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Streszczenie

Praca doktorska poświęcona jest zagadnieniom testowania funkcjonalnego złożo-
nych systemów wbudowanych, ze szczególnym uwzględnieniem wdrożenia nowocze-
snych metod i narzędzi w środowisku przemysłowym. Obszarem badań było opraco-
wanie i implementacja ram postępowania testowego, które pozwalają na optymalizację
procesu weryfikacji systemów wbudowanych w warunkach rzeczywistych, przy uwzględ-
nieniu ograniczeń czasowych, technicznych i organizacyjnych.

W ramach projektu przeprowadzono szczegółową analizę dostępnych strategii testo-
wania, ze szczególnym naciskiem na automatyzację, atomizację przypadków testowych,
testowanie eksploracyjne oraz podejście oparte na analizie ryzyka. Opracowano i wdro-
żono hybrydowy framework testowy oparty na języku Python, zintegrowany z narzę-
dziami do zarządzania testami oraz środowiskiem ciągłej integracji. Pozwoliło to na
znaczące zwiększenie efektywności testowania, skrócenie czasu kampanii testowej oraz
poprawę jakości dostarczanych rozwiązań.

Ocenie poddano strategię testowania opartą na analizie ryzyka oraz wpływ stop-
nia automatyzacji testów na efektywność kampanii testowych, wykazując, że świado-
me zarządzanie ryzykiem oraz automatyzacja mogą znacząco skrócić czas testowania
i podnieść jakość produktu. Ważnym aspektem badań była także analiza wpływu testo-
wania opartego na doświadczeniu, a w szczególności testów eksploracyjnych, na liczbę
oraz istotność wykrytych defektów. Praca pokazuje, że wykorzystanie wiedzy i intu-
icji inżynierów testów pozwala na wykrycie błędów, które mogłyby umknąć formalnym
technikom testowym. Trzecim kluczowym celem była identyfikacja czynników organi-
zacyjnych i technicznych sprzyjających szybkiej adaptacji nowych strategii testowania
w zespołach rozproszonych, co okazało się szczególnie istotne w kontekście wdrożenia
rozwiązań w międzynarodowej organizacji.

Przeprowadzone wdrożenie w przedsiębiorstwie Rockwell Automation objęło projek-
ty, w których zastosowano autorskie rozwiązania w zakresie strategii testowej. Wyniki
badań potwierdziły zasadność przyjętych rozwiązań, wykazując wzrost wykrywalności



defektów, stabilność procesu oraz możliwość elastycznego zarządzania zakresem testów
w dynamicznie zmieniających się warunkach projektowych.

Praca wnosi wkład w rozwój praktyk testowania systemów wbudowanych, wskazu-
jąc kierunki dalszych badań w zakresie automatyzacji, wykorzystania sztucznej inte-
ligencji oraz standaryzacji metryk jakościowych. Opracowane ramy postępowania te-
stowego zostały wdrożone jako standard w przedsiębiorstwie, stanowiąc fundament
nowoczesnego procesu weryfikacji systemów wbudowanych.



Abstract

The doctoral dissertation is devoted to the issues of functional testing of complex
embedded systems, with particular emphasis on the implementation of modern methods
and tools in an industrial environment. The research area focused on the development
and implementation of a testing framework that enables the optimization of the verifi-
cation process for embedded systems under real-world conditions, taking into account
time, technical, and organizational constraints.

As part of the project, a detailed analysis of available testing strategies was conduc-
ted, with special attention given to automation, atomization of test cases, exploratory
testing, and a risk-based approach. A hybrid testing framework based on Python was
developed and implemented, integrated with test management tools and a continuous
integration environment. This led to a significant increase in testing efficiency, a reduc-
tion in the duration of test campaigns, and an improvement in the quality of delivered
solutions.

The evaluation focused on risk-based testing strategies and the impact of the degree
of test automation on the efficiency of test campaigns, demonstrating that conscious
risk management and automation can significantly shorten testing time and enhance
product quality. Another important aspect of the research was the analysis of the influ-
ence of experience-based testing, particularly exploratory testing, on the number and
significance of detected defects. The dissertation shows that leveraging the knowledge
and intuition of test engineers enables the detection of errors that might escape for-
mal testing techniques. The third key objective was the identification of organizational
and technical factors that facilitate the rapid adaptation of new testing strategies in
distributed teams, which proved especially important in the context of implementing
solutions in an international organization.

The implementation at Rockwell Automation covered projects in which proprietary
solutions in the area of testing strategy were applied. The research results confirmed
the validity of the adopted solutions, demonstrating an increase in defect detection,



process stability, and the ability to flexibly manage the scope of tests in dynamically
changing project conditions.

This dissertation contributes to the development of embedded systems testing prac-
tices, indicating directions for further research in automation, the use of artificial intelli-
gence, and the standardization of quality metrics. The developed testing framework has
been implemented as a standard in the company, forming the foundation of a modern
embedded systems verification process.
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Rozdział 1

Wprowadzenie

Systemy wbudowane (ang. embedded systems) można zdefiniować między innymi
jako specjalistyczne, zintegrowane platformy programowo-sprzętowe dedykowanego za-
stosowania. W przeciwieństwie do wielofunkcyjnych komputerów osobistych, urządze-
nia te są zaprojektowane do wykonywania jedynie określonych zadań. Systemy wbu-
dowane mogą być oparte na mikroprocesorach lub mikrokontrolerach i zawierają opro-
gramowanie przeznaczone wyłącznie dla danego układu (ang. firmware) lub system
operacyjny wraz ze specjalizowanym oprogramowaniem. Bardziej złożone rozwiąza-
nia korzystają z wysokiej skali integracji specjalizowanych układów scalonych (ang.
Application-Specific Integrated Circuit, ASIC) bądź systemów na czipie (ang. System-
on-a-Chip, SoC).

Według prognoz, do 2030 roku wartość rynku rozwiązań wbudowanych osiągnie
161,86 miliarda dolarów, co oznacza, że rośnie on o 7,1 % rocznie. Kluczowe czyn-
niki napędzające ten wzrost to rozwój technologii Internetu Rzeczy (ang. Internet of
Things, IoT), sztucznej inteligencji oraz sieci 5G, które zwiększają zapotrzebowanie
na zaawansowane systemy wbudowane [1]. Prognozuje się także, że udział systemów
wbudowanych utrzymuje się obecnie na poziomie około 94 % wszystkich urządzeń elek-
tronicznych, a liczba ta rośnie w błyskawicznym tempie wraz z rozwojem Przemysłu
4.0 i urządzeń użytku domowego. Wszystkie te systemy wymagają szczególnego po-
dejścia do testowania, które różni się zarówno od tradycyjnych testów elektrycznych,
jak i klasycznego testowania oprogramowania komputerowego, bądź też aplikacji in-
ternetowych. Rodzi to również szereg komplikacji w trakcie integracji sprzętu z opro-
gramowaniem i stawia przed firmami coraz to nowe wyzwania w tym skomplikowanym
obszarze wiedzy.
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Rozdział 1. Wprowadzenie

Dotychczas stosowane metody empiryczne często stanowią wewnętrzną tajemnicę
firm, są nieusystematyzowane i odbiegają od optymalnych rozwiązań. Niejednokrotnie
inżynierowie i osoby zarządzające testowaniem opierają się wyłącznie na intuicji, pod-
czas gdy nauka dostarcza szeregu możliwości i metod, które pozwalają na podejście do
testowania złożonych systemów wbudowanych w sposób przemyślany i systematyczny.
Warto zwrócić przy okazji uwagę na fakt, że często systemy wbudowane mają bardzo
znaczący wpływ na bezpieczeństwo ludzi i pozostałych urządzeń, a co za tym idzie, nie
można bagatelizować aspektów związanych z ich testowaniem, gdyż każde działanie
niepożądane może w efekcie prowadzić do uszczerbku na zdrowiu, czy w najgorszym
przypadku, nawet śmierci.

Celem projektu doktorskiego było przeanalizowanie metod testowania funkcjonal-
nego (tzw. „czarnoskrzynkowego”) złożonych systemów wbudowanych, aby w efekcie
zaproponować technikę lub zestaw technik pozwalający na optymalną weryfikację sys-
temu wbudowanego o wysokim stopniu komplikacji w określonych warunkach. Aby do
tego doprowadzić, niezbędne było dobranie odpowiedniej metody badawczej, przepro-
wadzenie długotrwałych badań na produktach, a następnie opracowanie otrzymanych
wyników. Dzięki zastosowaniu zwinnych (ang. agile) metodyk wytwarzania produk-
tów, możliwe było przeanalizowanie jakości systemu przed i po przeprowadzeniu badań
poprzez obserwację metryk, takich jak efektywność przypadków testowych, pokrycie
wymagań testami, udział testów zautomatyzowanych, udział testowania eksploracyj-
nego i innych.

Należy podkreślić, że wyczerpujące (ang. exhaustive) przetestowanie tak złożonych
produktów jest niemożliwe do przeprowadzenia z przyczyn czasowych i ekonomicznych.
Dlatego też kluczowym aspektem dla dalszego rozwoju systemów wbudowanych jest
nie tylko dopracowanie metod ich testowania, ale także określenie optymalnych ram
dla zakresu testów. Bardzo istotnym elementem jest więc automatyzowanie testowa-
nia regresyjnego oraz minimalizacja zakresu tak zwanych retestów. Projekt doktorski
porusza ponadto wpływ automatyzacji testów regresyjnych i wprowadzenia środowi-
ska ciągłej integracji, jak również filozofii DevOps (ang. Development and Operations),
która integruje rozwój, eksploatację oraz aktywności związane z zapewnieniem jakości
produktów.

Praca wdrożeniowa była realizowana w ramach działalności badawczo-rozwojowej
przedsiębiorstwa Rockwell Automation w obszarze testowania przemienników częstotli-
wości niskiego i średniego napięcia Allen-Bradley PowerFlex, kontrolerów silnikowych
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serii ArmorStart, ArmorPowerFlex, produktów powiązanych, takich jak karty rozsze-
rzeń komunikacyjnych, enkoderowych, wejść-wyjść oraz sterowników programowalnych
(ang. Programmable Logic Controller, PLC) Allen-Bradley ControlLogix i adapterów
sieciowych z serii 1756-EN4. Jakość wytwarzanych produktów jest jednym z najważniej-
szych aspektów dla firmy Rockwell Automation, która poza inwestowaniem w budowę,
certyfikację i rozwój laboratoriów testowych, ciągle poszukuje efektywnych metod te-
stowania swoich produktów i ulepszania istniejących procesów.

Analiza efektywności metod testowania funkcjonalnego złożonych systemów wbu-
dowanych pozwoliła przedsiębiorstwu, w którym toczyły się prace wdrożeniowe, na
optymalizację środków przeznaczonych na testowanie, jak również przełożyła się na
wzrost jakości dostarczanych rozwiązań. Należy zauważyć, że projektowanie oraz pro-
dukcja tak skomplikowanych urządzeń wiążą się z ogromną liczbą potencjalnych defek-
tów, które ponadto z czasem mają tendencję do uodparniania się na istniejące testy, co
w teorii testowania oprogramowania jest znane pod nazwą paradoksu pestycydów (ang.
pesticide paradox). Co za tym idzie, poszukiwanie skuteczniejszych technik testowania
jest niezwykle istotne dla jakości końcowego systemu.

Intencją projektu tworzonego w ramach programu „Doktorat wdrożeniowy IV” była
przede wszystkim możliwość implementacji wyników przeprowadzonych badań nauko-
wych w sektorze przemysłowym i wykazanie, że istnieje taki zestaw technik testowania,
które wdrożone w formie frameworku1 pozwalają na optymalizację weryfikacji złożo-
nego systemu wbudowanego w określonych warunkach. Przeprowadzona analiza i oce-
na efektywności metod testowania funkcjonalnego złożonych systemów wbudowanych
miała na celu znalezienie technik, które pozwolą zoptymalizować proces testowania
urządzeń, a co za tym idzie usprawnić procesy, wygenerować oszczędności, czy wreszcie
skrócić czas potrzebny na dostarczenie gotowego rozwiązania do klientów. Można także
założyć, że zastosowanie zaproponowanych metod testowania wpływa pozytywnie na
końcową jakość produktu.

1Autor jest świadomy istnienia polskiego odpowiednika angielskiego terminu „framework”, tj. „ra-
my postępowania”. Tłumaczenie to nie oddaje jednak w pełni natury oryginalnego terminu oraz nie
jest powszechnie używane zarówno przez programistów jak i w środowisku akademickim. W przypad-
ku stosowania tego rodzaju zapożyczeń z języka angielskiego w niniejszej pracy (np. „debugowanie”
zamiast „odpluskwianie”) stosowana będzie pisownia kursywą.
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Rozdział 2

Analiza literatury i teoria
testowania systemów wbudowanych

2.1 Charakterystyka złożonych systemów wbudo-
wanych

Ze względu na indywidualną architekturę każdego systemu, projektowanie syste-
mów wbudowanych stanowi złożony proces wymagający od inżynierów szerokiego za-
kresu kompetencji — od architektury systemowej, przez projektowanie platform sprzę-
towych i obwodów drukowanych, po wykorzystanie systemów operacyjnych oraz pro-
gramowanie sterowników, warstw komunikacyjnych i aplikacji systemowych.

Architektura systemów wbudowanych przypomina architekturę systemu kompu-
terowego, dzieląc się na mikroprocesor, pamięć i urządzenia peryferyjne. Ze względu
na unikatowy projekt, zarówno wytwarzanie sprzętu, jak i oprogramowania stanowi
wyzwanie w porównaniu do aplikacji komputerowych opartych o znaną architekturę.
Sytuację komplikują ponadto ograniczone zasoby w postaci pamięci i mocy obliczenio-
wej systemów wbudowanych. Złożone systemy wbudowane coraz częściej opierają więc
swoje działania na dedykowanych systemach operacyjnych zarządzających zasobami
systemowymi i kontrolujących działanie aplikacji [2].

Obecnie jednym z najbardziej popularnych rozwiązań, jeśli chodzi o systemy ope-
racyjne dla systemów wbudowanych, jest stosowanie różnych dystrybucji Linuxa [3].
Wymusza to spełnienie przez taki system kilku wymogów:
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• minimum 32-bitowego mikroprocesora wyposażonego w jednostkę zarządzania
pamięcią (ang. Memory Management Unit, MMU),

• posiadania wystarczającej ilości pamięci operacyjnej (w zależności od danej dys-
trybucji Linuxa),

• zapewnienia interfejsów wejścia-wyjścia jako minimum umożliwiających debugo-
wanie oprogramowania,

• jądro systemu musi być w stanie załadować system plików root za pomocą jakiejś
formy trwałej pamięci lub uzyskać do niego dostęp przez sieć.

Przykładowa architektura takiego systemu na wysokim poziomie abstrakcji przed-
stawiona została na Rysunku 2.1.

Rysunek 2.1: Przykładowa architektura systemu wbudowanego opartego o system
operacyjny Linux
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2.2. Wyzwania i tendencje rozwojowe

Oprócz ograniczeń wynikających z zastosowanego systemu operacyjnego, istotnym
wyzwaniem jest rosnąca złożoność systemów wbudowanych, wynikająca zarówno z wy-
magań funkcjonalnych, jak i niefunkcjonalnych. Wybór odpowiedniej platformy sprzę-
towej i programowej jest kluczowy, ponieważ determinuje możliwości implementacyjne
oraz efektywność końcowego rozwiązania. Staje się to coraz częściej wielowymiarowym
zagadnieniem, gdyż nie wystarcza dobór sprzętu spełniającego wymagania techniczne.
Takie podejście sprawdzało się dobrze w przypadku prostych i nieskomplikowanych
aplikacji wdrażanych na systemach z niewielką lub żadną zależnością od systemów
zewnętrznych. Jednak w obecnej sytuacji złożonych systemów i systemów systemów
(ang. systems of systems), gdzie istnieją skomplikowane interfejsy między nimi i więk-
sza zależność od siebie nawzajem, rozwój aplikacji wbudowanych stał się wyzwaniem.
Platforma wbudowana dla takich aplikacji nie może być wybierana wyłącznie na pod-
stawie wymagań produktu. Projektanci systemów wbudowanych muszą brać pod uwagę
interfejsy systemów zewnętrznych, takie jak scenariusze wdrożeniowe, przypadki uży-
cia produktu, trudności w utrzymaniu lub uruchomieniu, interfejsy logiczne systemu,
interfejsy procesów oraz wyzwania związane z rozwojem przy wyborze platformy, a tym
samym skuteczną realizację produktu [4].

Sytuacja ta powoduje, że choć projektanci systemów wbudowanych mają tendencję
do używania standardowych mikroprocesorów ogólnego przeznaczenia z niewielką lub
żadną specyficzną konfiguracją sprzętową, to w przypadku złożonych systemów wbu-
dowanych coraz częściej sięga się po specjalizowane układy scalone lub systemy na
czipie [5].

2.2 Wyzwania i tendencje rozwojowe

W 2002 roku już ponad 90% specjalizowanych układów scalonych zawierało mikro-
procesory wykonane w technologii 130 nm [6]. Obecny rozwój technologii doprowadził
do stworzenia pierwszych specjalizowanych układów stosowanych w koparkach kryp-
towalut w technologii 3 nm [7]. Przewiduje się, że w roku 2025 proces technologiczny
osiągnie poziom 2 nm, a w 2027 roku poziom 1 nm [8]. Większa gęstość tranzystorów
wynikająca ze stosowania technologii litograficznej 7 nm i poniżej, wprowadza nowe
ryzyka związane z defektami procesowymi w ekstremalnie małych trójwymiarowych
strukturach, defektami parametrycznymi i starzeniem się układów, co z kolei skutkuje
rozwojem dziedziny projektowania pod kątem testowania (ang. Design for Testabili-
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ty, DfT) [9]. Dzięki temu mechanizmy testowe stają się nieodłączną częścią projektu
układu i możliwe staje się stosowanie coraz bardziej zaawansowanych technik, takich
jak testy strukturalne, czy stresowe, a także monitorowanie i diagnostykę w trakcie
eksploatacji.

W przypadku systemów na czipie, dzięki poprawie gęstości standardowych komó-
rek i komórek bitowych na poziomie węzła, możliwe jest zintegrowanie większej liczby
funkcji w danym obszarze systemu. Zakłada się, że obszar integracji mobilnych SoC
pozostaje stały na poziomie 80 mm2 w kolejnych generacjach. W związku z tym ilość
pamięci oraz procesorów graficznych (ang. Graphics Processing Unit, GPU) podąży za
skalowaniem gęstości ulotnej pamięci statycznej (ang. Static Random-Access Memory,
SRAM) i standardowych komórek, zakładając, że trend na bardziej równoległe archi-
tektury będzie kontynuowany [8]. Rosnąca skala integracji wraz ze zmniejszającym się
procesem technologicznym powoduje szereg problemów termicznych. Jeśli nie dojdzie
do przełomu w tym zakresie, częstotliwość taktowania mikroprocesora będzie musiała
być coraz częściej ograniczana, aby utrzymać tę samą gęstość mocy.

Mimo ograniczeń technologicznych i termicznych, trend budowania heterogenicz-
nych wieloprocesorowych systemów na czipie (ang. multiprocessor-system-on-a-chip,
MPSoC) dalej się nasila. Układy te składają się z wielu pracujących równolegle proce-
sorów i rdzeni do zastosowań takich jak terminale mobilne, dekodery, procesory gier,
procesory wideo i procesory sieciowe. Często zawierają bardzo zaawansowane sieci ko-
munikacyjne zwane sieciami na chipie (ang. Network-on-a-Chip, NoC) [6]. Rosnąca
presja czasowa i coraz krótsze okno rynkowe (czyli okres, w którym wprowadzenie
produktu na rynek jest najbardziej korzystne), bardziej złożone funkcjonalności i ro-
snąca niezawodność dostarczają kolejnych wyzwań dla projektantów i sprawiają, że
potrzebne są fundamentalne zmiany względem metod projektowania specjalizowanych
układów scalonych, które nie są skalowalne dla wieloprocesorowych systemów na czipie.
Powoduje to powstawanie kolejnych warstw abstrakcji i idące za tym skomplikowanie
interfejsów sprzętowo-programowych, które z jednej strony obsługują wywołania po-
szczególnych funkcji lub instrukcji, a z drugiej fizyczne połączenia [10].

Wspomniane warstwy abstrakcji prowadzą do tworzenia systemów wbudowanych
definiowanych programowo (ang. software-defined embedded systems), będących czę-
ściowo lub całkowicie niezależnych od warstwy sprzętowej. Dynamiczny rozwój oprogra-
mowania, znacznie wyprzedzający rozwój warstwy sprzętowej, prowadzi coraz częściej
do uruchamiania specjalistycznego dotąd oprogramowania wbudowanego na kompute-
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rach ogólnego zastosowania — osobistych, klasy przemysłowej, czy nawet mikrokompu-
terach. Jednym z przykładów takiego zastosowania może być automatyka definiowana
programowo (ang. Software-Defined Automation, SDA) [11]. Podejście to pozwala na
natywne uruchomienie kodu sterownika przemysłowego lub innego urządzenia auto-
matyki na komputerze przemysłowym z wykorzystaniem systemu operacyjnego czasu
rzeczywistego (ang. Real-Time Operating System, RTOS). W zależności od mocy plat-
formy sprzętowej możliwe jest dynamiczne alokowanie zasobów — na przykład rdzeni
procesora lub pamięci — do potrzeb użytkownika.

Nie bez znaczenia pozostają też wyzwania i tendencje rozwojowe związane z mo-
delem wytwarzania systemów wbudowanych. Ze względu na czynniki takie jak presja
czasu, produktywność, innowacyjność i satysfakcja pracowników, a także rosnący po-
ziom skomplikowania oprogramowania, w przemyśle stosuje się szeroką gamę metodyk
zwinnych (ang. agile) [12]. Według statystyk, w sektorze wytwarzania oprogramowa-
nia obecnie aż 86% firm wykorzystuje Scrum1 lub inną metodykę do codziennej pracy
i przewiduje się, że liczba ta będzie rosnąć [13]. Podejście polegające na inkremental-
nym wzroście w zakresie nowych funkcjonalności powoduje, że coraz częściej systemy
wbudowane debiutują na rynku, posiadając zbiór podstawowych funkcjonalności, a ich
rozszerzenia dostarczane są w formie aktualizacji oprogramowania. Efektem tego jest
coraz bardziej istotna rola zadań związanych z testowaniem i utrzymywalnością takich
systemów.

Stosowanie zwinnych metodyk wytwarzania oprogramowania niesie za sobą dodat-
kowe wyzwania jakościowe. Praktyki takie jak programowanie ekstremalne (ang. Extre-
me Programming, XP), zyskują coraz większą popularność także w zakresie rozwijania
systemów wbudowanych, oferując bezpośrednią komunikację i minimalną dokumenta-
cję, co jest atrakcyjne dla programistów. Część z tych ram postępowania jest jednak
trudnych do pełnego wdrożenia, co w efekcie powoduje rezygnację z części ich ele-
mentów (takich jak np. stała obecność przedstawiciela klienta) i wprowadzenie ryzyk
jakościowych dla produktu [14].

1Iteracyjny i przyrostowy framework w zarządzaniu projektem, stosowany w realizacji przedsięwzięć
w oparciu o metodyki zwinne wytwarzania oprogramowania.
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2.3 Rola testowania w systemach wbudowanych

Testowanie jest procesem obejmującym planowanie, przygotowanie oraz ewaluację
oprogramowania i powiązanych produktów, mającym na celu weryfikację zgodności
z wymaganiami, potwierdzenie realizacji założonych celów oraz identyfikację usterek
[15]. Niektóre źródła jako dziedzinę testowania wskazują również przewidywanie de-
fektów, co jest możliwe za pomocą wyspecjalizowanych narzędzi lub technik uczenia
maszynowego (ang. Machine Learning, ML) [16–19]. W przypadku testowania syste-
mów wbudowanych można mówić o szczególnej istotności tego procesu ze względu na
szereg czynników:

• wysoką złożoność oprogramowania i integrację ze sprzętem elektronicznym [20],
czy też urządzeniami automatyki przemysłowej,

• krytyczny wpływ systemów wbudowanych na zdrowie i bezpieczeństwo użytkow-
ników,

• standardy przemysłowe, umowy i pozostałe akty prawne,

• wysokie koszty projektowe, a co za tym idzie możliwe straty finansowe spowodo-
wane awarią.

Podstawowym celem testowania jest określenie ryzyka powiązanego z testowanym
oprogramowaniem i dostarczenie informacji dotyczącej znalezionych defektów [21]. Pro-
ces ten pomaga w ocenie jakości produktu i budowie zaufania, a także poprawie pozo-
stałych procesów wytwarzania i zmniejszeniu liczby generowanych defektów w przyszło-
ści. Oprócz weryfikacji produktu względem specyfikacji wymagań, istotnym aspektem
jest przeprowadzenie walidacji — sprawdzenia, czy tworzony system spełni oczekiwania
użytkowników.

W przypadku systemów wbudowanych wyróżnia się szereg typów testów. W zależ-
ności od poziomu granulacji można wyróżnić testy modułowe lub jednostkowe (ang. unit
test), które odpowiadają za sprawdzenie pojedynczego komponentu oprogramowania.
Kolejnym etapem są testy integracyjne, w ramach których weryfikowane jest łączenie
poszczególnych modułów w jedną aplikację oraz współpraca między oprogramowaniem
i sprzętem. Testy funkcjonalne skupiają się na testowaniu poszczególnych funkcji sys-
temu wbudowanego w oparciu o specyfikację wymagań funkcjonalnych, a testy syste-

10



2.3. Rola testowania w systemach wbudowanych

mowe obejmują działanie całościowe systemu lub systemu systemów (np. urządzenia
wchodzącego w skład złożonej instalacji) [21].

Ponadto ze względu na cykl życia oprogramowania rozróżnia się testy regresji, w ra-
mach których po wprowadzeniu zmian do przetestowanego wcześniej obszaru oprogra-
mowania sprawdza się poprawność i wpływ tychże zmian na działanie systemu. Ko-
lejnymi istotnymi typami testów są tzw. retesty (testy powtórne), testy produkcyjne,
testy pielęgnacyjne i testy akceptacyjne — wykonywane zgodnie z planem testów ak-
ceptacyjnych (ang. acceptance test plan) na podstawie którego klient lub użytkownik
dokonuje odbioru systemu wbudowanego [21].

Testowanie systemów wbudowanych wymaga uwzględnienia zarówno komponen-
tów sprzętowych, jak i oprogramowania, co może prowadzić do powstawania złożonych
scenariuszy testowych, z kolei integracja różnych modułów sprzętowych i programo-
wych może prowadzić do trudnych do wykrycia defektów. Bardzo często reprodukcja
zgłoszonych przez testerów2 anomalii zajmuje więcej czasu, niż sama ich naprawa.
Systemy wbudowane mają ograniczoną ilość pamięci, co wymaga optymalizacji kodu
i testów pod kątem efektywnego wykorzystania zasobów, a ograniczona moc oblicze-
niowa wymaga testowania wydajnościowego, aby upewnić się, że system działa płynnie
w rzeczywistych warunkach. W systemach zasilanych bateryjnie ważne jest testowa-
nie zużycia energii, aby zapewnić długą żywotność baterii. Systemy wbudowane często
muszą działać w czasie rzeczywistym, co oznacza, że muszą spełniać określone wyma-
gania czasowe. Ważne jest testowanie, czy system reaguje w odpowiednim czasie na
zdarzenia zewnętrzne oraz testowanie w warunkach rzeczywistych, aby upewnić się, że
system spełnia wymagania czasowe w różnych scenariuszach operacyjnych. Są to unika-
towe wyzwania, które odróżniają testowanie systemów wbudowanych od tradycyjnych
aplikacji komputerowych, sieciowych, czy mobilnych.

Rosnące oczekiwania rynkowe związane z szybszym dostarczaniem nowych rozwią-
zań powodują, że w przypadku testowania systemów wbudowanych coraz bardziej istot-
ne znaczenie zyskuje środowisko testowe, które umożliwi prowadzenie testów na możli-
wie najwcześniejszym etapie rozwoju urządzenia. Skutkuje to stosowaniem symulatorów
i emulatorów, a także systemów testowania sprzętu lub oprogramowania w pętli (ang.
Hardware-in-the-Loop, HiL lub Software-in-the-Loop, SiL), których celem jest możli-
wie wierna imitacja rzeczywistych warunków pracy lub elementów współpracujących

2W niniejszej pracy termin tester stosowany jest do inżynierów testów, choć w literaturze najczęściej
odnosi się do urządzenia testującego.

11



Rozdział 2. Analiza literatury i teoria testowania systemów wbudowanych

(np. czujników, aktuatorów, ruchu sieciowego), co jest swego rodzaju kompromisem,
umożliwiającym przyspieszenie prac badawczo-rozwojowych [22]. Zasadę ich działa-
nia obrazuje schemat blokowy przedstawiony na Rysunku 2.2. Kolejnym krokiem jest
użycie prototypów i testowanie na wczesnych wersjach sprzętu, aby wykryć problemy
na wczesnym etapie. Zazwyczaj dopiero końcowe testy regresyjne wykonywane są na
sprzęcie produkcyjnym lub bliskim produkcyjnemu.

Rysunek 2.2: Architektura systemu HiL oraz SiL

Sam proces testowania i dokumentacji nie różni się zbytnio od podejścia znanego
z klasycznego testowania oprogramowania lub sprzętu [23], przedstawionego na Ry-
sunku 2.3. Planowanie testów rozpoczyna się od zdefiniowania, co dokładnie ma być
przetestowane i jakie są oczekiwane rezultaty. Ustalane są terminy dla poszczegól-
nych etapów testowania, identyfikowane są potrzebne zasoby oraz narzędzia. Kolejnym
etapem jest opracowanie scenariuszy testowych i przygotowanie danych wejściowych
(wymagań, przypadków użycia, standardów przemysłowych, itd.), a także kryteriów
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akceptacji — warunków, które muszą być spełnione, aby test został uznany za zaliczo-
ny. Po przeprowadzeniu testów następuje faza analizy wyników i raportowania [24]. Ze
względu na przyjęty framework, czynności te mogą następować jedna po drugiej lub
występować w różnych proporcjach w trakcie cyklu rozwoju oprogramowania, przyra-
stając inkrementalnie.

Rysunek 2.3: Przebieg procesu testowego

Testowanie już na etapie projektowania pozwala na wczesne wykrycie potencjalnych
problemów, co może znacznie obniżyć koszty ich naprawy, jak obrazuje Rysunek 2.4.
Czynności testerskie mogą odbywać się jeszcze przed powstaniem działającego proto-
typu urządzenia poprzez przegląd wymagań funkcjonalnych i niefunkcjonalnych, aby
upewnić się, że są one kompletne, spójne i wykonalne. Sam symulator, bądź prototyp
systemu wbudowanego również podlega testowaniu względem specyfikacji. Wsparcie
systemu coraz częściej wkracza także w fazę utrzymania i obejmuje testowanie popra-
wek i aktualizacji, a także monitorowanie działania systemu w rzeczywistych warun-
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kach.

Rysunek 2.4: Wpływ wcześniejszego testowania na koszty naprawy defektów

Planowanie testów jest jednym z najważniejszych elementów całego procesu. Plan
przyjmuje postać dokumentu, który opisuje cele testowania, zakres, strategię, środo-
wisko, dane wejściowe, raportowanie, automatyzację, zarządzanie ryzykiem, kryteria
wejścia i wyjścia z procesu oraz definiuje interesariuszy. Szczególne znaczenie ma do-
bór właściwej strategii — analitycznej (np. w oparciu o specyfikację wymagań [25],
analizę ryzyka, standardy przemysłowe lub inną dokumentację), opartej na modelu
systemu, reaktywnej (zależnej od jakości dostarczonego oprogramowania), czy bazują-
cej na wiedzy eksperckiej i doświadczeniu — bądź strategii mieszanej (ang. blended
test strategy), zawierającej elementy kilku różnych strategii.

Strategia testowania powinna także określać udział poszczególnych typów testów
w całym procesie testowym. Najprostszym modelem jest tzw. piramida testów, któ-
ra wskazuje, że wraz ze spadkiem poziomu granulacji, testowanie powinno zajmować
mniej czasu [26]. Opiera się ona na założeniu, że szczegółowe pokrycie komponentów
systemu automatycznymi testami jednostkowymi jest najbardziej efektywne. Piramida
testów jest często krytykowana ze względu na pojawienie się wielu zależności i możli-
wych defektów na etapie integracji poszczególnych modułów systemu, w użytkowaniu
poszczególnych funkcjonalności oraz interakcji z innymi systemami. Proponuje się za-
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tem alternatywne podejścia, widoczne na Rysunku 2.5, takie jak odwrócona piramida
(która podkreśla istotność testów ręcznych, systemowych i funkcjonalnych) czy pla-
ster miodu (wskazujący na różnice pomiędzy wartością poszczególnych typów testów
a możliwym do uzyskania pokryciem testowym).

Rysunek 2.5: Piramida testów oraz podejścia alternatywne

Mnogość zastosowań systemów wbudowanych sprawia, że rola testowania jest szcze-
gólnie istotna i wymagająca. W przypadku przemysłu motoryzacyjnego można spotkać
się z systemami wspomagania kierowcy, infotainment, czy sterownikami silnika. Sys-
temy wbudowane obecne w medycynie to między innymi urządzenia diagnostyczne,
implanty medyczne, systemy monitorowania pacjentów. W przemyśle będą to urzą-
dzenia automatyki, systemy wizualizacji, czujniki i systemy pomiarowe. Dla użytkow-
ników domowych będą to z kolei urządzenia internetu rzeczy: automatyka domowa,
urządzenia AGD, czy telewizory i systemy audio. Z uwagi na różnorodność systemów
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wbudowanych, każdy z nich wymaga innych środków w podejściu do testowania, aby
uwzględnić specyficzne problemy danego systemu. Chociaż istnieje wiele powodów, dla
których różne systemy wbudowane muszą być testowane w zupełnie inny sposób, ist-
nieje również wiele wspólnych problemów, które mają podobne rozwiązania i wpisują
się w każde podejście do testowania. Pewne podstawowe zasady testowania muszą mieć
zastosowanie do wszystkich projektów testowania systemów wbudowanych [27]. Celem
projektu i pracy doktorskiej było opracowanie tych metod i przedstawienie w formie
frameworku.

2.4 Metody testowania funkcjonalnego

Testowanie funkcjonalne to etap testowania, w którym system weryfikowany jest
względem zgodności ze specyfikacją wymagań funkcjonalnych, opisujących komponenty
podlegające implementacji. Korzysta z tak zwanych technik czarnoskrzynkowych (ang.
black-box testing) lub szaroskrzynkowych (ang. grey-box testing), które zakładają brak
dostępu, bądź wyłącznie częściowy dostęp do kodu oprogramowania lub schematów
sprzętowych. Testerzy przyjmują więc role bliskie użytkownikom końcowym i często
dokonują również walidacji systemu — określenia, czy spełnia on oczekiwania klientów.

Modelowanie wymagań funkcjonalnych systemu często przedstawiane jest w for-
mie symbolicznej w trójwymiarowej przestrzeni, gdzie każda z osi reprezentuje inny
aspekt: dane, procesy oraz kontrolę [28]. Techniki testowania skoncentrowane na da-
nych sprawdzają, czy system poprawnie przetwarza informacje z określonych obszarów
tematycznych. Testy oparte na zachowaniu skupiają się na analizie dynamicznych re-
akcji systemu, które zależą od jego aktualnego stanu, z kolei testy regułowe badają,
czy system przestrzega ustalonych zasad działania, niezależnie od jego stanu — są to
zazwyczaj reguły ogólne, takie jak zasady biznesowe.

Techniki testowania można podzielić również na statyczne — bez uruchomienia
systemu, a także dynamiczne — w trakcie działania urządzenia. Do technik statycznych
zaliczają się przede wszystkim przeglądy (nieformalne oraz formalne) oraz inspekcje.
Podstawowe techniki dynamiczne to:

• klasy (przedziały) równoważności,

• analiza wartości brzegowych,
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• tablice decyzyjne,

• grafy przejść,

• testowanie losowe oraz rozmyte (ang. fuzz testing),

• testowanie metamorficzne,

• testowanie w oparciu o przypadki użycia (ang. use cases).

Testowanie na podstawie klas równoważności polega na dokonaniu podziału wek-
torów wejściowych na grupy pozwalające otrzymać na wyjściu identyczną odpowiedź
systemu. Wyzwanie dla testera polega na zaprojektowaniu minimalnego zestawu te-
stów, tak by każda klasa reprezentowała zestaw danych testowych o podobnych cechach
i specyfikacjach. Z każdego zbioru wybierany jest jeden wektor wejściowy (przypadek),
którego przetestowanie jest tożsame z weryfikacją całej klasy. Dzieje się tak, ponieważ
zakłada się, że wszystkie wektory w danej klasie będą traktowane przez oprogramowa-
nie i sprzęt w ten sam sposób. Jeśli jeden wektor w równoważnym przedziale działa,
zakłada się, że wszystkie inne też będą działać, a jeśli jeden z wektorów nie działa,
zakłada się, że żaden z nich nie będzie działać [29].

Jedną z najczęściej popełnianych przez programistów pomyłek jest niepoprawne
wpisywanie wartości granicznych w instrukcjach warunkowych. Analiza wartości brze-
gowych opiera się na testowaniu na granicach między różnymi klasami lub przedziałami
wektorów wejściowych. Weryfikowane są zarówno poprawne, jak i błędne wartości gra-
niczne — liczba defektów występujących na granicach przedziałów jest stosunkowo
większa niż w „środku”. Jeśli wektor wejściowy określa zakres wartości między m a n,
przypadki testowe projektuje się z wartościami m i n oraz tuż powyżej i tuż poniżej
tych wartości, tj. {m − 1, m, n, n + 1} [29].

Jeśli wektor wejściowy określa liczbę wartości, test powinien obejmować najniższe
i najwyższe z nich oraz sąsiednie według powyższego schematu. Tak samo postępuje
się w przypadku struktur danych o określonych wartościach brzegowych (np. tablice).
W projektowaniu testów funkcjonalnych stosuje się także kombinację metody testo-
wania na podstawie klasy równoważności z metodą analizy wartości brzegowych, co
określa się terminem testowania domenowego [30–32]. W takiej sytuacji przypadek te-
stowy obejmuje wartości graniczne, sąsiednie z granicznymi oraz wybraną dodatkową
wartość z danego przedziału równoważności.
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Testowanie oparte na tablicach decyzyjnych zakłada, że każdy program można
uznać za funkcję, która mapuje wartości wektorów wejściowych na wartości odpowie-
dzi systemu. Technika ta jest także ściśle związana, a w pewnym sensie wyewoluowała,
z innych technik czarnoskrzynkowych, takich jak testowanie na podstawie klas równo-
ważności i testowanie wartości granicznych. Tablice decyzyjne opisują w sposób czy-
telny dla człowieka specyfikację funkcjonalną systemu, co jest przydatne w przypadku
dokumentowania złożonej logiki. Wektory wejściowe i wynikające z nich odpowiedzi
systemu tworzą wiersze tablicy. Każda kolumna odpowiada regule decyzyjnej, która
opisuje wektor wejściowy powodujący oczekiwaną odpowiedź, a w przypadku złożo-
nych reguł stosuje się techniki kombinatoryczne w celu ich optymalizacji. Wartości
wektorów i odpowiedzi przedstawia się w formie wartości logicznych, tj. P (Prawda),
F (Fałsz), - (warunek obojętny). Wpisy obojętne zmniejszają liczbę jawnych reguł, su-
gerując istnienie reguł niejawnie określonych. Taka struktura gwarantuje, że rozważona
zostanie każda możliwa kombinacja wartości warunków i pozwala uzyskać minimalny
oraz kompletny zestaw przypadków testowych [33].

Grafy przejść tworzone są na podstawie tablicy przejść i przedstawiają popraw-
ne przypadki przejść pomiędzy stanami systemu. Testy przejść między stanami można
zaprojektować w sposób zapewniający pokrycie typowej sekwencji stanów, przetestowa-
nie wszystkich stanów bądź przetestowanie wszystkich przejść, konkretnych sekwencji
przejść lub przejść niepoprawnych [34,35].

Testowanie losowe polega na losowym wybieraniu danych testowych z przestrzeni
wejściowej badanego systemu, zgodnie z określonym rozkładem prawdopodobieństwa.
Jest to szczególnie przydatne, gdy wiedza o domenie testowanego systemu jest ograni-
czona lub gdy potrzebna jest duża liczba danych testowych, np. w testach wydajnościo-
wych. Automatyzacja tego procesu czyni go opłacalnym i pozwala — w ujęciu proba-
bilistycznym — ocenić niezawodność testowanego obiektu. Testowanie losowe pomaga
również uniknąć uprzedzeń, takich jak nadmierne zaufanie do określonych fragmentów
kodu. Mimo to, metoda ta ma swoje ograniczenia: może pomijać semantykę danych,
przez co nie wykrywa błędów zależnych od znaczenia danych, może generować zbędne
przypadki testowe, pomijać niektóre defekty, a także prowadzić do niespójnych wyni-
ków testów z powodu losowości [30]. Szczególnym przypadkiem testowania losowego
jest testowanie rozmyte, które polega na zalewaniu oprogramowania (ang. flooding)
losowymi lub zmodyfikowanymi danymi wejściowymi, co jest szeroko stosowane w ob-
szarach związanych z cyberbezpieczeństwem, ponieważ metoda ta okazała się niezwykle
skuteczna w wykrywaniu podatności w oprogramowaniu.
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Generowanie następczych przypadków testowych na podstawie już istniejących oraz
zdobytej wiedzy na temat testowanej funkcjonalności nosi miano testowania metamor-
ficznego. Nowe przypadki tworzy się w oparciu o tzw. relacje metamorficzne (ang. Me-
tamorphic Relations, MR) — są to właściwości testowanego systemu, które określają,
jak zmiana danych wejściowych powinna wpłynąć na oczekiwany wynik testu. Techni-
ka ta jest stosowana w sytuacjach, gdy nie ma możliwości jednoznacznego określenia
oczekiwanego wyniku testu [36–38].

Ostatnia z technik dynamicznych, testowanie na podstawie przypadków użycia lub
testowanie w oparciu o scenariusz [39], jest podstawą testowania funkcjonalnego opar-
tego na kontekście (ang. Context-Based Testing). Jest to trend, w którym zwraca się
szczególną uwagę na sposób, w jaki system wbudowany będzie użytkowany. Podsta-
wową notacją do dokumentowania przypadków użycia stanowią diagramy UML (ang.
Unified Modeling Language), które opisują relację między aktorem a systemem, jed-
nakże stosuje się często opis językiem naturalnym [40, 41]. Największą wadą takiego
podejścia jest trudność w automatyzacji procesu, aczkolwiek narzędzia przetwarza-
nia języka naturalnego (ang. Natural Language Processing, NLP), a szczególnie duże
modele językowe (ang. Large Language Models, LLM) coraz lepiej radzą sobie z gene-
rowaniem przypadków testowych z tego typu dokumentacji. Możliwe jest przekazanie
danych z diagramu UML lub opisu słownego do takiego narzędzia lub modelu Sztucznej
Inteligencji za pomocą poleceń (ang. prompt) [42,43].

Lista ta nie wyczerpuje stosowanych metod testowania funkcjonalnego. Dużą część
stanowią techniki oparte na doświadczeniu oraz wynikające ze specyfiki danego syste-
mu. W praktyce nie wykorzystuje się wspomnianych technik testowania pojedynczo,
zamiast tego łączy się je w obrębie przypadków testowych, by zwiększyć efektywność
oraz pokrycie testowe. Wpływ na rodzaj stosowanych technik ma także dobór strate-
gii testowej, która może determinować dobór metod, które pomogą uzyskać najlepsze
rezultaty.

2.5 Rola testów automatycznych i manualnych

Złożone systemy wbudowane charakteryzują się bardzo dużą liczbą przypadków te-
stowych koniecznych do wykonania, aby zapewnić żądane pokrycie wymagań funkcjo-
nalnych. Zwykle bardzo liczne są również testy jednostkowe oraz integracyjne, będące
składową oprogramowania systemu, choć często zależy to od wewnętrznych procesów
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i złożoności cyklomatycznej kodu. W ramach niniejszej pracy przeanalizowano 19 pro-
jektów, w których liczba testów funkcjonalnych mieści się w zakresie od 29 do 29 719
(mediana wynosi 1 435 przypadków testowych), co w przypadku ręcznego wykonywania
każdego z nich, często po kilka razy, zajęłoby zbyt wiele czasu. Nieodzownym narzę-
dziem stosowanym w testowaniu systemów wbudowanych staje się więc automatyzacja
testów, która pozwala na wykonywanie i często także raportowanie wyników testów
bez udziału człowieka w specjalnie przystosowanym do tego celu środowisku. Choć
praktycznie każdy test da się zautomatyzować, to proces ten traktowany jest jako in-
westycja, która wiąże się z dużymi nakładami finansowymi oraz czasowymi związanymi
z tworzeniem wspomnianego środowiska oraz skryptów testów automatycznych. [27].
Koszty te amortyzują się, im częściej skrypty te są wykorzystywane [44]. W rozwija-
niu oprogramowania z wykorzystaniem metodyk zwinnych, gdzie zmiany kodu są częste
i wymagają testowania po każdej zmianie lub każdej nocy (ang. nightly tests), automa-
tyzacja przynosi szereg korzyści, pozwalając oszczędzać czas, zasoby oraz nie wymaga
zwykle obecności inżynierów w trakcie wykonywania testów [24].

Tworzenie środowiska do automatyzacji testów rozpoczyna się od określenia wy-
magań funkcjonalnych oraz niefunkcjonalnych, które powinny zostać spełnione [21].
Do programowania skryptów automatycznych stosuje się szereg języków — szczegól-
nie wysokopoziomowych (np. C++, Python), czy graficznych (np. z wykorzystaniem
narzędzi takich jak National Instruments LabVIEW lub TestStand). Całe środowisko
testów automatycznych wraz z przypadkami testowymi, parametrami konfiguracyjny-
mi, wynikami, raportami oraz zależnościami i interfejsami pomiędzy tymi elementami
określa się mianem frameworku [45]. W testowaniu systemów wbudowanych szczególną
rolę w automatyzacji odgrywa także warstwa sprzętowa badanego systemu, która jest
niezbędna do uzyskania wiarygodnych wyników. Komponenty oprogramowania uru-
chamiane są na docelowym sprzęcie, symulatorze, emulatorze lub systemie testowania
sprzętu w pętli i kontrolowane są za pomocą wywołań funkcji w środowisku progra-
mistycznym. Odpowiedź systemu może być dodatkowo badana za pomocą urządzeń
pomiarowych lub analizowana z wykorzystaniem debuggera. Zaletą tego podejścia jest
brak wprowadzenia dodatkowego obciążenia obliczeniowego dla mikroprocesora syste-
mu wbudowanego, gdyż testowanie obsługiwane jest po stronie środowiska programi-
stycznego lub symulatora [46].

Automatyzacja testów umożliwia szybsze i częstsze wykonywanie testów, a co za
tym idzie, daje przestrzeń, by zwiększyć także pokrycie testowe. Zwykle testy automa-
tyczne są również bardziej niezawodne, gdyż prawidłowo napisane przypadki testowe
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działające w stabilnym środowisku eliminują błąd ludzki i zapewniają większą powta-
rzalność. Automatyzacja testów jest także warunkiem koniecznym do implementacji
środowiska ciągłej integracji (ang. continuous integration) oraz ciągłego dostarczania
(ang. continuous deployment), coraz częściej stosowanych praktyk z zakresu rozwoju
oprogramowania [47]. Dzięki większej elastyczności możliwe jest wykonywanie testów
zarówno w dzień, jak i w nocy, co ma znaczenie również w przypadku projektów roz-
proszonych, prowadzonych jednocześnie w wielu lokalizacjach na świecie. Wadą tego
podejścia jest ograniczona kontrola nad przebiegiem samego testu, co często prowa-
dzi do niezrozumienia jego działania przez inżynierów analizujących raporty. Proces
rozwoju automatyzacji jest kosztowny, inwestycja nie obejmuje wyłącznie stworzenia
odpowiedniego środowiska i skryptów, ale także jego utrzymywanie [24].

Automatyzacja testów jest także podatna na tak zwany „paradoks pestycydów”,
którym określa się zjawisko uodparniania się oprogramowania na powtarzane ciągle
dokładnie takie same skrypty automatyczne, które przestają znajdować kolejne defekty
[48]. W pewnym momencie wszystkie wykryte przez dany skrypt testowy błędy są
znane lub zostały naprawione. Nie oznacza to jednak, że oprogramowanie jest wolne od
defektów, a jedynie że niezmodyfikowane testy nie są w stanie ich wykryć. Wyzwaniem
staje się również zmienność funkcjonalności oprogramowania wynikająca z ciągłych
zmian wymagań klientów oraz wspomnianej naprawy wykrytych wcześniej błędów,
która może wprowadzić nowe pomyłki w kodzie [49].

Pewne elementy systemów wbudowanych są szczególnie podatne na testowanie
w sposób automatyczny. Należą do nich między innymi testy baz danych, komunikacji
i cyberbezpieczeństwa, które operują na dużych i złożonych zestawach danych wej-
ściowych i wyjściowych, bądź wymagają intensyfikacji ruchu sieciowego docierającego
do systemu wbudowanego. Istotnym problemem testerskim stają się mechanizmy bez-
pieczeństwa, takie jak uwierzytelnianie i autoryzacja, których kluczowym elementem
są generatory liczb losowych (ang. Random Number Generators, RNG) [50], a któ-
rych ręczne testowanie jest praktycznie niemożliwe. Kolejną istotną grupą testów są
przypadki, w których wykonanie weryfikacji lub obserwacji wymaga precyzyjnego po-
miaru czasu, temperatury, pozycji, bądź innych parametrów fizycznych systemu i nie-
dopuszczalne staje się wprowadzenie błędu bądź opóźnienia wynikającego z działania
człowieka.
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2.6 Stosowanie dużych modeli językowych w testo-
waniu

Gwałtowny rozwój dużych modeli językowych wpłynął na sposób tworzenia opro-
gramowania, szczególnie w obszarach wymagających zaawansowanego rozumienia i ge-
nerowania języka naturalnego [51]. Systemy oparte na sieciach neuronowych typu trans-
former stały się przełomowymi narzędziami w tworzeniu aplikacji, które potrafią prze-
twarzać, rozumieć i generować odpowiedzi przypominające ludzkie. Systemy te często
wykorzystują architektury generowania wspomaganego wyszukiwaniem (ang. Retrieval-
Augmented Generation, RAG), które łączą potężne możliwości językowe modeli z do-
kładnymi, aktualnymi informacjami specyficznymi dla danej dziedziny [52].

Integracja modeli językowych z systemami automatyzacji testów niesie ze sobą bez-
precedensowe wyzwania w zakresie zapewnienia jakości i testowania. W przeciwień-
stwie do tradycyjnych systemów o deterministycznym zachowaniu, aplikacje oparte na
LLM wykazują cechy, które sprawiają, że konwencjonalne podejścia do testowania są
niewystarczające. Systemy te generują niedeterministyczne odpowiedzi, zachowują się
w sposób zależny od kontekstu i mogą wytwarzać tzw. halucynacje, co wpływa na ich
niezawodność i wiarygodność [43]. Liczba czynników zmiennych wzrasta w przypad-
ku systemów RAG, gdzie jakość odpowiedzi zależy nie tylko od możliwości LLM, ale
również od dokładności i trafności pozyskiwanych informacji.

Generowanie wspomagane wyszukiwaniem może zostać dodatkowo wsparte za po-
mocą procesu dostrajania (ang. fine-tuning) w celu poprawy wydajności w zadaniach
specyficznych dla danej dziedziny. Proces dostrajania obejmuje przygotowanie danych
sformatowanych jako pary wejście-wyjście do uczenia nadzorowanego [53].

Wspomniane wady dużych modeli językowych oraz ryzyko związane z generowa-
niem nieprecyzyjnych lub zmyślonych odpowiedzi powodują, że użycie tych sieci neu-
ronowych staje się ograniczone w zakresie weryfikacji i walidacji funkcjonalnej syste-
mów wbudowanych, ze szczególnym uwzględnieniem systemów bezpiecznych. Kluczowe
aspekty takie jak powtarzalność i wiarygodność testów projektowanych lub przeprowa-
dzanych z wykorzystaniem modeli językowych nie mogą być obecnie w pełni zapew-
nione i zależą w dużym stopniu od dostarczonych modelowi danych uczących, sposobu
uczenia, czy funkcji aktywacji [54,55]. Narzędzia te mogą być jednakże z większą pewno-
ścią stosowane do wspomagania procesu testowego, na przykład w zakresie wykrywania
potencjalnych duplikatów zgłoszonych defektów [56].
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2.7 Certyfikacja w testowaniu systemów wbudowa-
nych

Międzynarodowa organizacja International Software Testing Qualifications Board
(ISTQB), działająca na zasadzie wolontariatu, zajmuje się certyfikowaniem specjalistów
w dziedzinie testowania oprogramowania i zapewniania jakości. Oferuje ona rozbudowa-
ny system certyfikacji, obejmujący różnorodne programy dostosowane do aktualnych
standardów branżowych, który obrazuje Rysunek 2.6 [57]. Każdy z tych programów
zawiera szczegółowy sylabus oraz przykładowe pytania egzaminacyjne. Materiały te
mogą być również wykorzystywane jako podstawa do prowadzenia zajęć akademickich
z zakresu testowania oprogramowania [58]. Do czerwca 2024 roku, ISTQB przeprowa-
dziło 1,375 miliona egzaminów i wydało ponad 995 tysięcy certyfikacji w ponad 130
krajach [30].

Certyfikacja dla testerów oprogramowania oferowana przez tę organizację jest uzna-
wana na całym świecie jako standard kwalifikacji testerskich na różnych poziomach
zaawansowania. ISTQB oferuje specjalistyczne certyfikaty, które pomagają w zdobyciu
wiedzy i umiejętności niezbędnych do efektywnego testowania oprogramowania, tak-
że dla systemów wbudowanych. Certyfikacja na poziomie podstawowym, znana jako
Certyfikowany Tester Poziom Podstawowy (ang. Certified Tester Foundation Level,
CTFL), zapewnia solidne podstawy w zakresie zasad testowania, procesów i technik,
które są kluczowe dla każdego testera [59].

Oprócz tego ISTQB oferuje certyfikaty na poziomie zaawansowanym i eksperckim,
które obejmują obszary takie jak zarządzanie testami, analityka testów, czy ulepszanie
procesów testowych. Wyróżnić można też ścieżkę certyfikacyjną dla testerów zwinnych
(agile) oraz ścieżkę specjalistyczną, która skupia się na testowaniu w odniesieniu do
poszczególnych gałęzi przemysłu [30,59]. Certyfikaty te pomagają testerom w zdobyciu
głębszej wiedzy i umiejętności, które są niezbędne do radzenia sobie także z unikalnymi
wyzwaniami związanymi z testowaniem systemów wbudowanych, ale na chwilę obecną
organizacja nie oferuje certyfikacji związanej ściśle z tą problematyką.
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Rysunek 2.6: Certyfikacja ISTQB (Źródło: Testerzy.pl; grafika wykorzystana za zgodą
autora)

2.8 Wpływ badań na certyfikację

Pomimo unikalnej architektury i implementacji, w trakcie przeprowadzania badań
opisanych w dalszych rozdziałach niniejszej pracy, zaobserwowano szereg uniwersalnych
wyzwań i możliwych do zastosowania technik, które są charakterystyczne dla testowania
systemów wbudowanych. Należą do nich między innymi:
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• planowanie właściwej strategii, która bierze pod uwagę zależności sprzętowo-
programowe,

• planowanie dostępności zasobów sprzętowych,

• automatyzacja testów i budowanie frameworków testowych,

• znaczenie testowania opartego na doświadczeniu.

Wyniki badań nad testowaniem systemów wbudowanych oraz kolejne prace rozsze-
rzające ich zakres mogą znacząco wpłynąć na certyfikację ISTQB, prowadząc do aktu-
alizacji sylabusów i wprowadzenia nowych standardów branżowych. Rozwój technologii
sprawia, że systemy wbudowane stają się coraz bardziej zaawansowane i pojawiają się
nowe wyzwania związane z ich testowaniem. Badania mogą dostarczyć nowych metod
i narzędzi, które będą musiały zostać uwzględnione w programach certyfikacyjnych
ISTQB, aby testerzy byli na bieżąco z najnowszymi praktykami i technologiami. Po-
nadto, możliwy jest rozwój nowych specjalizacji w ramach certyfikacji ISTQB, w tym
dedykowanej dla testerów systemów wbudowanych. To pozwoliłoby testerom na zdo-
bycie bardziej wyspecjalizowanej wiedzy i umiejętności, co z kolei przyczyniłoby się do
poprawy jakości i niezawodności testowanych systemów.
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Rozdział 3

Charakterystyka projektu
doktorskiego

3.1 Metodyka badań

Na wybór metody badawczej przyjętej do realizacji pracy doktorskiej miała wpływ
empiryczna charakterystyka pracy w firmie Rockwell Automation, w której prowadzone
było wdrożenie. W dziale badań i rozwoju wykorzystuje się Scaled Agile Framework [60],
będący przedstawicielem metodyk zwinnych wytwarzania oprogramowania i sprzętu.
Framework ten pozwala na skalowanie procesów na poziomie przedsiębiorstwa. Cha-
rakteryzuje go iteracyjne podejście do pracy, w którym przyrosty przypadają na okresy
zwane interwałami planowania (ang. Planning Interval, PI). Typowy interwał obejmuje
osiem do dwunastu tygodni i zawiera od czterech do sześciu dwutygodniowych iteracji
(zwanych też sprintami), zakończonych spotkaniami przeglądowymi, retrospektywami
oraz planowaniem kolejnych celów. W ramach PI podejmowane są decyzje dotyczą-
ce alokacji zasobów, priorytetyzacji backlogu oraz identyfikacji ryzyk projektowych.
Aby pozostać w zgodzie z tym trybem pracy, badania zaplanowane zostały w formie
eksperymentów — stopniowej modyfikacji stosowanych technik testowych i obserwacji
ich wpływu na uzyskiwane wyniki testowania w odniesieniu do wyników wcześniej-
szych, uwzględniając starsze wersje oprogramowania oraz wcześniej rozwijane systemy
wbudowane o podobnej charakterystyce. Dzięki cyklowi iteracyjnemu możliwe było
inkrementalne wprowadzanie zmian i ich szybka weryfikacja.

Rozwijanie nowych produktów wykazuje cechy projektu, gdyż nosi znamiona unikal-
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ności, poszczególne zadania są ze sobą powiązane, a prowadzone prace mają określony
początek oraz koniec. Cykl rozwoju produktu i specyfika pracy w przedsiębiorstwie
wykluczają stosowanie różnych technik testowania wielokrotnie w odniesieniu do tego
samego systemu, gdyż kolejne wersje oprogramowania stale ewoluują, a presja czasu
nie pozwala na powtórne testowanie tych samych funkcjonalności z wykorzystaniem
innych metod. Zatem porównanie poszczególnych strategii i podejść może odbywać się
wyłącznie względem innych projektów, które — choć mają wyraźne elementy podobień-
stwa — nigdy nie są identyczne, zatem ma ono charakter przybliżony. Należy zwrócić
uwagę, że w dużych korporacjach nad testowaniem złożonego systemu wbudowanego
pracują wieloosobowe zespoły rozproszone, zlokalizowane w różnych centrach inżynie-
ryjnych na całym świecie. Kampanie testowe trwają od kilku do kilkunastu miesięcy
i obejmują wykonanie nawet kilkudziesięciu tysięcy przypadków testowych, co generuje
wysokie koszty związane z pracą testerów i utrzymaniem infrastruktury. W takim kon-
tekście efektywność procesu testowego staje się istotnym czynnikiem konkurencyjności
przedsiębiorstwa.

Kluczowe było przyjęcie takiej metody badawczej, która umożliwia jednoczesne
uwzględnienie kontekstu projektowego, zmienności warunków realizacyjnych oraz zło-
żoności środowiska testowego. Warunki te spełnia studium przypadku [61–64] o cha-
rakterze eksploracyjnym, umożliwiające analizę przebiegu rzeczywistych działań inży-
nierskich w ich naturalnym kontekście. Studium przypadku pozwala na systematycz-
ne dokumentowanie zmian w strategii testowania oraz ocenę ich wpływu na mierzalne
aspekty procesu testowego, takie jak pokrycie testowe, liczba wykrytych defektów, czas
wykonania kampanii czy współczynnik automatyzacji.

Dla zapewnienia rzetelności i powtarzalności wnioskowania, dane ilościowe pocho-
dzące z repozytoriów testów, narzędzia do zarządzania testowaniem i systemu zarzą-
dzania defektami były zestawiane z obserwacjami jakościowymi, pochodzącymi m.in. ze
zbieranych metryk oraz analiz dokumentacji projektowej. Taka kombinacja pozwoliła
nie tylko na identyfikację statystycznych trendów i korelacji, ale również na uchwyce-
nie przyczynowych relacji pomiędzy modyfikacjami procesów testowych a ich skutkami
w rzeczywistej pracy zespołów.

Przyjęta metoda badawcza stanowi kompromis pomiędzy rygorem naukowym a ogra-
niczeniami praktycznymi wynikającymi z charakterystyki projektów rozwoju systemów
wbudowanych. Umożliwiła ona uzyskanie wniosków o wysokim stopniu użyteczności
wdrożeniowej, przy jednoczesnym zachowaniu spójności z rzeczywistością operacyjną
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przedsiębiorstwa.

Przegląd literatury przedmiotu oraz analiza przedsiębiorstwa pozwala sformułować
trzy główne cele badawcze:

1. Ocena strategii testowania opartej na ryzyku oraz wpływu stopnia automatyzacji
testów na efektywność kampanii testowych.

2. Analiza wpływu testowania opartego na doświadczeniu, a w szczególności testów
eksploracyjnych, na liczbę oraz istotność wykrytych defektów.

3. Identyfikacja czynników organizacyjnych i technicznych sprzyjających szybkiej
adaptacji nowych strategii testowania w zespołach rozproszonych.

Pierwszy z celów badawczych dotyczy sprawdzenia, czy podejście do testowania
oparte na analizie ryzyka oraz automatyzacja testów przenoszą się na wymierne ko-
rzyści w kontekście skrócenia czasu trwania kampanii testowej. Analiza porównawcza
obejmuje projekty trwające, które podatne są na modyfikacje w tym zakresie, względem
projektów zakończonych, w których testowanie oparte na ryzyku nie było stosowane,
a stosunek testów automatycznych do ręcznych jest ustalony i znany. Ocenie poddane
jest kryterium ilościowe, to jest czas trwania testów oraz koszt przygotowania automa-
tyzacji względem oszczędności czasu w kolejnych rundach testowania.

Realizacja drugiego celu opiera się na zastosowaniu testowania eksploracyjnego ja-
ko elementu kampanii testowej dla trwającego projektu, aby sprawdzić, jak testowanie
oparte na doświadczeniu przekłada się na liczbę znalezionych błędów w oprogramowa-
niu. Weryfikacja ilościowa i jakościowa obejmuje liczbę znalezionych błędów, ich typ,
czas przygotowania testów eksploracyjnych oraz wykrywalność defektów, których nie
wychwyciły testy formalne.

Ostatnim elementem jest identyfikacja czynników organizacyjnych i technicznych,
które umożliwiają efektywną implementację nowych strategii testowania w zespołach
zlokalizowanych w różnych miejscach na świecie. Realizacja celu oparta jest o pozy-
skane doświadczenie i ma charakter badawczo-analityczny. Jej kryterium realizacji jest
zaproponowanie zestawu dobrych praktyk i wniosków.

Badaniom zostało poddanych łącznie dziewiętnaście projektów złożonych systemów
wbudowanych realizowanych w Rockwell Automation w latach 2020–2024 — przemien-
ników częstotliwości, kart rozszerzeń, sterowników programowalnych oraz modułów
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wejść-wyjść — przedstawionych w formie zanonimizowanej w Tabeli 3.1. Nadanie nazw
kodowych projektom powodowane jest faktem, iż nazwy komercyjne poszczególnych
produktów powiązane z danymi jakościowymi z testów funkcjonalnych stanowią ta-
jemnicę przedsiębiorstwa i ich wykorzystanie wiązałoby się z koniecznością utajnienia
wyników pracy.

Kryptonim projektu Liczba przypadków testowych Rozmiar
Alpha 29 719 Q5 (XL)
Bravo 2 606 Q5 (XL)

Charlie 27 317 Q5 (XL)
Delta 4 474 Q5 (XL)
Echo 1 351 Q3 (M)

Foxtrot 1 904 Q4 (L)
Golf 608 Q2 (S)
Hotel 587 Q2 (S)
India 7 812 Q5 (XL)
Juliet 1 435 Q3 (M)
Kilo 2 649 Q5 (XL)
Lima 2 246 Q4 (L)
Mike 2 166 Q4 (L)

November 92 Q1 (XS)
Oscar 1 353 Q3 (M)
Papa 223 Q1 (XS)

Quebec 72 Q1 (XS)
Romeo 1 141 Q2 (S)
Sierra 29 Q1 (XS)

Tabela 3.1: Projekty analizowane w ramach pracy badawczej

Średnia liczba przypadków testowych w projekcie to 4 620, a mediana wynosi 1 435.
Aby uspójnić analizę, projekty Alpha, Charlie oraz India zostały wykluczone z dalszych
rozważań ze względu na zdecydowanie większą liczbę przypadków testowych, co obra-
zuje Rysunek 3.1, a także niekompletne dane, co wynika z długoletniej historii tych
projektów i utracenia części informacji ze względu na migracje między narzędziami.

Klasyfikacja projektów na grupy ze względu na liczbę przypadków testowych opar-
ta została o rozkład normalny, a wartościami granicznymi przedziałów są dwudziesty,
czterdziesty, sześćdziesiąty i osiemdziesiąty percentyl. Za implementację i testowanie
tych produktów odpowiadały zróżnicowane zespoły, natomiast projekty o kryptoni-
mach Quebec, Sierra, Oscar oraz Lima były podstawą prowadzonych w ramach dokto-
ratu eksperymentów i modyfikacji strategii testowej.
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Rysunek 3.1: Dystrybucja projektów ze względu na liczbę testów

3.2 Planowanie i projektowanie eksperymentów

Przed wdrożeniem działań optymalizacyjnych kampanie testowe w firmie charak-
teryzowały się wydłużonym czasem realizacji w stosunku do standardów branżowych.
Testowanie funkcjonalne często następowało z opóźnieniem względem implementacji
nowych funkcjonalności, co wynikało z następujących przyczyn:

• niestabilnego i zawodnego środowiska automatyzacji testów,

• długich i skomplikowanych przypadków testowych, które pokrywają kilka lub
kilkadziesiąt wymagań funkcjonalnych,

• skryptów testów automatycznych zawierających zakodowane na stałe zmienne
środowiskowe oraz parametry testowanego urządzenia,
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• braku pełnego zrozumienia działania testowanego systemu przez inżynierów,

• presji czasowej nie pozwalającej na redukcję długu technicznego.

Skrypty testów funkcjonalnych tworzone były w wewnętrznie rozwijanym środowi-
sku opartym o graficzny język programowania, zbliżony do funkcjonowania komercyjne-
go narzędzia National Instruments TestStand. Poszczególne kroki testu realizowane by-
ły za pomocą tzw. aktorów, tj. reużywalnych i parametryzowalnych elementów pełnią-
cych określone funkcje: inicjujące połączenie sieciowe z systemem wbudowanym, konfi-
guracyjne, pomiarowe, weryfikacyjne, obliczeniowe (w tym operacje logiczne), umożli-
wiające przechowywanie zmiennych i operacje na nich, tworzenie pętli, czy korzystanie
z instrukcji warunkowych. Testy zorganizowane są w ramach podprogramów zwanych
workflow, jednakże ich egzekucja możliwa była wyłącznie w całości, co w przypadku
wystąpienia problemu w trakcie wykonywania testu, wymuszało powtórzenie całej, cza-
sochłonnej procedury. Działanie środowiska, będącego aplikacją na system operacyjny
Microsoft Windows, uzależnione było od dostępnych zasobów obliczeniowych kompu-
tera i systemu operacyjnego. Połączenie sieciowe z testowanym obiektem odbywało się
nie bezpośrednio, a za pośrednictwem wywołania zewnętrznego oprogramowania.

Testowane systemy wbudowane, szczególnie przemienniki częstotliwości, występu-
ją w kilku odmianach sprzętowych ze względu na oferowaną moc na wyjściu, a także
parametry zasilania, takie jak napięcie i częstotliwość. Ze względu na współpracę z dzia-
łami inżynierskimi zlokalizowanymi w Stanach Zjednoczonych, czy Azji, parametry te
powinny być odczytywane z pliku konfiguracyjnego lub danych zapisanych w pamięci
testowanego systemu. Niestety praktyka pokazuje, że parametry te były przechowywa-
ne w skryptach testowych w formie stałych programowych. Co więcej, część wyników
testów bezpośrednio zależy od tych parametrów, co w przypadku uruchamiania ich
w innej lokalizacji skutkowało nieoczekiwanymi błędami i koniecznością wprowadzania
poprawek.

Wszystkie te cechy wpływały bezpośrednio na zawodność testów oraz konieczność
poświęcenia dużych nakładów pracy w celu przywrócenia ich poprawnego działania.
Dodatkowo, ze względu na różnice w działaniu poszczególnych testowanych systemów,
rozwijane wewnętrznie środowisko testowe wymagało tworzenia dodatkowych aktorów,
umożliwiających interakcję, zmianę konfiguracji, czy wywołanie poszczególnych funk-
cji urządzeń. Kolejną wadą rozwiązania była konieczność ręcznego uruchamiania oraz
raportowania wyników testów.
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W trakcie gdy w firmie prowadzone były równoległe prace nad poprawą stabilności
istniejących testów oraz umożliwieniem indywidualnej egzekucji poszczególnych work-
flow, w ramach części wdrożeniowej pracy doktorskiej zaproponowana została specyfi-
kacja wymagań dotyczących nowego środowiska testowego. Określono również strategię
testową dla wspomnianych wcześniej projektów Oscar oraz Lima, zorganizowaną wo-
kół dużej liczby niewielkich i niezależnych przypadków testowych, które bezpośrednio
odpowiadają poszczególnym wymaganiom funkcjonalnym testowanego systemu wbudo-
wanego. We współpracy z zespołem stworzono prototyp środowiska testowego opartego
o język Python, bibliotekę unittest, a także zbiór narzędzi wewnętrznych firmy, również
napisanych w Pythonie1. Główną zaletą tego rozwiązania była szybsza oraz bardziej
stabilna komunikacja z testowanym systemem, a co za tym idzie, także znacznie skró-
cony czas wykonywania testów. Nowe środowisko umożliwia pisanie oraz wykonywanie
atomowych, tj. pokrywających pojedyncze wymaganie testów, a także automatyczne
ich uruchamianie i raportowanie wyników do systemu zarządzania testami.

Część wdrożeniowa polegająca na przeprowadzaniu eksperymentów, to jest wykony-
wania na systemie wbudowanym testów funkcjonalnych, odbywała się przyrostowo, po
każdorazowym przekazaniu przez zespół programistów wersji oprogramowania wbudo-
wanego zawierającego stosowną funkcjonalność. Synchronizacja prac między programi-
stami i testerami miała miejsce w ramach planowania PI oraz poszczególnych sprintów.
Na podstawie wniosków cząstkowych zebranych w trakcie kolejnych eksperymentów,
strategia testowa dotycząca projektów Oscar oraz Lima była w trakcie realizacji prac
badawczych oraz wdrożeniowych modyfikowana poprzez włączenie elementów związa-
nych z testowaniem opartym na ryzyku [65–67] oraz opartym na doświadczeniu [68],
w szczególności testowania eksploracyjnego [69–71].

3.3 Wykorzystanie metryk w ocenie jakości testów
i systemów

Jednym z kluczowych wyzwań w testowaniu funkcjonalnym systemów wbudowa-
nych jest skuteczne mierzenie postępów oraz efektywności tych testów. Coraz wię-
cej organizacji wymaga obecnie jednoznacznych dowodów na przeprowadzenie testów,

1Autorskim wkładem w tę pracę było planowanie i zarządzanie pracą w kontekście trwających
projektów, formułowanie wymagań w kontekście spełnienia strategii testowej oraz wykonanie części
implementacji modułów i skryptów testowych
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przedstawionych w formie szczegółowych raportów [27]. Dokumenty te zawierają precy-
zyjne informacje dotyczące jakości testowanego produktu oraz prezentują wyniki proce-
su testowego. Chociaż sposób monitorowania postępów testów i raportowania może się
różnić w zależności od organizacji, zazwyczaj koncentruje się on wokół pięciu głównych
obszarów: ryzyk jakościowych, wykrytych defektów, przypadków testowych, pokrycia
testowego oraz poziomu zaufania do produktu [72].

W kontekście testowania funkcjonalnego systemów wbudowanych, tradycyjne me-
tody takie jak pomiar liczby linii kodu [73], analiza pokrycia mutacyjnego [74] lub
stanów programu [75], a także narzędzia do mierzenia pokrycia kodu czy gałęzi, okazu-
ją się często nieskuteczne. Wynika to z faktu, że testerzy zazwyczaj nie mają dostępu
do kodu źródłowego produktu. Przekonanie, że pełne pokrycie wymagań wystarcza do
zapewnienia jakości, może być złudne. Może to prowadzić do sytuacji, w której pro-
dukt zostaje wprawdzie zweryfikowany, ale nieprawidłowo zwalidowany — co oznacza,
że spełnia wymagania formalne, ale niekoniecznie odpowiada rzeczywistym potrzebom
użytkownika. Dlatego pokrycie wymagań powinno być traktowane raczej jako dodat-
kowy wskaźnik, a nie jedyny wyznacznik jakości testów.

W ramach pracy doktorskiej wymagane było zaproponowanie zestawu metryk,
które mają zastosowanie w testowaniu funkcjonalnym [76] oraz mogą być wdrożone
w przedsiębiorstwie w celu monitorowania statusu oraz efektywności kampanii testo-
wych. Przede wszystkim należy do nich ogólna liczba testów oraz ich status w każdym
projekcie, a także podział ze względu na testy manualne i automatyczne. Pozwala to
śledzić postępy w tworzeniu nowych przypadków testowych w zależności od ustalonych
celów — takich jak określony poziom automatyzacji, czy liczba testów zatwierdzonych
po zakończeniu przeglądu ich zawartości, a co za tym idzie, gotowych do wykonania.

Jedną z miar stosowanych do ewaluacji proponowanych zmian i strategii testowej
jest współczynnik efektywności testu (ang. Test Effectiveness Ratio, TER), obliczany
według Wzoru 3.1. Może on być stosowany w odniesieniu do pojedynczego przypad-
ku testowego, jak i całych grup testów, aby porównać ich skuteczność w wykrywaniu
defektów, przy założeniu, że w kodzie poszczególnych testowanych funkcjonalności wy-
stępuje podobna liczba defektów.

TER = DT

DA

× 100% (3.1)

gdzie: DT oznacza liczbę defektów wykrytych przez test, a DA oznacza łączną liczbę
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wykrytych defektów.

Inną metodą na porównanie skuteczności wdrożonych modyfikacji, na przykład
względem innych projektów, jest gęstość defektów (Fault Density, FD), którą moż-
na obliczyć korzystając ze Wzoru 3.2. Pozwala ona określić, ile błędów udało się wy-
kryć w trakcie testowania w odniesieniu do łącznej liczby wykonanych przypadków
testowych. Przyjmując, że w podobnych pod względem złożoności i liczby przypadków
testowych projektach oczekuje się podobnej gęstości defektów, można zastosować tę
metrykę jako jedno z kryteriów wyjścia z kampanii testowej lub po zakończeniu testo-
wania określić, czy dana strategia testowa pozwala na wykrycie większej lub mniejszej
liczby błędów w odniesieniu do innych.

FD = DA

LT

× 100% (3.2)

gdzie: DA oznacza liczbę wykrytych defektów, a LT oznacza liczbę wszystkich wyko-
nanych testów.

Możliwym jest również odniesienie się do efektywności pojedynczego testu w wy-
krywaniu danego typu defektów w kolejnych rundach testowania za pomocą indeksu
efektywności testu (ang. Test Effectiveness Index, TEI, µ) określonego Wzorem 3.3.
Niech Ti oznacza typ defektu. Przykładowe rodzaje defektów charakterystyczne dla
testowania funkcjonalnego określa Tabela 3.2. W tym przypadku liczba defektów w k–
tym module jest oznaczona jako Dl

k(Ti), gdzie: l oznacza kolejną rundę testowania,
a i oznacza rodzaj defektu. Im TEI bardziej zbliża się do wartości 1, tym bardziej
efektywny jest dany przypadek testowy.

Oznaczenie Typ defektu Opis
T1 Defekt funkcjonalny Implementacja systemu wbudowanego

różni się od specyfikacji wymagań funk-
cjonalnych.

T2 Defekt bezpieczeństwa Funkcjonalność bezpieczeństwa nie jest
zgodna z wymaganiami bezpieczeństwa
lub odkryto ryzyko związane z bezpie-
czeństwem.

T3 Defekt wydajnościowy Wydajność systemu jest niestabilna lub
niezgodna ze specyfikacją.

T4 Defekt interfejsu Defekt związany z interfejsem użytkow-
nika lub warstwą komunikacyjną.

Tabela 3.2: Przykładowe typy defektów w testowaniu funkcjonalnym
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Wadą tych metryk jest możliwość dokładnego pomiaru dopiero po zakończeniu pew-
nego etapu kampanii testowej, ponieważ w trakcie jej trwania dostępne są jedynie
wyniki cząstkowe. Najprostszą metodą sprawdzenia postępów w testowaniu jest liczba
wykonanych testów. Pokazuje ona, jak wiele testów zostało wykonanych i ile pozostało,
a prezentowana jest najczęściej w formie wykresu spalania (ang. burndown chart). Licz-
ba ta następnie wykorzystywana jest między innymi do obliczenia gęstości defektów.
Liczbę wykonanych testów można odnieść również do pokrycia specyfikacji wymagań
funkcjonalnych, określając, ile wymagań zostało przetestowanych. Warto nadmienić,
że pełne pokrycie wymagań nie jest kryterium wystarczającym do zakończenia kampa-
nii testowej, gdyż pomija ono całkowicie aspekt walidacyjny testowania. Podobnie jest
z określaniem czasu potrzebnego na testowanie — wyczerpanie limitu czasu nie ozna-
cza, że proces został zakończony — choć w przypadku modyfikacji strategii testowej
dostarcza nam to informacji, czy nowe podejście jest bardziej, czy mniej wydajne pod
tym względem.

Możliwe jest również określenie metryk zbieranych w okresie po zakończeniu te-
stów, gdy system wbudowany trafia do użytkowników końcowych. Należą do nich licz-
ba niewykrytych defektów lub procent wykrytych defektów (ang. Defect Detection
Percentage, DDP), który obliczany jest za pomocą Wzoru 3.4. Badanie przyczyn nie-
wykrycia defektów w trakcie testowania jest ważnym aspektem poprawiania procesów
testowych. Umożliwia ono wskazanie, na którym etapie testów defekt powinien zostać
wykryty i umożliwia reakcję polegającą na dodaniu właściwych przypadków testowych
lub wdrożeniu nowego typu testowania, tak by sytuacja ta nie powtarzała się w przy-
szłości.

DDP = DA

DA + DN

× 100% (3.4)

gdzie: DA oznacza liczbę wykrytych defektów, a DN oznacza liczbę niewykrytych de-
fektów.

Ocenie jakości podlega również automatyzacja testów. Jednym z istotnych jej pa-
rametrów jest niezawodność (ang. Test Automation Reliability, TAR), rozumiana jako
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rzetelność dostarczanych wyników, określona Wzorem 3.5. Dostarcza ona informacji
o udziale wyników fałszywie pozytywnych (w których test kończy się błędnie określo-
nym negatywnym rezultatem) oraz fałszywie negatywnych (w których defekt nie został
wykryty, mimo że powinien) względem całkowitej liczby skryptów testowych.

TAR = (1 − RF

LA

) × 100%. (3.5)

gdzie: RF oznacza liczbę wyników fałszywie pozytywnych i negatywnych, a LA oznacza
liczbę testów automatycznych.

Zbieranie i analiza metryk są zadaniami czasochłonnymi oraz polegającymi w dużej
mierze na jakości i rzetelności dostarczanych danych wejściowych, dającymi natomiast
wymierne efekty w ocenie jakości systemów i procesu testowania. Dobrą praktyką jest
stosowanie narzędzi umożliwiających automatyzację zbierania metryk oraz możliwość
przedstawiania czytelnych raportów, na przykład Microsoft Power BI. Równie istotne
jest edukowanie zespołów oraz interesariuszy, dlaczego dane są zbierane oraz w jakim
celu są wykorzystywane. Brak metryk z kolei praktycznie dyskwalifikuje z możliwości
podejmowania świadomych decyzji i korekty praktyk testerskich w organizacji, gdyż
nie jest możliwe dokonanie obiektywnej oceny podjętych działań.

3.4 Teza badawcza

Testowanie funkcjonalne systemów wbudowanych stanowi jedno z bardziej złożo-
nych wyzwań we współczesnej inżynierii oprogramowania. Pomimo znacznego postępu
w dziedzinie testowania oprogramowania, specyficzne charakterystyki systemów wbu-
dowanych wprowadzają unikalne problemy, których tradycyjne metody testowania nie
są w stanie w pełni rozwiązać.

Znaczącą wadą obecnych rozwiązań testowych jest zależność od sprzętu i ograniczo-
ny dostęp do niego. Testowanie oprogramowania wbudowanego wymaga często bada-
nia finalnego produktu, obejmującego zarówno sprzęt, jak i oprogramowanie. Problem
pojawia się szczególnie na wczesnych etapach testowania, gdy kompletna platforma
sprzętowa może nie być dostępna. Konsekwencją tego jest konieczność polegania na
emulatorach i symulatorach, które nie odzwierciedlają dokładnie rzeczywistego zacho-
wania prawdziwych urządzeń.

Ze względu na powtarzalność zdarzeń zarówno w oprogramowaniu, jak i sprzęcie,
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odtworzenie defektów w testowaniu wbudowanym jest trudniejsze. Zbieranie danych re-
produkcyjnych jest wyzwaniem ze względu na konieczność interakcji z dynamicznym,
często niedeterministycznym środowiskiem fizycznym. Tradycyjne testy z oddzielonymi
od sprzętu środowiskami symulacyjnymi nie są w stanie uchwycić dynamicznych cech
tych interakcji, takich jak przerwania sprzętowe czy rzeczywiste taktowania komunika-
cji, co prowadzi do systematycznych odchyleń między wynikami weryfikacji a rzeczywi-
stym zachowaniem systemu. Nieodłączny niedeterminizm systemów czasu rzeczywiste-
go, spowodowany przez warunki wyścigowe, przerwania sprzętowe i wymianę danych
z zewnętrznym kontekstem, ma poważny wpływ na powtarzalność i przewidywalność.
Czynniki nieliniowe, takie jak rywalizacja o zasoby sprzętowe i opóźnienia przerwań,
nie są formalnie modelowane w tradycyjnych frameworkach testowych, co sprawia, że
defekty współbieżności, takie jak potencjalne zakleszczenia i inwersja priorytetów, są
trudne do skutecznego wykrycia.

Możliwość wystąpienia defektów zarówno po stronie oprogramowania, jak i sprzę-
tu, stanowi także istotny problem diagnostyczny. W testowaniu wbudowanym często
wykrywa się wysoki wskaźnik defektów systemowych, ponieważ testowane są zarówno
oprogramowanie, jak i sprzęt. Niełatwo jest określić, której warstwy systemu dotyczą,
co komplikuje debugowanie. W takich przypadkach krytyczna jest wiedza zespołu te-
stowego z zakresu informatyki oraz elektroniki, by pomóc wskazać źródło problemu.

Sporym wyzwaniem jest brak standaryzacji w komunikacji z testowanym systemem.
Fakt, że nie istnieje jeden protokół komunikacyjny ani kanał, który można wykorzystać
do komunikacji z urządzeniami wbudowanymi, wymaga znajomości i adaptacji wie-
lu protokołów i kanałów komunikacyjnych przy testowaniu oprogramowania dla tych
urządzeń. Podobnie jest z wykorzystywanymi narzędziami wspomagającymi testowa-
nie — wiele organizacji korzysta z własnych, specjalistycznych środowisk do weryfikacji
systemów wbudowanych, albo polega na generycznych narzędziach, które są dostosowy-
wane do specyficznych potrzeb systemu. Stwarza to kolejne wyzwania i koszty związane
z utrzymywaniem takich środowisk.

Także brak systematycznego podejścia do oceny efektywności metod testowych sta-
nowi jedną z najbardziej istotnych, choć często pomijanych, wad obecnych rozwią-
zań w testowaniu funkcjonalnym systemów wbudowanych. Problem ten manifestuje
się w kilku kluczowych obszarach, które znacząco utrudniają obiektywne porównanie
różnych technik i metodologii testowych.

Brak zunifikowanych metryk umożliwiających obiektywną ocenę efektywności róż-
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nych metod testowych sprawia, że porównanie wyników między różnymi organizacjami,
projektami czy metodologiami staje się niemal niemożliwe. W konsekwencji ogranicza
to możliwość identyfikacji najbardziej efektywnych metod, utrudnia rozwój dziedziny
i hamuje wdrażanie dobrych praktyk opartych na rzetelnych danych empirycznych.
W przemyśle dominują praktyki ad hoc, które charakteryzują się brakiem formalne-
go procesu i wymaganej dokumentacji. Chociaż testowanie ad hoc może być skuteczne
w identyfikowaniu defektów, które mogą umknąć technikom formalnym, jego nieformal-
ny charakter utrudnia systematyczne gromadzenie danych i porównywanie rezultatów.
Stan praktyki w zakresie testowania różni się między organizacjami i znacznie odbie-
ga od stanu wiedzy opisanego w literaturze naukowej. Metody powszechnie opisywane
w literaturze, takie jak testowanie eksploracyjne czy analiza ryzyka, nie są używane na
szeroką skalę w przemyśle.

Brak naukowego podejścia do oceny metod testowych ma poważne konsekwencje
dla całej dziedziny:

• brak możliwości obiektywnej oceny postępu — bez standaryzowanych metryk
trudno jest określić, czy nowe metody rzeczywiście mają przewagę nad istnieją-
cymi rozwiązaniami,

• duplikacja wysiłków — organizacje często ponoszą koszta projektując podejście
testowe nowe dla nich, ale istniejące w domenie,

• ograniczona wymiana wiedzy — brak porównywalnych wyników utrudnia dziele-
nie się dobrymi praktykami między organizacjami,

• trudności w optymalizacji procesów — bez obiektywnych metryk trudno jest po-
dejmować decyzje o tym, które metody testowe są najbardziej efektywne w kon-
kretnych kontekstach.

Bez systematycznego podejścia obszar testowania funkcjonalnego systemów wbudo-
wanych będzie nadal cierpiał na brak obiektywnej podstawy do porównania i wyboru
najefektywniejszych metod testowych, co ostatecznie wpływa negatywnie na jakość
i niezawodność systemów wbudowanych. Analiza rozwiązań opisywanych w literaturze,
a także wnikliwe badanie procesu testowania funkcjonalnego złożonych systemów wbu-
dowanych w firmie Rockwell Automation, jest próbą zaadresowania tego zagadnienia
i podstawą do sformułowania tezy rozprawy:
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Zastosowanie hybrydowego frameworku testowego, opartego na synergii de-
terministycznej automatyzacji, systematycznej analizy ryzyka, atomizacji
przypadków testowych oraz usystematyzowanego testowania eksploracyj-
nego, pozwala na mierzalną optymalizację procesu weryfikacji złożonych
systemów wbudowanych, wyrażoną przez statystycznie istotne podniesie-
nie wartości metryk jakościowych — w szczególności gęstości defektów FD
i współczynnika efektywności testów TER — w stosunku do tradycyjnych,
monolitycznych strategii testowych.
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Przyjęta strategia testowania
i wyniki badań

4.1 Testowanie oparte na wymaganiach

Testowanie oparte na wymaganiach to podejście, w którym przypadki testowe są
tworzone na podstawie specyfikacji wymagań systemu wbudowanego. W kaskadowym
modelu wytwarzania oprogramowania, specyfikacja jest tworzona w całości przed roz-
poczęciem fazy implementacji oraz testowania, podczas gdy w modelu zwinnym może
powstawać w sposób iteracyjny, w miarę rozwijania poszczególnych funkcjonalności
systemu. Wszelkie niejasności w wymaganiach zapisanych w języku naturalnym mogą
prowadzić do poważnych błędów w kolejnych fazach rozwoju projektu. Wpływ na jakość
wymagań oraz przypadków testowych może mieć zaangażowanie testerów w przegląd
specyfikacji. Istnieją standardy przemysłowe, definiujące szereg kryteriów jakościowych
dla indywidualnych wymagań [77], które mogą służyć jako podstawa ich oceny:

• poprawność — trafność opisu potrzeb klienta,

• wykonalność — realizowalność w ramach znanych możliwości oraz ograniczeń,

• konieczność — wyrażalność wyłącznie niezbędnych oczekiwań,

• priorytet — pilność realizacji,

• jednoznaczność — jednakowość rozumienia wymagania przez użytkowników,
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• weryfikowalność — możliwość utworzenia testów, demonstracji, przeprowadzenia
inspekcji, lub analizy (np. symulacji, modelu),

• atomowość — niepodzielność poszczególnych wymagań i ograniczenie ich zakresu
do pojedynczych cech systemu,

• niezależność od implementacji — treść pomijająca kwestie praktycznej realizacji
wymagania.

Osobne kryteria jakościowe stosuje się na poziomie dokumentu specyfikacji wyma-
gań:

• kompletność — nie pominięcie żadnego istotnego aspektu,

• spójność — nie zawieranie sprzecznych wymagań,

• modyfikowalność — możliwość kontrolowanej modyfikacji wraz z rejestrowaniem
zmian,

• możliwość śledzenia powiązań (ang. traceability) — ustanowienie połączenia z za-
leżnymi artefaktami, takimi jak źródło, cel, przypadek testowy, implementacja.

Śledzenie powiązań pomiędzy wymaganiami, a testami zapewnia możliwość odszu-
kania artefaktów, które są merytorycznie powiązane z danym przypadkiem testowym.
Dzięki temu mechanizmowi możliwe jest przeprowadzenie analizy wpływu zmiany dane-
go wymagania na inne artefakty, określenie postępów w implementacji i przetestowaniu
wymagań, a także sprawdzenie, czy wymagania nadają się do powtórnego wykorzysta-
nia (ang. reusability). Testowanie funkcjonalne jest bezpośrednio powiązane z wymaga-
niami funkcjonalnymi, które są uszczegółowieniem wymagań biznesowych lub wynikają
z norm przemysłowych (np. ISO 26262 lub IEC 61508). Śledzenie powiązań jest naj-
częściej realizowane przez dedykowane oprogramowanie do zarządzania wymaganiami,
a kryterium wyjścia z testowania może być osiągnięcie określonego stopnia przetesto-
wania wymagań.

Poprawnie sformułowane wymagania stanowią także istotny czynnik techniczny
sprzyjający testowaniu. Testowanie na podstawie wymagań stanowi trzon procesu te-
stowego wykorzystywanego w firmie Rockwell Automation. Proces Rockwell Automa-
tion Product Lifecycle (RAPL) w zakresie testowania systemów (ang. Verification and
Validation) wskazuje wymagania jako podstawową informację wejściową do procesu
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oraz określa jako oczekiwany stopień pokrycia co najmniej wszystkich wymagań doty-
czących cyberbezpieczeństwa.

Aby uniknąć nieścisłości, zmienności i problemów gramatycznych, a także umożli-
wić pracę przy zaangażowaniu inżynierów różnych narodowości, wymagania najczęściej
spisywane są w języku angielskim [78]. W celu dalszej eliminacji niejednoznaczności,
wymagania mogą być zapisywane w zapisach formalnych (np. Z, VDM) lub półfor-
malnych (np. UML, SysML), a także w inny usystematyzowany sposób, co umożliwia
tworzenie modeli zachowania systemu i automatyczne generowanie testów na podstawie
tychże (ang. Model-Based Testing, MBT). Spójna notacja może obowiązywać w okre-
ślonym obszarze funkcjonalnym lub kategorii wymagań. Zaletą takiego rozwiązania jest
skrócenie czasu potrzebnego na tworzenie dokumentacji testów oraz skryptów testów
automatycznych.

Spójna notacja i oparta o nią automatyczna generacja przypadków testowych zo-
stała zastosowana jako nowy element strategii testowej wdrożonej w ramach realizacji
projektu doktorskiego w zakresie testowania parametrów konfiguracyjnych badanych
systemów wbudowanych o kryptonimach Oscar oraz Lima. Specyfikacja wymagań przy-
jęła formę ustrukturyzowanych plików .JSON opisujących parametry urządzeń w struk-
turze obiektowej, to jest podzielonych na klasy, instancje oraz poszczególne atrybuty.
Na najwyższym poziomie hierarchii znajduje się sekcja Common, która zawiera ogól-
ny wzorzec dopasowania oraz obiekt Class przechowujący przykładową klasę. Każda
klasa może mieć wiele instancji. Instancje zawierają kolekcje atrybutów o właściwo-
ściach takich jak wartość, typ, zakresy przyjmowanych wartości, wartość domyślna,
czy jednostka. Pliki, których przykładowy fragment przedstawia Listing 4.1, zostały
przetworzone przez program napisany w języku Python, generujący na tej podstawie
opis kroków testu oraz skrypt testu automatycznego.

1 {
2 "Common": {
3 "Regex": ".*",
4 "Class": {
5 "001": {
6 "#name": "ClassName",
7 "Instance": {
8 "0": {
9 "Attribute": {

10 "1": {
11 "fields": [
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12 {
13 "value": null ,
14 "type": "UINT ',␣'VARRAY:UINT",
15 "variance": null ,
16 "defaultValue": null ,
17 "min": null ,
18 "max": null ,
19 "validValues": null ,
20 "engUnit": null
21 }
22 ],
23 "dataClassification": null ,
24 "#name": "OptionalAttributeList"
25 },
26 },
27 }
28 }
29 },
30 }
31 },
32 }

Listing 4.1: Przykładowy fragment pliku .JSON opisującego obiekty, instancje
i atrybuty urządzenia

Podejście to pozwoliło na zredukowanie zaangażowania testerów w odniesieniu do
437 przypadków testowych, co przy założeniu dwóch roboczogodzin na dokumenta-
cję przypadku testowego i jego automatyzację, można szacunkowo przeliczyć na 146
dni pracy inżyniera (przyjmując sześciogodzinny dzień pracy). Wygenerowane kroki
testu mogą wyglądać jak na Listingu 4.2. Przypadek testowy polega na weryfikacji
poprawności odczytu atrybutu OptionalAttributeList z klasy ClassName i instancji „0”
przy użyciu usługi Get Attribute Single służącej do odczytu danych. Test obejmuje
sprawdzenie, czy zwracane dane są zgodne z definicją w pliku JSON, gdzie wartość
atrybutu to null, a typ danych określony jako UINT lub VARRAY:UINT. Oczekiwa-
nym rezultatem jest poprawny status odpowiedzi oraz brak wartości lub pusta tablica,
co potwierdza zgodność z konfiguracją. Dodatkowo weryfikowane są pola defaultValue
i engUnit, które również powinny być puste, oraz reakcja systemu na próby odczytu
atrybutów spoza zdefiniowanego zakresu, gdzie spodziewany jest błędny status. Test
zapewnia kompleksową ocenę integralności danych, zgodności typów i obsługi błędów
w komunikacji z urządzeniem.
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1 1) Odczyt wartosci atrybutu OptionalAttributeList
2 Kroki:
3 Za pomoca narzedzia Message Tool i kodu uslugi Get Attribute

↪→ Single odczytaj dane z:
4 Class: 0x001 (ClassName)
5 Instance: 0x00
6 Attr: 0x01 (OptionalAttributeList)
7
8 Oczekiwany rezultat:
9 Status kodu: (Success)

10 Zwrocone dane = brak wartosci (null) lub pusta tablica , zgodnie
11 z definicja w JSON.
12
13 2) Weryfikacja typu danych atrybutu
14 Kroki:
15 Za pomoca Message Tool i kodu uslugi Get Attribute Single

↪→ odczytaj typ danych dla atrybutu OptionalAttributeList.
16
17 Oczekiwany rezultat:
18 Status kodu: (Success)
19 Zwrocony typ danych = UINT lub VARRAY:UINT.
20
21 3) Wartosci poza zakresem
22 Kroki:
23 Za pomoca Message Tool i kodu uslugi Get Attribute Single sprobuj

↪→ odczytac atrybut o numerze spoza zdefiniowanego zakresu.
24
25 Oczekiwany rezultat:
26 Status kodu: (Attribute not supported)
27 Brak zwroconych danych.
28
29 4) Weryfikacja wartosci domyslnej i jednostki inzynierskiej
30 Kroki:
31 Za pomoca Message Tool i kodu uslugi Get Attribute Single

↪→ odczytaj pola defaultValue i engUnit dla atrybutu
↪→ OptionalAttributeList.

32
33 Oczekiwany rezultat:
34 Status kodu: (Success)
35 Zwrocone wartosci: defaultValue = null , engUnit = null.

Listing 4.2: Przykładowy test wygenerowany na podstawie pliku JSON
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Kolejna wprowadzona zmiana dotyczyła śledzenia powiązań między testami, a wy-
maganiami. W poprzednich projektach śledzenie to odbywało się na zasadzie jeden
do wielu, to znaczy, że jeden test odpowiedzialny za kompleksową weryfikację danej
funkcjonalności, powiązany był z wieloma wymaganiami — rekordowa liczba powią-
zań testu z wymaganiami przekraczała sto. Rodziło to szereg nieporozumień podczas
prowadzenia analizy, które z wymagań nie zostały poprawnie zaimplementowane. Dla
projektów Oscar i Lima wdrożono zmianę, w ramach której testy tworzone były moż-
liwie atomowo, aby pokrywać jak najmniejszą liczbę wymagań. Założenie to udało się
spełnić dla 99 % wszystkich testów, a w pozostałych przypadkach liczba powiązanych
wymagań nie przekroczyła siedmiu.

4.2 Testowanie oparte na analizie ryzyka

Systematyczne połączenie oceny ryzyka z procesem testowania określa się mianem
testowania opartego na analizie ryzyka. W tym podejściu zidentyfikowane ryzyka zwią-
zane z oprogramowaniem stanowią kluczowy czynnik kierujący wszystkimi etapami pro-
cesu testowego, takimi jak planowanie, projektowanie, implementacja, wykonanie oraz
ewaluacja [67]. Testowanie oparte na ryzyku ma duży potencjał usprawnienia procesu
tworzenia i testowania oprogramowania, ponieważ pomaga w optymalnym wykorzy-
staniu zasobów oraz wspiera podejmowanie decyzji przez osoby zarządzające testowa-
niem [79]. Ponadto, ze względu na ograniczone zasoby i napięty terminarz projektu,
testowanie wykonywane jest pod dużą presją czasu, co w konsekwencji oznacza, że moż-
na wykonać jedynie część wszystkich przypadków testowych [80]. Testowanie oparte na
ryzyku dostarcza odpowiedzi, które z nich są kluczowe, a które niosą za sobą niskie
ryzyko w przypadku ich pominięcia.

Norma ISO/IEC/IEEE 29119-2:2021 odnosi się wprost do testowania opartego na
ryzyku jako integralnej części planowania testów, zgodnie z Rysunkiem 4.1. Kroki TP1,
TP3, TP4 oraz TP5 bezpośrednio dotyczą tematów ryzyka projektowego. Kontekst
określa ogólne ramy procesu oceny ryzyka i testowania. Obejmuje on źródła ryzyk
— biznesowe, jakościowe, lub technologiczne. Analiza ryzyk obejmuje przypisanie im
wartości będącej iloczynem prawdopodobieństwa ich wystąpienia oraz potencjalnych
konsekwencji w razie gdy dane ryzyko by się zmaterializowało, co wyraża Wzór 4.1.
Jeśli prawdopodobieństwo i konsekwencje wyrażone będą w skali 1–10, to ocena ryzyka
będzie kształtować się w zakresie 1–100.
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Rysunek 4.1: Proces planowania testów zdefiniowany w normie ISO/IEC/IEEE
29119-2:2021

R = P × K (4.1)

gdzie: R oznacza ocenę ryzyka, P oznacza prawdopodobieństwo wystąpienia ryzyka,
K oznacza konsekwencje wystąpienia ryzyka.

Kolejnym etapem jest przypisanie akcji do poszczególnych ryzyk. W zależności od
oceny ryzyka i kontekstu, mogą one obejmować eliminację ryzyka, dodatkowe kroki
zapobiegawcze, monitorowanie, a także akceptację potencjalnych skutków wystąpie-
nia. Decyzje o poszczególnych akcjach stanowią bazę do dobrania właściwej strategii
testowej.

Dla omawianych projektów Oscar oraz Lima, strategia testowa była określana na
etapie dokumentowania obszarowych planów testów, wchodzących w skład głównego
planu testów, który obejmuje testy funkcjonalne oprogramowania wbudowanego, testy
funkcjonalne oprogramowania, testy sprzętowe, testy systemowe oraz testy w zakresie
cyberbezpieczeństwa. Każdy z obszarowych planów testów definiuje wysokopoziomowe
scenariusze testowe, które opisują, co będzie w ich ramach testowane, nie zawierają
jednak szczegółów implementacyjnych.
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Bazując na ocenie ryzyka, do każdego scenariusza przypisywana jest akcja zależna
od wysokości oceny, co stanowi nowy element wdrożeniowy wprowadzony w ramach
projektu doktorskiego. Dla wartości poniżej 8, scenariusz nie jest pokrywany testami
lub przeprowadzany jest wyłącznie przegląd kodu. Dla oceny w zakresie 8–24 funkcjo-
nalność podlega testom manualnym, testom opartym o listę kontrolną, lub testowaniu
eksploracyjnemu. Dla oceny powyżej 24 przygotowywana jest automatyzacja testu,
która pozwala na regularną weryfikację funkcjonalności w trakcie regresji. Rodzaj akcji
może być inny w ramach wyjątków, wynikających z kontekstu biznesowego, obowią-
zujących norm, czy dostępnej technologii. Tabela 4.1 przedstawia przykładową ocenę
ryzyka wraz z przypisaną akcją.

Scenariusz Ocena Akcja Rodzaj testu Etap
MAJĄC [Warunek 1]
ORAZ [Warunek 2]
GDY [Akcja]
TO [Rezultat]

P = 1–10
K = 1–10
R = 1–100

Automatyzacja Funkcjonalny Regresja

Tabela 4.1: Przykładowa ocena ryzyka scenariusza testowego

Podobny mechanizm przypisania akcji na podstawie analizy ryzyka zastosowany
został także w przypadku testów regresyjnych. Ta sama skala użyta w odniesieniu do
poszczególnych testów pozwala przypisać testy do jednej z trzech kategorii: codzienna
regresja, regresja jednokrotna (zestaw testów wykonywanych raz w danym cyklu wyda-
wania produktu), bądź regresja rozszerzona — czyli testy wykonywane, gdy pozwalają
na to czas i dostępne zasoby, lub jest to wymuszone kontekstem biznesowym. Proces
ten ilustruje Rysunek 4.2.

Rysunek 4.2: Analiza ryzyka w testach regresyjnych
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4.3 Testowanie eksploracyjne i na podstawie do-
świadczenia

Tradycyjne testowanie oprogramowania opiera się na uprzednio zaprojektowanych
przypadkach testowych. Alternatywą jest podejście oparte na doświadczeniu, którego
przedstawicielem jest testowanie eksploracyjne (ang. Exploratory Testing, ET) [81,82].
Jego unikalną cechą jest maksymalne wykorzystanie wiedzy i inteligencji człowieka
w procesie jednoczesnego uczenia się, projektowania testów i weryfikacji produktu
[83,84]. Często bywa mylone z testowaniem ad-hoc, w którym tester nie ma jasno okre-
ślonego celu poza interakcją z systemem. Testowanie eksploracyjne okazuje się bardzo
skuteczne w wykrywaniu defektów — zwłaszcza takich, które mogłyby umknąć for-
malnym technikom, mają wysoką wagę, ale niską częstotliwość występowania u klienta
lub są trudne do odtworzenia. Istnieje nawet hipoteza, że ET jest bardziej efektywne
niż testowanie oparte na przypadkach testowych w wykrywaniu błędów funkcjonal-
nych, ponieważ testerzy mogą wykorzystywać swoją wiedzę do projektowania testów
i identyfikowania problemów „w locie”, nawet przy niewielkim doświadczeniu w testo-
waniu [85].

Termin „testowanie eksploracyjne” został wprowadzony przez Cema Kanera [81],
a następnie rozwinięty jako dyscyplina przez Cema Kanera, Jamesa Bacha i Breta
Pettichorda [82]. Testowanie eksploracyjne łączy projektowanie testów z ich wykony-
waniem i koncentruje się na poznawaniu systemu poddawanego testom [86], co jest
szczególnie pomocne w przypadku produktów pozbawionych pełnej specyfikacji wy-
magań funkcjonalnych. Istotą tego podejścia jest jednoczesne uczenie się, tworzenie
projektu testów i weryfikacja produktu. Ponadto, w projektach, w których brakuje
szczegółowych wymagań funkcjonalnych, testowanie eksploracyjne może być stosowa-
ne w celu zwiększenia pokrycia testami.

Choć testowanie eksploracyjne może stanowić wartościowe uzupełnienie tradycyjne-
go testowania, w literaturze budzi zarówno uznanie, jak i krytykę. Nie jest ono przypisa-
ne do żadnej konkretnej technologii testowania ani ograniczone do określonych cech czy
aspektów — można je stosować na każdym etapie testów i w różnych implementacjach,
a także łączyć z innymi technikami testowymi [87]. ET bywa często przeciwstawiane te-
stom z zaprojektowanymi wcześniej krokami, jednak w rzeczywistości istnieje spektrum
podejść — od w pełni eksploracyjnych po całkowicie skryptowe [88].

Bach i współautorzy słusznie twierdzą, że każde testowanie jest w pewnym stopniu
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eksploracyjne, a eksploracja to naturalny sposób testowania [89]. Wszystkie testy wy-
magają znajomości testowanego systemu, jednak w przypadku ET dochodzi element
trudny do uchwycenia — doświadczenie i intuicja inżyniera testów, co czasem czyni
z tego podejścia swoistą sztukę. W tym kontekście testowanie eksploracyjne nie tylko
opiera się na wiedzy ukrytej, ale jest procesem jej rozwijania, co w efekcie pozwala
lepiej testować produkt.

W projektach Oscar i Lima testy eksploracyjne zostały wdrożone jako usystema-
tyzowana technika [71], szczegółowo opisana w ramach ram postępowania określonych
w Rozdziale 4.4. Celem zastosowania ET było zaadresowanie problemów związanych
z cyklem rozwoju produktu: brakujących wymagań funkcjonalnych, zmian w zakresie
projektu, małej dostępności obiektów testowych oraz zbliżającego się terminu wyda-
nia produktów na rynek. Ponadto, ze względu na nową architekturę oprogramowania
oraz sprzętową, nie było możliwe przeniesienie testów z innych platform, co mogło-
by być alternatywnym rozwiązaniem. Testami eksploracyjnymi objęte zostały wybrane
funkcjonalności, których ocena ryzyka kwalifikowała je do tej grupy, lub wynikało to
z potrzeb biznesowych:

• konfiguracja wstępna systemu (ang. startup wizard),

• automatyczne przywracania konfiguracji (ang. automatic device configuration),

• scenariusze wstrzymywania startu (ang. start inhibits),

• błędy i alarmy (ang. faults and alarms),

• testy aplikacyjne,

• współpraca z enkoderami silników.

Funkcje te zwykle wymagają bardzo rozbudowanego i czasochłonnego testowania
ze względu na ich krytyczne znaczenie dla klientów oraz złożoność. Aby były w pełni
operacyjne, potrzebny jest odpowiedni poziom dojrzałości sprzętu, oprogramowania
i interfejsów — w przeciwnym razie dalsze testy mogą zostać zablokowane, co prowadzi
do strat czasu. Już sama początkowa konfiguracja urządzenia przeznaczonego na rynek
masowy wiąże się z wieloma zmiennymi i zależnościami, które należy uwzględnić. To
samo dotyczy pozostałych funkcji objętych ET. To sprawia, że walidacja produktu jest
wyzwaniem, ponieważ powinna wykraczać poza wymagania funkcjonalne. Testowanie
eksploracyjne potrafi odpowiedzieć na większość z tych problemów — przede wszystkim
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oszczędza czas potrzebny na przygotowanie skryptów testowych, a dodatkowo, dzięki
koncentracji na walidacji, jest mniej zależne od stanu specyfikacji wymagań.

Różnica między tymi dwoma typami testów widoczna jest również w podejściu do
weryfikacji funkcji produktu. W testach skryptowych funkcje są zwykle sprawdzane
w izolacji. W analizowanym przypadku oprogramowanie ma strukturę modułową, co
odzwierciedla sposób zaprojektowania wymagań funkcjonalnych, podzielonych na sek-
cje odpowiadające tym modułom. Oznacza to, że tradycyjne testowanie nie gwarantuje
odpowiedniego pokrycia interfejsów i komunikacji między modułami. ET zakłada bar-
dziej holistyczne podejście — w każdym scenariuszu testowane są jednocześnie liczne
moduły, co pozwala skupić się również na ich wzajemnych interakcjach.

Ta filozofia stawia inżyniera testów w jeszcze bardziej zorientowanej na klienta roli
niż w przypadku testów skryptowych. W trakcie ograniczonej czasowo sesji oczekuje
się, że tester zapozna się z celem, warunkami i ograniczeniami danego scenariusza. Na-
stępnie może wykonywać testy w sposób zbliżony do tego, jak produkt wykorzystuje
użytkownik końcowy, a podjęte kroki — opcjonalnie — rejestrować, np. narzędziem
wspierającym testy eksploracyjne lub kamerą. Interakcja z testowanym urządzeniem
odbywa się przez interfejs fizyczny lub, jeśli istnieje, komponent programowy umożli-
wiający konfigurację i obsługę produktu. W czasie sesji pożądany jest pewien zakres
swobodnej eksploracji, aby dotrzeć do obszarów, które w testach skryptowych mogły-
by zostać pominięte albo są trudne do zweryfikowania z powodu niejednoznacznych
kryteriów.

Dla projektu Oscar wstępna estymacja nakładu pracy oraz prognoza postępu prac
(z uwzględnieniem rosnącej liczby zaangażowanych inżynierów testów), zaprezentowa-
ne na Rysunku 4.3, wykazały przewidywalną oszczędność około dwóch miesięcy pracy
zespołowej przy podejściu ET w porównaniu z modelem tradycyjnym. Co więcej, wy-
gospodarowało to przestrzeń na analizę scenariuszy użycia dostarczonych przez zespół
zarządzania produktem, tworząc warunki do bardziej kontekstowego testowania. Ca-
ła kampania testowa trwała ponad rok, a kryterium wyjścia stanowiło zakończenie
wszystkich zaplanowanych testów. Testowanie eksploracyjne wprowadzono w ostatnich
dwóch miesiącach; wykonano je na dojrzałej wersji oprogramowania wbudowanego,
przez dwóch doświadczonych inżynierów testów, i zakończono w trakcie jednego, dwuty-
godniowego sprintu. Łącznie zrealizowano dziewięć z dziesięciu planowanych złożonych
scenariuszy pokrywających wymienione wyżej funkcjonalności (ostatni został zabloko-
wany przez czynnik zewnętrzny), co pozwoliło pokryć większość typowych przypadków
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użycia.

Rysunek 4.3: Prognoza postępu prac dla projektu Oscar

Testowanie eksploracyjne dla projektu Lima zostało wzbogacone dodatkowo o ele-
menty analizy ryzyka, gdzie dla oceny ryzyka w zakresie 8-24 funkcjonalność na podsta-
wie decyzji menadżera testów (po konsultacji z menadżerem produktu) może podlegać
testowaniu eksploracyjnemu, manualnemu lub na podstawie listy kontrolnej. Pozwoliło
to na dalsze rozbudowanie scenariuszy ET oraz wykorzystanie ich w przyszłości do
weryfikacji innych produktów.

4.4 Zakres testów automatycznych i manualnych

Na udział testów automatycznych i manualnych w projekcie wpływ może mieć
szereg czynników, takich jak łączna liczba koniecznych do przeprowadzenia testów,
konieczność ich powtarzania w przyszłości, dojrzałość produktu, możliwości technolo-
giczne, czy czas przeznaczony na testy. W sytuacji, gdy do wykonania jest niewielka
liczba testów, które w dodatku nie będą powtarzane lub będą powtarzane rzadko,
można skłaniać się ku stwierdzeniu, że bardziej efektywnym będzie podejście w pełni
manualne. Oznacza to, że testy będą odbywać się na podstawie określonych kroków,
listy kontrolnej lub w oparciu o doświadczenie (na przykład testy eksploracyjne). W ra-
mach analizowanych projektów, te spełniające owe kryteria zostały ujęte w Tabeli 4.2

52



4.4. Zakres testów automatycznych i manualnych

wraz z liczbą wykonanych testów oraz liczbą znalezionych defektów.

Kryptonim Rozmiar Przypadki testowe Liczba defektów
Sierra XS 29 3

Quebec XS 72 3
November XS 92 2

Papa XS 223 7
Hotel S 587 6
Golf S 608 6

Romeo S 1 141 97

Tabela 4.2: Projekty kategorii XS i S

Na podstawie tych wyników, możliwe jest obliczenie współczynników efektywności
testów TER, w odniesieniu do innych projektów kategorii XS i S, stanowiących dwu-
dziesty oraz czterdziesty percentyl w rozkładzie normalnym obejmującym wszystkie
analizowane projekty. Na potrzeby interpretacji wyników skorzystano ze zmodyfikowa-
nego Wzoru 4.2, który pozwala odnieść TER do projektów w danej kategorii. Współ-
czynniki te, przy założeniu, że ze względu na podobny poziom skomplikowania w kodzie
poszczególnych testowanych produktów występuje podobna liczba defektów, mają cha-
rakter przybliżony. Wyznaczyć można również współczynnik gęstości błędów FD, dzięki
czemu można dla podobnych projektów oszacować skuteczność wykonywanych testów.
Wyniki obliczeń zaprezentowane są w Tabeli 4.3.

TER = DP

DR

× 100% (4.2)

gdzie: DP oznacza liczbę defektów wykrytych w projekcie, a DR oznacza łączną liczbę
wykrytych defektów w projektach tej samej kategorii.

Kryptonim Rozmiar Przypadki testowe Liczba defektów TER [%] FD [%]
Sierra XS 29 3 20 10,34

Quebec XS 72 3 20 4,17
November XS 92 2 13,33 2,17

Papa XS 223 7 46,67 3,14
Hotel S 587 6 5,5 1,02
Golf S 608 6 5,5 0,99

Romeo S 1 141 97 88,99 8,50

Tabela 4.3: Współczynniki TER i FD dla projektów kategorii XS i S
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Prowadzone w ramach doktoratu wdrożeniowego projekty Quebec oraz Sierra1 obej-
mowały wyłącznie testy manualne, podczas gdy pozostałe miały zmienny udział testów
automatycznych na poziomie 60-70 %. Należy jednak zwrócić uwagę, że testowanie
w całości ręczne jest zasadne wyłącznie w przypadku małych projektów, których po-
wtarzalność jest niska.

Podobną analizę można przeprowadzić dla projektów Oscar i Lima2 w kategorii
projektów złożonych, to jest obejmujących kategorie od M do XL, zgodnie z Tabelą
4.4. Projekty te charakteryzuje udział testów automatycznych na poziomie odpowiednio
50 % i 70 %. Wyższy stopień automatyzacji w projekcie Lima nie przełożył się na
wyraźnie większą gęstość błędów. Wskazuje to, że zastosowanie szerszej automatyzacji
ze względu na skalę i złożoność projektu, nie daje bezpośredniego przełożenia na lepszą
wykrywalność błędów w oprogramowaniu.

Kryptonim Rozmiar Przypadki testowe Liczba defektów TER [%] FD [%]
Oscar M 1 353 204 87,18 15,08
Echo M 1 351 11 17,19 0,81
Juliet M 1 435 19 29,69 1,32

Foxtrot L 1 904 18 16,07 0,95
Mike L 2 166 32 28,57 1,48
Lima L 2 246 62 55,36 2,76
Bravo XL 2 606 5 6,94 0,19
Kilo XL 2 649 37 51,39 1,40
Delta XL 4 474 30 41,67 0,67

Tabela 4.4: Projekty kategorii M-XL

Istotną część testów w projektach Oscar i Lima stanowiły tzw. automatyczne testy
promocyjne. Określały one kryteria wejścia do testowania funkcjonalnego dla kolej-
nych wersji oprogramowania wbudowanego w trakcie jego rozwoju poprzez weryfikację
podstawowych funkcjonalności. Przejście testów oznaczało kwalifikację wersji oprogra-
mowania na poziom dojrzałości dopuszczający testowanie funkcjonalne. Zabezpieczało
to inżynierów testów przed potencjalnym zablokowaniem pracy, gdyby zaimplemento-
wane przez programistów zmiany skutkowały awarią w kluczowych obszarach. Testy te
były wykonywane w ramach środowiska ciągłej integracji CI (ang. Continuous Integra-

1W obu projektach rolą autora było zarządzanie testowaniem, przygotowanie planu testów (w tym
dobór strategii testowej), projektowanie i wykonanie części testów oraz sporządzenie raportu końco-
wego. Pozostałe prace ze względu na ich zakres prowadzone były w zespole inżynierów testów.

2Jak wyżej.
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tion)3, to jest każdorazowo podczas procesu budowania nowej wersji oprogramowania
przez programistów. W skład tego zestawu testów wchodziło 361 uruchamianych re-
gularnie przez system CI skryptów, których liczba powtórzeń w trakcie całej kampanii
testowej sięgała nawet kilkuset razy. Osiągnięcie podobnych rezultatów w przypadku
testowania ręcznego nie byłoby możliwe. Wykluczając jednak sporadyczne przypadki,
w których dostarczona przez programistów funkcjonalność zawierała błędy wpływające
znacząco na pracę całego urządzenia, testy te nie były odpowiedzialne za znalezienie
dużej liczby usterek, co wynika ze zjawiska paradoksu pestycydów.

Z punktu widzenia testów manualnych, szczególną grupę stanowią testy eksplora-
cyjne. Wyznaczone ramy postępowania ET [71], opracowane w ramach realizacji pro-
jektu doktorskiego i zastosowane w projektach Oscar i Lima, zostały zilustrowane na
Rysunku 4.4 i obejmowały następujące kroki:

1. Wyznaczenie udziału testów eksploracyjnych.

2. Zdefiniowanie pokrycia.

3. Zebranie danych wejściowych.

4. Zidentyfikowanie wyroczni testowych.

5. Przygotowanie kart sesji testów eksploracyjnych:

(a) wyznaczenie celów testów,

(b) przygotowanie opisu,

(c) określenie konfiguracji środowiska testowego,

(d) wyznaczenie ram czasowych,

(e) określenie stosunku trzymania ram testu do swobodnej eksploracji.

6. Wykonanie scenariuszy.

7. Zebranie i analiza wyników.

Pierwszym krokiem jest określenie proporcji testów eksploracyjnych w ramach dane-
go projektu. W przypadku projektów powtarzalnych lub o wysokim stopniu podobień-
stwa, rekomendowane jest stosowanie podejścia skryptowego, które umożliwia szeroką

3Ciągła integracja to proces, który polega na częstym i regularnym włączaniu dostarczonych funk-
cjonalności w kodzie oprogramowania do repozytorium i automatycznej weryfikacji zmian poprzez
zbudowanie projektu i wykonanie określonego zakresu testów.
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Rysunek 4.4: Ramy postępowania testowania eksploracyjnego

automatyzację testów regresyjnych. Natomiast w przedsięwzięciach unikalnych, charak-
teryzujących się wysoką zmiennością lub brakiem pełnej specyfikacji wymagań, testo-
wanie eksploracyjne może stanowić dominującą strategię. Ze względu na wspomniany
paradoks pestycydów, uzasadnione jest włączenie elementów ET w niemal każdym
kontekście. Po zdefiniowaniu skali ET, zakres pokrycia powinien zostać określony na
podstawie kryteriów takich jak: stopień znajomości urządzenia lub funkcji, możliwość
automatyzacji, dostępność dokumentacji oraz zasoby kadrowe.

Pomimo niższego stopnia formalizacji, ET wymaga odpowiedniego przygotowania.
Konieczne jest zgromadzenie danych wejściowych w postaci dokumentacji, wymagań,
scenariuszy użycia oraz wiedzy eksperckiej. Etap ten jest kluczowy dla opracowania
kart sesji testów eksploracyjnych (ang. test charters), które precyzyjnie definiują ce-
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le oraz identyfikują potencjalne ryzyka. W celu jednoznacznej oceny wyników należy
określić wyrocznie testowe (ang. test oracles), to znaczy jasne kryteria lub źródła infor-
macji dotyczące oczekiwanych, prawidłowych wyników testów. W przypadku ET jest
to bardziej złożone niż w testach skryptowych, gdzie kryteria te są zazwyczaj jasno
zdefiniowane i wynikają wprost z wymagań funkcjonalnych.

Po zakończeniu przygotowań opracowuje się kartę sesji, która dostarcza testerowi
niezbędnych informacji przy zachowaniu minimalizmu w porównaniu z pełnym scena-
riuszem testowym. Kluczowym elementem jest zestaw celów uznanych za krytyczne
dla danego testu. Opis uzupełniający może zawierać kontekst, intencje oraz informacje
pomocnicze. Zaleca się również określenie konfiguracji środowiska testu (ang. test tar-
get) oraz ustalenie ram czasowych wraz z proporcją pomiędzy realizacją celów a tzw.
„swobodną eksploracją” (ang. free roam). Takie podejście zapewnia dyscyplinę, a jed-
nocześnie umożliwia eksplorację w celu identyfikacji anomalii. Brak zdefiniowanych
kroków testowych stanowi fundamentalną różnicę względem testów skryptowych, po-
zostawiając testerowi swobodę w doborze ścieżki. Przykładową kartę sesji przedstawia
Tabela 4.5.

Karta sesji ET — Konfiguracja początkowa
Ramy czasowe 2 godziny
Opis Przetestować kreator konfiguracji początkowej.

Środowisko testowe: zestaw biurkowy lub stanowisko te-
stowe.
Stosunek ram testu do swobodnej eksploracji: 70:30.

Karta sesji

1. Przygotowanie projektu.

2. Nawiązanie połączenia z urządzeniem.

3. Testowanie kreatora konfiguracji początkowej.

Cel

1. Upewnienie się, że klient może korzystać z kreato-
ra do stworzenia konfiguracji początkowej.

2. Zarejestrowanie kroków w celu utworzenia skryptu
testowego.

Tabela 4.5: Przykładowa karta sesji ET
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Realizacja sesji ET może być wspierana narzędziami rejestrującymi przebieg te-
stów, co umożliwia późniejsze odtworzenie kroków, przekształcenie wyników w testy
skryptowe oraz ułatwia reprodukcję defektów. Ostatnim etapem jest analiza i raporto-
wanie wyników w oparciu o wcześniej zdefiniowane wyrocznie testowe lub inne kryteria
weryfikacji i walidacji.

Efektywność ET jest w dużej mierze determinowana przez jakość przygotowania.
W sytuacji braku jednoznacznych wymagań funkcjonalnych konieczne jest przeprowa-
dzenie analizy w celu identyfikacji kluczowych obszarów systemu, określenia wyników
testów oraz źródeł informacji. Niewłaściwie ukierunkowane ET może generować nad-
mierne koszty w stosunku do korzyści, co wynika również z elementu losowości w tym
podejściu. Ryzyko to można ograniczyć poprzez stosowanie ram czasowych oraz świa-
domego bilansowania proporcji pomiędzy realizacją celów a eksploracją obszarów bu-
dzących zainteresowanie inżyniera testów.

4.5 Ewaluacja efektywności testów

Efektywność testowania stanowi kluczowy element zapewnienia jakości w złożonych
systemach wbudowanych. Można ją ocenić na wielu płaszczyznach — od liczby znale-
zionych defektów, poprzez gęstość błędów (FD), aż po wskaźnik efektywności testów
(TER) rozumiany jako odsetek wykrytych błędów w stosunku do porównywalnych pro-
jektów. Analizę porównawczą efektywności dokonano na podstawie projektów Quebec,
Sierra, Oscar oraz Lima, badając je pod kątem ilościowym i jakościowym. Punktem
odniesienia są pozostałe projekty, dla których zebrano dane, przedstawione w zbiorczej
Tabeli 4.6.

Analizowane projekty obejmują pełne spektrum rozmiarów, od bardzo małych, ta-
kich jak Sierra, Quebec, November i Papa, do bardzo dużych, takich jak Bravo, Kilo
i Delta. Uzyskane wartości wskazują na znaczną rozbieżność w praktykach testowych,
od projektów niemal pozbawionych realnej skuteczności (np. Bravo), do projektów z du-
żą liczbą defektów (Lima, Romeo). Zjawisko to obrazuje zależność liczby znalezionych
błędów od liczby wykonanych testów widoczna na Rysunku 4.5.

Rysunek 4.6 ilustruje ujemny trend — wraz ze wzrostem liczby testów maleje gę-
stość defektów. Korelacja liniowa jest umiarkowanie ujemna (r = −0, 3204), i nieistotna
statystycznie (p ≈ 0, 2263), natomiast korelacja rangowa (ρ = −0, 5294) istotna staty-
stycznie (p ≈ 0, 0350), co wskazuje na monotoniczny spadek gęstości defektów wraz ze
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Kryptonim Rozmiar Przypadki testowe Liczba defektów TER [%] FD [%]
Sierra XS 29 3 20 10,34

Quebec XS 72 3 20 4,17
November XS 92 2 13,33 2,17

Papa XS 223 7 46,67 3,14
Hotel S 587 6 5,5 1,02
Golf S 608 6 5,5 0,99

Romeo S 1 141 97 88,99 8,50
Oscar M 1 353 204 87,18 15,08
Echo M 1 351 11 17,19 0,81
Juliet M 1 435 19 29,69 1,32

Foxtrot L 1 904 18 16,07 0,95
Mike L 2 166 32 28,57 1,48
Lima L 2 246 62 55,36 2,76
Bravo XL 2 606 5 6,94 0,19
Kilo XL 2 649 37 51,39 1,40
Delta XL 4 474 30 41,67 0,67

Tabela 4.6: Tabela zbiorcza projektów

Rysunek 4.5: Zależność liczby znalezionych defektów od liczby wykonanych testów

wzrostem liczby testów, choć zależność nie jest ściśle liniowa (stąd korelacja Pearsona
nie jest istotna). Większy nakład testowy, rozumiany przez większą liczbą przepro-
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wadzonych testów, wiąże się z niższą gęstością defektów. W myśl efektu malejących
przyrostów, wzrost liczby testów po przekroczeniu pewnego progu poprawia jakość
bardziej stopniowo, niż liniowo, przy założeniu, że nad projektem pracują programiści
o tym samym lub zbliżonym poziomie pisania jakościowego kodu.

Rysunek 4.6: Zależność gęstości błędów od liczby wykonanych testów

Projekty o wyższej liczbie testów częściej charakteryzują się niższą zmiennością
w zakresie efektywności testowania, choć związek nie ma charakteru prostoliniowe-
go i występują wyjątki (m.in. projekty o dużej liczbie testów i paradoksalnie niskim
TER — Bravo). Szczególnie projekty takie jak Romeo stanowią kontrast pokazują-
cy, jak duże mogą być różnice w przypadku projektów małych, w których występuje
relatywnie wyższy udział przypadków testowych wykrywających defekty. Zjawisko to
może ujawniać nierównomierne pokrycie testowe albo większą zmienność jakościową,
co uwidocznione jest na Rysunku 4.7. Ponadto wraz ze wzrostem rozmiaru projektu,
jednocześnie spada średnia gęstość defektów.

Testowane w pełni manualnie Sierra i Quebec znajdują dużo defektów względem
liczby wykonanych testów, jednak Papa ze względu na większą liczbę testów osiąga
lepszy współczynnik TER. Można więc przyjąć, że testowanie w pełni manualne, choć
bardziej efektywne od automatycznego, nie nadąża za efektem skali i ograniczone jest
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Rysunek 4.7: Dystrybucja gęstości błędów w poszczególnych kategoriach projektów

możliwą do wykonania w określonym czasie liczbą testów. Oscar i Lima dominują
w swoich grupach wielkości zarówno pod względem efektywności testów, jak i gęsto-
ści błędów, stanowiąc projekty wzorcowe. Wdrożone praktyki testowe oraz strategia
wydają się dobrze dobrane i sugerują wysoką dojrzałość, należy więc utrwalić je jako
wytyczne procesowe. Rysunek 4.8 ilustruje, że w swoich kategoriach rozmiaru projektu
Oscar i Lima wykazują wyraźnie lepsze wyniki w zakresie liczby znalezionych defektów,
gęstości błędów (FD) i efektywności testów (TER).

Liczebność próby (N = 16) w pewnym stopniu ogranicza analizę i zastosowanie
metod statystycznych. Pojedyncze przypadki odstających projektów (Bravo, Romeo)
mogą nadmiernie wpływać na wnioski. Zagregowane metryki FD i TER utrudniają
także rozróżnienie wpływu krytyczności znajdowanych defektów, gdyż ich ogólna liczba
nie zawsze przekłada się na istotność, bądź częstotliwość występowania związanych
z nimi usterek.

W ewaluacji efektywności testów nie sposób pominąć zagadnienia testów eksplo-
racyjnych. W projekcie Oscar wykonano 9 scenariuszy testów eksploracyjnych, które
znalazły 6 defektów, w porównaniu do 198 błędów znalezionych przez pozostałe 1 344
testów skryptowych, w tym 5 błędów znalezionych w trakcie wykonywania 361 te-
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Rysunek 4.8: Znormalizowane porównanie projektów Oscar i Lima względem
pozostałych projektów w kategoriach M i L
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stów automatycznych w środowisku ciągłej integracji. Analiza defektów znalezionych
w trakcie ET udowodniła, że wykrycie 5 z nich ze względu na niską odtwarzalność i czę-
stotliwość występowania, byłoby niemożliwe przez testy automatyczne lub podążające
za ściśle określonym scenariuszem. Istotność tych defektów wyznaczono na poziomie
wymagającym naprawy w ramach tego samego cyklu wydawniczego produktu (ang.
release cycle).

Na podstawie zrealizowanych kart sesji testów eksploracyjnych opracowano dziesięć
procedur testowych, przy czym jedna z kart została rozdzielona na dwa przypadki
testowe. Dwa z tych przypadków zostały włączone do zakresu testów w środowisku
ciągłej integracji w kolejnych wydaniach produktu i poddane automatyzacji. Jeden
przypadek został dodany do finalnego zestawu testów regresyjnych wykonywanych na
oprogramowaniu w wersji kandydującej do wydania. Zmiany te zostały uwzględnione
w projekcie Lima.

Szacunki nakładu pracy zostały potwierdzone w rzeczywistym przebiegu proce-
su testów eksploracyjnych, obejmującym przygotowanie, wykonanie oraz zarządzanie
wynikami. Lekka struktura oferowana przez ET okazała się skuteczna w kontekście
sztywnego harmonogramu, podczas gdy część procesu oparta na testach skryptowych
napotkała opóźnienia wynikające z niedostatecznej jakości wymagań funkcjonalnych,
co spowodowało przesunięcie względem estymacji przedstawionych na Rysunku 4.3
o ponad trzy tygodnie. Podsumowanie wyników ET w projekcie Oscar uwzględnione
zostały w Tabeli 4.7

Rodzaj testów Liczba testów Defekty Wym. naprawy Czas trwania
Testy eksploracyjne 9 6 5 2 tygodnie

Testy skryptowe 1 344 198 79 68 tygodni
Razem 1 353 204 84 70

Tabela 4.7: Podsumowanie testów eksploracyjnych w projekcie Oscar

Wyniki należy interpretować biorąc uwagę niewielką skalę eksploracji w porów-
naniu do tradycyjnego testowania w oparciu o scenariusz oraz wykonywanie testów
eksploracyjnych po zakończeniu testów skryptowych, w końcowej fazie kampanii te-
stowej. Mimo tego, technika ta wykazała zdolność do ujawniania defektów o wysokiej
istotności dla klienta, które z dużym prawdopodobieństwem umknęłyby w standardo-
wym procesie testowym. Zarejestrowany przebieg działań inżynierów testów umożliwił
opracowanie procedur testowych rozszerzających portfolio dostępnych przypadków —
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część z nich została włączona do środowiska ciągłej integracji, a inne do zestawu te-
stów regresyjnych. Co istotne, karty sesji mogą być formułowane w sposób niezależny
od konkretnego urządzenia, dzięki czemu zachowują przenośność pomiędzy produk-
tami o zbliżonych własnościach, lecz odmiennych implementacjach. Taka przenośność
i możliwość ponownego użycia stanowią istotną przewagę z perspektywy ekonomii czasu
i wysiłku zespołu.

W niniejszym kontekście szczególnie wartościowe jest rozpatrywanie zarówno liczby
wykonanych testów, jak i czasochłonności poszczególnych typów testowania [76]. Ma-
jąc na uwadze te aspekty, testowanie eksploracyjne zapewnia porównywalne — choć
mniej dogłębne — pokrycie w znacznie krótszym czasie oraz przy mniejszej liczbie
przypadków testowych, które należy zaprojektować i utrzymywać. Dzięki ramom cza-
sowym oraz jednoznacznie zdefiniowanym celom, estymacje ET mogą być formułowane
z wysoką dokładnością, a zarządzanie całością procesu pozostaje nieskomplikowane.

W przypadku złożonych, wielkoskalowych systemów wbudowanych, realizacja ET
oparta na scenariuszach użycia bywa czasowo blokowana przez klastry drobnych defek-
tów. Z tego względu rekomenduje się wykonywanie większości scenariuszy na bardziej
dojrzałych etapach rozwoju produktu, kiedy wymagane interakcje licznych elementów
systemu są stabilniejsze. W odróżnieniu od tego, testy skryptowe mają z natury charak-
ter bardziej izolowany, co ogranicza ryzyko blokad wynikających z wielomodułowych
zależności, ale jednocześnie redukuje zdolność do ujawniania problemów na styku kom-
ponentów.
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Analiza i optymalizacja procesu
testowania

5.1 Automatyzacja testów

Przed rozpoczęciem projektów Oscar i Lima, automatyczne testy funkcjonalne po-
wstawały w wewnętrznie rozwijanym środowisku Test Automation Framework (TAF).
Programowanie odbywało się w języku graficznym poprzez tworzenie sekwencji kro-
ków — definiowanie przebiegu takiego testu było czytelne i możliwe do utrzymania
w zespołach o zróżnicowanych kompetencjach, gdyż tak naprawdę nie wymagało umie-
jętności programowania w żadnym języku. Poszczególne kroki mogły być realizowane
przez reużywalne, parametryzowalne komponenty (tzw. aktorów) pełniące określone
role, na przykład inicjację połączenia sieciowego z systemem wbudowanym, konfigura-
cję testowanego obiektu, wykonywanie pomiarów, weryfikację wyników, czy obliczenia.
Dostępne były również konstrukcje sterujące przebiegiem, takie jak pętle oraz instruk-
cje warunkowe, które umożliwiały budowę złożonych scenariuszy testowych i elastyczne
rozgałęzianie ścieżek wykonania. Środowisko umożliwiało także wsparcie dla wielowąt-
kowości, chociaż funkcja ta nie była powszechnie używana.

Ze względu na brak możliwości selektywnego wykonywania pojedynczych fragmen-
tów w razie wystąpienia problemu podczas przebiegu testu, konieczne było ponowne
uruchomienie całej, często czasochłonnej procedury. Wydajność i stabilność środowi-
ska były mocno zależne od dostępnych zasobów sprzętowych i systemowych (m.in. moc
obliczeniowa, pamięć operacyjna) oraz kondycji systemu operacyjnego. Nawiązanie po-
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łączenia sieciowego z testowanym obiektem wymagało wywołania zewnętrznego opro-
gramowania i wprowadzało zależność od komponentów spoza samego środowiska testo-
wego. Część testów wymagała także wywołania programu sterownika PLC napisanego
w języku drabinkowym LD (ang. Ladder Diagram), również za pomocą zewnętrznego
programu. Każdorazowe ładowanie projektu z programem sterownika i niestabilność
środowiska powodowały, że testowany obiekt po zakończeniu testów lub ich przerwa-
niu mógł znajdować się w stanie nieustalonym i wymagać ręcznej interwencji inżyniera
testów w celu przywrócenia do stanu początkowej konfiguracji.

Pierwszą próbą zaadresowania tych problemów było wprowadzenie kryteriów stabil-
ności oraz niezawodności testów. Celem było całkowite wyeliminowanie testów rapor-
tujących wyniki fałszywie pozytywne lub negatywne oraz losowo niestabilnych. W tym
celu wprowadzono kryteria rzetelności, określone w Tabeli 5.1. Proces analizy testów
obejmował opcjonalne debugowanie testu (jeśli okazało się konieczne) oraz kontrolę
niezawodności poprzez wielokrotne uruchomienie skryptu w pętli. Jeśli dany test we-
ryfikował funkcjonalność, na którą wpływał znany i zgłoszony defekt oprogramowania,
to punkty weryfikacyjne powinny zgłaszać ostrzeżenie zamiast usterki, wraz z identyfi-
katorem anomalii w systemie raportowania tak, aby umożliwić późniejszą aktualizację.
Liczbę powtórzeń testu ustalał inżynier testów biorąc pod uwagę czynniki takie jak
czas wykonania testu, czy konieczność nadzorowania urządzenia w trakcie wykonywa-
nia procedury.

Minimalna liczba stabilnych uruchomień
10/101

25/25
48/50
95/100

Tabela 5.1: Kryteria stabilności testów

Z punktu widzenia środowiska ciągłej integracji, wprowadzenie standardów nieza-
wodności dla istniejących skryptów oraz stosowanie ich przy tworzeniu nowych, ma
kluczowe znaczenie dla stabilności i powtarzalności całego procesu. Reguły te wymu-
szają na testerach tworzenie automatyzacji, która zapewnia możliwość uruchomienia
niezależnie od pozostałej części kodu, nie wpływa na kolejne fragmenty skryptów te-
stowych ani ich późniejsze wykonania, jak również nie jest podatna na wpływ testów
poprzedzających i może działać niezależnie od konfiguracji urządzenia. Takie podej-

1W przypadku prostych testów.
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ście zwiększa elastyczność, ułatwia utrzymanie kodu oraz minimalizuje ryzyko błędów
propagujących się pomiędzy testami, co jest fundamentem skutecznej automatyzacji
procesów.

Podobne problemy dotyczyły testów pisanych w Ladder Diagram i wykonywanych
przez sterownik PLC. Stosowany framework zapewniał niezbędne interfejsy komuni-
kacyjne, przesyłając polecenia sterujące oraz odbierając ich rezultaty, i działając jako
warstwa infrastrukturalna, regulując sposób organizacji przypadków testowych, zapisy-
wanie wyników oraz raportowanie. Istotnym założeniem dla tego typu testów, utrzymy-
wanym w kolejnych generacjach rozwoju, była kompatybilność wsteczna. Dzięki temu
rożne wersje programów sterownika mogły współistnieć, a ewolucja narzędzia nie blo-
kowała ciągłości prac oraz ponownego wykorzystania istniejących skryptów. Niestety
na potrzeby dalszej ewolucji narzędzia konieczne było złamanie tego wymagania i do-
konanie głębokiej przebudowy frameworku tak, aby jeden plik zawierający projekt dla
sterownika programowalnego zawierał w sobie pojedynczy test. Historycznie pojedyn-
czy plik projektu mógł zawierać dziesiątki testów (od 2 do 70+), co prowadziło do
nadmiernego ich rozrostu i braku stabilności, np. ze względu na występujące zależ-
ności od kolejności uruchamiania skryptów i trudności w selektywnym uruchamianiu
ich fragmentów. Przy okazji wprowadzony został nowy system rejestrowania danych,
w którym każdy krok testu generuje informację zawierającą wynik weryfikacji, opis
tekstowy, a w razie potrzeby także wartości oczekiwane i rzeczywiste. Pozwoliło to
przyspieszyć diagnozę problemów, ułatwiło identyfikację usterek oraz dało podstawy
do późniejszej analizy przyczyn występowania defektów.

Zaletą tego rozwiązania była przede wszystkim większa stabilność i niezawodność,
bardziej szczegółowe informacje zwracane przez skrypt po zakończeniu testu i niższy
koszt utrzymania w przypadku pojedynczego testu. Idący za zmianami wzrost licz-
by plików (jeden test na projekt) wygenerował z kolei nowe wymagania narzędziowe
poprzez konieczność zarządzania wersjami i przygotowanie odpowiednich szkieletów
plików.

Zastosowanie w projektach Oscar i Lima nowego protokołu komunikacyjnego oraz
struktury parametrów urządzeń wymusiło fundamentalne zmiany w podejściu do auto-
matyzacji testów. Przede wszystkim dużym wyzwaniem było utrzymywanie własnego
środowiska do automatyzacji testów, co wiązało się z kosztami i dużym nakładem
pracy. Mimo oparcia się w dużym stopniu na języku graficznym, przystępność w obsłu-
dze nie szła w parze z szybkością tworzenia skryptów testowych, czy też dostępnością
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mechanizmów znanych ze współczesnych środowisk programistycznych, takich jak au-
touzupełnianie, czy pomoc kontekstowa. Występujące niejednokrotnie błędy w kodzie
elementów odpowiedzialnych za poszczególne kroki nie były łatwe w naprawie, gdyż
wymagały dostępu do plików źródłowych i osobnych licencji. Finalnie, w przypad-
ku zatrudniania inżynierów testów nie można było liczyć na znajomość stosowanego
frameworku, a nauczenie się jego obsługi, choć wymagane w pracy, nie zwiększało kon-
kurencyjności pracownika w dalszej perspektywie rozwoju kariery zawodowej.

Aby zrealizować nowe projekty konieczne było więc zastosowanie innej technologii.
Jednym z powszechnie używanych standardów jeśli chodzi o automatyzację testów jest
korzystanie z języka Python, który oferuje wsparcie w postaci dedykowanych bibliotek
(np. unittest, PyTest). Wyniki wstępnych eksperymentów mających na celu określe-
nie deterministyczności nowego narzędzia prezentuje Rysunek 5.1, na którym widać
wyrażony w milisekundach czas realizacji komend wysyłanych za pomocą różnych pro-
tokołów do systemu wbudowanego.

Na korzyść tego rozwiązania przemawiał fakt istnienia także dostępnej wewnętrznie
biblioteki komunikacyjnej obsługującej protokoły komunikacyjne zgodne z projekta-
mi Oscar i Lima oraz ich strukturę parametrów. To oznaczało, że stworzenie nowego
frameworku wiązałoby się z mniejszymi niż początkowo zakładano nakładami pracy.
Automatyzacja testów w języku Python mogłaby być powszechnie wykorzystywana
dla przyszłych projektów wspierających zbliżoną konstrukcję parametrów nawet, gdy-
by protokół komunikacyjny się różnił — w takim przypadku konieczna byłaby zmiana
tylko biblioteki komunikacyjnej. Ponadto system mógłby służyć do wywoływania proce-
dur stworzonych w programie Test Automation Framework lub programów dla sterow-
nika programowalnego zawierających testy, czyli wspierać uruchamianie poprzednich
rozwiązań.

Rozważanym krokiem było także wykorzystanie do automatyzacji testów dużych
modeli językowych, które mogłyby generować scenariusze testowe oraz skrypty testów
na podstawie specyfikacji wymagań funkcjonalnych. W tym celu w ramach prac wdro-
żeniowych dokonano próby fine-tuningu modelu OpenAI GPT 3.5 Turbo, do której wy-
korzystano prawie 800 par wymaganie–test, a następnie poproszono model o wygenero-
wanie testów na podstawie nieznanych mu wymagań o zbliżonym formacie. Pierwszym
krokiem było dopasowanie danych wejściowych — zarówno wymagania, jak i istniejące
przypadki testowe przygotowane były w formacie CSV, który wymagał ich konwersji
do formatu czatu zrozumiałego dla modelu wraz z określeniem roli modelu (syste-
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Rysunek 5.1: Porównanie rozkładu czasów realizacji komend
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m/user/assistant), w tym wypadku do pliku JSONL, którego przykładową strukturę
przedstawia Listing 5.1.

1 {"messages":[
2 {"role":"system","content":"Jestes␣asystentem␣testera.␣Z␣

↪→ wejsciowego␣wymagania␣generujesz␣kompletne␣przypadki␣testowe␣
↪→ w␣formacie␣JSON␣zgodnym␣ze␣schematem␣organizacyjnym.␣Zawsze␣
↪→ dolaczasz␣sledzenie␣do␣wymagan␣i␣stosujesz␣poziom␣
↪→ szczegolowosci␣adekwatny␣do␣priorytetu."},

3 {"role":"user","content":"[FR -1234]␣<Wymaganie >"},
4 {"role":"assistant","content":"{␣\" requirement_id \":␣\"FR -1234\" ,␣

↪→ \" test_cases \":␣[␣{␣\"id\":␣\"TC-FR -1234 -01\" ,␣\"title \":␣
↪→ \"<Tytul␣TC >\",␣\" preconditions \":␣[\"< Warunki␣wstepne >\"],␣
↪→ \" steps \":␣[\"<Kroki >\"],␣\" expected_results \":␣
↪→ [\"< Oczekiwane␣wyniki >\"],␣\" priority \":␣\"<Priorytet >\",␣
↪→ \" trace_to_requirement \":␣\"FR -1234\"␣}␣]␣}"}

5 ]}

Listing 5.1: Przykładowy fragment pliku JSONL w formacie chatu

Fragment JSONL przedstawia zapis konwersacji w formacie, który umożliwia prze-
chowywanie sekwencji obiektów JSON w jednej strukturze, zrozumiałej przez model
GPT 3.5 Turbo. W tym przypadku jeden obiekt zawierający klucz messages jest ta-
blicą trzech komunikatów reprezentujących przebieg interakcji w stylu czatu. Każdy
komunikat posiada atrybut role, określający nadawcę, oraz content, zawierający treść
wiadomości. Pierwszy komunikat, z rolą system, definiuje kontekst pracy asystenta.
Określa, że asystent pełni funkcję testera i na podstawie wejściowego wymagania ma
wygenerować kompletne przypadki testowe w formacie JSON zgodnym ze schematem
organizacyjnym. W treści instrukcji podkreślono konieczność zachowania śledzenia do
wymagań oraz dostosowania poziomu szczegółowości do priorytetu. Drugi komunikat,
z rolą user, zawiera wymaganie funkcjonalne oznaczone przykładowym identyfikato-
rem FR-1234. W tym miejscu kodu znajduje się element zastępczy, który w rzeczywi-
stej sytuacji byłby zastąpiony opisem wymagania. Trzeci komunikat, z rolą assistant,
przedstawia odpowiedź w formacie JSON. Odpowiedź zawiera klucz requirement_id
z wartością FR-1234 oraz tablicę test_cases, w której znajduje się jeden przypadek
testowy. Ten przypadek ma unikalny identyfikator, tytuł, warunki wstępne, kroki te-
stowe, oczekiwane wyniki, priorytet oraz pole trace_to_requirement, które zapewnia
powiązanie z wymaganiem. Dzięki temu zapewniona jest spójność dokumentacji testo-
wej oraz możliwość łatwego śledzenia powiązań między wymaganiami a testami.

70



5.1. Automatyzacja testów

Przykładowa procedura scalenia wymagań i testów służących do treningu i walidacji
modelu może wyglądać jak na Listingu 5.2. Skrypt w Pythonie realizuje kompletny, po-
wtarzalny przepływ łączenia wymagań z odpowiadającymi im scenariuszami testowymi
i przygotowuje trzy zbiory wyjściowe: dwa w formacie JSONL do treningu i walidacji
modelu konwersacyjnego (symulującego interakcję system–user–assistant) oraz jeden
w formacie CSV do późniejszej ewaluacji. Całość obejmuje wczytanie danych źródło-
wych, normalizację pól scenariusza, agregację testów per wymaganie, złączenie z tabelą
wymagań, stratyfikowany podział na zbiory oraz serializację do docelowych formatów.

1 import pandas as pd , json , re
2 from pathlib import Path
3
4 REQ_CSV = "requirements.csv"
5 SCN_CSV = "scenarios.csv"
6 OUT_TRAIN = "train.jsonl"
7 OUT_VAL = "val.jsonl"
8 OUT_TEST = "test.csv" # do pozniejszej ewaluacji
9

10 # 1) wczytaj
11 req = pd.read_csv(REQ_CSV)
12 scn = pd.read_csv(SCN_CSV)
13
14 # 2) scal scenariusze do jednego pola JSON na wymaganie
15 def split_list(s):
16 if pd.isna(s) or not isinstance(s, str): return []
17 return [x.strip() for x in s.split("|||") if x.strip()]
18
19 scn["Preconditions"] = scn["Preconditions"].apply(split_list)
20 scn["Steps"] = scn["Steps"].apply(split_list)
21 scn["Expected_Results"] = scn["Expected_Results"].apply(split_list)
22
23 cases = (
24 scn.groupby("Requirement_ID")
25 .apply(lambda g: [
26 {
27 "id": r["Test_Case_ID"],
28 "title": r["Title"],
29 "preconditions": r["Preconditions"],
30 "steps": r["Steps"],
31 "expected_results": r["Expected_Results"],
32 "priority": r.get("Priority", "Medium"),
33 "trace_to_requirement": r["Requirement_ID"]
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34 } for _, r in g.iterrows ()
35 ])
36 .rename("test_cases")
37 .reset_index ()
38 )
39
40 ds = req.merge(cases , on="Requirement_ID", how="inner")
41
42 # 3) podzial: train/val/test (stratyfikacja po Priority)
43 from sklearn.model_selection import train_test_split
44 train , temp = train_test_split(ds , test_size=0.3,

↪→ stratify=ds["Priority"], random_state=42)
45 val , test = train_test_split(temp , test_size=0.5,

↪→ stratify=temp["Priority"], random_state=42)
46
47 def make_jsonl(df , out_path):
48 with open(out_path , "w", encoding="utf -8") as f:
49 for _, r in df.iterrows ():
50 system = ("Jestes␣asystentem␣QA.␣Generujesz␣kompletne␣

↪→ przypadki␣testowe␣w␣JSON␣"
51 "zgodne␣z␣naszym␣schematem.␣Kazdy␣przypadek␣

↪→ zawiera␣preconditions ,␣steps ,␣"
52 "expected_results ,␣priority␣oraz␣

↪→ trace_to_requirement.")
53 user = f"[{r.Requirement_ID }]␣{r.Requirement_Text}"
54 assistant = json.dumps({
55 "requirement_id": r.Requirement_ID ,
56 "requirement_text": r.Requirement_Text ,
57 "test_cases": r.test_cases
58 }, ensure_ascii=False)
59 record = {"messages":[
60 {"role":"system","content":system},
61 {"role":"user","content":user},
62 {"role":"assistant","content":assistant}
63 ]}
64 f.write(json.dumps(record , ensure_ascii=False) + "\n")
65
66 make_jsonl(train , OUT_TRAIN)
67 make_jsonl(val , OUT_VAL)
68 test.to_csv(OUT_TEST , index=False)
69 print("Gotowe:", OUT_TRAIN , OUT_VAL , OUT_TEST)

Listing 5.2: Przykładowy skrypt do scalenia wymagań i testów
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Kolejnym krokiem w celu wykonania dostrojenia modelu była konfiguracja środowi-
ska Azure OpenAI oraz rozpoczęcie zadania. Postęp zadania może być monitorowany,
a następnie wdrożenie powinno zostać wywołane jako nowy model, co widoczne jest
na Listingu 5.3. Kod przedstawia kompletny proces fine-tuningu modelu Azure Ope-
nAI: od konfiguracji klienta API z wykorzystaniem zmiennych środowiskowych, przez
przesłanie plików JSONL z danymi treningowymi i walidacyjnymi, aż po utworzenie
zadania dostrajania modelu GPT 3.5 Turbo. Po zakończeniu treningu skrypt umoż-
liwia monitorowanie statusu i pobranie nazwy wytrenowanego modelu, a następnie
wykorzystanie go w rozmowie poprzez wywołanie wdrożenia z przygotowaną strukturą
wiadomości. Dzięki temu możliwe jest uzyskanie spersonalizowanego modelu zoptyma-
lizowanego pod kątem automatyzacji tworzenia przypadków testowych.

1 import os
2 from openai import AzureOpenAI
3
4 # 1) Konfiguracja API Azure OpenAI
5 client = AzureOpenAI(
6 api_key=os.environ["AZURE_OPENAI_API_KEY"],
7 azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"], # adres

↪→ endpointu
8 api_version="2023 -05 -15" # wersja API
9 )

10 # 2) Upload plikow JSONL
11 train = client.files.create(file=open("train.jsonl","rb"),

↪→ purpose="fine -tune")
12 val = client.files.create(file=open("val.jsonl","rb"),

↪→ purpose="fine -tune")
13
14 # 3) Utworz job fine -tuning (SFT)
15 job = client.fine_tuning.jobs.create(
16 model="gpt -35- turbo", # wybor modelu
17 training_file=train.id ,
18 validation_file=val.id ,
19 hyperparameters={"n_epochs": 3, "batch_size":"auto",

↪→ "learning_rate_multiplier":"auto"}
20 )
21 print("JOB:", job.id)
22
23 # 4) Monitorowanie postepu
24 job = client.fine_tuning.jobs.retrieve(job.id)
25 print(job.status , job.fine_tuned_model)
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26
27 # 5) Wywolanie wdrozenia
28 deployment = "tc -gen -gpt35 -ft" # nazwa Deploymentu customowego modelu
29
30 messages = [
31 {"role":"system","content":"Jestes␣asystentem␣testera ...␣Wygeneruj␣

↪→ JSON␣zgodny␣z␣naszym␣schematem."},
32 {"role":"user","content":"<Tekst␣nowego␣wymagania >"}
33 ]
34
35 resp = client.chat.completions.create(
36 model=deployment ,
37 messages=messages ,
38 temperature=0.2
39 )
40
41 answer = resp.choices[0].message.content
42 print(answer)

Listing 5.3: Przykładowy skrypt do scalenia wymagań i testów

Aby uzyskać rzetelne wyniki, typowo wymagana jest co najmniej dwucyfrowa licz-
ba przykładów. Niestety w odniesieniu do generowania testów na podstawie wymagań,
występowały problemy ze spójnością i formatowaniem, a także spora różnorodność
danych wejściowych. Powodowało to znaczące halucynacje modelu i brak powtarzal-
ności odpowiedzi, szczególnie w kontekście stosowania precyzyjnych nazw parametrów
urządzenia, czy narzędzi testerskich. W takiej sytuacji alternatywnym podejściem mo-
głoby być wykorzystanie techniki generowania wspomaganego wyszukiwaniem (ang.
Retrieval-Augemented Generation, RAG). Technika ta zamiast trenowania modelu po-
zwala dynamicznie wstrzykiwać aktualne informacje (np. wymagania) w momencie ge-
nerowania odpowiedzi. Historyczne przypadki testowe i wytyczne projektowe mogłyby
zostać zindeksowane w wektorowej bazie, a dokumenty wejściowe opatrzone metada-
nymi zawierającymi numer identyfikacyjny wymagania, priorytet, czy też oczekiwany
rodzaj testu. Na podstawie nowego wymagania, model wyszukałby w bazie danych
najbardziej podobne istniejące scenariusze testowe, traktował je jako kontekst i na tej
podstawie generował nowe przypadki testowe. Jeszcze innym podejściem mogłoby być
wykorzystanie uczenia przez wzmocnienie (ang. Reinforcement Learning, RL), w któ-
rym odpowiedź modelu każdorazowo jest oceniana na podstawie informacji zwrotnej
lub automatycznych metryk. W tym wariancie model generuje kilka wariantów testów
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dla tego samego wymagania, które następnie zostają poddane ocenie — najlepsze od-
powiedzi są nagradzane, a model uczy się maksymalizować szansę na jej otrzymanie.
Wszystkie te metody mogą być implementowane współbieżnie w celu otrzymania lep-
szych rezultatów.

5.2 Framework testowy

Istnieje wiele typów architektury frameworków testowych, która może być zastoso-
wana przy tworzeniu nowego narzędzia. Frameworki liniowe, znane również jako „nagraj
i odtwórz” sprawdzają się w odniesieniu do prostych przypadków testowych, w których
sekwencyjnie uruchamiane skrypty odpowiedzialne są za testowanie systemu. Nie wy-
magają zaawansowanej wiedzy ani pisania kodu, są łatwe do zrozumienia, szybkie do
wdrożenia i łatwo integrowalne z istniejącymi procesami. Przykładem takiego rozwią-
zania jest framework, który stosowany był do automatyzacji testów przed projektami
Oscar i Lima. Istotną wadą takiego rozwiązania jest mała elastyczność w zakresie reu-
żywalności testów i obsługi różnych zestawów danych wejściowych, a także wysokie
koszty utrzymywania testów ze względu na konieczność częstej ich przebudowy. W po-
dejściu modułowym, testy podzielone są na mniejsze jednostki (moduły), które można
testować niezależnie, a w razie potrzeby połączyć w większe scenariusze. Zaletą takiej
architektury jest większa elastyczność i możliwość szybkiej modyfikacji, wysoka reuży-
walność i skalowalność testów. Niestety pociąga to za sobą bardziej złożone wdrożenie,
które wymaga umiejętności programistycznych.

Podejście modułowe może być rozszerzone o zidentyfikowanie powtarzalnych funk-
cji i pogrupowaniu ich w biblioteki, które można wykorzystywać w różnych testach.
To sprawia, że raz napisany kod może być wywoływany w różnych miejscach, co przy-
nosi duże oszczędności w zakresie nakładu pracy. Rośnie natomiast sama złożoność
i wymagania techniczne, aby właściwie zidentyfikować wspólne funkcje. Dobrą prakty-
ką jest również oddzielenie danych wejściowych od logiki testów. Jest to architektura
szczególnie opłacalna, gdy istnieje konieczność testowania tych samych funkcjonalności
z różnymi zestawami danych. Rozwiązanie to można dalej rozwijać o rozpoznawanie
słów kluczowych, na przykład w testowaniu graficznych interfejsów użytkownika (ang.
Graphic User Interface, GUI), jeśli wymaga tego dany produkt.

W praktyce najczęściej stosuje się architektury hybrydowe, to jest łączące cechy róż-
nych frameworków, aby dopasować się do potrzeb danego środowiska. Pozwala to wyko-
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rzystać mocne strony różnych podejść i zminimalizować ich wady. Wdrożony framework
testowy2 jest rozwiązaniem modułowym, opartym o wspólne biblioteki i oddzielającym
dane wejściowe od skryptów, spełnia więc kryteria frameworku hybrydowego. Składa
się z kombinacji narzędzi i praktyk, które ułatwiają proces testowania oraz automa-
tyzacji testów. Dzięki standaryzacji zapewnia szybkość i prostotę w programowaniu
skryptów oraz spójność w analizie i raportowaniu wyników. Obejmuje on:

• standardy kodowania i dokumentację,

• obsługę danych testowych,

• organizację repozytorium,

• warstwę komunikacyjną,

• obsługę i interakcję z testowanym systemem,

• konfigurację logów testowych,

• zasady pisania przypadków testowych,

• wywoływanie skryptów testowych,

• praktyki dotyczące raportowania wyników.

Architektura frameworku przedstawiona została na Rysunku 5.2. Obejmuje ona
również wymianę informacji z narzędziem do zarządzania testowaniem, z którym wy-
miana informacji odbywa się poprzez dedykowany interfejs programowania aplikacji
(ang. Application Programming Interface, API), udostępniony wraz z narzędziem przez
dostawcę. Planowanie testów, ich uruchamianie oraz raportowanie wyników obsługiwa-
ne są przez tę platformę, podczas gdy pozostała część operacji wykonywana jest poprzez
framework.

Głównymi elementami frameworku są biblioteki: komunikacyjna i testowa, oraz
część kontekstowa, to jest obszar bezpośrednio związany ze specyfiką testowanych syste-
mów wbudowanych. Można uznać, że obie biblioteki stanowią rozwiązanie uniwersalne,
natomiast część kontekstowa mocno zależy od indywidualnej charakterystyki projek-
tów. Aspekt komunikacji dotyczy bezpośrednio nawiązywania połączenia z testowanym

2Ze względu na poziom złożoności, praca nad implementacją i rozwojem frameworku była prowa-
dzona przez zespół inżynierów testów. Wkładem autora jest sformułowanie wymagań, a także kod
części modułów i testów.
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Rysunek 5.2: Architektura frameworku testowego

urządzeniem. Może odbywać się to za pomocą sieci komputerowej (np. Ethernet/IP),
lub innego protokołu komunikacyjnego. Wydzielenie tej części na zewnątrz w formie
biblioteki powoduje, że w przyszłości można swobodnie zmienić sposób połączenia z te-
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stowanym systemem, nie modyfikując przy tym części kontekstowej. W omawianym
wdrożeniu za komunikację odpowiadała wewnętrznie rozwijana biblioteka napisana
w języku Python.

Przez bibliotekę testową rozumiany jest pakiet dostarczający kompletne rozwiąza-
nie w zakresie obsługi testowania, w skład którego wchodzą m.in. silnik testowy, klasy
reprezentujące zbiory testów, konfiguratory, czy opcje parametryzacji testów. Przykła-
dem takich rozwiązań dla języka Python są narzędzia Unittest i Pytest. Moduł Unittest
w Pythonie inspirowany jest frameworkiem JUnit (napisany w Javie) i od lat wcho-
dzi w skład biblioteki standardowej, dzięki czemu nie wymaga dodatkowej instalacji
i jest odbierany jako bezpieczny, przewidywalny wybór w projektach. Pytest pozostaje
natomiast jednym z najpopularniejszych, otwarto-źródłowych (ang. open-source) fra-
meworków testowych, cenionym za szybkość pracy i ekosystem rozszerzeń.

Z perspektywy filozofii i ergonomii różnice wynikają głównie ze sposobu organi-
zowania testów i zarządzania ich cyklem życia. Unittest wykorzystuje klasy TestCase
z metodami testowymi oraz przewidywalny cykl konfiguracji środowiska, a następnie je-
go przywracania do stanu pierwotnego (ang. setUpClass/tearDownClass). Wyposażony
jest także w bogaty zestaw metod asercji, co dobrze wpisuje się w środowiska oczeku-
jące silnie ustrukturyzowanych testów. Pytest kładzie nacisk na prostotę, gdzie testy
pisane są jako funkcje lub metody i dzielone na zakresy (ang. scopes), a konfiguracja
i czyszczenie środowiska realizowane jest specjalną funkcją, tzw. fixture.

W ramach części kontekstowej można wyróżnić moduł funkcji wspólnych, to jest
reużywalnych fragmentów kodu, które mogą być następnie wywoływane w skryptach
testowych. Ułatwia to ich utrzymywanie, gdy dochodzi do znaczącej zmiany w konfi-
guracji urządzenia, a także skraca czas potrzebny na pisanie testów automatycznych.
Funkcje wspólne mocno zależą od potrzeb projektowych, ale mogą należeć do nich na
przykład: nadpisanie numeru katalogowego urządzenia, odczyt lub modyfikacja danych
diagnostycznych, tworzenie wykresów w raportach, czy też wymuszenie ponownego uru-
chomienia systemu.

Moduły obsługi oprogramowania zewnętrznego i środowiska odpowiadają za ele-
menty zewnętrzne, takie jak współpraca z urządzeniami pomiarowymi (np. oscylosko-
pami, analizatorami widma), symulatorami, systemami testowania sprzętu lub opro-
gramowania w pętli (HiL lub SiL), czy elementami wyposażenia stanowisk testowych
(na przykład kontrola przełączników sieciowych). Wywołują też potrzebne oprogramo-
wanie nie będące częścią frameworku, a mogące wchodzić w interakcje z testowanym
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systemem.

Kolejnym istotnym elementem jest moduł wstrzykiwania defektów, który jest w sta-
nie wymusić wywołanie określonych warunków skutkujących zgłoszeniem przez testo-
wany system określonej usterki w formie ostrzeżenia lub błędu. Może odbywać się to
w pełni programowo, jeśli testowany system udostępnia taką funkcjonalność w środowi-
sku inżynierskim, albo sprzętowo z wykorzystaniem debuggera albo systemu Hardware-
in-the-Loop. Rozwiązanie to umożliwia nadpisanie odczytywanych przez czujniki syste-
mu wbudowanego parametrów diagnostycznych, takich jak na przykład temperatura,
napięcie, częstotliwość. Innym zastosowaniem może być też przyspieszenie liczników
diagnostycznych w systemach obsługujących funkcjonalności związane z konserwacją
predykcyjną (ang. predictive maintenance).

Komponent operacji systemowych odpowiada za obsługę bazy danych parametrów
konfiguracyjnych systemu oraz tłumaczenie instrukcji i kroków skryptów automatycz-
nych, napisanych w Pythonie w formie dopasowanej do potrzeb człowieka (zbliżonej do
języka naturalnego), na język zrozumiały dla testowanego systemu wbudowanego, czer-
piąc przy tym w dużej mierze z biblioteki komunikacyjnej. Umożliwia przeprowadzenie
i zmianę konfiguracji systemu oraz wysyłanie instrukcji sterujących, które wymuszają
wykonanie przez system określonych operacji. W odniesieniu do urządzeń automatyki
przemysłowej może to być na przykład zmiana zadanej częstotliwości napędu i urucho-
mienie sterowania silnikiem indukcyjnym.

Wszystkie te składniki są konieczne, aby przystąpić do właściwej automatyzacji te-
stów, to jest programowania skryptów, obsługi danych testowych, a także generowania
logów i raportów z wykonanych testów. Przykład zautomatyzowanego testu dla systemu
wbudowanego przedstawia Listing 5.4. Zawiera on wywołanie metod odpowiedzialnych
za przygotowanie środowiska do testu oraz przywrócenie stanu pierwotnego po jego za-
kończeniu, a także kilka przypadków testowych dla przykładowej klasy LedController.
Struktura klasy TestLedController obejmuje metody cyklu życia testów: setUp() inicja-
lizuje nowy obiekt kontrolera przed każdym testem, a tearDown() wykonuje czynności
porządkowe po zakończeniu testu, co zapewnia izolację przypadków i brak efektów
ubocznych. Testy sprawdzają cztery kluczowe scenariusze: stan początkowy, włączenie,
wyłączenie oraz przełączanie. Każdy test korzysta z asercji, aby potwierdzić zgodność
rzeczywistego stanu LED z oczekiwanym zachowaniem po wywołaniu odpowiednich
metod. Dzięki temu kod zapewnia pełne pokrycie podstawowej logiki kontrolera, we-
ryfikując zarówno inicjalizację, jak i reakcję na operacje sterujące. Na potrzeby pisania
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testów automatycznych przyjęty został też nieformalny standard kodowania, zapropo-
nowany przez społeczność rozwijającą język Python w formie rozszerzenia specyfikacji
(ang. Python Enhancement Proposals, PEP), który opisany jest w dokumentach PEP
8 — Style Guide for Python Code oraz PEP 20 — The Zen of Python.

1 # test_led_controller.py
2 import unittest
3 from led_controller import LedController
4
5 class TestLedController(unittest.TestCase):
6
7 def setUp(self):
8 """Przygotowanie␣srodowiska␣testowego␣przed␣kazdym␣testem."""
9 self.led = LedController ()

10 print(">>>␣setUp:␣Tworzenie␣nowego␣obiektu␣LedController")
11
12 def tearDown(self):
13 """Czyszczenie␣po␣kazdym␣tescie."""
14 print(">>>␣tearDown:␣Test␣zakonczony")
15
16 def test_initial_state(self):
17 """Sprawdzenie␣stanu␣poczatkowego␣LED."""
18 self.assertFalse(self.led.is_on(), "LED␣powinna␣byc␣wylaczona␣

↪→ na␣starcie")
19
20 def test_turn_on(self):
21 """Sprawdzenie␣wlaczenia␣LED."""
22 self.led.turn_on ()
23 self.assertTrue(self.led.is_on(), "LED␣powinna␣byc␣wlaczona␣

↪→ po␣turn_on ()")
24
25 def test_turn_off(self):
26 """Sprawdzenie␣wylaczenia␣LED."""
27 self.led.turn_on ()
28 self.led.turn_off ()
29 self.assertFalse(self.led.is_on(), "LED␣powinna␣byc␣wylaczona␣

↪→ po␣turn_off ()")
30
31 def test_toggle(self):
32 """Sprawdzenie␣przelaczania␣LED."""
33 self.led.toggle ()
34 self.assertTrue(self.led.is_on(), "LED␣powinna␣byc␣wlaczona␣
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↪→ po␣pierwszym␣toggle ()")
35 self.led.toggle ()
36 self.assertFalse(self.led.is_on(), "LED␣powinna␣byc␣wylaczona␣

↪→ po␣drugim␣toggle ()")
37
38 if __name__ == '__main__ ':
39 unittest.main()

Listing 5.4: Przykładowy skrypt testu automatycznego

Repozytorium które przechowuje kod frameworku, testy automatyczne, dane te-
stowe i pozostałe artefakty oferuje możliwość uruchomienia systemu ciągłej integracji,
w którym określone testy uruchamiane są każdorazowo po dostarczeniu przez progra-
mistów nowej wersji oprogramowania. Grupa tych testów została wyznaczona w taki
sposób, aby obejmować podstawowe funkcjonalności systemu i dzięki temu zminimali-
zować ryzyko, że dana wersja oprogramowania zawiera błędy, które w oczywisty sposób
blokują lub uniemożliwiają dalsze wyspecjalizowane testowanie.

Ważnym aspektem związanym z frameworkiem, jest również jego dokumentacja.
W opisywanym rozwiązaniu wykorzystano podejście zwane kodem samodokumentu-
jącym się (ang. self-documented code) z wykorzystaniem generatora dokumentacji
Sphinx. Samodokumentujący kod to taki, który dzięki swojej strukturze, nazwom i ko-
mentarzom jest zrozumiały bez dodatkowych wyjaśnień. W Pythonie kluczową rolę
dla spełnienia tych kryteriów odgrywają docstringi — komentarze umieszczane w kla-
sach, funkcjach i modułach. Dzięki nim kod staje się bardziej czytelny i łatwiejszy
w utrzymaniu. Docstringi opisują działanie elementów kodu, parametry, typy zwraca-
nych wartości i ewentualne wyjątki. To fundament, na którym Sphinx buduje automa-
tyczną dokumentację, przekształcając je na format HTML, PDF lub inny. Dzięki temu
dokumentacja jest spójna, estetyczna i łatwa do nawigacji, szczególnie gdy projekt
podąża za rozszerzeniem specyfikacji PEP 257 — Docstring Conventions.

5.3 Ustanowienie ram dla zakresu testów

Ramy postępowania w testach złożonych systemów wbudowanych zostały wyzna-
czone na podstawie przeprowadzonych badań oraz wdrożeń w projektach Oscar i Lima.
Celem ich opracowania było stworzenie uniwersalnego, a zarazem praktycznego mecha-
nizmu, który umożliwi optymalizację procesu testowania poprzez świadome zarządza-
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nie zakresem, priorytetami oraz formą testów. Ramy te integrują podejście oparte na
analizie ryzyka, atomizację przypadków testowych, systematyczne wykorzystanie te-
stowania eksploracyjnego oraz deterministyczną automatyzację, opartą o hybrydowy
framework testowy zbudowany w języku Python i zintegrowany z narzędziem do za-
rządzania testami oraz środowiskiem ciągłej integracji.

Podstawowym założeniem przyjętym w ramach procesu wyznaczania zakresu te-
stów jest kierowanie się oceną ryzyka, a nie rutyną czy historycznymi schematami.
Każdy scenariusz testowy podlega ocenie według macierzy ryzyka, gdzie ryzyko defi-
niowane jest jako iloczyn prawdopodobieństwa wystąpienia defektu oraz potencjalnych
konsekwencji jego materializacji. Takie podejście pozwala na racjonalne gospodarowa-
nie zasobami oraz skupienie uwagi zespołu testerskiego na obszarach o największym
wpływie na jakość i bezpieczeństwo produktu. W praktyce wdrożonej w projektach
Oscar i Lima, ocena ryzyka stanowiła kluczowy czynnik decydujący o formie testu,
jego częstotliwości oraz kwalifikacji do puli regresyjnej.

Kolejnym filarem ram jest atomizacja przypadków testowych, polegająca na po-
wiązaniu każdego testu z pojedynczym wymaganiem funkcjonalnym. Takie podejście
umożliwia precyzyjne śledzenie powiązań pomiędzy wymaganiami a testami, ułatwia
analizę wpływu zmian oraz pozwala na szybkie określenie zakresu testów wymagają-
cych powtórzenia po modyfikacji oprogramowania. W projektach Oscar i Lima udało
się osiągnąć atomizację na poziomie 99 % przypadków testowych, co znacząco uspraw-
niło proces zarządzania testami oraz analizę pokrycia wymagań.

W ramach wdrożonych rozwiązań szczególną rolę odgrywa warstwowa regresja te-
stów, podzielona na trzy poziomy: codzienną, jednokrotną oraz rozszerzoną. Przypi-
sanie testów do odpowiedniej puli regresyjnej odbywa się na podstawie oceny ryzyka
oraz kontekstu biznesowego. Testy o najwyższym ryzyku oraz kluczowym znaczeniu dla
bezpieczeństwa i stabilności produktu kwalifikowane są do codziennej regresji, realizo-
wanej w środowisku ciągłej integracji. Testy o średnim ryzyku oraz te, które powstały
w wyniku testowania eksploracyjnego i uzyskały odpowiednią deterministykę, włącza-
ne są do regresji jednokrotnej, wykonywanej w cyklu wydania produktu lub interwału
planowania. Pozostałe testy, o niskim ryzyku lub specyficznym charakterze, realizowa-
ne są w ramach regresji rozszerzonej, uruchamianej w miarę dostępności zasobów lub
w odpowiedzi na szczególne wymagania biznesowe.

Testowanie eksploracyjne, wdrożone jako usystematyzowana technika w projektach
Oscar i Lima, stanowi istotne uzupełnienie tradycyjnych metod testowania. ET po-
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zwala na wykrycie defektów trudnych do odtworzenia oraz luk w pokryciu testowym,
szczególnie w obszarach o wysokiej złożoności interfejsów modułów oraz w sytuacjach
braku pełnej specyfikacji wymagań. Wyniki testów eksploracyjnych są systematycznie
przekształcane w testy skryptowe i włączane do puli regresyjnej, gdy uzasadnia to efek-
tywność ekonomiczna i techniczna. W projekcie Oscar dziewięć sesji ET pozwoliło na
wykrycie sześciu istotnych defektów, z których pięć nie byłoby możliwe do wykrycia
przez testy automatyczne lub skryptowe ze względu na ich niską odtwarzalność.

Automatyzacja testów w ramach wdrożonego frameworku opiera się na rygory-
stycznych kryteriach stabilności i niezawodności. Do puli regresyjnej kwalifikowane są
wyłącznie testy spełniające ustalone progi stabilności (np. 10/10, 25/25, 48/50, 95/100
powtórzeń bez wyników fałszywie pozytywnych lub negatywnych), co eliminuje szu-
my w sygnale testowym i zwiększa wiarygodność procesu decyzyjnego. Testy zależne
od znanych defektów przechodzą w tryb ostrzeżenia, z odpowiednim powiązaniem do
zgłoszenia w systemie zarządzania defektami, co pozwala na zachowanie przejrzystości
raportowania i ułatwia późniejszą aktualizację.

Proces wyznaczania zakresu testów wspierany jest przez zestaw metryk i kryteriów
wejścia/wyjścia, takich jak współczynnik efektywności testów (TER), gęstość defek-
tów (FD), niezawodność automatyzacji (TAR), procent wykrytych defektów (DDP)
oraz wykresy spalania (burndown chart). Metryki te służą do monitorowania postępu
kampanii testowej, oceny skuteczności wdrożonych zmian oraz podejmowania decyzji
o zakończeniu testów. Przykładowo, wejście do kampanii testowej wymaga przejścia
przez zestaw testów promocyjnych w środowisku CI, braku blokujących defektów bez-
pieczeństwa oraz dostępności obiektów testowych, natomiast wyjście uzależnione jest
od osiągnięcia założonego pokrycia wymagań, spełnienia progów metryk oraz braku
defektów krytycznych.

Oprócz powyższych, mierzony jest również dzienny przyrost nowych przypadków
testowych w projekcie, a także liczba wykonanych przypadków testowych (z podzia-
łem na ich poszczególne rezultaty) i wykrytych defektów. Dane te pozwalają ocenić
postęp w realizacji projektu, a także wykryć ewentualne czynniki blokujące. Kondycja
projektu podlega także ocenie na podstawie liczby testów gotowych do uruchomienia,
w porównaniu do testów dopiero w trakcie projektowania, wymagających aktualizacji,
zbędnych, bądź wyłączonych ze względu na inne czynniki. Śledzony w sposób automa-
tyczny jest także poziom pokrycia testami wymagań funkcjonalnych.

W efekcie wdrożenia opisanych ram, projekty Oscar i Lima osiągnęły znaczący
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wzrost efektywności testowania, potwierdzony wysokimi wartościami TER i FD w po-
równaniu do projektów referencyjnych. Skrócono czas kampanii testowej dzięki auto-
matyzacji i atomizacji przypadków testowych, a testowanie eksploracyjne pozwoliło na
wykrycie defektów o wysokiej istotności dla klienta. Stabilność procesu została zapew-
niona przez rygorystyczne kryteria kwalifikacji testów do regresji oraz systematyczne
monitorowanie metryk jakościowych.

Podsumowując, ustanowione ramy dla zakresu testów stanowią spójny, mierzalny
i elastyczny mechanizm zarządzania procesem testowania funkcjonalnego złożonych
systemów wbudowanych. Integracja podejścia opartego na ryzyku, atomizacji przy-
padków testowych, testowania eksploracyjnego oraz deterministycznej automatyzacji
pozwala na optymalizację procesu testowego, zwiększenie jakości produktu oraz efek-
tywne wykorzystanie zasobów zespołu testerskiego. Wyniki wdrożenia potwierdzają
zasadność przyjętych rozwiązań i wskazują kierunek dalszego rozwoju praktyk testo-
wania w przedsiębiorstwie.
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Podsumowanie i wnioski

6.1 Najważniejsze osiągnięcia projektu doktorskie-
go

W ramach realizacji projektu doktorskiego osiągnięto szereg kluczowych rezulta-
tów, które istotnie wpłynęły na proces testowania funkcjonalnego złożonych systemów
wbudowanych w przedsiębiorstwie Rockwell Automation. Przeprowadzone wdrożenia
oraz badania pozwoliły na wypracowanie nowoczesnych ram postępowania testowego,
które zostały uznane za wytyczne procesowe i wdrożone jako standard w organizacji.
Osiągnięcia te mają wymierny wpływ zarówno na efektywność testowania, jak i na
jakość dostarczanych rozwiązań. Najważniejsze elementy projektu można podsumować
w następujących punktach:

1. Znaczący wzrost efektywności testowania — potwierdzony wysokimi wartościami
współczynników efektywności testów TER (ang. Test Effectiveness Ratio) i gęsto-
ści błędów FD (ang. Fault Density) dla projektów wzorcowych (Oscar, Lima) na
tle grup referencyjnych, a także większa stabilność procesu dzięki rygorystycznym
progom kwalifikacji do regresji i ciągłemu monitorowaniu metryk.

2. Wdrożenie hybrydowego frameworku testowego opartego na języku Python, zin-
tegrowanego z narzędziami do zarządzania testami oraz środowiskiem ciągłej in-
tegracji. Narzędzie to umożliwiło efektywną automatyzację testów oraz szybkie
dostosowanie narzędzi do specyfiki różnych projektów i wymagań.

3. Systematyczne wykorzystanie testowania eksploracyjnego (ET) — wdrożenie ET

85



Rozdział 6. Podsumowanie i wnioski

jako usystematyzowanej techniki pozwoliło na wykrycie defektów trudnych do
odtworzenia oraz luk w pokryciu testowym, szczególnie w obszarach o wysokiej
złożoności interfejsów modułów oraz w sytuacjach braku pełnej specyfikacji wy-
magań. Wyniki testów eksploracyjnych były przekształcane w testy skryptowe
i włączane do puli regresyjnej.

4. Atomizacja przypadków testowych — każdy przypadek testowy został powiązany
z pojedynczym wymaganiem funkcjonalnym, co pozwoliło na precyzyjne śledzenie
powiązań, łatwą analizę wpływu zmian oraz szybkie określenie zakresu testów
wymagających powtórzenia po modyfikacji oprogramowania. W projektach Oscar
i Lima osiągnięto atomizację na poziomie 99 %.

5. Integracja podejścia opartego na analizie ryzyka — ocena ryzyka stała się klu-
czowym czynnikiem decydującym o formie testu, jego częstotliwości oraz kwali-
fikacji do puli regresyjnej. Pozwoliło to na racjonalne gospodarowanie zasobami
oraz skupienie uwagi zespołu testerskiego na obszarach o największym wpływie
na jakość i bezpieczeństwo produktu.

6. Wprowadzenie rygorystycznych kryteriów stabilności i niezawodności testów au-
tomatycznych — do puli regresyjnej kwalifikowane były wyłącznie testy spełnia-
jące ustalone progi stabilności (np. 10/10, 25/25, 48/50, 95/100 powtórzeń bez
wyników fałszywie pozytywnych lub negatywnych), co zwiększyło wiarygodność
procesu.

Podsumowując realizację projektu doktorskiego, można jednoznacznie stwierdzić,
że postawiona teza rozprawy została potwierdzona w toku przeprowadzonych badań
i wdrożeń. Zastosowanie hybrydowego frameworku testowego, opartego na synergii de-
terministycznej automatyzacji, systematycznej analizy ryzyka, atomizacji przypadków
testowych oraz usystematyzowanego testowania eksploracyjnego, umożliwiło mierzalną
optymalizację procesu weryfikacji złożonych systemów wbudowanych. Potwierdzeniem
tego są statystycznie istotne wzrosty wartości metryk jakościowych — w szczególności
współczynnika efektywności testów (TER) oraz gęstości defektów (FD) — w projektach
Oscar i Lima, które wyraźnie przewyższyły wyniki grup referencyjnych.

Cele badawcze zostały zrealizowane w pełnym zakresie. Po pierwsze, wdrożenie
strategii testowania opartej na analizie ryzyka oraz automatyzacji testów przełożyło
się na skrócenie czasu kampanii testowej i wzrost efektywności wykrywania defektów,
co potwierdzają szczegółowe analizy porównawcze oraz zestawienia metryk w rozdziale
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wyników. Po drugie, zastosowanie testowania eksploracyjnego jako integralnej części
kampanii testowej pozwoliło na wykrycie defektów trudnych do odtworzenia, które
nie zostałyby ujawnione w ramach testów formalnych — przykładem są scenariusze
z projektu Oscar, gdzie testy eksploracyjne wykryły błędy o wysokiej istotności dla
klienta. Po trzecie, wdrożenie nowych strategii testowania w zespołach rozproszonych
zostało wsparte przez standaryzację procesów, automatyzację metryk oraz szkolenia,
co umożliwiło skuteczną adaptację rozwiązań w różnych lokalizacjach i projektach.

Wypracowane autorskie koncepcje i rekomendacje wpisane w ramy postępowania
testowego zostały uznane za wytyczne procesowe i wdrożone jako standard w przed-
siębiorstwie, potwierdzając zasadność przyjętych rozwiązań oraz wskazując kierunek
dalszego rozwoju praktyk testowania w sektorze systemów wbudowanych. Wdrożenie
powyższych rozwiązań przyczyniło się do skrócenia czasu kampanii testowej, zwiększe-
nia wykrywalności defektów oraz poprawy jakości dostarczanych produktów. Opraco-
wane ramy postępowania testowego stanowią spójny, mierzalny i elastyczny mechanizm
zarządzania procesem testowania funkcjonalnego złożonych systemów wbudowanych,
integrując podejście oparte na ryzyku, atomizację przypadków testowych, testowanie
eksploracyjne oraz deterministyczną automatyzację.

6.2 Implementacja opracowanej metody testowania
w przedsiębiorstwie

W ramach realizacji pracy doktorskiej autor pełnił rolę inżyniera testów oraz kie-
rownika projektu testowania funkcjonalnego złożonych systemów wbudowanych, od-
powiadając za kompleksowe zarządzanie całym cyklem testowym. Do głównych zadań
na tym stanowisku należało przygotowanie szczegółowego planu testów, w tym dobór
i opracowanie strategii testowej dostosowanej do specyfiki projektów prowadzonych
w przedsiębiorstwie Rockwell Automation. Autor nie tylko projektował i wykonywał
istotną część testów w projektach Sierra, Quebec, Oscar i Lima, ale również był od-
powiedzialny za sporządzenie końcowych raportów podsumowujących wyniki kampa-
nii testowych oraz rekomendacje dotyczące dalszego rozwoju procesów jakościowych.
Wkładem autora było również sformułowanie wymagań dla frameworku testowego,
a także kod części modułów i testów automatycznych.

Decyzje o wdrożeniu poszczególnych elementów strategii testowej były podejmowa-

87



Rozdział 6. Podsumowanie i wnioski

ne na podstawie autorskich pomysłów i rekomendacji autora, które — po akceptacji
przez firmę — zostały włączone jako integralna część procesu testowego. W praktyce
oznaczało to, że autor nie tylko inicjował zmiany w podejściu do testowania, ale rów-
nież aktywnie uczestniczył w ich implementacji, monitorując efekty oraz dostosowując
strategię do bieżących potrzeb projektowych. Wdrożone rozwiązania obejmowały m.in.
atomizację przypadków testowych, analizę ryzyka, systematyczne wykorzystanie testo-
wania eksploracyjnego, deterministyczną automatyzację oraz wdrożenie hybrydowego
frameworku testowego opartego na języku Python i zintegrowanego z narzędziami do
zarządzania testami oraz środowiskiem ciągłej integracji.

Pozostałe prace, ze względu na ich zakres i złożoność, były realizowane zespołowo
przez inżynierów testów, przy czym autor pełnił rolę koordynatora i osoby odpowie-
dzialnej za nadzór merytoryczny oraz zapewnienie spójności wdrażanych rozwiązań.
Współpraca z zespołem obejmowała zarówno planowanie eksperymentów, jak i bieżą-
cą analizę wyników oraz optymalizację procesu testowego w oparciu o zdefiniowane
metryki jakościowe.

Specyfika cyklu rozwoju produktu w przedsiębiorstwie oraz charakter wdrożeniowy
pracy sprawiły, że nie było możliwości wielokrotnego stosowania różnych technik te-
stowania dla tego samego systemu. Kolejne wersje oprogramowania ulegały ciągłym
zmianom, a presja harmonogramu uniemożliwiła ponowne testowanie tych samych
funkcjonalności innymi metodami. W konsekwencji porównanie skuteczności strate-
gii testowych mogło odbywać się jedynie w odniesieniu do innych projektów, które
— mimo podobieństw — nigdy nie są w pełni identyczne, co nadaje takim analizom
charakter przybliżony.

Część wdrożenia realizowana była w środowisku międzynarodowych zespołów roz-
proszonych. Wdrożenie nowych strategii testowania w zespołach rozproszonych wy-
maga nie tylko odpowiednich narzędzi i technik, ale przede wszystkim świadomego
zarządzania zmianą, inwestycji w kompetencje zespołu oraz systematycznego monito-
rowania efektów. Kluczowe jest zapewnienie spójności procesów, jasnej komunikacji
oraz elastyczności w dostosowywaniu rozwiązań do lokalnych warunków projektowych.
Analiza procesu wdrożenia pozwoliła zidentyfikować kluczowe czynniki organizacyjne
i techniczne, które sprzyjały skutecznej adaptacji nowych strategii testowania:

1. Jasny podział ról i odpowiedzialności — wyróżnienie roli kierownika projektu
testowania funkcjonalnego umożliwiło sprawną komunikację, szybką reakcję na
problemy oraz efektywne zarządzanie zmianą.
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2. Standaryzacja procesów i narzędzi — zastosowanie jednolitego frameworku te-
stowego, zintegrowanego z narzędziem do zarządzania testami oraz współpracu-
jącego ze środowiskiem ciągłej integracji, pozwoliło na szybkie wdrożenie nowych
praktyk w różnych lokalizacjach i projektach.

3. Atomizacja przypadków testowych i śledzenie powiązań — precyzyjne powiąza-
nie testów z wymaganiami funkcjonalnymi oraz automatyczne raportowanie po-
stępów umożliwiło zespołom rozproszonym łatwe monitorowanie zakresu testów
i szybkie reagowanie na zmieniające się wymagania.

4. Szkolenia i rozwój kompetencji — przeprowadzenie dedykowanych szkoleń z ob-
sługi frameworku, projektowania testów w oparciu o analizę ryzyka oraz praktyki
testowania eksploracyjnego. Nacisk został również położony na przeglądy wzbo-
gacone o dedykowane listy kontrolne. Rozwiązania te znacząco podniosły poziom
kompetencji zespołów i ułatwiły adaptację nowych rozwiązań.

5. Synchronizacja prac — plan testów realizowany był w ramach interwałów pla-
nowania (PI), co umożliwiło efektywne wykorzystanie wspólnej infrastruktury.
Prace konsultowane były z zespołami programistów, aby zminimalizować liczbę
blokad w testach.

6. Automatyzacja metryk — zbieranie i wizualizacja metryk w formie pulpitów na-
wigacyjnych (ang. dashboard) w narzędziu Power BI pozwoliły na bieżące moni-
torowanie efektywności wdrożenia i szybkie podejmowanie decyzji.

7. Kultura otwartości na zmiany — regularne retrospektywy, przeglądy kodu i pro-
jektów testów oraz otwarta komunikacja sprzyjały identyfikacji barier i wdrażaniu
usprawnień.

Zakres testów zaczął być określany i kontrolowany przy wykorzystaniu zestawu me-
tryk oraz jasno zdefiniowanych kryteriów wejścia i wyjścia, takich jak współczynnik
efektywności testów (TER), gęstość wykrytych błędów (FD), niezawodność automa-
tyzacji (TAR), procent wykrytych defektów (DDP) oraz wykresy spalania (burndown
chart). Wskaźniki te umożliwiły bieżące monitorowanie przebiegu kampanii testowej,
ocenę skuteczności wdrożonych rozwiązań oraz podejmowanie decyzji dotyczących za-
kończenia testów. Przykładowo, rozpoczęcie kolejnej iteracji w ramach kampanii te-
stowej było możliwe po spełnieniu warunków takich jak pozytywne przejście testów
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promocyjnych w środowisku CI, brak krytycznych defektów bezpieczeństwa oraz do-
stępność wymaganych obiektów testowych. Zakończenie procesu testowania uzależnio-
ne zostało natomiast od osiągnięcia założonego poziomu pokrycia wymagań, spełnienia
ustalonych progów metryk oraz braku istotnych defektów.

Ponadto, na bieżąco analizowany był dzienny przyrost nowych przypadków testo-
wych, liczba wykonanych testów (z uwzględnieniem ich rezultatów) oraz liczba wykry-
tych defektów. Te dane pozwoliły nie tylko śledzić postępy projektu, ale także identyfi-
kować potencjalne przeszkody. Stan projektu oceniany był również na podstawie liczby
testów gotowych do uruchomienia w stosunku do tych, które są w fazie projektowania,
wymagają aktualizacji, zostały uznane za zbędne lub wyłączone z innych powodów. Au-
tomatycznie monitorowany został również poziom pokrycia wymagań funkcjonalnych
przez testy.

Jednym z kluczowych usprawnień wdrożonych w ramach strategii testowej podczas
realizacji projektu doktorskiego było zastosowanie jednolitej notacji oraz automatycz-
nej generacji przypadków testowych dla parametrów konfiguracyjnych systemów wbu-
dowanych w projektach Oscar i Lima. Specyfikacja wymagań została przygotowana
w postaci uporządkowanych plików JSON, które odwzorowywały strukturę urządzeń
— podział na klasy, instancje oraz atrybuty umożliwił precyzyjne opisanie parame-
trów. Dzięki temu podejściu znacząco ograniczono nakład pracy testerów: automaty-
zacja dokumentacji i implementacji 437 przypadków testowych pozwoliła zaoszczędzić
około 146 dni pracy inżynierskiej (przy założeniu dwóch godzin na każdy przypadek
i sześciogodzinnym dniu pracy).

Wprowadzono również istotną zmianę w sposobie śledzenia powiązań pomiędzy
testami a wymaganiami. W poprzednich projektach jeden przypadek testowy mógł
być powiązany z wieloma wymaganiami funkcjonalnymi, co prowadziło do trudności
w analizie poprawności implementacji poszczególnych funkcjonalności — zdarzało się,
że liczba powiązań przekraczała sto dla pojedynczego testu. W projektach Oscar i Li-
ma wdrożono zasadę tworzenia testów w sposób maksymalnie atomowy, tak aby każdy
przypadek testowy obejmował możliwie najmniejszą liczbę wymagań. Efekt tej zmiany
był widoczny: dla 99 % testów udało się zachować jednoznaczność powiązań, a w po-
zostałych przypadkach liczba powiązanych wymagań nie przekroczyła siedmiu.

W projektach Oscar i Lima strategia testowa była ustalana już na etapie opracowy-
wania szczegółowych planów testów dla poszczególnych obszarów, które razem tworzy-
ły główny plan testów. Dokumentacja obejmowała testy funkcjonalne oprogramowania
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wbudowanego, testy funkcjonalne oprogramowania, testy sprzętowe, testy systemowe
oraz testy związane z cyberbezpieczeństwem. Każdy z tych obszarowych planów zawie-
rał wysokopoziomowe scenariusze, określające zakres testowanych funkcjonalności, bez
wchodzenia w szczegóły techniczne ich realizacji.

Nowością wdrożoną w ramach projektu doktorskiego było przypisywanie do każ-
dego scenariusza odpowiedniej akcji w zależności od poziomu ryzyka, jaki został mu
przyznany. Dla scenariuszy o niskiej ocenie ryzyka (poniżej 8) rezygnowano z testowa-
nia lub ograniczano się do przeglądu kodu. Funkcjonalności o średnim poziomie ryzyka
(8–24) były poddawane testom manualnym, testom według listy kontrolnej lub testo-
waniu eksploracyjnemu. Natomiast dla scenariuszy o wysokim ryzyku (powyżej 24)
wdrażano automatyzację testów, co umożliwiało ich regularną weryfikację w ramach
testów regresyjnych. W wyjątkowych przypadkach, wynikających z uwarunkowań biz-
nesowych, obowiązujących norm lub dostępnych technologii, rodzaj przypisanej akcji
mógł być inny.

Analogiczne podejście zastosowano przy kwalifikowaniu testów regresyjnych. Skala
ryzyka pozwalała przypisać testy do jednej z trzech kategorii: codziennej regresji (testy
uruchamiane cyklicznie w środowisku CI), regresji jednokrotnej (testy wykonywane raz
w cyklu wydania produktu) oraz regresji rozszerzonej, realizowanej w miarę dostępności
zasobów lub w odpowiedzi na szczególne potrzeby biznesowe.

Testowanie eksploracyjne (ET) włączono jako usystematyzowane ramy postępowa-
nia z kartami sesji (test charters) i ramami czasowymi. Wyniki ET przekształcano
w testy skryptowe i — po osiągnięciu wymaganej deterministyki — kwalifikowano do
regresji. W projekcie Oscar ET ujawniło defekty trudne do odtworzenia, które najpew-
niej umknęłyby testom skryptowym, a część z powstałych procedur włączono następnie
do regresji i ciągłej integracji w kolejnych wydaniach (podejście przeniesiono również
do projektu Lima).

Wdrożenie modułowego frameworku testowego, opartego na języku Python i zinte-
growanego z narzędziami do zarządzania testami oraz środowiskiem ciągłej integracji,
okazało się kluczowym czynnikiem sukcesu w optymalizacji procesu testowania syste-
mów wbudowanych. Hybrydowa architektura łącząca elastyczność podejścia moduło-
wego z możliwością reużywalności kodu oraz oddzieleniem danych testowych od logiki
testów, umożliwiła szybkie dostosowanie narzędzi do specyfiki różnych projektów i wy-
magań. Framework zapewnił standaryzację procesu automatyzacji testów, ułatwiając
programowanie skryptów, organizację repozytorium oraz raportowanie wyników. Dzięki

91



Rozdział 6. Podsumowanie i wnioski

zastosowaniu wspólnych bibliotek komunikacyjnych i testowych, a także kontekstowych
modułów dedykowanych dla konkretnych urządzeń, możliwe było efektywne zarządza-
nie przypadkami testowymi oraz ich szybka adaptacja do zmian w projekcie. Integracja
z narzędziem do zarządzania testami przez dedykowane API pozwoliła na automatyczne
śledzenie powiązań z wymaganiami oraz generowanie raportów. Wprowadzenie standar-
dów kodowania, a także automatycznej generacji dokumentacji technicznej (za pomocą
narzędzia Sphinx), podniosło czytelność i utrzymywalność kodu testowego. Wdrożony
framework testowy stał się fundamentem nowoczesnego procesu weryfikacji systemów
wbudowanych w przedsiębiorstwie, umożliwiając nie tylko efektywną automatyzację
testów, ale także zwinne zarządzanie zakresem i jakością testowania w dynamicznie
zmieniających się warunkach projektowych.

W zakresie zgodności procesowej cała opisywana metoda pozostaje spójna z wyma-
ganiami dokumentacyjnymi normy ISO/IEC/IEEE 29119 (warstwowanie planowania
i raportowania, macierz ryzyka) oraz z praktykami RAPL w obszarze Verification & Va-
lidation (śledzenie powiązań, kryteria wejścia/wyjścia, testy promocyjne jako bramki
jakościowe). Taka konstrukcja ułatwiła standaryzację raportów i porównywalność wyni-
ków między projektami, także prowadzonymi w ramach innych jednostek biznesowych.

W badaniach prowadzonych w warunkach przemysłowych, bez ścisłej kontroli ekspe-
rymentalnej, niezwykle trudno jest wyizolować wpływ pojedynczej zmiany na przebieg
procesu. Wiele czynników zmienia się równocześnie, co stwarza ryzyko błędnej atrybu-
cji przyczynowo-skutkowej. Na obserwowany wzrost gęstości defektów FD oraz współ-
czynnika efektywności testowania TER mogły mieć, przynajmniej częściowo, wpływ
czynniki zakłócające:

1. Nowość i złożoność produktu — nowe, niedojrzałe produkty i architektury (jak
w przypadku projektów Oscar i Lima) są z natury bardziej podatne na defek-
ty, niż systemy rozwijane od dłuższego czasu. Wysoka liczba wykrytych błędów
może więc częściowo odzwierciedlać niższą początkową jakość kodu i złożoność
produktów.

2. Jednoczesna zmiana wielu elementów strategii testowej oraz narzędzi — wpływ
wprowadzenia zmian w strategii testowej oraz nowego frameworku testowego nie
został rozdzielony. Bez takiego rozróżnienia nie można określić, jaka część za-
obserwowanej poprawy wynika z lepszego narzędzia, a jaka z wdrożenia nowej,
wysoce skutecznej strategii testowej.
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3. Skład i doświadczenie zespołu — praca nie obejmuje zagadnień związanych z ka-
pitałem ludzkim, takich jak umiejętności, doświadczenie, czy motywacja zespołów
inżynierskich przypisanych do projektów.

Mimo powyższych ograniczeń, wdrożenie przyniosło namacalne efekty techniczne
i organizacyjne: skrócenie czasu kampanii dzięki automatyzacji i atomizacji, zwiększe-
nie wykrywalności (TER) i gęstości błędów (FD) dla projektów wzorcowych (Oscar,
Lima) na tle grup referencyjnych, a także większą stabilność procesu dzięki rygory-
stycznym progom kwalifikacji do regresji i ciągłemu monitorowaniu metryk. W efekcie,
proponowane przez autora techniki testowania stały się fundamentem wdrożonej stra-
tegii testowej, a ich implementacja przyczyniła się do znaczącego wzrostu efektywności
testowania oraz poprawy jakości dostarczanych rozwiązań. Opracowane ramy postę-
powania testowego zostały uznane za wytyczne procesowe i wdrożone jako standard
w przedsiębiorstwie, potwierdzając zasadność przyjętych rozwiązań oraz wskazując kie-
runek dalszego rozwoju praktyk testowania w sektorze systemów wbudowanych.

6.3 Potencjalny wpływ wyników na przyszłość te-
stowania

Przeprowadzone badania oraz wdrożenia w projektach Oscar i Lima dowodzą, że
integracja podejścia opartego na analizie ryzyka, atomizacji przypadków testowych,
testowania eksploracyjnego oraz deterministycznej automatyzacji pozwala na znaczącą
optymalizację procesu testowego. Takie ramy postępowania nie tylko zwiększają efek-
tywność wykrywania defektów, ale również podnoszą jakość końcowego produktu oraz
umożliwiają bardziej racjonalne gospodarowanie zasobami zespołu testerskiego.

Jednym z kluczowych wniosków płynących z pracy jest potrzeba dalszego doskona-
lenia narzędzi i technik automatyzacji testów. W szczególności, wdrożony hybrydowy
framework testowy oparty o język Python oraz integrację z narzędziami do zarządza-
nia testami i środowiskiem ciągłej integracji stanowi solidną bazę do dalszych ekspery-
mentów. Modularność środowiska jest jednym z najważniejszych czynników wpływają-
cych na efektywność i skalowalność procesu testowania. Dalsze podzielenie frameworku
na mniejsze, reużywalne moduły objęte systemem wersjonowania, wymagałoby pracy
związanej z definicją interfejsów pomiędzy nimi, ale jednocześnie pozwoliłoby na nie-
zależne rozwijanie, testowanie i utrzymywanie poszczególnych komponentów. W prak-
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tyce oznacza to, że biblioteki komunikacyjne, testowe oraz kontekstowe mogłyby być
wykorzystywane w różnych projektach, niezależnie od zmian w architekturze urządze-
nia czy protokołach komunikacyjnych. Takie podejście umożliwia szybkie dostosowanie
narzędzi do nowych wymagań, minimalizuje ryzyko błędów propagowanych pomiędzy
testami oraz znacząco skraca czas wdrożenia nowych funkcjonalności. Modularność
sprzyja także efektywności zespołów testerskich — raz napisane komponenty mogą być
wielokrotnie używane w różnych projektach, co generuje wymierne oszczędności czaso-
we i finansowe. W systemach wbudowanych, gdzie testy muszą uwzględniać zarówno
warstwę sprzętową, jak i programową, modularny framework pozwala na szybkie prze-
łączanie się pomiędzy testami różnych typów (np. funkcjonalnych, wydajnościowych,
bezpieczeństwa) oraz łatwą integrację z narzędziami do zarządzania testami i środowi-
skami ciągłej integracji.

Kolejnym krokiem powinno być także dobranie strategii migracji z poprzedniego
frameworku do nowego narzędzia. Plan przejścia powinien obejmować priorytetyzację
testów i ich kwalifikację do jednej z trzech kategorii:

1. Testy o wysokiej wartości regresyjnej.

2. Testy obszarów funkcjonalnych o niskiej zmienności.

3. Testy o niskiej wartości informacyjnej lub chronicznie niestabilne.

Kryteria decyzyjne powinny objąć koszta utrzymania, czas wykonania, podatność
na automatyzację, wartość w regresji oraz ryzyka powiązane z danym obszarem funk-
cjonalnym. Testy kategorii pierwszej powinny zostać w pierwszej kategorii przepisane
w języku Python. Testy kategorii drugiej mogą wykorzystać mostkowanie, czyli wy-
wołanie istniejących sekwencji z poziomu Pythona, a testy kategorii trzeciej powinny
zostać stopniowo wygaszane i wycofywane.

Sztuczna inteligencja (SI) rewolucjonizuje automatyzację testów, szczególnie w ob-
szarze systemów wbudowanych, gdzie tradycyjne metody często okazują się niewy-
starczające. Przyszłe badania mogą koncentrować się na rozwoju mechanizmów au-
tomatycznego generowania przypadków testowych z wykorzystaniem dużych modeli
językowych oraz technik generowania wspomaganego wyszukiwaniem, które pozwalają
dynamicznie wstrzykiwać aktualne informacje do procesu generowania testów. Wyko-
rzystanie uczenia przez wzmocnienie w ocenie jakości generowanych testów może dodat-
kowo zwiększyć powtarzalność i trafność wyników. Możliwa jest także analiza wyników

94



6.3. Potencjalny wpływ wyników na przyszłość testowania

testów i identyfikacja powtarzalnych problemów, co przyspieszy diagnozowanie i na-
prawę błędów, a także predykcyjne wykrywanie defektów, które mogą być trudne do
zauważenia przez inżynierów testów. Przykłady wdrożeń pokazują, że SI pozwala na
skrócenie cyklu wytwarzania i utrzymania skryptów, zwiększenie elastyczności projektu
oraz lepsze dostosowanie do zmieniających się wymagań klientów.

Osobną kwestią jest testowanie generatywnej SI będącej częścią funkcjonalności sys-
temu wbudowanego, na przykład w formie dużego modelu językowego będącego asy-
stentem użytkownika albo elementem wykorzystywanym do predykcji awarii. Testowa-
nie sztucznej inteligencji jest bardzo kosztowne obliczeniowo i energetycznie, a naprawa
błędów jest trudna i tworzy nowe wyzwania w określeniu zakresu testów regresyjnych.
Funkcjonalność modeli ze względu na zjawisko halucynacji nie jest niezawodna, a ten
sam proces generowania treści uruchomiony wielokrotnie charakteryzuje rozrzut wyni-
ków.

W pracy podkreślono wagę systematycznego podejścia do oceny efektywności me-
tod testowych, w tym stosowania standaryzowanych metryk takich jak TER, FD, TAR
czy DDP. Dalszy rozwój tej dziedziny powinien obejmować prace nad ujednoliceniem
metryk oraz ich wdrożeniem w różnych organizacjach, co umożliwi obiektywne porów-
nywanie skuteczności różnych strategii testowych. Standaryzacja raportowania i auto-
matyzacja zbierania danych, np. z wykorzystaniem narzędzi typu Power BI, pozwoli na
bardziej świadome podejmowanie decyzji oraz szybszą adaptację dobrych praktyk w
branży. Metryki te można w dalszym stopniu rozbudować o dane dotyczące defektów
pochodzących ze środowiska produkcyjnego, czyli bezpośrednio od klientów i użyt-
kowników końcowych, co pozwoli jeszcze lepiej odnieść się do efektywności procesów
testowych w organizacji.

Możliwe jest również analizowanie przyczyn występowania błędów (ang. Root Cau-
se Analysis, RCA) poprzez systematyczną identyfikację pierwotnych przyczyn defektów
lub usterek w systemie. W testowaniu systemów wbudowanych RCA pozwala nie tyl-
ko na wykrycie błędu, ale przede wszystkim na zrozumienie, dlaczego on wystąpił —
czy wynika to z wadliwej implementacji, problemów sprzętowych, błędów w komunika-
cji, czy może nieprecyzyjnej specyfikacji wymagań. Proces polega na analizie raportów
testowych i identyfikowaniu powtarzalnych wzorców awarii (na przykład błędów poja-
wiających się w określonych warunkach środowiskowych lub przy specyficznych konfi-
guracjach sprzętu). RCA pozwala na wypracowanie trwałych rozwiązań, dzięki którym
eliminowane są źródła problemów, co przekłada się na wzrost jakości produktu i re-
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dukcję kosztów związanych z późniejszymi poprawkami, co widoczne było na Rysunku
2.4.

Testowanie oparte na analizie ryzyka wdrożone jako technika priorytetyzacji testów
może być w dalszych etapach rozbudowane o analizę rodzajów i skutków błędów (ang.
Failure Mode and Effects Analysis, FMEA). Jest to technika, która pozwala na ocenę
potencjalnych awarii i ich skutków dla działania systemu. Na etapie projektowania
testów identyfikowane są wszystkie możliwe sposoby, w jakie dany komponent systemu
może ulec awarii. Każdy tryb awarii jest oceniany pod kątem prawdopodobieństwa
wystąpienia, wykrywalności oraz potencjalnych skutków dla użytkownika lub systemu
— takich jak utrata funkcjonalności, czy zagrożenie bezpieczeństwa. Wyniki FMEA
służą jako dane wejściowe do priorytetyzacji testów.

Także testowanie eksploracyjne, wdrożone jako usystematyzowana technika, oka-
zało się szczególnie skuteczne w wykrywaniu defektów trudnych do odtworzenia oraz
luk w pokryciu testowym. Przyszłe badania mogą skupić się na dalszym rozwijaniu tej
metody, zwłaszcza w kontekście projektów o wysokiej zmienności wymagań oraz braku
pełnej specyfikacji funkcjonalnej. Możliwe jest także rozszerzenie zastosowania testów
eksploracyjnych na inne typy systemów wbudowanych oraz integracja ich wyników
z automatycznymi testami regresyjnymi, co pozwoli na jeszcze większą elastyczność
i efektywność procesu testowego.

Wykorzystana metodologia studium przypadku obejmuje procesy i projekty realizo-
wane w jednym przedsiębiorstwie — Rockwell Automation. Eksperymenty wdrożenio-
we, stanowiące fundament analizy empirycznej, skoncentrowano na celowo wybranej,
nielosowej próbie projektów (Oscar, Lima, Quebec i Sierra). Taki dobór metody ba-
dawczej pozwolił na głęboką analizę złożonych zjawisk w ich naturalnym otoczeniu.
Jednakże ta sama cecha jest jednocześnie źródłem najpoważniejszego ograniczenia —
braku walidacji zewnętrznej, czyli ograniczonej możliwości generalizacji wyników na
inne organizacje, projekty, czy domeny technologiczne.

Sukces wdrożonego frameworku jest nierozerwalnie związany z warunkami panują-
cymi w firmie. Należą do nich unikalna kultura organizacyjna, procesy rozwoju pro-
duktu, wykorzystanie Scaled Agile Framework do organizacji pracy, czy obecność dłu-
gu technicznego w postaci wewnętrznie rozwijanego, starszego środowiska testowego.
Sukces rozwiązania opartego o język Python, mierzony wzrostem metryk TER i FD,
może więc wynikać z faktu, że stanowi on znaczące usprawnienie w porównaniu do
stanu zastanego. Nie znaczy to, że framework ten jest obiektywnie lepszy od innych
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nowoczesnych, komercyjnych lub otwartych narzędzi testowych. Przeprowadzone pra-
ce świadczą zatem o skuteczności lokalnej optymalizacji procesu w ściśle określonych
warunkach.

Należy mieć na uwadze, iż wpływ na uzyskane wyniki może mieć także zmienność
zespołów testerskich i programistycznych między projektami, a także różnice w doj-
rzałości kodu, narzędzi i dostępności sprzętu, które mogą bezpośrednio rzutować na
wyniki testów. Zatem rezultaty uzyskane w środowisku Rockwell Automation mogą
nie być w pełni odtwarzalne w innych organizacjach o odmiennych procesach i narzę-
dziach. Przyszłe badania mogą rozszerzyć próbę poddaną analizie statystycznej oraz
obejmować inne środowiska przemysłowe.

Proponowany framework testowy można rozpatrywać także w kategorii praktycz-
nego rozwiązania problemów lub konkretnej implementacji praktyk, które związane są
z wdrażaniem modeli dojrzałości procesów testowych takich jak Test Maturity Model in-
tegration (TMMi) czy Test Process Improvement Next (TPI Next). TMMi to ustruktu-
ryzowany, pięciopoziomowy model, który pozwala ocenić procesy testowe w organizacji.
Na drugim poziomie dojrzałości wymaga zdefiniowania polityki i strategii testowej oraz
planowania testów, co w pracy doktorskiej realizowane jest poprzez testowanie oparte
na wymaganiach i analizie ryzyka. Na poziomie trzecim TMMi oczekuje integracji te-
stowania z cyklem życia oprogramowania i standaryzacji procesów, na co odpowiedzią
jest framework testowy zintegrowany ze środowiskiem ciągłej integracji i narzędziem
do zarządzania testowaniem. Wymagany na poziomie czwartym pomiar jakości i efek-
tywności realizowany jest poprzez zdefiniowanie i systematyczne stosowanie metryk.
Wdrożone rozwiązania bezpośrednio adresują także kilka kluczowych obszarów modelu
TPI Next, takich jak strategia testowa, zarządzanie defektami, środowisko testowe oraz
metryki. Dalsze prace mogą w dalszym stopniu rozszerzać i eksplorować ten wątek.

Finalnie, wyniki pracy mogą mieć również istotny wpływ na przyszłość certyfikacji
testerskiej, w tym na aktualizację sylabusów ISTQB oraz rozwój nowych specjalizacji
dedykowanych testerom systemów wbudowanych. Wprowadzenie nowych metod i na-
rzędzi do programów certyfikacyjnych pozwoli testerom na zdobycie bardziej wyspe-
cjalizowanej wiedzy i umiejętności, co przyczyni się do poprawy jakości i niezawodno-
ści testowanych systemów. Dalsze badania mogą również wspierać rozwój materiałów
edukacyjnych oraz programów szkoleniowych, które będą odpowiadać na aktualne wy-
zwania.
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Wykaz symboli i oznaczeń

Symbole, metryki i oznaczenia matematyczne

Symbol Opis

R Ocena ryzyka w planowaniu/testowaniu; iloczyn prawdopodobień-
stwa i konsekwencji: R = P × K.

P Prawdopodobieństwo wystąpienia ryzyka (skala 1–10 w analizie
ryzyka).

K Konsekwencje (skutki) materializacji ryzyka (skala 1–10).

TER Test Effectiveness Ratio — współczynnik efektywności testu/pro-
jektu. W wariancie per-test: TER = DT

DA

× 100%; w wariancie

porównawczym per-projekt: TER = DP

DR

× 100%.

FD Fault Density — gęstość defektów: FD = DA

LT

× 100%.

DDP Defect Detection Percentage — procent wykrytych defektów:
DDP = DA

DA + DN

× 100%.

TAR Test Automation Reliability — niezawodność automatyzacji te-
stów: TAR =

(
1 − RF

LA

)
× 100%.

DT Liczba defektów wykrytych przez dany test.
DA Łączna liczba wykrytych defektów (w rozpatrywanym zbiorze).

ciąg dalszy na następnej stronie
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Symbol Opis

DP Liczba defektów wykrytych w projekcie (dla wariantu TER =
DP

DR
).

DR Łączna liczba defektów w projektach referencyjnych (tej samej ka-
tegorii).

DN Liczba defektów niewykrytych podczas testów (wykrytych dopiero
w eksploatacji).

LT Liczba wszystkich wykonanych testów.
RF Liczba wyników fałszywie pozytywnych i fałszywie negatywnych

w automatyzacji.
LA Liczba testów automatycznych.

µl
k TEI — indeks efektywności testu (wariant zdefiniowany funkcyj-

nie dla rundy l, modułu k); wartości zależne od zmian Dl
k(Ti)

pomiędzy rundami.
Dl

k(Ti) Liczba defektów typu Ti w module k wykrytych w rundzie l.
T1 Typ defektu: funkcjonalny.
T2 Typ defektu: bezpieczeństwa.
T3 Typ defektu: wydajnościowy.
T4 Typ defektu: interfejsu (UI/komunikacja).

r Współczynnik korelacji Pearsona (analiza statystyczna zależności).
ρ Współczynnik korelacji rang Spearmana.
p Wartość istotności statystycznej (p-value).

Skróty i akronimy

Skrót Rozwinięcie / opis

API Application Programming Interface — interfejs programistyczny.
ASIC Application-Specific Integrated Circuit.
CI Continuous Integration — ciągła integracja.
CD Continuous Deployment/Delivery — ciągłe wdrażanie/dostarcza-

nie.

ciąg dalszy na następnej stronie
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Skróty i akronimy

Skrót Rozwinięcie / opis

CTFL Certified Tester Foundation Level — poziom podstawowy ISTQB.
DDP Defect Detection Percentage (por. sekcja symboli).
DevOps Development & Operations — filozofia łączenia rozwoju i operacji.
ET Exploratory Testing — testowanie eksploracyjne.
FMEA Failure Mode and Effects Analysis.
FD Fault Density (por. sekcja symboli).
GPU Graphics Processing Unit.
GUI Graphical User Interface.
HiL Hardware-in-the-Loop.
IoT Internet of Things.
ISTQB International Software Testing Qualifications Board.
JSON Format danych: JavaScript Object Notation.
CSV Format danych: Comma-Separated Values.
JSONL Format danych: JSON Lines.
LD Ladder Diagram — język drabinkowy sterowników PLC.
LLM Large Language Model.
MBT Model-Based Testing.
MMU Memory Management Unit.
MR Metamorphic Relations — relacje metamorficzne (testowanie me-

tamorficzne).
MPSoC Multiprocessor System-on-a-Chip.
NoC Network-on-a-Chip.
NLP Natural Language Processing.
PI Planning Interval — interwał planowania w SAFe.
PLC Programmable Logic Controller.
RAG Retrieval-Augmented Generation.
RAPL Rockwell Automation Product Lifecycle (proces wytwarzania pro-

duktu obejmujący m.in. obszar Verification & Validation).
RTOS Real-Time Operating System.
SAFe Scaled Agile Framework.
SDA Software-Defined Automation.
SiL Software-in-the-Loop.

ciąg dalszy na następnej stronie
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Skrót Rozwinięcie / opis

SoC System-on-a-Chip.
TAF Test Automation Framework — wewnętrzne środowisko automa-

tyzacji (historyczne).
TAR Test Automation Reliability (por. sekcja symboli).
TEI Test Effectiveness Index (por. µl

k).
TER Test Effectiveness Ratio (por. sekcja symboli).
TMMi Test Maturity Model integration.
TPI Next Test Process Improvement Next.
UML/SysML Unified Modeling Language / Systems Modeling Language.

Noty redakcyjne

• Definicje metryk TER, FD, DDP , TAR i indeksu µk
l odpowiadają formułom

użytym w treści rozprawy; symbole składowe (DT , DA, DP , DR, LT , DN , RF , LA)
zebrano tutaj dla wygody czytelnika.

• Wykaz skrótów obejmuje akronimy rozwijane w tekście (w nawiasach „ang.”) oraz
standardowe terminy inżynierskie związane z testowaniem systemów wbudowa-
nych.
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