancers, using the whole exome sequencing data obtained from our exper-
iments. Finally, the evolutionary dynamics of cancer during the tumor progression was
studied on two specimens of bladder cancer, using the whole exome sequencing data of
many samples with different stages of disease progression.

Breast Cancer and Larynx Cancer Cohorts

Breast Cancer (BRCA) and Larynx Cancer (LSCC) cohorts were based on the National
Science Center-funded grant A systems approach to cancer progression and prognosis: New
models and statistics for genomic data analysis, grant no. 2018/29/B/ST7/02550. BRCA
cohort consists of 30 tumor samples collected from 15 female breast cancer patients, along
with 15 control samples from the healthy tissue. To analyze the mechanisms responsible
for the cancer metastasis, two tumor samples were collected from each patient: one sample
from the primary tumor and one from the local lymph node metastasis.

LSCC cohort included sequencing data from 12 patients with laryngeal cancer. Again,
three samples per patient were collected: one sample from the primary tumor, one meta-
static sample, and one control sample.

All samples were subjected to Whole Exome Sequencing (WXS) to detect short vari-
ants (SNVs and Indels) in the protein-coding sequence, with targeted coverage 100x. Data
on molecular cancer subtypes and patient’s age and sex were included in Table 4.1. Histo-
pathological tumor purity estimates were available only for a fraction of BRCA samples
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cohort patient ID molecular subtype sex age samples
1 AML A-1 F 35 Dx, Rx
2 AML A-2 M 75 Dx, Rx
3 AML A-3 F 71 Dx, Rx
4 AML A-4 M 43 Dx, Rx
5 AML A-6 M 60 Dx, Rx
6 AML A-8 M 61 Dx, Rx
7 AML A-9 M 60 Dx, Rx
8 AML A-10 F 49 Dx, Rx
9 AML A-11 F 27 Dx, Rx
10 AML A-12 M 75 Dx, Rx
11 AML A-15 M 62 Dx, Rx
12 BRCA G02 HER2+ F P1, L1
13 BRCA G04 HER2+ F P1, L1
14 BRCA G30 HER2+ F P1, L1
15 BRCA G31 HER2+ F P1, L1
16 BRCA G32 TNBC F P1, L1
17 BRCA G33 Luminal A F P1, L1
18 BRCA G35 TNBC F P1, L1
19 BRCA G36 Luminal A F P1, L1
20 BRCA G40 Luminal A F P1, L1
21 BRCA G41 Luminal A F P1, L1
22 BRCA G43 Luminal A F P1, L1
23 BRCA G45 Luminal A F P1, L1
24 BRCA G46 Luminal A F P1, L1
25 BRCA G47 Luminal A F P1, L1
26 BRCA G48 Luminal A F P1, L1
27 LSCC L01 M 48 P1, L1
28 LSCC L03 M 62 P1, L1
29 LSCC L04 M 23 P1, L1
30 LSCC L05 M 59 P1, L1
31 LSCC L07 F 68 P1, L1
32 LSCC L10 M 57 P1, L1
33 LSCC L14 M 43 P1, L1
34 LSCC L15 M 68 P1, L1
35 LSCC L16 M 53 P1, L1
36 LSCC L19 M 63 P1, L1
37 LSCC L20 M 55 P1, L1
38 LSCC L22 M 62 P1, L1

Table 4.1: List of patients and samples in AML, BRCA, and LSCC cohorts. Two tumor
samples were obtained and sequenced from each patient. Dx - diagnostic sample, Rx -
relapse sample, P1 - primary tumor sample, L1 - lymph node metastasis sample, F -
female, M - male.

34



Paweł Kuś

Patient ID sample Purity [%] molecular subtype
G30 L1 90.00 HER2+
G30 P1 90.00 HER2+
G31 L1 95.00 HER2+
G31 P1 80.00 HER2+
G32 L1 85.00 TNBC
G32 P1 80.00 TNBC
G35 L1 90.00 TNBC
G35 P1 90.00 TNBC
G40 L1 90.00 Luminal A
G40 P1 90.00 Luminal A
G45 L1 90.00 Luminal A
G45 P1 90.00 Luminal A
G46 L1 95.00 Luminal A
G46 P1 95.00 Luminal A
G48 L1 90.00 Luminal A
G48 P1 85.00 Luminal A

Table 4.2: Histopathological estimates of tumor purity in BRCA cohort. P1 - primary
tumor sample, L1 - lymph node metastasis sample

(Table 4.2) and indicated high purity of tumor samples.

Acute Myleoid Leukaemia Cohort

Acute Myleoid Leukaemia dataset was obtained from the published study of Shlush
[107]. Cohort includes 11 leukaemia patients, including 7 men and 4 women, from whom
total number of 33 samples was collected, 3 samples per each patient: one sample at the
diagnosis, one sample at relapse, and one control sample. All samples were subjected to
whole genome sequencing, with the average sequencing depth of 100x. Sequencing results
were downloaded as GRCh37-aligned BAM files from the EGA (ID: EGAD00001003234).
Data on age and sex of patients in AML cohort was included in Table 4.1.

Bladder Cancer

Bladder Cancer (BLCA) data used in this work was obtained from the laboratory of
Dr. Bogdan Czerniak at the MD Anderson Cancer Center in Houston, TX, and used in
the study by Bondaruk et al. The origin of bladder cancer from mucosal field effect [10].
Two bladder cystectomy specimens no. 19 and 24 were selected to track the development
of bladder cancer from the bladder mucosa, representing the basal and luminal tumors,
respectively. Both specimens were opened along the anterior wall and divided into 1 x 2
cm areas of the mucosa, which were classified into four groups: the normal urothelium
(NU), the low-grade intraurothelial neoplasia (LGIN), high-grade intraurothelial neoplasia
(HGIN), and urothelial carcinoma (UC). Selected regions were subjected to multi-omic
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experiments, including WXS, RNA sequencing, whole-genome methylation array hybrid-
ization, and whole genome polymorphism-based copy number analysis. In this work, we
utilize the WXS data. Counts of samples subjected to WXS, divided by patient, molecular
subtype, and sample classification, are presented in Table 4.3.

patient ID molecular subtype group # samples
map19 basal NU 9
map19 basal LGIN 16
map19 basal HGIN 2
map19 basal UC 2
map24 luminal NU 22
map24 luminal LGIN 10
map24 luminal HGIN 2
map24 luminal UC 3

Table 4.3: Counts of sequenced samples in BLCA cohort by patient, molecular subtype,
and sample classification.

4.2 Methods

4.2.1 Processing of NGS data

BRCA and LSCC cohorts. Quality control was conducted using FastQC and FastQ
Screen. Raw reads were aligned to the GRCh38 reference genome using the BWA-MEM
(v0.7.17) [78] in the alternative contigs aware mode.

AML, BRCA, and LSCC cohorts. All aligned reads were processed using MarkDu-
plicates algorithm from the Picard tool set and BaseRecalibrator which is a part of the
Genome Analysis Toolkit (GATK v4.2.6.1) [29]. Somatic mutations were identified using
MuTect2 (v4.2.6.1) [29] based on tumor-normal sample pairs. Variants were filtered using
GATK’s FilterMutectCalls based on MuTect2 results, as well as sample contamination es-
timates obtained using CalculateContamination tool and read orientation bias statistics
obtained with LearnReadOrientationModel tool. The retained variants were annotated
using Variant Effect Predictor (v107) [84]. Finally, we filtered out the lowest-coverage
variants, whose coverage did not exceed 10 reads in any sample (18.5k variants, 2.16% of
all variants).

BLCA cohort. All the BLCA cohort analyses in this thesis used the VCF files with
sets of SNVs and Indels used in the paper of Bondaruk et al. [10]. The process of NGS raw
data processing was similar to our pipeline described above: raw reads were aligned to the
GRCh38 genome using BWA-MEM (v0.7.12), GATK and Mutect2 (v3.4.46) were used
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to prepare the BAM files and for variant calling, and Oncotator (v1.8.0.0) was used to
annotate the variants. Finally, we filtered out the variants covered by less than 25 reads.

4.2.2 Statistical analysis

Statistical analyses included in the thesis and described in the sections below were
conducted in R v4.2.1 and Python v3.10.9.

4.2.3 Intra-Tumor Heterogeneity (ITH) measure

Intra-tumor heterogeneity (ITH) in AML, BRCA, and LSCC cohorts was assessed
using the Jaccard Index (JI). JI equals to the number of elements in the intersection of
two sets divided by the number elements in their union. For each patient, we calculated
JI using the sets of variants detected in the pair of tumor samples obtained from the
patient. The index is, therefore, negatively correlated with the ITH; the lower the index,
the higher ITH.

4.2.4 MOBSTER model fitting

MOBSTER models were fitted using MOBSTER package v1.0.0 with the default para-
meters. The auto_setup option was left unset in order to conduct a more exhaustive
analysis compared to the alternative, ’FAST’ auto-setup option.

4.2.5 cevomod model fitting

We implemented our model fitting approaches in an R package cevomod (see more
details in Section 4.4.1). Methods to fit two types of models were implemented: in the first
model, we assume the neutral shape of the power-law component (α = 2) and use Williams
M(f) ∼ 1/f statistics to find the optimum mutation rate. In the second model, we use an
optimization algorithm to fit both parameters: α and the mutation rate. Both methods
are robust to the incompleteness of the neutral tail data due to variant filtration. Proving
the presence of selection requires the rejection of the hypothesis of neutral evolution. For
this reason, we fit the power-law components and binomial components sequentially. The
power-law components are fitted first, maximizing their contribution to the model. Then,
the binomial components are fitted to the residuals of the power-law components. Details
on fitting the power-law and binomial components are presented in Sections 4.2.6, 4.2.7,
and 4.2.8.
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(a) cevomod fits M(f) ∼ 1/f relationship with a number of linear models in order to detect the
minimal slope of the line.

(b) Identified minimum effective mutation rates can be used to calculate the power-law-
distributed neutral tails in the VAF spectra.

Figure 4.1: Neutral model fitting in cevomod

4.2.6 Fitting neutral power-law component with cevomod

In the first type of models, the power coefficient α of the power-law component equals
2, and only the mutation rate µ needs to be estimated:

y(f) ∼ µ

f 2

Williams et al. have shown that this parameter equals the slope of the linear relationship
between the M(f) - number of mutations with VAF higher than f and the reciprocal of
f [130]. In models with selection, this relationship is not linear, but (1) the slope of the
curve at 1/f corresponds to the µ of a power-law component tangent to the VAF spectra
at frequency f , and (2) the minimum slope of the M(f) ∼ 1/f corresponds to µ of the
power-law component that does not detach from the spectra at any VAF. It is, therefore,
the upper limit of µ, maximizing the contribution of the power-law component in the
model. µ higher than in (2) results in intervals of VAF with fewer mutations than the
model predicts.

In cevomod, we use principle (2) to fit the maximal potential power-law component to
the spectra. The model is fitted in a few steps:

1. Shrink the VAF spectra by removal of 5% of variants from both ends of the spectra.
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This excludes from the process the lowest VAFs, at which most mutations were lost
due to insufficient variant support, and the highest VAFs, where the VAF spectrum
is nearly flat due to the low count of variants.

2. Calculate the M(f) ∼ 1/f statistic for discrete f values rounded to two decimal
places

3. Fit linear models to 0.05-wide sections of the statistic

4. Filter out the non-linear fits with R2 < 0.98

5. Pick the model with the smallest slope, which is the final estimate of the µ

6. Power-law curves are calculated using the formula:

y(f) = A

f 2

where A = µ
n
and n is the number of bins in the spectrum, equal to the median

coverage of variants in the sample

Examples of the final linear M(f) ∼ 1/f fits with the corresponding power-law fits
are shown the Figure 4.1.

4.2.7 Fitting the models with the best-fitting power coefficient

In our second type of models, the power coefficient α is also optimized, so the power-
law component is described by:

y(f) = A

fα

We designed an optimization-based approach that finds both optimal parameters simul-
taneously, despite the dropout of low-frequency mutations. The optimization follows the
three rules:

• the power-law can predict fewer mutations than exist in the VAF spectrum since
it does not model the clones and subclones, but the count of low-VAF mutations
(neutral tail) under the power-law curve is maximized

• the counts of mutations in the spectrum after the first peak (the neutral tail peak)
constitute the upper bound for the power-law predictions. The power-law component
cannot predict more mutations than we observe in the data, but

• the power-law curve should ignore the deficiency of variants before the first peak
since they are largely lost during variant filtration

We prepare the data in two steps. First, we shrink the VAF spectra to cut off the bins
separated from the main body of the spectrum by more than 2 empty bins (the bin is
considered as ’empty’ if it contains less than 1% of mutations of the highest peak). These
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bins usually result from the data’s noisiness or loss of heterozygosity. Then, we smooth
the spectrum using the stats::filter() function with a vector of weights ‘c(1/3, 1/3, 1/3)‘.

Next, the process of optimization is run multiple times using the stats::optim() function
with the ’control’ parameter set by default to ‘list(maxit = 1000, ndeps = c(0.1, 0.01))‘,
a grid of initial α and A values: ‘c(0.8, 1.2, 1.8, 2.5, 3.5)‘ for α and ‘c(1, 2, 4, 8, 16,
32)‘ for A, and the minimized performance function equal to −I, where I is the difference
between the mutation count reward (MCR) and the spectrum detach penalty (SDP).

I = MCR − SDP (4.1)

The reward component of I is responsible for pushing the curve up and maximization
of the number of mutations in the spectrum that lie under the power-law curve between
the boundary index values imin and imax:

MCR =
imax∑

i=imin

min
(
Si, yi

)
(4.2)

where:
i - index of bin in the VAF spectrum
Si - number of mutations in the i-th bin of spectrum
yi - value of the power-law component for the i-th bin

and

imin = max

min i : yi ≤ Si

arg maxi Si

and

imax = min

i : fi < 0.4

number of bins in the spectrum

The second component of I, the detach penalty, minimizes the number of mutations
predicted by the power-law component, but not observed in the data. In other words, it
does not allow the curve to detach significantly from the spectrum. It is defined as:

SDP =
N∑

i=imin

[
|yi − Si| · wi

]

where:
i - index of bin in the VAF spectrum
N - number of bins in the VAF spectrum
Si - number of mutations in the i-th bin of spectrum
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yi - value of the power-law component for the i-th bin
wi - weight of the penalty for the i-th bin, equal to 0 if yi < Si, and to the length of the
detached segment of y otherwise

and

imin = max

min{i : yi ≤ Si}

arg maxi Si

This definition of the SDP allows the curve to detach from the spectrum on specific
bins, but as the length of the detached segment increases, the penalty grows dramatically.
Finally, the solution with the minimal I is marked as the best one, and all the solutions
are stored in the cevodata object.

4.2.8 Fitting the binomial components

In cevomod, binomial components for clonal and subclonal variants are fitted to the
positive part of the power-law model residuals. We implemented two methods for fitting
the binomial components. By default, we randomly subsample the SNVs and Indels in each
spectrum bin to the number given by the power-law component residual. Then, we employ
the BMix package [18] to fit the VAF distribution of these variants with a mixture of 1
to 3 binomial distributions (clone plus subclones), accounting for the variant’s sequencing
depth. The best model is selected based on the Bayesian Information Criterium (BIC).

In an alternative, approximate method, we generate artificial vector VAF values ac-
cording to the power-law component residuals. We then use a more popular mclust package
[103] to cluster them into 1 to 3 clones using Gaussian model-based clustering. Then, the
binomial components are constructed using the number of variants in each cluster, their
mean VAFs, and the median sequencing coverage of true variants with a given VAF. Fi-
nally, we remove the solutions with overlapping subclones and select the best one using
BIC. Although this alternative method works approximately 3-4 times faster, the cluster-
ing step relies on the Gaussian distributions instead of the binomial ones and it does not
use the true sequencing depths, resulting in a more approximate outcome. Therefore, we
recommend using the default method for more accurate results.

4.2.9 Plotting

Most of the figures included in this thesis were prepared using R v4.2.1 and the follow-
ing packages: ggplot2 v3.4.0 [128], patchwork v1.1.2 [97], and cowplot v1.1.1. Heatmaps,
including the oncoplot, were plotted using ComplexHeatmap v2.12.1 [44]. p-values from
the statistical tests were annotated using ggpubr v0.5.0 [60]. A number of functions to
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plot VAF spectra, model fits and residuals are included in our package cevomod described
in details in section 4.4.1.

4.3 Mutation rate changes and the power-law expo-
nent

It can be shown that the growing mutation rate results in the increased α coefficient of
the power-law component. Consider an exponentially growing population with a growth
rate λ, an initial mutation rate µ, and all mutations being neutral. Let M(t) represent
the number of mutations that have occurred up to time t. We assume that the rate at
which mutations accumulate, M ′(t), depends on the population size with an additional
coefficient κ:

M ′(t) = µλN(t)κ (4.3)

where N(t) is the population size at time t, and κ ∈ (0, ∞). The size of the population
at time t is given by:

N(t) = eλt (4.4)

Combining 4.3 and 4.4:

M ′(t) = µλeλκt (4.5)

Since all mutations are neutral, variant frequency f is constant and is equal to the recip-
rocal of the population size at the moment when the mutation occurred:

f = e−λtf (4.6)

which leads to:

tf = − ln(f)/λ (4.7)

Number of variants with frequency greater than f is equal to the integral of M ′(t) from
0 to tf :

M(tf ) =
∫ tf

0
M ′(t)dt = µλ

∫ tf

0
eλκtdt = µ

κ

(
eλκtf − 1

)
(4.8)

By substituting equation 4.7 into equation 4.8, we get:

M(f) = µ

κ

(
f−κ − 1

)
(4.9)
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Finally, we can derive the equation 4.9 and obtain the formula for frequency spectrum:

X(f) = µ

fκ+1 (4.10)

When κ = 1 (mutation accumulation rate does not depend on N(t)), equation 4.10 is
consistent with Williams [130] and Durrett [37].

4.4 Software developed

4.4.1 cevomod

The modeling approach proposed in the thesis has been implemented in the R package
cevomod, a shortcut for the Cancer Evolutionary Models. The package can be easily
installed from its GitHub repository at https://github.com/pawelqs/cevomod.

cevomod works with objects of cevodata class, which can store the data on the cohort
of samples, as well as cevomod analysis results. Keeping the data on many samples in a
specific object rather than in a list of single-sample objects facilitates conducting larger
studies of cohorts of samples. cevomod internally iterates over the samples if needed, and
uses vectorized R functions where possible, which is much faster than classic loop-based
approach. In addition, we implemented plotting methods which are cohort-oriented and
allow the user to easily compare the results between samples and groups of samples.

All the data in the cevodata object are stored in tibbles, re-implementation of classic
R data frames provided by package tibble. Internally, each cevodata object is a list (as all
S3 class implementations in R) and its main components are:

• metadata - tibble that associates sample IDs to patient IDs and contains all the
metadata on patients (such as sex, age, or molecular subtype of the tumor) and
samples (such as purity estimations),

• SNVs - list of tibbles containing SNVs and Indels. cevodata can store variants called
by multiple variant callers and easily switch between different sets of mutations,

• CNVs - list of tibbles containing CNVs. Similarly to SNVs, cevodata can store and
switch between CNV calls from multiple CNV callers,

• models - list of tibbles describing the models fitted by cevomod, but also interme-
diate sample descriptors used by cevomod: VAF spectra, M(f) 1/f statistics and
cumulative tails counts,

• misc - list of tibbles used by cevomod to store for e.g. the model residuals

The user interface of cevomod was inspired by the tidyverse R packages ecosystem
and is pipe-oriented. Most functions accept the cevodata as the first argument and return
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modified cevodata. This convention allows building pipelines, for e.g., to compose the
cevodata object by adding new data components step by step:

library(cevomod)

cd <- i n i t _ cevodata (name = "AML cohort", cance r = "AML") |>
add_SNVs( snv s _ t b l , name = "Mutect2") |>
add_SNVs( snv s _ tb l 2 , name = "Strelka") |>
add_CNVs( cnvs _ t b l , name = "FACETS") |>
add_ p a t i e n t _ data ( c l i n i c a l _ data ) |>
add_ sample _ data ( sample _ p u r i t i e s )

Listing 4.1: cevodata object construction

When all data components are added, models can be fitted:

cd <- cd |>
# calc optimum number of bins in the spectra
p r epa r e _SNVs() |>
# fit models
f i t _ w i l l i a m s _ n e u t r a l _ models () |>
f i t _ s u b c l o n e s ()

Listing 4.2: Fitting cevomod models

cevomod implements many methods supporting the analysis of cancer evolution, includ-
ing the model fitting approaches described in Sections 4.2.6, 4.2.7, and 4.2.8. Results
can be plotted using one of many implemented data visualization functions, such as the
plot_models() function. Most plotting functions return a standard ggplot2 object, which
can be easily adjusted and modified:

plot_ models (cd) +
# color spectra by added metadata , e.g. cohort
aes ( f i l l = coho r t ) +
# customize labels
l a b s (title = "Neutral model fits for sample XYZ")

Listing 4.3: Plotting cevomod models

In addition, we implemented basic data-transforming methods in cevomod:

• filter() method which allows to filter the cevodata object and to narrow it to the sub-
set of samples based on sample-metadata. filter method works in dplyr-like manner,
treating cevodata object as it were an usual tibble,
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• merge() method to merge multiple cevodata objects into one,

• split_by() method to split the object into the list of cevodata objects

Detailed documentation on package functions and all cevomod functionalities is avail-
able at https://pawelqs.github.io/cevomod.

4.5 Implemented workflows

Efficient execution of genomic analyses requires the building of scalable processing
workflows and pipelines that facilitate the management of the processes and the data.
Two popular frameworks for such purpose are Snakemake [90] and Nextflow [33]. Both
tools allow to easily compose numerous programs (sequence aligners, quality control tools,
mutation callers, etc.) into fully automated workflows, which can be quickly run on the
new batches of the data or re-run on the entire set of data if needed. Workflow management
systems (WMS) support running jobs on High-Performance Computing (HPC) clusters via
workload managers, for example, SLURM [134]. Moreover, workflow management systems
provide additional error-control mechanisms (for example, the processes that failed can
be re-run with the allocation of additional resources) and support containerization with
environments like Docker [86] or Apptainer [67] (formerly known as Singularity), which
greatly improves science reproducibility.

For the purpose of scalable and reproducible research, all the computationally ex-
tensive tasks have been implemented as workflows and run on HPC Ziemowit [54]. All
workflows were implemented in Snakemake, which is a Python-based framework and does
not require knowledge of any other language. Snakemake can be easily installed as a Py-
thon package with package managers, such as Conda or its faster replacement Mamba
[81]. During our work on this thesis we have created the following workflows:

• Preprocessing workflow - we use this workflow to preprocess the NGS data. It uses
the FastQC tools and MultiQC for quality control, BWA-mem for reads alignment,
and finally, samtools and GATK to prepare aligned-BAM files for variant calling.

• Mutect2 workflow - This workflow implements the GATK Best Practices workflow
for Somatic short variant discovery (SNVs + Indels) [15] using Mutect2 [29]. It starts
with the analysis-ready BAM files from the preprocessing workflow and results in
VCF files containing the filtered list of short variants annotated with VEP [84].

These workflows, along with other workflows for the analysis of clonal tumor structure and
RNAseq data analysis, used in our other studies based on the NGS data [68, 76, 122, 57],
are available via the GitHub repository at www.github.com/pawelqs/ngs_workflows.
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Chapter 5

Results

This chapter of the thesis consists of two main parts. Section 5.1 describes combined
studies of the evolution of metastatic breast (BRCA) and laryngeal (LSCC) cancers, and
recurrent acute myeloid leukaemia (AML). The BRCA and LSCC analysis is based on
mostly unpublished data from our own study (4 samples of the cohort were used as an
example in the paper by Kurpas and Kimmel [66]), whereas the AML analysis uses the
published data from the study by Shlush et al. [107]. Section 5.2 describes the results of
the investigation of bladder cancer evolution from the mucosal field effect. This ongoing
study is being conducted in collaboration with Dr. Bogdan Czerniak’s group at the MD
Anderson Cancer Center in Houston, USA, and makes use of published [10] data sequenced
by the group.
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5.1 Evolution of metastatic breast and larynx cancers
and recurring leukaemia

Breast cancer (BRCA) is the most common cancer type in the world, with 2.26 million
new cases in 2020 almost exclusively in women (over 12% of all new cancer cases and 25%
of all new cancer cases in women) [16, 133]. In the same year, it was the cause of nearly
700 000 deaths, making it the fifth most deadly cancer type. Most breast cancers cases
are hormone-dependent and they usually express one or more hormone receptors: estrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor
2 (HER2). For this reason, the common molecular classification of breast cancers divides
them into 4 groups/subtypes based on the status of the receptors: luminal A - presence of
ER and PR receptors, luminal B - presence of ER and sometimes PR or HER2 receptors,
HER2+ - overexpression of HER2 only, and triple-negative breast cancer (TNBC) - also
called basal-like, characterised by the absence of all 3 receptors (Table 5.1). Hormone-
independent TNBC, although considered more aggressive than other subtypes, is rare,
comprising only 15% of all breast cancers [96].

Molecular Subtype ER status PR status HER2 status
Luminal A positive positive negative
Luminal B positive some cases negative
HER2+ negative negative positive
Triple negative (TNBC) negative negative negative

Table 5.1: Molecular subtypes of BRCA based on the status of hormone receptors. Positive
status - receptor present, negative status - receptor absent. Based on [96]

Laryngeal squamous cell carcinoma (LSCC) is a type of head and neck squamous
cell cancers (HNSC) which usually begin in the squamous epithelial cells of the mucosal
surfaces of the head and neck. LSCC occurs approximately 5-times more often in males
than females, and the main risk factors for LSCC are alcohol consumption and tobacco
smoking. Although the LSCC incidence has declined significantly in Europe during the
last 30 years, it has grown globally [93], resulting in over 180 000 new cases in 2020 (con-
tributing 1% of all new cancer cases) [133]. Both BRCA and LSCC share similar origin
from the epithelial cells. Also, both BRCA and HNSC in general, show high mRNA signa-
tures of Epithelial–Mesenchymal Transition (EMT) [41], a mechanism that may support
cancers metastasis. To study the evolution and metastasis of BRCA and LSCC, we per-
formed the WXS of the data from 15 BRCA patients and 12 LSCC patients (see Section
4.1).

Acute leukaemia contributes 40% of all leukaemia cases in Poland, and 70% of these
are diagnosed as acute myleoid leukaemia (AML) [104]. In the United States, AML is the
second most common subtype of leukaemia after the chronic lymphocytic leukaemia. AML
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Figure 5.1: Sequencing coverage of SNVs and Indels across samples in all cohorts: AML
(WGS), BRCA (WXS) and LSCC (WXS).

results from the clonal expansion of myeloid progenitor cells associated with the impaired
hematopoietic stem cells differentiation and is often preceded by the clonal haematopoiesis
[56]. AML is an example of cancer that fits the cancer stem cells model of evolution. To
investigate the mechanisms of relapse evolution in AML we utilize the data published by
Shlush et al. in 2017 [107]. The dataset consists of WGS results of 22 samples obtained
from 11 patients at two time points: diagnosis and relapse (see Section 4.1).

5.1.1 Data overview

Variant Allele Frequency Spectra

After WES results for BRCA, LSCC, and AML cohorts were processed as described
in Section 4.2.1, we calculated the Variant Allele Frequency Spectra for all the samples
in cohorts. The expected sequencing coverage of 100x was not achieved in many samples,
and median coverage of SNV and Indel variants varied from 25 (primary tumor sample
of patient G04) to 74 (lymph node metastasis sample of patient L15) (Fig. 5.1). The
resolution of VAF depends on the number of reads covering the variant; thus, variants with
low coverage introduce additional noise during the binarization of VAF spectra (which
is related to the aliasing phenomena). For this reason, we limited the number of bins in
the calculated VAF spectra to the median coverage of variants in each sample. This step
limited the noise in samples with low coverage and allowed us to fully utilize the resolution
achieved in samples sequenced to a greater depth.

We observed two distinct shapes of VAF spectra in the data: bimodal spectra pre-
dominant among AML samples and unimodal spectra in BRCA/LSCC samples (fig. 5.2).
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Figure 5.2: Variant Allele Frequency (VAF) spectra. While BRCA and LSCC spectra were
unimodal and neutral-like, most of AML samples showed bimodal shape of spectra with
clear clonal peaks. × - mutations in cancer driver genes (according to Bailey et al. [7]).
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Binomial spectra of the majority of AML samples (all but: A-2_Rx, A-9_Dx, and A-
9_Rx, A-12_Dx) contained clear high-frequency peaks of clonal mutations, shared by
cancer cells in the sample. The allelic frequency of those peaks, oscillating around 0.5,
suggests 100% purity of the samples (0% contamination of the tumor by normal cells).
Low-frequency peaks of the bimodal spectra, as well as the peaks of the unimodal dis-
tributions, were positively skewed with the longer right tails. It is consistent with the
concept of power-law shaped neutral tails, described in the literature [37, 130, 18]. The
neutral tails contain mostly neutral mutations and/or mutations present in small sub-
clones, indistinguishable from the neutral mutations due to low selection advantage or
young age, both resulting in low cellular prevalence [113]. We identified numerous muta-
tions in known cancer-driver genes in the low-VAF peaks of BRCA and LSCC tumors,
which may indicate the presence of such subclones (fig. 5.2). Variants with the lowest
VAFs are typically underrepresented in the spectra compared to the theoretical power-
law predictions, which can result from the filtering applied by variant callers that remove
variants with insufficient support in the sequencing results [34]. The filtering process can
lead to the complete loss of the neutral tails and unimodal distribution of VAF spectra.
However, the spectra containing only the clonal mutations should have a binomial shape.
The power-law-like shape of spectra in the BRCA and LSCC cohorts indicates the mostly
neutral origin of these mutations, a small number of clonal mutations, and the absence of
previous selective sweeps.

Tumor Mutational Burden

Next, we estimated the Tumor Mutational Burden (TMB, the total number of muta-
tions detected in the sample) for all samples (Fig. 5.3). TMB was the highest in AML
(WGS data, mean: 23,312 variants per sample, SD: 48,036), intermediate for LSCC (WXS
data, mean: 6550 variants per sample, SD: 3217), and lowest for BRCA (mean: 6195 vari-
ants per sample, SD: 4107). The median TMB per megabase of exome was equal to 1.04
in AML, 4.98 in BRCA, and 8.37 in LSCC, within the ranges reported in the literature
[58]. The differences between the mean TMB in primary samples (diagnosis or primary
tumor) and secondary samples (relapse of lymph node metastasis) were not statistically
significant (paired t-test, Fig. 5.3b). The TMB of the primary and secondary samples was
significantly correlated (Fig. 5.3c): Pearson coefficient of correlation was equal to 0.74 in
AML samples (p-value: 9.65 × 10−3), 0.87 in BRCA (p-value: 3.13 × 10−5), and 0.94 in
LSCC (p-value: 4.74×10−6). Although the changes in TMB were not common, there were
particular patients in which the changes were substantial, such as patients A-4 and A-9
in the AML cohort, in which the TMB increased 3-fold and 6-fold, respectively, or A-12,
in which the TMB decreased more than 4-fold (Fig 5.3b).
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Figure 5.3: Tumor Mutational Burden (TMB) in AML, BRCA, and LSCC cohorts, cal-
culated as the total number of mutations detected in the sample. All the p-values in (b)
were > 0.05 (paired t-test). TMB in primary and secondary tumor samples is strongly
correlated (c). Pearson coefficients of correlation: AML: 0.74, BRCA: 0.87, LSCC: 0.94.
All the p-values � 0.001.

Intra-tumor heterogeneity

We assessed the intra-tumor heterogeneity (ITH) using the Jaccard index. While the
index is a similarity measure, it is inversely related to ITH; a lower index indicates higher
ITH. For patients from BRCA and LSCC cohorts, Jaccard index values varied between
0.37 to 0.65, meaning that both tumor samples shared from 37 to 65 percent of all identi-
fied mutations. Jaccard index varied much more in the AML cohort: from 0.16 in patient
A-4 to 0.98 in patient A-1, meaning that both A-1 samples contained a nearly identical set
of variants (Fig. 5.4). The extreme similarity of the diagnostic and relapse samples in this
patient has already been noted by Shlush et al. in the original study [107], in which they
believe that the dominant clone must have survived the chemotherapy and regenerated
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Figure 5.4: Genetic similarity between pairs of samples measured using Jaccard Index.
ITH negatively correlates with the index: lower index values mean the higher tumor
heterogeneity.

upon relapse. Mean values of the Jaccard index were 0.63 in AML (SD: 0.27), 0.52 in
BRCA (SD: 0.07), and 0.53 in LSCC (SD: 0.07).

5.1.2 Mutations in Cancer Driver Genes

We used a list of cancer driver genes from Bailey et al. [7] to analyze the patterns of
driver mutations in the data. For each cohort, we prepared a list of cancer driver genes
consisting of all confirmed Pan-Cancer driver genes and both confirmed and supposed
cancer-type specific driver genes. Then we filtered the lists of SNVs and Indels for variants
with high or moderate impact (as predicted by VEP tool) in the selected driver genes.
We also used the genecards.org database to annotate the functions of the most frequently
mutated cancer driver genes.

The most commonly mutated driver genes in the AML cohort were associated with the
regulation of haematopoiesis (FLT3, mutated in 5/11 patients, PTPN11, 4/11 patients),
cell proliferation (NPM1, also mutated in 5/11 patients), and metabolism and energy
production (IDH2, 3/11 patients) (Fig. 5.6). Interestingly, in 5 samples, we did not identify
any high- or moderate-impact mutations in the analyzed known cancer driver genes. These
samples included both samples from patients A-9 and A-11 and a diagnostic sample from
patient A-4 (Fig. 5.5).

In the BRCA cohort, the most often mutated driver genes were involved in cellular po-
larization mechanisms (FAT1, mutated in 8/15 patients), methylation processes (KMT2C
and KMT2D, mutated in 8/15 and 6/15 patients, respectively), regulation of WNT signal-
ing pathway (APC, mutated in 7/15 patients), DNA damage response (BRCA1 and TP53,
in 7/15 and 6/15 patients, respectively), chromatin remodeling (ATRX, 6/15 patients),
Ras signal transduction pathway (NF1, 6/15 patients), PIK3K pathway (PIK3CA, 6/15
patients), and splicing mechanism (SF3B1, in 6/15 patients).
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Figure 5.5: Landscape of mutations in Pan-Cancer and cancer-type specific cancer driver
genes.

The most commonly mutated driver genes among LSCC patients were KMT2D (8/12
patients), FAT1 and TP53 (both mutated in 7/12 patients), NOTCH1 (mutated in 6/12
patients, involved in cell differentiation and proliferation), APC and HUWE1 (both mutated
in 5/12 patients).

The numbers of mutations in driver genes varied from 0 to 10 in AML (median: 6),
from 7 to 60 in BRCA (median: 17), and from 8 to 45 in LSCC (median: 27.5). In general,
most of the driver mutations were present in both tumor samples (Fig. 5.7), and muta-
tions present in the only single sample were more often detected in the primary samples
(diagnostic/primary tumor) rather than in the secondary ones (relapse, metastasis).
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Figure 5.6: The most commonly mutated driver genes in AML, BRCA and LSCC cohorts.

Figure 5.7: Numbers driver mutations detected in both tumor samples, only in primary
samples (diagnostic/primary tumor), and only in secondary samples (relapse/lymph node
metastasis).

5.1.3 Evolutionary parameters under exponential growth model

MOBSTER models

We used the MOBSTER package [18] to fit models to all 76 samples in our 3 cohorts.
We found that MOBSTER was unable to correctly identify the neutral tails in our data
(Fig. 5.8 and 5.9), which is necessary for the estimation of the evolutionary parameters.
BRCA and LSCC samples were, in general, fitted with the uni-clonal models consisting
of singular binomial peaks. AML models usually consisted of the main clone (denoted as
C1 in the figure, red) and one or two subclones (denoted as C2, blue, and C3, green) (Fig.
5.8).

MOBSTER identified the neutral tails in 9 of 22 AML samples, 4 of 30 BRCA samples,
and 1 of 24 LSCC samples. However, the neutral tails were only fitted correctly in 3 of
these samples (both samples from patient A-1 and the diagnostic sample of A-4). Fractions
of the neutral tail mutations ranged from 22% to 40% in these samples, but were typically
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Figure 5.8: Summary of the MOBSTER fits. Mixing proportions correspond to fractions
of variants classified as Neutral tail, clonal (C1), or subclonal (C2, C3). Not many models
contained the Neutral tail component; most BRCA/LSCCmodels were uni-clonal, without
a neutral tail nor subclones, and most AML samples were fitted with bi- or tri-clonal
models.

below 10% in others. Median contributions of the neutral tail mutations in samples where
the tails were fitted were equal to 14% in AML, 6% in BRCA, and 2% in LSCC samples.
The shapes of these neutral tails did not match the true shapes of low-frequency peaks
of spectra, and the numbers of the neutral tail mutations were clearly underestimated
(Fig. 5.9a). Next, we found that all the three-clone models were erroneously inflating
the number of clones (Fig. 5.9b). Low-frequency variants were assigned to the additional
subclonal component instead of contributing to the neutral tails. Also, variants with VAFs
close to 1.0, presumably due to loss-of-heterozygosity, resulted in an improper recognition
of the clonal cluster in a few samples.

Because MOBSTER failed to properly identify neutral tails in both WGS and WXS
data due to insufficient numbers of neutral tail variants, we developed a new model fitting
approach robust to the lack of low-frequency variants and implemented it in an R package
cevomod [69].

Fitting cevomod models

Using our approach described in Methods (Sections 4.2.6 and 4.2.8), we successfully
fitted the power-law binomial models to the spectra of all samples in our cohorts despite
the lack of many low-frequency variants (Fig. 5.10). Unlike in MOBSTER, most of the
mutations in the low-frequency spectra peaks could be explained by the power-law neutral
tail components. Only in 3 cases (relapse samples of patients A-3, A-4, and A-9) the power-
law curves seemed to underestimate the true neutral tails, and most of the low-frequency
mutations were above the neutral power-law curve. In most cases, the distributions of the
surplus mutations were properly approximated using one or two binomial distributions.
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(a) MOBSTER models with the highest contribution of the neutral tail mutations. Neutral tail
contributions (white) were underestimated in all samples but one (A-4_Dx).

(b) MOBSTER models with the three clones. The third binomial component results from the
nonrecognition of the neutral tail. In some cases, the presence of the variants with the loss-of-
heterozygosity resulted in bad recognition of the clonal component.

Figure 5.9: Selected MOBSTER model fits. MOBSTER failed to correctly fit the neutral
tail components, or overestimated the true number of clones in the several samples.

Mutation contributions of model components

We observed large variability in the contributions of the neutral tail and clonal or
subclonal variants to the total mutational burden.

In the AML cohort, the contribution of the neutral tail variants varied from 6% in
the relapse sample from patient A-4 up to 81% in the diagnostic sample of A-6 (Fig.
5.11a). In the 3 relapse samples (from patients A-3, A-4, and A-9), in which the neutral
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Figure 5.10: cevomod models with neutral power-law tails and subclones.
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(a) Mutational contributions of model components in all cohorts.

(b) Comparison of mutational contributions of neutral tail, clonal and subclonal components
in the primary and secondary tumor samples. AML relapse samples tend to have increased
contribution of subclonal mutations, and decreased contribution of the neutral tail mutations,
compared to the diagnosis samples. We did not observe any trends in other cohorts. p-values:
t-test.

(c) Numbers of models with and without subclones in cohorts. Proportions were compared using
z-test, all the p-values were greater than 0.05.

Figure 5.11: Mutational contributions and clonality across AML, BRCA, and LSCC co-
horts
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components were underestimated (Fig. 5.10), most of the neutral tail variants were fit-
ted with additional binomial distributions. In these samples, contributions of subclonal
variants are likely overestimated. Interestingly, in one of these samples (relapse sample of
A-9), the subclonal component contained 36445 low-frequency variants, compared to 31
high-frequency variants of the clonal component. We pay more attention to these samples
in Section 5.1.4, in which we fit the second type of model, with the α coefficient optimized
for each sample.

In the BRCA and LSCC cohorts, with the clear high-frequency peak of clonal variants
absent, neutral tails contributed to a higher proportion of variants than in AML samples.
In most samples, they contributed 70% - 98% of all variants, with only 3 samples below
this range: both samples from patient G46 and a lymph node metastasis sample of G32.

We compared the mutational contributions of the neutral tail, clonal, and subclonal
components of the models in the primary (diagnostic or primary tumor) and secondary
(relapse or metastatic) tumor samples using the t-test (Fig. 5.11b). Relapse samples in
the AML cohort contained more subclonal mutations compared to the diagnostic samples
and slightly fewer neutral tail/clonal mutations. In BRCA and LSCC cohorts, model
component contributions were similar in both primary tumor and lymph node metastasis
samples.

Subclonal composition of primary and secondary samples

We also compared the numbers of uni-clonal and multi-clonal models in the primary
and secondary tumor samples (Fig. 5.11c). The p-values from z-tests of proportions were
close to 1 for all 3 cohorts. Almost all models in the AML cohort were multi-clonal,
except for 2 diagnostic samples (from patients A-6 and A-9). Uni-clonal models prevailed
in BRCA and LSCC cohorts, with only 1 multi-clonal fit among BRCA primary tumor
samples and 2 multi-clonal fits in the BRCA lymph nodes. In the LSCC cohort, there
were 4 multi-clonal fits among the primary tumor samples and 3 multi-clonal fits among
the lymph node metastasis samples.

Proportions of the detected and undetected mutations

At low frequencies, the number of variants estimated by the power-law fits (consistent
with the estimated reduced mutation rates) differs significantly from the number of vari-
ants detected due to filtering applied by variant callers. We used our model fits to compare
the theoretical and real numbers of variants with a VAF greater than 0.01 and found that
the average numbers of mutations predicted by the models were approximately 4 times
higher than the numbers of the mutations detected (Fig. 5.12). The undetected mutations
contributed, on average, 62% of all predicted mutations (SD: 16%), but there were out-
liers in the AML cohort, with the fraction of undetected mutations as small as 10% in the
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Figure 5.12: Estimated proportions of detected and undetected mutations with VAF
higher than 0.01. According to our model, the numbers of undetected variants (or filtered
out in variant calling) in are up to 4 times higher than the numbers of the detected ones.

relapse sample from patient A-4. Notably, the lowest proportions of undetected variants
were predicted in samples with the most inaccurate fits: relapse samples of patients A-4
and A-9. The proportion of undetected mutations was usually higher in samples with
more accurate fits.

Estimated mutation rates

We detected over 10-fold variability in the estimated effective mutation rates [130]
(MR, average number of mutations per successful cell division) in the samples (Fig. 5.13a).
Minimum MR values in all the cohorts were smaller than 100 (lymph node sample of
G46: 25, primary tumor sample of L20: 48, diagnostic sample of A-11: 61), median varied
around 150 (AML: 122, BRCA: 121, LSCC: 160), and the maximum values were close to
500 or exceeded it (A-12, diagnostic sample: 1014, G04, lymph node sample: 717, L05,
lymph node sample: 485). Average values of MR, scaled by the genome size, were about
5.98 × 10−8 in AML, 6.8 × 10−8 in BRCA, and 6.06 × 10−8 in LSCC. This is one order of
magnitude higher than the somatic mutation rate in normal human cells reported by [87]
(10−9).

Mean values of MR were similar in the primary (diagnosis or primary tumor samples)
and the secondary tumors (relapse or lymph node metastasis) in all cohorts (Fig. 5.13a,
right panel). The p-values from the paired t-test were all greater than 0.05 (AML: 0.49,
BRCA: 0.81, LSCC: 0.3). However, relative differences between the primary and secondary
samples were significant in many patients (Fig. 5.13b). The highest increases of MR in
secondary samples compared to the primary ones were noted in patients L05 (+151%),
G30 (+91%), and A-2(+88%). On the other side of the spectrum, the most significant
decreases in MR occurred in patients A-12 (-93%), G47 (-49%), A-11 (-46%), and L16 (-
45%). There was no predominant direction of MR change in the AML and BRCA cohorts,
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(a) Estimated mutation rates in all samples. Means of MR in primary and secondary samples
were compared using the paired t-test. ns: p > 0.05.

(b) Left: Relative changes in the mutation rates in the secondary samples compared to the
primary samples. Dashed line shows the mean relative change in the cohort. Right: Correlation
of MR in primary and secondary samples. Patient A-12 (the left-most point) was omitted when
fitting the linear trend lines.

Figure 5.13: Mutation rates under the model of exponential growth model. Mutation
rates were calculated using Williams’s formula [130] and cevomod approach (see Methods,
section 4.2.6).

but upward changes prevailed among the LSCC samples, with an average 19.6% increase
in the lymph node metastasis, compared to the primary tumor sample.

Evolutionary parameters of the subclones

We used the equations described in Section 3.3.7 to calculate the selection coefficients
and the emergence times of the identified subclones.

In multi-clonal samples, we estimated these evolutionary parameters for all the identi-
fied subclones but not for the clonal peaks, which may have the highest cellular prevalence
but do not signify an ongoing selection in the tumor. In monoclonal BRCA and LSCC
samples, we assumed that the only identified binomial cluster is subclonal rather than
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Figure 5.14: Evolutionary parameters of subclones in AML, BRCA, and LSCC cohorts.
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Figure 5.15: Correlations of the evolutionary parameters. Numbers above the diagonal
represent the values of the Pearson correlation coefficient. *** - p < 0.001, ** - p < 0.01,
* - p < 0.05, . - p < 0.1

clonal - the low mean allelic frequencies of mutations in that clones support this as-
sumption. In the AML cohort, characterized by high purity, we assumed that the clonal
components in monoclonal models were truly clonal. Accordingly, we did not calculate
the evolutionary parameters for these clones (diagnostic samples from patients A-6 and
A-9).

For the so-defined subclonal components, we estimated the subclone emergence times
relative to the tumor age and the selection coefficients. We identified 4 outlying subclones
with estimated selection coefficients much below. These included 3 relapse AML samples
from patients A-3, A-4, and A-9, in which we previously recognized the power-law com-
ponents to be inaccurate and the mutation rates underestimated (Fig. 5.10). In these
samples, the selection coefficients were equal to -2.55 (A-3_Rx), -1.1 (A-4_Rx), and -
1.11 (A-9_Rx). The last outlier was found in the lymph node metastasis sample from
patient G46, with the selection coefficient equal to -5.17. Also, the estimated emergence
times were out of the expected range of values in those samples, exceeding the calculated
tumor age: in relapse samples of A-3, A-4, and A-9, the subclones emerged after 52, 331,
and 295 tumor population doublings (tpd), respectively. In the lymph node sample of G46
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the estimated emergence time was equal to 40 tpd. However, the estimated tumor age at
the time of sequencing was approximately 33 tpd in all these cases. We excluded all these
4 outliers from the further analysis.

Emergence times. In all other samples, the scaled subclonal emergence times were up
to 0.6 of the total tumor age. (Fig. 5.14). In all the cohorts, the minimal emergence time
was similar: 0.01 in BRCA (primary tumor in G41), 0.02 in LSCC (lymph node metastasis
in L05), and 0.04 in AML (relapse sample of A-10). The latest subclones emerged at time
0.61 in AML and BRCA (relapse sample of A-12, and primary tumor of G46, respectively)
and 0.24 in LSCC (primary tumor of L05). The average time of emergence was similar in
BRCA and LSCC (means: 0.13 and 0.11; SD: 0.12 and 0.05, respectively) and two times
higher in AML (mean: 0.22, SD: 0.16).

In BRCA and LSCC, nearly all clones emerged not later than at time 0.2 tumor age,
and the times were similar in both primary tumor and lymph node metastasis samples.
In AML, in each patient, we found a subclone that emerged after that time-point in one
sample and a subclone much younger in another one. Old subclones were equally frequent
in both diagnostic and relapse groups of samples, and the times in both samples of the
same patient were highly discordant.

We used the t-test to compare the average emergence times in the primary and sec-
ondary samples, but none of the p-values were smaller than 0.2 (Fig. 5.14).

Selection coefficients. The estimates of selection coefficients were strongly correlated
with the estimated times of emergence (Pearson coefficient of correlation: 0.94, p-value
< 2.2 × 10−16). The minimal values oscillated around 0 in all cohorts, and the highest
values were: 1.35 in AML (relapse sample of A-12), 1.38 in BRCA (primary tumor sample
of G46), and 0.2 in LSCC (primary tumor sample of L05). 2 subclones in the BRCA
cohort and 5 in AML cohort showed the selection coefficient higher than 0.25.

For BRCA and LSCC, the selection coefficients were similar in both patient samples.
For AML, we again observed the significant differences between the samples, but without
an increasing trend in either the diagnostic or relapse samples. We tested for the signific-
ance of the selection coefficient differences between the primary and secondary samples,
but all the p-values were above 0.3 (Fig. 5.14).

Subclone frequencies. In all cohorts, the majority of subclones contributed to up to
25% of the cells. However, we identified the individual outliers in all cohorts: in AML,
both samples from patient A-1 had subclones that contributed to approximately 50% of
the tumor cells; in BRCA, a primary tumor sample from patient G45 had a subclone
contributing 59% of the tumor, and in LSCC, patient L19 had subclones contributing
more than 75% of all tumor cells in both of his samples.
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Subclonal frequencies were comparable between the primary and secondary samples
(t-test, Fig. 5.14).

Frequencies of subclonal cells were negatively correlated with the fractions of subclonal
mutations (Pearson coefficient of corelation (r): -0.359; p: 0.0017) and with the emergence
time (r: -0.258; p: 0.02663) (Fig. 5.15).

Mutations in subclones. Subclones usually had 5% to 25% of all mutations in the
tumor, with two much higher values observed in the BRCA cohort: subclones in the
primary tumor sample of G46 and lymph node metastasis of G32 had 40% and 35% of all
mutations, respectively. Fractions of mutations in subclones were similar in the patient’s
primary and secondary samples in BRCA and LSCC cohorts but showed high variability
in patients in the AML cohort. We also did not observe any significant difference between
the mean fractions of subclonal mutation between the primary and secondary samples
across the patients (t-test, Fig. 5.14).

The fraction of mutations in subclones was correlated with the subclone frequency
(negatively, r: -0.36, p: 0.0016), selection coefficient (r: 0.68, p < 3.1 · 410−11) and emer-
gence time (r: 0.79, p < 2.2 · 10−11). However, no correlation was observed between the
fraction of mutations in subclones and the mutation rate(Fig. 5.15).

5.1.4 Optimization of the power-law exponent.

In some samples, including the relapse samples of patients A-3, A-4, and A-9, the
neutral tail slopes were, particularly step, and the power-law components with exponents
α equal to 2 did not fit the data correctly. Tung and Durrett have demonstrated that
the competition between the micro-clones, indistinguishable from the power-law neutral
tail, may alter the shape of the neutral tail, decreasing its power-law exponent [120]. To
investigate the samples with inaccurate power-law fits and seek the examples of selectively
advantageous micro-clones described by Tung and Durrett, we fitted new models to the
data, in which the power-law exponents α were optimized to fit the data best.

We fitted the models without any boundary restrictions for the α values and observed
common deviations of α from the expected value of 2. Approximately half of the AML
and LSCC samples showed a downward deviation of α, possibly pointing to the ongoing
selection between the two types of cells (Fig. 5.17). However, α values greater than 2 were
also common in these cohorts and prevailed in the BRCA cohort, possibly indicating the
violation of the model assumptions, such as non-exponential tumor growth or changing
mutation rate. In Section 4.3, we present a mathematical explanation of how the non-
constant mutation rate can increase or decrease α.

3 samples had the optimum α values surprisingly high: relapse samples of patients A-4
and A-9, and lymph node metastasis sample from patient G41, where α varied between 3

66



Paweł Kuś

Figure 5.16: Model fits with optimized power-law exponents α.
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(a) α coefficients of the optimized model fits. Left: α values by sample, Right: α values by cohort
and sample type. While many AML and LSCC samples shows signs of selection (α < 2), it is
rare in BRCA. α coefficients greater than two were more common that α less than 2.

(b) Comparison of the α values between the primary and secondary tumor samples. Left: Dif-
ferences between the α in the secondary and primary tumor samples. Right: α in secondary
sample versus α in the primary tumor sample. Pearson correlation coefficients: 0.89 (AML),
0.18 (BRCA), and 0.88 (LSCC).

Figure 5.17: α coefficients of the optimized model fits.

and 5. The new, optimized models fit the data much more accurately than the previous
models from Section 5.1.3 (Fig. 5.18).

Interestingly, the α coefficients were often higher in the secondary samples (relapse of
metastases) than in the primary ones (primary tumors or diagnostic samples) (Fig. 5.17b,
left). α values in the primary and secondary tumor samples were correlated in AML and
LSCC cohorts, with the Pearson coefficient of correlation equal to 0.89 in AML, 0.18 in
BRCA, and 0.88 in LSCC (Fig. 5.17b, right).
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Figure 5.18: Comparison of the models with high and low optimum α values with the
models based on the power-law exponent equal to 2 from Section 5.1.3.

5.1.5 Comparison of runtimes

We measured the times needed to fit the models to all samples in AML, BRCA,
and LSCC cohorts. cevomod fitting methods were an order of magnitude faster than
MOBSTER with auto_setup=”FAST” pre-configuration and 2 orders of magnitude faster
than MOBSTER with the default setup. The mean runtime for cevomod models was 3
seconds, compared to 37 seconds in fast MOBSTER setup and nearly 5 minutes in the
default mode. cevomod was even faster when the alternative, approximate method of
binomial model fitting was used, with a mean runtime of 1.3 seconds.

5.1.6 Discussion

To investigate the evolutionary dynamics of cancer during metastasis and recurrence,
we studied the results of bulk DNA sequencing data from 38 patients representing 3 cancer
types: 11 patients with acute myeloid leukaemia (AML), 15 patients with breast cancer
(BRCA), and 12 patients with laryngeal cancer (LSCC). We analyzed the total number of
76 tumor samples, 2 per patient. In the AML cohort, we used the whole genome sequencing
data published by Shlush [107]. This dataset included the diagnostic and relapse time
points data, which we used to analyze the evolutionary dynamics in recurrent tumors.
In BRCA and LSCC cohorts, the data included the whole exome sequencing results of
2 samples from the same time point: the primary tumor sample and the lymph node
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Figure 5.19: Runtimes of cevomod and MOBSTER. cevomod performs an order of mag-
nitude faster than MOBSTER with the fast pre-configuration. Using an approximate
method of fitting subclones, the mean runtime of cevomod was 1.3 seconds per sample.

metastasis.
We observed the bimodal Variant Allele Frequency (VAF) spectra predominant among

the AML samples and unimodal spectra in BRCA and LSCC cohorts. The binomial shape
of the high-VAF peaks in the AML cohort is consistent with the random-sampling-like
nature of DNA sequencing (see Section 3.2.2). VAF values oscillating around 0.5 indicate
that these peaks contain the clonal mutations present in all cancer cells. The shape of the
BRCA and LSCC spectra and the low-VAF peaks in AML samples was more power-low-
like, compatible with the neutral tail models described by Durrett [37], Williams [130,
131], and others. The absence of clear clonal peaks may indicate the low number of true
clonal mutations, the lack of previous selective sweeps, and the predominance of neutral
evolution in these samples. The presence of mutations in known cancer driver genes at
high VAF in many of these samples is in line with the high histopathology estimates of
tumors’ purities.

Values of Tumor Mutational Burden (TMB) per megabase were higher in the analyzed
samples than reported in some other studies. Median TMB per Mb was equal to 1, 5, and
8, in AML, BRCA, and LSCC, respectively, compared to 0.3, 1, and 3 in these tumor
types reported by Kandoth [58]. The differences between our results and the results of
Kadoth might result from different variant calling and filtering methods applied; differ-
ences between the tumor types were preserved, though. TMB was similar in the primary
and secondary tumor samples in most patients. There were only 3 AML patients in which

70



Paweł Kuś

TBM significantly differed in the relapse sample; in 2 cases increased, and in 1 case de-
creased. In these patients, only about 25% variants were shared by both samples, contrary
to 40% to 60% in most other patients.

Mutation rates

We were not able to model our data using the well-known R package MOBSTER due
to the insufficient number of neutral tail variants. Caravagna et al. [18] recommend using
MOBSTER with WGS data with a sequencing depth of at least 100x. However, MOB-
STER failed not only to fit the neutral tail components in BRCA and LSCC WXS but
also in the WGS AML cohort. For this reason, we developed our own package, cevomod,
for fitting the mixture of power-law and binomial components to the incomplete data, in
which many neutral tail mutations were lost. cevomod successfully fitted the power-law
and binomial components and estimated the evolutionary parameters in all our samples.

In BRCA and LSCC, the neutral tails contributed to about 75% of all mutations. In
the AML cohort, this fraction varied between 25% and 75%, whereas the remaining 75%
to 25% variants contributed to clonal peaks. However, we showed that the true counts
of neutral tail variants were underestimated due to filtering applied by variant calling
algorithms. The numbers of neutral tail variants predicted by the power-law component
of the model were up to 4 times higher than the number of detected variants in these
components, even in the WGS data.

The estimated mutation rates per effective cell division (MR) varied significantly
within the cohorts, from approximately 50 mutations per effective cell division in all
3 cohorts, up to 500 in LSCC, 700 in BRCA, and 1000 in AML. Mean values of MR per
base were similar in all cohorts: 5.98×10−8 in AML, 6.8×10−8 in BRCA, and 6.06×10−8

in LSCC. It is an order of magnitude higher than the somatic mutation rate in normal
human cells according to [87] (10−9 per bp), but lower than the MR in normal human
lymphocytes (5-24 ×10−8 per bp), and in the malignant lymphocytes (5.3 - 66 ×10−7 per
bp) reported by Seshadri [105]. We did not observe the 100-fold difference in MR between
AML and BRCA reported by Williams (AML: 10−9, BRCA: 10−7) [131]; however, the
AML cohort consisted of the WGS data from 100% tumor-pure samples, and BRCA data
originated from WXS of 80-90% tumor-pure samples, which might affect the analysis. For
this reason, caution is needed when comparing the AML results with the other cohorts.
[110]

Although the overall MR values were similar in the groups of primary and second-
ary tumor samples, we identified significant differences between these samples in many
patients. In most patients, the MR in the secondary tumor sample changed from -50%
(2-fold decrease) to +100% (2-fold increase) compared to the primary tumor sample. Only
in two patients were these limits exceeded: in one AML patient, we observed a 90% drop
of MR in the relapse sample, and in one LSCC patient, a 150% increase of MR in the
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lymph node metastasis. In AML and BRCA, there was no predominant direction of MR
change, but in LSCC, upward changes prevailed.

Evolutionary parameters of subclones

In nearly all samples, the low-frequency peaks were fitted with the mixture of power-
law and binomial components, indicating the deviation from the truly neutral shape of the
tail. The mean fraction of the subclonal variants was increased in relapse AML samples
compared to the diagnostic samples. Using the equations from Williams et al. [131], we
calculated the emergence times and selection coefficients for all the subclones.

In BRCA and LSCC, subclones in most samples emerged early, during the first 20% of
tumor volume doublings. The selection coefficients associated with these subclones were
low, exceeding 0.2 only in two samples. BRCA and LSCC samples also lacked the clear
clonal peaks. Both these observations indicate a close-to-neutral evolution of these cancers,
with short variants (SNVs and Indels) providing a limited selective advantage. In such
tumors, selective sweeps might be rare or not occurring at all. Tumors with the subclonal
selection coefficients closest to 0 may undergo a punctuated cancer evolution, in which
all crucial genomic events occur early and are followed by a neutral-like evolution of the
growing population. This type of evolution was recently identified in colorectal cancers
[110]. Single-cell DNA sequencing studies, such as [39], show that the punctuated evolution
followed by the stable tumor expansion may correctly describe the evolution of CNV in
breast cancers. Tumors with subclonal selective coefficients closer to 0.2 and lacking the
clonal peaks might have been sequenced before the first selective sweep occurred. The
simulation study of Bozic et al. [11] shows that drivers’ frequencies in small tumors (107

cells) are strongly biased towards 0, indicating that selective sweeps have not occurred yet.
In BRCA and LSCC cohorts, we indeed observed numerous mutations in known cancer
driver genes at frequencies between 0 and 0.1. It supports the thesis that these tumors
might not have been sufficiently large and have not anticipated the selective sweep yet.

In the AML cohort, the emergence times of subclones varied significantly, and the
latest subclones emerged after approximately 60% of all tumor volume doublings. The
selection coefficients were higher in these samples, and the presence of clear clonal com-
ponents indicated past selective sweeps. However, in some samples, the slopes of the
neutral tails were too steep to be approximated by the power-law exponent equal to 2. In
these samples, the power-law components were not fitted accurately, underestimating the
mutation rate and overestimating the fraction of subclonal variants. Consequently, the
subclone emergence times and the selection coefficients might have been overestimated.
In some samples, the subclone emergence times were 10-fold greater than the estimated
tumor age. For this reason, we developed another model in which the power-law exponent
is optimized to fit the data most accurately.
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Theoretical and actual power-law exponents

Tung and Durrett demonstrated that the presence of the selectively advantageous
micro-clones results in the power-law exponent alpha less than 2 [120]. We found that
in approximately half of the AML and LSCC samples, the optimum α was less than 2.
However, we have also observed optimum α values greater than 2, which were common in
AML and LSCC cohorts, and predominant in the BRCA cohort. These unexpected values
of α indicate that the model assumptions, such as the exponential population growth or
the constant mutation rate, might often be violated in the actual data. In Section 4.3, we
showed how the changing mutation rate during the cancer progression alters the power-
law exponent. Interestingly, we found that most secondary tumors (relapse samples and
lymph node metastases) had α increased compared to the primary tumors (diagnostic
and primary tumor samples). It might indicate that the increase of the mutation rate
might be even faster, or the selectively advantageous micro-clones might be less common
in secondary tumors. Determining which of these phenomena indeed alters the power-law
exponent is hard using bulk DNA sequencing, which cannot distinguish rare subclones
[113]. We further explore these phenomena in Section 5.2.4.

cevomod R package

We implemented our model fitting approaches in an R package cevomod. The package
can be installed from its GitHub repository at https://github.com/pawelqs/cevomod,
and the detailed documentation of the most recent version is available at https://
pawelqs.github.io/cevomod/. cevomod can quickly fit the mixtures of the power-law
and binomial components to the whole exome sequencing data or low-coverage data, in
which the neutral tails are severely incomplete. It allows one to select between two types
of models, a ’neutral’ model with the power-law exponent equal to 2 and the ’optimized’
model, in which the power-law exponent is fitted to the data as well.
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5.2 Evolution of Bladder cancer from mucosal field
effects

Bladder Cancer (BLCA) is epithelial cancer that develops in the epithelial tissue lining
the interior of the urinary bladder, known as urothelium. Urothelium forms a barrier
between the urine and the underlying tissues, exposing it to various metabolic products
and environmental factors, many of which are oncogenic. Most BLCA cases are induced
by chemical carcinogens, such as those found in tobacco smoke [27]. The carcinogens,
along with chronic infections, can induce changes in the bladder mucosa (a field effect),
leading to the development of cancer.

Recent development in the research on BLCA let to distinguish two main molecular
subtypes of BLCA, which differ in their expression signature, clinical behaviors and, as
the research shows, originate from different progenitor cells [27, 45]. The luminal subtype
expresses a signature of the luminal cells which line the lumen of the bladder (such as
uroplakins, CK20, or CK18), and it was shown to originate from the more differentiated
luminal progenitor cells and the luminal field effect. Similarly, the basal subtype expresses
the genes which characterize the basal cells that form the basal membrane of the urothe-
lium (such as KRT, KRT14, or CD44). This subtype originates from the less differentiated
basal progenitor cells and is induced by the basal field effect [27].

Based on the experimental results from the laboratory of Dr. Bogdan Czerniak at the
MD Anderson Cancer Center in Houston, TX, we investigated the origins of BLCA. The
results were published in the paper by Bondaruk et al. The origin of bladder cancer from
mucosal field effect [10].

Paragraph Transcriptomic and DNA methylation analysis of this Section, and para-
graphs Mutational landscape, Mutations’ ages and selection coefficients, and Mutational
signatures of dormant and progressive phase mutations of Section 5.2.1 summarize the
results of Bondaruk et al. [10]. Paragraph Mutational signatures of dormant and progress-
ive phase mutations describes my contribution to the paper. Other parts of this Section
are new analyses not used in the paper.

Transcriptomic and DNA methylation analysis. It was found that the dysreg-
ulation of mRNA expression and changes in DNA methylation were widespread in the
mucosal effects, whereas the mutational changes were numerous but usually restricted
to the particular fields of the maps. In particular, the process of luminal differentiation
was altered but maintained during the progression of luminal cancer in map 24. In basal
map 19, the differentiation process was clearly suppressed, but the genes associated with
the epithelial-mesenchymal transition, such as the target genes of TGFB1 or TP53, were
activated. It is consistent with the previous findings that EMT is an important factor in
the development of basal cancer [45].
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Figure 5.20: Map of analyzed BLCA specimens. Source: Bondaruk et al. The origin of
bladder cancer from mucosal field effect [10], Figure S2, panel A, on Creative Commons
Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) license.

5.2.1 Mutational landscape of the maps.

Driver mutations in the maps. Using WXS data, numerous mutations were detec-
ted in all samples of the mucosa. Nearly all samples, including the NU and LGIN, had
mutations in known cancer driver genes (Fig. 5.21). In most NU/LGIN samples, these
mutations had VAFs up to 0.2, except for samples H7 and G6 in map24, which had driver
mutations at VAFs comparable to HGIN and UC samples. Most of the driver mutations
were restricted to particular samples of the maps, and only a few were spread across many
fields of the map: 18 in map 19 and 7 in map 24. Interestingly, we observed 4 different
spread patterns in the basal map 19: mutation in RHOA gene was detected in two non-
adjacent fields in the upper part of the map; mutations in ELF3, KMT2D, and RHOB
were present in adjacent fields at the bottom of the map; mutations in TLR4 and NIPBL
were widely spread in non-neighboring fields of the map, and 12 mutations in different
genes were present in HGIN field I6 and one of the UC fields: H8, but not in the other
UC field I10. (Fig. 5.22). None of the analyzed driver mutations from the sample I10
(UC) was spread to other fields of the map. In map 24, 6/7 mutations (in RB1, FBXW7,
BRAF, CDKN1A, APC, and BAP1) showed a similar spread pattern on the right side of
the map. Only one driver mutation (in CACNA1A) was widely spread across other fields
of the map 24.

Mutational landscape. In the mutational landscape of the two maps, 3 groups of vari-
ants we recognized, which were called A, α, and β (Figures 6 and S12 in paper, Bondaruk
et al. [10]). The A group was the most abundant one and contained 1303 out of 1379
nonsynonymous variants in the map24, and 2176 out of 2678 nonsynonymous variants in
map19. Variants in this group were usually restricted to a single sample of the map, and
their allelic frequencies were low, usually below 10%. The α group of variants contained
variants that were spread across the mucosa in all groups of samples (NU, LGIN, HGIN,
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Figure 5.21: Mutations in known cancer driver genes in maps 19 and 24. The ridge plot
shows the densities of mutations with given VAFs. Colors denote the sample classification,
and mutations in the PanCancer and BLCA driver genes (according to Bailey et al. [7]) are
shown with x marks. The size of the mark indicates the impact of mutation: x - missense
mutations, X - nonsense mutations, indels, and mutations in splice-sites and start/stop
codons. Samples were ordered using VAF matrix clusterization. Many NU/LGIN samples
contained one or more mutations in the driver genes. Mutations spread across multiple
samples are joined by lines. Selected spread mutations are labeled in the sample where
the mutation VAF was the highest.

UC); however, their allelic frequencies were still low, similar to the frequencies of muta-
tions in group A. Although the cells with these mutations underwent a clonal expansion,
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Figure 5.22: Spread of mutations in known cancer driver genes (according to Bailey et al.
[7]) across the BLCA maps. Mutations restricted to the particular samples are shown in
black, the spread mutations are marked in colors and shapes, and encircled. In map19, 4
groups of mutations with different spatial patterns are visible, two of them limited to the
NU/LGIN samples. Clonal expansion in the normal-appearing urothelium supports the
thesis of the field effect origins of BLCA. Fields not surrounded by a black frame were
not sequenced.

they also coexisted within the apparently normal urothelium. This group contained 80
mutations in map24 and 43 mutations in map19. The final group β contained variants
that were highly abundant in a subset of samples, including most of the HGIN and UC
samples. These variants were responsible for the final progression of cancer, and at least
some of them must have provided a selective advantage to the cells. This group counted
77 nonsilent variants in map24, and 155 variants in map19.

Mutations’ ages and selection coefficients. In reference [10], an approach was ap-
plied that models the spread of the mutation across the fields of mucosa as a function of
mutation age and its selective advantage. A section of the original paper describing the
modeling process and details is attached in Appendix B. According to the model, the age
of mutations varied from 0 to more than 15 years, with a dramatic increase in the number
of mutations that occurred two years before the cystectomy. For this reason, two phases
in the tumor progression were distinguished: the dormant phase, which started approx-
imately 15 years before the cystectomy, and a progressive phase, which began around 2
years before the cystectomy. Mutations in the progressive phase were characterized by
much higher selection coefficients than these in the dormant phase. It also included all
the β mutations, characterized by high VAFs and presence in the HGIN and UC samples.
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(a) Map 19

(b) Map 24

Figure 5.23: Age and selection coefficients of: all mutations, α and β mutations, and solely
β mutations. Source: Bondaruk et al. The origin of bladder cancer from mucosal field effect
[10], Figure 7H-J and S21H-J, on Creative Commons Attribution – NonCommercial –
NoDerivs (CC BY-NC-ND 4.0) license.

Mutational signatures of dormant and progressive phase mutations. The muta-
tions in the progressive phase were enriched in C>T substitutions and associated with
increased diversity of mutational processes compared to the dormant phase (Fig. 5.24). In
map19 (basal), many mutations were associated with the activity of signatures 1 (aging),
2 (APOBEC activity), 3 (dispaired DNA repair by homologous recombination), 5 (eti-

Figure 5.24: Substitution types (top) and mutational signatures (bottom) of dormant and
progressive phase mutations. Progressive phase mutations are enriched in C>T substitu-
tions.
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(a) TMB values across all samples. p-values: two sample Wilcoxon test.

(b) TMB spread across the maps. gray - no WXS data; LGIN, HGIN and UC fields are labelled
on the map, unlabelled fields - NU.

Figure 5.25: Tumor Mutational Burden across BLCA specimens.

ology unknown), 7 (UV exposure), and 19 (etiology unknown). Activities of signatures 6,
15 (defective DNA mismatch repair), and 12 (etiology unknown) were significantly lower
than in the dormant phase. In map24 (luminal), the activities of signatures 2 (APOBEC
activity), 7 (UV exposure), 11 (alkylating agents), 24 (exposure to aflatoxin), and 30 (eti-
ology unknown) were increased in the progressive phase. Signatures 1 (aging), 3 (dispaired
DNA repair by homologous recombination), 4 (smoking), 6, 26 (both associated with de-
fective DNA mismatch repair), 19 (etiology unknown), and 22 (exposure to aristolochic
acid) were less active than in the dormant phase.

Tumor Mutational Burden Total mutational burden (TMB) was rising progressively,
with median values increasing from 344 and 149 in NU to 941 and 390 in HGIN and 1679
and 791 in UC in maps 19 and 24, respectively (Fig. 5.25a). TMB was consistently higher
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(a) Mutation Rates values across all samples. p-values: Wilcoxon test.

(b) Mutation Rates across the maps. gray - no WXS sequencing data or insufficient number of
mutations; unlabelled fields are normal urothelium (NU).

Figure 5.26: Mutation Rates per cell division across BLCA specimens under the exponen-
tial growth model.

in the basal map 19 compared to the luminal map 24 at each stage of progression. There
was substantial variability of TMB within each group of samples. Both maps contained
NU, LGIN, and HGIN samples with similar TMB values, and at least one NU sample
with greater TMB than at least one UC sample. In map 19, only 1 out of 29 samples
had fewer than 100 detected mutations, in contrast to 15 out of 37 samples in map 24,
which corresponds to a greater bladder area affected by the disease. In map 19, high
TMB was observed even in the most distant NU samples at the bottom of the map (Fig.
5.25b). The most mutated samples, map19_H8 and map24_F8, contained 2758 and 1655,
respectively, which gives approximately 46 and 27 mutations per exome Mb. This value
is within the range of values reported in the literature [58].
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5.2.2 Mutation rates under the exponential growth model

Based on the data described in previous sections, we estimated the mutation rates per
cell division (MR) across the BLCA maps under the neutral-power-law models. We ex-
cluded from the analysis samples with the lowest number of mutations using an arbitrary
threshold of 100 mutations, and fitted the neutral power-law models using cevomod pack-
age and the approach described in Section 4.2.6. Models in 3 samples of map 19 (regions
E5, E6, and I6) were significantly detached from the spectra, resulting in overestimated
MR values. We refitted these models without trimming the highest-frequency variants,
which resulted in improved fits. We also discarded the models of 5 other samples: from
field H8 in map 19 and fields E12, F6, G9, and H9 in map 24, in which we could not
visually detect the true neutral tails and evaluate the correctness of the fits.

Estimated MR values for most samples were in the range of 1 to 20 mutations per cell
division in map 19 and 1 to 10 in map 24 (Fig. 5.26a). Only in two fields: I6 (HGIN) in
map 19 and F8 (UC) in map 24, the MR values were higher: 55 and 36, respectively. In
general, MR values were similarly low in NU and LGIN, high in UC, and highly variable
in HGIN, with the lowest values below the median NU in LGIN, and the highest value
in sample I6 of map 19, mentioned before. MR estimate for this sample was nearly 3
times higher than for the UC field I10. In association with the higher TMB (Fig. 5.25a)
and more remarkable similarity of the driver mutations to the other urothelial cancer
field (H8, Fig. 5.22), it shows that the I6 field is more transformed than I10, despite its
classification by a pathologist as HGIN. It is also worth noting that at least three NU
and LGIN samples in map 19 exhibited higher MR values than UC sample I10. These
samples contributed to a larger area of NU/LGIN fields, located further from the main
UC body, with elevated MR (Fig. 5.26b) and several driver mutations present, which were
not found in the primary UC samples (Fig. 5.22).

5.2.3 Optimization of the power-law exponent.

Next, we checked if the best-fitting power coefficients α of the power-law component
are equal to 2, as predicted under the assumptions of exponential tumor growth, con-
stant mutation rate, and in the absence of selectively advantageous micro-clones. For this
purpose, we used our cevomod package to fit the data with our second type of model,
optimizing both coefficients of the power-law component, A and α. Upon visual evalu-
ation, we excluded 8 fits from the analysis: F5, F7, G13, and H8 in map 19, and D8, E12,
F6, and H9. In these fields, the neutral tails contained too few bins to be unambiguously
fitted with the model containing two parameters. Furthermore, we refined 2 inaccurate
fits in each map. In fields G6 and H7 in map 24, having significant binomial peaks at
intermediate frequencies, the power-law curves were erroneously fitted to the right slopes
of binomial peaks. We refitted the power-law components of these models after truncat-
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(a) α values across all samples. p-value: t-test.

(b) α values across the maps. gray - no WXS sequencing data or insufficient number of mutations;
unlabelled fields are normal urothelium (NU).

Figure 5.27: Optimum α coefficients in second-type models.

ing the spectra above the frequency of 0.15. In samples E5 and F10 in map 19, the fitted
models were detached from the spectra. We refitted these two models with the threshold
under which the bin of the VAF spectrum is considered empty (y_threshold_pct argument
in cevomod) lowered to 0 .

Similarly to the previously analyzed cohorts, the optimum α values frequently deviated
from the value of 2 corresponding to neutrality (Fig. 5.27a). Distinct trends were observed
in both maps: in map 19, the α coefficients more frequently exceeded 2, with an average
value of 2.45 (SD: 0.67). In map 24, the numbers of samples with α values greater and
lower than 2 were similar, but the downward deviations were more significant. An average
α value in map 24 was 1.91 (SD: 0.5). Interestingly, the most significant deviations in both
maps occurred in the intermediate stages of LGIN and HGIN. In map 19, the highest α
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(a) α values and the estimated MR in both types of models. Dark red dots mark the MR
estimates under the neutral-like α = 2; light red dots show the estimates of the initial MR under
the optimum α coefficient, shown by the color of the connector.

(b) MR under the neutral-like model (α = 2) versus the number of mutations in known driver
genes. Shapes show the sample classification and color the optimum α coefficient.

Figure 5.28: Optimum α coefficients versus the mutation rates and driver mutation counts.

value greater than 4 appeared in LGIN sample E5. In map24, the lowest α was below 1 and
appeared in HGIN sample G7. Most of the negative α values in map 24 were concentrated
right to the main UC body (Fig. 5.27b).

5.2.4 Optimum power-law exponent versus the mutation rates
and selection.

As it was shown by Tung [120] and in Section 4.3, α values can be altered by both
the presence of selected micro-clones (downward) and the change of the mutation rate
(any direction) and the distinguishing between these two phenomena is not trivial. The
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positive selection among micro-clones and increasing mutation rate have opposite effects
on α and might leave it unchanged in many samples if these forces are correlated. We used
our experimental data to check what low and high α values are associated with. First, we
found that in models with the optimized α parameters greater than 2, the estimated MR
under the optimum α was significantly lower than in models with the neutral-like α equal
to 2 (Fig. 5.28a). In other words, the greater alpha, the higher MR under the neutral
model, compared to MR under the optimized alpha. Second, we found that samples with
alpha values below 2 were characterized by low MR (according to the neutral-like model)
and an increased number of mutations in driver genes (Fig. 5.28b). Confirming whether
they do represent Tung-Durrett two-type model with selected micro-clones might not be
possible using the bulk sequencing data.

5.2.5 Discussion

Study achievements. In collaboration with the group of Dr. Bogdan Czerniak from
MD Anderson Cancer Center in Houston, US, we studied the evolutionary dynamics in
two whole organ maps representing two distinct molecular subtypes of BLCA. In the
paper by Bondaruk et al. [10], it was shown that molecular changes are widely present in
the normal-appearing bladder mucosa. These changes include altered DNA methylation,
transcriptional reprogramming, and early clonal expansions of urothelial clones bearing
mutations in known cancer driver genes. The presence of the mutations in cancer driver
genes in the normal urothelial tissue was also reported in other studies [50]. We believe
these changes are associated with the so-called mucosal field effect, eventually initiating
cancer growth.

The analysis of the mutational landscape of the two specimens revealed the presence
of 3 groups of mutations: A, α, and β, which present different spread patterns, VAFs,
ages, and selection coefficients. These types of mutations were associated with 2 phases of
the tumor progression: low-frequency A mutations and low-frequency, but spread across
many samples, α mutations drove the dormant phase, which lasted more than 10 years.
Approximately 2 years before the cystectomy, the progressive phase began, driven by β

mutations with a high selective advantage. We have shown that the mutations in the pro-
gressive phase resulted from different mutational processes, including APOBEC activity
in both maps and dispaired homologous recombination in basal map 19.

We used our first-type model with the neutral-like power coefficient to estimate the
mutation rates per cell division (MR) under the model of exponential tumor growth. MR
was increasing with the progression of the disease; however, it was already elevated in
many NU and LGIN samples, especially in the basal map 19. HGIN samples revealed the
greatest variability of MR; in many HGIN samples, MR was comparable to NU/LGIN,
but in sample I6 of map 19, MR was significantly higher than in one of the UC samples,
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I10, in this map. It shows that the morphological appearance of the tissue may not always
directly reflect the molecular state of the cells. Advanced mutational processes may be
highly active even in non-cancerous tissues.

Using our second-type model, we checked how well the spectra followed the expected
power-law shapes of the neutral tail distributions. We found that in many samples, the
optimum power coefficient α deviated from the expected value of 2. The deviation trends
were different in both maps. In map 19, the optimum α coefficient was greater than 2 in
the majority of samples, contrary to map 24, in which the proportions of samples with
α greater and lower than 2 were similar; however, the deviations downward were more
significant. Areas with high and low α formed spatial patterns in both maps, with two
high-α regions in map 19 and one low-α region in map24, which shows that the processes
that altered α were similar in many adjacent regions.

Deviations of α can result from both the incidence of selection among many small
clones and the changes in the mutation rate. Our analysis showed that MR estimates under
the power-law component with α greater than 2 are smaller than the estimates in models
with α fixed and equal to 2. Thus, high alpha can signal high actual MR in the sample. A
downward deviation of α can result from the presence of selectively advantageous micro-
clones [120] however, the MR increase may compensate for the impact of competing
micro-clones (see the Section 4.3). Indeed, a downward deviation was less common than
an upward deviation, and we identified the increase of MR with the progression of the
disease. Low α values were identified in some samples with low MR but a high count of
mutations in cancer driver genes. The ultimate answer if these are the samples with true
competition among micro-clones may be out of reach of the bulk sequencing data analysis
since it does not allow for distinguishing numerous small clones [113].

Fitting the evolutionary models to the data with low mutational burden where neutral
tail, clonal and subclonal components are hard to identify is challenging. Using our cevo-
mod package, we were able to fit the power-law-shaped components to the most spectra
in both maps, despite the very low mutational burden of many NU and LGIN samples.

Limitations. The presented study was limited to the two extensively studied speci-
mens. Thus we cannot state whether the differences between the basal and luminal maps
described in this section are characteristic of these molecular subtypes. Also, this study
outlines the molecular characteristics of bladder cancer progression via the dysplasia car-
cinoma in situ sequence but does not explore its development through the more frequently
observed low-grade papillary pathway. More specimens need to be analyzed to better char-
acterize the progression of basal and luminal bladder cancers.
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Summary

The subject of our study was the evaluation of the role of mutagenesis and selection
in the evolution of cancer genomes. We stated a thesis that Changes in the evolutionary
dynamics of cancer upon metastasis and recurrence can be inferred from the bulk DNA
sequencing data. To prove this thesis, we collected 4 datasets, each including bulk DNA
sequencing data from multiple tumors and multiple samples per tumor. We used two
published datasets: the acute myeloid leukaemia data from the diagnosis and relapse time
points published by Shlush et al. [107] and bladder cancer data from multiple sites of
bladder urothelium with different stages of the disease published by Bondaruk et al. [10].
Two other datasets contained our unpublished data for breast and laryngeal cancers and
included the data from the primary tumors and lymph node metastases.

6.1 Study achievements

cevomod R package. It was shown that the Variant Allele Frequency Spectra of tu-
mor samples can be approximated with a mixture of power-law and binomial compon-
ents, which model the distributions of neutrally occurring variants and variants with
frequencies higher than expected due to the selection [37, 130]. These models can be
used to estimate the evolutionary parameters of cancer evolution. However, the exist-
ing tools are not suitable for the analysis of whole exome sequencing or low-coverage
data due to the insufficient number of low-frequency, neutral tail variants. We developed
a new R package, cevomod, which can model this data despite the incompleteness of
the neutral tail VAF distributions. cevomod can be installed from its GitHub reposit-
ory at https://github.com/pawelqs/cevomod, and its full documentation is available
at https://pawelqs.github.io/cevomod/. cevomod also allows one to choose between
two types of models, a neutral-like one with the power-law exponent equal to 2 and an
optimized model, in which the exponent is optimized to fit the data best. Our package is
fast; the time required to fit the model in one sample rarely exceeds a few seconds.
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Chapter 6. Summary

Evolutionary dynamics in tumor progression, metastasis, and relapse. With
our modeling approach, we were able to fit the population genetics models [37, 18] to our
4 sets of data and to estimate the evolutionary parameters in the primary and secondary
tumor samples. The identified differences in the mutation rates were up to 2-fold in AML
and BRCA, without the predominant direction up or down. In LSCC, the upward changes
were more common, although they were usually not as significant as in the other cohorts.
We detected minor subclones in nearly all samples. Most of them were characterized by
early emergence times, small cellular frequencies, and small selective advantages, especially
in BRCA and LSCC cohorts. Small selection coefficients of these clones and lack of clear
clonal peaks, and strong bias of driver mutations VAFs towards 0 indicated that the
evolution of most of the BRCA and LSCC samples from the tumor initiation to sequencing
could be nearly neutral, and the tumors were sequenced before the first selective sweep
was achieved.

In bladder cancers, we fitted the power-law models to samples with different stages
of disease progression. We found an increase in the tumor mutational burden and the
mutation rate along the progression from normal urothelium samples through intraur-
othelial neoplasia to urothelial cancer. However, the mutation rates were already elevated
in many normal urothelium samples, which were not adjacent to the urothelial cancer
samples. These elevated mutation rates coincided with the expansions of cells with muta-
tions in known cancer driver genes.

Most samples in the AML cohort showed clear peaks of clonal mutations, indicating
the past selective sweeps. In this cohort, we recognized subclones with higher selection
coefficients and later emergence times compared to the BRCA and LSCC cohorts. How-
ever, we also identified samples in which the neutral tail could not be accurately fitted
with the power-law component with an exponent equal to 2. To investigate these cases,
we developed a second model-fitting approach, in which the power-law exponent α is also
fitted to the data.

Optimum exponent coefficients. We optimized the power-law components in all
samples and found common deviations from the theoretical exponent value of 2. In many
samples, we observed the optimum exponent values less than 2, which might indicate
the presence of selectively advantageous micro-clones, described by Tung and Durrett
[120]. However, we discovered that the upward deviations of α were more common than
the downward ones. To explain this phenomenon, we demonstrated that mutation rate
changing during the tumor progression can result in neutral tails with exponent values
different than 2 (Section 4.3). In samples with high α values, the initial mutation rates
estimated by the second-type models were smaller than the mutation of the first-type
models, assuming the constant mutation rates. This observation supports our hypothesis
that increased power-law exponents indicate an increase in the mutation rate. In some
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tumor types, the low α values were associated with low overall mutation rates and a high
number of mutations in known driver genes. Determining whether these samples represent
the selectively advantageous micro-clones of Tung and Durrett [120] might not be possible
with the bulk DNA sequencing data.

In AML, BRCA, and LSCC cohorts, most of the secondary tumors (relapse samples
and lymph node metastases) had α increased compared to the primary tumors (diagnostic
and primary tumor samples). An increase in mutation rate can be supporting in these
samples, accelerating cells’ adaptation [112] in the new environment.

6.2 Conclusion

Using the bulk sequencing data from over 140 samples, we have shown that evolution-
ary parameters of cancer evolution can be estimated from the bulk sequencing data and
that there are quantifiable differences in the evolutionary dynamics of the primary and
secondary tumor samples. We have thus proved our thesis that we stated, that changes in
the evolutionary dynamics of cancer upon metastasis and recurrence can be quantified from
the bulk DNA sequencing data, which was the first goal of this thesis. We have implemen-
ted an R package that can be used by other researchers with the WXS data, completing
our second goal. Finally, we have shown that the assumptions underlying most frequently
used models used to estimate the parameters of tumor evolution may be violated in many
cancers and proposed a mathematical explanation for the observed phenomena, fulfilling
the third goal of the thesis.

6.3 Limitations.

We are aware of some limitations of cevomod and this study.
First, cevomod, contrary to the better-known MOBSTER, does not prove or reject the

hypothesis of neutrality or selection in the tumor. It was shown by Bozic [11], McDonald
[83], that selection not always leaves clear trace in the spectrum. Also, selection is not
a zero-or-one phenomenon, and weak selection might be difficult to distinguish from the
neutrality. For this reason we prefer to report close-to-zero selection coefficients instead
of rejecting the hypothesis of the non-neutral evolution.

Second, in cevomod, the binomial components are fitted to the residuals of the power-
law component. Simultaneous fitting of both components could result a more accurate
fit in some cases. However, we think that it is reasonable to try to explain maximum
variability using the neutral model first, before claiming the presence of selection.

Third, the CNV-based correction of the variant frequencies was not a part of this study.
Copy-number alterations and contamination of sample with the normal cells are known
confunders in the bulk DNA sequencing data [100, 116]. The correction can be performed
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using an approach described by Dentro, Wedge and Van Loo [28] and requires estimates
of tumor purity and allele-specific copy numbers. However, the reliable estimation of
these parameters from the WXS data is challenging, as we have shown in [68]. The purity
estimates by algorithm FACETS [106] were highly discordant with the estimates provided
by histopathologists. We decided not to use these estimates, and excluded variants with
extremely high or low sequencing coverage. Variants most affected by the CNVs are more
likely to fall into those outliers than variants from the diploid regions of the genome.
However, we plan to include the variant frequency correction in cevomod, as we recently
get the shallow whole exome sequencing results for LSCC cohort, and we expect to get
these results for our future studies as well.

Finally, equations underlying our first model are based on the assumptions of expo-
nential tumor growth and constant mutation rate [77]. The exponential growth model was
found true for some breast cancer, [115], but does not necessarily apply to all tumors. In
fact, some other studies identified the logistic or Gompertz models as more accurate for
many tumors. The second assumption of the constant mutation rate is also not always
fulfilled. Our results indicate that a mutation rate increase might be common in cancer.

6.4 Future work

Our study of the evolution of breast and laryngeal cancers finds continuation in our
grant funded by Polish National Science Center, Evolutionary genomics: modeling and
predicting breast and lung cancer progression, no. 2021/41/B/NZ2/04134. In this new
project, we include a new cohort of lung cancer patients in the study and complement
the WXS with shallow whole genome sequencing (sWGS) for reliable detection of copy
number variants. sWGS experiments were recently performed also on the LSCC samples
analyzed in this work.

Our collaboration on studying bladder cancer origins is continued. The actual works
include more specimens: map no. 26 is the subject of the current group study, and samples
from 6 more maps have been recently sequenced. All these specimens were subjected to
multi-omic experiments, including RNA sequencing, proteomic analysis, and deep WXS,
exceeding 300x, of multiple regions of the bladder mucosa. Also, single-cell RNA sequen-
cing experiments were performed to study the role of CAB39L and LPAR6, the forerunner
genes driving the evolution of BLCA along the basal and luminal paths.

There are a few ways of possible cevomod improvements. First, implementing the
CNV-based correction of variant frequencies would allow us to fully utilize the sWGS
data available for our lung and laryngeal datasets. This feature is missing in the current
version of the package. Second, the subclonal structure of tumors could be resolved more
precisely using the information from multi-sample of the same patient. Future releases
could use the clustering algorithms such as PyClone-VI instead of the currently used
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BMix. Third, the implementation of a web application would make cevomod available for
researchers not familiar with R. Such an application could be implemented using a Shiny
framework.
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A Cancer driver genes

Cancer Type Cancer Driver Genes
BLCA oncogene ERBB3, ERCC2, GNA13, RHOB, RXRA, SF1
BLCA possible oncogene DIAPH2, KLF5
BLCA possible tsg ASXL2, ELF3, FOXA1, FOXQ1, TXNIP, ZFP36L1
BLCA tsg SPTAN1
BRCA oncogene CHD4, FOXA1
BRCA possible tsg CBFB, CDKN1B, GATA3, TBX3
BRCA PTPRD
HNSC oncogene MYH9
HNSC possible oncogene KEAP1
HNSC possible tsg CYLD, HUWE1, ZNF750
HNSC tsg FLNA
LAML oncogene FLT3, IDH2, KIT, NPM1, PTPDC1, SMC1A
LAML possible oncogene CEBPA, SMC3
LAML possible tsg PHF6, WT1
LAML tsg ASXL1
LAML EZH2, RAD21, TET2
PANCAN oncogene AKT1, BRAF, CDK4, CTNNB1, CUL1, EGFR,

ERBB2, FGFR2, FGFR3, GNA11, GNAQ, GTF2I,
HRAS, IDH1, KRAS, MAP2K1, MAPK1, MYC,
NFE2L2, NRAS, PCBP1, PIK3CA, PIK3R2,
PPP2R1A, PTPN11, RAC1, RHOA, SF3B1, SOS1,
SPOP, U2AF1

PANCAN tsg AJUBA, APC, ARHGAP35, ARID1A, ARID2,
ATF7IP, ATM, ATRX, AXIN1, BAP1, BCOR,
BRCA1, BRD7, CASP8, CDH1, CDK12, CDKN1A,
CDKN2A, CHD8, CREBBP, CTCF, CTNND1,
CUL3, DDX3X, DNMT3A, EP300, EPHA2, FAT1,
FBXW7, FUBP1, GPS2, HLA-A, HLA-B, IRF2,
JAK1, KANSL1, KDM6A, KMT2A, KMT2B,
KMT2C, KMT2D, MAP2K4, MAP3K1, MGA,
NCOR1, NF1, NF2, NIPBL, NOTCH1, NSD1,
PBRM1, PIK3R1, PSIP1, PTEN, RASA1, RB1,
RBM10, RNF111, RNF43, RPL5, RUNX1, SCAF4,
SETD2, SMAD4, SMARCA1, STAG2, STK11,
TCF12, TGFBR2, THRAP3, TP53, TRAF3, TSC1,
USP9X, VHL

Table 1: Lists of driver genes for cancer types analysed in the thesis. tsg - tumor sup-
pressor gene, PANCAN - Pan-Cancer BLCA - Bladder Urothelial Carcinoma, BRCA -
Breast Cancer, LAML - Acute Myeloid Leukemia, HNSC - Head and neck squamous cell
carcinoma, supertype of LSCC - Larynx Squamous Cell Carcinoma. Source: Bailey et al.
[7]
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B Modeling of bladder cancer evolution from field
effects

This section describes the model used to estimate the mutation ages and selection
coefficients in BLCA cohort, and originates from the paper Bondaruk et al. The origin of
bladder cancer from mucosal field effect [10].

To reconstruct the time of evolution from mucosal field effects to bladder cancer, the
time-continuous Markov branching process with immigration and parsimonious principles
was used [72]. In brief, a mutation j appears at time tj

0 in a progenitor cell of the urinary
bladder urothelial lining and gives rise to a mutant clone. Mutant cells divide at rate λ

(1/year), and after division, one cell enters self-renewal and the other differentiates with
probability 1 − sj or both cells enter self-renewal with probability sj. As a consequence,
the mutant clone grows exponentially as exp(λsjt), where t is the age of the j-th mutant’s
clone counted from tj

0. The secondary clones expand, involving different areas of bladder
mucosa at times tj

i , i ≥ 0 modeled by a stochastic Poisson process with intensity ν

(1/yr) [75]. If the expected cell counts in the successive j-th mutant clones are denoted
by Xj

i (t), i = 0, 1, 2, . . . , and the number of haploid genomes in normal uroprogenitor
cells are denoted by 2N , the corresponding VAFs V j

i (t) are defined as the ratios V j
i (t) =

Xj
i (t)/(2N) and are computed as follows [72]:

E
[
V j

i (t)
]

= exp(λsjt)
(

ν

ν + λsj

)i ∫ (ν+λsj)t

0

ui−1

(i − 1)! exp(−u)du/(2N), i = 0, 1, 2, . . .

For any mutation j of age tj, the sequence of expectations E
[
V j

i (tj)
]

, i = 0, 1, 2, . . . ,

was computed to estimate the coefficients aj = λsjtj and bj = µtj. The coefficient c = 2N

is a constant parameter representing an estimate of the number of uroprogenitor cells in
the sampled area. The computations were performed for 102−105 uroprogenitor cells in the
sampled mucosal area, which did not significantly change the time modeling results, but
the best fit was obtained with 5×103 uroprogenitor cells, for which the data are presented.
With a cell division rate λ and migration rate µ, the parameter bj is the proxy for mutation
age tj, whereas the ratio aj/bj is the proxy for selection coefficient sj. A fitting algorithm
with the optimization programs fminsearch and fminbnd in the MATLAB programming
language was used to estimate the sequence of mutations in tumor development [71, 13,
38]. The resulting time estimates were presented as bar diagrams representing the ages of
mutations and point charts of the corresponding selection coefficients.

100



Paweł Kuś

C Supplementary figures

map24_G6 map24_G7 map24_H11 map24_H6 map24_H7

map24_F11 map24_F8 map24_G10 map24_G12 map24_G5

map24_D6 map24_D8 map24_E11 map24_E8 map24_F10

map19_J8 map19_J9 map24_B7 map24_C6 map24_C7

map19_I10 map19_I5 map19_I6 map19_J6 map19_J7

map19_G12 map19_G13 map19_G5 map19_H11 map19_H5

map19_F5 map19_F7 map19_F9 map19_G10 map19_G11

map19_E7 map19_E9 map19_F10 map19_F11 map19_F12

map19_D7 map19_D9 map19_E11 map19_E5 map19_E6

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

50

100

150

0

50

100

0

50

100

150

200

0

20

40

60

80

0

10

20

30

40

50

0

10

20

30

40

0

10

20

30

40

50

0

10

20

30

0

20

40

0

200

400

0

50

100

150

200

0

25

50

75

100

0

20

40

60

80

0

10

20

30

40

0

20

40

60

0

50

100

0

25

50

75

100

125

0

50

100

150

0

25

50

75

100

0

100

200

300

0

10

20

0

50

100

150

0

200

400

600

0

25

50

75

100

125

0

10

20

30

40

0

10

20

30

0

20

40

60

0

20

40

60

0

50

100

150

200

0

20

40

60

0

50

100

0

20

40

0

20

40

60

0

10

20

30

40

0

100

200

300

0

20

40

60

0

20

40

60

0

20

40

0

10

20

30

0

50

100

150

200

0

50

100

150

200

0

20

40

60

80

0

10

20

30

0

10

20

30

0

50

100

150

VAF

co
un

t

Sample type

NU

LGIN

HGIN

UC

Figure 1: Neutral power-law component (α = 2) fits in the BLCA samples.
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Figure 2: Optimized power-law component (α fitted) fits in the BLCA samples.
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