Predictions of the Mechanical and Electrical Properties of
Cementitious Composites Using Artificial Neural Networks

mgr.inz Sofija Kekez

Extended Abstract

Concrete mix design may be defined as a technique of establishing the most cost-effective
concrete mixture in terms of the ingredients, while the requirements for the mechanical properties
such as workability, strength, and durability are achieved. It is becoming essential in construction
due to the rising prices of traditional materials, and recent implementation of alternative materials.
In construction of large voluminous structures such as dams, or structures which require high
strength of concrete such as high-rise buildings, long bridges, or megastructures, concrete mix
design assures that the required properties of concrete are achieved and, at the same time, keeps
the use of costly ingredients at the necessary minimum, making the construction as economically
feasible as possible. Implementation and application of some novel concrete mix design method
is still strictly in the domain of research; however, this work aims to bring it closer to the civil
engineering practice. Since the optimal mixtures are usually developed through a relatively long
trial-and-error process, making the fabrication a costly venture, this research work focuses on the
possibilities of faster and more feasible production. General classification of methods used in
concrete mix design includes analytical, semi-experimental, experimental, and statistical methods.
This work proposes a method classified as semi-experimental, since it includes both experimental
testing and the application of analytical tools, in this case, numerical analysis and a machine
learning technique called artificial neural networks. This novel method’s goal is to predict the
behavior of CN'T/CNF reinforced concrete, by incorporating the numerical simulations in ANSY'S
to substitute laboratory work, and by applying the artificial neural networks to predict compressive
strength, flexural strength, and volume electrical resistivity of the cementitious composite material.

Concrete mix design serves to optimize the concrete mixture and explore possibilities of
adding materials such as recycled plastic, recycled aggregate, different types of nanomaterials, etc.

Most popular nanomaterials used in concrete matrix are carbon black, C60, nano-TiOz, nano-



Fe>Os, carbon nanotubes, carbon nanofibers, and graphene. Nanomaterials are especially attractive
as a filler material in the concrete matrix because they may provide additional functions to the
concrete, including self-cleaning, self-healing, self-sensing, and others. Therefore, the nano-
reinforced concrete composite material presents an excellent choice for multi-functional structures.
This work deals with carbon nanotube (CNT) or carbon nanofiber (CNF) reinforced concrete
provided with the enhanced mechanical features and the additional ability of internal strain
sensing. The ability of self-sensing may be very significant for the development of new sensing
systems, and for the structural monitoring field in general. If sensing is possible within the material
itself, the monitoring of the structure can be constant and self-sufficient if provided with a powerful
processing unit and data storage. Currently, self-sensing concrete is not used in civil engineering
practice, partly due to the lack of appropriate sensing equipment and partly due to the high costs
of a relatively experimental material. Sensors are devices which respond to physical stimuli by
producing an electrical signal where a sensor converts physical parameters into an electrical signal
that is further converted to a digital value through a signal conditioning circuitry and the analog-
to-digital converter. These components constitute a data acquisition system that processes
electrical signals converting them into digital values and enabling further manipulation by a
computer. Piezoresistive sensors are based on the piezoresistive effect, using the change in the
electrical resistivity of the material when it is deformed under applied strain. Since the CNT/CNF
reinforced concrete expresses piezoresistive behavior, it is possible to use it as a piezoresistive
SEnsor.

This dissertation proposes a new mix design method for CNT/CNF reinforced concrete
and investigates the possibilities of excluding the experimental testing by applying analytical tools.
After the theoretical analysis of the fabrication and behavior of CNT/CNF reinforced conerete in
terms of the chemical and electronical aspect, the research focuses on the experimental testing of
the composite materials. Thus, the investigation follows the fabrication process regarding the
proper nanofiller dispersion, reaching the percolation threshold and electrically conductive
networks within the insulating matrix, and finally, providing quality end-product is performed.
Experimental work is found in the literature. The observed works use statistical methods to obtain
the mixture recipes by varying the weight fraction of the nanofillers which are then tested.
Furthermore, the detailed descriptions are provided for the mixture ingredients, nanofiller

dispersion, composite fabrication, testing, and the standards which were used for the experiments.



All works have the same type of basic ingredients for the insulating concrete matrix. Namely,
Ordinary Portland cement (OPC) containing limited amounts of calcium sulfate (up to 5%) and
other minor constituents (up to 5%) with the strength classes of 42.5 and 52.5. OPC represents a
basic binding material, and the high purity is chosen so that the possible additional or unexpected
factors influencing the properties of the concrete are brought to a minimum. Distilled water is used
for the dispersion of nanofillers and tap or distilled water was used for mixing of the concrete. The
w/c ratio included the total amount of water used for both nanofiller dispersion and concrete
mixing. In accordance with keeping the threatening factors for the concrete quality at a minimum,
the used aggregate material is standardized natural or manufactured siliceous sand for the fine
aggregate, and gravel or crushed rock for the coarse aggregate. Nanofillers are multi-walled carbon
nanotubes (CNTs) and carbon nanofibers (CNFs), both with purity of around 99%. Because of the
presence of nanofillers, some additive materials are used to achieve better dispersion and mixing
of the materials and avoid phenomena such as segregation, agglomeration, or excessive foaming.
Those materials are surfactants, superplasticizers, and/or foam reducing (defoamer) agents. These
materials serve to enable a quality dispersion of the nanomaterials, and to allow quality of the
concrete mixture. Some dispersions are achieved without the help of any kind of surfactant.
Cement pastes, mortars with fine aggregate, or concrete with fine and coarse aggregate are
produced within the observed works. Mechanical testing included three- and four- point bending
tests, and axial compression test. Electrical testing included two- and four-probe methods. The
standards used in the observed works are Eurocode (EN), Indian Standard (IS), American Concrete
Institute (ACI), Spanish Association for Standardization (UNE), and American Society for Testing
and Materials (ASTM). Out of 49 observed experiments, 13 have been rejected due to the
following issues: unclear process of specimen fabrication; unstandardized geometry of the
specimens; improper dispersion of the nanofillers (high percolation threshold); pre-dispersed
CNTs giving only the weight fraction of the admixture; occurrence of a decrease of mechanical
and electrical properties after adding the nanofillers; and determining the tensile strength by a split
tensile test. Finally, the data counts 429 mixtures, where 207 were tested for flexural strength, 329
mixtures were tested for compressive strength, and 223 mixtures were tested for electrical
conductivity, resistance, or resistivity. These mixtures are later presented to the artificial neural

networks as datasets in Group I of the data.



Numerical simulations are employed in this study to establish if it is possible to use ANSYS
software as a substitute for the experimental testing of CNT/CNF reinforced concrete specimens.
The analyses and simulations are carried out based on the experimental testing. The material
models are developed using Material Designer and the results are used to build a comprehensive
material library. This material library is later applied in simulations of the mechanical testing of
the specimens, namely, three-point bending test and axial compression test in Static Structural.
The results are validated by comparison with the results of the experimental testing, taking care of
the coinciding geometry and type of the test. Material models are developed using Random UD
Composite RVE. The concrete microstructure is heterogeneous and all three aggregate states are
present in the concrete mesostructure, however, Material Designer is unable to recognize the
various aggregate states of materials. Furthermore, the concrete structure consists of cement and
water particles at micro level, while the fine and coarse aggregate materials have the minimum
size of 1-2 mm and 2-16 mm, respectively, hence, exist only on the macro scale. This occurrence
cannot be described within Material Designer. Due to the limits of the Material Designer, the
concrete matrix is not modeled as composite of all ingredients, but as a homogeneous material.
The Random UD Composite RVE is defined by the geometry of the fiber, including the fiber
volume fraction, mean misalignment angle, seed, fiber diameter, and the repeat count.
Parametrization is done for the fiber volume fraction, so that each composite group is prescribed
with the suitable values. The duration of RVE generation and meshing depends on the seed and
the repeat count parameter. It is established that for the smaller fiber weight fractions, from 0.01-
0.1 wt.%, it is better to use smaller mean misalignment angle and repeat count, while the seed
should be kept between 15000 and 25000. For the weight fractions higher than 0.1 wt.%, the mean
misalignment angle can be increased to 5, or even 10 for fractions over 1 wt.%. The seed should
increase steadily in line with the fraction, going up to around 70000 for 2 wt.%. Only conformal
meshing is used, without a limit for the maximum FE size. It is established that limiting the mesh
size leads to difficulties for the model to provide a complete mesh between the matrix and the fiber
materials. Conformal meshing coincides with the relatively irregular geometry between the two
materials.

After homogenization in Material Designer, the density and tensor of elasticity of the
isotropic material is provided for the Engineering Data. Space Claim is used to build the geometry

of specimens for the compression and bending tests, following the realistic testing set-up for the



axial compression test and for the three-point bending test according to Eurocode. Hence, bending
test specimens are small beams and the compression test specimens represent the halved small
beams. The Mechanical part of the Static Structural model defines the meshing of the model,
supports, loading, and analysis’ settings. Meshing of both types of specimens includes hexagonal
finite elements (Hex8, Hex20) of 2 mm, type SOLID185. Linear SOLID185 elements are 8-node
three-dimensional finite elements used for thick shell and solid structures. Analysis of the meshing
element number and quality shows that all elements in both compression and bending model have
the same size and shape. The FE size is 2 mm in both cases; therefore, the compression model has
8000 elements, and the bending model has 16768 elements which ensures relatively quick static
analysis. Simulation of the loading is indicated by the ultimate strength of the referential plain
concrete material from the experimental testing. Compression test set-up implies that the entire
bottom surface is fully supported and that the entire top plane is loaded. The loading of the model
is presented as the displacement of the top surface, which is input as tabular to ensure the steady
growth of the stresses. The analysis of the stresses is provided with sub steps within one second of
the implicit static analysis. The minimum number of steps is 10 and the maximum is 20, to ensure
incremental analysis but keep the speed of convergence. Bending test model includes additional
bodies in the form of supports and the impactor. The contact surfaces between the support bodies
and the beam are defined as “no separation™ contacts, where the bodies are fully connected with
allowed sliding. Displacement is set to zero in all global directions for both supports. Even though
statically, the constraints are in vertical and horizontal longitudinal directions only, this setup helps
the software to converge quicker and easier. The impactor body transfers the force from the moving
loading press to the beam. Therefore, the contact type between the impactor and the beam is
“bonded” and the vertical displacement is provided at the top surface.

Results of the static analysis are represented with the maximum, minimum, and the average
values of the maximum principal stress, the minimum principal stress, and the normal stress. It is
observed that in some cases Young’s modulus of the composite material is even higher than 200
GPa, and the bending strength surpasses the value of 20 MPa. It is safe to say that this is an
overestimation, and that it would not occur in realistic conditions. However, the results show
somewhat realistic material behavior for the composite materials with the weight fractions of up
to 0.1%. Thus, for the lower weight fraction of the nanofiller, the results seem promising and imply

further research. As for the weight fractions over 0.1%, it may be concluded that the microstructure



should be modeled thoroughly from the bottom up, considering individual constituent materials
and modeling the nanofillers more realistically in terms of their interaction with each other and
within the concrete matrix. Similarly, the compression test results scarcely show a realistic
situation. Although there is an increase in strength in most cases, this increase is not the realistic
value which the nanofillers actually provide to the concrete matrix. It may be observed that the
compressive strength is changed negligibly, with the increase maximum of 1 MPa. Experimental
research included less variations of the nanofiller weight fractions, hence, the validation is
implemented for the total of 51 cementitious mixtures, including plain and nano-reinforced
concrete. All observed experimental investigations included the specimens with the same
geometry (40x40x160 mm) and the type of testing (3-point bending). It may be observed that the
difference between the experimental testing and the numerical simulations of the plain concrete
mixtures, as well as the nano-reinforced mixtures is much higher than for the compressive strength,
going as high as around 110%. This occurrence cannot be considered possible. There is no
evidence so far that may show such high increase of strength, regardless of the additional materials
or the method of fabrication of the composite material. Hence, the flexural strength results from
the simulations are not realistic and therefore should not be considered acceptable. Nevertheless,
the results from the numerical simulations are used for further analysis by the artificial neural
networks. Total of 164 mixtures are presented to the ANNs as datasets of Group IL

Machine learning methods can establish the nonlinear dependencies between the effect
factors through minimizing the error via the regression with a remarkably high accuracy of results.
Although there are many machine learning techniques and even more types of each technique, as
well as the combinations between them, this work focuses on the basic programming of artificial
neural network models to provide the basis into further investigation of the application of machine
learning in the optimization of mix proportions of CNT/CNF reinforced concrete. Artificial neural
networks are developed in Matlab R2020b, using neural fitting tool and the script editor. The
networks are trained using both experimental results (Group I) and numerical results (Group II) to
establish the applicability of these methods in the civil engineering practice. The models are built
using the NT tool and using the script directly. After testing the ANN models from each group, the
results and behavior of the ANN models are compared to establish the viability of using the results
of ANSYS simulations instead of the experimental testing results. Architecture of ANNs includes

the number of layers and the number of neurons in each layer, as well as the algorithm type and



the activation function. In this work, all neural network models have constant learning parameters
in order to provide a proper comparison of models within both groups. By fixing the learning
parameters while varying only the number of the hidden neurons and the subsets ratios, it should
be possible to establish which type of architecture presents the best fit for each group and subgroup
of models. Total number of layers in all ANN models is three, including the input, one hidden, and
the output layer. This type of architecture is called the “shallow” network, and it is commonly used
for relatively small datasets regarding the number of input neurons and data tuples. Number of
hidden neurons is connected to the number of neurons in the input layers. This work uses two
dependencies given in the literature and proposes an additional dependency to test and observe the
behavior of the models. Neural network models are developed additionally by direct manual
scripting in Matlab R2020b. This way, more options are available in terms of architecture and the
process of training and optimization. All ANN models are initially trained using 80% of the full
dataset, which is applied only for training and validation. The validation is used at this point to
halt the training process, and the training/validation subsets are set to the ratio of 85/15 for the
initial and optimization stage. During the initial stage, the number of hidden neurons is equal to
the number of input neurons. Later on, it is adjusted based on the results of the optimization and
testing. After the initial training, the topology is optimized by iterating the number of neurons in
the hidden layer from one to 3-Mi, respectively, Optimization of the initial model establishes the
optimal number of neurons in the hidden layer. Improved topology of the network implies better
generalization and contributes to the stability of the network. The optimization is indicated via the
level and the change of the mean squared error for varying number of neurons in the hidden layer.
Then, two values are chosen to be tested further based on the optimization results. These two
models are tested with the rest 20% of the dataset and based on the results of the testing, a single
topology is chosen as the final working model. The final working ANN model is then trained using
the complete dataset and without any restrictions. It means that the training continues until the
minimum training gradient of 10e-7 is reached. If the gradient is not reached as the training reaches
a thousand iterations, it is immediately halted.

Results for the total regression coefficient lower than R=0.8 are considered unsatisfactory.
Evaluation of ANNs is provided for the models developed using NF tool which have shown the
best behavior. Datasets are randomly divided into two subsets according to the ratio of 80/20, using

the 80% of the respective set for repeated training and subsequent testing using the rest 20% of the



set. Sensitivity analysis shows absolute or relative contribution of each input parameter to the
output value. It may also influence the topology of the final working model because it may show
that some parameter could impair or slow down the learning process. On the other hand, it shows
which parameters are crucial. This work uses the weights method, otherwise known as the
Garson’s algorithm. The algorithm is specifically created for supervised neural networks with a
single output to describe the relative importance of the input parameters by deconstructing the
model weights.

Models from the datasets which give the mechanical properties as the output, show
satisfactory results with the regression coefficient values higher than 0.8. For the prescribed
models for both Group I and Group I, the most regular error distribution is obtained when the
number of hidden neurons equals the number of input neurons. Other occurrence shows that the
model which has number of hidden neurons equal to Nh=2Ni+1, exhibits the best behavior within
its subgroup. Nevertheless, models with Nh=3Ni also showed comparable behavior to other
models, confirming the hypothesis of this work. Since these models show satisfactory results, the
evaluation was performed. R values of the evaluation models are compared to the results of the
initial training. In some cases, regression coefficients of the evaluation models are higher than the
initial R values. This may occur due to the favorable distribution of tuples during randomization
or the fact that the evaluated models are trained on a smaller dataset. That said, the difference
between the values does not exceed 0.1, meaning that the validity of the initial models is
confirmed. Evaluation of the initial models concludes that all models showed satisfactory behavior
with the given topologies.

Response of the ANN models which were developed using the script editor in Matlab
R2020b, are observed at each stage of the development: initial, optimization, testing, and working
stage, respectively. Each dataset is used for one model development throughout the former stages.
the initial topology included equal numbers of input and hidden neurons. Results are satisfactory
for all models with the mechanical properties as output. Nevertheless, the topologies are optimized.
The optimization consisted of iterative change of the number of neurons in the hidden layer,
beginning from one and ending at the value of three times the number of input neurons, and
following the change of the root mean squared error for training and validation. Testing of the
optimized models is provided for the topology which has given better response of the network

during the optimization process. The testing is performed with the simulation function using the



20% of the full dataset. After testing, final working models are trained using the full respective
dataset. Training is performed without any other subsets, as it has been previously described. It
may be observed that regression coefficients for all models are very high, with R>0.99, when the
learning process is not limited with anything else other than the learning gradient and number of

iterations,

The prescribed models from the dataset with electrical resistivity as the output (RESIST)
gave the regression coefficient values much lower than the expected 0.8 limit, which is deemed
unsatisfactory in this work. Further investigation is made to try to establish the source of this
behavior. Therefore, the RESIST dataset was revised. The previous experimental results which
were showing that the percolation threshold is not reached have been omitted from the dataset with
the assumption that the training of the networks was unsuccessful because of the incoherent
behavior of samples. Also, the results which showed relatively higher resistivity for higher weight
fraction of the nanofiller compared to other samples within the same sample group were rejected
as outliers. Furthermore, the input neuron which gave the cross-sectional area of the sample was
added, in order to try to enrich the network with more learning points. After the revision was
complete, the new dataset was normalized in the same manner and prepared for training. Other
than the increase of the number of input neurons and thus the number of hidden neurons, there was
no other changes to the twelve new models. Results of the revised RESIST models show that the
behavior of the models has not improved after the revision of the initial dataset. Possible
explanation could be that the referential samples without nanofillers may be considered as outliers
for the overall dataset. For example, within one sample group, value of the resistivity of the plain
sample is 7700000 Qcm, while the resistivity after reaching percolation threshold with 0.048wt%
of CNTs is 360000 Qcm. Hence, the referential non-reinforced sample may be considered an
outlier of the dataset. This assumption would imply that the dataset needs further revision,
however, further revision would compress the dataset to the point of instability of learning because
the total number of tuples would be around 100. Thus, it would be best to make a comprehensive
experimental investigation to obtain more stable results. The scripted models for RESIST dataset
showed similar behavior, where the R values are slightly higher but still under the value of 0.8,

and thus unsatisfactory.



This investigation included the multi-physics approach in addressing the application of
numerical simulations and of artificial neural networks for predicting mechanical and electrical
properties of CNT/CNF reinforced cementitious composite materials. The following conclusions
may be defined. Mechanical and electrical properties are improved by the presence of the CNT or
CNF nanofiller. 1t has been shown that if proper dispersion is achieved, and the mixing and
molding of the concrete is made according to the standard, the mechanical properties of the
composite material are significantly improved. Numerical models of CNT/CNF reinforced
concrete cannot realistically respond to mechanical stimuli. ANSYS models of the CNT/CNF
concrete composite material showed promising results only for up to 0.1 wt.% of the nanofiller.
Mechanical behavior of CNT/CNF reinforced concrete may be predicted using artificial neural
networks. Electrical behavior of the CNT/CNF reinforced concrete cannot be predicted using
artificial neural networks. The lack of comprehensive information on the electrical behavior of
these materials, leads to insufficient learning materials for the neural network. It is shown how
only false positive results may be achieved. Finally, number of neurons in the hidden layer of the
ANN equal to Ny=3"N; may provide valid predictions. The assumed value of the number of hidden
neurons shows very good results and does not exhibit overfitting of the networks in this work.

The idea of this work is that the application of numerical simulations and artificial neural
networks for material design and prediction of the behavior of CNT/CNF reinforced concrete could
be the basis of a new mix design technique which will minimize or completely exclude the use of
time-consuming and costly experimental testing. To this goal, the abovementioned issues
regarding the electrical behavior and material modeling of the composite materials should be
resolved. Proposal of further work implies performing a comprehensive experimental testing of
the electrical properties keeping constant the laboratory and experimental factors. Moreover,
establishing a suitable software which can support the microstructural modeling and encompass
the concrete’s mesostructured, would resolve the issue occurring within ANSYS and provide

simulations of the electrical testing as well.

20.06- 201y 14% UE/L



