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Struktura pracy 

 Niniejsza praca składa się z ośmiu rozdziałów i jednego dodatku. Poniżej zamieszczono 

skrócony opis każdego z tych elementów. 

 W pierwszym rozdziale przedstawiono intensywny rozwój metod uczenia 

maszynowego, który sprawił, że w ostatnich latach są one coraz częściej wykorzystywane  

w licznych dziedzinach nauki, w tym w astronomii. Podkreślono rolę małych obserwatoriów  

w akwizycji danych, a także zwrócono uwagę na zagadnienie dopasowania modelu do 

konkretnych zadań. Na sam koniec sformułowano tezę niniejszej pracy. 

 Drugi rozdział opisuje różne typy obserwacji astronomicznych wraz z ich specyfiką, ze 

szczególnym naciskiem na małe obserwatoria naziemne. Wprowadzono w nim pojęcia 

kluczowe do zrozumienia dalszej części pracy. Dodatkowo, wymieniono główne aspekty 

wpływające na jakość pozyskiwanych danych, takie jak zniekształcenie obrazu przez 

turbulentną atmosferę. 

 Przeprowadzone badania koncentrują się na dopasowaniu sieci neuronowych do 

poszczególnych zadań. W trzecim rozdziale wyjaśniono, dlaczego spośród wszystkich metod 

uczenia maszynowego praca skupia się wyłącznie na sieciach neuronowych. Przybliżono przy 

tym zasady ich działania, a także podkreślono wyzwania towarzyszące przystosowaniu ich do 

pracy. Opisano również podstawowe warstwy sieci wykorzystywane w eksperymentach 

rozważanych w kolejnych rozdziałach.  

 Najbardziej intuicyjnym podejściem do wytrenowania sieci neuronowych jest 

zastosowanie uczenia nadzorowanego z wykorzystaniem par obrazów: obraz zaszumiony – 

obraz pozbawiony szumu. W przypadku obserwacji naziemnych niemożliwym jest pozyskanie 

danych drugiego typu. W związku z tym, przeprowadzono badania nad innymi podejściami do 

treningu sieci, w ramach których wykorzystano obrazy monochromatyczne ze zbioru MNIST 

(ang. Modified National Institute of Standards and Technology database). 

 Bazując na wynikach z rozdziału czwartego, dane syntetyczne zastąpiono docelowymi 

obrazami nocnego nieba. Wykorzystane zostały obrazy zarejestrowane z czasem ekspozycji 

500 ms, w oparciu o które przetestowano wybrane architektury sieci neuronowych. Weryfikacji 

poddane zostały podstawowe metryki porównujące jakość obrazów, a następnie porównano 

jakość detekcji gwiazd na przetworzonych obrazach. 
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 Uznanym standardem wykorzystywanym w poprawie obrazów słonecznych jest 

algorytm MFBD (ang. Multi-Frame Blind Deconvolution), który wykorzystuje wiele klatek do 

estymacji stanu Słońca w danym momencie. Rozdział szósty obejmuje badania nad 

wykorzystaniem sieci neuronowych jako podejścia alternatywnego, który umożliwia 

przetwarzanie obrazów niemal w czasie rzeczywistym, podczas gdy metoda MFBD wymaga 

nieraz wielogodzinnych obliczeń. 

 W przemysłowych zastosowaniach sieci neuronowych często stosowaną praktyką jest 

wytrenowanie dużej sieci, a następnie zmniejszenie jej rozmiaru i wymagań, by przystosować 

ją do działania na mniej wymagającym sprzęcie. Siódmy rozdział opisuje badania nad 

wpływem takiej optymalizacji na działanie sieci zaproponowanych w rozdziale szóstym. 

 Ostatni rozdział pracy podsumowuje wyniki przeprowadzonych badań i konfrontuje je 

z postawioną w pierwszym rozdziale tezą badawczą. 

 Część wyników opisanych w niniejszej pracy została zaprezentowana w ramach 

referatów na krajowych i zagranicznych konferencjach, a także opublikowana w formie 

artykułów naukowych. Dodatek do pracy prezentuje listę wystąpień i publikacji  

z wyszczególnieniem, której części badań one dotyczą. 
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1. Wprowadzenie 

 Wyobraźnię ludzi od tysięcy lat rozpalała idea stworzenia sztucznego, posłusznego 

bytu, który będzie w stanie sumiennie i precyzyjnie wykonywać powierzone mu zadania.  

W starożytności marzenie to przybrało postać mitu o Talosie, wykutym przez Hefajstosa 

olbrzymie z brązu, który miał chronić Kretę, codziennie okrążając ją trzy razy. Przez następne 

wieki wizja ta pojawiała się w postaci homunkulusa, Golema czy potwora Frankensteina, by na 

początku XX wieku zaistnieć jako „robot” za sprawą sztuki „Rossumovi Univerzální Roboti” 

Karela Čapka z 1921 roku. W późniejszych latach określenie to utrwaliło się w języku między 

innymi za sprawą Isaaca Asimova i jego Trzech Praw Robotyki, dając początek dyscyplinie, 

jaką jest robotyka. 

 Same próby stworzenia inteligentnej maszyny nie wychodziły jednak daleko poza ramy 

literatury fantastycznonaukowej, aż do opublikowania przez Warrena McCullocha i Waltera 

Pittsa przełomowego artykułu „A Logical Calculus of the Ideas Immanent in Nervous Activity” 

[1] w 1943 roku. Była to pierwsza formalna próba opisania działania mózgu za pomocą logiki 

matematycznej i modelu sieci złożonej ze sztucznych neuronów. Chociaż zaproponowany 

model okazał się z biegiem lat zbyt uproszczony, dał podwaliny na rozwój badań w dziedzinie, 

którą za sprawą Jacka McCarthy’ego nazwano „sztuczną inteligencją” [2]. 

 Do końca lat 60. zeszłego wieku zainteresowanie sztucznymi sieciami neuronowymi 

było ogromne i spodziewano się, że już wkrótce pojawi się maszyna zdolna przejść test 

zaproponowany przez Turinga [3], czyli nie będzie możliwe odróżnienie jej od człowieka 

jedynie poprzez rozmowę. Stosowane wtedy podejścia okazały się jednak niewystarczające do 

stawianych im zadań. Ponadto, nawet najprostsze z nich wymagały znaczących zasobów 

sprzętowych, zazwyczaj przekraczających możliwości ówczesnych komputerów 

dysponujących małą ilością pamięci i niską mocą obliczeniową. Skutkowało to spadkiem 

zainteresowania dziedziną i wstrzymaniem finansowania badań na długie lata. Przez następne 

dekady temat sztucznej inteligencji okresowo wracał do łask, jednakże prawdziwy przełom 

nastąpił dopiero po dłuższej przerwie. 

 W 1965 roku Gordon Moore opisał zjawisko podwajania się liczby tranzystorów  

w układach scalonych w odstępach 18–24 miesięcy przy zachowaniu tej samej ceny [4]. 

Zjawisko to, nazwane prawem Moore’a, znalazło potwierdzenie w praktyce i w okolicy 2000 

roku można było mówić o łatwym dostępie do komputerów wyposażonych we względnie 
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wydajne procesory i pamięć fizyczną. W tym samym czasie na potrzeby komercyjne prężnie 

rozwijano jednostki GPU (ang. Graphics Processing Unit), pierwotnie wykorzystywane 

wyłącznie do obsługi grafiki w grach i aplikacjach. Jednym z punktów zwrotnych  

w zastosowaniu GPU było opracowanie przez firmę NVIDIA w 2006 roku platformy CUDA 

(ang. Compute Unified Device Architecture), która umożliwiła zastosowanie GPU do 

równoległych obliczeń matematycznych. W rezultacie modele sztucznych sieci neuronowych 

mogły być „trenowane”, czyli dostosowywane do stawianych im zadań, znacznie szybciej i na 

większą skalę, co ponownie rozbudziło zapał wielu zespołów badawczych. 

 Za początek trwającego obecnie „renesansu sztucznej inteligencji” najczęściej uznaje 

się wygranie przez sieć AlexNet [5] konkursu „ImageNet Large Scale Visual Recognition 

Challenge” w 2012 roku, co pokazało, że sieci mogą być skuteczne w rozpoznawaniu obrazów. 

Od tego czasu mniej więcej co roku odbywał się swoisty przełom w badaniach nad sieciami 

neuronowymi. W przetwarzaniu obrazów za największe kamienie milowe można uznać 

zaprezentowanie sieci generatywnych typu GAN (ang. Generative Adversarial Network) [6], 

wprowadzenie warstw rezydualnych w ResNet [7], poprawę możliwości segmentacji obiektów 

na obrazie przez Mask R-CNN [8], przetwarzanie obrazów przy pomocy opisu językowego za 

pomocą CLIP [9] i generowanie obrazów na podstawie tekstu przez DALL·E [10]. Równolegle 

postępował rozwój w innych poddziedzinach, przy czym najbardziej znaczącym w ostatnich 

latach okazał się rozwój dużych modeli językowych takich jak BERT [11] czy GPT [12].  

W efekcie, rozwiązania oparte na sztucznej inteligencji znajdują zastosowanie w coraz większej 

liczbie obszarów, spośród których wymienić można wykrywanie nieautoryzowanych transakcji 

bankowych [13], optymalizacje łańcuchów dostaw [14], wykrywanie nowotworów na 

cyfrowych skanach biopsji [15] i wiele innych.  

 Sieci neuronowe odgrywają również coraz większą rolę w licznych pracach 

badawczych związanych z astronomią. Dziedzina ta charakteryzuje się przetwarzaniem danych, 

których ilość rośnie wraz z rozwojem teleskopów i instrumentów obserwacyjnych. W tym 

kontekście sieci neuronowe okazują się bardzo przydatne, oferując możliwości szybkiego 

przetworzenia i automatycznej analizy informacji, dorównując lub przewyższając algorytmy 

deterministyczne względem jakości wyników. Do kluczowych zastosowań tej technologii 

można zaliczyć detekcję obiektów [16][17][18] i ich klasyfikację [19][20][21], które znacząco 

przyspieszają proces katalogowania i interpretacji wyników, a także mogą prowadzić do 

wykrycia nietypowych sygnałów. Dodatkowo, sieci neuronowe skutecznie wspomagają 
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redukcję szumu – potrafią odseparować sygnał rzeczywisty od różnego rodzaju zakłóceń, 

znacznie poprawiając jakość oraz niezawodność pozyskiwanych danych [22][23][24][25].  

 Podejście do wykorzystania tych metod w astronomii skupiło się, w głównej mierze, na 

zastosowaniu ich w teleskopach kosmicznych i teleskopach naziemnych stosowanych przez 

największe obserwatoria. Do przeprowadzanych eksperymentów najczęściej wykorzystuje się 

dane ze zbiorów uzyskiwanych w ramach projektów takich jak SDSS (ang. Sloan Digital Sky 

Survey) [26], TESS (ang. Transiting Exoplanet Survey Satellite) [27] i ZTF (ang. Zwicky 

Transient Facility) [28]. Rola niewielkich teleskopów wraz z odmiennym charakterem 

zbieranych przez nie danych jest w tych badaniach najczęściej pomijana, co jest znaczącym 

niedopatrzeniem.  

 Małe teleskopy astronomiczne uczestniczą w licznych projektach badawczych, 

stanowiąc trzon przygotowań do późniejszych, szerzej realizowanych i bardziej szczegółowych 

badań. Instrumenty te, znacznie liczniej i gęściej rozmieszczone od dużych jednostek 

obserwacyjnych, mogą synchronicznie dostarczać i od razu weryfikować wiedzę o zjawiskach 

przejściowych, takich jak tranzyty planet pozasłonecznych. Dzięki większemu polu widzenia 

są również w stanie na bieżąco monitorować znacznie obszerniejsze części nieba. Ich rola jest 

szczególnie istotna w kontekście otwarcia Obserwatorium im. Very C. Rubin, które zdaniem 

wielu astronomów ma rozpocząć nową erę w astronomii. Jednostka ta ma zbierać dane na 

niespotykaną dotychczas skalę, około 20 terabajtów na dzień. Jednakże nie będzie służyła ona 

do ciągłej obserwacji zjawisk, lecz tylko do ich wykrywania; do szybkich obserwacji najlepiej 

nadadzą się właśnie małe teleskopy, które są w stanie szybko zareagować i monitorować 

interesujące zdarzenia przez kolejne godziny, dni czy tygodnie. 

 Z tego powodu wykorzystanie sieci neuronowych w przetwarzaniu danych  

z niewielkich teleskopów naziemnych stanowi istotny obszar badawczy, który wymaga 

dalszych prac rozwojowych. Rozwiązania stosowane z wykorzystaniem obrazów 

wysokorozdzielczych z dużych teleskopów nie muszą dawać równie dobrych rezultatów, jeżeli 

zostaną wykorzystane na danych z małych teleskopów, gdzie rozdzielczość i jakość sygnału są 

często ograniczone przez sprzęt i warunki obserwacyjne. Zgodnie z twierdzeniem o nieistnieniu 

darmowych obiadów (ang. No Free Lunch Theorem) [29] żaden model nie będzie z założenia 

działał lepiej od pozostałych; jedynie poprzez ocenę działania każdego z nich z użyciem 

docelowych danych można przekonać się, który rzeczywiście wykazuje większą skuteczność. 

W przypadku obrazów niskorozdzielczych oznacza to, że nawet względnie proste sieci 

neuronowe mogą być w stanie osiągnąć zadowalające wyniki. 
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 Zagadnienie to dodatkowo zyskuje na znaczeniu w sytuacjach, gdy zachodzi potrzeba 

przetwarzania danych od razu w miejscu przeprowadzania obserwacji. Małe, zdalnie 

sterowane, teleskopy są często instalowane z dala od miast i źródeł energii elektrycznej.  

W efekcie, podłączane jest do nich zasilanie akumulatorowe, które powinno zapewnić 

względnie długi czas pracy w terenie. Należy zatem zadbać również o efektywność 

energetyczną stosowanych rozwiązań, czyli możliwie zmniejszyć ich złożoność obliczeniową 

lub zwiększyć ich skuteczność. 

 Biorąc pod uwagę opisany aspekt badawczy, została sformułowana teza niniejszej 

pracy: Przetwarzanie obrazów astronomicznych za pomocą sieci neuronowych może 

prowadzić do poprawy jakości pomiarowej (detekcji obiektów, pomiaru ich jasności czy 

położenia) w porównaniu do dotychczas stosowanych algorytmów deterministycznych. 

Dodatkowo, zastosowanie takich rozwiązań może prowadzić do istotnego spadku 

zapotrzebowania na zasoby sprzętowe lub do zwiększenia szybkości przetwarzania 

danych.  

 W ramach pracy, zrealizowano prace badawcze, które można podzielić na cztery części, 

z których każda opisana jest w późniejszych rozdziałach pracy: 

I. Do badań wybrano architektury sieci typu autoenkoder. Ich działanie opiera się na 

kompresji danych wejściowych i ich dekompresji. Zmieniając strukturę sieci, można 

wpływać na poziom tej kompresji, a co za tym idzie – na ilość traconej informacji. 

Uznano, że obecny na obrazach losowy szum można potraktować jako element 

szczegółowy, najtrudniejszy do odtworzenia, a przez to najłatwiejszy do utracenia. 

Założenie to zweryfikowano z użyciem danych syntetycznych ze zbioru MNIST, 

który na potrzeby tego eksperymentu uznano za wystarczający. Równocześnie 

przetestowano wpływ różnych podejść do trenowania sieci na ich wydajność. 

Doświadczenie to było o tyle istotne, że w przypadku danych z teleskopów 

naziemnych nie da się uzyskać idealnych obrazów referencyjnych, czyli 

pozbawionych szumu. W związku z tym należało w pośredni sposób oszacować 

przydatność innych podejść na tle podejścia tradycyjnego, wykorzystującego dane 

niezaszumione.  

II. Na podstawie wyników eksperymentu na danych syntetycznych przeprowadzono 

kolejne eksperymenty, tym razem z wykorzystaniem danych z obrazowania nocnego 

nieba. Do porównania zastosowano powszechnie uznane architektury sieci, które 

były pierwotnie testowane na obrazach wysokorozdzielczych. Porównano wyniki 
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detekcji gwiazd, ich położenia oraz jasności na obrazach oryginalnych oraz na 

obrazach przetworzonych przez sieci neuronowe. 

III. Przeprowadzono badania nad przetwarzaniem serii obrazów słonecznych. Celem 

badań było wyznaczenie wielkości sieci wystarczającej do osiągnięcia rezultatów 

porównywalnych z wynikami działania deterministycznego algorytmu MFBD, 

jednakże w znacznie krótszym, quasi-rzeczywistym czasie. 

IV. W zastosowaniach przemysłowych często stosuje się rozwiązania polegające na 

stworzeniu dobrze działającej dużej sieci, a następnie zredukowaniu jej rozmiaru, 

by mogła zostać uruchomiona na bardziej kompaktowym sprzęcie. Wykorzystując 

sieci przetestowane w przetwarzaniu obrazów Słońca, zweryfikowano wpływ 

techniki przycinania (ang. pruning) sieci na złożoność struktury modeli i ich 

wydajność w porównaniu do sieci oryginalnych. 
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2. Obserwacje astronomiczne w praktyce 

 Obserwacje astronomiczne stanowią szczególny obszar nauki, w którym nie ma 

bezpośredniego dostępu do analizowanych obiektów. W przeciwieństwie do innych dziedzin, 

astronomia opiera się niemal wyłącznie na analizie sygnałów docierających do nas z odległych 

ciał niebieskich głównie pod postacią promieniowania elektromagnetycznego. Z tego powodu 

kluczowe jest zadbanie o prawidłowy odbiór i rejestrację tychże sygnałów. To od jakości  

i precyzji procesu akwizycji danych zależy, jak dużo jesteśmy w stanie dowiedzieć się  

o otaczającym nas Wszechświecie.  

 Proces ten może być realizowany przez różne rodzaje instrumentów obserwacyjnych 

(teleskopy naziemne, teleskopy kosmiczne, radioteleskopy), których praca opisywana jest  

z wykorzystaniem specjalistycznej nomenklatury. Zadaniem tego rozdziału jest przybliżyć 

czytelnikowi dziedzinę astronomii obserwacyjnej w stopniu pozwalającym w pełni zrozumieć 

stojące przed nią wyzwania, zagadnienia i potrzeby istotne w kontekście dalszej części pracy. 

 Rozdział podzielony został na trzy główne części. W pierwszej z nich opisane są różne 

rodzaje obserwacji astronomicznych. Poprzez rodzaje rozumieć należy podział obserwacji ze 

względu na obserwowany zakres promieniowania, cel obserwacji i użyty sprzęt. Ponownie 

podkreślona jest rola małych teleskopów, które coraz częściej łączone są w pracujące 

synchronicznie sieci. Druga część skupia się na opisaniu głównych problemów technicznych 

związanych z poprawną rejestracją sygnału – wpływem atmosfery, odległością od terenów 

mieszkalnych i przemysłowych, a także szumami matryc rejestrujących sygnał świetlny. 

Trzecia część rozdziału przybliża kluczowe pojęcia związane z dziedziną. Bez ich 

wcześniejszego wyjaśnienia dalsze fragmenty mogłyby okazać się trudne do zrozumienia lub 

zostać błędnie zinterpretowane – przykładowo: mówiąc o rozdzielczości zarejestrowanych 

obrazów należy mieć na uwadze, że rozdzielczość optyczna teleskopu jest czymś innym niż 

rozdzielczość matrycy rejestrującej sygnał. Na końcu rozdziału znajduje się podrozdział,  

w którym porównano ze sobą dwa obserwatoria astronomiczne. Jednym z nich jest 

obserwatorium Roque de los Muchachos znajdujące się na Wyspach Kanaryjskich, a drugim są 

rozproszone obserwatoria grupy naukowej działającej na Politechnice Śląskiej, które zostały 

wykorzystane do zebrania obrazów wykorzystanych w tej pracy. Porównanie to ma na celu 

podkreślenie różnic pomiędzy obserwatoriami wykorzystującymi duże oraz małe instrumenty 

optyczne. 
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2.1. Rodzaje obserwacji astronomicznych 

 Życie na Ziemi jest w olbrzymiej mierze możliwe dzięki obecności atmosfery, która 

utrzymuje odpowiednie ciśnienie i temperaturę planety, wspomaga krążenie wody, ale przede 

wszystkim, niczym parasol ochronny, absorbuje promieniowanie kosmiczne. Z punktu 

widzenia astronoma wiąże się to jednak z pewną niedogodnością – atmosfera, skutecznie 

blokując pewne pasma promieniowania, uniemożliwia ich odbiór na powierzchni Ziemi. Na 

rysunku 2.1 przedstawiony jest przybliżony wykres absorpcji, czyli nieprzepuszczalności 

atmosfery, w zależności od długości fali elektromagnetycznej. Jak można zauważyć, 

promieniowanie gamma i promieniowanie rentgenowskie są całkowicie blokowane i dopiero 

światło UV jest w stanie w niewielkim stopniu przedostać się przez atmosferę. W dużym 

stopniu dociera do Ziemi zakres światła widzialnego i podczerwień, przy czym dla 

podczerwieni absorpcja jest wyraźnie nierównomierna. Bez problemów do powierzchni 

dochodzą jedynie fale radiowe o długości od kilku centymetrów do kilkunastu metrów, 

natomiast długie fale radiowe są ponownie całkowicie blokowane. 

 

 

Rysunek 2.1. Absorpcja promieniowania elektromagnetycznego przez atmosferę. 

(https://commons.wikimedia.org/wiki/File:Atmospheric_electromagnetic_transmittance_or_opacity.jpg, dostęp: 1.09.2025 r.). 

 

 W efekcie, możemy dokonać podziału obserwacji astronomicznych na kilka rodzajów,  

w zależności od takich czynników jak zakres obserwowanego promieniowania (optyczny, 

podczerwony, radiowy, etc.) czy miejsce przeprowadzenia obserwacji. To drugie pojęcie należy 

rozumieć jako „obszar w przestrzeni”, z którego prowadzimy obserwacje. Mogą to być 

obserwacje naziemne, kosmiczne (orbitalne), a także wykonywane za pomocą specjalnie 

przygotowanych balonów i rakiet, działających krótkoterminowo na granicy atmosfery. 

 Zasadniczo, większość obserwacji, poza falami radiowymi, najlepiej byłoby 

przeprowadzać za pomocą teleskopów kosmicznych. Jednakże, koszty związane z budową 
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takiego sprzętu i umieszczeniem go na orbicie są bardzo wysokie; sam proces jest przy tym 

czasochłonny, a możliwości naprawy czy korekty takiego sprzętu są niezwykle ograniczone.  

W związku z tym, olbrzymią rolę w obserwacjach wciąż odgrywają obserwatoria naziemne. 

Najwięcej uwagi i zainteresowania przyciągają największe z nich, między innymi Europejskie 

Obserwatorium Południowe, obserwatorium Roque de los Muchachos czy obserwatoria na 

Mauna Kea.  

 Budowa i utrzymanie takich jednostek, choć mniej kosztowne niż w przypadku 

teleskopów pozaziemskich, wymaga pewnych nakładów finansowych i pracy ludzkiej. Ich 

liczba jest przez to ograniczona, a harmonogram obserwacji zaplanowany jest z wyprzedzeniem 

na długi czas. Dodatkowo, duże teleskopy mają dosyć ograniczone pole widzenia, przez co są 

w stanie obserwować jedynie niewielkie fragmenty nieba. Rozwiązaniem tego problemu jest 

wykorzystanie dużej liczby mniejszych, zdalnie sterowanych teleskopów, które mogą być 

rozstawione w dogodnych punktach na powierzchni Ziemi, skąd są w stanie monitorować 

(łącznie) znacznie większe połacie nieba. Podejście to zaproponowane zostało już lata temu  

i przybrało formę oficjalnych sieci zrzeszających, głównie niewielkie, teleskopy optyczne, takie 

jak Globalna Sieć Obserwatoriów Hα (ang. Global Hα Network) [30] czy GONG (ang. Global 

Oscillation Network Group) [31] w przypadku obserwacji Słońca. Oprócz takich oficjalnych 

sieci badawczych, wiele projektów naukowych skupia grupy pomniejszych obserwatoriów, 

które okresowo, w miarę swoich możliwości, włączają się w szerzej zakrojone obserwacje. 

Wiele z takich projektów stanowi istotne wsparcie dla szerzej zakrojonych badań, czego 

przykładem może być projekt ExoClock, w którym autor miał przyjemność brać udział [32]. 

Projekt ten zrzesza dziesiątki obserwatorów, naukowców i amatorów, w celu obserwacji 

spodziewanych tranzytów egzoplanet, czyli momentów, gdy okrążając swoje gwiazdy, planety 

te przysłaniają w niewielkim procencie światło docierające do obserwatora na Ziemi. 

Potwierdzone tranzyty zapisywane są w formie efemeryd zawierających informacje  

o dokładnych, przewidywanych momentach kolejnych tranzytów. Tablice te następnie zostaną 

wykorzystane w misji ARIEL (ang. Atmospheric Remote-sensing Infrared Exoplanet Large-

survey), której głównym celem będzie badanie atmosfer zaobserwowanych planet 

pozasłonecznych. Rola niewielkich teleskopów w tym i podobnych projektach jest zatem 

znacząca i będzie decydować o sukcesie przyszłych, kosztownych misji kosmicznych. 

 Można wobec tego śmiało stwierdzić, że współczesna astronomia w dalszym ciągu 

opiera się na obserwacjach przeprowadzanych z powierzchni Ziemi. Jednocześnie liczne 

projekty, takie jak wspomniany ExoClock, udowadniają, że nawet relatywnie niewielkie 
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teleskopy są w stanie wnieść znaczny wkład w wiele misji i badań. Możliwość organizowania 

ich w gęste sieci, które są w stanie prowadzić synchroniczne i ciągłe obserwacje nieba czyni je 

w wielu przypadkach niezastąpionym elementem współczesnej infrastruktury badawczej.  

Z tego powodu niezwykle istotne jest podjęcie działań mających na celu jak największą 

poprawę pozyskiwanych przez nie danych tak, by całkowicie wykorzystać oferowane przez nie 

możliwości.  

 

2.2. Czynniki wpływające na jakość danych obserwacyjnych 

 Obserwacje prowadzone z Ziemi borykają się z licznymi problemami wpływającymi na 

jakość pozyskiwanych danych. Najbardziej oczywistym z nich jest pogoda – przy dużym 

zachmurzeniu, często połączonym z opadami, obserwacje optyczne w zasadzie nie mają sensu. 

Dodatkowo, istotne jest zagadnienie doboru odpowiedniego miejsca obserwacji. Chcąc 

obserwować Słońce, powinniśmy umieścić aparaturę w lokalizacji zapewniającej jak 

najwyższą liczbę pogodnych dni w roku. Należy przy tym spełnić również inne wymagania 

związane z poprawną pracą wykorzystywanych instrumentów, w tym zadbać o ich odpowiednie 

chłodzenie, by zminimalizować możliwe szumy pomiarowe. W kolejnych częściach tego 

podrozdziału opisane są główne utrudnienia związane z pomiarami optycznymi 

wykonywanymi przez niewielkie teleskopy, czyli szum atmosferyczny oraz fotonowy 

(związany między innymi z zanieczyszczeniem nieba światłem). Przybliżono także 

podstawowe błędy występujące w pracy kamer rejestrujących obraz. 

 

2.2.1. Szum atmosferyczny 

 Atmosfera ziemska nie jest powłoką jednorodną, lecz składa się z następujących 

warstw: troposfery, stratosfery, mezosfery, termosfery i egzosfery. Każda z nich cechuje się 

innymi właściwościami, takimi jak ciśnienie, temperatura czy grubość. Nie są one przy tym 

statyczne, lecz cechują się dużą dynamiką – ciągle występują w nich ruchy mas powietrza.  

W rezultacie sygnał przez nie przechodzący podlega licznym zniekształceniom wynikającym  

z refrakcji światła, jak zaprezentowano na rysunku 2.2. Zniekształcenia te powodują pozorne 

przesunięcia obiektów na rejestrowanych obrazach oraz losowe pojaśnienia i przyciemnienia 

pojedynczych pikseli, jak i całych ich grup.  
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Rysunek 2.2. Wpływ atmosfery na odbierany sygnał. 

 

 Co istotne, zniekształcenia te bardzo szybko zmieniają się w czasie (dziesiątki lub nawet 

setki razy w ciągu sekundy, w zależności od warunków atmosferycznych). Na rysunku 2.3 

przedstawiono dwa zdjęcia tego samego fragmentu nieba w odstępie 2 sekund. Czerwonymi 

ramkami zaznaczono 3 gwiazdy znajdujące się w tym obszarze – jedną świecącą jaśniej i dwie 

ciemniejsze. Jak można zauważyć, gwiazdy nieco zmieniły swoje położenie, a także zmieniła 

się jasność poszczególnych pikseli, co jest dużym problemem, gdy chcemy precyzyjnie 

zmierzyć jasność i pozycję obserwowanych obiektów. 

 Problem zarejestrowanego szumu atmosferycznego można zniwelować na kilka 

sposobów. Najprostszym z nich jest wydłużenie czasu obserwacji danego wycinka nieba, co 

najlepiej zrobić poprzez wykonanie serii wielu zdjęć, z których wylicza się następnie obraz 

uśredniony o wyższym stosunku sygnału do szumu (dokładnie opisane jest to w: 2.3.6. Technika 

łączenia klatek (stacking)). Metoda ta jest jednak zawodna w sytuacjach, gdy chcemy 

zaobserwować obiekt zmieniający się bardzo dynamicznie, na przykład bliską asteroidę, obiekt 

satelitarny lub pulsar, którego jasność fluktuuje dziesiątki razy na sekundę. Bardziej 

wymagającą, a zarazem lepszą, opcją jest montaż teleskopu na dużej wysokości w górach. 

Atmosfera jest tam zdecydowanie rzadsza, a także bardziej stabilna, co ogranicza wpływ 

turbulencji na zbierane dane. Sposobem na zmniejszenie względnych, dynamicznych zmian 

jasności jest również zwiększenie rozmiaru lustra teleskopu, ponieważ wówczas następuje 

efektywniejsze uśrednianie wiązki światła niż w przypadku niewielkich powierzchni małych 

teleskopów optycznych. 
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 Osobną grupę rozwiązań stanowią rozwiązania sprzętowe, spośród których najbardziej 

zaawansowana jest optyka adaptacyjna [33][34][35]. Technologia ta pozwala w czasie 

rzeczywistym korygować wpływ atmosfery, dzięki czemu pozyskiwane obrazy niewiele 

ustępują tym uzyskiwanym przez podobnej klasy teleskopy kosmiczne. Jej działanie skupia się 

na obserwacji gwiazdy odniesienia (naturalnej lub tworzonej sztucznie przy pomocy 

specjalnego lasera) i pomiarach jej deformacji przez atmosferę przy użyciu oddzielnych 

sensorów (czujnik czoła falowego). Wyniki tych pomiarów są w czasie rzeczywistym 

wykorzystywane do odkształcenia tak zwanego lustra deformowalnego, które koryguje sygnał 

odbierany przez teleskop. Technologia ta jest jednak zbyt droga i zbyt złożona, by znaleźć 

zastosowanie w przypadku niewielkich teleskopów. 

 

 

Rysunek 2.3. Zniekształcenie danych obrazowych przez szum atmosferyczny na przykładzie dwóch zdjęć 

wykonanych w odstępie 2 sekund. 

 

2.2.2. Zanieczyszczenie światłem 

 Dużym problemem przy obserwacjach astronomicznych jest także zanieczyszczenie 

światłem. Jako skutek elektryfikacji, pojawiło się mnóstwo źródeł sztucznego światła, takich 

jak lampy uliczne, reklamy świetlne, czy oświetlenie budynków. Ich niewłaściwe i nadmiarowe 

użycie sprawia, że w licznych obszarach występuje znaczące rozjaśnienie tła nocnego nieba. 

Pojaśnienie to określa się przy pomocy luminancji, która jest miarą wartości strumienia światła 
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emitowanego przez określoną powierzchnię w zadanym kącie bryłowym. W układzie SI 

jednostką luminancji jest kandela na metr kwadratowy (cd/m2). Im wyższa jej wartość, tym 

jaśniejsze niebo, a co za tym idzie – większy udział szumu tła, który skutecznie utrudnia 

detekcję ciemnych obiektów w obrazach astronomicznych. 

 W raporcie „Zanieczyszczenie światłem w Polsce. Raport 2023” [36] przedstawiono 

wyniki pomiarów jasności nocnego nieba nad Polską na przestrzeni 2022 roku. Wynika z niego, 

że na obszarze całego kraju następuje zjawisko zanieczyszczenia światłem. Na rysunku 2.4 

przedstawiono mapę zanieczyszczenia światłem zamieszczoną w oryginalnym raporcie. Jak 

można zauważyć, najjaśniejsze niebo występuje nad gminami wchodzącymi w skład 

aglomeracji warszawskiej i konurbacji górnośląskiej, natomiast najciemniejsze są obszary przy 

wschodniej granicy kraju, w szczególności w Bieszczadach.  

 

 

Rysunek 2.4. Zanieczyszczenie światłem polskiego nieba [36]. 
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 Aby zminimalizować wpływ zanieczyszczenia światłem, obserwacje astronomiczne 

najlepiej prowadzić z miejsc odludnych i słabo zaludnionych, gdzie panują odpowiednio 

ciemne warunki sprzyjające precyzyjnym pomiarom. Lokacje te są jednak zazwyczaj trudno 

dostępne, co ogranicza możliwość bezpośredniego prowadzenia obserwacji. Rozwiązaniem 

może być montaż niewielkich teleskopów, które mogą być sterowane zdalnie z dogodnego 

miejsca. Wymaga to jednak zapewnienia niezależnego źródła zasilania, najczęściej w postaci 

akumulatorów, oraz szczególnego zwrócenia uwagi na efektywność energetyczną stosowanego 

sprzętu, aby maksymalnie wydłużyć czas jego pracy w terenie. 

 

2.2.3. Szum związany z działaniem aparatury obserwacyjnej 

 W kamerach astronomicznych występują zarówno matryce CCD (ang. Charge-Coupled 

Device), jak i coraz częściej zastępujące je matryce CMOS (ang. Complementary Metal-Oxide-

Semiconductor). Matryce te składają się z pikseli, z których każdy działa osobno względem 

pozostałych. Pod wpływem efektu fotoelektrycznego, fotony padające na piksele powodują 

generowanie w nich ładunku elektrycznego proporcjonalnego do liczby fotonów. Ładunek ten 

przekazywany jest do struktury kondensatora, dzięki czemu wytworzone napięcie może być  

w efekcie wzmocnione i skonwertowane na wartość cyfrową przez przetwornik analogowo-

cyfrowy. Proces ten wiąże się z powstawaniem różnego rodzaju szumów, które wpływają na 

jakość zapisywanych obrazów końcowych. 

 Podstawowym rodzajem takiego szumu jest szum odczytu związany z działaniem 

elektroniki odczytowej – tranzystorów, wzmacniaczy i przetworników. Jego wartości są 

zazwyczaj określone dla danego sprzętu i nie zależą od poziomu odbieranego sygnału [37].  

W nowoczesnych matrycach CMOS jest on zazwyczaj niski, jednak w warunkach bardzo 

słabego oświetlenia może się zdarzyć, że wartość szumu odczytu będzie większa od samego 

sygnału, który zostanie w efekcie zasłonięty. Zazwyczaj skutkuje to pojawieniem się losowego 

ziarna i drobnych plamek. 

 Innym rodzajem szumu jest szum termiczny, zwany także prądem ciemnym. Szum ten 

nie zależy od ilości padającego światła, lecz od czasu naświetlania matrycy. Wysoka 

temperatura matrycy powoduje drgania struktury krystalicznej półprzewodników, które mogą 

dostarczyć energii potrzebnej do samoistnego powstania elektronów w pikselach [38].  

W związku z tym, nawet nieoświetlone piksele mogą generować fałszywy sygnał. Otrzymane 

zdjęcie w swojej strukturze ma piksele o większym (jaśniejsze) oraz o mniejszym (ciemniejsze) 
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tempie generacji termicznej, tworząc innego rodzaju efekt ziarna. Szum tego typu potocznie 

bywa określany jako obecność „gorących pikseli”, których struktura, pod wpływem obecności 

atomów obcych lub defektów struktury krystalicznej, wykazuje silną generację termiczną. 

 Trzecią podstawową składową zakłóceń matrycy CMOS jest szum fotonowy 

(kwantowy) wynikający z losowej natury procesu zliczania fotonów w krzemie. Pojawia się on 

nawet w warunkach idealnego, stałego oświetlenia, ponieważ absorpcja fotonów jest procesem 

probabilistycznym podlegającym rozkładowi Poissona [39]. Chociaż jego wartość wzrasta 

wraz z poziomem odbieranego sygnału, dzieje się to proporcjonalnie wolniej, w efekcie czego 

przy większej jasności stosunek sygnału do szumu jest większy. Przykładowo, proces pomiaru 

strumienia świetlnego, generujący średnio 100 elektronów w ekspozycji trwającej jedną 

sekundę, będzie generował w kolejnych ekspozycjach ładunek o wartości oczekiwanej 100 

elektronów, jednak z rozrzutem w przybliżeniu równym pierwiastkowi ze 100. 

 Oprócz tego, ważnym źródłem zakłóceń jest niejednorodność czułości pikseli 

względem padającego na nie światła PRNU (ang. Photo Response Non-Uniformity). 

Wynikające z tego różnice między pikselami są zwykle małe, rzędu 1-2%, jednakże mogą być 

one zauważalne przy zdjęciach o niskim kontraście, gdy zgromadzone zostaną duże ilości 

ładunku [40]. Problem PRNU, jako wady fabrycznej, często łączy się też z dwoma innymi 

czynnikami powodującymi nierównomierne oświetlenie matrycy. Pierwszym z nich są fizyczne 

zabrudzenia takiej jak kurz osadzający się na matrycy i filtrach kamery. Drugim z nich jest 

winietowanie, czyli niedoświetlanie brzegów kadru, wynikające z niedoskonałości optyki. 

Obecność PRNU może być bardziej widoczna w kamerach CMOS niż CCD, bo w ich pikselach 

wbudowane są dodatkowe układy pomiarowe lub wtórniki, co skutkować może wzrostem 

niejednorodności czułości obszaru aktywnego optycznie w każdym z pikseli. 

 Wymienione powyżej źródła szumu można w dużym stopniu zredukować poprzez 

odpowiednie chłodzenie matrycy, a także przez takie operacje jak łączenie klatek oraz 

wykorzystanie klatek kalibracyjnych. Więcej informacji na ten temat znajduje się w rozdziałach 

2.3.5. Kalibracja surowych danych i 2.3.6. Technika łączenia klatek (stacking). 
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2.3. Kluczowe pojęcia astronomiczne 

 W kolejnych rozdziałach niniejszej pracy zostały wykorzystane terminy 

charakterystyczne dla dziedziny astronomii obserwacyjnej. Ze względu na potencjalną trudność 

w ich właściwej interpretacji, poniżej przedstawiono i wytłumaczono kluczowe pojęcia. 

 

2.3.1. Czas ekspozycji i kadencja 

 Czasem ekspozycji nazywamy długość czasu, przez jaki matryca rejestruje światło 

padające od obserwowanego obiektu. Im dłuższy ten czas, tym więcej sygnału jesteśmy  

w stanie zgromadzić i tym więcej słabiej świecących obiektów jesteśmy w stanie odróżnić od 

tła. Czas ten różni się w zależności od przeprowadzanych obserwacji i może wynieść od 

kilkudziesięciu milisekund do wielu godzin. W przypadku obrazów przetwarzanych w ramach 

opisanych badań czas ekspozycji wynosił od 1/30 do 1/2 sekundy. Czas kadencji opisuje 

natomiast czas pomiędzy początkiem jednej ekspozycji a początkiem następnej. Jest to suma 

czasu pojedynczej ekspozycji, czasu odczytu i zapisu danych, a także czasu przestoju, który 

może być z góry narzuconym interwałem albo zmieniającym się podczas eksperymentu czasem 

potrzebnym na korektę ustawienia teleskopu. 

 W przypadku obserwacji szybko zachodzących zjawisk, jak wspomniane tranzyty 

egzoplanet czy rozbłyski słoneczne, należy uzyskać możliwie krótką kadencję, by dobrze 

zarejestrować dynamikę zjawiska. Natomiast w przypadku bardziej szczegółowych obserwacji 

głębokiego nieba najistotniejszy jest długi czas ekspozycji pozwalający dostrzec najsłabiej 

świecące ciała niebieskie. 

 

2.3.2. Rozdzielczość teleskopu i rozdzielczość matrycy 

 Omawiając rozdzielczość obrazowania w astronomii, należy podkreślić istotną różnicę 

między rozdzielczością optyczną teleskopu a rozdzielczością matrycy kamery rejestrującej 

obraz. Oba te parametry wpływają na jakość końcowego obrazu, jednak ich znaczenie i sposób 

wyznaczania są zupełnie różne. 

 Rozdzielczość optyczna teleskopu (oznaczana jako θ) to zdolność instrumentu do 

rozróżnienia dwóch blisko położonych siebie obiektów jako oddzielne punkty. Rozdzielczość 

ta zależy od długości fali światła λ i średnicy apertury (lustra lub soczewki) D, tak jak 
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przedstawiono w równaniu 2.1 (wartość θ we wzorze często określa się granicą Rayleigha). 

Wynik równania podany jest w radianach, więc by przeliczyć go na sekundy kątowe, należy go 

pomnożyć przez 206 265. Przyjmując λ ≈ 550 nm (światło zielone) i aperturę o średnicy 200 

mm, wielkość ta wyniesie w przybliżeniu 0,69”. Wartość θ maleje proporcjonalnie wraz ze 

wzrostem średnicy apertury. 

 

𝜃 = 1,22
𝜆

𝐷
 (2.1)  

 

 Rozdzielczość matrycy odpowiada natomiast liczbie w dwóch wymiarach (npx i npy)  

i wielkości pikseli px w detektorze, informując o tym, jak szczegółowo kamera może 

zarejestrować obraz. Przy jej pomocy można wyznaczyć kątową skalę piksela Spx, która zależy 

także od długości ogniskowej fogn (wzór 2.2). Przykładowo dla kamery o wielkości piksela  

2,4 µm i długości ogniskowej teleskopu równej 500 mm, skala piksela wyniesie 0,99”/px. 

Istotną kwestią jest taki dobór instrumentów, by skala kątowa piksela była mniejsza od granicy 

Rayleigha. Dzięki temu kamera przeprowadza akwizycję z odpowiednim próbkowaniem 

obrazu, co pozwala optymalnie wykorzystać możliwości sprzętowe. 

 

𝑆𝑝𝑥 = 206 265
𝑝𝑥

𝑓𝑜𝑔𝑛
 (2.2)  

 

2.3.3. Pole widzenia 

 W przypadku astronomii pole widzenia (ang. Field of View, FOV) definiujemy jako 

kątowy obszar nieba, który można zobaczyć przez teleskop w danym momencie. W przypadku 

teleskopów o długiej ogniskowej, wartość ta wyrażana jest w minutach lub sekundach 

kątowych, a dla teleskopów szerokokątnych typowe wartości wyraża się zazwyczaj w stopniach 

kwadratowych. Pole widzenia najczęściej opisuje się w dwóch wymiarach, przeliczając liczbę 

pikseli w danym rozmiarze przez skalę piksela (wzór 2.3). 

 

𝐹𝑂𝑉𝑥 = 𝑛𝑝𝑥 ∗ 𝑆𝑝𝑥              𝐹𝑂𝑉𝑦 = 𝑛𝑝𝑦 ∗ 𝑆𝑝𝑥      (2.3)  
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2.3.4. Filtracja sygnału 

 W przypadku obserwacji ciał niebieskich bardzo często stosuje się filtry optyczne, by 

selektywnie rejestrować światła emitowane przez konkretne pierwiastki chemiczne. Podejście 

to umożliwia analizę właściwości jak skład chemiczny, temperatura czy dynamika gazów 

wybranych obiektów. Przykładowo, w obserwacjach słonecznych często wykorzystuje się 

wąskopasmowy filtr Hα przepuszczający światło o długości 656,28 nm w celu dokładnego 

obrazowania emisji światła ze zjonizowanego wodoru. Dzięki temu zabiegowi możliwe są 

obserwacje protuberancji, filamentów i granulacji chromosfery Słońca, które w świetle białym 

są niedostrzegalne. W pewnych zastosowaniach stosuje się także filtry szerokopasmowe do 

oszacowania całkowitej jasności obiektów. W zastosowaniach komercyjnych szerokości pasma 

są często określane w angstremach Å, jednostce długości równej 0,1 nm, nazwanej tak dla 

upamiętnienia szwedzkiego astronoma, Andersa Jönasa Ångströma. 

 

2.3.5. Kalibracja surowych danych 

 W przypadku obrazowania astronomicznego pojedyncze, surowe zdjęcie 

zarejestrowane przez kamerę nazywa się klatką. Jak wyjaśniono w podrozdziale 2.2.3. Szum 

związany z działaniem aparatury obserwacyjnej, każda z nich oprócz zarejestrowanego sygnału 

zawiera różnej natury niejednorodności i odchyłki. Ich wpływ na obrazy wynikowe 

redukowany jest z użyciem specjalnie przygotowanych klatek kalibracyjnych.  

 W przypadku problemu niejednorodnej czułości pikseli na światło stosuje się klatki 

płaskie (ang. flat field frames). Uzyskuje się je poprzez wykonanie zdjęcia przy jednolitym  

oświetleniu, najczęściej wykorzystując do tego tzw. flatownice, czyli urządzenia zakrywające 

teleskop i równomiernie naświetlające całą powierzchnię lustra [40]. Każda z klatek 

obserwacyjnych zostaje przemnożona przez odpowiednią wartość obliczaną na podstawie 

takiej klatki płaskiej, dzięki czemu możliwe staje się porównanie jasności obiektów 

rozmieszczonych w różnych obszarach zdjęcia końcowego. Innymi słowy, niejednorodna 

transmisja światła do płaszczyzny obrazu zostaje odpowiednio skompensowana przez efekt 

mnożenia. 

 Do kalibracji obrazów astronomicznych z matryc CCD/CMOS używa się także klatek 

ciemnych (ang. dark frames). Są to klatki uzyskiwane poprzez rejestracje obrazu bez udziału 

światła, zazwyczaj poprzez zakrycie teleskopu lub nieodsłonięcie migawki w kamerze. Obrazy 
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kalibracyjne tego typu powinny być wykonane z takim samym czasem ekspozycji oraz taką 

samą, stabilną temperaturą matrycy jak w przypadku planowanych obserwacji. Klatki te 

następnie odejmuje się od wszystkich klatek obserwacyjnych, by zredukować wpływ szumu 

prądu ciemnego. Z racji tego, że szum ten cechuje się rozkładem Poissona, zaleca się 

wykonanie wielu klatek ciemnych i ich uśrednienie (metoda opisana w kolejnym podrozdziale: 

2.3.6. Technika łączenia klatek (stacking)), by uzyskać średnią klatkę ciemną. W przypadku 

różnic czasów ekspozycji zdjęcia świetlnego i klatki ciemnej, wystarczającym okazuje się 

odpowiednie wymnożenie klatki ciemnej, gdyż przyrost prądu ciemnego w pikselach wraz  

z czasem ma charakter liniowy. 

 

2.3.6. Technika łączenia klatek (stacking)  

 Każda pojedyncza klatka Ki zawiera w sobie pochodzący z obiektu sygnał S oraz losowy 

szum Ni (wzór 2.4). Zakładając, że ten szum ma wartość oczekiwaną równą zero i pewien 

rozrzut σ, możemy dokonać jego skutecznej redukcji poprzez stacking, czyli uśrednienie wielu 

osobnych klatek. W większości wypadków stacking jest równoznaczny jedynie z uśrednieniem 

zebranych danych, jednak w niektórych sytuacjach nazywany jest tak cały proces wyrównania 

danych, ich kalibracji, wyboru klatek o najlepszej jakości (stacking selektywny) i ich 

uśrednienia, a także dalszej obróbki.  

 

 𝐾𝑖 = 𝑆 + 𝑁𝑖 (2.4)  

 

 Taki obraz uśredniony opisać można jako sumę sygnału i średnią wartość szumu 

pojawiającego się w trakcie obserwacji (równanie 2.5). W efekcie wariancja szumu w klatce 

uśrednionej spada wraz ze wzrostem liczby uśrednianych klatek n (wzór 2.6). Oznacza to, że 

stosunek wartości sygnału do szumu rośnie proporcjonalnie do √𝑛. 

 

 𝐾̅𝑛 =
1

𝑛
∑ (𝑆 +  𝑁𝑖)

𝑛

𝑖=1
= 𝑆 +  

1

𝑛
∑ 𝑁𝑖(

𝑛

𝑖=1
 (2.5)  

 

Var(𝐾̅𝑛) =  
𝜎2

𝑛
    (2.6)  
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 Nie oznacza to jednak, że można w ten sposób całkowicie wyeliminować szum 

atmosferyczny; na skutek uśredniania jego wpływ jest redukowany jednak w przypadku 

atmosfery dochodzą również długozmienne fluktuacje, których nie sposób uśrednić. 

Dodatkowo, metoda ta sprawdza się najlepiej w redukcji losowych zmian jasności  

w poszczególnych pikselach, jednak wiąże się to z rozmyciem obrazu w klatce uśrednionej; 

rozmycie to jest z reguły tym większe, im mniej klatek zostało użytych do uśrednienia. Jest to 

związane ze zmiennym w czasie zniekształceniem sygnału, które objawia się powstaniem 

pozornych przesunięć obiektów na rejestrowanych zdjęciach. 

 

2.3.7. Astrometria i fotometria 

 Obserwując niebo, astronomowie najczęściej zadają dwa pytania: „gdzie znajduje się 

poszukiwany przez nich obiekt i jak zmienia się jego położenie” oraz „jak jasno świeci i jak 

zmienia się jego jasność”. Odpowiedziami na te pytania zajmują się odpowiednio astrometria  

i fotometria. 

 Astrometria zajmuje się określaniem dokładnej pozycji ciał na niebie, jej zmian 

względem pozycji innych obiektów, a także służy obliczaniu ich orbit czy odległości od Ziemi. 

Jest to jedna z najstarszych dziedzin astronomii: już w starożytności ludzie śledzili ruchy 

gwiazd, by tworzyć efemerydy wykorzystywane do odliczania dni roku, a także nawigacji, 

zwłaszcza w żegludze morskiej. Współcześnie astrometria korzysta z bardzo precyzyjnych 

instrumentów, które mierzą położenia gwiazd z dokładnością do mikrosekund kątowych, co 

umożliwia między innymi tworzenie trójwymiarowych map naszej Galaktyki. 

 Fotometria jest natomiast dziedziną zajmującą się pomiarami jasności ciał niebieskich 

w różnych zakresach promieniowania elektromagnetycznego z wykorzystaniem filtrów 

szeroko i wąskopasmowych. Pozwala ona badać właściwości obserwowanych obiektów, takie 

jak temperatura, skład chemiczny, a także wykrywać zachodzące w czasie zmiany, na przykład 

zaćmienia. Jednostką używaną w fotometrii do oznaczenia blasku obiektu jest magnitudo 

(oznaczane jako mag). Określa ona stosunek natężenia światła rozważanego obiektu Ix do 

natężenia światła wybranego punktu odniesienia Iref (wzór 2.7), za który zwyczajowo  

przyjmuje się gwiazdę Vega. Zmiana jasności o 1 magnitudo odpowiada zmianie natężenia 

światła o czynnik równy w przybliżeniu 2,512, a różnica 5 mag odpowiada stukrotnej zmianie 

jasności. Im mniejsza wartość magnitudo, tym jaśniejszy jest obiekt; przykładowo, wartość 

magnitudo dla Słońca wynosi w przybliżeniu -27.  
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 mag = −2,5 log10 (
𝐼𝑥

𝐼𝑟𝑒𝑓
) (2.7)  

 

2.4. Wybrane obserwatoria naziemne 

 Obserwatoria naziemne można umownie podzielić na dwie klasy – zaawansowane 

obserwatoria wykorzystujące duże teleskopy oraz jednostki wyposażone w instrumenty  

o niewielkich aperturach. W tym podrozdziale opisano teleskopy słoneczne stanowiące część 

dwóch obserwatoriów należących do tych oddzielnych klas. Pierwszym z nich jest Szwedzki 

Teleskop Słoneczny (STS), jeden z najlepszych naziemnych instrumentów tego typu, a drugim 

jest niewielki teleskop zarządzany przez działającą na Politechnice Śląskiej grupę naukową 

SUTO (ang. Silesian University of Technology Observatories). Zaprezentowane porównanie 

ma na celu uwypuklenie różnic pomiędzy obserwatoriami rejestrującymi dane 

wysokorozdzielcze i dane niskorozdzielcze, które stanowią podstawę niniejszej pracy. 

Dodatkowo zaprezentowano teleskop obrazujący nocne niebo na potrzeby badań 

prowadzonych przez SUTO. Jest to drugi, i zarazem ostatni, teleskop, przy pomocy którego 

zebrano dane wykorzystane w opisanych w niniejszej pracy badaniach. 

 

2.4.1. Obserwatorium Roque de los Muchachos 

 Obserwatorium Roque de los Muchachos położone na wysokości około 2400 m n.p.m. 

znajduje się na północnym skraju Caldera de Taburiente, na wyspie La Palma na Wyspach 

Kanaryjskich. Miejsce to charakteryzuje się ciemnym niebem, małym zanieczyszczeniem 

światłem, a także nieco rzadszą i stabilniejszą atmosferą. Powszechnie uważane za jedno  

z najlepszych punktów obserwacyjnych na świecie; na półkuli północnej ustępuje jedynie 

obserwatoriom na Mauna Kea na Hawajach.  
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Rysunek 2.5. Szwedzki Teleskop Słoneczny. 

(https://commons.wikimedia.org/wiki/File:Swedish_Solar_Telescope.jpg, dostęp: 1.09.2025 r.) 

 

 Na rysunku 2.5 przedstawiono Szwedzki Teleskop Słoneczny [41], jeden  

z najnowocześniejszych naziemnych teleskopów słonecznych. Instrument ten posiada 

zwierciadło o średnicy około 1 metra i jest wyposażony w specjalny korektor pozwalający 

zniwelować aberrację chromatyczną. Z racji dużego rozmiaru tuby optycznej utrzymywana jest 

w niej próżnia, by przy długich obserwacjach Słońca nie dochodziło do nagrzania powietrza  

w środku, a w efekcie pogorszenia jakości rejestrowanych danych pod wpływem wewnętrznych 

turbulencji. Do obrazowania wykorzystywany jest system optyki adaptacyjnej operującej 

deformowalnym lustrem, które może się odkształcać do 1000 razy na sekundę, a obrazy 

końcowe są przetwarzane przez specjalne algorytmy zwiększające ich szczegółowość. 

Dodatkowo, rozdzielczość optyczna teleskopu wynosi w niebieskim świetle wartość 0,1”, co  

w przypadku Słońca pozwala na rozróżnienie obiektów znajdujących się około 70 km od siebie. 

Wymienione parametry tego teleskopu bezsprzecznie stawiają go w grupie najlepszych obecnie 

dostępnych tego typu instrumentów. 
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2.4.2. Obserwatoria Politechniki Śląskiej 

 W zupełnie innej sytuacji znajdują się instrumenty zarządzane przez grupę SUTO, które 

stanowią bardzo dobry przykład małych, a zarazem względnie dostępnych finansowo sprzętów. 

Po prawej stronie rysunku 2.6 przedstawiony jest teleskop słoneczny operujący z Kotulina, wsi 

położonej w powiecie gliwickim. Lokalizacja ta wiąże się ze zdecydowanie gęstszą atmosferą 

niż w przypadku najlepszych lokalizacji dla tego typu obserwatoriów, a także względnie 

wysokim stężeniem pyłów w powietrzu, które dodatkowo pogłębiają problem odkształceń 

sygnału. Rozdzielczość optyczna teleskop w obserwowanej linii Hα wynosi natomiast 3,27”, 

co jest wartością prawie 33 razy większą od tej w STS. Sprawia to, że wykorzystywany teleskop 

jest w stanie odróżnić obiekty znajdujące się w odległości około 2 370 km względem siebie  

w chromosferze słonecznej, co stanowi znaczącą różnicę pod względem jakości obserwacji. 

Należy do tego jeszcze dodać brak zaawansowanych rozwiązań sprzętowych, by móc 

stwierdzić, że obserwatoria te rejestrują zdecydowanie inny typ danych.  

 Po lewej stronie rysunku 2.6 znajduje się natomiast zdjęcie teleskopu obrazującego 

nocne niebo. Teleskop ten jest umieszczony w hiszpańskiej miejscowości o nazwie Otivar,  

w specjalnie dopasowanej, automatycznie otwieranej kopule. Stanowi on idealny przykład 

małego teleskopu, który umieszczony w miejscu cechującym się bardzo dobrymi warunkami 

obserwacyjnymi, może być sterowany zdalnie. Średnica jego apertury wynosi 30 cm, co 

pozwala na zbieranie ilości światła potrzebnego nawet do wykrycia odległych obiektów. 

Posiada przy tym dosyć szerokie pole widzenia, dzięki czemu może spełniać swoją rolę  

w monitorowaniu dużych obszarów nieba. Nie jest oczywiście w stanie konkurować  

z większymi teleskopami w obserwacjach odległych galaktyk, ale swą wysoką przydatność 

wykazuje w takich misjach, jak omawiany wcześniej ExoClock. Tak jak w przypadku innych 

teleskopów naziemnych, jego największą słabością są krótkie ekspozycje, podczas których 

liczba zliczeń fotonów pochodzących od obiektów jest porównywalna lub mniejsza niż 

towarzyszący szum pomiarowy. 

 Reasumując, w przypadku opisanych małych teleskopów możliwości poprawa 

wyników może być dokonana głównie poprzez zastosowanie nowych rozwiązań 

algorytmicznych, podczas gdy możliwości sprzętowe są ograniczone. W tej sytuacji naturalnym 

podejściem wydaje się być wdrożenie metod uczenia maszynowego w postaci sieci 

neuronowych, która może dodatkowo poprawić jakość pozyskiwanych przez nie danych. 
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Rysunek 2.6. Teleskopy wykorzystane do akwizycji danych wykorzystanych w niniejszej pracy. 

(https://www.suto.aei.polsl.pl, dostęp: 1.09.2025 r.) 
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3. Sieci neuronowe w przetwarzaniu obrazów 

 Od przeszło 10 lat sieci neuronowe osiągają coraz lepsze wyniki w przetwarzaniu 

obrazów, a ich wydajność w odwzorowywaniu złożonych zależności przestrzennych oraz 

wyodrębnianiu istotnych cech obrazu sprawia, że stosowane są w coraz większej liczbie zadań. 

Wyniki uzyskiwane przy ich użyciu niejednokrotnie są znacząco lepsze niż te otrzymywane  

z użyciem opracowanych algorytmów deterministycznych i sprawdzonych heurystyk. Modele 

poszczególnych sieci operują ogromną liczbą przekształceń i parametrów, co może powodować 

trudności w interpretacji ich działania – często porównywane są do „czarnych skrzynek”, które 

w niewytłumaczalny sposób zwracają pożądane rezultaty. Z perspektywy ich praktycznego 

zastosowania potrzeba odpowiedniego zrozumienia zachodzących w nich mechanizmów, by 

móc je prawidłowo projektować, uruchamiać, a także trafnie diagnozować występujące w nich 

niedoskonałości i być w stanie je modyfikować. Bez tych umiejętności łatwo o wyciągnięcie 

błędnych wniosków, a także otrzymanie nieefektywnych rozwiązań. 

 Z tego powodu, ten rozdział pracy ma na celu przybliżyć najważniejsze informacje 

dotyczące działania sieci neuronowych, które stanowią podstawę niniejszej pracy doktorskiej. 

Rozdział został podzielony na sześć oddzielnych części. Pierwsza z nich ma na celu wyjaśnić 

relację pomiędzy sztuczną inteligencją, uczeniem maszynowym a sieciami neuronowymi – co 

kryją w sobie te pojęcia i kiedy można ich używać zamiennie. Druga część przybliża ewolucję 

sieci neuronowych: od pierwszych, prostych modeli perceptronów do współczesnych sieci 

głębokich. Wyjaśnia też podstawowy mechanizm stojący za ich trenowaniem, czyli propagację 

wsteczną wraz z optymalizacją funkcji straty. Część trzecia w skrócie opisuje środowisko 

programistyczne, w którym został napisany kod wykorzystany w pracy. Czwarta część 

koncentruje się na poszczególnych warstwach sieci – przedstawiono sposób ich działania oraz 

wpływ parametrów wewnętrznych na funkcjonowanie całości modelu. Każda z warstw 

odpowiada wykorzystaniu pojedynczej funkcji, dlatego do realizacji bardziej skompilowanych 

zadań łączy się je w złożone struktury, określane architekturami sieci. W piątej części rozdziału 

opisano dwie wybrane do badań architektury wraz z uzasadnieniem ich użycia. Ostatnia część 

rozdziału skupia się na ustawieniach zewnętrznych sieci, które nie są bezpośrednio 

modyfikowane w trakcie procesu uczenia, lecz mają istotny wpływ na jego przebieg i rezultaty, 

często stanowiąc decydujący czynnik świadczący o skuteczności wybranego podejścia. 
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3.1. Uczenie maszynowe a sieci neuronowe 

 Sztuczną inteligencją nazywamy interdyscyplinarny dział nauki zajmujący się 

opracowywaniem systemów zdolnych do wykonywania zadań wymagających ludzkiej 

inteligencji. Zadania te obejmują szerokie spektrum zagadnień, od przetwarzania języka 

naturalnego przez rozwiązywanie problemów aż po zdolność uczenia się na bazie 

doświadczenia i adaptacji do możliwych zmian warunków. Kluczowym punktem w rozwoju tej 

dziedziny była konferencja w Dartmouth [2], na której po raz pierwszy próbowano określić jej 

ramy i miejsce w naukach technicznych.  

 Czasy po tej konferencji zdominowane były przez podejście, które dziś często określa 

się mianem „starej, dobrej sztucznej inteligencji” (ang. Good Old-Fashioned Artificial 

Intelligence). Opierało się ono na przeświadczeniu, że inteligencja może być przedstawiona 

przy użyciu reguł logicznych i prostych algorytmów. W efekcie, tworzono rozbudowane 

systemy oparte na złożonych instrukcjach warunkowych i wiedzy eksperckiej, które znane są 

dziś głównie pod nazwą systemów eksperckich. Choć w pewnych sytuacjach systemy te 

charakteryzowały się osiąganymi rezultatami lepszymi od tworzących je ludzi, były one 

wyspecjalizowane wyłącznie w swoich dziedzinach i nie radziły sobie z generalizacją 

problemów [42], co wykluczało ich szersze zastosowanie. 

 W odpowiedzi na te ograniczenia równolegle trwały badania na systemami, które nie 

muszą bazować na opracowanych regułach, lecz są w stanie same dopasować się do danych 

bez narzuconych instrukcji; podejście to nazwano uczeniem maszynowym. Pod względem 

teoretycznym było ono bardzo zbliżone do sposobu, w jaki uczą się ludzie – oparte na 

przetwarzanych przykładach, a nie na ustalonych z góry regułach. Jednakże takie rozwiązania 

wymagają wykorzystania dużych zbiorów danych i dostępu do odpowiedniego do ich 

przetworzenia zasobów sprzętowych. Ograniczenia te sprawiły, że badania nad uczeniem 

maszynowym pozostawały na dłuższy czas w pewnym sensie zmarginalizowane. Nie 

przeszkodziło to jednak w opracowaniu takich algorytmów jak drzewa decyzyjne [43], 

maszyny wektorów nośnych [44] czy algorytm k-najbliższych sąsiadów [45].  

 Po pewnym czasie nastąpił przełom w kwestii sztucznych sieci neuronowych, które 

początkowo stanowiły jedną z gałęzi rozwoju systemów eksperckich. Zostały one dopasowane 

do podejścia uczenia maszynowego, a dzięki opracowaniu algorytmu propagacji wstecznej 

[46], zaczęto dostrzegać ich potencjał w wielu zastosowaniach praktycznych. Ich prawdziwy 

rozkwit nastąpił jednak dopiero w ostatnich latach, gdy rozwiązano wiele kwestii związanych 
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z procesem uczenia. Sieci neuronowe stanowią dzisiaj główny dział uczenia maszynowego, na 

którym skupiona jest większość uwagi badawczej.  

 Z takiej perspektywy wyraźnie widać, że sztuczna inteligencja to znacznie szersze 

zagadnienie niż samo uczenie maszynowe, choć to właśnie ono, a w szczególności sieci 

neuronowe, stało się jego najskuteczniejszym narzędziem. Na rysunku 3.1 zobrazowano 

uproszczoną relację między tymi dziedzinami. Warto zauważyć, że do uczenia maszynowego 

wlicza się także takie algorytmy jak algorytm analizy głównych składowych [47], chociaż 

powstał on na wiele lat przed pojawieniem się idei uczenia maszynowego. Został on, jak i wiele 

innych algorytmów, przystosowany do podejścia reprezentowanego przez uczenie maszynowe. 

 

 

Rysunek 3.1. Sieci neuronowe a sztuczna inteligencja. 

 

3.2. Zasada działania sieci neuronowych 

 Umiejętne wykorzystanie możliwości sieci neuronowych wymaga znajomości ich 

struktury, jak i metod zapewniających ich stabilne i przewidywalne działanie. W tym celu 

przybliżono pokrótce historię ich rozwoju od pojawienia się w połowie zeszłego wieku  

w formie pojedynczego neuronu do rozwoju w znacznie bardziej złożone struktury. Jednakże 

sama ich złożoność nie jest warunkiem wystarczającym do ich optymalnej pracy. Najbardziej 
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istotnym zagadnieniem jest istnienie mechanizmu umożliwiającego im swego rodzaju 

autokorektę, która wykorzystana w iteracyjnym procesie treningu minimalizuje błędy modelu. 

Realizowany on jest poprzez algorytm propagacji wstecznej, który od lat 80. stanowi fundament 

współczesnych sieci neuronowych. 

 

3.2.1. Struktura sieci neuronowych  

 Jako początek historii sieci neuronowych uznaje się opublikowanie w 1943 roku 

słynnego artykułu [1] autorstwa neurofizjologa Warrena McCullocha i matematyka Waltera 

Pittsa. Zaproponowali oni model pierwszej sztucznej sieci neuronowej realizującą obliczenia  

z wykorzystaniem rachunku zdań. Jej nazwę i sposób działania oparli na podobieństwie do 

biologicznej komórki nerwowej, neuronu. Na rysunku 3.2 przedstawiony jest schemat takiej 

komórki wraz z opisem jej elementów. Do najważniejszych z nich należą dendryty, ciało 

komórki i akson wraz z jego zakończeniami, synapsami. Neurony komunikują się między sobą, 

generując krótkie impulsy elektryczne, które przechodzą przez akson i wyzwalają w synapsach 

sygnały chemiczne zwane neuroprzekaźnikami. Sygnały te są odbierane przez dendryty 

sąsiednich komórek i przekazywane do ciała komórki. Jeżeli neuron otrzyma dostateczną liczbę 

takich pobudzeń, sam zaczyna generować własne impulsy. Proces ten zachodzi analogicznie 

we wszystkich innych neuronach, które są ze sobą połączone w złożone, zawierające miliardy 

elementów, sieci. Na rysunku 3.3 przedstawiony został szkic kory mózgowej człowieka, która 

jest przykładem takiej wielowarstwowej sieci neuronowej. Na opisanej zasadzie działania 

opracowano pierwsze sztuczne neurony operujące na wartościach binarnych. Autorzy 

wspomnianej publikacji udowodnili, że nawet z wykorzystaniem tak uproszczonego modelu 

można zbudować sieć, która jest w stanie przeprowadzić złożone operacje logiczne.  

 Trwające w następnych latach badania doprowadziły do zaproponowania przez Franka 

Rosenblatta architektury perceptronu [48] (rysunek 3.4). Opiera się ona na zmodyfikowanym 

sztucznym neuronie, zwanym progową jednostką logiczną (ang. Threshold Logic Unit, TLU), 

który nie operuje już na stanach binarnych, lecz na liczbach. Działa ona w taki sposób, że 

wektorowi n sygnałów wejściowych x = [x1, x2, …, xn] przypisuje określony wektor wag  

w = [w1, w2, …, wn], wylicza ich sumę ważoną i dodaje człon obciążenia b, zwany także 

przesunięciem, progiem aktywacji lub potocznie „biasem” (wzór 3.1). Uzyskany wynik z jest 

następnie przetwarzany z wykorzystaniem wybranej funkcji (wzór 3.2); w perceptronie była to 

początkowo zazwyczaj funkcja skokowa Heaviside’a (wzór 3.3). 
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Rysunek 3.2. Schemat budowy biologicznego neuronu (przetłumaczona praca Nicolasa Rougiera, Uznanie autorstwa 3.0, 

https://commons.wikimedia.org/wiki/File:Neuron-figure_PL.svg, dostęp: 1.09.2025 r.). 

 

 𝑧 = ∑ 𝑤𝑖𝑥𝑖
 𝑛

𝑖=0
+ 𝑏 =  𝑤𝑇𝑥 + 𝑏 (3.1)  

 

 𝑦 = 𝑓(𝑧) = 𝑓(𝑤𝑇𝑥 + 𝑏) (3.2)  

 

 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑧) = {
0, 𝑔𝑑𝑦 𝑧 < 0
1, 𝑔𝑑𝑦 𝑧 ≥ 0

 (3.3)  

 

 Perceptrony początkowo występowały jako oddzielne jednostki TLU, ale były także 

organizowane w pojedyncze warstwy jednostek TLU, z których każda była połączona ze 

wszystkimi wejściami (dlatego też nazwano je warstwami w pełni połączonymi). Początkowo 

wzbudzały szeroki zachwyt i pokładano w nim nadzieje na dalszy rozwój dziedziny. Jednakże 

modele te były w dużej mierze ograniczone. W 1969 roku Marvin Minsky i Seymour Papert 
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wydali monografię „Perceptrons” [49], w której uwypuklili wszystkie wady związane  

z użyciem perceptronów. Najpoważniejszym zarzutem była zbytnia prostota modelu, który nie 

był w stanie rozwiązywać bardziej złożonych zdań, a nawet tych bardziej trywialnych jak 

klasyfikacja alternatywy rozłącznej. Wynikająca z tego ograniczona lista zastosowań modelu, 

sprawiła, że w dużym stopniu porzucono badania z wykorzystaniem tego typu modeli. 

 

 

Rysunek 3.3. Uwarstwienie kory mózgowej autorstwa Santiaga Ramóna y Cajala. 

(https://commons.wikimedia.org/wiki/File:Cajal_cortex_drawings.png, dostęp: 1.09.2025 r.) 

 

 Rozwiązaniem części z tych problemów było zaproponowanie modelu perceptronu 

wielowarstwowego. Modele te składają się z wielu w pełni połączonych warstw, spośród 

których rozróżniamy przyjmującą surowy sygnał warstwę wejściową, pewną liczbą warstw 

ukrytych i warstwę ostatnią, zwaną warstwą wyjściową. Dzięki znacznie większej złożoności 

były one w stanie sprostać wielu stawianych mu zadaniom, jednakże wiązało się to  

z problemem poprawnego uczenia takich perceptronów. W przypadku perceptronów 

jednowarstwowych wagi i obciążenia były inicjowane i aktualizowane z użyciem bardzo 

prostych algorytmów, które wraz ze wzrostem liczby warstw sprawiały się coraz gorzej. 

Dopiero pojawienie się znacznie bardziej wyrafinowanych podejść do „trenowania” sieci, 

poskutkowało pełnym wykorzystaniem potencjału takich sieci (opisane dokładnie w 3.2.2. 

Trening sieci neuronowych). 

 Na rysunku 3.5 przedstawiono schemat przykładowego perceptronu 

pięciowarstwowego, na wyjściu którego wystawiana jest pojedyncza wartość, a liczba 

neuronów w warstwach jest podobna. Nie jest to jednak jedyne możliwe rozwiązanie, wyjść 

perceptronu może być znacznie więcej, natomiast liczba neuronów w warstwach ukrytych może 
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zarówno rosnąć, maleć, jak i pozostawać bez zmian. Niegdyś, w przypadku sieci neuronowych 

posiadających więcej niż jedną warstwę używano określenia sieci głębokich, jednak  

w dzisiejszych czasach powszechne są sieci posiadające setki warstw, wobec czego takie 

rozgraniczenie bywa nieprecyzyjne. 

 

 

Rysunek 3.4. Matematyczny model perceptronu złożonego z jednej jednostki TLU. 

 

 

 

Rysunek 3.5. Model perceptronu złożonego z wielu warstw gęstych. 
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3.2.2. Trening sieci neuronowych 

 Treningiem, czyli procesem uczenia sieci neuronowej, nazywamy realizowaną 

iteracyjnie poprawę jej działania w celu dopasowania jej do wybranego zadania. W przypadku 

perceptronów proces ten początkowo przebiegał w oparciu o różne wariacje reguły Hebba [50], 

według której połączenie między komórkami staje się tym silniejsze, im częściej dochodzi do 

ich wzajemnego pobudzenia. Stosując takie podejście, można było co prawda uzyskać dobre 

wyniki w niektórych zadaniach, jednakże w przypadku sieci głębszych nie spełniało ono 

oczekiwań. Rozpoczęte poszukiwania rozwiązania tego problemu doprowadziły niektórych 

badaczy do prób aktualizowania parametrów sieci z użyciem algorytmu gradientu prostego.  

 Algorytm ten wykorzystywany w iteracyjnym treningu polega na optymalizacji 

ustalonej funkcji kosztu L (w uczeniu maszynowym częściej określana jest jako funkcja straty). 

W pierwszym kroku inicjalizowane są parametry sieci ρ, a następnie dane wejściowe są 

przepuszczone przez kolejne warstwy sieci w ramach propagacji w przód. Następnie obliczona 

jest pochodna funkcji kosztu, czyli gradient, ∇ρL(ρ) dla aktualnych wartości parametrów.  

Z racji tego, że celem jest minimalizacja funkcji straty, parametry funkcji są aktualizowane 

poprzez odjęcie od nich wartości tego gradientu przemnożonej przez współczynnik uczenia η, 

który decyduje o tym, jak duży krok powinien zostać zrobiony w stronę przeciwną do gradientu 

(wzór 3.4). Krok ten jest powtarzany, aż do spełnienia określonego warunku zatrzymania. 

 

 𝜌 = 𝜌 − 𝜂∇𝜌𝐿(𝜌) (3.4)  

 

 Niestety, przy ówczesnym zaawansowaniu komputerów przeprowadzanie takich 

obliczeń dla złożonych modeli było bardzo czasochłonne, co ograniczało możliwość szerszego 

stosowania tego podejścia. Kluczowa do rozwiązania tego problemu okazała się praca 

magisterska Seppo Linnainmaa [51], w której przedstawił on sposób wykorzystania reguły 

łańcuchowej do automatycznego i efektywnego obliczeniowo wyznaczania wszystkich 

gradientów modelu w ramach jednego przebiegu w przód i w tył. Algorytm ten, nazywany 

odwrotnym różniczkowaniem automatycznym, w połączeniu z algorytmem gradientu prostego 

tworzą algorytm propagacji wstecznej, który stanowi obecnie najczęściej stosowane podejście 

do trenowania sieci. Stało się to między innymi za sprawą pracy z 1985 roku [52], która 

przeanalizowała wpływ tego algorytmu na poznawanie skutecznych reprezentacji 

wewnętrznych przez sieci neuronowe.  
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3.3. Środowisko testowe  

 Sieci neuronowe można implementować programowo z wykorzystaniem licznych 

języków programowania i dostępnych dla nich gotowych modułów zwanych bibliotekami. 

Dynamiczny rozwój narzędzi do uczenia maszynowego sprawił, że dominującym językiem  

w tej dziedzinie stał się Python, który został wykorzystany przy tworzeniu niniejszej pracy. 

Zaletami tego języka są między innymi jego prostota, duża liczba specjalistycznych bibliotek, 

liczne grupy użytkowników i twórców, a także dostępność do zróżnicowanych frameworków1 

skupionych na uczeniu maszynowym. Z najpopularniejszych, a zarazem najbardziej 

rozbudowanych spośród nich, wymieć można PyTorcha [53], JAXa [54] i TensorFlow [55]. 

 Chociaż wszystkie opisane frameworki mogą być traktowane jako uniwersalne 

narzędzia, występują pomiędzy nimi istotne różnice, które wpływają na typowe obszary ich 

zastosowań. Przyjęło się, że TensorFlow wykorzystywany jest przede wszystkim w aplikacjach 

przemysłowych, natomiast w środowiskach naukowych i badawczych największą 

popularnością cieszy się PyTorch (w pewnych sytuacjach stosowany jest także JAX).  

W głównej mierze wynika to z jego dużej elastyczności, która pozwala dynamicznie tworzyć  

i testować wiele modeli. Z tego względu cały kod wykorzystany w badaniach został oparty na 

PyTorchu. Jest to informacja o tyle istotna, że używana nomenklatura oraz sposoby 

implementacji rozwiązań będą zgodne wyłącznie ze specyfiką tego środowiska i mogą się 

różnić w przypadku wykorzystania innego frameworku. 

 W przypadku PyTorcha, a także wielu innych podobnych środowisk, dane 

reprezentowane są przy pomocy tensorów, czyli tablic różnych wymiarów, których 

przedstawicielami są między innymi wektory (jeden wymiar) i macierze (dwa wymiary). Przy 

przetwarzaniu obrazów, rozmiar tensora najczęściej opisany jest w czterech wymiarach jako  

[B, C, H, W], gdzie B odpowiada rozmiarowi grupy danych (liczbie osobnych próbek),  

C liczbie kanałów obrazu (dla obrazów w skali szarości wartość ta wynosi 1, a dla obrazów 

kolorowych 3; liczba ta może jednak ulec znacznemu zwiększeniu w trakcie przetwarzania 

przez sieć – zamiast o kanałach mówimy wtedy o „mapach cech”), natomiast wymiary 

przestrzenne danych odpowiadają wymiarom H i W. 

                                                 
1 W kontekście uczenia sieci neuronowych frameworkiem nazywamy specjalistyczne środowisko programistyczne 

zapewniające dostęp do gotowych komponentów takich jak funkcje, klasy, moduły i inne narzędzia, które ułatwiają 

projektowanie, trenowanie, ocenę jakości i wdrażanie modeli sieci neuronowych bez potrzeby tworzenia 

wszystkiego od podstaw. 
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3.4. Wybrane warstwy sieci 

 Sieci neuronowe są złożonymi strukturami, które składają się z wielu elementów 

zwanych warstwami. Warstwy można podzielić na typy pełniące różne funkcje i przetwarzające 

dane w unikalny sposób. By móc je poprawnie wdrożyć do wykonywania bardziej złożonych 

zadań, należy najpierw zrozumieć ich działanie i ich wpływ na proces treningu testowanych 

sieci. W tym podrozdziale przybliżono działanie tych warstw, które są istotne w kontekście 

wykorzystywanych w badaniach sieci. Co istotne, warstwy te mogą działać samodzielnie, ale 

mogą też być łączone w większe jednostki, jak opisano na przykładzie warstw resztkowych 

(znanych także jako rezydualne). 

 

3.4.1. Warstwa w pełni połączona 

 Warstwa ta, zwana też warstwą gęstą, określona jest w PyTorch jako torch.nn.Linear  

z uwagi na liniowe przekształcenie danych wejściowych. Jej parametrami są jedynie rozmiary 

wejścia i wyjścia oraz opcja wykorzystania wektora obciążeń. Warstwa sama w sobie nie 

zawiera funkcji aktywacji i trzeba ją dodać w osobnym kroku. Jej struktura opowiada 

pojedynczej warstwie perceptronu wielowarstwowego z rysunku 3.5. W przetwarzaniu 

obrazów jej wykorzystanie jest mocno ograniczone przez dużą zależność od wymiarów 

przestrzennych danych. 

 

3.4.2. Warstwa konwolucyjna 

 Występujący w nazwie warstwy termin „konwolucja” powinien być tłumaczony na 

język polski jako splot. Niemniej, ze względu na powszechność użycia, w praktyce 

inżynierskiej i literaturze przedmiotowej utrwaliła się oryginalna, anglojęzyczna forma. Co 

ciekawe, określanie realizowanej przez tę warstwę funkcji tym terminem jest o tyle 

nieprecyzyjne, że warstwa ta w rzeczywistości nie realizuje splotu, lecz zbliżoną do niego 

korelację krzyżową. Różnica między tymi operacjami sprowadza się do tego, że przed 

przetworzeniem danych przez splot dochodzi dodatkowo do odwrócenia jądra, co zapewnia tej 

operacji przemienność. Z punktu widzenia klasycznego przetwarzania sygnałów może to  

w pewnych sytuacjach mieć duże znaczenie, jednak w przypadku sieci neuronowej różnica ta 

jest zaniedbywalna, bo wagi jądra są i tak modyfikowane podczas treningu sieci. 



Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazów astronomicznych 

str. 43 
 

 Operacja realizowana przez tę warstwę polega na przetworzeniu odpowiednich 

wycinków danych przez filtr, zwany także jądrem konwolucyjnym, o rozmiarze ks×ks 

(zazwyczaj maski takich filtrów mają kształt kwadratu) przesuwającego się po obrazie o zadaną 

wartość kroku. W przypadku kroku większego niż jeden, wiąże się to ze zmniejszeniem 

rozmiaru obrazu wyjściowego. Najczęściej stosowane są niewielkie filtry o nieparzystej 

długości: 1×1, 3×3, 5×5 i 7×7, które są najbardziej wydajne obliczeniowo.  

 W pierwszym kroku umieszcza się jądro w lewym górnym rogu przetwarzanego obrazu. 

Następnie wymnaża się odpowiadające sobie elementy, a ich sumę wpisuje się jako wartość 

obrazu wynikowego. Na rysunku 3.6 przedstawiono przetworzenie przykładowego obrazu 5×5 

przez jądro 3×3. Na początku filtr dopasowywany jest do lewego górnego rogu (zielona ramka 

z zaznaczonym na zielono środkiem) i wyliczana jest wartość korelacji krzyżowej: 

71 ∗ (−4) + 21 ∗ 2 + 34 ∗ 0 + (−9) ∗ (−8) + 39 ∗ 0 + 11 ∗ 4 + (−4) ∗ 5 + 32 ∗ 4 + 0 ∗ 3 = −18 

 Obliczona wartość stanowi pierwszą wartość obrazu wynikowego. Następnie filtr 

przesuwany jest w rzędzie o zadany krok (w tym wypadku jeden) i obliczana jest kolejna 

wartość (ramka czerwona): 

21 ∗ (−4) + 34 ∗ 2 + 23 ∗ 0 + 39 ∗ (−8) + 11 ∗ 0 + 41 ∗ 4 + 32 ∗ 5 + 0 ∗ 4 + 15 ∗ 3 = 41 

 

 

Rysunek 3.6. Przykład działania splotu (rozmiar jądra: 3×3, krok: 1, bez obciążenia). 
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 Operacja ta jest powtarzana, aż do osiągnięcia prawej krawędzi obrazu. W takiej sytuacji 

filtr jest przenoszony z powrotem do lewej krawędzi, jednakże przesunięty jest o ustaloną liczbę 

rzędów w dół – w wykorzystanym przykładzie ten krok również wynosi 1. Zazwyczaj wartość 

kroku wynosi tyle samo w obydwu kierunkach, jednak niekiedy zdarza się stosować ich różne 

wartości. Na rysunku 3.7 pokazane jest działanie splotu o kroku 2. Jak można zauważyć, 

większa długość kroku może posłużyć do redukcji wymiarowości danych i w tym celu jest też 

często stosowana.  

 Najważniejszymi parametrami warstw konwolucyjnych jest zatem długość kroku, 

wielkość jądra, a także liczba kanałów (map cech) wejściowych Cin i wejściowych Cout. Dla 

jąder kwadratowych liczba parametrów w danej warstwie wynosi Cin * Cout * ks
2 i nie jest  

w żaden sposób związana z rozmiarem przestrzennym obrazu, co jest dużym usprawnieniem  

w porównaniu do warstw gęstych. Zastosowanie filtrów przestrzennych pozwala dodatkowo 

uwzględnić informację o pozycji i otoczeniu przetwarzanego piksela, co nie ma miejsca  

w przypadku warstw w pełni połączonych przetwarzających piksele niezależnie od siebie. 

Sprawia to, że do przetwarzania obrazów wykorzystuje się, w głównej mierze, warstwy 

konwolucyjne. 

 

 

Rysunek 3.7. Redukcja wymiarowości z wykorzystaniem splotu (rozmiar jądra: 3×3, krok: 2, bez obciążenia). 
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3.4.3. Warstwa uzupełnień 

 W większości przypadków redukcja rozmiaru obrazu związana z działaniem warstwy 

konwolucyjnej jest efektem, którego chcemy uniknąć. Aby zapobiec takim przycięciom, 

stosowane są warstwy uzupełnień (ang. padding), które dodają ramkę danych dookoła 

oryginalnego obrazu. Najprostsza metoda polega na wypełnieniu tej ramki samymi zerami. Jest 

ona także najszybsza, ale może skutkować pojawieniem się artefaktów na krawędziach, 

ponieważ wartości zerowe mogą zniekształcić znajdujący się tam sygnał. W związku z tym 

stosuje się również inne podejścia do uzupełnień, przy czym większość z nich, poza replikacją 

i odbiciem, jest dosyć rzadko spotykana. Na rysunku 3.8 przedstawiono dopełnienie poprzez 

lustrzane odbicie wartości względem elementów brzegowych. Uzupełnienie poprzez replikację 

polega natomiast na powieleniu wartości brzegowych.  

 

 

Rysunek 3.8. Przykład dopełnienia przez lustrzane odbicie. Na zielono zaznaczony oryginalny obraz. 

 

3.4.4. Warstwa łącząca 

 W sieciach neuronowych redukcji wymiaru danych można dokonać z wykorzystaniem 

warstw konwolucyjnych o kroku większym od jeden, a także z wykorzystaniem specjalnych 

warstw łączących (także: próbkujących, ang. pooling). Warstwy te nie zawierają żadnych 

parametrów podlegających procesowi uczenia, lecz działają deterministycznie, wykorzystując 

określoną statystykę. Najpopularniejszymi przedstawicielami tych warstw są warstwa 

maksymalizująca (ang. MaxPooling) i warstwa uśredniająca (ang. AveragePooling).  
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 Ich działanie opiera się na podzieleniu przetwarzanych obrazów na fragmenty ks×ks 

(ustalana przez użytkownika wielkość filtra), a następnie wyznaczeniu z tego obszaru wartości 

największej (MaxPooling) lub obliczeniu wartości średniej (AveragePooling). Działanie to 

pozwala zachować najważniejsze informacje z danego fragmentu, przy jednoczesnym 

zmniejszeniu jego wymiarowości, co łączy się ze zmniejszeniem liczby parametrów modelu  

i wymaganych obliczeń. W warstwach tych można także modyfikować wartość kroku 

przesunięcia filtra, jednak zazwyczaj nie jest to stosowane podejście. Na rysunku 3.9 

przedstawiono działanie maksymalizującej warstwy łączącej, która dwukrotnie zmniejsza 

rozmiar danych w każdym z wymiarów. 

 

 

Rysunek 3.9. Przykład działania maksymalizującej warstwy łączącej (rozmiar jądra: 2×2, krok: 1). 

 

3.4.5. Warstwa dekonwolucyjna 

 W wielu wypadkach oprócz zmniejszania rozmiaru obrazów potrzebne są także techniki 

jego zwiększania. Jedna z nich opiera się na wykorzystaniu warstwy dekonwolucyjnej, znanej 

także jako warstwa rozplotowa lub transponowana warstwa konwolucyjna. Analogicznie jak  

w przypadku warstw konwolucyjnych ich działanie opiera się na korelacji krzyżowej, a nie na 

splocie, jednak w powszechnym użyciu utrwaliło się właśnie takie określenie.  

 Działanie takiej warstwy opiera się na rozciągnięciu oryginalnego obrazu (wymaga to 

ustawienia wartości kroku na wartość > 1) poprzez dodanie rzędów i kolumn zawierających 

same zera (rysunek 3.10), a następnie przetworzenie takiego obrazu przez jądro konwolucyjne 

tak jak przedstawiono na rysunku 3.6. Podejście to jednak nie jest zbyt precyzyjne, przez co 

najczęściej skutkuje pojawieniem się „artefaktów szachownicy”, regularnych zakłóceń 
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przyjmujących postać siatki zawierającej jaśniejsze i ciemniejsze piksele [56]. By załagodzić 

ten problem, stosowane są połączenia pomijające [57], które przenoszą bardziej szczegółowe 

informacje z wcześniejszych warstw, a także zamienienie warstwy dekonwolucyjnej na 

warstwę zwiększania rozdzielczości wraz ze znajdującą się zaraz po niej warstwą 

konwolucyjną. 

 

 

Rysunek 3.10. Zwiększanie rozmiarowości obrazu z wypełnieniem zerami. 

 

3.4.6. Warstwa zwiększania rozdzielczości  

 Warstwa zwiększania rozdzielczości (ang. Upsample) podobnie do warstwy łączącej nie 

zawiera żadnych podlegających treningowi parametrów, ale opiera się na algorytmach 

deterministycznych. W odróżnieniu od warstw dekonwolucyjnych, kolumny i wiersze 

wstawiane przez tę warstwę nie są uzupełniane zerami (jak na rysunku 3.10), lecz wartościami 

wyliczanymi za pomocą metod interpolacji, takich jak interpolacja najbliższego sąsiada, 

liniowa, dwuliniowa, dwusześcienna lub trójliniowa. 

 

3.4.7. Warstwy aktywacji  

 W architekturach sieci neuronowych tworzonych w PyTorchu funkcje aktywacji nie są 

wbudowane bezpośrednio w inne warstwy, lecz występują jako osobne komponenty, 

traktowane jak niezależne warstwy. Choć wynika to głównie z przyjętej konwencji 
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implementacyjnej, w praktyce funkcje aktywacji stanowią odrębne elementy modelu, dlatego 

zostały opisane w tym rozdziale. 

 Rola funkcji aktywacji w sieciach neuronowych jest kluczowa, ponieważ to one 

wprowadzają nieliniowości do modeli, co znacząco zwiększa ich zdolności do przetwarzania 

złożonych danych. Stosowane początkowo funkcje skokowe, takie jak funkcja Heaviside’a czy 

funkcja znakowa, zostały w głębszych sieciach zastąpione funkcją sigmoidalną i tangensem 

hiperbolicznym, które charakteryzowały się płynniejszym przejściem pomiędzy skrajnymi 

wartościami. W konsekwencji gradienty funkcji strat były skuteczniej przekazywane do 

głębszych warstw sieci, a efektywność treningu modeli wzrosła. Problemem pozostawała 

jednak zauważalna niestabilność gradientów – niektóre spośród warstw uczyły się 

zdecydowanie wolniej od pozostałych. Dopiero w 2010 roku Xavier Glorot i Yoshua Bengio 

[58] wykazali, że przyczyną tego stanu jest w dużej mierze działanie poszczególnych funkcji 

aktywacji. Przy bardzo małych lub dużych wartościach wejściowych wspomniane funkcje się 

nasycają, czyli osiągają wartości skrajne, wobec czego ich gradienty są bliskie zera. Sprawia 

to, że propagacja wstecz nie jest w stanie zaktualizować parametrów sieci. Zjawisko to nazwano 

problemem znikającego gradientu. 

 By zaradzić temu problemowi zaczęto prowadzić badania nad funkcjami aktywacji, 

które nie ulegają nasyceniu. Przełomowe okazało się wykorzystanie funkcji ReLU (prostowana 

jednostka liniowa, ang. Rectified Linear Unit), która nie ma ograniczenia dla wartości 

dodatnich, a ponadto jest bardzo prosta obliczeniowo (wzór 3.5). To między innymi 

zastosowaniu tej funkcji przypisuje się sukces sieci AlexNet [5] i do dzisiaj stosuje się ją jako 

standardową funkcję aktywacji w projektowaniu sieci. Nie jest to jednak aktywacja pozbawiona 

wad. Przede wszystkim z powodu braku ograniczenia ReLU jest w stanie rosnąć liniowo  

w nieskończoność, co powoduje wykładniczy wzrost gradientów przy realizacji propagacji 

wstecznej. Wiąże się to z potrzebą wprowadzenia dodatkowych mechanizmów kontroli, które 

chronią sieć przed skutkami takiego nieograniczonego wzrostu, zwanego eksplozją gradientu.  

 Dodatkowo, pochodna ReLU wynosi 0 w przypadku każdej, nawet nieznacznej, 

wartości ujemnej. W efekcie neuron otrzymujący na wejściu ciągle wartości ujemne lub bliskie 

zeru nie jest w stanie zaktualizować swoich parametrów, bo jego gradient wynosi zawsze 0. 

Zjawisko to określano jako śmierć ReLU (ang. dying ReLUs). By zaradzić tej niedogodności 

opracowano funkcje, które przetwarzają wartości ujemne. Ich czołowym przykładem jest 

„przeciekająca” funkcja ReLU [59] (ang. LeakyReLU), która dopuszcza wartości ujemne 

przemnożone przez niewielki współczynnik kierunkowy α (wzór 3.6) mieszczący się 
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zazwyczaj w zakresie [1/100; 
1/10]. Oprócz LeakyReLU występuje wiele innych 

parametrycznych wersji ReLU [60], oparte na eksponencie funkcje ELU [61] i jej 

parametryczna odmiana SELU [62], a także bardziej skomplikowane funkcje tak jak GELU 

[63], Swish [64] oraz Mish [65]. Jednakże mimo ich wielu zalet, w większości eksperymentów 

w dalszym ciągu dominują aktywacje ReLU wraz z „przeciekającą” wersją. Na rysunku 3.11 

przedstawiono wykresy czterech omówionych funkcji oraz ich pochodnych. 

 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (3.5)  

 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,     gdy 𝑥 ≥ 0

𝛼𝑥, gdy 𝑥 < 0
 (3.6)  

 

 

Rysunek 3.11. Przebiegi wybranych funkcji aktywacji i ich funkcji pochodnych. 

 

3.4.8. Warstwa normalizacji wsadowej  

 Uczenie sieci neuronowych opiera się iteracyjnym przetwarzaniu danych treningowych 

przez sieć i aktualizowaniu jej wag w oparciu o algorytm propagacji wstecznej. Jednokrotne 

przejście po całym zbiorze danych jest w tym wypadku nazywane epoką. Każda z epok jest 

zazwyczaj podzielona na wiele iteracji, w czasie których sieć przetwarza losowo wybrane grupy 

(także: paczki, ang. batches) próbek. Jest to w głównej mierze spowodowane możliwościami 

sprzętowymi – duże zbiory danych w większości przypadków nie są w stanie w całości zmieścić 

się w pamięci sprzętowej. Sytuacja ta wiąże się jednak z problemem zmiany rozkładu danych 

wejściowych, który może destabilizować trening. 
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 By przeciwdziałać temu zjawisku, powszechnie używana jest technika normalizacji 

wsadowej (ang. batch normalization) [66], która normalizuje wartości w każdej warstwie 

względem średniej i wariancji. Co ważne, warstwa normalizacji wsadowej działa nieco inaczej 

w trakcie treningu i podczas późniejszej pracy. W trakcie treningu przeprowadza ona 

normalizację z wykorzystaniem statystyk wyznaczonych w obrębie bieżącej grupy danych, 

aktualizując swoje parametry skalowania i przesunięcia. Natomiast poza treningiem użyte 

zostają uśrednione wartości średniej oraz wariancji dla całego zbioru danych, a nie tylko 

poszczególnych paczek. Zastosowanie tego podejścia ułatwia propagację błędów, ogranicza 

problem znikających gradientów i zmniejsza liczbę epok potrzebną do wyszkolenia sieci 

(wydłuża przy tym czas trwania każdej epoki, ale efekt końcowy powinien i tak zostać 

osiągnięty w krótszym czasie). 

 Warstwy te jednak mają pewną wadę – w przypadkach bardzo małego rozmiaru grup 

oszacowanie średniej i wariancji staje się niestabilne, co może prowadzić do gorszych 

wyników. Wobec tego zaproponowane zostały jeszcze inne podejścia do normalizacji [67], 

które zostały przedstawione na rysunku 3.12. Przedstawione na nim dane tworzące tensor  

o wymiarach [B, C, H, W] zwizualizowano w trójwymiarowej przestrzeni. Powstały wymiar 

H,W odpowiada zrzutowanym wymiarom przestrzennym obrazu, a kanały C i B odpowiadają 

odpowiednio liczbie map cech i wielkości grupy. W przypadku normalizacji grupy (ang. Batch 

Norm) osobno dla każdego kanału C normalizowane są osie H,W i B. Przy normalizacji 

warstwowej (ang. Layer Norm) zachodzi normalizacja osi H,W i C niezależnie dla każdej 

próbki B. Normalizacja pojedynczego przykładu (ang. Instance Norm) wykonywana jest 

natomiast osobno dla każdego kanału C i próbki B na osi H,W. Ostatni rodzaj normalizacji, 

normalizacja grupowa (ang. Group Norm), jest przypadkiem pośrednim pomiędzy 

normalizacjami warstwową a pojedynczej próbki – kanały C dzielone są na zadaną ilość grup, 

z których każda jest normalizowana oddzielnie.   

 Chociaż inne rodzaje normalizacji rozwiązują problem zbytniej zależności od rozmiaru 

przetwarzanej paczki danych, nie zdobyły one tak dużej popularności jak algorytm normalizacji 

wsadowej. Wynika to z faktu, że przy dzisiejszych możliwościach sprzętowych rozmiar paczki 

nie jest aż tak dużym problemem, a różnice między tymi podejściami są w wielu przypadkach 

relatywnie niewielkie.  
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Rysunek 3.12. Metody normalizacji danych [67]. 

 

3.4.9. Jednostki rezydualne (resztkowe) 

 Oprócz prostych warstw realizujących pojedyncze funkcje, w bardziej złożonych 

sieciach często spotykane są jednostki funkcjonalne, czyli modularne bloki, które odpowiadają 

strukturą pomniejszym sieciom. Przykładem takiej jednostki może być wprowadzająca 

połączenia pomijające (ang. skip connections) jednostka resztkowa (rysunek 3.13), 

zastosowana po raz pierwszy we wspomnianej we wstępie sieci ResNet [7].  

  

 

Rysunek 3.13. Schemat jednostki rezydualnej. 

 

 Jednostki zawierające takie połączenia są w stanie w znaczący sposób uprościć 

mechanizm uczenia sieci, przyspieszyć przejście gradientów przez sieć, a także zapewniają 

modularność przydatną przy projektowaniu głębszych architektur. Ich działanie sprawdza się 

szczególnie w przypadku, gdy funkcja F(x) realizowana przez grupę N warstw jest mocno 

zbliżona do funkcji tożsamościowej. W takiej sytuacji dodanie wejścia x do wyjścia tej grupy 
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sprawia, że grupa ta jest zmuszona do odwzorowania funkcji H(x) = F(x) + x, dla której 

wyuczenie się F(x) staje się o wiele prostsze. 

 Tworzenie podobnych (prostszych lub bardziej złożonych) jednostek funkcyjnych jest 

jedną z podstawowych technik tworzenia architektur sieci, która znalazła zastosowanie w wielu 

z opisanych w tej pracy eksperymentów. Dla przykładu: opisane tu jednostki rezydualne mają 

szczególne znaczenie w kontekście sieci wykorzystanych w pracy nad przetwarzaniem 

obrazów słonecznych (rozdział 6. Redukcja szumu w danych obrazowych Słońca). 

 

3.5. Architektury sieci 

 Architekturą sieci neuronowej nazywamy ogólny układ warstw i połączeń w sieci, który 

określa, jakie warstwy zostały użyte; w jakiej znajdują się one kolejności i konfiguracji; w jaki 

sposób dane przepływają przez sieć; ile parametrów ma model; a także jakie są jego 

hiperparametry (rozdział 3.6. Hiperparametryzacja sieci). Określenie to używane jest 

zazwyczaj w odniesieniu do teoretycznego modelu matematycznego, w przypadku instancji 

takiego obiektu najczęściej używa się zamiennie określeń „model” i „sieć”. 

 

3.5.1. Wybór sieci 

 W ramach wcześniejszych, niezależnych od niniejszej rozprawy badań, autor zajmował 

się zagadnieniami związanymi z redukcją wymiarowości danych przy użyciu analizy głównych 

składowych [68] oraz odwracaniem efektów kompresji stratnej obrazów wynikającej  

z zastosowania algorytmu JPEG [69]. Obie te metody, przy odpowiednim doborze parametrów, 

umożliwiają zmniejszenie rozmiaru reprezentacji danych kosztem nieodwracalnej utraty części 

zawartej w nich informacji. Obserwacja ta posłużyła sformułowaniu hipotezy, że wykorzystanie 

technik kompresji stratnej, jako filtrów selektywnie przepuszczających jedynie najbardziej 

istotne informacje wizualne, może usunąć z przetwarzanych obrazów niepożądane elementy 

takie jak losowy szum. W tym celu autor zwrócił się ku rozwiązaniom oferowanym przez sieci 

neuronowe, które dzięki zdolnościom modelowania nieliniowych zależności i efektywnemu 

wydobywaniu kluczowych cech obrazów zostały uznane za szczególnie obiecujące. Najwięcej 

uwagi poświęcono strukturze dostosowanej do zadań kompresji i dekompresji – architekturze 

autoenkodera, a także jej rozwinięciu w formie U-Neta. 
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3.5.2. Autoenkoder 

 Autoenkoder (AE) to rodzaj sieci neuronowej wykorzystywany do wydajnego 

kodowania danych wejściowych, zwanych także reprezentacjami ukrytymi (ang. latent 

representations). Kodowania te zazwyczaj mają o wiele mniejszą wymiarowość niż dane 

oryginalne, dzięki czemu jest on powszechnie wykorzystywany się do kompresji. Stopniem 

zachodzącej redukcji można sterować poprzez odpowiednie modyfikacje używanej 

architektury, przede wszystkim przez zmianę rozmiaru docelowego wymiaru kodowania oraz 

złożoności struktury sieci. W rezultacie autoenkodery znalazły szerokie zastosowanie również 

w redukcji szumu [70]-[71][73].  

 Na rysunku 3.14 przedstawiony jest przykładowy schemat autoenkodera. Architektura 

ta składa się z trzech części: kompresującego dane enkodera, kodowań i dekompresującego je 

dekodera. Jak można zauważyć na schemacie, poszczególne warstwy podzielone są na 

oddzielne poziomy – jest to ogólnie przyjęta konwencja w opisywaniu sieci zmieniających 

rozmiarowość danych. Zgodnie z nią wszystkie warstwy na danym poziomie przetwarzają dane 

o takich samych rozmiarach przestrzennych H i W, chyba że z opisu schematu jasno wynika 

coś innego. Często łączy się to oznaczaniem różnych rodzajów warstw z wykorzystaniem 

odpowiednich barw.  

 

 

Rysunek 3.14. Architektura autoenkodera. 
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 W większości wypadków enkoder jest strukturą symetryczną do dekodera, jednakże nie 

jest to z góry narzucona norma. Przykładowo, w sytuacjach, gdy nie potrzebujemy dokładnie 

odtwarzać całości danych, lecz jedynie ich część, dekoder bywa znacznie mniejszy od 

enkodera. Ponadto w niektórych implementacjach enkoder działa oddzielnie od dekodera; sieci 

nie są połączone w jedną strukturę, tylko stanowią dwie współdziałające ze sobą podsieci. Dla 

rozróżnienia struktura ta nosi nazwę architektury enkoder-dekoder.  

 

3.5.3. U-Net 

 Architektura U-Net jest modyfikacją symetrycznej, ułożonej w kształt litery U struktury 

autoenkodera wzbogaconą o połączenia łączące ze sobą poszczególne warstwy, co można 

zaobserwować na rysunku 3.15 w postaci szarej, pogrubionej strzałki. Połączenia te często 

przybierają postać połączeń pomijających – na początek wybranej warstwy jest dodawane 

wyjście z oddalonej warstwy znajdującej się na tym samym poziomie. Oprócz tego popularną 

techniką jest również łączenie (scalanie) ze sobą tych danych wzdłuż wymiaru map cech C 

(oznaczone przez dołączenie białego bloku do bloków niebieskich). 

 

 

Rysunek 3.15. Architektura sieci typu U-Net. 
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 W porównaniu do autoenkodera, U-Net jest w stanie lepiej zachować informacje 

przestrzenne i tekstury, które są tracone podczas kompresji. Jednak ze względu na połączenia 

między warstwami wymaga więcej pamięci operacyjnej do przechowywania przetwarzanych 

danych, co może być problemem w przypadku dużego rozmiaru grup. Chociaż sieci typu  

U-Net powstały początkowo do celów segmentacji obiektów na obrazach [74], z czasem 

zaczęto je również stosować w zadaniach redukcji szumu [75][76]. 

 

3.6. Hiperparametryzacja sieci  

 W przypadku sieci neuronowych parametrami nazywamy elementy wewnętrzne 

modelu, których sieci uczą się w procesie treningu – są nimi wagi i obciążenia. Elementy 

narzucone, zewnętrzne, które opisują to jak sieć wygląda i jak działa, nazywane są natomiast 

hiperparametrami (od greckiego „hiper” oznaczającego „nad”, „powyżej”). I tak jak ważne jest 

wyuczenie się przez sieć odpowiednich wartości parametrów wewnętrznych, tak poprawne 

działanie modelu w głównej mierze zależy od ustawienia poprawnej wartości hiperparametrów. 

Niestety, nie istnieje żadna metoda ani heurystyka pozwalająca na ich optymalny dobór. 

Zazwyczaj opiera się on na wyznaczeniu pewnych zalecanych (sprawdzonych w podobnych 

warunkach) wartości, przetestowaniu działania sieci, a następnie na ich modyfikacji  

i ponownym porównaniu. W wielu sytuacjach liczba hiperparametrów do strojenia połączona 

z długim i niejednokrotnie wymagającym procesem uczenia wyklucza możliwość znalezienia 

modelu optymalnego, czyli gwarantującego najmniejszą możliwą wartość funkcji straty.  

W przeszłości problem ze znalezieniem minimum globalnego uważano za największy problem 

uczenia maszynowego, jednakże z biegiem czasu okazało się, że znajdowane minima lokalne 

sprawowały się na tyle dobrze, że w wielu przypadkach różnice pomiędzy nimi a minimami 

globalnymi są zaniedbywalnie małe. Jednakże, by sieci były w stanie je osiągnąć, trzeba 

poprawnie dostroić hiperparametry. W kolejnych podrozdziałach pokrótce omówiono ich 

działanie i wpływ na skuteczność sieci. 

 

3.6.1. Głębokość sieci 

 Pierwszym i najbardziej istotnym z hiperparametrów sieci jest jej głębokość, rozumiana 

jako liczba i konfiguracja warstw. Chociaż udowodniono, że sieć posiadająca zaledwie jedną 

warstwę ukrytą jest w stanie aproksymować dowolną funkcję ciągłą z dowolną dokładnością 
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[77], w praktyce tak skrajnie płytkie modele wymagają olbrzymiej liczby neuronów, by 

skutecznie uchwycić bardziej złożone wzorce. Co więcej, ich zdolność do uogólniania jest 

często ograniczona, szczególnie w zadaniach o wysokiej złożoności przestrzennej lub 

semantycznej [78].  

 Dopiero głębokie sieci neuronowe, składające się z wielu warstw ukrytych, umożliwiają 

hierarchiczne uczenie reprezentacji. Oznacza to, że każda kolejna warstwa w sieci może 

przetwarzać dane na innym poziomie; od detekcji prostych cech (na przykład krawędzi)  

po rozpoznawanie bardziej złożonych struktur (takich jak kształty). Dzięki temu modele te są 

w stanie uchwycić nieliniowe i wielowymiarowe zależności, co przekłada się na lepszą 

wydajność w takich zadaniach jak analiza obrazów. Jednak wzrost głębokości sieci wiąże się 

również z pewnymi wyzwaniami, takimi jak zanikający gradient, trudności w optymalizacji czy 

zwiększone zapotrzebowanie sprzętowe. Z tego względu wybór odpowiedniej głębokości 

stanowi wyzwanie, mające na celu znalezienie kompromisu pomiędzy złożonością modelu  

a jego zdolnością do generalizacji. 

 

3.6.2. Współczynnik uczenia 

 Przy szkoleniu sieci ważną rolę ogrywa także współczynnik uczenia η. Wybranie zbyt 

małej wartości może prowadzić do bardzo długiego treningu lub do utknięcia w niemożliwym 

do opuszczenia minimum lokalnym funkcji straty. Z drugiej strony, duża wartość tego 

współczynnika może skutkować zbyt dużymi zmianami parametrów, powodującymi 

destabilizację działania całego modelu. Dodatkowo, minimum globalne może być w takich 

aktualizacjach przypadkowo pominięte. 

 By zaradzić temu problemowi opracowano różne strategie do adaptacyjnej zmiany 

wartości η. Podstawową z nich jest zastosowanie odpowiedniego optymalizatora. Obecnie poza 

podstawowym algorytmem opisanym wzorem 3.4 najczęściej stosowany jest nieco bardziej 

rozbudowany algorytm o nazwie Adam (adaptacyjne szacowanie momentów, ang. Adaptive 

Moment Estimation) [79], który zapamiętuje wartości gradientów z poprzednich iteracji i używa 

ich w celu uzyskania szybszej zbieżności. Uznaniem cieszy się też jego bardziej stabilna, 

zmodyfikowana wersja, AdamW (Adam z oddzielnym zanikiem wag, ang. Adam with 

decoupled Weight Decay) [80].  
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 Oprócz tych metod można zastosować uczenie z wykorzystaniem harmonogramów, 

które dbają o zmianę wartości współczynnika uczenia w odpowiednich momentach. Podejście 

to ma na celu przyspieszenie pierwszej fazy treningu, gdy model musi dokonać największych 

aktualizacji, a następnie zwolnienie w fazie stabilizacji uczenia, by funkcja strat mogła osiągnąć 

minimum. Większość podejść opiera się na ustawieniu wysokiej wartości początkowej η,  

a następnie sukcesywnym zmniejszaniu jej do zera z wykorzystaniem różnych funkcji. 

Stosowane są także podejścia bazujące na zmianach współczynnika uczenia związany poprzez 

początkowe „rozgrzanie sieci” [81] lub cykliczne zmiany wartości η [82]. 

 

3.6.3. Funkcje straty 

 Osiągnięcie oczekiwanej jakości wyników w dużej mierze zależy od prawidłowego 

wyboru funkcji straty. Nie jest to jednak zadanie proste, a stosowane powszechnie normy nie 

zawsze skutkują zadowalającymi wynikami i to nawet pomimo osiągniętej niskiej wartości 

błędu [83]. Dwiema z najbardziej popularnych funkcji strat są od lat normy L1 i L2. L1, znana 

także jako średni błąd bezwzględny (ang. Mean Absolute Error, MAE), mierzy średnią wartość 

bezwzględnych różnic pomiędzy przewidywanymi (y) a rzeczywistymi wartościami pikseli (ŷ) 

(wzór 3.7). Dzięki swej odporności na duże odchylenia często prowadzi do zadowalających 

rezultatów. Jej dużą wadą jest jednak brak pełnej ciągłości (pochodna w punkcie zero 

gwałtownie przeskakuje z -1 na 1). Natomiast L2, czyli średni błąd kwadratowy (ang. Mean 

Squared Error, MSE), wzmacnia błędy, obliczając ich wartość kwadratową (wzór 3.8), co 

sprawia, że większe odchylenia mają znacznie większy wpływ na końcowy wynik funkcji.  

W licznych sytuacjach jest to działanie niepożądane, bo wpływ dużych błędów może 

zdominować proces uczenia, przez co sieć będzie w mniejszym stopniu skupiać się na 

poprawnym odtwarzaniu szczegółów.  

 

𝐿1(𝑦𝑖, 𝑦̂𝑖) =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (3.7)  

 

𝐿2(𝑦𝑖, 𝑦̂𝑖) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (3.8)  

 



Rozdział 3. Sieci neuronowe w przetwarzaniu obrazów 

str. 58 

 

 Aby połączyć zalety obu podejść, Peter J. Huber zaproponował w 1964 roku [84] 

parametryzowaną funkcję, która dla małych błędów zachowuje się jak MAE, a dla dużych jak 

MSE (wzór 3.9). Funkcja ta, nazwana od nazwiska twórcy funkcją straty Hubera, wprowadza 

element progu δ, który zmniejsza wpływ elementów odstających, a zarazem zachowuje lepszą 

stabilność uczenia poprzez zachowanie lepszej gładkości od MAE. 

 

𝐿𝛿(𝑦𝑖, 𝑦̂𝑖) = {

1

2
(𝑦𝑖 − 𝑦̂𝑖)2,                 gdy |𝑦𝑖 − 𝑦̂𝑖| ≤ 𝛿

𝛿 (|𝑦𝑖 − 𝑦̂𝑖| −
1

2
𝛿) ,   gdy |𝑦𝑖 − 𝑦̂𝑖| > 𝛿

 (3.9)  

 

 W rekonstrukcji obrazów wykorzystuje się obecnie również inne funkcje strat 

dopasowane do konkretnego zadania, które wykraczają poza tradycyjne podejście oparte na 

porównywaniu wartości pikseli. Przykładem może być strata częstotliwości ogniskowej [85] 

(ang. Focal Frequency Loss), która z użyciem dyskretnej transformaty Fouriera porównuje 

obrazy w dziedzinie częstotliwościowej. Skupiając się na najtrudniejszych do odtworzenia 

częstotliwościach, wpływa na zauważalną poprawę percepcyjną obrazu w rekonstrukcji tekstur, 

krawędzi i detali. 

 Optymalny wybór funkcji straty pozostaje wciąż jednak wyzwaniem, ponieważ 

subtelny wpływ bardziej złożonych funkcji jest trudny do oceny wyłącznie poprzez wskaźniki 

numeryczne. W praktyce powinno się ją osobno dopasowywać do specyfiki każdego zadania, 

a następnie zweryfikować wybór poprzez ocenę tak ilościową (przy pomocy wybranych 

metryk), jak i jakościową (wizualną). Podejście takie jest jednak bardzo czasochłonne, a co za 

tym idzie, w większości wypadków nieopłacalne, przez co częstym podejściem w badaniach 

jest wciąż wykorzystanie najprostszych norm L1 i L2. 

 

3.6.4. Długość procesu uczenia 

 Istotną kwestią mającą wpływ na skuteczność procesu uczenia jest także poprawny 

wybór liczby epok, przez które odbywa się szkolenie modelu. W przypadku zbyt krótkiego 

treningu sieć nie jest w stanie nauczyć się odpowiednio uogólniać danych, natomiast przy zbyt 

długim treningu pojawia się ryzyko nadmiernego dopasowania do danych treningowych, 

skutkującego ograniczoną zdolnością sieci do uogólniania. W celu ustalenia wystarczającej 
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długości tego procesu zazwyczaj wybiera się względnie wysoką liczbę iteracji i stosuje się 

kryterium wczesnego zatrzymania. Kryterium to zazwyczaj opiera się na osiągnięciu określonej 

wartości funkcji straty przez model lub też osiągnięcie zakładanej liczby epok, podczas których 

nie nastąpiła poprawa wyników zwracanych przez model. Jednak takie proste podejścia mogą 

nie być optymalne w wykrywaniu momentu, gdy sieć przestaje poprawiać swoje zdolności 

uogólniające, dlatego wciąż opracowywane są inne kryteria mające precyzyjniej określić 

odpowiedni czas zatrzymania treningu [86]. 

 

3.6.5. Rozmiar grup danych 

 Sieć neuronowa w trakcie każdej epoki wykonuje wiele iteracji, podczas których 

przetwarza tylko pewną część (grupę) losowo wybranych próbek danych. Wielkość tej paczki 

danych ma znaczący wpływ na przebieg treningu i końcową wydajność modelu. Wykorzystanie 

małej grupy powoduje wystąpienie większej wariancji w próbce, co pozwala sieci lepiej 

dostosować się do danych niewystępujących w zbiorze treningowym. Większe paczki 

umożliwiają natomiast lepsze wykorzystanie zasobów sprzętowych, jednak w praktyce modele 

trenowane z użyciem dużych paczek często osiągają gorsze wyniki w kontekście generalizacji; 

ich zdolność do działania na danych testowych bywa ograniczona w porównaniu z modelami 

uczonymi na mniejszych paczkach [87]. Dobór odpowiedniego rozmiaru grupy jest zatem 

kompromisem pomiędzy jakością wyników a efektywnością obliczeniową, który w dużej 

mierze zależy od charakterystyki danych, architektury sieci oraz celu projektu. 

 

3.6.6. Pozostałe hiperparametry 

 W sieciach neuronowych istnieje jeszcze wiele innych hiperparametrów, które mają 

znaczenie dla efektywności treningu oraz końcowej jakości działania modelu. Warto przytoczyć 

tu między innymi różne metody inicjalizacji wag sieci; sposoby i proporcje podziału danych na 

treningowe, walidacyjne i testowe; podejścia do augmentacji (zwiększeniu różnorodności) 

wykorzystywanych danych; rodzaje normalizacji danych, a także wiele innych. Każde z 

możliwych ustawień tych wartości wpływa na to, jak model przetwarza dane, jak szybko i 

stabilnie się uczy oraz jak dobrze potrafi uogólniać wiedzę na niewidziane wcześniej dane. 

Ważny jest przy tym fakt, że hiperparametry rzadko działają niezależnie —zazwyczaj są ze 
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sobą mocno powiązane, co dodatkowo utrudnia znalezienie ich optymalnych wartości. Dalsze 

zagłębianie się w tematykę ich optymalizacji wykracza jednak poza temat niniejszej pracy. 
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4. Redukcja szumu w obrazach syntetycznych  

W poprzednim rozdziale przedstawiono kluczowe zagadnienia związane z procesem 

trenowania sieci neuronowych, a szczególny nacisk położono na omówienie wpływu 

poszczególnych parametrów modeli na ich pracę. Należy jednak podkreślić, że równie istotnym 

zagadnieniem jest prawidłowy dobór danych, na których przeprowadzany jest trening. Zarówno 

ich ilość, jak i jakość, mają bezpośredni wpływ na działanie wytrenowanej sieci w warunkach 

docelowych. 

W kontekście zadań związanych z redukcją szumu standardowe podejście opiera się na 

wykorzystywaniu par składających się z obrazów zawierających szum i tych całkowicie go 

pozbawionych. Jak jednak wyjaśniono w rozdziale drugim, w przypadku danych pochodzących 

z teleskopów naziemnych takie podejście jest niemożliwie do zrealizowania, bo wszystkie 

rzeczywiste obrazy są obarczone szumem. Często stosowanym rozwiązaniem tego problemu 

jest utworzenie zbioru obrazów zaszumionych, by następnie wyznaczyć obrazy pozbawione 

szumu, korzystając z uśrednienia serii wielu klatek czy stosując wybrany algorytm 

deterministyczny służący do redukcji szumu. Ponadto, istnieją różne podejścia do samego 

procesu uczenia sieci, które nie wymagają posiadania obrazów „czystych”. Chociaż 

wytrenowane w ten sposób sieci mogą dostarczać dobrej jakości wyniki, problemem pozostaje 

brak danych referencyjnych, które pozwoliłyby obiektywnie ocenić rzeczywistą skuteczność 

sieci. Z tego względu zdecydowano się na wykorzystanie danych syntetycznych we wstępnych 

eksperymentach opisanych w niniejszym rozdziale. 

Celem badań było przede wszystkim sprawdzenie wpływu złożoności sieci typu 

autoenkoder na jakość redukcji szumu w przetwarzanych obrazach. Przeanalizowano w jakim 

stopniu zwiększenie rozmiaru wektora kodowań i liczby elementów w poszczególnych 

warstwach przekłada się na poprawę wyników. Przetestowano różne strategie uczenia modeli, 

w tym warianty oparte na technikach uczenia sieci bez dostępu do danych niezaszumionych. 

Wszystkie eksperymenty przeprowadzono dla trzech odmiennych mocy szumu, które uznano 

za reprezentatywne dla scenariuszów niskiego, średniego i wysokiego poziomów zakłócenia 

obrazów. Pozwoliło to określić korelację między stopniem degradacji oryginalnych danych  

a wymaganą złożonością modeli odszumiających. W celu rzetelnej oceny skuteczności 

zaproponowanych rozwiązań, wyniki działania sieci neuronowych zostały porównane  

z wynikami uzyskiwanymi przez najlepsze algorytmy deterministyczne. 
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Poruszona w tym rozdziale tematyka została podzielona na siedem części. W pierwszej 

z nich przedstawiono charakterystykę wykorzystanych danych syntetycznych oraz opisano 

metodę ich sztucznego zaszumiania, prowadzącą do utworzenia trzech niezależnych od siebie 

zbiorów: treningowego, walidacyjnego i testowego. Następnie zaprezentowano powszechnie 

stosowane do redukcji szumu algorytmy deterministyczne, które posłużyły jako punkt 

odniesienia w dalszej analizie. W trzeciej części szczegółowo wyjaśniono, które techniki 

trenowania sieci wybrano do badań. W kolejnej sekcji skupiono się na opisie zastosowanych 

architektur autoenkoderów, by zaraz potem przedstawić, w jaki sposób dokonano oceny jakości 

uzyskiwanych przez nie wyników. Przedostania część obejmuje opis i analizę uzyskanych 

wyników, natomiast koniec rozdziału poświęcono omówieniu dalszego kierunku badań. 

 

4.1. Wykorzystane dane syntetyczne – zbiór MNIST 

 Jako zestaw danych syntetycznych wybrano jeden z najbardziej znanych i szeroko 

wykorzystywanych w dziedzinie uczenia maszynowego zbiorów – MNIST (ang. Modified 

National Institute of Standards and Technology database) [88]. Jest to kolekcja 70 tysięcy 

obrazów w skali szarości, które przedstawiają odręcznie napisane cyfry (rysunek 4.1). Mimo 

że obrazy te są do siebie podobne, charakteryzują się pewną różnorodnością, która zapobiega 

przetrenowaniu2 sieci. Zaletą ich stosowania jest także to, że ich jakość jest bardzo łatwo ocenić 

wizualnie. Z tych powodów zbiór ten stanowi punkt wyjścia do testowania i porównywania ze 

sobą różnych algorytmów uczenia maszynowego. 

 Na potrzeby badań zbiór MNIST został podzielony na trzy niezależne części. Przyjęto, 

że cyfry 4, 7 oraz 8 mają odmienny kształt w porównaniu z pozostałymi, dlatego utworzono  

z nich zbiór testowy, który wykorzystywano do oceny działania wytrenowanych modeli. 

Pozostałe dane rozdzielono proporcjonalnie: 85% przeznaczono na zbiór treningowy, a 15% na 

walidacyjny, przy zachowaniu podziału względem poszczególnych cyfr. Szczegółowy podział 

zbioru MNIST na podzbiory przedstawiono w tabeli 4.1. 

                                                 
2 W przypadku treningu sieci możemy mieć do czynienia zarówno z przetrenowaniem (ang. overfitting), jak  

i niedotrenowaniem (ang. underfitting). Pierwsze zjawisko polega na tym, że sieć neuronowa uczy się zbyt 

dokładnie danych treningowych (łącznie z ich szumem), co prowadzi do spadku jej skuteczności na nowych 

danych. Natomiast niedotrenowanie oznacza, że model nie nauczył się wystarczająco dobrze obecnych w danych 

zależności i nie jest w stanie osiągać najlepszych wyników. Oba zjawiska świadczą o niepoprawnym dopasowaniu 

modelu i wymagają dalszego dostosowania jego architektury, parametrów lub danych. 
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Rysunek 4.1. Przykładowe obrazy ze zbioru MNIST. 

 

Tabela 4.1. Podział zbioru MNIST na podzbiory. 

Typ podzbioru danych Liczba obrazów z MNIST w podzbiorze 

Treningowy 41 700 

Walidacyjny 7 358 

Testowy 20 942 

 

 Pierwotny rozmiar obrazów ze zbioru MNIST wynosi 28 × 28 pikseli, jednak na cele 

eksperymentów obrazy zostały przeskalowane do rozmiaru 32 × 32 piksele, by ułatwić zmianę 

ich rozmiaru przestrzennego przez testowane sieci. Dodatkowo wartości każdego obrazu im 

zostały znormalizowane3 do zakresu [-1; 1] z wykorzystaniem największych i najmniejszych 

wartości, jak opisano we wzorze 4.1. 

 

𝑖𝑚 = 2 ∗ (
𝑖𝑚 − min(𝑖𝑚)

max(𝑖𝑚) − min(𝑖𝑚)
−

1

2
) (4.1)  

                                                 
3 Normalizacja zakresu danych w sieciach neuronowych polega na przekształceniu danych wejściowych tak, aby 

miały określoną średnią i rozkład (zwykle zerowa średnia i jednostkowe odchylenie standardowe). Dzięki temu 

proces uczenia staje się szybszy i bardziej stabilny, ponieważ sieć nie musi dostosowywać się do danych o różnych 

skalach. W praktyce jest często realizowana w sieciach poprzez wykorzystanie warstwy normalizacji wsadowej 

jako pierwszej warstwy przetwarzającej dane surowe. 
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 W celu przeprowadzenia eksperymentów związanych z redukcją szumu, zdefiniowano 

trzy poziomy zakłóceń, odpowiadające różnym poziomom szumu gaussowskiego. Moce szumu 

zostały określone na podstawie wizualnej analizy wpływu szumu na jakość obrazu  

i sklasyfikowano je jako słabą, umiarkowaną oraz silną. Zaszumione obrazy wygenerowano 

poprzez dodanie do oryginalnych danych losowego szumu o rozkładzie normalnym, gdzie 

wartość odchylenia standardowego σ wynosiła odpowiednio 0,1, 0,15 i 0,85 dla każdej mocy 

szumu. Tak zaszumione obrazy (określane jako Noise) miały za zadanie zastąpić pojedyncze 

klatki obserwacyjne. Równolegle przygotowano zestaw obrazów o zmniejszonym natężeniu 

szumu (Clean), które odpowiadają klatce uśrednionej ze 100 obrazów z serii. Takie uśrednienie 

powinno dziesięciokrotnie (√100 = 10) zmniejszyć natężenie szumu, w związku z czym 

zastosowano odpowiednio mniejsze wartości parametru σ: 0,01, 0,015 oraz 0,085. Na rysunku 

4.2 przedstawiono wpływ dodania szumu na jakość danych na przykładzie dwóch losowo 

dobranych obrazów (cyfry 4 i 5). 

 

 

Rysunek 4.2. Wpływ mocy szumu na jakość obrazów. 

 

 Tak przygotowane dane umożliwiły zastosowanie wielu odmiennych sposobów do 

uczenia sieci przy zachowaniu kontroli nad poziomem degradacji sygnału. W przypadku 

danych treningowych zaszumienia te były generowane osobno w każdej epoce, co umożliwiło 

wielokrotne zwiększenie przykładów w zbiorze treningowym. Natomiast dla zbioru 
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walidacyjnego i testowego zaszumienie zostało dodane tylko raz, przed rozpoczęciem całego 

eksperymentu – pozwoliło to obiektywnie ocenić działanie poszczególnych sieci. Zbiory te 

składały się zatem z par obrazów: obraz zaszumiony Noise oraz obraz porównawczy całkowicie 

pozbawiony szumu, nazwany Reference. 

 

4.2. Algorytmy deterministyczne w redukcji szumu 

W dziedzinie cyfrowego przetwarzania obrazów stosuje się szeroki wachlarz podejść 

do redukcji szumu. Najliczniejszą grupą rozwiązań są deterministyczne metody filtracji 

operujące na pojedynczym, zaszumionym obrazie. Biorąc pod uwagę zakres wykorzystywanej 

przez nie informacji przestrzennej, można takie algorytmy podzielić na dwie grupy: metody 

działające lokalnie i nielokalnie.  

Lokalne metody filtracji operują w obrębie niewielkiego fragmentu obrazu, tak zwanego 

okna, otaczającego przetwarzany piksel. Przykładami takich rozwiązań są klasyczne filtry 

operujące na podstawie lokalnych statystyk, takich jak średnia i wariancja [89], filtry 

wykorzystujące ważoną wartość mediany [90], filtry Wienera [91] oraz filtry bilateralne [92]. 

Choć podejścia te cechują się stosunkowo niską złożonością obliczeniową i są łatwe do 

implementacji, wykazują one istotne ograniczenia, szczególnie w przypadku wysokiego 

poziomu szumu. Zachodzi wtedy silna degradacja korelacji pomiędzy pikselami w niewielkich 

sąsiedztwach, co sprawia, że metody te nie są w stanie działać prawidłowo. 

 W odpowiedzi na niedoskonałości metod lokalnych, zaproponowano algorytmy 

nielokalne, które analizują powtarzające się wzorce w całym obrazie, niezależnie od ich 

lokalizacji przestrzennej. Pionierskim rozwiązaniem był algorytm nielokalnych średnich  

(ang. Non-Local Means, NLM) [93], który wykorzystuje średnie ważone wartości pikseli  

z całego obrazu, bazując na podobieństwie bloków. NLM okazał się znacząco lepszy od 

pozostałych podejść, a jego dalszy rozwój doprowadził do szeregu ulepszeń [94][95][96], czego 

zwieńczeniem stało się opracowanie algorytmu BM3D (ang. Block-Matching and 3D Filtering) 

[97]. Poprzez grupowanie podobnych bloków i ich filtrowanie w domenie współrzędnych 

trójwymiarowych, BM3D był w stanie osiągnąć wyniki znacząco przewyższające te 

uzyskiwane przez inne metody i stał się w efekcie punktem odniesienia do oceny pozostałych 

algorytmów redukcji szumu. 
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 Oprócz wspomnianych metod, na przestrzeni lat rozwinięto również inne techniki, 

oparte na bardziej złożonych modelach matematycznych i statystycznych. Do najważniejszych 

z nich zaliczyć można: metodę K-SVD (ang. K-Singular Value Decomposition) [98], techniki 

oparte na adaptacyjnej analizie głównych składowych [99], mieszaniny Gaussa w dziedzinie 

falkowej [100], probabilistyczne modele mieszanin Gaussowskich [101], a także podejścia 

Bayesowskie [102][103]. Pomimo zaawansowania teoretycznego wiele z tych rozwiązań 

okazało w kontekście rzeczywistych danych obrazowych się mniej skuteczne niż BM3D [104], 

dzięki czemu BM3D pozostaje do dziś standardem referencyjnym w ocenie technik 

odszumiających. Z tego powodu za algorytmy porównawcze przyjęto właśnie ten algorytm 

wraz z jego prostszą wersją NLM. 

 

4.3. Sposoby trenowania sieci 

 Na rysunku 4.3 przedstawiono typowy schemat procesu uczenia sieci, który był szerzej 

omówiony w poprzednim rozdziale. Chcąc wytrenować sieć, która przyjmuje na wejściu dane 

zaszumione, a zwraca dane pozbawione szumu, musimy zazwyczaj dysponować parami 

obrazów: obraz wejściowy (zaszumiony) i obraz referencyjny (pozbawiony szumu). Metoda ta 

powszechnie jest nazywana trenowaniem Noise2Clean4, jednakże dla celów prowadzonych 

badań została ona przemianowana na Noise2Reference. Pary takich obrazów wykorzystuje się 

do iteracyjnego procesu aktualizacji parametrów modelu, a tym samym do zwiększania jego 

dokładności.  

 W rzeczywistych sytuacjach stosunkowo rzadko zdarza się, że mamy dostęp do takich 

par danych. Zazwyczaj uzyskanie idealnych obrazów pozbawionych szumów (Reference) jest 

albo bardzo trudne w realizacji, albo wręcz niemożliwe. W astronomii czy w obrazowaniu 

medycznym zaszumienie danych jest zjawiskiem zawsze obecnym podczas rejestracji obrazów, 

co rodzi poważne problemy w procesie treningu. 

                                                 
4 Skrócone nazwy sposobów trenowania sieci zapisuje się często w języku angielskim jako X2Y, bo cyfrę „2” 

wymawia się jak przyimek „to”. Metodę X2Y należy zatem rozumieć jako szkolenie sieci z wykorzystaniem 

danych typu X, które po przetworzeniu porównuje się do danych typu Y. 
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Rysunek 4.3. Schemat trenowania sieci neuronowej. 

 

W ostatnich latach opracowano wiele odrębnych metod uczenia sieci, które operują 

wyłącznie na danych zaszumionych. Pierwszą z nich jest podejście Noise2Noise [105], które 

opiera się na wykorzystaniu wielu różnych, niezależnych od siebie realizacji szumu na tym 

samym obrazie. Osiągane tą metodą wyniki w wielu sytuacjach są w stanie dorównać 

klasycznemu podejściu Noise2Reference. Rozwinięciem Noise2Noise są podobne podejścia, 

które wykorzystują maskowanie wybranych wartości obrazu, by móc na tej podstawie ominąć 

najtrudniejszy element do rekonstrukcji, czyli losowy szum; spośród nich na szczególną uwagę 

zasługują metody Noise2Void [106][107], Self2Self [108] i Noise2Self [109]. Oprócz nich 

stosuje się także metody takie jak Noisy-As-Clean [110] czy Noisier2Noise [111], które 

przyjmują obrazy zaszumione jako referencje, a na wejście sieci przekazują te same obrazy  

z dodatkowo powiększonym szumem.  

 Bazując na opisanych metodach, opracowano sześć różnych, reprezentatywnych 

technik uczenia, które zostały wykorzystane do wytrenowania wybranych modeli. Każda z nich 

została szczegółowo opisane w kolejnych podpunktach, natomiast na rysunku 4.4 

przedstawiono porównanie wykorzystywanych przez nie danych wejściowych sieci i obrazów 

porównawczych. Należy przy tym podkreślić, że metoda treningu w żaden sposób nie zmienia 

docelowego sposobu działania sieci, który nadal opiera się on na przetwarzaniu obrazów 

zaszumionych w celu redukcji szumu. 

 

. 
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Rysunek 4.4. Zestawienie obrazów wykorzystywanych przez rozważane techniki uczenia sieci w przypadku 

silnego zaszumienia. 
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4.3.1. Noise2Clean 

W przypadku danych astronomicznych jest to najprostsze podejście do trenowania sieci, 

gdy nie ma dostępu do pozbawionych szumu danych referencyjnych. Trenując sieć w ten 

sposób, można sprawdzić, czy da się ominąć potrzebę wielokrotnej akwizycji danych i uzyskać 

zauważalną redukcję szumu, korzystając jedynie z pojedynczego obrazu przetworzonego przez 

wybraną sieć. 

 

4.3.2. Noise2Noise  

 Podejście to opiera się na przetwarzaniu przez sieć obrazu zaszumionego, by następnie 

porównać go z obrazem zawierającym ten sam sygnał, ale z inną realizacją szumu. Jest to 

pewna zmiana w stosunku do podejścia Noise2Noise opisanego w [105] – w oryginalnej 

implementacji obrazem porównawczym był obraz z dowolną realizacją szumu, czyli mógł to 

być również obraz wejściowy sieci. W przypadku przeprowadzonych eksperymentów 

zdecydowano się ograniczyć wybór obraz referencyjnego, by dokonać obiektywnego 

porównania z wynikami osiąganymi przez Noise2Self. 

 

4.3.3. Noise2Self 

 Ta technika pozwala przetestować własności kompresyjne stosowanych sieci. 

Autoenkoder powinien w ramach pracy zapamiętywać jedynie istotną część informacji, między 

innymi położenie i ogólny kształt struktur, a tracić tę część odnoszącą się do występujących  

w obrazach szczegółów, jak punktowe zaszumienie. Zastosowanie tego podejścia umożliwiło 

ocenę stopnia złożoności modelu, dla którego wpływ kompresji zaczyna słabnąć. 

 

4.3.4. Clean2Self 

 Metoda analogiczna do Noise2Self, przy czym tutaj kompresja jest testowana na danych 

uśrednionych. Ogólna jakość takich obrazów jest zatem o wiele lepsza od jakości obrazów 

zaszumionych, co pozwala dodatkowo ocenić wpływ jakości danych wejściowych na działanie 

wytrenowanych modeli, czyli na stosowaną przez nie kompresję. 
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4.3.5. Noise2Reference 

 W sytuacjach rzeczywistych najrozsądniejszym podejściem jest uczenie sieci w trybie 

Noise2Clean. Jednakże, istotną kwestią jest to, jak Noise2Clean wypada w porównaniu  

z podejściem domyślnym, Noise2Reference. To między innymi w celu wykonania tej 

weryfikacji zdecydowano się przeprowadzić opisane w tym rozdziale eksperymenty na danych 

syntetycznych, gdyż tylko w ich przypadku możliwe jest wykorzystanie obrazów całkowicie 

pozbawionych szumu. 

 

4.3.6. Reference2Self 

 Reference2Self jest odpowiednikiem wymienionych wcześniej Noise2Self oraz 

Clean2Self, zrealizowanym z wykorzystaniem najlepszych jakościowo danych, których nie da 

się uzyskać w praktycznych zastosowaniach. Została głównie użyta w celu porównania jej 

wydajności ze wspomnianymi dwoma technikami. 

 

4.4. Testowane architektury 

 Jednym z najważniejszych elementów praca naukowych poświęconych wykorzystaniu 

sieci neuronowych jest dokładny opis wykorzystanych architektur. Precyzyjna dokumentacja 

tych struktur nie tylko zwiększa przejrzystość prowadzonych badań, ale także umożliwia 

wykorzystanie opisanych modeli przez innych. W większości sytuacji autorzy prac naukowych 

zamieszczają szczegółowe informacje dotyczące zastosowanych modeli, takie jak liczba, rodzaj 

i konfiguracja wykorzystanych warstw, liczba map cech, dobór funkcji aktywacji i metod 

normalizacji czy sposób inicjalizacji wag. Opisom tym często towarzyszą schematy blokowe, 

wykresy przepływu danych oraz tabele prezentujące kluczowe parametry każdej warstwy, co 

dodatkowo ułatwia interpretację omawianych rozwiązań.  

 W przypadku struktur omówionych w tym rozdziale, a także w dalszych częściach 

pracy, postanowiono przede wszystkim skupić się na odpowiednim zaprezentowaniu sieci  

w formie graficznej. Każdą z nich przedstawiono przy pomocy kolorowych bloków, które 

odpowiadają wybranym warstwom lub jednostkom funkcjonalnym, a ich zmieniająca się 

wielkość świadczy o zmianie wymiarowości przestrzennej obrazów o połowę. Wszystkie 

schematy są przy tym szczegółowo opisane, co powinno ułatwić zrozumienie ich działania. Na 
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przestrzeni pracy starano się zachować spójność względem dopasowania poszczególnych 

kolorów do odpowiednio działających bloków, lecz w przypadku każdej z sieci mogą pojawić 

się pewne subtelne różnice, na co należy zwrócić uwagę.  

 Na rysunku 4.5 przedstawiono strukturę sieci autoenkodera, która została wykorzystana 

do opracowania architektur omówionych w tym rozdziale. Sieć ta składa się z bloków, których 

kolory odpowiadają wyszczególnionym elementom modelu: 

a. blok czerwony oznacza obraz wejściowy sieci I; 

b. blok żółty symbolizuje obraz wyjściowy sieci Î; 

c. blok niebieski oznacza jednostkę funkcjonalną składającą się z warstwy konwolucyjnej 

o jądrze 3×3 i kroku równym 2, warstwy normalizacji wsadowej oraz warstwy 

aktywacji w postaci tangensa hiperbolicznego (w tej kolejności); 

d. blok pomarańczowy odpowiada jednostce funkcjonalnej złożonej z warstwy 

dekonwolucyjnej o jądrze 3×3 i kroku równym 2, warstwy normalizacji wsadowej oraz 

warstwy aktywacji w postaci tangensa hiperbolicznego (w tej kolejności); 

e. blok filetowy oznacza warstwę w pełni połączoną, która przetwarza dwuwymiarowy 

obraz do jednowymiarowego wektora kodowań (pierwszy fioletowy blok od lewej) lub 

przetwarza wektor kodowań z powrotem do postaci dwuwymiarowego obrazu (drugi 

fioletowy blok od lewej); 

f. blok ciemnoszary symbolizuje wektor kodowań. 

 

 

Rysunek 4.5. Struktura testowanych architektur. 
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 Jak można zauważyć, sieć ta jest symetryczna – składa się z czterech warstw 

zmniejszających wymiar, czterech warstw zwiększających wymiar, wektora kodowań oraz 

dwóch warstw w pełni połączonych, które zajmują się przetwarzaniem danych 

dwuwymiarowych w jednowymiarowe i odwrotnie. Dodatkowo, pod każdym z bloków 

znajduje się specjalne oznaczenie. Odpowiada ono liczbie map cech danych po przetworzeniu 

przez daną warstwę (S1, S2, S3, S4 i 1) lub liczbie elementów w wektorze kodowań (K). Różne 

liczebności tych map cech wpływają na ogólną złożoności sieci (liczbę jej parametrów), co ma 

kluczowe znaczenia dla redukcji wymiarowości danych. Bardziej skomplikowane modele 

powinny być w stanie utworzyć lepsze reprezentacje danych. Zmieniając liczbę map cech, 

utworzono trzy różne architektury, które opisano w tabeli 4.2. Dodatkowo, przedstawiono  

w niej liczbę parametrów sieci przy zastosowaniu 64 kodowań dla każdej z architektur. 

 

Tabela 4.2. Liczba wszystkich parametrów sieci i konfiguracja map cech w poszczególnych warstwach. 

Architektura Zmieniająca się liczba map cech w SX 
Liczba parametrów 

(przy 64 kodowaniach) 

1 S1 = 4 S2 = 8 S3 = 4 S4 = 8 4 035 

2 S1 = 8 S2 = 12 S3 = 16 S4 = 20 16 599 

3 S1 = 48 S2 = 72 S3 = 96 S4 = 120 427 739 

 

 Oprócz złożoności sieci opisanej liczbą map cech ważnym hiperparametrem sieci jest 

długość wektora kodowań. To on stanowi „wąskie gardło” autoenkoderów i decyduje o tym, 

jak wiele informacji może być przeniesionych przez sieć. Dla każdej z architektur dobrano 

wartości K do przetestowania, przy czym dla najbardziej złożonej sieci rozmiary te są znacząco 

większe niż dla pozostałych. Różnica ta posłużyła dokładniejszemu oszacowaniu wpływu 

parametru K na pracę całej sieci. W tabeli 4.3 przedstawiono zestawienie długości wektora 

kodowań dla każdej z architektur. 

 Co ważne, przy szkoleniu tych sieci zdecydowano się na wykorzystanie nieco bardziej 

złożonej funkcji straty. Jest ona w tym wypadku sumą trzech oddzielnych funkcji: omówionych 

już L1 i L2, a także zmodyfikowanej metryce Wassersteina [112], która znalazła pewne 

zastosowanie w trenowaniu sieci neuronowych [113][114], również w przypadku 

autoenkoderów [115]. Trening odbył się w 300 epokach, w trakcie których sieci przetwarzały 
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100 grup złożonych z 64 obrazów. Jako optymalizator wybrano podstawową wersję algorytmu 

Adam, a współczynnik uczenia określono jako stałą wartość 0,001. 

 

Tabela 4.3. Testowane długości wektora kodowań. 

Architektura Testowane długości wektora kodowań K 

1 8, 16, 32, 64 

2 8, 16, 32, 64 

3 64, 128, 256, 384 

  

4.5. Ocena jakości wyników 

W analizie danych obrazowych ocena jakości przetworzonych wyników opiera się  

w głównej mierze na subiektywnej ocenie wizualnej. Podejście to, mimo że bezpośrednio 

oddaje percepcyjną jakość obrazu z punktu widzenia człowieka, nie jest wystarczające  

w kontekście analizy dużych zbiorów danych. Konieczne staje się zastosowanie miar 

ilościowych, które umożliwiają powtarzalne i obiektywne porównywanie wyników. W tej 

części pracy omówiono dwie metryki użyte do takiej analizy, a także wyjaśniono statystyczne 

podejście do prezentowania wyników. 

 

4.5.1. Metryki porównawcze – PSNR i SSIM 

 Do ilościowej oceny obrazów stosuje się obecnie wiele metryk, spośród których jedną 

z najprostszych i najczęściej stosowanych jest PSNR (ang. Peak Signal-to-Noise Ratio). 

Wskaźnik ten opiera się na stosunku kwadratu maksymalnej możliwej jasności piksela obrazu 

MAXim do wartości błędu średniokwadratowego jasności, MSE, obliczonego między 

rozważanym obrazem im a obrazem porównawczym ref, tak jak przedstawiono w równaniu 

4.2. Wyrażona w decybelach wartość informuje o tym, jak duże różnice zniekształcenia 

występują pomiędzy obrazami – im wyższa wartość PSNR, tym bardziej obrazy są do siebie 

zbliżone. Metryka ta jednak uwzględnia jedynie różnice w wartościach poszczególnych pikseli, 

ignorując przy tym nierzadko znacznie istotniejsze różnice w strukturze obrazów. 
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𝑃𝑆𝑁𝑅(𝑖𝑚, 𝑟𝑒𝑓) = 10 log10 (
𝑀𝐴𝑋𝑖𝑚

2

𝑀𝑆𝐸(𝑖𝑚, 𝑟𝑒𝑓)
) (4.2)  

 

 W związku z ograniczeniami metryki PSNR, zastosowano dodatkową, bardziej złożoną 

metrykę, SSIM (ang. Structural Similarity Index Measure) [116], która została zaprojektowana 

w sposób bardziej odpowiadający ludzkiej ocenie jakości. Metryka ta analizuje obrazy  

w oknach lokalnych, porównując średnie jasności, wariancje oraz kowariancje, co pozwala 

lepiej ocenić podobieństwo struktur i podobny poziom kontrastu obrazu. Przyjmowane wartości 

mieszczą się w zakresie [-1; 1], jednak dla obrazów rzeczywistych częściej jest to zakres [0; 1], 

przy czym 1 oznacza, że porównywane obrazy są identyczne, a 0 świadczy o całkowitym braku 

podobieństwa. W wielu sytuacjach trudno wyznaczyć prostą zależność pomiędzy SSIM  

i PSNR, wobec czego zaleca się stosowanie obydwu metryk równocześnie [117], by móc 

dokonać dokładniejszego, bardziej holistycznego, porównania obrazów.  

 

4.5.2. Wykresy pudełkowe 

 W kontekście analizy dużych zbiorów danych liczbowych tradycyjne metody opisu, 

takie jak średnia czy odchylenie standardowe, mogą nie wystarczyć do pełnego zrozumienia 

ich struktury. Zazwyczaj potrzebna jest dodatkowo znajomość ich rozkładu, a także wartości 

ekstremalnych i odstających. Do tego celu wykorzystuje się różne typy wykresów, spośród 

których najpopularniejszym i najprostszym do analizy jest wykres pudełkowy przedstawiony 

na rysunku 4.6.  

 Główna część tego wykresu, czyli prostokąt zwany „pudełkiem”, jest obszarem 

wyznaczonym pomiędzy pierwszym (Q1) a trzecim (Q3) kwartylem zbioru wartości 

analizowanych danych. W jego wnętrzu znajduje się środkowe 50% danych, przy czym ich 

mediana (zaznaczana osobną belką) niekoniecznie znajduje się pośrodku prostokąta – jej 

umiejscowienie jest zależne od symetryczności rozkładu opisywanych wartości. Długość boku 

pudełka, czyli różnica pomiędzy trzecim a pierwszym kwartylem określana jest jako rozstęp 

międzyćwiartkowy (ang. interquartile range, IQR). Przy pomocy wartości IQR wyznacza się 

maksymalną długość tak zwanych „wąsów”. Wąsy określają odległość kwartylu do wartości 

skrajnej (minimum lub maksimum), jednakże nie sięgają dalej niż 1,5 wartości IQR. Jeżeli jakiś 

element danych nie mieści się w opisanym zakresie, uznawany jest za wartość odstającą  

i oznacza się go przy pomocy kropki lub krzyżyka. W zależności od liczby wartości odstających 
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i charakteru danych, wartości odstających nie wykorzystuje się w dalszej analizie (mogą być 

wynikiem błędów pomiarowych) lub zwraca się na nie szczególną uwagę (mogą świadczyć  

o istnieniu dodatkowych zależności między poszczególnymi próbkami danych). 

 

 

Rysunek 4.6. Schemat wykresu pudełkowego. 

 

 Porównując kilka wykresów pudełkowych umieszczonych obok siebie, można szybko 

zorientować się, w której grupie dane są bardziej rozproszone i jak zmieniają się ich rozkłady. 

W efekcie wykresy tego typu są istotnym narzędziem przy porównywaniu wyników 

przetwarzania danych przez różne metody. Pozwalają dobrze zidentyfikować różnice 

wprowadzane przez testowane algorytmy, dzięki czemu stanowią podstawę opisu 

statystycznego wyników przedstawionych w niniejszej pracy.  

 

4.6. Analiza i omówienie wyników  

 W ramach badań wytrenowano sieci oparte na trzech różnych architekturach 

charakteryzujących się różną liczbą map cech w warstwach konwolucyjnych, a tym samym 

różną liczbą wszystkich parametrów (rozmiarem sieci). Przeprowadzono badania nad 

związkiem pomiędzy długości wektora kodowań a pracą tych struktur. Z racji tego, że obrazy 

wejściowe mają rozmiar 32×32 piksele, dobór liczby kodowań odpowiadał wymienionym 

stopniom kompresji:  

a. 8 kodowań – 0,78 %, 

b. 16 kodowań – 1,56 %, 
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c. 32 kodowań – 3,13 %, 

d. 64 kodowań – 6,25 %, 

e. 128 kodowań – 12,50 %, 

f. 256 kodowań – 25,00 %, 

g. 384 kodowań – 37,50 %. 

 Każdą z sieci wytrenowano z wykorzystaniem różnych stopni zaszumienia, co 

pozwoliło na wygenerowanie trzech zestawów wykresów porównawczych (rysunki 4.7, 4.8  

i 4.9), po jednej dla każdej mocy szumu. Lewa kolumna każdego rysunku przedstawia 

porównanie wartości PSNR, natomiast w prawej kolumnie znajdują się wartości SSIM. Każdy 

z rzędów odpowiada jednej z testowanych architektur, co jest też dodatkowo oznaczone. Wyniki 

na każdym wykresie są pogrupowane względem wykorzystanej liczby kodowań w kolejności 

rosnącej, przy czym po prawej znajdują się wartości wspomnianych metryk dla danych 

surowych (oryginalnych, nieprzetworzonych) i wyników działania algorytmów BM3D i NLM. 

Wyniki dla każdego podejścia są oznaczone różnymi kolorami, a także są uporządkowane  

w kolejności, w której są wymienione w legendzie każdego rysunku.  

 Pierwszym wnioskiem płynącym z analizy wyników jest to, że rosnąca moc szumu 

zauważalnie pogarsza jakość obrazów, jednak użycie algorytmów deterministycznych 

statystycznie skutkuje poprawą ich jakości, czyli są to odpowiednio dobrane algorytmy 

porównawcze. Drugą ważną kwestią są różnice w działaniu architektury pierwszej i drugiej. 

Wraz ze wzrostem liczby kodowań można zauważyć zauważalną zmianę w jakości wyników 

uzyskiwanych przez architekturę 2, jednak w przypadku architektury 1 zachodzące zmiany są 

minimalne. Świadczy to o tym, że sieci tego typu mają niewystarczające możliwości 

obliczeniowe, by były w stanie skutecznie przetworzyć dane o zadanym rozmiarze. Szczególnie 

widać to w przypadku słabego i umiarkowanego szumu, gdy zastosowanie tak małych sieci 

degraduje jakość obrazów wejściowych. Sytuacja wygląda nieco lepiej w przypadku obrazów 

mocno zaszumionych, dla których poprawiają one wartości PSNR we wszystkich 

analizowanych przypadkach. Nie jest to jednak znacząca zmiana, wobec czego można się 

spodziewać, że będzie ona trudna to zauważenia; obserwację tę potwierdzają bardzo niskie 

wartości SSIM, świadczące o zaniku wielu elementów strukturalnych. 

 W przypadku drugiej, większej architektury można zauważyć, że jakość sieci w każdym 

przypadku ulega poprawie. Przy niewielkim zaszumieniu sieci wciąż pogarszają jakość 

poszczególnych fragmentów obrazu, co można zauważyć po niższych wartościach PSNR, 

niemniej dla 64 kodowań są w stanie uzyskać wysoką wartość SSIM. Dla porównania 
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architektura 3 ma przy 64 kodowaniach ponad 25 razy więcej parametrów niż architektura 2, 

co pozwala jej osiągnąć lepsze wyniki; mimo to poprawa ta nie jest aż tak znacząca, jak można 

by się spodziewać po takiej różnicy rozmiarów. Ograniczenie to w dużej mierze jest 

spowodowane niewielką długością wektora kodowań – korzystając z tak małej ilości informacji 

(jedynie 6,25 % wielkości pierwotnych danych), niezwykle trudno jest dokładnie odtworzyć 

oryginalny obraz. Jak można zauważyć, dalsze zwiększanie długości tego wektora pozytywnie 

wpływa na działanie sieci. 

 Spośród wszystkich punktów analizy najistotniejsza jest jednak ocena wpływu 

poszczególnych metod uczenia na działanie sieci w rozważanych scenariuszach. Porównanie 

takie najlepiej jest przeprowadzić na przykładzie wyników architektury 3, ponieważ wyłącznie 

ona była w stanie poradzić sobie z redukcją szumu dla wszystkich testowanych mocy. 

Przyglądając się wynikom dla słabego szumu, można zaobserwować, że wszystkie metody 

osiągają początkowo zbliżone wyniki, jednak wraz ze wzrostem liczby kodowań metody 

Noise2Clean, Noise2Noise i Noise2Reference zaczynają osiągać znacznie lepsze wyniki niż 

metody bazujące na uczeniu się prostej kompresji i porównaniu wyniku z obrazem 

wejściowym. Jest to prawdopodobnie spowodowane tym, że w tych podejściach modele 

musiały w pewnym stopniu modyfikować obrazy wejściowe, by móc je porównać z obrazami 

innymi; w ten sposób nauczyły się lepiej uogólniać swoją pracę na niewidziane wcześniej dane. 

 Przy mocniejszych mocach szumu można zaobserwować zjawisko podobne – trening 

Noise2Reference osiąga bezsprzecznie najlepsze wyniki, co zgadza się z założeniami. 

Najważniejsze w kontekście reszty pracy jest jednak to, że Noise2Clean uzyskuje wyniki 

zbliżone do Noise2Reference, co udowadnia, że można stosować to podejście na danych 

rzeczywistych. Co ciekawe, zaraz za tymi metodami plasują się Clean2Self i Reference2Self. 

Jak widać, w przypadku większego zaszumienia sieci te są w stanie lepiej przetworzyć ogólną 

strukturę danych, ignorując przy tym losowy szum. Nieco gorszą metodą jest Noise2Noise, 

jednak we wszystkich przypadkach podejście to poprawia dane lub przynajmniej nie pogarsza 

ich jakości. Świadczy to o tym, że na danych astronomicznych można wykorzystać również tę 

metodę i spodziewać się dobrych jakościowo rezultatów. Najgorzej z testowanych podejść 

wypadło Noise2Self, które dla większych długości wektora kodowań zaczyna stopniowo tracić 

na jakości. Jest to zapewne spowodowane zbyt dużą ilością zachowywanej informacji – gdy 

kompresja staje się słabsza, model zaczyna przenosić szum na obraz wynikowy.   
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Rysunek 4.7. Porównanie wyników działania algorytmów przy niskim poziomie szumu. 
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Rysunek 4.8. Porównanie wyników działania algorytmów przy umiarkowanym poziomie szumu. 
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Rysunek 4.9. Porównanie wyników działania algorytmów przy wysokim poziomie szumu. 
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 Innym interesujący wniosek wynika z porównania sprawności filtracji z uznanymi 

metodami deterministycznymi reprezentowanymi przez metody BM3D oraz NLM. Przy niskim 

poziomie szumu, obie metody są w stanie skutecznie poprawiać jakość obrazu, podczas gdy 

rozwiązania oparte na sieciach dostarczają danych o poziomie zakłócenia (zniekształcenia) 

pogarszającym znacząco obraz surowy. Dopiero na poziomie średnich szumów, a zwłaszcza 

dla szumów silnych, przewaga sieci, szczególnie tych bardziej rozbudowanych, zaczyna być 

zauważalna. Rezultaty otrzymane w eksperymencie pokazują, że decyzja pomiędzy użyciem 

rozwiązań opartych na autoenkoderach a algorytmów deterministycznych, może być trudna  

i wymaga wiedzy o poziomie szumu względem użytecznego sygnału. Dopiero odpowiednie 

eksperymenty mogą potwierdzić przewagę poszczególnych rozwiązań. Algorytmy BM3D oraz 

NLM okazały się bezpiecznym rozwiązaniem, zawsze poprawiającym jakość obrazów. 

Niemniej rozbudowane sieci badane w tym eksperymencie, w przypadku obecności silnego 

szumu, potrafią wykazywać znacznie większą skuteczność. 

 By móc potwierdzić powyższą analizę, należy dokonać dodatkowej oceny wizualnej 

wyników. Na rysunkach 4.10 i 4.11 przedstawiono porównanie wyników działania wybranych 

sieci i klasycznych algorytmów. Poszczególne kolumny odpowiadają różnym mocom szumu, 

natomiast każdy wiersz przedstawia wyniki działania dla danej metody z wartościami PSNR 

oraz SSIM. Jako przetwarzany obraz wybrano przykład zawierający cyfrę 8, ponieważ zawiera 

dwie pętle wypełnione czarną przestrzenią, co czyni ją jedną z bardziej złożonych struktur 

spośród wykorzystanych danych syntetycznych.  

 Na rysunku 4.10 porównano działanie architektur 1 i 2 zawierających po 64 kodowania 

i uczonych z wykorzystaniem metod Noise2Noise (N2N) i Noise2Clean (N2C). Jak widać, 

najmniejsze sieci nie są w stanie nauczyć się poprawnego przetwarzania danych, wobec czego 

ich praca w każdym przypadku kończy się dodatkową degradacją danych wejściowych. 

Uzyskanie przez nie wysokiej wartości PSNR przy mocnym szumie podkreśla  

słabości tej metryki, którą w pewnym stopniu niweluje SSIM, którego wartości świadczą  

o utracie znacznej części informacji strukturalnej. W przypadku bardziej rozbudowanej 

architektury obraz wynikowy lepiej odpowiada stawianym mu warunkom. Chociaż, te sieci 

wciąż nie są w stanie odtworzyć dokładnych struktur, można w ich wypadku mówić  

o zauważalnym podobieństwie do oryginału. Wartości użytych metryk również potwierdzają 

lepszą jakość danych. 
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Rysunek 4.10. Wizualne porównanie redukcji szumu przez algorytmy deterministyczne oraz architektury 1 i 2 

uczone metodami N2C i N2N dla 64 kodowań. 
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Rysunek 4.11. Wizualne porównanie redukcji szumu przez algorytmy deterministyczne oraz architektury 3 uczonej 

metodami N2C i N2N dla 64 i 384 kodowań. 
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 Przedstawione na rysunku 4.11 wyniki działania architektury 3 osiągają jeszcze wyższą 

dokładność odszumionych obrazów. Szczególnie widoczne jest to przy wykorzystaniu 384 

kodowań, gdy sieci okazują się lepsze w działaniu od porównywanych algorytmów 

deterministycznych. Co szczególnie istotne, w przypadku obrazów przetworzonych przez 

dowolną z sieci, szum zostaje całkowicie wyeliminowany, a problemem pozostaje poprawne 

odwzorowanie istotnych obiektów. W przypadku klasycznych algorytmów sytuacja taka nie ma 

miejsca – wraz ze wzrostem natężenia szumu, pojawiają się artefakty związane z działaniem 

tych metod. Obserwacja ta stanowi podstawowy wniosek z zaprezentowanych w tym rozdziale 

rozważań, ponieważ przemawia na korzyść zaproponowanego podejścia do redukcji szumu  

w obrazach astronomicznych poprzez użycie sieci kompresujących dane.  

 

4.7. Opis dalszego kierunku badań  

 W rozdziale przeanalizowano wpływ hiperparametrów sieci typu autoenkoder na ich 

zdolności redukcji szumu w przypadku prostych obrazów monochromatycznych. Jak 

wykazano, sieci te, odpowiednio dostrojone, są w stanie osiągnąć wyniki o lepszej jakości od 

tych uzyskiwanych przez klasyczne algorytmy deterministyczne, lecz nie jest to regułą. Co 

istotne, efekt ten zachodzi nawet w sytuacji, gdy do procesu treningu nie zostaną wykorzystanie 

dane „czyste”, czyli niezawierające szumu. Uzasadnia to wybór tych struktur sieci do dalszych 

eksperymentów na danych rzeczywistych. 

Wykorzystanie autoenkoderów z wektorem kodowania o stałej długości wymaga jednak, 

by wszystkie dane wejściowe miały jednakowe wymiary przestrzenne, co jest ograniczeniem 

elastyczności modelu. W wielu sytuacjach wiąże się to z potrzebą przeskalowania lub 

przycięcia obrazów tak, by odpowiadały danemu rozmiarowi. Dodatkowo warstwy w pełni 

połączone analizują każdy z pikseli osobno, natomiast w przypadku przetwarzania obrazów 

bardzo często zależy nam na zachowaniu zależności pomiędzy sąsiednimi pikselami. 

 Rozwiązaniem tej niedogodności są sieci w pełni konwolucyjne FCN (ang. Fully 

Convolutional Network) [57], które nie zawierają warstw gęstych. Działanie takich sieci nie 

opiera się na przetwarzaniu danych do jednowymiarowego wektora kodowań, lecz do tensora 

o zadanej liczbie map cech o nieokreślonych wymiarach przestrzennych (wymiary te są 

nieokreślone, ponieważ w żaden sposób nie wpływają na pracę danej warstwy, jak wyjaśniono 

w poprzednim rozdziale). Dzięki takiemu podejściu, sieci typu FCN są w stanie przetwarzać 
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obrazy o dowolnych5 rozmiarach. W związku z tym, dalsze badania zostały skierowane na 

wykorzystanie sieci FCN. Pozwoliło to między innymi znacząco uprościć proces uczenia  

i zbierania danych wymaganych do przeprowadzenia eksperymentów, co jest szczególnie 

istotne w kontekście wykorzystanych danych słonecznych, które zostaną omówione  

w rozdziale 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
5 Rozmiar ten może być dowolny jednak jedynie w pewnym stopniu. Sieci FCN zazwyczaj wielokrotnie zmieniają 

wymiarowość obrazu podczas jego przetwarzania. Dla czterokrotnego zmniejszenia rozmiaru przestrzennego  

o połowę, obraz w najgłębszej warstwie będzie 16-krotnie zmniejszony względem oryginału. By uniknąć możliwej 

zmiany rozmiaru obrazu wyjściowego, należy zadbać, by obraz wejściowy mógł bez przeszkód zostać poddany 

takim operacjom (w opisanej sytuacji jego długość i szerokość muszą być opisane wartością podzielną przez 16). 
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5. Redukcja szumu w danych obrazowych nocnego nieba 

 W poprzednim rozdziale opisano wpływ złożoności sieci i zastosowanej strategii 

treningowej na możliwości redukcji szumu. Wyciągnięte z przeprowadzonych badań wnioski 

umożliwiły przeprowadzenie dalszych badań z wykorzystaniem typowych danych 

astronomicznych. Zdecydowano się przetestować wpływ rozmiaru sieci i metod treningowych 

Noise2Noise oraz Noise2Clean na jakość przetworzonych danych rzeczywistych. 

 Zbiór danych utworzono z wielu serii obserwacyjnych, każdej złożonej z pięćdziesięciu 

klatek wykonanych jedna po drugiej przy czasie ekspozycji równym 500 ms. Stosując 

uśrednianie serii, otrzymano obrazy referencyjne typu Clean. Oczekiwanym rezultatem 

działania sieci było uzyskanie obrazów o jakości lepszej od pojedynczych klatek serii Noise, 

docelowo porównywalnych z Clean. Analiza wyników nie ograniczyła się w tym wypadku 

jedynie do zestawienia wartości wybranych metryk i oceny wizualnej. Zastosowano dodatkowe 

miary porównawcze, które umożliwiły weryfikację kluczowych cech danych astronomicznych. 

Główny nacisk położono na możliwość poprawnej detekcji gwiazd, które w pojedynczych 

klatkach surowych mogą być w dużej mierze „przysłonięte” przez szum. Pozwoliło to 

porównać znacznie trudniejsze w opisie charakterystyki kształtu obiektów gwiezdnych, które 

mogą nie być dobrze odzwierciedlone przez standardowe wskaźniki. Przeanalizowano również, 

jak duże zmiany zachodzą w zmierzonych położeniach i jasnościach gwiazd, które mogły być 

wykryte w obrazie. 

 Do eksperymentów wykorzystano struktury autoenkoderów o różnym stopniu 

złożoności, a rozwiązania wzbogacono dodatkowo o sieci typu U-Net. Pierwsza z nich powstała 

jako rozwinięcie wykorzystanego autoenkodera, a za drugą przyjęto jedno ze sprawdzonych  

w literaturze rozwiązań. Z algorytmów deterministycznych zdecydowano się ponownie na 

wykorzystanie BM3D, a zrezygnowano z NLM, który każdorazowo zwracał bardzo zbliżone, 

acz nieco gorsze wyniki. Zastąpiono go znacznie prostszym, a zarazem szybszym, filtrem 

Wienera, co pozwoliło lepiej ocenić stopień złożoności zagadnienia redukcji szumu w obrazach 

rzeczywistych w kontekście zastosowania najprostszych rozwiązań. 

 Przeprowadzone badania opracowano w formie niniejszego rozdziału, na który składa 

się sześć oddzielnych części. W pierwszej z nich przybliżono charakter wykorzystanych 

danych, by w kolejnej przedstawić metody oceny ich jakości: wybrane metryki, technikę oceny 

poprawności detekcji, a także podejście do analizy astrometrycznej i fotometrycznej. Trzecia  

z sekcji obejmuje spis najnowszych sieci neuronowych, które są obecnie stosowane w redukcji 
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szumu na obrazach astronomicznych. Czwartą część poświęcono dokładnemu omówieniu 

testowanych sieci. Przedostatni podrozdział poświęcony jest analizie otrzymanych wyników,  

a w ostatnim poruszono temat dalszego kierunku badań.  

 

5.1. Wykorzystane dane 

Do treningu i testów użyto zestawu danych zebranych podczas jednej nocy obserwacji, 

na który składają się serie zdjęć różnych obszarów nieba w seriach złożonych z 50 klatek  

o czasie ekspozycji równym 500 ms. Do akwizycji wykorzystano zaprezentowany na rysunku 

2.6 teleskop Newtona o średnicy lustra głównego 30 cm wyprodukowany przez firmę ASA. 

Teleskop ten wyposażono w kamerę chłodzoną CMOS ASI ZWO 1600MM. Pozyskane tą 

aparaturą surowe zdjęcia mają rozdzielczość 3520×4656 pikseli i skalę kątową piksela równą 

0,636 ”/piksel. Zestaw tego typu można uznać za reprezentatywny przykład instrumentu 

niewielkiego obserwatorium astronomicznego.  

Z tak utworzonego zbioru wybrano dwie serie, których obrazy przycięto do rozmiaru 

1024×1024, centrując je na obszarach z największą liczbą jasnych gwiazd; posłużyły one 

walidacji i testom. Centralny fragment obrazu gwarantuje również brak istotnych wad 

optycznych, które, szczególnie w konstrukcji teleskopu Newtona, pojawiają się wraz  

z oddalaniem się od osi optycznej. W trakcie treningu wykorzystano pozostałe serie, z których 

w każdej epoce wybierano losowe, pokrywające się fragmenty o rozmiarze 128×128 pikseli. 

Każda z grup tych wycinków zostawała następnie z pewnym prawdopodobieństwem 

poddawana procesom rotacji oraz symetrycznym odbiciom względem osi pionowej, poziomej 

lub głównej przekątnej obrazu. Pozwoliło to dodatkowo zwiększyć rozmiar zbioru 

treningowego. 

Na rysunku 5.1 przedstawiono porównanie nieprzetworzonej klatki ze zbioru testowego 

z wynikiem uśrednienia całej serii. Jak można zauważyć, na klatce uśrednionej szum został  

w znacznym stopniu zredukowany, dzięki czemu można wyszczególnić więcej gwiazd niż na 

obrazie surowym. Odpowiada to przyjętym założeniom i pozwala porównać wyniki działania 

testowanych rozwiązań. 
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Rysunek 5.1. Porównanie pojedynczej klatki surowej i klatki uśrednionej z całej serii (czas ekspozycji dla 

pojedynczej klatki wynosi 500 ms). 

 

5.2. Ocena jakości przetworzonych obrazów 

 Wyniki działania sieci zostały ponownie opisane ilościowo za pomocą wykresów 

pudełkowych, które pozwoliły ocenić statystyczny wpływ poszczególnych metod na jakość 

przetwarzanych obrazów. Do analizy wykorzystano metryki stosowane do oceny obrazów 

astronomicznych, zweryfikowano możliwość detekcji gwiazd, a także obliczono ich odchyłki 

położenia i jasności. 

 

5.2.1. Metryki obrazowe – PSNR i FSIM 

 Początkowo planowano ponownie wykorzystać metryki PSNR i SSIM. W trakcie 

analizy okazało się jednak, że wartości SSIM we wszystkich przypadkach wynoszą więcej niż 

0,999, a różnice występują dopiero na czwartym miejscu po przecinku. Chociaż może to 

świadczyć o braku istotnych artefaktów wprowadzanych przez testowane metody, ogranicza to 

możliwość rzetelnej oceny wyników z wykorzystaniem tej metryki. Biorąc pod uwagę, że 

wykrywalne gwiazdy zajmują tylko niewielką część powierzchni obrazów, a większość stanowi 

jednorodne tło, trudno wyciągnąć z takiej analizy wnioski dotyczące zmian lokalnych w obrębie 

obiektów zainteresowania jakim są gwiazdy. 
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 W związku z tym metryka SSIM została zastąpiona przez wskaźnik podobieństwa cech 

FSIM [118] (ang. Feature Similarity Index) będący jej rozwinięciem. Chociaż miara ta jest 

bardziej złożona obliczeniowo, stosuje się ją w szczegółowych analizach, bo lepiej opisuje 

cechy istotne dla ludzkiej percepcji. Wartości FSIM mieszczą się w zakresie [0; 1], przy czym 

1 oznacza obraz identyczny, a 0 całkowity brak podobieństwa.  

 

5.2.2. Detekcja gwiazd 

 Do detekcji gwiazd na obrazach wykorzystano algorytm DAOFIND [119] 

zaimplementowany w bibliotece Photutils [120] jako DAOStarFinder. Jest to powszechnie 

stosowane rozwiązanie w technikach przetwarzania danych astronomicznych z teleskopów 

optycznych. Działanie tego algorytmu można opisać w sześciu punktach: 

1) Na początku wyznaczone zostają podstawowe statystyki analizowanego obrazu, czyli 

wartości mediany i odchylenia standardowego σ.  

2) Od każdego piksela obrazu odejmowana jest mediana, by tło nie dominowało  

w procesie detekcji, a źródła punktowe bardziej się wyróżniały.  

3) Użytkownik ustawia wartości parametrów detektora. Pierwszym z nich jest wartość 

progu detekcji pd, który określa, od jakiej wartości poszczególne piksele mogą być 

zakwalifikowane jako część potencjalnego źródła światła. Parametr ten jest najczęściej 

określany jako wielokrotność σ. Zazwyczaj pd mieści się w zakresie od 3σ do 7σ,  

a zalecaną wartością jest 5σ, która zachowuje kompromis pomiędzy wykrywaniem 

gwiazd a pomijaniem szumu. 

4) Następnie dopasowywana jest wartość szerokości połówkowej FWHM (ang. Full Width 

at Half Maximum) profilu gwiazdy w obrazie. Jest to wielkość liczbowa równa 

odległości pomiędzy dwoma punktami x1 i x2, dla których rozważana funkcja, profil 

gwiazdy, osiąga połowę swojej maksymalnej wartości (rysunek 5.2). W praktyce 

astronomicznej zakłada się, że FWHM dla obiektów punktowych w umiarkowanych 

warunkach stabilności atmosfery wynosi 3”, wobec czego dla wykorzystanych zdjęć 

ustalono tę wartość na 5 pikseli (5 pikseli pomnożone przez skalę kątową piksela, 

0,636 ”/piksel, wynosi w przybliżeniu 3”).  

5) Trzecim parametrem jest minimalna odległość w pikselach pomiędzy obiektami, które 

podlegają działaniu algorytmu. Dla wszystkich testów została ona ustawiona na  
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5 pikseli, co odpowiada sytuacji w której dwie sąsiednie gwiazdy muszą być oddalone 

co najmniej o 3 sekundy kątowe. 

6) Następnie do każdego punktowego źródła dopasowywany jest dwuwymiarowy model 

Gaussa, który reprezentuje idealny kształt gwiazdy. Wszystkie punkty spełniające 

określone kryteria zostają sklasyfikowane przez detektor jako gwiazdy.  

 Opisany powyżej wybór parametrów w procesie automatycznej detekcji skonsultowano 

z astronomami oraz osobami zajmującymi się od wielu lat profesjonalnymi pomiarami 

astronomicznymi. 

 

 

Rysunek 5.2. Przedstawienie szerokości połówkowej (FWHM zaznaczono czerwoną linią przerywaną). 

 

 Do wyznaczenia punktu odniesienia wykorzystano uśredniony obraz z serii testowej, 

ref. Dokonano na nim detekcji z uznaną za standard wartością progu pd równą 5σ  

i przeprowadzono analizę wizualną, która potwierdziła, że DAOStarFinder poprawnie 

wyznaczył większość dostrzegalnych na obrazie gwiazd. Wyznaczone pozycje posłużyły do 

porównania działania testowanych metod. Porównywanie to zostało sprowadzone do zadania 

klasyfikacji, które oceniono z wykorzystaniem macierzy pomyłek przedstawionej na rysunku 

5.3. Pozwoliło to uzyskać statystyki opisujące poprawność detekcji na obrazach im  

w porównaniu do detekcji na obrazie ref. 
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a. TP (prawdziwie pozytywna, ang. True Positive) – liczba gwiazd wykrytych na im, które 

pokrywają się z detekcjami na ref; 

b. FN (fałszywie negatywna, ang. False Negative) – liczba gwiazd, które wykryto na ref, 

a pozostały niewykryte na im; 

c. FP (fałszywie pozytywna, ang. False Positive) – liczba obiektów wykrytych na im, 

których nie wykryto na ref. 

 

 Pozostała statystyka TN (prawdziwie negatywna, ang. True Negative) oznaczałaby  

w danym eksperymencie „poprawnie niewykryte” gwiazdy, czyli oznaczenie przez detektor, że 

analizowany punkt nie jest gwiazdą. Wartość ta nie ma odpowiednika w uzyskanych wynikach, 

wobec czego została pominięta w analizie.  

 

 

Rysunek 5.3. Macierz pomyłek z odrzuconą statystyką TN. 

 

 Bazując na wartościach TP, FN i TP wyznaczono wartości precyzji (równanie 5.1)  

i czułości (równanie 5.2). Pierwsza z tych metryk określa, jaka część obiektów wykrytych na 

im to rzeczywiście gwiazdy, natomiast druga opisuje, jaka część gwiazd z ref została wykryta 

na im. W praktyce dąży się do optymalizacji obu tych parametrów jednocześnie, jednak jest to 

zazwyczaj niemożliwe, wobec czego wyznaczana jest wartość najlepiej dostosowana do 

konkretnego zastosowania. By pomóc w znalezieniu kompromisu pomiędzy tymi statystykami, 

stosuje się krzywą PR (ang. Precision-Recall), która przedstawia precyzję w funkcji czułości 
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dla różnych ustawień algorytmu detekcyjnego. W przypadku przeprowadzonych 

eksperymentów omawianym, regulowanym ustawieniem jest wartość progu detekcji pd.  

 

𝑝𝑟𝑒𝑐𝑦𝑧𝑗𝑎 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.1)  

 

𝑐𝑧𝑢ł𝑜ść =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.2)  

 

 Na rysunku 5.4. przedstawiono przykładowy przebieg takiej krzywej i zaznaczono 

punkt, który odpowiada parze wartości (czułość, precyzja) uzyskanych przy zadanej wartości 

progu pd. Z racji trudności w precyzyjnej ocenie zmian krzywych PR, powszechną praktyką 

umożliwiającą porównanie metod jest wyliczanie wartości pola pod krzywą, AUC (ang. Area 

Under the Curve). W przypadku przeprowadzonych badań, im wyższa wartość AUC, tym 

skuteczniejszy proces detekcji na analizowanych obrazach. 

 

 

Rysunek 5.4. Przykładowa krzywa PR wraz z zaznaczonym polem pod krzywą AUC. 
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5.2.3. Zmiana położenia centroidu gwiazdy 

 Obecność szumu sprawia, że wykrywane na poszczególnych obrazach im gwiazdy 

mogą być oddalone o Δp pikseli od swoich pozycji wyznaczonych na ref. W przeprowadzonej 

analizie zdecydowano się określić maksymalną akceptowalną wartość Δp równą pięciu 

pikselom, co jest równoważne z minimalną liczbą pikseli pomiędzy wykrywanymi gwiazdami. 

Jeżeli przesunięcie było większe, detekcja była uznawana za nieprawidłową, ponieważ 

dochodzi przy niej do znaczącej (wynoszącej co najmniej 3”) zmiany pozycji obiektu.  

 Oprócz samej detekcji zdecydowano się także zestawić ze sobą wartości przesunięć Δp 

dla wszystkich metod, by ocenić ich działanie również w tym aspekcie. Co istotne, pozycje 

gwiazd nie są określane przy pomocy indeksów pikseli, lecz oznacza się je jako pozycje 

centroidów, które są wyznaczane z dokładnością subpikselową, czyli uwzględniającą część 

ułamkową. Analizowane wartości mają przez to charakter ciągły, a nie dyskretny. 

 

5.2.4. Zmiana jasności gwiazd 

 Kolejnym podlegającym ocenie zagadnieniem była zmiana jasności obiektów 

wykrywanych na im względem ich jasności określonej na ref. Pomiar tej wielkości zachodzi  

w opisany poniżej sposób, z wykorzystaniem parametrów ustalanych odgórnie przez osobę 

dokonującą analizy (na rysunku 5.5 przedstawiono schemat pomocniczy). Proces ten nazywany 

jest fotometrią aperturową. 

1) Dla każdej wykrytej gwiazdy ustala się promień rk opisanego na niej koła. Wartość ta 

wynosi zazwyczaj dwukrotność wartości FWHM wykorzystanego w procesie detekcji. 

W tym wypadku została zatem określona jako 10 pikseli. 

2) Ustawiane są również wartości promieni rpw i rpz, które opisują otaczający gwiazdę 

pierścień pomiaru tła. W przypadku analizowanych obrazów przyjęto rpw = 20 pikseli  

i rpz = 22 piksele. 

3) Wyznaczana jest mediana wartości pikseli wchodzących w skład pierścienia tła. 

Wartość ta opisuje typową wartość tła w otoczeniu gwiazdy. Zamiennie do mediany 

stosuje się czasem wartość średnią pierścienia, ale może być ona obciążona obecnością 

pobliskich gwiazd. 

4) Sumowane są wartości wszystkich pikseli wyznaczonego koła wewnętrznego, a od 

wyniku odejmowana jest wartość mediany tła pomnożona przez pole koła wyrażone  
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w pikselach. W efekcie uzyskuje się wartość strumienia światła f (ang. flux) 

pochodzącego od badanej gwiazdy. 

5) Wartość f jest przedstawiana w jednostkach magnitudo, obliczanych zgodnie ze wzorem 

5.3. W przypadku porównywania jasności obiektów znajdujących się na danych 

pochodzących z odmiennych instrumentów, obliczana jest wartość punktu zerowego ZP 

(ang. zero point), która określa wymagane przesunięcie dla każdej jasności.  

W przypadku prowadzonych badań wszystkie dane zostały zebrane przez ten sam 

instrument, wobec czego pominięto wyznaczanie wartości ZP i porównywano jedynie 

tak zwane magnitudo instrumentalne. 

 

𝑚𝑎𝑔 = −2,5 log10(𝑓) + 𝑍𝑃  (5.3)  

 

 

Rysunek 5.5. Wyznaczanie jasności analizowanego obiektu. 

 

5.3. Znane metody przetwarzania obrazów astronomicznych 

 W ostatnich latach można było zaobserwować duże zainteresowanie zastosowaniem 

sieci neuronowych w przetwarzaniu obrazów astronomicznych nocnego nieba. Przyczyną tego 

stanu jest dynamicznie zwiększająca się ilość danych do przetworzenia i związana z nią 

potrzeba automatyzacji tego procesu. Rozważając stosowane podejścia pod względem ich 
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zastosowania w detekcji obiektów astronomicznych, można wyodrębnić dwie grupy 

algorytmów.  

 Pierwsza z nich obejmuje metody, które, ucząc się odporności na zakłócenia, pomijają 

etap wstępnego przetwarzania obrazu i dokonują detekcji bezpośrednio na surowych danych 

[121][122], często łącząc to z klasyfikacją wykrytych obiektów [123][124] lub z pomiarem ich 

jasności [125]. Taki sposób działania jest niewątpliwie korzystny z punktu widzenia 

automatyzacji, jednak wiążą się z nim pewne trudności. Podstawową z nich jest złożoność 

implementacyjna – do poprawnego treningu wyniki działania sieci muszą być porównywane  

z rzeczywistymi pozycjami obiektów, co wymaga przeprowadzenia czasochłonnego procesu 

oznaczania danych i weryfikacji jego poprawności. Nadrzędnym problemem jest jednak 

konieczność posiadania danych z instrumentów co najmniej o klasę lepszych (w kontekście 

precyzji pomiarowej), najlepiej pracujących w przestrzeni kosmicznej i rejestrujących światło 

w tym samym zakresie spektralnym. Niestety, w takim przypadku pozycje gwiazd mogą się 

różnić od tych rejestrowanych z poziomu Ziemi, głównie z powodu braku obecności refrakcji 

atmosferycznej. 

 Alternatywą okazują się być rozwiązania z drugiej grupy, które skupiają się wyłącznie 

na przeprowadzeniu pojedynczego etapu przetwarzania lub analizy danych (na przykład na 

samej fotometrii [126]). Działanie takich metod łatwiej ocenić i zinterpretować, zwłaszcza 

wizualnie, a ich trening nie wymaga tak skomplikowanego przygotowania danych. Dodatkowo 

zwiększają one modularność całego procesu, bo można zamiennie używać algorytmów 

skupiających się wyłącznie na jednym aspekcie. Z tego powodu uwagę zwrócono głównie na 

te sieci, które zajmują się samą redukcją szumu.  

 Spośród spotykanych rozwiązań najwięcej wymienić można tych bazujących na 

architekturze U-Net [127]-[132], ale wykorzystywano również autoenkodery [129][133][134] 

oraz inne sieci złożone głównie z warstw konwolucyjnych [135][136], w tym jedną sieć złożoną 

z warstw gęstych [137]. Większość z wymienionych rozwiązań była testowana na danych 

pochodzących z teleskopów wysokorozdzielczych i/lub danych syntetycznych. Zasadne jest 

pytanie, czy inne, mniejsze, sieci nie okażą się lepsze w przypadku obciążonych większym 

szumem obrazów niskorozdzielczych uzyskiwanych w małych obserwatoriach. By to ocenić, 

wybrano sieć Astro U-Net [127] jako punkt odniesienia, a jej pracę porównano z mniej 

złożonymi modelami opisanymi w kolejnym podrozdziale. 
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5.4. Testowane architektury  

 Do badań wykorzystano łącznie 4 różne struktury sieci: dwa autoenkodery oraz dwie 

sieci typu U-Net. Autoenkodery rozróżniono względem rozmiaru jako Płytki AE (rysunek 5.6) 

oraz nieco bardziej złożony Głęboki AE (rysunek 5.7). Na bazie drugiego z autoenkoderów 

stworzono model nazwany Prostym U-Netem (rysunek 5.8) – różnica pomiędzy nim a siecią 

bazową polega głównie na dodaniu operacji, które odpowiadają za obsługę połączeń 

pomijających. Ostatnim z modeli jest Astro U-Net (rysunek 5.9), który posłużył do oceny 

prostszych rozwiązań jako sprawdzona doświadczalnie sieć [127]. 

 Strukturę sieci ponownie przedstawiono przy pomocy schematów blokowych. Każdy  

z użytych kolorów oznacza inny typ warstwy, jak wyszczególniono poniżej: 

a. blok czerwony oznacza obraz wejściowy sieci I; 

b. blok żółty symbolizuje obraz wyjściowy sieci Î; 

c. blok szary symbolizuje jednostkę funkcjonalną złożoną z warstwy uzupełnień zerami, 

warstwy konwolucyjnej o jądrze 3×3 i kroku równym 1 oraz warstwy aktywacji 

wykorzystującej funkcję LeakyReLU (wyjątkiem są ostatnie bloki tego typu  

w Płytkim AE, Głębokim AE i Prostym U-Necie, w których funkcją aktywacji, ostatnią 

w sieci, jest funkcja sigmoidalna); 

d. blok niebieski oznacza maksymalizującą warstwę łączącą o jądrze 3×3 i kroku  

równym 1; 

e. blok pomarańczowy odpowiada jednostce funkcjonalnej złożonej z warstwy 

dekonwolucyjnej o jądrze 2×2 i kroku równym 2 oraz warstwy aktywacji w postaci 

LeakyReLU; 

f. blok fioletowy oznacza operację połączenia ze sobą dwóch tensorów według wymiaru 

map cech – łączone są ze sobą wyjście warstwy poprzedzającej ten blok i wyjście 

ostatniego szarego bloku znajdującego się na tym samym „poziomie” sieci (dla 

ułatwienia analizy jest on oznaczony fioletowym konturem i deseniem szachownicy na 

jednym boku); 

g. obecny jedynie w Astro U-Necie biały blok z czarnym konturem odpowiada 

pojedynczej warstwie konwolucyjnej o jądrze 3×3 i kroku równym 1 bez zastosowania 

funkcji aktywacji. 
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 Do treningu wykorzystano funkcję straty Hubera z wartością progu δ równą 1, a za 

optymalizator przyjęto podstawową wersję algorytmu Adam. Modele trenowano przez 2 000 

epok, przy czym każda epoka składała się ze 128 iteracji złożonych z grup zawierających po 

64 obrazy, co dało w sumie 8 192 próbek przetwarzanych w każdej epoce. Łącznie trening objął 

około 16,4 miliona obrazów. Do uczenia wykorzystano harmonogram, który przez pierwsze 

200 epok treningu „rozgrzewał” sieć do zadanego współczynnika uczenia, a następnie 

zmniejszał jego wartość do zera, wykorzystując metodę wygaszania kosinusowego. Wartość 

tego współczynnika wynosiła 0,001 dla wszystkich sieci z wyjątkiem sieci Astro U-Net, dla 

której musiała ona zostać stukrotnie zmniejszona, by zapewnić stabilność treningu. 

 Każda z sieci została wytrenowana z wykorzystaniem dwóch odmiennych podejść, 

Noise2Noise (N2N) i Noise2Clean (N2C). Po zakończeniu tego procesu zweryfikowano, że 

wszystkie modele przestały poprawiać swoją wydajność pomiędzy 1500 a 1700 epoką, gdy 

funkcje straty osiągnęły swoją najniższą wartość.  

 

 

Rysunek 5.6. Płytki AE – schemat blokowy. 

 

 

 

Rysunek 5.7. Głęboki AE – schemat blokowy. 
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Rysunek 5.8. Prosty U-Net – schemat blokowy. 

 

 

Rysunek 5.9. Astro U-Net – schemat blokowy. 

 

5.5. Opis i analiza wyników 

 Wyniki przeprowadzonych eksperymentów zostały uporządkowane w sześciu sekcjach. 

Pierwsza z nich poświęcona jest analizie zależności między rozmiarem przestrzennym danych 

wejściowych a wielkością modelu oraz związanym z tym zapotrzebowaniem na zasoby 

obliczeniowe. Druga część przedstawia porównanie wartości wybranych miar jakości obrazu: 

PSNR i FSIM. Trzecia sekcja obejmuje ocenę wpływu zastosowanych metod na skuteczność 

detekcji gwiazd, natomiast w czwartej przeanalizowano ich wpływ na rejestrowaną jasność 

wykrytych obiektów. Piąta część poświęcona jest analizie zmian położenia gwiazd 

spowodowanych działaniem poszczególnych metod, a ostatnia zawiera ocenę wizualną 

obrazów wynikowych. 
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5.5.1. Wpływ wymiarowości danych na rozmiar sieci 

 Wykorzystane w eksperymentach sieci są modelami w pełni konwolucyjnymi, dzięki 

czemu mogą przyjąć na wejściu obrazy o niemal dowolnym rozmiarze, jak wyjaśniono  

w poprzednim rozdziale. W tabeli 5.1 przedstawiono liczbę parametrów sieci i szacowany 

rozmiar pamięci potrzebny do przetworzenia przez nie jednego obrazu o wymiarach 128×128 

pikseli. Jak można zauważyć, wraz ze stopniem złożoności strukturalnej sieci rośnie liczba ich 

parametrów oraz wymagany rozmiar pamięci. Co istotne, ta druga wartość nie jest liniowo 

zależna od liczby parametrów, co można zobaczyć porównując ze sobą Płytki AE i Głęboki AE 

– ponad pięciokrotnie większa liczba parametrów skutkuje jedynie minimalnie większym 

zapotrzebowaniem na pamięć operacyjną. Podobną relację opisuje zestawienie Prostego  

U-Neta z Astro U-Netem.  

 

Tabela 5.1. Złożoność sieci przy wykorzystaniu obrazów 128x128. 

Typ sieci Liczba parametrów sieci 
Zapotrzebowanie sieci  

na pamięć operacyjną [MB] 

Płytki AE 46 817 7,15 

Głęboki AE 261 217 7,47 

Prosty U-Net 353 473 22,74 

Astro U-Net 7 759 521 55,93 

 

 W tabeli 5.2 przedstawione są analogiczne wartości dla przetwarzanych obrazów  

o rozmiarze 1024×1024 pikseli. Przy porównaniu tych tabel najważniejszą obserwacją jest to, 

że liczba parametrów nie ulega żadnej zmianie. Wynika z tego, że sieci można początkowo 

wyszkolić na niewielkich obrazach, a po treningu użyć ich z powodzeniem na większych. 

Podejście to znajduje powszechne zastosowanie w praktyce. 

 Kolejnym wartym podkreślenia wnioskiem jest to, że zapotrzebowanie sieci na pamięć 

nie musi rosnąć w takiej same skali jak wymiarowość danych. Przykładowo, 64-krotne 

zwiększenie rozmiaru obrazu (ze 128×128 na 1024×1024 piksele) skutkuje jedynie około  

30-krotnie większym zapotrzebowaniem Astro U-Neta na zasoby sprzętowe. 
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Tabela 5.2. Złożoność sieci przy wykorzystaniu obrazów 1024x1024. 

Typ sieci Liczba parametrów sieci 
Zapotrzebowanie sieci  

na pamięć operacyjną [MB] 

Płytki AE 46 817 411,50 

Głęboki AE 261 217 442,68 

Prosty U-Net 353 473 1 357,35 

Astro U-Net 7 759 521 1 701,60 

 

5.5.2. Porównanie wartości metryk PSNR i FSIM 

 Każdą z klatek zbioru testowego przetworzono badanymi metodami, a wyniki 

porównano z klatką uśrednioną. Na rysunku 5.10 przedstawiono wykresy pudełkowe, które 

opisują wartości metryk PSNR (po lewej) i FSIM (po prawej). Rozpatrując wyniki PSNR, 

można zauważyć, że zastosowanie dowolnej metody bezsprzecznie poprawiło jakość obrazu. 

Co najbardziej interesujące, wszystkie sieci, bez wyjątku, okazały się lepsze od testowanych 

algorytmów deterministycznych. Należy jednak pamiętać, że PSNR jest mocno zależny od 

większościowej w obrazach liczby piksel tła. Zatem dowolny algorytm redukujący poziom 

szumu w pikselach tła, będzie skutkował ostatecznie istotnym wzrostem wartości tej metryki. 

 W przypadku wskaźnika FSIM można mówić o znacznie większym rozrzucie wyników. 

Jedynie zastosowanie filtru Wienera oraz Płytkiego AE i Astro U-Netu skutkuje nieznaczną 

poprawą otrzymywanych wyników. Dla pozostałych rozwiązań widoczny jest natomiast spadek 

wartości tej metryki. 

Analizując omawiane wykresy, należy jednak wziąć pod uwagę, że wszystkie uzyskane 

wartości są relatywnie wysokie, co może wynikać z dużego podobieństwa danych surowych do 

danych porównawczych, a nie ze sposobu przetwarzania danych. W tej sytuacji stosowanie 

takich metod analizy jest niewystarczające do pełnej oceny testowanych metod, a nawet może 

prowadzić do błędnych ocen. Wymagana jest zatem analiza efektów przetwarzania danych  

w postaci pomiarów astrometrycznych i fotometrycznych poprzedzonych detekcją źródeł. 
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Rysunek 5.10. Wartości PSNR i FSIM dla badanych obrazów. 

 

5.5.3. Wpływ testowanych rozwiązań na detekcję obiektów 

 Każda z 50 klatek serii testowej została przetworzona z wykorzystaniem wszystkich 

testowanych metod. Następnie na uzyskanych obrazach wynikowych przeprowadzono detekcję 

gwiazd, modyfikując wartość progu detekcji pd w celu wyznaczenia par punktów (czułość, 

precyzja) niezbędnych do skonstruowania krzywych PR. Wyniki tej procedury przedstawiono 

na rysunku 5.11. Każdej z metod przypisano krzywą w odrębnym kolorze, reprezentującą 

uśrednioną skuteczność detekcji na każdej z analizowanych klatek. Obszar otaczający każdą  

z nich, oznaczony zredukowaną przezroczystością i odpowiadającym zabarwieniem, ilustruje 

rozrzut wyników (krzywych PR) równy jednemu odchyleniu standardowemu. 

 Jak można zauważyć, przebieg przedstawionych krzywych zdecydowanie różni się od 

przykładu z rysunku 5.4. W żadnym z analizowanych przypadków nie doszło do detekcji 

wszystkich gwiazd wyznaczonych na obrazie referencyjnym, natomiast krzywe cechują się 

silną tendencją spadkową. Jest to efektem wyraźnych różnic pomiędzy pojedynczą klatką serii 

a klatką uśrednioną – dla obrazów surowych czułość osiąga najwyższą wartość wynoszącą  

w przybliżeniu zaledwie 0,3, co potwierdza znaczące obciążenie szumem pojedynczych klatek 

i wynikający z tego brak widoczności najciemniejszych obiektów. 
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Rysunek 5.11. Krzywa PR dla wyników detekcji porównanych z pełnym zbiorem. 

 

By lepiej ocenić efektywność detekcji obiektów, które mogły być wykryte w obrazach 

odszumionych, zdecydowano się nieco ograniczyć liczbę gwiazd. Obrazy surowe poddano 

analizie wizualnej w odniesieniu do obrazu referencyjnego i spośród pierwotnych detekcji 

wybrano jedynie te, które były możliwe do dostrzeżenia w pojedynczej, zaszumionej klatce. Na 

rysunku 5.12 przedstawiono ograniczenie tego zbioru dla dwóch przykładowych wycinków  

o wymiarach 200×200. Zielonymi okręgami zaznaczono detekcje, które odrzucono z dalszej 

analizy, a czerwonymi pozostałe gwiazdy przydzielone do ograniczonego zbioru. 

 Po wprowadzeniu tej modyfikacji ponownie przeprowadzono detekcję, a następnie 

wyznaczono zaktualizowane krzywe, które przedstawiono na rysunku 5.13. Nie występuje już 

dla nich tak wyraźna tendencja spadkowa, a ich kształt jest bardziej zgodny z oczekiwanym 

przebiegiem krzywej PR. W celu pogłębienia analizy dla obydwu przypadków detekcji 

obliczono pole pod krzywymi, a wyniki zaprezentowano w tabeli 5.3. Porównanie wartości 

tabelarycznych z profilami krzywych PR z rysunków 5.11 i 5.13 pozwoliło sformułować kilka 

istotnych wniosków. 
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Rysunek 5.12. Ograniczenie zbioru detekcji na przykładzie dwóch fragmentów analizowanych klatek: 

referencyjnej (po lewej) i surowej (po prawej). Na zielono zaznaczono gwiazdy wykluczone z analizy. 

 

 Przede wszystkim działanie każdej z sieci neuronowych pozytywnie wpłynęło na 

możliwości detekcji gwiazd. Wykorzystanie metod klasycznych również zaowocowało 

poprawą, chociaż BM3D uzyskał niespodziewanie niski wynik dla zbioru wszystkich detekcji, 

powodując pogorszenie efektów detekcji względem procesu detekcji wykonanym na 

nieprzetworzonych obrazach. Uwzględniając relatywnie dobry wynik dla ograniczonego 

zbioru, można wnioskować, że algorytm ten prawdopodobnie nie jest w stanie dobrze oddać 

charakteru słabiej świecących gwiazd lub są one mocno tłumione. Pod tym względem lepszy 

jest filtr Wienera, jednak analizując odpowiadającą mu krzywą na rysunku 5.13, można 

zauważyć, że wzrost czułości detektora na przetworzonych przez niego obrazach jest mocno 
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skorelowany ze spadkiem precyzji. Oznacza to, że filtr ten dopasowuje do profilu gwiazd także 

losowy szum, co w pewnym stopniu niweluje jego użyteczność. 

 

 

Rysunek 5.13. Krzywa PR dla wyników detekcji porównanych z ograniczonym zbiorem. 

 

W przypadku badanych sieci neuronowych można wyznaczyć zależność pomiędzy ich 

złożonością a osiąganymi rezultatami. Najmniej złożona sieć, Płytki AE (kolor zielony), jest  

w stanie osiągnąć dobre wyniki na ograniczonym zbiorze, ale w przypadku pełnego zbioru 

różnica względem danych surowych jest niewielka. Sugeruje to, że do przetworzenia 

ciemniejszych gwiazd wymagane są bardziej złożone sieci, co potwierdzają zauważalnie lepsze 

wyniki Głębokiego AE. Co interesujące, użycie większych, bardziej złożonych sieci typu  

U-Net nie skutkuje istotną poprawą względem prostszego Głębokiego AE. Oznacza to, że dla 

analizowanych obrazów niskorozdzielczych nie są potrzebne duże i skomplikowane modele, 

by móc osiągnąć bardzo dobry wynik. 
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Tabela 5.3. Wartości pola pod krzywą. Pogrubieniem zaznaczono najlepsze wyniki w obu przypadkach,  

a podkreśleniem drugie najlepsze wartości. 

Sposób przetwarzania 

Pole pod krzywą 

Przy pełnym  

zbiorze detekcji 

Przy ograniczonym  

zbiorze detekcji 

Dane surowe 0,1734 0,5490 

BM3D 0,1806 0,7664 

Filtr Wienera 0,2767 0,6214 

Płytki AE (N2C) 0,2087 0,7907 

Płytki AE (N2N) 0,2033 0,7913 

Głęboki AE (N2C) 0,4349 0,8538 

Głęboki AE (N2N) 0,3217 0,8644 

Prosty U-Net (N2C) 0,3420 0,6785 

Prosty U-Net (N2N) 0,3551 0,8635 

Astro U-Net (N2C) 0,3040 0,6449 

Astro U-Net (N2N) 0,3004 0,6083 

 

5.5.4. Analiza wpływu rozważanych metod na jasność gwiazd 

 Dla każdej wykrytej gwiazdy wykonano pomiar jasności, by ocenić jak duże odchylenia 

tych wartości wprowadzają testowane techniki. W górnej części rysunku 5.14 przedstawiono 

zmiany jasności wykrytych gwiazd względem jasności odpowiadającym im gwiazd na obrazie 

referencyjnym. Wartości dodatnie świadczą o przyciemnieniu obiektu, natomiast ujemne o jego 

pojaśnieniu. Dla zwiększenia czytelności wyników przedstawiono je jedynie dla analizy jednej, 

losowo wybranej klatki.  

 W trakcie analizy można zauważyć, że dla najjaśniejszych gwiazd różnice dla klatki 

surowej są bardzo małe i rosną wraz ze spadkiem jasności gwiazd porównawczych. Zjawisko 

to ma uzasadnienie fizyczne – w przypadku gwiazd, których sygnał w niewielkim stopniu 

przekracza poziom tła, pojawiający się szum może mocno zaburzyć wynik pomiaru, co nie ma 

aż takiego znaczenia przy jaśniejszych gwiazdach. Warto także zwrócić uwagę na strukturę 

„skrzydła” pojawiającą się dla wartości dodatnich. Z jej obecności wynika, że metody mają 



Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazów astronomicznych 

str. 107 
 

tendencję do tłumienia słabych sygnałów. Jest to o tyle interesująca kwestia, że pomimo tego 

efektu detektor jest nadal w stanie poprawnie zakwalifikować przytłumiony sygnał jako 

gwiazdę.  

 Dolna część rysunku 5.14 prezentuje przybliżenie na zaznaczony czarnym prostokątem 

fragment całego wykresu. Pozwala to dostrzec, że stosowane metody zarówno zmniejszają, jak 

i zwiększają jasność obiektów. By zgłębić to zagadnienie, zagregowano dane uzyskane dla 

wszystkich klatek testowych i przedstawiono je w formie wykresów pudełkowych na rysunkach 

5.15 i 5.16. Rysunek 5.15 obrazuje zmiany jasności gwiazd na obrazach przetworzonych 

względem obrazu referencyjnego. Poza wynikami uzyskanymi z użyciem filtra Wienera, 

wszystkie metody cechują się przyciemnieniem analizowanych gwiazd, natomiast wyniki dla 

Prostego U-Neta (N2C) jako jedyne obejmują większy zakres przyciemnienia. 

 Na rysunku 5.16 przedstawiono odchyłki jasności gwiazd wykrytych na obrazach 

przetworzonych w stosunku do tychże odchyłek na obrazach surowych. Czerwoną linią 

oznaczono wartość 0, która świadczy o tym, że nie występują żadne różnice w porównaniu  

z obrazem referencyjnym, a wyniki znajdujące się w zaznaczonym na szaro obszarze od -1 do 

1 odpowiadają zmniejszeniu się wartości bezwzględnej różnicy jasności. Jak można zauważyć, 

dla niemal wszystkich metod zachodzi istotne zmniejszenie błędu fotometrycznego, a jedynym 

wyjątkiem jest Prosty U-Net (N2C), którego wyniki prowadzą do błędów wykraczających poza 

błędy pojawiające się w fotometrii klatek surowych. 
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Rysunek 5.14. Zmiany jasności wykrywanych gwiazd na przykładowej klatce serii. Na górze porównanie 

wszystkich wyników, a poniżej zbliżenie na najbardziej interesujący fragment. 
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Rysunek 5.15. Różnice jasności wykrytych gwiazd względem odpowiadających im jasności na obrazie 

referencyjnym. 

 

Rysunek 5.16. Stosunek zmian jasności gwiazd wykrytych na obrazach przetworzonych względem zmian jasności 

odpowiadających im gwiazd na obrazach surowych. 
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5.5.5. Porównanie zmian położenia gwiazd 

 Analogicznej analizie poddano zmianę pozycji wykrywanych gwiazd. Na rysunku 5.17 

przedstawiono wartości przesunięć względem pozycji gwiazd na obrazie referencyjnym 

(przesunięcia wyrażono w pikselach). Jak można zaobserwować, są one statystycznie nieco 

większe niż w przypadku obrazów surowych, lecz nigdy nie wynoszą więcej niż 3 piksele, 

podczas gdy dla obrazów surowych jest to maksymalnie około 2,5 piksela.  

 

 

Rysunek 5.17. Różnice położenia wykrytych gwiazd względem gwiazd na obrazie referencyjnym. 

 

 W kolejnym kroku dokonano weryfikacji zmian położenia centroidów gwiazd na 

obrazach przetworzonych względem pozycji na obrazach surowych. W ten sposób sprawdzono, 

jak każda z metod zniekształca dane wejściowe, a wyniki przedstawiono na rysunku 5.18. 

Wynika z niego, że zmiany zachodzą symetrycznie zarówno w kierunku położenia gwiazd na 

ref, jak i w kierunku przeciwnym. Najwyższą jakość zachowują przy tym klasyczne algorytmy, 

BM3D oraz filtr Wienera, które nie wnoszą aż tak dużych przesunięć jak sieci neuronowe. 

Reasumując, najważniejszym faktem jest jednak to, iż obserwowane odchyłki położeń są na 
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poziomie subpikselowym, zazwyczaj znacznie mniejszym niż 0,2 piksela, co świadczy  

o praktycznie niezauważalnych problemach astrometrii na zdjęciach przetworzonych.  

 

 

Rysunek 5.18. Zmiana położenia wykrytych gwiazd względem odpowiadających im gwiazd na obrazie surowym. 

 

5.5.6. Ocena wizualna wyników 

 Na koniec dokonano oceny wizualnej działania testowanych metod. Oceniono przy tym 

tak jakość obrazów końcowych, jak i poprawność detekcji przeprowadzonej dla progu pd = 7. 

Wybór takiej wartości tego parametru pozwolił na ocenę rozwiązań z uwzględnieniem jedynie 

najpewniejszych, najbardziej rygorystycznych detekcji. Wyniki tej analizy przedstawiono na 

rysunku 5.19. 
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Rysunek 5.19. Porównanie wizualne wpływu zastosowania filtra Wienera i sieci neuronowych na detekcję gwiazd 

(pd = 7σ). Po lewej przedstawiono wyniki dla trenowania sieci strategią N2C, a po prawej N2N. 
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 Rysunek 5.19 podzielony jest na 2 dwie części – w lewej umieszczono wyniki 

trenowania sieci techniką N2C, a w prawej techniką N2N. Z algorytmów klasycznych 

porównano jedynie filtr Wienera, który uzyskiwał średnio lepsze wyniki niż BM3D. Obie części 

rysunku zostały podzielone na dwie kolumny – w lewej przedstawiono rozważane obrazy  

z obliczonymi wskaźnikami PRNR i FSIM, a w prawej zaznaczono detekcje i wyznaczono 

wartości precyzji i czułości. 

 Po przetworzeniu obrazu surowego filtrem Wienera wciąż pozostaje w nim obecny 

łatwo dostrzegalny szum. W przypadku działania sieci szum ten jest zdecydowanie bardziej 

przytłumiony, a wartość metryk jest wyższa, przy czym po raz kolejny występuje wyjątek  

w postaci Prostego U-Neta (N2C), który silnie wyrównuje sygnał tła. Porównując wyniki 

działania sieci z klatką surową, można zauważyć, że zastosowanie dowolnej metody skutkuje 

spadkiem precyzji, ale wiąże się z większą czułością. Zgodnie z wcześniejszymi wnioskami, 

najwyższą czułość połączoną z dobrą precyzją utrzymuje Głęboki AE.  

 Na rysunku 5.20 przedstawiono działanie tej sieci trenowanej sposobem N2N na 

mniejszym fragmencie surowej klatki. Jak można zobaczyć na zbliżeniu, model ten był  

w stanie zauważalnie wyrównać tło i zarazem zredukować szum. Doprowadziło to odsłonięcia 

i detekcji dodatkowych gwiazd, które pierwotnie były w dużej mierze nierozróżnialne od 

szumu.  

 

 

Rysunek 5.20. Wpływ działania Głębokiego AE (N2N) na jakość obrazu surowego i możliwości detekcji 

przedstawione na wybranym fragmencie. 
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5.6. Wnioski z opisem dalszego kierunku badań 

 W niniejszym rozdziale dokonano walidacji proponowanych rozwiązań z użyciem 

danych obrazowych nocnego nieba, wykorzystując klasyczne metryki oparte na pomiarach 

astrometrycznych oraz fotometrycznych. Potwierdzono, że modele dobrze radzące sobie  

z redukcją szumu można wytrenować z wykorzystaniem zarówno techniki Noise2Noise, jak  

i Noise2Clean. Należy przy tym podkreślić, że widoczna w przypadku danych syntetycznych 

różnica jakości wyników pomiędzy tymi podejściami nie jest aż tak znacząca w przypadku 

danych rzeczywistych. Ponadto, sieci neuronowe w zadanych warunkach są w stanie osiągać 

wyniki na podobnym, a często wyższym, poziomie niż algorytmy deterministyczne. 

Szczególnie optymistycznym wnioskiem z badań jest fakt, iż redukcja szumu w obrazach 

astronomicznych prowadzi do zdecydowanie lepszej detekcji oraz precyzyjniejszej fotometrii 

przy zachowaniu informacji o położeniu obiektów. Jest to o tyle istotne, że metody redukcji 

szumu oparte czy to na metodach deterministycznych, czy wykorzystujących sieci neuronowe, 

nie są obecnie powszechnie stosowane w astronomii obserwacyjnej, pozostając w obszarze 

badań i eksperymentów. 

 W pewnym stopniu poruszona została także kwestia zależności między stopniem 

złożoności modelu a jego zapotrzebowaniem na pamięć operacyjną. W większości sytuacji 

wytrenowana sieć powinna działać szybko i precyzyjnie, a także być możliwa do uruchomienia 

na jak najprostszym sprzęcie. Jak wykazano w tym dziale, czasem nawet prostsze modele, takie 

jak Głęboki AE, są w stanie osiągać wyniki lepsze niż znacznie bardziej złożone architektury, 

jak Astro U-Net.  

 Tematyka złożoności i wydajności sieci neuronowych zostanie rozwinięta w kolejnych 

rozdziałach na przykładzie danych pochodzących z obrazowania Słońca. W odróżnieniu od 

stosowanego dotąd podejścia „jeden do jednego”, w którym pojedynczy obraz wejściowy 

przetwarzany jest do odpowiadającego mu obrazu wyjściowego, zastosowana zostanie strategia 

„wiele do jednego”. Oznacza to, że model będzie trenowany na sekwencjach wielu obrazów 

wejściowych, by na ich podstawie generować pojedynczy wynik. To podejście umożliwi 

testowanym sieciom uzyskać więcej informacji o zmieniającej się w czasie strukturze szumu, 

co powinno skutkować otrzymaniem wysokiej jakości wyników. Przeprowadzona zostanie 

analiza szybkości działania rozpatrywanych architektur w ramach określenia alternatywy do 

algorytmu deterministycznego, który jest powszechnie stosowanym w tym zadaniu. 
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6. Redukcja szumu atmosferycznego w seriach danych 

obrazowych Słońca 

 W dotychczasowych eksperymentach uwagę zwrócono na zagadnienie przetwarzania 

pojedynczych obrazów astronomicznych w celu redukcji obecnego na nich szumu. Jak 

wykazano na przykładzie obrazów nocnego nieba, zastosowanie sieci neuronowych jest  

w stanie znacząco poprawić ich parametry. Jednakże zmienne warunki atmosferyczne 

sprawiają, że w przypadku analizowanych serii obserwacyjnych widoczność szczegółów może 

się znacząco różnić pomiędzy kolejnymi klatkami. Kolejne obrazy w serii mogą być nieco 

zniekształcane pod wpływem turbulencji atmosferycznych. Efektywność stosowanych 

rozwiązań jest przez to w dużej mierze zależna od jakości obrazu wejściowego. 

W związku z tym postanowiono przeprowadzić badania nad wykorzystaniem danych 

wejściowych złożonych z sekwencji wielu klatek wykonanych jedna po drugiej. Taka technika 

pozwala na wykorzystanie informacji o zmienności zakłóceń w czasie, co powinno skutkować 

odzyskaniem (rekonstrukcją) analizowanych struktur, które na poszczególnych klatkach jawią 

się nieco inaczej. 

Do eksperymentów wykorzystano dane pochodzące z obserwacji słonecznych, które 

stanowią materiał innego typu niż obserwacje gwiazd, rozszerzając zakres niniejszej pracy. 

Słońce jako jasne źródło światła o dużej dynamice, ma znacznie bogatszą strukturę 

powierzchniową, a dodatkowo znajduje się w niewielkiej odległości od Ziemi, co umożliwia 

obserwację tych struktur przy użyciu teleskopów niskorozdzielczych. Widoczne na nim liczne 

obszary aktywne, filamenty i protuberancje dają pole do eksperymentów nad wydajnością 

różnych podejść do rekonstrukcji obrazu idealnego. 

 Niniejszy rozdział, podobnie jak wcześniejsze, został podzielony na odrębne części 

odpowiadające poszczególnym zagadnieniom. W pierwszej z nich omówiono metody służące 

poprawie uzyskanych serii obrazów, obejmujące zarówno algorytmy deterministyczne, jak  

i proponowane w ostatnich latach rozwiązania oparte na sieciach neuronowych. Następnie 

opisano wykorzystany zbiór danych, który utworzono przy użyciu teleskopu opisanego  

w rozdziale 2.4.2. Obserwatoria Politechniki Śląskiej. Trzecia i czwarta sekcja skupiają się na 

opisie testowanych architektur sieci oraz wskaźników jakości. Przedostatnia część opisuje 

analizę otrzymanych wyników, a ostatnia stanowi podsumowanie przeprowadzonych 

eksperymentów i wskazuje na kolejny problem badawczy poruszony w dalszej części rozprawy. 
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6.1. Rozwiązania stosowane w obrazowaniu słonecznym 

 W przypadku obserwacji słonecznych wykorzystywane są dwa algorytmy do osłabienia 

wpływu szumu atmosferycznego na dane obrazowe. Pierwszym z nich jest interferometria 

plamkowa [138][139], która wykorzystuje serie setek (lub więcej) obrazów rejestrowanych 

przy czasach ekspozycji rzędu kilku milisekund dla pojedynczej klatki. Poprzez zastosowanie 

na takich seriach transformaty Fouriera możliwe jest odtworzenie niezakłóconej informacji  

o strukturze obserwowanego obiektu. Praktyczne wykorzystanie tej metody jest jednak 

znacząco ograniczone ze względu braku dostępu do dynamicznie zmieniającego się wzorca 

funkcji rozmywającej obraz, który w przypadku obserwacji nocnych może być wygenerowany 

przy pomocy laserowej gwiazdy odniesienia lub zarejestrowany dla pobliskiej gwiazdy. 

Drugim rozwiązaniem jest metoda ślepej dekonwolucji wieloklatkowej, MFBD 

[140][141][142] (ang. Multi-Frame Blind Deconvolution). W porównaniu do interferometrii 

plamkowej jest ona bardziej odporna na zmienność warunków atmosferycznych, co umożliwia 

jej stosowanie na obrazach o dłuższym czasie ekspozycji. Nie jest również wymagana 

znajomość postaci zmieniającej się w czasie funkcji rozmywającej obraz, gdyż ona jest właśnie 

iteracyjne oszacowywana przez algorytm. Ze względu na problemy z oceną funkcji 

zniekształcenia obrazu, MFBD jest częściej stosowane w praktyce obserwacji Słońca; między 

innymi stanowi istotny etap przetwarzania danych rejestrowanych przez teleskop STS. 

Znaczącą wadą tego podejścia są duże wymagania sprzętowe i bardzo długi czas przetwarzania 

danych, który wielokrotnie przekracza czas ich akwizycji. W badaniach przeprowadzonych  

w niniejszej rozprawie skorzystano z implementacji MFBD przygotowanej przez Instytut 

Fizyki Słońca Uniwersytetu Sztokholmu6. Wszelkie parametry pracy programu konsultowano 

z twórcą algorytmu oraz autorem prac dotyczących algorytmów MFBD, Matsem Löfdahlem. 

Spośród prób zastosowania sieci neuronowych na uwagę niewątpliwie zasługuje praca 

[143], w której opisano badania nad opracowaniem modelu enkoder-dekoder oraz sieci 

rekurencyjnej, których celem było przetworzenie serii n obrazów w taki sposób, by obraz 

wynikowy miał jakość porównywalną z wynikiem działania MFBD. Sieci te były przez 

autorów dalej rozwijane w [144][145][146] i wykorzystano je jako punkt odniesienia do oceny 

podobnych rozwiązań [147][148]. Oczywiście oprócz tych podejść podjęto również próby 

wykorzystanie w tym celu odmiennych architektur i technik ich treningu [149][150][151]. 

                                                 
6 Implementacja dostępna jest na portalu GitHub pod adresem: https://github.com/ISP-SST. 
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W ramach przeprowadzonych w niniejszej pracy eksperymentów postanowiono 

wykorzystać omówioną strukturę enkoder-dekoder [143], która odpowiadała przyjętym 

wcześniej założeniom dotyczącym wykorzystania sieci kompresujących dane. Potraktowano tę 

architekturę jako przykład dużej sieci i porównano jej wydajność z mniejszymi modelami. Tak 

jak w wymienionym artykule, celem było uzyskanie wyników porównywalnych z działaniem 

algorytmu MFBD. 

 

6.2. Opis danych SUTO Solar 

 W opisanych w poprzedniej części podejściach opartych na sieciach neuronowych 

wykorzystywano głównie dane syntetyczne albo pochodzące z najnowocześniejszych 

teleskopów słonecznych, takich jak STS. Instrumenty tego typu umożliwiają obserwację bardzo 

małych fragmentów Słońca z dużą dokładnością. Jakość pozyskiwanych przez nie obrazów jest 

dodatkowo poprawiana poprzez użycie rozwiązań technicznych, do których wlicza się między 

innymi optyka adaptacyjna. Charakterystyka danych tego typu zdecydowanie różni się od tych 

pozyskiwanych przez małe obserwatoria, których główną zaletą jest możliwość monitorowania 

całej tarczy słonecznej z wielu lokalizacji w ramach ciągłego „patrolu słonecznego”. 

 Z tego względu w przeprowadzonych badaniach wykorzystano zbiór SUTO-Solar 

[152], który zawiera wielomiesięczne dane obserwacyjne zebrane przez mały teleskop 

słoneczny zarządzany przez grupę SUTO [153]. Chociaż sprzęt ten jest w stanie obserwować 

całą tarczę Słońca, na utworzony zbiór składają się jedynie fragmenty 100×100 lub 200×200 

pikseli, na których uwidocznione są obszary aktywne na Słońcu. Zbiór ten zawiera jedynie 

interesujące struktury, a dodatkowo jest on w miarę kompaktowy – pojedynczy wycinek 

100×100 pikseli wymaga ponad 500 razy mniej miejsca niż cała klatka. Podejście to jest 

szczególnie istotne w przypadku zapisu serii obserwacyjnych, na które składają się setki klatek. 

Na rysunku 6.1 przedstawiono standardowy obraz pełnego dysku słonecznego, pozyskiwany 

przez mały teleskop słoneczny, ze zbliżeniem na trzy przykładowe fragmenty o rozmiarze 

100×100 pikseli (zaznaczone jako A, B i C). 

Istotną cechą użytego zbioru jest także jego różnorodność. Utworzono go podczas 

obserwacji w czasie ponad jednego roku, co jest rzadko spotykane w tego typu badaniach. 

Zazwyczaj używa się danych zarejestrowanych w ciągu jednego lub kilku dni, co może 

powodować, że analiza jest w dużym stopniu obarczona problemami związanymi ze stanem 
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atmosfery w momencie obserwacji (na przykład poprzez wyjątkowo sprzyjające lub 

szczególnie niekorzystne warunki).  

Na wybrany zbiór składa się kilka tysięcy serii liczących 100 lub 200 takich 

pojedynczych klatek. Rejestrowano je z częstotliwością około 30 klatek na sekundę, co 

odpowiada czasowi obserwacji od 3 do 6 sekund. W teleskopach o wysokiej rozdzielczości tak 

długi czas pozwoliłby zaobserwować już pewne zmiany w chromosferze, jednak niska 

rozdzielczość kątowa użytego sprzętu wyklucza wykrywalność takich zmian. Fakt 

niezmienności obserwowanego fragmentu Słońca umożliwia zatem efektywne wykorzystanie 

algorytmu MFBD do przetwarzania serii obrazów, którego przykładowe efekty działania 

przedstawiono na rysunku 6.2. U góry rysunku znajdują się fragmenty 100×100 pikseli będące 

losowo wybranymi klatkami serii, a poniżej wyniki przetworzenia ich przez algorytm MFBD. 

Oryginalny zbiór składa się z ponad 3800 serii liczących po 100 klatek o rozmiarze 

100×100 pikseli i odpowiadających im wyników działania MFBD mających rozmiar 70×70 

pikseli. Różnica wymiarów spowodowana jest działaniem algorytmu, który odrzuca część 

informacji znajdującą się przy krawędzi obrazów surowych, zakładając przesunięcia obrazu 

jako efekt turbulencji. Aby porównać działanie sieci z wynikami tej metody, wszystkie klatki 

surowe zostały wyrównane względem odpowiednich klatek MFBD i przycięte do tego samego 

rozmiaru. W kolejnym kroku poddano je dodatkowemu przycięciu do rozmiaru 64×64, by 

uniknąć zmian ich wymiarów związanych z działaniem sieci. Przetworzone dane podzielono  

w stosunku 4:1 na zbiór treningowy i walidacyjny, co zaprezentowano w tabeli 6.1. 

Do sprawdzenia wydajności sieci utworzono osobny zbiór testowy, który nie wchodził 

pierwotnie w skład zestawu SUTO-Solar. Początkowo składał się on z 405 serii obserwacji 

liczących po 200 klatek każda (200×200 pikseli) i odpowiadającym im wyników MFBD  

o rozmiarze 177×177 pikseli. Po wyrównaniu i przycięciu odpowiadających sobie klatek 

uzyskano zbiór obrazów o rozmiarze 176×176 pikseli. Dla tego zbioru wyznaczono jednak 

znacznie więcej wyników przetwarzania surowych serii przez algorytm MFBD. Mianowicie, 

uzyskano wyniki przetworzenia pierwszych 10, 20, 50, 100 i 200 surowych klatek, 

oznaczonych odpowiednio jako MFBD10, MFBD20, MFBD50, MFBD100 i MFBD200. Przyjęto, 

że wykorzystanie większej liczby klatek skutkuje otrzymaniem wyników MFBD o wyższej 

jakości, wobec czego potraktowano obrazy MFBD200 jako główne dane porównawcze. 

Pozostałe obrazy MFBD zastosowano jako pomocnicze punkty odniesienia, które umożliwiły 

weryfikację tego, czy sieci mogą przewyższyć MFBD w przypadku dostępu do ograniczonej 

liczby klatek. 
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Rysunek 6.1. Dane z obrazowania Słońca. U góry widok całej tarczy Słońca (2304×2304 piksele), a na dole 

zbliżenie na poszczególne fragmenty 100×100 ze zmienionym kontrastem. 
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Rysunek 6.2. Wpływ algorytmu MFBD na jakość przetwarzanych obrazów. 
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Tabela 6.1. Podział zbioru SUTO-Solar na podzbiory. 

Typ 

podzbioru danych 

Liczba serii 

obserwacyjnych 

Liczba klatek 

przypadająca na serię 

Rozmiar  

pojedynczej klatki 

Treningowy 3 081 100 64×64 

Walidacyjny 771 100 64×64 

Testowy 405 200 176×176 

 

6.3. Wykorzystane architektury 

 Do badań wykorzystano 3 różne struktury sieci. Pierwszą z nich jest model 

zaproponowany w [143], a dwie pozostałe są jego odpowiednikami o zmniejszonym rozmiarze. 

Dla rozróżnienia sieci te określono jako małą (rysunek 6.3), średnią (rysunek 6.4) i dużą 

(rysunek 6.5). Podział ten oparty jest na liczbie warstw sieci i całkowitej liczbie ich parametrów, 

która wynosi odpowiednio około 12 000, 150 000 i 3 200 000 parametrów przy 100 klatkach 

wejściowych. Należy przy tym podkreślić, że chociaż w oryginalnej publikacji bazowa 

architektura została określona jako enkoder-dekoder, jest to w rzeczywistości U-Net, ponieważ 

posiada ona połączenia pomijające, które wprowadzają dodatkowy przepływ danych w sieci. 

 Strukturę sieci ponownie przedstawiono w postaci kolorowych schematów blokowych, 

jednak w tym wypadku występują znaczące różnice pomiędzy sieciami małą i średnią a siecią 

dużą. W związku z tym, w pierwszej kolejności opisano bloki dla dwóch pierwszych modeli,  

a następnie wyszczególniono zmiany występujące w najbardziej złożonym modelu. Zmiany 

wielkości bloków ponownie odpowiadają dwukrotnej zmianie rozmiaru przestrzennego 

danych, liczby pod blokami odpowiadają wyjściowej liczbie map cech, a kolorowe bloki 

odpowiadają następującym operacjom: 

a. blok czerwony oznacza serię obrazów wejściowych sieci I złożoną z n następujących 

po sobie klatek (odpowiednio: 10, 20, 50 lub 100); 

b. blok żółty symbolizuje pojedynczy obraz wyjściowy sieci Î; 

c. blok szary symbolizuje jednostkę funkcjonalną złożoną z warstwy uzupełnień przez 

odbicie lustrzane, warstwy konwolucyjnej o jądrze 3×3 i kroku równym 1, warstwy 

normalizacji wsadowej oraz warstwy aktywacji LeakyReLU (w tej kolejności); 

d. blok niebieski obejmuje te same operacje co blok szary, zmieniona jest jedynie długość 

kroku, która wynosi 2; 
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e. blok pomarańczowy odpowiada zastosowaniu warstwy zwiększenia rozdzielczości 

wykorzystującej interpolację metodą najbliższego sąsiada i przetworzeniu wyniku przez 

blok szary; 

f. blok zielony oznacza jednostkę rezydualną, która przetwarza sygnał w sposób 

przedstawiony na rysunku 6.5;  

g. biały blok z czarnym konturem odpowiada pojedynczej warstwie konwolucyjnej  

o jądrze 3×3 i kroku równym 1 bez zastosowania funkcji aktywacji. 

 

 

 

Rysunek 6.3. Mała sieć. 

 

 

 

Rysunek 6.4. Średnia sieć. 
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Rysunek 6.5. Schemat jednostek rezydualnych (zielone bloki na schemacie średniej sieci). 

 

 W przypadku dużej sieci ma miejsce pewna istotna zmiana. Działanie każdego bloku 

pozostaje takie samo, ale zmienia się kolejność operacji w podstawowym bloku, zaznaczonym 

kolorem szarym. W sieci dużej blok szary odpowiada następującej kolejności warstw: warstwa 

normalizacji wsadowej, warstwa aktywacji ReLU, warstwa uzupełnień przez odbicie lustrzane 

i na końcu warstwa konwolucyjna o jądrze 3×3 i kroku równym 1. Szczegółowy opis 

parametrów poszczególnych warstw dla tej sieci zamieszczono w tabeli 6.2. Grupy (poziomy) 

poszczególnych warstw sieci opisano jako Wi,j, gdzie i oznacza numer grupy, a j numer warstwy 

w i-tej grupie. 

 

 

Rysunek 6.6. Duża sieć. 
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Tabela 6.2. Opis parametrów poszczególnych warstw dużej sieci. 

Warstwa Rozmiar jądra Krok Liczba map cech wyjściowych 

W1,0 7×7 1 32 

W1,1 3×3 2 64 

W2,1 – W2,7 3×3 1 64 

W2,8 3×3 2 128 

W3,1 – W3,3 3×3 1 128 

W3,4 3×3 2 256 

W4,1 – W4,3 3×3 1 256 

W4,4 3×3 1 128 

W5,1 – W5,3 3×3 1 128 

W5,4 3×3 1 64 

W6,1 – W6,3 3×3 1 64 

W6,4 3×3 1 64 

W7,1 3×3 1 64 

W7,2 3×3 1 16 

W7,3 1×1 1 1 

 

 Na zmieszczonych schematach przepływ danych został przedstawiony za pomocą 

strzałek. W przypadku małej i średniej sieci, czarne strzałki wskazują na operację dodawania 

wyjściowych tensorów wybranej warstwy do tensorów wejściowych warstwy docelowej.  

W dużej sieci strzałki te oznaczają natomiast dodanie wejściowych tensorów jednej warstwy 

do tensorów wejściowych wskazywanej warstwy. 

 Znacznie istotniejsza jest operacja oznaczona poprzez strzałki brązowe. Odpowiada ona 

dodaniu pewnej porcji informacji wejściowej do wyjścia sieci. Według bazowego podejścia 

[143] do obrazu wyjściowego dodawany był pojedynczy, pierwszy obraz przetwarzanej serii. 

Wobec tego zadaniem sieci było znalezienie maski, która po zsumowaniu z surowym 

pierwszym obrazem wejściowym spowoduje zredukowanie obecnego na nim szumu. Biorąc 

pod uwagę losowość miejscowych zakłóceń, zadanie to uznać można za wymagające. Wobec 

tego zaproponowano zmianę pierwszego obrazu serii na obraz uśredniony. Jak wykazano  

w poprzednich rozdziałach, obecny na takim obrazie szum jest w znacznej mierze 

zredukowany, a detale są lepiej widoczne. Zadaniem sieci byłoby zatem zredukowanie 
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powstałych rozmyć i wyostrzenie widocznych struktur, co uznano za zadanie znacznie prostsze, 

bardziej logiczne w koncepcji, a przez to mogące skutkować lepszymi wynikami. W opisie 

wyników część uwagi poświęcono analizie tego podejścia w oparciu o wyniki uzyskiwane 

przez dużą sieć. 

 

6.4. Ocena efektywności rozwiązań  

 Wykorzystany zbiór danych zawiera obrazy przedstawiające złożone struktury 

chromosfery słonecznej, w związku z czym postanowiono ponownie wykorzystać wskaźnik 

FSIM. Miarę PSNR uznano w tym wypadku za niewystarczającą i zastąpiono ją metryką 

„wierności informacji wizualnej” VIF [154] (ang. Visual Information Fidelity), która nie 

porównuje bezpośrednio wartości pikseli, ale ocenia zachowaną ilość informacji w obrazie. Jej 

wartość mieści się zazwyczaj w przedziale [0; 1], ale może przekroczyć 1 w sytuacjach, gdy na 

porównywanym obrazie występuje wyższy kontrast. 

 Zdecydowano się również na wprowadzenie dodatkowej miary: podobieństwa 

gradientów po filtracji medianowej MFGS [155] (ang. Median Filter-Gradient Similarity). 

Wskaźnik ten opiera się na porównaniu gradientów w obrazie przed i po przetworzeniu go przez 

filtr medianowy, nie wymagając przy tym obrazu referencyjnego. MFGS jest w stanie bardzo 

dobrze opisać jakość istotnych struktur, wobec czego jest uznanym standardem w analizie 

obrazów Słońca [156]. Wartość tej metryki zawsze mieści się w przedziale [0; 1], a wysokie 

wartości świadczą o dobrej jakości rozważanego obrazu. 

 Oprócz tego dokonano porównania szybkości działania poszczególnych rozwiązań. 

Oszacowano średnie czasy przetwarzania pojedynczej serii obrazów testowych przez każdą  

z sieci i zestawiono je z czasami obliczeń algorytmu MFBD. 

 

6.5. Analiza wyników 

 Sieci zostały wytrenowane i przetestowane na sprzęcie wyposażonym w 16-rdzeniowy 

procesor AMD Ryzen 9 5950X (3,40 GHz) oraz kartę graficzną GeForce RTX 3090Ti 24 GB 

RAM. Wyniki MFBD uzyskano natomiast za pomocą specjalnie skonfigurowanego 

oprogramowania działającego na sprzęcie wyposażonym w 20-rdzeniowy procesor Intel Xeon 

E5-2680 (2,80 GHz). Do procesu trenowania użyto standardowego optymalizatora Adam oraz 



Rozdział 6. Redukcja szumu atmosferycznego w seriach danych obrazowych Słońca 

str. 126 

 

stałego współczynnika uczenia równego 0,00001. Wagi każdej warstwy zainicjalizowano za 

pomocą algorytmu He [157], a sieci trenowano przez 1000 epok na obrazach o rozmiarze 

64×64. Wielkość zbioru treningowego została ponownie zwiększona z wykorzystaniem losowo 

dobieranych operacji rotacji oraz odbić w pionie i w poziomie. W kolejnych podrozdziałach 

dokonano analizy jakości obrazów wynikowych względem wykorzystanej metody, typu obrazu 

dodawanego na wyjście sieci, a także szybkości przetwarzania danych. 

 

6.5.1. Zamiana obrazu pojedynczego na uśredniony 

 Testy rozpoczęto od oceny typu maskowania dokonywanego przez sieć. Na rysunku 6.7 

przedstawiono wyniki przetwarzania dwóch różnych serii obrazów składających się z 10 i 100 

klatek, jak oznaczono po lewej stronie każdego rzędu. Powstała macierz obrazów zawiera pięć 

kolumn. Punktem wyjścia jest środkowa kolumna, w której umieszczono obrazy referencyjne, 

MFBD200. W kolumnie po jej lewej stronie znajduje się wynik działania sieci, która maskowała 

klatkę uśrednioną, a w skrajnej lewej kolumnie przedstawiono obraz różnicowy tego obrazu  

i MFBD200. Kolumny po prawej przedstawiają analogiczne obrazy uzyskane dla sieci 

maskującej klatkę pojedynczą. Dodatkowo, nad obrazami różnicowymi przedstawiono 

wartości RMSE, które odpowiadają pierwiastkowi z błędu średniokwadratowego (ang. Root 

Mean Square Error). Im wyższa jest wartość tej miary, tym większe są różnice jasności pikseli 

pomiędzy porównywanymi obrazami. 

 Analizując przedstawione wyniki, można zauważyć, że maskowanie klatki uśrednionej 

skutkuje pojawieniem się różnic w jasności pośrodku poszczególnych struktur, co jest 

oznaczone obecnością białych plam. Krawędzie są przy tym dobrze rozróżnialne. Przy 

wykorzystaniu 10 klatek można zauważyć, że występują punktowe zmiany, które świadczą  

o tym, że sieć nie była w stanie usunąć całości szumu. Jednak po zwiększeniu liczby klatek 

wejściowych do 100 zmiany te niemal całkowicie znikają. Świadczy to o tym, że sieci nie uczą 

się dobrze maskować szumu, przez co duże znaczenie ma uśrednienie odpowiedniej liczby 

klatek wejściowych. W przypadku sieci dodających do wyjścia pierwszy obraz serii 

zaszumienie przetworzonych danych sieci jest znaczące. Punktowe różnice są łatwe do 

zauważenia i w znaczący sposób degradują ogólną jakość danych, co potwierdzają wyższe 

wartości RMSE. Obserwacja ta potwierdza przyjęte założenie, że maskowanie klatki 

uśrednionej jest podejściem skuteczniejszym w poprawy jakości obrazu od maskowania 

pojedynczej klatki serii.  
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Rysunek 6.7. Wpływ proponowanej modyfikacji na wydajność sieci na przykładzie dwóch obrazów. 

 

6.5.2. Porównanie działania sieci względem MFBD200 

 Działanie każdej z metod oceniono z użyciem wykresów pudełkowych, na których 

przedstawiono wyniki pogrupowane względem wykorzystanej liczby klatek wejściowych 

(rysunek 6.8). Oprócz obrazów wyjściowych sieci, do porównania wykorzystano: wyniki 

MFBD uzyskane przy mniejszej liczbie klatek, klatki uśrednione, a także klatki wejściowe, 

które w danej serii miały najwyższą wartość wskaźnika FSIM. Wybór ostatniego typu 

porównywanych obrazów opowiada zastosowaniu techniki „szczęśliwego obrazowania” (ang. 

lucky imaging) polegającej na selekcji klatek najmniej zniekształconych przez atmosferę, które 

są wykorzystywane w dalszych badaniach. 
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Rysunek 6.8. Statystyczne porównanie wartości wykorzystanych metryk. 
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 Jak można zauważyć, dla wyników MFBD wartości metryk FSIM i VIF odstają od 

pozostałych, wskazując na pogorszenie jakości przetworzonych przez ten algorytm obrazów. 

Jedynie wartości MFGS odpowiadają oczekiwanym, wysokim wartościom. W związku z tym 

postanowiono dokonać analizy wizualnej, by wyjaśnić przyczynę tego nieoczekiwanego 

zjawiska. Na rysunku 6.9 przedstawiono zestawienie wyników MFBD, najlepszych klatek serii, 

klatek uśrednionych i MFBD200 dla wybranej serii obserwacji. Każdy z rzędów odpowiada 

innej liczbie rozważanych klatek serii, a nad każdym obrazem wypisano wartości wskaźników 

FSIM, VIF i MFGS obliczonych względem MFBD200.  

 Porównując ze sobą poszczególne obrazy, można stwierdzić, że najlepsza klatka jest  

w dużym stopniu obciążona szumem, a na klatce uśrednionej wiele szczegółów jest rozmytych. 

Pomimo tego obrazy te w każdym przypadku uzyskały wyższe wartości FSIM i VIF niż wyniki 

MFBD. Spowodowane jest to obecnym na obrazach MFBD przesunięciu, które można 

zauważyć, porównując położenie struktur względem czerwonej przerywanej linii na każdym  

z obrazów.  

 Przesunięcie to spowodowane jest działaniem samego algorytmu MFBD, który 

dokonuje przycięcia krawędzi oryginalnego obrazu tak, by uzyskać wynik o najlepszej jakości. 

Wobec zmiennej widoczności struktur na przestrzeni serii, przycięcie to jest wykonywane  

w sposób zależny od długości rozważanej serii. Sprawia to, że ocena ilościowa jest w tym 

wypadku niewystarczająca i należy przede wszystkim polegać na ocenia wizualnej, która 

potwierdza wysoką jakość wyników MFBD. W przypadku obrazów testowych efekt ten nie 

występuje, ponieważ zostały one wyrównane i przycięte względem MFBD200, Wobec tego 

można porównywać je z wykorzystaniem wybranych metryk. 

 Na rysunku 6.10 przedstawiono, analogiczne do rysunku 6.9, zestawienie wyników 

działania poszczególnych sieci z klatką uśrednioną i MFBD200. Wykorzystanie dowolnej sieci 

skutkuje uzyskaniem niemal identycznego obrazu, a różnice w wartościach wskaźników są 

niewielkie. Obserwacja ta znajduje potwierdzenie w przedstawionych na rysunku 6.8 różnicach  

w rozrzutach tych wartości, które dla małej i średniej sieci są w większości przypadków 

zaniedbywalnie małe, a dla sieci dużej różnice są zauważalne, ale względnie niewielkie. 

 Dodatkowo, rysunek 6.10 wskazuje na to, że do oceny rozmycia najbardziej nadaje się 

miara VIF, która pozwala łatwo odróżnić klatkę uśrednioną od reszty obrazów. Analiza tego 

rysunku potwierdza również słuszność postawionej tezy badawczej. Jak można zaobserwować, 
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w przypadku przeprowadzonego eksperymentu nawet relatywnie małe sieci były w stanie 

uzyskać rezultaty porównywalne z tymi osiąganymi przez sieci znacznie większe.  

 

 

Rysunek 6.9. Porównanie wyników dla danych surowych i MFBD wyznaczanego dla zadanej liczby klatek. Liczby 

nad poszczególnymi obrazami oznaczają wartości obliczonych wartości wskaźników FSIM, VIF i MFGS. 

Czerwone linie przerywane wykreślono na tej samej wysokości w każdym obrazie, by oszacować występujące na 

obrazach przesunięcia.  
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Rysunek 6.10. Porównanie wyników działania poszczególnych sieci. Liczby nad poszczególnymi obrazami 

oznaczają wartości obliczonych wartości wskaźników FSIM, VIF i MFGS 

 

6.5.3. Szybkość przetwarzania danych 

 W tabeli 6.3 przedstawiono średni czas wymagany do przetworzenia pojedynczej serii 

obrazów o rozmiarze 176×176 pikseli z wykorzystaniem jednostki GPU. W tabeli 6.4 

przedstawiono natomiast analogiczne wyniki dla sieci uruchomionych na CPU (ang. Central 

Processing Unit), czyli na procesorze. Algorytm MFBD jest uruchamiany jako program na 

specjalnie przystosowanym sprzęcie, wobec czego nie zmierzono czasu działania samego 

algorytmu, ale całego oprogramowania. Podany czas jest w związku z tym wartością obarczoną 

pewną niepewnością. W przypadku sieci neuronowych zmierzono jedynie czas potrzebny do 
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wczytania i przetworzenia danych, wobec czego jest on podany ze znacznie większą 

dokładnością. 

 

Tabela 6.3. Porównanie czasu przetwarzania pojedynczej serii złożonej z obrazów o rozmiarze 176×176 pikseli  

z wykorzystaniem GPU. 

Liczba klatek 

wejściowych 

Czas przetwarzania danych [ms] 

Mała sieć Średnia sieć Duża sieć MFBD 

10 2 5 7 27 000 

20 2 5 8 28 000 

50 3 6 8 35 000 

100 4 8 9 38 000 

 

Tabela 6.4. Porównanie czasu przetwarzania pojedynczej serii złożonej z obrazów o rozmiarze 176×176 pikseli  

z wykorzystaniem CPU. 

Liczba klatek 

wejściowych 

Czas przetwarzania danych [ms] 

Mała sieć Średnia sieć Duża sieć MFBD 

10 2 7 25 27 000 

20 3 8 26 28 000 

50 5 9 28 35 000 

100 7 12 31 38 000 

 

 Jak można zauważyć, różnica pomiędzy szybkością testowanych modeli a MFBD jest 

ogromna i wynosi 3 rzędy wielkości na korzyść sieci neuronowych. Różnica pomiędzy 

szybkością sieci na GPU a CPU jest przy tym zauważalna, ale w przypadku tego eksperymentu 

nie jest znacząca. Można stwierdzić, że sieci są w stanie we wszystkich analizowanych 

sytuacjach przetwarzać dane w czasie rzeczywistym, który jest zdecydowanie krótszy od czasu 

zarejestrowania pojedynczej klatki. 

 Algorytm MFBD wymaga natomiast stosowania wydajnych jednostek obliczeniowych 

wyposażonych w wielordzeniowe procesory, lecz mimo to nie jest w stanie zapewnić 

oczekiwanej szybkości przetwarzanych danych. Problem ten zyskuje na znaczeniu  
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w przypadku danych o wysokiej rozdzielczości przestrzennej, odpowiadających obserwacjom 

całej tarczy Słońca. Przykładowo, przetworzenie serii 200 obrazów pełnego dysku słonecznego, 

czyli 200 macierzy 2304x2304 pikseli, przez algorytm MFBD zajmuje około 2 godzin. 

Całkowicie eliminuje to możliwość wykorzystania tej metody do poprawy obrazów  

w sensownym, użytecznym czasie. W sytuacji, gdy zjawiska zachodzące na słońcu wymagają 

pilnej reakcji, tak duże opóźnienia są nieakceptowalne. 

 

6.6. Ograniczenia stosowanych rozwiązań 

 W niniejszym rozdziale opisano przeprowadzone badania, które miały na celu 

przetestowanie wpływu ilości danych wejściowych na działanie sieci. Jak udowodniono,  

wykorzystanie sieci neuronowych stanowi atrakcyjną alternatywę wobec najlepszego 

algorytmu deterministycznego, MFBD. Otrzymywane rezultaty cechują się porównywalną 

jakością, przy jednocześnie krótszym o rzędy wielkości czasie potrzebnym na wykonanie 

obliczeń. Co istotne, w przypadku obrazów niskorozdzielczych dobre rezultaty można uzyskać 

także przy użyciu stosunkowo niewielkich architektur.  

 Należy jednak podkreślić, że przeprowadzone testy bazowały na obrazach o wymiarach 

176×176 pikseli. Natomiast w zastosowaniu docelowym sieć powinna być w stanie przetwarzać 

pełne obrazy tarczy słonecznej o znacznie wyższej rozdzielczości przestrzennej. W przypadku 

wykorzystania obrazów o rozmiarze 2304×2304 piksele, tak jak przedstawiono na rysunku 6.1, 

wielkość samych danych wejściowych wzrosłaby ponad 170-krotnie. Wiązałoby się to również 

z większym zapotrzebowaniem sieci na pamięć operacyjną, co jest pewnym ograniczeniem  

w kontekście możliwości stosowania proponowanych rozwiązań. Chociaż nie jest ono tak 

drastyczne w przypadku użytego sprzętu, może stanowić zasadniczy problem przy próbach 

uruchomienia sieci na bardziej kompaktowym sprzęcie, który można by zamontować tuż przy 

zdalnie sterowanym teleskopie słonecznym, obrazującym cały dysk Słońca. 

 W kolejnym, ostatnim, rozdziale pracy podjęta zostanie tematyka kompresji sieci 

neuronowych. Jest to obecnie jedno z najintensywniej rozwijanych zagadnień w dziedzinie 

uczenia maszynowego, co wynika z rosnącej złożoności i rozmiarów współczesnych modeli. 

Coraz częściej analizowane są sposoby ich efektywnego uruchamiania na urządzeniach takich 

jak mikrokomputery, telefony komórkowe czy mikrokontrolery. Stosowane metody kompresji 

umożliwiają znaczną redukcję zapotrzebowania na pamięć i moc obliczeniową przy 

zachowaniu wysokiej jakości działania modeli. 
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7. Kompresja sieci na przykładzie danych słonecznych 

 Sieci neuronowe cechują się obecnie dużą złożonością oraz wysokimi wymaganiami 

sprzętowymi, co czasami stanowi wyzwanie w ich praktycznym zastosowaniu. W związku  

z tym, można zaobserwować rosnące zainteresowanie metodami kompresji modeli, które 

umożliwiają zmniejszenie ich rozmiaru przy zachowaniu akceptowalnej jakości uzyskiwanych 

przez nie wyników.  

 W wielu sytuacjach techniki te można stosować zarówno na wytrenowanych wcześniej 

sieciach, jak i wdrożyć je do treningu od jego początku. Wymagają one jednak odpowiedniego 

dostrojenia, co może znacząco wydłużyć i utrudnić proces uczenia. Podejściem alternatywnym 

jest wyszkolenie sieci o rozmiarze dostosowanym bezpośrednio do charakterystyki 

rozważanego problemu. Strategia ta może skutkować uzyskaniem rozwiązania o oczekiwanej 

efektywności, lecz z pominięciem wspomnianej optymalizacji.  

 W ostatniej części niniejszej rozprawy postanowiono zweryfikować, które z dwóch 

wymienionych podejść może skutkować lepszymi rezultatami. W tym celu przeprowadzono 

eksperymenty z wykorzystaniem omówionego w poprzednim rozdziale zbioru SUTO-Solar  

i wytrenowanych na nim sieci. Uwagę skoncentrowano na przycinaniu sieci, jednej  

z najpopularniejszych metod kompresji, która zmienia strukturę przetwarzanych modeli. 

Pozwoliło to ocenić wpływ kompresji na działanie testowanych sieci pod względem 

zapotrzebowania na pamięć operacyjną, szybkość przetwarzania danych i ich końcową jakość. 

Dodatkowo sprawdzono możliwości uruchomienia testowanych modeli na mikrokomputerze 

Raspberry Pi 5, który uznano za dobry przykład urządzenia spełniającego wymogi 

przenośności, kompaktowości i niewielkiego poboru mocy.  

 Treść niniejszego rozdziału została podzielona na cztery części. W pierwszej z nich 

omówiono najpopularniejsze techniki kompresji sieci neuronowych. Sekcja druga skupia się na 

opisie metody przycinania (ang. pruning) sieci, czyli usuwania z niej wybranych elementów. 

W kolejnej części poddano analizie uzyskane wyniki, natomiast w ostatniej podsumowano 

wyniki badań. 
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7.1. Metody kompresji sieci 

 Możliwości implementacji sieci neuronowych są w wielu wypadkach znacząco 

ograniczone przez ich duże wymagania sprzętowe. By zaradzić temu problemowi, opracowano 

wiele metod kompresji sieci neuronowych, które mają na celu redukcję liczby parametrów, 

złożoności obliczeniowej i zapotrzebowania na pamięć przy jednoczesnym zachowaniu 

wysokiej wydajności. Do najważniejszych z tych metod należą przycinanie (ang. pruning), 

destylacja wiedzy (ang. knowledge distillation) oraz kwantyzacja (ang. quantization).  

 Przycinanie sieci neuronowych polega na usuwaniu wybranych elementów modelu  

w celu uzyskania rzadszej struktury. Jedną z pionierskich prac w tym obszarze była [158],  

w której autorzy przedstawili metodę usuwania wag o niewielkim wpływie na funkcję kosztu. 

Metoda ta została w późniejszych latach rozwinięta o iteracyjne przycinanie połączone  

z ponownym treningiem [159], a następnie o automatyzację tego procesu [160]. Ideę 

przycinania rozszerzono również o „hipotezę biletu na loterię” [161][162], według której  

w dużych modelach istnieją podzbiory małych i efektywnych sieci, które można „wylosować”, 

czyli uzyskać, poprzez odpowiednie zastosowanie przycinania i inicjalizacji.  

 Kwantyzacja polega natomiast na redukcji precyzji reprezentowanych wag i aktywacji. 

Zamiast 32-bitowych liczb zmiennoprzecinkowych, model może działać na liczbach  

8-bitowych, a w skrajnych sytuacjach nawet na binarnych. Znacząco zmniejsza to 

zapotrzebowanie na pamięć i umożliwia wydajne korzystanie z akceleratorów sprzętowych 

przystosowanych do tego typu danych. 

 Destylacja wiedzy oznacza transfer wiedzy z dużego modelu, nauczyciela, do 

mniejszego modelu, ucznia. Koncepcja ta opiera się na trenowaniu ucznia tak, aby odtwarzał 

wyniki generowane przez nauczyciela, a tym samym nauczył się bardziej złożonych zależności, 

mając mniej parametrów niż nauczyciel [163]. Jednakże, takie podejście nie zawsze skutkuje 

uzyskaniem wyników lepszych od tych otrzymywanych w sytuacji, gdy uczeń trenowany jest 

na zbiorze uczącym z pominięciem nauczyciela [164]. Metoda ta jest z tego powodu często 

łączona z innymi technikami [165], co pozwala zwiększyć jej efektywność.  

 Spośród łączonych metod kompresji najpopularniejsze jest przycinanie stosowane 

razem z kwantyzacją [166][167]. Takie podejście może w zależności od charakterystyki zadania 

zredukować złożoność obliczeniową i zapewnić lepszą kompaktowość sieci [168]. Niemniej, 

w przypadku prowadzonych w tym rozdziale rozważań, wykorzystana została jedynie technika 
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przycinania sieci, ponieważ celem badań była analiza wpływu złożoności sieci na ich 

wydajność, a nie ich optymalizacja. 

 

7.2. Przycinanie sieci 

 Przycinanie sieci neuronowych stanowi jedną z bardziej złożonych metod kompresji, 

ponieważ w znaczący sposób ingeruje w strukturę sieci. Polega ona na wyborze najmniej 

znaczących wag, neuronów lub nawet całych warstw i ich usunięciu. By zachować jak 

najwyższą wydajność przetwarzanych modeli, proces ten jest zazwyczaj realizowany 

iteracyjnie. W każdej z iteracji usuwa się określoną liczbę elementów, a następnie dostraja się 

sieć, przeprowadzając ponowny trening. Z uwagi na przeprowadzony wcześniej proces uczenia, 

trwa on jednak znacznie krócej od głównego treningu; najczęściej przyjmuje się liczbę epok 

odpowiadającą 5-10% liczby epok głównego treningu. 

 Metody przycinania sieci można podzielić według kryteriów określających ich sposób 

funkcjonowania. Poniżej przedstawiono trzy najważniejsze z nich. 

 

1) Podział względem zasięgu działania 

a) Przycinanie globalne – skupia się na analizie wszystkich elementów sieci jednocześnie, 

dzięki czemu można precyzyjnie wskazać te najmniej istotne. To podejście może  

skutkować uzyskaniem lepszych wyników, jednak jest ono znacznie bardziej złożonym 

zagadnieniem. W wielu przypadkach wiąże się z potrzebą wprowadzenia pewnych 

ograniczeń, które chronią model przed rozregulowaniem. Przykładowo, w sieciach typu  

U-Net należy zadbać o odpowiadające sobie wymiary danych w połączeniach 

pomijających, by model mógł działać prawidłowo. 

b) Przycinanie lokalne – polega na niezależnej analizie elementów do usunięcia w każdej 

warstwie osobno. Metoda ta ułatwia implementację, daje większą kontrolę nad strukturą 

modelu, a także korzystnie wpływa na zachowanie stabilności procesu uczenia.  

 

2) Podział względem struktury usuwanych elementów 

a) Przycinanie niestrukturalne – polega na wyzerowaniu wartości poszczególnych wag 

sieci, co przy odpowiednio silnym przycięciu może doprowadzić do zmiany macierzy 

wag w macierze rzadkie. Nie jest to jednak równoznaczne z usunięciem tych elementów, 

przez co rozmiar modelu nie ulega zmniejszeniu. Szybkość przetwarzania danych 
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również nie ulega poprawie, jeśli wykorzystany sprzęt i oprogramowanie nie wspierają 

przetwarzania macierzy rzadkich.  

b) Przycinanie strukturalne – opiera się na usuwaniu całych struktur, takich jak neurony  

w warstwach gęstych czy mapy cech w warstwach konwolucyjnych. W efekcie zawsze 

skutkuje zmniejszeniem zapotrzebowania sprzętowego. 

 

3) Podział względem metody wyboru usuwanych elementów 

a) Podejście oparte na wartości wag – polega na usunięciu elementów o najmniejszej 

wartości bezwzględnej wag, operując na założeniu, że wagi bliskie zeru mają niewielki 

wpływ na pracę sieci. W odróżnieniu od pozostałych metod nie wymaga przetworzenia 

danych przez sieć. 

b) Podejścia oparte na wartości funkcji straty – polegają na usuwaniu elementów, których 

zniknięcie ma najmniejszy wpływ na wydajność sieci określoną przez wartość funkcji 

straty.  

c) Podejście oparte na wartości aktywacji elementu – polega na usunięciu elementów  

o najmniejszej wartości funkcji aktywacji. Ta metoda może nie działać w przypadku 

globalnego przycinania sieci, w których występuje wiele różnych funkcji aktywacji. 

 

 Na rysunku 7.1 przedstawiono niestrukturalne przycinanie globalne na przykładzie 

warstw gęstych złożonych z 4 neuronów. Z pierwotnych 48 połączeń wybrane zostały 24 (50%) 

najmniej znaczące, które zaznaczono czerwonymi przerywanymi liniami. Następnie wagi tych 

połączeń zostały wyzerowane. Jak można zauważyć, liczba połączeń w każdej warstwie jest  

w tym przypadku inna, co może mieć miejsce jedynie przy przycięciu globalnym. Na rysunku 

7.2 przedstawiono analogiczny schemat działania strukturalnego przycinania lokalnego.  

W każdej warstwie wybrano 50% (2 z 4) najmniej istotnych neuronów, które zostały usunięte.  
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Rysunek 7.1. Niestrukturalne przycinanie globalne. 
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Rysunek 7.2. Strukturalne przycinanie lokalne. 
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7.3. Analiza wyników 

 Wszystkie z omawianych w poprzednim rozdziale sieci zostały poddane strukturalnemu 

przycinaniu lokalnemu, które przeprowadzono dla dwóch różnych kryteriów wyboru map cech 

do usunięcia – wartości wag i wartości aktywacji. Przeprowadzone zostało ono iteracyjnie tak, 

że w każdym kroku najpierw usuwano 5% początkowej liczby map cech we wszystkich 

warstwach, a następnie dostrajano przycięte sieci w ponownym treningu, który trwał 50 epok. 

Do celów porównawczych wykorzystano sieci przycięte o 10%, 25%, 50% i 80%.  

 

7.3.1. Zapotrzebowanie sprzętowe i szybkość działania 

 Parametry porównywanych sieci przedstawiono w postaci tabel 7.1, 7.2 i 7.3, z których 

każda opisuje jeden z rodzajów przycinanych sieci; odpowiednio są to sieci: mała, średnia  

i duża. Pierwsza z kolumn opisuje liczbę klatek wejściowych, które przetwarza dany wariant 

sieci. W drugiej kolumnie przedstawiono stopień przycięcia sieci, a w trzeciej liczbę wszystkich 

parametrów. Następnie przedstawione zostały wymagania każdej z sieci względem dostępnej 

pamięci operacyjnej, których wartości oszacowano na podstawie pomiaru zużycia pamięci 

układu GPU. Jako punkt odniesienia do tych wyników należy nadmienić, że inicjalizacja sieci 

małej, średniej i dużej wymagała odpowiednio 0,06 MB, 0,62 MB i 12,18 MB wolnej pamięci. 

Wczytanie serii 100 obrazów o rozmiarze 176×176 pikseli wiązało się z zalokowaniem 12 MB 

pamięci, natomiast dla serii 100 obrazów o rozmiarze 2304×2304 pikseli wartość ta wyniosła 

2 026 MB. W ostatnich kolumnach zapisano oszacowany pomiar czasu przetwarzania 

pojedynczej serii danych. Szarym kolorem zaznaczono wiersze zawierające informacje  

o oryginalnych, nieprzyciętych sieciach. 

 Jak można zauważyć, zależność między stopniem przycięcia, a liczbą wszystkich 

parametrów sieci nie zmienia się liniowo. Jest to spowodowane zależnościami pomiędzy 

usuwanymi strukturami – zmniejszanie liczby map cech w każdej z warstw powoduje 

dodatkowe zmniejszenie wymiarowości danych przetwarzanych przez następną warstwę.  

W efekcie przycięcie sieci o 10% elementów powoduje nieproporcjonalnie dużą zmianę  

w liczbie parametrów.  

 W przypadku pamięci operacyjnej zmiany zachodzą w mniejszym stopniu i jedynie dla 

dużej sieci można zaobserwować systematyczny spadek zapotrzebowania na zasoby sprzętowe. 

W przypadku sieci średniej kompresja modelu przetwarzającego 100 klatek nie skutkuje 
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znaczącym obniżeniem wymagań. Natomiast dla małej sieci podobne ograniczenie zaczyna się 

już przy przetwarzaniu 50 klatek. Co istotne, duża sieć poddana 80% przycinaniu ma parametry 

zbliżone do nieprzetworzonej sieci średniej, co pozwala precyzyjnie porównać ich wydajność. 

 

Tabela 7.1. Parametry porównywanych wariantów małych sieci. 

Liczba 

klatek 

wejściowych 

Procent 

przycięcia  

Liczba 

parametrów 

Wymagana pamięć 

operacyjna [MB] 

Czas przetwarzania 

pojedynczej serii [ms] 

176×176 2304×2304 176×176 2304×2304 

10 

– 5 545 8,05 1 368,47 2 108 

10% 4 348 7,22 1 226,65 3 107 

25% 3 295 6,20 1 056,03 1 106 

50% 1 621 4,53 770,80 1 107 

80% 418 2,64 445,87 1 102 

20 

– 6 265 9,24 1 570,97 2 232 

10% 4 987 8,40 1 430,16 2 234 

25% 3 835 7,39 1 258,95 2 228 

50% 1 981 5,71 976,02 1 221 

80% 598 5,03 852,52 2 217 

50 

– 8 425 13,12 2 219,18 3 487 

10% 6 868 13,00 2 199,17 2 479 

25% 5 455 12,87 2 179,17 2 481 

50% 3 061 12,63 2 139,16 3 473 

80% 1 138 12,38 2 097,65 2 472 

100 

– 12 025 39,09 6 245,12 4 861 

10% 10 018 37,90 6 387,11 3 863 

25% 8 155 37,66 6 367,11 4 861 

50% 4 861 37,17 6 165,08 3 864 

80% 2 038 36,67 6 205,04 3 852 

 

  Czas przetwarzania danych o wymiarze 2304×2304 pikseli (cały dysk słoneczny)  

w głównej mierze zależy od liczby klatek w seriach wejściowych. Jej zmiana powoduje 
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zauważalną zmianę szybkości sieci i to o wiele większą niż ta pojawiająca się na skutek 

kompresji. W przypadku mniejszego rozmiaru przestrzennego danych wspomniany czas 

zmienia się minimalnie, ale zawsze wynosi mniej niż 10 ms. Pozwala to stwierdzić, że 

testowane sieci stanowią doskonałą alternatywę dla MFBD, ponieważ w badanych przypadkach 

są w stanie uzyskać dobrej jakości wyniki w czasie wyraźnie krótszym niż czas akwizycji serii 

danych. 

 

Tabela 7.2. Parametry porównywanych wariantów średniej sieci. 

Liczba 

klatek 

wejściowych 

Przycięcie  
Liczba 

parametrów 

Wymagana pamięć 

operacyjna [MB] 

Czas przetwarzania 

pojedynczego obrazu 

[ms] 

176×176 2304×2304 176×176 2304×2304 

10 

– 134 633 15,38 2 528,61 5 144 

10% 110 677 14,00 2 309,98 5 138 

25% 76 351 11,80 1 959,47 4 138 

50% 34 385 8,28 1 381,73 5 124 

80% 5 719 3,98 666,15 4 116 

20 

– 136 073 17,10 2 733,11 5 239 

10% 111 937 15,95 2 514,11 4 238 

25% 77 431 13,28 2 162,18 5 240 

50% 35 205 9,47 1 587,02 5 241 

80% 5 989 5,23 872,84 4 241 

50 

– 140 393 20,13 3 338,63 6 453 

10% 115 717 18,75 3 119,38 7 449 

25% 80 671 16,54 2 767,37 6 449 

50% 37 365 13,28 2 218,34 5 437 

80% 6 799 12,58 2 117,98 5 432 

100 

– 147 593 40,66 6 407,71 8 894 

10% 122 017 40,53 6 391,62 7 896 

25% 86 071 40,39 6 327,47 7 889 

50% 40 965 39,26 6 245,29 6 876 

80% 8 149 36,99 6 225,37 6 872 
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Tabela 7.3. Parametry porównywanych wariantów dużej sieci. 

Liczba 

klatek 

wejściowych 

Przycięcie  
Liczba 

parametrów 

Wymagana pamięć 

operacyjna [MB] 

Czas przetwarzania 

pojedynczego obrazu 

[ms] 

176×176 2304×2304 176×176 2304×2304 

10 

– 3 152 469 84,33 11 884,37 7 303 

10% 2 552 246 72,52 10 480,44 7 293 

25% 1 775 493 58,75 8 723,95 6 259 

50% 791 093 37,44 5 880,15 7 200 

80% 129 435 15,17 2 500,65 6 159 

20 

– 3 155 369 87,32 12 089,51 8 391 

10% 2 554 876 72,97 10 683,57 7 383 

25% 1 777 673 59,90 8 925,54 8 353 

50% 792 553 39,16 6 084,65 6 295 

80% 129 995 16,36 2 703,32 7 262 

50 

– 3 164 069 88,37 12 693,54 8 655 

10% 2 562 766 76,14 11 289,35 7 643 

25% 1 784 213 62,91 9 532,14 7 608 

50% 796 933 43,04 6 692,73 7 545 

80% 131 675 19,91 3 306,63 6 469 

100 

– 3 178 569 96,17 13 707,72 9 1 018 

10% 2 575 916 82,89 12 302,15 8 1 012 

25% 1 795 113 69,74 10 541,29 9 1 008 

50% 804 233 48,98 7 701,26 8 958 

80% 134 475 38,21 6 367,16 8 905 

 

 

7.3.2. Ocena jakości przetworzonych obrazów 

 Każdą z rozważanych sieci wykorzystano do przetworzenia zbioru testowego, a obrazy 

wynikowe zostały ponownie porównane z MFBD200. Do oceny ilościowej użyto omówionych 

wcześniej metryk, a także wykorzystano klatki uśrednione jako dodatkowy punkt odniesienia. 
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Powstałe w efekcie zestawienia wyników przedstawiono na wykresach 7.3 (dla 10 klatek)  

i 7.4 (dla 100 klatek). Lewe kolumny przedstawiają wyniki uzyskane dla przycinania opartego 

o wartości aktywacji, a prawe – opartego na wartościach wag. 

 Pierwszym spostrzeżeniem jest to, że wybór kryterium usuwania elementów ma 

znikomy wpływ na kompresję. W obydwu przypadkach dostrzegalny jest podobny trend 

spadkowy, a występujące między tymi podejściami różnice sprowadzają się głównie do 

niewielkich zmian wydajności małego modelu. Natomiast porównując ze sobą wyniki modeli 

przetwarzających 10 i 100 klatek, można zauważyć, że więcej informacji zostaje zachowane  

w bardziej złożonej sieci.  

 Analizując wartości poszczególnych metryk, można stwierdzić, że już przy 10% 

przycięciu sieci radzą sobie gorzej z odtwarzaniem informacji, co widać na zestawieniu 

wyników dla metryk FSIM i MFGS. W przypadku miary VIF zmiany zachodzą nieco wolniej, 

niemniej sieci zaczynają zbliżać się jakością wyników do jakości obrazów uśrednionych. 

Świadczy to tym, że modele przestają działać poprawnie i nie realizują oczekiwanej 

rekonstrukcji obrazu.  

 Aby lepiej ocenić to zagadnienie, opracowano zestawienie wyników działania 

poszczególnych algorytmów dla wybranej serii danych. Na rysunku 7.5 przedstawiono wyniki 

działania sieci wykorzystujących 10 klatek wejściowych, a na 7.6 analogiczne rezultaty 

uzyskane dla 100 klatek. Jak widać, oryginalne sieci są w stanie tak przetworzyć dane 

uśrednione, by otrzymać obrazy zbliżone do wyników MFBD. Wprowadzanie przycinania 

redukuje zmiany wprowadzane przez sieci w takim stopniu, że przy przycięciu 80% trudno 

odróżnić wynik działania sieci od danych wejściowych. Świadczy to o tym, że zmiany 

wprowadzane przez sieć mające odpowiednio uwydatnić (zrekonstruować) drobne struktury 

chromosfery słonecznej przestają mieć miejsce.  
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Rysunek 7.3. Statystyczne porównanie wybranych metryk po przycięciu sieci wykorzystujących 10 klatek 

wejściowych. 

 



Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazów astronomicznych 

str. 147 
 

 

Rysunek 7.4. Statystyczne porównanie wybranych metryk po przycięciu sieci wykorzystujących 100 klatek 

wejściowych. 
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Rysunek 7.5. Porównanie wizualne obrazów po przycięciu sieci wykorzystujących 10 klatek wejściowych. 
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Rysunek 7.6. Porównanie wizualne obrazów po przycięciu sieci wykorzystujących 100 klatek wejściowych. 
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7.3.3. Uruchomienie na Raspberry Pi 5 

 Podczas dotychczasowych badań korzystano wyłącznie z komputera opisanego  

w poprzednim rozdziale. Chociaż w wielu sytuacjach wykorzystanie takiego sprzętu może 

okazać się wystarczające, pożądanym efektem prac jest uruchomienie testowanych sieci na 

znacznie mniej wymagającym sprzęcie. Taki sprzęt można podłączyć bezpośrednio do 

teleskopu, co pozwala przetwarzać dane od razu na miejscu obserwacji. Jest to zagadnienie 

szczególnie istotne przy akwizycji dużej ilości danych, które mogą zapełnić dostępną pamięć, 

zanim zostaną przeniesione do docelowego archiwum. Autorowi znany jest przykład takiej 

sytuacji z teleskopu kosmicznego Gaia, który w pewnym momencie rejestrował dane szybciej, 

niż je przesyłał na Ziemię, co wymusiło usunięcie pewnej ich części. 

 Postawiono zatem przetestować możliwości uruchomienia testowanych sieci na 

minikomputerze Raspberry Pi 5 wyposażonym w 8 GB RAM. Sprzęt ten obsługuje język 

Python wraz z frameworkiem PyTorch, co pozwoliło bezproblemowo przenieść na niego te 

rozwiązania. Należy przy tym podkreślić, że nie jest to norma, bo takie urządzenia wspierają 

zazwyczaj jedynie specjalistyczne formaty sieci, które wymuszają stosowanie konwersji.  

W przypadku PyTorcha największą elastyczność zapewnia konwersja modeli do formatu 

ONNX (ang. Open Neural Network Exchange).  

 W ramach badań na początku uruchomiono oryginalne sieci i przetestowano ich 

działanie na obrazach o wymiarach 176×176. Wyniki zaprezentowano w tabeli 7.4. Jak można 

zauważyć, nawet na sprzęcie tej klasy czas przetwarzania danych przez modele jest o wiele 

krótszy od czasu ich rejestrowania. Jedynym wyjątkiem jest duża sieć działająca na 10 klatkach, 

dla której czasy te są do siebie zbliżone. 

  

Tabela 7.4. Czas przetwarzania danych przez sieci na Raspberry Pi 5 (176×176). 

Liczba klatek 

wejściowych 

Czas przetwarzania danych [ms] 

Mała sieć  Średnia sieć  Duża sieć 

10 17 67 324 

20 19 70 327 

50 47 76 339 

100 75 87 357 
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 Podjęto również próby uruchomienia tych sieci z wykorzystaniem obrazów o rozmiarze 

2304×2304 piksele (tabela 7.5). Spośród dużych sieci, testom podlegały jedynie wersje 

skompresowane w 80% , bo inne wymagały zbyt dużo pamięci. Mimo że modele te powinny 

teoretycznie działać bez problemu, porównania można było dokonać jedynie dla sieci 

przetwarzające serie 10 i 20 klatek wejściowych. Jest to spowodowane tym, że spośród 8 GB 

pamięci na Raspberry Pi 5 część jest rezerwowana przez procesy systemowe, a także na 

wczytanie danych z pliku. Szybkość działania jest przy tym mniejsza niż w przypadku obrazów 

o wymiarach 176×176. Wartości te można jeszcze zmniejszyć poprzez wprowadzenie dalszych 

metod kompresji, takich jak kwantyzacja wag. Nie było to jednak celem pracy, więc 

eksperymenty zakończono na tym etapie. 

 

Tabela 7.5. Czas przetwarzania danych przez sieci na Raspberry Pi 5 (2304×2304). 

Liczba klatek 

wejściowych 

Czas przetwarzania danych [ms] 

Mała sieć 

(oryginalny rozmiar) 

Średnia sieć 

(oryginalny rozmiar) 

Duża sieć  

(przycięta w 80%) 

10 3 438 12 170 9 615 

20 3 767 12 919 10 220 

 

 

7.4. Omówienie wyników 

 Do przeprowadzenia eksperymentów wykorzystano trzy sieci omówione w poprzednim 

rozdziale. Mimo że występują pomiędzy nimi znaczące różnice w złożoności, wszystkie są  

w stanie osiągnąć rezultaty zbliżone do wyników algorytmu MFBD. Sugeruje to, że ilość 

informacji zawarta w wykorzystanych danych jest wystarczająca nawet dla małej sieci.  

W konsekwencji większe architektury okazują się być zbędne, gdyż zawierają znacznie więcej 

parametrów, niż jest konieczne do osiągnięcia wysokiej wydajności. Najbardziej efektywnym 

podejściem jest zatem projektowanie mniejszych modeli, które są odpowiednio dopasowane do 

realizowanego zadania. 

Z praktycznego punktu widzenia zadanie to nie jest proste, ponieważ trudno z góry 

oszacować optymalny stopień złożoności modeli. Pod tym względem bardziej bezpiecznym 

rozwiązaniem wydaje się być wstępne wytrenowanie dużej sieci neuronowej, a następnie 
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iteracyjne zmniejszanie jej wielkości połączone z obserwacją rezultatów. Podejście to wiąże się  

z potrzebą precyzyjnego dostrojenia algorytmów kompresji i ponownego treningu sieci. Jak 

jednak wykazano w eksperymencie, skompresowane modele w przypadku tego konkretnego 

zadania rekonstrukcji obrazów słonecznych osiągnęły rezultaty wyraźnie gorsze niż 

nieskompresowane, mniejsze modele. 

 W związku z tym, można stwierdzić, że w zadaniach operujących na danych 

niskorozdzielczych większe architektury nie zawsze przynoszą korzyści, a ich trenowanie  

oraz stosowana następnie kompresja mogą być skrajnie nieefektywne. Jednocześnie należy 

podkreślić, że wnioski te odnoszą się do konkretnego typu danych i rozważanego problemu, 

więc niekoniecznie muszą być uniwersalne. Niemniej, zaobserwowany fakt należy traktować 

jako przesłankę do każdorazowej próby poszukiwania alternatywnych, mniejszych, architektur 

sieci zamiast względnie bezpiecznego podejścia wykorzystującego kompresję większych 

struktur. 
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8. Podsumowanie pracy 

 W ostatnich latach astronomia obserwacyjna charakteryzuje się rosnącym 

zapotrzebowaniem na metody efektywnego przetwarzania rejestrowanych danych. Wiele uwagi 

poświęcono opracowaniu technik uczenia maszynowego służących poprawie ich ogólnej 

jakości i analizie. Większość prac skupiła się jednak wyłącznie na wykorzystaniu danych 

pochodzących z największych teleskopów naziemnych. Pominięto przy tym ich mniejsze 

odpowiedniki, które stanowią trzon wielu projektów badawczych. Celem niniejszej dysertacji 

było rozszerzenie badań na te zagadnienie poprzez ocenę możliwości sieci neuronowych  

w redukcji szumu niskorozdzielczych obrazów astronomicznych. Analizę tę podzielono na 

cztery oddzielne części, z których każda jest rozwinięciem poprzedniej.  

 Na początku określono grupę obiecujących rozwiązań w postaci sieci neuronowych, 

które przetwarzają dane, stosując przy tym redukcję ich wymiarowości. Założono, że taka 

procedura, dostosowana do narzuconych wymagań, powinna odpowiadać kompresji stratnej 

przetwarzanych danych, w przypadku której usunięta zostanie głównie informacja o losowym 

szumie. Jako testowane architektury wybrano zatem sieci typu autoenkoder, których wydajność 

zweryfikowano na zbiorze obrazów syntetycznych. Pozwoliło to ocenić wybrane techniki 

trenowania sieci w sytuacji, gdy nie ma dostępu do danych niezawierających szumu. Otrzymane 

wyniki zostały porównane względem rezultatów uzyskiwanych przez najlepsze algorytmy 

deterministyczne. 

 Przeprowadzone eksperymenty udowodniły wyższość rozwiązań bazujących na 

uczeniu maszynowym nad klasycznymi metodami, co wstępnie potwierdziło słuszność głównej 

tezy pracy. Wyniki wskazywały przy tym na możliwość skutecznego wykorzystania badanych 

strategii uczenia na obrazach rzeczywistych. Wnioski dotyczące tej części pracy skupiły się na 

wskazaniu ograniczenia rozważanych architektur, którym był ich brak elastyczności względem 

wejściowych danych. Pierwotnie struktura modeli pozwalała jedynie na przetwarzanie obrazów 

o stałych rozmiarach przestrzennych. By zaradzić temu problemowi, w dalszych etapach badań 

zdecydowano się wykorzystać wyłącznie sieci w pełni konwolucyjne. 

 Druga część badań skupiła się na walidacji wybranych technik uczenia i architektur sieci 

z użyciem danych obrazowych nocnego nieba. Analizowane modele wzbogacono o sieci typu 

U-Net, które są rozbudowaną formą symetrycznych autoenkoderów. Jakość przetworzonych 

obrazów została oceniona z wykorzystaniem pomiarów położenia, jasności i możliwości 
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detekcji gwiazd. Poruszono przy tym także tematykę wpływu złożoności sieci na jej 

efektywność.  

 Wykazano, że nawet relatywnie niewielkie sieci neuronowe są w stanie przewyższyć 

algorytmy deterministyczne w redukcji szumu nocnego nieba. Mimo że testowane rozwiązania 

mają tendencję do wyrównywania jasności tła, czyli przyciemniania słabiej świecących gwiazd, 

dobrze zachowują ich pozycję i zauważalnie zwiększają ich wykrywalność. Najistotniejszym 

wnioskiem było jednak to, że najlepsze wyniki nie zostały osiągnięte przez najbardziej złożone 

architektury, co może świadczyć o mniejszych wymaganiach danych niskorozdzielczych 

względem złożoności sieci. Tematykę tę rozwinięto w dalszej pracy. 

 Testowane do tego momentu sieci działały wyłącznie w oparciu o przetwarzanie 

pojedynczych obrazów. Jednak rozważane dane astronomiczne składają się zazwyczaj z serii 

wielu klatek wykonanych sekwencyjnie. W trzeciej części badań zweryfikowano możliwości 

sieci w redukcji szumu obecnego w takich seriach poprzez jednoczesne przetwarzanie 

informacji z wybranej liczby klatek. Celem było wyznaczenie odpowiedniej wielkości sieci, 

która pozwala uzyskać wyniki zbliżone do otrzymywanych przez najlepszy algorytm 

deterministyczny MFBD, lecz w znacznie krótszym czasie.  

 Jak zaobserwowano, wykorzystane architektury mogą stanowić atrakcyjną alternatywę 

wobec MFBD, ponieważ uzyskiwane wyniki cechują się porównywalną jakością, a obliczenia 

są wykonywane w czasie krótszym o rzędy wielkości. W przypadku wykorzystanego sprzętu 

można nawet stwierdzić, że obliczenia wykonywane są w czasie rzeczywistym – przetworzenie 

serii 100 klatek zachodzi w czasie krótszym od czasu ekspozycji pojedynczej klatki. Co istotne, 

również i w tym eksperymencie niewielkie sieci były w stanie osiągnąć bardzo dobry wynik, 

co ponownie potwierdza słuszność tezy.  

 Ostatnia część pracy skupia się na praktycznym podejściu do wykorzystania sieci. Jak 

przedstawiono, małe sieci mogą uzyskiwać lepsze wyniki od sieci większych, a ich trening jest 

zazwyczaj o wiele mniej wymagający sprzętowo. Niestety, nie da się z góry stwierdzić, jaki 

rozmiar sieci będzie najlepiej dopasowany do potrzeb. Bardziej przystępnym rozwiązaniem 

wydaje się być w takiej sytuacji wytrenowanie dużego modelu, a następnie zmniejszenie jego 

wielkości do odpowiedniego rozmiaru. 

 Wobec tego w ostatniej części pracy poruszono zagadnienie kompresji sieci 

neuronowych. Spośród wszystkich metod wybrano tę, która zmienia strukturę architektury, co 

pozwoliło ocenić wpływ wielkości modelu na wyniki działania. Jak zweryfikowano, podejście 
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to wymaga precyzyjnego dostrojenia algorytmów kompresji i ponownego treningu sieci, aby 

mogła ona konkurować z mniejszymi sieciami. Większe architektury mogą zatem okazać się  

w pewnych sytuacjach nieefektywne. 

 Podsumowując, wszystkie założone prace badawcze zostały z powodzeniem 

zrealizowane. Otrzymane wyniki wskazują, że niewielkie sieci neuronowe mogą osiągać 

wysoką skuteczność w redukcji szumu na obrazach astronomicznych, przewyższając pod tym 

względem zarówno algorytmy deterministyczne, jak i bardziej rozbudowane modele. Są przy 

tym w stanie wykonać tę pracę przy niższych wymaganiach sprzętowych i w krótszym czasie. 

Czyni to z nich sensowną grupę rozwiązań, a wyciągnięte z eksperymentów wnioski mogą 

posłużyć jako punkt wyjścia do przyszłych badań rozwijających ten temat. Na koniec należy 

zaznaczyć, że zastosowane rozwiązania nie były poddane pełnej optymalizacji, gdyż nie 

stanowiło to głównego celu badań. 
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Dodatek: Spis publikacji i wystąpień konferencyjnych  

 

 Niektóre z fragmentów niniejszej pracy zostały opublikowane w czasopismach 

naukowych oraz przedstawione w ramach wystąpień konferencyjnych. Poniżej zamieszczono 

chronologiczne zestawienie tych opracowań wraz z informacją o wykorzystanych fragmentach 

pracy.  

1. Część wyników obejmująca wpływ różnych sposobów uczenia sieci neuronowych na 

ich efektywność na przykładzie zbioru MNIST została przedstawiona w ramach 

wystąpienia konferencyjnego na „Ogólnopolskiej Konferencji Młodych Naukowców na 

temat: Inżynieria – Spojrzenie Młodych Naukowców”, a następnie opublikowana  

w formie artykułu „Wykorzystanie metod uczenia maszynowego w przetwarzaniu  

i poprawie jakości obrazów astronomicznych obserwatoriów Politechniki Śląskiej”  

[169] w opracowaniu zbiorczym „Zagadnienia aktualnie poruszane przez młodych 

naukowców”. 

2. Wyniki opisane w punkcie pierwszym zostały także w szerszej formie opublikowane 

jako artykuł „Comparison of training strategies for autoencoder-based monochromatic 

image denoising” [170] w czasopiśmie Sensors. 

3. Wstępne wyniki prac nad wpływem doboru parametrów sieci neuronowej na jakość 

detekcji w przetworzonych obrazach zostały zaprezentowane na ogólnopolskiej 

konferencji „Analiza Zagadnienia, Analiza Wyników – Wystąpienie Młodego 

Naukowca – Edycja V”.  

4. Wyniki prac nad redukcją szumu astronomicznego na obrazach nocnego nieba i Słońca 

zostały w okrojonej formie zaprezentowane na „Górnośląskiej Kosmicznej Konferencji 

Naukowej GeKKoN”, konferencji popularnonaukowej skierowanej do studentów  

i uczniów szkół średnich.  

5. Część wyników prac nad zastosowaniem sieci neuronowych jako alternatywy metody 

MFBD w przetwarzaniu obrazów Słońca została przedstawiona w ramach referatu na 

międzynarodowej konferencji „The 38th Annual European Simulation and Modelling 

Conference (ESM 2024)”, a następnie opublikowana w materiałach konferencyjnych 

jako „Increasing the observation capabilities of small solar telescopes using neural 

networks” [171]. 
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6. Problematyka optymalizacji sieci neuronowych pod względem wykorzystania zasobów 

sprzętowych została poruszona w ramach referatu na „IX Międzynarodowej 

Interdyscyplinarnej Konferencji Uczelni Technicznych InterTechDOC’24”. 

7. Wyniki opisane w punkcie piątym zostały w poszerzonej formie (odpowiadającej 

większości Rozdziału 6) opublikowane jako artykuł „Fully convolutional neural 

networks for processing observational data from small remote solar telescopes” [172]  

w czasopiśmie Scientific Reports. 

8. Wyniki prac nad porównaniem wpływu sieci neuronowych na detekcję gwiazd  

w przetworzonych obrazach nocnego nieba zostały przedstawione w ramach referatu  

na międzynarodowej konferencji „The 39th Annual European Simulation and 

Modelling Conference (ESM 2025)”, a następnie opublikowane w materiałach 

konferencyjnych jako „Comparison of neural network training approaches in limited 

data scenarios” [173]. 

9. Obecnie trwają także prace nad poszerzeniem opisanych w rozdziale 5 eksperymentów 

na dane o różnym czasie ekspozycji, a następnie opracowanie artykułu naukowego, 

który zostanie zgłoszony do publikacji w czasopiśmie Astronomy & Astrophysics. 

 

 

 

 

 

 

 

 

 

 

 

 



 

str. 159 
 

Bibliografia 

[1] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in 

nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133 

[2] McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for 

the dartmouth summer research project on artificial intelligence, august 31, 1955. AI 

magazine, 27(4), 12-12 

[3] Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.  

[4] Moore, G.E. (1965) Cramming More Components onto Integrated Circuits. Electronics, 

38, 114-117  

[5] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep 

convolutional neural networks. Advances in neural information processing systems, 25. 

[6] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., 

Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in neural 

information processing systems, 27. 

[7] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image 

recognition. In Proceedings of the IEEE conference on computer vision and pattern 

recognition (pp. 770-778). 

[8] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of 

the IEEE international conference on computer vision (pp. 2961-2969).  

[9] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., 

Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning 

transferable visual models from natural language supervision. arXiv preprint 

arXiv:2103.00020. 

[10] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., & 

Sutskever, I. (2021). Zero-shot text-to-image generation. arXiv preprint 

arXiv:2102.12092. 

[11] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of 

deep bidirectional transformers for language understanding. In Proceedings of the 2019 

conference of the North American chapter of the association for computational 

linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-

4186). 



 

str. 160 

 

[12] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, 

D. (2020). Language models are few-shot learners. Advances in neural information 

processing systems, 33, 1877-1901. 

[13] Nguyen, T. T., Tahir, H., Abdelrazek, M., & Babar, A. (2020). Deep learning methods 

for credit card fraud detection. arXiv preprint arXiv:2012.03754. 

[14] Li, X., Luo, W., Yuan, M., Wang, J., Lu, J., Wang, J., ... & Zeng, J. (2021, April). 

Learning to optimize industry-scale dynamic pickup and delivery problems. In 2021 

IEEE 37th international conference on data engineering (ICDE) (pp. 2511-2522). IEEE. 

[15] Pantanowitz, L., Quiroga-Garza, G. M., Bien, L., Heled, R., Laifenfeld, D., Linhart, C., 

... & Dhir, R. (2020). An artificial intelligence algorithm for prostate cancer diagnosis 

in whole slide images of core needle biopsies: a blinded clinical validation and 

deployment study. The Lancet Digital Health, 2(8), e407-e416.  

[16] Vida, K., Bódi, A., Szklenár, T., & Seli, B. (2021). Finding flares in Kepler and TESS 

data with recurrent deep neural networks. Astronomy & Astrophysics, 652, A107. 

[17] Grishin, K., Mei, S., & Ilić, S. (2023). YOLO–CL: Galaxy cluster detection in the SDSS 

with deep machine learning. Astronomy & Astrophysics, 677, A101. 

[18] Sun, R., Jia, P., Sun, Y., Yang, Z., Liu, Q., & Wei, H. (2023). PNet—A Deep Learning 

Based Photometry and Astrometry Bayesian Framework. The Astronomical Journal, 

166(6), 235. 

[19] Gómez, C., Neira, M., Hernández Hoyos, M., Arbeláez, P., & Forero-Romero, J. E. 

(2020). Classifying image sequences of astronomical transients with deep neural 

networks. Monthly Notices of the Royal Astronomical Society, 499(3), 3130-3138. 

[20] Bairouk, A., Chaumont, M., Fouchez, D., Paquet, J., Comby, F., & Bautista, J. (2023). 

Astronomical image time series classification using CONVolutional attENTION 

(ConvEntion). Astronomy & Astrophysics, 673, A141. 

[21] Chaini, S., Bagul, A., Deshpande, A., Gondkar, R., Sharma, K., Vivek, M., & Kembhavi, 

A. (2023). Photometric identification of compact galaxies, stars, and quasars using 

multiple neural networks. Monthly Notices of the Royal Astronomical Society, 518(2), 

3123-3136. 

[22] Baso, C. D., de la Cruz Rodriguez, J., & Danilovic, S. (2019). Solar image denoising 

with convolutional neural networks. Astronomy & Astrophysics, 629, A99. 

[23] Park, E., Moon, Y. J., Lim, D., & Lee, H. (2020). De-noising SDO/HMI solar 

magnetograms by image translation method based on deep learning. The Astrophysical 

Journal Letters, 891(1), L4. 



 

str. 161 
 

[24] Vojtekova, A., Lieu, M., Valtchanov, I., Altieri, B., Old, L., Chen, Q., & Hroch, F. 

(2021). Learning to denoise astronomical images with U-nets. Monthly Notices of the 

Royal Astronomical Society, 503(3), 3204-3215. 

[25] Navarro, F., Hall, D., Budavari, T., & Sukurdeep, Y. (2023). Learning the night sky with 

deep generative priors. arXiv preprint arXiv:2302.02030. 

[26] York, D. G., Adelman, J., Anderson Jr, J. E., Anderson, S. F., Annis, J., Bahcall, N. A., 

... & Yasuda, N. (2000). The sloan digital sky survey: Technical summary. The 

Astronomical Journal, 120(3), 1579. 

[27] Ricker, G. R., Winn, J. N., Vanderspek, R., Latham, D. W., Bakos, G. Á., Bean, J. L., ... 

& Villasenor, J. (2015). Transiting exoplanet survey satellite. Journal of Astronomical 

Telescopes, Instruments, and Systems, 1(1), 014003-014003.  

[28] Masci, F. J., Laher, R. R., Rusholme, B., Shupe, D. L., Groom, S., Surace, J., ... & 

Kulkarni, S. R. (2018). The zwicky transient facility: Data processing, products, and 

archive. Publications of the Astronomical Society of the Pacific, 131(995), 018003. 

[29] Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. 

Neural computation, 8(7), 1341-1390.  

[30] Steinegger, M., Hanslmeier, A., Otruba, W., Freislich, H., Denker, C., Goode, P. R., ... 

& Zhang, Q. (2000). An overview of the new global high-resolution H-alpha network. 

Hvar Observatory Bulletin, Volume 24, Issue 1, p. 179, 24, 179. 

[31] Harvey, J. W., Hill, F., Hubbard, R. P., Kennedy, J. R., Leibacher, J. W., Pintar, J. A., ... 

& Yasukawa, E. (1996). The global oscillation network group (GONG) project. Science, 

272(5266), 1284-1286. 

[32] Kokori, A., Tsiaras, A., Edwards, B., Jones, A., Pantelidou, G., Tinetti, G., ... & Naves, 

R. (2023). ExoClock Project. III. 450 new exoplanet ephemerides from ground and 

space observations. The Astrophysical Journal Supplement Series, 265(1), 4.  

[33] Babcock, H. W. (1953). The possibility of compensating astronomical seeing. 

Publications of the Astronomical Society of the Pacific, 65(386), 229-236.  

[34] Schmidt, D., Gorceix, N., Goode, P. R., Marino, J., Rimmele, T., Berkefeld, T., ... & Von 

Der Lühe, O. (2017). Clear widens the field for observations of the Sun with multi-

conjugate adaptive optics. Astronomy & Astrophysics, 597, L8. 

[35] Rao, C., Gu, N., Rao, X., Li, C., Zhang, L., Huang, J., ... & Ma, W. (2020). First light 

of the 1.8-m solar telescope–CLST. Science China. Physics, Mechanics & Astronomy, 

63(10), 109631.  



 

str. 162 

 

[36] Light Pollution Think Tank (2023). Zanieczyszczenie światłem w Polsce. Raport 2023. 

Kotarba, A. Z. (red.) Wydawnictwo Centrum Badań Kosmicznych PAN, Warszawa, 

www.lptt.org.pl  

[37] Guidash, M., Ma, J., Vogelsang, T., & Endsley, J. (2016). Reduction of CMOS image 

sensor read noise to enable photon counting. Sensors, 16(4), 517. 

[38] Hennel J. (2003). Podstawy elektroniki półprzewodnikowej. Wydawnictwo Naukowo-

Techniczne. 

[39] Kitamura, J., Katsuma, H., & Nishimura, T. (2009). A Reduction Method of Photon Shot 

Noise on CMOS Image Sensor Based on Local Brightness Distribution. IEEJ 

Transactions on Electronics, Information and Systems, 129(6), 1147-1155. 

[40] McLean, I. S. (2008). Electronic imaging in astronomy: detectors and instrumentation. 

Berlin, Heidelberg: Springer Berlin Heidelberg.  

[41] Scharmer, G. B., Bjelksjo, K., Korhonen, T. K., Lindberg, B., & Petterson, B. (2003, 

February). The 1-m Swedish solar telescope. In Innovative telescopes and 

instrumentation for solar astrophysics (Vol. 4853, pp. 341-350). SPIE. 

[42] Feigenbaum, E. A., Buchanan, B. G., & Lederberg, J. (1970). On generality and problem 

solving: A case study using the DENDRAL program (No. NASA-CR-123182). 

[43] Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106. 

[44] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 

273-297. 

[45] Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions 

on information theory, 13(1), 21-27. 

[46] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by 

back-propagating errors. nature, 323(6088), 533-536. 

[47] Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. 

The London, Edinburgh, and Dublin philosophical magazine and journal of science, 

2(11), 559-572. 

[48] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and 

organization in the brain. Psychological review, 65(6), 386.  

[49] Minsky, M., & Papert, S. (1969). An introduction to computational geometry. 

Cambridge tiass., HIT, 479(480), 104.  

[50] Hebb, D. O. (1949). The organization of behavior. A neuropsychological theory. Wiley.  



 

str. 163 
 

[51] Linnainmaa, S. (1970). The representation of the cumulative rounding error of an 

algorithm as a Taylor expansion of the local rounding errors (Praca magisterska, Univ. 

Helsinki). 

[52] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal 

representations by error propagation (No. ICS8506). 

[53] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... & Chintala, S. 

(2019). Pytorch: An imperative style, high-performance deep learning library. Advances 

in neural information processing systems, 32. 

[54] Frostig, R., Johnson, M. J., & Leary, C. (2019, March). Compiling machine learning 

programs via high-level tracing. In SysML conference 2018. 

[55] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). 

{TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX 

symposium on operating systems design and implementation (OSDI 16) (pp. 265-283). 

[56] Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and checkerboard artifacts. 

Distill, 1(10), e3. 

[57] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic 

segmentation. In Proceedings of the IEEE conference on computer vision and pattern 

recognition (pp. 3431-3440). 

[58] Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep 

feedforward neural networks. In Proceedings of the thirteenth international conference 

on artificial intelligence and statistics (pp. 249-256). JMLR Workshop and Conference 

Proceedings. 

[59] Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013, June). Rectifier nonlinearities improve 

neural network acoustic models. In Proc. icml (Vol. 30, No. 1, p. 3). 

[60] Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified 

activations in convolutional network. arXiv preprint arXiv:1505.00853. 

[61] Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network 

learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 4(5), 11. 

[62] Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing 

neural networks. Advances in neural information processing systems, 30. 

[63] Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint 

arXiv:1606.08415. 

[64] Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions. 

arXiv preprint arXiv:1710.05941. 



 

str. 164 

 

[65] Misra, D. (2019). Mish: A self regularized non-monotonic activation function. arXiv 

preprint arXiv:1908.08681. 

[66] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network 

training by reducing internal covariate shift. In International conference on machine 

learning (pp. 448-456). pmlr. 

[67] Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European 

conference on computer vision (ECCV) (pp. 3-19).  

[68] Jóźwik-Wabik, P. (2021). Batch effect identification methods in high-throughput omics 

experiments (Praca magisterska, Politechnika Śląska). 

[69] Jóźwik-Wabik, P., Gładys, B., Hermansa, M., Macha, D., Kalisz, S., Strzoda, T., 

Foszner, P., Popowicz, A., & Marczyk, M. (2021). Removing compression artifacts on 

whole slide HE-stained histopathological images. In S. Bajkacz & Z. Ostrowski 

(Editors), Recent advances in computational oncology and personalized medicine. 

Silesian University of Technology. 

[70] Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and 

composing robust features with denoising autoencoders. In Proceedings of the 25th 

international conference on Machine learning (pp. 1096-1103). 

[71] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. A., & Bottou, L. (2010). 

Stacked denoising autoencoders: Learning useful representations in a deep network with 

a local denoising criterion. Journal of machine learning research, 11(12).  

[72] Xie, J., Xu, L., & Chen, E. (2012). Image denoising and inpainting with deep neural 

networks. Advances in neural information processing systems, 25.  

[73] Gondara, L. (2016, December). Medical image denoising using convolutional denoising 

autoencoders. In 2016 IEEE 16th international conference on data mining workshops 

(ICDMW) (pp. 241-246). IEEE. 

[74] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional 

networks for biomedical image segmentation. In International Conference on Medical 

image computing and computer-assisted intervention (pp. 234-241). Cham: Springer 

international publishing. 

[75] Heinrich, M. P., Stille, M., & Buzug, T. M. (2018). Residual U-net convolutional neural 

network architecture for low-dose CT denoising. Current Directions in Biomedical 

Engineering, 4(1), 297-300. 

[76] Song, J., Meng, C., & Ermon, S. (2020). Denoising diffusion implicit models. arXiv 

preprint arXiv:2010.02502. 



 

str. 165 
 

[77] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. 

Mathematics of control, signals and systems, 2(4), 303-314. 

[78] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in 

Machine Learning, 2(1), 1-127. 

[79] Kingma, D. P. (2014). Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980. 

[80] Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv 

preprint arXiv:1711.05101. 

[81] Loshchilov, I., & Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm restarts. 

arXiv preprint arXiv:1608.03983. 

[82] Smith, L. N. (2017, March). Cyclical learning rates for training neural networks. In 2017 

IEEE winter conference on applications of computer vision (WACV) (pp. 464-472 

[83] Zhao, H., Gallo, O., Frosio, I. & Kautz, J. (2016). Loss functions for image restoration 

with neural networks. IEEE Transactions on Computational Imaging, 3, 47–57. 

[84] Huber, P. J. (1964). Robust Estimation of a Location Parameter. Ann. Math. Statist., 

35(4), 73-101. 

[85] Jiang, L., Dai, B., Wu, W., & Loy, C. C. (2021). Focal frequency loss for image 

reconstruction and synthesis. In Proceedings of the IEEE/CVF international conference 

on computer vision (pp. 13919-13929). 

[86] Miseta, T., Fodor, A., & Vathy-Fogarassy, Á. (2024). Surpassing early stopping: A novel 

correlation-based stopping criterion for neural networks. Neurocomputing, 567, 

127028. 

[87] Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural 

networks. arXiv preprint arXiv:1804.07612. 

[88] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (2002). Gradient-based learning applied 

to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.  

[89] Lee, J. S. (1981). Refined filtering of image noise using local statistics. Computer 

graphics and image processing, 15(4), 380-389. 

[90] Yang, R., Yin, L., Gabbouj, M., Astola, J., & Neuvo, Y. (1995). Optimal weighted 

median filtering under structural constraints. IEEE transactions on signal processing, 

43(3), 591-604. 

[91] Benesty, J., Chen, J., & Huang, Y. (2010, March). Study of the widely linear Wiener 

filter for noise reduction. In 2010 IEEE international conference on acoustics, speech 

and signal processing (pp. 205-208). IEEE. 



 

str. 166 

 

[92] Tomasi, C., & Manduchi, R. (1998, January). Bilateral filtering for gray and color 

images. In Sixth international conference on computer vision (IEEE Cat. No. 

98CH36271) (pp. 839-846). IEEE. 

[93] Buades, A., Coll, B., & Morel, J. M. (2005, June). A non-local algorithm for image 

denoising. In 2005 IEEE computer society conference on computer vision and pattern 

recognition (CVPR'05) (Vol. 2, pp. 60-65). Ieee. 

[94] Wang, J., Guo, Y., Ying, Y., Liu, Y., & Peng, Q. (2006, October). Fast non-local 

algorithm for image denoising. In 2006 International Conference on Image Processing 

(pp. 1429-1432). IEEE. 

[95] Thaipanich, T., Oh, B. T., Wu, P. H., Xu, D., & Kuo, C. C. J. (2010). Improved image 

denoising with adaptive nonlocal means (ANL-means) algorithm. IEEE Transactions 

on Consumer Electronics, 56(4), 2623-2630. 

[96] Sutour, C., Deledalle, C. A., & Aujol, J. F. (2014). Adaptive regularization of the NL-

means: Application to image and video denoising. IEEE Transactions on image 

processing, 23(8), 3506-3521. 

[97] Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 

3-D transform-domain collaborative filtering. IEEE Transactions on image processing, 

16(8), 2080-2095. 

[98] Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing 

overcomplete dictionaries for sparse representation. IEEE Transactions on signal 

processing, 54(11), 4311-4322/ 

[99] Muresan, D. D., & Parks, T. W. (2003, September). Adaptive principal components and 

image denoising. In Proceedings 2003 international conference on image processing 

(Cat. No. 03CH37429) (Vol. 1, pp. I-101). IEEE. 

[100] Portilla, J., Strela, V., Wainwright, M. J., & Simoncelli, E. P. (2003). Image denoising 

using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image 

processing, 12(11), 1338-1351. 

[101] Zoran, D., & Weiss, Y. (2011, November). From learning models of natural image 

patches to whole image restoration. In 2011 international conference on computer vision 

(pp. 479-486). IEEE. 

[102] Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant 

representations over learned dictionaries. IEEE Transactions on Image processing, 

15(12), 3736-3745. 



 

str. 167 
 

[103] Moldovan, T. M., Roth, S., & Black, M. J. (2006, October). Denoising archival films 

using a learned Bayesian model. In 2006 International Conference on Image Processing 

(pp. 2641-2644). IEEE. 

[104] Plotz, T., & Roth, S. (2017). Benchmarking denoising algorithms with real photographs. 

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 

1586-1595). 

[105] Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., & Aila, T. 

(2018). Noise2Noise: Learning image restoration without clean data. arXiv preprint 

arXiv:1803.04189. 

[106] Krull, A., Buchholz, T. O., & Jug, F. (2019). Noise2void-learning denoising from single 

noisy images. In Proceedings of the IEEE/CVF conference on computer vision and 

pattern recognition (pp. 2129-2137. 

[107] Krull, A., Vičar, T., Prakash, M., Lalit, M., & Jug, F. (2020). Probabilistic noise2void: 

Unsupervised content-aware denoising. Frontiers in Computer Science, 2, 5. 

[108] Quan, Y., Chen, M., Pang, T., & Ji, H. (2020). Self2self with dropout: Learning self-

supervised denoising from single image. In Proceedings of the IEEE/CVF conference 

on computer vision and pattern recognition (pp. 1890-1898). 

[109] Batson, J., & Royer, L. (2019, May). Noise2self: Blind denoising by self-supervision. 

In International conference on machine learning (pp. 524-533). PMLR. 

[110] Xu, J., Huang, Y., Cheng, M. M., Liu, L., Zhu, F., Xu, Z., & Shao, L. (2020). Noisy-as-

clean: Learning self-supervised denoising from corrupted image. IEEE Transactions on 

Image Processing, 29, 9316-9329. 

[111] Moran, N., Schmidt, D., Zhong, Y., & Coady, P. (2020). Noisier2noise: Learning to 

denoise from unpaired noisy data. In Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition (pp. 12064-12072). 

[112] Bonneel, N., Rabin, J., Peyré, G., & Pfister, H. (2015). Sliced and radon wasserstein 

barycenters of measures. Journal of Mathematical Imaging and Vision, 51(1), 22-45. 

[113] Deshpande, I., Hu, Y. T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S., ... & Schwing, A. 

G. (2019). Max-sliced wasserstein distance and its use for gans. In Proceedings of the 

IEEE/CVF conference on computer vision and pattern recognition (pp. 10648-10656). 

[114] Deshpande, I., Zhang, Z., & Schwing, A. G. (2018). Generative modeling using the 

sliced wasserstein distance. In Proceedings of the IEEE conference on computer vision 

and pattern recognition (pp. 3483-3491). 



 

str. 168 

 

[115] Kolouri, S., Pope, P. E., Martin, C. E., & Rohde, G. K. (2019, May). Sliced Wasserstein 

Auto-Encoders. In ICLR (Poster). 

[116] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality 

assessment: from error visibility to structural similarity. IEEE transactions on image 

processing, 13(4), 600-612. 

[117] Hore, A., & Ziou, D. (2010, August). Image quality metrics: PSNR vs. SSIM. In 2010 

20th international conference on pattern recognition (pp. 2366-2369). IEEE. 

[118] Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index 

for image quality assessment. IEEE transactions on Image Processing, 20(8), 2378-

2386. 

[119] Stetson, P. B. (1987). DAOPHOT: A computer program for crowded-field stellar 

photometry. Publications of the Astronomical Society of the Pacific, 99(613), 191.  

[120] Bradley, L., Sipocz, B., Robitaille, T., Tollerud, E., Deil, C., Vinícius, Z., ... & Weaver, 

B. A. (2016). Photutils: Photometry tools. Astrophysics Source Code Library, ascl-1609 

[121] Jia, P., Zheng, Y., Wang, M., & Yang, Z. (2023). A deep learning based astronomical 

target detection framework for multi-colour photometry sky survey projects. Astronomy 

and Computing, 42, 100687. 

[122] Parisot, O., & Jaziri, M. (2024). Deep sky objects detection with deep learning for 

electronically assisted astronomy. Astronomy, 3(2), 122-138. 

[123] Jia, P., Liu, Q., & Sun, Y. (2020). Detection and classification of astronomical targets 

with deep neural networks in wide-field small aperture telescopes. The Astronomical 

Journal, 159(5), 212. 

[124] Shi, J. H., Qiu, B., Luo, A. L., He, Z. D., Kong, X., & Jiang, X. (2022). A photometry 

pipeline for SDSS images based on convolutional neural networks. Monthly Notices of 

the Royal Astronomical Society, 516(1), 264-278. 

[125] Sun, R., Jia, P., Sun, Y., Yang, Z., Liu, Q., & Wei, H. (2023). PNet—A Deep Learning 

Based Photometry and Astrometry Bayesian Framework. The Astronomical Journal, 

166(6), 235. 

[126] Yang, Z., Liu, M., Yuan, H., Bu, Y., Yi, Z., Kong, X., ... & Zhang, R. (2023). Star 

Photometry for DECam Legacy Survey and Sloan Digital Sky Survey Images Based on 

Convolutional Neural Networks. The Astronomical Journal, 166(5), 210. 

[127] Vojtekova, A., Lieu, M., Valtchanov, I., Altieri, B., Old, L., Chen, Q., & Hroch, F. 

(2021). Learning to denoise astronomical images with U-nets. Monthly Notices of the 

Royal Astronomical Society, 503(3), 3204-3215. 



 

str. 169 
 

[128] Elhakiem, A. A., Ghoniemy, T. E., & Salama, G. I. (2021, December). Astronomical 

image denoising based on Convolutional Neural Network. In 2021 Tenth International 

Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 51-56). 

IEEE. 

[129] Bernardi, R. L., Berdja, A., Guzmán, C. D., Torres-Torriti, M., & Roth, M. M. (2022). 

Restoration of images with a spatially varying PSF of the T80-S telescope optical model 

using neural networks. Monthly Notices of the Royal Astronomical Society, 510(3), 

4284-4294. 

[130] Li, Y., Niu, Z., Sun, Q., Xiao, H., & Li, H. (2022). Bsc-net: background suppression 

algorithm for stray lights in star images. Remote Sensing, 14(19), 4852. 

[131] Zhang, Y., Nord, B., Pagul, A., & Lepori, M. (2022). Noise2astro: Astronomical image 

denoising with self-supervised neural networks. Research Notes of the AAS, 6(9), 187. 

[132] Bernardi, R. L., Berdja, A., Guzmán, C. D., Torres-Torriti, M., & Roth, M. M. (2023). 

Restoration of T80-S telescope’s images using neural networks. Monthly Notices of the 

Royal Astronomical Society, 524(2), 3068-3082. 

[133] Jia, P., Li, X., Li, Z., Wang, W., & Cai, D. (2020). Point spread function modelling for 

wide-field small-aperture telescopes with a denoising autoencoder. Monthly Notices of 

the Royal Astronomical Society, 493(1), 651-660. 

[134] Bartlett, O. J., Benoit, D. M., Pimbblet, K. A., Simmons, B., & Hunt, L. (2023). Noise 

reduction in single-shot images using an auto-encoder. Monthly Notices of the Royal 

Astronomical Society, 521(4), 6318-6329. 

[135] Jia, P., Wu, X., Li, Z., Li, B., Wang, W., Liu, Q., ... & Cai, D. (2021). Point spread 

function estimation for wide field small aperture telescopes with deep neural networks 

and calibration data. Monthly Notices of the Royal Astronomical Society, 505(4), 4717-

4725. 

[136] Liu, T., Quan, Y., Su, Y., Guo, Y., Liu, S., Ji, H., Hao, Q., Gao, Y., Liu, Y., Wang, Y., 

Sun, W., & Ding, M. L. (2025). Astronomical image denoising by self-supervised deep 

learning and restoration processes. Nature Astronomy, 9(2), 123–135.  

[137] Rodriguez-Alvarez, N., Jao, J. S., Munoz-Martin, J. F., Lee, C. G., & Oudrhiri, K. 

(2022). Feed-forward neural network denoising applied to goldstone solar system radar 

images. Remote Sensing, 14(7), 1643. 

[138] Labeyrie, A. (1970). Attainment of diffraction limited resolution in large telescopes by 

Fourier analysing speckle patterns in star images. Astronomy and Astrophysics, Vol. 6, 

p. 85 (1970), 6, 85. 



 

str. 170 

 

[139] Von der Lühe, O. (1993). Speckle imaging of solar small scale structure. I-Methods. 

Astronomy and Astrophysics (ISSN 0004-6361), vol. 268, no. 1, p. 374-390., 268, 374-

390. 

[140] Löfdahl, M. G. (2002, December). Multiframe blind deconvolution with linear equality 

constraints. In Image reconstruction from incomplete data II (Vol. 4792, pp. 146-155). 

SPIE. 

[141] Van Noort, M., Der Voort, L. R. V., & Löfdahl, M. G. (2005). Solar image restoration 

by use of multi-frame blind de-convolution with multiple objects and phase diversity. 

Solar Physics, 228(1), 191-215. 

[142] Löfdahl, M. G., & Hillberg, T. (2022). Multi-frame blind deconvolution and phase 

diversity with statistical inclusion of uncorrected high-order modes. Astronomy & 

Astrophysics, 668, A129. 

[143] Ramos, A. A., de la Cruz Rodríguez, J., & Yabar, A. P. (2018). Real-time, multiframe, 

blind deconvolution of solar images. Astronomy & Astrophysics, 620, A73. 

[144] Baso, C. D., de la Cruz Rodriguez, J., & Danilovic, S. (2019). Solar image denoising 

with convolutional neural networks. Astronomy & Astrophysics, 629, A99. 

[145] Ramos, A. A., & Olspert, N. (2021). Learning to do multiframe wavefront sensing 

unsupervised: Applications to blind deconvolution. Astronomy & Astrophysics, 646, 

A100. 

[146] Asensio Ramos, A., Esteban Pozuelo, S., & Kuckein, C. (2023). Accelerating 

multiframe blind deconvolution via deep learning. Solar Physics, 298(7), 91. 

[147] Wang, S., Chen, Q., He, C., Zhang, C., Zhong, L., Bao, H., & Rao, C. (2021). Blind 

restoration of solar images via the Channel Sharing Spatio-temporal Network. 

Astronomy & Astrophysics, 652, A50. 

[148] Zhang, C., Wang, S., Zhong, L., Chen, Q., & Rao, C. (2023). Cascaded Temporal and 

Spatial Attention Network for solar adaptive optics image restoration. Astronomy & 

Astrophysics, 674, A126. 

[149] Armstrong, J. A., & Fletcher, L. (2021). A machine-learning approach to correcting 

atmospheric seeing in solar flare observations. Monthly Notices of the Royal 

Astronomical Society, 501(2), 2647-2658. 

[150] Shu, J., Xie, C., & Gao, Z. (2022). Blind restoration of atmospheric turbulence-degraded 

images based on curriculum learning. Remote Sensing, 14(19), 4797. 



 

str. 171 
 

[151] Cai, Z., Zhong, Z., & Zhang, B. (2023). High-resolution restoration of solar images 

degraded by atmospheric turbulence effect using improved CycleGAN. New 

Astronomy, 101, 102018. 

[152] Popowicz, A., & Orlov, V. (2022). Suto-solar through-turbulence open image dataset. 

Sensors, 22(20), 7902. 

[153] Popowicz, A., Swoboda, F., Lasota, S., Fiolka, J., Orlov, V., Bernacki, K., & Rudawy, 

P. (2023). Solar patrol observatory at the Silesian University of Technology. Journal of 

Astronomical Telescopes, Instruments, and Systems, 9(2), 027001-027001. 

[154] Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE 

Transactions on image processing, 15(2), 430-444. 

[155] Deng, H., Zhang, D., Wang, T., Ji, K., Wang, F., Liu, Z., ... & Cao, W. (2015). Objective 

image-quality assessment for high-resolution photospheric images by median filter-

gradient similarity. Solar Physics, 290(5), 1479-1489. 

[156] Popowicz, A., Radlak, K., Bernacki, K., & Orlov, V. (2017). Review of image quality 

measures for solar imaging. Solar Physics, 292(12), 187. 

[157] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing 

human-level performance on imagenet classification. In Proceedings of the IEEE 

international conference on computer vision (pp. 1026-1034). 

[158] LeCun, Y., Denker, J., & Solla, S. (1989). Optimal brain damage. Advances in neural 

information processing systems, 2. 

[159] Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections 

for efficient neural network. Advances in neural information processing systems, 28. 

[160] Manessi, F., Rozza, A., Bianco, S., Napoletano, P., & Schettini, R. (2018, August). 

Automated pruning for deep neural network compression. In 2018 24th International 

conference on pattern recognition (ICPR) (pp. 657-664). IEEE. 

[161] Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable 

neural networks. arXiv preprint arXiv:1803.03635. 

[162] Malach, E., Yehudai, G., Shalev-Schwartz, S., & Shamir, O. (2020, November). Proving 

the lottery ticket hypothesis: Pruning is all you need. In International Conference on 

Machine Learning (pp. 6682-6691). PMLR. 

[163] Gou, J., Yu, B., Maybank, S. J., & Tao, D. (2021). Knowledge distillation: A survey. 

International journal of computer vision, 129(6), 1789-1819. 



 

str. 172 

 

[164] Stanton, S., Izmailov, P., Kirichenko, P., Alemi, A. A., & Wilson, A. G. (2021). Does 

knowledge distillation really work?. Advances in neural information processing 

systems, 34, 6906-6919. 

[165] Kim, J., Chang, S., & Kwak, N. (2021). PQK: model compression via pruning, 

quantization, and knowledge distillation. arXiv preprint arXiv:2106.14681. 

[166] Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural 

networks with pruning, trained quantization and huffman coding. arXiv preprint 

arXiv:1510.00149. 

[167] Hu, P., Peng, X., Zhu, H., Aly, M. M. S., & Lin, J. (2021, May). Opq: Compressing deep 

neural networks with one-shot pruning-quantization. In Proceedings of the AAAI 

conference on artificial intelligence (Vol. 35, No. 9, pp. 7780-7788). 

[168] Kuzmin, A., Nagel, M., Van Baalen, M., Behboodi, A., & Blankevoort, T. (2023). 

Pruning vs quantization: Which is better?. Advances in neural information processing 

systems, 36, 62414-62427.  

[169] Jóźwik-Wabik, P. (2022). Wykorzystanie metod uczenia maszynowego w przetwarzaniu 

i poprawie jakości obrazów astronomicznych obserwatoriów Politechniki Śląskiej. In 

K. Piech (editor), Zagadnienia aktualnie poruszane przez młodych naukowców 21. 

[Dokument elektroniczny]. Creativetime. 

[170] Jóźwik-Wabik, P., Bernacki, K., & Popowicz, A. (2023). Comparison of training 

strategies for autoencoder-based monochromatic image denoising. Sensors, 23, Article 

12.  

[171] Jóźwik-Wabik, P., & Popowicz, A. (2024). Increasing the observation capabilities of 

small solar telescopes using neural networks. In M. Graña & J. D. Nuñez-Gonzalez 

(Editors), Modelling and simulation 2024. The 2024 European Simulation and 

Modelling Conference. 

[172] Jóźwik-Wabik, P., & Popowicz, A. (2025). Fully convolutional neural networks for 

processing observational data from small remote solar telescopes. Scientific Reports, 

15, Article 1.  

[173] Jóźwik-Wabik, P., & Popowicz, A. (2025). Comparison of neural network training 

approaches in limited data scenarios. In S. S. Bhonsale, M. E. Polanska, & J. F. M. van 

Impe (Editors), Modelling and simulation 2025. The 2025 European Simulation and 

Modelling Conference. ESM′2025, October 22-24, 2025, Ghent, Belgium. 

 



 

str. 173 
 

Spis oznaczeń i skrótów 
 

AE sieć neuronowa typu autoenkoder [str. 53] 

AUC pole pod krzywą (ang. Area Under the Curve) [str. 93] 
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sieci (ang. Block-Matching and 3D Filtering) 

[str. 65] 

b człon obciążenia/przesunięcia (ang. bias) [str. 36] 

C liczba kanałów (map cech) obrazu [str. 41] 
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Cout liczba map cech wyjściowych warstwy [str. 44] 
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[str. 22] 
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[str. 22] 
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D średnica apertury  [str. 24] 
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[str. 25] 
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[str. 84] 
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[str. 92] 

FP oznaczenie klasyfikacji fałszywie pozytywnej  

(ang. False Positive) 

[str. 92] 

FSIM wskaźnik podobieństwa cech 

(ang. Feature Similarity Index) 

[str. 90] 

FWHM szerokość połówkowa (ang. Full Width at Half Maximum) [str. 90] 
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GPU procesor graficzny, zwykle zoptymalizowany  

pod wykorzystanie uczenia maszynowego  

(ang. Graphics Processing Unit) 

[str. 10] 

H wysokość przestrzenna obrazu [str. 41] 

I dane wejściowe sieci (1 lub więcej obrazów) [str. 71] 

Ix natężenie światła rozważanego obiektu [str. 28] 

Iref natężenie światła obiektu referencyjnego [str. 28] 

Î wynik przetworzenia danych wejściowych przez sieć 

(pojedynczy obraz) 

[str. 71] 

im standardowe oznaczenie omawianego obrazu [str. 63] 

K rozmiar wektora kodowań [str. 72] 

Ki pojedyncza, i-ta klatka obserwacyjna [str. 27] 

ks wielkość jądra konwolucyjnego [str. 43] 

L funkcja straty/kosztu [str. 40] 

LeakyReLU zmodyfikowany („przeciekający”) wariant funkcji ReLU  [str. 48] 

MAE średni błąd bezwzględny, norma L1  

(ang. Mean Absolute Error) 

[str. 57] 

mag magnitudo; jednostka wyrażona w skali logarytmicznej 

służąca określeniu jasności ciał niebieskich 

[str. 28] 
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[str. 73] 

MFBD algorytm ślepej dekonwolucji wieloklatkowej 

wykorzystywany do poprawy jakości rejestrowanych 

obrazów Słońca (ang. Multi-Frame Blind Deconvolution) 

[str. 7] 

MFBDn wynik działania MFBD wyznaczony dla n klatek [str. 118] 

MFGS miara podobieństwa gradientów po filtracji medianowej  

(ang. Median Filter-Gradient Similarity) 

[str. 125] 

MSE średni błąd kwadratowy, norma L2  

(ang. Mean Squared Error) 

[str. 57] 

MNIST zbiór obrazów odręcznie pisanych cyfr wykorzystany do 

badań wykorzystujących dane syntetyczne (ang. Modified 

National Institute of Standards and Technology database) 

[str. 6] 
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N2C skrócony zapis techniki uczenia sieci Noise2Clean [str. 81] 

N2N skrócony zapis techniki uczenia sieci Noise2Noise [str. 81] 

N liczba warstw [str. 51] 

Ni szum występujący na i-tej klatce [str. 27] 

NLM algorytm nielokalnych średnich służący do redukcji szumu 

(ang. Non-Local Means) 

[str. 65] 

n liczba klatek [str. 27] 

npi liczba pikseli w i-tym wymiarze matrycy [str. 25] 

pd próg detekcji algorytmu DAOStarFinder [str. 90] 

px fizyczna wielkość piksela, najczęściej wyrażana  

w mikrometrach 

[str. 25] 

PR krzywa opisująca precyzję w funkcji czułości  

(ang. Precision-Recall) 

[str. 92] 

PRNU niejednorodność czułości pikseli względem padającego na 

nie światła (ang. Photo Response Non-Uniformity) 

[str. 23] 

PSNR podstawowa metryka służąca porównaniu względnej jakości 

dwóch obrazów w oparciu o błąd średniokwadratowy 

(ang. Peak Signal-to-Noise Ratio) 

[str. 73] 

ref standardowe oznaczenie obrazu referencyjnego [str. 73] 

rk promień koła wykorzystywanego w pomiarze jasności 

obiektu 

[str. 94] 

rpw promień wewnętrzny pierścienia wykorzystywanego  

w pomiarze jasności obiektu 

[str. 94] 

rpz promień zewnętrzny pierścienia wykorzystywanego  

w pomiarze jasności obiektu 

[str. 94] 

ReLU prostowana jednostka liniowa; jedna z najbardziej 

popularnych funkcji aktywacji (ang. Rectified Linear Unit) 

[str. 48] 

RMSE pierwiastek z błędu średniokwadratowego  

(ang. Root Mean Square Error) 

[str. 126] 

S rzeczywisty (niezaszumiony) sygnał [str. 27] 

Spx skala kątowa piksela wyrażana w sekundach kątowych na 

piksel 

[str. 25] 
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SSIM metryka porównawcza obrazów uwzględniająca 

podobieństwo strukturalne  

(ang. Structural Similarity Index Measure) 

[str. 74] 

STS Szwedzki Teleskop Słoneczny znajdujący się na Wyspach 

Kanaryjskich  

[str. 29] 

SUTO działająca na Politechnice Śląskiej grupa badawcza 

zajmująca się astronomią  

(ang. Silesian University of Technology Observatories) 

[str. 29] 

TN oznaczenie klasyfikacji prawdziwie negatywnej  

(ang. True Negative) 

[str. 92] 

TP oznaczenie klasyfikacji prawdziwie pozytywnej  

(ang. True Positive) 

[str. 92] 

TLU progowa jednostka logiczna (ang. Threshold Logic Unit) [str. 36] 

VIF metryka „wierności informacji wizualnej”  

(ang. Visual Information Fidelity) 

[str. 125] 

W szerokość przestrzenna obrazu [str. 41] 

Wi,j oznaczenie j-tej warstwy w i-tej grupie warstw sieci [str. 123] 

w wektor wag [str. 36] 

x wektor sygnałów wejściowych [str. 36] 

xi oznaczenie punktów, dla których funkcja osiąga połowę 

wartości maksymalnej (w opisie FWHM) 

[str. 90] 

y wynik działania sieci [str. 57] 

ŷ rzeczywista, oczekiwana, docelowa wartość porównywana  

z wynikiem działania sieci 

[str. 57] 

z suma ważona sygnałów wejściowych z dodanym 

obciążeniem 

[str. 36] 

ZP punkt zerowy (ang. zero point), który określa wymagane 

przesunięcie wartości obliczonych w magnitudo jasności 

obiektów, by można dokonać porównania pomiędzy  

obrazami uzyskanymi przez różne instrumenty  

[str. 95] 
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α współczynnik kierunkowy funkcji LeakyReLU określony 

dla wartości ujemnych 

[str. 48] 

Δp zmiana pozycji gwiazdy na rozważanym obrazie im 

obliczona względem pozycji na obrazie referencyjnym ref 

[str. 94] 

δ wartość progu w funkcji straty Hubera [str. 58] 

η współczynnik uczenia [str. 40] 

θ rozdzielczość optyczna teleskopu [str. 24] 

λ długość fali światła [str. 24] 

σ rozrzut wartości szumu; także: odchylenie standardowe [str. 27] 

ρ zbiór parametrów sieci [str. 40] 
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