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Struktura pracy

Niniejsza praca sktada si¢ z o§miu rozdziatow i jednego dodatku. Ponizej zamieszczono

skrocony opis kazdego z tych elementow.

W  pierwszym rozdziale przedstawiono intensywny rozw6j metod uczenia
maszynowego, ktory sprawil, ze w ostatnich latach sg one coraz czg¢sciej wykorzystywane
w licznych dziedzinach nauki, w tym w astronomii. Podkreslono rol¢ matych obserwatoriow
w akwizycji danych, a takze zwrdcono uwage na zagadnienie dopasowania modelu do

konkretnych zadan. Na sam koniec sformutowano teze niniejszej pracy.

Drugi rozdzial opisuje rézne typy obserwacji astronomicznych wraz z ich specyfika, ze
szczegdlnym naciskiem na mate obserwatoria naziemne. Wprowadzono w nim pojecia
kluczowe do zrozumienia dalszej cze$ci pracy. Dodatkowo, wymieniono gléwne aspekty
wplywajace na jako$¢ pozyskiwanych danych, takie jak znieksztalcenie obrazu przez

turbulentng atmosferg.

Przeprowadzone badania koncentruja si¢ na dopasowaniu sieci neuronowych do
poszczeg6lnych zadan. W trzecim rozdziale wyjasniono, dlaczego sposrod wszystkich metod
uczenia maszynowego praca skupia si¢ wytgcznie na sieciach neuronowych. Przyblizono przy
tym zasady ich dziatania, a takze podkreslono wyzwania towarzyszace przystosowaniu ich do
pracy. Opisano rowniez podstawowe warstwy sieci wykorzystywane w eksperymentach

rozwazanych w kolejnych rozdziatach.

Najbardziej intuicyjnym podejSciem do wytrenowania sieci neuronowych jest
zastosowanie uczenia nadzorowanego z wykorzystaniem par obrazow: obraz zaszumiony —
obraz pozbawiony szumu. W przypadku obserwacji naziemnych niemozliwym jest pozyskanie
danych drugiego typu. W zwigzku z tym, przeprowadzono badania nad innymi podejsciami do
treningu sieci, w ramach ktorych wykorzystano obrazy monochromatyczne ze zbioru MNIST

(ang. Modified National Institute of Standards and Technology database).

Bazujac na wynikach z rozdziatu czwartego, dane syntetyczne zastgpiono docelowymi
obrazami nocnego nieba. Wykorzystane zostaly obrazy zarejestrowane z czasem ekspozycji
500 ms, w oparciu o ktdre przetestowano wybrane architektury sieci neuronowych. Weryfikacji
poddane zostaly podstawowe metryki poréwnujace jakos¢ obrazoéw, a nastepnie poréwnano

jakos¢ detekcji gwiazd na przetworzonych obrazach.
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Uznanym standardem wykorzystywanym w poprawie obrazdéw stonecznych jest
algorytm MFBD (ang. Multi-Frame Blind Deconvolution), ktory wykorzystuje wiele klatek do
estymacji stanu Stonca w danym momencie. Rozdzial szosty obejmuje badania nad
wykorzystaniem sieci neuronowych jako podejscia alternatywnego, ktory umozliwia
przetwarzanie obrazéw niemal w czasie rzeczywistym, podczas gdy metoda MFBD wymaga

nieraz wielogodzinnych obliczen.

W przemystowych zastosowaniach sieci neuronowych czesto stosowang praktyka jest
wytrenowanie duzej sieci, a nast¢pnie zmniejszenie jej rozmiaru i wymagan, by przystosowac
ja do dzialania na mniej wymagajacym sprzecie. Sidodmy rozdziat opisuje badania nad

wplywem takiej optymalizacji na dzialanie sieci zaproponowanych w rozdziale szostym.

Ostatni rozdziat pracy podsumowuje wyniki przeprowadzonych badan i konfrontuje je

z postawiong w pierwszym rozdziale tezg badawczg.

Czeg$¢ wynikow opisanych w niniejszej pracy zostata zaprezentowana w ramach
referatow na krajowych i zagranicznych konferencjach, a takze opublikowana w formie
artykulow naukowych. Dodatek do pracy prezentuje liste wystapien 1 publikacji

z wyszczegoblnieniem, ktorej cze$ci badan one dotycza.
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Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazow astronomicznych

1. Wprowadzenie

Wyobrazni¢ ludzi od tysiecy lat rozpalata idea stworzenia sztucznego, postusznego
bytu, ktory bedzie w stanie sumiennie i precyzyjnie wykonywaé powierzone mu zadania.
W starozytnosci marzenie to przybrato posta¢ mitu o Talosie, wykutym przez Hefajstosa
olbrzymie z brazu, ktéry miat chroni¢ Kretg, codziennie okrazajac ja trzy razy. Przez nastgpne
wieki wizja ta pojawiala si¢ w postaci homunkulusa, Golema czy potwora Frankensteina, by na
poczatku XX wieku zaistnie¢ jako ,,robot” za sprawg sztuki ,,Rossumovi Univerzalni Roboti”
Karela Capka z 1921 roku. W pézniejszych latach okre$lenie to utrwalilo sie w jezyku miedzy
innymi za sprawg Isaaca Asimova i jego Trzech Praw Robotyki, dajac poczatek dyscyplinie,

jaka jest robotyka.

Same proby stworzenia inteligentnej maszyny nie wychodzity jednak daleko poza ramy
literatury fantastycznonaukowej, az do opublikowania przez Warrena McCullocha i Waltera
Pittsa przelomowego artykutu ,,A Logical Calculus of the Ideas Immanent in Nervous Activity”
[1] w 1943 roku. Byla to pierwsza formalna proba opisania dziatania mozgu za pomoca logiki
matematycznej i modelu sieci zlozonej ze sztucznych neurondéw. Chociaz zaproponowany
model okazal si¢ z biegiem lat zbyt uproszczony, dat podwaliny na rozwdj badan w dziedzinie,

ktoéra za sprawg Jacka McCarthy’ego nazwano ,,sztuczng inteligencja” [2].

Do konica lat 60. zeszlego wieku zainteresowanie sztucznymi sieciami neuronowymi
bylo ogromne i spodziewano si¢, ze juz wkrotce pojawi si¢ maszyna zdolna przejs¢ test
zaproponowany przez Turinga [3], czyli nie bedzie mozliwe odrdznienie jej od cztowieka
jedynie poprzez rozmowg. Stosowane wtedy podejscia okazaty si¢ jednak niewystarczajace do
stawianych im zadan. Ponadto, nawet najprostsze z nich wymagaty znaczacych zasobow
sprzetowych, zazwyczaj przekraczajacych  mozliwosci  O6wczesnych — komputerow
dysponujacych matg ilo$cig pamieci i niska mocg obliczeniowa. Skutkowato to spadkiem
zainteresowania dziedzing i wstrzymaniem finansowania badan na dtugie lata. Przez nastepne
dekady temat sztucznej inteligencji okresowo wracal do fask, jednakze prawdziwy przelom

nastapit dopiero po dluzszej przerwie.

W 1965 roku Gordon Moore opisat zjawisko podwajania si¢ liczby tranzystoréw
w uktadach scalonych w odstepach 18-24 miesigecy przy zachowaniu tej samej ceny [4].
Zjawisko to, nazwane prawem Moore’a, znalazto potwierdzenie w praktyce 1 w okolicy 2000

roku mozna bylo méwi¢ o latwym dostgpie do komputeréw wyposazonych we wzglednie
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Rozdzial 1. Wprowadzenie

wydajne procesory i pami¢¢ fizyczng. W tym samym czasie na potrzeby komercyjne preznie
rozwijano jednostki GPU (ang. Graphics Processing Unit), pierwotnie wykorzystywane
wylacznie do obstugi grafiki w grach i1 aplikacjach. Jednym z punktow zwrotnych
w zastosowaniu GPU byto opracowanie przez firm¢ NVIDIA w 2006 roku platformy CUDA
(ang. Compute Unified Device Architecture), ktéra umozliwita zastosowanie GPU do
réwnolegtych obliczen matematycznych. W rezultacie modele sztucznych sieci neuronowych
mogly by¢ ,.trenowane”, czyli dostosowywane do stawianych im zadan, znacznie szybciej i na

wiekszg skale, co ponownie rozbudzito zapat wielu zespotow badawczych.

Za poczatek trwajacego obecnie ,,renesansu sztucznej inteligencji” najczesciej uznaje
si¢ wygranie przez sie¢ AlexNet [5] konkursu ,ImageNet Large Scale Visual Recognition
Challenge” w 2012 roku, co pokazalo, ze sieci mogg by¢ skuteczne w rozpoznawaniu obrazow.
Od tego czasu mniej wigcej co roku odbywal sie swoisty przetom w badaniach nad sieciami
neuronowymi. W przetwarzaniu obrazéw za najwicksze kamienie milowe mozna uznaé
zaprezentowanie sieci generatywnych typu GAN (ang. Generative Adversarial Network) [6],
wprowadzenie warstw rezydualnych w ResNet [ 7], popraw¢ mozliwo$ci segmentacji obiektow
na obrazie przez Mask R-CNN [8], przetwarzanie obrazow przy pomocy opisu jezykowego za
pomocg CLIP [9] i generowanie obrazéw na podstawie tekstu przez DALL-E [10]. Rownolegle
postepowat rozw0j w innych poddziedzinach, przy czym najbardziej znaczagcym w ostatnich
latach okazat si¢ rozw6j duzych modeli jezykowych takich jak BERT [11] czy GPT [12].
W efekcie, rozwigzania oparte na sztucznej inteligencji znajduja zastosowanie w coraz wigkszej
liczbie obszarow, sposrod ktoérych wymieni¢ mozna wykrywanie nieautoryzowanych transakeji
bankowych [13], optymalizacje tahcuchow dostaw [14], wykrywanie nowotworéw na

cyfrowych skanach biopsji [15] 1 wiele innych.

Sieci neuronowe odgrywaja réwniez coraz wigkszg role w licznych pracach
badawczych zwigzanych z astronomig. Dziedzina ta charakteryzuje si¢ przetwarzaniem danych,
ktérych ilo$¢ ro$nie wraz z rozwojem teleskopow i instrumentéw obserwacyjnych. W tym
kontek$cie sieci neuronowe okazuja si¢ bardzo przydatne, oferujac mozliwosci szybkiego
przetworzenia i automatycznej analizy informacji, dorownujac lub przewyzszajac algorytmy
deterministyczne wzgledem jakosci wynikow. Do kluczowych zastosowan tej technologii
mozna zaliczy¢ detekcje obiektow [16][17][18] 1 ich klasyfikacje¢ [19][20][21], ktére znaczaco
przyspieszaja proces katalogowania i interpretacji wynikow, a takze moga prowadzi¢ do

wykrycia nietypowych sygnatéw. Dodatkowo, sieci neuronowe skutecznie wspomagaja
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Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazow astronomicznych

redukcje szumu — potrafig odseparowac sygnal rzeczywisty od roznego rodzaju zaktocen,

znacznie poprawiajac jakos¢ oraz niezawodnos¢ pozyskiwanych danych [22][23][24][25].

Podejscie do wykorzystania tych metod w astronomii skupito si¢, w gtdownej mierze, na
zastosowaniu ich w teleskopach kosmicznych i teleskopach naziemnych stosowanych przez
najwigksze obserwatoria. Do przeprowadzanych eksperymentow najczesciej wykorzystuje si¢
dane ze zbiorow uzyskiwanych w ramach projektow takich jak SDSS (ang. Sloan Digital Sky
Survey) [26], TESS (ang. Transiting Exoplanet Survey Satellite) [27] 1 ZTF (ang. Zwicky
Transient Facility) [28]. Rola niewielkich teleskopow wraz z odmiennym charakterem
zbieranych przez nie danych jest w tych badaniach najczesciej pomijana, co jest znaczacym

niedopatrzeniem.

Mate teleskopy astronomiczne uczestnicza w licznych projektach badawczych,
stanowigc trzon przygotowan do pdzniejszych, szerzej realizowanych i bardziej szczegdtowych
badan. Instrumenty te, znacznie liczniej i geséciej rozmieszczone od duzych jednostek
obserwacyjnych, moga synchronicznie dostarczaé i od razu weryfikowa¢ wiedze o zjawiskach
przejsciowych, takich jak tranzyty planet pozastonecznych. Dzigki wigkszemu polu widzenia
sa rowniez w stanie na biezaco monitorowaé znacznie obszerniejsze czgsci nieba. Ich rola jest
szczegllnie istotna w kontekscie otwarcia Obserwatorium im. Very C. Rubin, ktdre zdaniem
wielu astronoméw ma rozpoczaé nowa er¢ w astronomii. Jednostka ta ma zbiera¢ dane na
niespotykang dotychczas skale, okoto 20 terabajtow na dzien. Jednakze nie bedzie stuzyta ona
do ciagtej obserwacji zjawisk, lecz tylko do ich wykrywania; do szybkich obserwacji najlepiej
nadadza si¢ wlasnie male teleskopy, ktoére sa w stanie szybko zareagowac i1 monitorowac

interesujace zdarzenia przez kolejne godziny, dni czy tygodnie.

Z tego powodu wykorzystanie sieci neuronowych w przetwarzaniu danych
z niewielkich teleskopéw naziemnych stanowi istotny obszar badawczy, ktéry wymaga
dalszych prac rozwojowych. Rozwigzania stosowane z wykorzystaniem obrazéw
wysokorozdzielczych z duzych teleskopdéw nie muszg dawac rownie dobrych rezultatow, jezeli
zostang wykorzystane na danych z matych teleskopoéw, gdzie rozdzielczos¢ 1 jakos$¢ sygnatu sg
czg¢sto ograniczone przez sprz¢t i warunki obserwacyjne. Zgodnie z twierdzeniem o nieistnieniu
darmowych obiadow (ang. No Free Lunch Theorem) [29] zaden model nie bedzie z zatozenia
dziatat lepiej od pozostalych; jedynie poprzez ocen¢ dziatania kazdego z nich z uzyciem
docelowych danych mozna przekonac sie, ktory rzeczywiscie wykazuje wieksza skutecznosc.
W przypadku obrazéow niskorozdzielczych oznacza to, ze nawet wzglednie proste sieci
neuronowe moga by¢ w stanie osiggna¢ zadowalajace wyniki.
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Rozdzial 1. Wprowadzenie

Zagadnienie to dodatkowo zyskuje na znaczeniu w sytuacjach, gdy zachodzi potrzeba
przetwarzania danych od razu w miejscu przeprowadzania obserwacji. Matle, zdalnie
sterowane, teleskopy sa czesto instalowane z dala od miast i zrodet energii elektrycznej.
W efekcie, podiaczane jest do nich zasilanie akumulatorowe, ktére powinno zapewnic
wzglednie dhugi czas pracy w terenie. Nalezy zatem zadba¢ réwniez o efektywnosé
energetyczng stosowanych rozwigzan, czyli mozliwie zmniejszy¢ ich ztozonos$¢ obliczeniowa

lub zwigkszy¢ ich skuteczno$¢.

Biorgc pod uwage opisany aspekt badawczy, zostata sformulowana teza niniejszej
pracy: Przetwarzanie obrazow astronomicznych za pomoca sieci neuronowych moze
prowadzi¢ do poprawy jakosci pomiarowej (detekcji obiektow, pomiaru ich jasnosci czy
polozenia) w poroéwnaniu do dotychczas stosowanych algorytméw deterministycznych.
Dodatkowo, zastosowanie takich rozwigzan moze prowadzi¢ do istotnego spadku
zapotrzebowania na zasoby sprzetowe lub do zwigkszenia szybkosci przetwarzania

danych.

W ramach pracy, zrealizowano prace badawcze, ktére mozna podzieli¢ na cztery czesci,

z ktorych kazda opisana jest w pdzniejszych rozdziatach pracy:

I. Do badan wybrano architektury sieci typu autoenkoder. Ich dziatanie opiera si¢ na
kompresji danych wejsciowych 1 ich dekompresji. Zmieniajac strukture sieci, mozna
wplywac na poziom tej kompresji, a co za tym idzie — na ilo$¢ traconej informac;ji.
Uznano, Zze obecny na obrazach losowy szum mozna potraktowa¢ jako element
szczegotowy, najtrudniejszy do odtworzenia, a przez to najlatwiejszy do utracenia.
Zatozenie to zweryfikowano z uzyciem danych syntetycznych ze zbioru MNIST,
ktory na potrzeby tego eksperymentu uznano za wystarczajacy. Rownoczesnie
przetestowano wptyw réznych podej$¢ do trenowania sieci na ich wydajnos¢.
Doswiadczenie to bylo o tyle istotne, ze w przypadku danych z teleskopow
naziemnych nie da si¢ uzyska¢ idealnych obrazow referencyjnych, czyli
pozbawionych szumu. W zwigzku z tym nalezato w posredni sposob oszacowac
przydatnos$¢ innych podejs¢ na tle podejscia tradycyjnego, wykorzystujacego dane
niezaszumione.

II.  Na podstawie wynikow eksperymentu na danych syntetycznych przeprowadzono
kolejne eksperymenty, tym razem z wykorzystaniem danych z obrazowania nocnego
nieba. Do poréwnania zastosowano powszechnie uznane architektury sieci, ktore
byty pierwotnie testowane na obrazach wysokorozdzielczych. Porownano wyniki
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I1I.

IV.

detekcji gwiazd, ich potozenia oraz jasno$ci na obrazach oryginalnych oraz na
obrazach przetworzonych przez sieci neuronowe.

Przeprowadzono badania nad przetwarzaniem serii obrazéw stonecznych. Celem
badan bylo wyznaczenie wielko$ci sieci wystarczajacej do osiggnigcia rezultatow
poréwnywalnych z wynikami dziatania deterministycznego algorytmu MFBD,
jednakze w znacznie krotszym, quasi-rzeczywistym czasie.

W zastosowaniach przemystowych czgsto stosuje si¢ rozwigzania polegajace na
stworzeniu dobrze dzialajacej duzej sieci, a nastgpnie zredukowaniu jej rozmiaru,
by mogta zosta¢ uruchomiona na bardziej kompaktowym sprzecie. Wykorzystujac
sieci przetestowane w przetwarzaniu obrazoéw Stonca, zweryfikowano wplyw
techniki przycinania (ang. pruning) sieci na ztozonos$¢ struktury modeli i ich

wydajno$¢ w poréwnaniu do sieci oryginalnych.
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Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazow astronomicznych

2. Obserwacje astronomiczne w praktyce

Obserwacje astronomiczne stanowig szczegoélny obszar nauki, w ktorym nie ma
bezposredniego dostepu do analizowanych obiektéw. W przeciwienstwie do innych dziedzin,
astronomia opiera si¢ niemal wylacznie na analizie sygnatéw docierajacych do nas z odlegtych
ciat niebieskich gléwnie pod postacig promieniowania elektromagnetycznego. Z tego powodu
kluczowe jest zadbanie o prawidlowy odbior i rejestracje tychze sygnatow. To od jakosci
i precyzji procesu akwizycji danych zalezy, jak duzo jesteSmy w stanie dowiedzie¢ si¢

o otaczajacym nas Wszechswiecie.

Proces ten moze by¢ realizowany przez rézne rodzaje instrumentéw obserwacyjnych
(teleskopy naziemne, teleskopy kosmiczne, radioteleskopy), ktorych praca opisywana jest
z wykorzystaniem specjalistycznej nomenklatury. Zadaniem tego rozdziatu jest przyblizy¢
czytelnikowi dziedzing astronomii obserwacyjnej w stopniu pozwalajacym w petni zrozumie¢

stojace przed nig wyzwania, zagadnienia i potrzeby istotne w kontekscie dalszej czesci pracy.

Rozdzial podzielony zostal na trzy gléwne cze$ci. W pierwszej z nich opisane sg rozne
rodzaje obserwacji astronomicznych. Poprzez rodzaje rozumie¢ nalezy podziat obserwacji ze
wzgledu na obserwowany zakres promieniowania, cel obserwacji i uzyty sprzet. Ponownie
podkreslona jest rola matych teleskopow, ktore coraz czesciej taczone sg w pracujace
synchronicznie sieci. Druga cze$¢ skupia si¢ na opisaniu gtownych probleméw technicznych
zwigzanych z poprawna rejestracja sygnalu — wptywem atmosfery, odlegtoscig od terenow
mieszkalnych 1 przemystowych, a takze szumami matryc rejestrujacych sygnal Swietlny.
Trzecia czg$¢ rozdzialu przybliza kluczowe pojecia zwigzane z dziedzing. Bez ich
wczesniejszego wyjasnienia dalsze fragmenty moglyby okaza¢ si¢ trudne do zrozumienia lub
zosta¢ blednie zinterpretowane — przykladowo: moéwiac o rozdzielczo$ci zarejestrowanych
obraz6w nalezy mie¢ na uwadze, ze rozdzielczos¢ optyczna teleskopu jest czym$ innym niz
rozdzielczo$¢ matrycy rejestrujgcej sygnal. Na koncu rozdziatu znajduje si¢ podrozdziat,
w ktorym poréwnano ze sobg dwa obserwatoria astronomiczne. Jednym z nich jest
obserwatorium Roque de los Muchachos znajdujace si¢ na Wyspach Kanaryjskich, a drugim sa
rozproszone obserwatoria grupy naukowej dzialajacej na Politechnice Slaskiej, ktore zostaty
wykorzystane do zebrania obrazow wykorzystanych w tej pracy. Porownanie to ma na celu
podkreslenie r6znic pomiedzy obserwatoriami wykorzystujacymi duze oraz mate instrumenty

optyczne.
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Rozdziat 2. Obserwacje astronomiczne w praktyce

2.1. Rodzaje obserwacji astronomicznych

Zycie na Ziemi jest w olbrzymiej mierze mozliwe dzieki obecnoéci atmosfery, ktora
utrzymuje odpowiednie ci$nienie i temperature planety, wspomaga krazenie wody, ale przede
wszystkim, niczym parasol ochronny, absorbuje promieniowanie kosmiczne. Z punktu
widzenia astronoma wigze si¢ to jednak z pewng niedogodno$cig — atmosfera, skutecznie
blokujac pewne pasma promieniowania, uniemozliwia ich odbioér na powierzchni Ziemi. Na
rysunku 2.1 przedstawiony jest przyblizony wykres absorpcji, czyli nieprzepuszczalnosci
atmosfery, w zaleznosci od dilugosci fali elektromagnetycznej. Jak mozna zauwazyc,
promieniowanie gamma i promieniowanie rentgenowskie sg catkowicie blokowane i dopiero
Swiatto UV jest w stanie w niewielkim stopniu przedosta si¢ przez atmosfere. W duzym
stopniu dociera do Ziemi zakres S$wiatlta widzialnego i1 podczerwien, przy czym dla
podczerwieni absorpcja jest wyraznie nierOwnomierna. Bez probleméw do powierzchni
dochodza jedynie fale radiowe o dlugosci od kilku centymetréw do kilkunastu metrow,

natomiast dtugie fale radiowe sa ponownie catkowicie blokowane.

- W
0%

T T T
0.1 nm 1nm 10 nm ‘IOOrm 1m 10um IOOL,m Imm 1cm 10cm

Absorpcja
g

Dhugos¢ fali

Rysunek 2.1. Absorpcja promieniowania elektromagnetycznego przez atmosfere.

(https://commons.wikimedia.org/wiki/File:Atmospheric_electromagnetic_transmittance_or_opacity.jpg, dostep: 1.09.2025 r.).

W efekcie, mozemy dokona¢ podziatu obserwacji astronomicznych na kilka rodzajow,
w zalezno$ci od takich czynnikow jak zakres obserwowanego promieniowania (optyczny,
podczerwony, radiowy, etc.) czy miejsce przeprowadzenia obserwacji. To drugie pojecie nalezy
rozumie¢ jako ,,obszar w przestrzeni”, z ktorego prowadzimy obserwacje. Moga to by¢
obserwacje naziemne, kosmiczne (orbitalne), a takze wykonywane za pomoca specjalnie

przygotowanych balonéw 1 rakiet, dziatajacych krétkoterminowo na granicy atmosfery.

Zasadniczo, wigkszos¢ obserwacji, poza falami radiowymi, najlepiej byloby
przeprowadza¢ za pomoca teleskopow kosmicznych. Jednakze, koszty zwigzane z budowa
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takiego sprzetu 1 umieszczeniem go na orbicie sg bardzo wysokie; sam proces jest przy tym
czasochlonny, a mozliwosci naprawy czy korekty takiego sprzg¢tu sa niezwykle ograniczone.
W zwiazku z tym, olbrzymig role w obserwacjach wcigz odgrywaja obserwatoria naziemne.
Najwigcej uwagi 1 zainteresowania przyciggaja najwigksze z nich, migdzy innymi Europejskie
Obserwatorium Potudniowe, obserwatorium Roque de los Muchachos czy obserwatoria na

Mauna Kea.

Budowa 1 utrzymanie takich jednostek, cho¢ mniej kosztowne niz w przypadku
teleskopéw pozaziemskich, wymaga pewnych nakladow finansowych i pracy ludzkiej. Ich
liczba jest przez to ograniczona, a harmonogram obserwacji zaplanowany jest z wyprzedzeniem
na dhugi czas. Dodatkowo, duze teleskopy maja dosy¢ ograniczone pole widzenia, przez co sg
w stanie obserwowac jedynie niewielkie fragmenty nieba. Rozwigzaniem tego problemu jest
wykorzystanie duzej liczby mniejszych, zdalnie sterowanych teleskopow, ktére moga by¢
rozstawione w dogodnych punktach na powierzchni Ziemi, skad sa w stanie monitorowaé
(tacznie) znacznie wicksze potacie nieba. Podej$cie to zaproponowane zostato juz lata temu
1 przybrato forme oficjalnych sieci zrzeszajacych, gtownie niewielkie, teleskopy optyczne, takie
jak Globalna Sie¢ Obserwatoriow Ha (ang. Global Ha Network) [30] czy GONG (ang. Global
Oscillation Network Group) [31] w przypadku obserwacji Stonca. Oprocz takich oficjalnych
sieci badawczych, wiele projektow naukowych skupia grupy pomniejszych obserwatoriow,
ktére okresowo, w miar¢ swoich mozliwo$ci, wlaczaja si¢ w szerzej zakrojone obserwacje.
Wiele z takich projektéw stanowi istotne wsparcie dla szerzej zakrojonych badan, czego
przyktadem moze by¢ projekt ExoClock, w ktorym autor miat przyjemnos¢ bra¢ udziat [32].
Projekt ten zrzesza dziesigtki obserwatorow, naukowcoéOw i1 amatoréw, w celu obserwacji
spodziewanych tranzytow egzoplanet, czyli momentow, gdy okrazajac swoje gwiazdy, planety
te przystaniaja w niewielkim procencie §wiatto docierajace do obserwatora na Ziemi.
Potwierdzone tranzyty zapisywane s3 w formie efemeryd zawierajacych informacje
o doktadnych, przewidywanych momentach kolejnych tranzytow. Tablice te nastepnie zostang
wykorzystane w misji ARIEL (ang. Atmospheric Remote-sensing Infrared Exoplanet Large-
survey), ktorej gtownym celem bedzie badanie atmosfer zaobserwowanych planet
pozastonecznych. Rola niewielkich teleskopow w tym i podobnych projektach jest zatem

znaczaca 1 bedzie decydowac o sukcesie przysztych, kosztownych misji kosmicznych.

Mozna wobec tego $miato stwierdzi¢, ze wspodlczesna astronomia w dalszym ciggu
opiera si¢ na obserwacjach przeprowadzanych z powierzchni Ziemi. Jednocze$nie liczne

projekty, takie jak wspomniany ExoClock, udowadniajg, ze nawet relatywnie niewielkie
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teleskopy sa w stanie wnie$¢ znaczny wktad w wiele misji 1 badan. Mozliwo$¢ organizowania
ich w geste sieci, ktore sa w stanie prowadzi¢ synchroniczne i ciggle obserwacje nieba czyni je
w wielu przypadkach niezastgpionym elementem wspotczesnej infrastruktury badawcze;j.
Z tego powodu niezwykle istotne jest podjecie dziatan majacych na celu jak najwigksza
poprawe pozyskiwanych przez nie danych tak, by catkowicie wykorzysta¢ oferowane przez nie

mozliwo$ci.

2.2. Czynniki wpltywajace na jakos¢ danych obserwacyjnych

Obserwacje prowadzone z Ziemi borykaja si¢ z licznymi problemami wplywajacymi na
jako$¢ pozyskiwanych danych. Najbardziej oczywistym z nich jest pogoda — przy duzym
zachmurzeniu, czesto potaczonym z opadami, obserwacje optyczne w zasadzie nie majg sensu.
Dodatkowo, istotne jest zagadnienie doboru odpowiedniego miejsca obserwacji. Chcac
obserwowa¢ Slofice, powinniSmy umies$ci¢ aparatur¢ w lokalizacji zapewniajacej jak
najwyzszg liczbe pogodnych dni w roku. Nalezy przy tym spetni¢ rowniez inne wymagania
zwigzane z poprawng pracg wykorzystywanych instrumentow, w tym zadbac¢ o ich odpowiednie
chlodzenie, by zminimalizowa¢ mozliwe szumy pomiarowe. W kolejnych czgéciach tego
podrozdziatu opisane s3 gldwne utrudnienia zwigzane 2z pomiarami optycznymi
wykonywanymi przez niewielkie teleskopy, czyli szum atmosferyczny oraz fotonowy
(zwigzany miedzy innymi z zanieczyszczeniem nieba S$wiatlem). Przyblizono takze

podstawowe btedy wystepujace w pracy kamer rejestrujacych obraz.

2.2.1. Szum atmosferyczny

Atmosfera ziemska nie jest powloka jednorodng, lecz sktada si¢ z nastepujacych
warstw: troposfery, stratosfery, mezosfery, termosfery i egzosfery. Kazda z nich cechuje si¢
innymi wilasciwosciami, takimi jak ci$nienie, temperatura czy grubos$¢. Nie sg one przy tym
statyczne, lecz cechuja si¢ duza dynamika — ciagle wystgpuja w nich ruchy mas powietrza.
W rezultacie sygnat przez nie przechodzacy podlega licznym znieksztatlceniom wynikajacym
z refrakcji §wiatta, jak zaprezentowano na rysunku 2.2. Znieksztatcenia te powodujg pozorne
przesunigcia obiektow na rejestrowanych obrazach oraz losowe pojasnienia i przyciemnienia

pojedynczych pikseli, jak i calych ich grup.
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Fale pochodzace
z odleglego zrédla $wiatta

Atmosfera

Fale znieksztalcone

przez turbulencje w atmosferze

Rysunek 2.2. Wptyw atmosfery na odbierany sygnat.

Co istotne, znieksztatcenia te bardzo szybko zmieniajg si¢ w czasie (dziesiatki lub nawet
setki razy w ciggu sekundy, w zalezno$ci od warunkéw atmosferycznych). Na rysunku 2.3
przedstawiono dwa zdj¢cia tego samego fragmentu nieba w odstegpie 2 sekund. Czerwonymi
ramkami zaznaczono 3 gwiazdy znajdujace si¢ w tym obszarze — jedng $wiecgca jasniej 1 dwie
ciemniejsze. Jak mozna zauwazy¢, gwiazdy nieco zmienity swoje polozenie, a takze zmienita
si¢ jasno$¢ poszczegoOlnych pikseli, co jest duzym problemem, gdy chcemy precyzyjnie

zmierzy¢ jasnos$¢ 1 pozycje obserwowanych obiektow.

Problem zarejestrowanego szumu atmosferycznego mozna zniwelowaé na kilka
sposobow. Najprostszym z nich jest wydtuzenie czasu obserwacji danego wycinka nieba, co
najlepiej zrobi¢ poprzez wykonanie serii wielu zdje¢, z ktorych wylicza si¢ nastgpnie obraz
usredniony o wyzszym stosunku sygnatu do szumu (doktadnie opisane jest to w: 2.3.6. Technika
fqczenia klatek (stacking)). Metoda ta jest jednak zawodna w sytuacjach, gdy chcemy
zaobserwowac obiekt zmieniajacy si¢ bardzo dynamicznie, na przyktad bliskg asteroide, obiekt
satelitarny lub pulsar, ktérego jasno$¢ fluktuuje dziesigtki razy na sekunde. Bardziej
wymagajaca, a zarazem lepsza, opcja jest montaz teleskopu na duzej wysokosci w gorach.
Atmosfera jest tam zdecydowanie rzadsza, a takze bardziej stabilna, co ogranicza wplyw
turbulencji na zbierane dane. Sposobem na zmniejszenie wzglednych, dynamicznych zmian
jasnosci jest réwniez zwigkszenie rozmiaru lustra teleskopu, poniewaz woéwczas nastepuje
efektywniejsze usrednianie wigzki §wiatla niz w przypadku niewielkich powierzchni matych

teleskopow optycznych.
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Osobng grupe rozwigzan stanowig rozwigzania sprzetowe, sposrod ktorych najbardziej
zaawansowana jest optyka adaptacyjna [33][34][35]. Technologia ta pozwala w czasie
rzeczywistym korygowaé wptyw atmosfery, dzigki czemu pozyskiwane obrazy niewiele
ustepuja tym uzyskiwanym przez podobnej klasy teleskopy kosmiczne. Jej dziatanie skupia si¢
na obserwacji gwiazdy odniesienia (naturalnej lub tworzonej sztucznie przy pomocy
specjalnego lasera) i pomiarach jej deformacji przez atmosfer¢ przy uzyciu oddzielnych
sensorow (czujnik czota falowego). Wyniki tych pomiaréw sa w czasie rzeczywistym
wykorzystywane do odksztatcenia tak zwanego lustra deformowalnego, ktore koryguje sygnat
odbierany przez teleskop. Technologia ta jest jednak zbyt droga i zbyt ztozona, by znalez¢

zastosowanie w przypadku niewielkich teleskopow.

Rysunek 2.3. Znieksztalcenie danych obrazowych przez szum atmosferyczny na przyktadzie dwoch zdje¢

wykonanych w odstepie 2 sekund.

2.2.2. Zanieczyszczenie Swiattem

Duzym problemem przy obserwacjach astronomicznych jest takze zanieczyszczenie
swiatlem. Jako skutek elektryfikacji, pojawito si¢ mnostwo zrddet sztucznego $wiatta, takich
jak lampy uliczne, reklamy $wietlne, czy o$wietlenie budynkow. Ich niewlasciwe i nadmiarowe
uzycie sprawia, ze w licznych obszarach wystgpuje znaczace rozjasnienie tla nocnego nieba.

Pojasnienie to okresla si¢ przy pomocy luminancji, ktdra jest miarg warto$ci strumienia Swiatta
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emitowanego przez okreslong powierzchni¢ w zadanym kacie brylowym. W uktadzie SI
jednostka luminancji jest kandela na metr kwadratowy (cd/m?). Im wyzsza jej warto$¢, tym
jasniejsze niebo, a co za tym idzie — wigkszy udzial szumu tta, ktory skutecznie utrudnia

detekcje ciemnych obiektow w obrazach astronomicznych.

W raporcie ,,Zanieczyszczenie $wiattem w Polsce. Raport 2023 [36] przedstawiono
wyniki pomiardw jasno$ci nocnego nieba nad Polska na przestrzeni 2022 roku. Wynika z niego,
Ze na obszarze calego kraju nastgpuje zjawisko zanieczyszczenia $wiatlem. Na rysunku 2.4
przedstawiono mape zanieczyszczenia §wiattem zamieszczong w oryginalnym raporcie. Jak
mozna zauwazyC, najjasniejsze niebo wystepuje nad gminami wchodzacymi w skiad
aglomeracji warszawskiej i konurbacji gérno$laskiej, natomiast najciemniejsze sg obszary przy

wschodniej granicy kraju, w szczegdlnosci w Bieszczadach.

Klasy jasnodci nocnego nieba nad Polska
Klasy wyréznione na podstawie antropogenicznego pojasnienia nieba naturalnego (wzrostu luminancji)

Il <7 pcdm? Niebo naturalne, wolne od zanieczyszczenia $wiattem (brak w Polsce)
I -17pcdm? Niebo zanieczyszczone $wiattem przy horyzoncie

I >14pcdm? Niebo zanieczyszczone $wiattem az po zenit

[ >87pcdm? Naturalny widok nocnego nieba utracony

Bl >688 pcdm? Droga Mleczna niedostrzegalna

[ >3000 ped:m2 Brak adaptacji oka do widzenia nocnego

Rysunek 2.4. Zanieczyszczenie $wiatlem polskiego nieba [36].
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Aby zminimalizowa¢ wplyw zanieczyszczenia §wiatlem, obserwacje astronomiczne
najlepiej prowadzi¢ z miejsc odludnych i stabo zaludnionych, gdzie panuja odpowiednio
ciemne warunki sprzyjajace precyzyjnym pomiarom. Lokacje te sg jednak zazwyczaj trudno
dostgpne, co ogranicza mozliwos¢ bezposredniego prowadzenia obserwacji. Rozwigzaniem
moze by¢ montaz niewielkich teleskopow, ktére mogg by¢ sterowane zdalnie z dogodnego
miejsca. Wymaga to jednak zapewnienia niezaleznego Zrddla zasilania, najczegsciej w postaci
akumulatorow, oraz szczegdlnego zwrocenia uwagi na efektywnos$¢ energetyczng stosowanego

sprzetu, aby maksymalnie wydtuzy¢ czas jego pracy w terenie.

2.2.3. Szum zwigzany z dzialaniem aparatury obserwacyjnej

W kamerach astronomicznych wystepuja zaréwno matryce CCD (ang. Charge-Coupled
Device), jak i coraz cze$ciej zastepujace je matryce CMOS (ang. Complementary Metal-Oxide-
Semiconductor). Matryce te sktadaja si¢ z pikseli, z ktérych kazdy dziala osobno wzgledem
pozostatych. Pod wptywem efektu fotoelektrycznego, fotony padajace na piksele powoduja
generowanie w nich tadunku elektrycznego proporcjonalnego do liczby fotonéw. Ladunek ten
przekazywany jest do struktury kondensatora, dzigki czemu wytworzone napigcie moze by¢
w efekcie wzmocnione i1 skonwertowane na wartos¢ cyfrowa przez przetwornik analogowo-
cyfrowy. Proces ten wigze si¢ z powstawaniem rdznego rodzaju szumoéw, ktore wptywaja na

jakos¢ zapisywanych obrazow koncowych.

Podstawowym rodzajem takiego szumu jest szum odczytu zwigzany z dziataniem
elektroniki odczytowe] — tranzystorow, wzmacniaczy i przetwornikéw. Jego wartosci sa
zazwyczaj okreslone dla danego sprzetu 1 nie zalezg od poziomu odbieranego sygnatu [37].
W nowoczesnych matrycach CMOS jest on zazwyczaj niski, jednak w warunkach bardzo
stabego oswietlenia moze si¢ zdarzy¢, ze warto$¢ szumu odczytu bedzie wigksza od samego
sygnatu, ktory zostanie w efekcie zastoniety. Zazwyczaj skutkuje to pojawieniem si¢ losowego

ziarna i1 drobnych plamek.

Innym rodzajem szumu jest szum termiczny, zwany takze pradem ciemnym. Szum ten
nie zalezy od ilosci padajacego $wiatla, lecz od czasu naswietlania matrycy. Wysoka
temperatura matrycy powoduje drgania struktury krystalicznej pétprzewodnikoéw, ktore moga
dostarczy¢ energii potrzebnej do samoistnego powstania elektronow w pikselach [38].
W zwigzku z tym, nawet nieo§wietlone piksele moga generowac falszywy sygnat. Otrzymane

zdjecie w swojej strukturze ma piksele o wigkszym (jasniejsze) oraz o mniejszym (ciemniejsze)
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tempie generacji termicznej, tworzgc innego rodzaju efekt ziarna. Szum tego typu potocznie
bywa okreslany jako obecnosc¢ ,,goracych pikseli”, ktorych struktura, pod wpltywem obecnosci

atomow obcych lub defektow struktury krystalicznej, wykazuje silng generacj¢ termiczng.

Trzecia podstawowa skladowa zaktocen matrycy CMOS jest szum fotonowy
(kwantowy) wynikajacy z losowej natury procesu zliczania fotonéw w krzemie. Pojawia si¢ on
nawet w warunkach idealnego, statego oswietlenia, poniewaz absorpcja fotonéw jest procesem
probabilistycznym podlegajagcym rozktadowi Poissona [39]. Chociaz jego warto$¢ wzrasta
wraz z poziomem odbieranego sygnatu, dzieje si¢ to proporcjonalnie wolniej, w efekcie czego
przy wigkszej jasnos$ci stosunek sygnatu do szumu jest wigkszy. Przyktadowo, proces pomiaru
strumienia §wietlnego, generujacy $rednio 100 elektronéw w ekspozycji trwajacej jedna
sekunde, bedzie generowal w kolejnych ekspozycjach tadunek o wartosci oczekiwanej 100

elektronow, jednak z rozrzutem w przyblizeniu rownym pierwiastkowi ze 100.

Oprocz tego, waznym zrodlem zaktdcen jest niejednorodnos$¢ czulosci pikseli
wzgledem padajacego na nie S$wiatlta PRNU (ang. Photo Response Non-Uniformity).
Wynikajace z tego réznice miedzy pikselami sg zwykle mate, rzedu 1-2%, jednakze moga by¢
one zauwazalne przy zdj¢ciach o niskim kontrascie, gdy zgromadzone zostang duze ilo$ci
tadunku [40]. Problem PRNU, jako wady fabrycznej, cz¢sto faczy si¢ tez z dwoma innymi
czynnikami powodujacymi nierdwnomierne oswietlenie matrycy. Pierwszym z nich sg fizyczne
zabrudzenia takiej jak kurz osadzajacy si¢ na matrycy i filtrach kamery. Drugim z nich jest
winietowanie, czyli niedoswietlanie brzegéw kadru, wynikajace z niedoskonatosci optyki.
Obecnos¢ PRNU moze by¢ bardziej widoczna w kamerach CMOS niz CCD, bo w ich pikselach
wbudowane s3 dodatkowe uktady pomiarowe lub wtorniki, co skutkowaé moze wzrostem

niejednorodnosci czutosci obszaru aktywnego optycznie w kazdym z pikseli.

Wymienione powyzej Zrédla szumu mozna w duzym stopniu zredukowac poprzez
odpowiednie chlodzenie matrycy, a takze przez takie operacje jak laczenie klatek oraz
wykorzystanie klatek kalibracyjnych. Wigcej informacji na ten temat znajduje si¢ w rozdziatach

2.3.5. Kalibracja surowych danych 1 2.3.6. Technika tqczenia klatek (stacking).
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2.3. Kluczowe pojecia astronomiczne

W  kolejnych rozdziatach niniejszej pracy zostaly wykorzystane terminy
charakterystyczne dla dziedziny astronomii obserwacyjnej. Ze wzgledu na potencjalng trudnos$¢

w ich wlasciwej interpretacji, ponizej przedstawiono i wytlhumaczono kluczowe pojecia.

2.3.1. Czas ekspozycji 1 kadencja

Czasem ekspozycji nazywamy dlugos¢ czasu, przez jaki matryca rejestruje $wiatto
padajace od obserwowanego obiektu. Im dluzszy ten czas, tym wigcej sygnatu jestesSmy
w stanie zgromadzi¢ i tym wigcej stabiej $wiecacych obiektow jesteSmy w stanie odrozni¢ od
tla. Czas ten rdzni si¢ w zaleznosci od przeprowadzanych obserwacji i moze wynie$¢ od
kilkudziesigciu milisekund do wielu godzin. W przypadku obrazéw przetwarzanych w ramach
opisanych badafh czas ekspozycji wynosit od '/30 do !/» sekundy. Czas kadencji opisuje
natomiast czas pomiedzy poczatkiem jednej ekspozycji a poczatkiem nastgpnej. Jest to suma
czasu pojedynczej ekspozycji, czasu odczytu i zapisu danych, a takze czasu przestoju, ktory
moze by¢ z gory narzuconym interwatem albo zmieniajacym si¢ podczas eksperymentu czasem

potrzebnym na korekte ustawienia teleskopu.

W przypadku obserwacji szybko zachodzacych zjawisk, jak wspomniane tranzyty
egzoplanet czy rozblyski stoneczne, nalezy uzyska¢ mozliwie krotka kadencj¢, by dobrze
zarejestrowac dynamike zjawiska. Natomiast w przypadku bardziej szczegélowych obserwacji
glebokiego nieba najistotniejszy jest dlugi czas ekspozycji pozwalajacy dostrzec najstabiej

Swiecace ciala niebieskie.

2.3.2. Rozdzielczo$¢ teleskopu 1 rozdzielczo$¢ matrycy

Omawiajac rozdzielczo$¢ obrazowania w astronomii, nalezy podkresli¢ istotng r6éznice
migdzy rozdzielczo$cia optyczng teleskopu a rozdzielczo$cia matrycy kamery rejestrujacej
obraz. Oba te parametry wplywaja na jakos¢ koncowego obrazu, jednak ich znaczenie i sposob

wyznaczania sg zupelnie rdzne.

Rozdzielczo$¢ optyczna teleskopu (oznaczana jako 6) to zdolno$¢ instrumentu do
rozrdznienia dwoch blisko potozonych siebie obiektow jako oddzielne punkty. Rozdzielczos¢

ta zalezy od dlugosci fali §wiatla A 1 $rednicy apertury (lustra lub soczewki) D, tak jak
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przedstawiono w rownaniu 2.1 (warto$¢ € we wzorze czesto okresla si¢ granicg Rayleigha).
Wynik réwnania podany jest w radianach, wiec by przeliczy¢ go na sekundy katowe, nalezy go
pomnozy¢ przez 206 265. Przyjmujac A = 550 nm ($wiatto zielone) i aperture o $rednicy 200
mm, wielko$¢ ta wyniesie w przyblizeniu 0,69”. Warto$¢ 6 maleje proporcjonalnie wraz ze

wzrostem Srednicy apertury.

A
=122— 2.1
=1, D (2.1)

Rozdzielczo$¢ matrycy odpowiada natomiast liczbie w dwoch wymiarach (npx 1 np))
1 wielkosci pikseli pr w detektorze, informujac o tym, jak szczegétowo kamera moze
zarejestrowac obraz. Przy jej pomocy mozna wyznaczy¢ katowa skale piksela Sy, ktora zalezy
takze od dlugosci ogniskowej foon (Wz6r 2.2). Przyktadowo dla kamery o wielkos$ci piksela
2,4 um 1 dhlugosci ogniskowej teleskopu rownej 500 mm, skala piksela wyniesie 0,99”/px.
Istotng kwestig jest taki dobdr instrumentow, by skala katowa piksela byta mniejsza od granicy
Rayleigha. Dzigki temu kamera przeprowadza akwizycje z odpowiednim probkowaniem

obrazu, co pozwala optymalnie wykorzysta¢ mozliwos$ci sprzgtowe.

Spx = 206 265 Px 2.2)
fogn

2.3.3. Pole widzenia

W przypadku astronomii pole widzenia (ang. Field of View, FOV) definiujemy jako
katowy obszar nieba, ktory mozna zobaczy¢ przez teleskop w danym momencie. W przypadku
teleskopow o dlugiej ogniskowej, warto§¢ ta wyrazana jest w minutach lub sekundach
katowych, a dla teleskopow szerokokatnych typowe warto$ci wyraza si¢ zazwyczaj w stopniach
kwadratowych. Pole widzenia najczesciej opisuje si¢ w dwoch wymiarach, przeliczajac liczbe

pikseli w danym rozmiarze przez skale piksela (wzor 2.3).

FOVy = npy * Spx FOV), = npy, * Spx (2.3)
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2.3.4. Filtracja sygnatu

W przypadku obserwacji ciat niebieskich bardzo czgsto stosuje si¢ filtry optyczne, by
selektywnie rejestrowac Swiatta emitowane przez konkretne pierwiastki chemiczne. Podejscie
to umozliwia analiz¢ wilasciwosci jak sklad chemiczny, temperatura czy dynamika gazow
wybranych obiektow. Przyktadowo, w obserwacjach stonecznych czesto wykorzystuje sig¢
waskopasmowy filtr Ha przepuszczajacy $swiatto o dlugosci 656,28 nm w celu doktadnego
obrazowania emisji $wiatla ze zjonizowanego wodoru. Dzigki temu zabiegowi mozliwe sa
obserwacje protuberancji, filamentow 1 granulacji chromosfery Stonca, ktore w §wietle biatym
sa niedostrzegalne. W pewnych zastosowaniach stosuje si¢ takze filtry szerokopasmowe do
oszacowania calkowitej jasnosci obiektow. W zastosowaniach komercyjnych szerokos$ci pasma
sa czesto okre$lane w angstremach A, jednostce dtugoéci réwnej 0,1 nm, nazwanej tak dla

upamigtnienia szwedzkiego astronoma, Andersa Jonasa Angstroma.

2.3.5. Kalibracja surowych danych

W  przypadku obrazowania astronomicznego pojedyncze, surowe zdjecie
zarejestrowane przez kamer¢ nazywa si¢ klatka. Jak wyjasniono w podrozdziale 2.2.3. Szum
zwiqzany z dzialaniem aparatury obserwacyjnej, kazda z nich oprocz zarejestrowanego sygnatu
zawiera roznej natury niejednorodnosci i odchylki. Ich wptyw na obrazy wynikowe

redukowany jest z uzyciem specjalnie przygotowanych klatek kalibracyjnych.

W przypadku problemu niejednorodnej czulosci pikseli na $wiatto stosuje si¢ klatki
ptaskie (ang. flat field frames). Uzyskuje si¢ je poprzez wykonanie zdjecia przy jednolitym
oswietleniu, najczesciej wykorzystujac do tego tzw. flatownice, czyli urzadzenia zakrywajace
teleskop 1 réwnomiernie naswietlajace cala powierzchni¢ lustra [40]. Kazda z klatek
obserwacyjnych zostaje przemnozona przez odpowiednig warto$¢ obliczang na podstawie
takiej klatki plaskiej, dzigki czemu mozliwe staje si¢ pordwnanie jasno$ci obiektéw
rozmieszczonych w roznych obszarach zdjecia koncowego. Innymi stowy, niejednorodna
transmisja $wiatta do ptaszczyzny obrazu zostaje odpowiednio skompensowana przez efekt

mnozenia.

Do kalibracji obrazoéw astronomicznych z matryc CCD/CMOS uzywa si¢ takze klatek
ciemnych (ang. dark frames). Sa to klatki uzyskiwane poprzez rejestracje obrazu bez udziatu

Swiatta, zazwyczaj poprzez zakrycie teleskopu lub nieodstonigecie migawki w kamerze. Obrazy

str. 26



Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazow astronomicznych

kalibracyjne tego typu powinny by¢ wykonane z takim samym czasem ekspozycji oraz taka
samg, stabilng temperatura matrycy jak w przypadku planowanych obserwacji. Klatki te
nastgpnie odejmuje si¢ od wszystkich klatek obserwacyjnych, by zredukowaé wplyw szumu
pradu ciemnego. Z racji tego, ze szum ten cechuje si¢ rozktadem Poissona, zaleca si¢
wykonanie wielu klatek ciemnych i ich usrednienie (metoda opisana w kolejnym podrozdziale:
2.3.6. Technika tgczenia klatek (stacking)), by uzyskaé $rednig klatk¢ ciemng. W przypadku
r6éznic czaséw ekspozycji zdjecia Swietlnego i klatki ciemnej, wystarczajacym okazuje si¢
odpowiednie wymnozenie klatki ciemnej, gdyz przyrost pradu ciemnego w pikselach wraz

z czasem ma charakter liniowy.

2.3.6. Technika taczenia klatek (stacking)

Kazda pojedyncza klatka K; zawiera w sobie pochodzacy z obiektu sygnat S oraz losowy
szum N; (wzor 2.4). Zakladajac, ze ten szum ma warto§¢ oczekiwang rdwng zero i pewien
rozrzut o, mozemy dokonac jego skutecznej redukcji poprzez stacking, czyli usrednienie wielu
osobnych klatek. W wigkszosci wypadkow stacking jest rownoznaczny jedynie z usrednieniem
zebranych danych, jednak w niektdrych sytuacjach nazywany jest tak caty proces wyrownania
danych, ich kalibracji, wyboru klatek o najlepszej jakosSci (stacking selektywny) 1 ich

usrednienia, a takze dalszej obrobki.

Taki obraz usredniony opisa¢ mozna jako sumg¢ sygnatu 1 $rednig wartos¢ szumu
pojawiajacego si¢ w trakcie obserwacji (rownanie 2.5). W efekcie wariancja szumu w klatce
usrednionej spada wraz ze wzrostem liczby u$rednianych klatek n (wzér 2.6). Oznacza to, ze

stosunek wartosci sygnatu do szumu roénie proporcjonalnie do vn.

= 1 n 1 n
Kn=-2_ S+ N)=S+-3 N (2.5)

n

2

Var(K,) = "7 (2.6)
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Nie oznacza to jednak, ze mozna w ten sposob catkowicie wyeliminowa¢ szum
atmosferyczny; na skutek usredniania jego wpltyw jest redukowany jednak w przypadku
atmosfery dochodzg réwniez dlugozmienne fluktuacje, ktérych nie sposob usrednié.
Dodatkowo, metoda ta sprawdza si¢ najlepiej w redukcji losowych zmian jasno$ci
w poszczegdlnych pikselach, jednak wigze si¢ to z rozmyciem obrazu w klatce usrednione;;
rozmycie to jest z reguty tym wigksze, im mniej klatek zostato uzytych do usrednienia. Jest to
zwigzane ze zmiennym w czasie znieksztatceniem sygnatu, ktére objawia si¢ powstaniem

pozornych przesuni¢¢ obiektow na rejestrowanych zdjeciach.

2.3.7. Astrometria 1 fotometria

Obserwujac niebo, astronomowie najczesciej zadajg dwa pytania: ,,gdzie znajduje si¢
poszukiwany przez nich obiekt i jak zmienia si¢ jego potozenie” oraz ,,jak jasno $wieci i jak
zmienia si¢ jego jasnos$¢”. Odpowiedziami na te pytania zajmuja si¢ odpowiednio astrometria

1 fotometria.

Astrometria zajmuje si¢ okreslaniem doktadnej pozycji cial na niebie, jej zmian
wzgledem pozycji innych obiektow, a takze stuzy obliczaniu ich orbit czy odlegtosci od Ziemi.
Jest to jedna z najstarszych dziedzin astronomii: juz w starozytno$ci ludzie $ledzili ruchy
gwiazd, by tworzy¢ efemerydy wykorzystywane do odliczania dni roku, a takze nawigacji,
zwlaszcza w zegludze morskiej. Wspolczesnie astrometria korzysta z bardzo precyzyjnych
instrumentow, ktore mierza polozenia gwiazd z doktadnoscia do mikrosekund katowych, co

umozliwia migdzy innymi tworzenie trojwymiarowych map naszej Galaktyki.

Fotometria jest natomiast dziedzing zajmujacg si¢ pomiarami jasnosci ciat niebieskich
w roznych zakresach promieniowania elektromagnetycznego z wykorzystaniem filtrow
szeroko 1 waskopasmowych. Pozwala ona bada¢ wtasciwosci obserwowanych obiektow, takie
jak temperatura, sktad chemiczny, a takze wykrywac zachodzace w czasie zmiany, na przyktad
za¢mienia. Jednostkg uzywang w fotometrii do oznaczenia blasku obiektu jest magnitudo
(oznaczane jako mag). Okresla ona stosunek natezenia §wiatta rozwazanego obiektu /. do
natezenia $wiatta wybranego punktu odniesienia . (wzor 2.7), za ktdry zwyczajowo
przyjmuje si¢ gwiazde Vega. Zmiana jasno$ci o 1 magnitudo odpowiada zmianie nat¢zenia
Swiatla o czynnik réwny w przyblizeniu 2,512, a rdznica 5 mag odpowiada stukrotnej zmianie
jasno$ci. Im mniejsza warto$¢ magnitudo, tym jasniejszy jest obiekt; przykladowo, wartos¢

magnitudo dla Stonca wynosi w przyblizeniu -27.
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mag = —2,5logy, (Ii—’e‘f) (2.7)

2.4. Wybrane obserwatoria naziemne

Obserwatoria naziemne mozna umownie podzieli¢ na dwie klasy — zaawansowane
obserwatoria wykorzystujace duze teleskopy oraz jednostki wyposazone w instrumenty
o niewielkich aperturach. W tym podrozdziale opisano teleskopy stoneczne stanowigce cze$¢
dwoch obserwatoriéw nalezacych do tych oddzielnych klas. Pierwszym z nich jest Szwedzki
Teleskop Stoneczny (STS), jeden z najlepszych naziemnych instrumentéw tego typu, a drugim
jest niewielki teleskop zarzadzany przez dzialajaca na Politechnice Slaskiej grupe naukowa
SUTO (ang. Silesian University of Technology Observatories). Zaprezentowane poroéwnanie
ma na celu uwypuklenie roéznic pomigdzy obserwatoriami rejestrujacymi dane
wysokorozdzielcze 1 dane niskorozdzielcze, ktore stanowia podstawe niniejszej pracy.
Dodatkowo zaprezentowano teleskop obrazujagcy nocne niebo na potrzeby badan
prowadzonych przez SUTO. Jest to drugi, i zarazem ostatni, teleskop, przy pomocy ktorego

zebrano dane wykorzystane w opisanych w niniejszej pracy badaniach.

2.4.1. Obserwatorium Roque de los Muchachos

Obserwatorium Roque de los Muchachos potozone na wysokosci okoto 2400 m n.p.m.
znajduje si¢ na polnocnym skraju Caldera de Taburiente, na wyspie La Palma na Wyspach
Kanaryjskich. Miejsce to charakteryzuje si¢ ciemnym niebem, matym zanieczyszczeniem
Swiattem, a takze nieco rzadszg i stabilniejsza atmosfera. Powszechnie uwazane za jedno
z najlepszych punktéw obserwacyjnych na $wiecie; na potkuli péinocnej ustgpuje jedynie

obserwatoriom na Mauna Kea na Hawajach.
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Rysunek 2.5. Szwedzki Teleskop Stoneczny.
(https://commons.wikimedia.org/wiki/File:Swedish_Solar Telescope.jpg, dostep: 1.09.2025 r.)

Na rysunku 2.5 przedstawiono Szwedzki Teleskop Stoneczny [41], jeden
z najnowoczesniejszych naziemnych teleskopéw stonecznych. Instrument ten posiada
zwierciadlo o $rednicy okoto 1 metra i jest wyposazony w specjalny korektor pozwalajacy
zniwelowac aberracje chromatyczng. Z racji duzego rozmiaru tuby optycznej utrzymywana jest
Ww niej proznia, by przy dlugich obserwacjach Stonca nie dochodzito do nagrzania powietrza
w $rodku, a w efekcie pogorszenia jakos$ci rejestrowanych danych pod wptywem wewngtrznych
turbulencji. Do obrazowania wykorzystywany jest system optyki adaptacyjnej operujacej
deformowalnym lustrem, ktére moze si¢ odksztalca¢ do 1000 razy na sekunde, a obrazy
koncowe sg przetwarzane przez specjalne algorytmy zwigkszajace ich szczegdtowosc.
Dodatkowo, rozdzielczos¢ optyczna teleskopu wynosi w niebieskim §wietle wartos¢ 0,17, co
w przypadku Slofica pozwala na rozrdznienie obiektow znajdujacych si¢ okoto 70 km od siebie.
Wymienione parametry tego teleskopu bezsprzecznie stawiajg go w grupie najlepszych obecnie

dostgpnych tego typu instrumentow.
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2.4.2. Obserwatoria Politechniki Slaskiej

W zupelnie innej sytuacji znajdujg si¢ instrumenty zarzadzane przez grupe SUTO, ktore
stanowig bardzo dobry przyktad matych, a zarazem wzglednie dostepnych finansowo sprzetow.
Po prawej stronie rysunku 2.6 przedstawiony jest teleskop stoneczny operujacy z Kotulina, wsi
potozonej w powiecie gliwickim. Lokalizacja ta wigze si¢ ze zdecydowanie gestsza atmosfera
niz w przypadku najlepszych lokalizacji dla tego typu obserwatoriow, a takze wzglednie
wysokim stezeniem pytow w powietrzu, ktore dodatkowo poglebiaja problem odksztalcen
sygnatu. Rozdzielczo$¢ optyczna teleskop w obserwowanej linii Ho wynosi natomiast 3,277,
co jest warto$cig prawie 33 razy wickszg od tej w STS. Sprawia to, ze wykorzystywany teleskop
jest w stanie odrézni¢ obiekty znajdujace si¢ w odleglosci okoto 2 370 km wzgledem siebie
w chromosferze stonecznej, co stanowi znaczacg réznicg pod wzgledem jakosci obserwaci.
Nalezy do tego jeszcze doda¢ brak zaawansowanych rozwigzan sprzgtowych, by moc

stwierdzi¢, ze obserwatoria te rejestrujg zdecydowanie inny typ danych.

Po lewej stronie rysunku 2.6 znajduje si¢ natomiast zdjecie teleskopu obrazujacego
nocne niebo. Teleskop ten jest umieszczony w hiszpanskiej miejscowosci o nazwie Otivar,
w specjalnie dopasowanej, automatycznie otwieranej kopule. Stanowi on idealny przyktad
matego teleskopu, ktéry umieszczony w miejscu cechujacym si¢ bardzo dobrymi warunkami
obserwacyjnymi, moze by¢ sterowany zdalnie. Srednica jego apertury wynosi 30 cm, co
pozwala na zbieranie ilosci $wiatta potrzebnego nawet do wykrycia odlegtych obiektow.
Posiada przy tym dosy¢ szerokie pole widzenia, dzigki czemu moze spetnia¢ swoja role
w monitorowaniu duzych obszarow nieba. Nie jest oczywiscie w stanie konkurowac
z wigkszymi teleskopami w obserwacjach odlegtych galaktyk, ale swa wysoka przydatnos$¢
wykazuje w takich misjach, jak omawiany wczesniej ExoClock. Tak jak w przypadku innych
teleskopow naziemnych, jego najwieksza stabosciag sa krotkie ekspozycje, podczas ktérych
liczba zliczen fotonow pochodzacych od obiektow jest poréwnywalna lub mniejsza niz

towarzyszacy szum pomiarowy.

Reasumujac, w przypadku opisanych malych teleskopéw mozliwosci poprawa
wynikbw moze by¢ dokonana gltownie poprzez zastosowanie nowych rozwigzan
algorytmicznych, podczas gdy mozliwos$ci sprzgtowe sg ograniczone. W tej sytuacji naturalnym
podejsciem wydaje si¢ by¢ wdrozenie metod uczenia maszynowego w postaci sieci

neuronowych, ktora moze dodatkowo poprawi¢ jakos¢ pozyskiwanych przez nie danych.
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Rozdziat 2. Obserwacje astronomiczne w praktyce

Rysunek 2.6. Teleskopy wykorzystane do akwizycji danych wykorzystanych w niniejszej pracy.
(https://www.suto.aei.polsl.pl, dostep: 1.09.2025 r.)
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3. Sieci neuronowe w przetwarzaniu obrazow

Od przeszto 10 lat sieci neuronowe osiggaja coraz lepsze wyniki w przetwarzaniu
obrazéw, a ich wydajno$¢ w odwzorowywaniu zlozonych zaleznosci przestrzennych oraz
wyodrebnianiu istotnych cech obrazu sprawia, ze stosowane s3 w coraz wigkszej liczbie zadan.
Wyniki uzyskiwane przy ich uzyciu niejednokrotnie sg znaczaco lepsze niz te otrzymywane
z uzyciem opracowanych algorytmow deterministycznych i sprawdzonych heurystyk. Modele
poszczegolnych sieci operuja ogromna liczbg przeksztatcen i parametrow, co moze powodowac
trudnosci w interpretacji ich dziatania — czgsto porownywane sg do ,,czarnych skrzynek”, ktore
w niewytlumaczalny sposob zwracaja pozadane rezultaty. Z perspektywy ich praktycznego
zastosowania potrzeba odpowiedniego zrozumienia zachodzacych w nich mechanizmow, by
moc je prawidtowo projektowac, uruchamia¢, a takze tratnie diagnozowac wystepujace w nich
niedoskonato$ci 1 by¢ w stanie je modyfikowaé. Bez tych umiejetnosci tatwo o wyciagnigcie

btednych wnioskéw, a takze otrzymanie nieefektywnych rozwigzan.

Z tego powodu, ten rozdziat pracy ma na celu przyblizy¢ najwazniejsze informacje
dotyczace dziatania sieci neuronowych, ktére stanowig podstawe niniejszej pracy doktorskie;j.
Rozdzial zostal podzielony na sze$¢ oddzielnych czgséci. Pierwsza z nich ma na celu wyjasnic¢
relacj¢ pomiedzy sztuczng inteligencja, uczeniem maszynowym a sieciami neuronowymi — co
kryja w sobie te pojecia i kiedy mozna ich uzywac¢ zamiennie. Druga cz¢$¢ przybliza ewolucje
sieci neuronowych: od pierwszych, prostych modeli perceptronéw do wspodiczesnych sieci
glebokich. Wyjasnia tez podstawowy mechanizm stojacy za ich trenowaniem, czyli propagacje
wsteczng wraz z optymalizacja funkcji straty. Czg$¢ trzecia w skrocie opisuje Srodowisko
programistyczne, w ktorym zostal napisany kod wykorzystany w pracy. Czwarta czg¢sé
koncentruje si¢ na poszczegolnych warstwach sieci — przedstawiono sposob ich dziatania oraz
wpltyw parametrow wewnetrznych na funkcjonowanie cato$ci modelu. Kazda z warstw
odpowiada wykorzystaniu pojedynczej funkcji, dlatego do realizacji bardziej skompilowanych
zadan laczy si¢ je w ztozone struktury, okreslane architekturami sieci. W piatej czesci rozdziatu
opisano dwie wybrane do badan architektury wraz z uzasadnieniem ich uzycia. Ostatnia czg$¢
rozdzialu skupia si¢ na ustawieniach zewnetrznych sieci, ktore nie s3 bezposrednio
modyfikowane w trakcie procesu uczenia, lecz majg istotny wptyw na jego przebieg i rezultaty,

czesto stanowige decydujacy czynnik Swiadczacy o skutecznosci wybranego podejscia.
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Rozdziat 3. Sieci neuronowe w przetwarzaniu obrazow

3.1. Uczenie maszynowe a sieci neuronowe

Sztuczng inteligencja nazywamy interdyscyplinarny dzial nauki zajmujgcy si¢
opracowywaniem systemow zdolnych do wykonywania zadan wymagajacych ludzkiej
inteligencji. Zadania te obejmuja szerokie spektrum zagadnien, od przetwarzania jezyka
naturalnego przez rozwigzywanie probleméw az po zdolno$¢ uczenia si¢ na bazie
do$wiadczenia i adaptacji do mozliwych zmian warunkow. Kluczowym punktem w rozwoju tej
dziedziny byta konferencja w Dartmouth [2], na ktorej po raz pierwszy probowano okresli¢ jej

ramy i miejsce w naukach technicznych.

Czasy po tej konferencji zdominowane byty przez podejscie, ktore dzi§ czgsto okresla
si¢ mianem ,starej, dobrej sztucznej inteligencji” (ang. Good Old-Fashioned Artificial
Intelligence). Opieralo si¢ ono na przeswiadczeniu, ze inteligencja moze by¢ przedstawiona
przy uzyciu regut logicznych i prostych algorytmow. W efekcie, tworzono rozbudowane
systemy oparte na ztozonych instrukcjach warunkowych i wiedzy eksperckiej, ktore znane sa
dzi§ gléwnie pod nazwa systemow eksperckich. Cho¢ w pewnych sytuacjach systemy te
charakteryzowaty si¢ osigganymi rezultatami lepszymi od tworzacych je ludzi, byly one
wyspecjalizowane wylacznie w swoich dziedzinach i nie radzily sobie z generalizacja

problemow [42], co wykluczalo ich szersze zastosowanie.

W odpowiedzi na te ograniczenia rownolegle trwaly badania na systemami, ktore nie
musza bazowac¢ na opracowanych regulach, lecz s3 w stanie same dopasowac si¢ do danych
bez narzuconych instrukcji; podejscie to nazwano uczeniem maszynowym. Pod wzgledem
teoretycznym bylo ono bardzo zblizone do sposobu, w jaki ucza si¢ ludzie — oparte na
przetwarzanych przyktadach, a nie na ustalonych z géry regutach. Jednakze takie rozwigzania
wymagaja wykorzystania duzych zbioréw danych 1 dostepu do odpowiedniego do ich
przetworzenia zasobow sprzetowych. Ograniczenia te sprawity, ze badania nad uczeniem
maszynowym pozostawaly na dluzszy czas w pewnym sensie zmarginalizowane. Nie
przeszkodzilo to jednak w opracowaniu takich algorytmow jak drzewa decyzyjne [43],

maszyny wektorow nosnych [44] czy algorytm k-najblizszych sasiadow [45].

Po pewnym czasie nastgpit przelom w kwestii sztucznych sieci neuronowych, ktore
poczatkowo stanowity jedng z gatezi rozwoju systemow eksperckich. Zostaty one dopasowane
do podejscia uczenia maszynowego, a dzigki opracowaniu algorytmu propagacji wstecznej
[46], zaczeto dostrzegac ich potencjal w wielu zastosowaniach praktycznych. Ich prawdziwy

rozkwit nastapil jednak dopiero w ostatnich latach, gdy rozwigzano wiele kwestii zwigzanych
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Z procesem uczenia. Sieci neuronowe stanowig dzisiaj gtowny dziat uczenia maszynowego, na

ktorym skupiona jest wigkszo$¢ uwagi badawcze;.

Z takiej perspektywy wyraznie wida€, ze sztuczna inteligencja to znacznie szersze
zagadnienie niz samo uczenie maszynowe, cho¢ to wilasnie ono, a w szczegdlnosci sieci
neuronowe, stalo si¢ jego najskuteczniejszym narzgdziem. Na rysunku 3.1 zobrazowano
uproszczong relacje miedzy tymi dziedzinami. Warto zauwazy¢, ze do uczenia maszynowego
wlicza si¢ takze takie algorytmy jak algorytm analizy gléwnych sktadowych [47], chociaz
powstal on na wiele lat przed pojawieniem si¢ idei uczenia maszynowego. Zostat on, jak i wiele

innych algorytmow, przystosowany do podejscia reprezentowanego przez uczenie maszynowe.

Sztuczna inteligencja

Syste .
ybtem)., Uczenie maszynowe
eksperckie
Maszyny
wektorow Analiza
nosnych gtdéwnych

skfadowych

Sieci
neuronowe

Rysunek 3.1. Sieci neuronowe a sztuczna inteligencja.

3.2. Zasada dziatania sieci neuronowych

Umiejetne wykorzystanie mozliwo$ci sieci neuronowych wymaga znajomosci ich
struktury, jak i metod zapewniajacych ich stabilne 1 przewidywalne dziatanie. W tym celu
przyblizono pokrotce histori¢ ich rozwoju od pojawienia si¢ w potowie zeszlego wieku
w formie pojedynczego neuronu do rozwoju w znacznie bardziej ztozone struktury. Jednakze

sama ich zlozonos$¢ nie jest warunkiem wystarczajacym do ich optymalnej pracy. Najbardziej
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Rozdzial 3. Sieci neuronowe w przetwarzaniu obrazow

istotnym zagadnieniem jest istnienie mechanizmu umozliwiajgcego im swego rodzaju
autokorekte, ktora wykorzystana w iteracyjnym procesie treningu minimalizuje btedy modelu.
Realizowany on jest poprzez algorytm propagacji wstecznej, ktory od lat 80. stanowi fundament

wspotczesnych sieci neuronowych.

3.2.1. Struktura sieci neuronowych

Jako poczatek historii sieci neuronowych uznaje si¢ opublikowanie w 1943 roku
stynnego artykutu [1] autorstwa neurofizjologa Warrena McCullocha i matematyka Waltera
Pittsa. Zaproponowali oni model pierwszej sztucznej sieci neuronowej realizujaca obliczenia
z wykorzystaniem rachunku zdan. Jej nazwe i1 sposob dziatania oparli na podobienstwie do
biologicznej komoérki nerwowej, neuronu. Na rysunku 3.2 przedstawiony jest schemat takiej
komoérki wraz z opisem jej elementow. Do najwazniejszych z nich naleza dendryty, ciato
komorki 1 akson wraz z jego zakonczeniami, synapsami. Neurony komunikujg si¢ miedzy soba,
generujac krotkie impulsy elektryczne, ktore przechodzg przez akson 1 wyzwalaja w synapsach
sygnatly chemiczne zwane neuroprzekaznikami. Sygnaty te sg odbierane przez dendryty
sgsiednich komorek i przekazywane do ciata komorki. Jezeli neuron otrzyma dostateczng liczbe
takich pobudzen, sam zaczyna generowa¢ wlasne impulsy. Proces ten zachodzi analogicznie
we wszystkich innych neuronach, ktore sg ze soba potaczone w ztozone, zawierajace miliardy
elementow, sieci. Na rysunku 3.3 przedstawiony zostat szkic kory mozgowej cztowieka, ktora
jest przyktadem takiej wielowarstwowej sieci neuronowej. Na opisanej zasadzie dzialania
opracowano pierwsze sztuczne neurony operujace na warto$ciach binarnych. Autorzy
wspomniane] publikacji udowodnili, Ze nawet z wykorzystaniem tak uproszczonego modelu

mozna zbudowac sie¢, ktora jest w stanie przeprowadzi¢ ztozone operacje logiczne.

Trwajace w nastepnych latach badania doprowadzity do zaproponowania przez Franka
Rosenblatta architektury perceptronu [48] (rysunek 3.4). Opiera si¢ ona na zmodyfikowanym
sztucznym neuronie, zwanym progowa jednostka logiczng (ang. Threshold Logic Unit, TLU),
ktory nie operuje juz na stanach binarnych, lecz na liczbach. Dziala ona w taki sposob, ze
wektorowi n sygnaldw wejsciowych x = [x;, x2, ..., xu] przypisuje okreslony wektor wag
w = [wy, w2, ..., wy], wylicza ich sum¢ wazong i dodaje czton obcigzenia b, zwany takze
przesuni¢ciem, progiem aktywacji lub potocznie ,,biasem” (wzoér 3.1). Uzyskany wynik z jest
nastepnie przetwarzany z wykorzystaniem wybranej funkcji (wzor 3.2); w perceptronie byta to

poczatkowo zazwyczaj funkcja skokowa Heaviside’a (wzor 3.3).
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/ Jadro
Cialo komérki

Wezet Ranviera

Lemocyt

Ostonka mielinowa

Akson

Zakonczenia aksonu

Rysunek 3.2. Schemat budowy biologicznego neuronu (przettumaczona praca Nicolasa Rougiera, Uznanie autorstwa 3.0,

https://commons.wikimedia.org/wiki/File: Neuron-figure PL.svg, dostep: 1.09.2025 r.).

z=Y wx;+b=wix+b 3.1)

y=f@=fw'x+b) (3.2)

0,gdyz<0

1,gdyz=>0 (3.3)

Heaviside(z) = {

Perceptrony poczatkowo wystgpowaty jako oddzielne jednostki TLU, ale byty takze
organizowane w pojedyncze warstwy jednostek TLU, z ktorych kazda byla potaczona ze
wszystkimi wejsciami (dlatego tez nazwano je warstwami w pelni potaczonymi). Poczatkowo
wzbudzaty szeroki zachwyt i1 poktadano w nim nadzieje na dalszy rozwdj dziedziny. Jednakze

modele te byly w duzej mierze ograniczone. W 1969 roku Marvin Minsky i Seymour Papert
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wydali monografi¢ ,Perceptrons” [49], w ktérej uwypuklili wszystkie wady zwigzane
z uzyciem perceptrondéw. Najpowazniejszym zarzutem byla zbytnia prostota modelu, ktory nie
byt w stanie rozwigzywac¢ bardziej zlozonych zdan, a nawet tych bardziej trywialnych jak
klasyfikacja alternatywy rozlacznej. Wynikajaca z tego ograniczona lista zastosowan modelu,

sprawila, ze w duzym stopniu porzucono badania z wykorzystaniem tego typu modeli.

Rysunek 3.3. Uwarstwienie kory mézgowej autorstwa Santiaga Ramoéna y Cajala.

(https://commons.wikimedia.org/wiki/File:Cajal_cortex_drawings.png, dostep: 1.09.2025 r.)

Rozwigzaniem czegSci z tych problemow byto zaproponowanie modelu perceptronu
wielowarstwowego. Modele te skladaja si¢ z wielu w petni polaczonych warstw, sposrod
ktérych rozrézniamy przyjmujaca surowy sygnat warstwe wejsciowa, pewng liczbg warstw
ukrytych 1 warstwe ostatnia, zwang warstwa wyjsciowa. Dzigki znacznie wigkszej ztozonos$ci
byly one w stanie sprosta¢ wielu stawianych mu zadaniom, jednakze wigzato si¢ to
z problemem poprawnego uczenia takich perceptronow. W przypadku perceptronow
jednowarstwowych wagi 1 obcigzenia byly inicjowane i1 aktualizowane z uzyciem bardzo
prostych algorytmoéw, ktére wraz ze wzrostem liczby warstw sprawialy si¢ coraz gorzej.
Dopiero pojawienie si¢ znacznie bardziej wyrafinowanych podejs¢ do ,.trenowania” sieci,
poskutkowato pelnym wykorzystaniem potencjatu takich sieci (opisane doktadnie w 3.2.2.

Trening sieci neuronowych).

Na rysunku 3.5 przedstawiono schemat przykladowego  perceptronu
pieciowarstwowego, na wyjsciu ktorego wystawiana jest pojedyncza wartos¢, a liczba
neuronéw w warstwach jest podobna. Nie jest to jednak jedyne mozliwe rozwigzanie, wyjs¢

perceptronu moze by¢ znacznie wigcej, natomiast liczba neuronow w warstwach ukrytych moze
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zarOwno rosng¢, malec, jak 1 pozostawac bez zmian. Niegdys, w przypadku sieci neuronowych
posiadajacych wiecej niz jedng warstwe uzywano okreslenia sieci glebokich, jednak
w dzisiejszych czasach powszechne sg sieci posiadajace setki warstw, wobec czego takie

rozgraniczenie bywa nieprecyzyjne.
X1

X3
Rysunek 3.4. Matematyczny model perceptronu ztozonego z jednej jednostki TLU.

‘Warstwa Pierwsza Druga
wejsciowa warstwa ukryta warstwa ukryta

Trzecia
warstwa ukryta

Warstwa
wyjsciowa

Rysunek 3.5. Model perceptronu ztozonego z wielu warstw gestych.
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3.2.2. Trening sieci neuronowych

Treningiem, czyli procesem uczenia sieci neuronowej, nazywamy realizowang
iteracyjnie poprawe jej dziatania w celu dopasowania jej do wybranego zadania. W przypadku
perceptronéw proces ten poczatkowo przebiegat w oparciu o rézne wariacje regulty Hebba [50],
wedhug ktorej polaczenie miedzy komorkami staje si¢ tym silniejsze, im czgsciej dochodzi do
ich wzajemnego pobudzenia. Stosujac takie podejscie, mozna bylo co prawda uzyskac¢ dobre
wyniki w niektorych zadaniach, jednakze w przypadku sieci glebszych nie spetnialo ono
oczekiwan. Rozpoczete poszukiwania rozwigzania tego problemu doprowadzity niektérych

badaczy do prob aktualizowania parametrow sieci z uzyciem algorytmu gradientu prostego.

Algorytm ten wykorzystywany w iteracyjnym treningu polega na optymalizacji
ustalonej funkcji kosztu L (w uczeniu maszynowym czesciej okreslana jest jako funkcja straty).
W pierwszym kroku inicjalizowane sg parametry sieci p, a nastgpnie dane wejsciowe sg
przepuszczone przez kolejne warstwy sieci w ramach propagacji w przdd. Nastepnie obliczona
jest pochodna funkcji kosztu, czyli gradient, V,L(p) dla aktualnych warto$ci parametrow.
Z racji tego, ze celem jest minimalizacja funkcji straty, parametry funkcji sa aktualizowane
poprzez odjecie od nich warto$ci tego gradientu przemnozonej przez wspotczynnik uczenia 7,
ktéry decyduje o tym, jak duzy krok powinien zosta¢ zrobiony w strong przeciwng do gradientu

(wzor 3.4). Krok ten jest powtarzany, az do spetnienia okreslonego warunku zatrzymania.

p=p—nV,L(p) (3.4)

Niestety, przy Owczesnym zaawansowaniu komputerdw przeprowadzanie takich
obliczen dla ztozonych modeli byto bardzo czasochtonne, co ograniczato mozliwos¢ szerszego
stosowania tego podejscia. Kluczowa do rozwigzania tego problemu okazata si¢ praca
magisterska Seppo Linnainmaa [51], w ktorej przedstawit on sposob wykorzystania reguly
tancuchowej do automatycznego i1 efektywnego obliczeniowo wyznaczania wszystkich
gradientow modelu w ramach jednego przebiegu w przdd i w tyt. Algorytm ten, nazywany
odwrotnym rézniczkowaniem automatycznym, w potaczeniu z algorytmem gradientu prostego
tworzg algorytm propagacji wstecznej, ktory stanowi obecnie najczgsciej stosowane podejscie
do trenowania sieci. Stato si¢ to miedzy innymi za sprawg pracy z 1985 roku [52], ktéra
przeanalizowata wpltyw tego algorytmu na poznawanie skutecznych reprezentacji

wewnetrznych przez sieci neuronowe.
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3.3. Srodowisko testowe

Sieci neuronowe mozna implementowaé programowo z wykorzystaniem licznych
jezykéw programowania 1 dostgpnych dla nich gotowych modutéw zwanych bibliotekami.
Dynamiczny rozwoj narzedzi do uczenia maszynowego sprawil, ze dominujagcym jezykiem
w tej dziedzinie stal si¢ Python, ktory zostal wykorzystany przy tworzeniu niniejszej pracy.
Zaletami tego jezyka sg miedzy innymi jego prostota, duza liczba specjalistycznych bibliotek,
liczne grupy uzytkownikow i tworcow, a takze dostepnosé do zréznicowanych frameworkow?
skupionych na uczeniu maszynowym. Z najpopularniejszych, a zarazem najbardziej

rozbudowanych spo$rod nich, wymie¢ mozna PyTorcha [53], JAXa [54] i TensorFlow [55].

Chociaz wszystkie opisane frameworki moga by¢ traktowane jako uniwersalne
narzedzia, wystepuja pomiedzy nimi istotne réznice, ktore wptywaja na typowe obszary ich
zastosowan. Przyjeto si¢, ze TensorFlow wykorzystywany jest przede wszystkim w aplikacjach
przemystowych, natomiast w $§rodowiskach naukowych 1 badawczych najwicksza
popularnoscig cieszy si¢ PyTorch (w pewnych sytuacjach stosowany jest takze JAX).
W gtéwnej mierze wynika to z jego duzej elastycznosci, ktdra pozwala dynamicznie tworzy¢
i testowac wiele modeli. Z tego wzgledu caty kod wykorzystany w badaniach zostat oparty na
PyTorchu. Jest to informacja o tyle istotna, Ze uzywana nomenklatura oraz sposoby
implementacji rozwigzan beda zgodne wylacznie ze specyfika tego srodowiska i1 mogag si¢

r6zni¢ w przypadku wykorzystania innego frameworku.

W przypadku PyTorcha, a takze wielu innych podobnych $rodowisk, dane
reprezentowane s3a przy pomocy tensordw, czyli tablic réznych wymiarow, ktorych
przedstawicielami sg migdzy innymi wektory (jeden wymiar) 1 macierze (dwa wymiary). Przy
przetwarzaniu obrazow, rozmiar tensora najczesciej opisany jest w czterech wymiarach jako
[B, C, H W], gdzie B odpowiada rozmiarowi grupy danych (liczbie osobnych probek),
C liczbie kanatow obrazu (dla obrazéw w skali szaro$ci warto$¢ ta wynosi 1, a dla obrazéw
kolorowych 3; liczba ta moze jednak ulec znacznemu zwigkszeniu w trakcie przetwarzania
przez sie¢ — zamiast o kanalach méwimy wtedy o ,,mapach cech”), natomiast wymiary

przestrzenne danych odpowiadaja wymiarom H i W.

1'W kontekscie uczenia sieci neuronowych frameworkiem nazywamy specjalistyczne $rodowisko programistyczne
zapewniajace dostgp do gotowych komponentow takich jak funkcje, klasy, moduty i inne narze¢dzia, ktore utatwiaja
projektowanie, trenowanie, ocen¢ jakoSci i wdrazanie modeli sieci neuronowych bez potrzeby tworzenia

wszystkiego od podstaw.

str. 41



Rozdziat 3. Sieci neuronowe w przetwarzaniu obrazow

3.4. Wybrane warstwy sieci

Sieci neuronowe sg ztozonymi strukturami, ktére sktadajg si¢ z wielu elementow
zwanych warstwami. Warstwy mozna podzieli¢ na typy petnigce rozne funkcje i przetwarzajace
dane w unikalny sposob. By moéc je poprawnie wdrozy¢ do wykonywania bardziej ztozonych
zadan, nalezy najpierw zrozumie¢ ich dzialanie i ich wplyw na proces treningu testowanych
sieci. W tym podrozdziale przyblizono dziatanie tych warstw, ktore sg istotne w konteks$cie
wykorzystywanych w badaniach sieci. Co istotne, warstwy te moga dziala¢ samodzielnie, ale
moga tez by¢ taczone w wigksze jednostki, jak opisano na przyktadzie warstw resztkowych

(znanych takze jako rezydualne).

3.4.1. Warstwa w pelni potaczona

Warstwa ta, zwana tez warstwa gesta, okreslona jest w PyTorch jako torch.nn.Linear
z uwagi na liniowe przeksztalcenie danych wejSciowych. Jej parametrami sg jedynie rozmiary
wejscia 1 wyjscia oraz opcja wykorzystania wektora obcigzen. Warstwa sama w sobie nie
zawiera funkcji aktywacji i1 trzeba ja doda¢ w osobnym kroku. Jej struktura opowiada
pojedynczej warstwie perceptronu wielowarstwowego z rysunku 3.5. W przetwarzaniu
obrazéw jej wykorzystanie jest mocno ograniczone przez duza zalezno$¢ od wymiarow

przestrzennych danych.

3.4.2. Warstwa konwolucyjna

Wystepujacy w nazwie warstwy termin ,.konwolucja” powinien by¢ thumaczony na
jezyk polski jako splot. Niemniej, ze wzgledu na powszechno$¢ uzycia, w praktyce
inzynierskiej 1 literaturze przedmiotowej utrwalila si¢ oryginalna, anglojezyczna forma. Co
ciekawe, okreSlanie realizowanej przez t¢ warstwe funkcji tym terminem jest o tyle
nieprecyzyjne, ze warstwa ta w rzeczywistosci nie realizuje splotu, lecz zblizong do niego
korelacj¢ krzyzowa. Roznica miedzy tymi operacjami sprowadza si¢ do tego, ze przed
przetworzeniem danych przez splot dochodzi dodatkowo do odwrdcenia jadra, co zapewnia tej
operacji przemienno$¢. Z punktu widzenia klasycznego przetwarzania sygnatow moze to
w pewnych sytuacjach mie¢ duze znaczenie, jednak w przypadku sieci neuronowej rdznica ta

jest zaniedbywalna, bo wagi jadra sg i1 tak modyfikowane podczas treningu sieci.
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Operacja realizowana przez t¢ warstwe polega na przetworzeniu odpowiednich
wycinkow danych przez filtr, zwany takze jadrem konwolucyjnym, o rozmiarze kyxky
(zazwyczaj maski takich filtrow maja ksztalt kwadratu) przesuwajacego si¢ po obrazie o zadang
wartos¢ kroku. W przypadku kroku wigkszego niz jeden, wigze si¢ to ze zmniejszeniem
rozmiaru obrazu wyjsciowego. Najczegsciej stosowane sg niewielkie filtry o nieparzystej

dhugosci: 1x1, 3x3, 5x5 1 7x7, ktore sg najbardziej wydajne obliczeniowo.

W pierwszym kroku umieszcza si¢ jadro w lewym gornym rogu przetwarzanego obrazu.
Nastepnie wymnaza si¢ odpowiadajgce sobie elementy, a ich sum¢ wpisuje si¢ jako wartos¢
obrazu wynikowego. Na rysunku 3.6 przedstawiono przetworzenie przyktadowego obrazu 5x5
przez jadro 3x3. Na poczatku filtr dopasowywany jest do lewego goérnego rogu (zielona ramka

z zaznaczonym na zielono $rodkiem) i wyliczana jest wartos¢ korelacji krzyzowe;j:
71 (—4) +21%2 43450+ (=9)* (—8) + 390+ 11 %4+ (—4) x5+ 324+ 0+3 = —18

Obliczona warto$¢ stanowi pierwszg warto$¢ obrazu wynikowego. Nastepnie filtr
przesuwany jest w rzedzie o zadany krok (w tym wypadku jeden) i obliczana jest kolejna

wartos¢ (ramka czerwona):

21%(—4)+34%24+23%04+39%(—8)+11%x0+41%4+32*5+0+4+15+3 =41

Obraz przetwarzany

71 21 34 23 23 Jadro splotowe Obraz wynikowy
-9 39 11 41 32 -4 2 0 -18 41 112
-4 32 0 15 34 -8 0 4 1058 | 476 1009
85 52 93 58 46 5 4 3 -118 -70 -121
8 -5 30 49 21

Rysunek 3.6. Przyktad dziatania splotu (rozmiar jadra: 3x3, krok: 1, bez obcigzenia).
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Operacja ta jest powtarzana, az do osiggnigcia prawej krawedzi obrazu. W takiej sytuacji
filtr jest przenoszony z powrotem do lewej krawedzi, jednakze przesunigty jest o ustalong liczbe
rzedow w dot — w wykorzystanym przyktadzie ten krok rowniez wynosi 1. Zazwyczaj warto$§¢
kroku wynosi tyle samo w obydwu kierunkach, jednak niekiedy zdarza si¢ stosowac ich rdzne
wartosci. Na rysunku 3.7 pokazane jest dziatanie splotu o kroku 2. Jak mozna zauwazy¢,
wicksza dlugos¢ kroku moze postuzy¢ do redukcji wymiarowos$ci danych i w tym celu jest tez

czesto stosowana.

Najwazniejszymi parametrami warstw konwolucyjnych jest zatem dlugos¢ kroku,
wielko$¢ jadra, a takze liczba kanatéw (map cech) wejsciowych Cj, i wejsciowych Cour. Dla
jader kwadratowych liczba parametrow w danej warstwie wynosi Cin * Cour * ki’ 1 nie jest
w zaden sposéb zwigzana z rozmiarem przestrzennym obrazu, co jest duzym usprawnieniem
w poréwnaniu do warstw gestych. Zastosowanie filtroéw przestrzennych pozwala dodatkowo
uwzgledni¢ informacje o pozycji i otoczeniu przetwarzanego piksela, co nie ma miejsca
w przypadku warstw w pelni potaczonych przetwarzajacych piksele niezaleznie od siebie.

Sprawia to, ze do przetwarzania obrazéw wykorzystuje si¢, w gtownej mierze, warstwy

konwolucyjne.
Obraz przctwarzany
24 | 74 | 23 | 11 | 4 | 62 11
34 | 71 | 21 | 34 | 23 | 23 8 Jadro splotowe Obraz wynikowy
2 | 9 39 0 11 | 41 | 32 | - 4 2 0 590 | 112 | @
43 | 4 | 32 0 15 | 34 | 42 -8 0 4 ssa | 476 | 152
76 | 85 | s2 | 93 | 58 | 46 | 22 5 4 3 2 | 266 | 18
65 | 43 1 53| 73 68 | e
2> | 86 | -11 11 5 97 | 27

Rysunek 3.7. Redukcja wymiarowosci z wykorzystaniem splotu (rozmiar jadra: 3x3, krok: 2, bez obcigzenia).
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3.4.3. Warstwa uzupetnien

W wigkszosci przypadkéw redukcja rozmiaru obrazu zwigzana z dziataniem warstwy
konwolucyjnej jest efektem, ktérego chcemy unikngé. Aby zapobiec takim przycigciom,
stosowane sg warstwy uzupehlien (ang. padding), ktore dodajg ramke danych dookota
oryginalnego obrazu. Najprostsza metoda polega na wypetieniu tej ramki samymi zerami. Jest
ona takze najszybsza, ale moze skutkowaé pojawieniem si¢ artefaktow na krawedziach,
poniewaz wartosci zerowe moga znieksztalci¢ znajdujacy si¢ tam sygnal. W zwiagzku z tym
stosuje sie rowniez inne podejscia do uzupetnien, przy czym wiekszos¢ z nich, poza replikacja
1 odbiciem, jest dosy¢ rzadko spotykana. Na rysunku 3.8 przedstawiono dopeinienie poprzez
lustrzane odbicie wartosci wzgledem elementow brzegowych. Uzupeienie poprzez replikacje

polega natomiast na powieleniu wartosci brzegowych.

7 2 7 14 7
0 21 0 5 0
7 2 7 14 7
8 38 8 -11 8
7 2 7 14 7

Rysunek 3.8. Przyktad dopetienia przez lustrzane odbicie. Na zielono zaznaczony oryginalny obraz.

3.4.4. Warstwa laczaca

W sieciach neuronowych redukcji wymiaru danych mozna dokona¢ z wykorzystaniem
warstw konwolucyjnych o kroku wigkszym od jeden, a takze z wykorzystaniem specjalnych
warstw laczacych (takze: probkujacych, ang. pooling). Warstwy te nie zawieraja zadnych
parametrow podlegajacych procesowi uczenia, lecz dzialajg deterministycznie, wykorzystujac
okreslong statystyke. Najpopularniejszymi przedstawicielami tych warstw s3 warstwa

maksymalizujaca (ang. MaxPooling) i warstwa usredniajaca (ang. AveragePooling).

str. 45



Rozdziat 3. Sieci neuronowe w przetwarzaniu obrazow

Ich dziatanie opiera si¢ na podzieleniu przetwarzanych obrazéw na fragmenty kxks
(ustalana przez uzytkownika wielko$¢ filtra), a nastgpnie wyznaczeniu z tego obszaru warto$ci
najwigkszej (MaxPooling) lub obliczeniu wartosci $redniej (AveragePooling). Dziatanie to
pozwala zachowa¢ najwazniejsze informacje z danego fragmentu, przy jednoczesnym
zmniegjszeniu jego wymiarowosci, co taczy si¢ ze zmniejszeniem liczby parametrow modelu
i wymaganych obliczen. W warstwach tych mozna takze modyfikowa¢ warto$¢ kroku
przesunigcia filtra, jednak zazwyczaj nie jest to stosowane podejscie. Na rysunku 3.9
przedstawiono dzialanie maksymalizujgcej warstwy taczacej, ktora dwukrotnie zmniejsza

rozmiar danych w kazdym z wymiaréw.

32 54 32 76

42 11 3 35

MaxPooling

22 15 34 45

Rysunek 3.9. Przyktad dziatania maksymalizujacej warstwy taczacej (rozmiar jadra: 2x2, krok: 1).

3.4.5. Warstwa dekonwolucyjna

W wielu wypadkach oprdcz zmniejszania rozmiaru obrazow potrzebne sg takze techniki
jego zwigkszania. Jedna z nich opiera si¢ na wykorzystaniu warstwy dekonwolucyjnej, znanej
takze jako warstwa rozplotowa lub transponowana warstwa konwolucyjna. Analogicznie jak
w przypadku warstw konwolucyjnych ich dziatanie opiera si¢ na korelacji krzyzowej, a nie na

splocie, jednak w powszechnym uzyciu utrwalito si¢ wlasnie takie okreslenie.

Dzialanie takiej warstwy opiera si¢ na rozciggnig¢ciu oryginalnego obrazu (wymaga to
ustawienia wartosci kroku na warto$¢ > 1) poprzez dodanie rzedow i kolumn zawierajacych
same zera (rysunek 3.10), a nastgpnie przetworzenie takiego obrazu przez jadro konwolucyjne
tak jak przedstawiono na rysunku 3.6. Podejscie to jednak nie jest zbyt precyzyjne, przez co

najczesciej skutkuje pojawieniem si¢ ,artefaktow szachownicy”, regularnych zakltocen
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przyjmujacych postac siatki zawierajgcej jasniejsze i ciemniejsze piksele [56]. By zatagodzic¢
ten problem, stosowane sg polaczenia pomijajace [57], ktore przenosza bardziej szczegdtowe
informacje z wcze$niejszych warstw, a takze zamienienie warstwy dekonwolucyjnej na
warstwe zwigkszania rozdzielczosci wraz ze znajdujaca si¢ zaraz po niej warstwa

konwolucyjna.

Efekt rozciggniecia
Obraz wejsciowy 11 0 42 0 8
11 42 8 0 0 0 0 0
77 64 13 77 0 64 0 13
136 87 40 0 0 0 0 0
136 0 87 0 40

Rysunek 3.10. Zwigkszanie rozmiarowosci obrazu z wypelieniem zerami.

3.4.6. Warstwa zwigkszania rozdzielczosci

Warstwa zwigkszania rozdzielczo$ci (ang. Upsample) podobnie do warstwy taczacej nie
zawiera zadnych podlegajacych treningowi parametrow, ale opiera si¢ na algorytmach
deterministycznych. W odrdznieniu od warstw dekonwolucyjnych, kolumny 1 wiersze
wstawiane przez t¢ warstwe nie sg uzupetniane zerami (jak na rysunku 3.10), lecz warto$ciami
wyliczanymi za pomoca metod interpolacji, takich jak interpolacja najblizszego sasiada,

liniowa, dwuliniowa, dwusze$cienna lub trojliniowa.

3.4.7. Warstwy aktywacji

W architekturach sieci neuronowych tworzonych w PyTorchu funkcje aktywacji nie sg
wbudowane bezposrednio w inne warstwy, lecz wystgepuja jako osobne komponenty,

traktowane jak niezalezne warstwy. Cho¢ wynika to glownie z przyjetej konwencji
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implementacyjnej, w praktyce funkcje aktywacji stanowig odrgbne elementy modelu, dlatego

zostaly opisane w tym rozdziale.

Rola funkcji aktywacji w sieciach neuronowych jest kluczowa, poniewaz to one
wprowadzaja nieliniowosci do modeli, co znaczaco zwigksza ich zdolno$ci do przetwarzania
ztozonych danych. Stosowane poczatkowo funkcje skokowe, takie jak funkcja Heaviside’a czy
funkcja znakowa, zostaly w glebszych sieciach zastgpione funkcjg sigmoidalng i tangensem
hiperbolicznym, ktore charakteryzowaly si¢ plynniejszym przejsciem pomigdzy skrajnymi
wartosciami. W konsekwencji gradienty funkcji strat byly skuteczniej przekazywane do
glebszych warstw sieci, a efektywno$¢ treningu modeli wzrosta. Problemem pozostawata
jednak zauwazalna niestabilno$§¢ gradientow — niektore sposréd warstw uczylty si¢
zdecydowanie wolniej od pozostatych. Dopiero w 2010 roku Xavier Glorot i Yoshua Bengio
[58] wykazali, ze przyczyna tego stanu jest w duzej mierze dziatanie poszczeg6lnych funkcji
aktywacji. Przy bardzo matych lub duzych warto$ciach wejsciowych wspomniane funkcje si¢
nasycaja, czyli osiagaja wartosci skrajne, wobec czego ich gradienty sg bliskie zera. Sprawia
to, ze propagacja wstecz nie jest w stanie zaktualizowa¢ parametrow sieci. Zjawisko to nazwano

problemem znikajacego gradientu.

By zaradzi¢ temu problemowi zaczeto prowadzi¢ badania nad funkcjami aktywacji,
ktére nie ulegaja nasyceniu. Przetomowe okazato si¢ wykorzystanie funkcji ReLU (prostowana
jednostka liniowa, ang. Rectified Linear Unit), ktora nie ma ograniczenia dla wartosci
dodatnich, a ponadto jest bardzo prosta obliczeniowo (wzor 3.5). To miedzy innymi
zastosowaniu tej funkcji przypisuje si¢ sukces sieci AlexNet [5] 1 do dzisiaj stosuje si¢ ja jako
standardowg funkcj¢ aktywacji w projektowaniu sieci. Nie jest to jednak aktywacja pozbawiona
wad. Przede wszystkim z powodu braku ograniczenia ReLU jest w stanie rosng¢ liniowo
w nieskonczonos¢, co powoduje wyktadniczy wzrost gradientow przy realizacji propagacji
wstecznej. Wigze si¢ to z potrzebg wprowadzenia dodatkowych mechanizmoéow kontroli, ktore

chronig sie¢ przed skutkami takiego nieograniczonego wzrostu, zwanego eksplozja gradientu.

Dodatkowo, pochodna ReLU wynosi 0 w przypadku kazdej, nawet nieznacznej,
warto$ci ujemnej. W efekcie neuron otrzymujacy na wejsciu ciggle wartosci ujemne lub bliskie
zeru nie jest w stanie zaktualizowa¢ swoich parametréw, bo jego gradient wynosi zawsze 0.
Zjawisko to okres$lano jako $mier¢ ReLU (ang. dying ReLUs). By zaradzi¢ tej niedogodnosci
opracowano funkcje, ktore przetwarzaja wartosci ujemne. Ich czolowym przyktadem jest
»przeciekajaca” funkcja ReLU [59] (ang. LeakyRelLU), ktéra dopuszcza warto$ci ujemne
przemnozone przez niewielki wspotczynnik kierunkowy o (wzér 3.6) mieszczacy si¢
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zazwyczaj w zakresie ['100; !/10]. Oprocz LeakyReLU wystepuje wiele innych
parametrycznych wersji ReLU [60], oparte na eksponencie funkcje ELU [61] i jej
parametryczna odmiana SELU [62], a takze bardziej skomplikowane funkcje tak jak GELU
[63], Swish [64] oraz Mish [65]. Jednakze mimo ich wielu zalet, w wigkszo$ci eksperymentow
w dalszym ciggu dominujg aktywacje ReLU wraz z ,,przeciekajacg” wersja. Na rysunku 3.11

przedstawiono wykresy czterech omowionych funkcji oraz ich pochodnych.

ReLU(x) = max(0, x) (3.5)

x, gdyx >0

X, gdy x <0 (3.6)

LeakyRelLU(x) = {a

Funkcje aktywacji Pochodne funkeji aktywacji
1.0 1

—— Sigmoid
0.6 Tanh

—— RelU

—— Leaky ReLU

f(x)
v
f'(x)

0.4 1

0:0_ . . ‘ \

Rysunek 3.11. Przebiegi wybranych funkcji aktywacji i ich funkcji pochodnych.

3.4.8. Warstwa normalizacji wsadowej

Uczenie sieci neuronowych opiera si¢ iteracyjnym przetwarzaniu danych treningowych
przez sie¢ i aktualizowaniu jej wag w oparciu o algorytm propagacji wstecznej. Jednokrotne
przejscie po catym zbiorze danych jest w tym wypadku nazywane epoka. Kazda z epok jest
zazwyczaj podzielona na wiele iteracji, w czasie ktorych sie¢ przetwarza losowo wybrane grupy
(takze: paczki, ang. batches) probek. Jest to w gtownej mierze spowodowane mozliwos$ciami
sprzgtowymi — duze zbiory danych w wigkszo$ci przypadkow nie sg w stanie w catosci zmiesci¢
si¢ w pamigci sprzetowej. Sytuacja ta wigze si¢ jednak z problemem zmiany rozktadu danych

wejsciowych, ktéry moze destabilizowac trening.
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By przeciwdziata¢ temu zjawisku, powszechnie uzywana jest technika normalizacji
wsadowej (ang. batch normalization) [66], ktora normalizuje wartosci w kazdej warstwie
wzgledem $redniej 1 wariancji. Co wazne, warstwa normalizacji wsadowej dziata nieco inaczej
w trakcie treningu i podczas poOzniejszej pracy. W trakcie treningu przeprowadza ona
normalizacje z wykorzystaniem statystyk wyznaczonych w obrebie biezacej grupy danych,
aktualizujac swoje parametry skalowania 1 przesuni¢cia. Natomiast poza treningiem uzyte
zostaja usrednione wartosci $redniej oraz wariancji dla calego zbioru danych, a nie tylko
poszczegbdlnych paczek. Zastosowanie tego podejscia ulatwia propagacje btedow, ogranicza
problem znikajacych gradientow i zmniejsza liczbe epok potrzebng do wyszkolenia sieci
(wydtuza przy tym czas trwania kazdej epoki, ale efekt koncowy powinien i tak zostaé

osiggnigty w krotszym czasie).

Warstwy te jednak maja pewna wad¢ — w przypadkach bardzo matego rozmiaru grup
oszacowanie S$redniej i wariancji staje si¢ niestabilne, co moze prowadzi¢ do gorszych
wynikow. Wobec tego zaproponowane zostaly jeszcze inne podejscia do normalizacji [67],
ktére zostaly przedstawione na rysunku 3.12. Przedstawione na nim dane tworzace tensor
o wymiarach [B, C, H, W] zwizualizowano w trojwymiarowe] przestrzeni. Powstaty wymiar
H,W odpowiada zrzutowanym wymiarom przestrzennym obrazu, a kanaly C i B odpowiadaja
odpowiednio liczbie map cech 1 wielkosci grupy. W przypadku normalizacji grupy (ang. Batch
Norm) osobno dla kazdego kanalu C normalizowane s3 osie H,W i B. Przy normalizacji
warstwowe] (ang. Layer Norm) zachodzi normalizacja osi H,W 1 C niezaleznie dla kazdej
probki B. Normalizacja pojedynczego przyktadu (ang. Instance Norm) wykonywana jest
natomiast osobno dla kazdego kanatu C i probki B na osi H,W. Ostatni rodzaj normalizacji,
normalizacja grupowa (ang. Group Norm), jest przypadkiem posrednim pomigdzy
normalizacjami warstwowg a pojedynczej probki — kanaty C dzielone sa na zadang ilo$¢ grup,

z ktorych kazda jest normalizowana oddzielnie.

Chociaz inne rodzaje normalizacji rozwigzuja problem zbytniej zaleznosci od rozmiaru
przetwarzanej paczki danych, nie zdobyly one tak duzej popularnosci jak algorytm normalizacji
wsadowej. Wynika to z faktu, ze przy dzisiejszych mozliwosciach sprzgtowych rozmiar paczki
nie jest az tak duzym problemem, a roznice miedzy tymi podejsciami sg w wielu przypadkach

relatywnie niewielkie.
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Instance Norm Group Norm

Rysunek 3.12. Metody normalizacji danych [67].

3.4.9. Jednostki rezydualne (resztkowe)

Oprocz prostych warstw realizujacych pojedyncze funkcje, w bardziej zlozonych
sieciach czesto spotykane sg jednostki funkcjonalne, czyli modularne bloki, ktore odpowiadaja
strukturg pomniejszym sieciom. Przyktadem takiej jednostki moze by¢ wprowadzajaca
polaczenia pomijajace (ang. skip connections) jednostka resztkowa (rysunek 3.13),

zastosowana po raz pierwszy we wspomnianej we wstepie sieci ResNet [7].

Y Ny N
w w w
a a a
r r iy x

O e 0O

A 4 Fx) "/ H(x) =F(x)+x

w w w
a a a
1 2 N
— — —

Rysunek 3.13. Schemat jednostki rezydualne;j.

Jednostki zawierajace takie potaczenia sa w stanie w znaczacy sposOb uprosci¢
mechanizm uczenia sieci, przyspieszy¢ przejscie gradientow przez sie¢, a takze zapewniaja
modularno$¢ przydatng przy projektowaniu glebszych architektur. Ich dzialanie sprawdza si¢
szczegoOlnie w przypadku, gdy funkcja F(x) realizowana przez grupe N warstw jest mocno

zblizona do funkcji tozsamos$ciowej. W takiej sytuacji dodanie wejscia x do wyjscia tej grupy
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sprawia, ze grupa ta jest zmuszona do odwzorowania funkcji H(x) = F(x) + x, dla ktorej

wyuczenie si¢ F(X) staje si¢ o wiele prostsze.

Tworzenie podobnych (prostszych lub bardziej ztozonych) jednostek funkcyjnych jest
jedna z podstawowych technik tworzenia architektur sieci, ktora znalazta zastosowanie w wielu
z opisanych w tej pracy eksperymentdw. Dla przyktadu: opisane tu jednostki rezydualne maja
szczegblne znaczenie w kontekScie sieci wykorzystanych w pracy nad przetwarzaniem

obrazow stonecznych (rozdziat 6. Redukcja szumu w danych obrazowych Stonca).

3.5. Architektury sieci

Architektura sieci neuronowej nazywamy ogdlny uktad warstw 1 potagczen w sieci, ktory
okresla, jakie warstwy zostaty uzyte; w jakiej znajduja si¢ one kolejnosci 1 konfiguracji; w jaki
sposob dane przeptywaja przez sie¢; ile parametréw ma model; a takze jakie sa jego
hiperparametry (rozdziat 3.6. Hiperparametryzacja sieci). Okreslenie to uzywane jest
zazwyczaj w odniesieniu do teoretycznego modelu matematycznego, w przypadku instancji

takiego obiektu najczesciej uzywa si¢ zamiennie okreslen ,,model” i ,,sie¢”.

3.5.1. Wybor sieci

W ramach wczesniejszych, niezaleznych od niniejszej rozprawy badan, autor zajmowat
si¢ zagadnieniami zwigzanymi z redukcja wymiarowos$ci danych przy uzyciu analizy glownych
sktadowych [68] oraz odwracaniem efektoéw kompresji stratnej obrazow wynikajacej
z zastosowania algorytmu JPEG [69]. Obie te metody, przy odpowiednim doborze parametrow,
umozliwiajg zmniejszenie rozmiaru reprezentacji danych kosztem nieodwracalnej utraty czesci
zawarte] w nich informacji. Obserwacja ta postuzyta sformutowaniu hipotezy, ze wykorzystanie
technik kompresji stratnej, jako filtrow selektywnie przepuszczajacych jedynie najbardziej
istotne informacje wizualne, moze usung¢ z przetwarzanych obrazéw niepozadane elementy
takie jak losowy szum. W tym celu autor zwrocit si¢ ku rozwigzaniom oferowanym przez sieci
neuronowe, ktore dzigki zdolnosciom modelowania nieliniowych zaleznosci 1 efektywnemu
wydobywaniu kluczowych cech obrazéw zostaty uznane za szczeg6lnie obiecujace. Najwigcej
uwagi poswigcono strukturze dostosowanej do zadan kompresji i dekompresji — architekturze

autoenkodera, a takze jej rozwinigciu w formie U-Neta.
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3.5.2. Autoenkoder

Autoenkoder (AE) to rodzaj sieci neuronowej wykorzystywany do wydajnego
kodowania danych wejsciowych, zwanych takze reprezentacjami ukrytymi (ang. latent
representations). Kodowania te zazwyczaj maja o wiele mniejszg wymiarowos¢ niz dane
oryginalne, dzigki czemu jest on powszechnie wykorzystywany si¢ do kompresji. Stopniem
zachodzacej redukcji mozna sterowaé poprzez odpowiednie modyfikacje uzywanej
architektury, przede wszystkim przez zmian¢ rozmiaru docelowego wymiaru kodowania oraz
ztozonosci struktury sieci. W rezultacie autoenkodery znalazly szerokie zastosowanie rowniez

w redukeji szumu [70]-[71][73].

Na rysunku 3.14 przedstawiony jest przyktadowy schemat autoenkodera. Architektura
ta sktada si¢ z trzech cze$ci: kompresujacego dane enkodera, kodowan i1 dekompresujacego je
dekodera. Jak mozna zauwazy¢ na schemacie, poszczegdlne warstwy podzielone sa na
oddzielne poziomy — jest to ogolnie przyjeta konwencja w opisywaniu sieci zmieniajacych
rozmiarowo$¢ danych. Zgodnie z nig wszystkie warstwy na danym poziomie przetwarzaja dane
o takich samych rozmiarach przestrzennych H 1 W, chyba Ze z opisu schematu jasno wynika
co$ innego. Czgsto faczy si¢ to oznaczaniem roznych rodzajow warstw z wykorzystaniem

odpowiednich barw.

v Enkoder \

Rysunek 3.14. Architektura autoenkodera.
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W wiekszosci wypadkow enkoder jest strukturg symetryczng do dekodera, jednakze nie
jest to z géry narzucona norma. Przyktadowo, w sytuacjach, gdy nie potrzebujemy doktadnie
odtwarza¢ calosci danych, lecz jedynie ich czeg$¢, dekoder bywa znacznie mniejszy od
enkodera. Ponadto w niektorych implementacjach enkoder dziata oddzielnie od dekodera; sieci
nie sg potaczone w jedng strukturg, tylko stanowig dwie wspotdziatajace ze sobg podsieci. Dla

rozroznienia struktura ta nosi nazwe architektury enkoder-dekoder.

3.5.3. U-Net

Architektura U-Net jest modyfikacja symetrycznej, utozonej w ksztatt litery U struktury
autoenkodera wzbogacona o polaczenia taczace ze sobg poszczegdlne warstwy, co mozna
zaobserwowaé na rysunku 3.15 w postaci szarej, pogrubionej strzatki. Polaczenia te czgsto
przybieraja postaé potaczen pomijajacych — na poczatek wybranej warstwy jest dodawane
wyjscie z oddalonej warstwy znajdujacej si¢ na tym samym poziomie. Oprocz tego popularng
technikg jest rowniez taczenie (scalanie) ze sobg tych danych wzdluz wymiaru map cech C

(oznaczone przez dolaczenie biatego bloku do blokéw niebieskich).

Rysunek 3.15. Architektura sieci typu U-Net.
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W poréwnaniu do autoenkodera, U-Net jest w stanie lepiej zachowa¢ informacje
przestrzenne i tekstury, ktére sg tracone podczas kompresji. Jednak ze wzgledu na potaczenia
migdzy warstwami wymaga wigcej pamigci operacyjnej do przechowywania przetwarzanych
danych, co moze by¢ problemem w przypadku duzego rozmiaru grup. Chociaz sieci typu
U-Net powstaty poczatkowo do celéw segmentacji obiektow na obrazach [74], z czasem

zaczgto je réwniez stosowaé w zadaniach redukeji szumu [75][76].

3.6. Hiperparametryzacja sieci

W przypadku sieci neuronowych parametrami nazywamy elementy wewngtrzne
modelu, ktoérych sieci ucza si¢ w procesie treningu — s3 nimi wagi i obcigzenia. Elementy
narzucone, zewnetrzne, ktore opisuja to jak sie¢ wyglada i jak dziala, nazywane sg natomiast
hiperparametrami (od greckiego ,,hiper” oznaczajacego ,,nad”, ,,powyzej”). I tak jak wazne jest
wyuczenie si¢ przez sie¢ odpowiednich wartosci parametrow wewnetrznych, tak poprawne
dziatanie modelu w gtéwnej mierze zalezy od ustawienia poprawnej wartosci hiperparametrow.
Niestety, nie istnieje zadna metoda ani heurystyka pozwalajaca na ich optymalny dobor.
Zazwyczaj opiera si¢ on na wyznaczeniu pewnych zalecanych (sprawdzonych w podobnych
warunkach) warto$ci, przetestowaniu dziatania sieci, a nast¢gpnie na ich modyfikacji
1 ponownym poréwnaniu. W wielu sytuacjach liczba hiperparametréw do strojenia potaczona
z dtugim 1 niejednokrotnie wymagajacym procesem uczenia wyklucza mozliwos¢ znalezienia
modelu optymalnego, czyli gwarantujacego najmniejsza mozliwg warto$¢ funkcji straty.
W przesztosci problem ze znalezieniem minimum globalnego uwazano za najwigkszy problem
uczenia maszynowego, jednakze z biegiem czasu okazalo si¢, ze znajdowane minima lokalne
sprawowaly si¢ na tyle dobrze, ze w wielu przypadkach r6znice pomigdzy nimi a minimami
globalnymi sg zaniedbywalnie mate. Jednakze, by sieci byly w stanie je osiggna¢, trzeba
poprawnie dostroi¢ hiperparametry. W kolejnych podrozdziatach pokrotce oméwiono ich

dzialanie 1 wplyw na skutecznos$¢ sieci.

3.6.1. Glebokos¢ sieci

Pierwszym i najbardziej istotnym z hiperparametrow sieci jest jej gleboko$¢, rozumiana
jako liczba i konfiguracja warstw. Chociaz udowodniono, zZe sie¢ posiadajaca zaledwie jedna

warstwe ukrytg jest w stanie aproksymowa¢ dowolng funkcje ciagla z dowolng doktadnoscia
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[77], w praktyce tak skrajnie ptytkie modele wymagaja olbrzymiej liczby neuronow, by
skutecznie uchwycié¢ bardziej ztozone wzorce. Co wigcej, ich zdolno$¢ do uogoélniania jest
czgsto ograniczona, szczegdlnie w zadaniach o wysokiej zlozonos$ci przestrzennej lub

semantycznej [78].

Dopiero glebokie sieci neuronowe, sktadajace si¢ z wielu warstw ukrytych, umozliwiaja
hierarchiczne uczenie reprezentacji. Oznacza to, ze kazda kolejna warstwa w sieci moze
przetwarza¢ dane na innym poziomie; od detekcji prostych cech (na przyktad krawedzi)
po rozpoznawanie bardziej ztozonych struktur (takich jak ksztatty). Dzigki temu modele te sg
w stanie uchwyci¢ nieliniowe i wielowymiarowe zalezno$ci, co przeklada si¢ na lepsza
wydajnos¢ w takich zadaniach jak analiza obrazow. Jednak wzrost glebokosci sieci wigze si¢
réwniez z pewnymi wyzwaniami, takimi jak zanikajacy gradient, trudno$ci w optymalizacji czy
zwigkszone zapotrzebowanie sprzetowe. Z tego wzgledu wybor odpowiedniej glebokosci
stanowi wyzwanie, majace na celu znalezienie kompromisu pomiedzy ztozonoscig modelu

a jego zdolnosciag do generalizacji.

3.6.2. Wspotczynnik uczenia

Przy szkoleniu sieci wazng role ogrywa takze wspotczynnik uczenia 5. Wybranie zbyt
matej wartosci moze prowadzi¢ do bardzo dtugiego treningu lub do utknigcia w niemozliwym
do opuszczenia minimum lokalnym funkcji straty. Z drugiej strony, duza warto$¢ tego
wspotczynnika moze skutkowaé zbyt duzymi zmianami parametrow, powodujacymi
destabilizacje¢ dziatania calego modelu. Dodatkowo, minimum globalne moze by¢ w takich

aktualizacjach przypadkowo pominigte.

By zaradzi¢ temu problemowi opracowano rézne strategie do adaptacyjnej zmiany
wartosci 7. Podstawowa z nich jest zastosowanie odpowiedniego optymalizatora. Obecnie poza
podstawowym algorytmem opisanym wzorem 3.4 najczgsciej stosowany jest nieco bardziej
rozbudowany algorytm o nazwie Adam (adaptacyjne szacowanie momentow, ang. Adaptive
Moment Estimation) [79], ktory zapamigtuje warto$ci gradientéw z poprzednich iteracji i uzywa
ich w celu uzyskania szybszej zbiezno$ci. Uznaniem cieszy si¢ tez jego bardziej stabilna,
zmodyfikowana wersja, AdamW (Adam z oddzielnym zanikiem wag, ang. Adam with

decoupled Weight Decay) [80].
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Oprocz tych metod mozna zastosowac uczenie z wykorzystaniem harmonogramow,
ktore dbaja o zmiang wartosci wspotczynnika uczenia w odpowiednich momentach. Podejscie
to ma na celu przyspieszenie pierwszej fazy treningu, gdy model musi dokona¢ najwigkszych
aktualizacji, a nastepnie zwolnienie w fazie stabilizacji uczenia, by funkcja strat mogta osiggna¢
minimum. Wiekszo$¢ podejs¢ opiera si¢ na ustawieniu wysokiej wartosci poczatkowej 7,
a nastgpnie sukcesywnym zmniejszaniu jej do zera z wykorzystaniem roéznych funkcji.
Stosowane sg takze podej$cia bazujace na zmianach wspotczynnika uczenia zwigzany poprzez

poczatkowe ,,rozgrzanie sieci” [81] lub cykliczne zmiany wartosci # [82].

3.6.3. Funkcje straty

Osiagnigcie oczekiwanej jakosci wynikdw w duzej mierze zalezy od prawidtowego
wyboru funkcji straty. Nie jest to jednak zadanie proste, a stosowane powszechnie normy nie
zawsze skutkuja zadowalajacymi wynikami i1 to nawet pomimo osiagni¢tej niskiej warto$ci
btedu [83]. Dwiema z najbardziej popularnych funkcji strat sg od lat normy L1 1 L2. L1, znana
takze jako $redni btad bezwzgledny (ang. Mean Absolute Error, MAE), mierzy §rednig warto$¢
bezwzglednych réznic pomiedzy przewidywanymi (y) a rzeczywistymi warto$ciami pikseli ()
(wzér 3.7). Dzigki swej odpornosci na duze odchylenia czgsto prowadzi do zadowalajacych
rezultatow. Jej duza wada jest jednak brak pelnej ciaglosci (pochodna w punkcie zero
gwattownie przeskakuje z -1 na 1). Natomiast L2, czyli Sredni btad kwadratowy (ang. Mean
Squared Error, MSE), wzmacnia btedy, obliczajac ich wartos¢ kwadratowg (wzér 3.8), co
sprawia, ze wigksze odchylenia maja znacznie wigkszy wplyw na koncowy wynik funkcji.
W licznych sytuacjach jest to dzialanie niepozadane, bo wptyw duzych bledéow moze
zdominowa¢ proces uczenia, przez co sie¢ bedzie w mniejszym stopniu skupia¢ si¢ na

poprawnym odtwarzaniu szczegotow.

n
1
L1(y, 3:) = EZD’i =3l (3.7)
i=1
1 n
120090 == ) 0= 90 (3.8)
i=1
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Aby potaczy¢ zalety obu podejs¢, Peter J. Huber zaproponowal w 1964 roku [84]
parametryzowang funkcje, ktéra dla matych btedow zachowuje si¢ jak MAE, a dla duzych jak
MSE (wzér 3.9). Funkcja ta, nazwana od nazwiska tworcy funkcjg straty Hubera, wprowadza
element progu J, ktéry zmniejsza wptyw elementdéw odstajacych, a zarazem zachowuje lepsza

stabilnos$¢ uczenia poprzez zachowanie lepszej gtadkosci od MAE.

1 " "
|z 0i=90% gdy ly; = 9il < 6
Ls(yu ¥ = 1 3.9)
5 (Iyi = 9: —55), gdylyi =5l >0

W rekonstrukcji obrazow wykorzystuje si¢ obecnie rdéwniez inne funkcje strat
dopasowane do konkretnego zadania, ktére wykraczaja poza tradycyjne podejscie oparte na
porownywaniu wartosci pikseli. Przyktadem moze by¢ strata czgstotliwosci ogniskowej [85]
(ang. Focal Frequency Loss), ktéra z uzyciem dyskretnej transformaty Fouriera porownuje
obrazy w dziedzinie czgstotliwosciowej. Skupiajac si¢ na najtrudniejszych do odtworzenia
czestotliwosciach, wptywa na zauwazalng poprawe percepceyjng obrazu w rekonstrukcji tekstur,

krawedzi 1 detali.

Optymalny wybdr funkcji straty pozostaje wcigz jednak wyzwaniem, poniewaz
subtelny wptyw bardziej ztozonych funkcji jest trudny do oceny wylacznie poprzez wskazniki
numeryczne. W praktyce powinno si¢ ja osobno dopasowywac do specyfiki kazdego zadania,
a nastepnie zweryfikowa¢ wybor poprzez oceng tak ilosciowa (przy pomocy wybranych
metryk), jak i jako$ciowa (wizualng). PodejScie takie jest jednak bardzo czasochtonne, a co za
tym idzie, w wigkszosci wypadkéw nieoplacalne, przez co czestym podejsciem w badaniach

jest wcigz wykorzystanie najprostszych norm L1 1 L2.

3.6.4. Dhugo$¢ procesu uczenia

Istotng kwestia majaca wplyw na skutecznos$¢ procesu uczenia jest takze poprawny
wybor liczby epok, przez ktére odbywa si¢ szkolenie modelu. W przypadku zbyt krotkiego
treningu sie¢ nie jest w stanie nauczy¢ si¢ odpowiednio uogoélnia¢ danych, natomiast przy zbyt
dlugim treningu pojawia si¢ ryzyko nadmiernego dopasowania do danych treningowych,

skutkujacego ograniczong zdolno$cig sieci do uogdlniania. W celu ustalenia wystarczajacej
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dhugosci tego procesu zazwyczaj wybiera si¢ wzglednie wysoka liczbe iteracji 1 stosuje si¢
kryterium wczesnego zatrzymania. Kryterium to zazwyczaj opiera si¢ na osiggnig¢ciu okreslone;j
wartosci funkcji straty przez model lub tez osiggni¢cie zakladanej liczby epok, podczas ktorych
nie nastgpita poprawa wynikoéw zwracanych przez model. Jednak takie proste podejscia moga
nie by¢ optymalne w wykrywaniu momentu, gdy sie¢ przestaje poprawia¢ swoje zdolnosci
uogoblniajace, dlatego wcigz opracowywane sg inne kryteria majace precyzyjniej okresli¢

odpowiedni czas zatrzymania treningu [86].

3.6.5. Rozmiar grup danych

Sie¢ neuronowa w trakcie kazdej epoki wykonuje wiele iteracji, podczas ktorych
przetwarza tylko pewna czg$¢ (grupe) losowo wybranych probek danych. Wielkos¢ tej paczki
danych ma znaczacy wplyw na przebieg treningu i koncowa wydajno$¢ modelu. Wykorzystanie
matej grupy powoduje wystapienie wigkszej wariancji w probce, co pozwala sieci lepiej
dostosowa¢ si¢ do danych niewystgpujacych w zbiorze treningowym. Wigksze paczki
umozliwiajg natomiast lepsze wykorzystanie zasobow sprzgtowych, jednak w praktyce modele
trenowane z uzyciem duzych paczek czgsto osiagaja gorsze wyniki w kontekscie generalizacji;
ich zdolno$¢ do dziatania na danych testowych bywa ograniczona w poréwnaniu z modelami
uczonymi na mniejszych paczkach [87]. Dobor odpowiedniego rozmiaru grupy jest zatem
kompromisem pomiedzy jakoscig wynikow a efektywnos$cig obliczeniows, ktory w duzej

mierze zalezy od charakterystyki danych, architektury sieci oraz celu projektu.

3.6.6. Pozostale hiperparametry

W sieciach neuronowych istnieje jeszcze wiele innych hiperparametrow, ktoére maja
znaczenie dla efektywno$ci treningu oraz koncowej jako$ci dziatania modelu. Warto przytoczy¢
tu migdzy innymi r6zne metody inicjalizacji wag sieci; sposoby i proporcje podziatu danych na
treningowe, walidacyjne 1 testowe; podejscia do augmentacji (zwigkszeniu réznorodnosci)
wykorzystywanych danych; rodzaje normalizacji danych, a takze wiele innych. Kazde z
mozliwych ustawien tych warto§ci wptywa na to, jak model przetwarza dane, jak szybko 1
stabilnie si¢ uczy oraz jak dobrze potrafi uogdlnia¢ wiedz¢ na niewidziane wczesniej dane.

Wazny jest przy tym fakt, Ze hiperparametry rzadko dziataja niezaleznie —zazwyczaj sg ze
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Rozdziat 3. Sieci neuronowe w przetwarzaniu obrazow

sobg mocno powigzane, co dodatkowo utrudnia znalezienie ich optymalnych warto$ci. Dalsze

zaglebianie si¢ w tematyke ich optymalizacji wykracza jednak poza temat niniejszej pracy.
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4. Redukcja szumu w obrazach syntetycznych

W poprzednim rozdziale przedstawiono kluczowe zagadnienia zwigzane z procesem
trenowania sieci neuronowych, a szczegdlny nacisk polozono na omoéwienie wplywu
poszczego6lnych parametrow modeli na ich prace. Nalezy jednak podkresli¢, ze rownie istotnym
zagadnieniem jest prawidlowy dobor danych, na ktorych przeprowadzany jest trening. Zaréwno
ich 1los¢, jak 1 jakos$¢, majg bezposredni wplyw na dziatanie wytrenowanej sieci w warunkach

docelowych.

W kontekscie zadan zwigzanych z redukcja szumu standardowe podejscie opiera si¢ na
wykorzystywaniu par sktadajacych si¢ z obrazoéw zawierajacych szum i tych catkowicie go
pozbawionych. Jak jednak wyjasniono w rozdziale drugim, w przypadku danych pochodzacych
z teleskopéw naziemnych takie podejscie jest niemozliwie do zrealizowania, bo wszystkie
rzeczywiste obrazy s3 obarczone szumem. Czgsto stosowanym rozwigzaniem tego problemu
jest utworzenie zbioru obrazéw zaszumionych, by nastepnie wyznaczy¢ obrazy pozbawione
szumu, korzystajac z usrednienia serii wielu klatek czy stosujac wybrany algorytm
deterministyczny shuzacy do redukcji szumu. Ponadto, istnieja rézne podejscia do samego
procesu uczenia sieci, ktore nie wymagaja posiadania obrazéw ,.czystych”. Chociaz
wytrenowane w ten sposob sieci moga dostarcza¢ dobrej jako$ci wyniki, problemem pozostaje
brak danych referencyjnych, ktore pozwolityby obiektywnie oceni¢ rzeczywistg skutecznosé
sieci. Z tego wzgledu zdecydowano si¢ na wykorzystanie danych syntetycznych we wstepnych

eksperymentach opisanych w niniejszym rozdziale.

Celem badan bylo przede wszystkim sprawdzenie wptywu zlozono$ci sieci typu
autoenkoder na jakos$¢ redukcji szumu w przetwarzanych obrazach. Przeanalizowano w jakim
stopniu zwigkszenie rozmiaru wektora kodowan i liczby elementow w poszczegdlnych
warstwach przektada si¢ na poprawe wynikow. Przetestowano rdzne strategie uczenia modeli,
w tym warianty oparte na technikach uczenia sieci bez dost¢pu do danych niezaszumionych.
Wszystkie eksperymenty przeprowadzono dla trzech odmiennych mocy szumu, ktére uznano
za reprezentatywne dla scenariuszéw niskiego, Sredniego 1 wysokiego poziomoéw zaktocenia
obrazow. Pozwolilo to okresli¢ korelacj¢ migdzy stopniem degradacji oryginalnych danych
a wymagang zlozono$cig modeli odszumiajacych. W celu rzetelnej oceny skutecznos$ci
zaproponowanych rozwigzan, wyniki dziatania sieci neuronowych zostaly poréwnane

z wynikami uzyskiwanymi przez najlepsze algorytmy deterministyczne.
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Rozdziat 4. Redukcja szumu w obrazach syntetycznych

Poruszona w tym rozdziale tematyka zostata podzielona na siedem cz¢sci. W pierwszej
z nich przedstawiono charakterystyke wykorzystanych danych syntetycznych oraz opisano
metode ich sztucznego zaszumiania, prowadzaca do utworzenia trzech niezaleznych od siebie
zbiordéw: treningowego, walidacyjnego i testowego. Nastepnie zaprezentowano powszechnie
stosowane do redukcji szumu algorytmy deterministyczne, ktore postuzyty jako punkt
odniesienia w dalszej analizie. W trzeciej cze$ci szczegdtowo wyjasniono, ktore techniki
trenowania sieci wybrano do badan. W kolejnej sekcji skupiono si¢ na opisie zastosowanych
architektur autoenkoderow, by zaraz potem przedstawic¢, w jaki sposob dokonano oceny jakosci
uzyskiwanych przez nie wynikow. Przedostania czg$¢ obejmuje opis i1 analiz¢ uzyskanych

wynikow, natomiast koniec rozdzialu poswiecono omowieniu dalszego kierunku badan.

4.1. Wykorzystane dane syntetyczne — zbior MNIST

Jako zestaw danych syntetycznych wybrano jeden z najbardziej znanych i1 szeroko
wykorzystywanych w dziedzinie uczenia maszynowego zbiorow — MNIST (ang. Modified
National Institute of Standards and Technology database) [88]. Jest to kolekcja 70 tysigcy
obrazéw w skali szaros$ci, ktore przedstawiaja odrecznie napisane cyfry (rysunek 4.1). Mimo
ze obrazy te sa do siebie podobne, charakteryzuja si¢ pewng réznorodnoscia, ktdra zapobiega
przetrenowaniu? sieci. Zaleta ich stosowania jest takze to, ze ich jako$¢ jest bardzo tatwo ocenié
wizualnie. Z tych powodow zbidr ten stanowi punkt wyjscia do testowania 1 porownywania ze

sobg roznych algorytmow uczenia maszynowego.

Na potrzeby badan zbior MNIST zostat podzielony na trzy niezalezne czgsci. Przyjeto,
ze cyfry 4, 7 oraz 8 maja odmienny ksztaltt w porownaniu z pozostaltymi, dlatego utworzono
z nich zbidr testowy, ktory wykorzystywano do oceny dzialania wytrenowanych modeli.
Pozostate dane rozdzielono proporcjonalnie: 85% przeznaczono na zbior treningowy, a 15% na
walidacyjny, przy zachowaniu podziatu wzgledem poszczegdlnych cyfr. Szczegdétowy podziat

zbioru MNIST na podzbiory przedstawiono w tabeli 4.1.

2 W przypadku treningu sieci mozemy mieé do czynienia zardwno z przetrenowaniem (ang. overfitting), jak
i niedotrenowaniem (ang. underfitting). Pierwsze zjawisko polega na tym, ze sie¢ neuronowa uczy si¢ zbyt
doktadnie danych treningowych (facznie z ich szumem), co prowadzi do spadku jej skutecznosci na nowych
danych. Natomiast niedotrenowanie oznacza, ze model nie nauczyt si¢ wystarczajaco dobrze obecnych w danych
zaleznosci i nie jest w stanie osiagac najlepszych wynikow. Oba zjawiska §wiadcza o niepoprawnym dopasowaniu

modelu i wymagaja dalszego dostosowania jego architektury, parametréw lub danych.
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16171515

Rysunek 4.1. Przyktadowe obrazy ze zbioru MNIST.

Tabela 4.1. Podzial zbioru MNIST na podzbiory.

Typ podzbioru danych Liczba obrazow z MNIST w podzbiorze
Treningowy 41700
Walidacyjny 7 358
Testowy 20942

Pierwotny rozmiar obrazéw ze zbioru MNIST wynosi 28 x 28 pikseli, jednak na cele
eksperymentdéw obrazy zostaty przeskalowane do rozmiaru 32 x 32 piksele, by utatwi¢ zmiane
ich rozmiaru przestrzennego przez testowane sieci. Dodatkowo wartosci kazdego obrazu im
zostaly znormalizowane® do zakresu [-1; 1] z wykorzystaniem najwiekszych i najmniejszych

wartosci, jak opisano we wzorze 4.1.

im — min(im) 1) @1

im =2 _Z
m * (max(im) —min(im) 2

3 Normalizacja zakresu danych w sieciach neuronowych polega na przeksztalceniu danych wejsciowych tak, aby
miaty okreslong $rednig i rozklad (zwykle zerowa $rednia i jednostkowe odchylenie standardowe). Dzigki temu
proces uczenia staje si¢ szybszy i bardziej stabilny, poniewaz sie¢ nie musi dostosowywac si¢ do danych o réznych
skalach. W praktyce jest czesto realizowana w sieciach poprzez wykorzystanie warstwy normalizacji wsadowe;j

jako pierwszej warstwy przetwarzajacej dane surowe.
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Rozdziat 4. Redukcja szumu w obrazach syntetycznych

W celu przeprowadzenia eksperymentéw zwigzanych z redukcja szumu, zdefiniowano
trzy poziomy zaktdcen, odpowiadajace rdznym poziomom szumu gaussowskiego. Moce szumu
zostaly okre$lone na podstawie wizualnej analizy wplywu szumu na jako$¢ obrazu
1 sklasyfikowano je jako stabg, umiarkowang oraz silng. Zaszumione obrazy wygenerowano
poprzez dodanie do oryginalnych danych losowego szumu o rozkladzie normalnym, gdzie
warto$¢ odchylenia standardowego o wynosita odpowiednio 0,1, 0,15 i 0,85 dla kazdej mocy
szumu. Tak zaszumione obrazy (okreslane jako Noise) miaty za zadanie zastgpi¢ pojedyncze
klatki obserwacyjne. Réwnolegle przygotowano zestaw obrazéw o zmniejszonym natezeniu
szumu (Clean), ktore odpowiadaja klatce usrednionej ze 100 obrazow z serii. Takie usrednienie
powinno dziesieciokrotnie (v/100 = 10) zmniejszyé¢ natgzenie szumu, w zwiazku z czym
zastosowano odpowiednio mniejsze wartosci parametru o: 0,01, 0,015 oraz 0,085. Na rysunku
4.2 przedstawiono wptyw dodania szumu na jako$¢ danych na przykladzie dwoch losowo

dobranych obrazow (cyfry 415).

Brak szumu Staby szum Umiarkowany szum Silny szum

Rysunek 4.2. Wplyw mocy szumu na jako$¢ obrazow.

Tak przygotowane dane umozliwity zastosowanie wielu odmiennych sposobow do
uczenia sieci przy zachowaniu kontroli nad poziomem degradacji sygnalu. W przypadku
danych treningowych zaszumienia te byty generowane osobno w kazdej epoce, co umozliwito

wielokrotne zwigkszenie przykladow w zbiorze treningowym. Natomiast dla zbioru
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walidacyjnego 1 testowego zaszumienie zostato dodane tylko raz, przed rozpoczeciem catego
eksperymentu — pozwolito to obiektywnie oceni¢ dzialanie poszczegdlnych sieci. Zbiory te
skladaly si¢ zatem z par obrazoéw: obraz zaszumiony Noise oraz obraz poréwnawczy catkowicie

pozbawiony szumu, nazwany Reference.

4.2. Algorytmy deterministyczne w redukcji szumu

W dziedzinie cyfrowego przetwarzania obrazoéw stosuje si¢ szeroki wachlarz podejsé¢
do redukcji szumu. Najliczniejszg grupg rozwigzan sg deterministyczne metody filtracji
operujace na pojedynczym, zaszumionym obrazie. Biorac pod uwage zakres wykorzystywanej
przez nie informacji przestrzennej, mozna takie algorytmy podzieli¢ na dwie grupy: metody

dziatajace lokalnie i nielokalnie.

Lokalne metody filtracji operuja w obrgbie niewielkiego fragmentu obrazu, tak zwanego
okna, otaczajacego przetwarzany piksel. Przykladami takich rozwigzan sg klasyczne filtry
operujagce na podstawie lokalnych statystyk, takich jak §rednia 1 wariancja [89], filtry
wykorzystujace wazong warto$¢ mediany [90], filtry Wienera [91] oraz filtry bilateralne [92].
Cho¢ podejscia te cechujg si¢ stosunkowo niska zlozonos$cig obliczeniowa i1 sg tatwe do
implementacji, wykazujg one istotne ograniczenia, szczegdlnie w przypadku wysokiego
poziomu szumu. Zachodzi wtedy silna degradacja korelacji pomigedzy pikselami w niewielkich

sgsiedztwach, co sprawia, ze metody te nie sag w stanie dziata¢ prawidtowo.

W odpowiedzi na niedoskonalo$ci metod lokalnych, zaproponowano algorytmy
nielokalne, ktore analizuja powtarzajgce si¢ wzorce w catym obrazie, niezaleznie od ich
lokalizacji przestrzennej. Pionierskim rozwigzaniem byl algorytm nielokalnych S$rednich
(ang. Non-Local Means, NLM) [93], ktory wykorzystuje Srednie wazone wartosci pikseli
z calego obrazu, bazujac na podobienstwie blokow. NLM okazal si¢ znaczaco lepszy od
pozostatych podejs¢, a jego dalszy rozwoj doprowadzit do szeregu ulepszen [94][95][96], czego
zwienczeniem stato si¢ opracowanie algorytmu BM3D (ang. Block-Matching and 3D Filtering)
[97]. Poprzez grupowanie podobnych blokow 1 ich filtrowanie w domenie wspotrzednych
trojwymiarowych, BM3D byt w stanie osiggnag¢ wyniki znaczaco przewyzszajace te
uzyskiwane przez inne metody i stat si¢ w efekcie punktem odniesienia do oceny pozostatych

algorytmoéw redukcji szumu.
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Oprécz wspomnianych metod, na przestrzeni lat rozwinigto réwniez inne techniki,
oparte na bardziej ztozonych modelach matematycznych i statystycznych. Do najwazniejszych
z nich zaliczy¢ mozna: metod¢ K-SVD (ang. K-Singular Value Decomposition) [98], techniki
oparte na adaptacyjnej analizie gtdwnych sktadowych [99], mieszaniny Gaussa w dziedzinie
falkowej [100], probabilistyczne modele mieszanin Gaussowskich [101], a takze podejscia
Bayesowskie [102][103]. Pomimo zaawansowania teoretycznego wiele z tych rozwigzan
okazato w kontekscie rzeczywistych danych obrazowych si¢ mniej skuteczne niz BM3D [104],
dzigki czemu BM3D pozostaje do dzi§ standardem referencyjnym w ocenie technik
odszumiajacych. Z tego powodu za algorytmy porownawcze przyjeto wiasnie ten algorytm

wraz z jego prostszg wersja NLM.

4.3. Sposoby trenowania sieci

Na rysunku 4.3 przedstawiono typowy schemat procesu uczenia sieci, ktory byt szerzej
omowiony w poprzednim rozdziale. Chcac wytrenowac sie¢, ktora przyjmuje na wejsciu dane
zaszumione, a zwraca dane pozbawione szumu, musimy zazwyczaj dysponowaé parami
obrazéw: obraz wejSciowy (zaszumiony) i obraz referencyjny (pozbawiony szumu). Metoda ta
powszechnie jest nazywana trenowaniem Noise2Clean®, jednakze dla celow prowadzonych
badan zostala ona przemianowana na Noise2Reference. Pary takich obrazow wykorzystuje si¢
do iteracyjnego procesu aktualizacji parametréw modelu, a tym samym do zwigkszania jego

doktadnosci.

W rzeczywistych sytuacjach stosunkowo rzadko zdarza si¢, ze mamy dostep do takich
par danych. Zazwyczaj uzyskanie idealnych obrazéw pozbawionych szumow (Reference) jest
albo bardzo trudne w realizacji, albo wregcz niemozliwe. W astronomii czy w obrazowaniu
medycznym zaszumienie danych jest zjawiskiem zawsze obecnym podczas rejestracji obrazow,

co rodzi powazne problemy w procesie treningu.

4 Skrécone nazwy sposobOw trenowania sieci zapisuje si¢ czgsto w jezyku angielskim jako X2Y, bo cyfrg ,,2”
wymawia si¢ jak przyimek ,,to”. Metod¢ X2Y nalezy zatem rozumie¢ jako szkolenie sieci z wykorzystaniem

danych typu X, ktére po przetworzeniu poréwnuje si¢ do danych typu Y.
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Aktualizacja parametrow

W’_ r W’ Obraz
Obraz ! ; 1 Obraz
- -_— (‘* r m | —— | przetworzony —_— )
wejsclowy ; ; . Poréwnanie referencyjny
(’"H’ (4 ! przez sie¢
' 4 :

Rysunek 4.3. Schemat trenowania sieci neuronowej.

W ostatnich latach opracowano wiele odrebnych metod uczenia sieci, ktore operuja
wylacznie na danych zaszumionych. Pierwsza z nich jest podejscie Noise2Noise [105], ktore
opiera si¢ na wykorzystaniu wielu réoznych, niezaleznych od siebie realizacji szumu na tym
samym obrazie. Osiggane ta metoda wyniki w wielu sytuacjach sa w stanie doréwnac
klasycznemu podej$ciu Noise2Reference. Rozwinigciem Noise2Noise sg podobne podejscia,
ktére wykorzystujag maskowanie wybranych wartosci obrazu, by moc na tej podstawie oming¢
najtrudniejszy element do rekonstrukeji, czyli losowy szum; sposrdd nich na szczegdlng uwage
zashuguja metody Noise2Void [106][107], Self2Self [108] 1 Noise2Self [109]. Oprocz nich
stosuje si¢ takze metody takie jak Noisy-As-Clean [110] czy Noisier2Noise [111], ktore
przyjmuja obrazy zaszumione jako referencje, a na wejscie sieci przekazuja te same obrazy

z dodatkowo powigkszonym szumem.

Bazujac na opisanych metodach, opracowano sze$¢ roéznych, reprezentatywnych
technik uczenia, ktore zostaly wykorzystane do wytrenowania wybranych modeli. Kazda z nich
zostala szczegotowo opisane w kolejnych podpunktach, natomiast na rysunku 4.4
przedstawiono porownanie wykorzystywanych przez nie danych wejsciowych sieci i obrazow
poréwnawczych. Nalezy przy tym podkresli¢, ze metoda treningu w zaden sposdb nie zmienia
docelowego sposobu dziatania sieci, ktéry nadal opiera si¢ on na przetwarzaniu obrazéw

zaszumionych w celu redukcji szumu.
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Nazwa Obraz Obraz
podejscia WejSCIOWY porownawczy

Noise2Clean

Noise2Noise

Noise2Self

Clean2Self

Noise2Reference

Reference2Self

Rysunek 4.4. Zestawienie obrazow wykorzystywanych przez rozwazane techniki uczenia sieci w przypadku

silnego zaszumienia.
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4.3.1. Noise2Clean

W przypadku danych astronomicznych jest to najprostsze podejscie do trenowania sieci,
gdy nie ma dostepu do pozbawionych szumu danych referencyjnych. Trenujac sie¢ w ten
sposob, mozna sprawdzi¢, czy da si¢ oming¢ potrzebe wielokrotnej akwizycji danych i uzyskac
zauwazalng redukcje szumu, korzystajac jedynie z pojedynczego obrazu przetworzonego przez

wybrang sie¢.

4.3.2. Noise2Noise

Podej$cie to opiera si¢ na przetwarzaniu przez sie¢ obrazu zaszumionego, by nastepnie
porownaé go z obrazem zawierajagcym ten sam sygnatl, ale z inng realizacja szumu. Jest to
pewna zmiana w stosunku do podejscia Noise2Noise opisanego w [105] — w oryginalnej
implementacji obrazem poroéwnawczym byl obraz z dowolng realizacja szumu, czyli mogt to
by¢ réwniez obraz wejsciowy sieci. W przypadku przeprowadzonych eksperymentéw
zdecydowano si¢ ograniczy¢ wybor obraz referencyjnego, by dokonaé obiektywnego

poréwnania z wynikami osigganymi przez Noise2Self.

4.3.3. Noise2Self

Ta technika pozwala przetestowaé¢ wlasno$ci kompresyjne stosowanych sieci.
Autoenkoder powinien w ramach pracy zapamigtywac jedynie istotng cz¢$¢ informacji, migdzy
innymi potozenie 1 ogdlny ksztatt struktur, a traci¢ t¢ czes¢ odnoszaca si¢ do wystepujacych
w obrazach szczegotow, jak punktowe zaszumienie. Zastosowanie tego podejscia umozliwito

oceng stopnia ztozonosci modelu, dla ktorego wpltyw kompresji zaczyna stabnac.

4.3 4. Clean2Self

Metoda analogiczna do Noise2Self, przy czym tutaj kompresja jest testowana na danych
usrednionych. Ogodlna jakos¢ takich obrazow jest zatem o wiele lepsza od jakosci obrazow
zaszumionych, co pozwala dodatkowo oceni¢ wptyw jakosci danych wejsciowych na dziatanie

wytrenowanych modeli, czyli na stosowang przez nie kompresje.
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4.3.5. Noise2Reference

W sytuacjach rzeczywistych najrozsadniejszym podej$ciem jest uczenie sieci w trybie
Noise2Clean. Jednakze, istotng kwestig jest to, jak Noise2Clean wypada w poréwnaniu
z podejsciem domyslnym, Noise2Reference. To migdzy innymi w celu wykonania tej
weryfikacji zdecydowano si¢ przeprowadzi¢ opisane w tym rozdziale eksperymenty na danych
syntetycznych, gdyz tylko w ich przypadku mozliwe jest wykorzystanie obrazow caltkowicie

pozbawionych szumu.

4.3.6. Reference2Self

Reference2Self jest odpowiednikiem wymienionych wczesniej Noise2Self oraz
Clean2Self, zrealizowanym z wykorzystaniem najlepszych jako$ciowo danych, ktérych nie da
si¢ uzyska¢ w praktycznych zastosowaniach. Zostata gldwnie uzyta w celu poréwnania jej

wydajnos$ci ze wspomnianymi dwoma technikami.

4.4. Testowane architektury

Jednym z najwazniejszych elementow praca naukowych poswigconych wykorzystaniu
sieci neuronowych jest doktadny opis wykorzystanych architektur. Precyzyjna dokumentacja
tych struktur nie tylko zwigksza przejrzystos¢ prowadzonych badan, ale takze umozliwia
wykorzystanie opisanych modeli przez innych. W wigkszosci sytuacji autorzy prac naukowych
zamieszczajg szczegodtowe informacje dotyczace zastosowanych modeli, takie jak liczba, rodzaj
1 konfiguracja wykorzystanych warstw, liczba map cech, dobor funkcji aktywacji i metod
normalizacji czy sposob inicjalizacji wag. Opisom tym czgsto towarzysza schematy blokowe,
wykresy przeptywu danych oraz tabele prezentujace kluczowe parametry kazdej warstwy, co

dodatkowo utatwia interpretacje omawianych rozwigzan.

W przypadku struktur oméwionych w tym rozdziale, a takze w dalszych cze$ciach
pracy, postanowiono przede wszystkim skupi¢ si¢ na odpowiednim zaprezentowaniu sieci
w formie graficznej. Kazda z nich przedstawiono przy pomocy kolorowych blokow, ktore
odpowiadaja wybranym warstwom lub jednostkom funkcjonalnym, a ich zmieniajaca si¢
wielko$¢ $wiadczy o zmianie wymiarowosci przestrzennej obrazéw o potowe. Wszystkie

schematy sg przy tym szczegdélowo opisane, co powinno utatwi¢ zrozumienie ich dziatania. Na
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przestrzeni pracy starano si¢ zachowac spdjnos¢ wzgledem dopasowania poszczegdlnych
koloréw do odpowiednio dziatajacych blokéw, lecz w przypadku kazdej z sieci moga pojawié

si¢ pewne subtelne roznice, na co nalezy zwroci¢ uwage.

Na rysunku 4.5 przedstawiono strukture sieci autoenkodera, ktora zostata wykorzystana
do opracowania architektur omoéwionych w tym rozdziale. Sie¢ ta sktada si¢ z blokéw, ktorych

kolory odpowiadaja wyszczegdlnionym elementom modelu:

blok czerwony oznacza obraz wejsciowy sieci [;

b. blok z6lty symbolizuje obraz wyjsciowy sieci /;

c. blok niebieski oznacza jednostke funkcjonalng sktadajaca si¢ z warstwy konwolucyjnej
o jadrze 3x3 1 kroku rownym 2, warstwy normalizacji wsadowe] oraz warstwy
aktywacji w postaci tangensa hiperbolicznego (w tej kolejnosci);

d. blok pomaranczowy odpowiada jednostce funkcjonalnej zlozonej z warstwy
dekonwolucyjnej o jadrze 3%3 i kroku rownym 2, warstwy normalizacji wsadowej oraz
warstwy aktywacji w postaci tangensa hiperbolicznego (w tej kolejnosci);

e. blok filetowy oznacza warstw¢ w pelni potaczong, ktora przetwarza dwuwymiarowy
obraz do jednowymiarowego wektora kodowan (pierwszy fioletowy blok od lewej) lub
przetwarza wektor kodowan z powrotem do postaci dwuwymiarowego obrazu (drugi
fioletowy blok od lewej);

f. blok ciemnoszary symbolizuje wektor kodowan.

—

I S & &S &% K K S & S &1

Rysunek 4.5. Struktura testowanych architektur.
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Jak mozna zauwazy¢, sie¢ ta jest symetryczna — sktada si¢ z czterech warstw
zmniejszajacych wymiar, czterech warstw zwigkszajacych wymiar, wektora kodowan oraz
dwoch warstw w pelni potaczonych, ktére zajmuja si¢ przetwarzaniem danych
dwuwymiarowych w jednowymiarowe i odwrotnie. Dodatkowo, pod kazdym z blokow
znajduje si¢ specjalne oznaczenie. Odpowiada ono liczbie map cech danych po przetworzeniu
przez dang warstwe (S7, S2, S3, Sy 1 1) lub liczbie elementow w wektorze kodowan (K). Rozne
liczebnosci tych map cech wptywaja na ogdlng ztozonosci sieci (liczbg jej parametrow), co ma
kluczowe znaczenia dla redukcji wymiarowosci danych. Bardziej skomplikowane modele
powinny by¢ w stanie utworzy¢ lepsze reprezentacje danych. Zmieniajac liczb¢ map cech,
utworzono trzy rézne architektury, ktore opisano w tabeli 4.2. Dodatkowo, przedstawiono

w niej liczbe parametrow sieci przy zastosowaniu 64 kodowan dla kazdej z architektur.

Tabela 4.2. Liczba wszystkich parametrow sieci i konfiguracja map cech w poszczegdlnych warstwach.

Liczba parametrow
Architektura Zmieniajaca si¢ liczba map cech w Sx
(przy 64 kodowaniach)
1 Si=4 $>=8 S3=4 S4=28 4 035
2 S1=28 S>=12 S3=16 S4=20 16 599
3 S1=48 S>=172 S3=96 || S4=120 427 739

Oprocz ztozonosci sieci opisanej liczbg map cech waznym hiperparametrem sieci jest
dhugos¢ wektora kodowan. To on stanowi ,,waskie gardlo” autoenkoderow 1 decyduje o tym,
jak wiele informacji moze by¢ przeniesionych przez sie¢. Dla kazdej z architektur dobrano
wartosci K do przetestowania, przy czym dla najbardziej ztozonej sieci rozmiary te sg znaczaco
wigksze niz dla pozostatych. Réznica ta postuzyta doktadniejszemu oszacowaniu wplywu
parametru K na pracg catej sieci. W tabeli 4.3 przedstawiono zestawienie dtugosci wektora

kodowan dla kazdej z architektur.

Co wazne, przy szkoleniu tych sieci zdecydowano si¢ na wykorzystanie nieco bardziej
ztozonej funkcji straty. Jest ona w tym wypadku suma trzech oddzielnych funkcji: oméwionych
juz L1 1 L2, a takze zmodyfikowanej metryce Wassersteina [112], ktora znalazta pewne
zastosowanie w trenowaniu sieci neuronowych [113][114], réwniez w przypadku

autoenkoderow [115]. Trening odbyt si¢ w 300 epokach, w trakcie ktdrych sieci przetwarzaly
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100 grup ztozonych z 64 obrazdéw. Jako optymalizator wybrano podstawowa wersje algorytmu

Adam, a wspotczynnik uczenia okres$lono jako stala wartos¢ 0,001.

Tabela 4.3. Testowane dlugosci wektora kodowan.

Architektura | Testowane dlugosci wektora kodowan K

1 8, 16,32, 64
2 8,16, 32, 64
3 64, 128, 256, 384

4.5. Ocena jakosci wynikoOw

W analizie danych obrazowych ocena jakosci przetworzonych wynikéw opiera si¢
w gldwnej mierze na subiektywnej ocenie wizualnej. Podej$cie to, mimo ze bezposrednio
oddaje percepcyjng jakos$¢ obrazu z punktu widzenia czlowieka, nie jest wystarczajace
w kontekscie analizy duzych zbioréw danych. Konieczne staje si¢ zastosowanie miar
ilosciowych, ktore umozliwiaja powtarzalne i obiektywne poréwnywanie wynikow. W tej
cze¢$ci pracy omowiono dwie metryki uzyte do takiej analizy, a takze wyjasniono statystyczne

podejscie do prezentowania wynikow.

4.5.1. Metryki porownawcze — PSNR 1 SSIM

Do ilo$ciowej oceny obrazow stosuje si¢ obecnie wiele metryk, sposréd ktorych jedng
z najprostszych i najczesciej stosowanych jest PSNR (ang. Peak Signal-to-Noise Ratio).
Wskaznik ten opiera si¢ na stosunku kwadratu maksymalnej mozliwej jasnosci piksela obrazu
MAX;» do wartosci btedu Sredniokwadratowego jasnosci, MSE, obliczonego miedzy
rozwazanym obrazem im a obrazem porownawczym ref, tak jak przedstawiono w roOwnaniu
4.2. Wyrazona w decybelach warto$¢ informuje o tym, jak duze rdéznice znieksztalcenia
wystepuja pomiedzy obrazami — im wyzsza warto§¢ PSNR, tym bardziej obrazy sg do siebie
zblizone. Metryka ta jednak uwzglednia jedynie rdznice w wartosciach poszczegdlnych pikseli,

ignorujac przy tym nierzadko znacznie istotniejsze réznice w strukturze obrazow.
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(4.2)

. MAX?,
PSNR(im,ref) = 10log;,

MSE (im,ref)

W zwigzku z ograniczeniami metryki PSNR, zastosowano dodatkowa, bardziej ztozong
metryke, SSIM (ang. Structural Similarity Index Measure) [116], ktora zostata zaprojektowana
w sposob bardziej odpowiadajacy ludzkiej ocenie jakosci. Metryka ta analizuje obrazy
w oknach lokalnych, poréwnujac $rednie jasno$ci, wariancje oraz kowariancje, co pozwala
lepiej oceni¢ podobienstwo struktur i podobny poziom kontrastu obrazu. Przyjmowane wartosci
mieszcza si¢ w zakresie [-1; 1], jednak dla obrazéw rzeczywistych czesciej jest to zakres [0; 1],
przy czym | oznacza, ze porbwnywane obrazy sg identyczne, a 0 $wiadczy o catkowitym braku
podobienstwa. W wielu sytuacjach trudno wyznaczy¢ prosta zalezno$¢ pomie¢dzy SSIM
1 PSNR, wobec czego zaleca si¢ stosowanie obydwu metryk réwnoczesnie [117], by moc

dokona¢ doktadniejszego, bardziej holistycznego, poréwnania obrazow.

4.5.2. Wykresy pudetkowe

W kontekscie analizy duzych zbioréw danych liczbowych tradycyjne metody opisu,
takie jak $rednia czy odchylenie standardowe, moga nie wystarczy¢ do pelnego zrozumienia
ich struktury. Zazwyczaj potrzebna jest dodatkowo znajomos$¢ ich rozktadu, a takze wartosci
ekstremalnych 1 odstajacych. Do tego celu wykorzystuje si¢ rozne typy wykresow, sposrod
ktorych najpopularniejszym 1 najprostszym do analizy jest wykres pudetkowy przedstawiony

na rysunku 4.6.

Glowna czes¢ tego wykresu, czyli prostokat zwany ,,pudetkiem”, jest obszarem
wyznaczonym pomiedzy pierwszym (Qi1) a trzecim (Q3) kwartylem zbioru wartosci
analizowanych danych. W jego wnetrzu znajduje si¢ srodkowe 50% danych, przy czym ich
mediana (zaznaczana osobng belka) niekoniecznie znajduje si¢ posrodku prostokata — jej
umiejscowienie jest zalezne od symetrycznosci rozktadu opisywanych wartosci. Diugo$¢ boku
pudetka, czyli roznica pomigdzy trzecim a pierwszym kwartylem okreslana jest jako rozstep
migdzycéwiartkowy (ang. interquartile range, IQR). Przy pomocy warto$ci IQR wyznacza si¢
maksymalng dlugos¢ tak zwanych ,,wasow”. Wasy okreslaja odlegto$¢ kwartylu do wartosci
skrajnej (minimum lub maksimum), jednakze nie si¢gajg dalej niz 1,5 wartosci IQR. Jezeli jakis$
element danych nie miesci si¢ w opisanym zakresie, uznawany jest za warto$¢ odstajaca

1 0znacza si¢ go przy pomocy kropki lub krzyzyka. W zalezno$ci od liczby warto$ci odstajacych
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1 charakteru danych, wartosci odstajacych nie wykorzystuje si¢ w dalszej analizie (mogg by¢
wynikiem btedéw pomiarowych) lub zwraca si¢ na nie szczegdlng uwage (moga swiadczy¢

o istnieniu dodatkowych zaleznos$ci miedzy poszczeg6lnymi probkami danych).

Pierwszy Trzeci
kwartyl kwartyl
Qi Mediana Q

Wartosci
odstajace

Was dolny Was gorny |

| | J

! [
Rozstep ¢wiartkowy Maksymalna dlugo$¢ wasa gornego
IQR Qs + 1,5*IQR

Rysunek 4.6. Schemat wykresu pudetkowego.

Poréwnujac kilka wykresow pudetkowych umieszczonych obok siebie, mozna szybko
zorientowac si¢, w ktorej grupie dane sg bardziej rozproszone i jak zmieniajg si¢ ich rozklady.
W efekcie wykresy tego typu sa istotnym narzedziem przy poréwnywaniu wynikow
przetwarzania danych przez rdzne metody. Pozwalajg dobrze zidentyfikowaé rdznice
wprowadzane przez testowane algorytmy, dzieki czemu stanowig podstawe opisu

statystycznego wynikow przedstawionych w niniejszej pracy.

4.6. Analiza i omOwienie wynikOw

W ramach badan wytrenowano sieci oparte na trzech roéznych architekturach
charakteryzujacych si¢ r6zng liczbg map cech w warstwach konwolucyjnych, a tym samym
r6zng liczbg wszystkich parametréw (rozmiarem sieci). Przeprowadzono badania nad
zwigzkiem pomig¢dzy dtugosci wektora kodowan a praca tych struktur. Z racji tego, ze obrazy
wejsciowe majg rozmiar 32x32 piksele, dobor liczby kodowan odpowiadat wymienionym

stopniom kompresji:

a. 8 kodowan — 0,78 %,
b. 16 kodowan — 1,56 %,
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e

32 kodowan — 3,13 %,
64 kodowan — 6,25 %,
128 kodowan — 12,50 %,
256 kodowan — 25,00 %,
g. 384 kodowan — 37,50 %.

&

jaur]

Kazda z sieci wytrenowano z wykorzystaniem réznych stopni zaszumienia, co
pozwolito na wygenerowanie trzech zestawdéw wykresow poréwnawczych (rysunki 4.7, 4.8
1 4.9), po jednej dla kazdej mocy szumu. Lewa kolumna kazdego rysunku przedstawia
porownanie wartosci PSNR, natomiast w prawej kolumnie znajduja si¢ wartosci SSIM. Kazdy
zrzedow odpowiada jednej z testowanych architektur, co jest tez dodatkowo oznaczone. Wyniki
na kazdym wykresie sg pogrupowane wzgledem wykorzystanej liczby kodowan w kolejnosci
rosnacej, przy czym po prawej znajduja si¢ wartoSci wspomnianych metryk dla danych
surowych (oryginalnych, nieprzetworzonych) i wynikow dziatania algorytméw BM3D i NLM.
Wyniki dla kazdego podej$cia sa oznaczone réznymi kolorami, a takze sa uporzadkowane

w kolejnosci, w ktorej sa wymienione w legendzie kazdego rysunku.

Pierwszym wnioskiem plynacym z analizy wynikow jest to, Ze rosngca moc szumu
zauwazalnie pogarsza jako$¢ obrazow, jednak uzycie algorytmoéw deterministycznych
statystycznie skutkuje poprawa ich jakosci, czyli s3 to odpowiednio dobrane algorytmy
poréwnawcze. Drugg wazng kwestig sa roznice w dziataniu architektury pierwszej i1 drugie;j.
Wraz ze wzrostem liczby kodowan mozna zauwazy¢ zauwazalng zmiang w jakosci wynikow
uzyskiwanych przez architekture 2, jednak w przypadku architektury 1 zachodzace zmiany sa
minimalne. Swiadczy to o tym, ze sieci tego typu majg niewystarczajagce mozliwosci
obliczeniowe, by byly w stanie skutecznie przetworzy¢ dane o zadanym rozmiarze. Szczegolnie
wida¢ to w przypadku stabego 1 umiarkowanego szumu, gdy zastosowanie tak matych sieci
degraduje jako$¢ obrazéw wejsciowych. Sytuacja wyglada nieco lepiej w przypadku obrazow
mocno zaszumionych, dla ktérych poprawiaja one wartosci PSNR we wszystkich
analizowanych przypadkach. Nie jest to jednak znaczaca zmiana, wobec czego mozna si¢
spodziewac, ze bedzie ona trudna to zauwazenia; obserwacje t¢ potwierdzajg bardzo niskie

wartosci SSIM, swiadczace o zaniku wielu elementow strukturalnych.

W przypadku drugiej, wickszej architektury mozna zauwazy¢, ze jakos¢ sieci w kazdym
przypadku ulega poprawie. Przy niewielkim zaszumieniu sieci wcigz pogarszaja jakosé
poszczegbdlnych fragmentéw obrazu, co mozna zauwazy¢ po nizszych wartosciach PSNR,
niemniej dla 64 kodowan sa w stanie uzyska¢ wysoka wartos¢ SSIM. Dla poréwnania
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architektura 3 ma przy 64 kodowaniach ponad 25 razy wigcej parametrow niz architektura 2,
co pozwala jej osiagnac lepsze wyniki; mimo to poprawa ta nie jest az tak znaczaca, jak mozna
by si¢ spodziewa¢ po takiej réznicy rozmiarow. Ograniczenie to w duzej mierze jest
spowodowane niewielkg dtugoscig wektora kodowan — korzystajac z tak matej ilosci informacji
(Jedynie 6,25 % wielko$ci pierwotnych danych), niezwykle trudno jest doktadnie odtworzy¢
oryginalny obraz. Jak mozna zauwazy¢, dalsze zwigkszanie dtugosci tego wektora pozytywnie

wplywa na dziatanie sieci.

Sposrod wszystkich punktow analizy najistotniejsza jest jednak ocena wptywu
poszczego6lnych metod uczenia na dziatanie sieci w rozwazanych scenariuszach. Porownanie
takie najlepiej jest przeprowadzi¢ na przyktadzie wynikow architektury 3, poniewaz wylacznie
ona byla w stanie poradzi¢ sobie z redukcja szumu dla wszystkich testowanych mocy.
Przygladajac si¢ wynikom dla stabego szumu, mozna zaobserwowacd, ze wszystkie metody
osiggaja poczatkowo zblizone wyniki, jednak wraz ze wzrostem liczby kodowan metody
Noise2Clean, Noise2Noise i Noise2Reference zaczynaja osiggac¢ znacznie lepsze wyniki niz
metody bazujagce na uczeniu si¢ prostej kompresji i pordwnaniu wyniku z obrazem
wejsciowym. Jest to prawdopodobnie spowodowane tym, ze w tych podejsciach modele
musiaty w pewnym stopniu modyfikowaé obrazy wejsciowe, by moc je poréwnacé z obrazami

innymi; w ten sposob nauczyty si¢ lepiej uogdlnia¢ swojg pracg na niewidziane wczesniej dane.

Przy mocniejszych mocach szumu mozna zaobserwowaé zjawisko podobne — trening
Noise2Reference osigga bezsprzecznie najlepsze wyniki, co zgadza si¢ z zalozeniami.
Najwazniejsze w kontekscie reszty pracy jest jednak to, ze Noise2Clean uzyskuje wyniki
zblizone do Noise2Reference, co udowadnia, ze mozna stosowa¢ to podej$cie na danych
rzeczywistych. Co ciekawe, zaraz za tymi metodami plasujg si¢ Clean2Self i Reference2Self.
Jak wida¢, w przypadku wigkszego zaszumienia sieci te sg w stanie lepiej przetworzy¢ ogdlng
strukturg danych, ignorujac przy tym losowy szum. Nieco gorszg metoda jest Noise2Noise,
jednak we wszystkich przypadkach podejscie to poprawia dane lub przynajmniej nie pogarsza
ich jakosci. Swiadczy to o tym, ze na danych astronomicznych mozna wykorzystaé rowniez te
metode 1 spodziewac¢ si¢ dobrych jakosciowo rezultatow. Najgorzej z testowanych podejs¢
wypadto Noise2Self, ktore dla wiekszych dtugosci wektora kodowan zaczyna stopniowo traci¢
na jakosci. Jest to zapewne spowodowane zbyt duza ilo$cig zachowywanej informacji — gdy

kompresja staje si¢ stabsza, model zaczyna przenosi¢ szum na obraz wynikowy.
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Rysunek 4.7. Porownanie wynikow dziatania algorytmow przy niskim poziomie szumu.
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Rysunek 4.8. Porownanie wynikow dziatania algorytmow przy umiarkowanym poziomie szumu.
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Rysunek 4.9. Porownanie wynikow dziatania algorytmow przy wysokim poziomie szumu.
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Innym interesujagcy wniosek wynika z poréwnania sprawnos$ci filtracji z uznanymi
metodami deterministycznymi reprezentowanymi przez metody BM3D oraz NLM. Przy niskim
poziomie szumu, obie metody sg w stanie skutecznie poprawia¢ jako$¢ obrazu, podczas gdy
rozwigzania oparte na sieciach dostarczajg danych o poziomie zaktocenia (znieksztatcenia)
pogarszajagcym znaczgco obraz surowy. Dopiero na poziomie srednich szuméw, a zwlaszcza
dla szuméw silnych, przewaga sieci, szczeg6lnie tych bardziej rozbudowanych, zaczyna by¢
zauwazalna. Rezultaty otrzymane w eksperymencie pokazuja, ze decyzja pomi¢dzy uzyciem
rozwigzan opartych na autoenkoderach a algorytmoéw deterministycznych, moze by¢ trudna
1 wymaga wiedzy o poziomie szumu wzgledem uzytecznego sygnatu. Dopiero odpowiednie
eksperymenty moga potwierdzi¢ przewage poszczegdlnych rozwigzan. Algorytmy BM3D oraz
NLM okazaty si¢ bezpiecznym rozwigzaniem, zawsze poprawiajagcym jako$¢ obrazow.
Niemniej rozbudowane sieci badane w tym eksperymencie, w przypadku obecnosci silnego

szumu, potrafig wykazywac znacznie wieksza skuteczno$¢.

By moéc potwierdzi¢ powyzszg analize, nalezy dokona¢ dodatkowej oceny wizualnej
wynikéw. Na rysunkach 4.10 1 4.11 przedstawiono porownanie wynikow dziatania wybranych
sieci 1 klasycznych algorytmow. Poszczegdlne kolumny odpowiadaja r6znym mocom szumu,
natomiast kazdy wiersz przedstawia wyniki dziatania dla danej metody z warto§ciami PSNR
oraz SSIM. Jako przetwarzany obraz wybrano przyktad zawierajacy cyfre 8, poniewaz zawiera
dwie petle wypelione czarng przestrzenia, co czyni ja jedna z bardziej ztoZzonych struktur

sposrdd wykorzystanych danych syntetycznych.

Na rysunku 4.10 porownano dziatanie architektur 1 1 2 zawierajacych po 64 kodowania
1 uczonych z wykorzystaniem metod Noise2Noise (N2N) i1 Noise2Clean (N2C). Jak wida¢,
najmniejsze sieci nie s3 w stanie nauczyc¢ si¢ poprawnego przetwarzania danych, wobec czego
ich praca w kazdym przypadku konczy si¢ dodatkowa degradacja danych wejSciowych.
Uzyskanie przez nie wysokiej wartosci PSNR przy mocnym szumie podkresla
stabosci tej metryki, ktora w pewnym stopniu niweluje SSIM, ktérego wartosci swiadcza
o utracie znacznej czes$ci informacji strukturalnej. W przypadku bardziej rozbudowane;j
architektury obraz wynikowy lepiej odpowiada stawianym mu warunkom. Chociaz, te sieci
wcigz nie s3 w stanie odtworzy¢ doktadnych struktur, mozna w ich wypadku mowié
o zauwazalnym podobienstwie do oryginatu. Wartosci uzytych metryk réwniez potwierdzaja

lepsza jakos¢ danych.
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Zastosowane Staby Umiarkowany Silny
podejscie szum szum
Obraz
poréwnawczy
2861 dB; 0.766 16.75 dB; 0.603 9.6 dB; 0.345
Obraz
zaszumiony

30.80 dB: 0.802 20.19 dB: 0.656

Z
<

30.80 dB; 0.793 20.11 dB; 0.655 13.68 dB; 0.455

BM3D

14.74 dB; 0.449 14.20 dB: 0.350 12.22 dB: 0.206

Architektura 1 (N2N)

14.91 dB; 0.495 14.41 dB; 0.377 13.43 dB; 0.253

Architektura 1 (N2C)

.

18.94 dB: 0.753 17.39dB: 0.573 13.40dB: 0.346

Architektura 2 (N2N)

Cal
Cal
=t

19.23 dB: 0.790 17.88 dB: 0.613 15.03 dB: 0.420

Architektura 2 (N2C)

t]e]t

Rysunek 4.10. Wizualne poréwnanie redukcji szumu przez algorytmy deterministyczne oraz architektury 1 1 2

uczone metodami N2C 1 N2N dla 64 kodowan.
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Zastosowane Slaby Umiarkowany Silny
podejscie szum szum szum
Obraz
poréownawczy
28.61 dB; 0.766 16.75 dB; 0.603 9.86 dB; 0.345
Obraz
zaszumiony

30.80 dB; 0.802 20.19 dB; 0.656

&
<

30.80 dB: 0.793 20.11 dB; 0.655 13.68 dB: 0.455

BM3D

21.13dB; 0.778 18.89 dB: 0.624 13.82dB: 0.378

Architektura 3 (N2N)
64 kodowania

G
=2

2048 dB; 0.773 19.97 dB; 0.682 16.22dB: 0.515

Architektura 3 (N2C)
64 kodowania

Gl
Gl

29.37 dB; 0.897 21.73 dB; 0.679 14.25dB: 0413

Architektura 3 (N2N)
384 kodowania

29.81 dB; 0.891 23.48 dB: 0.735 16.97 dB: 0.563

Architektura 3 (N2C)
384 kodowania

Rysunek 4.11. Wizualne poréwnanie redukcji szumu przez algorytmy deterministyczne oraz architektury 3 uczonej

metodami N2C i N2N dla 64 1 384 kodowan.
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Przedstawione na rysunku 4.11 wyniki dziatania architektury 3 osiagaja jeszcze wyzszg
doktadno$¢ odszumionych obrazow. Szczego6lnie widoczne jest to przy wykorzystaniu 384
kodowan, gdy sieci okazuja si¢ lepsze w dziataniu od poroéwnywanych algorytmow
deterministycznych. Co szczegélnie istotne, w przypadku obrazoéw przetworzonych przez
dowolng z sieci, szum zostaje catkowicie wyeliminowany, a problemem pozostaje poprawne
odwzorowanie istotnych obiektéw. W przypadku klasycznych algorytmow sytuacja taka nie ma
miejsca — wraz ze wzrostem natezenia szumu, pojawiajg si¢ artefakty zwigzane z dziataniem
tych metod. Obserwacja ta stanowi podstawowy wniosek z zaprezentowanych w tym rozdziale
rozwazan, poniewaz przemawia na korzys¢ zaproponowanego podejscia do redukcji szumu

w obrazach astronomicznych poprzez uzycie sieci kompresujacych dane.

4.7. Opis dalszego kierunku badan

W rozdziale przeanalizowano wptyw hiperparametréw sieci typu autoenkoder na ich
zdolnosci redukcji szumu w przypadku prostych obrazow monochromatycznych. Jak
wykazano, sieci te, odpowiednio dostrojone, sg w stanie osiagna¢ wyniki o lepszej jakosci od
tych uzyskiwanych przez klasyczne algorytmy deterministyczne, lecz nie jest to regutg. Co
istotne, efekt ten zachodzi nawet w sytuacji, gdy do procesu treningu nie zostang wykorzystanie
dane ,,czyste”, czyli niezawierajace szumu. Uzasadnia to wybor tych struktur sieci do dalszych

eksperymentow na danych rzeczywistych.

Wykorzystanie autoenkoderéw z wektorem kodowania o statej dtugosci wymaga jednak,
by wszystkie dane wejsciowe mialy jednakowe wymiary przestrzenne, co jest ograniczeniem
elastycznosci modelu. W wielu sytuacjach wigze si¢ to z potrzeba przeskalowania lub
przyciecia obrazow tak, by odpowiadaly danemu rozmiarowi. Dodatkowo warstwy w pehni
polaczone analizujg kazdy z pikseli osobno, natomiast w przypadku przetwarzania obrazoéw

bardzo czgsto zalezy nam na zachowaniu zalezno$ci pomigdzy sasiednimi pikselami.

Rozwigzaniem tej niedogodnos$ci sg sieci w petni konwolucyjne FCN (ang. Fully
Convolutional Network) [57], ktore nie zawieraja warstw gestych. Dzialanie takich sieci nie
opiera si¢ na przetwarzaniu danych do jednowymiarowego wektora kodowan, lecz do tensora
o zadanej liczbie map cech o nieokreslonych wymiarach przestrzennych (wymiary te sa
nieokreslone, poniewaz w zaden sposob nie wptywaja na prace danej warstwy, jak wyjasniono

w poprzednim rozdziale). Dzigki takiemu podejsciu, sieci typu FCN sg w stanie przetwarzac
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obrazy o dowolnych® rozmiarach. W zwiazku z tym, dalsze badania zostaty skierowane na
wykorzystanie sieci FCN. Pozwolilo to migdzy innymi znaczaco uprosci¢ proces uczenia
i zbierania danych wymaganych do przeprowadzenia eksperymentow, co jest szczegdlnie
istotne w kontek$cie wykorzystanych danych stonecznych, ktére zostang omowione

w rozdziale 6.

® Rozmiar ten moze by¢ dowolny jednak jedynie w pewnym stopniu. Sieci FCN zazwyczaj wielokrotnie zmieniaja
wymiarowo$¢ obrazu podczas jego przetwarzania. Dla czterokrotnego zmniejszenia rozmiaru przestrzennego
o polowg, obraz w najglebszej warstwie bedzie 16-krotnie zmniejszony wzgledem oryginatu. By uniknac¢ mozliwej
zmiany rozmiaru obrazu wyjsciowego, nalezy zadbaé, by obraz wejsciowy mogt bez przeszkod zosta¢ poddany

takim operacjom (w opisanej sytuacji jego dtugosc¢ i szeroko$¢ musza by¢ opisane warto$cig podzielng przez 16).
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5. Redukcja szumu w danych obrazowych nocnego nieba

W poprzednim rozdziale opisano wptyw ztozonosci sieci i zastosowanej strategii
treningowej na mozliwo$ci redukcji szumu. Wyciagnigte z przeprowadzonych badan wnioski
umozliwily przeprowadzenie dalszych badan z wykorzystaniem typowych danych
astronomicznych. Zdecydowano si¢ przetestowaé wptyw rozmiaru sieci i metod treningowych

Noise2Noise oraz Noise2Clean na jako$¢ przetworzonych danych rzeczywistych.

Zbioér danych utworzono z wielu serii obserwacyjnych, kazdej ztozonej z pig¢dziesigciu
klatek wykonanych jedna po drugiej przy czasie ekspozycji réwnym 500 ms. Stosujac
usrednianie serii, otrzymano obrazy referencyjne typu Clean. Oczekiwanym rezultatem
dziatania sieci byto uzyskanie obrazow o jakos$ci lepszej od pojedynczych klatek serii Noise,
docelowo poréwnywalnych z Clean. Analiza wynikow nie ograniczylta si¢ w tym wypadku
jedynie do zestawienia warto$ci wybranych metryk i oceny wizualnej. Zastosowano dodatkowe
miary porownawcze, ktére umozliwily weryfikacje kluczowych cech danych astronomicznych.
Gltowny nacisk polozono na mozliwo$¢ poprawnej detekcji gwiazd, ktére w pojedynczych
klatkach surowych moga by¢ w duzej mierze ,,przystoni¢te” przez szum. Pozwolilo to
porownac znacznie trudniejsze w opisie charakterystyki ksztattu obiektoéw gwiezdnych, ktore
moga nie by¢ dobrze odzwierciedlone przez standardowe wskazniki. Przeanalizowano rowniez,
jak duze zmiany zachodza w zmierzonych potozeniach i jasnos$ciach gwiazd, ktore mogty by¢

wykryte w obrazie.

Do eksperymentéw wykorzystano struktury autoenkoderow o rdéznym stopniu
zlozonosci, a rozwigzania wzbogacono dodatkowo o sieci typu U-Net. Pierwsza z nich powstata
jako rozwinigcie wykorzystanego autoenkodera, a za drugg przyjeto jedno ze sprawdzonych
w literaturze rozwiazan. Z algorytméw deterministycznych zdecydowano si¢ ponownie na
wykorzystanie BM3D, a zrezygnowano z NLM, ktory kazdorazowo zwracat bardzo zbliZone,
acz nieco gorsze wyniki. Zastagpiono go znacznie prostszym, a zarazem szybszym, filtrem
Wienera, co pozwolito lepiej oceni¢ stopien ztozonosci zagadnienia redukcji szumu w obrazach

rzeczywistych w kontek$cie zastosowania najprostszych rozwigzan.

Przeprowadzone badania opracowano w formie niniejszego rozdziatu, na ktory sktada
si¢ sze$¢ oddzielnych czeSci. W pierwszej z nich przyblizono charakter wykorzystanych
danych, by w kolejnej przedstawi¢ metody oceny ich jako$ci: wybrane metryki, technike oceny
poprawnosci detekcji, a takze podej$cie do analizy astrometrycznej i fotometrycznej. Trzecia

z sekcji obejmuje spis najnowszych sieci neuronowych, ktore sa obecnie stosowane w redukcji
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szumu na obrazach astronomicznych. Czwartg cz¢s¢ poswiecono doktadnemu omoéwieniu
testowanych sieci. Przedostatni podrozdziat poswigcony jest analizie otrzymanych wynikow,

a w ostatnim poruszono temat dalszego kierunku badan.

5.1. Wykorzystane dane

Do treningu i testow uzyto zestawu danych zebranych podczas jednej nocy obserwacji,
na ktoéry skladajag si¢ serie zdje¢ rdznych obszaréw nieba w seriach ztozonych z 50 klatek
o czasie ekspozycji rownym 500 ms. Do akwizycji wykorzystano zaprezentowany na rysunku
2.6 teleskop Newtona o $rednicy lustra gtdéwnego 30 cm wyprodukowany przez firm¢ ASA.
Teleskop ten wyposazono w kamer¢ chtodzong CMOS ASI ZWO 1600MM. Pozyskane ta
aparaturg surowe zdjecia majg rozdzielczos¢ 3520x4656 pikseli i skalg katowa piksela rowna
0,636 ”/piksel. Zestaw tego typu mozna uznaé za reprezentatywny przyklad instrumentu

niewielkiego obserwatorium astronomicznego.

Z tak utworzonego zbioru wybrano dwie serie, ktorych obrazy przycieto do rozmiaru
1024x1024, centrujac je na obszarach z najwicksza liczba jasnych gwiazd; postuzyty one
walidacji 1 testom. Centralny fragment obrazu gwarantuje rowniez brak istotnych wad
optycznych, ktore, szczegdlnie w konstrukcji teleskopu Newtona, pojawiajg si¢ wraz
z oddalaniem si¢ od osi optycznej. W trakcie treningu wykorzystano pozostate serie, z ktorych
w kazdej epoce wybierano losowe, pokrywajace si¢ fragmenty o rozmiarze 128x128 pikseli.
Kazda z grup tych wycinkow zostawala nastgpnie z pewnym prawdopodobienstwem
poddawana procesom rotacji oraz symetrycznym odbiciom wzgledem osi pionowej, poziome]
lub glowne; przekatnej obrazu. Pozwolito to dodatkowo zwigkszy¢ rozmiar zbioru

treningowego.

Na rysunku 5.1 przedstawiono porownanie nieprzetworzonej klatki ze zbioru testowego
z wynikiem usrednienia calej serii. Jak mozna zauwazy¢, na klatce usrednionej szum zostat
w znacznym stopniu zredukowany, dzieki czemu mozna wyszczegolni¢ wigcej gwiazd niz na
obrazie surowym. Odpowiada to przyjetym zalozeniom i pozwala porowna¢ wyniki dziatania

testowanych rozwigzan.
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Pojedyncza klatka Klatka usredniona z 50 klatek

0
%

Rysunek 5.1. Porownanie pojedynczej klatki surowej i klatki usrednionej z calej serii (czas ekspozycji dla

pojedynczej klatki wynosi 500 ms).

5.2. Ocena jakosci przetworzonych obrazow

Wyniki dziatania sieci zostaly ponownie opisane ilo$ciowo za pomocg wykresow
pudetkowych, ktore pozwolily ocenié statystyczny wplyw poszczegolnych metod na jakos$¢
przetwarzanych obrazow. Do analizy wykorzystano metryki stosowane do oceny obrazow
astronomicznych, zweryfikowano mozliwos¢ detekcji gwiazd, a takze obliczono ich odchytki

polozenia i jasnosci.

5.2.1. Metryki obrazowe — PSNR i FSIM

Poczatkowo planowano ponownie wykorzysta¢ metryki PSNR 1 SSIM. W trakcie
analizy okazalo si¢ jednak, ze wartosci SSIM we wszystkich przypadkach wynosza wigcej niz
0,999, a roznice wystepuja dopiero na czwartym miejscu po przecinku. Chociaz moze to
$wiadczy¢ o braku istotnych artefaktow wprowadzanych przez testowane metody, ogranicza to
mozliwos¢ rzetelnej oceny wynikdw z wykorzystaniem tej metryki. Biorgc pod uwage, ze
wykrywalne gwiazdy zajmuja tylko niewielkg czg$¢ powierzchni obrazow, a wigkszo$¢ stanowi
jednorodne tlo, trudno wyciagnaé z takiej analizy wnioski dotyczace zmian lokalnych w obrebie

obiektow zainteresowania jakim sg gwiazdy.

str. 89



Rozdziat 5. Redukcja szumu w danych obrazowych nocnego nieba

W zwiazku z tym metryka SSIM zostata zastgpiona przez wskaznik podobienstwa cech
FSIM [118] (ang. Feature Similarity Index) bedacy jej rozwinigciem. Chociaz miara ta jest
bardziej zlozona obliczeniowo, stosuje si¢ ja w szczegdtowych analizach, bo lepiej opisuje
cechy istotne dla ludzkiej percepcji. Wartosci FSIM mieszczg si¢ w zakresie [0; 1], przy czym

1 oznacza obraz identyczny, a 0 catkowity brak podobienstwa.

5.2.2. Detekcja gwiazd

Do detekcji gwiazd na obrazach wykorzystano algorytm DAOFIND [119]
zaimplementowany w bibliotece Photutils [120] jako DAOStarFinder. Jest to powszechnie
stosowane rozwigzanie w technikach przetwarzania danych astronomicznych z teleskopoéw

optycznych. Dziatanie tego algorytmu mozna opisa¢ w szesciu punktach:

1) Na poczatku wyznaczone zostaja podstawowe statystyki analizowanego obrazu, czyli
warto$ci mediany i odchylenia standardowego o.

2) Od kazdego piksela obrazu odejmowana jest mediana, by tlo nie dominowato
w procesie detekcji, a zrodta punktowe bardziej si¢ wyrdznialy.

3) Uzytkownik ustawia warto$ci parametrow detektora. Pierwszym z nich jest warto$¢
progu detekcji pa, ktory okresla, od jakiej warto$ci poszczegédlne piksele moga by¢
zakwalifikowane jako cz¢$¢ potencjalnego zrodta swiatla. Parametr ten jest najczesciej
okreslany jako wielokrotno$¢ o. Zazwyczaj ps miesci si¢ w zakresie od 30 do 7o,
a zalecang wartos$cig jest 5o, ktora zachowuje kompromis pomiedzy wykrywaniem
gwiazd a pomijaniem szumu.

4) Nastgpnie dopasowywana jest warto$¢ szerokosci potowkowej FWHM (ang. Full Width
at Half Maximum) profilu gwiazdy w obrazie. Jest to wielko$¢ liczbowa réwna
odlegtosci pomigdzy dwoma punktami x; 1 x2, dla ktorych rozwazana funkcja, profil
gwiazdy, osiagga potowe swojej maksymalnej wartosci (rysunek 5.2). W praktyce
astronomicznej zaktada si¢, ze FWHM dla obiektow punktowych w umiarkowanych
warunkach stabilno$ci atmosfery wynosi 3”7, wobec czego dla wykorzystanych zdjec
ustalono te warto$¢ na 5 pikseli (5 pikseli pomnozone przez skalg katowa piksela,
0,636 /piksel, wynosi w przyblizeniu 3”).

5) Trzecim parametrem jest minimalna odlegto$¢ w pikselach pomiedzy obiektami, ktore

podlegaja dziataniu algorytmu. Dla wszystkich testow zostata ona ustawiona na

str. 90



Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazow astronomicznych

5 pikseli, co odpowiada sytuacji w ktorej dwie sgsiednie gwiazdy muszg by¢ oddalone
co najmniej o 3 sekundy katowe.

6) Nastepnie do kazdego punktowego zrodta dopasowywany jest dwuwymiarowy model
Gaussa, ktory reprezentuje idealny ksztatt gwiazdy. Wszystkie punkty spelniajace

okreslone kryteria zostajg sklasyfikowane przez detektor jako gwiazdy.

Opisany powyze] wybor parametrow w procesie automatycznej detekcji skonsultowano
z astronomami oraz osobami zajmujacymi si¢ od wielu lat profesjonalnymi pomiarami

astronomicznymi.

Ymax

Rysunek 5.2. Przedstawienie szerokosci potéwkowej (FWHM zaznaczono czerwong linig przerywang).

Do wyznaczenia punktu odniesienia wykorzystano usredniony obraz z serii testowej,
ref. Dokonano na nim detekcji z uznang za standard warto$cig progu ps réwna So
1 przeprowadzono analiz¢ wizualng, ktora potwierdzita, ze DAOStarFinder poprawnie
wyznaczyl wigkszo$¢ dostrzegalnych na obrazie gwiazd. Wyznaczone pozycje postuzyty do
poréwnania dzialania testowanych metod. Porownywanie to zostalo sprowadzone do zadania
klasyfikacji, ktore oceniono z wykorzystaniem macierzy pomylek przedstawionej na rysunku
5.3. Pozwolito to uzyskaC statystyki opisujace poprawnos$¢ detekcji na obrazach im

w poroéwnaniu do detekcji na obrazie ref.
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a. TP (prawdziwie pozytywna, ang. True Positive) — liczba gwiazd wykrytych na im, ktore
pokrywaja si¢ z detekcjami na ref;

b. FN (falszywie negatywna, ang. False Negative) — liczba gwiazd, ktore wykryto na ref,
a pozostaly niewykryte na im;

c. FP (falszywie pozytywna, ang. False Positive) — liczba obiektow wykrytych na im,
ktérych nie wykryto na ref.

Pozostata statystyka TN (prawdziwie negatywna, ang. True Negative) oznaczalaby
w danym eksperymencie ,,poprawnie niewykryte” gwiazdy, czyli oznaczenie przez detektor, ze
analizowany punkt nie jest gwiazda. Warto$¢ ta nie ma odpowiednika w uzyskanych wynikach,

wobec czego zostala pominigta w analizie.

RZECZYWISTOSC
POZYTYWNA | NEGATYWNA
m
E § Prawdziwie Falszywie
% lE pozytywna pozytywna
>
= | B TP FP
>_' e
=
= |z | |
= = Falszywie Prawdziwie
N ﬁ negatywna negagywna
<
& é FN TN

Rysunek 5.3. Macierz pomytek z odrzucong statystyka 7TN.

Bazujac na wartosciach 7P, FN i TP wyznaczono warto$ci precyzji (rownanie 5.1)
1 czuto$ci (rownanie 5.2). Pierwsza z tych metryk okresla, jaka cze$¢ obiektow wykrytych na
im to rzeczywiscie gwiazdy, natomiast druga opisuje, jaka czes$¢ gwiazd z ref zostala wykryta
na im. W praktyce dazy si¢ do optymalizacji obu tych parametrow jednocze$nie, jednak jest to
zazwyczaj niemozliwe, wobec czego wyznaczana jest warto$¢ najlepiej dostosowana do
konkretnego zastosowania. By pomdc w znalezieniu kompromisu pomiedzy tymi statystykami,

stosuje si¢ krzywa PR (ang. Precision-Recall), ktora przedstawia precyzje w funkcji czutosci
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dla réznych wustawien algorytmu detekcyjnego. W przypadku przeprowadzonych

eksperymentéw omawianym, regulowanym ustawieniem jest warto$¢ progu detekcji pa.

TP
qa = —— 5.1
Precyzie = rp y Fp G-
TP
}o$¢ = —— 5.2
czutosé TP+ FN (5.2)

Na rysunku 5.4. przedstawiono przyktadowy przebieg takiej krzywej i zaznaczono
punkt, ktory odpowiada parze wartosci (czutos$¢, precyzja) uzyskanych przy zadanej wartosci
progu pq. Z racji trudnosci w precyzyjnej ocenie zmian krzywych PR, powszechng praktyka
umozliwiajaca porownanie metod jest wyliczanie wartosci pola pod krzywa, AUC (ang. Area
Under the Curve). W przypadku przeprowadzonych badan, im wyzsza warto§¢ AUC, tym

skuteczniejszy proces detekcji na analizowanych obrazach.

1.0
Punkt wyznaczony
dla zadanej wartosSci
progu Pg
0.8 1
o 061
s
> Pole pod krzywa
§ (AUC)
A 0.4
0.2+
0.0 T T T T
0.0 0.2 04 0.6 0.8 1.0
Czulosc

Rysunek 5.4. Przyktadowa krzywa PR wraz z zaznaczonym polem pod krzywa AUC.
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5.2.3. Zmiana polozenia centroidu gwiazdy

Obecnos¢ szumu sprawia, ze wykrywane na poszczegolnych obrazach im gwiazdy
mogg by¢ oddalone o Ap pikseli od swoich pozycji wyznaczonych na ref. W przeprowadzonej
analizie zdecydowano si¢ okresli¢ maksymalng akceptowalng wartos¢ Ap roéwng pigciu
pikselom, co jest rtbwnowazne z minimalng liczbg pikseli pomi¢dzy wykrywanymi gwiazdami.
Jezeli przesuniecie byto wigksze, detekcja byla uznawana za nieprawidlowa, poniewaz

dochodzi przy niej do znaczacej (Wynoszacej co najmniej 3”’) zmiany pozycji obiektu.

Oprocz samej detekcji zdecydowano si¢ takze zestawi¢ ze sobg warto$ci przesunieé Ap
dla wszystkich metod, by oceni¢ ich dziatanie rowniez w tym aspekcie. Co istotne, pozycje
gwiazd nie sg okre§lane przy pomocy indeksow pikseli, lecz oznacza si¢ je jako pozycje
centroidow, ktore sa wyznaczane z doktadnos$cig subpikselowa, czyli uwzgledniajaca czes$¢

utamkowag. Analizowane warto$ci maja przez to charakter ciagly, a nie dyskretny.

5.2.4. Zmiana jasno$ci gwiazd

Kolejnym podlegajacym ocenie zagadnieniem byla zmiana jasno$ci obiektéw
wykrywanych na im wzglgdem ich jasno$ci okreslonej na ref. Pomiar tej wielkosci zachodzi
W opisany ponizej sposob, z wykorzystaniem parametréw ustalanych odgdrnie przez osobe
dokonujacg analizy (na rysunku 5.5 przedstawiono schemat pomocniczy). Proces ten nazywany

jest fotometrig aperturowa.

1) Dla kazdej wykrytej gwiazdy ustala si¢ promien 7x opisanego na niej kota. Wartos¢ ta
wynosi zazwyczaj dwukrotnos¢ wartosci FWHM wykorzystanego w procesie detekcji.
W tym wypadku zostala zatem okreslona jako 10 pikseli.

2) Ustawiane sg rOwniez warto$ci promieni 7, 1 7., ktore opisuja otaczajacy gwiazde
pierscien pomiaru tta. W przypadku analizowanych obrazow przyjeto 7, = 20 pikseli
17y =22 piksele.

3) Wyznaczana jest mediana wartosci pikseli wchodzacych w sktad pierScienia tla.
Warto$¢ ta opisuje typowa wartos¢ tta w otoczeniu gwiazdy. Zamiennie do mediany
stosuje si¢ czasem warto$¢ Srednig pierscienia, ale moze by¢ ona obcigzona obecnos$cia
pobliskich gwiazd.

4) Sumowane sg warto$ci wszystkich pikseli wyznaczonego kota wewnetrznego, a od

wyniku odejmowana jest warto$§¢ mediany tta pomnozona przez pole kola wyrazone
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w pikselach. W efekcie uzyskuje si¢ warto$§¢ strumienia S$wiatla f (ang. flux)
pochodzacego od badanej gwiazdy.

5) Warto$¢ fjest przedstawiana w jednostkach magnitudo, obliczanych zgodnie ze wzorem
5.3. W przypadku poréwnywania jasnosci obiektow znajdujacych si¢ na danych
pochodzacych z odmiennych instrumentow, obliczana jest warto$¢ punktu zerowego ZP
(ang. zero point), ktéora okresla wymagane przesunigcie dla kazdej jasnosci.
W przypadku prowadzonych badan wszystkie dane zostaly zebrane przez ten sam
instrument, wobec czego pomini¢to wyznaczanie wartosci ZP i poréwnywano jedynie

tak zwane magnitudo instrumentalne.

mag = —2,5log,(f) + ZP (5.3)

Rysunek 5.5. Wyznaczanie jasnosci analizowanego obiektu.

5.3. Znane metody przetwarzania obrazow astronomicznych

W ostatnich latach mozna bylo zaobserwowac duze zainteresowanie zastosowaniem
sieci neuronowych w przetwarzaniu obrazéw astronomicznych nocnego nieba. Przyczyna tego
stanu jest dynamicznie zwigkszajaca si¢ ilos¢ danych do przetworzenia i zwigzana z nig

potrzeba automatyzacji tego procesu. Rozwazajac stosowane podej$cia pod wzgledem ich
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zastosowania w detekcji obiektéw astronomicznych, mozna wyodrebni¢ dwie grupy

algorytmow.

Pierwsza z nich obejmuje metody, ktore, uczac si¢ odpornosci na zaktdcenia, pomijajg
etap wstepnego przetwarzania obrazu i dokonuja detekcji bezposrednio na surowych danych
[121][122], czgsto taczac to z klasyfikacjg wykrytych obiektow [123][124] lub z pomiarem ich
jasno$ci [125]. Taki sposob dzialania jest niewatpliwie korzystny z punktu widzenia
automatyzacji, jednak wiazg si¢ z nim pewne trudnosci. Podstawowa z nich jest ztozono$¢
implementacyjna — do poprawnego treningu wyniki dziatania sieci musza by¢ pordwnywane
Z rzeczywistymi pozycjami obiektow, co wymaga przeprowadzenia czasochlonnego procesu
oznaczania danych i weryfikacji jego poprawnos$ci. Nadrzednym problemem jest jednak
konieczno$¢ posiadania danych z instrumentéw co najmniej o klase lepszych (w kontekscie
precyzji pomiarowej), najlepiej pracujacych w przestrzeni kosmicznej i rejestrujacych $wiatto
w tym samym zakresie spektralnym. Niestety, w takim przypadku pozycje gwiazd moga si¢
r6zni¢ od tych rejestrowanych z poziomu Ziemi, gtownie z powodu braku obecnosci refrakcji

atmosferyczne;.

Alternatywa okazuja si¢ by¢ rozwigzania z drugiej grupy, ktore skupiajg si¢ wytacznie
na przeprowadzeniu pojedynczego etapu przetwarzania lub analizy danych (na przyklad na
samej fotometrii [126]). Dziatanie takich metod fatwiej oceni¢ i zinterpretowaé, zwlaszcza
wizualnie, a ich trening nie wymaga tak skomplikowanego przygotowania danych. Dodatkowo
zwiekszajag one modularno$¢ catego procesu, bo mozna zamiennie uzywacé algorytmoéw
skupiajacych si¢ wylacznie na jednym aspekcie. Z tego powodu uwage zwrocono gidwnie na

te sieci, ktore zajmuja si¢ samg redukcja szumu.

Sposrdd spotykanych rozwigzan najwigcej wymieni¢ mozna tych bazujacych na
architekturze U-Net [127]-[132], ale wykorzystywano réwniez autoenkodery [129][133][134]
oraz inne sieci ztozone gtownie z warstw konwolucyjnych [135][136], w tym jedna sie¢ zlozong
z warstw gestych [137]. Wiekszo$¢ z wymienionych rozwigzan byla testowana na danych
pochodzacych z teleskopdw wysokorozdzielczych i/lub danych syntetycznych. Zasadne jest
pytanie, czy inne, mniejsze, sieci nie okaza si¢ lepsze w przypadku obciazonych wigkszym
szumem obrazoéw niskorozdzielczych uzyskiwanych w matych obserwatoriach. By to ocenic,
wybrano sie¢ Astro U-Net [127] jako punkt odniesienia, a jej pracg¢ pordéwnano z mniej

ztozonymi modelami opisanymi w kolejnym podrozdziale.
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5.4. Testowane architektury

Do badan wykorzystano lacznie 4 rdzne struktury sieci: dwa autoenkodery oraz dwie
sieci typu U-Net. Autoenkodery rozr6zniono wzgledem rozmiaru jako Ptytki AE (rysunek 5.6)
oraz nieco bardziej ztozony Gieboki AE (rysunek 5.7). Na bazie drugiego z autoenkoderow
stworzono model nazwany Prostym U-Netem (rysunek 5.8) — r6znica pomi¢dzy nim a siecia
bazowa polega gldwnie na dodaniu operacji, ktore odpowiadaja za obstuge potaczen
pomijajacych. Ostatnim z modeli jest Astro U-Net (rysunek 5.9), ktory postuzyt do oceny

prostszych rozwigzan jako sprawdzona do§wiadczalnie sie¢ [127].

Strukture sieci ponownie przedstawiono przy pomocy schematow blokowych. Kazdy

z uzytych kolorow oznacza inny typ warstwy, jak wyszczegdlniono ponize;j:

a. blok czerwony oznacza obraz wejsciowy sieci /;

b. blok zotty symbolizuje obraz wyijsciowy sieci /;

c. blok szary symbolizuje jednostke funkcjonalng ztozong z warstwy uzupeknien zerami,
warstwy konwolucyjnej o jadrze 3x3 1 kroku réwnym 1 oraz warstwy aktywacji
wykorzystujacej funkcje LeakyReLU (wyjatkiem s3a ostatnie bloki tego typu
w Plytkim AE, Gl¢bokim AE i Prostym U-Necie, w ktorych funkcja aktywacji, ostatnia
w sieci, jest funkcja sigmoidalna);

d. blok niebieski oznacza maksymalizujacg warstwe taczaca o jadrze 3x%3 1 kroku
rownym 1;

e. blok pomaranczowy odpowiada jednostce funkcjonalnej ztozone; z warstwy
dekonwolucyjnej o jadrze 2x2 i kroku rownym 2 oraz warstwy aktywacji w postaci
LeakyReLU;

f. blok fioletowy oznacza operacj¢ potaczenia ze sobg dwoch tensorow wedtug wymiaru
map cech — taczone sg ze sobg wyjScie warstwy poprzedzajacej ten blok 1 wyjscie
ostatniego szarego bloku znajdujacego si¢ na tym samym ,poziomie” sieci (dla
utatwienia analizy jest on oznaczony fioletowym konturem i deseniem szachownicy na
jednym boku);

g. obecny jedynie w Astro U-Necie bialy blok z czarnym konturem odpowiada
pojedynczej warstwie konwolucyjnej o jadrze 3x3 i kroku rownym 1 bez zastosowania

funkcji aktywacji.
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Do treningu wykorzystano funkcje straty Hubera z warto$cig progu o réwng 1, a za
optymalizator przyjeto podstawowa wersje algorytmu Adam. Modele trenowano przez 2 000
epok, przy czym kazda epoka sktadata si¢ ze 128 iteracji ztozonych z grup zawierajacych po
64 obrazy, co dalo w sumie 8 192 probek przetwarzanych w kazdej epoce. Lacznie trening objat
okoto 16,4 miliona obrazow. Do uczenia wykorzystano harmonogram, ktory przez pierwsze
200 epok treningu ,rozgrzewal” sie¢ do zadanego wspolczynnika uczenia, a nast¢pnie
zmniejszal jego wartos¢ do zera, wykorzystujac metode wygaszania kosinusowego. Wartos¢
tego wspoiczynnika wynosita 0,001 dla wszystkich sieci z wyjatkiem sieci Astro U-Net, dla

ktorej musiata ona zosta¢ stukrotnie zmniejszona, by zapewnic¢ stabilnos$¢ treningu.

Kazda z sieci zostala wytrenowana z wykorzystaniem dwoch odmiennych podejsé,
Noise2Noise (N2N) i Noise2Clean (N2C). Po zakonczeniu tego procesu zweryfikowano, ze
wszystkie modele przestaly poprawia¢ swoja wydajno$¢ pomiedzy 1500 a 1700 epoka, gdy

funkcje straty osiggnely swoja najnizsza wartos$¢.

i

[ 32 32 64 64 32 32 32 1 |

Rysunek 5.6. Ptytki AE — schemat blokowy.
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Rysunek 5.7. Gleboki AE — schemat blokowy.
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Rysunek 5.8. Prosty U-Net — schemat blokowy.
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Rysunek 5.9. Astro U-Net — schemat blokowy.

5.5. Opis 1 analiza wynikow

Wyniki przeprowadzonych eksperymentow zostaty uporzadkowane w szesciu sekcjach.
Pierwsza z nich poswiecona jest analizie zalezno$ci miedzy rozmiarem przestrzennym danych
wejsciowych a wielkoscig modelu oraz zwigzanym z tym zapotrzebowaniem na zasoby
obliczeniowe. Druga czg$¢ przedstawia porownanie warto$ci wybranych miar jako$ci obrazu:
PSNR i FSIM. Trzecia sekcja obejmuje oceng wptywu zastosowanych metod na skutecznos$¢
detekcji gwiazd, natomiast w czwartej przeanalizowano ich wptyw na rejestrowang jasnos¢
wykrytych obiektow. Pigta cze$S¢ poswigcona jest analizie zmian potozenia gwiazd
spowodowanych dziataniem poszczegdlnych metod, a ostatnia zawiera ocen¢ wizualng

obrazéw wynikowych.
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5.5.1. Wplyw wymiarowos$ci danych na rozmiar sieci

Wykorzystane w eksperymentach sieci s3 modelami w pelni konwolucyjnymi, dzigki
czemu moga przyja¢ na wejsciu obrazy o niemal dowolnym rozmiarze, jak wyjasniono
w poprzednim rozdziale. W tabeli 5.1 przedstawiono liczbg parametréw sieci i szacowany
rozmiar pamigci potrzebny do przetworzenia przez nie jednego obrazu o wymiarach 128x128
pikseli. Jak mozna zauwazy¢, wraz ze stopniem ztozonosci strukturalnej sieci ro$nie liczba ich
parametroOw oraz wymagany rozmiar pamigci. Co istotne, ta druga warto$¢ nie jest liniowo
zalezna od liczby parametréw, co mozna zobaczy¢ porownujac ze sobg Pytki AE 1 Gleboki AE
— ponad pigciokrotnie wigksza liczba parametréw skutkuje jedynie minimalnie wigkszym
zapotrzebowaniem na pami¢é¢ operacyjng. Podobng relacje opisuje zestawienie Prostego

U-Neta z Astro U-Netem.

Tabela 5.1. Ztozono$¢ sieci przy wykorzystaniu obrazow 128x128.

Zapotrzebowanie sieci
Typ sieci Liczba parametrow sieci
na pamiec¢ operacyjng [MB]
Plytki AE 46 817 7,15
Gleboki AE 261217 7,47
Prosty U-Net 353473 22,74
Astro U-Net 7759 521 55,93

W tabeli 5.2 przedstawione sa analogiczne warto$ci dla przetwarzanych obrazéw
o rozmiarze 1024x1024 pikseli. Przy poréwnaniu tych tabel najwazniejsza obserwacja jest to,
ze liczba parametrow nie ulega zadnej zmianie. Wynika z tego, ze sieci mozna poczatkowo
wyszkoli¢ na niewielkich obrazach, a po treningu uzy¢ ich z powodzeniem na wigkszych.

Podejscie to znajduje powszechne zastosowanie w praktyce.

Kolejnym wartym podkreslenia wnioskiem jest to, ze zapotrzebowanie sieci na pami¢¢
nie musi rosng¢ w takiej same skali jak wymiarowo$¢ danych. Przyktadowo, 64-krotne
zwigkszenie rozmiaru obrazu (ze 128x128 na 1024x1024 piksele) skutkuje jedynie okoto

30-krotnie wigkszym zapotrzebowaniem Astro U-Neta na zasoby sprzetowe.
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Tabela 5.2. Ztozono$¢ sieci przy wykorzystaniu obrazow 1024x1024.

Zapotrzebowanie sieci
Typ sieci Liczba parametrow sieci
na pamie¢c¢ operacyjng [MB]
Plytki AE 46 817 411,50
Gileboki AE 261 217 442,68
Prosty U-Net 353473 1 357,35
Astro U-Net 7759 521 1 701,60

5.5.2. Poré6wnanie wartosci metryk PSNR 1 FSIM

Kazda z klatek zbioru testowego przetworzono badanymi metodami, a wyniki
porownano z klatkg usredniong. Na rysunku 5.10 przedstawiono wykresy pudetkowe, ktore
opisuja wartosci metryk PSNR (po lewej) 1 FSIM (po prawej). Rozpatrujac wyniki PSNR,
mozna zauwazy¢, ze zastosowanie dowolnej metody bezsprzecznie poprawito jako§¢ obrazu.
Co najbardziej interesujace, wszystkie sieci, bez wyjatku, okazaty sie lepsze od testowanych
algorytmow deterministycznych. Nalezy jednak pamigta¢, ze PSNR jest mocno zalezny od
wiekszosciowej w obrazach liczby piksel tla. Zatem dowolny algorytm redukujacy poziom

szumu w pikselach tta, bedzie skutkowal ostatecznie istotnym wzrostem wartosci tej metryki.

W przypadku wskaznika FSIM mozna méwi¢ o znacznie wigkszym rozrzucie wynikow.
Jedynie zastosowanie filtru Wienera oraz Plytkiego AE i Astro U-Netu skutkuje nieznaczng
poprawg otrzymywanych wynikoéw. Dla pozostatych rozwigzan widoczny jest natomiast spadek

wartosci tej metryki.

Analizujagc omawiane wykresy, nalezy jednak wzia¢ pod uwagg, ze wszystkie uzyskane
wartos$ci sg relatywnie wysokie, co moze wynika¢ z duzego podobienstwa danych surowych do
danych poréwnawczych, a nie ze sposobu przetwarzania danych. W tej sytuacji stosowanie
takich metod analizy jest niewystarczajace do pelnej oceny testowanych metod, a nawet moze
prowadzi¢ do btgdnych ocen. Wymagana jest zatem analiza efektéw przetwarzania danych

W postaci pomiarow astrometrycznych 1 fotometrycznych poprzedzonych detekcja zrodet.
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Rysunek 5.10. Wartosci PSNR i FSIM dla badanych obrazow.

5.5.3. Wplyw testowanych rozwigzah na detekcje obiektow

Kazda z 50 klatek serii testowej zostata przetworzona z wykorzystaniem wszystkich
testowanych metod. Nastepnie na uzyskanych obrazach wynikowych przeprowadzono detekcje
gwiazd, modyfikujac warto$¢ progu detekcji ps w celu wyznaczenia par punktow (czutosc,
precyzja) niezbednych do skonstruowania krzywych PR. Wyniki tej procedury przedstawiono
na rysunku 5.11. Kazdej z metod przypisano krzywa w odrebnym kolorze, reprezentujaca
usredniong skuteczno$¢ detekcji na kazdej z analizowanych klatek. Obszar otaczajacy kazda
z nich, oznaczony zredukowang przezroczystoscia i odpowiadajagcym zabarwieniem, ilustruje

rozrzut wynikéw (krzywych PR) réwny jednemu odchyleniu standardowemu.

Jak mozna zauwazy¢, przebieg przedstawionych krzywych zdecydowanie r6zni si¢ od
przyktadu z rysunku 5.4. W Zadnym z analizowanych przypadkéw nie doszto do detekcji
wszystkich gwiazd wyznaczonych na obrazie referencyjnym, natomiast krzywe cechuja si¢
silng tendencja spadkowg. Jest to efektem wyraznych réznic pomiedzy pojedyncza klatka serii
a klatka usredniong — dla obrazéw surowych czutos$¢ osigga najwyzsza warto$¢ wynoszaca
w przyblizeniu zaledwie 0,3, co potwierdza znaczace obcigzenie szumem pojedynczych klatek

1 wynikajacy z tego brak widoczno$ci najciemniejszych obiektow.
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1.0
0.8 -
—— Dane surowe
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0.61 —— Plytki AE (N2C)
.% Plytki AE (N2N)
(e Gleboki AE (N2C)
E —— Gleboki AE (N2N)
041 —— Prosty U-Net (N2C)
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Astro U-Net (N2C)
—— Astro U-Net (N2N)
0.2 1
0.0 -~ :
0.0 04 0.6 0.8 1.0

Czulos¢

Rysunek 5.11. Krzywa PR dla wynikow detekcji pordéwnanych z pelnym zbiorem.

By lepiej oceni¢ efektywnos¢ detekceji obiektow, ktore mogly by¢ wykryte w obrazach
odszumionych, zdecydowano si¢ nieco ograniczy¢ liczbe gwiazd. Obrazy surowe poddano
analizie wizualne] w odniesieniu do obrazu referencyjnego 1 sposrod pierwotnych detekcji
wybrano jedynie te, ktore byly mozliwe do dostrzezenia w pojedynczej, zaszumionej klatce. Na
rysunku 5.12 przedstawiono ograniczenie tego zbioru dla dwoéch przyktadowych wycinkéw
o wymiarach 200x%200. Zielonymi okregami zaznaczono detekcje, ktore odrzucono z dalszej

analizy, a czerwonymi pozostate gwiazdy przydzielone do ograniczonego zbioru.

Po wprowadzeniu tej modyfikacji ponownie przeprowadzono detekcje, a nastepnie
wyznaczono zaktualizowane krzywe, ktore przedstawiono na rysunku 5.13. Nie wystepuje juz
dla nich tak wyrazna tendencja spadkowa, a ich ksztalt jest bardziej zgodny z oczekiwanym
przebiegiem krzywej PR. W celu poglebienia analizy dla obydwu przypadkow detekcji
obliczono pole pod krzywymi, a wyniki zaprezentowano w tabeli 5.3. Porownanie warto$ci
tabelarycznych z profilami krzywych PR z rysunkow 5.11 1 5.13 pozwolito sformutowac kilka

istotnych wnioskow.
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Fragmenty klatki usrednione;j

Fragmenty pojedynczej klatki surowej

y‘

Rysunek 5.12. Ograniczenie zbioru detekcji na przykladzie dwoch fragmentéw analizowanych klatek:

referencyjnej (po lewej) i surowej (po prawej). Na zielono zaznaczono gwiazdy wykluczone z analizy.

Przede wszystkim dzialanie kazdej z sieci neuronowych pozytywnie wptynelo na
mozliwosci detekcji gwiazd. Wykorzystanie metod klasycznych rowniez zaowocowato
poprawa, chociaz BM3D uzyskat niespodziewanie niski wynik dla zbioru wszystkich detekc;ji,
powodujac pogorszenie efektow detekcji wzgledem procesu detekcji wykonanym na
nieprzetworzonych obrazach. Uwzgledniajac relatywnie dobry wynik dla ograniczonego
zbioru, mozna wnioskowac, ze algorytm ten prawdopodobnie nie jest w stanie dobrze oddaé
charakteru stabiej §wiecacych gwiazd lub sg one mocno thumione. Pod tym wzgledem lepszy
jest filtr Wienera, jednak analizujagc odpowiadajaca mu krzywa na rysunku 5.13, mozna

zauwazy¢, ze wzrost czuto$ci detektora na przetworzonych przez niego obrazach jest mocno
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skorelowany ze spadkiem precyzji. Oznacza to, ze filtr ten dopasowuje do profilu gwiazd takze

losowy szum, co w pewnym stopniu niweluje jego uzytecznos¢.

Precyzja

0.4 0.6
Czulos¢

Rysunek 5.13. Krzywa PR dla wynikow detekcji poréwnanych z ograniczonym zbiorem.

Dane surowe
BM3D

Filtr Wienera

Piytki AE (N2C)
Plytki AE (N2N)
Gleboki AE (N2C)
Gteboki AE (N2N)
Prosty U-Net (N2C)
Prosty U-Net (N2N)

- Astro U-Net (N2C)

Astro U-Net (N2N)

W przypadku badanych sieci neuronowych mozna wyznaczy¢ zalezno$¢ pomiedzy ich

ztozonoscig a osigganymi rezultatami. Najmniej ztoZzona sie¢, Ptytki AE (kolor zielony), jest

w stanie osiggnaé dobre wyniki na ograniczonym zbiorze, ale w przypadku petnego zbioru

roznica wzgledem danych surowych jest niewielka. Sugeruje to, ze do przetworzenia

ciemniejszych gwiazd wymagane sg bardziej ztozone sieci, co potwierdzajg zauwazalnie lepsze

wyniki Glebokiego AE. Co interesujace, uzycie wigkszych, bardziej ztozonych sieci typu

U-Net nie skutkuje istotng poprawa wzgledem prostszego Glebokiego AE. Oznacza to, ze dla

analizowanych obrazéw niskorozdzielczych nie sg potrzebne duze 1 skomplikowane modele,

by moc osiggna¢ bardzo dobry wynik.
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Tabela 5.3. Wartosci pola pod krzywa. Pogrubieniem zaznaczono najlepsze wyniki w obu przypadkach,

a podkresleniem drugie najlepsze wartosci.

Pole pod krzywa
Sposéb przetwarzania
Przy pelnym Przy ograniczonym
zbiorze detekcji zbiorze detekcji
Dane surowe 0,1734 0,5490
BM3D 0,1806 0,7664
Filtr Wienera 0,2767 0,6214
Plytki AE (N2C) 0,2087 0,7907
Plytki AE (N2N) 0,2033 0,7913
Gleboki AE (N2C) 0,4349 0,8538
Gleboki AE (N2N) 0,3217 0,8644
Prosty U-Net (N2C) 0,3420 0,6785
Prosty U-Net (N2N) 0,3551 0,8635
Astro U-Net (N2C) 0,3040 0,6449
Astro U-Net (N2N) 0,3004 0,6083

5.5.4. Analiza wplywu rozwazanych metod na jasnos¢ gwiazd

Dla kazdej wykrytej gwiazdy wykonano pomiar jasnosci, by oceni¢ jak duze odchylenia
tych warto$ci wprowadzajg testowane techniki. W gornej czgsci rysunku 5.14 przedstawiono
zmiany jasnosci wykrytych gwiazd wzgledem jasnosci odpowiadajacym im gwiazd na obrazie
referencyjnym. Wartosci dodatnie $wiadczg o przyciemnieniu obiektu, natomiast ujemne o jego
pojasnieniu. Dla zwigkszenia czytelno$ci wynikodw przedstawiono je jedynie dla analizy jednej,

losowo wybranej klatki.

W trakcie analizy mozna zauwazy¢, ze dla najjasniejszych gwiazd réznice dla klatki
surowej sa bardzo mate 1 rosng wraz ze spadkiem jasno$ci gwiazd porownawczych. Zjawisko
to ma uzasadnienie fizyczne — w przypadku gwiazd, ktorych sygnal w niewielkim stopniu
przekracza poziom tla, pojawiajacy si¢ szum moze mocno zaburzy¢ wynik pomiaru, co nie ma
az takiego znaczenia przy jasniejszych gwiazdach. Warto takze zwroci¢ uwage na strukture

»skrzydta” pojawiajaca si¢ dla wartosci dodatnich. Z jej obecnosci wynika, ze metody maja
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tendencje do tlumienia stabych sygnatow. Jest to o tyle interesujgca kwestia, ze pomimo tego
efektu detektor jest nadal w stanie poprawnie zakwalifikowaé przytlumiony sygnat jako

gwiazdg.

Dolna czg$¢ rysunku 5.14 prezentuje przyblizenie na zaznaczony czarnym prostokatem
fragment calego wykresu. Pozwala to dostrzec, ze stosowane metody zardwno zmniejszaja, jak
1 zwigkszaja jasnos¢ obiektow. By zglebi¢ to zagadnienie, zagregowano dane uzyskane dla
wszystkich klatek testowych i przedstawiono je w formie wykresow pudetkowych na rysunkach
5.15 1 5.16. Rysunek 5.15 obrazuje zmiany jasnosci gwiazd na obrazach przetworzonych
wzgledem obrazu referencyjnego. Poza wynikami uzyskanymi z uzyciem filtra Wienera,
wszystkie metody cechujg si¢ przyciemnieniem analizowanych gwiazd, natomiast wyniki dla

Prostego U-Neta (N2C) jako jedyne obejmuja wigkszy zakres przyciemnienia.

Na rysunku 5.16 przedstawiono odchyltki jasnosci gwiazd wykrytych na obrazach
przetworzonych w stosunku do tychze odchytek na obrazach surowych. Czerwona linig
oznaczono wartos¢ 0, ktéra swiadczy o tym, Ze nie wystepuja zadne rdéznice w pordéwnaniu
z obrazem referencyjnym, a wyniki znajdujace si¢ w zaznaczonym na szaro obszarze od -1 do
1 odpowiadaja zmniejszeniu si¢ wartosci bezwzglednej réznicy jasnosci. Jak mozna zauwazy¢,
dla niemal wszystkich metod zachodzi istotne zmniejszenie bledu fotometrycznego, a jedynym
wyjatkiem jest Prosty U-Net (N2C), ktorego wyniki prowadza do bledow wykraczajacych poza

btedy pojawiajace si¢ w fotometrii klatek surowych.
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Rysunek 5.14. Zmiany jasnosci wykrywanych gwiazd na przyktadowej klatce serii. Na gorze pordwnanie

wszystkich wynikow, a ponizej zblizenie na najbardziej interesujacy fragment.
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A mmag

Rysunek 5.15. Roéznice

referencyjnym.
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Rysunek 5.16. Stosunek zmian jasnosci gwiazd wykrytych na obrazach przetworzonych wzgledem zmian jasnosci

odpowiadajacych im gwiazd na obrazach surowych.
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5.5.5. Porownanie zmian polozenia gwiazd

Analogicznej analizie poddano zmiang pozycji wykrywanych gwiazd. Na rysunku 5.17
przedstawiono wartosci przesuni¢¢ wzgledem pozycji gwiazd na obrazie referencyjnym
(przesuniecia wyrazono w pikselach). Jak mozna zaobserwowac, sa one statystycznie nieco
wigksze niz w przypadku obrazéw surowych, lecz nigdy nie wynosza wiecej niz 3 piksele,

podczas gdy dla obrazow surowych jest to maksymalnie okoto 2,5 piksela.

3.00 - — —
2.75 4 —_ I -
2501 ——
2254
I Dane surowe
2.00 1 I BM3D
. Filtr Wienera
1.75 - [ Plytki AE (N2C)
Plytki AE (N2N)
g 150 B Gleboki AE (N2C)
Gtleboki AE (N2N)
1.25 A I Prosty U-Net (N2C)
Prosty U-Net (N2N)
1.00 1 B Astro U-Net (N2C)
Astro U-Net (N2N)
0.75 4
0.50 1
0.25
0.00

Rysunek 5.17. Réznice potozenia wykrytych gwiazd wzgledem gwiazd na obrazie referencyjnym.

W kolejnym kroku dokonano weryfikacji zmian potozenia centroidow gwiazd na
obrazach przetworzonych wzgledem pozycji na obrazach surowych. W ten sposéb sprawdzono,
jak kazda z metod znieksztatca dane wejsciowe, a wyniki przedstawiono na rysunku 5.18.
Wynika z niego, ze zmiany zachodza symetrycznie zarowno w kierunku potozenia gwiazd na
ref, jak 1 w kierunku przeciwnym. Najwyzszg jako$¢ zachowujg przy tym klasyczne algorytmy,
BM3D oraz filtr Wienera, ktore nie wnosza az tak duzych przesuni¢é¢ jak sieci neuronowe.

Reasumujac, najwazniejszym faktem jest jednak to, iz obserwowane odchytki potozen sg na
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poziomie subpikselowym, zazwyczaj znacznie mniejszym niz 0,2 piksela, co $wiadczy

o praktycznie niezauwazalnych problemach astrometrii na zdj¢ciach przetworzonych.

1.2
1.0
0.8 -
0.6
> I BM3D
& 041 L
N Filtr Wienera
s ; B Plytki AE (N2C)
g 0 Plytki AE (N2N)
£ ool 1 i BN Gigboki AE (N2C)
< & Gleboki AE (N2N)
1
Il Prosty U-Net (N2C
S Prosty U-Net (N2N)
2 04 BN Astro U-Net (N2C)
< Astro U-Net (N2N)
0.6
0.8 -
_1'0,
-12

Rysunek 5.18. Zmiana potozenia wykrytych gwiazd wzgledem odpowiadajacych im gwiazd na obrazie surowym.

5.5.6. Ocena wizualna wynikow

Na koniec dokonano oceny wizualnej dziatania testowanych metod. Oceniono przy tym
tak jako$¢ obrazoéw koncowych, jak i poprawnos$¢ detekceji przeprowadzonej dla progu ps = 7.
Wybor takiej warto$ci tego parametru pozwolit na oceng rozwigzan z uwzglednieniem jedynie
najpewniejszych, najbardziej rygorystycznych detekcji. Wyniki tej analizy przedstawiono na

rysunku 5.19.
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Rysunek 5.19. Porownanie wizualne wptywu zastosowania filtra Wienera i sieci neuronowych na detekcj¢ gwiazd

(pa = To). Po lewej przedstawiono wyniki dla trenowania sieci strategiag N2C, a po prawej N2N.
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Rysunek 5.19 podzielony jest na 2 dwie czgSci — w lewej umieszczono wyniki
trenowania sieci technika N2C, a w prawej technika N2N. Z algorytméw klasycznych
poréwnano jedynie filtr Wienera, ktory uzyskiwat §rednio lepsze wyniki niz BM3D. Obie czg¢sci
rysunku zostaty podzielone na dwie kolumny — w lewej przedstawiono rozwazane obrazy
z obliczonymi wskaznikami PRNR i1 FSIM, a w prawej zaznaczono detekcje 1 wyznaczono

warto$ci precyzji i czutosci.

Po przetworzeniu obrazu surowego filtrem Wienera wcigz pozostaje w nim obecny
tatwo dostrzegalny szum. W przypadku dziatania sieci szum ten jest zdecydowanie bardziej
przyttumiony, a warto§¢ metryk jest wyzsza, przy czym po raz kolejny wystepuje wyjatek
w postaci Prostego U-Neta (N2C), ktory silnie wyrownuje sygnat tta. Porownujac wyniki
dzialania sieci z klatkg surowa, mozna zauwazy¢, ze zastosowanie dowolnej metody skutkuje
spadkiem precyzji, ale wigze si¢ z wickszg czulo$cig. Zgodnie z weze$niejszymi wnioskami,

najwyzsza czulos$¢ polaczong z dobra precyzja utrzymuje Gieboki AE.

Na rysunku 5.20 przedstawiono dziatanie tej sieci trenowanej sposobem N2N na
mniejszym fragmencie surowej klatki. Jak mozna zobaczy¢ na zblizeniu, model ten byt
w stanie zauwazalnie wyrdwnac tlo i zarazem zredukowaé¢ szum. Doprowadzilo to odstonigcia
1 detekcji dodatkowych gwiazd, ktore pierwotnie byly w duzej mierze nierozréznialne od

Szumu.

Klatka surowa

Wynik Glebokiego AE (N2N)

Klatka referencyjna

Rysunek 5.20. Wplyw dziatania Giebokiego AE (N2N) na jako§¢ obrazu surowego i mozliwosci detekcji

przedstawione na wybranym fragmencie.
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5.6. Wnioski z opisem dalszego kierunku badan

W niniejszym rozdziale dokonano walidacji proponowanych rozwigzan z uzyciem
danych obrazowych nocnego nieba, wykorzystujac klasyczne metryki oparte na pomiarach
astrometrycznych oraz fotometrycznych. Potwierdzono, ze modele dobrze radzace sobie
z redukcja szumu mozna wytrenowaé z wykorzystaniem zaréwno techniki Noise2Noise, jak
1 Noise2Clean. Nalezy przy tym podkresli¢, ze widoczna w przypadku danych syntetycznych
roznica jakosci wynikow pomiedzy tymi podejSciami nie jest az tak znaczgca w przypadku
danych rzeczywistych. Ponadto, sieci neuronowe w zadanych warunkach s3 w stanie osiggac
wyniki na podobnym, a czg¢sto wyzszym, poziomie niz algorytmy deterministyczne.
Szczegblnie optymistycznym wnioskiem z badan jest fakt, iz redukcja szumu w obrazach
astronomicznych prowadzi do zdecydowanie lepszej detekcji oraz precyzyjniejszej fotometrii
przy zachowaniu informacji o potozeniu obiektow. Jest to o tyle istotne, ze metody redukcji
szumu oparte czy to na metodach deterministycznych, czy wykorzystujacych sieci neuronowe,
nie sg obecnie powszechnie stosowane w astronomii obserwacyjnej, pozostajac w obszarze

badan i eksperymentow.

W pewnym stopniu poruszona zostala takze kwestia zaleznoSci migdzy stopniem
ztozonosci modelu a jego zapotrzebowaniem na pami¢é operacyjna. W wigkszos$ci sytuacji
wytrenowana sie¢ powinna dziata¢ szybko i precyzyjnie, a takze by¢ mozliwa do uruchomienia
na jak najprostszym sprzecie. Jak wykazano w tym dziale, czasem nawet prostsze modele, takie
jak Gleboki AE, sg w stanie osigga¢ wyniki lepsze niz znacznie bardziej ztozone architektury,

jak Astro U-Net.

Tematyka zlozonos$ci 1 wydajnosci sieci neuronowych zostanie rozwini¢ta w kolejnych
rozdziatach na przyktadzie danych pochodzacych z obrazowania Stonca. W odréznieniu od
stosowanego dotad podejscia ,,jeden do jednego”, w ktorym pojedynczy obraz wejsciowy
przetwarzany jest do odpowiadajacego mu obrazu wyjsciowego, zastosowana zostanie strategia
,wiele do jednego”. Oznacza to, ze model bedzie trenowany na sekwencjach wielu obrazéw
wejsciowych, by na ich podstawie generowa¢ pojedynczy wynik. To podejscie umozliwi
testowanym sieciom uzyska¢ wigcej informacji o zmieniajacej si¢ w czasie strukturze szumu,
co powinno skutkowa¢ otrzymaniem wysokiej jakosci wynikdw. Przeprowadzona zostanie
analiza szybkosci dzialania rozpatrywanych architektur w ramach okreslenia alternatywy do

algorytmu deterministycznego, ktory jest powszechnie stosowanym w tym zadaniu.
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6. Redukcja szumu atmosferycznego w seriach danych

obrazowych Stonca

W dotychczasowych eksperymentach uwage zwrdcono na zagadnienie przetwarzania
pojedynczych obrazéw astronomicznych w celu redukcji obecnego na nich szumu. Jak
wykazano na przykladzie obrazow nocnego nieba, zastosowanie sieci neuronowych jest
w stanie znaczaco poprawi¢ ich parametry. Jednakze zmienne warunki atmosferyczne
sprawiaja, ze w przypadku analizowanych serii obserwacyjnych widoczno$¢ szczegdétow moze
si¢ znaczaco rozni¢ pomiedzy kolejnymi klatkami. Kolejne obrazy w serii mogg by¢ nieco
znieksztalcane pod wpltywem turbulencji atmosferycznych. Efektywnos$¢ stosowanych

rozwigzan jest przez to w duzej mierze zalezna od jako$ci obrazu wejsciowego.

W zwiazku z tym postanowiono przeprowadzi¢ badania nad wykorzystaniem danych
wejsciowych ztozonych z sekwencji wielu klatek wykonanych jedna po drugiej. Taka technika
pozwala na wykorzystanie informacji o zmiennosci zaktécen w czasie, co powinno skutkowac
odzyskaniem (rekonstrukcja) analizowanych struktur, ktore na poszczegdlnych klatkach jawia

si¢ nieco inacze;j.

Do eksperymentow wykorzystano dane pochodzace z obserwacji stonecznych, ktore
stanowig material innego typu niz obserwacje gwiazd, rozszerzajac zakres niniejszej pracy.
Stonce jako jasne zrédlto $wiatla o duzej dynamice, ma znacznie bogatszg strukture
powierzchniowa, a dodatkowo znajduje si¢ w niewielkiej odlegtosci od Ziemi, co umozliwia
obserwacje tych struktur przy uzyciu teleskopow niskorozdzielczych. Widoczne na nim liczne
obszary aktywne, filamenty 1 protuberancje daja pole do eksperymentow nad wydajnoscia

r6znych podej$¢ do rekonstrukcji obrazu idealnego.

Niniejszy rozdziat, podobnie jak wczes$niejsze, zostat podzielony na odrebne czesci
odpowiadajace poszczegdlnym zagadnieniom. W pierwszej z nich omowiono metody shuzace
poprawie uzyskanych serii obrazéw, obejmujace zaréwno algorytmy deterministyczne, jak
1 proponowane w ostatnich latach rozwigzania oparte na sieciach neuronowych. Nastepnie
opisano wykorzystany zbidr danych, ktory utworzono przy uzyciu teleskopu opisanego
w rozdziale 2.4.2. Obserwatoria Politechniki Slgskiej. Trzecia i czwarta sekcja skupiaja sie na
opisie testowanych architektur sieci oraz wskaznikow jako$ci. Przedostatnia czgs¢ opisuje
analiz¢ otrzymanych wynikow, a ostatnia stanowi podsumowanie przeprowadzonych

eksperymentdéw 1 wskazuje na kolejny problem badawczy poruszony w dalszej czesci rozprawy.
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6.1. Rozwigzania stosowane w obrazowaniu stonecznym

W przypadku obserwacji stonecznych wykorzystywane sg dwa algorytmy do ostabienia
wplywu szumu atmosferycznego na dane obrazowe. Pierwszym z nich jest interferometria
plamkowa [138][139], ktora wykorzystuje serie setek (lub wigcej) obrazéw rejestrowanych
przy czasach ekspozycji rzgdu kilku milisekund dla pojedynczej klatki. Poprzez zastosowanie
na takich seriach transformaty Fouriera mozliwe jest odtworzenie niezaktoconej informacji
o strukturze obserwowanego obiektu. Praktyczne wykorzystanie tej metody jest jednak
znaczaco ograniczone ze wzgledu braku dostgpu do dynamicznie zmieniajgcego si¢ wzorca
funkcji rozmywajacej obraz, ktéry w przypadku obserwacji nocnych moze by¢ wygenerowany

przy pomocy laserowej gwiazdy odniesienia lub zarejestrowany dla pobliskiej gwiazdy.

Drugim rozwigzaniem jest metoda $lepej dekonwolucji wieloklatkowej, MFBD
[140][141][142] (ang. Multi-Frame Blind Deconvolution). W poréwnaniu do interferometrii
plamkowej jest ona bardziej odporna na zmienno$¢ warunkdéw atmosferycznych, co umozliwia
jej stosowanie na obrazach o dluzszym czasie ekspozycji. Nie jest rdOwniez wymagana
znajomo$¢ postaci zmieniajacej si¢ w czasie funkcji rozmywajacej obraz, gdyz ona jest wlasnie
iteracyjne oszacowywana przez algorytm. Ze wzgledu na problemy z oceng funkcji
znieksztalcenia obrazu, MFBD jest cz¢sciej stosowane w praktyce obserwacji Stonca; miedzy
innymi stanowi istotny etap przetwarzania danych rejestrowanych przez teleskop STS.
Znaczacg wadag tego podejscia sg duze wymagania sprzetowe 1 bardzo dlugi czas przetwarzania
danych, ktéry wielokrotnie przekracza czas ich akwizycji. W badaniach przeprowadzonych
w niniejszej rozprawie skorzystano z implementacji MFBD przygotowanej przez Instytut
Fizyki Stonca Uniwersytetu Sztokholmu®. Wszelkie parametry pracy programu konsultowano

z tworcg algorytmu oraz autorem prac dotyczacych algorytméw MFBD, Matsem Lofdahlem.

Sposrod prob zastosowania sieci neuronowych na uwage niewatpliwie zastluguje praca
[143], w ktorej opisano badania nad opracowaniem modelu enkoder-dekoder oraz sieci
rekurencyjnej, ktorych celem bylo przetworzenie serii n obrazow w taki sposob, by obraz
wynikowy miat jako$¢ porownywalng z wynikiem dziatania MFBD. Sieci te byty przez
autoréw dalej rozwijane w [144][145][146] i wykorzystano je jako punkt odniesienia do oceny
podobnych rozwigzan [147][148]. Oczywiscie oprocz tych podej$¢ podjeto rdwniez proby
wykorzystanie w tym celu odmiennych architektur 1 technik ich treningu [149][150][151].

® Implementacja dostepna jest na portalu GitHub pod adresem: https://github.com/ISP-SST.
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W ramach przeprowadzonych w niniejszej pracy eksperymentéw postanowiono
wykorzysta¢ omowiong strukture enkoder-dekoder [143], ktora odpowiadata przyjetym
wczesniej zatozeniom dotyczacym wykorzystania sieci kompresujacych dane. Potraktowano tg
architekturg jako przyktad duzej sieci i porownano jej wydajno$¢ z mniejszymi modelami. Tak
jak w wymienionym artykule, celem byto uzyskanie wynikow porownywalnych z dziataniem

algorytmu MFBD.

6.2. Opis danych SUTO Solar

W opisanych w poprzedniej czesSci podejSciach opartych na sieciach neuronowych
wykorzystywano gltownie dane syntetyczne albo pochodzace z najnowocze$niejszych
teleskopow stonecznych, takich jak STS. Instrumenty tego typu umozliwiaja obserwacje bardzo
malych fragmentdéw Slofica z duza doktadnos$cia. Jakos$¢ pozyskiwanych przez nie obrazow jest
dodatkowo poprawiana poprzez uzycie rozwigzan technicznych, do ktérych wlicza si¢ miedzy
innymi optyka adaptacyjna. Charakterystyka danych tego typu zdecydowanie r6zni si¢ od tych
pozyskiwanych przez mate obserwatoria, ktorych gtéwna zaletg jest mozliwo$¢ monitorowania

catej tarczy stonecznej z wielu lokalizacji w ramach cigglego ,,patrolu stonecznego”.

Z tego wzgledu w przeprowadzonych badaniach wykorzystano zbior SUTO-Solar
[152], ktéry zawiera wielomiesieczne dane obserwacyjne zebrane przez maty teleskop
stoneczny zarzadzany przez grupe SUTO [153]. Chociaz sprzgt ten jest w stanie obserwowac
calg tarcz¢ Stonca, na utworzony zbior sktadaja si¢ jedynie fragmenty 100x100 lub 200%200
pikseli, na ktorych uwidocznione sg obszary aktywne na Stoncu. Zbidr ten zawiera jedynie
interesujace struktury, a dodatkowo jest on w miar¢ kompaktowy — pojedynczy wycinek
100%100 pikseli wymaga ponad 500 razy mniej miejsca niz cata klatka. Podejscie to jest
szczegollnie istotne w przypadku zapisu serii obserwacyjnych, na ktore sktadajg si¢ setki klatek.
Na rysunku 6.1 przedstawiono standardowy obraz pelnego dysku stonecznego, pozyskiwany
przez maly teleskop stoneczny, ze zblizeniem na trzy przykltadowe fragmenty o rozmiarze

100x100 pikseli (zaznaczone jako A, B i C).

Istotng cechg uzytego zbioru jest takze jego réznorodnos¢. Utworzono go podczas
obserwacji w czasie ponad jednego roku, co jest rzadko spotykane w tego typu badaniach.
Zazwyczaj uzywa si¢ danych zarejestrowanych w ciagu jednego lub kilku dni, co moze

powodowac, ze analiza jest w duzym stopniu obarczona problemami zwigzanymi ze stanem
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atmosfery w momencie obserwacji (na przyktad poprzez wyjatkowo sprzyjajace lub

szczegoblnie niekorzystne warunki).

Na wybrany zbior sklada si¢ kilka tysigcy serii liczacych 100 lub 200 takich
pojedynczych klatek. Rejestrowano je z czestotliwoscig okoto 30 klatek na sekunde, co
odpowiada czasowi obserwacji od 3 do 6 sekund. W teleskopach o wysokiej rozdzielczos$ci tak
dhugi czas pozwolilby zaobserwowaé juz pewne zmiany w chromosferze, jednak niska
rozdzielczo$¢ katowa uzytego sprzetu wyklucza wykrywalno§¢ takich zmian. Fakt
niezmiennos$ci obserwowanego fragmentu Stonca umozliwia zatem efektywne wykorzystanie
algorytmu MFBD do przetwarzania serii obrazow, ktérego przyktadowe efekty dziatania
przedstawiono na rysunku 6.2. U gory rysunku znajduja si¢ fragmenty 100x100 pikseli bedace

losowo wybranymi klatkami serii, a ponizej wyniki przetworzenia ich przez algorytm MFBD.

Oryginalny zbiér sktada si¢ z ponad 3800 serii liczacych po 100 klatek o rozmiarze
100x100 pikseli i odpowiadajacych im wynikow dzialania MFBD majacych rozmiar 70x70
pikseli. Roznica wymiaréw spowodowana jest dziataniem algorytmu, ktoéry odrzuca czgsé
informacji znajdujaca si¢ przy krawedzi obrazoéw surowych, zaktadajac przesunigcia obrazu
jako efekt turbulencji. Aby porowna¢ dzialanie sieci z wynikami tej metody, wszystkie klatki
surowe zostaly wyréwnane wzgledem odpowiednich klatek MFBD i przyciete do tego samego
rozmiaru. W kolejnym kroku poddano je dodatkowemu przycieciu do rozmiaru 64x64, by
unikng¢ zmian ich wymiaréw zwigzanych z dzialaniem sieci. Przetworzone dane podzielono

w stosunku 4:1 na zbior treningowy 1 walidacyjny, co zaprezentowano w tabeli 6.1.

Do sprawdzenia wydajnos$ci sieci utworzono osobny zbidr testowy, ktory nie wchodzit
pierwotnie w sklad zestawu SUTO-Solar. Poczatkowo sktadat si¢ on z 405 serii obserwacji
liczacych po 200 klatek kazda (200x200 pikseli) 1 odpowiadajacym im wynikow MFBD
o rozmiarze 177x177 pikseli. Po wyroOwnaniu 1 przycigciu odpowiadajacych sobie klatek
uzyskano zbior obrazow o rozmiarze 176x176 pikseli. Dla tego zbioru wyznaczono jednak
znacznie wigce] wynikOw przetwarzania surowych serii przez algorytm MFBD. Mianowicie,
uzyskano wyniki przetworzenia pierwszych 10, 20, 50, 100 i 200 surowych klatek,
oznaczonych odpowiednio jako MFBD1o, MFBD2o, MFBDso, MFBD10o i MFBD20o. Przyjeto,
ze wykorzystanie wigkszej liczby klatek skutkuje otrzymaniem wynikow MFBD o wyzszej
jako$ci, wobec czego potraktowano obrazy MFBD»oy jako glowne dane pordéwnawcze.
Pozostate obrazy MFBD zastosowano jako pomocnicze punkty odniesienia, ktore umozliwity
weryfikacje tego, czy sieci mogg przewyzszy¢ MFBD w przypadku dostepu do ograniczone;j
liczby klatek.
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Rysunek 6.1. Dane z obrazowania Stonca. U goéry widok calej tarczy Stonca (2304x2304 piksele), a na dole

zblizenie na poszczegodlne fragmenty 100x100 ze zmienionym kontrastem.
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Rysunek 6.2. Wptyw algorytmu MFBD na jako$¢ przetwarzanych obrazow.
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Tabela 6.1. Podziat zbioru SUTO-Solar na podzbiory.

Typ Liczba serii Liczba klatek Rozmiar
podzbioru danych | obserwacyjnych || przypadajaca na seri¢ | pojedynczej klatki

Treningowy 3081 100 64x64
Walidacyjny 771 100 64%x64
Testowy 405 200 176x176

6.3. Wykorzystane architektury

Do badan wykorzystano 3 rézne struktury sieci. Pierwsza z nich jest model
zaproponowany w [143], a dwie pozostate sg jego odpowiednikami o zmniejszonym rozmiarze.
Dla rozréznienia sieci te okreslono jako matg (rysunek 6.3), $rednig (rysunek 6.4) i duza
(rysunek 6.5). Podziat ten oparty jest na liczbie warstw sieci i catkowitej liczbie ich parametrow,
ktéra wynosi odpowiednio okoto 12 000, 150 000 i 3 200 000 parametrow przy 100 klatkach
wejsciowych. Nalezy przy tym podkresli¢, ze chociaz w oryginalnej publikacji bazowa
architektura zostata okreslona jako enkoder-dekoder, jest to w rzeczywisto$ci U-Net, poniewaz

posiada ona potaczenia pomijajace, ktore wprowadzaja dodatkowy przeptyw danych w sieci.

Strukture sieci ponownie przedstawiono w postaci kolorowych schematéw blokowych,
jednak w tym wypadku wystepuja znaczace roznice pomiedzy sieciami malg i $rednig a siecia
duza. W zwiazku z tym, w pierwszej kolejnosci opisano bloki dla dwoch pierwszych model,
a nastegpnie wyszczeg6élniono zmiany wystepujace w najbardziej ztozonym modelu. Zmiany
wielkosci blokow ponownie odpowiadaja dwukrotnej zmianie rozmiaru przestrzennego
danych, liczby pod blokami odpowiadaja wyjsciowej liczbie map cech, a kolorowe bloki

odpowiadajg nastepujacym operacjom:

a. blok czerwony oznacza seri¢ obrazow wejsciowych sieci / ztozong z n nastgpujacych
po sobie klatek (odpowiednio: 10, 20, 50 lub 100);

b. blok zolty symbolizuje pojedynczy obraz wyjsciowy sieci [;

c. blok szary symbolizuje jednostke funkcjonalng zlozong z warstwy uzupetien przez
odbicie lustrzane, warstwy konwolucyjnej o jadrze 3x3 i kroku rdwnym 1, warstwy
normalizacji wsadowej oraz warstwy aktywacji LeakyReLU (w tej kolejnosci);

d. blok niebieski obejmuje te same operacje co blok szary, zmieniona jest jedynie dlugos$¢

kroku, ktora wynosi 2;
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blok pomaranczowy odpowiada zastosowaniu warstwy zwiekszenia rozdzielczosci
wykorzystujacej interpolacje metoda najblizszego sasiada i przetworzeniu wyniku przez
blok szary;

blok zielony oznacza jednostk¢ rezydualng, ktora przetwarza sygnal w sposob
przedstawiony na rysunku 6.5;

biaty blok z czarnym konturem odpowiada pojedynczej warstwie konwolucyjnej

o0 jadrze 3x3 i kroku réwnym 1 bez zastosowania funkcji aktywacji.

6.3. Mata sie¢.

I 16 24 24 32 32 40 40 32 32 24 24 16 8 | i

6.4. Srednia sie¢.
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Rysunek 6.5. Schemat jednostek rezydualnych (zielone bloki na schemacie $redniej sieci).

W przypadku duzej sieci ma miejsce pewna istotna zmiana. Dziatanie kazdego bloku

pozostaje takie samo, ale zmienia si¢ kolejnos$¢ operacji w podstawowym bloku, zaznaczonym

kolorem szarym. W sieci duzej blok szary odpowiada nastepujacej kolejnosci warstw: warstwa

normalizacji wsadowej, warstwa aktywacji ReLU, warstwa uzupehien przez odbicie lustrzane

i na koncu warstwa konwolucyjna o jadrze 3%3 i kroku réwnym 1. Szczegdtowy opis

parametréw poszczegolnych warstw dla tej sieci zamieszczono w tabeli 6.2. Grupy (poziomy)

poszczeg6lnych warstw sieci opisano jako W;;, gdzie i oznacza numer grupy, a j humer warstwy

w i-tej grupie.

Wi

Rysunek 6.6. Duza sie¢.
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Tabela 6.2. Opis parametrow poszczegdlnych warstw duzej sieci.

Warstwa Rozmiar jadra Krok Liczba map cech wyjsciowych
Wi 7x7 1 32
Wi, 3x3 2 64

Wo,1 — W2z 3x3 1 64
Woas 3x3 2 128
W31 —Wsj3 3x3 1 128
Wi 4 3x3 2 256
Wi —Wa; 3x3 1 256
Wi 3x3 1 128
Ws1—Ws3 3x3 1 128
W4 3x3 1 64
We,1 — We3 3x3 1 64
W4 3x3 1 64
W7, 3x3 1 64
W72 3x3 1 16
W73 1x1 1 1

Na zmieszczonych schematach przeptyw danych zostal przedstawiony za pomoca
strzalek. W przypadku malej i $redniej sieci, czarne strzatki wskazuja na operacj¢ dodawania
wyjsciowych tensor6w wybranej warstwy do tensorow wejSciowych warstwy docelowe;.
W duzej sieci strzatki te oznaczajg natomiast dodanie wejsciowych tensorow jednej warstwy

do tensoréw wejsciowych wskazywanej warstwy.

Znacznie istotniejsza jest operacja oznaczona poprzez strzatki brazowe. Odpowiada ona
dodaniu pewnej porcji informacji wejsciowej do wyjscia sieci. Wedtug bazowego podejscia
[143] do obrazu wyjsciowego dodawany byt pojedynczy, pierwszy obraz przetwarzanej serii.
Wobec tego zadaniem sieci bylo znalezienie maski, ktéra po zsumowaniu z surowym
pierwszym obrazem wejSciowym spowoduje zredukowanie obecnego na nim szumu. Biorac
pod uwage losowos¢ miejscowych zakldcen, zadanie to uzna¢ mozna za wymagajace. Wobec
tego zaproponowano zmiang¢ pierwszego obrazu serii na obraz usredniony. Jak wykazano
w poprzednich rozdzialach, obecny na takim obrazie szum jest w znacznej mierze

zredukowany, a detale s3 lepiej widoczne. Zadaniem sieci byloby zatem zredukowanie
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powstalych rozmy¢ i wyostrzenie widocznych struktur, co uznano za zadanie znacznie prostsze,
bardziej logiczne w koncepcji, a przez to mogace skutkowac lepszymi wynikami. W opisie
wynikéw cze$¢ uwagi poswiecono analizie tego podejécia w oparciu o wyniki uzyskiwane

przez duzg siec.

6.4. Ocena efektywnos$ci rozwigzan

Wykorzystany zbidr danych zawiera obrazy przedstawiajace zlozone struktury
chromosfery stonecznej, w zwigzku z czym postanowiono ponownie wykorzysta¢ wskaznik
FSIM. Miar¢ PSNR uznano w tym wypadku za niewystarczajaca i zastgpiono ja metrykg
,wiernosci informacji wizualnej” VIF [154] (ang. Visual Information Fidelity), ktéra nie
porownuje bezposrednio wartosci pikseli, ale ocenia zachowang ilo$¢ informacji w obrazie. Jej
warto$¢ miesci si¢ zazwyczaj w przedziale [0; 1], ale moze przekroczy¢ 1 w sytuacjach, gdy na

porownywanym obrazie wystepuje wyzszy kontrast.

Zdecydowano si¢ rowniez na wprowadzenie dodatkowej miary: podobienstwa
gradientow po filtracji medianowej MFGS [155] (ang. Median Filter-Gradient Similarity).
Wskaznik ten opiera si¢ na poréwnaniu gradientow w obrazie przed i po przetworzeniu go przez
filtr medianowy, nie wymagajac przy tym obrazu referencyjnego. MFGS jest w stanie bardzo
dobrze opisa¢ jako$¢ istotnych struktur, wobec czego jest uznanym standardem w analizie
obrazéw Stonca [156]. Wartos$¢ tej metryki zawsze miesci si¢ w przedziale [0; 1], a wysokie

warto$ci $wiadczg o dobrej jako$ci rozwazanego obrazu.

Oprécz tego dokonano pordwnania szybko$ci dziatania poszczegdlnych rozwigzan.
Oszacowano $rednie czasy przetwarzania pojedynczej serii obrazéw testowych przez kazda

z siecl 1 zestawiono je z czasami obliczen algorytmu MFBD.

6.5. Analiza wynikow

Sieci zostaly wytrenowane 1 przetestowane na sprzgcie wyposazonym w 16-rdzeniowy
procesor AMD Ryzen 9 5950X (3,40 GHz) oraz karte graficzng GeForce RTX 3090Ti 24 GB
RAM. Wyniki MFBD uzyskano natomiast za pomoca specjalnie skonfigurowanego
oprogramowania dziatajacego na sprzecie wyposazonym w 20-rdzeniowy procesor Intel Xeon

E5-2680 (2,80 GHz). Do procesu trenowania uzyto standardowego optymalizatora Adam oraz

str. 125



Rozdziat 6. Redukcja szumu atmosferycznego w seriach danych obrazowych Stonca

stalego wspotczynnika uczenia rownego 0,00001. Wagi kazdej warstwy zainicjalizowano za
pomoca algorytmu He [157], a sieci trenowano przez 1000 epok na obrazach o rozmiarze
64x64. Wielkos¢ zbioru treningowego zostata ponownie zwigkszona z wykorzystaniem losowo
dobieranych operacji rotacji oraz odbi¢ w pionie i w poziomie. W kolejnych podrozdziatach
dokonano analizy jakosci obrazéw wynikowych wzgledem wykorzystanej metody, typu obrazu

dodawanego na wyjscie sieci, a takze szybkos$ci przetwarzania danych.

6.5.1. Zamiana obrazu pojedynczego na usredniony

Testy rozpoczeto od oceny typu maskowania dokonywanego przez sie¢. Na rysunku 6.7
przedstawiono wyniki przetwarzania dwoch rdéznych serii obrazow sktadajacych si¢ z 10 1 100
klatek, jak oznaczono po lewej stronie kazdego rzgdu. Powstata macierz obrazéw zawiera pigé
kolumn. Punktem wyjscia jest srodkowa kolumna, w ktérej umieszczono obrazy referencyjne,
MFBD2go. W kolumnie po jej lewej stronie znajduje si¢ wynik dziatania sieci, ktora maskowata
klatke usredniong, a w skrajnej lewej kolumnie przedstawiono obraz réznicowy tego obrazu
i MFBD2oo. Kolumny po prawej przedstawiaja analogiczne obrazy uzyskane dla sieci
maskujacej klatke pojedynczg. Dodatkowo, nad obrazami roéznicowymi przedstawiono
warto$ci RMSE, ktore odpowiadaja pierwiastkowi z bledu sredniokwadratowego (ang. Root
Mean Square Error). Im wyzsza jest warto$¢ tej miary, tym wigksze sg réznice jasnosci pikseli

pomiedzy porownywanymi obrazami.

Analizujac przedstawione wyniki, mozna zauwazy¢, ze maskowanie klatki usrednionej
skutkuje pojawieniem si¢ rdznic w jasnosci posrodku poszczegélnych struktur, co jest
oznaczone obecnos$cig bialych plam. Krawedzie sa przy tym dobrze rozroznialne. Przy
wykorzystaniu 10 klatek mozna zauwazy¢, ze wystepuja punktowe zmiany, ktore Swiadcza
o tym, ze sie¢ nie byla w stanie usung¢ catosci szumu. Jednak po zwiekszeniu liczby klatek
wejsciowych do 100 zmiany te niemal catkowicie znikaja. Swiadczy to o tym, Ze sieci nie ucza
si¢ dobrze maskowa¢ szumu, przez co duze znaczenie ma usrednienie odpowiedniej liczby
klatek wejsciowych. W przypadku sieci dodajacych do wyjscia pierwszy obraz serii
zaszumienie przetworzonych danych sieci jest znaczace. Punktowe roznice sg tatwe do
zauwazenia i w znaczacy sposob degraduja ogoélng jakos¢ danych, co potwierdzaja wyzsze
wartosci RMSE. Obserwacja ta potwierdza przyjete zatozenie, ze maskowanie klatki
usrednionej jest podejSciem skuteczniejszym w poprawy jakosci obrazu od maskowania

pojedynczej klatki serii.
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Obraz roéznicowy Dodawanie Dodawanie Obraz réznicowy
(RMSE = 208.27) usrednionej klatki serii pojedynczej klatki serii (RMSE = 239.52)
b T, Wi - = 3T ] I 5 LA

% E:
. |

10 klatek

Obraz réznicowy Dodawanie Dodawanie Obraz roZznicowy
(RMSE = 114.19) usrednionej klatki serii MEBD:o0 pojedynczej klatki serii (RMSE = 234.84
- g =3 S

100 klatek

Obraz réznicowy Dodawanie Dodawanie Obraz réznicowy
(RMSE = 151.15 usrednionei klatki serii MEBD300 ) pojedynczej klatki seri RMSE = 261.46)

y ¥

10 klatek

Obraz réznicowy Dodawanie Dodawanie Obraz roznicowy
(RMSE = 122.61) usrednionej klatki serii _ pojedynczej klatki serii (RMSE =272.29) _

100 klatek

Rysunek 6.7. Wpltyw proponowanej modyfikacji na wydajnos¢ sieci na przyktadzie dwoch obrazow.

6.5.2. Poréwnanie dzialania sieci wzglgdem MFBD,

Dziatanie kazdej z metod oceniono z uzyciem wykresow pudetkowych, na ktérych
przedstawiono wyniki pogrupowane wzgledem wykorzystanej liczby klatek wejsciowych
(rysunek 6.8). Oprocz obrazéw wyjsciowych sieci, do porownania wykorzystano: wyniki
MFBD uzyskane przy mniejszej liczbie klatek, klatki usrednione, a takze klatki wejsciowe,
ktére w danej serii mialy najwyzsza wartos¢ wskaznika FSIM. Wybor ostatniego typu
poréwnywanych obrazéw opowiada zastosowaniu techniki ,,szczesliwego obrazowania” (ang.
lucky imaging) polegajacej na selekcji klatek najmniej znieksztatconych przez atmosfere, ktore

sa wykorzystywane w dalszych badaniach.

str. 127



Rozdziat 6. Redukcja szumu atmosferycznego w seriach danych obrazowych Slonca

1.00

0.98 A

0.96

bt

0.94

FSIM

0.92

0.90

0.88

10 20 50
Liczba wykorzystanych klatek

100

0.9

0.8

0.7

0.6

04

03

02

0.1

0.0

10 20 50
Liczba wykorzystanych klatek

100

1.00

0.95

0.90

'P‘-I[--I-_}f

+ f'I"I'+T T

0.85

0.80

MFGS

0.75

0.70 A

0.65

0.60

0.55

10 20 50
Liczba wykorzystanych klatek

100

Rysunek 6.8. Statystyczne pordéwnanie wartosci wykorzystanych metryk.
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Jak mozna zauwazy¢, dla wynikow MFBD wartosci metryk FSIM 1 VIF odstaja od
pozostatych, wskazujac na pogorszenie jako$ci przetworzonych przez ten algorytm obrazow.
Jedynie warto§ci MFGS odpowiadaja oczekiwanym, wysokim warto§ciom. W zwiazku z tym
postanowiono dokona¢ analizy wizualnej, by wyjasni¢ przyczyne tego nieoczekiwanego
zjawiska. Na rysunku 6.9 przedstawiono zestawienie wynikéw MFBD, najlepszych klatek serii,
klatek usrednionych i MFBD2oo dla wybranej serii obserwacji. Kazdy z rzgdow odpowiada
innej liczbie rozwazanych klatek serii, a nad kazdym obrazem wypisano warto$ci wskaznikow

FSIM, VIF 1 MFGS obliczonych wzglgdem MFBD2go.

Poréwnujac ze sobg poszczegdlne obrazy, mozna stwierdzi¢, ze najlepsza klatka jest
w duzym stopniu obcigzona szumem, a na klatce usrednionej wiele szczegdtow jest rozmytych.
Pomimo tego obrazy te w kazdym przypadku uzyskaty wyzsze warto$ci FSIM 1 VIF niz wyniki
MFBD. Spowodowane jest to obecnym na obrazach MFBD przesunigciu, ktore mozna
zauwazy¢, porownujac potozenie struktur wzgledem czerwonej przerywanej linii na kazdym

Z obrazow.

Przesuniecie to spowodowane jest dzialaniem samego algorytmu MFBD, ktory
dokonuje przyciecia krawedzi oryginalnego obrazu tak, by uzyska¢ wynik o najlepszej jakosci.
Wobec zmiennej widoczno$ci struktur na przestrzeni serii, przyciecie to jest wykonywane
w sposob zalezny od dlugo$ci rozwazanej serii. Sprawia to, Zze ocena ilosciowa jest w tym
wypadku niewystarczajaca i nalezy przede wszystkim polega¢ na ocenia wizualnej, ktora
potwierdza wysoka jakos¢ wynikow MFBD. W przypadku obrazow testowych efekt ten nie
wystepuje, poniewaz zostalty one wyrownane 1 przycigte wzgledem MFBD2oo, Wobec tego

mozna porownywac je z wykorzystaniem wybranych metryk.

Na rysunku 6.10 przedstawiono, analogiczne do rysunku 6.9, zestawienie wynikow
dzialania poszczegdlnych sieci z klatkg usredniong i MFBD2go. Wykorzystanie dowolnej sieci
skutkuje uzyskaniem niemal identycznego obrazu, a rdznice w warto$ciach wskaznikow sa
niewielkie. Obserwacja ta znajduje potwierdzenie w przedstawionych na rysunku 6.8 réznicach
w rozrzutach tych wartosci, ktore dla matej 1 Sredniej sieci sg w wiekszosci przypadkow

zaniedbywalnie male, a dla sieci duzej roznice sg zauwazalne, ale wzglednie niewielkie.

Dodatkowo, rysunek 6.10 wskazuje na to, ze do oceny rozmycia najbardziej nadaje si¢
miara VIF, ktora pozwala tatwo odrozni¢ klatke usredniong od reszty obrazow. Analiza tego

rysunku potwierdza rowniez stuszno$¢ postawionej tezy badawczej. Jak mozna zaobserwowac,
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w przypadku przeprowadzonego eksperymentu nawet relatywnie male sieci byly w stanie

uzyskac rezultaty porownywalne z tymi osigganymi przez sieci znacznie wigksze.

MFBD1o Najlepsza klatka serii Klatka usredniona
0.909 ; 0.046 ; 0.983 0.975;0.521 ; 0.763 0.976; 0.614 ; 0.958
-4
3
<
.
S
—
MFBD:o Najlepsza klatka serii Klatka usredniona
0.910; 0.046 ; 0.981 0.975;0.521 ;0.763 0.974; 0.603 ; 0.976 MFBD:0o
-4
3
<
~
S
N
MFBDso Najlepsza klatka serii Klatka usredniona
0.917;0.060 ; 0.981 0.975;0.521 ; 0.763 0.976 ; 0.622 ; 0.987 MFBD:0o
4
o4
<
.
S
e

MFBD1oo Najlepsza klatka serii Klatka usredniona
0.935;0.125; 0.981 0.975;0.521 ; 0.763 0.976 ; 0.627 ; 0.991 MFBD:0o

100 klatek

Rysunek 6.9. Poréwnanie wynikow dla danych surowych i MFBD wyznaczanego dla zadanej liczby klatek. Liczby
nad poszczegélnymi obrazami oznaczaja wartosci obliczonych wartosci wskaznikow FSIM, VIF i MFGS.
Czerwone linie przerywane wykre§lono na tej samej wysokosci w kazdym obrazie, by oszacowac¢ wystepujace na

obrazach przesunigcia.
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Rysunek 6.10. Porownanie wynikow dziatania poszczegélnych sieci. Liczby nad poszczegdlnymi obrazami

oznaczajg wartosci obliczonych wartoéci wskaznikow FSIM, VIF i MFGS

6.5.3. Szybko$¢ przetwarzania danych

W tabeli 6.3 przedstawiono $redni czas wymagany do przetworzenia pojedynczej serii
obrazOw o rozmiarze 176x176 pikseli z wykorzystaniem jednostki GPU. W tabeli 6.4
przedstawiono natomiast analogiczne wyniki dla sieci uruchomionych na CPU (ang. Central
Processing Unit), czyli na procesorze. Algorytm MFBD jest uruchamiany jako program na
specjalnie przystosowanym sprzecie, wobec czego nie zmierzono czasu dziatania samego
algorytmu, ale catego oprogramowania. Podany czas jest w zwigzku z tym warto$cig obarczong

pewna niepewnoscig. W przypadku sieci neuronowych zmierzono jedynie czas potrzebny do
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wczytania 1 przetworzenia danych, wobec czego jest on podany ze znacznie wigksza

doktadnoscia.

Tabela 6.3. Poréwnanie czasu przetwarzania pojedynczej serii ztozonej z obrazoéw o rozmiarze 176x176 pikseli

z wykorzystaniem GPU.
Liczba klatek Czas przetwarzania danych [ms]
wejsciowych Mala sieé Srednia sie¢ Duza sieé MFBD
10 2 5 7 27000
20 2 5 8 28 000
50 3 6 8 35000
100 4 8 9 38 000

Tabela 6.4. Porownanie czasu przetwarzania pojedynczej serii ztozonej z obrazéw o rozmiarze 176x176 pikseli

z wykorzystaniem CPU.

Liczba klatek Czas przetwarzania danych [ms]

wejsciowych Mala sieé Srednia sie¢ Duza sie¢ MFBD
10 2 7 25 27000
20 3 8 26 28 000
50 5 9 28 35000
100 7 12 31 38 000

Jak mozna zauwazy¢, rdznica pomiedzy szybkoscig testowanych modeli a MFBD jest
ogromna 1 wynosi 3 rzedy wielko$ci na korzys¢ sieci neuronowych. Réznica pomiedzy
szybkoscig sieci na GPU a CPU jest przy tym zauwazalna, ale w przypadku tego eksperymentu
nie jest znaczaca. Mozna stwierdzi¢, ze sieci sa w stanie we wszystkich analizowanych
sytuacjach przetwarza¢ dane w czasie rzeczywistym, ktory jest zdecydowanie krotszy od czasu

zarejestrowania pojedynczej klatki.

Algorytm MFBD wymaga natomiast stosowania wydajnych jednostek obliczeniowych
wyposazonych w wielordzeniowe procesory, lecz mimo to nie jest w stanie zapewnic

oczekiwane] szybkosci przetwarzanych danych. Problem ten zyskuje na znaczeniu
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w przypadku danych o wysokiej rozdzielczosci przestrzennej, odpowiadajacych obserwacjom
calej tarczy Stonca. Przyktadowo, przetworzenie serii 200 obrazoéw petnego dysku stonecznego,
czyli 200 macierzy 2304x2304 pikseli, przez algorytm MFBD zajmuje okolo 2 godzin.
Calkowicie eliminuje to mozliwos¢ wykorzystania tej metody do poprawy obrazow
w sensownym, uzytecznym czasie. W sytuacji, gdy zjawiska zachodzace na stoncu wymagaja

pilnej reakcji, tak duze opdznienia sg nieakceptowalne.

6.6. Ograniczenia stosowanych rozwigzan

W niniejszym rozdziale opisano przeprowadzone badania, ktéore miaty na celu
przetestowanie wplywu ilosci danych wejsciowych na dziatanie sieci. Jak udowodniono,
wykorzystanie sieci neuronowych stanowi atrakcyjng alternatywe wobec najlepszego
algorytmu deterministycznego, MFBD. Otrzymywane rezultaty cechuja si¢ poréwnywalng
jakos$cia, przy jednocze$nie krotszym o rzedy wielkosci czasie potrzebnym na wykonanie
obliczen. Co istotne, w przypadku obrazow niskorozdzielczych dobre rezultaty mozna uzyskac

takze przy uzyciu stosunkowo niewielkich architektur.

Nalezy jednak podkresli¢, ze przeprowadzone testy bazowaty na obrazach o wymiarach
176x176 pikseli. Natomiast w zastosowaniu docelowym sie¢ powinna by¢ w stanie przetwarzac
pelne obrazy tarczy slonecznej o znacznie wyzszej rozdzielczosci przestrzennej. W przypadku
wykorzystania obrazow o rozmiarze 2304x2304 piksele, tak jak przedstawiono na rysunku 6.1,
wielko$¢ samych danych wejSciowych wzrostaby ponad 170-krotnie. Wigzatoby si¢ to rowniez
z wigkszym zapotrzebowaniem sieci na pami¢¢ operacyjng, co jest pewnym ograniczeniem
w kontekscie mozliwosci stosowania proponowanych rozwigzan. Chociaz nie jest ono tak
drastyczne w przypadku uzytego sprzegtu, moze stanowi¢ zasadniczy problem przy probach
uruchomienia sieci na bardziej kompaktowym sprzgcie, ktory mozna by zamontowac tuz przy

zdalnie sterowanym teleskopie stonecznym, obrazujgcym caly dysk Stonca.

W kolejnym, ostatnim, rozdziale pracy podj¢ta zostanie tematyka kompresji sieci
neuronowych. Jest to obecnie jedno z najintensywniej rozwijanych zagadnieh w dziedzinie
uczenia maszynowego, co wynika z rosngcej zlozonosci 1 rozmiardw wspotczesnych modeli.
Coraz czg¢$ciej analizowane sg sposoby ich efektywnego uruchamiania na urzadzeniach takich
jak mikrokomputery, telefony komérkowe czy mikrokontrolery. Stosowane metody kompresji
umozliwiaja znaczng redukcje zapotrzebowania na pami¢é¢ i moc obliczeniowg przy

zachowaniu wysokiej jakosci dziatania modeli.

str. 133



Rozdziat 6. Redukcja szumu atmosferycznego w seriach danych obrazowych Slonca

str. 134



Wykorzystanie metod uczenia maszynowego w przetwarzaniu oraz analizie obrazow astronomicznych

7. Kompresja sieci na przyktadzie danych stonecznych

Sieci neuronowe cechuja si¢ obecnie duzg zlozono$cig oraz wysokimi wymaganiami
sprzgtowymi, co czasami stanowi wyzwanie w ich praktycznym zastosowaniu. W zwigzku
z tym, mozna zaobserwowac rosngce zainteresowanie metodami kompresji modeli, ktore
umozliwiajg zmniejszenie ich rozmiaru przy zachowaniu akceptowalnej jakosci uzyskiwanych

przez nie wynikow.

W wielu sytuacjach techniki te mozna stosowa¢ zarowno na wytrenowanych wczesniej
sieciach, jak 1 wdrozy¢ je do treningu od jego poczatku. Wymagaja one jednak odpowiedniego
dostrojenia, co moze znaczaco wydtuzy¢ i utrudni¢ proces uczenia. Podejsciem alternatywnym
jest wyszkolenie sieci o rozmiarze dostosowanym bezposrednio do charakterystyki
rozwazanego problemu. Strategia ta moze skutkowac uzyskaniem rozwigzania o oczekiwanej

efektywnosci, lecz z pominigciem wspomnianej optymalizacji.

W ostatniej czesci niniejszej rozprawy postanowiono zweryfikowaé, ktore z dwoch
wymienionych podejs¢ moze skutkowac¢ lepszymi rezultatami. W tym celu przeprowadzono
eksperymenty z wykorzystaniem omdwionego w poprzednim rozdziale zbioru SUTO-Solar
i wytrenowanych na nim sieci. Uwage skoncentrowano na przycinaniu sieci, jednej
z najpopularniejszych metod kompresji, ktora zmienia struktur¢ przetwarzanych modeli.
Pozwolito to oceni¢ wplyw kompresji na dzialanie testowanych sieci pod wzgledem
zapotrzebowania na pami¢¢ operacyjna, szybkos¢ przetwarzania danych i ich koncowa jakos¢.
Dodatkowo sprawdzono mozliwosci uruchomienia testowanych modeli na mikrokomputerze
Raspberry Pi 5, ktory uznano za dobry przyktad urzadzenia spelniajacego wymogi

przenosnosci, kompaktowosci 1 niewielkiego poboru mocy.

Tre$¢ niniejszego rozdzialu zostata podzielona na cztery czesci. W pierwszej z nich
omowiono najpopularniejsze techniki kompresji sieci neuronowych. Sekcja druga skupia si¢ na
opisie metody przycinania (ang. pruning) sieci, czyli usuwania z niej wybranych elementow.
W kolejnej czgsci poddano analizie uzyskane wyniki, natomiast w ostatniej podsumowano

wyniki badan.
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7.1. Metody kompresji sieci

Mozliwosci implementacji sieci neuronowych sa w wielu wypadkach znaczaco
ograniczone przez ich duze wymagania sprz¢towe. By zaradzi¢ temu problemowi, opracowano
wiele metod kompresji sieci neuronowych, ktére maja na celu redukcje liczby parametrow,
ztozono$ci obliczeniowej 1 zapotrzebowania na pami¢é przy jednoczesnym zachowaniu
wysokiej wydajnosci. Do najwazniejszych z tych metod nalezg przycinanie (ang. pruning),

destylacja wiedzy (ang. knowledge distillation) oraz kwantyzacja (ang. quantization).

Przycinanie sieci neuronowych polega na usuwaniu wybranych elementow modelu
w celu uzyskania rzadszej struktury. Jedng z pionierskich prac w tym obszarze byta [158],
w ktorej autorzy przedstawili metode usuwania wag o niewielkim wptywie na funkcj¢ kosztu.
Metoda ta zostala w poOzniejszych latach rozwinigta o iteracyjne przycinanie potaczone
z ponownym treningiem [159], a nastepnie o automatyzacje tego procesu [160]. Ideg
przycinania rozszerzono réwniez o ,hipotez¢ biletu na loteri¢” [161][162], wedtug ktorej
w duzych modelach istniejg podzbiory matych i efektywnych sieci, ktoére mozna ,,wylosowac”,

czyli uzyskac¢, poprzez odpowiednie zastosowanie przycinania i inicjalizacji.

Kwantyzacja polega natomiast na redukcji precyzji reprezentowanych wag i aktywacji.
Zamiast 32-bitowych liczb zmiennoprzecinkowych, model moze dziata¢ na liczbach
8-bitowych, a w skrajnych sytuacjach nawet na binarnych. Znaczaco zmniejsza to
zapotrzebowanie na pami¢¢ 1 umozliwia wydajne korzystanie z akceleratoréw sprzetowych

przystosowanych do tego typu danych.

Destylacja wiedzy oznacza transfer wiedzy z duzego modelu, nauczyciela, do
mniejszego modelu, ucznia. Koncepcja ta opiera si¢ na trenowaniu ucznia tak, aby odtwarzat
wyniki generowane przez nauczyciela, a tym samym nauczyt si¢ bardziej ztozonych zaleznosci,
majac mniej parametroOw niz nauczyciel [163]. Jednakze, takie podej$cie nie zawsze skutkuje
uzyskaniem wynikéw lepszych od tych otrzymywanych w sytuacji, gdy uczen trenowany jest
na zbiorze uczacym z pomini¢ciem nauczyciela [164]. Metoda ta jest z tego powodu czesto

taczona z innymi technikami [165], co pozwala zwigkszy¢ jej efektywnos¢.

Sposrod taczonych metod kompresji najpopularniejsze jest przycinanie stosowane
razem z kwantyzacja [166][167]. Takie podej$cie moze w zalezno$ci od charakterystyki zadania
zredukowac ztozono$¢ obliczeniowg 1 zapewni¢ lepsza kompaktowos$¢ sieci [168]. Niemniej,

w przypadku prowadzonych w tym rozdziale rozwazan, wykorzystana zostata jedynie technika
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przycinania sieci, poniewaz celem badan byla analiza wptywu ztozonosci sieci na ich

wydajno$¢, a nie ich optymalizacja.

7.2.

Przycinanie sieci

Przycinanie sieci neuronowych stanowi jedng z bardziej zlozonych metod kompresji,

poniewaz w znaczacy sposob ingeruje w strukturg sieci. Polega ona na wyborze najmniej

znaczacych wag, neuronéw lub nawet calych warstw i1 ich usunigciu. By zachowa¢ jak

najwyzszg wydajnos¢ przetwarzanych modeli, proces ten jest zazwyczaj realizowany

iteracyjnie. W kazdej z iteracji usuwa si¢ okreslong liczbe elementdw, a nastepnie dostraja si¢

sie¢, przeprowadzajac ponowny trening. Z uwagi na przeprowadzony wczesniej proces uczenia,

trwa on jednak znacznie krocej od gldwnego treningu; najczgsciej przyjmuje si¢ liczbe epok

odpowiadajaca 5-10% liczby epok glownego treningu.

Metody przycinania sieci mozna podzieli¢ wedtug kryteriow okreslajacych ich sposob

funkcjonowania. Ponizej przedstawiono trzy najwazniejsze z nich.

1) Podziat wzgledem zasiegu dzialania

a)

b)

Przycinanie globalne — skupia si¢ na analizie wszystkich elementow sieci jednoczesnie,
dzigki czemu mozna precyzyjnie wskaza¢ te najmniej istotne. To podejscie moze
skutkowac¢ uzyskaniem lepszych wynikow, jednak jest ono znacznie bardziej ztozonym
zagadnieniem. W wielu przypadkach wiaze si¢ z potrzebg wprowadzenia pewnych
ograniczen, ktore chronig model przed rozregulowaniem. Przyktadowo, w sieciach typu
U-Net nalezy zadba¢ o odpowiadajace sobie wymiary danych w potaczeniach
pomijajacych, by model mogt dziataé prawidtowo.

Przycinanie lokalne — polega na niezaleznej analizie elementéw do usunigcia w kazdej
warstwie osobno. Metoda ta ulatwia implementacje, daje wigksza kontrole nad strukturg

modelu, a takze korzystnie wptywa na zachowanie stabilnos$ci procesu uczenia.

2) Podziat wzgledem struktury usuwanych elementow

a)

Przycinanie niestrukturalne — polega na wyzerowaniu warto$ci poszczegdlnych wag
sieci, co przy odpowiednio silnym przycigciu moze doprowadzi¢ do zmiany macierzy
wag w macierze rzadkie. Nie jest to jednak rOwnoznaczne z usunigciem tych elementow,

przez co rozmiar modelu nie ulega zmniejszeniu. Szybko$¢ przetwarzania danych
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b)

rowniez nie ulega poprawie, jesli wykorzystany sprzet i oprogramowanie nie wspierajg
przetwarzania macierzy rzadkich.

Przycinanie strukturalne — opiera si¢ na usuwaniu catych struktur, takich jak neurony
w warstwach gestych czy mapy cech w warstwach konwolucyjnych. W efekcie zawsze

skutkuje zmniejszeniem zapotrzebowania sprzgtowego.

3) Podziat wzglgdem metody wyboru usuwanych elementow

a)

b)

warstw

Podejécie oparte na warto$ci wag — polega na usuni¢ciu elementdw o najmniejszej
wartosci bezwzglednej wag, operujac na zatozeniu, ze wagi bliskie zeru majg niewielki
wplyw na prace sieci. W odrdznieniu od pozostatych metod nie wymaga przetworzenia
danych przez sie¢.

Podejscia oparte na wartosci funkcji straty — polegaja na usuwaniu elementow, ktorych
zniknigcie ma najmniejszy wptyw na wydajnos¢ sieci okreslong przez wartos¢ funkcji
straty.

Podejscie oparte na warto$ci aktywacji elementu — polega na usunigciu elementow
o najmniejszej wartosci funkcji aktywacji. Ta metoda moze nie dziata¢ w przypadku

globalnego przycinania sieci, w ktorych wystepuje wiele r6znych funkcji aktywacji.

Na rysunku 7.1 przedstawiono niestrukturalne przycinanie globalne na przykladzie

gestych zlozonych z 4 neuronéw. Z pierwotnych 48 potaczen wybrane zostaly 24 (50%)

najmniej znaczace, ktore zaznaczono czerwonymi przerywanymi liniami. Nastepnie wagi tych

potaczen zostaty wyzerowane. Jak mozna zauwazy¢, liczba potaczen w kazdej warstwie jest

w tym przypadku inna, co moze mie¢ miejsce jedynie przy przycigciu globalnym. Na rysunku

7.2 przedstawiono analogiczny schemat dziatania strukturalnego przycinania lokalnego.

W kazdej warstwie wybrano 50% (2 z 4) najmniej istotnych neuronow, ktére zostaly usunigete.
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Oryginalna sie¢

Rysunek 7.1. Niestrukturalne przycinanie globalne.
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Oryginalna sie¢
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Rysunek 7.2. Strukturalne przycinanie lokalne.
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7.3. Analiza wynikow

Wszystkie z omawianych w poprzednim rozdziale sieci zostaty poddane strukturalnemu
przycinaniu lokalnemu, ktore przeprowadzono dla dwoch réznych kryteriow wyboru map cech
do usunigcia — warto$ci wag 1 wartosci aktywacji. Przeprowadzone zostato ono iteracyjnie tak,
ze w kazdym kroku najpierw usuwano 5% poczatkowej liczby map cech we wszystkich
warstwach, a nastepnie dostrajano przyciete sieci w ponownym treningu, ktory trwat 50 epok.

Do celow pordwnawczych wykorzystano sieci przyciete o 10%, 25%, 50% 1 80%.

7.3.1. Zapotrzebowanie sprzetowe 1 szybkos$¢ dziatania

Parametry porownywanych sieci przedstawiono w postaci tabel 7.1, 7.2 1 7.3, z ktorych
kazda opisuje jeden z rodzajow przycinanych sieci; odpowiednio sg to sieci: mata, $rednia
1 duza. Pierwsza z kolumn opisuje liczbe klatek wejsciowych, ktére przetwarza dany wariant
sieci. W drugiej kolumnie przedstawiono stopien przycigcia sieci, a w trzeciej liczbe wszystkich
parametréw. Nastepnie przedstawione zostaly wymagania kazdej z sieci wzgledem dostepnej
pamieci operacyjnej, ktorych wartosci oszacowano na podstawie pomiaru zuzycia pamigci
uktadu GPU. Jako punkt odniesienia do tych wynikéw nalezy nadmieni¢, Ze inicjalizacja sieci
malej, Sredniej 1 duzej wymagata odpowiednio 0,06 MB, 0,62 MB i 12,18 MB wolnej pamigci.
Wezytanie serii 100 obrazéw o rozmiarze 176x176 pikseli wigzato si¢ z zalokowaniem 12 MB
pamigci, natomiast dla serii 100 obrazow o rozmiarze 2304x2304 pikseli wartos¢ ta wyniosta
2026 MB. W ostatnich kolumnach zapisano oszacowany pomiar czasu przetwarzania
pojedynczej serii danych. Szarym kolorem zaznaczono wiersze zawierajace informacje

o oryginalnych, nieprzycietych sieciach.

Jak mozna zauwazy¢, zalezno$¢ migdzy stopniem przycigcia, a liczba wszystkich
parametréw sieci nie zmienia si¢ liniowo. Jest to spowodowane zalezno$ciami pomiedzy
usuwanymi strukturami — zmniejszanie liczby map cech w kazdej z warstw powoduje
dodatkowe zmniejszenie wymiarowosci danych przetwarzanych przez nastepng warstwe.
W efekcie przycigeie sieci o 10% elementow powoduje nieproporcjonalnie duza zmiang

w liczbie parametrow.

W przypadku pamigci operacyjnej zmiany zachodza w mniejszym stopniu i jedynie dla
duzej sieci mozna zaobserwowac systematyczny spadek zapotrzebowania na zasoby sprzetowe.

W przypadku sieci $redniej kompresja modelu przetwarzajacego 100 klatek nie skutkuje
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znaczacym obnizeniem wymagan. Natomiast dla matej sieci podobne ograniczenie zaczyna si¢
juz przy przetwarzaniu 50 klatek. Co istotne, duza sie¢ poddana 80% przycinaniu ma parametry

zblizone do nieprzetworzonej sieci §redniej, co pozwala precyzyjnie poréwnac ich wydajnoscé.

Tabela 7.1. Parametry porownywanych wariantow matych sieci.

Liczba Wymagana pamieé Czas przetwarzania
klatek Procent Liczba operacyjna [MB] pojedynczej serii [ms]
wejsSciowych prayclecia | parametrow 176x176 2304%x2304 | 176x176 | 2304x2304

- 5545 8,05 1 368,47 2 108

10% 4 348 7,22 1 226,65 3 107

10 25% 3295 6,20 1 056,03 1 106
50% 1621 4,53 770,80 1 107

80% 418 2,64 445,87 1 102

- 6 265 9,24 1 570,97 2 232

10% 4987 8,40 1 430,16 2 234

20 25% 3 835 7,39 1 258,95 2 228
50% 1 981 5,71 976,02 1 221

80% 598 5,03 852,52 2 217

- 8 425 13,12 2 219,18 3 487

10% 6 868 13,00 2 199,17 2 479

50 25% 5455 12,87 2179,17 2 481
50% 3061 12,63 2 139,16 3 473

80% 1138 12,38 2 097,65 2 472

- 12 025 39,09 6 245,12 4 861

10% 10018 37,90 6 387,11 3 863

100 25% 8 155 37,66 6 367,11 4 861
50% 4 861 37,17 6 165,08 3 864

80% 2038 36,67 6 205,04 3 852

Czas przetwarzania danych o wymiarze 2304x2304 pikseli (caly dysk stoneczny)

w gltownej mierze zalezy od liczby klatek w seriach wejsciowych. Jej zmiana powoduje
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zauwazalng zmiane szybkosci sieci 1 to o wiele wigkszg niz ta pojawiajaca si¢ na skutek

kompresji. W przypadku mniejszego rozmiaru przestrzennego danych wspomniany czas

zmienia si¢ minimalnie, ale zawsze wynosi mniej niz 10 ms. Pozwala to stwierdzi¢, ze

testowane sieci stanowig doskonatg alternatywe dla MFBD, poniewaz w badanych przypadkach

sa w stanie uzyskac¢ dobrej jakosci wyniki w czasie wyraznie krotszym niz czas akwizycji serii

danych.

Tabela 7.2. Parametry porownywanych wariantow §redniej sieci.

Licsba Wymagana pamieé Czas przetwarzania
Katek Prayciccie Liczba operacyjna [MB] pojedynczego obrazu
wejSciowych parametréw el
176x176 2304%x2304 | 176x176 | 2304x2304

- 134 633 15,38 2 528,61 5 144

10% 110 677 14,00 2 309,98 5 138

10 25% 76 351 11,80 1 959,47 4 138
50% 34 385 8,28 1 381,73 5 124

80% 5719 3,98 666,15 4 116

= 136 073 17,10 2 733,11 5 239

10% 111 937 15,95 2514,11 4 238

20 25% 77431 13,28 2162,18 5 240
50% 35205 9,47 1 587,02 5 241

80% 5989 5,23 872,84 4 241

= 140 393 20,13 3 338,63 6 453

10% 115717 18,75 3119,38 7 449

50 25% 80 671 16,54 276737 6 449
50% 37365 13,28 2 218,34 5 437

80% 6 799 12,58 2 117,98 5 432

= 147 593 40,66 6 407,71 8 894

10% 122 017 40,53 6 391,62 7 896

100 25% 86 071 40,39 6 327,47 7 889
50% 40 965 39,26 6 245,29 6 876

80% 8 149 36,99 6 225,37 6 872
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Tabela 7.3. Parametry porownywanych wariantow duzej sieci.

Licsba Wymagana pamicé Czas przetwarzania
Klatek Prayciecie Liczba operacyjna [MB] pojedynczego obrazu
weléclowyel parametrow [ms]
176x176 2304x2304 | 176x176 | 2304x2304

- 3152 469 84,33 11 884,37 7 303
10% 2 552 246 72,52 10 480,44 7 293
10 25% 1775493 58,75 8 723,95 6 259
50% 791 093 37,44 5 880,15 7 200
80% 129 435 15,17 2 500,65 6 159
- 3155369 87,32 12 089,51 8 391
10% 2554 876 72,97 10 683,57 7 383
20 25% 1777 673 59,90 8 925,54 8 353
50% 792 553 39,16 6 084,65 6 295
80% 129 995 16,36 2 703,32 7 262
- 3 164 069 88,37 12 693,54 8 655
10% 2562 766 76,14 11 289,35 7 643
50 25% 1784 213 62,91 9532,14 7 608
50% 796 933 43,04 6 692,73 7 545
80% 131 675 19,91 3 306,63 6 469

- 3178 569 96,17 13 707,72 9 1018

10% 2575916 82,89 12 302,15 8 1012

100 25% 1795 113 69,74 10 541,29 9 1 008
50% 804 233 48,98 7 701,26 8 958
80% 134 475 38,21 6 367,16 8 905

7.3.2. Ocena jakosci przetworzonych obrazéw

Kazda z rozwazanych sieci wykorzystano do przetworzenia zbioru testowego, a obrazy
wynikowe zostaty ponownie porownane z MFBD2go. Do oceny iloSciowej uzyto oméwionych

wczesniej metryk, a takze wykorzystano klatki usrednione jako dodatkowy punkt odniesienia.
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Powstate w efekcie zestawienia wynikéw przedstawiono na wykresach 7.3 (dla 10 klatek)
17.4 (dla 100 klatek). Lewe kolumny przedstawiaja wyniki uzyskane dla przycinania opartego

o warto$ci aktywacji, a prawe — opartego na wartosciach wag.

Pierwszym spostrzezeniem jest to, ze wyboOr kryterium usuwania elementdw ma
znikomy wpltyw na kompresje. W obydwu przypadkach dostrzegalny jest podobny trend
spadkowy, a wystepujace miedzy tymi podejsciami roznice sprowadzaja si¢ gtownie do
niewielkich zmian wydajno$ci matego modelu. Natomiast porownujac ze sobg wyniki modeli
przetwarzajacych 10 i 100 klatek, mozna zauwazy¢, ze wigcej informacji zostaje zachowane

w bardziej zlozonej sieci.

Analizujagc warto$ci poszczegdlnych metryk, mozna stwierdzi¢, ze juz przy 10%
przycieciu sieci radza sobie gorzej z odtwarzaniem informacji, co wida¢ na zestawieniu
wynikow dla metryk FSIM i MFGS. W przypadku miary VIF zmiany zachodza nieco wolniej,
niemniej sieci zaczynaja zbliza¢ si¢ jako$cia wynikéw do jako$ci obrazéw usrednionych.
Swiadczy to tym, ze modele przestaja dziala¢ poprawnie i nie realizuja oczekiwanej

rekonstrukcji obrazu.

Aby lepiej oceni¢ to zagadnienie, opracowano zestawienie wynikow dziatania
poszczegolnych algorytmoéw dla wybranej serii danych. Na rysunku 7.5 przedstawiono wyniki
dzialania sieci wykorzystujagcych 10 klatek wejsciowych, a na 7.6 analogiczne rezultaty
uzyskane dla 100 klatek. Jak wida¢, oryginalne sieci sa w stanie tak przetworzy¢ dane
usrednione, by otrzymac¢ obrazy zblizone do wynikow MFBD. Wprowadzanie przycinania
redukuje zmiany wprowadzane przez sieci w takim stopniu, ze przy przycigciu 80% trudno
odroznié wynik dzialania sieci od danych wejsciowych. Swiadczy to o tym, ze zmiany
wprowadzane przez sie¢ majace odpowiednio uwydatni¢ (zrekonstruowac) drobne struktury

chromosfery stonecznej przestaja mie¢ miejsce.
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Rysunek 7.3. Statystyczne pordéwnanie wybranych metryk po przycieciu sieci wykorzystujacych 10 klatek

wejsciowych.
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Rysunek 7.4. Statystyczne pordwnanie wybranych metryk po przycigciu sieci wykorzystujacych 100 klatek

wejsciowych.
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Rozdziat 7. Kompresja sieci na przykladzie danych stonecznych

Mata sieé Srednia sieé Duza sieé

MFBD

0.990 ; 0.804 ; 0.975 0.990 ; 0.800 ; 0.974 0.990;0.789 ; 0.974

Oryginalna sie¢

0.987;0.797 ; 0.975 0.979 ; 0.679 ; 0.966 0.982;0.715 ; 0.963

Przycigcie 10%

0.985 ; 0.686 ; 0.966 0.980 ; 0.648 ; 0.962 0.980 : 0.674 ; 0.966

"
.

0.980 ; 0.642 ; 0.964

Przyciecie 25%

0.978 ; 0.612 ; 0.959

0.978 ; 0.615 ; 0.961

0.977;0.583 ; 0.958 0.978 ;0.617 ; 0.962 0.978;0.621 ; 0.963

0.978 ;0.614 ; 0.961 0.978 ;0.614 ; 0.961 0.978 ;0.614 ; 0.961

Przycigcie 50%

Przycigcie 80%

Klatka usredniona

Rysunek 7.5. Poréwnanie wizualne obrazow po przycigciu sieci wykorzystujacych 10 klatek wejsciowych.
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Mala sieé Srednia sie¢ Duza sieé¢

MFBD

0.996; 0.883 ;0.991 0.996 ; 0.880 ; 0.991 0.996;0.872: 0.990

Oryginalna siec¢

.

0.991 ; 0.849 ; 0.990 0.977;0.632 ; 0.993 0.987,0.777 ; 0.993

Przycigcie 10%

0.992 ; 0.805 ; 0.991 0.977 ; 0.625 ; 0.994 0.980 ; 0.650 ; 0.993

Przycigcie 25%

. M

0.980 ; 0.646 ; 0.987 0.978 ; 0.629 ; 0.994 0.979 ; 0.638 ; 0.994

Przyciecie 50%

0.980 ; 0.647 ; 0.994 0.977:0.624 ; 0.994 0.978 ; 0.630 ; 0.995

Przyciecie 80%

. 3

0.978 ; 0.627 ; 0.995 0.978 ; 0.627 ; 0.995 0.978 ; 0.627 ; 0.995

Klatka usredniona

Rysunek 7.6. Poréwnanie wizualne obrazow po przycigciu sieci wykorzystujacych 100 klatek wejsciowych.
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Rozdziat 7. Kompresja sieci na przykladzie danych stonecznych

7.3.3. Uruchomienie na Raspberry Pi 5

Podczas dotychczasowych badan korzystano wytacznie z komputera opisanego
w poprzednim rozdziale. Chociaz w wielu sytuacjach wykorzystanie takiego sprzetu moze
okaza¢ si¢ wystarczajace, pozagdanym efektem prac jest uruchomienie testowanych sieci na
znacznie mniej wymagajacym sprzgcie. Taki sprzet mozna podiaczy¢ bezposrednio do
teleskopu, co pozwala przetwarza¢ dane od razu na miejscu obserwacji. Jest to zagadnienie
szczegolnie istotne przy akwizycji duzej ilo$ci danych, ktore moga zapetni¢ dostgpng pamigc,
zanim zostang przeniesione do docelowego archiwum. Autorowi znany jest przyklad takiej
sytuacji z teleskopu kosmicznego Gaia, ktory w pewnym momencie rejestrowal dane szybciej,

niz je przesytat na Ziemig, co wymusito usuni¢cie pewnej ich czesci.

Postawiono zatem przetestowa¢é mozliwosci uruchomienia testowanych sieci na
minikomputerze Raspberry Pi 5 wyposazonym w 8 GB RAM. Sprzet ten obstuguje jezyk
Python wraz z frameworkiem PyTorch, co pozwolito bezproblemowo przenies¢ na niego te
rozwigzania. Nalezy przy tym podkresli¢, Zze nie jest to norma, bo takie urzadzenia wspieraja
zazwyczaj jedynie specjalistyczne formaty sieci, ktére wymuszaja stosowanie konwersji.
W przypadku PyTorcha najwigksza elastyczno$¢ zapewnia konwersja modeli do formatu

ONNX (ang. Open Neural Network Exchange).

W ramach badan na poczatku uruchomiono oryginalne sieci i przetestowano ich
dziatanie na obrazach o wymiarach 176x176. Wyniki zaprezentowano w tabeli 7.4. Jak mozna
zauwazyC¢, nawet na sprzgcie tej klasy czas przetwarzania danych przez modele jest o wiele
krotszy od czasu ich rejestrowania. Jedynym wyjatkiem jest duza sie¢ dziatajaca na 10 klatkach,

dla ktorej czasy te sa do siebie zblizone.

Tabela 7.4. Czas przetwarzania danych przez sieci na Raspberry Pi 5 (176x176).

Liczba klatek Czas przetwarzania danych [ms]

wejsciowych Mata sie¢ Srednia sie¢ Duza sieé
10 17 67 324
20 19 70 327
50 47 76 339
100 75 87 357
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Podj¢to rowniez proby uruchomienia tych sieci z wykorzystaniem obrazéw o rozmiarze
2304%2304 piksele (tabela 7.5). Sposrod duzych sieci, testom podlegaly jedynie wersje
skompresowane w 80% , bo inne wymagaly zbyt duzo pamigci. Mimo ze modele te powinny
teoretycznie dziala¢ bez problemu, poroOwnania mozna bylo dokona¢ jedynie dla sieci
przetwarzajace serie 10 1 20 klatek wejsciowych. Jest to spowodowane tym, ze sposrod 8 GB
pamigci na Raspberry Pi 5 czg$¢ jest rezerwowana przez procesy systemowe, a takze na
wczytanie danych z pliku. Szybko$¢ dziatania jest przy tym mniejsza niz w przypadku obrazow
o wymiarach 176x176. Warto$ci te mozna jeszcze zmniejszy¢ poprzez wprowadzenie dalszych
metod kompresji, takich jak kwantyzacja wag. Nie bylo to jednak celem pracy, wigc

eksperymenty zakonczono na tym etapie.

Tabela 7.5. Czas przetwarzania danych przez sieci na Raspberry Pi 5 (2304x2304).

Czas przetwarzania danych [ms]
Liczba klatek _
. Mala sie¢ Srednia sie¢ Duza sie¢
wejsciowych
(oryginalny rozmiar) | (oryginalny rozmiar) | (przyci¢ta w 80%)
10 3438 12 170 9615
20 3767 12919 10 220

7.4. Omowienie wynikow

Do przeprowadzenia eksperymentow wykorzystano trzy sieci omowione w poprzednim
rozdziale. Mimo ze wystepuja pomiedzy nimi znaczace roznice w ztozono$ci, wszystkie sa
w stanie osiggna¢ rezultaty zblizone do wynikéw algorytmu MFBD. Sugeruje to, ze ilos¢
informacji zawarta w wykorzystanych danych jest wystarczajaca nawet dla matej sieci.
W konsekwencji wigksze architektury okazuja sie by¢ zbedne, gdyz zawieraja znacznie wigcej
parametrow, niz jest konieczne do osiggnigcia wysokiej wydajnosci. Najbardziej efektywnym
podejséciem jest zatem projektowanie mniejszych modeli, ktore sg odpowiednio dopasowane do

realizowanego zadania.

Z praktycznego punktu widzenia zadanie to nie jest proste, poniewaz trudno z gory
oszacowac optymalny stopien ztozonosci modeli. Pod tym wzgledem bardziej bezpiecznym

rozwigzaniem wydaje si¢ by¢ wstgpne wytrenowanie duzej sieci neuronowej, a nastepnie
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Rozdziat 7. Kompresja sieci na przykladzie danych stonecznych

iteracyjne zmniejszanie jej wielkosci potaczone z obserwacjg rezultatow. Podejscie to wigze si¢
z potrzebg precyzyjnego dostrojenia algorytmow kompresji i ponownego treningu sieci. Jak
jednak wykazano w eksperymencie, skompresowane modele w przypadku tego konkretnego
zadania rekonstrukcji obrazow stonecznych osiggnelty rezultaty wyraznie gorsze niz

nieskompresowane, mniejsze modele.

W zwigzku z tym, mozna stwierdzi¢, ze w zadaniach operujgcych na danych
niskorozdzielczych wigksze architektury nie zawsze przynosza korzysci, a ich trenowanie
oraz stosowana nast¢pnie kompresja mogg by¢ skrajnie nieefektywne. Jednocze$nie nalezy
podkresli¢, ze wnioski te odnoszg si¢ do konkretnego typu danych i rozwazanego problemu,
wiec niekoniecznie muszg by¢ uniwersalne. Niemniej, zaobserwowany fakt nalezy traktowac
jako przestanke do kazdorazowej proby poszukiwania alternatywnych, mniejszych, architektur
sieci zamiast wzglednie bezpiecznego podejscia wykorzystujacego kompresje wigkszych

struktur.
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8. Podsumowanie pracy

W ostatnich latach astronomia obserwacyjna charakteryzuje si¢ rosngcym
zapotrzebowaniem na metody efektywnego przetwarzania rejestrowanych danych. Wiele uwagi
poswigcono opracowaniu technik uczenia maszynowego stuzacych poprawie ich ogodlnej
jakosci 1 analizie. Wigkszo$¢ prac skupita si¢ jednak wylgcznie na wykorzystaniu danych
pochodzacych z najwigkszych teleskopéw naziemnych. Pomini¢to przy tym ich mniejsze
odpowiedniki, ktore stanowig trzon wielu projektow badawczych. Celem niniejszej dysertacji
bylo rozszerzenie badan na te zagadnienie poprzez ocen¢ mozliwo$ci sieci neuronowych
w redukcji szumu niskorozdzielczych obrazéw astronomicznych. Analiz¢ t¢ podzielono na

cztery oddzielne cze¢sci, z ktorych kazda jest rozwinigciem poprzedniej.

Na poczatku okreslono grupe obiecujacych rozwigzan w postaci sieci neuronowych,
ktére przetwarzaja dane, stosujac przy tym redukcje ich wymiarowosci. Zalozono, ze taka
procedura, dostosowana do narzuconych wymagan, powinna odpowiada¢ kompresji stratnej
przetwarzanych danych, w przypadku ktdrej usunigta zostanie gtownie informacja o losowym
szumie. Jako testowane architektury wybrano zatem sieci typu autoenkoder, ktorych wydajnosé
zweryfikowano na zbiorze obrazéw syntetycznych. Pozwolito to oceni¢ wybrane techniki
trenowania sieci w sytuacji, gdy nie ma dostgpu do danych niezawierajacych szumu. Otrzymane
wyniki zostaly pordwnane wzgledem rezultatow uzyskiwanych przez najlepsze algorytmy

deterministyczne.

Przeprowadzone eksperymenty udowodnity wyzszo$¢ rozwigzan bazujacych na
uczeniu maszynowym nad klasycznymi metodami, co wstgpnie potwierdzito stusznos$¢ glowne;
tezy pracy. Wyniki wskazywaly przy tym na mozliwos¢ skutecznego wykorzystania badanych
strategii uczenia na obrazach rzeczywistych. Wnioski dotyczace tej czgsci pracy skupity sie na
wskazaniu ograniczenia rozwazanych architektur, ktorym byl ich brak elastycznosci wzgledem
wejsciowych danych. Pierwotnie struktura modeli pozwalata jedynie na przetwarzanie obrazoéw
o statych rozmiarach przestrzennych. By zaradzi¢ temu problemowi, w dalszych etapach badan

zdecydowano si¢ wykorzysta¢ wylacznie sieci w petni konwolucyjne.

Druga czes$¢ badan skupita si¢ na walidacji wybranych technik uczenia i architektur sieci
z uzyciem danych obrazowych nocnego nieba. Analizowane modele wzbogacono o sieci typu
U-Net, ktore sa rozbudowanag forma symetrycznych autoenkoderoéw. Jakos$¢ przetworzonych

obrazOw zostata oceniona z wykorzystaniem pomiardOw potozenia, jasnosci i mozliwosci
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detekcji gwiazd. Poruszono przy tym takze tematyke wplywu zlozonosci sieci na jej

efektywnos¢.

Wykazano, ze nawet relatywnie niewielkie sieci neuronowe sg w stanie przewyzszy¢
algorytmy deterministyczne w redukcji szumu nocnego nieba. Mimo ze testowane rozwigzania
maj3 tendencje do wyrownywania jasnosci tta, czyli przyciemniania stabiej $wiecacych gwiazd,
dobrze zachowuja ich pozycje 1 zauwazalnie zwigkszajg ich wykrywalnos¢. Najistotniejszym
wnioskiem bylo jednak to, ze najlepsze wyniki nie zostaty osiggnigte przez najbardziej ztozone
architektury, co moze $wiadczy¢ o mniejszych wymaganiach danych niskorozdzielczych

wzgledem zlozonosci sieci. Tematyke t¢ rozwinieto w dalszej pracy.

Testowane do tego momentu sieci dzialaly wylacznie w oparciu o przetwarzanie
pojedynczych obrazéw. Jednak rozwazane dane astronomiczne sktadaja si¢ zazwyczaj z serii
wielu klatek wykonanych sekwencyjnie. W trzeciej cze$ci badan zweryfikowano mozliwosci
sieci w redukcji szumu obecnego w takich seriach poprzez jednoczesne przetwarzanie
informacji z wybranej liczby klatek. Celem bylo wyznaczenie odpowiedniej wielkosci sieci,
ktora pozwala uzyska¢ wyniki zblizone do otrzymywanych przez najlepszy algorytm

deterministyczny MFBD, lecz w znacznie krotszym czasie.

Jak zaobserwowano, wykorzystane architektury moga stanowi¢ atrakcyjna alternatywe
wobec MFBD, poniewaz uzyskiwane wyniki cechujg si¢ porownywalng jakoscia, a obliczenia
sa wykonywane w czasie krotszym o rzedy wielkosci. W przypadku wykorzystanego sprzetu
mozna nawet stwierdzi¢, ze obliczenia wykonywane sa w czasie rzeczywistym — przetworzenie
serii 100 klatek zachodzi w czasie krotszym od czasu ekspozycji pojedynczej klatki. Co istotne,
rowniez 1 w tym eksperymencie niewielkie sieci byly w stanie osiagnaé bardzo dobry wynik,

co ponownie potwierdza stlusznos¢ tezy.

Ostatnia czg$¢ pracy skupia si¢ na praktycznym podejs$ciu do wykorzystania sieci. Jak
przedstawiono, mate sieci moga uzyskiwac lepsze wyniki od sieci wigkszych, a ich trening jest
zazwyczaj o wiele mniej wymagajacy sprzetowo. Niestety, nie da si¢ z gory stwierdzié, jaki
rozmiar sieci bedzie najlepiej dopasowany do potrzeb. Bardziej przystepnym rozwigzaniem
wydaje si¢ by¢ w takiej sytuacji wytrenowanie duzego modelu, a nast¢gpnie zmniejszenie jego

wielkosci do odpowiedniego rozmiaru.

Wobec tego w ostatniej czg$ci pracy poruszono zagadnienie kompresji sieci
neuronowych. Sposréd wszystkich metod wybrano tg, ktora zmienia strukturg architektury, co

pozwolito oceni¢ wptyw wielkosci modelu na wyniki dziatania. Jak zweryfikowano, podejscie
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to wymaga precyzyjnego dostrojenia algorytméw kompresji i ponownego treningu sieci, aby
mogla ona konkurowa¢ z mniejszymi sieciami. Wigksze architektury mogg zatem okazac si¢

w pewnych sytuacjach nieefektywne.

Podsumowujac, wszystkie zalozone prace badawcze zostaly z powodzeniem
zrealizowane. Otrzymane wyniki wskazuja, ze niewielkie sieci neuronowe moga osiagac
wysokg skuteczno$¢ w redukcji szumu na obrazach astronomicznych, przewyzszajgc pod tym
wzgledem zaréwno algorytmy deterministyczne, jak i bardziej rozbudowane modele. Sg przy
tym w stanie wykonac t¢ prace przy nizszych wymaganiach sprz¢towych 1 w krétszym czasie.
Czyni to z nich sensowng grupe rozwigzan, a wyciaggnigte z eksperymentéw wnioski moga
postuzy¢ jako punkt wyjscia do przysztych badan rozwijajacych ten temat. Na koniec nalezy
zaznaczyC, ze zastosowane rozwigzania nie byly poddane peilnej optymalizacji, gdyz nie

stanowito to gldéwnego celu badan.
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Dodatek: Spis publikacji i wystgpien konferencyjnych

Niektore z fragmentéw niniejszej pracy zostaly opublikowane w czasopismach

naukowych oraz przedstawione w ramach wystapien konferencyjnych. Ponizej zamieszczono

chronologiczne zestawienie tych opracowan wraz z informacjg o wykorzystanych fragmentach

pracy.

1.

Cze$¢ wynikdéw obejmujaca wpltyw réznych sposobow uczenia sieci neuronowych na
ich efektywno$¢ na przykladzie zbioru MNIST zostata przedstawiona w ramach
wystapienia konferencyjnego na ,,Ogolnopolskiej Konferencji Mtodych Naukowcdw na
temat: Inzynieria — Spojrzenie Mlodych Naukowcoéw”, a nastgpnie opublikowana
w formie artykulu ,,Wykorzystanie metod uczenia maszynowego w przetwarzaniu
i poprawie jako$ci obrazéw astronomicznych obserwatoriow Politechniki Slaskiej”
[169] w opracowaniu zbiorczym ,,Zagadnienia aktualnie poruszane przez mtodych
naukowcow”.

Wyniki opisane w punkcie pierwszym zostaly takze w szerszej formie opublikowane
jako artykut ,,Comparison of training strategies for autoencoder-based monochromatic
image denoising” [170] w czasopismie Sensors.

Wstepne wyniki prac nad wptywem doboru parametrow sieci neuronowej na jakos$¢
detekcji w przetworzonych obrazach zostaly zaprezentowane na ogolnopolskiej
konferencji ,,Analiza Zagadnienia, Analiza Wynikow — Wystapienie Mtodego
Naukowca — Edycja V.

Wyniki prac nad redukcjg szumu astronomicznego na obrazach nocnego nieba 1 Stonca
zostaty w okrojonej formie zaprezentowane na ,,Gornoslaskiej Kosmicznej Konferencji
Naukowej GeKKoN”, konferencji popularnonaukowej skierowanej do studentow
1 uczniow szkot srednich.

Czes¢ wynikow prac nad zastosowaniem sieci neuronowych jako alternatywy metody
MFBD w przetwarzaniu obrazow Stonca zostata przedstawiona w ramach referatu na
mi¢dzynarodowej konferencji ,,The 38th Annual European Simulation and Modelling
Conference (ESM 2024)”, a nastgpnie opublikowana w materiatach konferencyjnych
jako ,,Increasing the observation capabilities of small solar telescopes using neural

networks” [171].
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Problematyka optymalizacji sieci neuronowych pod wzgledem wykorzystania zasobow
sprzetowych zostala poruszona w ramach referatu na ,,IX Migdzynarodowe;j
Interdyscyplinarnej Konferencji Uczelni Technicznych InterTechDOC’24”.

Wyniki opisane w punkcie pigtym zostaly w poszerzonej formie (odpowiadajacej
wiekszosci Rozdziatu 6) opublikowane jako artykut ,,Fully convolutional neural
networks for processing observational data from small remote solar telescopes” [172]
w czasopi$mie Scientific Reports.

Wyniki prac nad porownaniem wptywu sieci neuronowych na detekcje gwiazd
w przetworzonych obrazach nocnego nieba zostaly przedstawione w ramach referatu
na mig¢dzynarodowej konferencji ,,The 39th Annual European Simulation and
Modelling Conference (ESM 2025)”, a nastepnie opublikowane w materiatach
konferencyjnych jako ,,Comparison of neural network training approaches in limited
data scenarios” [173].

Obecnie trwaja takze prace nad poszerzeniem opisanych w rozdziale 5 eksperymentow
na dane o réznym czasie ekspozycji, a nastgpnie opracowanie artykutu naukowego,

ktory zostanie zgloszony do publikacji w czasopi$mie Astronomy & Astrophysics.
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