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1 Scope and objectives

Optimising existing Internal Combustion (IC) engines remains a key engineering priority in terms
of fuel economy, utilisation of alternative fuels, and exhaust emissions reduction as emission stan-
dards continue to become stringent worldwide. The optimisation process requires extensive test-
ing to evaluate a variety of engine operating strategies. These strategies must be relevant for engine
operation under actual transient driving conditions, such as those mimicked by the Worldwide
harmonised Light vehicles Test Procedure (WLTP) [1] or the Non-Road Transient Cycle (NRTC) [2].
When performed on test benches only, the development and optimisation of IC engines are costly
and time-consuming, creating a need for reliable simulation tools to support this process.

Accurate modelling and simulation of time-varying engine operating conditions during WLTP
or NRTC require robust methods for simulating combustion and emissions formation during these
real-world scenarios. Such methods must be computationally efficient to allow for effective appli-
cation under transient conditions. On the other hand, they must be accurate enough to predict
pollutant formation, as it is needed for WLTP or NRTC procedures. The Stochastic Reactor Model
(SRM) of engine in-cylinder processes appears to be a suitable modelling approach for fulfilling
this objective. In the context of transient engine simulations, it is of interest not only to simu-
late engine in-cylinder processes alone but also to simulate the behaviour of the complete engine
powertrain, with exhaust aftertreatment, to allow for developing engine control strategies or simu-
lations that closely mimic conditions during actual vehicle testing for certification purposes. Such
a capability can be reached by integrating the SRM with Model-in-the-Loop (MiL) or Hardware-
in-the-Loop (HiL) simulation platforms.

MiL refers to a model representation of physical systems in a software form. With regard to
combustion engines, MiL testing typically involves validating engine control algorithms against
detailed engine simulation models before any physical hardware is introduced. This method is im-
portant for transient engine simulations, since it allows control strategies to be developed and re-
fined under transient operating conditions, all within a safe and fully virtual environment [3, 4]. In
turn, HiL refers to a system representing physical hardware, the Electronic Control Unit (ECU) and
software models. With regard to combustion engines, HiL testing is a validation method where
real engine control hardware is tested against simulation models running in real-time. For tran-
sient engine simulations, HiL provides a way of testing engine hardware and finding strengths and
vulnerabilities when operating under transient conditions, without the need for a fully assembled
test bench, ensuring that control units perform reliably under realistic operating conditions [5, 6].

The use of SRM as an integrated toolchain with MiL/HiL platforms appears promising be-
cause of the expected flexibility to work with different engines and fuels and in co-simulation with
models for other components of vehicle systems. Furthermore, the 0D formulation of the SRM
enables a low computational cost while ensuring high accuracy of predicting pollutant formation
due to the application of detailed reaction kinetics. Therefore, such an integrated toolchain should
contribute to the development of cleaner and more efficient IC engine technologies, which was the
motivation behind this work.

The SRM has been proven to be an efficient approach for simulating IC engines under steadys-
tate conditions [7, 8, 9, 10], but so far, it has not been applied for simulations under transient op-
erating conditions like those in WLTP or NRTC. It also has not conformed to Functional Mock-up
Interface (FMI) and Functional Mock-up Unit(FMU) standards, which are essential for deploying



them in environments like HiL. and MiL. This interoperability gap hampers the effectiveness of
SRM in real-time simulations as demanded by HiL platforms. Addressing these issues is crucial to
unlocking the full potential of the SRM for comprehensive simulations under transient conditions.
Regarding these gaps, the objective of this work is to develop a simulation toolchain that enables
transient engine simulations based on the SRM technology. The defined objective is graphically

presented in Figure 1.
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FIGURE 1: Concept of an integrated toolchain featuring 0D SRM, MiL/HiL, and
FMI/FMU technology for transient driving cycle simulation studies.

Specifically, the work focuses on developing an FMU via FMI tailored to the SRM to enable
integration into external simulation environments, co-simulation platforms, and real-time testing
setups such as HiL and MiL. To accomplish this task, the existing SRM codebase has been updated
to accommodate transient simulations by incorporating time-varied engine parameters such as
speed, load, injection strategy, and valve timing that vary during transient operation. Further-
more, a framework was needed to generate an FMU for the SRM using the FMI standard and im-
plementing an FMI-compliant interface. Finally, the framework had to be streamlined to minimise
computational costs, ensuring real-time feasibility on stand-alone, MiL and HiL platforms while
retaining combustion and emissions prediction capabilities of the SRM for Compression-Ignition
(CI) and Spark-Ignition (SI) engines.

Overall, the framework sketched in Figure 1 is designed for portability and adaptability in MiL
and HiL environments, providing standard FMI/FMU interfaces for seamless integration into re-
altime workflows. This approach bridges the gap between physical accuracy and computational
efficiency, making SRM simulations of engine performance and exhaust emissions practical for
contemporary engine testing, calibration, and virtual validation applications under transient con-
ditions.

2 Methods and tools

The toolchain proposed in this work integrates a 0D SRM of engine in-cylinder processes, with
tabulated chemistry for combustion and emission formation, into MiL. and HiL platforms using
the FMI standard. By encapsulating the SRM within FMU, the framework enables cross-platform
simulations, bridging the gap between physical modelling accuracy and practical applicability in
engine development [11, 12, 13].



2.1 The Stochastic Reactor Model (SRM)

The SRM is a zero-dimensional model of physical and chemical in-cylinder processes in IC engines.
It regards the gas within the cylinder as a collection of notional particles. The particles are allowed
to interact by mixing with each other and exchanging heat with the walls of the cylinder. Each
such notional particle is characterised by temperature, mass and species concentration. Thus, in a
sense, each particle can be understood as a realisation of the flow at a certain time and location in
the actual combustion chamber. The particles are subjected to chemical reactions according to the
applied reaction mechanism. All the particle-based processes are calculated sequentially using an
operator splitting loop method. Mixing between particles is a modelled process, using different
types of mixing models. The common feature of these models is the necessity of modelling the
mixing time scale, which governs the frequency at which particles mix with each other and decides
finally about mixture inhomogeneity in temperature and composition that in turn influences the
combustion process and emissions formation [14]. A schematic visualisation of the SRM concept
is shown in Figure 2.

| Initial conditions | SRM

v Temperature
el Volume changes | | >
v Equivalence ratio,
Turbulence - Molar weight,
L 2

3 Thermodynamic
+ Particle' mixing polynomials,

[ Chemisti

- P EGR,
I

.| Reaction progress

Number of particles

Convective heat transfer
v

mmm mmmm

Particle property

Finalization

|
|
| \‘\\\ Latent enthalpy,
|
|
|

|
|
|
|
—{  Pressure correction
v
|

FIGURE 2: Schematic visualisation of the SRM concept for IC engines [15].

In this work, the coalescence-dispersion type mixing model is used with stochastic-based se-
lection of particles for mixing. The history of mixing time scales is obtained from the turbulence
model as the ratio between the turbulent kinetic energy k and its dissipation €. Combustion and
emissions formation are calculated based on he detailed reaction kinetics mechanisms, which are
used in the form of tabulated chemistry employing combustion progress variable (CPV). The use
of tabulated chemistry helps to reduce the computational cost to milliseconds for a complete en-
gine working cycle without deteriorating the quality of results. The SRM can simulate premixed
combustion with flame propagation that is relevant to SI engines, and non-premixed combustion
relevant to CI engines [14].

2.2 FMU and SRM integration

In this work, the SRM is compiled as an FMU to enable integration with MiL /HiL environments.
Co-simulation is employed, where the SRM runs as an independent solver communicating with
an external simulation master (e.g., MATLAB/Simulink or dSPACE ASM) through standardised
signal exchange. This approach allows modular linking of the SRM with other engine subsystems
while preserving real-time operation and computational efficiency. The FMU acts as a container
for the SRM solver and is referred to as FMU/SRM.

The FMU is built according to the FMI 2.0 co-simulation standard. In this setup, the SRM
executes independently, taking input signals and sending and output variables at fixed communi-
cation intervals. Input signals include engine speed, valve timing, intake/exhaust pressures and
temperatures, EGR rate, fuel mass per injection, and air-fuel ratio, as well as control signals for



valve timing and injection strategy. Output signals comprise cycle-resolved engine metrics such
as peak pressure, IMEP, torque, and exhaust emissions.
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FIGURE 3: Simulation workflow with FMU-based SRM.

The FMU is created by pairing the SRM solver code with an FMI-compliant XML manifest and a
dynamic library. A co-simulation master manages time synchronization and solver step alignment,
ensuring accurate communication with external tools (Figure 3). The FMU is implemented in
C++ as a wrapper around the Fortran-based SRM solver. The wrapper provides standard FMI
2.0 interfaces for initialization, input/output handling, time-stepping, and error reporting. The
Fortran solver executes the combustion cycle computations and returns engine performance and
emissions results. Data buffering ensures that if the SRM lags during a cycle, the most recent
outputs are provided to maintain continuity. This modular setup allows testing different SRM
solvers without rebuilding the FMU.

2.3 ANN-based meta-model

To further reduce computational costs below real-time, an artificial neural network (ANN) based
meta-model of the driving cycle simulator was developed. The ANN is trained using data gen-
erated by the physics-based simulator employing the SRM of the driving, making this develop-
ment preliminary. A three-layer network is implemented in Python using Keras, TensorFlow, and
scikit-learn [16, 17, 18], with 128 neurons in the input layer, 64 in the hidden layer, and an output
layer matching the number of predicted quantities. ReLU activation introduces non-linearity, and
the Adam optimizer [19] performs stochastic gradient descent. The workflow involves training
the network on transient engine data, predicting engine-out results, and iteratively updating the
model until the prediction error falls below an assumed threshold of 5%.



2.4 Simulation toolchain

The overall toolchain proposed in this work, along with its components, is schematically shown
in Figure 4. This unified simulation framework enables real-time transient engine simulations by
combining the SRM, tabulated chemistry, FMU interfaces, an ANN-based surrogate model, and
their integration within MiL and HiL testing platforms.
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FIGURE 4: Components of the developed toolchain for transient engine simulation.
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TABLE 1: Mapping of simulation toolchain elements to technical objectives.

Diagram element Role in in the toolchain

SRM 0D model of engine in-cylinder processes
Tabulated chemistry | Modelling of combustion and pollutant
Fuel surrogate formulation

FMI/FMU Interfacing, modularity and system-wide compatibility
Driving cycle data Inputs to run engine transient driving cycle

MiL/HiL platforms | Integrity with 3'9 party testing platform

ANN meta-model A meta-model for computational cost reduction

The framework is modular, allowing each component to operate independently while com-
municating through the FMU interface. Driving cycle data provides transient inputs, which are
processed by the SRM, while the FMU ensures synchronisation and portability across simula-
tion platforms. At the core, transient engine simulations are coordinated by the FMU interface,
which integrates all components into a unified, scalable, and portable simulation environment.
This toolchain provides a methodical approach for physics-based engine modelling suitable for
real-time and system-level applications.

3 Results

The developed toolchain employing the SRM was applied in both stand-alone mode and inte-
grated MiL/HiL environments for CI and SI engines under transient driving conditions of WLTP
and NRTC. The content of this chapter is based on the published results [15, 14, 20, 21]. It begins
with the integration of the SRM-based engine model via FMU/FMI technology into MiL and HiL
platforms, forming a complete physics-based driving cycle simulator. Next, predictions of engine
performance and exhaust emissions for an on-road CI engine under the WLTP cycle are presented,



including driving-cycle-to-driving-cycle variability of exhaust emissions. Then, SI engine simula-
tions during cold-start phases and co-simulation of the engine and catalyst are presented. Finally,
results from the ANN-based meta-model of the SRM-driven simulator are presented.

3.1 MiL/HiL platforms-based engine simulations

This section demonstrates the toolchain’s real-time performance, functionality and integrity within
MiL and HiL platforms during a standardised driving cycle from the WLTP. The engine model
built in the SRM and driving cycle data utilised in this study are from the dSPACE ASM package.
The engine is an SI engine fuelled with gasoline and employs a port fuel injection system. Figure 5
shows the real-time MiL /HiL execution in dSPACE ControlDesk, which records engine-out emis-
sions and key performance parameters during a transient WLTP cycle. In turn, Figure 6 presents
simulated results for maximum in-cylinder pressure and the cumulative emissions of CO,, CO and

uHC, over a 1800s WLTP driving cycle, using both MiL and HiL frameworks.
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FIGURE 5: Dashboard view of the MiL/HiL simulations in dSPACE configura-
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FIGURE 6: Results from MiL and HiL simulations employing the SRM.



The results confirm the flexibility and reliability of the developed toolchain across simulation
environments, with consistent outputs observed between MiL and HiL. Minor discrepancies ob-
served in cumulative emissions are attributed to the stochastic cycle-to-cycle variation that results
in driving-cycle to driving-cycle variations, and here we simulated a single realisation of the driv-
ing cycle.

3.2 CI engine simulations under WLTP driving cycle

The developed toolchain was applied to CI engines to simulate driving-cycle to driving-cycle vari-
ability in exhaust emissions, including NOy, soot, unburned hydrocarbons, and CO from a diesel
fuelled engine.
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FIGURE 7: Maximum in-cylinder pressure and cumulative histories of exhaust emis-
sions from consecutive fifty driving-cycles and their average history compared with
reference data and plotted over the accuracy window of test-bench measurement.

The trained at steady-state conditions model was applied to simulate the transient engine be-
haviour under the WLTP cycle. Combustion metrics maintain good alignment with reference data.
Emissions trends are well captured. CO; and CO match closely with experimental counterparts.
Similarly, NOy is also accurately predicted. Some discrepancy between the simulated and refer-
ence data is attributed to the effects of activating low-pressure EGR in these phases of the cycle.
HC and soot are underestimated during the majority of the cycle, but their end-cumulative values
are found within the determined accuracy windows based on the work reported in [23].

To quantify the stochastic variability of the obtained results from transient simulations, 50 con-
secutive runs of the WLTP cycle were conducted using identical engine data. Results show that a
stable mean for CO,, CO, and NO, can be achieved with 15 simulations, while HC and soot require
25 and 35 simulations, respectively. Simulated pollutants fall within experimentally defined accu-
racy windows, confirming the model’s reliability for transient emissions prediction with respect
to results obtained experimentally. Simulations took 30 minutes for a 30-minute driving cycle,
proving the potential to use the method in real-time emissions prediction and virtual calibration
workflows.

3.3 Simulation a CNG engine cold start during WLTP and NRTC

The developed toolchain was applied to SI engines to study CNG-fuelled engine behaviour during
the cold-start phase of the driving cycles; WLTP for passenger car applications and NRTC for agri-
cultural tractor applications. Investigations examined engine behaviour under varying ambient
temperatures, fuel compositions, and air-fuel ratios.
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FIGURE 8: Simulated and reference emissions at EVO and for different ambient tem-
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FIGURE 9: Comparison of experiment and simulation cumulative CO;, CO, NO, and
CHy for transient cold start at 25°C, 10°C ambient temperatures during NRTC.

Overall, the model captures the trend of CO,, NO,, and CO emissions for different ambient
temperatures during WLTP (Figure 8). For CHy4, the model shows a slight increase for decreas-
ing ambient temperatures, but is not able to closely capture the trend of the experimental data.
The incorporation of flame-wall quenching could improve the predictability of the engine model
at low ambient temperatures. Similar investigations were performed for non-road applications
during NRTC (Figure 9). An increase in ambient temperature from 10°C to 25°C resulted in a de-
crease in total CO, produced. Predicted cumulative NO, is increased as the ambient temperature
increases. Cumulative predicted CO is decreased as the ambient temperature decreases. Cumula-
tive predicted CHy is decreased with an increase in ambient temperature from 10°C to 25°C, as the
temperature increases, consequently, increased fuel consumption, the fuel remaining in exhaust
emissions decreases.



3.4 Simulation toolchain with exhaust after treatment systems

The capability of the developed toolchain for co-simulation with aftertreatment systems was veri-
tied based on the coupling with an SCR model applied to simulating an ammonia-biodiesel-fuelled
engine, resulting in a virtual test bench. Specifically, the work focused on investigating numeri-
cally the impact of the properties of SCR catalyst on ammonia reduction under engine-relevant op-
erating conditions. The after-treatment system was modelled using a 1D Catalytic Reactor Model
(CRM) representing SCR catalyst [24] and employing the detailed surface reaction kinetics relevant
to study SCR. FMI technology was used to compile both the SRM-based engine model and the
CRM into FMUs. The FMUs are connected in MATLAB/Simulink. At each simulation time step,
the SRM provides the CRM with exhaust gas pressure, temperature, mass flow rate, and species
concentrations such as NO, NO,, NH3, CO, CO,, Hy, H,O, C3Hg. The CRM returns back-pressure
and outlet composition if required for closed-loop operation.

The SRM working within the co-simulation toolchain reproduced in-cylinder pressure with
good agreement to experimental data. Similarly, good agreement is observed for exhaust emissions
(Figure 10).
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The SCR simulation predicted a baseline NO, conversion of 90.1% and an NHj3 conversion
of 51.6% at the given inlet temperature (550 K) and composition. These values were in line with
literature trends for Fe-ZSM-5 catalysts [25]. To illustrate the flexibility of the toolchain, a brief
sensitivity analysis was performed by varying catalyst length, diameter and catalyst loading. In-
creasing the catalyst length by 50% increased NO, conversion to 94.6%, while reducing the length
by 30% reduced conversion significantly. Similar trends were observed for the diameter, increasing
by 30% increased NO, conversion by a few percentage points, while decreasing by 30% reduced
conversion significantly. Increasing catalyst loading by 30% improved NO, conversion by 3.8%
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while reducing it by 30% reduced efficiency by 8%. While NO, reduction was effective, notable
ammonia slip was observed. This was attributed partly to competing reactions involving CO and
unburned hydrocarbons in the exhaust. In practice, this could be addressed by integrating an
ammonia slip catalyst downstream.

3.5 ANN-based simulations of driving cycle

In the final stage of the presented work, a feedforward ANN-based meta-model of the driving
cycle simulator, which acts as a surrogate model, has been developed to run beyond real-time
and embedded within the toolchain. The performance evaluation showed very good agreement
between ANN predictions and SRM outputs. Error metrics, when comparing the ANN-based
results with the source SRM-based results, were below 5% across the combustion and emissions
metrics together.
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FIGURE 12: Comparison between results obtained with the ANN model and the
physical model employing the SRM.

It should be mentioned that in the current workflow, the ANN-based model is trained using
the results from the physics-based simulations of the driving cycle that employ the SRM. Hence,
the ANN cannot work without the SRM at this stage. The ANN-based model could support simu-
lations targeted at testing other sub-models and their control algorithms if they could be simulated
faster than real-time, and not requiring changes in the modelling of the in-cylinder processes. In
such circumstances, the ANN, once trained, could eliminate the need to rerun the full simulation
toolchain, saving computational resources, as for instance simulating the complete WLTP using
the ANN takes below 10s. Nevertheless, because of the aforementioned limits, at this stage, this
modelling approach is considered preliminary and requires further development and improve-
ments.

4 Summary

The work introduces a real-time framework for simulating engine performance parameters, ex-
haust emissions, and fuel effects of SI and CI engines under transient conditions of actual driving
cycles, such as WLTP and NRTC. The framework is a unified toolchain that integrates 0D SRM
with tabulated chemistry for combustion and pollutant formation into MiL and HiL platforms us-
ing the FMI/FMU standard. Such frameworks are of interest to the automotive industry as they
help reduce the costs and time involved in costly experimental and prototyping work. The focus
has been placed on enabling real-time transient simulations through the seamless integration of
the 0D SRM into standardised co-simulation environments, such as MiL/HiL, and cross-platform
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simulations, features which were not available earlier. This bridges the gap between physical mod-
elling accuracy and practical applicability in engine development workflows for real-time transient
simulations.

The existing SRM was adapted to accommodate continuous changes of engine operating pa-
rameters such as speed, load, fuel injection strategy, and valve timing. This allowed transient sim-
ulations and integration of outer-level software that can support closed-loop control and system-
level simulations. An FMI/FMU wrapper compliant with the FMI 2.0 co-simulation standard was
developed to interface with legacy Fortran SRM code and platforms such as MATLAB/Simulink,
dSPACE ASM, VEOS, and SCALEXIO. The wrapper includes a real-time mode for deterministic
execution and synchronised data exchange with external controllers. Port definitions were stan-
dardised via an XML file to allow automatic signal mapping and integration. Integration into MiL
and HiL environments ensured consistent communication, execution rates, and synchronisation
with control systems. The framework was further extended to couple engine processes with ex-
haust aftertreatment models for co-simulations. Finally, a feedforward ANN-based meta-model,
trained on SRM-based driving cycle outputs, was developed, providing ultra-fast surrogate simu-
lations.

The toolchain was applied to CI and SI engines under transient WLTP and NRTC cycles. For
CI engines, it predicted driving-cycle-to-cycle variability in NO,, soot, HC, and CO emissions,
showing that multiple runs (15-35 depending on the pollutant) are required for statistical stabil-
ity and a match to experimental data. For SI engines, the cold-start behaviour of a CNG engine
was analysed, revealing strong dependencies of emissions on ambient temperature, fuel compo-
sition, and air-fuel ratio. Lower temperatures increased CO, and CHy, while H, enrichment en-
abled compliance with Euro 6 CO; limits. Similar trends were observed for a heavy-duty agricul-
tural CNG engine under NRTC cold-start conditions, demonstrating the model’s ability to capture
temperature-dependent phenomena.

Co-simulation with aftertreatment systems was demonstrated via an SCR model coupled to an
ammonia-biodiesel engine, forming a virtual test bench. Sensitivity analysis on catalyst geometry
and loading showed their influence on NO, conversion, while highlighting areas for improvement
regarding ammonia slip. The modular framework allows substitution of the SCR with other af-
tertreatment models, supporting digital twin applications and integrated optimisation of engine
aftertreatment systems.

MiL/HiL applicability was verified on a dSPACE platform for a gasoline engine under WLTP.
Simulated in-cylinder pressure and emissions agreed across MiL and HiL approaches, with real-
time execution maintained without overruns, validating integration accuracy. The ANN-based
meta-model reproduced reference results with less than 5% deviation and greatly accelerated sim-
ulation time, though it currently relies on prior SRM simulations.

Overall, the work demonstrates a robust, scalable framework for real-time predictive simula-
tions of SI and CI engines under transient conditions. Its FMI/FMU-based integration enables
seamless MiL /HiL operation, coupling with aftertreatment models, and potential for digital twin
applications, providing a valuable tool and applicable in both research and industrial engine de-
velopment contexts.
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