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Rozszerzone streszczenie

Projektowanie mieszanki betonowej mozna zdefiniowaé jako technike ustalania
najbardziej optacalnego i optymalnego skladu mieszanki betonowej, przy jednoczesnym
spelnieniu  wymagan dotyczgcych wlasnosci mechanicznych, takich jak urabialnosc,
wytrzymatosé oraz trwatosé. Takie podejscie staje si¢ niezbedne w budownictwie ze wzgledu
na rosngce ceny materialow tradycyjnych i niedawne wdrazanie materialow alternatywnych.
Przy budowie konstrukcji o duzych gabarytach, takich jak zapory Ilub konstrukcje
wymagajgce duzej wytrzymalosci betonu, takie jak wiezowce, dlugie mosty czy innego typu
mega konstrukcje, projektowanie mieszanki betonowej zapewnia osiggni¢cie wymaganych
wlasciwosci  betonu, a jednoczesnie utrzymuje uzycie kosztownych skladnikow na
niezbednym minimum, dzigki czemu budowa jest oplacalna ekonomicznie. Wdrozenie
i°zastosowanie jakiejkolwiek nowatorskiej metody projektowania mieszanek betonowych jest
nadal stricte dziedzing badan; jednak praca ta ma na celu przyblizenie jej do praktyki
stosowanej w inzynierii lagdowej. Poniewaz optymalne mieszanki sg zwykle opracowywane w
stosunkowo dlugim procesie prob i bledéw, co czyni ich wytwarzanie kosztownym
przedsigwzieciem, w niniejsze] pracy badawczej skupiono si¢ na mozliwosciach szybszej
i°bardziej optacalnej ustalania sktadu. Ogolna klasyfikacja metod stosowanych
weprojektowaniu mieszanek betonowych obejmuje metody analityczne, pdteksperymentalne,
eksperymentalne i statystyczne. W pracy zaproponowano metode klasyfikowang jako
poteksperymentalng, poniewaz obejmuje ona zarowno testowanie eksperymentalne, jak
i°zastosowanie narzgdzi analitycznych, w tym przypadku analizy numerycznej i techniki
uczenia maszynowego zwanej sztucznymi sieciami neuronowymi. Celem tej nowatorskiej
metody jest przewidzenie zachowania si¢ betonu zbrojonego CNT/CNF poprzez wigczenie
symulacji numerycznych w programie ANSYS, aby zastgpi¢ prace laboratoryjna, oraz
zastosowanie sztucznych sieci neuronowych do przewidywania wytrzymatosci na sciskanie,
wytrzymatosci na zginanie i objetosciowej opornosci elektrycznej materialu cementowego
materiatu kompozytowego.

Projektowanie mieszanki betonowej, jak juz wspomniano, stuzy do optymalizacji
mieszanki betonowej 1 zbadania mozliwosci dodawania materialow, takich jak plastik
z°recyklingu, kruszywo z recyklingu, rézne rodzaje nanomateriatow, itp. Najpopularniejsze
nanomaterialy stosowane w matrycy betonowej to sadza, C60, nano-TiO2, nano-Fe203,
nanorurki weglowe, nanowtokna weglowe 1 grafen. Nanomaterialy sg szczegdlnie atrakeyjne

jako material wypelniajgcy w matrycy betonowej, poniewaz moga zapewnia¢ betonowi



dodatkowe funkcje, w tym samooczyszczanie, samonaprawianie, samoczynne wykrywanie
i°inne. Dlatego tez material kompozytowy z betonu nano-zbrojonego jest doskonatym
wyborem dla konstrukeji wielofunkeyjnych. Praca dotyczy betonu zbrojonego nanorurkami
weglowymi (CNT) lub nanowltoknami weglowymi (CNF) o ulepszonych wihasciwosciach
mechanicznych oraz dodatkowej zdolno$ci wykrywania naprezen wewnetrznych. Zdolnosé
samodetekeji moze by¢ bardzo istotna dla rozwoju nowych systemdéw detekcyjnych i ogdlnie,
dla dziedziny monitorowania konstrukeji. Jesli wykrywanie jest mozliwe w samym materiale,
monitorowanie struktury moze by¢ state i samowystarczalne, jesli jest wyposazone w potgzny
procesor 1 system przechowywania danych. Obecnie beton samo-mierzacy si¢ nie jest
wykorzystywany w praktyce budowlanej, czesciowo ze wzgledu na brak odpowiedniego
sprzetu  (czujnikéw), a czesciowo ze wzgledu na wysokie koszty stosunkowo
eksperymentalnego materiatu. Czujniki to urzadzenia, ktore reagujg na bodzce fizyczne,
wytwarzajac sygnat elektryczny, w ktorym czujnik przeksztatca parametry fizyczne na sygnat
elektryczny, ktory jest nastepnie przeksztalcany na wartos¢ cyfrowg za pomoca obwodow
kondycjonowania sygnatu i przetwornika analogowo-cyfrowego. Elementy te tworza system
akwizycji danych, ktory przetwarza sygnaly elektryczne, przeksztalcajgc je w wartosci
cyfrowe 1 umozliwiajac dalszg manipulacje przez komputer. Czujniki piezorezystancyjne
opieraja si¢ na efekcie piezorezystancyjnym, wykorzystujacym zmiang opornosci elektryczne;j
materiatu, gdy jest on odksztatcany pod przylozonym naprezeniem. Poniewaz beton zbrojony
CNT/CNF wykazuje zachowanie piezorezystancyjne, mozna go uzywaé jako czujnika
piezorezystancyjnego.

W niniejsze] rozprawie zaproponowano nowa metode projektowania mieszanek
zelbetowych CNT/CNF oraz zbadano mozliwosci wykluczenia badan eksperymentalnych
poprzez zastosowanie narzedzi analitycznych. Po teoretycznej analizie wytwarzania
i°zachowania betonu zbrojonego CNT/CNF pod wzgledem chemicznym i elektronicznym,
badania koncentrujg si¢ na badaniach eksperymentalnych materialow kompozytowych.
Wezwiazku z tym badanie sledzi proces wytwarzania pod katem prawidtowej dyspersji
nanowypelniacza, osiggniecia progu perkolacji i1 sieci przewodzacych prgd w osnowie
izolacyjnej, a na koncu zapewnienia wysokiej jako$ci produktu koncowego. Prace
eksperymentalne z tej tematyki mozna znalez¢ w literaturze. W analizowanych pracach
wykorzystano metody statystyczne do uzyskania receptur mieszanin poprzez zréznicowanie
udzialu wagowego badanych nastgpnie nanowypelniaczy. Ponadto, podano szczegdtowe
opisy skladnikow mieszaniny, dyspersji nanowypelniacza, wytwarzania kompozytu, badan
oraz standardoéw, ktore zastosowano w doswiadczeniach. Wszystkie prace majg ten sam
rodzaj podstawowych skladnikéw do izolacyjnej matrycy betonowej. Mianowicie zwykly
cement portlandzki (OPC) zawierajacy ograniczone ilosci siarczanu wapnia (do 5%) i innych
drobnych sktadnikéw (do 5%) o klasach wytrzymatosci 42,5 1 52,5. OPC jest podstawowym
materiatem wigzacym, a wysoka czysto$¢ jest tak dobrana, aby ewentualne dodatkowe lub



nieoczekiwane czynniki wplywajace na wilasciwosci betonu zostaly zredukowane do
minimum. Do dyspersji nanowypeltniaczy wykorzystywana jest woda destylowana, a do
mieszania betonu wykorzystywana jest woda wodociggowa lub destylowana. Stosunek wi/c
obejmowal calkowita ilo§¢ wody uzytej zardwno do dyspersji nanowypelniacza, jak i do
mieszania betonu. Zgodnie z minimalizacjg czynnikow zagrazajacych jakosci betonu, jako
kruszywo drobnoziarniste stosuje si¢ standaryzowany naturalny lub sztuczny piasek
krzemionkowy, natomiast w przypadku kruszywa grubego zwir lub tluczen kamienny.
Nanowypelniacze to wieloscienne nanorurki weglowe (CNT) i nanowtdkien weglowych
(CNF), oba o czystosci okoto 99%. Ze wzgledu na obecno$¢ nanowypekniaczy stosuje sig
niektdre materiaty dodatkowe w celu uzyskania lepszej dyspersji i mieszania materiatow oraz
uniknigcia zjawisk takich jak segregacja, aglomeracja czy nadmierne pienienie. Materialy te
to $rodki powierzchniowo czynne, superplastyfikatory i/lub srodki zmniejszajace pienienie
(odpieniacze). Materialy te shuzg do zapewnienia wysokiej jakosci dyspersji nanomaterialdw
i°zapewnienia jako$ci mieszanki betonowej. Niektére dyspersje uzyskuje si¢ bez pomocy
jakiegokolwiek $rodka powierzchniowo czynnego. W ramach analizowanych prac
badawczych powstawaty zaczyny cementowe, zaprawy z kruszywem drobnym lub beton
z°kruszywem drobnym i grubym. Testy mechaniczne obejmowatly testy zginania trzy-
i°czteropunktowego oraz test Sciskania osiowego. Testy elektryczne obejmowaty metody
dwu- i czterosondowe. Normy stosowane w analizowanych pracach to Eurokod (EN),
Indyjska Norma (IS), Amerykanskiego Instytutu Betonu (ACI), Hiszpanskiego
Stowarzyszenia Normalizacyjnego (UNE) oraz Amerykanskiego Towarzystwa Badan
i°Materiatow (ASTM). Sposréd 49 analizowanych eksperymentow, 13 zostato odrzuconych
z°nastepujgcych powodoéw: niejasny proces wytwarzania probek; nieznormalizowana
geometria probek; niewlasciwa dyspersja nanowypelniaczy (wysoki prog perkolacji);
wstepnie zdyspergowane CNT dajace tylko utamek wagowy domieszki; wystgpowanie
pogorszenia wlasciwosci mechanicznych i elektrycznych po dodaniu nanowypelniaczy; oraz
okreslenie wytrzymatosci na rozcigganie za pomocg proby osiowego rozciggania. Wreszcie
dane objely 429 mieszanin, z ktdrych 207 przetestowano pod katem wytrzymalosci na
zginanie, 329 mieszanin przetestowano pod katem wytrzymatosci na Sciskanie, a 223
mieszanki przetestowano pod katem przewodnosci elektrycznej, rezystancji Iub
rezystywnosci. Mieszaniny te byly pdzniej przedstawiane sztucznym sieciom neuronowym
jako zbiory danych do nauki sieci w grupie I danych.

W tym badaniu zastosowano symulacje numeryczne w celu ustalenia, czy mozliwe jest
wykorzystanie oprogramowania ANSYS jako substytutu badan eksperymentalnych probek
zelbetowych CNT/CNF. Analizy i symulacje przeprowadzane sa na podstawie badan
eksperymentalnych. Modele materiatéw sa opracowywane przy uzyciu programu Material
Designer, a wyniki sg wykorzystywane do tworzenia obszernej biblioteki materialow. Ta
biblioteka materialow jest pozniej stosowana w symulacjach badan mechanicznych probek,



a°mianowicie w probie trojpunktowego zginania i probie sciskania osiowego z uzyciem Static
Structural. Wyniki s walidowane przez poréwnanie z wynikami badan eksperymentalnych,
z°uwzglednieniem zgodnosci geometrii i rodzaju testu. Modele materialowe sg
opracowywane przy uzyciu Random UD Composite RVE. Mikrostruktura betonu jest
niejednorodna i wszystkie trzy stany kruszywa sa obecne w mezostrukturze betonu, jednak
Material Designer nie jest w stanie rozpoznaé roéznych stanow kruszywa materialow. Ponadto,
struktura betonu sklada sie z czgstek cementu i wody na poziomie mikro, podczas gdy
materiaty kruszywa drobnego i grubego maja minimalng wielkos¢ odpowiednio 1-2 mm i 2-
16 mm, a zatem wystepuja tylko w skali makro. Tego nie mozna opisa¢ w programie Material
Designer. Ze wzgledu na ograniczenia Material Designera matryca betonowa nie jest
modelowana jako kompozyt wszystkich sktadnikéw, ale jako materiat jednorodny. Random
UD Composite RVE jest definiowany przez geometri¢ wtokna, w tym udzial objetosciowy
wiokna, $redni kgt niewspoOtosiowoscei, nasiona, $rednice widkna i liczbg powtdrzen.
Parametryzacja jest wykonywana dla utamka objetosciowego widkien, tak aby kazda grupa
kompozytéw miata odpowiednie wartosci. Czas trwania generowania RVE i siatki zalezy od
uziarnienia i parametru liczby powtorzen. Ustalono, ze dla mniejszych frakcji wagowych
wilokien, od 0,01-0,1% wag., lepiej jest stosowa¢ mniejszy $redni kat niewspotosiowosci
i°liczbe powtérzen, podczas gdy uziarnienie powinno by¢ utrzymywane miedzy 15000
a°25000. Dla frakcji wagowych powyzej 0,1 % wag., sredni kat niewspolosiowosci mozna
zwickszy¢ do 5 lub nawet 10 dla frakcji powyzej 1% wag. Uziarnienie powinno stale rosng¢
zgodnie z frakcjg, dochodzac do okoto 70000 dla 2% wag. Wykorzystywane jest tylko
siatkowanie konformalne, bez limitu maksymalnego rozmiaru FE. Ustalono, Ze ograniczenie
rozmiaru oczek prowadzi do trudno$ci w zapewnieniu przez model pelnej siatki pomigdzy
osnowa a materialami wioknistymi. Konformalne zazebienie zbiega si¢ ze stosunkowo
nieregularng geometrig miedzy dwoma materiatami.

Po ujednorodnieniu w Material Designer, w Engineering Data podaje sig¢ ggstosc
i°tensor sprezystosci materiatu izotropowego. Space Claim stuzy do budowy geometrii
probek do testow sciskania i zginania, zgodnie z realistycznymi ustawieniami testowymi dla
testu $ciskania osiowego i testu trzypunktowego zginania zgodnie z Eurokodem. Stad probki
do badania zginania sg matymi belkami, a prébki do badania $ciskania reprezentujg mate
belki podzielone na pot. Mechanical Part modelu Static Structural definiuje siatk¢ modelu,
podpory, obcigzenia i ustawienia analizy. Siatkowanie obu typéw prébek obejmuje
heksagonalne elementy skoficzone (Hex8, Hex20) o grubosci 2 mm, typ SOLID185. Liniowe
elementy SOLIDI85 to 8-wegzlowe trojwymiarowe elementy skonczone stosowane
wekonstrukcjach grubopowlokowych i litych. Analiza liczby i jakosci elementow siatki
pokazuje, ze wszystkie elementy w modelu $ciskania i zginania majg ten sam rozmiar
i°ksztalt. Rozmiar FE w obu przypadkach wynosi 2 mm; dlatego model sciskania ma 8000

elementéw, a model zginania ma 16768 elementoéw, co zapewnia stosunkowo szybka analizg



statyczna. Na symulacje obcigzenia wskazuje wytrzymalo$¢ graniczna referencyjnego
zwyklego materialu betonowego z badan eksperymentalnych. Konfiguracja testu Sciskania
oznacza, ze cala dolna powierzchnia jest w pelni podparta, a cala gérna plaszczyzna jest
obciazona. Obcigzenie modelu jest przedstawiane jako przemieszezenie gérnej powierzchni,
ktore jest wprowadzane w postaci tabelarycznej, aby zapewni¢ staty wzrost napr¢zen. Analiza
naprezen zawiera podetapy w ciggu jednej sekundy od niejawnej analizy statycznej.
Minimalna liczba krokéw to 10, a maksymalna to 20, aby zapewni¢ analize przyrostowa przy
zachowaniu szybkosci zbieznosci. Model testu zginania obejmuje dodatkowe elementy
w°postaci podpér i obcigznika. Powierzchnie styku pomigdzy elementami wsporczymi
a°belka sg okreslane jako kontakty ,.bez separacji”, gdzie elementy sa w pelni potgczone
z°dopuszezalnym poslizgiem. Przemieszczenie jest ustawione na zero we wszystkich
kierunkach globalnych dla obu podpor. Mimo ze statycznie wigzania wystepujg tylko
wepionowym i poziomym kierunku wzdtuznym, ta konfiguracja pomaga oprogramowaniu
szybciej i tatwiej osiagaé zbieznos¢. Element obcigzajacy przenosi site z prasy na belke.
Wezwigzku z tym, typ kontaktu migdzy elementem obcigzajacym a belkg jest ,,zwigzany”,
a®pionowe przemieszczenie jest zapewnione na gérnej powierzchni.

Wyniki analizy statycznej sg reprezentowane przez maksymalne, minimalne i Srednie
warto$ci maksymalnego naprezenia gldwnego, minimalnego naprezenia gtownego
i°naprezenia normalnego. Zaobserwowano, ze w niektorych przypadkach modut Younga
materialu kompozytowego jest nawet wyzszy niz 200 GPa, a wytrzymalos¢ na zginanie
przekracza warto$é 20 MPa. Mozna $mialo powiedzie¢, ze jest to przeszacowanie i nie
miatoby to miejsca w realistycznych warunkach. Jednak wyniki pokazujg dos¢ realistyczne
zachowanie materiatow dla materialow kompozytowych o utamkach wagowych do 0,1%.
Zatem dla mniejszej frakcji wagowej nanowypelniacza wyniki wydajg si¢ obiecujgce
i°sugerujg potrzebe dalszych badan. Jeéli chodzi o udziaty wagowe powyzej 0,1%, mozna
stwierdzié, ze mikrostrukture nalezy doktadnie zamodelowaé od dotu do géry, uwzgledniajgc
poszczegdlne materialy skladowe i bardziej realistycznie modelujac nanowypetniacze pod
katem ich wzajemnego oddzialywania oraz uktadu w osnowie betonowej. Podobnie wyniki
testu $ciskania z trudem pokazuja realistyczng sytuacje. Chociaz w wigkszosci przypadkow
nastepuje wzrost wytrzymatosci, wzrost ten nie jest realistyczng wartoscig, jaka
nanowypetniacze faktycznie zapewniaja matrycy betonowej. Mozna zaobserwowac, ze
wytrzymato$é na $ciskanie zmienia si¢ w nieznacznym stopniu, przy maksymalnym wzroscie
o 1 MPa. Badania eksperymentalne obejmowaly mniejsze roznice we frakcjach wagowych
nanowypeiacza, dlatego walidacje przeprowadzono dla tacznie 51 mieszanek cementowych,
w tym betonu zwyklego i nano-zbrojonego. Wszystkie obserwowane badania
eksperymentalne obejmowaly probki o tej samej geometrii (40x40x160 mm) i rodzaju
badania (zginanie 3-punktowe). Mozna zaobserwowaé, ze réznica miedzy badaniami

eksperymentalnymi a symulacjami numerycznymi zarowno mieszanek betonu zwyklego, jak



i°zbrojonego jest znacznie wigksza niz w przypadku wytrzymatosci na Sciskanie i sigga okoto
110%. To zdarzenie nie moze by¢ uznane za mozliwe. Jak dotgd nie ma dowodéw na tak
duzy wzrost wytrzymalo$ci, niezaleznie od materiatéw dodatkowych czy sposobu wykonania
materialu kompozytowego. W zwigzku z tym wyniki symulacji wytrzymatosci na zginanie
nie sa realistyczne i dlatego nie nalezy ich uwazac¢ za akceptowalne. Niemniej jednak wyniki
symulacji numerycznych sg wykorzystywane do dalszej analizy przez sztuczne sieci
neuronowe. W sumie 164 mieszaniny sg prezentowane SSN jako zbiory danych Grupy IL.
Metody uczenia maszynowego moga ustali¢ nieliniowe zaleznosci migdzy czynnikami
efektu poprzez minimalizacje bledu poprzez regresj¢ z wyjatkowo wysoka doktadnoscig
wynikéw. Chociaz istnieje wiele technik uczenia maszynowego i jeszcze wigcej rodzajow
kazdej techniki, a takze ich kombinacji, niniejsza praca koncentruje si¢ na podstawowym
programowaniu modeli sztucznych sieci neuronowych, aby zapewni¢ podstawe do dalszych
badan zastosowania uczenia maszynowego w optymalizacja proporcji mieszanki betonu
z°nanowypelniaczem CNT/CNF. Sztuczne sieci neuronowe sg opracowywane w programie
Matlab R2020b przy uzyciu narzedzia do dopasowania neuronowego i edytora skryptow.
Sieci sg szkolone z wykorzystaniem zaréwno wynikéw eksperymentalnych (Grupa I), jak
i°liczbowych (Grupa II), aby ustali¢ mozliwo$¢ zastosowania tych metod w praktyce
inzynierskiej. Modele sa budowane przy uzyciu narzedzia NF i bezposrednio przy uzyciu
skryptu. Po przetestowaniu modeli SNN z kazdej grupy, wyniki i zachowanie modeli SNN sg
porownywane w celu ustalenia zasadnosci wykorzystania wynikéw symulacji ANSYS
zamiast wynikéw testow eksperymentalnych. Architektura SSN obejmuje liczbe warstw
i°liczbe neuronéw w kazdej warstwie, a takze typ algorytmu i funkcje aktywacji. W niniejszej
pracy wszystkie modele sieci neuronowych maja stale parametry uczenia sig, aby zapewni¢
wlasciwe porownanie modeli w ramach obu grup. Ustalajac parametry uczenia sig, zmieniajge
tylko liczbe ukrytych neurondéw i proporcje podzbioréw, powinno by¢ mozliwe ustalenie, jaki
typ architektury najlepiej pasuje do kazdej grupy i podgrupy modeli. Catkowita liczba warstw
we wszystkich modelach ANN wynosi trzy, w tym warstwa wejsciowa, jedna ukryta
i°warstwa wyjsciowa. Ten typ architektury nazywany jest siecia ,,ptytka” i jest powszechnie
uzywany w przypadku stosunkowo matych zbioréw danych dotyczacych liczby neuronow
wejsciowych i krotek danych. Liczba ukrytych neurondéw jest powiazana z liczbg neuronow
wewarstwach wejsciowych. Praca ta wykorzystuje dwie zaleznosci podane w literaturze
i°proponuje dodatkowa zalezno$¢ do testowania i obserwowania zachowania modeli. Modele
sieci neuronowych sg dodatkowo rozwijane przez bezposrednie reczne skryptowanie
wPprogramie Matlab R2020b. W ten sposéb dostgpnych jest wigcej opcji w zakresie
architektury oraz procesu szkolenia i optymalizacji. Wszystkie modele ANN sa poczatkowo
trenowane przy uzyciu 80% pelnego zestawu danych, ktéry jest stosowany tylko do
trenowania i walidacji. Walidacja jest wykorzystywana w tym momencie do zatrzymania
procesu uczenia, a podzbiory uczenia/walidacji sa ustawione na stosunek 85/15 dla etapu



poczatkowego i optymalizacji. Na poczatkowym etapie liczba ukrytych neuron6éw jest rowna
liczbie neuronéw wejsciowych. Pozniej jest dostosowywana na podstawie wynikéw
optymalizacji i testowania. Po wstepnym treningu topologia jest optymalizowana poprzez
iteracje liczby neuronéw w warstwie ukrytej odpowiednio od jednego do 3-Ni. Optymalizacja
poczatkowego modelu ustala optymalng liczbe neuronéw w warstwie ukrytej. Ulepszona
topologia sieci oznacza lepsze uogolnienie i przyczynia si¢ do stabilnosci sieci. Na
optymalizacje wskazuje poziom i zmiana blgdu $redniokwadratowego dla réznej liczby
neuronéw w warstwie ukrytej. Nastepnie wybierane sg dwie wartosci do dalszego testowania
na podstawie wynikow optymalizacji. Te dwa modele sa testowane z pozostatymi 20% zbioru
danych i na podstawie wynikow testow wybierana jest pojedyncza topologia jako ostateczny
model roboczy. Ostateczny dziatajgcy model sieci ANN jest nastgpnie szkolony przy uzyciu
pelnego zestawu danych i bez zadnych ograniczen. Oznacza to, ze trening trwa do momentu
osiggniecia minimalnego gradientu treningowego 10e-7. Jesli gradient nie zostanie osiggnigty,
gdy trening osiggnie tysigc iteracji, zostanie natychmiast zatrzymany.

Wyniki dla catkowitego wspotczynnika regresji nizszego niz R=0,8 sa uznawane za
niezadowalajace. Ocena SSN zostata podana dla modeli opracowanych za pomocg narzgdzia
NF, ktére wykazaly najlepsze zachowanie. Zbiory danych sa losowo podzielone na dwa
podzbiory zgodnie ze stosunkiem 80/20, przy uzyciu 80% odpowiedniego zestawu do
powtarzanego treningu, a nastepnie testowania z wykorzystaniem pozostatych 20% zestawu.
Analiza czulosci pokazuje bezwzgledny lub wzgledny udziat kazdego parametru wejsciowego
w wartosci wyjsciowej. Moze rowniez wpltywaé na topologi¢ koncowego modelu roboczego,
poniewaz moze wskazywaé, ze jaki§ parametr moze pogorszy¢ lub spowolni¢ proces uczenia
sie. Z drugiej strony pokazuje, ktére parametry sg kluczowe. W pracy zastosowano metode
wag, zwang inaczej algorytmem Garsona. Algorytm zostal stworzony specjalnie dla
nadzorowanych sieci neuronowych z pojedynczym wyjsciem, aby opisa¢ wzgledne znaczenie
parametréw wejsciowych poprzez dekonstrukcje wag modelu.

Modele ze zbioréw danych, ktore jako dane wyjsciowe podaja whasciwosci
mechaniczne, wykazuja zadowalajgce wyniki przy wartosciach wspélczynnika regresji
powyzej 0,8. W przypadku zalecanych modeli zaréwno dla Grupy I, jak i Grupy II,
najbardziej regularny rozktad blgdu uzyskuje sig, gdy liczba ukrytych neurondéw jest rowna
liczbie neurondw wejsciowych. Inny przypadek pokazuje, ze model, ktéry ma liczbe ukrytych
neuronow rowng Nh°=°2Ni+1, zachowuje si¢ najlepiej w swojej podgrupie. Niemniej jednak
modele z Nh°=°3Ni rowniez wykazywaly zachowanie poréwnywalne z innymi modelami,
potwierdzajgc zalozenia tej pracy. Poniewaz modele te wykazuja zadowalajagce wyniki,
przeprowadzono oceng. Wartosei R modeli ewaluacyjnych sa poréwnywane z wynikami
wstepnego szkolenia. W niektorych przypadkach wspoétezynniki regresji modeli oceny sg
wyzsze niz poczatkowe wartosci R. Moze si¢ to zdarzy¢ ze wzgledu na korzystny rozkiad
krotek podczas randomizacji lub fakt, ze oceniane modele s trenowane na mniejszym zbiorze



danych. Réznica miedzy wartosciami nie przekracza 0,1, co oznacza, ze waznos¢
poczatkowych modeli jest potwierdzona. Ocena modeli poczatkowych pozwala stwierdzi¢, ze
wszystkie modele wykazywaly zadowalajace zachowanie przy danych topologiach.
Odpowiedzi modeli ANN, ktére zostaly opracowane przy uzyciu edytora skryptow
weprogramie Matlab R2020b, sg obserwowane na kazdym etapie rozwoju: odpowiednio
poczatkowym, optymalizacji, testowym i roboczym. Kazdy zestaw danych jest uzywany do
opracowywania jednego modelu na poprzednich etapach. poczatkowa topologia obejmowata
réwna liczbe neuronow wejsciowych i ukrytych. Wyniki sa zadowalajace dla wszystkich
modeli z wlasciwosciami mechanicznymi na wyjsciu. Niemniej jednak topologie sg
zoptymalizowane. Optymalizacja polegala na iteracyjnej zmianie liczby neuronow
wewarstwie ukrytej, zaczynajac od jednosci, a koficzac na wartosci trzykrotnosci liczby
neuronéw wejsciowych, a nastepnie zmieniajgc pierwiastek bledu sredniokwadratowego dla
uczenia i walidacji. Przewidziano testowanie zoptymalizowanych modeli dla topologii, ktora
data lepsza odpowiedz sieci podczas procesu optymalizacji. Testowanie przeprowadza si¢ za
pomocg funkcji symulacji z wykorzystaniem 20% pelnego zestawu danych. Po
przetestowaniu ostateczne modele robocze sg szkolone przy uzyciu petnego odpowiedniego
zestawu danych. Trening jest wykonywany bez zadnych innych podzbioréw, jak zostato to
opisane weczesniej. Uzyskane wspdlezynniki regresji dla wszystkich modeli sg bardzo
wysokie, przy R>0,99, gdy proces uczenia nie jest ograniczony niczym innym niz gradient
uczenia si¢ i liczba iteracji.

Zalecane modele ze zbioru danych z opornoscig elektryczng jako wyjsciem (RESIST)
daty wartosci wspotczynnika regresji znacznie nizsze niz oczekiwany limit 0,8, co w tej pracy
zostalo uznane za niezadowalajgce. Prowadzone sa dalsze badania, aby sprobowaé ustali¢
zrédlo tego zachowania. W zwigzku z tym zrewidowano zbiér danych RESIST. Poprzednie
wyniki eksperymentalne, ktore wykazaly, ze prog perkolacji nie zostat osiagniety, zostaly
pominicte w zbiorze danych przy zatozeniu, ze uczenie sieci nie powiodlo si¢ z powodu
niespdjnego zachowania probek. Jako wartosei odstajace odrzucono réwniez wyniki, ktore
wykazaly relatywnie wyzsza rezystywno$¢ dla wyzszego udzialu = wagowego
nanowypetniacza w poréwnaniu z innymi probkami z tej samej grupy probek. Ponadto
dodano neuron wejsciowy, ktory podal powierzchni¢ przekroju poprzecznego probki, aby
sprobowaé wzbogacié¢ sie¢ o wigcej punktow uczenia si¢. Po zakonczeniu rewizji nowy zbiér
danych zostal znormalizowany w ten sam sposob i przygotowany do szkolenia. Poza
wzrostem liczby neuronéw wejsciowych, a tym samym liczby neuronéw ukrytych, nie bylo
innych zmian w dwunastu nowych modelach. Wyniki zrewidowanych modeli RESIST
pokazujg, ze zachowanie modeli nie uleglo poprawie po zmianie poczatkowego zbioru
danych. Mozliwym wyjasnieniem moze by¢ to, ze probki referencyjne bez nanowypetniaczy
mozna uznaé za wartosci odstajgce dla catego zbioru danych. Na przyktad, w obrgbie jednej
grupy probek, wartos¢ rezystywnosci zwyklej probki wynosi 7700000 pem, podczas gdy



rezystywno$¢ po osiggnigciu progu perkolacji z 0,048% wag. CNT wynosi 360000 pem.
Wezwigzku z tym referencyjng niewzmocniona probke mozna uznaé za odstajaca od zbioru
danych. To zalozenie sugerowatoby, Ze zbior danych wymaga dalszej korekty, jednak dalsza
korekta skompresuje zbidr danych do punktu niestabilnosci uczenia sig¢, poniewaz catkowita
liczba krotek wyniostaby okoto 100. Dlatego najlepiej bytoby przeprowadzi¢ kompleksowe
badanie eksperymentalne, aby uzyska¢ bardziej stabilne wyniki. Modele skryptowe dla zbioru
danych RESIST wykazaly podobne zachowanie, gdzie wartosci R sg nieco wyzsze, ale wcigz
ponize] wartosci 0,8, a zatem niezadowalajgce. Badanie to obejmowalo podejscie
wielofizyczne do zastosowania symulacji numerycznych i sztucznych sieci neuronowych do
przewidywania wtasciwosci mechanicznych 1 elektrycznych cementowych materiatow
kompozytowych wzmocnionych CNT/CNF. Mozna zdefiniowa¢ nastgpujace wnioski:

o wlasciwosci mechaniczne i elektryczne ulegajg poprawie dzigki obecnosci
nanowypelniacza CNT lub CNF. Wykazano, ze w przypadku uzyskania odpowiedniej
dyspersji oraz wykonania mieszania i formowania betonu zgodnie z norma znacznie
poprawiajg sie wlasciwosci mechaniczne materialu kompozytowego;

e modele numeryczne zelbetu CNT/CNF nie mogq realistycznie reagowa¢ na bodzce
mechaniczne. Modele ANSYS betonowego materiatlu kompozytowego CNT/CNF
wykazaty obiecujgce wyniki tylko dla maksymalnie 0,1% wag. nanowypelniacza;

e zachowanie mechaniczne zelbetu CNT/CNF mozna przewidzie¢ za pomocq sztucznych
sieci neuronowych. Zachowania elektrycznego zelbetu CNT/CNF nie mozina
przewidzie¢ za pomocq sztucznych sieci neuronowych. Brak wyczerpujacych
informacji na temat zachowania elektrycznego tych materiatow prowadzi do
niewystarczajgcych materiatdw do nauki sieci neuronowej. Pokazano, jak mozna
uzyskaé tylko falszywie pozytywne wyniki;

o liczba neurondw w ukrytej warstwie ANN réwna Nh=3-Ni moze dostarczy¢ trafnych
przewidywan. Przyjeta wartos¢ liczby ukrytych neurondéw daje bardzo dobre wyniki i
nie wykazuje przepelnienia sieci w tej pracy.

Idea tej pracy jest to, ze zastosowanie symulacji numerycznych i sztucznych sieci
neuronowych do projektowania materiatéw i przewidywania zachowania betonu zbrojonego
CNT/CNF moze by¢ podstawg nowej techniki projektowania mieszanek, ktdra zminimalizuje
lub catkowicie wykluczy czas czasochtonne i kosztowne testy eksperymentalne. W tym celu
nalezy rozwigza¢ powyzsze kwestie dotyczace zachowania elekirycznego i modelowania
materiatowego  materialtdw  kompozytowych. Propozycja dalszych prac  zaklada
przeprowadzenie kompleksowych badan eksperymentalnych witasciwosci elektrycznych przy
zachowaniu statych czynnikow laboratoryjnych i eksperymentalnych. Co wiecej,
ustanowienie odpowiedniego oprogramowania, ktére moze wspiera¢ modelowanie
mikrostrukturalne i obejmowaé¢ mezostruktury betonu, rozwigzatoby problem wystepujacy

weANSYS, a takze zapewnitoby symulacje testow elektrycznych.

Sofia Kekez, 20.06.2022 r.
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