POLITECHNIKA SLASKA
WYDZIAL AUTOMATYKI, ELEKTRONIKI I INFORMATYKI

KATEDRA SYSTEMOW CYFROWYCH

Praca doktorska

Testowanie funkcjonalne ztozonych systemoéw whudowanych

Autor: mgr inz. Rafat Kimla

Kierujacy praca: dr hab. inz. Robert Czerwinski, prof. PS

Gliwice, pazdziernik 2025

Niniejszq rozprawe dedykuje pamieci mojej babci Heleny, ktorej wsparcie © wytrwalosé
inspirowatly mnie przez caly okres studiow doktoranckich, cho¢ nie doczekata ich
ukonczenia.

Podziekowania

Pragne zlozy¢ serdeczne podzigkowania wszystkim osobom i instytucjom, ktoére
przyczynity sie do powstania niniejszej rozprawy doktorskie;j.

Na rece mojego Promotora, dr hab. inz. Roberta Czerwiniskiego, prof. PS, sktadam
szczegblne wyrazy wdzigcznosci za merytoryczne wsparcie, zyczliwg opieke naukowa,
cierpliwo$¢ oraz inspirujace wskazowki, ktére towarzyszyty mi na kazdym etapie badan.
Szczegdlnie doceniam gotowos¢ niesienia pomocy w okresach wzmozonej pracy, zwtasz-
cza w obliczu zblizajacych sie terminéw. Dziekuje réwniez Opiekunom Pomocniczym,
dr inz. Robertowi Malczykowi oraz dr inz. Danucie Pamule, za cenne uwagi i konstruk-
tywna krytyke, dzieki ktérym praca zyskata na klarownosci i wartosci poznawcze;j.
Wyrazy wdziecznosci sktadam Prowadzacemu seminarium doktoranckie dr hab. inz.
Grzegorzowi Strozikowi, prof. PS, oraz Szanownym Kolegom z grupy za trafne spo-
strzezenia i rekomendacje, ktére pomogly udoskonali¢ ostateczny ksztatt rozprawy.

Serdeczne podzickowania kieruje do Cztonkéw Zespotu, z ktérymi miatem przywi-
lej wspotpracowad i wszystkich pozostatych Osob zaangazowanych w realizacje zadan
projektowych. Ich profesjonalizm, otwartos¢ na dialog oraz rzetelno$é¢ w zakresie pla-
nowania, prowadzenia eksperymentéw, analizy danych i wdrozen byty nieocenione.

Badania przedstawione w niniejszej rozprawie zostaly zrealizowane w firmie Roc-
kwell Automation sp. z 0.0. w ramach projektu Doktorat Wdrozeniowy IV, finansowa-
nego przez Ministerstwo Nauki i Szkolnictwa Wyzszego (nr grantu DWD/4/21 /2020~
76/003). Dziekuje za udzielone wsparcie finansowe oraz dostep do niezbednych zasobéw
infrastrukturalnych.

Na koniec pragne wyrazi¢ mojg najgtebsza wdziecznosé Rodzinie i Bliskim — w szcze-
golnosci zonie Magdalenie, mamie Bozenie, wujkowi Krzysztofowi, teSciom Annie i An-
drzejowi oraz przede wszystkim babci Helenie, ktorej dedykowana jest niniejsza praca
— za nieustajace wsparcie, zrozumienie i cierpliwo$¢. Wasza wiara w sens podejmowa-

nego wysitku byta dla mnie Zrodtem sity i konsekwencji w dazeniu do celu.

Streszczenie

Praca doktorska poswiecona jest zagadnieniom testowania funkcjonalnego ztozo-
nych systeméw wbudowanych, ze szczegdlnym uwzglednieniem wdrozenia nowocze-
snych metod i narzedzi w srodowisku przemystowym. Obszarem badan byto opraco-
wanie i implementacja ram postepowania testowego, ktére pozwalaja na optymalizacje
procesu weryfikacji systemow wbudowanych w warunkach rzeczywistych, przy uwzgled-

nieniu ograniczen czasowych, technicznych i organizacyjnych.

W ramach projektu przeprowadzono szczegdtowa analize dostepnych strategii testo-
wania, ze szczegbolnym naciskiem na automatyzacje, atomizacje przypadkéw testowych,
testowanie eksploracyjne oraz podejscie oparte na analizie ryzyka. Opracowano i wdro-
zono hybrydowy framework testowy oparty na jezyku Python, zintegrowany z narze-
dziami do zarzadzania testami oraz $srodowiskiem ciggtej integracji. Pozwolito to na
znaczace zwiekszenie efektywnosci testowania, skrocenie czasu kampanii testowej oraz

poprawe jakosci dostarczanych rozwigzan.

Ocenie poddano strategie testowania oparta na analizie ryzyka oraz wplyw stop-
nia automatyzacji testéw na efektywnos¢ kampanii testowych, wykazujac, ze $wiado-
me zarzadzanie ryzykiem oraz automatyzacja moga znaczaco skréci¢ czas testowania
i podniesé jako$é¢ produktu. Waznym aspektem badan byta takze analiza wpltywu testo-
wania opartego na doswiadczeniu, a w szczegolnosci testow eksploracyjnych, na liczbe
oraz istotnos¢ wykrytych defektow. Praca pokazuje, ze wykorzystanie wiedzy i intu-
icji inzynieréw testow pozwala na wykrycie btedow, ktore mogtyby umknaé¢ formalnym
technikom testowym. Trzecim kluczowym celem byta identyfikacja czynnikéw organi-
zacyjnych i technicznych sprzyjajacych szybkiej adaptacji nowych strategii testowania
w zespotach rozproszonych, co okazato si¢ szczegdlnie istotne w kontekscie wdrozenia
rozwiagzan w miedzynarodowej organizacji.

Przeprowadzone wdrozenie w przedsiebiorstwie Rockwell Automation objeto projek-
ty, w ktorych zastosowano autorskie rozwiazania w zakresie strategii testowej. Wyniki

badan potwierdzity zasadnosé¢ przyjetych rozwigzan, wykazujac wzrost wykrywalnosci

defektow, stabilnos¢ procesu oraz mozliwosé elastycznego zarzadzania zakresem testow
w dynamicznie zmieniajacych sie warunkach projektowych.

Praca wnosi wktad w rozwoj praktyk testowania systeméw wbudowanych, wskazu-
jac kierunki dalszych badan w zakresie automatyzacji, wykorzystania sztucznej inte-
ligencji oraz standaryzacji metryk jako$ciowych. Opracowane ramy postepowania te-
stowego zostaly wdrozone jako standard w przedsiebiorstwie, stanowigc fundament

nowoczesnego procesu weryfikacji systeméw wbudowanych.

Abstract

The doctoral dissertation is devoted to the issues of functional testing of complex
embedded systems, with particular emphasis on the implementation of modern methods
and tools in an industrial environment. The research area focused on the development
and implementation of a testing framework that enables the optimization of the verifi-
cation process for embedded systems under real-world conditions, taking into account

time, technical, and organizational constraints.

As part of the project, a detailed analysis of available testing strategies was conduc-
ted, with special attention given to automation, atomization of test cases, exploratory
testing, and a risk-based approach. A hybrid testing framework based on Python was
developed and implemented, integrated with test management tools and a continuous
integration environment. This led to a significant increase in testing efficiency, a reduc-
tion in the duration of test campaigns, and an improvement in the quality of delivered

solutions.

The evaluation focused on risk-based testing strategies and the impact of the degree
of test automation on the efficiency of test campaigns, demonstrating that conscious
risk management and automation can significantly shorten testing time and enhance
product quality. Another important aspect of the research was the analysis of the influ-
ence of experience-based testing, particularly exploratory testing, on the number and
significance of detected defects. The dissertation shows that leveraging the knowledge
and intuition of test engineers enables the detection of errors that might escape for-
mal testing techniques. The third key objective was the identification of organizational
and technical factors that facilitate the rapid adaptation of new testing strategies in
distributed teams, which proved especially important in the context of implementing
solutions in an international organization.

The implementation at Rockwell Automation covered projects in which proprietary
solutions in the area of testing strategy were applied. The research results confirmed

the validity of the adopted solutions, demonstrating an increase in defect detection,

process stability, and the ability to flexibly manage the scope of tests in dynamically
changing project conditions.

This dissertation contributes to the development of embedded systems testing prac-
tices, indicating directions for further research in automation, the use of artificial intelli-
gence, and the standardization of quality metrics. The developed testing framework has
been implemented as a standard in the company, forming the foundation of a modern

embedded systems verification process.

Spis tresci

1 Wprowadzenie

2 Analiza literatury i teoria testowania systeméw wbudowanych
2.1 Charakterystyka ztozonych systeméw wbudowanych
2.2 Wyzwania i tendencje rozwojoweo L.
2.3 Rola testowania w systemach wbudowanych
2.4 Metody testowania funkcjonalnego
2.5 Rola testow automatycznych i manualnych
2.6 Stosowanie duzych modeli jezykowych w testowaniu
2.7 Certyfikacja w testowaniu systeméw wbudowanych

2.8 Wplyw badan na certyfikacje

3 Charakterystyka projektu doktorskiego
3.1 Metodyka badan
3.2 Planowanie i projektowanie eksperymentéw
3.3 Wykorzystanie metryk w ocenie jakosci testow i systeméw

3.4 Teza badawcza

4 Przyjeta strategia testowania i wyniki badan
4.1 Testowanie oparte na wymaganiach

4.2 Testowanie oparte na analizie ryzyka

I

10
16
19
22
23
24

27
27
31
33
37

41

4.3 Testowanie eksploracyjne i na podstawie doswiadczenia 49

4.4 Zakres testéow automatycznych i manualnych 0000 52
4.5 Ewaluacja efektywnosci testowo 58
5 Analiza i optymalizacja procesu testowania 65
5.1 Automatyzacja testéw 65
5.2 Framework testowy L 75
5.3 Ustanowienie ram dla zakresu testéw 81
6 Podsumowanie i wnioski 85
6.1 Najwazniejsze osiggniecia projektu doktorskiego 85
6.2 Implementacja opracowanej metody testowania w przedsiebiorstwie . . 87
6.3 Potencjalny wptyw wynikéw na przysztosé¢ testowania 93
Bibliografia 99
A Wykaz symboli i oznaczen 109

IT

Spis rysunkow

2.1

2.2
2.3
2.4
2.5
2.6

3.1

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

Przyktadowa architektura systemu wbhudowanego opartego o system ope-
racyjny Linux
Architektura systemu HilL oraz SiL.
Przebieg procesu testowegoo
Wplyw wczesniejszego testowania na koszty naprawy defektéw
Piramida testéw oraz podejscia alternatywne
Certyfikacja ISTQB (Zrédlo: Testerzy.pl; grafika wykorzystana za zgoda

AULOTA) . . v o v o
Dystrybucja projektow ze wzgledu na liczbe testow

Proces planowania testow zdefiniowany w normie ISO/IEC/IEEE 29119-

Analiza ryzyka w testach regresyjnych
Prognoza postepu prac dla projektu Oscar
Ramy postepowania testowania eksploracyjnego
Zaleznosé liczby znalezionych defektow od liczby wykonanych testéw . .
Zaleznosé gestosci btedow od liczby wykonanych testow
Dystrybucja gestosci btedow w poszczegdlnych kategoriach projektow

Znormalizowane poréwnanie projektow Oscar i Lima wzgledem pozosta-

tych projektow w kategoriach M i L

III

5.1 Pordéwnanie rozktadu czaséw realizacji komend

5.2 Architektura frameworku testowego

IV

Spis tabel

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

0.1

Projekty analizowane w ramach pracy badawczej 30
Przyktadowe typy defektow w testowaniu funkcjonalnym 35
Przyktadowa ocena ryzyka scenariusza testowego 48
Projekty kategorii XSiS oo 53
Wspoétezynniki TER i FD dla projektow kategorii XSiS 53
Projekty kategorii M-XL 54
Przyktadowa karta sesji ET 57
Tabela zbiorcza projektéwo 59
Podsumowanie testéw eksploracyjnych w projekcie Oscar 63
Kryteria stabilnosci testowo 66

Rozdzial 1
Wprowadzenie

Systemy wbudowane (ang. embedded systems) mozna zdefiniowaé¢ miedzy innymi
jako specjalistyczne, zintegrowane platformy programowo-sprzetowe dedykowanego za-
stosowania. W przeciwienstwie do wielofunkcyjnych komputeréw osobistych, urzadze-
nia te sa zaprojektowane do wykonywania jedynie okreslonych zadan. Systemy wbu-
dowane mogg by¢ oparte na mikroprocesorach lub mikrokontrolerach i zawierajg opro-
gramowanie przeznaczone wylacznie dla danego ukladu (ang. firmware) lub system
operacyjny wraz ze specjalizowanym oprogramowaniem. Bardziej zlozone rozwiaza-
nia korzystaja z wysokiej skali integracji specjalizowanych uktadéw scalonych (ang.
Application-Specific Integrated Circuit, ASIC) badZ systeméw na czipie (ang. System-
on-a-Chip, SoC).

Wedtug prognoz, do 2030 roku warto$¢ rynku rozwigzan wbudowanych osiagnie
161,86 miliarda dolaréw, co oznacza, ze rosnie on o 7,1 % rocznie. Kluczowe czyn-
niki napedzajace ten wzrost to rozwdj technologii Internetu Rzeczy (ang. Internet of
Things, [oT), sztucznej inteligencji oraz sieci 5G, ktére zwiekszaja zapotrzebowanie
na zaawansowane systemy wbudowane [1]. Prognozuje sie takze, ze udzial systeméw
wbudowanych utrzymuje si¢ obecnie na poziomie okoto 94 % wszystkich urzadzen elek-
tronicznych, a liczba ta ro$nie w blyskawicznym tempie wraz z rozwojem Przemystu
4.0 i urzadzen uzytku domowego. Wszystkie te systemy wymagaja szczegdlnego po-
dejscia do testowania, ktore rézni sie zarowno od tradycyjnych testéw elektrycznych,
jak i klasycznego testowania oprogramowania komputerowego, badz tez aplikacji in-
ternetowych. Rodzi to réwniez szereg komplikacji w trakcie integracji sprzetu z opro-
gramowaniem i stawia przed firmami coraz to nowe wyzwania w tym skomplikowanym

obszarze wiedzy.

Rozdziat 1. Wprowadzenie

Dotychczas stosowane metody empiryczne czesto stanowia wewnetrzng tajemnice
firm, sa nieusystematyzowane i odbiegaja od optymalnych rozwigzan. Niejednokrotnie
inzynierowie i osoby zarzadzajace testowaniem opierajg sie wytacznie na intuicji, pod-
czas gdy nauka dostarcza szeregu mozliwosci i metod, ktore pozwalaja na podejscie do
testowania ztozonych systemow wbudowanych w sposéb przemyslany i systematyczny.
Warto zwroci¢ przy okazji uwage na fakt, ze czesto systemy wbudowane maja bardzo
znaczacy wptyw na bezpieczenstwo ludzi i pozostatych urzadzen, a co za tym idzie, nie
mozna bagatelizowa¢ aspektéw zwigzanych z ich testowaniem, gdyz kazde dzialanie
niepozadane moze w efekcie prowadzi¢ do uszczerbku na zdrowiu, czy w najgorszym

przypadku, nawet $mierci.

Celem projektu doktorskiego byto przeanalizowanie metod testowania funkcjonal-
nego (tzw. ,czarnoskrzynkowego”) ztozonych systeméw wbudowanych, aby w efekcie
zaproponowac technike lub zestaw technik pozwalajacy na optymalng weryfikacje sys-
temu wbudowanego o wysokim stopniu komplikacji w okreslonych warunkach. Aby do
tego doprowadzi¢, niezbedne byto dobranie odpowiedniej metody badawczej, przepro-
wadzenie dtugotrwalych badan na produktach, a nastepnie opracowanie otrzymanych
wynikéw. Dzieki zastosowaniu zwinnych (ang. agile) metodyk wytwarzania produk-
tow, mozliwe byto przeanalizowanie jakosci systemu przed i po przeprowadzeniu badan
poprzez obserwacje metryk, takich jak efektywnos¢ przypadkow testowych, pokrycie
wymagan testami, udzial testéow zautomatyzowanych, udziat testowania eksploracyj-

nego i innych.

Nalezy podkresli¢, ze wyczerpujace (ang. exhaustive) przetestowanie tak ztozonych
produktéw jest niemozliwe do przeprowadzenia z przyczyn czasowych i ekonomicznych.
Dlatego tez kluczowym aspektem dla dalszego rozwoju systeméw wbudowanych jest
nie tylko dopracowanie metod ich testowania, ale takze okreslenie optymalnych ram
dla zakresu testéw. Bardzo istotnym elementem jest wiec automatyzowanie testowa-
nia regresyjnego oraz minimalizacja zakresu tak zwanych retestow. Projekt doktorski
porusza ponadto wpltyw automatyzacji testow regresyjnych i wprowadzenia Srodowi-
ska ciaglej integracji, jak réwniez filozofii DevOps (ang. Development and Operations),
ktora integruje rozwoj, eksploatacje oraz aktywnosci zwigzane z zapewnieniem jakosci

produktow.

Praca wdrozeniowa byta realizowana w ramach dziatalnosci badawczo-rozwojowej
przedsiebiorstwa Rockwell Automation w obszarze testowania przemiennikow czestotli-

woséci niskiego i Sredniego napiecia Allen-Bradley PowerFlex, kontroleréw silnikowych

serii ArmorStart, ArmorPowerFlex, produktéw powigzanych, takich jak karty rozsze-
rzen komunikacyjnych, enkoderowych, wejsé-wyjs¢ oraz sterownikéw programowalnych
(ang. Programmable Logic Controller, PLC) Allen-Bradley ControlLogix i adapteréow
sieciowych z serii 1756-EN4. Jakosé¢ wytwarzanych produktéw jest jednym z najwazniej-
szych aspektow dla firmy Rockwell Automation, ktéra poza inwestowaniem w budowe,
certyfikacje i rozwoj laboratoriéow testowych, ciggle poszukuje efektywnych metod te-

stowania swoich produktow i ulepszania istniejacych proceséw.

Analiza efektywnosci metod testowania funkcjonalnego ztozonych systeméw whbu-
dowanych pozwolita przedsiebiorstwu, w ktérym toczyly sie prace wdrozeniowe, na
optymalizacje srodkéw przeznaczonych na testowanie, jak réwniez przetozyta si¢ na
wzrost jakosci dostarczanych rozwigzan. Nalezy zauwazy¢, ze projektowanie oraz pro-
dukcja tak skomplikowanych urzadzen wigza sie z ogromng liczbg potencjalnych defek-
tow, ktore ponadto z czasem maja tendencje do uodparniania si¢ na istniejace testy, co
w teorii testowania oprogramowania jest znane pod nazwa paradoksu pestycydow (ang.
pesticide paradox). Co za tym idzie, poszukiwanie skuteczniejszych technik testowania

jest niezwykle istotne dla jakosci koncowego systemu.

Intencja projektu tworzonego w ramach programu ,,Doktorat wdrozeniowy IV” byta
przede wszystkim mozliwo$¢ implementacji wynikow przeprowadzonych badan nauko-
wych w sektorze przemystowym i wykazanie, ze istnieje taki zestaw technik testowania,
ktére wdrozone w formie frameworku' pozwalaja na optymalizacje weryfikacji ztozo-
nego systemu wbudowanego w okreslonych warunkach. Przeprowadzona analiza i oce-
na efektywnosci metod testowania funkcjonalnego ztozonych systeméw wbudowanych
miata na celu znalezienie technik, ktore pozwolg zoptymalizowaé¢ proces testowania
urzadzen, a co za tym idzie usprawnic¢ procesy, wygenerowac oszczednosci, czy wreszcie
skroci¢ czas potrzebny na dostarczenie gotowego rozwigzania do klientéw. Mozna takze
zalozy¢, ze zastosowanie zaproponowanych metod testowania wplywa pozytywnie na

koncowa jakos¢ produktu.

I Autor jest éwiadomy istnienia polskiego odpowiednika angielskiego terminu ,framework”, tj. ,ra-
my postepowania”. Thumaczenie to nie oddaje jednak w pelni natury oryginalnego terminu oraz nie
jest powszechnie uzywane zaréwno przez programistéw jak i w érodowisku akademickim. W przypad-
ku stosowania tego rodzaju zapozyczen z jezyka angielskiego w niniejszej pracy (up. ,,debugowanie”
zamiast ,odpluskwianie”) stosowana bedzie pisownia kursywa.

Rozdziat 2

Analiza literatury i teoria

testowania systemoéow wbudowanych

2.1 Charakterystyka zlozonych systeméw wbudo-

wanych

Ze wzgledu na indywidualng architekture kazdego systemu, projektowanie syste-
méw whudowanych stanowi ztozony proces wymagajacy od inzynierow szerokiego za-
kresu kompetencji — od architektury systemowej, przez projektowanie platform sprze-
towych i obwodéw drukowanych, po wykorzystanie systeméw operacyjnych oraz pro-

gramowanie sterownikéw, warstw komunikacyjnych i aplikacji systemowych.

Architektura systeméw wbudowanych przypomina architekture systemu kompu-
terowego, dzielac sie na mikroprocesor, pamie¢ i urzadzenia peryferyjne. Ze wzgledu
na unikatowy projekt, zaréwno wytwarzanie sprzetu, jak i oprogramowania stanowi
wyzwanie w porownaniu do aplikacji komputerowych opartych o znang architekture.
Sytuacje komplikuja ponadto ograniczone zasoby w postaci pamieci i mocy obliczenio-
wej systemow wbudowanych. Ztozone systemy wbudowane coraz czesciej opieraja wiec
swoje dziatania na dedykowanych systemach operacyjnych zarzadzajacych zasobami
systemowymi i kontrolujacych dziatanie aplikacji [2].

Obecnie jednym z najbardziej popularnych rozwiazan, jesli chodzi o systemy ope-
racyjne dla systeméw wbudowanych, jest stosowanie réznych dystrybucji Linuxa [3].

Wymusza to spetnienie przez taki system kilku wymogow:

Rozdziat 2. Analiza literatury i teoria testowania systeméw wbudowanych

e minimum 32-bitowego mikroprocesora wyposazonego w jednostke zarzadzania

pamiecia (ang. Memory Management Unit, MMU),

 posiadania wystarczajacej ilo$ci pamieci operacyjnej (w zaleznosci od danej dys-

trybucji Linuxa),

o zapewnienia interfejsow wejscia-wyjscia jako minimum umozliwiajacych debugo-

wanie oprogramowania,

e jadro systemu musi by¢ w stanie zatadowac system plikow root za pomoca jakiejs

formy trwatej pamieci lub uzyskaé¢ do niego dostep przez siec.

Przyktadowa architektura takiego systemu na wysokim poziomie abstrakcji przed-

stawiona zostata na Rysunku 2.1.

Aplikacje

Biblioteki

I

Jadro systemu operacyjnego

Warstwa abstrakcji

]

‘ System plikow I Protokoty sieciowe

Interfejsy niskopoziomowe

]

Sprzet

]

Rysunek 2.1: Przyktadowa architektura systemu wbudowanego opartego o system
operacyjny Linux

2.2. Wyzwania i tendencje rozwojowe

Oproécz ograniczen wynikajacych z zastosowanego systemu operacyjnego, istotnym
wyzwaniem jest rosnaca ztozonos¢ systeméw wbudowanych, wynikajaca zaréwno z wy-
magan funkcjonalnych, jak i niefunkcjonalnych. Wyboér odpowiedniej platformy sprze-
towej i programowej jest kluczowy, poniewaz determinuje mozliwosci implementacyjne
oraz efektywnos$é¢ koncowego rozwigzania. Staje sie to coraz czedciej wielowymiarowym
zagadnieniem, gdyz nie wystarcza dobor sprzetu spelniajacego wymagania techniczne.
Takie podejscie sprawdzalo sie dobrze w przypadku prostych i nieskomplikowanych
aplikacji wdrazanych na systemach z niewielka lub Zzadng zaleznoscig od systemow
zewnetrznych. Jednak w obecnej sytuacji ztozonych systeméw i systemow systemow
(ang. systems of systems), gdzie istnieja skomplikowane interfejsy miedzy nimi i wiek-
sza zalezno$¢ od siebie nawzajem, rozwdéj aplikacji wbudowanych stat sie wyzwaniem.
Platforma whbudowana dla takich aplikacji nie moze by¢ wybierana wytacznie na pod-
stawie wymagan produktu. Projektanci systemow wbudowanych muszg bra¢ pod uwage
interfejsy systemow zewnetrznych, takie jak scenariusze wdrozeniowe, przypadki uzy-
cia produktu, trudnosci w utrzymaniu lub uruchomieniu, interfejsy logiczne systemu,
interfejsy procesoéw oraz wyzwania zwigzane z rozwojem przy wyborze platformy, a tym

samym skuteczna realizacje produktu [4].

Sytuacja ta powoduje, ze choé¢ projektanci systemdéw whudowanych maja tendencje
do uzywania standardowych mikroprocesoréw ogdlnego przeznaczenia z niewielkag lub
zadng specyficzng konfiguracja sprzetowa, to w przypadku ztozonych systemow wbu-
dowanych coraz czeSciej siega sie po specjalizowane uktady scalone lub systemy na

czipie [5].

2.2 Wyzwania i tendencje rozwojowe

W 2002 roku juz ponad 90% specjalizowanych uktadéw scalonych zawierato mikro-
procesory wykonane w technologii 130 nm [6]. Obecny rozwdéj technologii doprowadzit
do stworzenia pierwszych specjalizowanych uktadéw stosowanych w koparkach kryp-
towalut w technologii 3 nm [7]. Przewiduje sig, ze w roku 2025 proces technologiczny
osiggnie poziom 2 nm, a w 2027 roku poziom 1 nm [8]. Wigksza gesto$¢ tranzystoréw
wynikajaca ze stosowania technologii litograficznej 7 nm i ponizej, wprowadza nowe
ryzyka zwiazane z defektami procesowymi w ekstremalnie matych trojwymiarowych
strukturach, defektami parametrycznymi i starzeniem si¢ uktadéw, co z kolei skutkuje

rozwojem dziedziny projektowania pod katem testowania (ang. Design for Testabili-

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

ty, DfT) [9]. Dzieki temu mechanizmy testowe staja sie nieodlaczng czescia projektu
uktadu i mozliwe staje si¢ stosowanie coraz bardziej zaawansowanych technik, takich
jak testy strukturalne, czy stresowe, a takze monitorowanie i diagnostyke w trakcie

eksploatacji.

W przypadku systeméw na czipie, dzigki poprawie gestosci standardowych komé-
rek i komérek bitowych na poziomie wezta, mozliwe jest zintegrowanie wickszej liczby
funkcji w danym obszarze systemu. Zakltada sie, ze obszar integracji mobilnych SoC
pozostaje staly na poziomie 80 mm? w kolejnych generacjach. W zwiazku z tym ilogé
pamieci oraz procesoréw graficznych (ang. Graphics Processing Unit, GPU) podazy za
skalowaniem gestosci ulotnej pamieci statycznej (ang. Static Random-Access Memory,
SRAM) i standardowych komérek, zaktadajac, ze trend na bardziej réwnolegte archi-
tektury bedzie kontynuowany [8]. Rosnaca skala integracji wraz ze zmniejszajacym sie
procesem technologicznym powoduje szereg problemoéow termicznych. Jesli nie dojdzie
do przetomu w tym zakresie, czestotliwo$é taktowania mikroprocesora bedzie musiata

by¢ coraz czesciej ograniczana, aby utrzymac te sama gesto$¢ mocy.

Mimo ograniczen technologicznych i termicznych, trend budowania heterogenicz-
nych wieloprocesorowych systeméw na czipie (ang. multiprocessor-system-on-a-chip,
MPSoC) dalej sie nasila. Uktady te sktadaja sie z wielu pracujacych réwnolegle proce-
sorow i rdzeni do zastosowan takich jak terminale mobilne, dekodery, procesory gier,
procesory wideo i procesory sieciowe. Czesto zawieraja bardzo zaawansowane sieci ko-
munikacyjne zwane sieciami na chipie (ang. Network-on-a-Chip, NoC) [6]. Rosnaca
presja czasowa i coraz krdtsze okno rynkowe (czyli okres, w ktérym wprowadzenie
produktu na rynek jest najbardziej korzystne), bardziej ztozone funkcjonalnosci i ro-
sngca niezawodnos¢ dostarczaja kolejnych wyzwan dla projektantow i sprawiaja, ze
potrzebne sg fundamentalne zmiany wzgledem metod projektowania specjalizowanych
uktadéw scalonych, ktoére nie sa skalowalne dla wieloprocesorowych systemow na czipie.
Powoduje to powstawanie kolejnych warstw abstrakcji i idace za tym skomplikowanie
interfejséw sprzetowo-programowych, ktére z jednej strony obstuguja wywotania po-

szczegblnych funkeji lub instrukeji, a z drugiej fizyczne potaczenia [10].

Wspomniane warstwy abstrakcji prowadza do tworzenia systeméw wbudowanych
definiowanych programowo (ang. software-defined embedded systems), bedacych cze-
Sciowo lub catkowicie niezaleznych od warstwy sprzetowej. Dynamiczny rozwoj oprogra-
mowania, znacznie wyprzedzajacy rozwoj warstwy sprzetowej, prowadzi coraz czesciej

do uruchamiania specjalistycznego dotad oprogramowania wbhudowanego na kompute-

2.2. Wyzwania i tendencje rozwojowe

rach ogdlnego zastosowania — osobistych, klasy przemystowej, czy nawet mikrokompu-
terach. Jednym z przyktadow takiego zastosowania moze by¢ automatyka definiowana
programowo (ang. Software-Defined Automation, SDA) [11]. Podejscie to pozwala na
natywne uruchomienie kodu sterownika przemystowego lub innego urzadzenia auto-
matyki na komputerze przemystowym z wykorzystaniem systemu operacyjnego czasu
rzeczywistego (ang. Real-Time Operating System, RTOS). W zaleznosci od mocy plat-
formy sprzetowej mozliwe jest dynamiczne alokowanie zasobéw — na przyktad rdzeni

procesora lub pamieci — do potrzeb uzytkownika.

Nie bez znaczenia pozostaja tez wyzwania i tendencje rozwojowe zwigzane z mo-
delem wytwarzania systeméw wbudowanych. Ze wzgledu na czynniki takie jak presja
czasu, produktywnos¢, innowacyjnosc i satysfakcja pracownikéw, a takze rosnacy po-
ziom skomplikowania oprogramowania, w przemysle stosuje sie szeroka game metodyk
zwinnych (ang. agile) [12]. Wedlug statystyk, w sektorze wytwarzania oprogramowa-
nia obecnie az 86% firm wykorzystuje Scrum' lub inng metodyke do codziennej pracy
i przewiduje sie, ze liczba ta bedzie rosnaé [13]. Podejscie polegajace na inkremental-
nym wzroscie w zakresie nowych funkcjonalnosci powoduje, ze coraz czesciej systemy
wbudowane debiutujg na rynku, posiadajgc zbiér podstawowych funkcjonalnoéci, a ich
rozszerzenia dostarczane sa w formie aktualizacji oprogramowania. Efektem tego jest
coraz bardziej istotna rola zadan zwigzanych z testowaniem i utrzymywalnoscia takich

systemow.

Stosowanie zwinnych metodyk wytwarzania oprogramowania niesie za soba dodat-
kowe wyzwania jakosciowe. Praktyki takie jak programowanie ekstremalne (ang. Extre-
me Programming, XP), zyskuja coraz wieksza popularnosé takze w zakresie rozwijania
systeméw wbudowanych, oferujac bezposrednia komunikacje i minimalng dokumenta-
cje, co jest atrakcyjne dla programistéow. Czesé z tych ram postepowania jest jednak
trudnych do petlnego wdrozenia, co w efekcie powoduje rezygnacje z czesci ich ele-
mentéw (takich jak np. stata obecno$é przedstawiciela klienta) i wprowadzenie ryzyk

jakosciowych dla produktu [14].

Tteracyjny i przyrostowy framework w zarzadzaniu projektem, stosowany w realizacji przedsiewzieé
w oparciu o metodyki zwinne wytwarzania oprogramowania.

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

2.3 Rola testowania w systemach wbudowanych

Testowanie jest procesem obejmujacym planowanie, przygotowanie oraz ewaluacje
oprogramowania i powigzanych produktéw, majacym na celu weryfikacje zgodnosci
z wymaganiami, potwierdzenie realizacji zatozonych celéw oraz identyfikacje usterek
[15]. Niektére zrédta jako dziedzine testowania wskazuja réwniez przewidywanie de-
fektow, co jest mozliwe za pomocsg wyspecjalizowanych narzedzi lub technik uczenia
maszynowego (ang. Machine Learning, ML) [16-19]. W przypadku testowania syste-
mow wbudowanych mozna méwic¢ o szczegdlnej istotnosci tego procesu ze wzgledu na

szereg czynnikow:

» wysoka zlozonos$¢ oprogramowania i integracje ze sprzetem elektronicznym [20],

czy tez urzadzeniami automatyki przemystowej,

o krytyczny wpltyw systeméw wbudowanych na zdrowie i bezpieczenstwo uzytkow-

nikow,
» standardy przemystowe, umowy i pozostate akty prawne,

« wysokie koszty projektowe, a co za tym idzie mozliwe straty finansowe spowodo-

wane awarig.

Podstawowym celem testowania jest okreslenie ryzyka powigzanego z testowanym
oprogramowaniem i dostarczenie informacji dotyczacej znalezionych defektéw [21]. Pro-
ces ten pomaga w ocenie jakosci produktu i budowie zaufania, a takze poprawie pozo-
statych proceséow wytwarzania i zmniejszeniu liczby generowanych defektow w przyszto-
Sci. Oprocz weryfikacji produktu wzgledem specyfikacji wymagan, istotnym aspektem
jest przeprowadzenie walidacji — sprawdzenia, czy tworzony system spekni oczekiwania

uzytkownikow.

W przypadku systeméw wbudowanych wyrdznia sie szereg typoéw testow. W zalez-
nosci od poziomu granulacji mozna wyr6zni¢ testy modutowe lub jednostkowe (ang. unit
test), ktére odpowiadaja za sprawdzenie pojedynczego komponentu oprogramowania.
Kolejnym etapem sa testy integracyjne, w ramach ktérych weryfikowane jest taczenie
poszczegolnych modutéw w jedng aplikacje oraz wspdtpraca miedzy oprogramowaniem
i sprzetem. Testy funkcjonalne skupiajg sie na testowaniu poszczegdlnych funkeji sys-

temu whudowanego w oparciu o specyfikacje wymagan funkcjonalnych, a testy syste-

10

2.3. Rola testowania w systemach wbudowanych

mowe obejmuja dziatanie cato$ciowe systemu lub systemu systeméw (np. urzadzenia

wchodzacego w sktad ztozonej instalacji) [21].

Ponadto ze wzgledu na cykl zycia oprogramowania rozréznia si¢ testy regresji, w ra-
mach ktorych po wprowadzeniu zmian do przetestowanego wczesniej obszaru oprogra-
mowania sprawdza sie poprawnos$¢ i wpltyw tychze zmian na dzialanie systemu. Ko-
lejnymi istotnymi typami testéw sa tzw. retesty (testy powtérne), testy produkcyjne,
testy pielegnacyjne i testy akceptacyjne — wykonywane zgodnie z planem testow ak-
ceptacyjnych (ang. acceptance test plan) na podstawie ktérego klient lub uzytkownik

dokonuje odbioru systemu wbudowanego [21].

Testowanie systemow wbudowanych wymaga uwzglednienia zaréwno komponen-
tow sprzetowych, jak i oprogramowania, co moze prowadzi¢ do powstawania ztozonych
scenariuszy testowych, z kolei integracja réznych modutéow sprzetowych i programo-
wych moze prowadzi¢ do trudnych do wykrycia defektéw. Bardzo czesto reprodukcja

2 anomalii zajmuje wiecej czasu, niz sama ich naprawa.

zgtoszonych przez testerow
Systemy wbudowane majg ograniczona ilos¢ pamieci, co wymaga optymalizacji kodu
i testow pod katem efektywnego wykorzystania zasobow, a ograniczona moc oblicze-
niowa wymaga testowania wydajnosciowego, aby upewni¢ sie, ze system dziata ptynnie
w rzeczywistych warunkach. W systemach zasilanych bateryjnie wazne jest testowa-
nie zuzycia energii, aby zapewnié¢ dtuga zywotnos¢ baterii. Systemy wbudowane czesto
musza dziata¢ w czasie rzeczywistym, co oznacza, ze musza spetniaé okreslone wyma-
gania czasowe. Wazne jest testowanie, czy system reaguje w odpowiednim czasie na
zdarzenia zewnetrzne oraz testowanie w warunkach rzeczywistych, aby upewni¢ sie, ze
system spetnia wymagania czasowe w réznych scenariuszach operacyjnych. Sa to unika-
towe wyzwania, ktore odrdzniaja testowanie systeméw whbudowanych od tradycyjnych

aplikacji komputerowych, sieciowych, czy mobilnych.

Rosnace oczekiwania rynkowe zwiazane z szybszym dostarczaniem nowych rozwia-
zan powoduja, ze w przypadku testowania systeméw whudowanych coraz bardziej istot-
ne znaczenie zyskuje srodowisko testowe, ktore umozliwi prowadzenie testéw na mozli-
wie najwczesniejszym etapie rozwoju urzadzenia. Skutkuje to stosowaniem symulatoréw
i emulatoréw, a takze systeméw testowania sprzetu lub oprogramowania w petli (ang.
Hardware-in-the-Loop, Hili lub Software-in-the-Loop, SilL), ktérych celem jest mozli-

wie wierna imitacja rzeczywistych warunkéw pracy lub elementéw wspotpracujacych

2W niniejszej pracy termin tester stosowany jest do inzynieréw testéw, choé w literaturze najczesciej
odnosi sie do urzadzenia testujacego.

11

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

(np. czujnikéw, aktuatoréw, ruchu sieciowego), co jest swego rodzaju kompromisem,
umozliwiajacym przyspieszenie prac badawczo-rozwojowych [22]. Zasade ich dziala-
nia obrazuje schemat blokowy przedstawiony na Rysunku 2.2. Kolejnym krokiem jest
uzycie prototypéw i testowanie na wczesnych wersjach sprzetu, aby wykry¢ problemy
na wczesnym etapie. Zazwyczaj dopiero koncowe testy regresyjne wykonywane sa na

sprzecie produkcyjnym lub bliskim produkcyjnemu.

Stacja robocza Symulator czasu rzeczywistego

Software-in-the-Loop (SiL)

Stacja robocza Symulator czasu rzeczywistego System wbudowany

Hardware-in-the-Loop (HilL)

Rysunek 2.2: Architektura systemu Hil. oraz SiL.

Sam proces testowania i dokumentacji nie rézni sie zbytnio od podejscia znanego
z klasycznego testowania oprogramowania lub sprzetu [23], przedstawionego na Ry-
sunku 2.3. Planowanie testéw rozpoczyna sie od zdefiniowania, co doktadnie ma by¢
przetestowane i jakie sg oczekiwane rezultaty. Ustalane s terminy dla poszczegol-
nych etapéw testowania, identyfikowane sg potrzebne zasoby oraz narzedzia. Kolejnym
etapem jest opracowanie scenariuszy testowych i przygotowanie danych wejsciowych

(wymagan, przypadkéw uzycia, standardéw przemystowych, itd.), a takze kryteriéw

12

2.3. Rola testowania w systemach wbudowanych

akceptacji — warunkow, ktore muszg by¢ spelione, aby test zostat uznany za zaliczo-
ny. Po przeprowadzeniu testéw nastepuje faza analizy wynikéw i raportowania [24]. Ze
wzgledu na przyjety framework, czynnosci te moga nastepowaé jedna po drugiej lub
wystepowaé¢ w roznych proporcjach w trakcie cyklu rozwoju oprogramowania, przyra-

stajac inkrementalnie.

Planowanie
i kontrola

Analiza
I projektowanie testow

Implementacja
i wykonywanie testow

Ewaluacja kryteriow
wyjscia i raportowanie

Zamkniecie kampanii
testowej

Rysunek 2.3: Przebieg procesu testowego

Testowanie juz na etapie projektowania pozwala na wczesne wykrycie potencjalnych
probleméw, co moze znacznie obnizy¢ koszty ich naprawy, jak obrazuje Rysunek 2.4.
Czynnosci testerskie moga odbywacé sie¢ jeszcze przed powstaniem dziatajacego proto-
typu urzadzenia poprzez przeglad wymagan funkcjonalnych i niefunkcjonalnych, aby
upewnic sie, ze sa one kompletne, spdjne i wykonalne. Sam symulator, badz prototyp
systemu whbudowanego réwniez podlega testowaniu wzgledem specyfikacji. Wsparcie
systemu coraz cze$ciej wkracza takze w faze utrzymania i obejmuje testowanie popra-

wek i aktualizacji, a takze monitorowanie dziatania systemu w rzeczywistych warun-

13

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

kach.

= 100% £ 700 32
2 :
E 640 S
L 90% 2
= L 600 3
2 S
S 80% %
g 5
3 70% F 500 2
o >
g o
5 60% ‘%
o b S
§ F 400 ©
N
<= 50%
o
N
L - 300

40%

30% L 200

20%

I 100
10% 10
1 4 10
0% ~— > 0
Kodowanie Testy modutowe Testy funkcjonalne Testy systemowe Wydanie produktu

Etap rozwoju produktu

% znalezionych defektow % wprowadzonych defektéw —e—Relatywny koszt naprawy defektu

Rysunek 2.4: Wpltyw wczesniejszego testowania na koszty naprawy defektow

Planowanie testéw jest jednym z najwazniejszych elementéw catego procesu. Plan
przyjmuje posta¢ dokumentu, ktéry opisuje cele testowania, zakres, strategie, srodo-
wisko, dane wejsciowe, raportowanie, automatyzacje, zarzadzanie ryzykiem, kryteria
wejécia i wyjscia z procesu oraz definiuje interesariuszy. Szczegdlne znaczenie ma do-
bér wlasciwej strategii — analitycznej (np. w oparciu o specyfikacje wymagan [25],
analize ryzyka, standardy przemystowe lub inna dokumentacje), opartej na modelu
systemu, reaktywnej (zaleznej od jakosci dostarczonego oprogramowania), czy bazuja-
cej na wiedzy eksperckiej i doswiadczeniu — badz strategii mieszanej (ang. blended

test strategy), zawierajacej elementy kilku réznych strategii.

Strategia testowania powinna takze okresla¢ udzial poszczegdlnych typéw testow
w catym procesie testowym. Najprostszym modelem jest tzw. piramida testow, kto-
ra wskazuje, ze wraz ze spadkiem poziomu granulacji, testowanie powinno zajmowac
mniej czasu [26]. Opiera si¢ ona na zalozeniu, ze szczegbélowe pokrycie komponentéw
systemu automatycznymi testami jednostkowymi jest najbardziej efektywne. Piramida
testow jest czesto krytykowana ze wzgledu na pojawienie sie wielu zaleznosci i mozli-
wych defektéw na etapie integracji poszczegdlnych modutéow systemu, w uzytkowaniu

poszczegdlnych funkcjonalnosci oraz interakcji z innymi systemami. Proponuje si¢ za-

14

2.3. Rola testowania w systemach wbudowanych

tem alternatywne podejscia, widoczne na Rysunku 2.5, takie jak odwrdcona piramida
(ktora podkresla istotnosé testéow recznych, systemowych i funkcjonalnych) czy pla-
ster miodu (wskazujacy na réznice pomiedzy wartoscia poszczegdlnych typow testow

a mozliwym do uzyskania pokryciem testowym).

Testy systemowe 0% Testy reczne 100%

Testy funkcjonalne 5% Testy systemowe 75%

Testy integracyjne 50% Testy integracyjne 50%

Testy jednostkowe 75% Testy jednostkowe 25%

100% 0%

Optymalizacja
zakresu

Optymalizacja
wartosci

Testy
eksploracyjne

Rysunek 2.5: Piramida testow oraz podejscia alternatywne

Mnogos¢ zastosowan systemow wbudowanych sprawia, ze rola testowania jest szcze-
goélnie istotna i wymagajaca. W przypadku przemystu motoryzacyjnego mozna spotkac
si¢ z systemami wspomagania kierowcy, infotainment, czy sterownikami silnika. Sys-
temy wbudowane obecne w medycynie to miedzy innymi urzadzenia diagnostyczne,
implanty medyczne, systemy monitorowania pacjentow. W przemysle beda to urza-
dzenia automatyki, systemy wizualizacji, czujniki i systemy pomiarowe. Dla uzytkow-
nikéw domowych beda to z kolei urzadzenia internetu rzeczy: automatyka domowa,

urzadzenia AGD, czy telewizory i systemy audio. Z uwagi na réznorodnosé systeméow

15

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

wbudowanych, kazdy z nich wymaga innych srodkéw w podejsciu do testowania, aby
uwzgledni¢ specyficzne problemy danego systemu. Chociaz istnieje wiele powodow, dla
ktorych rézne systemy wbudowane musza by¢ testowane w zupelie inny sposob, ist-
nieje réwniez wiele wspélnych probleméw, ktore maja podobne rozwigzania i wpisuja
sie w kazde podejscie do testowania. Pewne podstawowe zasady testowania musza miec¢
zastosowanie do wszystkich projektéw testowania systeméw wbhudowanych [27]. Celem
projektu i pracy doktorskiej byto opracowanie tych metod i przedstawienie w formie

frameworku.

2.4 Metody testowania funkcjonalnego

Testowanie funkcjonalne to etap testowania, w ktérym system weryfikowany jest
wzgledem zgodnosci ze specyfikacjg wymagan funkcjonalnych, opisujgcych komponenty
podlegajace implementacji. Korzysta z tak zwanych technik czarnoskrzynkowych (ang.
black-box testing) lub szaroskrzynkowych (ang. grey-box testing), ktére zaktadaja brak
dostepu, badZz wytacznie czesciowy dostep do kodu oprogramowania lub schematow
sprzetowych. Testerzy przyjmuja wigc role bliskie uzytkownikom koncowym i czesto

dokonuja réwniez walidacji systemu — okreslenia, czy spetia on oczekiwania klientow.

Modelowanie wymagan funkcjonalnych systemu czesto przedstawiane jest w for-
mie symbolicznej w trojwymiarowej przestrzeni, gdzie kazda z osi reprezentuje inny
aspekt: dane, procesy oraz kontrole [28]. Techniki testowania skoncentrowane na da-
nych sprawdzaja, czy system poprawnie przetwarza informacje z okreslonych obszaréw
tematycznych. Testy oparte na zachowaniu skupiaja sie na analizie dynamicznych re-
akcji systemu, ktore zaleza od jego aktualnego stanu, z kolei testy regutowe badaja,
czy system przestrzega ustalonych zasad dziatania, niezaleznie od jego stanu — sa to

zazwyczaj reguty ogélne, takie jak zasady biznesowe.

Techniki testowania mozna podzieli¢ rowniez na statyczne — bez uruchomienia
systemu, a takze dynamiczne — w trakcie dziatania urzadzenia. Do technik statycznych
zaliczaja sie przede wszystkim przeglady (nieformalne oraz formalne) oraz inspekcje.

Podstawowe techniki dynamiczne to:

o klasy (przedzialty) réwnowaznosci,

o analiza wartosci brzegowych,

16

2.4. Metody testowania funkcjonalnego

tablice decyzyjne,

o grafy przejsc,

testowanie losowe oraz rozmyte (ang. fuzz testing),

» testowanie metamorficzne,

testowanie w oparciu o przypadki uzycia (ang. use cases).

Testowanie na podstawie klas rownowaznosci polega na dokonaniu podziatu wek-
torow wejsciowych na grupy pozwalajace otrzymac¢ na wyjsciu identycznag odpowiedz
systemu. Wyzwanie dla testera polega na zaprojektowaniu minimalnego zestawu te-
stow, tak by kazda klasa reprezentowata zestaw danych testowych o podobnych cechach
i specyfikacjach. Z kazdego zbioru wybierany jest jeden wektor wejsciowy (przypadek),
ktorego przetestowanie jest tozsame z weryfikacja catej klasy. Dzieje sie tak, poniewaz
zaktada sie, ze wszystkie wektory w danej klasie bedg traktowane przez oprogramowa-
nie i sprzet w ten sam sposob. Jesli jeden wektor w réwnowaznym przedziale dziala,
zaktada sie, ze wszystkie inne tez beda dziataé, a jesli jeden z wektoréw nie dziala,

zaktada sie, ze zaden z nich nie bedzie dziataé [29].

Jedng z najczesciej popetnianych przez programistéw pomylek jest niepoprawne
wpisywanie wartosci granicznych w instrukcjach warunkowych. Analiza wartosci brze-
gowych opiera sie na testowaniu na granicach miedzy réznymi klasami lub przedziatami
wektoréw wejsciowych. Weryfikowane sg zaréwno poprawne, jak i btedne wartosci gra-
niczne — liczba defektéw wystepujacych na granicach przedziatow jest stosunkowo
wieksza niz w ,,Srodku”. Jesli wektor wejsciowy okresla zakres warto$ci miedzy m a n,
przypadki testowe projektuje sie z wartosciami m i n oraz tuz powyzej i tuz ponizej
tych wartosci, tj. {m — 1,m,n,n + 1} [29].

Jesli wektor wejéciowy okredla liczbe wartosci, test powinien obejmowaé najnizsze
i najwyzsze z nich oraz sasiednie wedhug powyzszego schematu. Tak samo postepuje
sie w przypadku struktur danych o okreslonych wartoéciach brzegowych (np. tablice).
W projektowaniu testow funkcjonalnych stosuje sie takze kombinacje metody testo-
wania na podstawie klasy réwnowaznosci z metodag analizy wartosci brzegowych, co
okrefla sie terminem testowania domenowego [30-32]. W takiej sytuacji przypadek te-
stowy obejmuje wartosci graniczne, sasiednie z granicznymi oraz wybrang dodatkowa

warto$é¢ z danego przedziatu rownowaznosci.

17

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

Testowanie oparte na tablicach decyzyjnych zaklada, ze kazdy program mozna
uznaé za funkcje, ktéra mapuje wartosci wektorow wejsciowych na wartosci odpowie-
dzi systemu. Technika ta jest takze Scisle zwigzana, a w pewnym sensie wyewoluowala,
z innych technik czarnoskrzynkowych, takich jak testowanie na podstawie klas réwno-
waznosci i testowanie wartosci granicznych. Tablice decyzyjne opisuja w sposob czy-
telny dla cztowieka specyfikacje funkcjonalng systemu, co jest przydatne w przypadku
dokumentowania ztozonej logiki. Wektory wejsciowe i wynikajace z nich odpowiedzi
systemu tworza wiersze tablicy. Kazda kolumna odpowiada regule decyzyjnej, ktora
opisuje wektor wejsciowy powodujacy oczekiwang odpowiedz, a w przypadku ztozo-
nych regul stosuje si¢ techniki kombinatoryczne w celu ich optymalizacji. Wartosci
wektoréw i odpowiedzi przedstawia sie w formie wartosci logicznych, tj. P (Prawda),
F (Falsz), - (warunek obojetny). Wpisy obojetne zmniejszaja liczbe jawnych regut, su-
gerujac istnienie regut niejawnie okreslonych. Taka struktura gwarantuje, ze rozwazona
zostanie kazda mozliwa kombinacja wartosci warunkoéw i pozwala uzyska¢ minimalny

oraz kompletny zestaw przypadkéw testowych [33].

Grafy przejs¢ tworzone sa na podstawie tablicy przej$¢ i przedstawiaja popraw-
ne przypadki przej$¢ pomiedzy stanami systemu. Testy przejs¢ miedzy stanami mozna
zaprojektowacé w sposob zapewniajacy pokrycie typowej sekwencji stanow, przetestowa-
nie wszystkich stanéw badz przetestowanie wszystkich przej$¢, konkretnych sekwencji

przej$¢ lub przej$é niepoprawnych [34, 35].

Testowanie losowe polega na losowym wybieraniu danych testowych z przestrzeni
wejsciowej badanego systemu, zgodnie z okreslonym rozktadem prawdopodobienstwa.
Jest to szczegdlnie przydatne, gdy wiedza o domenie testowanego systemu jest ograni-
czona lub gdy potrzebna jest duza liczba danych testowych, np. w testach wydajnoscio-
wych. Automatyzacja tego procesu czyni go optacalnym i pozwala — w ujeciu proba-
bilistycznym — oceni¢ niezawodnosé¢ testowanego obiektu. Testowanie losowe pomaga
rowniez unikna¢ uprzedzen, takich jak nadmierne zaufanie do okreslonych fragmentow
kodu. Mimo to, metoda ta ma swoje ograniczenia: moze pomija¢ semantyke danych,
przez co nie wykrywa bledéw zaleznych od znaczenia danych, moze generowaé¢ zbedne
przypadki testowe, pomija¢ niektére defekty, a takze prowadzi¢ do niespdjnych wyni-
kéw testéw z powodu losowosci [30]. Szczegblnym przypadkiem testowania losowego
jest testowanie rozmyte, ktére polega na zalewaniu oprogramowania (ang. flooding)
losowymi lub zmodyfikowanymi danymi wejsciowymi, co jest szeroko stosowane w ob-
szarach zwigzanych z cyberbezpieczenstwem, poniewaz metoda ta okazata si¢ niezwykle

skuteczna w wykrywaniu podatnosci w oprogramowaniu.

18

2.5. Rola testow automatycznych i manualnych

Generowanie nastepczych przypadkow testowych na podstawie juz istniejacych oraz
zdobytej wiedzy na temat testowanej funkcjonalnosci nosi miano testowania metamor-
ficznego. Nowe przypadki tworzy si¢ w oparciu o tzw. relacje metamorficzne (ang. Me-
tamorphic Relations, MR) — sa to wlasciwosci testowanego systemu, ktore okreslaja,
jak zmiana danych wejSciowych powinna wplynac¢ na oczekiwany wynik testu. Techni-
ka ta jest stosowana w sytuacjach, gdy nie ma mozliwosci jednoznacznego okreslenia

oczekiwanego wyniku testu [36-38].

Ostatnia z technik dynamicznych, testowanie na podstawie przypadkdéw uzycia lub
testowanie w oparciu o scenariusz [39], jest podstawa testowania funkcjonalnego opar-
tego na kontekscie (ang. Context-Based Testing). Jest to trend, w ktérym zwraca sie
szczegblng uwage na sposéb, w jaki system wbudowany bedzie uzytkowany. Podsta-
wowa notacja do dokumentowania przypadkéw uzycia stanowia diagramy UML (ang.
Unified Modeling Language), ktére opisuja relacje miedzy aktorem a systemem, jed-
nakze stosuje sie czesto opis jezykiem naturalnym [40,41]. Najwicksza wada takiego
podejscia jest trudnos¢ w automatyzacji procesu, aczkolwiek narzedzia przetwarza-
nia jezyka naturalnego (ang. Natural Language Processing, NLP), a szczegélnie duze
modele jezykowe (ang. Large Language Models, LLM) coraz lepiej radza sobie z gene-
rowaniem przypadkéw testowych z tego typu dokumentacji. Mozliwe jest przekazanie
danych z diagramu UML lub opisu stownego do takiego narzedzia lub modelu Sztuczne;j

Inteligencji za pomoca polecen (ang. prompt) [42,43].

Lista ta nie wyczerpuje stosowanych metod testowania funkcjonalnego. Duza czes¢
stanowig techniki oparte na doswiadczeniu oraz wynikajace ze specyfiki danego syste-
mu. W praktyce nie wykorzystuje sie wspomnianych technik testowania pojedynczo,
zamiast tego taczy sie je w obrebie przypadkow testowych, by zwiekszy¢ efektywnosé
oraz pokrycie testowe. Wpltyw na rodzaj stosowanych technik ma takze dobor strate-
gii testowej, ktéra moze determinowaé¢ dobdér metod, ktore pomoga uzyskaé najlepsze

rezultaty.

2.5 Rola testow automatycznych i manualnych
ZYozone systemy wbudowane charakteryzuja sie bardzo duzg liczba przypadkow te-

stowych koniecznych do wykonania, aby zapewni¢ zadane pokrycie wymagan funkcjo-

nalnych. Zwykle bardzo liczne sg rowniez testy jednostkowe oraz integracyjne, bedace

sktadowg oprogramowania systemu, cho¢ czesto zalezy to od wewnetrznych procesow

19

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

i ztozonosci cyklomatycznej kodu. W ramach niniejszej pracy przeanalizowano 19 pro-
jektéw, w ktorych liczba testéw funkcjonalnych miesci sie w zakresie od 29 do 29719
(mediana wynosi 1435 przypadkéw testowych), co w przypadku recznego wykonywania
kazdego z nich, czesto po kilka razy, zajetoby zbyt wiele czasu. Nieodzownym narze-
dziem stosowanym w testowaniu systeméw wbudowanych staje si¢ wigc automatyzacja
testow, ktora pozwala na wykonywanie i czesto takze raportowanie wynikéw testow
bez udzialu cztowieka w specjalnie przystosowanym do tego celu srodowisku. Choé
praktycznie kazdy test da si¢ zautomatyzowaé, to proces ten traktowany jest jako in-
westycja, ktéra wigze sie z duzymi naktadami finansowymi oraz czasowymi zwigzanymi
z tworzeniem wspomnianego Srodowiska oraz skryptow testow automatycznych. [27].
Koszty te amortyzuja sie, im czesciej skrypty te sa wykorzystywane [44]. W rozwija-
niu oprogramowania z wykorzystaniem metodyk zwinnych, gdzie zmiany kodu sa czeste
i wymagaja testowania po kazdej zmianie lub kazdej nocy (ang. nightly tests), automa-
tyzacja przynosi szereg korzysci, pozwalajac oszczedzaé czas, zasoby oraz nie wymaga

zwykle obecnosci inzynieréw w trakcie wykonywania testow [24].

Tworzenie srodowiska do automatyzacji testow rozpoczyna sie od okreslenia wy-
magan funkcjonalnych oraz niefunkcjonalnych, ktére powinny zostaé spelnione [21].
Do programowania skryptéw automatycznych stosuje si¢ szereg jezykow — szczegdl-
nie wysokopoziomowych (np. C++, Python), czy graficznych (np. z wykorzystaniem
narzedzi takich jak National Instruments LabVIEW lub TestStand). Cate srodowisko
testéow automatycznych wraz z przypadkami testowymi, parametrami konfiguracyjny-
mi, wynikami, raportami oraz zaleznos$ciami i interfejsami pomiedzy tymi elementami
okresla sie mianem frameworku [45]. W testowaniu systeméw wbhudowanych szczeg6lnag
role w automatyzacji odgrywa takze warstwa sprzetowa badanego systemu, ktora jest
niezbedna do uzyskania wiarygodnych wynikéow. Komponenty oprogramowania uru-
chamiane sa na docelowym sprzecie, symulatorze, emulatorze lub systemie testowania
sprzetu w petli i kontrolowane sg za pomoca wywotan funkcji w srodowisku progra-
mistycznym. OdpowiedZ systemu moze byé¢ dodatkowo badana za pomocsg urzadzen
pomiarowych lub analizowana z wykorzystaniem debuggera. Zaleta tego podejscia jest
brak wprowadzenia dodatkowego obciazenia obliczeniowego dla mikroprocesora syste-
mu wbudowanego, gdyz testowanie obshugiwane jest po stronie $rodowiska programi-

stycznego lub symulatora [46].

Automatyzacja testow umozliwia szybsze i czestsze wykonywanie testow, a co za
tym idzie, daje przestrzen, by zwigkszy¢ takze pokrycie testowe. Zwykle testy automa-

tyczne sg réwniez bardziej niezawodne, gdyz prawidtowo napisane przypadki testowe

20

2.5. Rola testow automatycznych i manualnych

dziatajace w stabilnym $rodowisku eliminuja btad ludzki i zapewniaja wieksza powta-
rzalnos$¢. Automatyzacja testow jest takze warunkiem koniecznym do implementacji
srodowiska ciaglej integracji (ang. continuous integration) oraz ciagtego dostarczania
(ang. continuous deployment), coraz czesciej stosowanych praktyk z zakresu rozwoju
oprogramowania [47]. Dzieki wiekszej elastycznosci mozliwe jest wykonywanie testéw
zaréwno w dzien, jak i w nocy, co ma znaczenie rowniez w przypadku projektéw roz-
proszonych, prowadzonych jednoczesnie w wielu lokalizacjach na $wiecie. Wada tego
podejscia jest ograniczona kontrola nad przebiegiem samego testu, co czesto prowa-
dzi do niezrozumienia jego dziatania przez inzynieréw analizujacych raporty. Proces
rozwoju automatyzacji jest kosztowny, inwestycja nie obejmuje wytacznie stworzenia

odpowiedniego srodowiska i skryptéw, ale takze jego utrzymywanie [24].

Automatyzacja testéw jest takze podatna na tak zwany ,paradoks pestycydow”,
ktorym okresla sie zjawisko uodparniania si¢ oprogramowania na powtarzane ciggle
doktadnie takie same skrypty automatyczne, ktére przestaja znajdowac kolejne defekty
[48]. W pewnym momencie wszystkie wykryte przez dany skrypt testowy bledy sa
znane lub zostaly naprawione. Nie oznacza to jednak, ze oprogramowanie jest wolne od
defektow, a jedynie ze niezmodyfikowane testy nie sg w stanie ich wykry¢. Wyzwaniem
staje sie réwniez zmiennos¢ funkcjonalnosci oprogramowania wynikajaca z ciagltych
zmian wymagan klientéw oraz wspomnianej naprawy wykrytych wczesniej btedow,

ktéra moze wprowadzi¢ nowe pomylki w kodzie [49].

Pewne elementy systemow wbudowanych sa szczegdlnie podatne na testowanie
w sposéb automatyczny. Nalezg do nich miedzy innymi testy baz danych, komunikacji
i cyberbezpieczenstwa, ktére operuja na duzych i ztozonych zestawach danych wej-
Sciowych i wyjsciowych, badz wymagaja intensyfikacji ruchu sieciowego docierajacego
do systemu whudowanego. Istotnym problemem testerskim staja si¢ mechanizmy bez-
pieczenstwa, takie jak uwierzytelnianie i autoryzacja, ktérych kluczowym elementem
sa generatory liczb losowych (ang. Random Number Generators, RNG) [50], a kt6-
rych reczne testowanie jest praktycznie niemozliwe. Kolejng istotng grupa testéw sa
przypadki, w ktérych wykonanie weryfikacji lub obserwacji wymaga precyzyjnego po-
miaru czasu, temperatury, pozycji, badz innych parametréw fizycznych systemu i nie-
dopuszczalne staje sie¢ wprowadzenie btedu badz opdznienia wynikajacego z dziatania

czlowieka.

21

Rozdziat 2. Analiza literatury i teoria testowania systemow wbudowanych

2.6 Stosowanie duzych modeli jezykowych w testo-

waniu

Gwaltowny rozwéj duzych modeli jezykowych wptynal na sposdb tworzenia opro-
gramowania, szczegolnie w obszarach wymagajacych zaawansowanego rozumienia i ge-
nerowania jezyka naturalnego [51]. Systemy oparte na sieciach neuronowych typu trans-
former staly sie przetomowymi narzedziami w tworzeniu aplikacji, ktore potrafig prze-
twarzac¢, rozumiec i generowaé¢ odpowiedzi przypominajace ludzkie. Systemy te czesto
wykorzystuja architektury generowania wspomaganego wyszukiwaniem (ang. Retrieval-
Augmented Generation, RAG), ktore tacza potezne mozliwosci jezykowe modeli z do-

ktadnymi, aktualnymi informacjami specyficznymi dla danej dziedziny [52].

Integracja modeli jezykowych z systemami automatyzacji testéw niesie ze sobg bez-
precedensowe wyzwania w zakresie zapewnienia jakosci i testowania. W przeciwien-
stwie do tradycyjnych systeméw o deterministycznym zachowaniu, aplikacje oparte na
LLM wykazuja cechy, ktére sprawiaja, ze konwencjonalne podejscia do testowania sa
niewystarczajace. Systemy te generuja niedeterministyczne odpowiedzi, zachowujg sie
w sposob zalezny od kontekstu i moga wytwarzaé¢ tzw. halucynacje, co wplywa na ich
niezawodno$¢ i wiarygodno$é [43]. Liczba czynnikéw zmiennych wzrasta w przypad-
ku systemow RAG, gdzie jako$¢ odpowiedzi zalezy nie tylko od mozliwosci LLM, ale

rowniez od doktadnodci i trafnosci pozyskiwanych informacji.

Generowanie wspomagane wyszukiwaniem moze zosta¢ dodatkowo wsparte za po-
moca procesu dostrajania (ang. fine-tuning) w celu poprawy wydajnosci w zadaniach
specyficznych dla danej dziedziny. Proces dostrajania obejmuje przygotowanie danych

sformatowanych jako pary wejscie-wyjscie do uczenia nadzorowanego [53].

Wspomniane wady duzych modeli jezykowych oraz ryzyko zwiazane z generowa-
niem nieprecyzyjnych lub zmyslonych odpowiedzi powoduja, ze uzycie tych sieci neu-
ronowych staje sie ograniczone w zakresie weryfikacji i walidacji funkcjonalnej syste-
mow wbudowanych, ze szczegdlnym uwzglednieniem systemoéw bezpiecznych. Kluczowe
aspekty takie jak powtarzalnosé i wiarygodnosé testow projektowanych lub przeprowa-
dzanych z wykorzystaniem modeli jezykowych nie moga by¢ obecnie w petni zapew-
nione i zaleza w duzym stopniu od dostarczonych modelowi danych uczacych, sposobu
uczenia, czy funkcji aktywacji [54,55]. Narzedzia te moga by¢ jednakze z wieksza pewno-
Scig stosowane do wspomagania procesu testowego, na przyktad w zakresie wykrywania

potencjalnych duplikatéw zgloszonych defektéw [56].

22

2.7. Certyfikacja w testowaniu systeméw wbudowanych

2.7 Certyfikacja w testowaniu systeméw wbudowa-

nych

Miedzynarodowa organizacja International Software Testing Qualifications Board
(ISTQB), dziatajaca na zasadzie wolontariatu, zajmuje sie certyfikowaniem specjalistow
w dziedzinie testowania oprogramowania i zapewniania jakosci. Oferuje ona rozbudowa-
ny system certyfikacji, obejmujacy réznorodne programy dostosowane do aktualnych
standardéw branzowych, ktéry obrazuje Rysunek 2.6 [57]. Kazdy z tych programéw
zawiera szczegdtowy sylabus oraz przyktadowe pytania egzaminacyjne. Materialy te
moga by¢ réwniez wykorzystywane jako podstawa do prowadzenia zaje¢ akademickich
z zakresu testowania oprogramowania [58]. Do czerwca 2024 roku, ISTQB przeprowa-
dzito 1,375 miliona egzaminéw i wydato ponad 995 tysiecy certyfikacji w ponad 130
krajach [30].

Certyfikacja dla testeréw oprogramowania oferowana przez te organizacje jest uzna-
wana na calym Swiecie jako standard kwalifikacji testerskich na réznych poziomach
zaawansowania. ISTQB oferuje specjalistyczne certyfikaty, ktore pomagaja w zdobyciu
wiedzy i umiejetnosci niezbednych do efektywnego testowania oprogramowania, tak-
ze dla systemow wbudowanych. Certyfikacja na poziomie podstawowym, znana jako
Certyfikowany Tester Poziom Podstawowy (ang. Certified Tester Foundation Level,
CTFL), zapewnia solidne podstawy w zakresie zasad testowania, proceséw i technik,

ktére sa kluczowe dla kazdego testera [59].

Oprocz tego ISTQB oferuje certyfikaty na poziomie zaawansowanym i eksperckim,
ktore obejmuja obszary takie jak zarzadzanie testami, analityka testéw, czy ulepszanie
proceséw testowych. Wyrdzni¢ mozna tez Sciezke certyfikacyjna dla testeréw zwinnych
(agile) oraz Sciezke specjalistyczna, ktéra skupia sie na testowaniu w odniesieniu do
poszczegdlnych gatezi przemystu [30,59]. Certyfikaty te pomagaja testerom w zdobyciu
glebszej wiedzy i umiejetnosci, ktore sa niezbedne do radzenia sobie takze z unikalnymi
wyzwaniami zwigzanymi z testowaniem systemow wbudowanych, ale na chwile obecng

organizacja nie oferuje certyfikacji zwigzanej $cisle z ta problematyka.

23

Rozdziat 2. Analiza literatury i teoria testowania systeméw wbudowanych

N Test Management
= Managin /)
o eﬁ; the Test egm the g?:‘c;ro[’f};
e’

Umiejetnosci

Pozostate schematH
wspierajgce

certyfikac
IREB® TMMI® |IQBBA®
Poziom

podstawowy

Rysunek 2.6: Certyfikacja ISTQB (Zrédlo: Testerzy.pl; grafika wykorzystana za zgoda
autora)

2.8 Wplyw badan na certyfikacje

Pomimo unikalnej architektury i implementacji, w trakcie przeprowadzania badan
opisanych w dalszych rozdziatach niniejszej pracy, zaobserwowano szereg uniwersalnych
wyzwan i mozliwych do zastosowania technik, ktore sa charakterystyczne dla testowania

systemow whudowanych. Naleza do nich miedzy innymi:

24

2.8. Wptyw badan na certyfikacje

o planowanie wtasciwej strategii, ktora bierze pod uwage zalezno$ci sprzetowo-

programowe,
« planowanie dostepnosci zasobéw sprzetowych,
o automatyzacja testéw i budowanie frameworkow testowych,

e znaczenie testowania opartego na doswiadczeniu.

Wyniki badan nad testowaniem systemoéw wbudowanych oraz kolejne prace rozsze-
rzajace ich zakres moga znaczaco wptynac na certyfikacje ISTQB, prowadzac do aktu-
alizacji sylabuséw i wprowadzenia nowych standardéw branzowych. Rozwdj technologii
sprawia, ze systemy wbudowane staja sie coraz bardziej zaawansowane i pojawiajg sie
nowe wyzwania zwigzane z ich testowaniem. Badania moga dostarczy¢ nowych metod
i narzedzi, ktore beda musiaty zosta¢ uwzglednione w programach certyfikacyjnych
ISTQB, aby testerzy byli na biezaco z najnowszymi praktykami i technologiami. Po-
nadto, mozliwy jest rozwdj nowych specjalizacji w ramach certyfikacji ISTQB, w tym
dedykowanej dla testeréw systemoéw wbudowanych. To pozwolitoby testerom na zdo-
bycie bardziej wyspecjalizowanej wiedzy i umiejetnosci, co z kolei przyczynitoby sie do

poprawy jakosci i niezawodno$ci testowanych systeméw.

25

Rozdziat 3

Charakterystyka projektu
doktorskiego

3.1 Metodyka badan

Na wyboér metody badawczej przyjetej do realizacji pracy doktorskiej miata wpltyw
empiryczna charakterystyka pracy w firmie Rockwell Automation, w ktérej prowadzone
byto wdrozenie. W dziale badan i rozwoju wykorzystuje sie Scaled Agile Framework [60],
bedacy przedstawicielem metodyk zwinnych wytwarzania oprogramowania i sprzetu.
Framework ten pozwala na skalowanie proceséw na poziomie przedsiebiorstwa. Cha-
rakteryzuje go iteracyjne podejscie do pracy, w ktorym przyrosty przypadajg na okresy
zwane interwalami planowania (ang. Planning Interval, PI). Typowy interwal obejmuje
osiem do dwunastu tygodni i zawiera od czterech do szesciu dwutygodniowych iteracji
(zwanych tez sprintami), zakonczonych spotkaniami przegladowymi, retrospektywami
oraz planowaniem kolejnych celow. W ramach PI podejmowane sa decyzje dotycza-
ce alokacji zasobow, priorytetyzacji backlogu oraz identyfikacji ryzyk projektowych.
Aby pozosta¢ w zgodzie z tym trybem pracy, badania zaplanowane zostaly w formie
eksperymentéw — stopniowej modyfikacji stosowanych technik testowych i obserwacji
ich wptywu na uzyskiwane wyniki testowania w odniesieniu do wynikéw wczesniej-
szych, uwzgledniajac starsze wersje oprogramowania oraz wczesniej rozwijane systemy
wbudowane o podobnej charakterystyce. Dzigki cyklowi iteracyjnemu mozliwe byto

inkrementalne wprowadzanie zmian i ich szybka weryfikacja.

Rozwijanie nowych produktéw wykazuje cechy projektu, gdyz nosi znamiona unikal-

27

Rozdziat 3. Charakterystyka projektu doktorskiego

nosci, poszczegdlne zadania sa ze sobg powiazane, a prowadzone prace maja okreslony
poczatek oraz koniec. Cykl rozwoju produktu i specyfika pracy w przedsiebiorstwie
wykluczaja stosowanie réznych technik testowania wielokrotnie w odniesieniu do tego
samego systemu, gdyz kolejne wersje oprogramowania stale ewoluujg, a presja czasu
nie pozwala na powtérne testowanie tych samych funkcjonalnoéci z wykorzystaniem
innych metod. Zatem poréwnanie poszczegdlnych strategii i podej$é moze odbywaé sie
wytacznie wzgledem innych projektow, ktore — choé¢ maja wyrazne elementy podobien-
stwa — nigdy nie sa identyczne, zatem ma ono charakter przyblizony. Nalezy zwréci¢
uwage, ze w duzych korporacjach nad testowaniem ztozonego systemu wbudowanego
pracuja wieloosobowe zespoly rozproszone, zlokalizowane w réznych centrach inzynie-
ryjnych na calym $wiecie. Kampanie testowe trwaja od kilku do kilkunastu miesiecy
i obejmuja wykonanie nawet kilkudziesieciu tysiecy przypadkéw testowych, co generuje
wysokie koszty zwigzane z pracg testerow i utrzymaniem infrastruktury. W takim kon-
tekscie efektywnosé procesu testowego staje sie istotnym czynnikiem konkurencyjnosci

przedsiebiorstwa.

Kluczowe bylo przyjecie takiej metody badawczej, ktéra umozliwia jednoczesne
uwzglednienie kontekstu projektowego, zmiennosci warunkow realizacyjnych oraz zto-
zonosci srodowiska testowego. Warunki te spetnia studium przypadku [61-64] o cha-
rakterze eksploracyjnym, umozliwiajace analize przebiegu rzeczywistych dziatan inzy-
nierskich w ich naturalnym kontekscie. Studium przypadku pozwala na systematycz-
ne dokumentowanie zmian w strategii testowania oraz ocene ich wptywu na mierzalne
aspekty procesu testowego, takie jak pokrycie testowe, liczba wykrytych defektow, czas

wykonania kampanii czy wspotczynnik automatyzacji.

Dla zapewnienia rzetelnosci i powtarzalnosci wnioskowania, dane ilosciowe pocho-
dzace z repozytoriéw testéow, narzedzia do zarzadzania testowaniem i systemu zarza-
dzania defektami byty zestawiane z obserwacjami jakosciowymi, pochodzacymi m.in. ze
zbieranych metryk oraz analiz dokumentacji projektowej. Taka kombinacja pozwolita
nie tylko na identyfikacje statystycznych trendow i korelacji, ale réwniez na uchwyce-
nie przyczynowych relacji pomiedzy modyfikacjami proceséw testowych a ich skutkami
W rzeczywistej pracy zespotow.

Przyjeta metoda badawcza stanowi kompromis pomiedzy rygorem naukowym a ogra-
niczeniami praktycznymi wynikajacymi z charakterystyki projektow rozwoju systemow
wbudowanych. Umozliwita ona uzyskanie wnioskéw o wysokim stopniu uzytecznosci

wdrozeniowej, przy jednoczesnym zachowaniu spéjnosci z rzeczywistoscia operacyjna

28

3.1. Metodyka badan

przedsiebiorstwa.

Przeglad literatury przedmiotu oraz analiza przedsigbiorstwa pozwala sformutowaé

trzy gtowne cele badawcze:

1. Ocena strategii testowania opartej na ryzyku oraz wptywu stopnia automatyzacji

testéw na efektywnosé kampanii testowych.

2. Analiza wplywu testowania opartego na doswiadczeniu, a w szczegdlnosci testow

eksploracyjnych, na liczbe oraz istotno$¢ wykrytych defektéw.

3. Identyfikacja czynnikow organizacyjnych i technicznych sprzyjajacych szybkiej

adaptacji nowych strategii testowania w zespotach rozproszonych.

Pierwszy z celow badawczych dotyczy sprawdzenia, czy podejscie do testowania
oparte na analizie ryzyka oraz automatyzacja testéw przenosza sie na wymierne ko-
rzysci w kontekscie skrdcenia czasu trwania kampanii testowej. Analiza poréwnawcza
obejmuje projekty trwajace, ktére podatne sg na modyfikacje w tym zakresie, wzgledem
projektéw zakonczonych, w ktorych testowanie oparte na ryzyku nie bylto stosowane,
a stosunek testéw automatycznych do recznych jest ustalony i znany. Ocenie poddane
jest kryterium ilosciowe, to jest czas trwania testow oraz koszt przygotowania automa-

tyzacji wzgledem oszczednosci czasu w kolejnych rundach testowania.

Realizacja drugiego celu opiera si¢ na zastosowaniu testowania eksploracyjnego ja-
ko elementu kampanii testowej dla trwajacego projektu, aby sprawdzié¢, jak testowanie
oparte na doswiadczeniu przektada sie na liczbe znalezionych btedéw w oprogramowa-
niu. Weryfikacja iloSciowa i jako$ciowa obejmuje liczbe znalezionych btedow, ich typ,
czas przygotowania testéw eksploracyjnych oraz wykrywalnos¢ defektéw, ktérych nie

wychwycity testy formalne.

Ostatnim elementem jest identyfikacja czynnikéw organizacyjnych i technicznych,
ktére umozliwiaja efektywng implementacje nowych strategii testowania w zespotach
zlokalizowanych w roéznych miejscach na $wiecie. Realizacja celu oparta jest o pozy-
skane doswiadczenie i ma charakter badawczo-analityczny. Jej kryterium realizacji jest

zaproponowanie zestawu dobrych praktyk i wnioskow.

Badaniom zostato poddanych tacznie dziewietnascie projektéw ztozonych systemow
wbudowanych realizowanych w Rockwell Automation w latach 2020-2024 — przemien-

nikow czestotliwosci, kart rozszerzen, sterownikow programowalnych oraz moduléw

29

Rozdziat 3. Charakterystyka projektu doktorskiego

wejsé-wyjs¢ — przedstawionych w formie zanonimizowanej w Tabeli 3.1. Nadanie nazw
kodowych projektom powodowane jest faktem, iz nazwy komercyjne poszczegdlnych
produktéw powigzane z danymi jakosciowymi z testéw funkcjonalnych stanowig ta-
jemnice przedsiebiorstwa i ich wykorzystanie wigzatoby sie z koniecznoscig utajnienia

wynikéw pracy.

H Kryptonim projektu Liczba przypadkow testowych Rozmiar H

Alpha 20 719 Q5 (XL)
Bravo 2 606 Q5 (XL)
Charlie 27 317 Q5 (XL)
Delta 4474 Q5 (XL)
Echo 1351 Q3 (M)
Foxtrot 1 904 Q4 (L)
Golf 608 Q2 (S)
Hotel 587 Q2 (S)
India 7 812 Q5 (XL)
Juliet 1435 Q3 (M)
Kilo 2 649 Q5 (XL)
Lima 2 246 Q4 (L)
Mike 2 166 Q4 (L)
November 92 Q1 (XS)
Oscar 1 353 Q3 (M)
Papa 223 Q1 (XS)
Quebec 72 Q1 (XS)
Romeo 1141 Q2 (S)
Sierra 29 Q1 (XS)

Tabela 3.1: Projekty analizowane w ramach pracy badawczej

Srednia liczba przypadkéw testowych w projekcie to 4 620, a mediana wynosi 1 435.
Aby uspéjnié¢ analize, projekty Alpha, Charlie oraz India zostaty wykluczone z dalszych
rozwazan ze wzgledu na zdecydowanie wicksza liczbe przypadkow testowych, co obra-
zuje Rysunek 3.1, a takze niekompletne dane, co wynika z dlugoletniej historii tych

projektéw i utracenia czesci informacji ze wzgledu na migracje miedzy narzedziami.

Klasyfikacja projektéw na grupy ze wzgledu na liczbe przypadkow testowych opar-
ta zostata o rozklad normalny, a wartosciami granicznymi przedziatow sa dwudziesty,
czterdziesty, szeSédziesigty i osiemdziesigty percentyl. Za implementacje i testowanie
tych produktéw odpowiadaly zréznicowane zespoty, natomiast projekty o kryptoni-
mach Quebec, Sierra, Oscar oraz Lima byty podstawa prowadzonych w ramach dokto-

ratu eksperymentéw i modyfikacji strategii testowe;j.

30

3.2. Planowanie i projektowanie eksperymentow

30000 .Alpha
_Charlie
25000
20000
15000 B Liczba testow
10000
. India
5000 Delta Srednia arytm.
Mediana
0 Sierra

Rysunek 3.1: Dystrybucja projektéow ze wzgledu na liczbe testéw
3.2 Planowanie i projektowanie eksperymentow

Przed wdrozeniem dziatan optymalizacyjnych kampanie testowe w firmie charak-
teryzowaty sie wydtuzonym czasem realizacji w stosunku do standardéw branzowych.
Testowanie funkcjonalne czesto nastepowato z opdznieniem wzgledem implementacji

nowych funkcjonalnosci, co wynikato z nastepujacych przyczyn:

« niestabilnego i zawodnego $rodowiska automatyzacji testow,

o dlugich i skomplikowanych przypadkow testowych, ktére pokrywaja kilka lub

kilkadziesigt wymagan funkcjonalnych,

o skryptéw testéw automatycznych zawierajacych zakodowane na state zmienne

srodowiskowe oraz parametry testowanego urzadzenia,

31

Rozdziat 3. Charakterystyka projektu doktorskiego

o braku pelnego zrozumienia dzialania testowanego systemu przez inzynieréw,

e presji czasowej nie pozwalajacej na redukcje dtugu technicznego.

Skrypty testow funkcjonalnych tworzone bylty w wewnetrznie rozwijanym $rodowi-
sku opartym o graficzny jezyk programowania, zblizony do funkcjonowania komercyjne-
go narzedzia National Instruments TestStand. Poszczegodlne kroki testu realizowane by-
ty za pomoca tzw. aktorow, tj. reuzywalnych i parametryzowalnych elementéw pelnig-
cych okreslone funkcje: inicjujace potaczenie sieciowe z systemem wbhudowanym, konfi-
guracyjne, pomiarowe, weryfikacyjne, obliczeniowe (w tym operacje logiczne), umozli-
wiajace przechowywanie zmiennych i operacje na nich, tworzenie petli, czy korzystanie
z instrukcji warunkowych. Testy zorganizowane sg w ramach podprograméw zwanych
workflow, jednakze ich egzekucja mozliwa bylta wylgcznie w catosci, co w przypadku
wystapienia problemu w trakcie wykonywania testu, wymuszato powtorzenie catej, cza-
sochtonnej procedury. Dziatanie srodowiska, bedacego aplikacja na system operacyjny
Microsoft Windows, uzaleznione byto od dostepnych zasobow obliczeniowych kompu-
tera i systemu operacyjnego. Potaczenie sieciowe z testowanym obiektem odbywato si¢

nie bezposrednio, a za pos$rednictwem wywolania zewnetrznego oprogramowania.

Testowane systemy wbudowane, szczegdlnie przemienniki czestotliwosci, wystepu-
ja w kilku odmianach sprzetowych ze wzgledu na oferowana moc na wyjsciu, a takze
parametry zasilania, takie jak napiecie i czestotliwosé. Ze wzgledu na wspotprace z dzia-
tami inzynierskimi zlokalizowanymi w Stanach Zjednoczonych, czy Azji, parametry te
powinny by¢ odczytywane z pliku konfiguracyjnego lub danych zapisanych w pamigci
testowanego systemu. Niestety praktyka pokazuje, ze parametry te byty przechowywa-
ne w skryptach testowych w formie stalych programowych. Co wiecej, czes¢ wynikéw
testow bezposrednio zalezy od tych parametréw, co w przypadku uruchamiania ich
w innej lokalizacji skutkowato nieoczekiwanymi btedami i konieczno$cia wprowadzania

poprawek.

Wszystkie te cechy wptywaty bezposrednio na zawodno$¢ testow oraz koniecznosé
poswiecenia duzych naktadéw pracy w celu przywrécenia ich poprawnego dziatania.
Dodatkowo, ze wzgledu na réznice w dziataniu poszczegdlnych testowanych systeméw,
rozwijane wewnetrznie srodowisko testowe wymagato tworzenia dodatkowych aktorow,
umozliwiajacych interakcje, zmiane konfiguracji, czy wywotanie poszczegdlnych funk-
cji urzadzen. Kolejng wada rozwigzania byta konieczno$é¢ recznego uruchamiania oraz

raportowania wynikéw testow.

32

3.3. Wykorzystanie metryk w ocenie jakosci testow i systemow

W trakcie gdy w firmie prowadzone byty réwnolegle prace nad poprawg stabilnosci
istniejacych testéw oraz umozliwieniem indywidualnej egzekucji poszczegolnych work-
flow, w ramach czesci wdrozeniowej pracy doktorskiej zaproponowana zostala specyfi-
kacja wymagan dotyczacych nowego srodowiska testowego. Okreslono réwniez strategie
testows dla wspomnianych wczesniej projektéw Oscar oraz Lima, zorganizowang wo-
kot duzej liczby niewielkich i niezaleznych przypadkow testowych, ktore bezposrednio
odpowiadajg poszczegdlnym wymaganiom funkcjonalnym testowanego systemu wbudo-
wanego. We wspoélpracy z zespotem stworzono prototyp srodowiska testowego opartego
o jezyk Python, biblioteke unittest, a takze zbiér narzedzi wewnetrznych firmy, rowniez
napisanych w Pythonie!. Gléwng zaleta tego rozwigzania byla szybsza oraz bardziej
stabilna komunikacja z testowanym systemem, a co za tym idzie, takze znacznie skro-
cony czas wykonywania testow. Nowe srodowisko umozliwia pisanie oraz wykonywanie
atomowych, tj. pokrywajacych pojedyncze wymaganie testéow, a takze automatyczne

ich uruchamianie i raportowanie wynikéw do systemu zarzadzania testami.

Czes¢ wdrozeniowa polegajaca na przeprowadzaniu eksperymentow, to jest wykony-
wania na systemie wbudowanym testéw funkcjonalnych, odbywata si¢ przyrostowo, po
kazdorazowym przekazaniu przez zespot programistéw wersji oprogramowania wbudo-
wanego zawierajacego stosowna funkcjonalno$é. Synchronizacja prac migdzy programi-
stami i testerami miata miejsce w ramach planowania PI oraz poszczegdlnych sprintow.
Na podstawie wnioskéw czastkowych zebranych w trakcie kolejnych eksperymentow,
strategia testowa dotyczaca projektéw Oscar oraz Lima byta w trakcie realizacji prac
badawczych oraz wdrozeniowych modyfikowana poprzez wtaczenie elementéw zwiagza-
nych z testowaniem opartym na ryzyku [65-67] oraz opartym na doswiadczeniu [68],

w szczegdlnosci testowania eksploracyjnego [69-71].

3.3 Wykorzystanie metryk w ocenie jakos$ci testow
i systemow
Jednym z kluczowych wyzwan w testowaniu funkcjonalnym systeméw wbudowa-

nych jest skuteczne mierzenie postepéw oraz efektywnosci tych testéw. Coraz wie-

cej organizacji wymaga obecnie jednoznacznych dowodéw na przeprowadzenie testow,

! Autorskim wkladem w te prace bylo planowanie i zarzadzanie praca w kontekécie trwajacych
projektow, formutowanie wymagan w kontekscie spelnienia strategii testowej oraz wykonanie czesci
implementacji modutéw i skryptéw testowych

33

Rozdziat 3. Charakterystyka projektu doktorskiego

przedstawionych w formie szczegdtowych raportéw [27]. Dokumenty te zawieraja precy-
zyjne informacje dotyczace jakosci testowanego produktu oraz prezentujg wyniki proce-
su testowego. Chociaz sposéb monitorowania postepow testéw i raportowania moze sie
rozni¢ w zaleznosci od organizacji, zazwyczaj koncentruje sie on wokét pieciu gtéwnych
obszarow: ryzyk jakosciowych, wykrytych defektow, przypadkéw testowych, pokrycia

testowego oraz poziomu zaufania do produktu [72].

W kontekscie testowania funkcjonalnego systeméw whbudowanych, tradycyjne me-
tody takie jak pomiar liczby linii kodu [73], analiza pokrycia mutacyjnego [74] lub
stanéw programu [75], a takze narzedzia do mierzenia pokrycia kodu czy gatezi, okazu-
ja sie czesto nieskuteczne. Wynika to z faktu, ze testerzy zazwyczaj nie majg dostepu
do kodu zZrédtowego produktu. Przekonanie, ze pelne pokrycie wymagan wystarcza do
zapewnienia jakosci, moze by¢ ztudne. Moze to prowadzi¢ do sytuacji, w ktorej pro-
dukt zostaje wprawdzie zweryfikowany, ale nieprawidtowo zwalidowany — co oznacza,
ze spetlnia wymagania formalne, ale niekoniecznie odpowiada rzeczywistym potrzebom
uzytkownika. Dlatego pokrycie wymagan powinno by¢ traktowane raczej jako dodat-

kowy wskaznik, a nie jedyny wyznacznik jakosci testow.

W ramach pracy doktorskiej wymagane bylo zaproponowanie zestawu metryk,
ktére maja zastosowanie w testowaniu funkcjonalnym [76] oraz moga by¢ wdrozone
w przedsiebiorstwie w celu monitorowania statusu oraz efektywnosci kampanii testo-
wych. Przede wszystkim nalezy do nich ogélna liczba testow oraz ich status w kazdym
projekcie, a takze podziat ze wzgledu na testy manualne i automatyczne. Pozwala to
sledzi¢ postepy w tworzeniu nowych przypadkow testowych w zalezno$ci od ustalonych
celéw — takich jak okreslony poziom automatyzacji, czy liczba testow zatwierdzonych

po zakonczeniu przegladu ich zawartosci, a co za tym idzie, gotowych do wykonania.

Jedna z miar stosowanych do ewaluacji proponowanych zmian i strategii testowe;
jest wspélezynnik efektywnosci testu (ang. Test Effectiveness Ratio, TER), obliczany
wedtug Wzoru 3.1. Moze on by¢ stosowany w odniesieniu do pojedynczego przypad-
ku testowego, jak i calych grup testow, aby poréownaé ich skutecznos¢ w wykrywaniu
defektéw, przy zatozeniu, ze w kodzie poszczegdlnych testowanych funkcjonalnosci wy-

stepuje podobna liczba defektow.

D
TER = =L x 100% (3.1)
Dy

gdzie: Dy oznacza liczbe defektow wykrytych przez test, a D4 oznacza taczng liczbe

34

3.3. Wykorzystanie metryk w ocenie jakosci testow i systemow

wykrytych defektéw.

Inng metoda na poréwnanie skutecznosci wdrozonych modyfikacji, na przyktad
wzgledem innych projektéw, jest gestosé defektéw (Fault Density, FD), ktéra moz-
na obliczy¢ korzystajac ze Wzoru 3.2. Pozwala ona okresli¢, ile btedéw udato sie wy-
kry¢ w trakcie testowania w odniesieniu do tgcznej liczby wykonanych przypadkow
testowych. Przyjmujac, ze w podobnych pod wzgledem ztozonosci i liczby przypadkdw
testowych projektach oczekuje sie podobnej gestosci defektéw, mozna zastosowac te
metryke jako jedno z kryteriow wyjscia z kampanii testowej lub po zakonczeniu testo-
wania okresli¢, czy dana strategia testowa pozwala na wykrycie wickszej lub mniejszej

liczby btedow w odniesieniu do innych.

D
FD =~ % 100% (3.2)
Ly

gdzie: D4 oznacza liczbe wykrytych defektéw, a Ly oznacza liczbe wszystkich wyko-

nanych testow.

Mozliwym jest rowniez odniesienie sie do efektywnosci pojedynczego testu w wy-
krywaniu danego typu defektéw w kolejnych rundach testowania za pomoca indeksu
efektywnosci testu (ang. Test Effectiveness Index, TEI, u) okreslonego Wzorem 3.3.
Niech T; oznacza typ defektu. Przyktadowe rodzaje defektow charakterystyczne dla
testowania funkcjonalnego okresla Tabela 3.2. W tym przypadku liczba defektéw w k—
tym module jest oznaczona jako D! (T;), gdzie: | oznacza kolejna runde testowania,
a 1 oznacza rodzaj defektu. Im T EI bardziej zbliza si¢ do wartosci 1, tym bardziej

efektywny jest dany przypadek testowy.

H Oznaczenie Typ defektu Opis H
Ty Defekt funkcjonalny Implementacja systemu wbudowanego
rozni sie od specyfikacji wymagan funk-
cjonalnych.
T Defekt bezpieczenstwa Funkcjonalno$é bezpieczenstwa nie jest

zgodna z wymaganiami bezpieczenstwa
lub odkryto ryzyko zwigzane z bezpie-

czenstwem.

T Defekt wydajnosciowy Wydajno$é systemu jest niestabilna lub
niezgodna ze specyfikacja.

Ty Defekt interfejsu Defekt zwigzany z interfejsem uzytkow-

nika lub warstwa komunikacyjna.

Tabela 3.2: Przyktadowe typy defektéw w testowaniu funkcjonalnym

35

Rozdziat 3. Charakterystyka projektu doktorskiego

W, gdy Di; 7é 0 oraz Di; 7£ Di_l
[y = Di gdy DL 0 oraz D = D! (3.3)
1, gdy DL =0

Wada tych metryk jest mozliwo$¢ doktadnego pomiaru dopiero po zakonczeniu pew-
nego etapu kampanii testowej, poniewaz w trakcie jej trwania dostepne sa jedynie
wyniki czagstkowe. Najprostsza metoda sprawdzenia postepow w testowaniu jest liczba
wykonanych testéow. Pokazuje ona, jak wiele testow zostato wykonanych i ile pozostato,
a prezentowana jest najczesciej w formie wykresu spalania (ang. burndown chart). Licz-
ba ta nastepnie wykorzystywana jest miedzy innymi do obliczenia gestosci defektow.
Liczbe wykonanych testéw mozna odnies¢ rowniez do pokrycia specyfikacji wymagan
funkcjonalnych, okreslajac, ile wymagan zostato przetestowanych. Warto nadmienié,
ze petne pokrycie wymagan nie jest kryterium wystarczajacym do zakonczenia kampa-
nii testowej, gdyz pomija ono catkowicie aspekt walidacyjny testowania. Podobnie jest
z okreslaniem czasu potrzebnego na testowanie — wyczerpanie limitu czasu nie ozna-
cza, ze proces zostal zakonczony — cho¢ w przypadku modyfikacji strategii testowej
dostarcza nam to informacji, czy nowe podejscie jest bardziej, czy mniej wydajne pod

tym wzgledem.

Mozliwe jest rowniez okreslenie metryk zbieranych w okresie po zakoriczeniu te-
stow, gdy system wbudowany trafia do uzytkownikow koncowych. Nalezg do nich licz-
ba niewykrytych defektéw lub procent wykrytych defektéw (ang. Defect Detection
Percentage, DDP), ktéry obliczany jest za pomoca Wzoru 3.4. Badanie przyczyn nie-
wykrycia defektéw w trakcie testowania jest waznym aspektem poprawiania procesoéw
testowych. Umozliwia ono wskazanie, na ktérym etapie testow defekt powinien zostac
wykryty i umozliwia reakcje polegajaca na dodaniu wtasciwych przypadkéw testowych
lub wdrozeniu nowego typu testowania, tak by sytuacja ta nie powtarzata si¢ w przy-

sztodci.

D4
Dj+ Dy
gdzie: D4 oznacza liczbe wykrytych defektéw, a Dy oznacza liczbe niewykrytych de-
fektow.

DDP = x 100% (3.4)

Ocenie jakosci podlega rowniez automatyzacja testéw. Jednym z istotnych jej pa-

rametréw jest niezawodnos¢ (ang. Test Automation Reliability, TAR), rozumiana jako

36

3.4. Teza badawcza

rzetelno$¢ dostarczanych wynikéw, okreslona Wzorem 3.5. Dostarcza ona informacji
o udziale wynikéw falszywie pozytywnych (w ktorych test konczy sie btednie okreslo-
nym negatywnym rezultatem) oraz fatszywie negatywnych (w ktoérych defekt nie zostat

wykryty, mimo ze powinien) wzgledem catkowitej liczby skryptéw testowych.

R
TAR = (1 — =5) x 100%. (3.5)
La
gdzie: Rp oznacza liczbe wynikow falszywie pozytywnych i negatywnych, a L4 oznacza

liczbe testéw automatycznych.

Zbieranie i analiza metryk sg zadaniami czasochtonnymi oraz polegajacymi w duzej
mierze na jakosci i rzetelnosci dostarczanych danych wejsciowych, dajacymi natomiast
wymierne efekty w ocenie jakosci systemdw i procesu testowania. Dobra praktyka jest
stosowanie narzedzi umozliwiajacych automatyzacje zbierania metryk oraz mozliwosé
przedstawiania czytelnych raportéw, na przyktad Microsoft Power BI. Rownie istotne
jest edukowanie zespotéw oraz interesariuszy, dlaczego dane sa zbierane oraz w jakim
celu sg wykorzystywane. Brak metryk z kolei praktycznie dyskwalifikuje z mozliwosci
podejmowania $wiadomych decyzji i korekty praktyk testerskich w organizacji, gdyz

nie jest mozliwe dokonanie obiektywnej oceny podjetych dziatan.

3.4 Teza badawcza

Testowanie funkcjonalne systeméw whudowanych stanowi jedno z bardziej ztozo-
nych wyzwan we wspotczesnej inzynierii oprogramowania. Pomimo znacznego postepu
w dziedzinie testowania oprogramowania, specyficzne charakterystyki systemow wbu-
dowanych wprowadzajg unikalne problemy, ktorych tradycyjne metody testowania nie

sg w stanie w pelni rozwigzac.

Zmaczacg wadg obecnych rozwigzan testowych jest zalezno$é od sprzetu i ograniczo-
ny dostep do niego. Testowanie oprogramowania wbhudowanego wymaga czesto bada-
nia finalnego produktu, obejmujacego zaréwno sprzet, jak i oprogramowanie. Problem
pojawia si¢ szczegdlnie na wezesnych etapach testowania, gdy kompletna platforma
sprzetowa moze nie by¢ dostepna. Konsekwencja tego jest koniecznos$é polegania na
emulatorach i symulatorach, ktére nie odzwierciedlaja doktadnie rzeczywistego zacho-

wania prawdziwych urzadzen.

Ze wzgledu na powtarzalno$é¢ zdarzen zaréwno w oprogramowaniu, jak i sprzecie,

37

Rozdziat 3. Charakterystyka projektu doktorskiego

odtworzenie defektéw w testowaniu whudowanym jest trudniejsze. Zbieranie danych re-
produkcyjnych jest wyzwaniem ze wzgledu na koniecznos¢ interakeji z dynamicznym,
czesto niedeterministycznym srodowiskiem fizycznym. Tradycyjne testy z oddzielonymi
od sprzetu srodowiskami symulacyjnymi nie sg w stanie uchwyci¢ dynamicznych cech
tych interakcji, takich jak przerwania sprzetowe czy rzeczywiste taktowania komunika-
cji, co prowadzi do systematycznych odchylen miedzy wynikami weryfikacji a rzeczywi-
stym zachowaniem systemu. Nieodtaczny niedeterminizm systeméw czasu rzeczywiste-
go, spowodowany przez warunki wyscigowe, przerwania sprzetowe i wymiane danych
z zewnetrznym kontekstem, ma powazny wplyw na powtarzalnosé i przewidywalnosé.
Czynniki nieliniowe, takie jak rywalizacja o zasoby sprzetowe i opdznienia przerwan,
nie sg formalnie modelowane w tradycyjnych frameworkach testowych, co sprawia, ze
defekty wspdibieznosci, takie jak potencjalne zakleszczenia i inwersja priorytetéw, sa

trudne do skutecznego wykrycia.

Mozliwos¢ wystapienia defektéw zarowno po stronie oprogramowania, jak i sprze-
tu, stanowi takze istotny problem diagnostyczny. W testowaniu wbhudowanym czesto
wykrywa sie wysoki wskaznik defektéw systemowych, poniewaz testowane sg zaréwno
oprogramowanie, jak i sprzet. Nietatwo jest okresli¢, ktérej warstwy systemu dotycza,
co komplikuje debugowanie. W takich przypadkach krytyczna jest wiedza zespotu te-

stowego z zakresu informatyki oraz elektroniki, by poméoc wskazaé¢ zZrodto problemu.

Sporym wyzwaniem jest brak standaryzacji w komunikacji z testowanym systemem.
Fakt, ze nie istnieje jeden protokét komunikacyjny ani kanat, ktéry mozna wykorzystac
do komunikacji z urzadzeniami wbudowanymi, wymaga znajomosci i adaptacji wie-
lu protokotéw i kanatéw komunikacyjnych przy testowaniu oprogramowania dla tych
urzadzen. Podobnie jest z wykorzystywanymi narzedziami wspomagajacymi testowa-
nie — wiele organizacji korzysta z wtasnych, specjalistycznych $rodowisk do weryfikacji
systeméw whudowanych, albo polega na generycznych narzedziach, ktére sg dostosowy-
wane do specyficznych potrzeb systemu. Stwarza to kolejne wyzwania i koszty zwiazane

z utrzymywaniem takich srodowisk.

Takze brak systematycznego podejscia do oceny efektywnosci metod testowych sta-
nowi jedng z najbardziej istotnych, choé¢ czesto pomijanych, wad obecnych rozwia-
zan w testowaniu funkcjonalnym systeméw wbudowanych. Problem ten manifestuje
sie w kilku kluczowych obszarach, ktore znaczgco utrudniaja obiektywne poréwnanie

roznych technik i metodologii testowych.

Brak zunifikowanych metryk umozliwiajacych obiektywng ocene efektywnosci roz-

38

3.4. Teza badawcza

nych metod testowych sprawia, ze porownanie wynikow miedzy réznymi organizacjami,
projektami czy metodologiami staje si¢ niemal niemozliwe. W konsekwencji ogranicza
to mozliwos¢ identyfikacji najbardziej efektywnych metod, utrudnia rozwdéj dziedziny
i hamuje wdrazanie dobrych praktyk opartych na rzetelnych danych empirycznych.
W przemysle dominujg praktyki ad hoc, ktére charakteryzujg sie brakiem formalne-
go procesu i wymaganej dokumentacji. Chociaz testowanie ad hoc moze by¢ skuteczne
w identyfikowaniu defektow, ktore moga umknaé technikom formalnym, jego nieformal-
ny charakter utrudnia systematyczne gromadzenie danych i porownywanie rezultatow.
Stan praktyki w zakresie testowania rézni sie miedzy organizacjami i znacznie odbie-
ga od stanu wiedzy opisanego w literaturze naukowej. Metody powszechnie opisywane
w literaturze, takie jak testowanie eksploracyjne czy analiza ryzyka, nie sa uzywane na

szeroka skale w przemysle.

Brak naukowego podejscia do oceny metod testowych ma powazne konsekwencje

dla catej dziedziny:

e brak mozliwosci obiektywnej oceny postepu — bez standaryzowanych metryk
trudno jest okresli¢, czy nowe metody rzeczywiscie maja przewage nad istnieja-

cymi rozwigzaniami,

o duplikacja wysitkow — organizacje czesto ponosza koszta projektujac podejécie

testowe nowe dla nich, ale istniejace w domenie,

e ograniczona wymiana wiedzy — brak poréwnywalnych wynikow utrudnia dziele-

nie si¢ dobrymi praktykami miedzy organizacjami,

o trudnosci w optymalizacji procesow — bez obiektywnych metryk trudno jest po-
dejmowac decyzje o tym, ktére metody testowe sa najbardziej efektywne w kon-
kretnych kontekstach.

Bez systematycznego podejscia obszar testowania funkcjonalnego systeméw wbudo-
wanych bedzie nadal cierpial na brak obiektywnej podstawy do poréwnania i wyboru
najefektywniejszych metod testowych, co ostatecznie wptywa negatywnie na jakosé
i niezawodno$¢ systeméw wbudowanych. Analiza rozwigzan opisywanych w literaturze,
a takze wnikliwe badanie procesu testowania funkcjonalnego ztozonych systemow whu-
dowanych w firmie Rockwell Automation, jest proba zaadresowania tego zagadnienia

i podstawa do sformutowania tezy rozprawy:

39

Rozdziat 3. Charakterystyka projektu doktorskiego

Zastosowanie hybrydowego frameworku testowego, opartego na synergii de-
terministycznej automatyzacji, systematycznej analizy ryzyka, atomizacji
przypadkéow testowych oraz usystematyzowanego testowania eksploracyj-
nego, pozwala na mierzalng optymalizacje procesu weryfikacji zlozonych
systeméw wbudowanych, wyrazong przez statystycznie istotne podniesie-
nie wartos$ci metryk jakosciowych — w szczegdlnosci gestosci defektéw FD
i wspoélczynnika efektywnosci test6w TER — w stosunku do tradycyjnych,

monolitycznych strategii testowych.

40

Rozdziat 4

Przyjeta strategia testowania

i wyniki badan

4.1 Testowanie oparte na wymaganiach

Testowanie oparte na wymaganiach to podejscie, w ktérym przypadki testowe sg
tworzone na podstawie specyfikacji wymagan systemu wbhudowanego. W kaskadowym
modelu wytwarzania oprogramowania, specyfikacja jest tworzona w catoéci przed roz-
poczeciem fazy implementacji oraz testowania, podczas gdy w modelu zwinnym moze
powstawa¢ w sposéb iteracyjny, w miare rozwijania poszczegolnych funkcjonalnosci
systemu. Wszelkie niejasnosci w wymaganiach zapisanych w jezyku naturalnym moga
prowadzi¢ do powaznych btedéw w kolejnych fazach rozwoju projektu. Wpltyw na jakosé
wymagan oraz przypadkéw testowych moze mieé¢ zaangazowanie testerow w przeglad
specyfikacji. Istniejg standardy przemystowe, definiujace szereg kryteriow jakosciowych

dla indywidualnych wymagan [77], ktére moga stuzy¢ jako podstawa ich oceny:
e poprawnos¢ — trafnos¢ opisu potrzeb klienta,
o wykonalnos¢ — realizowalno$¢ w ramach znanych mozliwosci oraz ograniczen,
o konieczno$¢ — wyrazalnos¢ wylacznie niezbednych oczekiwan,
o priorytet — pilnosé realizacji,

e jednoznacznos¢ — jednakowo$¢ rozumienia wymagania przez uzytkownikow,

41

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

o weryfikowalno$¢ — mozliwo$¢ utworzenia testow, demonstracji, przeprowadzenia

inspekeji, lub analizy (np. symulacji, modelu),

e atomowos¢ — niepodzielnos$¢ poszczegdlnych wymagan i ograniczenie ich zakresu

do pojedynczych cech systemu,

o niezaleznos¢ od implementacji — tre$¢ pomijajaca kwestie praktycznej realizacji

wymagania.

Osobne kryteria jakosciowe stosuje sie na poziomie dokumentu specyfikacji wyma-

gan:

e kompletnos¢ — nie pominigcie zadnego istotnego aspektu,
e spojno$¢ — nie zawieranie sprzecznych wymagan,

o modyfikowalno$¢ — mozliwosé kontrolowanej modyfikacji wraz z rejestrowaniem

zmian,

o mozliwosé Sledzenia powiazan (ang. traceability) — ustanowienie polaczenia z za-

leznymi artefaktami, takimi jak zrodto, cel, przypadek testowy, implementacja.

Sledzenie powigzaii pomiedzy wymaganiami, a testami zapewnia mozliwoéé odszu-
kania artefaktéw, ktére sg merytorycznie powigzane z danym przypadkiem testowym.
Dzigki temu mechanizmowi mozliwe jest przeprowadzenie analizy wptywu zmiany dane-
go wymagania na inne artefakty, okreslenie postepéw w implementacji i przetestowaniu
wymagan, a takze sprawdzenie, czy wymagania nadaja si¢ do powtérnego wykorzysta-
nia (ang. reusability). Testowanie funkcjonalne jest bezposrednio powiazane z wymaga-
niami funkcjonalnymi, ktore sa uszczegdétowieniem wymagan biznesowych lub wynikaja
z norm przemystowych (np. ISO 26262 lub IEC 61508). Sledzenie powiazan jest naj-
czesciej realizowane przez dedykowane oprogramowanie do zarzadzania wymaganiami,
a kryterium wyjscia z testowania moze by¢ osiggniecie okreslonego stopnia przetesto-

wania wymagan.

Poprawnie sformutowane wymagania stanowia takze istotny czynnik techniczny
sprzyjajacy testowaniu. Testowanie na podstawie wymagan stanowi trzon procesu te-
stowego wykorzystywanego w firmie Rockwell Automation. Proces Rockwell Automa-
tion Product Lifecycle (RAPL) w zakresie testowania systeméw (ang. Verification and

Validation) wskazuje wymagania jako podstawowa informacje wejsciowa do procesu

42

© 00 N O U = W N

[E O —
_= O

4.1. Testowanie oparte na wymaganiach

oraz okresla jako oczekiwany stopien pokrycia co najmniej wszystkich wymagan doty-

czacych cyberbezpieczenstwa.

Aby unikng¢ niescistoéci, zmiennosci i probleméw gramatycznych, a takze umozli-
wié prace przy zaangazowaniu inzynierow réznych narodowosci, wymagania najczesciej
spisywane sa w jezyku angielskim [78]. W celu dalszej eliminacji niejednoznacznodci,
wymagania moga by¢ zapisywane w zapisach formalnych (np. Z, VDM) lub pétor-
malnych (np. UML, SysML), a takze w inny usystematyzowany sposob, co umozliwia
tworzenie modeli zachowania systemu i automatyczne generowanie testow na podstawie
tychze (ang. Model-Based Testing, MBT). Spdjna notacja moze obowiazywaé w okre-
Slonym obszarze funkcjonalnym lub kategorii wymagan. Zaleta takiego rozwiazania jest
skrocenie czasu potrzebnego na tworzenie dokumentacji testow oraz skryptéow testow

automatycznych.

Spojna notacja i oparta o nig automatyczna generacja przypadkow testowych zo-
stala zastosowana jako nowy element strategii testowej wdrozonej w ramach realizacji
projektu doktorskiego w zakresie testowania parametrow konfiguracyjnych badanych
systemow whudowanych o kryptonimach Oscar oraz Lima. Specyfikacja wymagan przy-
jeta forme ustrukturyzowanych plikéw .JSON opisujacych parametry urzadzen w struk-
turze obiektowej, to jest podzielonych na klasy, instancje oraz poszczegdlne atrybuty.
Na najwyzszym poziomie hierarchii znajduje sie sekcja Common, ktéra zawiera ogol-
ny wzorzec dopasowania oraz obiekt Class przechowujacy przyktadowa klase. Kazda
klasa moze mie¢ wiele instancji. Instancje zawieraja kolekcje atrybutéw o wlasciwo-
Sciach takich jak wartos¢, typ, zakresy przyjmowanych wartosci, warto$¢ domyslna,
czy jednostka. Pliki, ktorych przyktadowy fragment przedstawia Listing 4.1, zostaty
przetworzone przez program napisany w jezyku Python, generujacy na tej podstawie

opis krokéw testu oraz skrypt testu automatycznego.

{
"Common": {
"Regex": ".x",
"Class": {
"o01": A{
"#name": "ClassName",
"Instance": {
"or: {
"Attribute": {
e {

"fields": [

43

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

{
"value": null,
"type": "UINT',,'VARRAY:UINT",
"variance": null,
"defaultValue": null,
"min": null,
"max": null,
"validValues": null,
"engUnit": null
}

1,

"dataClassification": null,

"#name": "OptionalAttributeList"

},
+s,
}
}
},
}
+,
}

Listing 4.1: Przyktadowy fragment pliku .JSON opisujacego obiekty, instancje

i atrybuty urzadzenia

Podejscie to pozwolito na zredukowanie zaangazowania testeréw w odniesieniu do
437 przypadkéw testowych, co przy zatozeniu dwdch roboczogodzin na dokumenta-
cje przypadku testowego i jego automatyzacje, mozna szacunkowo przeliczy¢ na 146
dni pracy inzyniera (przyjmujac sze$ciogodzinny dzien pracy). Wygenerowane kroki
testu moga wyglada¢ jak na Listingu 4.2. Przypadek testowy polega na weryfikacji
poprawnoéci odezytu atrybutu OptionalAttributeList z klasy ClassName i instancji ,,0”
przy uzyciu ustugi Get Attribute Single stuzacej do odczytu danych. Test obejmuje
sprawdzenie, czy zwracane dane sg zgodne z definicja w pliku JSON, gdzie wartosé¢
atrybutu to null, a typ danych okre$lony jako UINT lub VARRAY:UINT. Oczekiwa-
nym rezultatem jest poprawny status odpowiedzi oraz brak wartosci lub pusta tablica,
co potwierdza zgodnosé¢ z konfiguracja. Dodatkowo weryfikowane sa pola default Value
i engUnit, ktére rowniez powinny by¢ puste, oraz reakcja systemu na préby odezytu
atrybutéw spoza zdefiniowanego zakresu, gdzie spodziewany jest btedny status. Test
zapewnia kompleksowa oceng¢ integralnosci danych, zgodnosci typéw i obstugi btedow

w komunikacji z urzadzeniem.

44

w

© 00 N O Ut

10

12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35

4.1. Testowanie oparte na wymaganiach

1) Odczyt wartosci atrybutu OptionalAttributelist

Kroki:

Za pomoca narzedzia Message Tool i kodu uslugi Get Attribute
— Single odczytaj dane z:

Class: 0x001 (ClassName)

Instance: 0x00

Attr: 0x01 (OptionalAttributeList)

Oczekiwany rezultat:
Status kodu: (Success)
Zwrocone dane = brak wartosci (null) lub pusta tablica, zgodnie

z definicja w JSON.

2) Weryfikacja typu danych atrybutu
Kroki:
Za pomoca Message Tool i kodu uslugi Get Attribute Single
< odczytaj typ danych dla atrybutu OptionalAttributelist.

Oczekiwany rezultat:
Status kodu: (Success)
Zwrocony typ danych = UINT lub VARRAY:UINT.

3) Wartosci poza zakresem
Kroki:
Za pomoca Message Tool i kodu uslugi Get Attribute Single sprobuj

<~ odczytac atrybut o numerze spoza zdefiniowanego =zakresu.

Oczekiwany rezultat:
Status kodu: (Attribute not supported)

Brak zwroconych danych.

4) Weryfikacja wartosci domyslnej i jednostki inzynierskiej
Kroki:
Za pomoca Message Tool i kodu uslugi Get Attribute Single
—» odczytaj pola defaultValue i engUnit dla atrybutu
— OptionalAttributelist.

Oczekiwany rezultat:
Status kodu: (Success)

Zwrocone wartosci: defaultValue = null, engUnit = null.

Listing 4.2: Przykladowy test wygenerowany na podstawie pliku JSON

45

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

Kolejna wprowadzona zmiana dotyczyta sledzenia powiazan miedzy testami, a wy-
maganiami. W poprzednich projektach sledzenie to odbywato sie na zasadzie jeden
do wielu, to znaczy, ze jeden test odpowiedzialny za kompleksows weryfikacje danej
funkcjonalnosci, powigzany byt z wieloma wymaganiami — rekordowa liczba powig-
zan testu z wymaganiami przekraczata sto. Rodzito to szereg nieporozumien podczas
prowadzenia analizy, ktore z wymagan nie zostaly poprawnie zaimplementowane. Dla
projektéw Oscar i Lima wdrozono zmiane, w ramach ktorej testy tworzone byty moz-
liwie atomowo, aby pokrywa¢ jak najmniejsza liczbe wymagan. Zatozenie to udalto sie
spelié dla 99 % wszystkich testow, a w pozostatych przypadkach liczba powigzanych

wymagan nie przekroczyta siedmiu.

4.2 'Testowanie oparte na analizie ryzyka

Systematyczne potaczenie oceny ryzyka z procesem testowania okresla sie mianem
testowania opartego na analizie ryzyka. W tym podejsciu zidentyfikowane ryzyka zwia-
zane z oprogramowaniem stanowig kluczowy czynnik kierujacy wszystkimi etapami pro-
cesu testowego, takimi jak planowanie, projektowanie, implementacja, wykonanie oraz
ewaluacja [67]. Testowanie oparte na ryzyku ma duzy potencjal usprawnienia procesu
tworzenia i testowania oprogramowania, poniewaz pomaga w optymalnym wykorzy-
staniu zasobow oraz wspiera podejmowanie decyzji przez osoby zarzadzajace testowa-
niem [79]. Ponadto, ze wzgledu na ograniczone zasoby i napiety terminarz projektu,
testowanie wykonywane jest pod duza presja czasu, co w konsekwencji oznacza, ze moz-
na wykonaé jedynie cze$é¢ wszystkich przypadkéw testowych [80]. Testowanie oparte na
ryzyku dostarcza odpowiedzi, ktére z nich sa kluczowe, a ktére niosa za soba niskie

ryzyko w przypadku ich pominiecia.
Norma ISO/IEC/IEEE 29119-2:2021 odnosi si¢ wprost do testowania opartego na

ryzyku jako integralnej czesci planowania testow, zgodnie z Rysunkiem 4.1. Kroki TP1,
TP3, TP4 oraz TP5 bezposrednio dotycza tematéw ryzyka projektowego. Kontekst
okreéla ogdlne ramy procesu oceny ryzyka i testowania. Obejmuje on zZrodia ryzyk
— biznesowe, jako$ciowe, lub technologiczne. Analiza ryzyk obejmuje przypisanie im
wartosci bedacej iloczynem prawdopodobienstwa ich wystapienia oraz potencjalnych
konsekwencji w razie gdy dane ryzyko by sie zmaterializowato, co wyraza Wzér 4.1.
Jesli prawdopodobienstwo i konsekwencje wyrazone beda w skali 1-10, to ocena ryzyka

bedzie ksztattowac sie w zakresie 1-100.

46

4.2. Testowanie oparte na analizie ryzyka

Zrozumienie Zakres

kontekstu (TP1)

START

Organizacja
rozwoju planu
testow (TP2)

Harmonogram

Identyfikacjai
analiza ryzyka
(TP3)

Analiza ryzyka

Zmitygowane

Mitygacja ryzyka ryzyka
(TP4)

Dobor strategii
testowej
(TP5)

Dobér zespotu
i harmonogramu f«=———
. (TPB) Strategia
Wersjarobocza ‘:_J testowa
planu testow
(TP7) Harmonogram i

Zatwierdzenie
planu testow
(TP8)

obsada projektu

Szkic planu
testow

Komunikacja
iudostepnienie
planu testow
(TP9)

PLAN
TESTOW

Zatwierdzony
plan

Rysunek 4.1: Proces planowania testéw zdefiniowany w normie ISO/IEC/IEEE
29119-2:2021

R=PxK (4.1)

gdzie: R oznacza oceng ryzyka, P oznacza prawdopodobienstwo wystapienia ryzyka,

K oznacza konsekwencje wystapienia ryzyka.

Kolejnym etapem jest przypisanie akcji do poszczegdlnych ryzyk. W zaleznosci od

oceny ryzyka i kontekstu, moga one obejmowacé eliminacje ryzyka, dodatkowe kroki

zapobiegawcze, monitorowanie, a takze akceptacje potencjalnych skutkow wystapie-

nia. Decyzje o poszczegdlnych akcjach stanowia baze do dobrania wtasciwej strategii

testowe].

Dla omawianych projektéw Oscar oraz Lima, strategia testowa byta okreslana na

etapie dokumentowania obszarowych planéw testéow, wchodzacych w sktad gltownego

planu testow, ktory obejmuje testy funkcjonalne oprogramowania wbhudowanego, testy

funkcjonalne oprogramowania, testy sprzetowe, testy systemowe oraz testy w zakresie

cyberbezpieczenstwa. Kazdy z obszarowych planéw testéw definiuje wysokopoziomowe

scenariusze testowe, ktére opisuja, co bedzie w ich ramach testowane, nie zawieraja

jednak szczegdtéw implementacyjnych.

47

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

Bazujac na ocenie ryzyka, do kazdego scenariusza przypisywana jest akcja zalezna
od wysokosci oceny, co stanowi nowy element wdrozeniowy wprowadzony w ramach
projektu doktorskiego. Dla warto$ci ponizej 8, scenariusz nie jest pokrywany testami
lub przeprowadzany jest wytacznie przeglad kodu. Dla oceny w zakresie 8-24 funkcjo-
nalnos$¢ podlega testom manualnym, testom opartym o liste¢ kontrolna, lub testowaniu
eksploracyjnemu. Dla oceny powyzej 24 przygotowywana jest automatyzacja testu,
ktéra pozwala na regularng weryfikacje funkcjonalnosci w trakcie regresji. Rodzaj akcji
moze by¢ inny w ramach wyjatkow, wynikajacych z kontekstu biznesowego, obowig-
zujacych norm, czy dostepnej technologii. Tabela 4.1 przedstawia przyktadowa ocene
ryzyka wraz z przypisana akcja.

‘ Scenariusz Ocena Akcja Rodzaj testu Etap

MAJAC [Warunek 1] P =1-10 Automatyzacja Funkcjonalny Regresja
ORAZ [Warunek 2] K =1-10

GDY [Akcjal R = 1-100

TO [Rezultat]

Tabela 4.1: Przyktadowa ocena ryzyka scenariusza testowego

Podobny mechanizm przypisania akcji na podstawie analizy ryzyka zastosowany
zostal takze w przypadku testéow regresyjnych. Ta sama skala uzyta w odniesieniu do
poszczegblnych testéow pozwala przypisacé testy do jednej z trzech kategorii: codzienna
regresja, regresja jednokrotna (zestaw testow wykonywanych raz w danym cyklu wyda-
wania produktu), badz regresja rozszerzona — czyli testy wykonywane, gdy pozwalaja
na to czas i dostepne zasoby, lub jest to wymuszone kontekstem biznesowym. Proces

ten ilustruje Rysunek 4.2.

Powazne
Mate konsekwencje
konsekwencje .
Wysokie . Codziennaregresja
Wysokie
prawdopodobieristwo
prawdopodobienstwo

Mate konsekwencje

Regresja
poszerzona

Niskie

prawdopodobienistwo

Rysunek 4.2: Analiza ryzyka w testach regresyjnych

48

4.3. Testowanie eksploracyjne i na podstawie doswiadczenia

4.3 Testowanie eksploracyjne i na podstawie do-

Swiadczenia

Tradycyjne testowanie oprogramowania opiera si¢ na uprzednio zaprojektowanych
przypadkach testowych. Alternatywa jest podejscie oparte na do$wiadczeniu, ktérego
przedstawicielem jest testowanie eksploracyjne (ang. Exploratory Testing, ET) [81,82].
Jego unikalna cecha jest maksymalne wykorzystanie wiedzy i inteligencji cztowieka
w procesie jednoczesnego uczenia sie, projektowania testéw i weryfikacji produktu
[83,84]. Czesto bywa mylone z testowaniem ad-hoc, w ktérym tester nie ma jasno okre-
slonego celu poza interakcja z systemem. Testowanie eksploracyjne okazuje sie bardzo
skuteczne w wykrywaniu defektéw — zwlaszcza takich, ktére mogltyby umknaé for-
malnym technikom, maja wysoka wage, ale niskg czestotliwo$é¢ wystepowania u klienta
lub sg trudne do odtworzenia. Istnieje nawet hipoteza, ze ET jest bardziej efektywne
niz testowanie oparte na przypadkach testowych w wykrywaniu bledéw funkcjonal-
nych, poniewaz testerzy moga wykorzystywaé swoja wiedze do projektowania testow
i identyfikowania problemow ,w locie”, nawet przy niewielkim doswiadczeniu w testo-

waniu [85].

Termin ,testowanie eksploracyjne” zostal wprowadzony przez Cema Kanera [81],
a nastepnie rozwiniety jako dyscyplina przez Cema Kanera, Jamesa Bacha i Breta
Pettichorda [82]. Testowanie eksploracyjne taczy projektowanie testéw z ich wykony-
waniem i koncentruje sie na poznawaniu systemu poddawanego testom [86], co jest
szczegblnie pomocne w przypadku produktow pozbawionych pelnej specyfikacji wy-
magan funkcjonalnych. Istota tego podejscia jest jednoczesne uczenie sie, tworzenie
projektu testéw i weryfikacja produktu. Ponadto, w projektach, w ktérych brakuje
szczegbtowych wymagan funkcjonalnych, testowanie eksploracyjne moze by¢ stosowa-

ne w celu zwigkszenia pokrycia testami.

Cho¢ testowanie eksploracyjne moze stanowié¢ wartosciowe uzupetnienie tradycyjne-
go testowania, w literaturze budzi zaréwno uznanie, jak i krytyke. Nie jest ono przypisa-
ne do zadnej konkretnej technologii testowania ani ograniczone do okreslonych cech czy
aspektow — mozna je stosowac na kazdym etapie testow i w réznych implementacjach,
a takze taczy¢ z innymi technikami testowymi [87]. ET bywa czesto przeciwstawiane te-
stom z zaprojektowanymi wcze$niej krokami, jednak w rzeczywistosci istnieje spektrum

podej$¢ — od w pelni eksploracyjnych po catkowicie skryptowe [88].

Bach i wspotautorzy stusznie twierdza, ze kazde testowanie jest w pewnym stopniu

49

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

eksploracyjne, a eksploracja to naturalny sposéb testowania [89]. Wszystkie testy wy-
magaja znajomosci testowanego systemu, jednak w przypadku ET dochodzi element
trudny do uchwycenia — do$wiadczenie i intuicja inzyniera testéw, co czasem czyni
z tego podejicia swoista sztuke. W tym kontekscie testowanie eksploracyjne nie tylko
opiera sie na wiedzy ukrytej, ale jest procesem jej rozwijania, co w efekcie pozwala

lepiej testowaé produkt.

W projektach Oscar i Lima testy eksploracyjne zostaty wdrozone jako usystema-
tyzowana technika [71], szczegbétowo opisana w ramach ram postepowania okreslonych
w Rozdziale 4.4. Celem zastosowania ET bylo zaadresowanie probleméw zwigzanych
z cyklem rozwoju produktu: brakujacych wymagan funkcjonalnych, zmian w zakresie
projektu, malej dostepnosci obiektow testowych oraz zblizajacego sie terminu wyda-
nia produktow na rynek. Ponadto, ze wzgledu na nowsg architekture oprogramowania
oraz sprzetowa, nie bylo mozliwe przeniesienie testow z innych platform, co mogto-
by by¢ alternatywnym rozwigzaniem. Testami eksploracyjnymi objete zostaly wybrane
funkcjonalnosci, ktorych ocena ryzyka kwalifikowata je do tej grupy, lub wynikato to

z potrzeb biznesowych:

 konfiguracja wstepna systemu (ang. startup wizard),

« automatyczne przywracania konfiguracji (ang. automatic device configuration),
 scenariusze wstrzymywania startu (ang. start inhibits),

o bledy i alarmy (ang. faults and alarms),

« testy aplikacyjne,

o wspolpraca z enkoderami silnikéw.

Funkcje te zwykle wymagaja bardzo rozbudowanego i czasochlonnego testowania
ze wzgledu na ich krytyczne znaczenie dla klientéw oraz ztozonos¢é. Aby byty w pelni
operacyjne, potrzebny jest odpowiedni poziom dojrzato$ci sprzetu, oprogramowania
i interfejsow — w przeciwnym razie dalsze testy moga zosta¢ zablokowane, co prowadzi
do strat czasu. Juz sama poczatkowa konfiguracja urzadzenia przeznaczonego na rynek
masowy wigze si¢ z wieloma zmiennymi i zalezno$ciami, ktore nalezy uwzglednié. To
samo dotyczy pozostatych funkcji objetych ET. To sprawia, ze walidacja produktu jest
wyzwaniem, poniewaz powinna wykraczaé¢ poza wymagania funkcjonalne. Testowanie

eksploracyjne potrafi odpowiedzie¢ na wiekszo$¢ z tych problemoéw — przede wszystkim

50

4.3. Testowanie eksploracyjne i na podstawie doswiadczenia

oszczedza czas potrzebny na przygotowanie skryptéw testowych, a dodatkowo, dzieki

koncentracji na walidacji, jest mniej zalezne od stanu specyfikacji wymagan.

Réznica miedzy tymi dwoma typami testow widoczna jest réwniez w podejsciu do
weryfikacji funkcji produktu. W testach skryptowych funkcje sa zwykle sprawdzane
w izolacji. W analizowanym przypadku oprogramowanie ma strukture modutowa, co
odzwierciedla sposob zaprojektowania wymagan funkcjonalnych, podzielonych na sek-
cje odpowiadajace tym modutom. Oznacza to, ze tradycyjne testowanie nie gwarantuje
odpowiedniego pokrycia interfejséw i komunikacji miedzy modutami. ET zaklada bar-
dziej holistyczne podejscie — w kazdym scenariuszu testowane sg jednoczesnie liczne

moduty, co pozwala skupi¢ sie réwniez na ich wzajemnych interakcjach.

Ta filozofia stawia inzyniera testéw w jeszcze bardziej zorientowanej na klienta roli
niz w przypadku testow skryptowych. W trakcie ograniczonej czasowo sesji oczekuje
sie, ze tester zapozna sie z celem, warunkami i ograniczeniami danego scenariusza. Na-
stepnie moze wykonywac¢ testy w sposob zblizony do tego, jak produkt wykorzystuje
uzytkownik koncowy, a podjete kroki — opcjonalnie — rejestrowac¢, np. narzedziem
wspierajacym testy eksploracyjne lub kamera. Interakcja z testowanym urzadzeniem
odbywa sie przez interfejs fizyczny lub, jesli istnieje, komponent programowy umozli-
wiajacy konfiguracje i obstuge produktu. W czasie sesji pozadany jest pewien zakres
swobodnej eksploracji, aby dotrze¢ do obszaréow, ktore w testach skryptowych mogty-
by zosta¢ pominiete albo sa trudne do zweryfikowania z powodu niejednoznacznych

kryteriow.

Dla projektu Oscar wstepna estymacja naktadu pracy oraz prognoza postepu prac
(z uwzglednieniem rosnacej liczby zaangazowanych inzynieréw testéw), zaprezentowa-
ne na Rysunku 4.3, wykazalty przewidywalng oszczedno$é okoto dwdch miesiecy pracy
zespotowej przy podejéciu ET w poréwnaniu z modelem tradycyjnym. Co wiecej, wy-
gospodarowato to przestrzen na analiz¢ scenariuszy uzycia dostarczonych przez zespot
zarzadzania produktem, tworzac warunki do bardziej kontekstowego testowania. Ca-
ta kampania testowa trwata ponad rok, a kryterium wyjscia stanowito zakonczenie
wszystkich zaplanowanych testéw. Testowanie eksploracyjne wprowadzono w ostatnich
dwoch miesigcach; wykonano je na dojrzatej wersji oprogramowania wbudowanego,
przez dwoch doswiadczonych inzynieréw testow, i zakonczono w trakcie jednego, dwuty-
godniowego sprintu. Lacznie zrealizowano dziewie¢ z dziesieciu planowanych ztozonych
scenariuszy pokrywajacych wymienione wyzej funkcjonalnosci (ostatni zostat zabloko-

wany przez czynnik zewnetrzny), co pozwolito pokry¢ wiekszo$é typowych przypadkéw

51

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

uzycia.

2000
1800
1600
1400
1200

1000

Estymowany naktad pracy [Story Points]

0 T T T T T T T T T T T T T T T T T I Czas
N N My Dy Ny Ny N My Ny N N N N N Ny Ny N Ny N
NSNS SN~ SO ~ SO S LN S A AN AN SO SN N AN A G S S
NS F P F F P D S D F S
L A A * S, Y,) R A R R S A R, VN (S L. P A 4

—Testowanie tradycjne + ET ——Testowanie tradycyjne

Rysunek 4.3: Prognoza postepu prac dla projektu Oscar

Testowanie eksploracyjne dla projektu Lima zostato wzbogacone dodatkowo o ele-
menty analizy ryzyka, gdzie dla oceny ryzyka w zakresie 8-24 funkcjonalno$¢ na podsta-
wie decyzji menadzera testéw (po konsultacji z menadzerem produktu) moze podlegaé
testowaniu eksploracyjnemu, manualnemu lub na podstawie listy kontrolnej. Pozwolito
to na dalsze rozbudowanie scenariuszy ET oraz wykorzystanie ich w przysztosci do

weryfikacji innych produktow.

4.4 Zakres testéow automatycznych i manualnych

Na udzial testow automatycznych i manualnych w projekcie wpltyw moze mieé
szereg czynnikéw, takich jak taczna liczba koniecznych do przeprowadzenia testow,
konieczno$é ich powtarzania w przysztosci, dojrzatosé produktu, mozliwosci technolo-
giczne, czy czas przeznaczony na testy. W sytuacji, gdy do wykonania jest niewielka
liczba testéw, ktére w dodatku nie beda powtarzane lub beda powtarzane rzadko,
mozna sktania¢ sie ku stwierdzeniu, ze bardziej efektywnym bedzie podejscie w petni
manualne. Oznacza to, ze testy beda odbywaé sie na podstawie okreslonych krokdéw,
listy kontrolnej lub w oparciu o doswiadczenie (na przyktad testy eksploracyjne). W ra-

mach analizowanych projektow, te speliajace owe kryteria zostaly ujete w Tabeli 4.2

52

4.4. Zakres testow automatycznych i manualnych

wraz 7z liczbg wykonanych testéw oraz liczba znalezionych defektéw.

H Kryptonim Rozmiar Przypadki testowe Liczba defektow H

Sierra XS 29 3
Quebec XS 72 3
November XS 92 2
Papa XS 223 7
Hotel S 587 6
Golf S 608 6
Romeo S 1141 97

Tabela 4.2: Projekty kategorii XS i S

Na podstawie tych wynikéw, mozliwe jest obliczenie wspotczynnikow efektywnosci
testow TER, w odniesieniu do innych projektow kategorii XS i S, stanowigcych dwu-
dziesty oraz czterdziesty percentyl w rozkltadzie normalnym obejmujacym wszystkie
analizowane projekty. Na potrzeby interpretacji wynikéw skorzystano ze zmodyfikowa-
nego Wzoru 4.2, ktéry pozwala odnies¢ TER do projektow w danej kategorii. Wspot-
czynniki te, przy zalozeniu, ze ze wzgledu na podobny poziom skomplikowania w kodzie
poszczegolnych testowanych produktéw wystepuje podobna liczba defektow, maja cha-
rakter przyblizony. Wyznaczy¢ mozna réwniez wspotezynnik gestosci btedow FD, dzieki
czemu mozna dla podobnych projektéw oszacowaé skutecznosé wykonywanych testow.

Wyniki obliczen zaprezentowane sa w Tabeli 4.3.

D
TER = =2 x 100% (4.2)
Dpr

gdzie: Dp oznacza liczbe defektéw wykrytych w projekcie, a Dy oznacza taczna liczbe

wykrytych defektéw w projektach tej samej kategorii.

H Kryptonim Rozmiar Przypadki testowe Liczba defektéw TER [%] FD [%] H

Sierra XS 29 3 20 10,34
Quebec XS 72 3 20 4,17
November XS 92 2 13,33 2,17
Papa XS 223 7 46,67 3,14
Hotel S 587 6 5,5 1,02
Golf S 608 6 5,5 0,99
Romeo S 1 141 97 88,99 8,50

Tabela 4.3: Wspotezynniki TER i FD dla projektéw kategorii XS i S

53

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

Prowadzone w ramach doktoratu wdrozeniowego projekty Quebec oraz Sierra! obej-
mowaly wytacznie testy manualne, podczas gdy pozostate miaty zmienny udziat testow
automatycznych na poziomie 60-70 %. Nalezy jednak zwrdcié uwage, ze testowanie
w catosci reczne jest zasadne wytacznie w przypadku malych projektéw, ktorych po-

wtarzalnos¢ jest niska.

Podobna analize mozna przeprowadzi¢ dla projektéw Oscar i Lima? w kategorii
projektéw ztozonych, to jest obejmujacych kategorie od M do XL, zgodnie z Tabela
4.4. Projekty te charakteryzuje udziat testéw automatycznych na poziomie odpowiednio
50 % i 70 %. Wyzszy stopienn automatyzacji w projekcie Lima nie przelozyt sie na
wyraznie wieksza gestos¢ btedow. Wskazuje to, ze zastosowanie szerszej automatyzacji
ze wzgledu na skale i ztozonosé projektu, nie daje bezposredniego przetozenia na lepsza

wykrywalnos¢ btedéw w oprogramowaniu.

H Kryptonim Rozmiar Przypadki testowe Liczba defektéw TER (%] FD [%] H

Oscar M 1353 204 87,18 15,08
Echo M 1351 11 17,19 0,81
Juliet M 1435 19 29,69 1,32
Foxtrot L 1904 18 16,07 0,95
Mike L 2 166 32 28,57 1,48
Lima L 2 246 62 55,36 2,76
Bravo XL 2 606 5 6,94 0,19
Kilo XL 2 649 37 51,39 1,40
Delta XL 4 474 30 41,67 0,67

Tabela 4.4: Projekty kategorii M-XL

Istotna czes¢ testow w projektach Oscar i Lima stanowity tzw. automatyczne testy
promocyjne. Okreslaty one kryteria wejécia do testowania funkcjonalnego dla kolej-
nych wersji oprogramowania whudowanego w trakcie jego rozwoju poprzez weryfikacje
podstawowych funkcjonalnosci. Przejscie testéw oznaczato kwalifikacje wersji oprogra-
mowania na poziom dojrzato$ci dopuszczajacy testowanie funkcjonalne. Zabezpieczato
to inzynierow testéw przed potencjalnym zablokowaniem pracy, gdyby zaimplemento-
wane przez programistow zmiany skutkowaty awarig w kluczowych obszarach. Testy te

byty wykonywane w ramach srodowiska ciaglej integracji CI (ang. Continuous Integra-

W obu projektach rola autora bylo zarzadzanie testowaniem, przygotowanie planu testéw (w tym
dobdr strategii testowej), projektowanie i wykonanie czesci testéw oraz sporzadzenie raportu kornico-
wego. Pozostale prace ze wzgledu na ich zakres prowadzone byly w zespole inzynieréw testéw.

2Jak wyzej.

54

4.4. Zakres testow automatycznych i manualnych

tion)3, to jest kazdorazowo podczas procesu budowania nowej wersji oprogramowania
przez programistow. W sktad tego zestawu testow wchodzito 361 uruchamianych re-
gularnie przez system CI skryptow, ktérych liczba powtérzen w trakcie catej kampanii
testowej siegata nawet kilkuset razy. Osiagniecie podobnych rezultatéw w przypadku
testowania recznego nie bytoby mozliwe. Wykluczajac jednak sporadyczne przypadki,
w ktorych dostarczona przez programistow funkcjonalnosé zawierata btedy wpltywajace
znaczaco na prace catego urzadzenia, testy te nie byty odpowiedzialne za znalezienie

duzej liczby usterek, co wynika ze zjawiska paradoksu pestycydow.

7 punktu widzenia testow manualnych, szczegdlng grupe stanowia testy eksplora-
cyjne. Wyznaczone ramy postepowania ET [71], opracowane w ramach realizacji pro-
jektu doktorskiego i zastosowane w projektach Oscar i Lima, zostaly zilustrowane na

Rysunku 4.4 i obejmowaly nastepujace kroki:

1. Wyznaczenie udziatu testow eksploracyjnych.
2. Zdefiniowanie pokrycia.

3. Zebranie danych wejsciowych.

W

. Zidentyfikowanie wyroczni testowych.

(S8

. Przygotowanie kart sesji testow eksploracyjnych:

a) wyznaczenie celow testow,

(
(b) przygotowanie opisu,
d

)
)
(c) okredlenie konfiguracji srodowiska testowego,
(d) wyznaczenie ram czasowych,

)

(e) okreslenie stosunku trzymania ram testu do swobodnej eksploracji.
6. Wykonanie scenariuszy.

7. Zebranie i analiza wynikow.

Pierwszym krokiem jest okreslenie proporcji testow eksploracyjnych w ramach dane-
go projektu. W przypadku projektow powtarzalnych lub o wysokim stopniu podobien-

stwa, rekomendowane jest stosowanie podejscia skryptowego, ktére umozliwia szeroka

3(Ciagla integracja to proces, ktéry polega na czestym i regularnym wiaczaniu dostarczonych funk-
cjonalnoéci w kodzie oprogramowania do repozytorium i automatycznej weryfikacji zmian poprzez
zbudowanie projektu i wykonanie okreélonego zakresu testéw.

95

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

Wykonanie
scenariuszy

07 , Zebranie
/< ianaliza
=TT wynikow
o

= Przygotowanie

kart sesji

04 . . .
*é"]’, Zidentyfikowanie

& wyroczni testowych

) Zebranie danych
S

wejsciowych
02 Zdefiniowanie
¥ pokrycia

Q Wyznaczenie
udziatu ET

Rysunek 4.4: Ramy postepowania testowania eksploracyjnego

automatyzacje testow regresyjnych. Natomiast w przedsiewzieciach unikalnych, charak-
teryzujacych sie wysoka zmiennoécig lub brakiem petnej specyfikacji wymagan, testo-
wanie eksploracyjne moze stanowi¢ dominujaca strategie. Ze wzgledu na wspomniany
paradoks pestycydoéw, uzasadnione jest wlaczenie elementéw ET w niemal kazdym
kontekscie. Po zdefiniowaniu skali ET, zakres pokrycia powinien zostaé¢ okreslony na
podstawie kryteriéow takich jak: stopien znajomosci urzagdzenia lub funkcji, mozliwosé

automatyzacji, dostepno$¢ dokumentacji oraz zasoby kadrowe.

Pomimo nizszego stopnia formalizacji, ET wymaga odpowiedniego przygotowania.
Konieczne jest zgromadzenie danych wejsciowych w postaci dokumentacji, wymagan,
scenariuszy uzycia oraz wiedzy eksperckiej. Etap ten jest kluczowy dla opracowania

kart sesji testéw eksploracyjnych (ang. test charters), ktére precyzyjnie definiuja ce-

56

4.4. Zakres testow automatycznych i manualnych

le oraz identyfikuja potencjalne ryzyka. W celu jednoznacznej oceny wynikéw nalezy
okredli¢ wyrocznie testowe (ang. test oracles), to znaczy jasne kryteria lub Zrédta infor-
macji dotyczace oczekiwanych, prawidtowych wynikéw testow. W przypadku ET jest
to bardziej ztozone niz w testach skryptowych, gdzie kryteria te sa zazwyczaj jasno

zdefiniowane i wynikajg wprost z wymagan funkcjonalnych.

Po zakonczeniu przygotowan opracowuje si¢ karte sesji, ktora dostarcza testerowi
niezbednych informacji przy zachowaniu minimalizmu w poréwnaniu z pelnym scena-
riuszem testowym. Kluczowym elementem jest zestaw celow uznanych za krytyczne
dla danego testu. Opis uzupetniajacy moze zawiera¢ kontekst, intencje oraz informacje
pomocnicze. Zaleca sie réwniez okreslenie konfiguracji srodowiska testu (ang. test tar-
get) oraz ustalenie ram czasowych wraz z proporcja pomiedzy realizacja celéw a tzw.
,swobodna eksploracja” (ang. free roam). Takie podejécie zapewnia dyscypling, a jed-
noczesnie umozliwia eksploracje w celu identyfikacji anomalii. Brak zdefiniowanych
krokow testowych stanowi fundamentalng réznice wzgledem testéw skryptowych, po-
zostawiajac testerowi swobode w doborze $ciezki. Przyktadowa karte sesji przedstawia

Tabela 4.5.

H Karta sesji ET — Konfiguracja poczatkowa H

Ramy czasowe 2 godziny

Opis Przetestowac kreator konfiguracji poczatkowe;j.
Srodowisko testowe: zestaw biurkowy lub stanowisko te-
stowe.

Stosunek ram testu do swobodnej eksploracji: 70:30.
Karta sesji

1. Przygotowanie projektu.
2. Nawigzanie polaczenia z urzadzeniem.

3. Testowanie kreatora konfiguracji poczatkowe;j.

Cel

1. Upewnienie sie, ze klient moze korzystac z kreato-
ra do stworzenia konfiguracji poczatkowe;j.

2. Zarejestrowanie krokow w celu utworzenia skryptu
testowego.

Tabela 4.5: Przyktadowa karta sesji ET

57

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

Realizacja sesji ET moze by¢ wspierana narzedziami rejestrujacymi przebieg te-
stow, co umozliwia pozniejsze odtworzenie krokéw, przeksztatcenie wynikéw w testy
skryptowe oraz utatwia reprodukcje defektow. Ostatnim etapem jest analiza i raporto-
wanie wynikow w oparciu o wezesniej zdefiniowane wyrocznie testowe lub inne kryteria

weryfikacji i walidacji.

Efektywnos¢ ET jest w duzej mierze determinowana przez jako$¢ przygotowania.
W sytuacji braku jednoznacznych wymagan funkcjonalnych konieczne jest przeprowa-
dzenie analizy w celu identyfikacji kluczowych obszaréw systemu, okreslenia wynikéw
testow oraz zrodet informacji. Niewtasciwie ukierunkowane ET moze generowaé nad-
mierne koszty w stosunku do korzysci, co wynika réwniez z elementu losowosci w tym
podejsciu. Ryzyko to mozna ograniczy¢ poprzez stosowanie ram czasowych oraz Swia-
domego bilansowania proporcji pomiedzy realizacja celow a eksploracja obszarow bu-

dzacych zainteresowanie inzyniera testow.

4.5 Ewaluacja efektywnosci testow

Efektywnos¢ testowania stanowi kluczowy element zapewnienia jakosci w ztozonych
systemach wbudowanych. Mozna ja oceni¢ na wielu ptaszczyznach — od liczby znale-
zionych defektow, poprzez gestoéé bledéw (FD), az po wskaznik efektywnosci testow
(TER) rozumiany jako odsetek wykrytych btedéw w stosunku do poréwnywalnych pro-
jektéw. Analize porownawczg efektywnosci dokonano na podstawie projektéw Quebec,
Sierra, Oscar oraz Lima, badajac je pod katem iloSciowym i jakoSciowym. Punktem
odniesienia sg pozostate projekty, dla ktorych zebrano dane, przedstawione w zbiorczej
Tabeli 4.6.

Analizowane projekty obejmuja pelne spektrum rozmiaréw, od bardzo matych, ta-
kich jak Sierra, Quebec, November i Papa, do bardzo duzych, takich jak Bravo, Kilo
i Delta. Uzyskane warto$ci wskazujg na znaczng rozbieznos¢ w praktykach testowych,
od projektéw niemal pozbawionych realnej skutecznosci (np. Bravo), do projektéw z du-
za liczba defektéw (Lima, Romeo). Zjawisko to obrazuje zaleznosé liczby znalezionych

bledéw od liczby wykonanych testow widoczna na Rysunku 4.5.

Rysunek 4.6 ilustruje ujemny trend — wraz ze wzrostem liczby testow maleje ge-
stos¢ defektow. Korelacja liniowa jest umiarkowanie ujemna (r = —0, 3204), i nieistotna
statystycznie (p ~ 0,2263), natomiast korelacja rangowa (p = —0,5294) istotna staty-

stycznie (p = 0,0350), co wskazuje na monotoniczny spadek gestosci defektéw wraz ze

58

4.5. Ewaluacja efektywnosci testow

H Kryptonim Rozmiar Przypadki testowe Liczba defektéw TER [%] FD [%] H

Sierra XS 29 3 20 10,34
Quebec XS 72 3 20 4,17
November XS 92 2 13,33 2,17
Papa XS 223 7 46,67 3,14
Hotel S 587 6 5,0 1,02
Golf S 608 6 5,5 0,99
Romeo S 1141 97 88,99 8,50
Oscar M 1353 204 87,18 15,08
Echo M 1351 11 17,19 0,81
Juliet M 1435 19 29,69 1,32
Foxtrot L 1904 18 16,07 0,95
Mike L 2 166 32 28,57 1,48
Lima L 2 246 62 95,36 2,76
Bravo XL 2 606 5) 6,94 0,19
Kilo XL 2 649 37 51,39 1,40
Delta XL 4 474 30 41,67 0,67
Tabela 4.6: Tabela zbiorcza projektow
z 250
E 204
% 200
£ 150
97
100 °
62
°
50 37 vy
19 18 °
3 37 66 1.10 ° 5
0 ea2° -
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Liczba testow
® Sierra ® Quebec @ November ® Papa Hotel ® Golf ® Romeo Oscar
® Echo @ Juliet @ Foxtrot Mike ®Lima Bravo @ Kilo Delta

Rysunek 4.5: Zalezno$¢ liczby znalezionych defektéw od liczby wykonanych testow

wzrostem liczby testow, choé¢ zaleznos¢ nie jest Scile liniowa (stad korelacja Pearsona

nie jest istotna). Wiekszy naklad testowy, rozumiany przez wieksza liczba przepro-

59

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

wadzonych testow, wiaze sie z nizsza gestoscia defektéw. W mysl efektu malejacych
przyrostéw, wzrost liczby testéw po przekroczeniu pewnego progu poprawia jakos¢
bardziej stopniowo, niz liniowo, przy zaltozeniu, ze nad projektem pracuja programisci

o tym samym lub zblizonym poziomie pisania jako$ciowego kodu.
16.00

14.00

Gestos¢ btedow [%]

12.00
10.00
8.00

6.00

4.00 |*

......
....

200 ¢ e Liczba testéw

0.00 ®
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

e XS o S e M e L e XL e Linia regresji

Rysunek 4.6: Zaleznos¢ gestosci btedéw od liczby wykonanych testow

Projekty o wyzszej liczbie testéw czesciej charakteryzuja sie nizsza zmiennoscig
w zakresie efektywnosci testowania, choé¢ zwiazek nie ma charakteru prostoliniowe-
go i wystepuja wyjatki (m.in. projekty o duzej liczbie testéw i paradoksalnie niskim
TER — Bravo). Szczegélnie projekty takie jak Romeo stanowia kontrast pokazuja-
cy, jak duze moga by¢ réznice w przypadku projektéw matych, w ktéorych wystepuje
relatywnie wyzszy udzial przypadkow testowych wykrywajacych defekty. Zjawisko to
moze ujawnia¢ nierownomierne pokrycie testowe albo wiekszg zmiennosé jakosciowa,
co uwidocznione jest na Rysunku 4.7. Ponadto wraz ze wzrostem rozmiaru projektu,

jednoczesnie spada Srednia gestos¢ defektow.

Testowane w pelni manualnie Sierra i Quebec znajduja duzo defektow wzgledem
liczby wykonanych testéw, jednak Papa ze wzgledu na wiekszg liczbe testéw osigga
lepszy wspotezynnik TER. Mozna wiec przyjaé¢, ze testowanie w petni manualne, cho¢

bardziej efektywne od automatycznego, nie nadaza za efektem skali i ograniczone jest

60

4.5. Ewaluacja efektywnosci testow

16.00
_ Oscar

14.00

12.00

Sierra
L]
10.00

Romeo

8.00
6.00
4.00
Lima
2.00

0.00

Gestosc defektow [%]

Kilo

==

Kategoria projektu

EXS ES EM EL mXL

Rysunek 4.7: Dystrybucja gestosci btedow w poszczegélnych kategoriach projektéw

mozliwa do wykonania w okreslonym czasie liczba testéw. Oscar i Lima dominuja
w swoich grupach wielkosci zaréwno pod wzgledem efektywnosci testéw, jak i gesto-
Sci btedow, stanowiac projekty wzorcowe. Wdrozone praktyki testowe oraz strategia
wydaja sie¢ dobrze dobrane i sugeruja wysoka dojrzatosé¢, nalezy wiec utrwali¢ je jako
wytyczne procesowe. Rysunek 4.8 ilustruje, ze w swoich kategoriach rozmiaru projektu
Oscar i Lima wykazuja wyraznie lepsze wyniki w zakresie liczby znalezionych defektow,
gestosci bledéw (FD) i efektywnosci testéw (TER).

Liczebno$é préby (N = 16) w pewnym stopniu ogranicza analize i zastosowanie
metod statystycznych. Pojedyncze przypadki odstajacych projektéow (Bravo, Romeo)
moga nadmiernie wptywaé¢ na wnioski. Zagregowane metryki FD i TER utrudniaja
takze rozréznienie wptywu krytycznosci znajdowanych defektéw, gdyz ich ogdlna liczba
nie zawsze przektada sie na istotnosé, badz czestotliwos¢ wystepowania zwigzanych

7 nimi usterek.

W ewaluacji efektywnosci testéw nie sposéb pominaé zagadnienia testow eksplo-
racyjnych. W projekcie Oscar wykonano 9 scenariuszy testow eksploracyjnych, ktére
znalazlty 6 defektéw, w poréwnaniu do 198 btedéw znalezionych przez pozostate 1 344

testow skryptowych, w tym 5 bltedéw znalezionych w trakcie wykonywania 361 te-

61

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

TER

100.00

Liczba testow FD

N

Liczba defektow

—OQOscar =—Echo —]uliet

T
100.00

m

R

80.00

60.00

40.0,

FD

Liczba testow X

%

Liczba defektow

——Foxtrot ——Mike —Lima

Rysunek 4.8: Znormalizowane poréwnanie projektow Oscar i Lima wzgledem
pozostalych projektow w kategoriach M i LL

62

4.5. Ewaluacja efektywnosci testow

stow automatycznych w $srodowisku cigglej integracji. Analiza defektow znalezionych
w trakcie ET udowodnita, ze wykrycie 5 z nich ze wzgledu na niska odtwarzalnos¢ i cze-
stotliwos¢ wystepowania, bytoby niemozliwe przez testy automatyczne lub podazajace
za SciSle okreslonym scenariuszem. Istotno$é tych defektéw wyznaczono na poziomie
wymagajacym naprawy w ramach tego samego cyklu wydawniczego produktu (ang.

release cycle).

Na podstawie zrealizowanych kart sesji testéw eksploracyjnych opracowano dziesie¢
procedur testowych, przy czym jedna z kart zostala rozdzielona na dwa przypadki
testowe. Dwa z tych przypadkéw zostaly wlaczone do zakresu testéw w $rodowisku
ciagtej integracji w kolejnych wydaniach produktu i poddane automatyzacji. Jeden
przypadek zostal dodany do finalnego zestawu testow regresyjnych wykonywanych na
oprogramowaniu w wersji kandydujacej do wydania. Zmiany te zostaly uwzglednione

w projekcie Lima.

Szacunki naktadu pracy zostaly potwierdzone w rzeczywistym przebiegu proce-
su testéw eksploracyjnych, obejmujacym przygotowanie, wykonanie oraz zarzadzanie
wynikami. Lekka struktura oferowana przez ET okazala sie skuteczna w kontekscie
sztywnego harmonogramu, podczas gdy czes¢ procesu oparta na testach skryptowych
napotkata opdznienia wynikajace z niedostatecznej jakosci wymagan funkcjonalnych,
co spowodowato przesunigcie wzgledem estymacji przedstawionych na Rysunku 4.3
o ponad trzy tygodnie. Podsumowanie wynikéw ET w projekcie Oscar uwzglednione
zostaty w Tabeli 4.7

H Rodzaj testow Liczba testéw Defekty Wym. naprawy Czas trwania H
Testy eksploracyjne 9 6) 2 tygodnie
Testy skryptowe 1344 198 79 68 tygodni

I Razem 1353 204 84 70 |

Tabela 4.7: Podsumowanie testéw eksploracyjnych w projekcie Oscar

Wyniki nalezy interpretowaé biorac uwage niewielka skale eksploracji w porow-
naniu do tradycyjnego testowania w oparciu o scenariusz oraz wykonywanie testow
eksploracyjnych po zakonczeniu testéw skryptowych, w koncowej fazie kampanii te-
stowej. Mimo tego, technika ta wykazata zdolnos¢ do ujawniania defektéw o wysokiej
istotnosci dla klienta, ktore z duzym prawdopodobienstwem umknetyby w standardo-
wym procesie testowym. Zarejestrowany przebieg dziatan inzynieréw testow umozliwit

opracowanie procedur testowych rozszerzajacych portfolio dostepnych przypadkow —

63

Rozdziat 4. Przyjeta strategia testowania i wyniki badan

czes¢ z nich zostata wlaczona do $rodowiska cigglej integracji, a inne do zestawu te-
stow regresyjnych. Co istotne, karty sesji mogg by¢ formutowane w sposob niezalezny
od konkretnego urzadzenia, dzicki czemu zachowuja przeno$nos¢ pomiedzy produk-
tami o zblizonych wlasnosciach, lecz odmiennych implementacjach. Taka przeno$nosé
i mozliwo$¢ ponownego uzycia stanowia istotna przewage z perspektywy ekonomii czasu

i wysitku zespotu.

W niniejszym kontekscie szczegdlnie wartosciowe jest rozpatrywanie zaréwno liczby
wykonanych testéw, jak i czasochtonnosci poszezegdlnych typéw testowania [76]. Ma-
jac na uwadze te aspekty, testowanie eksploracyjne zapewnia porownywalne — choc¢
mniej dogtebne — pokrycie w znacznie krotszym czasie oraz przy mniejszej liczbie
przypadkow testowych, ktore nalezy zaprojektowaé i utrzymywacé. Dzieki ramom cza-
sowym oraz jednoznacznie zdefiniowanym celom, estymacje ET moga by¢ formutowane

z wysoka doktadnoscia, a zarzadzanie catoscia procesu pozostaje nieskomplikowane.

W przypadku ztozonych, wielkoskalowych systeméw wbudowanych, realizacja ET
oparta na scenariuszach uzycia bywa czasowo blokowana przez klastry drobnych defek-
tow. Z tego wzgledu rekomenduje sie wykonywanie wiekszo$ci scenariuszy na bardziej
dojrzatych etapach rozwoju produktu, kiedy wymagane interakcje licznych elementow
systemu sa stabilniejsze. W odréznieniu od tego, testy skryptowe maja z natury charak-
ter bardziej izolowany, co ogranicza ryzyko blokad wynikajacych z wielomodutowych
zaleznosci, ale jednoczesnie redukuje zdolnos¢ do ujawniania problemoéw na styku kom-

ponentow.

64

Rozdziat 5

Analiza i optymalizacja procesu

testowania

5.1 Automatyzacja testow

Przed rozpoczeciem projektow Oscar i Lima, automatyczne testy funkcjonalne po-
wstawaly w wewnetrznie rozwijanym $rodowisku Test Automation Framework (TAF).
Programowanie odbywato sie w jezyku graficznym poprzez tworzenie sekwencji kro-
koéw — definiowanie przebiegu takiego testu bylo czytelne i mozliwe do utrzymania
w zespotach o zréznicowanych kompetencjach, gdyz tak naprawde nie wymagato umie-
jetnosci programowania w zadnym jezyku. Poszczegdlne kroki mogly byé realizowane
przez reuzywalne, parametryzowalne komponenty (tzw. aktoréw) pelniace okreslone
role, na przyktad inicjacje potaczenia sieciowego z systemem wbudowanym, konfigura-
cje testowanego obiektu, wykonywanie pomiarow, weryfikacje wynikéw, czy obliczenia.
Dostepne byty rowniez konstrukcje sterujace przebiegiem, takie jak petle oraz instruk-
cje warunkowe, ktore umozliwialty budowe ztozonych scenariuszy testowych i elastyczne
rozgaltezianie $ciezek wykonania. Srodowisko umozliwialo takze wsparcie dla wielowgt-

kowoéci, chociaz funkcja ta nie byta powszechnie uzywana.

Ze wzgledu na brak mozliwosci selektywnego wykonywania pojedynczych fragmen-
tow w razie wystapienia problemu podczas przebiegu testu, konieczne byto ponowne
uruchomienie catej, czesto czasochtonnej procedury. Wydajnosé i stabilno$é¢ srodowi-
ska byly mocno zalezne od dostepnych zasobéw sprzetowych i systemowych (m.in. moc

obliczeniowa, pamie¢ operacyjna) oraz kondycji systemu operacyjnego. Nawiazanie po-

65

Rozdziat 5. Analiza i optymalizacja procesu testowania

taczenia sieciowego z testowanym obiektem wymagato wywotania zewnetrznego opro-
gramowania i wprowadzalo zalezno$¢ od komponentéw spoza samego srodowiska testo-
wego. Czes¢ testéw wymagata takze wywoltania programu sterownika PLC napisanego
w jezyku drabinkowym LD (ang. Ladder Diagram), réwniez za pomoca zewnetrznego
programu. Kazdorazowe tadowanie projektu z programem sterownika i niestabilnosé¢
srodowiska powodowaly, ze testowany obiekt po zakonczeniu testow lub ich przerwa-
niu mégt znajdowac sie w stanie nieustalonym i wymagacé recznej interwencji inzyniera

testéow w celu przywrdcenia do stanu poczgtkowej konfiguracji.

Pierwsza prébg zaadresowania tych probleméw byto wprowadzenie kryteriéw stabil-
nosci oraz niezawodnosci testow. Celem byto catkowite wyeliminowanie testéw rapor-
tujacych wyniki fatszywie pozytywne lub negatywne oraz losowo niestabilnych. W tym
celu wprowadzono kryteria rzetelnosci, okreslone w Tabeli 5.1. Proces analizy testéw
obejmowal opcjonalne debugowanie testu (jesli okazato sie konieczne) oraz kontrole
niezawodno$ci poprzez wielokrotne uruchomienie skryptu w petli. Jesli dany test we-
ryfikowal funkcjonalno$é, na ktorg wptywat znany i zgtoszony defekt oprogramowania,
to punkty weryfikacyjne powinny zgtaszaé ostrzezenie zamiast usterki, wraz z identyfi-
katorem anomalii w systemie raportowania tak, aby umozliwi¢ pézniejsza aktualizacje.
Liczbe powtérzen testu ustalat inzynier testow biorgc pod uwage czynniki takie jak
czas wykonania testu, czy konieczno$¢ nadzorowania urzadzenia w trakcie wykonywa-

nia procedury.

H Minimalna liczba stabilnych uruchomien H

10/10"
25,25
48/50
95,/100

Tabela 5.1: Kryteria stabilnosci testéw

7 punktu widzenia Srodowiska ciggtej integracji, wprowadzenie standardéw nieza-
wodnoéci dla istniejacych skryptow oraz stosowanie ich przy tworzeniu nowych, ma
kluczowe znaczenie dla stabilnosci i powtarzalnosci catego procesu. Reguty te wymu-
szajg na testerach tworzenie automatyzacji, ktéra zapewnia mozliwos¢ uruchomienia
niezaleznie od pozostalej czesci kodu, nie wptywa na kolejne fragmenty skryptow te-
stowych ani ich pdzniejsze wykonania, jak réwniez nie jest podatna na wpltyw testow

poprzedzajacych i moze dziata¢ niezaleznie od konfiguracji urzadzenia. Takie podej-

'W przypadku prostych testéw.

66

5.1. Automatyzacja testow

Scie zwieksza elastycznosé, utatwia utrzymanie kodu oraz minimalizuje ryzyko btedow
propagujacych sie pomiedzy testami, co jest fundamentem skutecznej automatyzacji

procesow.

Podobne problemy dotyczylty testow pisanych w Ladder Diagram i wykonywanych
przez sterownik PLC. Stosowany framework zapewnial niezbedne interfejsy komuni-
kacyjne, przesytajac polecenia sterujace oraz odbierajac ich rezultaty, i dziatajac jako
warstwa infrastrukturalna, regulujac sposéb organizacji przypadkdéw testowych, zapisy-
wanie wynikéw oraz raportowanie. Istotnym zatozeniem dla tego typu testow, utrzymy-
wanym w kolejnych generacjach rozwoju, byta kompatybilno$é¢ wsteczna. Dzieki temu
rozne wersje programow sterownika mogty wspotistnie¢, a ewolucja narzedzia nie blo-
kowata cigglosci prac oraz ponownego wykorzystania istniejacych skryptow. Niestety
na potrzeby dalszej ewolucji narzedzia konieczne byto ztamanie tego wymagania i do-
konanie gtebokiej przebudowy frameworku tak, aby jeden plik zawierajacy projekt dla
sterownika programowalnego zawieral w sobie pojedynczy test. Historycznie pojedyn-
czy plik projektu mogt zawieraé dziesiatki testéw (od 2 do 70+), co prowadzito do
nadmiernego ich rozrostu i braku stabilnosci, np. ze wzgledu na wystepujace zalez-
nosci od kolejnosci uruchamiania skryptéw i trudnosci w selektywnym uruchamianiu
ich fragmentéw. Przy okazji wprowadzony zostal nowy system rejestrowania danych,
w ktorym kazdy krok testu generuje informacje zawierajaca wynik weryfikacji, opis
tekstowy, a w razie potrzeby takze wartosci oczekiwane i rzeczywiste. Pozwolito to
przyspieszy¢ diagnoze problemdéw, utatwito identyfikacje usterek oraz dalo podstawy

do pdzniejszej analizy przyczyn wystepowania defektow.

Zaleta tego rozwigzania byla przede wszystkim wieksza stabilnosé¢ i niezawodno$é,
bardziej szczegotowe informacje zwracane przez skrypt po zakonczeniu testu i nizszy
koszt utrzymania w przypadku pojedynczego testu. Idacy za zmianami wzrost licz-
by plikow (jeden test na projekt) wygenerowal z kolei nowe wymagania narzedziowe
poprzez koniecznos¢ zarzadzania wersjami i przygotowanie odpowiednich szkieletow
plikéw.

Zastosowanie w projektach Oscar i Lima nowego protokotu komunikacyjnego oraz
struktury parametréw urzadzen wymusito fundamentalne zmiany w podejsciu do auto-
matyzacji testow. Przede wszystkim duzym wyzwaniem byto utrzymywanie wtasnego
srodowiska do automatyzacji testow, co wiazato sie z kosztami i duzym naktadem
pracy. Mimo oparcia sie w duzym stopniu na jezyku graficznym, przystepnosé¢ w obstu-

dze nie szta w parze z szybkoscig tworzenia skryptéw testowych, czy tez dostepnoscia

67

Rozdziat 5. Analiza i optymalizacja procesu testowania

mechanizméw znanych ze wspoétczesnych srodowisk programistycznych, takich jak au-
touzupetnianie, czy pomoc kontekstowa. Wystepujace niejednokrotnie bledy w kodzie
elementow odpowiedzialnych za poszczegdlne kroki nie byty tatwe w naprawie, gdyz
wymagaty dostepu do plikéw zZrodtowych i osobnych licencji. Finalnie, w przypad-
ku zatrudniania inzynieréow testéw nie mozna byto liczy¢ na znajomosé¢ stosowanego
frameworku, a nauczenie sie jego obstugi, cho¢ wymagane w pracy, nie zwiekszato kon-

kurencyjnosci pracownika w dalszej perspektywie rozwoju kariery zawodowe;j.

Aby zrealizowa¢ nowe projekty konieczne bylo wiec zastosowanie innej technologii.
Jednym z powszechnie uzywanych standardéw jesli chodzi o automatyzacje testéw jest
korzystanie z jezyka Python, ktéry oferuje wsparcie w postaci dedykowanych bibliotek
(np. unittest, PyTest). Wyniki wstepnych eksperymentéw majacych na celu okresle-
nie deterministycznosci nowego narzedzia prezentuje Rysunek 5.1, na ktéorym widaé
wyrazony w milisekundach czas realizacji komend wysytanych za pomoca réznych pro-

tokotow do systemu wbudowanego.

Na korzys¢ tego rozwigzania przemawial fakt istnienia takze dostepnej wewnetrznie
biblioteki komunikacyjnej obshugujacej protokoty komunikacyjne zgodne z projekta-
mi Oscar i Lima oraz ich strukture parametréw. To oznaczato, ze stworzenie nowego
frameworku wigzatoby sie z mniejszymi niz poczatkowo zakladano nakladami pracy.
Automatyzacja testéw w jezyku Python mogtaby by¢ powszechnie wykorzystywana
dla przysztych projektéw wspierajacych zblizong konstrukcje parametrow nawet, gdy-
by protokét komunikacyjny sie roznit — w takim przypadku konieczna bytaby zmiana
tylko biblioteki komunikacyjnej. Ponadto system moégtby stuzy¢ do wywotywania proce-
dur stworzonych w programie Test Automation Framework lub programéw dla sterow-
nika programowalnego zawierajacych testy, czyli wspiera¢ uruchamianie poprzednich

rozwigzan.

Rozwazanym krokiem byto takze wykorzystanie do automatyzacji testow duzych
modeli jezykowych, ktére moglyby generowac¢ scenariusze testowe oraz skrypty testow
na podstawie specyfikacji wymagan funkcjonalnych. W tym celu w ramach prac wdro-
zeniowych dokonano préby fine-tuningu modelu OpenAl GPT 3.5 Turbo, do ktérej wy-
korzystano prawie 800 par wymaganie—test, a nastepnie poproszono model o wygenero-
wanie testow na podstawie nieznanych mu wymagan o zblizonym formacie. Pierwszym
krokiem byto dopasowanie danych wejsciowych — zaréwno wymagania, jak i istniejace
przypadki testowe przygotowane byty w formacie CSV, ktory wymagal ich konwersji

do formatu czatu zrozumialego dla modelu wraz z okresleniem roli modelu (syste-

68

5.1. Automatyzacja testow

25

20

20

Pccc Status Pccc Command
o °
75
£
150
125
100
7
0
25
o
$ IE]
== ; -
Python TAF Python TAF
Read Message Write Message
o 60 °
50
40
2
°
o 20
°
o
8) 8
3
: S ==
Python TAF Python TAF

Rysunek 5.1: Poréwnanie rozktadu czaséw realizacji komend

69

Rozdziat 5. Analiza i optymalizacja procesu testowania

m/user/assistant), w tym wypadku do pliku JSONL, ktérego przykladowa strukture
przedstawia Listing 5.1.

{"messages": [
{"role":"system","content":"Jestes_ asystentem_ testera. Z,
— wejsciowegoywymaganiaggenerujesz kompletne przypadki_ testowey
— wyformacie JSON,zgodnym,ze schematem organizacyjnym. Zawsze
— dolaczaszsledzenie_ doywymagan i stosujesz poziom
< szczegolowoscijadekwatny_ do,priorytetu."},
{"role":"user","content":" [FR-1234] ,<Wymaganie>"1},
{"role":"assistant","content":"{ ,\"requirement_id\": \"FR-1234\",
\"test_cases\": [o{u\"id\":U\"TC-FR-1234-01\", \"title\":
\"<Tytul TC>\", \"preconditions\":,[\"<Warunki_ wstepne>\"],
\"steps\": [\"<Kroki>\"],, \"expected_results\":,
[\"<0Oczekiwane wyniki>\"], ,\"priority\": \"<Priorytet>\",
\"trace_to_requirement\": \"FR-1234\" }, I }"}

L edd

1}

Listing 5.1: Przyktadowy fragment pliku JSONL w formacie chatu

Fragment JSONL przedstawia zapis konwersacji w formacie, ktéry umozliwia prze-
chowywanie sekwencji obiektow JSON w jednej strukturze, zrozumiatej przez model
GPT 3.5 Turbo. W tym przypadku jeden obiekt zawierajacy klucz messages jest ta-
blica trzech komunikatéw reprezentujacych przebieg interakcji w stylu czatu. Kazdy
komunikat posiada atrybut role, okreslajacy nadawce, oraz content, zawierajacy tresc
wiadomosci. Pierwszy komunikat, z rola system, definiuje kontekst pracy asystenta.
Okresla, ze asystent pelni funkcje testera i na podstawie wejSciowego wymagania ma
wygenerowaé kompletne przypadki testowe w formacie JSON zgodnym ze schematem
organizacyjnym. W tresci instrukeji podkreslono konieczno$é¢ zachowania $ledzenia do
wymagan oraz dostosowania poziomu szczegdétowosci do priorytetu. Drugi komunikat,
z rola user, zawiera wymaganie funkcjonalne oznaczone przyktadowym identyfikato-
rem FR-1234. W tym miejscu kodu znajduje si¢ element zastepczy, ktory w rzeczywi-
stej sytuacji bytby zastgpiony opisem wymagania. Trzeci komunikat, z rolg assistant,
przedstawia odpowiedZz w formacie JSON. Odpowiedz zawiera klucz requirement id
z wartoscig FR-1234 oraz tablice test cases, w ktorej znajduje sie jeden przypadek
testowy. Ten przypadek ma unikalny identyfikator, tytul, warunki wstepne, kroki te-
stowe, oczekiwane wyniki, priorytet oraz pole trace to requirement, ktére zapewnia
powiazanie z wymaganiem. Dzigki temu zapewniona jest sp6jnosé¢ dokumentacji testo-

wej oraz mozliwos¢ tatwego $ledzenia powigzan miedzy wymaganiami a testami.

70

© 00 N O U = W N

O W W W NN DNDNDDNDNDDNDDNDDNDN = = e e e e e
W NN = O O© WO Tk WNHFHOOWOWNO U i WNhHE O

5.1. Automatyzacja testow

Przyktadowa procedura scalenia wymagan i testow stuzacych do treningu i walidacji
modelu moze wygladac jak na Listingu 5.2. Skrypt w Pythonie realizuje kompletny, po-
wtarzalny przepltyw taczenia wymagan z odpowiadajacymi im scenariuszami testowymi
i przygotowuje trzy zbiory wyjsciowe: dwa w formacie JSONL do treningu i walidacji
modelu konwersacyjnego (symulujacego interakcje system—user—assistant) oraz jeden
w formacie CSV do pdzniejszej ewaluacji. Calos¢ obejmuje wezytanie danych zrédto-
wych, normalizacje pol scenariusza, agregacje testOw per wymaganie, ztaczenie z tabela

wymagan, stratyfikowany podzial na zbiory oraz serializacje do docelowych formatow.

import pandas as pd, json, re

from pathlib import Path

REQ_CSV = "requirements.csv"

SCN_CSV = "scenarios.csv"

OUT_TRAIN = "train. jsonl"

OUT_VAL = "val.jsonl"

OUT_TEST = "test.csv" # do pozniejszej ewaluacji

1) wczytaj
req = pd.read_csv(REQ_CSV)
scn = pd.read_csv(SCN_CSV)

2) scal scenariusze do jednego pola JSON na wymaganie
def split_list(s):
if pd.isna(s) or not isinstance(s, str): return []

return [x.strip() for x in s.split("[|[|") if x.strip()]

scn["Preconditions"] = scn["Preconditions"].apply(split_list)
scn["Steps"] = scn["Steps"].apply(split_list)
scn["Expected_Results"] = scn["Expected_Results"].apply(split_list)

cases = (
scn.groupby ("Requirement_ID")
.apply(lambda g: [
{

"id": r["Test_Case_ID"],
"title": r["Title"],
"preconditions": r["Preconditions"],
"steps": r["Steps"],
"expected_results": r["Expected_Results"],
"priority": r.get("Priority", "Medium"),

"trace_to_requirement": r["Requirement_ID"]

71

34
35
36
37
38
39
40
41
42
43
44

45

46
47
48
49
20

o1

92

93
54
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69

Rozdziat 5. Analiza i optymalizacja procesu testowania

} for _, r in g.iterrows ()
1
.rename ("test_cases")

.reset_index ()

ds = req.merge(cases, on="Requirement_ID", how="inner")

3) podzial: train/val/test (stratyfikacja po Priority)
from sklearn.model_selection import train_test_split
train, temp = train_test_split(ds, test_size=0.3,

< stratify=ds["Priority"], random_state=42)
val, test = train_test_split(temp, test_size=0.5,

— stratify=temp["Priority"], random_state=42)

def make_jsonl(df, out_path):
with open(out_path, "w", encoding="utf-8") as f:
for _, r in df.iterrows():
system = ("Jestes asystentem_ QA._ Generujesz kompletne
< przypadki testowe w,JSON,"
"zgodne z_naszymschematem. Kazdy,przypadeky
<~ zawieragpreconditions, steps, "
"expected_results ,priorityorazy
— trace_to_requirement.")
user = f"[{r.Requirement_ID}]_ {r.Requirement_Textl}"
assistant = json.dumps ({
"requirement_id": r.Requirement_ID,
"requirement_text": r.Requirement_Text,
"test_cases": r.test_cases

}, ensure_ascii=False)

record = {"messages":[
{"role":"system","content":system},
{"role":"user","content":user},
{"role":"assistant","content":assistant?}
1}

f.write(json.dumps(record, ensure_ascii=False) + "\n")

make_jsonl (train, OUT_TRAIN)

make_jsonl(val, OUT_VAL)

test.to_csv(0OUT_TEST, index=False)

print ("Gotowe:", OUT_TRAIN, OUT_VAL, OUT_TEST)

Listing 5.2: Przyktadowy skrypt do scalenia wymagan i testéw

72

N OO s W N

10
11

12

13
14
15
16
17
18
19

20
21
22
23
24
25

5.1. Automatyzacja testow

Kolejnym krokiem w celu wykonania dostrojenia modelu byta konfiguracja $rodowi-
ska Azure OpenAl oraz rozpoczecie zadania. Postep zadania moze by¢ monitorowany,
a nastepnie wdrozenie powinno zosta¢ wywotane jako nowy model, co widoczne jest
na Listingu 5.3. Kod przedstawia kompletny proces fine-tuningu modelu Azure Ope-
nAl: od konfiguracji klienta API z wykorzystaniem zmiennych srodowiskowych, przez
przestanie plikow JSONL z danymi treningowymi i walidacyjnymi, az po utworzenie
zadania dostrajania modelu GPT 3.5 Turbo. Po zakonczeniu treningu skrypt umoz-
liwia monitorowanie statusu i pobranie nazwy wytrenowanego modelu, a nastepnie
wykorzystanie go w rozmowie poprzez wywolanie wdrozenia z przygotowana struktura
wiadomosci. Dzieki temu mozliwe jest uzyskanie spersonalizowanego modelu zoptyma-

lizowanego pod katem automatyzacji tworzenia przypadkow testowych.

import os

from openai import AzureOpenAl

1) Konfiguracja API Azure OpenAl
client = AzureOpenAI(
api_key=os.environ["AZURE_OPENAI_API_KEY"],
azure_endpoint=os.environ ["AZURE_OPENAI_ENDPOINT"], # adres
<> endpointu

api_version="2023-05-15" # wersja API
)
2) Upload plikow JSONL
train = client.files.create(file=open("train. jsonl","rb"),
< purpose="fine-tune")
val = client.files.create(file=open("val.jsonl","rb"),

— purpose="fine-tune")

3) Utworz job fine-tuning (SFT)

job = client.fine_tuning.jobs.create(
model="gpt-35-turbo", # wybor modelu
training_file=train.id,

validation_file=val.id,

hyperparameters={"n_epochs": 3, "batch_size":"auto",
<+ "learning_rate_multiplier":"auto"}
)
print ("JOB:", job.id)

4) Monitorowanie postepu
job = client.fine_tuning.jobs.retrieve(job.id)

print (job.status, job.fine_tuned_model)

73

26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42

Rozdziat 5. Analiza i optymalizacja procesu testowania

5) Wywolanie wdrozenia

deployment = "tc-gen-gpt35-ft" # nazwa Deploymentu customowego modelu
messages = [
{"role":"system","content":"Jestes asystentem_ testera..._ Wygeneruj,
— JSON,zgodny,z_naszym,schematem."},
{"role":"user","content":"<Tekst nowego, wymagania>"}
]
resp = client.chat.completions.create(
model=deployment,
messages=messages,
temperature=0.2
)
answer = resp.choices[0] .message.content
print (answer)

Listing 5.3: Przyktadowy skrypt do scalenia wymagan i testow

Aby uzyskaé rzetelne wyniki, typowo wymagana jest co najmniej dwucyfrowa licz-
ba przyktadow. Niestety w odniesieniu do generowania testéw na podstawie wymagan,
wystepowaly problemy ze spdjnoscig i formatowaniem, a takze spora réznorodno$é
danych wejsciowych. Powodowalo to znaczace halucynacje modelu i brak powtarzal-
nosci odpowiedzi, szczegolnie w kontekscie stosowania precyzyjnych nazw parametrow
urzadzenia, czy narzedzi testerskich. W takiej sytuacji alternatywnym podej$ciem mo-
globy byé¢ wykorzystanie techniki generowania wspomaganego wyszukiwaniem (ang.
Retrieval-Augemented Generation, RAG). Technika ta zamiast trenowania modelu po-
zwala dynamicznie wstrzykiwaé aktualne informacje (np. wymagania) w momencie ge-
nerowania odpowiedzi. Historyczne przypadki testowe i wytyczne projektowe mogtyby
zosta¢ zindeksowane w wektorowej bazie, a dokumenty wejsciowe opatrzone metada-
nymi zawierajgcymi numer identyfikacyjny wymagania, priorytet, czy tez oczekiwany
rodzaj testu. Na podstawie nowego wymagania, model wyszukatby w bazie danych
najbardziej podobne istniejace scenariusze testowe, traktowal je jako kontekst i na tej
podstawie generowal nowe przypadki testowe. Jeszcze innym podejSciem mogtoby by¢
wykorzystanie uczenia przez wzmocnienie (ang. Reinforcement Learning, RL), w kto-
rym odpowiedZ modelu kazdorazowo jest oceniana na podstawie informacji zwrotnej

lub automatycznych metryk. W tym wariancie model generuje kilka wariantéw testéw

74

5.2. Framework testowy

dla tego samego wymagania, ktére nastepnie zostaja poddane ocenie — najlepsze od-
powiedzi sa nagradzane, a model uczy sie maksymalizowa¢ szanse na jej otrzymanie.
Wszystkie te metody moga by¢ implementowane wspétbieznie w celu otrzymania lep-

szych rezultatow.

5.2 Framework testowy

Istnieje wiele typow architektury frameworkow testowych, ktéra moze by¢ zastoso-
wana przy tworzeniu nowego narzedzia. Frameworki liniowe, znane réwniez jako ,,nagraj
i odtworz” sprawdzaja sie w odniesieniu do prostych przypadkéw testowych, w ktorych
sekwencyjnie uruchamiane skrypty odpowiedzialne sg za testowanie systemu. Nie wy-
magajg zaawansowanej wiedzy ani pisania kodu, sa tatwe do zrozumienia, szybkie do
wdrozenia i tatwo integrowalne z istniejacymi procesami. Przyktadem takiego rozwia-
zania jest framework, ktory stosowany byt do automatyzacji testow przed projektami
Oscar i Lima. Istotng wada takiego rozwiazania jest mata elastyczno$é¢ w zakresie reu-
zywalnosci testéw i obshugi réznych zestawéw danych wejsciowych, a takze wysokie
koszty utrzymywania testéw ze wzgledu na koniecznosé czestej ich przebudowy. W po-
dej$ciu modutowym, testy podzielone sa na mniejsze jednostki (moduty), ktére mozna
testowac niezaleznie, a w razie potrzeby potaczy¢ w wicksze scenariusze. Zaletg takiej
architektury jest wieksza elastyczno$é¢ i mozliwoéé szybkiej modyfikacji, wysoka reuzy-
walnosé i skalowalnosé testow. Niestety pocigga to za sobg bardziej ztozone wdrozenie,

ktore wymaga umiejetnosci programistycznych.

Podejscie modutowe moze by¢ rozszerzone o zidentyfikowanie powtarzalnych funk-
¢ji i pogrupowaniu ich w biblioteki, ktére mozna wykorzystywa¢ w réznych testach.
To sprawia, ze raz napisany kod moze by¢ wywolywany w réznych miejscach, co przy-
nosi duze oszczednos$ci w zakresie naktadu pracy. Rosnie natomiast sama ztozonosé
i wymagania techniczne, aby wtasciwie zidentyfikowaé¢ wspolne funkcje. Dobrg prakty-
ka jest réwniez oddzielenie danych wejsciowych od logiki testow. Jest to architektura
szczegblnie oplacalna, gdy istnieje koniecznosé testowania tych samych funkcjonalnosci
z roznymi zestawami danych. Rozwigzanie to mozna dalej rozwija¢ o rozpoznawanie
stéw kluczowych, na przyktad w testowaniu graficznych interfejséw uzytkownika (ang.

Graphic User Interface, GUI), jesli wymaga tego dany produkt.

W praktyce najczesciej stosuje sie architektury hybrydowe, to jest taczace cechy roz-

nych frameworkow, aby dopasowaé sie do potrzeb danego srodowiska. Pozwala to wyko-

75

Rozdziat 5. Analiza i optymalizacja procesu testowania

rzysta¢ mocne strony réznych podejsé i zminimalizowaé ich wady. Wdrozony framework
testowy? jest rozwigzaniem modutowym, opartym o wspdlne biblioteki i oddzielajacym
dane wejsciowe od skryptow, spetnia wiec kryteria frameworku hybrydowego. Sktada
sie z kombinacji narzedzi i praktyk, ktore utatwiajg proces testowania oraz automa-
tyzacji testow. Dzigki standaryzacji zapewnia szybkos$¢ i prostote w programowaniu

skryptéw oraz spojnos¢ w analizie i raportowaniu wynikéw. Obejmuje on:

standardy kodowania i dokumentacje,

o obstuge danych testowych,

e organizacje repozytorium,

o warstwe komunikacyjna,

« obstuge i interakcje z testowanym systemem,
o konfiguracje logow testowych,

o zasady pisania przypadkéw testowych,

o wywolywanie skryptow testowych,

o praktyki dotyczace raportowania wynikéw.

Architektura frameworku przedstawiona zostata na Rysunku 5.2. Obejmuje ona
rowniez wymiane informacji z narzedziem do zarzadzania testowaniem, z ktorym wy-
miana informacji odbywa sie poprzez dedykowany interfejs programowania aplikacji
(ang. Application Programming Interface, API), udostepniony wraz z narzedziem przez
dostawce. Planowanie testow, ich uruchamianie oraz raportowanie wynikéw obstugiwa-
ne sy przez te platforme, podczas gdy pozostata cze$é¢ operacji wykonywana jest poprzez

framework.

Gléwnymi elementami frameworku sa biblioteki: komunikacyjna i testowa, oraz
czes¢ kontekstowa, to jest obszar bezposrednio zwigzany ze specyfika testowanych syste-
mow wbudowanych. Mozna uznac, ze obie biblioteki stanowia rozwiazanie uniwersalne,
natomiast czesé kontekstowa mocno zalezy od indywidualnej charakterystyki projek-

tow. Aspekt komunikacji dotyczy bezposrednio nawigzywania polgczenia z testowanym

2Ze wzgledu na poziom zlozonoéci, praca nad implementacja i rozwojem frameworku byla prowa-
dzona przez zespél inzynierow testow. Wkladem autora jest sformulowanie wymagan, a takze kod
czeéci moduldéw i testow.

76

5.2. Framework testowy

Narzedzie do zarzadzania

testowaniem

Planowanie
testow

Raportowanie
wynikow
testow

Framework testowy

SR
Funkcje
Biblioteka wspolne
ko':l!:;ka- \:/
vl ¢ Obstuga h
oprogra-
mowania

. zewn.
R

Obstuga
srodowiska

Biblioteka
testowa

kiwanie
defektow

Czesc kontekstowa

Operacje systemowe

Sterowanie
systemem

Konfiguracja
systemu

Rysunek 5.2: Architektura frameworku testowego

urzadzeniem. Moze odbywaé sie to za pomoca sieci komputerowej (np. Ethernet/IP),

lub innego protokotu komunikacyjnego. Wydzielenie tej cze$ci na zewnatrz w formie

biblioteki powoduje, ze w przysztosci mozna swobodnie zmieni¢ sposéb potaczenia z te-

7

Rozdziat 5. Analiza i optymalizacja procesu testowania

stowanym systemem, nie modyfikujac przy tym czesci kontekstowej. W omawianym
wdrozeniu za komunikacje odpowiadata wewnetrznie rozwijana biblioteka napisana

w jezyku Python.

Przez biblioteke testowa rozumiany jest pakiet dostarczajacy kompletne rozwiaza-
nie w zakresie obstugi testowania, w sktad ktérego wchodzg m.in. silnik testowy, klasy
reprezentujace zbiory testéw, konfiguratory, czy opcje parametryzacji testéw. Przykta-
dem takich rozwiazan dla jezyka Python sa narzedzia Unittest i Pytest. Modut Unittest
w Pythonie inspirowany jest frameworkiem JUnit (napisany w Javie) i od lat wcho-
dzi w sktad biblioteki standardowej, dzigki czemu nie wymaga dodatkowej instalacji
i jest odbierany jako bezpieczny, przewidywalny wyboér w projektach. Pytest pozostaje
natomiast jednym z najpopularniejszych, otwarto-zrédtowych (ang. open-source) fra-

meworkow testowych, cenionym za szybkos$¢ pracy i ekosystem rozszerzen.

7, perspektywy filozofii i ergonomii réznice wynikaja gltownie ze sposobu organi-
zowania testéw i zarzadzania ich cyklem zycia. Unittest wykorzystuje klasy TestCase
z metodami testowymi oraz przewidywalny cykl konfiguracji srodowiska, a nastepnie je-
go przywracania do stanu pierwotnego (ang. setUpClass/tearDownClass). Wyposazony
jest takze w bogaty zestaw metod asercji, co dobrze wpisuje sie w srodowiska oczeku-
jace silnie ustrukturyzowanych testéow. Pytest ktadzie nacisk na prostote, gdzie testy
pisane sa jako funkcje lub metody i dzielone na zakresy (ang. scopes), a konfiguracja

i czyszczenie Srodowiska realizowane jest specjalng funkcja, tzw. fixture.

W ramach czeséci kontekstowej mozna wyrézni¢ modut funkeji wspolnych, to jest
reuzywalnych fragmentéw kodu, ktore moga by¢ nastepnie wywolywane w skryptach
testowych. Utatwia to ich utrzymywanie, gdy dochodzi do znaczgcej zmiany w konfi-
guracji urzadzenia, a takze skraca czas potrzebny na pisanie testéw automatycznych.
Funkcje wspélne mocno zaleza od potrzeb projektowych, ale moga naleze¢ do nich na
przyktad: nadpisanie numeru katalogowego urzadzenia, odczyt lub modyfikacja danych
diagnostycznych, tworzenie wykreséw w raportach, czy tez wymuszenie ponownego uru-

chomienia systemu.

Moduty obstugi oprogramowania zewnetrznego i $rodowiska odpowiadajg za ele-
menty zewnetrzne, takie jak wspélpraca z urzadzeniami pomiarowymi (np. oscylosko-
pami, analizatorami widma), symulatorami, systemami testowania sprzetu lub opro-
gramowania w petli (HiLi lub SiL)), czy elementami wyposazenia stanowisk testowych
(na przyktad kontrola przetacznikéw sieciowych). Wywotuja tez potrzebne oprogramo-

wanie nie bedace czescig frameworku, a mogace wchodzi¢ w interakcje z testowanym

78

5.2. Framework testowy

systemem.

Kolejnym istotnym elementem jest modut wstrzykiwania defektow, ktory jest w sta-
nie wymusi¢ wywotanie okreslonych warunkéw skutkujacych zgloszeniem przez testo-
wany system okreslonej usterki w formie ostrzezenia lub btedu. Moze odbywac sie to
w petni programowo, jesli testowany system udostepnia takg funkcjonalnosé¢ w srodowi-
sku inzynierskim, albo sprzetowo z wykorzystaniem debuggera albo systemu Hardware-
in-the-Loop. Rozwigzanie to umozliwia nadpisanie odczytywanych przez czujniki syste-
mu wbudowanego parametrow diagnostycznych, takich jak na przyktad temperatura,
napiecie, czestotliwosé. Innym zastosowaniem moze byé tez przyspieszenie licznikow
diagnostycznych w systemach obstugujacych funkcjonalnoéci zwiazane z konserwacja

predykcyjna (ang. predictive maintenance).

Komponent operacji systemowych odpowiada za obstuge bazy danych parametrow
konfiguracyjnych systemu oraz thumaczenie instrukcji i krokow skryptéow automatycz-
nych, napisanych w Pythonie w formie dopasowanej do potrzeb czlowieka (zblizonej do
jezyka naturalnego), na jezyk zrozumialy dla testowanego systemu whudowanego, czer-
piac przy tym w duzej mierze z biblioteki komunikacyjnej. Umozliwia przeprowadzenie
i zmiane konfiguracji systemu oraz wysytanie instrukcji sterujacych, ktére wymuszaja
wykonanie przez system okreslonych operacji. W odniesieniu do urzadzen automatyki
przemystowej moze to by¢ na przyktad zmiana zadanej czestotliwosci napedu i urucho-

mienie sterowania silnikiem indukcyjnym.

Wszystkie te sktadniki sg konieczne, aby przystapi¢ do wtasciwej automatyzacji te-
stoéw, to jest programowania skryptow, obstugi danych testowych, a takze generowania
logow i raportéw z wykonanych testow. Przyktad zautomatyzowanego testu dla systemu
wbudowanego przedstawia Listing 5.4. Zawiera on wywotanie metod odpowiedzialnych
za przygotowanie srodowiska do testu oraz przywrdcenie stanu pierwotnego po jego za-
konczeniu, a takze kilka przypadkéw testowych dla przyktadowej klasy LedController.
Struktura klasy TestLedController obejmuje metody cyklu zycia testéw: setUp() inicja-
lizuje nowy obiekt kontrolera przed kazdym testem, a tearDown() wykonuje czynnosci
porzadkowe po zakonczeniu testu, co zapewnia izolacje przypadkow i brak efektéw
ubocznych. Testy sprawdzaja cztery kluczowe scenariusze: stan poczatkowy, wlaczenie,
wytaczenie oraz przetaczanie. Kazdy test korzysta z asercji, aby potwierdzi¢ zgodnos$é
rzeczywistego stanu LED z oczekiwanym zachowaniem po wywotaniu odpowiednich
metod. Dzigki temu kod zapewnia pelne pokrycie podstawowej logiki kontrolera, we-

ryfikujac zaréwno inicjalizacje, jak i reakcje na operacje sterujace. Na potrzeby pisania

79

© 00 N O O W N

e e o g gt
O N O Ut = W NN~ O

19
20
21
22
23

24
25
26
27
28
29

30
31
32
33
34

Rozdziat 5. Analiza i optymalizacja procesu testowania

testow automatycznych przyjety zostat tez nieformalny standard kodowania, zapropo-

nowany przez spoteczno$é¢ rozwijajaca jezyk Python w formie rozszerzenia specyfikacji

(ang. Python Enhancement Proposals, PEP), ktéry opisany jest w dokumentach PEP
8§ — Style Guide for Python Code oraz PEP 20 — The Zen of Python.

test_led_controller.py

import unittest

from led_controller import LedController

class TestLedController (unittest.TestCase):

def

def

def

def

def

def

setUp (self):
"""Przygotowaniesrodowiska testowego,przed kazdym ,testem."""
self.led = LedController ()

print (">>>_ setUp: Tworzenie nowego_obiektu, ,LedController")

tearDown (self):
"""Czyszczenie po,kazdym ,tescie."""

print (">>>_ tearDown: Test,zakonczony")

test_initial_state(self):
"""Sprawdzenie stanu,poczatkowego, LED."""
self.assertFalse(self.led.is_on(), "LED_,powinna byc,wylaczona

<+ nagstarcie")

test_turn_on(self):

"""Sprawdzeniewlaczeniay LED."""

self.led.turn_on()

self.assertTrue(self.led.is_on(), "LED_ powinna, byc,wlaczona

< poyturn_on()")

test_turn_off (self):

"""Sprawdzenie wylaczeniay LED."""

self.led.turn_on ()

self.led.turn_off ()

self .assertFalse(self.led.is_on(), "LED,powinna_ byc,wylaczona

< popturn_off ()")

test_toggle(self):
"""Sprawdzenie przelaczania LED."""
self.led.toggle ()

self .assertTrue(self.led.is_on(), "LED, powinna, byc,wlaczonay

80

35
36

37
38
39

5.3. Ustanowienie ram dla zakresu testow

< poyupierwszym,toggle()")

self.led.toggle ()

self .assertFalse(self.led.is_on(), "LED,powinna, byc,wylaczona
— poydrugim_ toggle()")

if __name ==

main_ _

unittest.main ()

Listing 5.4: Przyktadowy skrypt testu automatycznego

Repozytorium ktére przechowuje kod frameworku, testy automatyczne, dane te-
stowe 1 pozostate artefakty oferuje mozliwos¢ uruchomienia systemu ciggtej integraciji,
w ktorym okreslone testy uruchamiane sg kazdorazowo po dostarczeniu przez progra-
mistow nowej wersji oprogramowania. Grupa tych testow zostata wyznaczona w taki
sposob, aby obejmowaé¢ podstawowe funkcjonalnosci systemu i dzieki temu zminimali-
zowacl ryzyko, ze dana wersja oprogramowania zawiera bledy, ktére w oczywisty sposéb

blokuja lub uniemozliwiaja dalsze wyspecjalizowane testowanie.

Waznym aspektem zwigzanym z frameworkiem, jest rowniez jego dokumentacja.
W opisywanym rozwiazaniu wykorzystano podejscie zwane kodem samodokumentu-
jacym sie (ang. self-documented code) z wykorzystaniem generatora dokumentacji
Sphinx. Samodokumentujacy kod to taki, ktory dzieki swojej strukturze, nazwom i ko-
mentarzom jest zrozumiaty bez dodatkowych wyjasnien. W Pythonie kluczowa role
dla spelienia tych kryteriow odgrywaja docstringi — komentarze umieszczane w kla-
sach, funkcjach i modutach. Dzieki nim kod staje sie bardziej czytelny i tatwiejszy
w utrzymaniu. Docstringi opisuja dziatanie elementéw kodu, parametry, typy zwraca-
nych wartosci i ewentualne wyjatki. To fundament, na ktérym Sphinx buduje automa-
tyczng dokumentacje, przeksztatcajac je na format HTML, PDF lub inny. Dzieki temu
dokumentacja jest spojna, estetyczna i tatwa do nawigacji, szczegdlnie gdy projekt

podaza za rozszerzeniem specyfikacji PEP 257 — Docstring Conventions.

5.3 Ustanowienie ram dla zakresu testow

Ramy postepowania w testach zlozonych systemow wbudowanych zostaty wyzna-
czone na podstawie przeprowadzonych badan oraz wdrozen w projektach Oscar i Lima.
Celem ich opracowania byto stworzenie uniwersalnego, a zarazem praktycznego mecha-

nizmu, ktory umozliwi optymalizacje procesu testowania poprzez $wiadome zarzadza-

81

Rozdziat 5. Analiza i optymalizacja procesu testowania

nie zakresem, priorytetami oraz forma testéw. Ramy te integruja podejécie oparte na
analizie ryzyka, atomizacje przypadkéw testowych, systematyczne wykorzystanie te-
stowania eksploracyjnego oraz deterministyczng automatyzacje, oparta o hybrydowy
framework testowy zbudowany w jezyku Python i zintegrowany z narzedziem do za-

rzadzania testami oraz srodowiskiem ciagtej integracji.

Podstawowym zalozeniem przyjetym w ramach procesu wyznaczania zakresu te-
stow jest kierowanie si¢ ocena ryzyka, a nie rutyna czy historycznymi schematami.
Kazdy scenariusz testowy podlega ocenie wedtug macierzy ryzyka, gdzie ryzyko defi-
niowane jest jako iloczyn prawdopodobienstwa wystapienia defektu oraz potencjalnych
konsekwencji jego materializacji. Takie podejscie pozwala na racjonalne gospodarowa-
nie zasobami oraz skupienie uwagi zespotu testerskiego na obszarach o najwickszym
wplywie na jakos¢ i bezpieczenstwo produktu. W praktyce wdrozonej w projektach
Oscar i Lima, ocena ryzyka stanowita kluczowy czynnik decydujacy o formie testu,

jego czestotliwosci oraz kwalifikacji do puli regresyjnej.

Kolejnym filarem ram jest atomizacja przypadkéw testowych, polegajaca na po-
wiazaniu kazdego testu z pojedynczym wymaganiem funkcjonalnym. Takie podejscie
umozliwia precyzyjne $ledzenie powiazan pomiedzy wymaganiami a testami, utatwia
analize wptywu zmian oraz pozwala na szybkie okreslenie zakresu testéw wymagaja-
cych powtoérzenia po modyfikacji oprogramowania. W projektach Oscar i Lima udato
sie osiggna¢ atomizacje na poziomie 99 % przypadkéw testowych, co znaczaco uspraw-

nito proces zarzadzania testami oraz analize pokrycia wymagan.

W ramach wdrozonych rozwiazan szczegdlna role odgrywa warstwowa regresja te-
stow, podzielona na trzy poziomy: codzienna, jednokrotng oraz rozszerzona. Przypi-
sanie testow do odpowiedniej puli regresyjnej odbywa sie na podstawie oceny ryzyka
oraz kontekstu biznesowego. Testy o najwyzszym ryzyku oraz kluczowym znaczeniu dla
bezpieczenstwa i stabilnosci produktu kwalifikowane sa do codziennej regresji, realizo-
wanej w Srodowisku cigglej integracji. Testy o Srednim ryzyku oraz te, ktore powstaty
w wyniku testowania eksploracyjnego i uzyskaty odpowiednia deterministyke, wtacza-
ne sa do regresji jednokrotnej, wykonywanej w cyklu wydania produktu lub interwatu
planowania. Pozostate testy, o niskim ryzyku lub specyficznym charakterze, realizowa-
ne sg w ramach regresji rozszerzonej, uruchamianej w miare dostepnosci zasobéw lub

w odpowiedzi na szczegdlne wymagania biznesowe.

Testowanie eksploracyjne, wdrozone jako usystematyzowana technika w projektach

Oscar i Lima, stanowi istotne uzupelnienie tradycyjnych metod testowania. ET po-

82

5.3. Ustanowienie ram dla zakresu testow

zwala na wykrycie defektow trudnych do odtworzenia oraz luk w pokryciu testowym,
szczegblnie w obszarach o wysokiej ztozonosci interfejsow modutéow oraz w sytuacjach
braku petnej specyfikacji wymagan. Wyniki testow eksploracyjnych sg systematycznie
przeksztalcane w testy skryptowe i wtaczane do puli regresyjnej, gdy uzasadnia to efek-
tywnos¢ ekonomiczna i techniczna. W projekcie Oscar dziewieé¢ sesji E'T pozwolito na
wykrycie szeéciu istotnych defektow, z ktorych pie¢ nie bytoby mozliwe do wykrycia

przez testy automatyczne lub skryptowe ze wzgledu na ich niskg odtwarzalnosc.

Automatyzacja testow w ramach wdrozonego frameworku opiera sie na rygory-
stycznych kryteriach stabilnosci i niezawodno$ci. Do puli regresyjnej kwalifikowane sa
wylacznie testy spetniajace ustalone progi stabilnosci (np. 10/10, 25/25, 48/50, 95/100
powtérzen bez wynikow falszywie pozytywnych lub negatywnych), co eliminuje szu-
my w sygnale testowym i zwieksza wiarygodnos¢ procesu decyzyjnego. Testy zalezne
od znanych defektéw przechodza w tryb ostrzezenia, z odpowiednim powigzaniem do
zgloszenia w systemie zarzadzania defektami, co pozwala na zachowanie przejrzystosci

raportowania i ulatwia pozniejszag aktualizacje.

Proces wyznaczania zakresu testow wspierany jest przez zestaw metryk i kryteriéw
wejscia/wyjscia, takich jak wspotezynnik efektywnosci testow (TER), gestosé defek-
téw (FD), niezawodnosé automatyzacji (TAR), procent wykrytych defektéw (DDP)
oraz wykresy spalania (burndown chart). Metryki te stuza do monitorowania postepu
kampanii testowej, oceny skutecznosci wdrozonych zmian oraz podejmowania decyzji
o zakonczeniu testow. Przyktadowo, wejscie do kampanii testowej wymaga przejscia
przez zestaw testéw promocyjnych w srodowisku CI, braku blokujacych defektéw bez-
pieczenstwa oraz dostepnosci obiektéw testowych, natomiast wyjscie uzaleznione jest
od osiagniecia zatozonego pokrycia wymagan, spelnienia progéw metryk oraz braku

defektéw krytycznych.

Oprocz powyzszych, mierzony jest réwniez dzienny przyrost nowych przypadkow
testowych w projekcie, a takze liczba wykonanych przypadkéw testowych (z podzia-
tem na ich poszczegdlne rezultaty) i wykrytych defektéw. Dane te pozwalaja ocenié
postep w realizacji projektu, a takze wykry¢ ewentualne czynniki blokujace. Kondycja
projektu podlega takze ocenie na podstawie liczby testéw gotowych do uruchomienia,
w poréwnaniu do testéw dopiero w trakcie projektowania, wymagajacych aktualizacji,
zbednych, badz wylaczonych ze wzgledu na inne czynniki. Sledzony w sposéb automa-

tyczny jest takze poziom pokrycia testami wymagan funkcjonalnych.

W efekcie wdrozenia opisanych ram, projekty Oscar i Lima osiggnely znaczacy

83

Rozdziat 5. Analiza i optymalizacja procesu testowania

wzrost efektywnosci testowania, potwierdzony wysokimi wartosciami TER i FD w po-
rownaniu do projektow referencyjnych. Skrécono czas kampanii testowej dzieki auto-
matyzacji i atomizacji przypadkow testowych, a testowanie eksploracyjne pozwolito na
wykrycie defektow o wysokiej istotnosci dla klienta. Stabilnos$¢ procesu zostata zapew-
niona przez rygorystyczne kryteria kwalifikacji testow do regresji oraz systematyczne

monitorowanie metryk jakosciowych.

Podsumowujac, ustanowione ramy dla zakresu testow stanowig spojny, mierzalny
i elastyczny mechanizm zarzadzania procesem testowania funkcjonalnego ztozonych
systeméw wbudowanych. Integracja podejscia opartego na ryzyku, atomizacji przy-
padkow testowych, testowania eksploracyjnego oraz deterministycznej automatyzacji
pozwala na optymalizacje procesu testowego, zwiekszenie jakosci produktu oraz efek-
tywne wykorzystanie zasobow zespotu testerskiego. Wyniki wdrozenia potwierdzaja
zasadnos¢ przyjetych rozwiazan i wskazuja kierunek dalszego rozwoju praktyk testo-

wania w przedsiebiorstwie.

84

Rozdzial 6

Podsumowanie 1 wnioski

6.1 Najwazniejsze osiggniecia projektu doktorskie-
go

W ramach realizacji projektu doktorskiego osiagnieto szereg kluczowych rezulta-
tow, ktore istotnie wplynety na proces testowania funkcjonalnego ztozonych systeméw
wbudowanych w przedsiebiorstwie Rockwell Automation. Przeprowadzone wdrozenia
oraz badania pozwolity na wypracowanie nowoczesnych ram postepowania testowego,
ktore zostaly uznane za wytyczne procesowe i wdrozone jako standard w organizacji.
Osiggniecia te maja wymierny wplyw zarowno na efektywnos$é¢ testowania, jak i na
jako$¢ dostarczanych rozwigzan. Najwazniejsze elementy projektu mozna podsumowac

w nastepujacych punktach:

1. Znaczacy wzrost efektywnosci testowania — potwierdzony wysokimi warto$ciami
wspolezynnikéw efektywnosci testéw TER (ang. Test Effectiveness Ratio) i gesto-
Sci btedéw FD (ang. Fault Density) dla projektéw wzorcowych (Oscar, Lima) na
tle grup referencyjnych, a takze wieksza stabilno$é¢ procesu dzieki rygorystycznym

progom kwalifikacji do regresji i ciaglemu monitorowaniu metryk.

2. Wdrozenie hybrydowego frameworku testowego opartego na jezyku Python, zin-
tegrowanego z narzedziami do zarzadzania testami oraz Srodowiskiem ciggtej in-
tegracji. Narzedzie to umozliwito efektywng automatyzacje testow oraz szybkie

dostosowanie narzedzi do specyfiki réznych projektéw i wymagan.

3. Systematyczne wykorzystanie testowania eksploracyjnego (ET) — wdrozenie ET

85

Rozdziat 6. Podsumowanie i wnioski

jako usystematyzowanej techniki pozwolito na wykrycie defektéw trudnych do
odtworzenia oraz luk w pokryciu testowym, szczegdlnie w obszarach o wysokiej
ztozonosci interfejséw modutéw oraz w sytuacjach braku pelnej specyfikacji wy-
magan. Wyniki testow eksploracyjnych byty przeksztatcane w testy skryptowe

i wlaczane do puli regresyjne;.

4. Atomizacja przypadkdéw testowych — kazdy przypadek testowy zostat powigzany
z pojedynczym wymaganiem funkcjonalnym, co pozwolito na precyzyjne sledzenie
powiazan, tatwag analize wpltywu zmian oraz szybkie okreslenie zakresu testow
wymagajacych powtorzenia po modyfikacji oprogramowania. W projektach Oscar

i Lima osiggnieto atomizacje na poziomie 99 %.

5. Integracja podejscia opartego na analizie ryzyka — ocena ryzyka stata si¢ klu-
czowym czynnikiem decydujacym o formie testu, jego czestotliwosci oraz kwali-
fikacji do puli regresyjnej. Pozwolito to na racjonalne gospodarowanie zasobami
oraz skupienie uwagi zespotu testerskiego na obszarach o najwigkszym wptywie

na jakos¢ i bezpieczenstwo produktu.

6. Wprowadzenie rygorystycznych kryteriow stabilnosci i niezawodnosci testéw au-
tomatycznych — do puli regresyjnej kwalifikowane byty wytacznie testy spelia-
jace ustalone progi stabilnosci (np. 10/10, 25/25, 48/50, 95/100 powtdrzen bez
wynikéw falszywie pozytywnych lub negatywnych), co zwigkszyto wiarygodnosé

procesu.

Podsumowujac realizacje projektu doktorskiego, mozna jednoznacznie stwierdzi¢,
ze postawiona teza rozprawy zostata potwierdzona w toku przeprowadzonych badan
i wdrozen. Zastosowanie hybrydowego frameworku testowego, opartego na synergii de-
terministycznej automatyzacji, systematycznej analizy ryzyka, atomizacji przypadkow
testowych oraz usystematyzowanego testowania eksploracyjnego, umozliwito mierzalng
optymalizacje procesu weryfikacji ztozonych systeméw wbhudowanych. Potwierdzeniem
tego sg statystycznie istotne wzrosty wartosci metryk jakosciowych — w szczegolnosci
wspOlezynnika efektywnosci testow (TER) oraz gestosci defektéw (FD) — w projektach

Oscar i Lima, ktére wyraznie przewyzszyty wyniki grup referencyjnych.

Cele badawcze zostaly zrealizowane w pelnym zakresie. Po pierwsze, wdrozenie
strategii testowania opartej na analizie ryzyka oraz automatyzacji testow przetozyto
sie na skrocenie czasu kampanii testowej i wzrost efektywnosci wykrywania defektéw,

co potwierdzaja szczegdtowe analizy porownawcze oraz zestawienia metryk w rozdziale

86

6.2. Implementacja opracowanej metody testowania w przedsigbiorstwie

wynikéw. Po drugie, zastosowanie testowania eksploracyjnego jako integralnej czesci
kampanii testowej pozwolito na wykrycie defektéw trudnych do odtworzenia, ktore
nie zostalyby ujawnione w ramach testow formalnych — przykladem sg scenariusze
z projektu Oscar, gdzie testy eksploracyjne wykryty bledy o wysokiej istotnosci dla
klienta. Po trzecie, wdrozenie nowych strategii testowania w zespotach rozproszonych
zostalo wsparte przez standaryzacje procesow, automatyzacje metryk oraz szkolenia,

co umozliwito skuteczng adaptacje rozwigzan w réznych lokalizacjach i projektach.

Wypracowane autorskie koncepcje i rekomendacje wpisane w ramy postepowania
testowego zostaly uznane za wytyczne procesowe i wdrozone jako standard w przed-
siebiorstwie, potwierdzajac zasadnos$¢ przyjetych rozwiazan oraz wskazujac kierunek
dalszego rozwoju praktyk testowania w sektorze systemoéw wbudowanych. Wdrozenie
powyzszych rozwigzan przyczynito sie do skrocenia czasu kampanii testowej, zwieksze-
nia wykrywalnosci defektéw oraz poprawy jakoséci dostarczanych produktéw. Opraco-
wane ramy postepowania testowego stanowia spéjny, mierzalny i elastyczny mechanizm
zarzadzania procesem testowania funkcjonalnego ztozonych systeméw wbudowanych,
integrujac podejscie oparte na ryzyku, atomizacje przypadkéw testowych, testowanie

eksploracyjne oraz deterministyczng automatyzacje.

6.2 Implementacja opracowanej metody testowania

w przedsiebiorstwie

W ramach realizacji pracy doktorskiej autor petnit role inzyniera testéw oraz kie-
rownika projektu testowania funkcjonalnego ztozonych systeméw wbudowanych, od-
powiadajac za kompleksowe zarzadzanie catym cyklem testowym. Do gtéwnych zadan
na tym stanowisku nalezato przygotowanie szczegdtowego planu testow, w tym dobér
i opracowanie strategii testowej dostosowanej do specyfiki projektow prowadzonych
w przedsiebiorstwie Rockwell Automation. Autor nie tylko projektowat i wykonywat
istotng cze$¢ testéw w projektach Sierra, Quebec, Oscar i Lima, ale rowniez byt od-
powiedzialny za sporzadzenie koncowych raportéw podsumowujgcych wyniki kampa-
nii testowych oraz rekomendacje dotyczace dalszego rozwoju proceséw jakosciowych.
Wkiadem autora byto réwniez sformulowanie wymagan dla frameworku testowego,

a takze kod czesci modutow i testéw automatycznych.

Decyzje o wdrozeniu poszczegdlnych elementoéw strategii testowej byty podejmowa-

87

Rozdziat 6. Podsumowanie i wnioski

ne na podstawie autorskich pomystow i rekomendacji autora, ktéore — po akceptacji
przez firme — zostaly wtaczone jako integralna czes¢ procesu testowego. W praktyce
oznaczalo to, ze autor nie tylko inicjowal zmiany w podejsciu do testowania, ale réw-
niez aktywnie uczestniczyt w ich implementacji, monitorujac efekty oraz dostosowujac
strategie do biezacych potrzeb projektowych. Wdrozone rozwigzania obejmowalty m.in.
atomizacje przypadkéw testowych, analize ryzyka, systematyczne wykorzystanie testo-
wania eksploracyjnego, deterministyczng automatyzacje oraz wdrozenie hybrydowego
frameworku testowego opartego na jezyku Python i zintegrowanego z narzedziami do

zarzadzania testami oraz srodowiskiem cigglej integracji.

Pozostate prace, ze wzgledu na ich zakres i ztozonos¢, byly realizowane zespotowo
przez inzynieréw testow, przy czym autor petnit role koordynatora i osoby odpowie-
dzialnej za nadzér merytoryczny oraz zapewnienie spdjnosci wdrazanych rozwigzan.
Wspoétpraca z zespotem obejmowata zaréwno planowanie eksperymentow, jak i bieza-
cg analize wynikéw oraz optymalizacje procesu testowego w oparciu o zdefiniowane

metryki jakosciowe.

Specyfika cyklu rozwoju produktu w przedsiebiorstwie oraz charakter wdrozeniowy
pracy sprawity, ze nie byto mozliwosci wielokrotnego stosowania réznych technik te-
stowania dla tego samego systemu. Kolejne wersje oprogramowania ulegaty cigglym
zmianom, a presja harmonogramu uniemozliwita ponowne testowanie tych samych
funkcjonalnosci innymi metodami. W konsekwencji poréwnanie skutecznosci strate-
gii testowych mogto odbywaé sie jedynie w odniesieniu do innych projektow, ktére
— mimo podobienstw — nigdy nie sa w pelni identyczne, co nadaje takim analizom

charakter przyblizony.

Cze$¢ wdrozenia realizowana byta w $érodowisku miedzynarodowych zespotéw roz-
proszonych. Wdrozenie nowych strategii testowania w zespotach rozproszonych wy-
maga nie tylko odpowiednich narzedzi i technik, ale przede wszystkim $wiadomego
zarzadzania zmiang, inwestycji w kompetencje zespotu oraz systematycznego monito-
rowania efektéw. Kluczowe jest zapewnienie spdjnosci procesow, jasnej komunikacji
oraz elastycznosci w dostosowywaniu rozwigzan do lokalnych warunkéw projektowych.
Analiza procesu wdrozenia pozwolita zidentyfikowaé kluczowe czynniki organizacyjne

i techniczne, ktére sprzyjaty skutecznej adaptacji nowych strategii testowania:

1. Jasny podzial rél i odpowiedzialnosci — wyrdznienie roli kierownika projektu
testowania funkcjonalnego umozliwito sprawng komunikacje, szybka reakcje na

problemy oraz efektywne zarzadzanie zmiang.

88

6.2. Implementacja opracowanej metody testowania w przedsigbiorstwie

. Standaryzacja proceséw i narzedzi — zastosowanie jednolitego frameworku te-
stowego, zintegrowanego z narzedziem do zarzadzania testami oraz wspotpracu-
jacego ze srodowiskiem cigglej integracji, pozwolito na szybkie wdrozenie nowych

praktyk w réznych lokalizacjach i projektach.

. Atomizacja przypadkow testowych i Sledzenie powigzan — precyzyjne powigza-
nie testéw z wymaganiami funkcjonalnymi oraz automatyczne raportowanie po-
stepow umozliwito zespotom rozproszonym tatwe monitorowanie zakresu testéw

i szybkie reagowanie na zmieniajace siec wymagania.

. Szkolenia i rozwoj kompetencji — przeprowadzenie dedykowanych szkolen z ob-
stugi frameworku, projektowania testow w oparciu o analiz¢ ryzyka oraz praktyki
testowania eksploracyjnego. Nacisk zostal réwniez potozony na przeglady wzbo-
gacone o dedykowane listy kontrolne. Rozwiazania te znaczaco podniosty poziom

kompetencji zespoléw i utatwity adaptacje nowych rozwigzan.

. Synchronizacja prac — plan testéw realizowany byt w ramach interwatéw pla-
nowania (PI), co umozliwilo efektywne wykorzystanie wspdlnej infrastruktury.
Prace konsultowane byly z zespotami programistow, aby zminimalizowaé¢ liczbe
blokad w testach.

. Automatyzacja metryk — zbieranie i wizualizacja metryk w formie pulpitéw na-
wigacyjnych (ang. dashboard) w narzedziu Power BI pozwolity na biezace moni-

torowanie efektywnosci wdrozenia i szybkie podejmowanie decyzji.

. Kultura otwartosci na zmiany — regularne retrospektywy, przeglady kodu i pro-
jektow testéw oraz otwarta komunikacja sprzyjaty identyfikacji barier i wdrazaniu

usprawnien.

Zakres testow zaczat by¢ okreslany i kontrolowany przy wykorzystaniu zestawu me-

tryk oraz jasno zdefiniowanych kryteriéw wejscia i wyjscia, takich jak wspétezynnik

efektywnosci testéw (TER), gestosé wykrytych bledéw (FD), niezawodno$¢ automa-

tyzacji (TAR), procent wykrytych defektéw (DDP) oraz wykresy spalania (burndown

chart). Wskazniki te umozliwily biezace monitorowanie przebiegu kampanii testowej,

ocene skutecznosci wdrozonych rozwigzan oraz podejmowanie decyzji dotyczacych za-

konczenia testow. Przyktadowo, rozpoczecie kolejnej iteracji w ramach kampanii te-

stowej byto mozliwe po spelieniu warunkow takich jak pozytywne przejscie testow

89

Rozdziat 6. Podsumowanie i wnioski

promocyjnych w srodowisku CI, brak krytycznych defektéw bezpieczenstwa oraz do-
stepno$¢ wymaganych obiektow testowych. Zakonczenie procesu testowania uzaleznio-
ne zostato natomiast od osiggniecia zatozonego poziomu pokrycia wymagan, spetnienia

ustalonych progéw metryk oraz braku istotnych defektow.

Ponadto, na biezaco analizowany byl dzienny przyrost nowych przypadkéw testo-
wych, liczba wykonanych testéw (z uwzglednieniem ich rezultatéw) oraz liczba wykry-
tych defektow. Te dane pozwolity nie tylko §ledzi¢ postepy projektu, ale takze identyfi-
kowaé potencjalne przeszkody. Stan projektu oceniany byt rowniez na podstawie liczby
testow gotowych do uruchomienia w stosunku do tych, ktére sg w fazie projektowania,
wymagajg aktualizacji, zostaly uznane za zbedne lub wylgczone z innych powodéw. Au-
tomatycznie monitorowany zostal réwniez poziom pokrycia wymagan funkcjonalnych

przez testy.

Jednym z kluczowych usprawnien wdrozonych w ramach strategii testowej podczas
realizacji projektu doktorskiego byto zastosowanie jednolitej notacji oraz automatycz-
nej generacji przypadkéw testowych dla parametréw konfiguracyjnych systeméw wbu-
dowanych w projektach Oscar i Lima. Specyfikacja wymagan zostata przygotowana
w postaci uporzadkowanych plikéw JSON, ktére odwzorowywaly strukture urzadzen
— podzial na klasy, instancje oraz atrybuty umozliwit precyzyjne opisanie parame-
tréw. Dzieki temu podejsciu znaczaco ograniczono naktad pracy testerow: automaty-
zacja dokumentacji i implementacji 437 przypadkéw testowych pozwolita zaoszczedzié
okoto 146 dni pracy inzynierskiej (przy zalozeniu dwdch godzin na kazdy przypadek

i szeSciogodzinnym dniu pracy).

Wprowadzono réwniez istotng zmiange w sposobie Sledzenia powigzan pomiedzy
testami a wymaganiami. W poprzednich projektach jeden przypadek testowy mogt
by¢ powiazany z wieloma wymaganiami funkcjonalnymi, co prowadzito do trudnosci
w analizie poprawnosci implementacji poszczegdlnych funkcjonalnosci — zdarzalo sie,
ze liczba powigzan przekraczala sto dla pojedynczego testu. W projektach Oscar i Li-
ma wdrozono zasade tworzenia testéw w sposob maksymalnie atomowy, tak aby kazdy
przypadek testowy obejmowal mozliwie najmniejszg liczbe wymagan. Efekt tej zmiany
byl widoczny: dla 99 % testéw udalo sie zachowaé jednoznaczno$é powigzan, a w po-

zostalych przypadkach liczba powigzanych wymagan nie przekroczyta siedmiu.

W projektach Oscar i Lima strategia testowa byta ustalana juz na etapie opracowy-
wania szczegdtowych planéw testow dla poszczegdlnych obszaréw, ktére razem tworzy-

ty gtowny plan testow. Dokumentacja obejmowala testy funkcjonalne oprogramowania

90

6.2. Implementacja opracowanej metody testowania w przedsigbiorstwie

wbudowanego, testy funkcjonalne oprogramowania, testy sprzetowe, testy systemowe
oraz testy zwiazane z cyberbezpieczenstwem. Kazdy z tych obszarowych planéw zawie-
rat wysokopoziomowe scenariusze, okreslajace zakres testowanych funkcjonalnosci, bez

wchodzenia w szczegdty techniczne ich realizacji.

Nowoscig wdrozong w ramach projektu doktorskiego byto przypisywanie do kaz-
dego scenariusza odpowiedniej akcji w zaleznosci od poziomu ryzyka, jaki zostal mu
przyznany. Dla scenariuszy o niskiej ocenie ryzyka (ponizej 8) rezygnowano z testowa-
nia lub ograniczano si¢ do przegladu kodu. Funkcjonalnosci o $rednim poziomie ryzyka
(8-24) byly poddawane testom manualnym, testom wedtug listy kontrolnej lub testo-
waniu eksploracyjnemu. Natomiast dla scenariuszy o wysokim ryzyku (powyzej 24)
wdrazano automatyzacje testow, co umozliwiato ich regularng weryfikacje w ramach
testéw regresyjnych. W wyjatkowych przypadkach, wynikajacych z uwarunkowan biz-
nesowych, obowiazujacych norm lub dostepnych technologii, rodzaj przypisanej akcji

moégt by¢ inny.

Analogiczne podejécie zastosowano przy kwalifikowaniu testow regresyjnych. Skala
ryzyka pozwalala przypisac testy do jednej z trzech kategorii: codziennej regresji (testy
uruchamiane cyklicznie w $rodowisku CI), regresji jednokrotnej (testy wykonywane raz
w cyklu wydania produktu) oraz regresji rozszerzonej, realizowanej w miare dostepnosci

zasobow lub w odpowiedzi na szczegdlne potrzeby biznesowe.

Testowanie eksploracyjne (ET) wlaczono jako usystematyzowane ramy postepowa-
nia z kartami sesji (test charters) i ramami czasowymi. Wyniki ET przeksztatcano
w testy skryptowe i — po osiagnieciu wymaganej deterministyki — kwalifikowano do
regresji. W projekcie Oscar E'T ujawnito defekty trudne do odtworzenia, ktére najpew-
niej umknetyby testom skryptowym, a czes¢ z powstatych procedur wtaczono nastepnie
do regresji i ciagtej integracji w kolejnych wydaniach (podejscie przeniesiono réwniez

do projektu Lima).

Wdrozenie modutowego frameworku testowego, opartego na jezyku Python i zinte-
growanego z narzedziami do zarzadzania testami oraz srodowiskiem ciggtej integracji,
okazato sie kluczowym czynnikiem sukcesu w optymalizacji procesu testowania syste-
mow whudowanych. Hybrydowa architektura taczaca elastycznosé podejscia moduto-
wego z mozliwoscia reuzywalnosci kodu oraz oddzieleniem danych testowych od logiki
testow, umozliwita szybkie dostosowanie narzedzi do specyfiki réznych projektow i wy-
magan. Framework zapewnit standaryzacje procesu automatyzacji testow, utatwiajac

programowanie skryptow, organizacj¢ repozytorium oraz raportowanie wynikow. Dzieki

91

Rozdziat 6. Podsumowanie i wnioski

zastosowaniu wspolnych bibliotek komunikacyjnych i testowych, a takze kontekstowych
modutéw dedykowanych dla konkretnych urzadzen, mozliwe byto efektywne zarzadza-
nie przypadkami testowymi oraz ich szybka adaptacja do zmian w projekcie. Integracja
z narzedziem do zarzadzania testami przez dedykowane API pozwolita na automatyczne
sledzenie powigzan z wymaganiami oraz generowanie raportéw. Wprowadzenie standar-
déw kodowania, a takze automatycznej generacji dokumentacji technicznej (za pomoca
narzedzia Sphinx), podniosto czytelnosé i utrzymywalnosé kodu testowego. Wdrozony
framework testowy stal sie fundamentem nowoczesnego procesu weryfikacji systemow
wbudowanych w przedsiebiorstwie, umozliwiajac nie tylko efektywna automatyzacje
testow, ale takze zwinne zarzadzanie zakresem i jako$cig testowania w dynamicznie

zmieniajacych sie warunkach projektowych.

W zakresie zgodnosSci procesowej cata opisywana metoda pozostaje spdjna z wyma-
ganiami dokumentacyjnymi normy ISO/IEC/IEEE 29119 (warstwowanie planowania
i raportowania, macierz ryzyka) oraz z praktykami RAPL w obszarze Verification & Va-
lidation (Sledzenie powigzan, kryteria wejscia/wyjscia, testy promocyjne jako bramki
jakosciowe). Taka konstrukeja utatwita standaryzacje raportéw i poréwnywalnosé wyni-

kéw miedzy projektami, takze prowadzonymi w ramach innych jednostek biznesowych.

W badaniach prowadzonych w warunkach przemystowych, bez $cistej kontroli ekspe-
rymentalnej, niezwykle trudno jest wyizolowa¢ wpltyw pojedynczej zmiany na przebieg
procesu. Wiele czynnikéw zmienia si¢ rownoczesnie, co stwarza ryzyko btednej atrybu-
¢ji przyczynowo-skutkowej. Na obserwowany wzrost gestosci defektéw FD oraz wspot-
czynnika efektywnosci testowania TER mogly mieé¢, przynajmniej czesciowo, wpltyw

czynniki zaktocajace:

1. Nowos$¢ i ztozonosé produktu — nowe, niedojrzate produkty i architektury (jak
w przypadku projektéw Oscar i Lima) sa z natury bardziej podatne na defek-
ty, niz systemy rozwijane od dtuzszego czasu. Wysoka liczba wykrytych bledéw
moze wiec czesciowo odzwierciedlaé¢ nizsza poczatkows jakosé kodu i ztozonoséé

produktow.

2. Jednoczesna zmiana wielu elementéw strategii testowej oraz narzedzi — wplyw
wprowadzenia zmian w strategii testowej oraz nowego frameworku testowego nie
zostal rozdzielony. Bez takiego rozréznienia nie mozna okresli¢, jaka czes¢ za-
obserwowanej poprawy wynika z lepszego narzedzia, a jaka z wdrozenia nowej,

wysoce skutecznej strategii testowej.

92

6.3. Potencjalny wptyw wynikow na przysztosé testowania

3. Sktad i do$wiadczenie zespolu — praca nie obejmuje zagadnien zwiazanych z ka-
pitatem ludzkim, takich jak umiejetnosci, doswiadczenie, czy motywacja zespotéw

inzynierskich przypisanych do projektow.

Mimo powyzszych ograniczen, wdrozenie przyniosto namacalne efekty techniczne
i organizacyjne: skrocenie czasu kampanii dzieki automatyzacji i atomizacji, zwieksze-
nie wykrywalnosci (TER) i gestosci btedéw (FD) dla projektéw wzorcowych (Oscar,
Lima) na tle grup referencyjnych, a takze wieksza stabilnosé procesu dzieki rygory-
stycznym progom kwalifikacji do regresji i ciagtemu monitorowaniu metryk. W efekcie,
proponowane przez autora techniki testowania staty si¢ fundamentem wdrozonej stra-
tegii testowej, a ich implementacja przyczynita sie do znaczacego wzrostu efektywnosci
testowania oraz poprawy jakosci dostarczanych rozwigzan. Opracowane ramy poste-
powania testowego zostaly uznane za wytyczne procesowe i wdrozone jako standard
w przedsi¢biorstwie, potwierdzajac zasadnos¢ przyjetych rozwigzan oraz wskazujac kie-

runek dalszego rozwoju praktyk testowania w sektorze systeméw wbudowanych.

6.3 Potencjalny wpltyw wynikéw na przyszlosé te-

stowania

Przeprowadzone badania oraz wdrozenia w projektach Oscar i Lima dowodza, ze
integracja podejscia opartego na analizie ryzyka, atomizacji przypadkéw testowych,
testowania eksploracyjnego oraz deterministycznej automatyzacji pozwala na znaczaca
optymalizacje procesu testowego. Takie ramy postepowania nie tylko zwiekszajg efek-
tywnos¢ wykrywania defektéw, ale rowniez podnosza jako$é koncowego produktu oraz

umozliwiaja bardziej racjonalne gospodarowanie zasobami zespotu testerskiego.

Jednym z kluczowych wnioskoéw plynacych z pracy jest potrzeba dalszego doskona-
lenia narzedzi i technik automatyzacji testow. W szczegdlnosci, wdrozony hybrydowy
framework testowy oparty o jezyk Python oraz integracje z narzedziami do zarzadza-
nia testami i srodowiskiem ciagtej integracji stanowi solidna baze do dalszych ekspery-
mentow. Modularno$é¢ srodowiska jest jednym z najwazniejszych czynnikow wpltywaja-
cych na efektywnos¢ i skalowalno$é¢ procesu testowania. Dalsze podzielenie frameworku
na mniejsze, reuzywalne moduty objete systemem wersjonowania, wymagatoby pracy
zwigzanej z definicjg interfejsow pomiedzy nimi, ale jednocze$nie pozwolitoby na nie-

zalezne rozwijanie, testowanie i utrzymywanie poszczegolnych komponentow. W prak-

93

Rozdziat 6. Podsumowanie i wnioski

tyce oznacza to, ze biblioteki komunikacyjne, testowe oraz kontekstowe moglyby by¢
wykorzystywane w réznych projektach, niezaleznie od zmian w architekturze urzadze-
nia czy protokotach komunikacyjnych. Takie podej$cie umozliwia szybkie dostosowanie
narzedzi do nowych wymagan, minimalizuje ryzyko btedéw propagowanych pomiedzy
testami oraz znaczgco skraca czas wdrozenia nowych funkcjonalnosci. Modularnosé
sprzyja takze efektywnoéci zespoléw testerskich — raz napisane komponenty moga by¢
wielokrotnie uzywane w réznych projektach, co generuje wymierne oszczednosci czaso-
we 1 finansowe. W systemach wbudowanych, gdzie testy musza uwzglednia¢ zaréwno
warstwe sprzetows, jak i programowa, modularny framework pozwala na szybkie prze-
laczanie si¢ pomiedzy testami réznych typéw (np. funkcjonalnych, wydajnosciowych,
bezpieczenistwa) oraz tatwa integracje z narzedziami do zarzadzania testami i $rodowi-

skami ciagtej integracji.

Kolejnym krokiem powinno by¢ takze dobranie strategii migracji z poprzedniego
frameworku do nowego narzedzia. Plan przejscia powinien obejmowaé priorytetyzacje

testow i ich kwalifikacje do jednej z trzech kategorii:

1. Testy o wysokiej wartosci regresyjnej.
2. Testy obszaréw funkcjonalnych o niskiej zmiennosci.

3. Testy o niskiej wartosci informacyjnej lub chronicznie niestabilne.

Kryteria decyzyjne powinny obja¢ koszta utrzymania, czas wykonania, podatnosé
na automatyzacje, wartos¢ w regresji oraz ryzyka powigzane z danym obszarem funk-
cjonalnym. Testy kategorii pierwszej powinny zosta¢ w pierwszej kategorii przepisane
w jezyku Python. Testy kategorii drugiej moga wykorzysta¢ mostkowanie, czyli wy-
wotanie istniejacych sekwencji z poziomu Pythona, a testy kategorii trzeciej powinny

zosta¢ stopniowo wygaszane i wycofywane.

Sztuczna inteligencja (SI) rewolucjonizuje automatyzacje testow, szczegdlnie w ob-
szarze systemow wbudowanych, gdzie tradycyjne metody czesto okazujg sie niewy-
starczajace. Przyszte badania moga koncentrowaé si¢ na rozwoju mechanizméw au-
tomatycznego generowania przypadkow testowych z wykorzystaniem duzych modeli
jezykowych oraz technik generowania wspomaganego wyszukiwaniem, ktére pozwalaja
dynamicznie wstrzykiwaé¢ aktualne informacje do procesu generowania testéw. Wyko-
rzystanie uczenia przez wzmocnienie w ocenie jakosci generowanych testow moze dodat-

kowo zwigkszy¢ powtarzalnosé i trafnosé wynikow. Mozliwa jest takze analiza wynikéw

94

6.3. Potencjalny wptyw wynikow na przysztosé testowania

testow i identyfikacja powtarzalnych probleméw, co przyspieszy diagnozowanie i na-
prawe btedow, a takze predykcyjne wykrywanie defektow, ktore moga by¢ trudne do
zauwazenia przez inzynierow testéw. Przyklady wdrozen pokazujg, ze SI pozwala na
skrocenie cyklu wytwarzania i utrzymania skryptéw, zwiekszenie elastycznosci projektu

oraz lepsze dostosowanie do zmieniajacych si¢ wymagan klientow.

Osobna kwestia jest testowanie generatywnej SI bedacej czescia funkcjonalnosci sys-
temu wbudowanego, na przykltad w formie duzego modelu jezykowego bedacego asy-
stentem uzytkownika albo elementem wykorzystywanym do predykcji awarii. Testowa-
nie sztucznej inteligencji jest bardzo kosztowne obliczeniowo i energetycznie, a naprawa
btedéw jest trudna i tworzy nowe wyzwania w okresleniu zakresu testéw regresyjnych.
Funkcjonalno$¢ modeli ze wzgledu na zjawisko halucynacji nie jest niezawodna, a ten
sam proces generowania tresci uruchomiony wielokrotnie charakteryzuje rozrzut wyni-

kow.

W pracy podkreslono wage systematycznego podejscia do oceny efektywnosci me-
tod testowych, w tym stosowania standaryzowanych metryk takich jak TER, FD, TAR
czy DDP. Dalszy rozwdéj tej dziedziny powinien obejmowaé prace nad ujednoliceniem
metryk oraz ich wdrozeniem w réznych organizacjach, co umozliwi obiektywne poréw-
nywanie skutecznosci réznych strategii testowych. Standaryzacja raportowania i auto-
matyzacja zbierania danych, np. z wykorzystaniem narzedzi typu Power BI, pozwoli na
bardziej swiadome podejmowanie decyzji oraz szybszg adaptacje dobrych praktyk w
branzy. Metryki te mozna w dalszym stopniu rozbudowaé¢ o dane dotyczace defektéw
pochodzacych ze Srodowiska produkcyjnego, czyli bezposrednio od klientéw i uzyt-
kownikow koncowych, co pozwoli jeszcze lepiej odnies¢ sie do efektywnosci procesow

testowych w organizacji.

Mozliwe jest réwniez analizowanie przyczyn wystepowania btedéw (ang. Root Cau-
se Analysis, RCA) poprzez systematyczna identyfikacje pierwotnych przyczyn defektéw
lub usterek w systemie. W testowaniu systemow wbudowanych RCA pozwala nie tyl-
ko na wykrycie btedu, ale przede wszystkim na zrozumienie, dlaczego on wystapit —
czy wynika to z wadliwej implementacji, probleméw sprzetowych, btedéw w komunika-
¢ji, czy moze nieprecyzyjnej specyfikacji wymagan. Proces polega na analizie raportow
testowych i identyfikowaniu powtarzalnych wzorcéw awarii (na przyktad bledéw poja-
wiajacych sie w okreslonych warunkach $rodowiskowych lub przy specyficznych konfi-
guracjach sprzetu). RCA pozwala na wypracowanie trwatych rozwiazan, dzieki ktérym

eliminowane sg zrdédta probleméw, co przektada sie na wzrost jakosci produktu i re-

95

Rozdziat 6. Podsumowanie i wnioski

dukcje kosztéw zwigzanych z pézniejszymi poprawkami, co widoczne byto na Rysunku
2.4.

Testowanie oparte na analizie ryzyka wdrozone jako technika priorytetyzacji testow
moze by¢ w dalszych etapach rozbudowane o analize rodzajow i skutkéw bledéw (ang.
Failure Mode and Effects Analysis, FMEA). Jest to technika, ktéra pozwala na ocene
potencjalnych awarii i ich skutkow dla dziatania systemu. Na etapie projektowania
testow identyfikowane sg wszystkie mozliwe sposoby, w jakie dany komponent systemu
moze ulec awarii. Kazdy tryb awarii jest oceniany pod katem prawdopodobienstwa
wystapienia, wykrywalnosci oraz potencjalnych skutkéw dla uzytkownika lub systemu
— takich jak utrata funkcjonalno$ci, czy zagrozenie bezpieczenstwa. Wyniki FMEA

stuza jako dane wejsciowe do priorytetyzacji testow.

Takze testowanie eksploracyjne, wdrozone jako usystematyzowana technika, oka-
zato sie szczegdlnie skuteczne w wykrywaniu defektow trudnych do odtworzenia oraz
luk w pokryciu testowym. Przyszte badania moga skupi¢ sie na dalszym rozwijaniu tej
metody, zwtaszcza w kontekscie projektéw o wysokiej zmiennosci wymagan oraz braku
pelnej specyfikacji funkcjonalnej. Mozliwe jest takze rozszerzenie zastosowania testéw
eksploracyjnych na inne typy systeméw wbudowanych oraz integracja ich wynikow
z automatycznymi testami regresyjnymi, co pozwoli na jeszcze wieksza elastycznoscé

i efektywnos¢ procesu testowego.

Wykorzystana metodologia studium przypadku obejmuje procesy i projekty realizo-
wane w jednym przedsiebiorstwie — Rockwell Automation. Eksperymenty wdrozenio-
we, stanowigce fundament analizy empirycznej, skoncentrowano na celowo wybranej,
nielosowej probie projektéw (Oscar, Lima, Quebec i Sierra). Taki dobér metody ba-
dawczej pozwolil na gteboka analize ztozonych zjawisk w ich naturalnym otoczeniu.
Jednakze ta sama cecha jest jednoczesnie zréodtem najpowazniejszego ograniczenia —
braku walidacji zewnetrznej, czyli ograniczonej mozliwosci generalizacji wynikéw na

inne organizacje, projekty, czy domeny technologiczne.

Sukces wdrozonego frameworku jest nierozerwalnie zwigzany z warunkami panuja-
cymi w firmie. Naleza do nich unikalna kultura organizacyjna, procesy rozwoju pro-
duktu, wykorzystanie Scaled Agile Framework do organizacji pracy, czy obecnosé diu-
gu technicznego w postaci wewnetrznie rozwijanego, starszego srodowiska testowego.
Sukces rozwigzania opartego o jezyk Python, mierzony wzrostem metryk TER i FD,
moze wiec wynika¢ z faktu, ze stanowi on znaczace usprawnienie w poréwnaniu do

stanu zastanego. Nie znaczy to, ze framework ten jest obiektywnie lepszy od innych

96

6.3. Potencjalny wptyw wynikow na przysztosé testowania

nowoczesnych, komercyjnych lub otwartych narzedzi testowych. Przeprowadzone pra-
ce Swiadcza zatem o skutecznosci lokalnej optymalizacji procesu w $cisle okreslonych

warunkach.

Nalezy mie¢ na uwadze, iz wplyw na uzyskane wyniki moze mie¢ takze zmiennos¢
zespoléw testerskich i programistycznych miedzy projektami, a takze réznice w doj-
rzatosci kodu, narzedzi i dostepnosci sprzetu, ktére moga bezposrednio rzutowaé na
wyniki testéw. Zatem rezultaty uzyskane w $rodowisku Rockwell Automation moga
nie by¢ w petni odtwarzalne w innych organizacjach o odmiennych procesach i narze-
dziach. Przyszte badania mogg rozszerzy¢ probe poddang analizie statystycznej oraz

obejmowaé inne srodowiska przemystowe.

Proponowany framework testowy mozna rozpatrywaé takze w kategorii praktycz-
nego rozwigzania probleméw lub konkretnej implementacji praktyk, ktére zwiazane sa
z wdrazaniem modeli dojrzatosci proceséw testowych takich jak Test Maturity Model in-
tegration (TMMi) czy Test Process Improvement Next (TPI Next). TMMi to ustruktu-
ryzowany, pieciopoziomowy model, ktory pozwala oceni¢ procesy testowe w organizacji.
Na drugim poziomie dojrzatosci wymaga zdefiniowania polityki i strategii testowej oraz
planowania testéw, co w pracy doktorskiej realizowane jest poprzez testowanie oparte
na wymaganiach i analizie ryzyka. Na poziomie trzecim TMMi oczekuje integracji te-
stowania z cyklem zycia oprogramowania i standaryzacji proceséw, na co odpowiedzig
jest framework testowy zintegrowany ze srodowiskiem ciggtej integracji i narzedziem
do zarzadzania testowaniem. Wymagany na poziomie czwartym pomiar jakosci i efek-
tywnosci realizowany jest poprzez zdefiniowanie i systematyczne stosowanie metryk.
Wdrozone rozwigzania bezposrednio adresuja takze kilka kluczowych obszaréw modelu
TPI Next, takich jak strategia testowa, zarzadzanie defektami, srodowisko testowe oraz

metryki. Dalsze prace moga w dalszym stopniu rozszerzac i eksplorowac ten watek.

Finalnie, wyniki pracy moga mie¢ réwniez istotny wpltyw na przysztosé certyfikacji
testerskiej, w tym na aktualizacje sylabusow ISTQB oraz rozwdéj nowych specjalizacji
dedykowanych testerom systeméw wbudowanych. Wprowadzenie nowych metod i na-
rzedzi do programéw certyfikacyjnych pozwoli testerom na zdobycie bardziej wyspe-
cjalizowanej wiedzy i umiejetnodci, co przyczyni sie do poprawy jakosci i niezawodno-
Sci testowanych systeméw. Dalsze badania moga réwniez wspieraé rozwoéj materiatow
edukacyjnych oraz programoéw szkoleniowych, ktére bedg odpowiadaé¢ na aktualne wy-

zwania.

97

Bibliografia

1]

Embedded systems market size, share & covid-19 impact analysis, by com-
ponent (hardware and software), by type (standalone embedded systems,
real-time embedded systems, network embedded systems, and mobile em-
bedded systems), by application (consumer electronics, medical equipment,
industrial automation, automotive systems, aerospace & defense technolo-
gies, telecommunications, smart devices, and others), and regional forecast,
2023-2030. https://web.archive.org/web/20240725171213/https://www.
fortunebusinessinsights.com/embedded-systems—market-108767. Dostep:
2024-07-25.

Apostolos N. Meliones. A comprehensive development guide for network embedded
systems. In 2010 8th Workshop on Intelligent Solutions in Embedded Systems,
pages 43-48, 2010.

Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum. Building
Embedded Linux Systems 2nd Edition. O’Reilly, Sebastopol, 2008.

Rahul Gore, Hariram Satheesh, and Mallikarjun Kande. Platform analysis in
embedded systems. In 2014 2nd International Conference on Emerging Technology

Trends in Electronics, Communication and Networking, pages 1-6, 2014.

J.M. Moya, F. Moya, and J.C. Lopez. A flexible approach to the design of complex
embedded systems. In Proceedings 14th Annual IEEE International ASIC/SOC
Conference (IEEE Cat. No.01TH8558), pages 237-241, 2001.

A.A. Jerraya. Long term trends for embedded system design. In Furomicro Sym-
posium on Digital System Design, 2004. DSD 200/., pages 2026, 2004.

Techinsights: Samsung’s 3nm gaa process identified in a crypto-mining

asic designed by china startup microbt. https://web.archive.org/web/

99

BIBLIOGRAFIA

[10]

[12]

[13]

[14]

[15]

[16]

[17]

20240927202238/https://www.digitimes.com/news/a20230718VL203/
samsung-china-3nm-asic.html. Dostep: 2024-09-27.

International roadmap for devices and systems™ 2021 update: More moore.

https://irds.ieee.org/editions/2021/more-moore. Dostep: 2024-12-15.

Janusz Rajski, Vivek Chickermane, Jean-Francois Coté, Stephan Eggersgliify, Ni-
lanjan Mukherjee, and Jerzy Tyszer. The future of design for test and silicon
lifecycle management. IEEE Design € Test, 41(4):35-49, 2024.

M. Youssef, Sungjoo Yoo, A. Sasongko, Y. Paviot, and A.A. Jerraya. Debugging
hw /sw interface for mpsoc: video encoder system design case study. In Proceedings.
41st Design Automation Conference, 2004., pages 908-913, 2004.

Cheng Pang, Wenbin Dai, Qingdi Miao, Jinxian Liang, Guoqing Cai, Shu Lu, and
Valeriy Vyatkin. Software-defined automation and control a preliminary study. In
IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society,
pages 5497-5502, 2017.

Darja Smite, Nils Moe, and Par Agerfalk. Agility Across Time and Space. Springer
Verlag, Berlin, 01 2010.

16 amazing agile statistics [2023]: What companies use agile methodolo-
gy. https://web.archive.org/web/20241215210247 /https://www.zippia.
com/advice/agile-statistics/. Dostep: 2024-12-15.

J. Nawrocki, B. Walter, and A. Wojciechowski. Toward maturity model for extre-
me programming. In Proceedings 27th EUROMICRO Conference. 2001: A Net
Odyssey, pages 233-239, 2001.

Stownik terminow testowych istqb. https://glossary.istqgb.org/pl_PL/term/
testowanie/2. Dostep: 2024-12-29.

Lech Madeyski and Marcin Kawalerowicz. Continuous defect prediction: The idea
and a related dataset. In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pages 515-518, 2017.

Szymon Stradowski and Lech Madeyski. Can we knapsack software defect predic-
tion? nokia 5g case. In 2023 IEEE/ACM 45th International Conference on So-
ftware Engineering: Companion Proceedings (ICSE-Companion), pages 365-369,
2023.

100

BIBLIOGRAFIA

[18]

[20]

[23]

[24]

2]

Szymon Stradowski and Lech Madeyski. Bridging the gap between academia and
industry in machine learning software defect prediction: Thirteen considerations.
In 2023 38th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 1098-1110, 2023.

Szymon Stradowski and Lech Madeyski. Interpretability/explainability applied
to machine learning software defect prediction: An industrial perspective. I[EEFE
Software, 42(3):125-132, 2025.

Ghadeer Murad, Aalaa Badarneh, Abdallah Qusef, and Fadi Almasalha. Software
testing techniques in iot. In 2018 8th International Conference on Computer
Science and Information Technology (CSIT), pages 17-21, 2018.

Kshirasagar Naik and Priyadarshi Tripathy. Software Testing and Quality Assu-
rance: Theory and Practice. Wiley Publishing, 2nd edition, 2018.

Michat Kaczmarek and Przemystaw Koralewicz. Hardware in the loop simulations
of industrial application using system on the chip architecture. In 2016 Internatio-
nal Conference on Signals and Electronic Systems (ICSES), pages 157-160, 2016.

ISO/IEC/IEEE. Ieee/iso/iec international standard for software and systems
engineering—software testing—part 3:test documentation - redline. ISO/IEC/IE-
EFE 29119-3:2021(F) - Redline, pages 1-274, 2021.

Stefan Arthofer, Stefan Wilker, and Thilo Sauter. Development of a test automa-
tion framework based on a comparison of different approaches for test automation
in the embedded systems area. In 2024 IEEE 7th International Conference on
Industrial Cyber-Physical Systems (ICPS), pages 1-6, 2024.

Tabinda Sarwar, Wajiha Habib, and Fahim Arif. Requirements based testing of
software. In 2013 Second International Conference on Informatics & Applications
(ICIA), pages 347-352, 2013.

Andrei Contan, Catalin Dehelean, and Liviu Miclea. Test automation pyramid
from theory to practice. In 2018 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR), pages 1-5, 2018.

Bart Broekman and Edwin Notenboom. Testing Embedded Software. Addison-
Wesley, London, 2002.

101

BIBLIOGRAFIA

[28]

[29]

[30]

[34]

[35]

[3]

Paul C Jorgensen. Modeling software behavior: a craftsman’s approach. CRC press,
2009.

Pramod Mathew Jacob and M. Prasanna. A comparative analysis on black box te-
sting strategies. In 2016 International Conference on Information Science (ICIS),
pages 1-6, 2016.

Matthias Hamburg and Adam Roman. Black-box testing for practitioners: A case
of the new istgb test analyst syllabus. In 2025 IEEE Conference on Software
Testing, Verification and Validation (ICST), pages 634-645, 2025.

L.J. White and E.I. Cohen. A domain strategy for computer program testing.
IEEE Transactions on Software Engineering, SE-6(3):247-257, 1980.

L.A. Clarke, J. Hassell, and D.J. Richardson. A close look at domain testing.
IEEE Transactions on Software Engineering, SE-8(4):380-390, 1982.

Mamta Sharma and Subhash Chandra B. Automatic generation of test suites
from decision table - theory and implementation. In 2010 Fifth International

Conference on Software Engineering Advances, pages 459464, 2010.

K.-T. Cheng and J.-Y. Jou. Functional test generation for finite state machines.
In Proceedings. International Test Conference 1990, pages 162-168, 1990.

Vaclav Rechtberger, Miroslav Bures, and Bestoun S. Ahmed. Overview of test
coverage criteria for test case generation from finite state machines modelled as
directed graphs. In 2022 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 207-214, 2022.

Sergio Segura, Dave Towey, Zhi Quan Zhou, and Tsong Yueh Chen. Metamorphic
testing: Testing the untestable. IEEE Software, 37(3):46-53, 2020.

Tsong Yueh Chen. Metamorphic testing: A simple method for alleviating the test
oracle problem. In 2015 IEEE/ACM 10th International Workshop on Automation
of Software Test, pages 53-54, 2015.

Zenghui Zhou, Zheng Zheng, Tsong Yueh Chen, Jinyi Zhou, and Kun Qiu. Follow-
up test cases are better than source test cases in metamorphic testing: A preli-
minary study. In 2021 IEEE/ACM 6th International Workshop on Metamorphic
Testing (MET), pages 69-74, 2021.

102

BIBLIOGRAFIA

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Altaf Hussain, Aamer Nadeem, and Muhammad Touseef Tkram. Review on for-
malizing use cases and scenarios: Scenario based testing. In 2015 International

Conference on Emerging Technologies (ICET), pages 1-6, 2015.

Javier J. Gutierrez, Maria J. Escalona, Manuel Mejias, Jesus Torres, and Arturo H.
Centeno. A case study for generating test cases from use cases. In 2008 Second
International Conference on Research Challenges in Information Science, pages
209-214, 2008.

Bill Hasling, Helmut Goetz, and Klaus Beetz. Model based testing of system
requirements using uml use case models. In 2008 1st International Conference on
Software Testing, Verification, and Validation, pages 367-376, 2008.

Lahbib Naimi, El Mahi Bouziane, Mohamed Manaouch, and Abdeslam Jakimi. A
new approach for automatic test case generation from use case diagram using llms

and prompt engineering. In 2024 International Conference on Circuit, Systems
and Communication (ICCSC), pages 1-5, 2024.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. Software testing with large language models: Survey, landscape, and vision.
IEEFE Trans. Softw. Eng., 50(4):911-936, April 2024.

Marcin Bajer, Marek Szlagor, and Marek Wrzesniak. Embedded software testing in
research environment. a practical guide for non-experts. In 2015 4th Mediterranean
Conference on Embedded Computing (MECO), pages 100-105, 2015.

Dietmar Winkler, Reinhard Hametner, Thomas Ostreicher, and Stefan Bifff. A
framework for automated testing of automation systems. In 2010 IEEE 15th Con-

ference on Emerging Technologies and Factory Automation (ETFA 2010), pages
1-4, 2010.

Florian Muttenthaler, Stefan Wilker, and Thilo Sauter. Lean automated hardwa-
re/software integration test strategy for embedded systems. In 2021 22nd IEEE
International Conference on Industrial Technology (ICIT), volume 1, pages 783—
788, 2021.

Tarun Chatterjee. Test lead time and cost improvement of automotive embedded
project - a new perspective with automation and ci/ed. In 2024 International
Conference on Vehicular Technology and Transportation Systems (ICVTTS), vo-
lume 1, pages 1-6, 2024.

103

BIBLIOGRAFIA

[48]

[49]

[50]

[51]

[53]

[54]

Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co.,
USA, 1990.

Sayed Abdelgaber, Rasha Mansour Mohamed, Laila Abdel Hamid, and A. Ab-
do. Ontological approach for overcoming pesticide paradox in inter-class testing
of object-oriented applications. Journal of Theoretical and Applied Information
Technology, 100(9):2772-2790, May 2022.

Pawel Kubczak, Wiktor Wozniak, Jakub Nikonowicz, Lukasz Matuszewski, and
Mieczyslaw Jessa. An online platform for testing and evaluating random number

generators. In 2021 International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages 1-6, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information

Processing Systems, volume 33, pages 1877-1901. Curran Associates, Inc., 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Kar-
pukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
téaschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 9459-9474. Curran Associates, Inc., 2020.

Harshit Kumar Chaubey, Gaurav Tripathi, Rajnish Ranjan, and Srinivasa k. Go-
palaiyengar. Comparative analysis of rag, fine-tuning, and prompt engineering in
chatbot development. In 2024 International Conference on Future Technologies
for Smart Society (ICFTSS), pages 169-172, 2024.

MR Bhavya, Anish Damodaran, and Sindhu Ranganath. An ai based smart test
case generator for embedded device. In 2022 Second International Conference on
Power, Control and Computing Technologies (ICPC2T), pages 1-5, 2022.

104

BIBLIOGRAFIA

[55] Ravi Prakash Verma and Md. Rizwan Beg. Generation of test cases from so-
ftware requirements using natural language processing. In 2013 6th International
Conference on Emerging Trends in Engineering and Technology, pages 140-147,
2013.

[56] Mert Yurdakul. Bugle: Method for duplicate de-
fect report detection with transformers. https://web.
archive.org/web/20250320135529/https://testscouts.se/
bugle-method-for-duplicate-defect-report-detection-with-transformers.
Dostep: 2025-03-20.

[57] Struktura certyfikacji istqb® 2025 po polsku. https://testerzy.pl/news/
flash/struktura-certyfikacji-istqb-2025-po-polsku. Dostep: 2025-10-03.

[58] Attila Szatméri, Tamés Gergely, and Arpéd Beszédes. Istqb-based software testing
education: Advantages and challenges. In 2023 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages 389—
396, 2023.

[59] Istgb - our certifications. https://web.archive.org/web/20241117051246/
https://www.istqgb.org/certifications/certification-list/. Dostep:
2024-11-17.

[60] Scaled Agile Framework. Framework — scaled agile framework. https://web.
archive.org/web/20250516094528/https://framework.scaledagile. com.
Dostep: 2025-05-16.

[61] R.K. Yin. Case Study Research: Design and Methods. Applied Social Research
Methods. SAGE Publications, 2009.

[62] Julian M. Bass, Sarah Beecham, and John Noll. Experience of industry case stu-
dies: A comparison of multi-case and embedded case study methods. In 2018
IEEE/ACM 6th International Workshop on Conducting Empirical Studies in In-
dustry (CESI), pages 13-20, 2018.

[63] J.M. Verner, J. Sampson, V. Tosic, N.A. Abu Bakar, and B.A. Kitchenham. Guide-
lines for industrially-based multiple case studies in software engineering. In 2009
Third International Conference on Research Challenges in Information Science,
pages 313-324, 2009.

105

BIBLIOGRAFIA

[64]

[65]

[66]

[68]

[69]

[70]

[71]

[72]

[73]

Liang Yu. Ethical considerations in case studies. In 2020 1st Workshop on Ethics
in Requirements Engineering Research and Practice (REthics), pages 15-21, 2020.

Ellen Souza, Cristine Gusmao, Keldjan Alves, Julio Venancio, and Renata Melo.
Measurement and control for risk-based test cases and activities. In 2009 10th
Latin American Test Workshop, pages 1-6, 2009.

Ellen Souza, Cristine Gusmao, and Julio Venancio. Risk-based testing: A case
study. In 2010 Seventh International Conference on Information Technology: New
Generations, pages 1032-1037, 2010.

Juergen Grossmann, Michael Felderer, Johannes Viehmann, and Ina Schieferdec-
ker. A taxonomy to assess and tailor risk-based testing in recent testing standards.
IEEE Software, 37(1):40-49, 2020.

Armin Beer and Rudolf Ramler. The role of experience in software testing prac-
tice. In 2008 34th Furomicro Conference Software Engineering and Advanced
Applications, pages 258265, 2008.

Jiujiu Yu, Jishan Zhang, Ligiong Pan, Yun Chen, Ning Wu, and Wenling Sun.
Software exploratory testing: Present, problem and prospect. In 2021 3rd Inter-
national Academic Exchange Conference on Science and Technology Innovation
(IAECST), pages 44-47, 2021.

V Prakash and S Gopalakrishnan. Testing efficiency exploited: Scripted versus
exploratory testing. In 2011 3rd International Conference on Electronics Computer
Technology, volume 3, pages 168-172, 2011.

Rafal Kimla and Robert Czerwinski. A methodical approach to functional explo-

ratory testing for embedded systems. Applied Sciences, 12(19), 2022.

R. Black. Advanced Software Testing Vol. 2: Guide to the ISTQB Advanced Certi-
fication as an Advanced Test Manager, 2nd Edition. Rocky Nook, Santa Barbara,
2014.

S. Kan. Metrics and Models in Software Quality Engineering, Second Edition.
Addison Wesley, Boston, 2002.

106

BIBLIOGRAFIA

[74]

[76]

[77]

[78]

[79]

[80]

Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jézala. Over-
coming the equivalent mutant problem: A systematic literature review and a com-
parative experiment of second order mutation. [EFEE Transactions on Software
Engineering, 40(1):23-42, 2014.

K. Someoliayi, S. Jalali, M. Mahdieh, and S. Mirian-Hosseinabadi. Program state
coverage: A test coverage metric based on executed program states. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 584-588, Hangzhou, 2019. IEEE.

Rafat Kimla. Overview of metrics applicable in embedded systems functional
testing. In International Conference of Computational Methods in Sciences and
Engineering ICCMSE 2021, volume 2611, page 070004, 11 2022.

ISO/IEC. Systems and software engineering — life cycle processes — requirements

engineering, 2018.

Fayona Cowperthwaite, Jennifer Horkoff, and Sylwia Kopczynska. The effects of
native language on requirements quality. In 2023 18th Conference on Computer
Science and Intelligence Systems (FedCSIS), pages 913-917, 2023.

Michael Felderer and Rudolf Ramler. Integrating risk-based testing in industrial
test processes. Software Quality Journal, 22, 09 2013.

Michael Felderer and Rudolf Ramler. Experiences and challenges of introducing
risk-based testing in an industrial project. In International Conference on Software
Quality, volume 133, pages 10-29, 01 2013.

Cem Kaner, Jack L. Falk, and Hung Quoc Nguyen. Testing Computer Software,
Second Edition. John Wiley & Sons, Inc., USA, 2nd edition, 1999.

Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in Software Te-

sting. John Wiley & Sons, Inc., USA, 2001.

W. Makondo, R. Nallanthighal, . Mapanga, and P. Kadebu. Exploratory test
oracle using multi-layer perceptron neural network. In Intl. Conference on Ad-

vances in Computing, Communications and Informatics (ICACCI), volume Sept.
21-24, Jaipur, India, 2016.

107

BIBLIOGRAFIA

[84]

[36]

[87]

[88]

[39]

V. De Oliveira Neves, M.E. Delamaro, and P.C. Masiero. An environment to
support structural testing of autonomous vehicles. In Brazilian Symposium on

Computing Systems Engineering, 2014.

Juha Itkonen, Mika V. Mantyla, and Casper Lassenius. The role of the tester’s
knowledge in exploratory software testing. IEEE Transactions on Software Engi-
neering, 39(5):707-724, 2013.

Torvald Méartensson, Daniel Stahl, Antonio Martini, and Jan Bosch. Efficient and

effective exploratory testing of large-scale software systems. Journal of Systems
and Software, 174:110890, 2021.

Y. Jiujiu, P. Ligiong, W. Ning, Z. Jishan, C. Yun, and S. Wenling. Software
exploratory testing: Present, problem and prospect. In 3rd International Academic
Ezchange Conference on Science and Technology Innovation (IAECST), 2021.

Ahmad Nauman Ghazi, Kai Petersen, Elizabeth Bjarnason, and Per Runeson.
Levels of exploration in exploratory testing: From freestyle to fully scripted. IEEFE
Access, 6:26416-26423, 2018.

James Bach. Exploratory testing. https://www.satisfice.com /exploratory-testing.
Dostep: 2022-08-17.

108

Dodatek A

Wykaz symboli i oznaczen

Symbole, metryki i oznaczenia matematyczne

Symbol Opis

R Ocena ryzyka w planowaniu/testowaniu; iloczyn prawdopodobien-
stwa i konsekwencji: R = P x K.

P Prawdopodobienistwo wystapienia ryzyka (skala 1-10 w analizie
ryzyka).

K Konsekwencje (skutki) materializacji ryzyka (skala 1-10).

TER Test Effectiveness Ratio — wspo6tezynnik efektywnosci testu/pro-
jektu. W wariancie per-test: TER = Dz x 100%; w wariancie
porownawczym per-projekt: TER = gp x 100%.

R
FD Fault Density — gesto$¢ defektéow: FD = lz;l x 100%.
DDP Defect Detegion Percentage — procent wykrytych defektéw:
A

DDP = Dot D x 100%.

TAR Test Automation Reliability — niezawodnos¢ automatyzacji te-
stow: TAR = (1 - RF> x 100%.

La
Dt Liczba defektow wykrytych przez dany test.
Da Laczna liczba wykrytych defektéw (w rozpatrywanym zbiorze).

ciqgg dalszy na nastepnej stronie

109

Dodatek A. Wykaz symboli i oznaczen

Symbol Opis

Dp Liczba defektéw wykrytych w projekcie (dla wariantu TER =
Dy)

Dgr Faczna liczba defektéw w projektach referencyjnych (tej samej ka-
tegorii).

Dn Liczba defektéw niewykrytych podezas testéow (wykrytych dopiero
w eksploatacji).

Lt Liczba wszystkich wykonanych testow.

R Liczba wynikow fatszywie pozytywnych i fatszywie negatywnych
w automatyzacji.

La Liczba testéw automatycznych.

ph TEI — indeks efektywnosci testu (wariant zdefiniowany funkcyj-
nie dla rundy [, modutu k); wartoéci zalezne od zmian D} (T;)
pomiedzy rundami.

D! (T;) Liczba defektéw typu T; w module & wykrytych w rundzie [.

T, Typ defektu: funkcjonalny.

T, Typ defektu: bezpieczenstwa.

T3 Typ defektu: wydajnosciowy.

Ty Typ defektu: interfejsu (UI/komunikacja).

r Wspotezynnik korelacji Pearsona (analiza statystyczna zaleznosci).

p Wspélezynnik korelacji rang Spearmana.

p Wartosé istotnosci statystycznej (p-value).

Skroty i akronimy

Skrot Rozwinigcie / opis

API Application Programming Interface — interfejs programistyczny.
ASIC Application-Specific Integrated Circuit.

CI Continuous Integration — ciaggla integracja.

CD Continuous Deployment/Delivery — ciagte wdrazanie/dostarcza-

nie.

ciqgg dalszy na nastepnej stronie

110

Skroty i akronimy

Skrot Rozwiniecie / opis

CTFL Certified Tester Foundation Level — poziom podstawowy ISTQB.

DDP Defect Detection Percentage (por. sekcja symboli).

DevOps Development € Operations — filozofia tgczenia rozwoju i operacji.

ET Ezxploratory Testing — testowanie eksploracyjne.

FMEA Failure Mode and Effects Analysis.

FD Fault Density (por. sekcja symboli).

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HiL Hardware-in-the-Loop.

IoT Internet of Things.

ISTQB International Software Testing Qualifications Board.

JSON Format danych: JavaScript Object Notation.

CSVv Format danych: Comma-Separated Values.

JSONL Format danych: JSON Lines.

LD Ladder Diagram — jezyk drabinkowy sterownikow PLC.

LLM Large Language Model.

MBT Model-Based Testing.

MMU Memory Management Unit.

MR Metamorphic Relations — relacje metamorficzne (testowanie me-
tamorficzne).

MPSoC Multiprocessor System-on-a-Chip.

NoC Network-on-a-Chip.

NLP Natural Language Processing.

PI Planning Interval — interwal planowania w SAFe.

PLC Programmable Logic Controller.

RAG Retrieval-Augmented Generation.

RAPL Rockwell Automation Product Lifecycle (proces wytwarzania pro-
duktu obejmujacy m.in. obszar Verification & Validation).

RTOS Real-Time Operating System.

SAFe Scaled Agile Framework.

SDA Software-Defined Automation.

SiL Software-in-the-Loop.

ciqgg dalszy na nastepnej stronie

111

Dodatek A. Wykaz symboli i oznaczen

Skrot Rozwiniecie / opis
SoC System-on-a-Chip.
TAF Test Automation Framework — wewnetrzne Srodowisko automa-

tyzacji (historyczne).

TAR Test Automation Reliability (por. sekcja symboli).
TEI Test Effectiveness Index (por. pt).

TER Test Effectiveness Ratio (por. sekcja symboli).
TMMi Test Maturity Model integration.

TPI Next Test Process Improvement Next.

UML/SysML Unified Modeling Language | Systems Modeling Language.

Noty redakcyjne

o Definicje metryk TER, FD, DDP, TAR i indeksu uf odpowiadaja formutom
uzytym w tresci rozprawy; symbole sktadowe (Dp, D, Dp, Dg, L7, Dy, Rp, L)
zebrano tutaj dla wygody czytelnika.

» Wykaz skrétéw obejmuje akronimy rozwijane w tekscie (w nawiasach ,ang.”) oraz
standardowe terminy inzynierskie zwigzane z testowaniem systeméw wbudowa-

nych.

112

