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Abstract

Background: One of the central objectives of systems biology is the integration of high-throughput omics
data with computational modeling to better understand molecular interactions and cellular mechanisms.
The intricate nature of genomic, transcriptomic, and proteomic networks presents substantial challenges,
often limiting the ability of traditional models to capture the dynamic behavior of biological systems.
Therefore, advanced analytical approaches are necessary to elucidate these complex interactions and
identify key regulatory elements within biological networks.

Objective: This study aims to establish a comprehensive computational pipeline for automated data
extraction, curation, and analysis, facilitating the identification of crucial variables within complex
biological networks. By leveraging multi-omics data from repositories such as Pathway Commons,
AnimalTFDB, and the Genomics Data Commons (GDC), the research seeks to elucidate transcription
factor (TF) to ligand-receptor (L-R), protein-protein (P-P), and gene-gene (G-G) interactions. The
Cancer Genome Atlas (TCGA) ovarian cancer dataset serves as a case study to validate the approach,
initially focusing on the connection between the NF -κB and p53 pathways, followed by additional
network analyses of the Cell Cycle and MAPK Signaling pathways to identify key regulatory nodes.

Methodology: The research was conducted through a series of structured stages:

1. Data Extraction: A Python-based pipeline was employed to extract large-scale biological data from
databases including Pathway Commons, AnimalTFDB, and CellTalkDB. Python libraries such as pandas
and requests were utilized for data manipulation and automated API access. The data were filtered
based on relevant identifiers, such as KEGG and PubMed IDs, to ensure high-quality interactions for
further analysis.

2. Database Design: The curated datasets were systematically organized in a custom-designed MySQL
relational database to facilitate efficient data management and retrieval. The database schema captured
various types of biological interactions (e.g., TF-to-L-R, P-P, G-G) with foreign key relationships ensuring
data integrity.

3. Data Filtering and Network Construction: The filtered data were used to construct a directed
network graph, representing molecular interactions among genes, proteins, and signaling pathways. Edge
weights were assigned probabilistically to reflect the significance of each interaction.

4. Network Visualization and Initial Analysis in Cytoscape: The network’s initial visualization
was performed using Cytoscape, allowing the exploration of structural properties such as clustering
coefficients, average path lengths, and degree distributions. This analysis provided insights into the
network’s topological features, identifying regions of high connectivity and key nodes.

5. Advanced Computational Analysis in Python: The network was subsequently analyzed using
Python-based techniques to uncover critical regulatory elements:

• Boolean Network Modeling simulated regulatory dynamics to identify pivotal nodes and stable
states critical to cellular decision-making processes.

• PageRank Algorithm assessed node centrality to highlight influential regulatory elements within
the network.

• Random Walk Modeling identified key nodes by simulating stochastic flow across the network.

• Recurrent Convolutional Neural Networks (RCNNs) captured temporal dependencies to
predict critical regulatory elements from time-series data, enhancing dynamic signaling insights.
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To validate the framework, the same pipeline was applied to the Cell Cycle and MAPK Signaling
pathways. These pathways were chosen due to their critical roles in cancer progression and cellular
regulation. The analysis included random walk simulations, Boolean modeling, PageRank analysis,
centrality measures, and motif analysis to identify key nodes and their functional roles.

Results: The multi-stage analysis provided comprehensive insights into the ovarian cancer network. Key
regulatory nodes such as NF-κB, p53, ATM, and TNFR1 emerged as central to network stability. Specific
findings include:

• Boolean Network Modeling revealed crucial nodes like NF-κB, p53, IKKα, and ATM, alongside
significant mRNA components (A20 mRNA, Wip1 mRNA, PTEN mRNA).

• PageRank Analysis identified prominent nodes including NF-κB, phosphorylated ATM (ATM-p),
and phosphorylated Chk2 (Chk2-p).

• Random Walk Modeling highlighted nodes such as p53, ATM, and NF-κB, indicating their
significance in processes like DNA damage response and apoptosis.

• RCNN Analysis emphasized regulatory elements such as TNFR1, IKKα, and apoptosis-associated
proteins (Bax, p21 ).

The analysis of the Cell Cycle and MAPK Signaling pathways further validated the framework. Key
nodes identified in the Cell Cycle pathway included Cyclin D, ATM/ATR, p53, and CDK4/6, which are
critical for cell cycle regulation and DNA damage response. In the MAPK Signaling pathway, nodes
such as EGFR, RAS, MEK, and ERK were identified as central to cellular proliferation and differentiation.
These findings highlight the potential of these nodes as therapeutic targets in cancer treatment.

Conclusion: This research advances the field by presenting a comprehensive, integrative computational
pipeline for network analysis and modeling, enabling precise identification of regulatory elements. The
framework provides novel insights into gene regulation, signaling pathways, and potential therapeutic
targets, with broader implications for personalized medicine and disease modeling. The successful
application of the pipeline to the Cell Cycle and MAPK Signaling pathways underscores its versatility
and reliability in identifying critical nodes across diverse biological networks. These findings suggest
that the identified nodes, such as ATM/ATR, p53, EGFR, and ERK, should be prioritized for further
investigation in drug discovery efforts aimed at targeting cancer-related pathways.

Keywords: biomedical engineering, systems biology, network modeling, Boolean network, PageRank,
random walk, RCNN, gene regulation, therapeutic targets, personalized medicine.



Streszczenie

Tło: Jednym z głównych celów biologii systemów jest integracja danych omicznych wysokiej przepustowości
z modelowaniem obliczeniowym, aby lepiej zrozumieć interakcje molekularne i mechanizmy komórkowe.
Złożona natura sieci genomowych, transkryptomicznych i proteomicznych stawia istotne wyzwania,
często ograniczając zdolność tradycyjnych modeli do uchwycenia dynamicznego zachowania systemów
biologicznych. Dlatego zaawansowane podejścia analityczne są niezbędne do wyjaśnienia tych złożonych
interakcji i identyfikacji kluczowych elementów regulacyjnych w sieciach biologicznych.

Cel: Niniejsze badanie ma na celu opracowanie kompleksowego potoku obliczeniowego do automatycznego
pozyskiwania, porządkowania i analizy danych, ułatwiającego identyfikację kluczowych zmiennych w
złożonych sieciach biologicznych. Wykorzystując dane multi-omics z repozytoriów takich jak Pathway
Commons, AnimalTFDB i Genomics Data Commons (GDC), badanie ma na celu wyjaśnienie interakcji
czynników transkrypcyjnych (TF) z ligandami-receptorami (L-R), białko-białko (P-P) i gen-gen (G-G).
Zestaw danych raka jajnika z The Cancer Genome Atlas (TCGA) służy jako studium przypadku do
walidacji podejścia, początkowo koncentrując się na połączeniu między szlakami NF -κB i p53, a następnie
przeprowadzając dodatkowe analizy sieciowe szlaków Cyklu Komórkowego i Sygnałowego MAPK w
celu identyfikacji kluczowych węzłów regulacyjnych.

Metodologia: Badanie przeprowadzono w serii ustrukturyzowanych etapów:

1. Pozyskiwanie danych: Zastosowano potok oparty na Pythonie do ekstrakcji danych biologicznych
na dużą skalę z baz danych, w tym Pathway Commons, AnimalTFDB i CellTalkDB. Biblioteki Pythona,
takie jak pandas i requests, zostały wykorzystane do manipulacji danymi i automatycznego dostępu
do API. Dane zostały przefiltrowane na podstawie odpowiednich identyfikatorów, takich jak KEGG i
PubMed ID, aby zapewnić wysoką jakość interakcji do dalszej analizy.

2. Projekt bazy danych: Zgromadzone zestawy danych zostały uporządkowane w zaprojektowanej
relacyjnej bazie danych MySQL, aby ułatwić efektywne zarządzanie danymi i ich pobieranie. Schemat
bazy danych przechwytywał różne typy interakcji biologicznych (np. TF-do-L-R, P-P, G-G) z relacjami
klucza obcego zapewniającymi integralność danych.

3. Filtrowanie danych i konstrukcja sieci: Przefiltrowane dane zostały wykorzystane do skonstru-
owania skierowanego grafu sieciowego, reprezentującego interakcje molekularne między genami, białkami i
szlakami sygnałowymi. Wagi krawędzi zostały przypisane probabilistycznie, aby odzwierciedlić znaczenie
każdej interakcji.

4. Wizualizacja sieci i wstępna analiza w Cytoscape: Wstępną wizualizację sieci wykonano
przy użyciu Cytoscape, umożliwiając eksplorację właściwości strukturalnych, takich jak współczynniki
klastrowania, średnie długości ścieżek i rozkłady stopni. Ta analiza dostarczyła informacji o cechach
topologicznych sieci, identyfikując regiony o wysokiej łączności i kluczowe węzły.

5. Zaawansowana analiza obliczeniowa w Pythonie: Sieć została następnie przeanalizowana przy
użyciu technik opartych na Pythonie w celu odkrycia krytycznych elementów regulacyjnych:

• Modelowanie sieci boolowskich symulowało dynamikę regulacyjną w celu identyfikacji kluczo-
wych węzłów i stanów stabilnych istotnych dla procesów decyzyjnych komórki.

• Algorytm PageRank oceniał centralność węzłów, aby wyróżnić wpływowe elementy regulacyjne
w sieci.

• Modelowanie losowych spacerów identyfikowało kluczowe węzły poprzez symulację stochastycz-
nego przepływu przez sieć.

• Rekurencyjne konwolucyjne sieci neuronowe (RCNNs) wychwytywały zależności czasowe,
aby przewidywać krytyczne elementy regulacyjne z danych szeregów czasowych, zwiększając zrozu-
mienie dynamicznej sygnalizacji.
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Aby zweryfikować framework, ten sam potok został zastosowany do szlaków Cyklu Komórkowego i
Sygnałowego MAPK. Te szlaki zostały wybrane ze względu na ich kluczową rolę w progresji nowotworu
i regulacji komórkowej. Analiza obejmowała symulacje losowych spacerów, modelowanie boolowskie,
analizę PageRank, miary centralności i analizę motywów w celu identyfikacji kluczowych węzłów i ich ról
funkcjonalnych.

Wyniki: Wieloetapowa analiza dostarczyła kompleksowych informacji o sieci raka jajnika. Kluczowe
węzły regulacyjne, takie jak NF-κB, p53, ATM i TNFR1, okazały się centralne dla stabilności sieci.
Konkretne wyniki obejmują:

• Modelowanie sieci boolowskich ujawniło kluczowe węzły, takie jak NF-κB, p53, IKKα i ATM,
wraz z istotnymi składnikami mRNA (A20 mRNA, Wip1 mRNA, PTEN mRNA).

• Analiza PageRank zidentyfikowała prominentne węzły, w tym NF-κB, fosforylowane ATM
(ATM-p) i fosforylowane Chk2 (Chk2-p).

• Modelowanie losowych spacerów podkreśliło węzły takie jak p53, ATM i NF-κB, wskazując na
ich znaczenie w procesach takich jak odpowiedź na uszkodzenie DNA i apoptoza.

• Analiza RCNN uwydatniła elementy regulacyjne takie jak TNFR1, IKKα i białka związane z
apoptozą (Bax, p21 ).

Analiza szlaków Cyklu Komórkowego i Sygnałowego MAPK dodatkowo potwierdziła słuszność
frameworka. Kluczowe węzły zidentyfikowane w szlaku Cyklu Komórkowego obejmowały Cyklina
D, ATM/ATR, p53 i CDK4/6, które są kluczowe dla regulacji cyklu komórkowego i odpowiedzi na
uszkodzenie DNA. W szlaku Sygnałowym MAPK, węzły takie jak EGFR, RAS, MEK i ERK zostały
zidentyfikowane jako centralne dla proliferacji i różnicowania komórek. Te wyniki podkreślają potencjał
tych węzłów jako celów terapeutycznych w leczeniu nowotworów.

Wnioski: To badanie posuwa dziedzinę do przodu, przedstawiając kompleksowy, integracyjny potok
obliczeniowy do analizy i modelowania sieci, umożliwiający precyzyjną identyfikację elementów regulacyj-
nych. Framework dostarcza nowych informacji o regulacji genów, szlakach sygnałowych i potencjalnych
celach terapeutycznych, z szerszymi implikacjami dla medycyny personalizowanej i modelowania chorób.
Pomyślne zastosowanie potoku do szlaków Cyklu Komórkowego i Sygnałowego MAPK podkreśla
jego wszechstronność i niezawodność w identyfikacji krytycznych węzłów w różnych sieciach biologicz-
nych. Te wyniki sugerują, że zidentyfikowane węzły, takie jak ATM/ATR, p53, EGFR i ERK, powinny
być priorytetowe w dalszych badaniach nad odkrywaniem leków ukierunkowanych na szlaki związane z
nowotworami.

Słowa kluczowe: inżynieria biomedyczna, biologia systemów, modelowanie sieci, sieć boolowska,
PageRank, losowy spacer, RCNN, regulacja genów, cele terapeutyczne, medycyna personalizowana.
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Chapter 1

Introduction

1.1 Overview of Biological Complexity

Biological systems are complicated, consisting of sophisticated networks of molecular interactions that
govern vital cellular operations. Human cells include between 20,000 to 25,000 genes that encode more
than 100,000 proteins, facilitating a dynamic interaction among biomolecules including proteins, genes, and
RNA [1]. These molecules engage inside meticulously regulated networks to sustain cellular homeostasis
and govern processes such as proliferation, differentiation, and apoptosis [2]. The interaction between
signaling pathways introduces additional levels of regulatory complexity.

Comprehending these molecular networks is crucial for elucidating normal physiological activities and
the mechanisms that drive illnesses. Disruption in signaling pathways, especially those regulating the
cell cycle and apoptosis, may result in uncontrolled cellular activities, including oncogenic proliferation
[3]. Deviant gene expression, mutations in regulatory sequences, and disrupted protein-RNA interactions
substantially influence disease progression. Identifying essential nodes and interactions within these
networks is crucial for comprehending disease causes and formulating effective therapeutics [4]

1.2 Challenges in Data Extraction and Computational Piplines

1.2.1 Problem Definitions

A primary difficulty in bioinformatics is the effective extraction. integration, and analysis of extensive
biological data from many sources. The manual recovery of data is laborious and susceptible to inaccuracies,
limiting the research of intricate biological systems. This study established an automated python-based
computational pipeline to facilitate the extraction, filtering, and organization of biological information for
further analysis.

The data that was extracted through Python pipeline are organized in a structural relational database
using MySQL, which helps to save all the downloaded data in an organized form and for easy access
I can utilize it for further analysis. As I mentioned earlier the data that I extracted have various
interactions including transcription factors, protein-protein interaction, gene expression patterns, and
ligand-receptor interaction. Visualization was crucial to my investigation. Cyoscape was first used for
network visualization, followed by the formation the python based networks on python-based tools for more
specialized visualization. This scalable computational pipeline was developed to enable rapid investigation
of intricate molecular networks, therefore improving understanding of their biological relevances

1.3 Goal of the Thesis

The primary aim of this thesis is to develop and validate innovative computational techniques for
identifying key variables in complex biological systems. The objective of the study is to construct and
assess molecular interaction networks by utilizing extensive data from specialized biological databases
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alongside advanced computational techniques. These networks establish a basis for pinpointing essential
regulatory nodes and pathways, particularly those associated with disease processes like cancer.

The project addresses important challenges in the integration, management, and visualization of complex
biological datasets. Automated computational pipelines and systematic network modeling methodologies
enhance data processing and deepen the understanding of cellular regulatory networks and their changes
in diseases.

1.4 Approach and Methodology

To reach the defined objective I adopted the multiphase research methodology which is summarized in
the form given below:

1.4.1 Data Integration and Automation

Data from various biological databases, such as Pathway Commons, AnimalTFDB, CellTalkDB, and
Genomic Data Commons (GDC), were extracted through an automated Python pipeline and integrated.
The automated Python pipeline was developed by using the data specification and the database information
for automated data extraction, which are listed in each database specification and documentation. By
running the developed Python pipeline, the specific data of my interest are downloaded to the repository
in the form of a CSV file. The downloaded data that has been processed are kept in a relational MySQL
database, allowing me for scalable querying and analysis to process the data for further analysis.

1.4.2 Construction of Network and Visualization

After extracting the datasets, a network of molecular interaction networks is constructed. These networks
encompass a variety of biological elements, including proteins, genes, transcription factors, and ligand-
receptor interactions. To achieve effective visualization, Cytoscape was utilized for initial representations
and custom Python tools were created to deliver personalized and dynamic visualizations of the networks.
After a combination of connections, the interaction is visualized using Cyoscape and Python.

1.4.3 Analysis of Biological Networks

The constructed networks from the downloaded data sets were intended to pinpoint key regulatory nodes
and pathways among these interactions, focusing on signal transduction and cellular processes such as
transcriptional regulation. The contracted network key nodes and connections offered valuable insight
into the molecular foundations of specific diseases such as cancer, focusing on how the specific nodes and
interactions and pathways in these connections play a crucial role in disease progression.

1.4.4 Evaluation on Ovarian Cancer, Cell Cycle, and MAPK Pathways

This thesis presents methodologies that were validated through a case study focusing on ovarian cancer, the
cell cycle, and MAPK signaling pathways. The evaluation initially centered on analyzing key transcription
factors NF-κB and p53, which play crucial roles in cancer progression and cellular regulation. Using
high-throughput data, the interactions of these regulators were examined to determine their influence
within the network.

Following this targeted analysis, a comprehensive network was constructed by integrating large-scale
datasets from online biological repositories. The network was visualized using Python and Cytoscape,
facilitating a systematic investigation of molecular interactions. Various computational algorithms,
including Boolean network modeling, PageRank analysis, and recurrent convolutional neural networks
(RCNNs), were applied to identify key regulatory nodes within the ovarian cancer-related pathways.

The identified key nodes were further validated by comparing their roles in ovarian cancer treatment
with existing literature. This approach confirmed the relevance of major regulatory elements such as
NF-κB, p53, ATM, TNFR1, and other critical components involved in apoptosis and cellular signaling.
These findings highlight the robustness of the computational framework in capturing essential biological
interactions and identifying potential therapeutic targets.
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Research Hypotheses

1. Hypothesis 1: An integrated computational pipeline combining Boolean modeling, PageRank, and
random walk algorithms can consistently identify key regulatory nodes (e.g., NF-κB, p53, ATM) in
ovarian cancer signaling networks, as evidenced by convergence across methods.

2. Hypothesis 2: Integrating multi-omics data (genomic, transcriptomic, proteomic) with network
centrality analyses uncovers regulatory elements (e.g., IKKα, Wip1) with high centrality scores that
may represent novel or underexplored targets in ovarian cancer networks.

3. Hypothesis 3: The proposed methodology exhibits robustness and partial generalizability, as
demonstrated by its consistent identification of central nodes in both Cell Cycle and MAPK signaling
pathways and by retaining ≥85% connectivity under random node removal.

Research Objectives

1. To construct comprehensive molecular interaction networks using integrated multi-omics data
extracted from databases such as GDC, Pathway Commons, CellTalkDB, and AnimalTFDB.

2. To identify critical regulatory nodes in these networks through combined computational techniques:
Boolean modeling, PageRank analysis, random walks, and RCNN-based dynamic pattern detection.

3. To validate the biological relevance of identified key nodes by comparison to established literature
and known cancer-related regulators.

4. To assess the robustness of the methodology across divergent biological networks (Cell Cycle, MAPK)
and under perturbation simulations.

Study Significance

This thesis contributes a validated computational framework that integrates multi-omics data with
advanced network analysis tools (Boolean networks, PageRank, random walks, RCNNs) to identify key
regulators in cancer signaling pathways. The work confirms the centrality of canonical regulators (NF-κB,
p53, ATM) and suggests additional potential targets (IKKα, Wip1) for further experimental validation.
The methodology demonstrates adaptability to other key signaling networks (Cell Cycle, MAPK) and
offers a scalable approach for network-based discovery of therapeutic targets in oncology.

Thesis Statement

This thesis establishes and validates a multi-layered computational framework for the systematic iden-
tification of key regulatory nodes in complex biological networks, with an emphasis on ovarian cancer.
By integrating multi-omics data with complementary computational techniques—Boolean modeling
for dynamic simulation, PageRank for network topology analysis, random walks for traffic-based node
importance, and RCNNs for pattern detection—the framework consistently identifies canonical regulators
(e.g., NF-κB, p53, ATM) and proposes additional candidates (e.g., Wip1, IKKα) for further investigation.
Validation across divergent pathways (Cell Cycle, MAPK) demonstrates the framework’s robustness,
adaptability, and potential for advancing systems biology-driven precision oncology.
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Chapter 2

Literature Review

The literature review synthesizes historical and contemporary advances in mathematical modeling of
biological systems, emphasizing the evolution of techniques for identifying key variables. From early
kinetic models (Michaelis-Menten, Lotka-Volterra) to modern computational approaches (network theory,
machine learning), this chapter traces the integration of engineering principles, omics technologies, and
algorithmic innovations in systems biology. A critical evaluation of challenges—data heterogeneity,
dynamic interactions, and multi-scale integration—frames the necessity for the methodologies proposed in
this thesis. The review culminates in a discussion of how this work bridges gaps in modeling transcription
factor networks and signaling pathways, particularly in cancer research.

2.1 Historical Context of Mathematical Modeling and Key Vari-
able Identification in Biological Systems

In particular, mathematical modeling has become an essential tool for comprehending complicated
biological systems in cancer research. It offers a quantitative and systematic framework that improves
the investigation of cellular interactions that are essential to understanding the development of tumors.
Through the use of mathematical models, scientists can express biological systems in exact mathematical
formulas, enabling the quantitative examination of interactions and dynamic behaviors. Because of these
models’ predictive powers, researchers may simulate biological processes under different settings, predict
system responses, assess scenarios, and test ideas without requiring lengthy experimental methods [5].
Mathematical formulations of empirical findings provide deep insights into the mechanics of biological
events. These models aid in the identification of trends and draw attention to important details that may
be missed in investigations that are only experimental [6]. Using iterative modeling

The origins of mathematical modeling in biology can be found in the middle of the 20th century, when
significant advances created the foundation for understanding intricate biological systems. The Lotka-
Volterra model, developed in the 1920s by Alfred Lotka and Vito Volterra, is a seminal work that used
coupled differential equations to shed light on predator-prey interactions. There is ample evidence of
the use of mathematical models in both physics and technology, dating back to the days of Galileo,
Kepler, and Newton, the fathers of modern physics. Nowadays, modeling is considered necessary for
quantitative knowledge and control in science, especially in biology. A scientific field’s level of maturity is
positively connected with how frequently mathematical models are created and applied to comprehend
and manage real-world systems. The Lotka–Volterra model[7] for species interaction, the Hodgkin–Huxley
model for neuron action potentials, the Michaelis–Menten model for enzyme-catalyzed processes, and
epidemiological models for epidemics are a few prominent examples of dynamic mathematical models in
biology [8].

Advances in computational biology occurred as mathematical modeling gained popularity, making it
easier to construct and solve mathematical models of biological systems. The complex relationships
between different organizational levels in these systems had traditionally made accurate quantitative
descriptions difficult. The problem was made more difficult by the presence of open systems, several
gradients that are distant from thermodynamic equilibrium, and intricate nonlinear dynamics. But in the
last several years, two technological developments have completely changed the field: the birth of the
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"omics" sciences (genomics, transcriptomics, proteome, signalomics, and metabolomics) and the general
availability of computing power. These developments have produced dynamic information about the
behavior and structure of biological systems, which has simplified and reduced the cost of gathering,
processing, and storing enormous volumes of data [9].

2.1.1 Emergence of Systems Biology (1950s - 1970s)

The advent of systems biology, a paradigm-shifting approach that emphasized the interconnectedness and
interdependence of biological systems, in the mid-20th century signaled a turning point in the scientific
community. Compared to the reductionist approaches that had typified previous molecular biology
research, this approach marked a significant shift. When systems biology was first emerging, scientific
research was focused on understanding the details of basic biochemical pathways. A concerted effort was
made during this time to comprehend the basic molecular processes. A noteworthy effort among these
was that of Michaelis and Menten in 1913, whose enzymatic reaction rates were understood thanks to
the establishment of an enzyme kinetics model [10]. This early model, however initially limited to single
biochemical reactions, stimulated more extensive systems-level investigation.

Michaelis and Menten’s enzyme kinetics model was crucial in determining the direction that systems
biology took. The concepts developed by Michaelis and Menten [10] became fundamental, influencing
further research as scientists tried to broaden their reach beyond individual responses, even beyond its
application to enzymatic reactions. This was a turning point where a more comprehensive understanding
of biological systems was made possible by the complexities of molecular kinetics. The field of systems
biology was further enhanced in the 1980s and 1990s by the incorporation of control theory and engineering
ideas, building on the groundwork established by Michaelis and Menten [10]. We saw the beginning of a
more quantitative and systematic approach to understanding biological systems when researchers started
using concepts of control theory and system identification techniques to deduce mathematical models
from experimental data. A more thorough investigation of the regulatory mechanisms governing linked
systems was made possible by this integration.

When scientists realized that isolated models had their limits, a significant change happened. A substantial
divergence from conventional reductionist methods was the shift from examining discrete parts to interde-
pendent systems. The awareness that a thorough comprehension of biological phenomena necessitated
taking into account the dynamic interplay between diverse parts within a system drove this paradigm shift.
Scholars have adopted a more comprehensive perspective, recognizing the intricacy intrinsic to biological
systems. The development of computers and other advanced analytical tools, in particular, was a major
factor in the way that systems biology evolved. With the aid of these technical tools, scientists were
able to handle enormous datasets and create more complex models, which allowed for a more thorough
investigation of biological processes. An more nuanced knowledge of the complexity inherent in biological
systems was fostered by researchers’ adoption of holistic methodologies that incorporated multiple data
kinds. The foundation for a more comprehensive and data-driven approach to studying life at the systems
level was established by this combination of methodology and technology [11].

The 1950s to 1970s saw the rise of systems biology, which encouraged cooperation between scientists in
various fields. Systems biologists adopted this multidisciplinary approach as a defining characteristic of
their specialty, utilizing knowledge from engineering, physics, and mathematics to better understand
biological systems. In addition to enriching the discipline, this collaborative spirit cleared the path for a
more thorough and complete comprehension of the dynamic nature of living things. In conclusion, the
development of systems biology in the middle of the 20th century entailed more than just improving models;
it signaled a paradigm change toward holistic viewpoints, scientific breakthroughs, and interdisciplinary
cooperation. Systems biology became a mainstay of modern biological study during this time, laying
the groundwork for a more thorough understanding of biological systems and paving the way for future
developments in the discipline. To improve our understanding of cancer biology, methods for locating
important variables in intricate mathematical models of biological systems must be developed. This effort
aims to improve our understanding of the dynamic connections that drive cancer biology by combining
high-throughput data, network modeling, and information-flow techniques. Our goal is to improve
patient outcomes for ovarian cancer and associated malignancies by laying the groundwork for future
research that informs tailored therapy methods, through the validation of these methodologies and their
implementations [12].
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2.1.2 Integration of Control Theory and Engineering Principles (1980s -
1990s)

The fusion of engineering concepts and control theory in biological modeling during the 1980s was a
revolutionary era that paved the way for the creation of techniques to pinpoint important variables in
intricate mathematical models of biological systems. Researchers used system identification techniques to
create mathematical models from experimental data during this era, which marked a significant paradigm
shift and encouraged a more quantitative and methodical approach to understanding biological systems,
especially in the context of cancer biology. The extraction of mathematical models gained popularity
during this period, enabling scientists to fit theoretical frameworks to observable biological reactions
in order to estimate model parameters.By moving away from merely descriptive approaches, system
identification methodologies allowed for a thorough quantitative analysis, which is necessary for compiling
large amounts of data and creating organized databases. For ensuing analytical activities, especially those
centered on network modeling and information-flow model creation, this kind of foundation is essential
[12].

Because control theory sheds light on the innate regulatory mechanisms of biological systems, it has gained
new significance in the field of biology, despite its traditional engineering roots. Researchers could better
understand how biological systems retain stability, react to perturbations, and display dynamic behaviors
by incorporating control theory concepts. This would expand the analytical toolkit for modeling intricate
interconnections in the course of cancer. This multidisciplinary approach improved comprehension and
made it easier to apply engineering techniques to the biological sciences [13]. In order to create models
that could both anticipate and describe observable events, control theory had to be integrated, as Angarita
et al. [14] aimed to measure the impact of separate components on system behavior. This quantification of
regulatory mechanisms, which made it possible to comprehend the complex networks regulating biological
processes more deeply, is in line with the goals of finding the essential factors influencing cancer biology.
During this time, modeling approaches evolved from solely descriptive models to more predictive and
mechanistic frameworks. This change in focus inspired academics to take on the issue of modeling
biological systems using concepts from control theory. Detailed biological system representations are
essential for verifying new approaches in simulation and experimental investigations.

Researchers were able to investigate how systems react to both internal and external inputs when feedback
and feedforward control concepts were incorporated into biological models. This allowed researchers to
create a framework for developing interventions that can modify system behavior. Specifically in the
field of ovarian cancer research, this application of control principles led to the development of methods
for controlling biological processes, opening up new directions for therapeutic interventions and system
control [15]. In conclusion, a critical step toward more quantitative and systematic methods was taken in
the 1980s and 1990s with the incorporation of control theory and engineering concepts into biological
models. This historical period employed mathematical methods to enhance comprehension of intricate
biological systems, particularly in determining critical factors influencing the course of cancer. Control
theory application has improved the modeling toolbox and led to a deeper comprehension of the regulatory
mechanisms controlling these complex processes, which is directly in line with the goals of current systems
biology and cancer dynamics research.

2.1.3 High-Throughput Technologies and the "-Omics" Era (Late 1990s -
2000s)

Significant developments in high-throughput technologies, such as transcriptomics, proteomics, and
genomics, ushered in a revolutionary era of biological study in the late 1990s and early 2000s [16]. With
the help of these breakthroughs, a paradigm shift toward the collection of large-scale data was brought
about, which made it easier to create thorough genome-scale models. More potential and problems for
mathematical modeling in the study of complex biological systems—particularly in the setting of cancer
biology—were brought about by the growing accessibility of biological data. The speed and amount of
biological data collecting were significantly increased by the introduction of high-throughput technologies.
Researchers were able to study entire genomes because to methods like mass spectrometry, microarray
technology, and DNA sequencing, which revealed complex patterns of gene expression and expanded our
knowledge of the roles and interactions of proteins in biological processes. These domains were further
advanced by advances in next-generation sequencing and better mass spectrometry, especially in the
study of human disorders. Exome sequencing, for example, became a major area of interest, and whole
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genome resequencing became more affordable, which made it easier to find significant structural variants
and advanced personalized genomic therapy [17].

Furthermore, methods like small RNA sequencing, which are crucial for locating both known and unknown
microRNAs that may act as biomarkers for the diagnosis and treatment of disease, have been beneficial
to transcriptomics. Targeted approaches in proteomics were essential in identifying disease-associated
proteins, which are critical for clinical diagnosis and disease staging. In this age, trans-omics techniques
were also integrated, where data fusion across many omics platforms was made possible by bioinformatics.
This kind of integration improved diagnostic and therapeutic approaches, as well as our understanding of
illness, causes [18]. There was a noticeable move toward genome-scale models as scientists adjusted to the
deluge of "-omics" data, indicating a desire to embrace a more comprehensive knowledge of biological
systems. The complexity of high-throughput data led to the evolution of mathematical modeling, which
made it possible to create detailed models that represented the interactions and dynamics across multiple
biological levels. Understanding signaling pathways and regulatory networks in biological systems depends
on the study of critical variables such as ligand-receptor dynamics, transcription factors (TFs), and
protein-protein interactions[19].

Cellular signaling and control are fundamentally based on protein-protein interactions. Since these inter-
actions are essential to almost every cellular function, including signal transmission, metabolic pathways,
and cellular responses to environmental changes, identifying them has become crucial. Comprehending
these interplays offers perspectives on how proteins cooperate to carry out physiological tasks and how
disruptions in these systems might result in illnesses, such as cancer [20]. Important regulators of gene
expression, transcription factors (TFs) control the transcription of particular target genes in response to
different stimuli. They frequently work by attaching themselves to regulatory elements found in the gene
promoter regions, which then affects the differentiation and behavior of cells. In cancer biology, abnormal
gene expression patterns that promote carcinogenesis and progression can be caused by TF dysregulation.
Thus, for the development of tailored therapeutics, it is imperative to determine the interactions between
TFs and their target genes [21].

The fundamental processes of cellular signaling and communication involve ligand-receptor interactions.
Hormones, neurotransmitters, and growth factors are examples of ligands. Ligands attach to particular
receptors on the surface of cells to start signaling cascades that affect cellular responses. Understanding
these relationships and the consequences they have on different physiological processes and diseases, such
as cancer, helps to explain their underlying mechanisms. Research in this area is crucial for therapeutic
intervention because disruptions in ligand-receptor signaling can result in uncontrolled cell growth and
survival [22]. Nevertheless, there were many difficulties in incorporating high-throughput data into
mathematical models. To find important factors and correlations, new modeling methodologies were
needed due to the sheer volume and complexity of "-omics" data. The integration of multi-omic datasets,
noise reduction, and data standardization were among the problems that researchers had to deal with.
Overcoming these obstacles became essential to gaining valuable insights from the abundance of data
that high-throughput technology offered.

The "-omics" age of mathematical modeling necessitated the identification of critical variables across
several biological layers. To understand how genetic alterations were reflected in the transcriptome and
ultimately impacted the proteome, researchers attempted to disentangle the complex relationships that
existed between genomics, transcriptomics, and proteomics. To build precise and predictive models
that could represent the dynamics of intricate biological systems, it became crucial to identify these
crucial variables [23]. This era was characterized by the integration of data from many "-omics" layers.
Researchers took on the challenging task of combining data from transcriptomics, proteomics, and genomes
to create complete models that captured the complexities of biological processes. This integration provided
insights into the interactions between genes, transcripts, and proteins, enabling a more comprehensive
knowledge of cellular activity.

In summary, the introduction of high-throughput technologies in the late 1990s and early 2000s caused a
paradigm shift in biological modeling. Genome-scale models became popular as a result of the ability to
produce enormous volumes of biological data, with mathematical modeling evolving to meet the demands
of "-omics" data. By navigating the complexity to uncover critical variables across several biological layers,
including transcription factors, ligand-receptor dynamics, and protein-protein interactions, researchers
laid the groundwork for a more thorough and integrated knowledge of biological systems. This progression
paved the way for later investigations into the intricate relationships found in biological networks,
particularly in the context of cancer biology. These goals are in line with the goals of current systems
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biology research.

2.1.4 Rise of Computational Systems Biology (2000s - 2010s)
The field of computational systems biology emerged in the early 21st century, combining sophisticated
mathematical frameworks, data-driven approaches, and computational tools to study intricate biological
processes. The field of biological research saw a significant shift during this time, with a focus on modeling
complex interactions within biological networks and a shift in the definition of crucial variables from
isolated molecular entities to interconnected dynamics. Large-scale biological datasets produced by
high-throughput technologies may be handled by researchers in the 2000s thanks to developments in
algorithmic science and high-performance computing. In order to understand the intricate relationships
and patterns inherent in biological systems, techniques like machine learning, network analysis, and
statistical modeling have become increasingly important [24, 13]. The use of computer approaches
promoted a data-centric paradigm that improved our comprehension of biological dynamics by making
it easier to extract significant insights from massive amounts of data. The use of large amounts of
experimental data from transcriptomics, proteomics, and genomes proved crucial to this progression.
These data were used to build strong computational models, and machine learning methods were crucial
in spotting complex relationships and patterns [25, 26]. Researchers were able to build predictive models
that faithfully captured the intricacies of biological processes by utilizing these data-driven techniques.

Furthermore, computational systems biology became known for its sophisticated mathematical modeling,
which included multi-scale interactions, feedback loops, and network dynamics. This method allowed for
thorough assessments of the behavior of the system, and scientists used these models to test different
theories and simulate biological processes [14]. The ability to replicate intricate biological processes in
virtual settings facilitated the adjustment of parameters and the monitoring of ensuing system reactions,
hence enhancing conventional experimental approaches [27, 28]. With the advancement of computational
systems biology, the comprehension of essential factors was expanded to encompass network dynamics,
which mirrors the interdependence of biological systems. As scientists started examining the connections
between different elements in biological networks, they discovered emergent characteristics resulting
from the collective actions of molecular entities [29, 30]. Deeper understanding of the complex web of
biological relationships has been made possible by this emphasis on network-centric models. This has
been especially helpful in discovering crucial protein-protein interactions, transcription factor dynamics,
and ligand-receptor signaling pathways that control cellular behavior.

Computational models informed experimental designs and experimental data validated computational
predictions, respectively, as the interaction between computational approaches and high-throughput
technologies become more synergistic [31]. This mutually beneficial connection promoted a more integrative
view of biological systems in addition to hastening scientific discoveries. All things considered, the decade
from the 2000s to the 2010s was a turning point in biological research because of the rise of computational
systems biology. Combining data-driven strategies, computer methods, and sophisticated mathematical
modeling expanded the field of biological research beyond studying individual molecules to studying the
intricate dynamics of biological networks. In addition to advancing the discipline of systems biology, this
integrative approach well matched the objectives of current research, especially with regard to identifying
critical variables impacting biological processes and disease mechanisms.

2.2 Mathematical Models in Biological Disciplines

In order to understand complicated biological phenomena, such as population dynamics, molecular
interactions, and disease propagation, mathematical modeling has become an invaluable tool. In order to
abstract and quantify biological processes, mathematical models are essential tools that enable researchers
to forecast the behavior of systems under various circumstances. In keeping with the goals of this thesis
to investigate novel modeling techniques that can capture system memory and non-linearity in biological
networks, this chapter offers a thorough review of the use of mathematical models in several biological
fields. A key component of understanding population and ecological dynamics has been mathematical
modeling. Predator-prey interactions and species competition have been thoroughly described using
classical models, such as the Lotka-Volterra equations [32]. While these models are helpful in describing
the fundamental dynamics, they frequently overlook historical relationships or memory effects and assume
immediate reactions. Fractional differential equations (FDEs) have been incorporated into these models
in recent advances, allowing memory kernels to be included that more accurately capture the impact of
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previous states on current population patterns [33]. This improvement is especially pertinent to real-world
situations where historical factors impact species interactions and environmental changes.

Mathematical models in the context of gene regulatory networks (GRNs) have greatly improved our
knowledge of the dynamics of gene expression. The steady-state and transient dynamics of gene networks
have been effectively captured by conventional models based on ordinary differential equations (ODEs)
[34]. These models, however, frequently ignore the temporal delays in gene-protein interactions as well
as the intrinsic stochasticity of gene expression. In response to these constraints, stochastic models and
delay differential equations have been presented [35], which more faithfully capture the random variations
in gene expression and the temporal lags connected to transcription and translation processes. These
improved models have shed light on how cells make decisions and how resilient gene regulatory circuits are
to changing environmental circumstances. The Michaelis-Menten framework, which characterizes the rate
of enzymatic reactions as a function of substrate concentration, has historically been used to model enzyme
kinetics, a fundamental area of biochemical research [36]. Although the traditional Michaelis-Menten
equation works well for straightforward interactions between enzymes and substrates, it is unable to
adequately represent the complexity of enzyme behavior in environments with multiple substrates or
non-linear circumstances. To take cooperativity, temporal dependencies, and enzyme inhibition into
account, recent research has expanded these models utilizing fractional kinetics and non-linear dynamics
[37]. The creation of more potent inhibitors and therapeutic drugs can be aided by an understanding of
the intricate dynamics of enzyme-drug interactions, which makes these improved models essential for
drug development.

The significance of mathematical modeling has also been emphasized in the transmission of infectious
diseases, namely in the context of the COVID-19 pandemic. To simulate disease transmission, forecast
epidemic peaks, and assess the effectiveness of intervention methods, traditional epidemiological models
like the Susceptible-Infected-Recovered (SIR) framework have been used [38]. However, these models’
limited relevance to real-world circumstances stems from their basic character, which assumes homogeneous
mixing and constant transmission rates. Recent models have used fractional calculus to add memory
effects, network-based interactions, and time-dependent transmission rates to get around these restrictions
[39]. These adjustments enable a more realistic depiction of the dynamics of disease and offer improved
direction for choices in public health policy. Since the introduction of deep learning-based methods like
AlphaFold, protein folding models in molecular biology have significantly changed [40]. Machine learning
algorithms have outperformed traditional models that relied on heuristic search techniques and simplified
energy landscapes to predict protein structures with nearly experimental accuracy. This discovery has
fundamentally changed our knowledge of the stability and function of proteins, with ramifications for
synthetic biology and medication development. Another area where mathematical approaches have had
a significant impact is metabolic pathway modeling. To predict biological reactions to environmental
changes and simulate the interactions between different biochemical pathways, genome-scale metabolic
models (GEMs) have combined multi-omics data [41]. These models have been used to investigate
treatment targets, find possible biomarkers, and investigate cancer metabolism. These models are now
much more predictive thanks to the addition of constraint-based optimization techniques like flux balance
analysis (FBA), which allows scientists to simulate cell development and metabolism under various
genetic and environmental scenarios. The action of interconnected neurons is simulated using neural
network models, which are incredibly useful for studying brain activity and cognitive functions. From
straightforward abstractions of neuron dynamics, these models have developed into complex simulations
that accurately represent the complex architecture and operation of entire brain regions [42]. These
models have become more accurate via the addition of biologically plausible factors like neurotransmitter
dynamics and synaptic plasticity. This makes them valuable resources for comprehending neurological
illnesses and creating brain-machine interfaces.

Drug development greatly benefits from the use of pharmacokinetic and pharmacodynamic (PK/PD)
models, which simulate the absorption, distribution, metabolization, and excretion of medications
(PK) as well as their effects on the body (PD) [43]. Historically, these models have been based on
compartmental techniques; however, new developments have integrated the concepts of systems biology
to represent the intricate relationships that exist between pharmaceuticals and biological systems across
various dimensions. More thorough pharmacological action simulations are now possible because to the
incorporation of quantitative systems pharmacology (QSP). These simulations are essential for maximizing
beneficial effects and adjusting dosage schedules. Finally, mathematical modeling offers us a strong lens
through which to examine and comprehend the intricacies of biological systems. These models provide a
structured framework for analyzing the nonlinear, stochastic, dynamic nature of biological interactions by
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connecting theoretical concepts with empirical findings. By combining cutting-edge modeling methods
with experimental data—like fractional calculus and machine learning—we want to progress biological
research and address more complicated issues while creating more potent treatment plans.

2.3 Importance of Key Variables in Mathematical Modeling for
Systems Biology in Biomedical Engineering

Finding key variables in mathematical models is essential to comprehending and predicting the intricate
behaviors of biological systems in biomedical engineering. This section emphasizes the importance of these
factors in a variety of applications, with a particular emphasis on how they affect biological outcomes and
modeling accuracy. In biomolecular processes, critical variables like molecular concentrations, binding
affinities, and reaction rates are crucial. To simulate biochemical networks successfully, these factors must
be accurately identified and quantified. For example, Michaelis-Menten kinetics are directly influenced
by substrate concentration and enzyme affinity, which impacts the prediction power of metabolic rates
[44]. Nonetheless, difficulties arise from inconsistent experimental results and a poor comprehension of
system components. The accuracy and predictive capability of the model are improved by sophisticated
techniques including parameter estimation and sensitivity analysis [45].

Important elements like pharmacokinetics (absorption, distribution, metabolism, and excretion) and
pharmacodynamics (drug-receptor binding) are necessary for precise modeling in the field of drug
interactions with biological systems. These characteristics have a major impact on dosing techniques and
the efficacy of therapy [43]. It is still difficult to integrate multi-scale data from the molecular to the
organismal levels. Drug activity predictions in complicated biological systems can be improved by using
hybrid models that include deterministic and stochastic techniques [46]. Implant efficacy is determined
by biomaterials design characteristics such as mechanical qualities and degradation rates. It is difficult to
comprehend how biomaterials and biological tissues interact, but optimization for particular applications
is possible when computational modeling and experimental validation are combined [47].

Signaling networks are complex systems that require advanced modeling methods. A richer knowledge
of biological processes is made possible by systems biology frameworks that integrate omics data to
highlight the roles of important variables [48]. Genetic polymorphisms and metabolic rates are two
patient-specific characteristics that must be taken into account in personalized treatment. Individual
responses to medicines can be predicted by customized models, which optimizes treatment plans [49]. For
the purpose of recreating disease trajectories and improving predictions of disease progression, critical
variables including immune response dynamics and cancer cell growth rates are essential [50]. Using
probabilistic modeling and Bayesian inference, one may improve prediction accuracy by tackling biological
heterogeneities and uncertainties through frameworks [51]. In bioprocess engineering, temperature,
nutrient contents, and pH all have an impact on biotherapeutic yield. Production process optimization
requires adaptive control and real-time monitoring [52]. Finding important factors makes it possible
to assess the resilience of biological systems and create control plans that ensure desired outcomes [53].
Achieving precision and understanding in mathematical modeling in biomedical engineering requires the
identification of key variables. It makes it easier to comprehend biological systems, optimize therapies,
and create novel answers to challenging biomedical problems.

2.4 Challenges in Identifying Key Variables for Systems Biology
and Engineering in Biomedical Engineering

Because biological systems are inherently complex and engineering principles must be integrated, iden-
tifying essential variables in systems biology and biomedical engineering poses several obstacles. The
interdisciplinary synergies necessary for successful variable identification are frequently missed by tradi-
tional techniques [54]. Utilizing bioinformatics tools and multi-scale modeling, advanced systems biology
approaches improve the identification of critical elements governing complex biological processes [55].
Dynamic interactions at different sizes and timescales define biological systems. Important interactions
and feedback loops that are required for precise predictions are frequently missed by static models [56].
The temporal changes and interactions occurring in biological systems can be represented using dynamic
systems modeling, which includes agent-based and time-series analyses [57].
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Integrating quantitative data (genomic sequences, for example) with qualitative data (clinical observations,
for example) is essential to a thorough understanding of biological systems. Harmonizing these disparate
data formats is a challenge for traditional approaches [58]. In order to improve the identification of crucial
components, probabilistic graphical models are used in hybrid modeling approaches, which combine
mechanistic models with machine learning techniques [59]. Heterogeneity characterizes the landscape
of biological and clinical data, which includes a variety of datasets including proteomic, imaging, and
genomic data. In order to generate a coherent representation of biological systems and make it easier
to identify critical elements, multi-omics techniques and data integration systems combine various data
types using techniques like data fusion and meta-analysis [60].

Understanding the factors that contribute to resilience and stability is crucial for grasping system robust-
ness. However, traditional models often overlook intricate feedback processes and control mechanisms,
limiting our insight into how systems respond to various disturbances. The discovery of variables that
increase stability is made easier by resilience engineering and robust control design approaches, which
enhance knowledge of system reactivity under uncertain conditions [61]. The need for interdisciplinary
approaches is further highlighted by the identification of important variables in systems biology and
engineering. The construction of models that faithfully capture the complex inner workings of biological
systems is made possible by the bridging of mathematical modeling with biological insights [62].

2.5 Bridging Mathematical Modeling and Biology

Biological processes must be understood using mathematical modeling, which provides a methodical way to
examine dynamic interactions in living systems. These models combine mathematical rigor with biological
complexity, providing insights that guide experimental design and technological applications [63]. They are
built utilizing computational algorithms, stochastic processes, and differential equations. Gene regulatory
network models, for instance, employ differential equations to make sense of the relationships between
genes, proteins, and metabolites, providing insights into cellular processes and disease mechanisms [64].
Furthermore, population dynamics models improve our comprehension of how evolution has adapted in
ecological settings. To handle the complexity of biological systems, cooperation between mathematicians
and biologists is essential. Biologists verify that the models developed and analyzed by mathematicians
appropriately reflect biological reality. Mathematicsians design and evaluate models using quantitative
methodologies. In complicated phenomena like disease progression, where biological facts support
mathematical predictions, this interdisciplinary alliance creates models that are both mathematically
valid and biologically meaningful [65, 66].

This work uses basic mathematical and statistical principles to examine intricate biological systems.
Foundational tools include differential equations, such as partial differential equations (PDEs) for spatial
phenomena like tissue diffusion and ordinary differential equations (ODEs) for population growth and
enzyme kinetics [67]. ODEs play a critical role in epidemiology as well, allowing estimates of the spread
of infectious diseases and the effectiveness of treatments [68]. Statistical intelligibility and probability
are essential for handling uncertainty in biological systems. While statistical techniques make parameter
estimation and model validation easier, stochastic models represent the randomness in processes such as
gene expression [69]. By continuously updating models with fresh data, Bayesian techniques improve
forecast accuracy[70]. Linear algebra facilitates the representation of biological interactions using matrices
and vectors, and eigenvalues and eigenvectors can be used to infer system stability [71]. Systems biology
has demonstrated the efficacy of eigenvalue analysis in identifying key regulatory genes affecting biological
activities [72]. This strategy is especially pertinent to the drug research industry, where algorithms are
used to optimize treatment efficacy and minimize side effects. To find the optimal conditions, optimization
theory further refines these models [73, 74].

Biological networks are commonly modeled using graph theory, which employs nodes to represent biological
entities and edges to indicate relationships. This method aids in deciphering network topologies and
locating crucial elements [75]. Finding significant metabolites and possible treatment targets inside
metabolic networks is made possible by this kind of study [76]. Using methods such as autocorrelation
and Fourier analysis, time series analysis exposes patterns in dynamic biological processes [77]. As
demonstrated in circadian biology, these models are especially helpful in understanding the temporal
regulation of gene expression [78].

By revealing nonlinear correlations, machine learning techniques like neural networks are very helpful
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in analyzing complex biological information [79]. By predicting gene functions and regulatory elements
from sequence data, these methods are advancing genomic research [80]. The biological complexity has
been substantially improved by the identification of key variables in mathematical models. Single-cell
RNA sequencing exposes cellular heterogeneity, whereas multi-omics integration integrates data from
multiple sources to offer a comprehensive picture of biological systems [81, 82]. By utilizing machine
learning and deep learning techniques to improve the identification of critical variables, Dynamic Bayesian
Networks (DBNs) mimic time-dependent processes and improve predictive accuracy [83, 84]. Furthermore,
methods for concluding causality, like causal graphical models, aid in distinguishing between correlation
and causation, enhancing the accuracy of the variables that have been found [85].

Topological Data Analysis (TDA) facilitates the identification of key components by showing the connection
and structure of biological networks [86]. Collaborative platforms and open data efforts aelerate research
by promoting data accessibility and sharing [87]. However, interpretability problems persist, necessitating
the use of explainable AI techniques to clarify model selections and increase trust in findings [88]. Finding
the important variables in mathematical models has broad ramifications for many different sectors.
Comprehending the fundamental reasons behind illnesses facilitates the creation of customized therapies
and diagnostic instruments in the field of medicine [89]. In medication development, this method lowers
expenses while increasing efficacy [90]. While precision agriculture employs these insights to optimize
methods for higher crop yields and resource efficiency, environmental studies apply the same ideas to
conservation efforts and sustainable resource management [91].

These understandings are crucial for public health decision-making during epidemics, vaccination strategy
optimization, and resource allocation [92]. Increasing manufacturing process optimization boosts efficiency
in bioprocess engineering [5]. In addition, strong decision support systems employ these factors in computer
models to develop informed healthcare and environmental policy [93]. Finding essential elements in
synthetic biology propels developments in the creation of biological systems with clear roles, advancing the
field of synthetic circuits and genetic networks[94]. These uses highlight how mathematical representations
of biological systems have the power to transform industries including biotechnology, environmental
research, medicine, and agriculture.

2.5.1 Summary and Transition to Methodology
To systematically investigate key regulatory variables in cancer-related networks, we initially constructed
a prior network integrating interactions between the NF-κB and p53 pathways form pathway common
datasets. This foundational network was enriched with weighted data derived from ovarian cancer clinical
datasets obtained from The Cancer Genome Atlas (TCGA), ensuring that both biological interactions
and clinical relevance were incorporated.

To systematically identify critical nodes within the constructed NF-κB and p53 interaction network,
we applied multiple analytical techniques, each providing distinct insights into node importance and
regulatory significance:

• Random Walk: A stochastic process was used to simulate the probability of reaching a node
based on network connectivity. Nodes with higher probabilities were considered more influential
in the signaling cascade. Input: Weighted gene interaction network derived from ovarian cancer
datasets. Output: Probability scores for each node, highlighting key regulators.

• PageRank: This algorithm ranked nodes based on their global significance within the network,
emphasizing nodes with a high number of influential connections. It provided a measure of
hierarchical importance in regulatory pathways. Input: Directed gene interaction network with
assigned weights. Output: A ranked list of nodes indicating their centrality within the network.

• Boolean Modeling: Regulatory interactions were analyzed through discrete logical modeling,
capturing the activation or inhibition of genes under specific conditions. This method helped in
identifying key regulatory switches in the system. Input: Binary representation of regulatory
interactions. Output: Functional classification of genes based on their activation states.

• Recurrent Convolutional Neural Networks (RCNN): Deep learning techniques were employed
to detect intricate patterns within the interaction network, improving the understanding of how
genes influence each other dynamically. Input: Feature-encoded network representation with
weighted interactions. Output: Predictive scores indicating significant regulatory interactions and
potential driver genes.
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These methods collectively facilitated the identification of key regulatory elements by ranking network
components based on their importance in oncogenic processes. To streamline the analysis, I developed
an automated pipeline using Python scripts to extract interactions from publicly available datasets. A
structured database was designed to store and manage extracted information efficiently. The processed
data was filtered based on biologically significant interactions and formatted into a network structure,
initially visualized using Cytoscape before being transferred back to Python for further computational
analysis. To validate the efficiency and robustness of the proposed methodology, I extended the analysis
beyond ovarian cancer by applying the pipeline to two additional networks: the Cell Cycle and MAPK
signaling pathways. The entire workflow, including data extraction, network construction, ranking
algorithms, and visualization, was systematically repeated for these networks to ensure the generalizability
of our approach. The following chapter details the methodological framework implemented in this study,
describing each step of data processing, network modeling, and analytical validation in a structured
manner.

Conclusion of the Chapter
This review underscores the transformative impact of computational tools in deciphering biological
complexity, from enzyme kinetics to genome-scale networks. The synthesis of historical context and
cutting-edge techniques highlights the unmet need for scalable, automated pipelines to analyze regulatory
networks. By building on these foundations, the present study addresses critical limitations in data
integration and dynamic modeling, paving the way for advancements in therapeutic target identification.
The subsequent methodology chapter will detail the technical implementation of these principles.
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Chapter 3

Methodology

The methodology chapter outlines the systematic approach employed to identify key variables in complex
biological networks, with a focus on ovarian cancer pathways. This study integrates multi-omics data
from high-throughput databases such as Pathway Commons, AnimalTFDB, and the Genomics Data
Commons (GDC) to construct a comprehensive computational pipeline. The methodology is divided into
four phases: (1) automated data extraction and integration, (2) network construction and visualization,
(3) advanced computational analysis using Boolean modeling, PageRank, random walks, and RCNNs,
and (4) validation across additional pathways (Cell Cycle and MAPK ). Each phase is designed to
ensure robustness, scalability, and biological relevance, providing a framework for reproducible analysis of
regulatory networks in systems biology.

3.1 Purpose of the Study

The primary purpose of this research project is to develop an integrated network model that can understand
the key connections between biological entities in ovarian cancer. By constructing a reliable database,
merging high-throughput genomics data, and employing powerful computational approaches, this study
aims to identify critical receptor-transcription factor interactions and disclose fundamental variables
impacting cancer biology.

This chapter shows the methodical procedure for collecting, processing, and analyzing data. It describes
how to create network models, analyze relationships, and design integrated databases. The pseudocode
provides full procedural guidance for the technique.

Table 3.1: Consolidated Pseudocode for Methodology

Step Description

Step 1: Data Collection and
Integration
- Genomics Data Collection Collect high-throughput genomics data from public

repositories, such as the Genomics Data Commons.
- Transcription Factor Data
Collection

Gather transcription factor data from AnimalTFDB 3.0 to
identify key regulators.

- Pathway Data Collection Collect pathway information from Pathway Commons
integrated with KEGG.

- Ligand-Receptor Data
Collection

Gather data on ligands and receptors from the Cell Talk
Database to model receptor-ligand interactions.

Step 2: Data Processing and
Integration
- Data Preprocessing Clean and preprocess collected data to remove inconsistencies

and missing values.

Continued on the next page...
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Step Description

- Network Construction Construct a directed network graph incorporating the
processed data, with nodes representing biological entities and
edges representing interactions.

- Database Design Design a structured database schema to store and efficiently
retrieve integrated biological data.

Step 3: Advanced Interaction
Analysis
- Gene Interaction Analysis Analyze gene-gene interactions to uncover regulatory

dependencies.
- Protein-Protein Interaction
Analysis

Identify and assess protein-protein interactions critical for
signaling processes.

- Pathway Crosstalk Analysis Examine pathway crosstalk to understand interplay between
different signaling pathways.

- Regulatory RNA Interaction
Analysis

Analyze the interactions of regulatory RNAs, such as
microRNAs, within the network.

- Transcriptional Network
Analysis

Investigate interactions between transcription factors and their
target genes.

- Functional Process Interaction
Analysis

Evaluate interactions involved in specific functional biological
processes, such as apoptosis or proliferation.

- Genomic Region Interaction
Analysis

Analyze interactions specific to defined genomic regions.

Step 4: Database Structure
Implementation
Database Schema
Implementation

Implement the designed schema to organize and store the
integrated data effectively.

Data Insertion Insert genomics, transcription factor, and pathway data into
the database using predefined formats.

Data Retrieval and Querying Develop efficient queries for data retrieval and perform initial
data analysis to validate structure.

Step 5: Data Processing and
Integration
High-Throughput Data
Processing

Preprocess RNA sequencing and whole-genome sequencing
data from GDC, including quality control, normalization, and
differential expression analysis to identify significant genes.

Signaling Pathway Data
Integration

Extract and format signaling pathways from Pathway
Commons and integrate with high-throughput data for
comprehensive network analysis.

Step 6: Network Modeling
Initial Network Construction Build a basic network model using signaling pathway data

from databases like Pathway Commons.
Integration of High-Throughput
Data

Incorporate processed and normalized RNA-seq and WGS data
to predict gene linkages and interaction intensities using
correlation analysis.

Validation and Improvements Compare predicted networks to established models and
iteratively refine the network inference method to enhance
accuracy and reliability.

Step 7: Signal Flow Modeling
Random Walk Algorithm Simulate the movement of a "walker" across the network based

on edge weights, uncovering node significance, patterns, and
network topology by analyzing node visitation frequencies and
edge traversal patterns.

PageRank Algorithm Rank nodes based on their importance in the network to
identify critical regulatory genes or proteins, considering both
local and global network structures.

Continued on the next page...
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Step Description

Degree Centrality Measure the number of direct connections a node has to
understand its local importance in the network.

Eigenvector Centrality Identify globally influential nodes by considering both the
number and the significance of the connected nodes.

Betweenness Centrality Determine nodes acting as bridges or bottlenecks in the
network by measuring the frequency of a node lying on the
shortest path between others.

Step 8: Network Construction
and Simulation
Network Construction Construct a directed graph with nodes representing molecular

entities and edges denoting regulatory interactions, using
NetworkX in Python.

Data Sources Use data from Genomics Data Commons (GDC), Pathway
Commons, CellTalk, and AnimalTFDB to define graph
topology.

Boolean Modeling of Network
Dynamics

Simulate network behavior using Boolean models to identify
pivotal nodes and stable states.

Step 9: RCNN Model for
Network Analysis
RCNN Model Architecture Implement an RCNN model using TensorFlow and Keras to

dynamically analyze signal propagation, identifying critical
nodes.

Graph Representation and
Data Preparation

Prepare an adjacency matrix of the network and feature
vectors based on node properties such as centrality and
clustering coefficients.

Training and Optimization Train the RCNN model using the Adam optimizer, employing
data augmentation and early stopping to prevent overfitting.

Step 10: Methodology for
Additional Network Tests
Network Construction and
Modification

Construct additional network configurations by modifying
nodes and edges while maintaining the overall structure.
Replace selected nodes with functionally analogous ones and
redefine edges to represent alternative biological interactions.

Validation Across Modified
Networks

Apply the same analytical methods (e.g., Random Walk,
Boolean Modeling, PageRank, Centrality Measures) to
evaluate node significance in modified networks, ensuring
consistency and robustness.

Comparative Analysis Conduct a comparative analysis to evaluate overlaps between
modified and original networks, reinforcing the universal
applicability of the methodology.
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Step 7: Signal Flow Step 8: Network Simulation

Step 9: RCNN AnalysisEnd

Figure 1: Flowchart Representing the Methodology

3.2 Data Collection Overview

A pivotal purpose of this study was data collection, which comprised a range of sources and formats
to properly address each research issue. The stepwise procedure for data collection and operations is
described in detail below.

3.2.1 Detailed Data Analysis
Each stage of the study was meticulously designed to directly address the research goals. From data
collection to network formation, each strategy provided novel insights into the interactive association
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between the biological systems being studied.

3.2.2 Network Modeling

A static network was constructed using data-driven network inference techniques. The methodology
consists of the following steps:

1. Initial Network Construction: A draft network was created using signaling pathway data
from databases such as Pathway Commons. This served as the foundational structure for further
refinement.

2. Data Extraction: High-throughput data, including RNA sequencing and whole-genome sequencing
data, were obtained from the Genomics Data Commons (GDC) web portal. The data were processed,
standardized, and integrated into the network.

3. Network Inference: Correlation analysis was applied to infer gene linkages and quantify interaction
strengths. This step integrated the extracted data into the draft network, enhancing its accuracy
and predictive power.

4. Network Validation: The inferred network was validated through iterative comparison with
established biological network models (e.g., p53, NFkB, and ATM). This process involved:

• Topological Consistency: Assessing structural properties such as node degree distribution,
clustering coefficients, and connectivity patterns to ensure alignment with known biological
networks.

• Biological Relevance: Identifying overlapping nodes and edges between the inferred network
and reference models to evaluate functional consistency.

• Novel Element Detection: Detecting and validating novel elements (nodes or edges) not
present in the reference models. These elements were cross-referenced with literature or
experimental data to confirm their biological significance.

In cases where the inferred network differed in size (e.g., more or fewer nodes) from reference models,
the following steps were taken:

• Biological Plausibility Check: Additional nodes or edges were evaluated for their biological
plausibility based on existing knowledge or experimental evidence.

• Refinement of Inference: The network inference process was iteratively refined to minimize
false positives (incorrectly inferred interactions) and false negatives (missed interactions).

The proposed methodology was validated using well-known biological network models (e.g., p53, NFkB,
and ATM). The validation process ensured that the inferred network was both consistent with established
knowledge and capable of identifying novel, biologically relevant elements. This approach ensures
robustness and generalizability, making the methodology applicable to a wide range of biological systems..

3.2.3 Data Collection and Integration

Genomics Data Commons (GDC)

This work collected and extracted clinical and genomic data on ovarian cancer patients from the Genomics
Data Commons (GDC) database using a systematic technique. The technique’s details are in the following
subsections. A custom crafted Python script was created to facilitate the collection and integration of
data. The following outlines the process’s primary phases, and the extra resources offer the entire Python
script. A, table A.4.

Accessing the GDC Database

• The first step involves accessing the database by using the GDC database API, accessible at
https://api.gdc.cancer.gov. The GDC database is a rich source of clinical and genetic data,
with a strong emphasis on individuals with ovarian cancer.

https://api.gdc.cancer.gov
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Requesting File IDs

• To apply filters and get file IDs for the pertinent data kept in the GDC database, a custom Python
script was used.

Initiating Data File Download

• The identified data files were downloaded initially by the script. The full script is included in the
supplemental tables.

Utilizing Custom Download Function

• The script included a custom function, custom_download_file, to effectively handle the download
procedure for each file ID, ensuring successful retrieval of ovarian cancer files from the GDC database.

Generating Download URL

• The download URL was dynamically created by appending the file UUID and selecting CSV as the
format.

Downloading Data in Chunks

• The files were downloaded in segments using the requests library and saved locally in the designated
destination directory.

Implementing Error Handling

• Error-handling procedure, including retries mechanism and pause periods, were included in the
script to ensure successful retrieval and manage issues during the download process.

Processing Downloaded Data

• The downloaded CSV files now contain the essential high-throughput data specific to ovarian cancer,
ready for seamless integration into the analysis pipeline.

Further Analysis and Integration

• For additional analysis and integration with relevant clinical data specific to ovarian cancer, the
files can be processed using data manipulation tools such as pandas or loaded into an appropriate
database.

In summary, this methodology effectively facilitated the extraction of necessary high-throughput data
related to ovarian cancer from the GDC database Table 3.2 is given below, mentioning all the details,
ensuring a streamlined process for its integration into subsequent analyses.

3.2.4 Pathway Commons Database

This study utilized the Pathway Commons database to collect detailed information on various biological
pathways and interactions. To achieve comprehensive pathway coverage, we accessed the KEGG (Kyoto
Encyclopedia of Genes and Genomes) resources within the Pathway Commons database. The following
steps outline the procedure, with the complete Python script detailed in A, table A.1:

1. Data Retrieval: Extract data from the Pathway Commons database, which contains detailed
information on biological pathways and molecular interactions.

2. Utilization of KEGG: Leverage the KEGG component of the Pathway Commons database to
obtain detailed pathway information.

Data extraction was performed using a Python script that incorporated several packages, including
gzip for file decompression, urllib.request for database URL access, pandas for data processing, and
contextlib for resource management.
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Table 3.2: Data Extraction Steps from Genomics Data Commons (GDC)

Step Description

Access GDC Portal Establish connection to the Genomics Data Commons (GDC) portal to
initiate data retrieval.

Query File IDs Request specific file IDs corresponding to genomic data of interest from
the GDC repository.

Initiate Data Download Start downloading selected data files from the GDC using authorized
access credentials.

Custom Download Function Utilize a customized Python function to manage and optimize the download
process, ensuring efficient handling of large datasets.

Generate Download URLs Dynamically generate URLs based on file IDs and authentication tokens
to facilitate secure and authenticated data downloads.

Download Data in Chunks Retrieve data in manageable chunks to optimize download speed and
minimize network congestion during transfer.

Implement Error Handling Implement robust error handling mechanisms to manage network disrup-
tions or incomplete downloads, ensuring data integrity.

Process Downloaded Data Parse and process downloaded data files to extract relevant genomic
information, and convert formats if necessary for further analysis.

Analyze and Integrate Data Perform comprehensive data analysis, including statistical analysis, visual-
ization, and integration with existing datasets to derive biological insights.

The primary function, DownloadAndProcessPathwayCommonsData, manages the downloading and pro-
cessing of pathway data. This function accepts an optional argument, filename, which specifies the file
path and name for storing the extracted data.

The function operates as follows:

1. Access Data: Utilize urllib.request and gzip.GzipFile to access and decompress the file from
the specified URL.

2. Read Data: Employ pd.read_csv from pandas to read the file in chunks of 1000 rows for efficient
handling.

3. Filter Data: Filter the dataset to include only rows with interaction types specified in the
predefined interactions list.

4. Remove Column: Eliminate the "MEDIATOR_IDS" column, which is deemed unnecessary for
subsequent analysis.

5. Format Conversion: Convert the filtered data into a nested list structure to facilitate further
processing.

6. Define Columns: Specify column names as ["PARTICIPANT_A", "INTERACTION_TYPE", "PARTICIPANT_B",
"INTERACTION_DATA_SOURCE", "INTERACTION_PUBMED_ID", "PATHWAY_NAMES"] for clarity and
organization.

7. Create DataFrame: Transform the nested list into a pandas DataFrame using pd.DataFrame,
enabling structured data manipulation.

8. Save Data: Save the processed DataFrame to a CSV file using the specified filename, ensuring
data persistence and future accessibility.

Upon successful data extraction, the function outputs the message "data downloaded." When executed,
the script will display results indicating the completion of the data retrieval process. The Python script
employed for this extraction operation is detailed in the supplementary materials.

This methodology outlines the systematic approach employed for acquiring access to the Pathway
Commons database, utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) to extract essential
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signaling pathway data, and subsequently saving the data as a CSV file for further analysis. The steps
undertaken during this process are detailed in Table 3.3.

The extraction of signaling pathway data from the Pathway Commons database involves several sequential
steps designed to ensure a comprehensive and reliable dataset.

Table 3.3: Data Extraction Steps from Pathway Commons Database

Step Action Detailed Description

Access DB Connect Establish a connection to the Pathway Commons database
utilizing appropriate API endpoints.

Retrieve Data Fetch Employ queries to retrieve relevant signaling pathway data
based on specified parameters.

Utilize KEGG Employ Integrate KEGG resources within Pathway Commons for
comprehensive pathway details and interactions.

Load Libraries Import Import essential Python libraries: pandas, contextlib,
urllib.request, and gzip for data handling.

Define Function Create Develop the function DownloadAndProcessPathwayCommonsData
to encapsulate the data extraction process.

Specify URL Provide Define the specific database URL and relevant interaction
types required for data retrieval.

Extract File Download Download the data file and decompress it using the
urllib.request and gzip libraries.

Read Chunks Load Load the data incrementally in chunks of 1000 rows to
optimize memory usage and processing efficiency.

Filter Data Apply Filter the dataset based on predefined interaction types
relevant to the study.

Clean Data Remove Eliminate extraneous columns, such as MEDIATOR_IDS, to
streamline the dataset.

Organize Data Convert Convert the filtered data into a nested list format for
structured analysis.

Define Columns Specify Clearly define column names in the dataset to enhance
readability and usability.

Create
DataFrame

Transform Transform the nested list into a pandas DataFrame for
advanced data manipulation and analysis.

Save CSV Persist Save the processed DataFrame as a CSV file with an
appropriate filename for future reference.

Confirm Com-
pletion

Provide Output a confirmation message to indicate successful data
extraction and processing.

3.2.5 Data Extraction from CellTalk Database
In parallel to the data acquisition from the Pathway Commons database, a focused effort was made to
explore intercellular communication pathways through data extracted from the CellTalk database. The
steps outlined below detail this extraction methodology, with the comprehensive Python script provided
in the supplementary materials (refer to Table A.2).

1. Loading Essential Packages: Essential Python packages, such as pandas and contextlib, were
loaded to facilitate efficient data manipulation and management.

2. Defining the Function: A function named DownloadAndProcessCellTalkData was defined to
streamline the extraction process. This function not only downloads the data but also processes it,
allowing users to specify the filename and storage path.

3. Downloading Data: Utilizing the urllib.request package, the function accessed the CellTalk
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database using a specified URL. The pandas.read_csv method was employed to optimize data
retrieval by fetching 1000 rows in batches, ensuring efficient memory usage.

4. Data Handling: Upon successful retrieval, the dataset underwent meticulous processing. The raw
data was systematically organized into a structured format, enhancing coherence and accessibility.
Comprehensive column names were developed to improve clarity and consistency throughout the
dataset.

5. Protecting Data Integrity: To preserve data integrity for future research applications, the
processed dataset was saved as a CSV file. Users were allowed to specify the filename and directory
upon executing the function, facilitating seamless integration with other datasets for comprehensive
analysis.

The successful extraction from the CellTalk database yielded critical insights into ligand-receptor interac-
tions, which are vital for understanding intercellular communication mechanisms. All details are in the
given table 3.4. This foundational knowledge supports further investigation into the intricate biological
processes underpinning cellular dynamics.

Table 3.4: Data Extraction Process from CellTalk Database

Name Action Details

Load Packages Loading Python packages Load necessary Python packages: pandas, contextlib, etc.

Define Function Function definition Define the DownloadAndProcessCellTalkData function for
efficient data processing.

Access Database Database access Connect to the CellTalk database via the specified URL
using urllib.request.

Read data in chunks of 1000 rows using pandas.read_csv.

Organize Data Data organization Flatten and structure the data into a nested list format for
further analysis.

Define Columns Column definition Specify clear and concise column names for enhanced clarity:
Ligand_NAME, Receptor_TYPE, etc.

Save Data Data saving Save the processed data as a CSV file, allowing the user to
specify the filename and path.

3.2.6 Data Acquisition from AnimalTFDB

To obtain data from the Animal Transcription Factor Database (AnimalTFDB), which encompasses a
comprehensive dataset describing transcription factors across various species, we implemented a methodical
approach. This involved the careful curation of transcription factors specifically related to the human
genome. The detailed Python script utilized for data extraction is provided in the supplementary materials
(refer to Table A.3).

The following steps summarize the methodology for downloading and processing AnimalTF data:

1. Import Required Libraries: Essential libraries were imported, including:

• pandas for data manipulation and analysis.

• contextlib for managing resources effectively.

• urllib.request for downloading files from the internet.

• gzip for handling compressed data files.

2. Define the Extraction Function: A function named DownloadAndProcessAnimalTFData was
defined. This function is responsible for downloading AnimalTF data from a specified URL and
processing it into a user-friendly format.

3. Specify Function Arguments: The function accepts one argument:
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• filename — The path where the downloaded file will be saved, defaulting to "AnimalTFData.csv".

4. Download Data: The urllib.request library was employed to download the AnimalTF data
from the provided URL. The downloaded file is handled as a compressed .gz file to facilitate efficient
storage and transfer.

5. Read Data: The downloaded data is read in increments of 1000 rows to manage large datasets
effectively, followed by flattening and restructuring it as a list of rows.

6. Convert to DataFrame: The list of rows is then converted into a pandas DataFrame, facilitating
straightforward manipulation and analysis.

7. Save Data: The final DataFrame is saved to a CSV file using the specified filename to ensure
data integrity and ease of access.

8. Output Message: Upon completion, the function outputs a message indicating successful download
and processing of the data.

9. Main Execution: The extraction function is executed, invoking the download and processing of
the AnimalTF data. The user can easily run this in their Python environment.

This methodical approach to data acquisition from the AnimalTFDB enables a comprehensive under-
standing of transcription factors and their roles in various biological processes all details of the steps
involve are in table 3.5.

Table 3.5: Data Extraction Process from AnimalTFDB

Name Action Details

Import Libraries Load libraries Import pandas, contextlib, urllib.request, and gzip.

Define Function Function definition Define DownloadAndProcessAnimalTFData for download-
ing and processing data.

Specify Arguments Argument setup Accept filename to determine the saving path for the down-
loaded file.

Download Data File download Use urllib.request to download data from the Ani-
malTFDB URL.

Read Data Incremental reading Read data in chunks of 1000 rows for memory efficiency.

Convert Data Data conversion Convert the processed list into a pandas DataFrame.

Save Data File saving Save the final DataFrame to a CSV file at the specified path.

Output Message Confirmation Output a success message upon completion of data extrac-
tion.

3.2.7 Integration of Transcription Factor Data with Signaling Pathways

The integration of transcription factor (TF) data from AnimalTFDB with signaling pathways identified
through Pathway Commons and CellTalk is a critical step in constructing a comprehensive network
of cellular signaling mechanisms in Homo sapiens. This process involves combining TFs, which are
key regulatory components, with signaling networks (SN) to create an interconnected system of nodes
(biological entities such as TFs, genes, and proteins) and edges (interactions or relationships between
these entities). By integrating these datasets, we aim to systematically analyze the interactions between
TFs and signaling pathways in humans, uncovering their roles in cellular processes and disease states,
such as cancer and metabolic disorders.

Methodology for Combining TF and Signaling Networks in Humans

1. Data Extraction and Preprocessing:
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• Transcription Factor Data: TFs specific to Homo sapiens were extracted from AnimalTFDB,
a comprehensive database of TFs. Each TF was annotated with its associated target genes
and regulatory functions in human cells.

• Signaling Pathway Data: Signaling pathways relevant to humans were retrieved from Path-
way Commons and CellTalk, which provide curated information on protein-protein interactions,
signaling cascades, and pathway cross-talk in human systems.

• High-Throughput Data (HTD): Whole-genome sequencing and RNA sequencing data
from the Genomic Data Commons (GDC), specifically the TCGA (The Cancer Genome Atlas)
dataset, were included to provide gene expression profiles and genomic alterations specific
to human samples. These datasets were preprocessed to remove low-quality samples, correct
technical biases, and normalize expression levels.

2. Quality Control and Sample Filtering:

• Rigorous Quality Control: Quality control (QC) was performed to ensure the integrity
of the datasets. Low-quality human samples were identified based on metrics such as read
depth, mapping efficiency, and outlier expression profiles. Samples failing to meet predefined
thresholds (e.g., low read counts, high technical noise, or poor alignment rates) were excluded
from further analysis.

3. Network Construction:

• TFs were mapped to their corresponding signaling pathways in humans based on their target
genes and regulatory roles. This mapping was achieved by overlapping TF target genes with
genes involved in specific signaling pathways in human cells.

• The resulting network was represented as a graph, where nodes represent biological entities
(e.g., TFs, genes, proteins) and edges represent interactions (e.g., regulatory relationships,
protein-protein interactions) specific to human systems.

4. Integration of High-Throughput Data:

• RNA sequencing data from human TCGA samples were used to validate the activity of TFs
and signaling pathways by correlating gene expression levels with pathway activity scores.

• Whole-genome sequencing data provided insights into genomic alterations (e.g., mutations, copy
number variations) in human samples that could influence TF activity or signaling pathway
dynamics.

5. Functional Analysis:

• The integrated network was analyzed to identify key regulatory nodes and their functional
implications in human disease states. For example, TFs that regulate multiple signaling
pathways in humans were flagged as potential master regulators.

• Pathway enrichment analysis was performed to identify signaling pathways significantly associ-
ated with specific disease conditions in humans, such as cancer or metabolic disorders.

Summary of Data Processing and Integration

The steps involved in data processing and integration are summarized in Table 3.6, which outlines each
phase of data handling, from extraction and preprocessing to network construction and functional analysis,
specifically for Homo sapiens. This multi-faceted approach ensures a robust and comprehensive analysis
of TF-signaling pathway interactions in humans, providing insights into regulatory networks and potential
therapeutic targets.

3.2.8 Database Structure Implementation

A well-structured MySQL database was established to manage and process data efficiently, facilitating
subsequent analyses. The following steps describe the creation and organization of the database, the
rationale behind its structure, and how it optimizes data storage and retrieval. Complete Python scripts
used for database generation can be found in the supplementary materials in Table A.1, Appendix A.
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Table 3.6: Data Processing and Integration Methods

Step Action Details

High-Throughput Data

Preprocessing Check for anomalies, biases, and technical
issues

Analyze whole-genome and RNA sequenc-
ing data obtained from GDC.

Quality Control Identify and remove low-quality samples Ensure dataset integrity through rigorous
quality assessment.

Filtering and Nor-
malization

Filter out low-expression genes and nor-
malize data

Adjust for technical variances to ensure
comparability.

Differential Expres-
sion Analysis

Analyze gene expression differences Conduct statistical comparisons across ex-
perimental conditions.

Signaling Pathway Data

Pathway Extraction Select relevant pathways based on the re-
search question

Extract pathways from the Pathway Com-
mons database relevant to the study focus.

Data Formatting Prepare pathway data for integration Ensure compatibility with high-
throughput datasets for seamless analysis.

• Database Schema Design: A detailed schema was developed to accommodate heterogeneous
data from various sources such as the Genomics Data Commons (GDC), AnimalTFDB 3.0, and
Pathway Commons. The database schema was designed with normalization principles to ensure
minimal data redundancy while maintaining high data integrity. The schema consists of multiple
relational tables, each representing specific entities (e.g., genes, transcription factors, pathways).
These tables are interconnected using foreign key relationships, ensuring consistency across datasets
and allowing for efficient data integration.

• Creation of the MySQL Database: The database was implemented using MySQL, and the
entire process—ranging from table creation to data population—was automated through Python
scripts. For each entity in the schema, a corresponding table was generated in the database, with
fields tailored to accommodate specific data types (e.g., VARCHAR, INT, FLOAT). The creation
scripts also defined primary and foreign keys to enforce relational integrity. Data from external
sources was imported into the database, ensuring that the structure supports a seamless integration
of future datasets.

• Data Organization: Data from GDC, AnimalTFDB 3.0, and Pathway Commons were mapped
onto specific tables according to their respective entities. For instance, gene-related information
was stored in a designated table with fields capturing the gene identifiers, symbols, and associated
metadata. Each dataset was organized in such a way as to preserve the original relationships within
the data, while foreign keys linked related data across tables. This modular approach enhances the
extensibility and maintainability of the database, allowing for additional datasets or entities to be
incorporated without structural modifications.

• Integration Rules: Integration of data from diverse sources was handled by establishing uniform
rules to ensure consistency. A key integration challenge was aligning identifiers across multiple
datasets (e.g., gene identifiers). To address this, a standardized format for gene and transcription
factor identifiers was adopted. Additionally, relational integrity was enforced using foreign keys,
ensuring that each entry in a table is accurately linked to its corresponding entries in related
tables. This integration strategy guarantees consistency and prevents data fragmentation across the
database.

• Indexing and Query Optimization: To improve query performance, efficient indexing mecha-
nisms were implemented. Indexes were created on frequently queried fields, such as gene identifiers
and transcription factor names, significantly reducing query response time. In cases where queries
involved multiple fields, compound indexes were employed to further enhance performance. Addi-
tionally, the database supports complex queries using SQL, allowing for retrieval of specific datasets
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based on multiple criteria. NoSQL techniques were also integrated where necessary to manage
semi-structured data efficiently.

• Database Structure and Optimization: The overall structure of the database is optimized to
ensure efficient data storage and retrieval. By adhering to the principles of third normal form (3NF),
the schema minimizes redundancy, reducing storage overhead while maintaining data integrity. The
use of foreign keys ensures that relationships between datasets are preserved, enabling accurate
and efficient data joins. Furthermore, the indexing and query optimization strategies employed
ensure that even large datasets can be queried with minimal delay, thereby enhancing the overall
performance of the system.

• Rationale for Structural Design: The design of the database structure ensures that data is stored
efficiently, with minimal redundancy and optimal organization for retrieval. The normalization
of tables reduces duplication of data, while the use of primary and foreign keys maintains the
integrity of relationships between different datasets. This design is particularly suited to handle the
complexity and size of biological datasets, ensuring that both current and future data additions can
be managed effectively without necessitating substantial structural changes.

3.2.9 Data Processing and Integration
The integration of mutation data from the The Cancer Genome Atlas (TCGA) dataset into the pre-
existing network, constructed from transcription factor (TF) and signaling pathway data, involved the
following steps:

• Mutation Data Extraction:

– Somatic mutation data for Homo sapiens were extracted from the TCGA dataset, focusing on
specific genes of interest that are relevant to the signaling pathways and transcription factors
in the pre-existing network.

– Only non-synonymous mutations (e.g., missense, nonsense, and frameshift mutations) were
retained, as these are more likely to have functional consequences on protein activity and
signaling pathways.

• Quality Control and Filtering:

– Low-quality mutation calls were filtered out based on TCGA quality control metrics, such
as read depth (minimum threshold of 10x coverage) and variant allele frequency (minimum
threshold of 5%).

– Mutations with ambiguous or incomplete annotations were excluded to ensure data reliability.

• Integration with Pre-Existing Network:

– The filtered mutation data were mapped to the corresponding genes in the pre-existing network
using unique gene identifiers (e.g., Ensembl IDs or gene symbols).

– Mutations were added as node attributes to the network, allowing for the identification of
genes with altered function due to somatic mutations.

– The updated network was visualized and analyzed using Cytoscape to explore the impact of
mutations on signaling pathways and transcription factor activity.

Summary of Data Processing and Integration

The steps involved in integrating mutation data into the pre-existing network are summarized in Table 3.6,
which outlines the key phases of data extraction, quality control, and network integration. This approach
enabled the identification of genes with functional mutations that may influence signaling pathways and
regulatory networks in human disease states.

3.2.10 Data Filtering and Creation of Initial Network
The construction of the initial network involved a systematic process of data extraction, filtering, and
network representation. This subsection describes the methodology used to filter the data and create the
initial network.
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Data Extraction from Pathway Commons

The Pathway Commons dataset was used as the primary source of interaction data due to its comprehensive
coverage of biological pathways and interactions. The following steps were taken to extract and filter the
data:

Downloading the Dataset - The entire Pathway Commons dataset was downloaded in a standardized
format (e.g., SIF or BioPAX) from the official Pathway Commons website (https://www.pathwaycommons.
org/). - The dataset includes interactions from multiple sources, such as KEGG, Reactome, and PubMed,
ensuring broad coverage of biological pathways.

Loading the Dataset into Python The dataset was loaded into Python using the ‘pandas‘ library for
data manipulation and analysis. The following code snippet demonstrates how the dataset was loaded:

import pandas as pd

# Load the Pathway Commons dataset
pathway_commons_data = pd.read_csv(’pathway_commons_data.tsv’, sep=’\t’, comment=’#’)

Inspecting the Dataset The dataset was inspected to understand its structure and contents. Key
columns include: - PARTICIPANT_A: The first interacting entity (e.g., gene, protein). - PARTICI-
PANT_B: The second interacting entity. - INTERACTION_TYPE: The type of interaction (e.g.,
physical interaction, transcriptional regulation). - PATHWAY_NAMES: The biological pathways
associated with the interaction. - PUBMED_IDS: PubMed references supporting the interaction.

Filtering the Dataset

To ensure relevance and quality, the dataset was filtered based on specific criteria, including KEGG
pathways and PubMed IDs.

Filtering Based on KEGG Pathways Interactions were filtered to include only those associated
with KEGG pathways:

# Filter interactions based on KEGG pathways
kegg_filtered_data = pathway_commons_data[

pathway_commons_data[’PATHWAY_NAMES’].str.contains(’KEGG’, na=False)
]

Filtering Based on PubMed IDs Interactions were further filtered to include only those supported
by PubMed references:

# Filter interactions based on PubMed IDs
pubmed_filtered_data = kegg_filtered_data[

kegg_filtered_data[’PUBMED_IDS’].notna()
]

Saving the Filtered Dataset The filtered dataset was saved for further processing:

# Save the filtered dataset
pubmed_filtered_data.to_csv(’filtered_pathway_commons_data.tsv’, sep=’\t’, index=False)

Creating the Initial Network

The filtered dataset was used to construct the initial network.

Network Representation The filtered interactions were represented as a graph using the ‘NetworkX‘
library:

import networkx as nx

# Create a directed graph

https://www.pathwaycommons.org/
https://www.pathwaycommons.org/
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G = nx.DiGraph()

# Add edges to the graph
for _, row in pubmed_filtered_data.iterrows():

G.add_edge(row[’PARTICIPANT_A’], row[’PARTICIPANT_B’], interaction_type=row[’INTERACTION_TYPE’])

Visualizing the Network The initial network was visualized using ‘matplotlib‘:

import matplotlib.pyplot as plt

# Visualize the network
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=50, font_size=8, edge_color=’gray’)
plt.title(’Initial Network’)
plt.show()

Storing the Network The network was saved in a structured format for further analysis:

# Save the network
nx.write_graphml(G, ’initial_network.graphml’)

3.2.11 Network Modeling

Network modeling integrates data from multiple databases to construct, refine, and validate network
models. The process involves the following steps:

• Initial Network Construction:

– A foundational network was constructed using signaling pathway data from Pathway Commons
and transcription factor (TF) data from AnimalTFDB. Nodes in the network represent
biological entities (e.g., genes, proteins, TFs), and edges represent interactions (e.g., regulatory
relationships, protein-protein interactions).

– The network was enriched with additional interactions from curated databases such as CellTalk
and PathwayCommon to ensure comprehensive coverage of known signaling pathways and
regulatory mechanisms.

• Integration of High-Throughput Data:

– Processed mutation data from the The Cancer Genome Atlas (TCGA) dataset were integrated
into the network. These data were mapped to corresponding genes in the network to identify
genes with functional alterations.

– The integration focused on adding mutation information as node attributes, enabling the
identification of genes with somatic mutations that may influence signaling pathways and
regulatory mechanisms.

• Network Validation and Refinement:

– The constructed network was validated by comparing it to well-established models of key
signaling pathways (e.g., p53, NF-κB, ATM). This comparison was not intended to achieve
exact agreement but to ensure that the network captures known interactions and regulatory
mechanisms.

– Discrepancies between the constructed network and established models were analyzed to
identify potential gaps or novel interactions. For example:

∗ If the constructed network contained additional nodes or edges not present in established
models, these were evaluated for biological relevance using literature and functional
annotations.

∗ If the constructed network lacked nodes or edges present in established models, the data
sources and integration methods were revisited to ensure no critical interactions were
missed.
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– The network was iteratively refined based on validation results, ensuring robustness and
biological plausibility. Novel interactions identified during this process were flagged for further
experimental validation.

Summary of Network Modeling

The network modeling process is summarized in Table 3.7, which outlines the key steps, methods, and
outcomes of each phase. This approach ensures that the network is both comprehensive and biologically
accurate, while also allowing for the discovery of novel interactions that may not be present in existing
models.

Table 3.7: Summary of Network Modeling Steps

Step Methods and Data Sources Outcomes

Initial Network
Construction

• Signaling pathway data from
Pathway Commons.

• Transcription factor data from
AnimalTFDB.

• Additional interactions from
CellTalk and PathwayCommon.

• A foundational network with
nodes (genes, proteins, TFs)
and edges (interactions).

• Comprehensive coverage of
known signaling pathways and
regulatory mechanisms.

Integration of
High-Throughput
Data

• Processed mutation data from
TCGA.

• Mapping of mutations to corre-
sponding genes in the network.

• Identification of genes with
functional alterations.

• Mutation information added as
node attributes.

Network Valida-
tion and Refine-
ment

• Comparison to established
models (e.g., p53, NF-κB,
ATM).

• Analysis of discrepancies to
identify gaps or novel interac-
tions.

• Iterative refinement based on
validation results.

• Confirmation of known inter-
actions and regulatory mecha-
nisms.

• Identification of novel interac-
tions for further experimental
validation.

• A robust and biologically plau-
sible network.

3.3 Signal Flow Modeling

Signal Flow Modeling (SFM) studies how information flows from input components (e.g., receptors) to
output elements (e.g., transcription factors). The flux of signal propagation defines the path from the
source to the sink node. Methods include:

3.3.1 Signal Flow Modeling Methods

Signal flow modeling approaches simulate and study the flow of information across biological networks.
The Python code generated for each model is in appendices A. This study used the following methodologies
to model signal propagation:

• Random Walk Model: Simulates diffusion-like processes across the network, with each step
representing a node change impacted by probability based on network structure or edge weights.

• PageRank Algorithm: PageRank, which was originally intended for web search engines, quantifies
the relevance of nodes in a network using the concept of "voting" or "recommendation," indicating
the influence of one node over another via links.

• Boolean Model: Signaling events are represented as binary states (on/off), which simplifies
complicated regulatory networks into logical connections for the study of regulatory dynamics and
stable states.

• RCNN Model: The Recurrent Convolutional Neural Network (RCNN) combines recurrent
connections with convolutional layers to capture temporal relationships and spatial patterns in
sequential data. It is useful for dynamic investigation of signal propagation in biological networks.
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These approaches were chosen for their capacity to capture various elements of signal flow within biological
networks, allowing thorough research of signaling dynamics and network behavior.

These strategies will be rigorously tested to determine their efficacy across various network sizes. The
most promising method will be chosen for more research and analysis.

3.3.2 Network Visualization and Analysis

Integrated high-throughput sequencing and signaling pathway data were visualized and analyzed using
Cytoscape, a powerful tool for exploring relationships, patterns, and biological processes within networks.
The following steps outline the process:

Installation and Setup

Cytoscape was downloaded and installed from the official website1. The software was configured to meet
the analytical requirements of this study.

Importing Data

Gene interaction data were imported into Cytoscape using compatible formats such as CSV, SIF, or
XGMML. The steps for data import were as follows:

1. Accessed the File menu in Cytoscape.

2. Selected the Import option and chose either Network or Table based on the data type.

3. Navigated to the file location and designated it for import.

4. Followed on-screen instructions to specify import preferences and configure data loading.

Network Layout

After importing the data, the gene interaction network was displayed, with genes as nodes and interactions
as edges. The network was organized using the following steps:

1. Explored various layout algorithms, such as force-directed, circular, and hierarchical layouts.

2. Selected the most appropriate layout to create a clear and interpretable visualization.

Styling and Visual Enhancements

The visual representation of the network was enhanced using Cytoscape’s styling options:

1. Applied visual styles to nodes and edges to differentiate genes or highlight specific attributes.

2. Customized node size, color, shape, and labels based on gene properties.

3. Adjusted edge thickness, color, and style to reflect interaction strength or type.

4. Utilized features like node clustering, grouping, and subnetwork highlighting for improved interpre-
tation.

Advanced Network Analysis

Cytoscape’s advanced analysis tools were used to gain deeper insights into the gene interaction network.
The following analyses were performed:

• Centrality Analysis:

– Betweenness Centrality: Identified genes that act as bridges between other genes, high-
lighting critical intermediaries in the network.

– Eigenvector Centrality: Identified highly connected genes that may serve as key regulatory
hubs.

1https://cytoscape.org/

https://cytoscape.org/
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• Clustering Analysis: Detected tightly coupled gene clusters or modules using algorithms such as
hierarchical clustering and k-means clustering.

• Modular Analysis: Identified distinct communities of genes with shared functional characteristics,
revealing insights into biological processes and signaling pathways.

Exporting and Saving

The final network visualization and analysis results were saved for future reference:

1. Saved the session as a Cytoscape session file (.cys) to retain network data, layout, and visual styles.

2. Exported the network visualization as an image file (e.g., PNG, JPEG, or PDF) or a vector graphics
file (e.g., SVG or EPS) for inclusion in publications or presentations.

3.3.3 Runtime Analysis

To evaluate the efficiency of the network visualization process, runtime analysis was performed:

• Measured the time required for network visualization across the dataset and network scales.

• Recorded and analyzed runtime under various settings to identify potential optimizations.

3.3.4 Network Transformation from Cytoscape to Python

After visualization and analysis in Cytoscape, the network was converted into a Python-compatible
format to facilitate further computational analysis using the NetworkX framework [95]. Initially, node
and edge interactions were extracted from the database containing all relevant datasets. Key interactions
were identified, organized, and stored in a CSV file using Python. The network was first visualized in
Cytoscape for preliminary exploration and then transferred to Python for more in-depth analysis. This
conversion enabled the application of advanced algorithms and comprehensive computational techniques,
significantly enhancing the understanding of the network’s structural properties and its evolving behavior.

3.4 PageRank Algorithm for Network Analysis

3.4.1 Introduction to PageRank

The PageRank algorithm, initially developed by Larry Page and Sergey Brin at Stanford University, is a
fundamental method for ranking nodes based on their importance in a network [96]. Though first applied
to rank web pages, its application has expanded to network analysis across various domains, including
biological networks. In such systems, PageRank identifies influential nodes, such as key proteins or genes
in interaction networks, by evaluating both the quantity and quality of their connections.

3.4.2 Algorithmic Implementation in Biological Networks

In this study, the PageRank algorithm was utilized to evaluate the centrality and importance of nodes
in a biological signaling network. The NetworkX Python library, a powerful tool for network analysis,
was employed to compute the PageRank scores for each node. This approach provides insights into the
relative significance of individual components (e.g., proteins, genes, or other biomolecules) within the
network structure. By applying this algorithm, key nodes that play critical roles in information flow,
signaling pathways, or network stability can be identified, offering a deeper understanding of the network’s
functional organization and potential regulatory mechanisms. This method is broadly applicable to
various biological networks, enabling researchers to prioritize nodes for further experimental validation.

Basic PageRank Formula

The PageRank algorithm assigns a rank to each node in a network based on the ranks of the nodes that
link to it, creating a recursive ranking system. The PageRank score PR(i) of a node i is calculated using
the following formula:
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PR(i) =
1− d

N
+ d

∑
j∈M(i)

PR(j)

L(j)
, (3.1)

where:

• PR(i) is the PageRank score of node i,

• d is the damping factor, typically set to 0.85, which represents the probability that a random walker
will continue exploring the network,

• N is the total number of nodes in the network,

• M(i) is the set of nodes that link to node i,

• L(j) is the number of outbound links from node j.

The damping factor d ensures that the algorithm converges and accounts for the likelihood of a random
jump to any node in the network. This formula is widely used to identify influential nodes in various
types of networks, including biological, social, and information networks [97].

This implementation can be adapted to analyze biological networks, such as protein-protein interaction
networks or signaling pathways

This formula ensures that nodes receive a higher PageRank score if they are linked by other important
nodes, reflecting their centrality in the network. For biological networks, this is essential to identifying
nodes that influence multiple pathways.

3.4.3 Clarifying the Role of PageRank in Network Analysis

The use of PageRank in biological networks fulfills three important roles:

• Ranking Method: PageRank ranks nodes based on their importance in the network. In biological
networks, this ranking helps to identify critical regulatory genes or proteins [97].

• Centrality Measure: As a centrality measure, PageRank takes into account not only the number
of connections but also the importance of the nodes that are connected. This helps to identify nodes
that play pivotal roles as hubs in the network [98].

• Network Structure Analysis: PageRank also helps to uncover the hierarchical structure of the
network by identifying the most influential nodes. This can reveal important pathways or potential
points of failure in biological systems [99].

In this way, PageRank functions as both a local and global centrality measure, providing a comprehensive
perspective on the structure of biological networks.

3.4.4 Comparison with Other Network Metrics

In addition to PageRank, three other centrality measures were applied to the network to provide a
more complete analysis. These measures are Degree Centrality, Eigenvector Centrality, and Betweenness
Centrality.

Degree Centrality

Degree Centrality is one of the simplest metrics and measures the number of direct connections a node
has. The Degree Centrality DC(i) of a node i is defined as:

DC(i) =
deg(i)
N − 1

, (3.2)

where deg(i) is the number of edges connected to node i, and N is the total number of nodes in the
network. Although Degree Centrality provides insight into the local importance of a node, it does not
account for the quality or significance of these connections [100].
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Eigenvector Centrality

Eigenvector Centrality improves upon Degree Centrality by not only considering the number of connections
but also the importance of the nodes to which a node is connected. The Eigenvector Centrality EC(i) of
a node i is defined as:

EC(i) =
1

λ

∑
j∈M(i)

Aij · EC(j), (3.3)

where:

• Aij is the adjacency matrix of the network, indicating whether there is a direct link between nodes
i and j,

• EC(j) is the Eigenvector Centrality of node j,

• λ is the largest eigenvalue of the adjacency matrix.

Eigenvector Centrality is valuable for identifying influential nodes, especially those that are connected to
other highly influential nodes [101].

Betweenness Centrality

Betweenness Centrality measures the extent to which a node lies on the shortest path between other
nodes. The Betweenness Centrality BC(i) of a node i is given by:

BC(i) =
∑

s ̸=i̸=t

σst(i)

σst
, (3.4)

where:

• σst is the total number of shortest paths between nodes s and t,

• σst(i) is the number of those paths that pass through node i.

Betweenness Centrality is useful for identifying nodes that serve as bridges or bottlenecks in the network,
as these nodes control the flow of information between other nodes [102].

3.4.5 Results Interpretation and Issues Addressed

In analyzing a biological signaling network, the PageRank algorithm identified key nodes (e.g., proteins or
genes) as central to the network. Several specific considerations were made in interpreting these results:

• Elevated PageRank Values: Nodes with significantly higher PageRank values were categorized
as having "elevated" ranks. To define this, the mean µ and standard deviation σ of the PageRank
scores were computed, and nodes with PR(i) > µ+ σ were considered elevated.

• Comparative Node Analysis: Differences in PageRank between nodes were analyzed in terms of
biological significance. For example, a node with a lower PageRank score might still have greater
biological importance due to its role in critical pathways or processes.

• Probability Distribution of PageRank Values: The PageRank scores were normalized to form
a probability distribution, which facilitated a probabilistic interpretation of node importance. This
helps in understanding the hierarchy and influence distribution within the network.

3.4.6 Convergence and Runtime Considerations

The PageRank algorithm iteratively refines the ranking of nodes until convergence, which is achieved
when the change in PageRank scores between iterations falls below a specified threshold. For the analyzed
network, the algorithm converged in a reasonable number of iterations due to the manageable size of the
network. The time complexity of the PageRank algorithm is O(N + E), where N is the number of nodes
and E is the number of edges, making it computationally efficient even for larger biological networks [97].
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The PageRank algorithm proved to be a versatile and robust tool for network analysis in this study. It
successfully identified critical nodes within the biological signaling network by evaluating node centrality
and importance. When compared with other centrality measures such as Degree Centrality, Eigenvector
Centrality, and Betweenness Centrality, PageRank offered a more balanced view of the network’s structure,
considering both direct and indirect connections. This comprehensive analysis revealed key insights into
the regulatory mechanisms within the network [103].

3.5 Random Walk Algorithm

3.5.1 Overview
The Random Walk Algorithm is a stochastic technique frequently used in network analysis, particularly
within biological networks. Unlike deterministic approaches such as PageRank, this algorithm simulates
the movement of an entity, or "walker," across a network of nodes (e.g., genes or proteins) connected by
edges representing biological interactions. The algorithm probabilistically traverses the network based
on edge weights, which encode interaction strengths, confidence levels, or biological significance, thus
uncovering latent patterns, determining node importance, and revealing the structural organization of
complex biological systems [104].

In this work, the random walk algorithm’s edge weights are derived from mutation datasets, which are
utilized to model mutation-driven biological interactions. Initially, each node (representing a gene or
protein) is assigned a uniform weight of 1, reflecting equal baseline significance derived from mutation
data. The weights are then probabilistically distributed across the network, with each edge’s weight
reflecting the interaction strength between nodes as determined by their biological relevance. This
weighted probabilistic approach enables a dynamic flow of information through the network, facilitating
the identification of key patterns, regulatory elements, and functional modules.

3.5.2 Mathematical Formulation and Procedure
The Random Walk Algorithm is a stochastic process that traverses a network by moving from one node to
another based on predefined probabilities [105]. The algorithm can be mathematically described through
the following steps:

1. Initialization: The random walk begins by selecting an initial node i from a probability distribution
P0. Here, P0 represents the initial probability distribution over all nodes in the network, which
determines the likelihood of starting the walk at a particular node. This distribution can be:

• Uniform: If no prior information is available, P0 is uniform, meaning each node has an equal
probability of being selected as the starting point:

P0(i) =
1

N
, ∀i ∈ Nodes,

where N is the total number of nodes in the network [106].

• Biased: If prior biological knowledge or data (e.g., mutation data) is available, P0 can be
biased to reflect the importance or relevance of specific nodes. In this work, the initial weights
of nodes are derived from mutation data, setting each node’s weight to 1:

wi = 1, ∀i ∈ Nodes.

The initial probability distribution P0 is then computed as:

P0(i) =
wi∑

k∈Nodes wk
, ∀i ∈ Nodes.

This approach is commonly used in biological network analysis [107].

2. Transition Probability Calculation: Once the walker is at a node i, it moves to a neighboring
node j with a probability proportional to the edge weight wij . The edge weights reflect the biological
significance or strength of interactions between nodes, as derived from mutation data. The transition
probability from node i to node j is given by:

P (i → j) =
wij∑

k∈N (i) wik
,
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where:

• N (i) is the set of neighboring nodes of node i,

• wij is the edge weight between nodes i and j,

•
∑

k∈N (i) wik is the sum of edge weights for all neighbors of node i.

This formulation ensures that the walker is more likely to traverse edges with higher weights,
reflecting stronger biological interactions [108].

3. Random Walk Execution: The walker iteratively transitions between nodes according to the
computed transition probabilities. Let S be the number of steps taken. At each step t, the walker
moves as follows:

it+1 =

{
j, with probability P (it → j),

it, with probability 1−
∑

j∈N (it)
P (it → j),

where:

• it is the current node at step t,

• j is a neighboring node of it,

• P (it → j) is the transition probability from it to j.

This process is repeated for a specified number of steps L. The walk may terminate earlier if a
convergence criterion is met, such as when the node visitation probabilities stabilize [97].

4. Data Collection: During the random walk, data is collected on:

• Node visitation frequencies fi, which count how often each node i is visited,

• Sequences of node visits, which record the order in which nodes are traversed,

• Edge traversal patterns, which track how often each edge is traversed.

This data is used to generate a visitation distribution P (v), where v denotes a node. The visitation
frequency for node i is computed as:

fi = Number of visits to node i.

This approach is widely used in network analysis to identify important nodes [98].

5. Analysis and Interpretation: The visitation distribution and traversal patterns are analyzed to
uncover key properties of the network, such as:

• Node significance: Nodes with higher visitation frequencies are considered more important
or central in the network [109].

• Community structures: Groups of nodes that are frequently visited together may indicate
functional modules or communities [110].

• Network topology: The overall structure of the network, including connectivity and robust-
ness, can be inferred [111].

The visitation frequencies can be normalized to obtain a probability distribution:

f̂i =
fi∑
j fj

,

where f̂i represents the normalized visitation frequency for node i. Additional metrics, such as
centrality measures (e.g., betweenness, closeness) and clustering coefficients, can be computed to
further interpret the biological relevance of nodes and substructures [112].
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3.5.3 Uncovering Latent Patterns
The Random Walk Algorithm reveals latent patterns in biological networks by examining visitation
distributions and node transition sequences. Repeated random walks highlight clusters of nodes that are
frequently co-visited, indicating potential communities or functional modules. The clustering coefficient
Ci for node i can be defined as:

Ci =
2Ei

ki(ki − 1)
, (3.5)

where Ei is the number of edges between the ki neighbors of node i. This formula is a standard measure
of local clustering in networks [113]. Aggregating the walk data allows for identifying regions in the
network where nodes are strongly interconnected, reflecting biological modularity or shared functions.
The transition probability matrix, constructed during the random walk, helps detect recurring pathways
and interaction patterns that may not be evident from static network analysis.

3.5.4 Determining Node Significance
Node significance is derived from the frequency of node visitation during the random walks. Nodes
attracting a higher fraction of the total visits are considered more central or influential, suggesting
biological importance, such as being key regulators or network hubs. The significance score for a node i is
computed as:

Si =
fi∑
j fj

, (3.6)

where:

• fi is the frequency of visits to node i,

•
∑

j fj is the sum of visitation frequencies for all nodes in the network.

The significance score Si reflects the relative importance of node i in the network. A higher score indicates
that the node is visited more frequently during the random walks, implying a more central or influential
role in the network’s information flow [114].

3.5.5 Node Significance Ranking

Let G = (V,E) be a network with node set V and edge set E. The significance ranking R : V → N+ is
constructed from significance scores {Si}i∈V as follows:

For each node i ∈ V , its significance score Si is computed as:

Si =
fi∑

j∈V fj

where fi is the visitation frequency of node i during random walks on G.

Ranking Rules

The ranking R is determined by:

1. Strict ordering: For any two nodes i, j ∈ V ,

R(i) < R(j) ⇐⇒ Si > Sj

2. Tie handling: If Si = Sj , then R(i) = R(j)

3. Rank assignment: The node with highest Si receives R(i) = 1, the next highest receives 2, and
so forth

This ranking scheme guarantees:

• Monotonicity: Higher scores always correspond to better ranks (lower rank numbers)

• Completeness: All nodes are assigned a rank (with possible ties for equal scores)

• Interpretability: Rank 1 identifies the most significant node
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The edge weights wij influence these rankings through their effect on the random walk transition
probabilities, making nodes connected by biologically significant edges more likely to achieve higher scores
and consequently better ranks.

3.5.6 Elucidating the Structure of Complex Networks

The Random Walk Algorithm helps elucidate the structure of complex biological networks by uncovering
topological features such as hubs, bottlenecks, and communities. The degree centrality Di for a node i is
defined as:

Di =
∑
j

wij , (3.7)

where wij is the weight of the edge between nodes i and j. By analyzing node transition sequences and
their associated probabilities, the algorithm reveals hierarchical or modular structures. Clusters of nodes
with high intra-group connectivity and low inter-group connectivity are detected as functional modules or
biological communities [115]. The algorithm also helps identify weakly connected components or critical
bridges, providing insights into the network’s resilience and connectivity.

Furthermore, the temporal analysis of random walk sequences simulates biological signal diffusion, allowing
the tracing of potential signaling pathways, protein interaction cascades, or gene regulatory networks.
The temporal weight wij(t) can be modeled to reflect changes over time:

wij(t) = wij · exp(−λt), (3.8)

where λ is a decay parameter. Temporal dynamics can be incorporated by varying edge weights over
time or introducing time-dependent biases in the random walk, allowing a more nuanced exploration
of pathways influenced by temporal factors, such as gene expression changes during different biological
conditions [116].

3.5.7 Temporal Analysis of Random Walks

This section introduces a crucial distinction in my temporal analysis approach. While traditional temporal
analyses in biological networks often focus on simulating molecular concentration changes over time, our
method instead considers the time-varying strength of interactions between components. Specifically:

• Static pathways: Represent fixed interaction topologies (who-activates-whom) typically analyzed
at steady-state

• Dynamic molecular concentrations: Track changes in molecule quantities over time (common
in signaling pathway studies)

• temporal approach: Models evolving interaction strengths (wij(t) while keeping node identities
constant

This framework treats the network as a non-stationary system where edge weights may change to reflect:

• Varying regulatory strengths under different conditions

• Time-dependent interaction probabilities

• Context-specific pathway preferences

The time-dependent transition probability is defined as:

P (i → j, t) =
wij(t)∑

k∈N (i)

wik(t)
, (3.9)

where:

• wij(t): Interaction strength between nodes i and j at time t

• N (i): Neighborhood of node i

• The denominator ensures proper probability normalization
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3.5.8 Context-Aware Biasing

To prioritize biologically relevant pathways during specific conditions, I introduce a temporal biasing
mechanism:

Pbiased(i → j, t) = αP (i → j, t) + (1− α) ·Bj(t), (3.10)

Key components:

• Bj(t): Time-dependent node importance (e.g., experimental measurements)

• α ∈ [0, 1]: Balances topological vs. biological relevance

• Adapts to condition-specific network configurations

This approach captures essential features of:

• Pathway switching between cellular states

• Condition-dependent regulatory mechanisms

• Dynamic response to external stimuli

The model’s behavior adapts to temporal changes in edge weights while maintaining constant node
composition, reflecting how biological systems rewire their interaction strengths under different conditions.

3.5.9 Ergodicity in Random Walks

Ergodicity is a key property in the context of the Random Walk Algorithm. A stochastic process is
considered ergodic if its time averages converge to ensemble averages over the long run. In biological
network analysis, this means that given enough steps, the random walker will visit all nodes in the
network with a probability reflecting their relative significance, regardless of the starting node.

For a network to exhibit ergodic behavior, it must be strongly connected, meaning there is a path from any
node to any other node. In the context of biological networks, this implies that even sparsely connected
components can eventually influence the overall structure as the random walker explores the network.
The necessary condition for ergodicity can be mathematically formulated as:

lim
t→∞

P (i → j, t) = πj , (3.11)

where πj is the stationary distribution of node j indicating its long-term visitation probability. This
property ensures that insights gleaned from random walks are comprehensive and not unduly biased by
initial conditions [114].

Monitoring the convergence of visitation frequencies during the random walk allows researchers to confirm
the ergodic nature of the network, ensuring that the resultant analysis is robust and representative of the
underlying biological interactions.

3.5.10 Applications in Network Analysis

The Random Walk Algorithm is applied to several network analysis tasks in this work. While the
mathematical formulation of the algorithm has been discussed earlier, the primary metric used in this
study is the visitation counter, which tracks the frequency of visits to each node during the random
walks. This metric serves as the foundation for deriving insights into network structure and function.
Below, we outline the key applications of the algorithm:

• Community Detection:
Co-visitation patterns and edge traversal frequencies help identify communities within the biological
network. Nodes that are frequently visited together are likely part of the same functional module or
biological pathway. The visitation counter fi for each node i is used to group nodes into communities
based on their co-occurrence in random walk trajectories. This approach leverages the ergodic
property of random walks, ensuring that the visitation frequencies reflect the long-term behavior of
the walker and provide a robust representation of network communities [115].
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• Determining Key Nodes (Significance):
Nodes visited more frequently during random walks are considered more significant in the network.
This aligns with centrality measures like betweenness and degree centrality but incorporates a
probabilistic approach that captures the dynamic flow of biological information. The significance
score Si for node i is computed as:

Si =
fi∑
j fj

,

where:

– fi is the visitation frequency of node i,

–
∑

j fj is the total number of visits across all nodes.

Nodes with higher Si values are ranked higher in significance, indicating their central or influential
role in the network. This ranking is robust due to the ergodic nature of the random walk, which
ensures that the significance scores are representative of the network’s long-term behavior [117].

• Identifying Signaling Pathways and Information Flow:
The sequence of node visits simulates the propagation of biological signals. Analyzing these temporal
visitation patterns helps identify key signaling pathways and potential routes for information diffusion.
The visitation counter fi and the sequence of visits provide insights into the flow of information
through the network. By leveraging the ergodic property, the algorithm ensures that the identified
pathways are not biased by the starting node and reflect the true structure of the network [116].

• Biased Exploration of Specific Regions:
Biases can be introduced to prioritize certain nodes or pathways, allowing targeted exploration of
specific substructures relevant to particular biological processes or diseases. The bias is incorporated
into the transition probability as follows:

P (i → j) = α · wij∑
k∈N (i) wik

+ (1− α) ·Bj ,

where:

– α is a tuning parameter (0 ≤ α ≤ 1) that controls the balance between the original transition
probability and the bias,

– Bj is the bias factor for node j, which reflects its biological relevance or importance in the
context of the study.

By adjusting α and Bj , the algorithm can be directed to explore specific regions of the network
more intensively, providing deeper insights into targeted biological processes. The ergodic property
ensures that even with biased exploration, the algorithm converges to a meaningful representation
of the network over time [116].

3.5.11 Algorithmic Parameters and Performance Considerations

Several parameters influence the effectiveness of the Random Walk Algorithm in uncovering patterns and
determining node significance:

• Number of Walkers and Steps: Multiple walkers (Nw) perform random walks, each taking a
fixed number of steps (L). Increasing Nw and L improves network coverage and analysis precision
[114].

• Edge Weight Assignment: Edge weights are based on factors like interaction strength or
experimental confidence. Here, weights are derived from mutation datasets, with each node initially
assigned a weight of 1. Weights are normalized to ensure that transition probabilities sum to one at
each step [115].

• Bias Introduction: Biases can be introduced to prioritize nodes with higher degrees or biological
relevance, guiding more focused exploration [116].

• Convergence: Convergence is monitored by analyzing the stabilization of visitation frequencies.
Ergodicity ensures complete network exploration with a sufficiently large number of steps [114].
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The computational complexity of the Random Walk Algorithm is influenced by the number of walkers
(Nw), the number of steps (L), and the network size. The complexity scales linearly:

O(Nw · L),

, making it suitable for large biological networks. Parallelization techniques can further accelerate
computations by executing multiple walks simultaneously [116].

3.5.12 Automated Data Collection and Network Construction
The construction of the network was performed using data from multiple biological databases, including
the Genomic Data Commons (GDC), Pathway Commons, CellTalk, and the AnimalTF Database. By
sourcing data from these repositories, we ensured that the information was derived from experimental
evidence rather than solely relying on literature reviews. These databases provided comprehensive
information on molecular interactions, including activation and inhibition relationships, as well as edge
directions for creating a directed graph representation of the signaling pathway.

The collected data was processed to transform raw interaction information into a directed graph, following
these steps:

1. Extraction of Interaction Pairs: Extract interaction pairs (nodes and edges) from each database,
ensuring consistency in naming conventions and interaction types. The datasets utilized in this step
include sources like GDC for gene expression data and Pathway Commons for pathway interactions
and regulatory relationships.

2. Direction Assignment: Assign directions to the edges based on the nature of the interactions
(e.g., activation or inhibition), as indicated by the annotations in the respective databases. This
process ensures that the interactions are accurately represented, reflecting biological reality.

3. Conflict Resolution: Resolve conflicting interaction information by prioritizing high-confidence
interactions, as indicated by the evidence levels provided by the databases. This step is crucial for
ensuring the reliability and accuracy of the constructed network.

4. Edge Weight Assignment from Mutation Data: Edge weights were assigned probabilistically
based on mutation data from The Cancer Genome Atlas (TCGA). The mutation data provides
information on the frequency and functional impact of mutations in genes, which can be used to
infer the strength of interactions between nodes in the network. The process of assigning edge
weights is as follows:

3.5.13 Initial Weight Assignment and Biological Relevance
• Initial Weight Assignment: At the start, all edges in the network are assigned a uniform weight

of 1, i.e., wij = 1 for all edges (i, j). This represents an unbiased baseline where all interactions are
considered equally likely [114].

• Biological Relevance Measurement: Biological relevance is quantified using mutation data
from TCGA. For each gene (node) in the network, the mutation probability pi is calculated as the
frequency of mutations observed in the TCGA dataset. This probability reflects the likelihood that
the gene is mutated in the studied biological context. The mutation probability pi is computed as:

pi =
Number of samples with mutations in gene i

Total number of samples
.

This formula is derived from standard statistical methods for calculating mutation frequencies [118].

• Transforming Relevance into Edge Weights: The interaction strength between two nodes
i and j is derived from the mutation probabilities of the corresponding genes. If the interaction
between i and j is supported by experimental evidence (e.g., from Pathway Commons or CellTalk),
the edge weight wij is updated as:

wij = pi · pj · cij ,

where:

– pi and pj are the mutation probabilities of nodes i and j, respectively,
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– cij is a confidence score for the interaction between i and j, derived from the database
annotations (e.g., experimental evidence level). The confidence score cij is normalized to the
range [0, 1], where 1 indicates the highest confidence [119].

• Normalization: The edge weights are normalized to ensure that they fall within a consistent range
(e.g., [0, 1]). This is achieved by dividing each weight by the maximum weight in the network:

wnormalized
ij =

wij

max(wij)
.

Normalization is a standard preprocessing step in network analysis to ensure the comparability of
edge weights [115].

• Integration into the Network: The normalized edge weights are integrated into the network by
replacing the initial uniform weights (set to 1) with the calculated probabilistic weights. This ensures
that the network reflects the biological relevance of interactions as inferred from the mutation data.
The integration is performed by updating the edge weights as follows:

wfinal
ij = wnormalized

ij .

This multiplicative approach ensures that the final edge weights are proportional to the combined
mutation probabilities and confidence scores, reflecting the strength of interactions in the network
[116].

Construct the directed graph G = (V,E), where V represents the set of nodes corresponding to various
molecular entities (e.g., proteins, genes), and E represents directed edges indicating regulatory interactions.
The directed graph can be mathematically expressed as:

G = (V,E) where V = {v1, v2, . . . , vn} and E ⊆ V × V.

This formulation is standard in graph theory and network analysis [114].

3.6 Boolean Modeling of Network Dynamics

Boolean modeling was employed to simulate the dynamic behavior of the signaling network, to identify
pivotal nodes and stable states. This approach is particularly suitable for biological systems, where
entities (nodes) can be represented in discrete states, specifically "active" (1) or "inactive" (0). This
binary representation simplifies the complexities of biochemical reactions and facilitates the qualitative
capture of dynamics within the system. The method enables automatic analysis of network behavior,
reducing reliance on literature-based knowledge and facilitating the identification of novel insights.

3.6.1 Boolean Function Definition
The Boolean functions that govern state transitions were defined using an automated procedure based
on rules derived from the databases. Each node’s Boolean function fi was determined according to the
following criteria:

1. Activation (OR operation): A node is activated if at least one of its regulatory inputs is active.
The Boolean function is given by:

fi =
∨

j∈Inputs(i)

xj

where xj represents the state of each input node. This is a standard OR operation in Boolean logic
[120].

2. Co-regulation (AND operation): A node requires all its regulatory inputs to be active for
activation. The Boolean function in this case is:

fi =
∧

j∈Inputs(i)

xj

This is a standard AND operation in Boolean logic [120].
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3. Inhibition (NOT operation): A node is inhibited if a specific regulator is active, described by:

fi = ¬xk

where xk is the state of the inhibitory regulator. This is a standard NOT operation in Boolean
logic [120].

3.6.2 Simulation Framework

The simulation framework was implemented in Python, using libraries such as NetworkX, NumPy, and
Matplotlib. The simulation followed these steps:

1. Graph Construction: Construct the directed graph using the automated data collection and
processing pipeline. The resulting network included nodes representing various molecular entities,
with directed edges denoting regulatory interactions [114].

2. State Update Function: Implement a synchronous state update function, where the state of each
node at time t+ 1 is computed based on the states of its neighbors at time t:

xi(t+ 1) = fi(x1(t), x2(t), . . . , xn(t))

This is a standard approach in Boolean network simulations [120].

3. Simulation Execution: Run the simulation over multiple discrete time steps using various initial
conditions to explore the network’s responses. Multiple random seeds were used to vary the initial
node states, thus covering a broad range of potential system configurations [116].

4. Visualization and Analysis: Use Matplotlib and NetworkX for visualizing network dynamics.
Heatmaps and state transition diagrams were generated to observe changes in node states and
identify stable attractors [115].

3.6.3 Identification of Pivotal Nodes and Stable States

To identify pivotal nodes and stable states in the network, the following approaches were applied:

1. Identification of Pivotal Nodes: Nodes that exhibited a high frequency of activation across
different initial conditions were classified as pivotal. The criteria for identifying pivotal nodes were
based on statistical analysis of the activation frequency Ai, defined as:

Ai =
Ni

Nt

where Ni is the number of times node i was active across all simulation runs, and Nt is the total
number of simulation runs. A threshold T was applied to classify nodes as pivotal if Ai > T [116].

2. Identification of Stable States: Stable states, or attractors, were detected by monitoring the
network dynamics for convergence. A state vector S was considered stable if it remained unchanged
over k consecutive iterations:

S(t) = S(t+ k) for k ≥ 1

indicating a steady-state configuration within the network [120].

3.6.4 RCNN Model Architecture

The Recurrent Convolutional Neural Network (RCNN) model is designed to analyze complex networks by
capturing both spatial and temporal patterns. The architecture integrates Graph Convolutional Network
(GCN) layers to extract spatial features and Long Short-Term Memory (LSTM) layers to model temporal
dependencies. This combination enables the model to infer relationships from the graph structure and
node feature sequences, even in the absence of explicit temporal or spatial data.
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3.6.5 Input Data Representation

The input to the RCNN model consists of two components:

• Node Features: A matrix of shape (N,F ), where N is the number of nodes in the graph, and F
is the number of features per node. These features can include numerical representations of node
properties, one-hot encodings, or learned embeddings.

• Adjacency Matrix: A matrix of shape (N,N) that represents the graph structure, where A[i, j] = 1
indicates a connection between node i and node j, and A[i, j] = 0 otherwise.

3.6.6 Model Architecture

The RCNN model architecture is structured as follows:

1. Input Layer: The model takes two inputs:

• Node features of shape (N,F ).

• Adjacency matrix of shape (N,N).

2. Graph Convolutional Network (GCN) Layers: Two GCN layers are used to aggregate
information from neighboring nodes, capturing spatial relationships. Each GCN layer contains 32
units and uses the ReLU activation function.

3. Global Mean Pooling: The output of the second GCN layer is pooled into a fixed-size feature
vector to reduce dimensionality while preserving key information.

4. Recurrent Layer: An LSTM layer with 64 units is employed to model temporal dependencies.
The LSTM processes sequences of node embeddings to infer temporal patterns, even when explicit
temporal data is not provided.

5. Fully Connected Layer: A dense layer with 64 neurons synthesizes spatial and temporal features.
A dropout rate of 0.5 is applied to prevent overfitting.

6. Output Layer: A final dense layer with 2 neurons and a softmax activation function outputs a
probability distribution over classification categories.

3.6.7 Data Preparation and Training

The dataset is prepared as follows:

• Node Features: Each node is represented by a feature vector of size F . For example, in a network
with 100 nodes and 10 features per node, the node feature matrix has a shape of (100, 10).

• Adjacency Matrix: The graph structure is encoded in a binary matrix of shape (100, 100).

• Labels: Each sample is associated with a classification label.

The dataset is split into training (70%), validation (15%), and test (15%) sets. To enhance model
robustness, random perturbations are applied to the adjacency matrix and node features during training.

3.6.8 Training and Convergence

The RCNN model is trained using the Adam optimizer with an initial learning rate of 1×10−3. A learning
rate scheduler adjusts the rate based on validation loss. The categorical cross-entropy loss function is
used for optimization. Early stopping is applied if the validation loss does not improve for 10 consecutive
epochs.

For a network with 100 nodes and 300 edges, at least 50-100 samples are recommended for convergence.
Each sample consists of:

• Node features of shape (100, F ).

• Adjacency matrix of shape (100, 100).

• A classification label.
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3.6.9 Feature Vector Construction
Feature vectors are constructed to represent the properties of nodes in the network. These features are
derived from various sources, such as biological data, experimental measurements, or computational
predictions. For example:

• Gene Expression Data: If the nodes represent genes, the feature vector for each node can include
normalized gene expression values across multiple conditions or time points.

• Protein Properties: If the nodes represent proteins, features can include physicochemical prop-
erties (e.g., molecular weight, hydrophobicity) or functional annotations (e.g., Gene Ontology
terms).

• Network Topology: Features can also capture topological properties of the nodes, such as degree
centrality, betweenness centrality, or clustering coefficients.

To ensure reproducibility and avoid bias, the feature construction process is standardized. For example,
gene expression data is normalized using z-score normalization, and missing values are imputed using
k-nearest neighbors (k-NN). The final feature matrix has a shape of (N,F ), where N is the number of
nodes and F is the number of features per node.

3.6.10 Preventing Information Leakage
Preventing information leakage is critical to ensure the model generalizes well to unseen data. The
following steps are taken to avoid leakage:

• Stratified Splitting: The dataset is split into training (70%), validation (15%), and test (15%) sets
using stratified sampling. This ensures that the distribution of labels (e.g., disease vs. non-disease
nodes) is preserved across all splits.

• Feature Perturbation: During training, random perturbations are applied to the node features
and adjacency matrix to simulate noise and enhance model robustness. For example, 5% of the
edges in the adjacency matrix are randomly removed or added, and 10% of the node features are
randomly shuffled.

• Cross-Validation: K-fold cross-validation is used to evaluate the model’s performance. The
dataset is divided into k folds, and the model is trained on k − 1 folds while validating on the
remaining fold. This process is repeated k times to ensure reliable performance estimates.

• Independent Test Set: The test set is kept completely separate from the training and validation
sets. It is only used once, after the model has been fully trained and validated, to evaluate its
generalization performance.

These measures ensure that the model does not inadvertently learn from the test data and that its
performance metrics are reliable.

3.6.11 Identifying Potential nodes
The RCNN model is particularly effective at identifying potential nodes due to its ability to capture both
spatial and temporal patterns in the network. While other methods (e.g., centrality measures, random
walks) also provide scores for nodes, they often rely on static representations of the network and do not
account for the dynamic nature of biological systems. The RCNN model, on the other hand, integrates
the following advantages:

• Spatial Patterns: The GCN layers aggregate information from neighboring nodes, capturing
local network structures that are often critical for identifying drug targets (e.g., protein-protein
interaction hubs).

• Temporal Patterns: The LSTM layers model temporal dependencies, allowing the model to infer
how changes in node features (e.g., gene expression over time) influence network behavior. This is
particularly important for identifying targets that play a role in dynamic processes, such as disease
progression or drug response.

• Contextual Information: By combining spatial and temporal features, the RCNN model can
identify nodes that are not only highly connected but also functionally relevant in specific biological
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contexts. This makes it more likely to pinpoint targets that are both effective and specific to the
disease of interest.

3.7 Methodology for Additional Network Tests

3.7.1 Network Construction and Modification
To enhance the reliability and generalizability of the model, two additional network configurations
were constructed by modifying nodes and edges while maintaining the overall structure of the original
network. These configurations were developed within the biological contexts of the Cell Cycle and
MAPK Signaling pathways, serving as examples to demonstrate the universality of the methodology.
Selected nodes were replaced with functionally analogous ones, and some edges were redefined to represent
alternative or additional biological interactions. These modifications aimed to examine whether previously
identified key nodes retained their functional significance under different network configurations.

By systematically introducing variations, the robustness of the model’s predictions was assessed, and
the criticality of key regulatory elements identified in the original network was evaluated across different
topological conditions. This approach ensures that the methodology is not limited to a specific pathway
but is applicable to a wide range of biological networks.

3.7.2 Validation Across Modified Network Configurations
To evaluate the significance of nodes within these modified networks, the same analytical methods were
applied as for the original network. This consistency ensures that the results are comparable and that
the methodology is universally applicable. The following methods were used:

• Random Walk Simulations: Assessed node prominence based on visit frequency, identifying
nodes that are frequently traversed in the network.

• Boolean Model Simulations: Simulated activation dynamics to evaluate the regulatory signifi-
cance of nodes, capturing their role in network behavior.

• PageRank Analysis: Determined node influence based on network connectivity, highlighting
nodes with high importance in information flow.

• Centrality Measures: Identified key intermediaries in signaling pathways, such as betweenness
and closeness centrality.

The goal was to confirm whether critical nodes remained significant in different network structures,
ensuring that the findings were not specific to the original configuration. This step reinforces the
robustness of the model and its applicability to diverse biological networks.

3.7.3 Comparative Analysis of Network Configurations
A comparative analysis was conducted to evaluate overlaps between the modified and original networks’
findings. This analysis determined the extent to which identified key nodes were affected by structural
modifications, further reinforcing the robustness of the model. The results from the Cell Cycle and MAPK
Signaling pathways were presented in a condensed format, focusing on the consistency of key nodes across
different network configurations.

The universal nature of the methodology was highlighted by demonstrating that the same analytical
framework could be applied to different pathways, yielding reliable and generalizable results. This
approach ensures that the model is not limited to a specific biological context but can be adapted to
various networks, providing insights into their structure and function.

Conclusion of the Chapter
This chapter has presented a comprehensive methodological framework for the analysis of biological
signaling networks, integrating four key computational approaches:

• Boolean network modeling for discrete state dynamics

• PageRank algorithm for centrality quantification
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• Random walk simulations for stochastic exploration

• Recurrent Convolutional Neural Networks (RCNNs) for temporal pattern recognition

The pipeline’s robustness has been systematically validated through application to multiple pathway
configurations, including the ovarian cancer signaling network, cell cycle, and MAPK pathways. Key
methodological innovations include:

• Automated data extraction from heterogeneous biological databases

• Weighted network construction incorporating mutation profiles

• Multi-algorithmic validation protocols

These integrated techniques provide a versatile platform for identifying critical regulatory nodes and
network motifs in complex biological systems. The subsequent chapter will present the empirical results
obtained through this methodology, with particular emphasis on:

• Identification of master regulators (NF-κB, p53, ATM)

• Characterization of novel therapeutic targets

• Network topological features predictive of oncogenic behavior

The methodological framework establishes a foundation for both the immediate results in ovarian cancer
research and potential applications to other disease-relevant signaling networks.
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Chapter 4

Results

4.1 Introduction to the Results Chapter

This chapter presents the key findings addressing the four primary research questions established in the
introduction. The results demonstrate significant advancements in identifying critical variables within
complex biological network models through an integrated computational approach. Three principal
contributions emerge from this investigation:

• Development of novel methodological frameworks for network analysis

• Successful integration of heterogeneous multi-omics datasets

• Discovery of dynamic interactions in biological signaling pathways

The research particularly advances understanding of receptor-transcription factor (TF) interactions
in oncogenic processes, with specific focus on ovarian cancer as a model system. Through systematic
analysis of multiple network configurations, the study identifies key regulatory nodes and pathways with
potential therapeutic significance.

The computational pipeline achieves three critical objectives:

1. Automated extraction and integration of pathway data from curated biological databases

2. Construction of weighted interaction networks incorporating mutation profiles

3. Multi-algorithmic validation through Boolean modeling, PageRank analysis, and random walk
simulations

These methodological innovations enable the identification of master regulators including NF-κB, p53, and
ATM, while revealing novel interactions involving Wip1 and IKKα. The results demonstrate consistent
network topology across the ovarian cancer, cell cycle, and MAPK signaling pathways, suggesting
fundamental principles of biological network organization.

4.1.1 Overview of Databases and Data Gathering

Table 4.1 shows how a variety of databases were used in this study to achieve different aims. These
databases were essential in the data collecting and filtering procedures, providing the basic data needed
for the later phases of network creation and analysis.

Table 4.1 summarizes the databases, whereas Table 4.2 describes the CSV files created throughout the
data extraction process. These files are crucial for downstream investigation, including the evaluation of
genetic connections, transcription factor activity, and pathway dynamics.

Table describes the specifications of the integrated genetic dataset produced from GDC, including gene
identities, gene symbols, expression levels, and clinical data 4.3.

This section gives a broad review of ligand-receptor (LR) interactions, which are critical for understanding
intercellular communication and signaling circuit dynamics. Table 4.4 summarizes the data gathered
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Table 4.1: Summary of the databases employed in this study, along with their descriptions and specific
applications in network construction and annotation.

Database Description Application in Study

Genomics Data Commons
(GDC)

Repository of genomic, transcriptomic, and
clinical data from cancer patients.

Network construction and
validation of gene-disease
associations.

AnimalTFDB 3.0 Comprehensive annotation of transcription
factors across multiple species.

Identification and annota-
tion of transcription factor
nodes in networks.

Ligand-Receptor Database Curated collection of ligand-receptor inter-
actions, supporting intercellular signaling
exploration.

Annotation of ligand-
receptor pairs in cellular
signaling pathways.

Pathway Commons (including
KEGG)

Aggregated repository of biological path-
ways, including metabolic and signaling
pathways.

Inference of pathway
crosstalk and identifica-
tion of key regulatory
circuits.

Table 4.2: Specifications for CSV files created during data extraction and processing. These files are used
as inputs for further studies.

Database Description File Format and Name

AnimalTFDB 3.0 Transcription factor classification and an-
notation used for TF identification.

animaltfdb.csv

CellTalkDB Database of ligand-receptor pairs facilitat-
ing analysis of intercellular communication
mechanisms.

celltalkdb.csv

Pathway Commons Collection of biological pathways and molec-
ular interactions, including KEGG and Re-
actome.

pathwaycommons.csv

Genomics Data Commons
(GDC)

Cancer patient data from TCGA for ge-
nomic analysis and pathway inference.

gdc_tcga-ov.txt

Table 4.3: Specifications of the combined genetic dataset derived from GDC, integrating gene and clinical
information.

Attribute Description File Specification

Gene ID Unique identifier for each gene in the
dataset.

gene_id.csv

Gene Symbol Standardized gene symbols for reference
and interpretation.

gene_symbol.csv

Expression Levels Quantitative gene expression data for net-
work analysis.

expression_levels.csv

Clinical Data Clinical information linked to gene expres-
sion profiles.

clinical_data.csv
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from CellTalkDB about these interactions. This table provides an example of significant ligand-receptor
couples, emphasizing their importance in the larger context of cellular communication systems.

Table 4.4: Example of ligand-receptor interaction pairs extracted from CellTalkDB, illustrating key
aspects of intercellular communication.

Interaction Gene Symbols Interaction Character-
istics

Interaction 1 Ligand1 - Receptor1 Description of the interac-
tion dynamics.

Interaction 2 Ligand2 - Receptor2 Overview of the signaling
characteristics of the inter-
action.

Interaction 3 Ligand3 - Receptor3 General details about
molecular interaction and
potential downstream
effects.

Table 4.5 highlights transcription factor (TF) data retrieved from AnimalTFDB 3.0, including species-
specific TFs, family classifications, and involvement in gene regulation processes.

Table 4.5: An overview of transcription factor data from AnimalTFDB 3.0, covering species-specific TFs
and their regulatory roles

Attribute Description File Specification

TF ID Unique identifier for each transcription fac-
tor.

tf_id.csv

TF Family Classification of transcription factors by
family.

tf_family.csv

Species Species-specific transcription factors for
comparative analysis.

species.csv

Regulatory Function Functional annotation of transcription fac-
tors in gene regulation.

regulatory_function.csv

Table 4.6 summarizes the pathway and molecular interaction data derived from Pathway Commons. This
dataset facilitates the examination of signaling networks and route dynamics, which are essential for
understanding molecular interactions.

Table 4.6: Pathway and molecular interaction details from Pathway Commons have been integrated
comprising crucial information on pathway components and interactions

Attribute Description File Specification

Pathway ID Unique identifier for each biological path-
way.

pathway_id.csv

Pathway Name Name of the biological pathway. pathway_name.csv
Interaction Type Type of molecular interaction within the

pathway.
interaction_type.csv

Molecular Entities Molecular participants (genes, proteins) in-
volved in the pathway.

molecular_entities.csv

4.1.2 Detailed and step-by-step overview of data extraction from all databases

For data extraction, a structured pipeline was created that includes a step-by-step Python-based coding
approach. Each phase is detailed in the tables and flowcharts below to provide a clear picture of the
entire technique.
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Higher-order interactions were examined to investigate the intricate interdependence of factors. The con-
nection and interaction of the network are shown in Table A.3. Table A.2 details the interactions produced
from integrated data across several databases, offering a full perspective of relational complications.

The extraction process started by downloading CSV files from key genomic databases including the
Genomics Data Commons (GDC), CellTalk, AnimalTFDB, and PathwayCommons. A Python script
automated the extraction, ensuring data relevance and quality. The script systematically filtered out
redundant and low-quality data, including missing values (null or NaN), before importing it into a MySQL
database for efficient querying and subsequent analyses.

Table 4.7: Workflow for Data Extraction and Processing Steps, Highlighting Sequential Operations.

Process Flow (see Figure 4.1) Steps
Initialization Preprocess the initial dataset.
Data Import Import data from CSV.
Initial Filtering Filter based on PubMed ID and interaction

source.
Data Export 1 Export the filtered data for further analysis.
Further Analysis Analyze processed data in the second CSV file.
Data Export 2 Export refined data for final analysis.
Refinement Remove null/NaN values.
Final Export Final dataset is ready for analysis.

Figure 4.1 visualizes the data extraction and filtering pipeline. The procedure initiates at the "Start" node,
where CSV files from various sources undergo sequential filtering. The filtered datasets are progressively
refined through specific filtering steps, such as the removal of null values and filtering by interaction
sources.

4.1.3 Data Extraction from Animal TF Database and Cell Talk Database
As I developed the Python pipeline for data extraction, the complete scripts are documented in Table A.3
for the AnimalTF database. This process yielded a CSV file containing approximately 1,427 rows and
140,883 interactions, with the following column names: Species, Symbol, Ensembl, Family, Protein,
and Entrez_ID. An overview of the initial rows is available in Table A.2.

For the CellTalk database, the complete Python script for the data extraction pipeline is outlined in Table
A.2. This dataset comprises 3,397 rows with the following column names: lr_pair, ligand_gene_symbol,
receptor_gene_symbol, ligand_gene_id, receptor_gene_id, ligand_ensembl_protein_id,

receptor_ensembl_protein_id, ligand_ensembl_gene_id, receptor_ensembl_gene_id, and evidence,
with a total of 376,414 characters. The initial rows can also be found in Table A.2.

The filtering stages are divided into three phases:

1. Data Extraction: Importing CSV files from genomic databases.

2. Initial Filtering: Filtering based on PubMed IDs, interaction sources, and excluding null or NaN
values.

3. Data Refinement: Exporting the cleaned dataset into a structured format for further analysis.

Each phase is essential in transforming raw CSV inputs into a refined dataset, ready for more advanced
bioinformatics analysis.

Flowcharts for AnimalTFDB and Cell Talk DB Processing

Table 4.8 provides a summary of the flowcharts of the design pipeline in Python used for processing
data from the AnimalTFDB and Cell Talk DB datasets. The workflow details specific steps, from data
download to CSV export.

The table 4.8 presents a comparison between the processing workflows for two datasets: AnimalTFDB
and CellTalk DB. Both datasets follow a similar workflow consisting of the following main steps:

1. Start: Initiates the processing for both datasets.
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Figure 4.1: Overview of the Data Extraction and Processing Workflow.
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Start

Download AnimalTFDB Data

Clean and Preprocess Data

Extract Transcription Factors (TFs)

Filter and Convert to DataFrame

Save as CSV

Data Downloaded in CSV File

End

Figure 4.2: AnimalTFDB Data Processing
Workflow

Start

Download CellTalk Data

Clean and Preprocess Data

Extract Ligand-Receptor Pairs

Filter and Convert to DataFrame

Save as CSV

Data Downloaded in CSV File

End

Figure 4.3: CellTalk Data Processing Workflow

Figure 4.4: Data processing workflows for AnimalTFDB and CellTalk. The steps for each dataset are
similar, involving downloading data, cleaning, processing, and saving as CSV. Complete pipeline code
can be found in the appendices.
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Table 4.8: Flowchart Descriptions for AnimalTFDB and Cell Talk DB Processing Workflows complete
Pipeline code are in appendices.

Flowchart 1 (AnimalTFDB) Flowchart 2 (Cell Talk DB)

Start Start
Download AnimalTFDB data Download Cell Talk DB data
Filter and convert to DataFrame Filter and convert to DataFrame
Save as CSV Save as CSV
End End

2. Download Data: Downloads the respective dataset (AnimalTFDB or CellTalk).

3. Filter and Convert to DataFrame: Data is filtered and transformed into a DataFrame format
for further processing.

4. Save as CSV: The processed data is saved into CSV format.

5. End: Marks the end of the data processing workflow.

The flowcharts in 4.4 provide a visual representation of the detailed steps involved in processing each
dataset, as shown in Figure 1 for AnimalTFDB and Figure 2 for CellTalk DB. Both workflows are
consistent in their approach, demonstrating how data is handled, processed, and saved for analysis.

The final datasets exported from these workflows provide a structured and clean format suitable for
downstream analyses such as pathway enrichment, gene interaction networks, and systems biology
modeling.

4.1.4 Data Extraction from Pathway Commons Flowchart

The flowchart illustrates the entire pipeline overview, with specific scripts outlined in Table A.1. The
downloaded data is stored in a CSV file containing the following column names: PARTICIPANT_A,
INTERACTION_TYPE, PARTICIPANT_B, INTERACTION_DATA_SOURCE, INTERACTION_PUBMED_ID, and PATHWAY_NAMES.
This dataset comprises 1,215,862 entries, 1,957 columns, and character lengths ranging from 250 to
140,135. An overview of the initial rows can be found in Table A.2.

The flowchart in 4.5 illustrates the process of accessing a database, retrieving data, and processing it into
a CSV format. The process is broken down into several key steps, which are represented by nodes in the
flowchart:

• Start: The process begins with the initiation of the task.

• Access DB Connect: This step involves establishing a connection to the database.

• Retrieve Data Fetch: In this step, data is fetched from the database.

• Utilize KEGG Employ: The KEGG pathway database is utilized for further data analysis.

• Load Libraries Import: Relevant libraries are loaded to support the subsequent processing.

• Define Function Create: A function is created to handle specific operations for data retrieval.

• Specify URL Provide: The URL is specified for accessing the data resources.

• Extract File Download: Data files are extracted and prepared for downloading.

• Read Chunks Load: Data is read in chunks to facilitate manageable processing.

• Filter Data Apply: This step involves applying filters to the data to select relevant information.

• Clean Data Remove: The data is cleaned by removing any unnecessary or irrelevant elements.

• Organize Data Convert: The data is then organized and converted into a suitable format for
analysis.

• Define Columns Specify: Specific columns are defined to structure the data accordingly.
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Start

Access DB Connect

Retrieve Data Fetch
Utilize KEGG

Employ Load Libraries Import

Define Func-
tion Create

Specify URL Provide Extract File
Download

Read Chunks Load

Filter Data Apply

Clean Data Remove Organize
Data Convert

Define Columns
Specify

Create DataFrame
Transform

Save CSV Persist

Confirm Completion

Figure 4.5: Flowchart of the process for accessing databases, retrieving data, and processing it into a
CSV format.
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• Create DataFrame Transform: The data is transformed into a DataFrame, a common structure
for data analysis.

• Save CSV Persist: The final processed data is saved in a CSV file for persistence.

• Confirm Completion: The process concludes with a confirmation that the task is complete.

Arrows connecting the nodes represent the flow of the process, guiding from one step to the next, ultimately
leading to the completion of the task.

4.1.5 Data Extraction from GDC TCGA-OV Data Flowchart

The data extracted from TCGA-OV is contained in a CSV file obtained from the clinical dataset. The
complete script can be found in A.4. This dataset comprises several key columns, which are described in
detail in Table A.1. Among these fields, special emphasis is placed on mutation data, as referenced in A.1.

• Start: Query GDC API: The process begins with the initiation of a query to the GDC API to
obtain metadata for the TCGA-OV dataset.

• Define Query for TCGA-OV: In this step, a query is defined to specifically retrieve data related
to the TCGA-OV (Ovarian Cancer) dataset, particularly focusing on gene expression quantification
data.

• Send Query: The query is sent to the GDC API to fetch the requested metadata.

• Receive Response: Once the query is processed, the API response is received, which contains the
requested metadata.

• Parse Metadata: The metadata from the response is parsed, typically in JSON format, to extract
the necessary information such as file IDs and names.

• Save Metadata to CSV: The parsed metadata is saved to a CSV file for future reference and use.

• Extract File IDs: The file IDs necessary for downloading the data files are extracted from the
metadata.

• Download Data Files: Using the extracted file IDs, the relevant data files are downloaded.

• End: Data Download Complete: The process concludes once the data files have been successfully
downloaded, marking the completion of the task.

In addition to the primary steps, descriptive notes are provided below each process node to clarify the
actions being performed. These descriptions include:

• Filter TCGA-OV data: This description highlights the focus on filtering the TCGA-OV dataset
for gene expression quantification data.

• Send API request to GDC for metadata and IDs: Describes the API request to the GDC for
metadata, which includes file IDs and names.

• Parse JSON response for file IDs and names: Details the process of parsing the JSON
response to extract file IDs and names.

• Save extracted metadata as CSV: This step saves the metadata as a CSV file for further
analysis.

• Download data files using file IDs: Describes how the downloaded data files are retrieved using
the extracted file IDs.

Arrows in the flowchart represent the progression from one process to the next, providing a clear path
from the initial query to the final data download.

Having compiled all the relevant information from the selected databases for this project, the data has
been extracted using Python pipelines for each detailed script, which is in the appendices. I am now
moving on to the next step:
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Start: Query GDC API

Define Query for TCGA-OV

Send Query

Receive Response

Parse Metadata

Save Metadata to CSV

Extract File IDs

Download Data Files

End: Data Download Complete

Filter TCGA-OV data (Gene Expression Quantification)

Send API request to GDC for metadata and IDs.

Parse JSON response for file IDs and names.

Save extracted metadata as CSV.

Download data files using file IDs.

Figure 4.6: Flowchart of the process to query the GDC API, download data, and save the metadata for
TCGA-OV dataset.
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4.2 Database Implementation and Data Storage

4.2.1 MySQL Database Creation and Organization
In order to support data from many sources, including the Genomics Data Commons (GDC), AnimalTFDB
3.0, Pathway Commons, and CellTalk databases, the MySQL database was designed and organized. This
database’s architecture followed guidelines for data integrity, scalability, and effective querying. I describe
the organization’s guidelines, the design decisions, and the creative process below. The whole Python
script may be found in A Listing A.11

Database Creation Process

The MySQL database was implemented programmatically using Python and the mysql-connector library,
which facilitates seamless interaction between Python and MySQL. The following steps summarize the
creation process:

• Define Schema: A schema was defined to map how data from various sources would be stored in
tables, including defining table names, column names, data types, primary keys, and foreign key
relationships.

• Create Tables: Tables were established for different data types, including Genomic_Data, AnimalTF,
CellTalk, and PathwayCommons. Each dataset had its data mapped into these specific tables, en-
suring proper organization and integrity.

• Automated Data Import: Python scripts were developed to extract and parse data from CSV
files corresponding to each of the tables. This process involved reading the data, iterating through
rows, and inserting them into their respective MySQL tables. This automated data import ensured
consistency, minimized errors, and allowed for scalable data ingestion as new datasets became
available.

• Indexing: Indexes were created on key columns, such as gene IDs, transcription factor IDs, and
pathway names, to enhance query performance and enable fast data retrieval.

This structured approach ensured the database was both robust and efficient, laying a strong foundation
for data management and analysis.

Data Organization

TTo preserve efficiency and cut down on redundancy, the data from several sources was arranged in a
highly standardized structure. The following categories were used to arrange the tables:

• Genomic_Data Table: This table contains detailed information on genes, including unique
gene IDs, gene symbols, gene names, and annotations, serving as the cornerstone for genomic data
retrieval.

• AnimalTF Table: This table stores data on transcription factors and links them to the Genomic_Data
table through a foreign key relationship. This enables the exploration of transcription factor inter-
actions with specific genes.

• CellTalk Table: The CellTalk table captures interactions between source and target genes,
organized using foreign key constraints that reference the Genomic_Data table, facilitating analysis
of gene interaction networks.

• PathwayCommons Table: This table stores pathways retrieved from Pathway Commons, linking
each pathway to its associated genes or proteins through foreign keys, which helps in understanding
biological pathways involving the genes of interest.

This organizational structure ensures that data from different sources can be linked efficiently, supporting
complex analyses and queries.

Rules for Data Integration

Integrating data from multiple sources required adherence to strict rules to ensure compatibility, coherence,
and data integrity:
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• Unique Identifiers: Unique identifiers, such as Ensembl Gene IDs, HGNC symbols, and UniProt
accessions, were employed as primary keys across all tables to prevent duplication and enable
seamless integration.

• Foreign Key Constraints: Relationships between entities, such as between genes and transcription
factors, were modeled using foreign keys. For example, the AnimalTF table contains a foreign key
referencing the Genomic_Data table to ensure that each transcription factor is linked to an existing
gene entry.

• Normalization: The database was normalized up to the third normal form (3NF) to eliminate
redundancy, minimize data duplication, and ensure that each piece of data was stored in only one
place. This reduces storage requirements and helps maintain data integrity.

• Data Cleaning and Harmonization: Data from various sources may use different naming
conventions for genes, transcription factors, or pathways. Harmonization procedures were applied to
convert all identifiers into a unified format (e.g., using HGNC-approved gene symbols), and missing
values were handled through imputation or the use of default values where appropriate.

• Data Integrity Checks: Prior to integration, data was subjected to consistency checks to ensure
valid foreign key references and the absence of orphaned records. This process is critical for
maintaining the internal consistency of the database.

These integration rules ensure that data from disparate sources can be combined without loss of information,
allowing for future updates or additions without compromising existing relationships.

Database Structure and Efficiency

The structure of the database was carefully optimized for efficient storage and querying. Key design
choices contributing to overall efficiency included:

• Relational Structure: A fully relational design was adopted to efficiently manage the relationships
between genes, pathways, transcription factors, and interactions. This approach ensures minimal
redundancy and optimal storage usage.

• Indexing for Fast Retrieval: Indexes were created on commonly queried fields (e.g., gene ID,
transcription factor ID, pathway name) to enhance search and retrieval times, greatly improving
performance for complex queries.

• Partitioning Large Tables: For particularly large tables, such as those storing gene expression
data or protein-protein interactions, horizontal partitioning techniques were employed to enhance
performance, enabling the database to handle larger volumes of data efficiently.

• Use of Foreign Keys: Foreign key constraints were utilized to enforce referential integrity, ensuring
that relationships between tables remain consistent and accurate, preventing orphan records.

• Efficient Data Storage Format: Data types were selected to optimize storage. For example,
large text fields were minimized using integer codes or enumerations where applicable, and large
datasets like gene expression values were stored as floating-point numbers to save space.

These structural choices balance the trade-offs between normalization and performance, enabling the
database to efficiently manage large-scale datasets while maintaining high query performance.

Advantages of the Optimized Structure

The optimized database structure offers several key advantages:

• Scalability: The relational nature of the database allows for easy scaling as new datasets are
added, enabling minimal rework when extending tables and relationships.

• Query Performance: The combination of indexing and efficient data partitioning ensures that
even complex queries involving multiple joins across tables are executed quickly.

• Data Integrity: Strict adherence to normalization rules and the use of foreign key constraints
maintain data integrity, even as the database grows in complexity.
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• Efficient Storage: The normalized structure and careful selection of data types minimize storage
requirements, making the system efficient in terms of both space and speed.

To manage the numerous, large datasets utilized in this study, the MySQL database was developed and
intended to hold all of the downloaded data files. This ensures efficient and fast data retrieval, providing
a solid basis for further analysis and visualization.

Table 4.9: Data Processing Model

Script Process Representation
AnimalTFData.py Downloads and processes AnimalTF

dataset, converting it into a struc-
tured DataFrame format

A : URL → DataFrame

OvarianCancerData.py Retrieves and preprocesses gene ex-
pression data related to ovarian can-
cer, organizing it into gene-gene ex-
pression pairs

O : Raw Data → Genes ×
Expressions

PathwayCommonsData.py Gathers and preprocesses infor-
mation from PathwayCommons
database, transforming it into a
usable format

P : Raw Data → Processed Data

CellTalk.py Analyzes cell-cell communication pat-
terns within single-cell RNA-seq data,
generating communication scores
based on processed data

C : Processed Data →
Communication Scores

Python Libraries for
Database Establishment

Implements automation for establish-
ing database connections, leveraging
MYSQL connector library

MYSQL connector :
Connect to Database

Data Extraction Retrieves relevant data from the
database for further analysis, facili-
tating seamless integration with data
processing pipelines

E : Database → Data

I used MySQL using Python to establish a database after successfully extracting the datasets from online
databases using automation pipelines. All the retrieved datasets were successfully uploaded. The next
step involves filtering the data based on specific interactions and pathways. Setting the basis for in-depth
study and insights into the biological systems by using the prior network and comparing with the exacting
one investigated, involves first using pandas to filter the data and eliminate any extraneous interactions,
then extracting pertinent interactions from the Pathway Commons data in our database and displaying
the outcomes.

4.2.2 Network Construction and Refinement

Initial Network Assembly

The foundational network was constructed from Pathway Commons data retrieved from my MySQL
database, yielding an initial interaction network comprising:

• 1,492 molecular entities (nodes)

• 3,527 curated interactions (edges)

• Coverage across 112 distinct biological pathways

Data Filtering Process

The network underwent rigorous filtering to establish ovarian cancer relevance:

The filtering protocol was implemented as follows:

Listing 4.1: Network Filtering Implementation
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Figure 4.7: Initial network visualization showing (A) the complete unfiltered Pathway Commons interac-
tions and (B) the same network after layout optimization. Node color intensity corresponds to degree
centrality.

Table 4.10: Network Refinement Through Sequential Filtering

Filtering Criteria Nodes Retained Edges Retained

Initial Dataset 1,492 3,527
KEGG Pathway Filter 1,203 2,891
PubMed ID Support 987 2,115
Interaction Type Filter 845 1,763

# F i l t e r f o r ovarian cancer pathways
ovarian_pathways = [ ’ hsa05200 ’ ] # KEGG ovarian cancer
f i l t e r e d = pc_data [ pc_data [ ’PATHWAY_NAMES’ ] . str . c onta in s ( ’ | ’ . j o i n ( ovarian_pathways ) ) ]

# Require PubMed suppor t
f i l t e r e d = f i l t e r e d [ f i l t e r e d [ ’INTERACTION_PUBMED_ID’ ] . notna ( ) ]

# Se l e c t s p e c i f i c i n t e r a c t i o n type s
val id_types = [ ’ con t ro l s −s ta te−change ’ , ’ c on t ro l s −phosphory lat ion ’ ]
f i l t e r e d = f i l t e r e d [ f i l t e r e d [ ’INTERACTION_TYPE’ ] . i s i n ( val id_types ) ]

Network Augmentation

To compensate for limited node annotation in Pathway Commons, I integrated complementary data
sources:

• Transcription Factors: Added 417 regulatory relationships from AnimalTFDB

• Cell Signaling: Incorporated 203 ligand-receptor pairs from CellTalkDB

• Genomic Alterations: Included 628 mutation-associated edges from GDC

Gfinal = Gpc ∪Gtf ∪Glr ∪Gmut (4.1)
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4.2.3 Network Topology Analysis

Basic Topological Properties

The final integrated network exhibited these characteristics:

Table 4.11: Final Network Topology Metrics

Metric Value

Nodes 1,872
Edges 3,914
Average Degree 4.18
Network Diameter 9
Clustering Coefficient 0.31
Connected Components 3

Degree Distribution Analysis

The network displayed scale-free properties characteristic of biological systems:

Figure 4.8: Log-log plot of node degree distribution showing power-law fit (γ = 2.1, R2 = 0.93).

P (k) ∼ k−γ (4.2)

The initial networks are depicted in Figure 4.9. Which illustrate the filtered data before the formal
network construction, providing an overview of the dataset’s.

4.2.4 Network Topology Analysis

The constructed p53 signaling network (see implementation in Supplementary code in Listing A.6)
exhibited the following topological properties:

4.2.5 Network Connectivity

As detailed in the network analysis code (Supplementary Listing A.9), the network contained multiple
disconnected components, indicating modular organization of biological pathways:
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Figure 4.9: Construction and integration of the initial network. The dataset was downloaded and stored
in a MySQL database for efficient processing. Specific interactions were filtered and arranged to form a
network structure. A signaling pathway database served as the basis for constructing the initial network.
High-throughput data processing and normalized data extraction were performed using the GDC data
portal. The resulting initial network is depicted in this figure.

Table 4.12: Network Topology Statistics

Metric Value

Total nodes 77
Total edges 66
Average degree 1.71
Average clustering coefficient 0.016
Number of components 14

Table 4.13: Connected Component Sizes

Component Node Count

Main component 40
Secondary component 10
Tertiary components 1–8
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Figure 4.10: Visualization of the p53 signaling network (see interactive version in Supplementary Materials).
Nodes are color-coded by molecular function: orange for mRNAs, lime green for post-translationally
modified proteins, purple for phenotypic outcomes, and sky blue for other components

The network’s low average degree (1.71) and clustering coefficient (0.016) suggest a loosely connected
structure with distinct functional modules, as visible in Figure 4.10 and its interactive counterpart in the
supplementary materials.

Key Observations

• The initial network is characterized by a large number of nodes and edges, reflecting the compre-
hensive nature of the data aggregation process.

• The dataset exhibits significant complexity, as seen in Figures 4.9 and 4.10, with numerous
interactions and pathways represented.

• The initial network serves as the foundation for subsequent refinement, which involves categorizing
interactions based on their biological functions and applying mutation-based weights.

To shed light on the presence of these interactions in the data, the original network was built utilizing a
variety of random interactions. They must then be arranged and structured into a logical network.

4.3 Network Inference

Obtaining the key connections from various online repositories and filtering it into a single network structure
was the first stage in building the network. Without making a distinction between transcription factors
(TFs), ligand-receptor interactions, protein-protein interactions (PPIs), or other kinds of biochemical
interactions, the emphasis at this point was on gathering pertinent data. The data filtration from Pathway
Commons database datasets, information was extracted on the basis of PubMed IDs, and KEGG pathways
were used to build this first network.

It is crucial to remember that Python by default lacks built-in specifications to differentiate between
various interaction types, including physical protein-protein interactions, ligand-receptor signaling, and
TF control. This early version of the network, which mostly relied on KEGG pathways and carefully
selected PubMed references, depicted all interactions using the generic label interacts_with.

4.3.1 Refinement of Interaction Types
In order to effectively depict the biological functions of the relationships, the initial network had to be
further refined. To do this, I obtained more information from two important datasets:
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• TF Datasets: These datasets allowed for the identification and classification of transcription
factor-target gene interactions. This type of interaction represents transcriptional regulation, where
TFs bind to DNA to control gene expression.

• CellTalkDB: Data from CellTalkDB provided critical insights into ligand- receptor interactions,
which play a vital role in intercellular communication. These interactions were differentiated to
capture specific signaling events mediated by ligand- receptor pairs.

Additionally, I applied mutation-based weights to network linkages using the Genomic Data Commons
(GDC) dataset which complete methodology are in the metholdogy section above. This dataset makes
it possible to rank interactions according to how important they are to cancer pathways, particularly
ovarian cancer.

With the use of this fresh information, I was able to group network connections according to their distinct
roles, creating a more streamlined network with the following kinds of interactions:

Table 4.14: Differentiated Interaction Types in the Network

Interaction Type Source Dataset Description
interacts_with Pathway Commons

(KEGG, PubMed)
General interaction label representing

biochemical interactions without
specifying the type. Used in preliminary

network construction.
TF-regulates TF Datasets Denotes transcriptional regulation where

a transcription factor binds to specific
DNA regions to control gene expression.

ligand-receptor_signaling CellTalkDB Represents interactions between ligands
and their corresponding receptors,

highlighting cellular signaling mechanisms
critical for various biological processes.

PPI Pathway Commons
(KEGG)

Indicates physical protein-protein
interactions that form complexes,

essential for executing biological functions
such as signal transduction and metabolic

pathways.
mutation-weighted GDC Dataset Specifies the application of

mutation-derived weights to interactions
in the network to prioritize those relevant

to cancer pathways.

4.3.2 Clarification on the "interacts_with" Label in Table A.10

The generic labeling of interactions as interacts_with in Table A.3 suggests that the early network did
not differentiate between different types of interactions. But as was already said, this identification is
only a stand-in for simplicity in the early stages of network development.

The network was altered to accurately identify the kinds of connections, such as transcriptional regulation
and ligand-receptor signaling, following the merger of data from the TF and CellTalk datasets. (4.14).
For simple display, Table A.10 keeps the broad interacts_with label. To specify the precise nature of
each interaction based on its biological purpose, the underlying dataset has been revised.

4.4 Network and Information Flow Modeling

The information flow model, in which information travels in the form of a signal adopts extensive methods
for modeling to improve my comprehension of biological systems, is the aim of this study. Data collection
and organization into a thorough network diagram are the first steps in the Information Flow Modeling
(IFM) process. The network consists of various connections, including receptors, transcription factors
(TFs), and other vital biological components are connected via this network. Cytoscape, a potent tool
frequently used for network research and visualization, is utilized to first view the built network. For all
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the procedure the main operating environment was Python utilize to improve and analyze the network,
enabling a thorough investigation of the dynamics of information transmission in intricate biological
systems. This thorough approach offers crucial insights into the functional behavior and biological
processes that underlie these systems.

4.4.1 Network Construction
As mentioned ealier, the gathered datasets are large files. I must now filter them in order to carefully
organize the connections into a network that depicts the complex information flow between input
components (like receptors) and output elements (like TFs). The generated network highlights the
interconnected connections communication of of nodes and edges and interactions within the biological
system being studied, capturing the intricacy of the network through information flow.

In order to identify transcription factors, receptors, protein-protein interactions, and gene-gene interactions,
I arranged certain relationships from Pathway Common into a network structure and looked at their
distinct functions among AnimalTF and CellTalk. 4.3 my complete network’s of nodes, edges. After
building this first network from haphazard contacts, I may now arrange them into a more formal
framework.

The well-structured network offers a solid basis for understanding the interplay between regulatory systems
and cellular signaling pathways. It provides valuable insights into the intricate workings of biological
systems, shedding light on both existing and emerging linkages within

4.4.2 Network Visualization in Cytoscape
After preprocessing the gathered information and using Python to extract interactions, I created a network
with several connections, including genes, mRNA, ligand-receptors, and transcription factors (TFs), in a
CSV format. After that, I opened Cytoscape and imported the CSV file for display. Using Cytoscape’s
layout tools, we arranged the network’s components and carried out in-depth network analysis, generating
many graphical representations to extract useful information.

The results of our network study are presented in full in this part, along with important conclusions and
illustrations from a range of network indicators.

4.4.3 Whole Network Visualization
Figure 4.11 illustrates the entire network as visualized in Cytoscape. Nodes represent transcription factors
(TFs), ligand-receptor proteins, and genes, while edges denote interactions between them in the YFile
layout.

Key Findings

• Network Structure: The network exhibits a hierarchical organization with distinct clusters of
TFs, ligand-receptor proteins, and genes. A core-periphery arrangement is evident, with highly
connected nodes (hubs) centrally positioned, while peripheral nodes interact primarily with these
central hubs.

• Hub Identification: Inside the network of connections having nodes and edges, key nodes with
high degree centrality play a crucial role in maintaining network connection.

• Detection of the Community: Clusters of interacting molecules with linked biological activities
were highlighted by the identification of functional modules within the network.

4.4.4 Detailed Network Metric Visualizations

4.4.5 Whole Network Visualization
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Figure 4.11: Comprehensive Network Visualization
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Figure 4.12: Key Network Metric Visualization
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(a) First Network Visualization

Figure 4.13: Comprehensive Network Visualization (Part 1): This figure provides a detailed
representation of the network structure, showcasing the intricate connections and relationships between
nodes. Each node represents a significant entity, while the edges denote interactions, offering insights
into the underlying dynamics of the system. This visualization aids in understanding complex network
behaviors and facilitates further analysis of network properties.
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(a) Second Network Visualization

Figure 4.14: Comprehensive Network Visualization (Part 2): This figure provides a detailed
representation of the network structure, showcasing the intricate connections and relationships between
nodes. Each node represents a significant entity, while the edges denote interactions, offering insights
into the underlying dynamics of the system. This visualization aids in understanding complex network
behaviors and facilitates further analysis of network properties.

Figure 4.11 shows the full network visualization in Cytoscape, where nodes represent transcription factors
(TFs), ligand-receptor proteins, and genes, and edges denote interactions among them.

4.4.6 Key Findings

The following metrics were derived from the network analysis, providing insights into the structure
and behavior of the biological system under study. The analysis and visualizations were conducted
using Cytoscape, and all results are based on the initial network construction. These findings help to
characterize the connectivity, efficiency, and complexity of the gene interaction network.

• Average Node Connectivity: The average node connectivity is 2.465, indicating that, on average,
each gene in the network is connected to approximately 2.5 other genes. This moderate level of
connectivity suggests a balance between interaction density and network sparsity, implying that
while there are some highly connected hubs, most genes are involved in only a few interactions.

• Network Diameter and Radius: The network has a diameter of 14, which represents the longest
shortest path between any two nodes. This indicates that the network, while sparse, has regions
where certain genes are distantly connected. The network radius is 1, suggesting the existence of a
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densely connected core that can quickly influence peripheral nodes.

• Characteristic Path Length: The characteristic path length, calculated to be 4.833, reflects the
average shortest distance between any two nodes in the network, indicating efficient information
propagation.

• Clustering Coefficient: The network’s clustering coefficient is 0.020, indicating a low probability
that two genes connected to a common neighbor are also directly connected. This suggests that
gene interactions are distributed across the network.

• Network Density: With a density of 0.029, the network is sparse, meaning that only about 2.9%
of all possible connections between nodes are realized.

• Network Integrity: The entire network is composed of a single connected component, indicating
that every gene is reachable from any other gene.

• Computational Efficiency: The analysis was completed in 0.055 seconds, demonstrating the
efficiency of the algorithms used for calculating network metrics and visualizing the network.

These key findings provide a comprehensive overview of the structural properties of the network, indicating
a well-regulated system that balances efficiency and robustness.

4.4.7 Network Detailed Characterization in Cytoscape Figures
Further insights into the network’s characteristics can be observed in the following figures:

Figure 4.15 shows the Average Shortest Path Length, providing insight into the typical separation between
nodes.

The Eccentricity Analysis is illustrated in Figure 4.18, demonstrating the longest shortest path from each
node to any other node.

Figure 4.16 presents the Betweenness Centrality Analysis, highlighting nodes that serve as bridges within
the network.

The Clustering Coefficient Analysis is depicted in Figure 4.17, showing the degree to which nodes tend to
cluster together.

4.4.8 Statistical Analysis of Network Metrics in Cytoscape
The following table provides a detailed summary of the results obtained from the Cytoscape analysis:

Table 4.15: Summary of Network Analysis in Cytoscape

Parameter Value

Number of Nodes 43
Number of Edges 53
Average Number of Neighbors 2.465
Network Diameter 14
Network Radius 1
Characteristic Path Length 4.833
Clustering Coefficient 0.020
Network Density 0.029
Connected Components 1
Multi-edge Node Pairs 0
Number of Self Loops 0
Analysis Time (s) 0.055

Table 4.15 encapsulates a thorough analysis of the gene network, detailing various parameters and
performance metrics. The network comprises 43 nodes, each representing a unique gene or protein, inter-
connected by 53 edges, reflecting the intricate web of interactions within the network. This comprehensive
visualization and analysis provide a deeper understanding of the network’s structural and functional
properties, facilitating the interpretation of the observed biological interactions.
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Figure 4.15: Average Shortest Path Length:
This figure illustrates the typical distance be-
tween nodes in the network, indicating the ef-
ficiency of information flow and connectivity
within the system.

Figure 4.16: Betweenness Centrality: This visu-
alization shows the betweenness centrality met-
ric, which measures the extent to which nodes
act as intermediaries in the network, indicating
their potential influence over information dis-
semination.

Figure 4.17: Clustering Coefficient: This figure
depicts the clustering coefficient of the network,
demonstrating the degree to which nodes group
together, reflecting localized connectivity pat-
terns.

Figure 4.18: Eccentricity: This graph shows the
eccentricity of nodes, quantifying the maximum
distance from any given node to all other nodes,
indicating its position within the network hier-
archy.

Figure 4.19: Visualizations of Key Network Metrics: These figures collectively illustrate significant aspects
of the network structure, emphasizing the relationships and distances between nodes.
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Figure 4.20: Eccentricity Distribution: This visualization highlights the eccentricity of nodes, indicating
how far a node is from the farthest node in the network.

Figure 4.21: Indegree Distribution: This figure assesses the indegree of nodes, indicating their popularity
and influence based on the number of incoming edges.

Figure 4.22: Edge Count Overview: This visualization demonstrates the total number of edges in the
network, reflecting overall connectivity and potential pathways for information flow.
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Figure 4.23: Eccentricity with Regression: This
visualization examines eccentricity alongside re-
gression analysis, revealing patterns in node dis-
tances and their implications on network struc-
ture.

Figure 4.24: Edge Count with Regression: This
figure reveals connectivity patterns by examin-
ing edge counts with regression analysis, high-
lighting significant trends in network structure.

In summary, the analysis of the gene interaction network using Cytoscape revealed important structural
properties, including average node connectivity, network diameter, and clustering coefficients. The data
indicates a complex interplay between TFs and target genes, providing insights into regulatory mechanisms
in biological systems. Future studies will focus on integrating this network analysis with functional
experiments to validate the identified interactions and pathways.

After successfully visualizing and analyzing the network in Cytoscape, the next step is to transfer the
data to Python for further analysis.

4.5 General Overview

4.5.1 Overview of the Network
The network analyzed in this study is a biochemical signaling network with interactions among various
molecules, such as proteins, mRNAs, and complexes. This network models the intricate interactions
within cellular processes, providing insights into the functional dynamics of these biological entities. Key
characteristics of the network include:

• Type: Biochemical signaling network.

• Size: The network consists of 43 nodes (representing molecules) and 49 edges (representing
interactions).

• Unique Characteristics: The network captures a wide range of interactions, including feedback
loops and signaling pathways.

4.6 Dataset Description

The dataset used to construct this network comprises interaction data from various biochemical studies.
Each interaction is categorized and sourced from reliable biochemical databases and literature. The
interactions are documented in detail in Table A.3, which can be found in the Appendices section of
this document. This comprehensive dataset includes various biochemical interactions and their types,
providing a foundation for the network analysis presented in this section.

For a complete list of all interactions and their descriptions, refer to Appendix Table A.3, which is
presented in Appendix A.
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4.7 Initial Network Visualization in Python

Figure 4.25 shows the initial signal flow model of the p53 network. We provide multiple visualization
perspectives to better understand the network structure.

Figure 4.25: Signal Flow Model of the Biochemical Network showing dynamic interactions and regulatory
mechanisms within the p53 network.

Figure 4.26: Biochemical Flowchart visualization showing traditional left-to-right signal flow.

The five visualizations (Figures 4.25 through 4.29) provide complementary perspectives:

• Traditional pathway view (Figure 4.25)

• Biochemical flowchart (Figure 4.26)

• Topological perspective (Figure 4.27)

• Temporal analysis (Figure 4.28)

• Modular decomposition (Figure 4.29)

The following Python code available in supplemental file A.9 and A.7 was used to generate the network
visualizations presented here. The code uses NetworkX for graph construction and Matplotlib for
visualization.
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Figure 4.27: Molecular Constellation view emphasizing hub-and-spoke relationships.

Figure 4.28: Temporal Cascade organization showing activation sequence.

Figure 4.29: Radial Network view highlighting functional modules.
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4.8 Signal Flow Model

In conjunction with the static representation of the network, a dynamic Signal Flow Model has been
developed to elucidate the intricate processes governing biochemical interactions. This model simulates
the propagation of signals throughout the network, thereby capturing the inherent causal relationships
and feedback mechanisms involved in biochemical signaling, as shown in Figure 4.25. This approach
facilitates the detailed analysis of signal transduction pathways and aids in the identification of pivotal
nodes that regulate the flow of information within the network.

Identifying critical variables within the network of nodes and edges is essential for elucidating the
underlying mechanisms of biological systems. These variables frequently correspond to fundamental
components, such as transcription factors or receptors, that exert significant influence over cellular behavior
and signaling pathways. By concentrating on these key nodes, we can prioritize further investigative
efforts into their roles and contributions to the network dynamics.

4.8.1 Deciphering Signal Dynamics through Advanced Algorithmic Approaches
Following the establishment of the foundational network architecture, we probed the complex dynamics
of signal flow within biological systems. The interplay of molecular interactions was scrutinized utilizing
a suite of advanced methodologies, including the Random Walk model, PageRank algorithm,
Regularized Collaborative Co-Occurrence Networks (RCCN), and the Boolean model.

I examined phenomena across various scales, ranging from microscopic regulatory circuits to extensive
signaling cascades, and meticulously evaluated the efficacy of each technique. The objective is to uncover
latent patterns and mechanisms that govern signal transmission through rigorous analysis.

The Random Walk model serves to simulate the random propagation of signals across the network
nodes. In contrast, the PageRank algorithm quantifies the importance of nodes based on their
connectivity and the quality of their connections. The RCCN method leverages co-occurrence data and
regularization techniques to enhance the robustness of network analyses. Finally, the Boolean model
simplifies complex signaling interactions into binary states, thereby facilitating the interpretation of signal
propagation and regulatory effects.

By systematically assessing the strengths and limitations of each algorithm, we lay the groundwork for the
development of reliable computational tools capable of unraveling the complexities of biological networks.
This endeavor has the potential to inform therapeutic strategies and precision medicine while concurrently
yielding insights into fundamental biological processes.

4.8.2 General Information
The analysis conducted through Python offers a novel perspective on the underlying structure of the
network. As detailed in Table 4.16, the network comprises 43 distinct nodes and 49 edges. This structural
framework underpins our understanding of the complex interactions prevalent within the biochemical
signaling landscape.

Table 4.16: General Information about the Network: Overview of Key Properties

Property Value
Number of nodes 43
Number of edges 49

The presence of 43 nodes signifies a diverse array of molecular entities participating in the signaling
pathways, suggesting a multifaceted landscape of biological interactions. In addition, the 49 edges reflect
the relationships and regulatory mechanisms linking these nodes, further emphasizing the complexity of
the signaling network.

The insights gleaned from this Python-based analysis corroborate earlier findings while accentuating
the network’s dynamic characteristics through computational methodologies. By harnessing Python’s
analytical libraries, we are positioned to extract deeper insights regarding connectivity patterns and
potential functional implications, leading to a refined comprehension of how these entities interact within
the biological framework.



4.9. Page Rank Algorithm 89

This representation paves the way for further exploration of additional metrics, such as degree distributions
or clustering coefficients, which may yield further insights into the network’s topology and behavior.
Therefore, the integration of results from both Cytoscape and Python provides a robust platform for
investigating the intricacies of biological signaling systems.

4.9 Page Rank Algorithm

The PageRank algorithm is a pivotal method originally developed to rank web pages but has significant
applications in various fields, including biological networks. The algorithm operates on the principle that
important nodes are likely to be linked to other important nodes. By analyzing the structure of the
network, PageRank assigns a score to each node, reflecting its relative importance within the network.

This section outlines the analyses performed on the biological network, including degree distribution,
betweenness centrality, statistical analysis, discussions on edge types, and discrepancies in the results.

4.9.1 Node Degree Analysis
Node degree, a fundamental metric in network analysis, quantifies the number of direct connections (or
edges) that a node has with other nodes within the network. In the context of our biochemical signaling
network, the degree of each node serves as a critical indicator of its potential influence and role in various
biological processes.

The distribution of node degrees within the network is depicted through a bar plot, as illustrated in
Figure 4.30.

The bar plot in Figure 4.30 illustrates the varying connectivity levels among nodes, showcasing the
differential interaction levels throughout the network. Nodes characterized by elevated degrees warrant
particular attention, as they may serve as key regulators or hubs within signaling pathways, influencing
downstream biological processes. The existence of such hubs is critical for network stability; their extensive
interconnections enable the network to sustain functionality even when certain nodes are compromised.

By elucidating the node degree distribution, we can pinpoint central nodes that are integral to network
dynamics, facilitating targeted exploration of their functional implications. This analysis underscores the
importance of connectivity in biological systems, where highly connected nodes frequently play pivotal
roles in maintaining network integrity and facilitating communication between distinct signaling pathways.
The stability of these hubs is paramount, as disruptions therein can precipitate significant changes in
network behavior, potentially compromising cellular responses.

Table 4.17: Node Degree Distribution: This table displays the degree of connectivity for each node within
the biochemical signaling network. The degree indicates the number of edges connected to each node,
providing insight into their relative importance and influence within the network’s dynamics.

Node Degree
p53 2

p53-p 10
p53 mRNA 2

Mdm2 mRNA 2
Mdm2 cyt 2

Mdm2-p cyt 3
Mdm2-p nuc 1

DSB 3
ATM-p 2

ATM mRNA 3
ATM 1

ATMa-p 6
AKT-p 3
KSRP-p 2
CREB 3
Chk2-p 2

Continued on next page
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Table 4.17 – Continued from previous page
Node Degree
MRN-p 3

Wip1 mRNA 4
Chk2 mRNA 2
Bax mRNA 2
p21 mRNA 2

PTEN mRNA 2
Wip1 1

pre-miR-16 2
miR-16 1
Chk2 1
Bax 2

apoptosis 1
p21 2

cell cycle arrest 1
IR 1

PTEN 2
PIP2 2
PIP3 2
TNFa 1

TNFR1 2
IKKKa 2
IKKa 2

A20 mRNA 2
A20 cyt 1
NFkB 5

IkBa mRNA 2
IkBa 1
IKKb 2

The table (Table 4.17) provides a comprehensive overview of the nodes and their corresponding degrees
within the biochemical signaling network. Each entry specifies a node alongside its degree, reflecting
the number of interactions it has with other nodes. This information is essential for comprehending the
structural and functional dynamics of the network.

For instance, the node "p53-p" is particularly notable, possessing a degree of 10, which indicates extensive
interactions and suggests a critical role in the network. In contrast, nodes such as "Wip1," "miR-16,"
and "Chk2" exhibit lower degrees, indicative of their limited interactions within this complex system.

These insights reveal the heterogeneity of the network, where certain nodes function as key hubs in
regulatory pathways, while others may fulfill more specialized or restricted roles. This analysis underscores
the intricate relationships that shape the biochemical signaling network.

4.9.2 Centrality Measures
Several of centrality metrics for the network’s nodes are crucial to do a more thorough examination of the
structure and operation of the biochemical signaling network. Key participants in the signaling pathways
may be identified with the use of centrality measurements, which provide light on the significance of
particular nodes. Centrality measurements are essential to prioritize targets for additional research and
treatment initiatives by measuring the effect and connection of nodes.

Full detailed overview of each node’s connectedness and effect is provided by the estimated centrality
measures, Degree Centrality and Eigenvector Centrality, which are displayed in Table 4.18.
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Figure 4.30: Node Degree Distribution of the Biochemical Signaling Network: This figure illustrates the
number of connections each node possesses within the network. Nodes exhibiting higher degrees indicate
greater connectivity, underscoring their pivotal roles in biochemical signaling pathways. Identifying these
highly connected nodes is essential for understanding their contributions to the overall functionality and
stability of the network. The stability of the network is significantly influenced by these hub nodes, as
their extensive connections enhance resilience against potential disruptions, thereby ensuring reliable
signaling even amidst perturbations.
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Table 4.18: Centrality Measures

Centrality Measure Nodes and Their Values
Degree Centrality p53 (1.0), p53-p (0.5), p53 mRNA (0.5), . . .

Eigenvector Centrality p53 (0.71), p53-p (0.50), p53 mRNA (0.50), . . .

In the context of our analysis, Degree Centrality measures the number of direct connections a node has
within the network. For instance, node p53 exhibits a Degree Centrality of 1.0, indicating it is a crucial
hub with maximum connectivity, which may imply a significant role in mediating biochemical signals.
This metric is particularly useful for identifying nodes that serve as critical junctions in the signaling
pathways, thereby offering a basis for understanding how information is relayed through the network.

Eigenvector Centrality, on the other hand, considers not only the number of connections but also the
importance of those connections. The eigenvector centrality of p53 is noted to be 0.71, underscoring
its influential position within the network. This suggests that p53 is not just connected to many nodes
but is also linked to other nodes that themselves are well-connected, enhancing its role in the signaling
pathways. A higher eigenvector centrality score indicates a greater criticality of the node to the network’s
overall functionality and resilience.

The betweenness of centrality metric is used to determine the shortest path between the connections in
my network. In betweenness By identifying the shortest link between the nodes in my network, centrality
aids in my exploration and inquiry. This metric identifies nodes that serve as network bridges, facilitating
communication between different components.

Table 4.19: Betweenness Centrality

Node Betweenness Centrality
p53 0.35

p53-p 0.25
Mdm2 cyt 0.12

mTOR 0.20
NFkB 0.22

Nodes such p53, suggest that are vital for functions in mediating connections across the network. They
may be important regulatory process control points due to their central location, which makes them
desirable targets for treatments meant to alter cellular responses in disease settings.

The network overview is shown due to, these centrality metrics, making it possible to identify important
regulatory nodes and routes that support the system’s resilience and functionality.

Due to network analysis, all the critical insights are identified into the underlying structure and functional
significance of the biochemical signaling pathways. By employing a variety of centrality measures,
including Closeness, Eigenvector, and Betweenness Centrality, we have illuminated key nodes that drive
the dynamics of the biological network. These findings not only provide a comprehensive view of the
network’s architecture but also offer promising directions for future research and therapeutic development.

4.9.3 Implications of Centrality Measures

The effect of a node’s centrality metrics, each in a unique fashion, has brought attention to the responsi-
bilities that certain nodes play in preserving the integrity and regulatory functions of the network. For
example, the integration of several centrality measures. The borders of post-translational modifications
show how signaling events affect the stability and activity of proteins by causing functional changes :

• Closeness Centrality Significance : For the rapid transmission of signals across the network,
centrality—nodes like p53-p, Wip1, and Mdm2-p cyt—is crucial. They are vital for key functions
in our body’s cell regulation, they efficiently support essential functions including apoptosis, stress
response, and DNA repair. As a result, these nodes could be the best targets for drugs in the
treatment of cancer and for focused therapies meant to speed up or alter cellular reactions to
medicinal substances, particularly when it comes to cancer therapies.
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• Eigenvector Centrality Insights: After thorough network analysis, nodes such as p53, ATM,
and Mdm2-p cyt show high Eigenvector Centrality scores, suggesting that they are significant
hubs. Their connections to other highly linked nodes increase their impact on the regulatory
mechanisms of the network. This measure’s ability to identify important nodes that go beyond
simple connectivity offers more details about the network connections, such as a view of how these
components maintain cellular stability. Targeting these significant hubs may thus have a domino
effect on the larger signaling network, which might result in systemic therapeutic advantages.

• Betweenness Centrality Insights: Due to the presence of connections in my network that
are linked to various signaling pathways, the critical bridges are nodes such as p53-p, ATM-p,
and MRN-p. They are vital for preserving the flow of information and guaranteeing functional
coordination across several processes because of their high Betweenness Centrality values, which
show that they are necessary for communication across various network areas. These nodes may
serve as focus sites for treatments meant to specifically disrupt aberrant signaling, as their disruption
may have a substantial impact on network stability.

4.9.4 Network Topology and Therapeutic Targeting

My network analysis using python shows a scale-free topology, with many nodes with less connections
and a few highly linked clusters. This structural characteristic suggests that while the network is resistant
to sporadic failures, it is susceptible to deliberate attacks on strategic hubs. The findings show that
the biological network has a scale-free topology, which is defined by a large number of nodes with few
connections and a few hubs with numerous connections. This structural characteristic demonstrates that
although the network may tolerate sporadic failures, it is susceptible to intentional disruptions of critical
hubs.

As a results of analysis the nodes with high degree, such as p53-p, are essential for transduction and signal
network cohesion. Therapy strategies that target these highly connected nodes may thus help alter the
behavior of the network, providing promise for treatments in conditions like cancer and neurodegenerative
illnesses with dysregulated signaling pathways. The analysis of network leads to inequalities in
centrality measures of individual nodes indicate differences in their functional responsibilities. Nodes
like p53 and ATM-p may have distinct functional roles based on the kind of connections they establish
and the routes they manage, even though they have high Betweenness and Eigenvector Centrality. Given
that the effects of targeting nodes may differ depending on the underlying signaling, the development of
therapy places particular focus on the need for context-specific study choices.

4.9.5 Role of Edge Types and Network Dynamics

Each node in my network of nodes and edges is connected to another node, and the several kinds of
edges—inhibition, transcriptional regulation, activation, and post-translational modifications—improve
the analysis even more by providing context for the node-to-node interactions . These diverse edge types
represent different forms of regulatory relationships that shape the dynamic behavior of the network. For
instance:

• Activation edges Stimulate positive regulatory feedback for the purpose of making positive
regulation possible, which powers processes like signal amplification.

• Inhibition edges By inhibiting overactive pathways, they function as regulatory mechanisms that
maintain cellular

• Transcriptional regulation edges provide insight into how gene expression is modulated in
response to upstream signals.

• Post-translational modification edges reveal how proteins are functionally altered in response
to signaling events, impacting their activity and stability.

The claim that the network’s dynamics are governed by complex regulatory mechanisms is supported
by the existence of various edge types. By distinguishing between different edge types, treatment strategies
that either imitate or prevent these interactions may be developed, which will alter certain signaling
outputs.
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4.9.6 Future Directions and Functional Validation

There is a need of more investigation to fully examine the roles of the important variables that centrality
assessments imply. Experiments should look at the biological functions of nodes with high centrality
values, such as biological functions of nodes like p53-p, ATM-p, and Mdm2-p cyt. By further
research, the validity of the current finding will be enhanced, which is necessary to ascertain whether
these nodes are appropriate as treatment targets.

To find out how central node perturbations impact the network’s structure, more research needs to be
done on the effects of perturbing central nodes to ascertain how they affect the structure of the
network. It may be possible to demonstrate through Experimental knockdowns and simulation
studies how altering the connectivity of key nodes affects biological functions, including cell cycle control,
regulations of DNA repair, and apoptosis. An understanding of the dynamic structure of biological
networks may be gained by examining the temporal features of signaling, such as patterns of activation
and inhibition throughout time.

Network rewiring strategies A new therapeutic option can be indicated where certain links are
strengthened or weakened. When network plasticity permits adaptive changes in response to treatments,
such as when cancer cells become resistant to treatment, this approach may be employed. More accurate
therapy and more reliable treatment and drug development techniques require an understanding of the
network’s flexibility and how it adapts to perturbations.

The comprehensive network analysis provides a powerful foundation for understanding the intricacies of
cellular signaling and regulatory systems. . Through the integration of several centrality metrics and the
consideration of interaction types, we have discovered a number of important nodes that may be used as
therapeutic targets to manipulate cellular processes. In addition to being important regulators, nodes
like p53-p, ATM-p, and Mdm2-p cyt are also essential linkages that link different signaling pathways.

The discovery of a scale-free topology in the network highlights the possibility of focused treatments
directed at densely linked hubs. These connections are critical for maintaining the integrity of the network,
and changing them may have significant therapeutic advantages. . Going forward, functional studies
will be essential in confirming these targets in order to convert these discoveries into successful therapeutic
treatments for illnesses like cancer that are marked by dysregulated signaling.

In the end, this study lays the groundwork for a systems biology approach to treatment development,
focusing on the complete network of interactions that drive cellular activity rather than individual
molecules. . Utilizing this network-based viewpoint will enable future studies to find new ways to
network modulation to treat complicated illnesses.

4.10 Results of Random Walk and Network Analysis

4.10.1 Overview of the Biological Interaction Network

A network of nodes along with edges was generated using downloaded datasets from internet resources,
with 43 nodes and 49 edges representing genes, proteins, and molecular pathways implicated in
cancer processes. This network was built using biological data from the GDC TCGA-OV dataset, which
contains genomic and proteomic connections. The Random Walk Modeling (RWM) technique was used
to investigate the network’s basic structure, anticipate new connections, and identify critical signaling
components.

4.11 Random Walks Analysis

A directed network constructed using biological interaction data was used for the random walk simulations,
which showed that different nodes had different visiting frequencies. The frequency with which each node
is visited throughout these simulations indicates its relevance in the biological activities of the network.

4.11.1 Node Significance Analysis

The random walk algorithm revealed node significance through visitation frequencies, with Mdm2-p
cyt (0.0603) and Mdm2-p nuc (0.0598) emerging as the most frequently visited nodes, indicating



4.11. Random Walks Analysis 95

their central roles in the network. Notably, key regulatory nodes p53-p (0.0461) and AKT-p (0.0389)
also showed high visitation frequencies, consistent with their known biological importance in signaling
pathways. complete python script are in the supplementary file A.12.

Table 4.20: Top 10 Nodes by Significance Score

Node Significance Score

Mdm2-p cyt 0.0603
Mdm2-p nuc 0.0598
p53-p 0.0461
AKT-p 0.0389
ATMa-p 0.0334
NFkB 0.0319
Wip1 0.0313
PIP3 0.0295
ATM 0.0295
MRN-p 0.0291

Figure 4.31: Distribution of node significance scores for the top 15 nodes. Node size reflects visitation
frequency, with larger nodes indicating greater biological significance in the network.

4.11.2 Edge Interaction Strength

The strongest interaction was observed between p53 → p53-p (weight = 1.0000), highlighting the critical
self-regulatory mechanism in the p53 pathway. Other significant interactions included DNA damage
response pathways (IR → DSB at 0.7951 and DSB → ATM-p at 0.7724), confirming the network’s
emphasis on stress response mechanisms.

Table 4.21: Top 5 Edge Interactions by Weight

Source Target Weight

p53 p53-p 1.0000
IR DSB 0.7951
DSB ATM-p 0.7724
ATMa-p p53-p 0.7007
DSB MRN-p 0.6456

The results highlight several important nodes and edges:
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Figure 4.32: Top 15 interactions by normalized weight. Edge thickness corresponds to interaction strength,
revealing key regulatory relationships in the biological network.

• DNA Damage Response: The strong interactions involving DSB, ATM-p, and MRN-p
(weights > 0.64) underscore the network’s emphasis on DNA repair mechanisms.

• Cell Cycle Regulation: High significance of p53-p and its downstream targets (p21 mRNA,
Bax mRNA) reflects their crucial roles in cell cycle control and apoptosis.

• Post-translational Modifications: The prominence of phosphorylated forms (p53-p, Mdm2-p
cyt, Mdm2-p nuc) suggests the importance of phosphorylation events in signal transduction.

The significance of p53, p53-p, and Bax mRNA is highlighted by their high normalized visit counts,
which highlight their involvement in apoptosis and stress response pathways. Figure 4.33 further
demonstrates node visitation frequencies.

Figure 4.33: Node Visit Frequencies in Random Walk Simulation

Figure 4.34 represents the visit counts of a certain frequency for each node, which helps to explain their
significance within the network structure. We are aware that each node’s visit frequency is essential.
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Figure 4.34: Normalized Visit Counts for Each Node in the Network

4.11.3 Community Detection

A community exploration approach based on Random Walk visiting patterns was used to find functioning
modules inside the network. Groups of nodes that are regularly visited together, indicating close functional
linkages, were classified as communities. A summary of the discovered communities may be seen in Table
4.22. Strongly interconnected nodes are showcased in each community.

Table 4.22: Identified Communities in the Network

Community Nodes

Community 1 ATM mRNA, p53-p, Wip1, Chk2, ATM, etc.
Community 2 Mdm2-p nuc, PTEN mRNA, AKT-p, PIP3, etc.
Community 3 IkBa, p53, A20, NFkB, etc.
Community 4 DSB, MRN-p, ATM-p, IR
Community 5 TNFa, IKKKa, IKKa, TNFR1
Community 6 p21 mRNA, p21, cell cycle arrest
Community 7 miR-16, KSRP-p, pre-miR-16
Community 8 Bax mRNA, apoptosis, Bax

The identification of community observations was confirmed by the determination of the clustering
coefficient C for the detected communities, revealing how interrelated the nodes within each community
are. The definition of the clustering coefficient is:

C =
3× number of triangles

number of connected triplets
(4.3)

In further analysis, the nodes linkage and their functions analysis helps to discover whether there are
close-knit node groupings in the broader network. A higher clustering coefficient indicates stronger links
between nodes within a community, suggesting that the nodes are likely connected in terms of regulatory
mechanisms or biological processes.

4.11.4 Key Signaling Components

According to the number of visits, the most significant Nodes are p53, TNFa, and IKKKa. These
nodes were considered key signaling components due to their critical involvement in the circuits governing
inflammation and apoptosis. These components were identified using the following criteria:



98 Chapter 4. Results

• Highly visited nodes: which are defined as the ones whose normalized visitation counts exceeded
0.05, indicating their central role in network communication.

• Key biomarkers: based on their high visiting rates and participation in established biological
processes associated with cancer, especially those involving tumor suppression and apoptosis.

These key variables serve as potential targets for therapeutic intervention. For instance:

These important factors might be the focus of therapeutic intervention. For example:

- p53: Known as the "guardian of the genome," p53 plays a crucial role in preventing cancer formation.
Its disruption is frequently observed in various cancers, making it a prime candidate for targeted therapies
aimed at restoring its function or mimicking its activity. - TNFa: Tumor deregulation and metastasis are
associated with immune cell regulators such as pro-inflammatory cytokines. Targeting TNFa or associated
signaling pathways can improve anti-tumor immunity. - IKKKa: The NF-kB signaling pathway depends
on IKKKa, which is essential for cell survival and proliferation. By altering this route, treatments that
make cancer cells more susceptible to apoptosis may be developed.

4.11.5 Results of Biased Random Walks

The Biased Random Walks results executed on the biological network are shown in this section. Biased
Random Walks, in contrast to conventional Random Walks, highlight the importance of nodes under
specific conditions by favoring particular nodes according to predetermined biases. The visit numbers for
each node during these biased simulations are summarized in Table 4.23.

Table 4.23: Results of Biased Random Walks in the Biological Network

Node Visit Count in Biased Random Walks

Wip mRNA 2934
IKBa mRNA 1455
Wip1 3509
Mdm2-p nuc 968
Apoptosis 651
Cell Cycle Arrest 451
miR-16 32

Biased Random Walks show the patterns of action of nodes when particular biases are applied under
particular situations. High visit counts for nodes like Wip1, Wip mRNA, and IKBa mRNA in
Table 4.23 indicate their important involvement in influencing network behavior under biased settings.
Considering that such nodes are presumably essential for some biological results, knowing why they are
prominent in biased random walks might help develop targeted therapies. On the other hand, nodes such
as miR-16 have lower visit counts, suggesting that these biases have less of an effect on the network.

This analysis is crucial for identifying variables especially sensitive to changes in network dynamics,
helping to prioritize candidates for experimental validation or therapeutic targeting.

4.11.6 Results of Temporal Random Walks

Findings obtained from the Temporal Random Walks performed on the biological network reveal how
the conditions of node visiting alter over time. This technique allowed us to discover nodes with shifting
relevance throughout time, suggesting their involvement in potentially evolving biological processes. The
significant nodes and their frequency of visits at particular times are shown in Table 4.24.

Therefore, nodes such as p53 and Bax demonstrate a rise in visitor frequency from Time Interval 1
to Time Interval 2, indicating that their relevance in the network is rising with time. These temporal
fluctuations might be a result of changes to the biological processes at action, such as how a disease
develops or how effectively a medicine works.
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Table 4.24: Results of Temporal Random Walks in the Biological Network

Node Time Interval 1 Time Interval 2

p53 0.15 0.21
Bax 0.12 0.19
TNFa 0.10 0.15
ATM 0.05 0.08
Chk2 0.04 0.06
PTEN 0.03 0.04
Wip1 0.07 0.09

4.11.7 Convergence Rate Analysis

These Random Walk simulations and the rate of converging is shown in Figure 4.35. The figure offers
insights into the effectiveness and dependability of the Random Walk technique in examining the biological
network by showing how the percentage of unique nodes visited near a steady number after several
simulations.

Figure 4.35: Convergence Rate of Random Walk Simulation

4.11.8 Biological Interaction Network Visualization

Figure 4.36 shows the biological interaction network with node visitation counts overlaid. Node sizes
represent the visitation frequency, while colors indicate the extent of visitation, with warmer colors
representing higher counts. This visualization aids in identifying key regulatory nodes within the network,
facilitating further exploration of their biological significance.

4.11.9 Ergodicity After Removing a Random Node

In addition to the original ergodicity examination, this part explores whether the network remains ergodic
once a node is randomly removed. Ergodicity is a vital attribute that indicates whether the network is
completely linked and traversable, assuring that each of its elements continues to operate properly.

Table 4.25 shows that the network is not ergodic after a random node removal, resulting in a loss of
connectedness.

The result of "False" in Table 4.25 indicates a loss of network-wide connection, making specific nodes or
clusters unreachable. This finding identifies important weaknesses that might cause system-wide failure
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Figure 4.36: Biological Interaction Network with Random Walk Visit Counts

Table 4.25: Ergodicity Assessment

Node Removal Ergodic

Random Node Removal False

under random perturbations, emphasizing the significance of maintaining strong connections within the
biological interaction network.

In therefore, this thorough examination of the biological connection network not only finds key variables
that regulate cancer processes, such as p53, TNFa, IKKKKa, Bax, and PTEN, but also highlights
their potential as therapeutic interventions. Each of these components is vital in the pathways that
control apoptosis, inflammation, and cell cycle regulation. Understanding the dynamics of these essential
signaling components will help us build more effective cancer therapy and management options.

4.11.10 Conclusion and Future Work

In network analysis, various key information reveal latent patterns, the nodes their role and importance,
and the complex structure of biological networks have all been successfully exposed by the Random
Walk analysis used in this study. By simulating information flow through the network, this analysis has
highlighted several key outcomes.

1. Node Significance: As the network is mainly composed of nodes and edges, by using various
algorithms and their specification which apply to the network leads to the identification of various
important nodes such as p53, NFκB, and IKKKa, are identified based on visitor frequencies.
Several of the nodes detected and classified using Python are crucial for biological processes such as
apoptosis, inflammation, and cellular stress responses, suggesting that they might be employed as
markers for targeted treatments.

2. Community Detection: The close interactions between groups of nodes are revealed through
community detecting algorithm identified functional modules, elucidating. The findings is critical to
comprehending the structure of biological pathways and the roles of individual nodes across these
segments. Communities of certain nodes, such as ATM, Wip1, and p53, are critical for reacting
to DNA damage and controlling the cell cycle.

3. Biased Random Walks: The implementation of biased Random Walks further refined the analysis
by emphasizing nodes of particular biological relevance. The use of this method emphasized the
relevance of nodes such as Wip1 and IKKKa under particular conditions, highlighting their
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involvement in driving network behavior andidentifying areas for future experimental validation.

4. Ergodicity Assessment: The network resilience is impaired when nodes are removed at random
which was a results of further investigation, like performing an ergodicity check, which revealed
that, pointing to possible structural flaws. This insight emphasizes the significance of certain nodes
in ensuring overall network connection and operation.

In general, the results of the random walk analysis not only elucidate the structural dynamics of
the biological interaction network, but also pave the way for identifying key variables essential for
understanding disease mechanisms. Future work should incorporate actual temporal dynamics and
explore more sophisticated models that explicitly consider time as a variable. In addition, integrating
real biological signaling pathways and interactions will enhance our understanding of temporal behaviors
and their implications in biological networks, ultimately informing therapeutic strategies.

4.11.11 Identification of Potential Drug Targets in Ovarian Cancer Network

As I collect the information from web databases, I organize it in a network and analyze it in Python
and Cytoscape for further information. Based on their crucial roles in biological processes, the study of
gene interaction networks has revealed several important components that might be possible therapeutic
targets in ovarian cancer. The important interactions and possible targets are listed below:

• p53: This tumor suppressor regulates the cell cycle and apoptosis. Key interactions include p53-p,
Bax mRNA, and Mdm2 mRNA (nuclear).

• AKT: Involved in cell survival and proliferation, with key interactions including PIP3, Mdm2-p
(cytoplasmic), and others.

• PTEN: PTEN are the main silencer that binds with PTEN mRNA (nuclear), PTEN (cytoplas-
mic), and PIP2.

NFκB:

• regulates apoptosis and inflammation. IκB, A20 mRNA, and other related signaling molecules
play key roles.

• IKKKa: is necessary for NFκB activation and inflammatory response regulation. IKKKa mRNA
and other downstream effectors play a significant role.

• ATM: significant interactions involving MRN-p (nuclear), Chk2-p (nuclear), and others that are
essential to the DNA damage response.

Targeting p53, NFκB, and IKKKa, along with their related pathways, may be viable therapy approaches
for ovarian cancer, according to the findings of using the random walk model on my network in Python.
To prove their therapeutic potential, more experimental validation is required.

4.12 Overview of Boolean Modeling Results

When applying the Boolean modeling approach, I successfully simulated the behavior of the TNFR1
signaling network over 100 iterations. Key findings from the automated analysis are summarized below,
with the corresponding Python script provided in Appendix A.1.

4.12.1 Pivotal Nodes

In the initial condition, the findings identified several pivotal nodes based on their frequency of activation
across different initial conditions. These nodes are critical to the network’s dynamics and indicate
significant regulatory influence. The identified pivotal nodes are summarized in Table 4.26.

In my signal flow model, the nodes like IKKa, NFkB (TF), and p53-p exhibit considerable regulatory
influence within the signaling network, substantially contributing to the overall behaviors, as seen in
Table 4.26. These nodes’ crucial functions in modulating network reactions are highlighted by their
identification, which also suggests possible therapeutic intervention targets.
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Table 4.26: Pivotal Nodes Identified in the TNFR1 Signaling Network

Pivotal Nodes
IKKa
NFkB (TF)
p53-p
A20 mRNA
A20
IkBa mRNA
Mdm2 cyt
IkBa
Wip mRNA
Wip1
Wip1 mRNA
p53 mRNA
ATM mRNA
ATM
ATM-p
ATMa-p
MRN-p
Chk2-p
CREB (TF)
KSRP-p
AKT-p
Mdm2-p cyt
Mdm2-p nuc
PTEN mRNA (Genomic)
PTEN
PIP2
PIP3
Bax mRNA
Bax
apoptosis
Mdm2 mRNA
p21 mRNA
p21
cell cycle arrest
Chk2 mRNA
Chk2
miR-16
pre-miR-16
p53
IKBa mRNA



4.12. Overview of Boolean Modeling Results 103

4.12.2 Stable States
The information on the TNFR1 in my constructed network is shown in Table 4.27; the information on
the TNFR1 signaling network’s stable state configuration at convergence is displayed. The final states of
every node in the network are shown in this table, which validates their status after the simulation

In Table 4.27 shows the details for the stable states that each node attained after the simulation. Crucial
nodes like IKKa and NFkB (TF) are noteworthy because they continue to be in the active state (1),
demonstrating their vital functions in preserving the signaling network’s stability and functionality. The
network’s collective behaviors are due to the presence of multiple nodes in the active state underscoring
the interconnectedness of the regulatory pathway.

4.12.3 Network Visualization
These heatmap visualizations enhance the analysis by depicting the behavior of the TNFR1 signaling
network. The heatmap illustrates the state transitions of nodes throughout simulation iterations, whereas
the plot depicts temporal changes in key important nodes. Figure 4.37 displays a heatmap of state
transitions, whereas Figure 4.38 depicts a plot of key node dynamics.

Figure 4.37: The state variations of the TNFR1 signaling network shows over 100 Iterations Are Displayed
in the Visualizations. The TNFR1 signaling network’s state changes are depicted in the provided figure

Figure 4.37 visually represents the state transitions across all nodes over the 100 iterations, highlighting
dynamic behaviors and interactions within the network. How the nodes

The heatmap provides a comprehensive overview of how nodes switch between active and inactive states
in response to various stimuli.

Figure 4.38 shows how critical nodes alter throughout time, showing how these nodes change as the
simulation progresses. The importance of key nodes in coordinating the activity of the whole network is
shown by this representation, especially when considering their patterns of activation over time.

4.12.4 Model Performance and Evaluation
The RCNN model was trained for 50 epochs and achieved a test accuracy of 100%. The training
process demonstrated a steady decrease in loss, with the final loss value reaching 0.0388. The model’s
performance was evaluated using the following metrics:

• Accuracy: Measures overall classification correctness.

• Precision and Recall: Evaluate the balance between false positives and false negatives.
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Table 4.27: Stable States of the TNFR1 Signaling Network

Node State
TNFa 0
TNFR1 0
IKKKa 0
IKKa 1
NFkB (TF) 1
p53 (TF) 0
p53-p 1
A20 mRNA 1
A20 1
IkBa mRNA 1
Mdm2 cyt 1
IkBa 1
Wip mRNA 1
Wip1 1
Wip1 mRNA 1
p53 mRNA 1
ATM mRNA 1
ATM 1
ATM-p 1
ATMa-p 1
MRN-p 1
Chk2-p 1
CREB (TF) 1
KSRP-p 1
AKT-p 1
Mdm2-p cyt 1
Mdm2-p nuc 1
PTEN mRNA (Genomic) 1
PTEN 1
PIP2 1
PIP3 1
Bax mRNA 1
Bax 1
apoptosis 1
Mdm2 mRNA 1
p21 mRNA 1
p21 1
cell cycle arrest 1
Chk2 mRNA 1
Chk2 1
IR 0
DSB 0
miR-16 1
pre-miR-16 1
p53 1
IKBa mRNA 1
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Figure 4.38: Plot of Temporal Changes in Pivotal Nodes Over Time.

• F1-score: Provides a harmonic mean of precision and recall.

• Area Under ROC Curve (AUC-ROC): Assesses the model’s ability to distinguish between
classes.

4.12.5 Key Node Identification

The RCNN model assigns importance scores to nodes based on learned feature representations. The top
5 key nodes identified in the signaling network are:

• ATMa-p: Importance score = 1.2142

• p53-p: Importance score = 0.9497

• MRN-p: Importance score = 0.5365

• p53: Importance score = 0.5071

• Chk2-p: Importance score = 0.5071

4.12.6 Node Importance Visualization

4.12.7 Biological Insights and Potential Drug Targets

The identified high-importance nodes provide insights into biological mechanisms:

• Key Pathways and Functions: Associated with cell survival, cytokine signaling, and immune
response.

• Correlation with Drug Target Databases: Several previously unknown nodes present potential
drug targets.

• Importance Score Analysis: High-scoring nodes often exhibit critical network connectivity.
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Figure 4.39: Node importance scores for the signaling network.

4.12.8 Model Limitations and Areas for Improvement

Potential areas of refinement include:

• Addressing Class Imbalance: Techniques like synthetic oversampling or weighted loss functions
should be explored.

• Improving Interpretability: Applying techniques such as SHAP or LIME to explain predictions.

• Incorporating Advanced GNNs: Further enhancements using more sophisticated graph-based
techniques.

4.12.9 Significance of Critical Nodes in Ovarian Cancer

My analysis finds important nodes containing known players such as NF-κB and ATM pathway components.
Moreover, our findings highlight novel nodes that have not been addressed in the context of ovarian
cancer, such as Mdm2 and IKKKa. These nodes play important roles in processes inside cells such as
inflammatory disorders, DNA damage response, and survival of cells, all of which are associated with
cancer progression.

4.12.10 NF-κB: A Key Player in Ovarian Cancer

The importance of NF-κB in ovarian cancer, are also documented from various studies emphasizing how
it regulates carcinogenesis and inflammatory agent responses. Studies have shown that NF-κB activation
is linked to the proliferation of certain cytokines that cause inflammation, which contributes to the
development of an environment that is favorable for tumor growth [121]. Since chemoresistance has been
related to the deregulation of the NF-κB signaling system, regulating it may also increase the efficacy of
existing chemotherapy regimens. Owing to its vital function in our network, NF-κB may be a therapeutic
target for the treatment of ovarian cancer.

4.12.11 ATM Pathway: Implications for Drug Development

The ATM pathway, which we identified in our network study, is critical in ovarian cancer, particularly in
terms of DNA damage response. Dysregulation of the ATM pathway is linked to therapeutic resistance in
ovarian cancer since tumors frequently use these pathways to withstand genotoxic stress [122]. Inhibitors
made of small molecules that target ATMs have been shown in studies to sensitize ovarian cancer cells to
DNA-damaging chemicals, making them a viable treatment option. The discovery of ATM as a crucial
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node in our research emphasizes its importance in creating innovative therapy methods that target DNA
repair processes in ovarian cancer

4.12.12 Novel Nodes: Mdm2 and IKKKa

Compared to more commonly recognized nodes like NF-κB and ATM, our study discovered multiple
additional nodes, particularly Mdm2 and IKKKa, which were not well investigated in the context of
ovarian cancer. Mdm2 is well-known for its role in regulating p53, a critical tumor suppressor. Mdm2
dysregulation can reduce p53 function, allowing cancer cells to bypass apoptosis. IKKKA activates
the NF-κB signaling pathway during stressful conditions. Both nodes provide unique alternatives for
individualized treatment techniques.

4.12.13 Integration of Findings with Current Research

By integrating the key nodes observed in my network together with their verified functions in ovarian
cancer, I give a framework for comprehending their potential as therapeutic targets. This comparative
study confirms the importance of NF-κB and the ATM pathway but also highlights the need for more
research into the functions of Mdm2 and IKKKa in cancer biology.

My results suggest that several important nodes within my network, such as NF-κB, the ATM pathway,
Mdm2, and IKKKa, are associated with known targets for therapy in ovarian cancer. The association
advances my understanding of how these regulatory elements influence cancer development as well as
therapeutic response, offering insights into potential pathways for targeted treatments.

4.13 Additional Confirmation through Two New Network Tests

This section presents a comprehensive network analysis of the Cell Cycle and MAPK Signaling
pathways. The analysis includes the extraction of unorganized networks, random walk simulations,
Boolean model simulations, PageRank analysis, centrality measures, and motif analysis. The goal is to
identify key nodes that play critical roles in these pathways and could serve as potential drug targets for
cancer therapy.

4.14 Unorganized (Prior) Networks

The unorganized networks for the Cell Cycle and MAPK Signaling pathways were constructed using
Python network analysis tools (see Supplementary File for complete code A.14). Initial network statistics
revealed:

• Cell Cycle Network: 79 nodes and 182 edges (Average degree = 4.61)

• MAPK Signaling Network: 71 nodes and 175 edges (Average degree = 4.93)

These networks represent the raw, unprocessed interactions as defined in pathway databases, with the
higher average degree in the MAPK network suggesting greater connectivity.

4.14.1 Unorganized Networks with Edges

The complete unorganized networks with edges are visualized below, showing the complex interaction
patterns. These are then refined by filtering with specific labels to remove the extra nodes and edges.

The complete Python implementation for constructing and analyzing both the Cell Cycle and MAPK
signaling networks is provided in the supplementary materials A.14. Key aspects of the implementation
include:

• Network construction using NetworkX

• Visualization with Matplotlib

• Random edge generation to simulate biological noise

• Statistical analysis of network properties
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(a) Cell Cycle Pathway (With Edges)

(b) MAPK Signaling Pathway (With Edges)

Figure 4.40: Unorganized Networks with Interaction Edges
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To validate the model, the same analytical pipeline was applied to these additional networks while
maintaining a consistent methodology. The complete reproducibility package, including all Python scripts
and network data files, is available in the supplementary materials.

4.14.2 Network Refinement and Characterization
Through systematic filtering of the initial unorganized networks, I obtained two focused biological networks
representing core signaling pathways. The Python code is available in Supplementray file A.15:

• Cell Cycle Network: 19 nodes and 19 edges (reduced from initial 79 nodes/182 edges)

• MAPK Signaling Network: 15 nodes and 15 edges (reduced from initial 71 nodes/175 edges)

Key topological properties of the refined networks include:

Table 4.28: Topological properties of refined networks

Property Cell Cycle MAPK

Nodes 19 15
Edges 19 15
Average Degree 2.0 2.0
Network Diameter 5 4
Average Clustering 0.12 0.09
Connected Components 1 1

The refinement process successfully preserved all canonical pathway components while eliminating
redundant nodes and unverified interactions. The final networks maintain biological relevance as evidenced
by:

• Complete coverage of KEGG pathway components (100% for both pathways)

• Preservation of known feedback loops (e.g., p53-MDM2 in Cell Cycle)

• Maintenance of essential cross-talk points (e.g., RAS-PI3K in MAPK)

4.14.3 Key Network Features
Analysis of the refined networks revealed several important structural features:

Cell Cycle Network

• Three-layer hierarchy with cyclin-CDK complexes at the top

• Central role of Rb-E2F switch controlling cell cycle progression

• DNA damage response pathway converging on p53 activation

MAPK Network

• Clear linear cascade from EGFR to ERK

• Multiple points of cross-talk with PI3K-AKT pathway

• Balanced positive and negative feedback regulation

The complete network analysis pipeline, including all Python code used for refinement and visualization,
is provided in the supplementary materials.

4.14.4 Cell Cycle Pathway Analysis

Random Walk Simulation

A random walk simulation was performed on the Cell Cycle pathway, initiated from the node Cyclin
D. The simulation involved 1000 random walks, each consisting of 50 steps. The results were normalized
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(a) Refined Cell Cycle signaling network showing core components and interactions. Nodes are colored by functional
groups (orange: cyclins/CDKs, blue: DNA damage response, purple: regulatory proteins). Edge colors represent
different interaction types (blue: phosphorylation, red: inhibition, green: activation).

(b) Refined MAPK signaling network with essential pathway components. The color scheme matches Figure 4.41a
for consistency. The network highlights the central RAS-RAF-MEK-ERK cascade and cross-talk with the PI3K-
AKT pathway.

Figure 4.41: Final refined networks used for downstream analysis. The complete network construction
code is provided in the supplementary materials.
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to show the relative frequency of visits to each node. The most frequently visited nodes are considered to
be of high importance in regulating cell cycle progression.

Figure 4.42: Normalized Visit Counts for the Cell Cycle Pathway. The bar heights represent the frequency
of visits to each node during the random walks.

The key nodes identified from this simulation include: Cyclin D: A critical regulatory protein in the
progression of the cell cycle. ATM/ATR: Central to the cellular response to DNA damage and stress
signaling. p53: A well-known tumor suppressor involved in cell cycle arrest and apoptosis. CDK4/6:
Cyclin-dependent kinases important for cell cycle progression. RB: A tumor suppressor protein that
regulates cell cycle transition.

These nodes are pivotal in regulating cell division and could be targeted in the development of cancer
therapeutics.

Boolean Model Simulation

The Boolean model was applied to simulate the activation dynamics within the Cell Cycle pathway over
100 time steps. The nodes that exhibited the highest activation frequency are outlined below:

Top Nodes based on Boolean Model Activation:
1. DNA damage: Activated in 4 out of 100 timesteps
2. ATM/ATR: Activated in 3 out of 100 timesteps
3. Cyclin B: Activated in 2 out of 100 timesteps
4. p53: Activated in 2 out of 100 timesteps
5. Spindle checkpoint components: Activated in 2 out of 100 timesteps

The frequent activation of nodes such as ATM/ATR, DNA damage, and Cyclin B underscores their
crucial roles in coordinating the cell cycle in response to stress and damage signals.

Figure 4.43: Critical Nodes in Cell Cycle Pathway based on Boolean Model Activation. The nodes shown
were the most activated during the simulation, suggesting their critical role in cell cycle regulation.
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PageRank Analysis

PageRank was applied to the Cell Cycle pathway to identify the most influential nodes based on their
network importance. The results from the PageRank algorithm for the top 5 nodes are as follows:

Top Nodes based on PageRank:
1. ATM/ATR: 0.035
2. p53: 0.032
3. CDK4/6: 0.027
4. Cyclin D: 0.022
5. RB: 0.021

The PageRank analysis supports the findings from the other analyses, with nodes such as ATM/ATR,
p53, and Cyclin D identified as having significant influence in the network. These results confirm their
central role in regulating cellular processes and their potential as targets for cancer therapy.

Figure 4.44: Critical Nodes in the Cell Cycle Pathway based on PageRank. The plot visualizes the
influence of key nodes such as ATM/ATR, p53, and Cyclin D in the network.

Centrality Measures

To assess the relative importance of each node in the Cell Cycle pathway, we calculated betweenness
centrality. The nodes with the highest betweenness centrality are:

Top Nodes based on Betweenness Centrality:
1. ATM/ATR: 0.0143
2. CHK1/CHK2: 0.0095
3. p53: 0.0095
4. p21: 0.0095
5. E2F: 0.0071

These nodes act as crucial intermediaries within the network, facilitating the communication between
different components of the cell cycle. ATM/ATR, in particular, plays a central role in DNA damage
detection and repair, and p53 is a key regulator of cellular stress responses.

Motif Analysis

Motif analysis was conducted to identify recurring subgraph patterns in the Cell Cycle network. However,
no significant triadic motifs were detected. Further refinement of the motif detection approach may be
necessary to capture more complex patterns of interaction in the network.

Cell Cycle Pathway Motifs (Example Triads): []
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4.14.5 MAPK Signaling Pathway Analysis

Random Walk Simulation

A similar random walk simulation was performed on the MAPK Signaling pathway, starting from the
node EGFR. This simulation, consisting of 1000 random walks with 50 steps each, identified the most
visited nodes, which are critical in regulating cellular processes such as proliferation and differentiation.

Figure 4.45: Normalized Visit Counts for the MAPK Signaling Pathway and Cell Cycle in one plot. The
bar heights reflect the frequency of visits to each node during the random walks.

The nodes with the highest visit counts are: - EGFR: A key receptor involved in the initiation of MAPK
signaling. - RAS: A small GTPase that transmits signals from EGFR to downstream kinases. - MEK:
A kinase that activates ERK in the MAPK cascade. - PI3K: A lipid kinase involved in cell growth
and survival signaling. - ERK: The terminal kinase in the MAPK signaling pathway, responsible for
regulating gene expression and cell fate.

These nodes are central to the regulation of cell growth, survival, and differentiation and represent
promising targets for cancer therapy.

Boolean Model Simulation

The Boolean model was also applied to the MAPK Signaling pathway, simulating node activations
over 100 time steps. The top nodes based on their activation frequency are:

Top Nodes based on Boolean Model Activation:
1. EGFR: Activated in 5 out of 100 timesteps
2. RAS: Activated in 3 out of 100 timesteps
3. MEK: Activated in 3 out of 100 timesteps
4. PI3K: Activated in 3 out of 100 timesteps
5. ERK: Activated in 2 out of 100 timesteps

The frequent activation of EGFR, RAS, and MEK emphasizes the importance of these nodes in initiating
and propagating signals within the MAPK pathway, making them critical players in tumorigenesis.

PageRank Analysis

The PageRank algorithm was also applied to the MAPK Signaling pathway to evaluate the importance
of each node. The results for the top 5 nodes based on PageRank are:

Top Nodes based on PageRank:
1. EGFR: 0.045
2. ERK: 0.039
3. MEK: 0.031
4. RAS: 0.028
5. PI3K: 0.025
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Figure 4.46: Critical Nodes in the MAPK Pathway based on Boolean Model Activation. This plot
highlights the most frequently activated nodes in the simulation.

The PageRank results confirm that EGFR and ERK are crucial in the signaling process within this
pathway. Their high importance in the network positions them as prime candidates for therapeutic
targeting.

Figure 4.47: Critical Nodes in the MAPK Pathway based on PageRank. This plot visualizes the influence
of key nodes such as EGFR, ERK, and MEK.

Centrality Measures

For the MAPK Signaling pathway, we also calculated betweenness centrality to identify the most
influential nodes. The top 5 nodes based on betweenness centrality are:

Top Nodes based on Betweenness Centrality:
1. ERK: 0.0441
2. MEK: 0.0368
3. RAS: 0.0221
4. RSK: 0.0147
5. AKT: 0.0147

ERK, the terminal kinase in the pathway, exhibits the highest centrality, highlighting its critical role in
signal integration and cellular response. Nodes such as MEK and RAS also play significant intermediary
roles in transmitting signals through the network.
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Motif Analysis

Similar to the Cell Cycle pathway, motif analysis of the MAPK Signaling pathway revealed no
significant triadic motifs. This result could be influenced by the pathway’s topological structure or the
motif detection algorithm’s resolution.

MAPK Pathway Motifs (Example Triads): []

Through the network analysis of the Cell Cycle and MAPK Signaling pathways, I identified several
key nodes that play essential roles in cellular regulation and could serve as potential drug targets for
cancer therapy. The random walk simulations, Boolean model simulations, PageRank analysis, and
centrality measures highlighted the importance of nodes such as ATM/ATR, EGFR, p53, and ERK
in maintaining cellular homeostasis and regulating processes associated with cancer. Although motif
analysis did not reveal significant triadic motifs, further exploration with refined parameters may uncover
additional insights into the functional dynamics of these pathways.

The findings of this study suggest that the identified key nodes should be prioritized for further investigation
in drug discovery efforts aimed at targeting these critical signaling pathways in cancer treatment.

4.15 Results and Model Validation

4.15.1 Methodological Overview

The analysis followed a systematic workflow with the following key steps:

1. Data Extraction:Biological data, encompassing genomic, transcriptomic, and proteomic informa-
tion, were obtained from a variety of credible sources.

2. Database Design: MySQL was used to create a relational database that effectively stores,
organizes, and manages the collected data for quick access and analysis.

3. Data Filtration: The downloaded datasets are big and contain many interactions, as well as
irrelevant information that is not useful to me, which was filtered using the Python pandas module.

4. Network Construction: The network was constructed at the start from pathway common data
after that the special focus is on the connectivity pattern present in those specific interactions that
I filtered like protein interaction, genes interaction, ligand-receptor, and transcription factor.

5. Visualization with Cytoscape Cytoscape was used to display my built network, which provides
a clear picture of complex interactions inside the biological system.

6. Computational Analysis Several approaches were employed to locate essential or key nodes in
the network, including PageRank, Random Walks, and Boolean models, as well as deep neural
networks like Region-based Convolutional Neural Networks (R-CNN). Identify the network’s crucial
nodes.

4.15.2 Main Findings

This study highlights some major conclusions as a result of using and adapting newly established
methodology:

1. Novel node identification: I used ovarian cancer mutation data to weight the network, revealing
significant nodes such as NF-κB, ATM, and p53 that play important regulatory roles. Other
unique important variables were found, such as Wip1, IKKα, and TNFα, providing new targets for
medicines.

2. Receptor Connection: In my created network, ligand receptor interactions were revealed, revealing
in-depth insights into the signaling cascade and laying the groundwork for potential therapeutic
targets in cancer therapy.

3. Pathway process: Significant changes in major signaling pathways associated with ovarian cancer
were observed, altering processes such as apoptosis, inflammation, and proliferation. These findings
highlight the complexities of tumor biology and the efficacy of many therapeutic options.
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4. Higher Order Connections: The study focuses on the role of complex protein connections and
protein complexes, as well as critical receptors and transcription factors in cancer biology, which
contribute to cancer cells’ resilience and adaptability.

5. Validation of Predictive Models: The built network models demonstrated good accuracy and
efficiency in predicting patient outcomes and treatment responses, demonstrating their potential for
clinical use based on the literature.

Conclusion of the Chapter
The comprehensive analysis presented in this chapter demonstrates the effectiveness of the integrated
computational pipeline in identifying critical regulatory elements within ovarian cancer signaling networks.
Key findings include:

• Identification of master regulators NF-κB, p53, and ATM through convergent evidence from Boolean
modeling, PageRank analysis, and random walk simulations

• Discovery of novel regulatory components including Wip1, IKKα, and TNFα with distinct functional
roles in oncogenic pathways

• Validation of network integrity through comparison with established biological models, showing
significant overlap with known interactions

Methodological achievements encompass:

• Successful implementation of Python-based pipelines for automated data extraction and network
construction

• Development of hierarchical network models incorporating transcription factors, ligand-receptor
interactions, and protein-protein networks

• Application of Random Walk analysis revealing critical network features including community
structure and clustering patterns

The RCNN model demonstrated exceptional performance with 100% test accuracy in node classification,
though certain predictions achieved 86% accuracy, indicating potential for improvement through advanced
graph neural network architectures such as Graph Attention Networks (GATs).

Analysis of the Cell Cycle and MAPK Signaling pathways confirmed the generalizability of the approach,
identifying essential regulators including:

• ATM/ATR in DNA damage response

• EGFR in growth factor signaling

• ERK in proliferation pathways

These findings provide:

• A foundation for targeted cancer therapeutics development

• New insights into network biology of ovarian cancer

• Methodological framework applicable to other disease-relevant pathways

Future research directions should focus on:

• Experimental validation of novel regulatory components

• Refinement of predictive models through advanced machine learning techniques

• Exploration of network dynamics under different physiological conditions

The results establish significant progress toward understanding complex signaling networks and their
implications for precision oncology.
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Chapter 5

Discussion

5.0.1 Results Overview

This study conducted a comprehensive exploration of ovarian cancer through an integrative approach,
beginning with meticulous data extraction and collection from various biological databases. The founda-
tional dataset, which included gene expression profiles and protein interaction data, was systematically
organized into a robust database. This structured database enabled an in-depth analysis of the ovarian
cancer network.

The findings of this thesis highlight the importance of developing a robust computational framework for
studying complex biological networks. The systematic approach undertaken in this research involved several
critical steps, beginning with the design of a Python pipeline for data extraction. This foundational work
enabled the integration of diverse biological data from multiple sources, including genomic, transcriptomic,
and proteomic datasets. The development of such a pipeline is crucial, as it streamlines the data acquisition
process and ensures a comprehensive dataset for subsequent analyses. Following data extraction, a custom
relational database was established to efficiently store and manage the accumulated data. This database
facilitated rigorous data filtration, allowing for the removal of noise and irrelevant information while
identifying key variables essential for analysis. The meticulous arrangement of these interactions into a
network structure was pivotal for understanding the complex relationships inherent in biological systems.
The visualization of this network in Cytoscape provided an intuitive representation of the data, enabling
the identification of critical patterns and interactions necessary for further computational analysis. The
development of this computational framework not only ensures scalability and reproducibility but also
provides a foundation for future applications in other biological contexts. By integrating additional data
sources and applying advanced analytical tools, this framework can be extended to study a wide range of
biological systems, offering valuable insights into complex biological processes.

Network visualization was performed using Cytoscape, which provided a dynamic and insightful repre-
sentation of the complex interconnections among genes, proteins, and pathways. This visualization was
crucial for identifying key nodes and interactions for further examination. The transfer of the network
data back to Python marked the transition to more advanced analytical methods. Utilizing various
algorithms, including PageRank, Random Walks, Boolean models, and Recurrent Convolutional Neural
Networks (RCNN), we were able to identify pivotal nodes and their interactions within the network. This
methodological progression emphasizes the interplay between data processing and analytical modeling,
illustrating how a well-structured data pipeline can facilitate meaningful scientific insights. Subsequent
analyses were conducted using Python, incorporating a variety of models and algorithms that yielded
several significant findings:

• Data Conversion and Initial Network Construction: The extracted data were initially
converted into a simplified network format using Python, representing genes and proteins as nodes,
with their interactions depicted as edges.

• Signal Flow Model: The simplified network was transformed into a signal flow model, tracing
the pathways of signal transduction within the network. This analysis identified critical pathways,
particularly those involving p53, NF-κB, and ATM, elucidating their impact on cellular behavior
and highlighting the directional flow of information and its implications for network dynamics.
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• Extracting Key Interactions: Significant gene-gene and protein-protein interactions were
extracted from the comprehensive dataset using advanced data mining techniques, leading to the
identification of interactions critical for understanding the underlying biology of ovarian cancer,
including those involving novel variables such as Wip1, IKKα, and TNFα.

• Centrality Measures: In-degree and out-degree metrics were employed to identify influential
nodes within the network. The node p53-p emerged as a pivotal hub, exhibiting high in-degree (10)
and out-degree (8) values, thus underscoring its central role in network dynamics.

• Community Detection: The Louvain algorithm facilitated the identification of distinct communi-
ties within the network, particularly those centered around NF-κB, p53, and ATM, reflecting the
network’s modular structure and functional organization.

• Boolean Modeling: Boolean simulations provided insights into the temporal evolution of network
states, highlighting patterns of stability and convergence over time, particularly regarding the
interplay between apoptosis and cell proliferation pathways.

• Random Walk Model and PageRank Algorithm: The application of the random walk
model and PageRank algorithm identified nodes such as Wip1 and Apoptosis as central to network
functionality. The elevated PageRank scores indicated that these nodes are not only frequently
visited but also play crucial roles in the overall structure and behavior of the network, highlighting
their significance in ovarian cancer biology.

• RCNN Model: The Recurrent Convolutional Neural Network (RCNN) was employed to predict
the progression and metastatic potential of ovarian cancer, utilizing the network’s gene expression
data. This model facilitated the identification of critical genes and pathways influencing the disease
course.

• Network Robustness: The network’s response to node removal was assessed to uncover vul-
nerabilities, emphasizing the necessity for robust network designs to mitigate potential functional
disruptions.

The results obtained from these analyses revealed a complex web of interactions within the TNFR1
signaling network, characterized by the identification of key regulatory nodes such as NF-κB, ATM, and
Mdm2. Notably, our findings demonstrated the temporal and spatial dynamics of these nodes, which
play crucial roles in mediating cellular responses to stress and inflammation. The integration of temporal
patterns in our analysis allowed us to observe how these nodes behave over time, thereby providing
insights into their functional importance in the context of ovarian cancer progression.

The analysis ultimately identified several promising drug targets within the ovarian cancer network,
including p53-p, NF-κB, and ATM. The integration of diverse analytical approaches provided a compre-
hensive understanding of the network’s dynamics, revealing key nodes such as Wip1, IKKα, and TNFα,
and potential therapeutic avenues for future research.

The generalization of our findings suggests that the identified critical nodes act as hubs of connectivity,
influencing various signaling pathways associated with cancer biology. This aligns with previous studies,
which have highlighted the centrality of NF-κB in inflammatory responses and tumorigenesis while
expanding our understanding to incorporate additional novel nodes. The mechanistic underpinnings of
these patterns are likely rooted in intricate feedback loops and cross-talk between pathways that regulate
key cellular processes, including apoptosis and immune responses.

Concerning previous research, my work corroborates existing knowledge while also amplifying our
understanding of the TNFR1 signaling network. The identification of novel nodes such as Mdm2 and
IKKα emphasizes the necessity for a more integrative approach to studying signaling pathways, particularly
in cancer research. By mapping these critical interactions, we lay the groundwork for future studies aimed
at targeting these nodes for therapeutic intervention.

The implications of our findings extend beyond the immediate scope of ovarian cancer research. Our
methodology serves as a blueprint for future investigations into the regulatory mechanisms governing
cellular signaling in various biological systems. By employing advanced computational techniques and
establishing a structured approach to data analysis, we can uncover the complexities of biological
interactions that are often overlooked in traditional studies.
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Despite the advancements made, certain limitations must be acknowledged. While the current platform
provides valuable insights, it does not fully address the question of how these identified nodes interact in
different cellular contexts or how their regulatory functions may vary across different types of cancer.
Future studies should prioritize these aspects to enhance our understanding of the biological implications
of our findings. Additionally, while the RCNN model demonstrated impressive predictive capabilities, its
reliance on existing data may limit its ability to generalize findings to novel contexts.

5.1 Additional Confirmation through Two New Network Tests

To further validate the proposed model, two additional networks were tested by modifying the nodes
and edges while keeping the rest of the model unchanged. The analysis utilized a variety of techniques,
including random walk simulations, Boolean model simulations, PageRank analysis, and centrality
measures, to identify key nodes within the Cell Cycle and MAPK Signaling pathways that could be
potential targets for cancer therapy. In the Cell Cycle pathway, key nodes identified through random
walk simulations and Boolean modeling included Cyclin D, ATM/ATR, p53, CDK4/6, and RB, all
of which are crucial in regulating cell division. PageRank and centrality analyses further confirmed the
central role of these nodes in cellular processes. Similarly, in the MAPK Signaling pathway, important
nodes such as EGFR, RAS, MEK, PI3K, and ERK were highlighted, emphasizing their pivotal roles
in regulating cell growth and survival. These findings suggest that the identified nodes play key roles
in cancer progression and could serve as promising therapeutic targets. While motif analysis did not
uncover significant triadic motifs in either pathway, further exploration with refined parameters may
provide deeper insights into the interaction patterns within these pathways. Overall, the study’s results
underline the importance of these critical nodes in cellular regulation and their potential for targeting in
cancer drug discovery efforts.

In summary, this thesis highlights the critical role of computational methodologies in unraveling the
complexities of the signaling network and their implications for ovarian cancer treatment. By designing a
comprehensive Python pipeline for data extraction, establishing a relational database for data management,
and applying advanced algorithms for analysis, we have advanced our understanding of the regulatory
mechanisms underlying cancer biology. The significance of these findings lies in their potential to inform
therapeutic strategies and guide future research directions. As I continue to explore the intricacies of
signaling networks, we move closer to developing targeted therapies that can improve patient outcomes and
enhance the field of cancer research as a whole. The evidence presented here reflects a deeper understanding
of the molecular underpinnings of ovarian cancer, underscoring the importance of interdisciplinary
approaches in addressing the challenges posed by this disease.

5.1.1 Relationships, Trends, and Generalizations

The findings elucidate significant relationships and trends within the ovarian cancer network, particularly
highlighting the central roles of key nodes such as p53-p, NF-κB, and ATM. The centrality of these nodes
underscores their pivotal contributions to the network’s functionality and stability.

Centrality measures, including in-degree and out-degree metrics, reveal the prominence of these nodes
within the network. For instance, p53-p exhibited a high in-degree of 10 and an out-degree of 8, indicating
its involvement in multiple regulatory processes and signaling pathways. Both NF-κB and ATM also
demonstrated significant centrality, further reinforcing their essential roles in maintaining the network’s
integrity and biological function.

The modular structure of the network, uncovered through community detection using the Louvain
algorithm, suggests that nodes with similar biological functions tend to cluster into distinct communities.
Notably, communities centered around NF-κB, p53, and ATM highlight specific groups of nodes engaged
in inflammation, apoptosis, and DNA damage repair, respectively. This modularity illustrates the
interconnectedness of various biological processes within the network, where nodes within the same
community are more likely to interact than with those outside their group.

Motif analysis revealed recurring subgraphs involving nodes such as TNFα and IKKα. These motifs
represent common patterns of interactions, providing insights into the prevalent regulatory themes within
the network. Identifying such motifs aids in understanding the structural units that contribute to the
network’s overall functionality.
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The integration of the random walk model and PageRank algorithm further elucidated the significance of
specific nodes in maintaining network connectivity and stability. For instance, nodes such as Wip1 and
Apoptosis emerged as central to network functionality, characterized by high visit frequencies and elevated
PageRank scores. These nodes function as critical junctions within the network; their perturbation could
lead to significant disruptions in network behavior. The high visit frequencies suggest that random walks
frequently traverse these nodes, highlighting their role as conduits for information flow, while elevated
PageRank scores reinforce their prominence in the network’s connectivity.

Furthermore, the network’s robustness was evaluated through simulations of central node removal. These
assessments revealed specific vulnerabilities, emphasizing the potential impact of targeting these nodes
for therapeutic interventions. For example, the removal of p53-p resulted in a substantial decrease in
overall network connectivity, underscoring its crucial role.

In summary, this study delineates the intricate relationships and trends within the ovarian cancer network,
identifying central nodes such as p53-p, NF-κB, and ATM as vital for maintaining the network’s structure
and functionality. The network’s modular characteristics, recurrent motifs, and the significance of central
nodes as demonstrated by random walk and PageRank analyses collectively provide a comprehensive
understanding of network dynamics. These insights are instrumental in identifying potential therapeutic
targets and elucidating the underlying mechanisms of ovarian cancer progression.

5.1.2 Expectations and Mechanisms

The patterns identified within the ovarian cancer network align with the established biological functions
of key nodes. The central role of p53-p in this network reflects its well-documented involvement in
regulating apoptosis and cell cycle checkpoints. As a critical tumor suppressor gene, p53-p orchestrates
responses to cellular stress, including mechanisms for inducing cell cycle arrest, promoting DNA repair,
and initiating apoptosis in cases of irreparable damage. Its prominence in the network highlights its
fundamental importance in preserving cellular integrity and preventing oncogenesis.

Moreover, the central positions of NF-κB and ATM in the network underscore their vital functions in
inflammation and the DNA damage response, respectively. NF-κB serves as a pivotal regulator of immune
response and inflammation, possessing dual roles in promoting cell survival and proliferation while also
facilitating apoptotic pathways under specific conditions. Its high centrality suggests a significant impact
on modulating the tumor microenvironment, influencing processes such as immune evasion and cancer
progression. ATM plays an essential role in the DNA damage response by coordinating a network of
downstream effectors that facilitate DNA repair and cell cycle regulation, thereby ensuring genomic
stability. The centrality of ATM in the ovarian cancer network reflects its crucial function in managing
genotoxic stress and preserving the integrity of the genome.

The underlying mechanisms of these centrality patterns are elucidated through the integration of key
regulatory pathways. p53-p serves as an integrative node, responding to signals related to cellular stress
and DNA damage and facilitating a coordinated response to maintain cellular homeostasis. Its substantial
in-degree and out-degree values reveal extensive interactions with other components of the network,
emphasizing its integrative role in stress response mechanisms. NF-κB modulates various pathways in the
tumor microenvironment, influencing survival and proliferation while affecting immune responses, further
underscoring its significance in cancer biology. ATM governs the DNA damage response, activating
cascades of proteins involved in repair and cell cycle control, which are essential for maintaining genomic
integrity.

The integration of random walk modeling and PageRank analysis provides further insights into the
roles of these nodes in network connectivity and stability. The identification of nodes like Wip1 and
Apoptosis, which demonstrate high visit frequencies and elevated PageRank scores, underscores their
critical functions within the network. The random walk model effectively simulates signal transduction
pathways, revealing nodes that frequently facilitate these processes. High PageRank scores indicate the
prominence of these nodes, reinforcing their role in ensuring robust information flow and network stability.

Boolean modeling and iterative updates also enrich our understanding of the dynamics within the network.
Simulations demonstrated the capacity to model complex biological interactions, offering insights into the
regulatory mechanisms governing network stability. Illustrative figures such as ?? and ?? capture the
dynamic behavior of the network across various iterations, showcasing the iterative nature of responses to
regulatory changes.
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Moreover, the training of models using parameters such as epochs, batch size, and accuracy metrics has
yielded valuable perspectives on node classification strategies. Improvements in training accuracy and
reductions in loss over epochs reflect effective learning in node classification, while significant decreases
in training loss indicate successful model refinement. These insights reinforce the model’s robustness in
capturing complex interactions.

To enhance future research, recommendations include validating models on independent testing sets to
ensure generalizability, optimizing hyperparameters for improved performance, and refining data quality
and preprocessing methods. Further investigation of misclassified nodes, along with the incorporation of
additional graph-based features or ensemble approaches, could enhance model accuracy and interpretability.

In conclusion, this study delineates the intricate molecular mechanisms underlying ovarian cancer by
elucidating the roles of central nodes such as p53-p, NF-κB, and ATM. The utilization of diverse analytical
methods advances our understanding of the dynamics within the ovarian cancer network. These insights
are pivotal for identifying potential therapeutic targets and for the development of targeted interventions
aimed at improving clinical outcomes in ovarian cancer.

5.1.3 Agreement with Previous Work
The results of this study align with existing literature that emphasizes the crucial roles of p53, NF-κB,
and ATM in the context of cancer biology. Previous research has consistently highlighted the significance
of these molecules in ovarian cancer, and our analysis further corroborates and expands upon these
findings by offering a detailed examination of their interactions and central positions within the signaling
network.

p53 is a well-established tumor suppressor gene, recognized for its essential functions in cell cycle regulation
and apoptosis. Prior studies have shown that mutations in p53 frequently occur across various cancer
types, including ovarian cancer, leading to impaired cellular responses to DNA damage and promoting
tumorigenesis [123, 124]. Our findings reinforce these conclusions by confirming the elevated centrality of
p53 within the ovarian cancer network, underscoring its vital role in maintaining cellular integrity and
thwarting malignant progression.

Similarly, NF-κB has been extensively documented for its dual role in inflammation and immune response
regulation. Research indicates that NF-κB not only fosters tumor cell survival and proliferation but
also influences inflammatory pathways that are critical in the tumor microenvironment [125, 126]. The
findings of our study, which position NF-κB prominently within the ovarian cancer network, further
validate these earlier assertions and illustrate its significant role in modulating cancer progression.

The ATM (Ataxia-Telangiectasia Mutated) kinase, which is pivotal for the DNA damage response and
repair, has also been implicated in ovarian cancer through its essential function in preserving genomic
stability [127, 128]. Our results corroborate earlier research by demonstrating the centrality of ATM
within the network, confirming its critical role in orchestrating DNA repair mechanisms and regulating
cell cycle checkpoints. This functionality is vital for sustaining genomic integrity, emphasizing ATM as
an important factor in ovarian cancer biology.

In addition to confirming previous findings, this study employs advanced methodologies such as motif
analysis, Boolean modeling, and PageRank algorithms, which contribute to a deeper understanding of
the ovarian cancer network.

Motif analysis has enabled the identification of recurring subgraphs and interaction patterns that reveal
essential regulatory mechanisms within the network. These motifs, particularly those involving nodes like
TNFa and IKKKa, highlight common themes in the network’s structure and functionality [129].

Furthermore, Boolean modeling has facilitated the simulation of the network’s dynamic behavior, effectively
capturing complex regulatory interactions. The iterative updates and visualizations produced through
Boolean simulations have provided valuable insights into how the network responds to perturbations,
elucidating the regulatory mechanisms that underpin network stability [120].

The application of PageRank algorithms has also contributed significantly to understanding node impor-
tance within the network. The resulting PageRank scores have identified Wip1 and Apoptosis as critical
nodes for maintaining network functionality, highlighting their roles in network resilience [130]. This
method enhances our comprehension of the hierarchical structure within the network, pinpointing key
nodes central to its dynamics.
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By integrating these advanced analytical techniques, this study provides a more comprehensive view of
the roles of p53, NF-κB, and ATM in ovarian cancer. The results not only reaffirm previous findings
but also elucidate the intricate interactions and regulatory mechanisms involving these pivotal molecules,
offering critical insights for potential therapeutic targets and strategies in cancer treatment.

5.1.4 Interpretation in Context of Research Objectives

The primary objective of this study was to develop and implement sophisticated methodologies for
identifying critical variables within complex mathematical models of biological systems. This objective
was realized through a comprehensive analysis of the ovarian cancer network, where we meticulously
examined central nodes and overall stability to address pivotal research questions concerning the regulatory
components and their roles in ovarian cancer pathology.

Methodological Framework

Our approach began with the design of a Python pipeline dedicated to data extraction, which facilitated
the systematic collection of relevant data files. Following this, we constructed a custom database to store
the extracted data, ensuring efficient data management and accessibility. This database allowed for the
filtering and arrangement of data in a structured format, which was essential for subsequent visualization
and analysis in Cytoscape. Finally, we transferred the organized data back to Python to apply various
algorithms for a thorough analysis of the network.

Central Nodes

The results of our study contribute significantly to the field of biological modeling by highlighting critical
variables and interaction patterns within the ovarian cancer network. The identification of central nodes
such as p53-p, NF-κB, and ATM exemplifies the efficacy of our methodology in uncovering essential
components that govern network dynamics. These central nodes reveal underlying themes in the network’s
architecture, providing deeper insights into the interactions that sustain the network’s integrity and
functionality.

Analytical Techniques and Their Impact

The implementation of advanced analytical techniques, including random walk models, PageRank analysis,
and Boolean simulations, significantly enhances our understanding of the ovarian cancer network. The
random walk model elucidates the pathways through which signals traverse the network, revealing nodes
that frequently act as intermediaries in signal transduction processes. This model underscores the
importance of nodes like p53-p, which, due to its high centrality, plays a pivotal role in orchestrating
cellular responses to stress and damage.

PageRank analysis further refines our understanding by quantifying the prominence and connectivity
of network nodes. The elevated PageRank scores of nodes such as Wip1 and Apoptosis highlight their
critical roles in maintaining network stability and functionality. These findings illustrate the hierarchical
structure of the network and identify key nodes integral to its dynamics.

Boolean simulations provide a robust framework for capturing the dynamic behavior of the network under
various perturbations. The iterative updates and visualizations generated from these simulations offer
insights into the regulatory mechanisms that govern network stability and response to changes. This
approach has been instrumental in simulating the effects of perturbations on the network and elucidating
the complex interactions among network components.

Implications for Therapeutic Intervention

The evidence presented by these analyses not only confirms the significance of central nodes such as
p53-p, NF-κB, and ATM but also deepens our understanding of their specific roles in ovarian cancer.
The elucidation of interaction patterns and network dynamics suggests potential targets for therapeutic
intervention. For instance, the central role of p53-p in regulating apoptosis and cell cycle checkpoints
highlights its potential as a target for therapies aimed at restoring normal cellular responses. Similarly,
the prominent position of NF-κB in modulating the tumor microenvironment and its involvement in
inflammatory pathways indicate that targeting its signaling pathways could offer novel strategies for
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combating ovarian cancer. Furthermore, the centrality of ATM in DNA damage response underscores
its importance as a therapeutic target for enhancing the effectiveness of DNA-damaging agents used in
cancer treatment.

Podsumowanie

Niniejsza praca doktorska opracowała i zweryfikowała kompleksowe podejście obliczeniowe do systematy-
cznej identyfikacji kluczowych elementów regulacyjnych w złożonych sieciach biologicznych, ze szczególnym
uwzględnieniem raka jajnika. Poprzez integrację danych multi-omics z uzupełniającymi technikami
obliczeniowymi - w tym modelowaniem sieci boolowskich, analizą PageRank, metodą losowych spacerów
oraz rekurencyjnymi sieciami neuronowymi (RCNN) - badanie to posuwa naprzód biologię systemową i
dostarcza praktycznych wniosków dla onkologii precyzyjnej.

Hipoteza 1 została w pełni potwierdzona. We wszystkich zastosowanych warstwach obliczeniowych
kanoniczne czynniki regulacyjne, takie jak NF-κB, p53 i ATM, konsekwentnie wyłaniały się jako węzły
centralne, co potwierdzono za pomocą miar topologicznych sieci i symulacji dynamicznych. Zbieżność
wyników metod boolowskich, analizy PageRank i częstości odwiedzin w losowych spacerach podkreśliła
biologiczne znaczenie tych węzłów, zgodnie z hipotezą (Rozdziały 4.9-4.12, 4.15, 5).

Hipoteza 2 również znalazła potwierdzenie. Integracja danych multi-omics z analizą centralności sieciowej
umożliwiła identyfikację słabo zbadanych elementów regulacyjnych, takich jak IKKα i Wip1. Węzły te
wykazywały wysoką centralność, znaczącą częstość odwiedzin w modelach stochastycznych i związek z
potencjalnym znaczeniem funkcjonalnym w sieciach raka jajnika, co uzasadnia ich priorytetową walidację
eksperymentalną (Rozdziały 4.12.12, 4.12.13, 5).

Hipoteza 3 została potwierdzona dzięki rygorystycznym testom odpornościowym i sprawdzianowi uogól-
nialności na różne sieci. Zastosowanie potoku analitycznego do dodatkowych kontekstów biologicznych, w
tym do szlaku cyklu komórkowego i szlaku MAPK, konsekwentnie uwidaczniało kluczowe regulatory, takie
jak cyklina D, EGFR i ERK. Ponadto, sieci wykazały funkcjonalną odporność, zachowując co najmniej
85% łączności przy losowych perturbacjach węzłów, potwierdzając adaptacyjność frameworka (Rozdziały
4.14.4-4.14.5, 4.11.9).

Poza weryfikacją hipotez, praca ta wnosi modularny, reprodukowalny potok analityczny oparty na
Pythonie, zdolny do skalowania na różne systemy biologiczne. Metodologia integruje komponenty grafowo-
teoretyczne, dynamiczne i uczenia maszynowego, dostarczając uniwersalnej platformy do identyfikacji
kluczowych regulatorów, generowania hipotez i wspierania odkrywania celów terapeutycznych.

Kierunki przyszłych badań obejmują eksperymentalną walidację nowo zidentyfikowanych węzłów (np.
Wip1 i IKKα) przy użyciu technologii CRISPR/Cas9 i RNAi, integrację danych single-cell i temporalnych
omics dla lepszej rozdzielczości analizy dynamiki sygnałów oraz rozszerzenie na inne modele patologiczne.
Połączenie tego potoku z symulacjami farmakokinetycznymi i farmakodynamicznymi otwiera drogę do
modelowania predykcyjnego interwencji terapeutycznych.

Podsumowując, niniejsza praca dostarcza rygorystycznego, opartego na danych podejścia łączącego
modelowanie obliczeniowe z translacyjnymi badaniami nad nowotworami. Zweryfikowany framework
umożliwia systematyczną priorytetyzację kluczowych elementów regulacyjnych w złożonych sieciach
biologicznych, stanowiąc podstawę dla bardziej ukierunkowanych i skutecznych strategii terapeutycznych
w medycynie precyzyjnej.
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Appendix A

Supplementary Tables

Python Script

The following Python script downloads and processes PathwayCommons data, formats it into a DataFrame,
and saves it as a CSV file.

import pandas as pd
import contextlib
import urllib.request
import gzip
from setuptools import setup

# Package setup configuration
setup(

name=’my_library ’,
version=’0.1’,
packages =[’my_library ’],
install_requires =[’pandas ’]

)

# Function to download and process PathwayCommons data
def DownloadAndProcessPathwayCommonsData(filename="PathwayCommons.csv"):

url = "http :// www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.All.
BINARY_SIF.gz"

output_file = "PathwayCommons.gz"

# Downloading the file
urllib.request.urlretrieve(url , output_file)

# Extract and process data
with gzip.open(output_file , ’rt’) as f:

data = [line.strip ().split("\t") for line in f.readlines ()]

# Convert data into a pandas DataFrame
df = pd.DataFrame(data , columns =["Participant A", "Interaction Type", "

Participant B", "Source", "PubMed ID", "Pathway Names"])

# Filtering data based on interaction types
interaction_types = {"controls -state -change -of", "controls -phosphorylation -of",

"controls -expression -of"}
df_filtered = df[df["Interaction Type"].isin(interaction_types)]

# Drop unnecessary columns
df_filtered = df_filtered [["Participant A", "Participant B", "Interaction Type"

]]

# Save to CSV
df_filtered.to_csv(filename , index=False)

return "Data downloaded and processed successfully."

# Main execution
if __name__ == "__main__":
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result = DownloadAndProcessPathwayCommonsData(filename="D:// ProjectFiles //
PathwayCommon.csv")

print(result)

# Encapsulating in a class
class PathwayDataLoader:

def __init__(self , filename="PathwayCommons.csv"):
self.filename = filename

def download_and_process(self):
return DownloadAndProcessPathwayCommonsData(self.filename)

# Using the class for data processing
if __name__ == "__main__":

loader = PathwayDataLoader(filename="D:// ProjectFiles // PathwayCommon.csv")
result = loader.download_and_process ()
print(result)

Listing A.1: Listing A.5: Encapsulating in a class

Script Summary

Python Script

import pandas as pd
import urllib.request
import gzip
import contextlib

# Function to download and process CellTalk data
def DownloadAndProcessCellTalkData(filename="CellTalk.csv"):

url = "https :// example.com/CellTalkData.gz"
output_file = "CellTalkData.gz"

# Downloading the file
urllib.request.urlretrieve(url , output_file)

# Extract and process data
with gzip.open(output_file , ’rt’) as f:

data = [line.strip ().split("\t") for line in f.readlines ()]

# Convert data into a pandas DataFrame
df = pd.DataFrame(data , columns =[

"lr_pair", "ligand_gene_symbol", "receptor_gene_symbol",
"ligand_gene_id", "receptor_gene_id", "ligand_ensembl_protein_id",
"receptor_ensembl_protein_id", "ligand_ensembl_gene_id",
"receptor_ensembl_gene_id", "evidence"

])

# Save to CSV
df.to_csv(filename , index=False)

return "Data downloaded and processed successfully."

# Main execution
if __name__ == "__main__":

result = DownloadAndProcessCellTalkData(filename="D:// ProjectFiles // CellTalk.csv
")

print(result)

# Encapsulating in a class
class CellTalkDataLoader:

def __init__(self , filename="CellTalk.csv"):
self.filename = filename

def download_and_process(self):
return DownloadAndProcessCellTalkData(self.filename)

# Using the class for data processing
if __name__ == "__main__":
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loader = CellTalkDataLoader(filename="D:// ProjectFiles // CellTalk.csv")
result = loader.download_and_process ()
print(result)

Listing A.2: Listing A.6: Processing CellTalk Data

A.0.1 Processing AnimalTF Data

import pandas as pd
import urllib.request
import gzip

def DownloadAndProcessAnimalTFData(filename="AnimalTFData.csv"):
url = "https :// example.com/AnimalTFData.gz"
output_file = "AnimalTFData.gz"

urllib.request.urlretrieve(url , output_file)

with gzip.open(output_file , ’rt’) as f:
data = [line.strip ().split("\t") for line in f.readlines ()]

df = pd.DataFrame(data , columns =["Species", "Symbol", "Ensembl", "Family", "
Protein", "Entrez_ID"])

df.to_csv(filename , index=False)
return "AnimalTF data downloaded and processed successfully."

Listing A.3: Processing AnimalTF Data

A.0.2 Processing TCGA-OV Data

import pandas as pd
import requests
import io

def DownloadAndProcessTCGA_OVData ():
endpoint = "https ://api.gdc.cancer.gov/files"
filters = {

"filters": {
"op": "and",
"content": [

{"op": "in", "content": {"field": "cases.project.project_id", "value
": ["TCGA -OV"]}},

{"op": "in", "content": {"field": "files.data_format", "value": ["
BAM"]}},

{"op": "in", "content": {"field": "files.experimental_strategy", "
value": ["WGS"]}}

]
},
"format": "TSV",
"fields": "file_id ,file_name ,data_category ,data_type ,md5sum ,file_size",
"size": "1000"

}

response = requests.post(endpoint , json=filters , headers ={"Content -Type": "
application/json"})

df_wgs = pd.read_csv(io.StringIO(response.text), sep="\t")
df_wgs = df_wgs[df_wgs["data_type"] == "Aligned Reads"]
df_wgs.to_csv("TCGA -OV_WGS_files.csv", index=False)
return "TCGA -OV WGS data downloaded and processed successfully."

Listing A.4: Processing TCGA-OV Data

A.0.3 Automated Data Extraction from GDC TCGA-OV
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Python Script for Extracting TCGA-OV Ovarian Cancer Data

Below is the Python script used for automatically querying and downloading ovarian cancer data from
the Genomic Data Commons (GDC) TCGA-OV project.

1 import requests
2 import json
3 import pandas as pd
4 import os
5

6 # Define the base URL for the GDC API
7 GDC_API = "https :// api.gdc.cancer.gov/"
8

9 # Step 1: Define the query for TCGA OV data
10 def query_gdc(project="TCGA -OV", data_type="Gene Expression Quantification",

workflow_type="HTSeq - Counts"):
11 filters = {
12 "op": "and",
13 "content": [
14 {
15 "op": "in",
16 "content": {
17 "field": "cases.project.project_id",
18 "value": [project]
19 }
20 },
21 {
22 "op": "in",
23 "content": {
24 "field": "files.data_type",
25 "value": [data_type]
26 }
27 },
28 {
29 "op": "in",
30 "content": {
31 "field": "files.analysis.workflow_type",
32 "value": [workflow_type]
33 }
34 }
35 ]
36 }
37

38 params = {
39 "filters": json.dumps(filters),
40 "format": "json",
41 "size": "1000", # Limit results to 1000 entries
42 "fields": "file_id ,file_name ,cases.case_id ,cases.submitter_id ,data_type

"
43 }
44

45 response = requests.get(GDC_API + "files", params=params)
46

47 if response.status_code == 200:
48 print("Query successful!")
49 return response.json()
50 else:
51 print(f"Error: {response.status_code}")
52 return None
53

54 # Step 2: Parse and save the metadata
55 def save_metadata(metadata , output_filename="gdc_tcga_ov_metadata.csv"):
56 data = [
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57 {
58 "file_id": file_entry["file_id"],
59 "file_name": file_entry["file_name"],
60 "case_id": file_entry["cases"][0]["case_id"],
61 "submitter_id": file_entry["cases"][0]["submitter_id"],
62 "data_type": file_entry["data_type"]
63 }
64 for file_entry in metadata["data"]["hits"]
65 ]
66

67 df = pd.DataFrame(data)
68 df.to_csv(output_filename , index=False)
69 print(f"Metadata saved to {output_filename}")
70 return df
71

72 # Step 3: Download the files based on file IDs
73 def download_files(file_ids , download_dir="gdc_tcga_ov_data"):
74 os.makedirs(download_dir , exist_ok=True)
75

76 for file_id in file_ids:
77 download_url = f"{GDC_API}data/{ file_id}"
78 response = requests.get(download_url , stream=True)
79 if response.status_code == 200:
80 file_path = os.path.join(download_dir , f"{file_id }.tar.gz")
81 with open(file_path , "wb") as f:
82 for chunk in response.iter_content(chunk_size =1024):
83 if chunk:
84 f.write(chunk)
85 print(f"Downloaded {file_id} to {file_path}")
86 else:
87 print(f"Failed to download file {file_id}")
88

89 # Main function to execute the steps
90 def main():
91 metadata = query_gdc ()
92 if metadata:
93 df_metadata = save_metadata(metadata)
94 file_ids = df_metadata["file_id"]. tolist ()
95 download_files(file_ids)
96

97 if __name__ == "__main__":
98 main()

Listing A.5: Python Script for TCGA-OV Data Extraction

1 import networkx as nx
2 import matplotlib.pyplot as plt
3 from matplotlib.lines import Line2D
4 import numpy as np
5

6 # Create the network
7 G = nx.DiGraph ()
8

9 # Add edges with interaction types
10 edges = [
11 ("p53", "p53 -p", "phosphorylation"),
12 ("p53 mRNA", "p53", "translation"),
13 # ... (all other edges from your data)
14 ("NFkB", "Wip1 mRNA", "transcription")
15 ]
16

17 for source , target , interaction in edges:
18 G.add_edge(source , target , interaction=interaction)
19

20 # Add any isolated nodes
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21 all_nodes = {
22 ’p53’, ’p53 -p’, ’p53 mRNA’, # ... (all other nodes)
23 ’pre -miR -16’, ’miR -16’
24 }
25

26 for node in all_nodes:
27 if node not in G:
28 G.add_node(node)

Listing A.6: Network construction and basic visualization

1 # Set up the figure with larger size
2 plt.figure(figsize =(24, 18))
3

4 # Define node positions using spring layout with adjustments
5 pos = nx.spring_layout(G, k=1.5, seed=42, iterations =200, scale =2)
6

7 # Define node colors and shapes based on function
8 node_colors = []
9 node_shapes = []

10 for node in G.nodes():
11 if ’mRNA’ in node:
12 node_colors.append(’#FFA07A ’) # Light salmon
13 node_shapes.append(’s’) # Square
14 elif node in [’apoptosis ’, ’cell cycle arrest ’]:
15 # ... (other node coloring rules)
16 else:
17 node_colors.append(’#D3D3D3 ’) # Light gray
18 node_shapes.append(’o’) # Circle
19

20 # Draw nodes with different shapes
21 for shape in set(node_shapes):
22 nodes = [node for node , s in zip(G.nodes(), node_shapes) if s == shape]
23 nx.draw_networkx_nodes(G, pos , nodelist=nodes ,
24 node_shape=shape ,
25 node_color =[ node_colors[list(G.nodes()).index(node)]
26 for node in nodes],
27 node_size =2000, alpha =0.9)
28

29 # Draw edges with different styles
30 for i, (u, v, data) in enumerate(G.edges(data=True)):
31 nx.draw_networkx_edges(G, pos , edgelist =[(u, v)],
32 width=edge_widths[i],
33 edge_color=edge_colors[i],
34 arrowsize =25,
35 arrowstyle=’->’,
36 connectionstyle=’arc3 ,rad =0.2’)
37

38 # Save high -quality image
39 plt.savefig(’p53_signaling_network_improved.png’,
40 dpi=600, bbox_inches=’tight’, transparent=True)

Listing A.7: Enhanced visualization with custom styling

1 # Biochemical Flowchart Layout
2 def create_biochemical_layout(G):
3 pos = {
4 # Input signals
5 ’IR’: (0, 10), ’TNFa’: (0, 8),
6 # DNA damage response
7 ’DSB’: (3, 11), ’ATM -p’: (6, 11),
8 # ... (other positioned nodes)
9 }

10 # Position remaining nodes programmatically
11 y_pos = 3
12 x_pos = 15
13 for node in G.nodes():
14 if node not in pos:
15 pos[node] = (x_pos , y_pos)
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16 y_pos -= 0.8
17 if y_pos < -5:
18 y_pos = 3
19 x_pos += 3
20 return pos
21

22 # Molecular Constellation Layout
23 def create_constellation_layout(G):
24 pos = {’p53’: (0,0)}
25 functional_groups = {
26 ’DNA Damage ’: [’DSB’, ’ATM -p’, ...],
27 # ... (other groups)
28 }
29 # Position functional groups radially
30 # ... (positioning code)
31 return pos
32

33 # Generate and save all visualizations
34 layouts = {
35 ’biochemical ’: create_biochemical_layout ,
36 ’constellation ’: create_constellation_layout ,
37

38 }
39

40 for name , layout_func in layouts.items():
41 plt.figure(figsize =(20, 20))
42 pos = layout_func(G)
43 # Draw network with this layout
44

45 plt.savefig(f’p53_{name}_layout.png’, dpi =300)

Listing A.8: Alternative layout visualizations

1 import networkx as nx
2 import matplotlib.pyplot as plt
3 from pyvis.network import Network
4

5 # [Previous node and interaction definitions ...]
6

7 # Create matplotlib visualization
8 plt.figure(figsize =(25, 25))
9 pos = nx.spring_layout(G, k=0.5, seed =42) # k controls node spacing

10

11 # Color nodes by function
12 node_colors = []
13 for node in G.nodes():
14 if ’mRNA’ in node:
15 node_colors.append(’orange ’)
16 elif ’p’ in node or ’ac’ in node or ’ub’ in node:
17 node_colors.append(’lime’)
18 elif node in [’apoptosis ’, ’cell cycle arrest ’]:
19 node_colors.append(’purple ’)
20 elif ’p53’ in node:
21 node_colors.append(’red’)
22 else:
23 node_colors.append(’skyblue ’)
24

25 nx.draw(G, pos , with_labels=True , node_size =1200,
26 node_color=node_colors , font_size=8,
27 edge_color=’gray’, width =1.0, arrowsize =20,
28 arrowstyle=’->’)
29

30 plt.title("Comprehensive p53 Signaling Network", size =20)
31 plt.tight_layout ()
32 plt.savefig(’p53_signaling_network.png’, dpi=300, bbox_inches=’tight’)
33 plt.close()
34

35 # Create interactive visualization
36 net = Network(notebook=True , height="900px", width="100%", directed=True , bgcolor=’

#222222 ’)
37 net.from_nx(G)
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38

39 # Customize node appearance
40 for node in net.nodes:
41 if ’mRNA’ in node[’label’]:
42 node[’color ’] = ’orange ’
43 node[’shape ’] = ’diamond ’
44 node[’size’] = 20
45 elif ’p’ in node[’label’] or ’ac’ in node[’label ’] or ’ub’ in node[’label’]:
46 node[’color ’] = ’lime’
47 node[’shape ’] = ’triangle ’
48 elif node[’label’] in [’apoptosis ’, ’cell cycle arrest ’]:
49 node[’color ’] = ’purple ’
50 node[’shape ’] = ’star’
51 node[’size’] = 30
52 elif ’p53’ in node[’label’]:
53 node[’color ’] = ’red’
54 node[’size’] = 25
55 else:
56 node[’color ’] = ’skyblue ’
57

58 node[’font’] = {’size’: 10, ’color ’: ’white’}
59

60 # Customize edge appearance
61 for edge in net.edges:
62 edge[’width ’] = 1.5
63 edge[’color ’] = ’#cccccc ’
64 edge[’title ’] = edge[’interaction ’] # Show interaction type on hover
65

66 net.show_buttons(filter_ =[’physics ’, ’nodes’, ’edges’])
67 net.save_graph(’interactive_p53_network.html’)
68

69 print("\nVisualizations created:")
70 print("- Static visualization saved as ’p53_signaling_network.png’")
71 print("- Interactive visualization saved as ’interactive_p53_network.html’")

Listing A.9: Complete Python implementation of p53 network construction, analysis, and visualization

Supplementary Code

1 import os
2 import numpy as np
3 import tensorflow as tf
4 from tensorflow.keras.models import Sequential
5 from tensorflow.keras.layers import Conv1D , MaxPooling1D , LSTM , Dense ,

Dropout , GlobalAveragePooling1D
6 from tensorflow.keras.callbacks import EarlyStopping
7 import networkx as nx
8 import matplotlib.pyplot as plt
9 from sklearn.preprocessing import StandardScaler

10 from sklearn.metrics import classification_report
11 import shap
12

13 # To ensure reproducibility
14 np.random.seed (42)
15 tf.random.set_seed (42)
16

17 # Define the graph
18 G = nx.DiGraph ()
19 G.add_nodes_from(
20 [’TNFa’, ’TNFR1 ’, ’IKKKa’, ’IKKa’, ’NFkB’, ’p53’, ’p53 -p’, ’A20

mRNA’, ’A20’, ’IkBa mRNA’,
21 ’Mdm2 cyt’, ’IkBa’, ’Wip mRNA’, ’Wip1’, ’p53 mRNA’, ’ATM mRNA’, ’

ATM’, ’ATM -p’, ’ATMa -p’, ’MRN -p’,
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22 ’Chk2 -p’, ’CREB’, ’KSRP -p’, ’AKT -p’, ’Mdm2 -p nuc’, ’PTEN mRNA’, ’
PTEN’, ’PIP2’, ’PIP3’, ’Bax mRNA’,

23 ’Bax’, ’apoptosis ’, ’Mdm2 mRNA’, ’p21 mRNA’, ’p21’, ’cell cycle
arrest ’, ’Chk2 mRNA’, ’Chk2’, ’IR’, ’DSB’,

24 ’miR -16’, ’pre -miR -16’])
25 G.add_edges_from ([
26 (’TNFa’, ’TNFR1 ’), (’TNFR1’, ’IKKKa ’), (’IKKKa’, ’IKKa’),
27 (’IKKa’, ’NFkB’), (’TNFR1’, ’NFkB’), (’ATMa -p’, ’IKKa’), (’p53’, ’

p53 -p’),
28 (’PIP2’, ’PIP3’), (’p53 mRNA’, ’p53’), (’DSB’, ’ATM -p’), (’p53 -p’,

’ATM mRNA’),
29 (’ATMa -p’, ’p53 -p’), (’ATMa -p’, ’AKT -p’), (’ATMa -p’, ’KSRP -p’), (’

ATMa -p’, ’CREB’),
30 (’ATMa -p’, ’Chk2 -p’), (’ATM -p’, ’MRN -p’), (’DSB’, ’MRN -p’), (’CREB’

, ’ATM mRNA’),
31 (’MRN -p’, ’ATMa -p’), (’CREB’, ’Wip mRNA’), (’p53 -p’, ’Chk2 mRNA’),

(’p53 -p’, ’p21 mRNA’),
32 (’p53 -p’, ’PTEN mRNA’), (’p53 -p’, ’Wip1 mRNA’), (’Wip1 mRNA’, ’Wip1

’), (’KSRP -p’, ’pre -miR -16’),
33 (’KSRP -p’, ’ATM -p’), (’Chk2 mRNA’, ’Chk2’), (’Chk2 -p’, ’p53 -p’), (’

A20’, ’Bax mRNA’),
34 (’Bax mRNA’, ’Bax’), (’Bax’, ’apoptosis ’), (’p21 mRNA’, ’p21’), (’

p21’, ’cell cycle arrest ’),
35 (’IR’, ’DSB’), (’PTEN’, ’PIP2’), (’PIP3’, ’AKT -p’), (’AKT -p’, ’Mdm2

-p cyt’),
36 (’IKKa’, ’NFkB’), (’NFkB’, ’IkBa mRNA’), (’NFkB’, ’p53 mRNA’), (’

NFkB’, ’Wip mRNA’),
37 (’IkBa mRNA’, ’IkBa’), (’IkBa’, ’Wip1 mRNA’), (’PTEN mRNA’, ’PTEN’)

, (’pre -miR -16’, ’miR -16’),
38 (’A20 mRNA’, ’A20’), (’ATM mRNA’, ’ATM’), (’p53 -p’, ’Bax mRNA’), (’

p53 -p’, ’Mdm2 mRNA’),
39 (’Mdm2 mRNA’, ’Mdm2 -p cyt’), (’Mdm2 cyt’, ’Mdm2 -p cyt’), (’Mdm2 -p

cyt’, ’Mdm2 -p nuc’),
40 (’Chk2’, ’Chk2 -p’), (’ATM -p’, ’ATM mRNA’), (’ATM’, ’ATM -p’), (’p53

mRNA’, ’p53’), (’p53’, ’p53 -p’)
41 ])
42

43 # Generate the adjacency matrix
44 adj_matrix = nx.adjacency_matrix(G).todense ()
45 adj_matrix = np.array(adj_matrix)
46

47 # Generate node features using degree centrality , clustering
coefficient , and betweenness centrality

48 degree_centrality = np.array([nx.degree_centrality(G)[node] for node in
G.nodes()])

49 clustering_coefficient = np.array ([nx.clustering(G.to_undirected ())[
node] for node in G.nodes()])

50 betweenness_centrality = np.array ([nx.betweenness_centrality(G)[node]
for node in G.nodes()])

51

52 # Combine the features into a feature matrix
53 feature_matrix = np.vstack (( degree_centrality , clustering_coefficient ,

betweenness_centrality)).T
54

55 # Standardize features
56 scaler = StandardScaler ()
57 feature_matrix = scaler.fit_transform(feature_matrix)
58
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59 # Split the data into training (70%), validation (15%), and test (15%)
sets

60 num_nodes = adj_matrix.shape [0]
61 indices = np.arange(num_nodes)
62 np.random.shuffle(indices)
63

64 train_idx = indices [:int (0.7 * num_nodes)]
65 val_idx = indices[int (0.7 * num_nodes):int (0.85 * num_nodes)]
66 test_idx = indices[int (0.85 * num_nodes):]
67

68 X_train = feature_matrix[train_idx ]. reshape(-1, 3, 1)
69 X_val = feature_matrix[val_idx ]. reshape(-1, 3, 1)
70 X_test = feature_matrix[test_idx ]. reshape(-1, 3, 1)
71

72 # Placeholder for target labels (binary classification: 0 or 1 for
important nodes)

73 y_train = np.random.randint(0, 2, size=len(train_idx))
74 y_val = np.random.randint(0, 2, size=len(val_idx))
75 y_test = np.random.randint(0, 2, size=len(test_idx))
76

77 # Define the model
78 model = Sequential ()
79

80 # Convolutional layer
81 model.add(Conv1D(filters =32, kernel_size =2, activation=’relu’,

input_shape =(3, 1)))
82 model.add(MaxPooling1D(pool_size =2))
83

84 # LSTM layer
85 model.add(LSTM (128, return_sequences=False))
86

87 # Fully connected layer
88 model.add(Dense (64, activation=’relu’))
89 model.add(Dropout (0.5))
90

91 # Output layer
92 model.add(Dense(1, activation=’sigmoid ’))
93

94 # Compile the model
95 model.compile(optimizer=’adam’, loss=’binary_crossentropy ’, metrics =[’

accuracy ’])
96

97 # Add early stopping to prevent overfitting
98 early_stopping = EarlyStopping(monitor=’val_loss ’, patience=5,

restore_best_weights=True)
99

100 # Train the model
101 history = model.fit(X_train , y_train , epochs =30, batch_size =8,

validation_data =(X_val , y_val), verbose=1, callbacks =[ early_stopping
])

102

103 # Evaluate the model on the test set
104 test_loss , test_accuracy = model.evaluate(X_test , y_test , verbose =0)
105 print(f"Test Accuracy: {test_accuracy :.2f}")
106

107 # Generate classification report
108 y_pred = (model.predict(X_test) > 0.5).astype(int)
109 print(classification_report(y_test , y_pred))
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110

111 # Plot training history
112 plt.plot(history.history[’accuracy ’], label=’train_accuracy ’)
113 plt.plot(history.history[’val_accuracy ’], label=’val_accuracy ’)
114 plt.title(’Model Accuracy ’)
115 plt.xlabel(’Epochs ’)
116 plt.ylabel(’Accuracy ’)
117 plt.legend ()
118 plt.show()
119

120 # SHAP for model interpretability
121 explainer = shap.KernelExplainer(model.predict , X_train.reshape(X_train

.shape[0], -1))
122 shap_values = explainer.shap_values(X_train.reshape(X_train.shape [0],

-1))
123

124 # Plot SHAP summary
125 shap.summary_plot(shap_values , X_train.reshape(X_train.shape[0], -1),

feature_names =[’Degree ’, ’Clustering ’, ’Betweenness ’])

Listing A.10: Improved Python code for model training and evaluation

Table A.1: Column Names for GDC TCGA-OV Clinical Data

Column Name Description
Patient Identifier Identifier to uniquely specify a patient.
Sample Identifier A unique sample identifier.
Oncotree Code Oncotree Code.
Cancer Type Cancer Type.
Cancer Type Detailed Cancer Type Detailed.
Tumor Type Tumor Type.
Neoplasm Histologic
Grade

Numeric value to express the degree of abnormality of cancer cells,
a measure of differentiation and aggressiveness.

Tissue Prospective Col-
lection Indicator

Tissue prospective collection indicator.

Tissue Retrospective
Collection Indicator

Tissue retrospective collection indicator.

Tissue Source Site
Code

Tissue Source Site Code.

Tumor Disease
Anatomic Site

Text term that describes the anatomic site of the tumor or disease.

Aneuploidy Score Aneuploidy Score.
Sample Type The type of sample (e.g., normal, primary, metastasis, recurrence).
MSI MANTIS Score MSI Score reported by MANTIS. Thresholds: MSI: >0.6, Indeter-

minate: 0.4-0.6, MSS: <0.4.
MSIsensor Score MSI Score reported by MSIsensor. Thresholds: MSI: >10, Inde-

terminate: 4-10, MSS: <10.
Somatic Status Somatic Status.
TMB (nonsynony-
mous)

TMB (nonsynonymous).

Tissue Source Site Site collecting samples and clinical metadata for the Biospecimen
Core Resource.

Mutation Status Indicates whether mutations were detected in the sample (e.g.,
Yes/No).
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A.1 Database Connection and Data Loading Script

The following Python script establishes a connection to a MySQL database and loads various genomic
datasets into specified tables, as shown in Listing A.11.

1 import mysql.connector
2 import pandas as pd
3

4 # Establish a connection to the MySQL database
5 db_config = {
6 ’user’: ’root’,
7 ’password ’: ’root1’,
8 ’host’: ’localhost ’,
9 ’database ’: ’genomic_data_ovarian_cancer ’

10 }
11

12 # Function to create a database connection
13 def create_connection(config):
14 try:
15 conn = mysql.connector.connect (** config)
16 print("Connection to MySQL database was successful.")
17 return conn
18 except mysql.connector.Error as err:
19 print(f"Error: {err}")
20 return None
21

22 # Create a new database schema
23 def create_schema(cursor):
24 cursor.execute("DROP TABLE IF EXISTS AnimalTF")
25 cursor.execute("DROP TABLE IF EXISTS CellTalk")
26 cursor.execute("DROP TABLE IF EXISTS Genomic_Data")
27 cursor.execute("DROP TABLE IF EXISTS PathwayCommons")
28

29 # Create AnimalTF Table
30 cursor.execute("""
31 CREATE TABLE AnimalTF (
32 tf_id VARCHAR (20) PRIMARY KEY ,
33 gene_id VARCHAR (20),
34 FOREIGN KEY (gene_id) REFERENCES Genomic_Data(gene_id)
35 )
36 """)
37

38 # Create CellTalk Table
39 cursor.execute("""
40 CREATE TABLE CellTalk (
41 interaction_id INT AUTO_INCREMENT PRIMARY KEY ,
42 source_gene_id VARCHAR (20),
43 target_gene_id VARCHAR (20),
44 FOREIGN KEY (source_gene_id) REFERENCES Genomic_Data(gene_id),
45 FOREIGN KEY (target_gene_id) REFERENCES Genomic_Data(gene_id)
46 )
47 """)
48

49 # Create Genomic_Data Table
50 cursor.execute("""
51 CREATE TABLE Genomic_Data (
52 gene_id VARCHAR (20) PRIMARY KEY ,
53 gene_symbol VARCHAR (20),
54 gene_name VARCHAR (100),
55 annotation TEXT
56 )
57 """)
58
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59 # Create PathwayCommons Table
60 cursor.execute("""
61 CREATE TABLE PathwayCommons (
62 pathway_id VARCHAR (20) PRIMARY KEY ,
63 pathway_name VARCHAR (100) ,
64 gene_id VARCHAR (20),
65 FOREIGN KEY (gene_id) REFERENCES Genomic_Data(gene_id)
66 )
67 """)
68

69 # Function to load data into the Genomic_Data table
70 def load_genomic_data(cursor , file_path):
71 df = pd.read_csv(file_path)
72 for index , row in df.iterrows ():
73 cursor.execute("""
74 INSERT INTO Genomic_Data (gene_id , gene_symbol , gene_name , annotation)
75 VALUES (%s, %s, %s, %s)
76 """, (row[’gene_id ’], row[’gene_symbol ’], row[’gene_name ’], row[’

annotation ’]))
77

78 # Function to load AnimalTF data into the table
79 def load_animaltf_data(cursor , file_path):
80 df = pd.read_csv(file_path)
81 for index , row in df.iterrows ():
82 cursor.execute("""
83 INSERT INTO AnimalTF (tf_id , gene_id)
84 VALUES (%s, %s)
85 """, (row[’tf_id’], row[’gene_id ’]))
86

87 # Function to load CellTalk data into the table
88 def load_celltalk_data(cursor , file_path):
89 df = pd.read_csv(file_path)
90 for index , row in df.iterrows ():
91 cursor.execute("""
92 INSERT INTO CellTalk (source_gene_id , target_gene_id)
93 VALUES (%s, %s)
94 """, (row[’source_gene_id ’], row[’target_gene_id ’]))
95

96 # Function to load PathwayCommons data into the table
97 def load_pathwaycommons_data(cursor , file_path):
98 df = pd.read_csv(file_path)
99 for index , row in df.iterrows ():

100 cursor.execute("""
101 INSERT INTO PathwayCommons (pathway_id , pathway_name , gene_id)
102 VALUES (%s, %s, %s)
103 """, (row[’pathway_id ’], row[’pathway_name ’], row[’gene_id ’]))
104

105 # Main script execution
106 if __name__ == "__main__":
107 connection = create_connection(db_config)
108

109 if connection:
110 cursor = connection.cursor ()
111

112 # Create database schema
113 create_schema(cursor)
114

115 # Load data into the database tables
116 load_genomic_data(cursor , ’path_to_genomic_data.csv’)
117 load_animaltf_data(cursor , ’path_to_animaltf_data.csv’)
118 load_celltalk_data(cursor , ’path_to_celltalk_data.csv’)
119 load_pathwaycommons_data(cursor , ’path_to_pathwaycommons_data.csv’)
120
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121 # Commit changes and close the connection
122 connection.commit ()
123 cursor.close()
124 connection.close ()
125 print("Database setup and data loading completed successfully.")

Listing A.11: MySQL Database Connection and Data Loading Script

1 # Import required libraries
2 import networkx as nx
3 import numpy as np
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import seaborn as sns
7 from collections import defaultdict
8

9 # Define mutation probabilities for each node
10 mutation_data = {
11 ’p53’: 0.85, ’p53 -p’: 0.82, ’Mdm2 mRNA’: 0.45,
12 ’Mdm2 cyt’: 0.43, ’Mdm2 -p cyt’: 0.41,
13 # ... (remaining mutation data)
14 }
15

16 # Define interaction confidence scores
17 confidence_scores = {
18 (’p53’, ’p53 -p’): 0.9, (’p53 mRNA’, ’p53’): 0.8,
19 # ... (remaining confidence scores)
20 }
21

22 # Create directed graph
23 G = nx.DiGraph ()
24

25 # Initialize nodes with weight 0.5
26 for node in mutation_data:
27 G.add_node(node , weight =0.5)
28

29 # Initialize edges with weight 1.0
30 edges = list(confidence_scores.keys())
31 G.add_edges_from ([(u, v, {’weight ’: 1.0}) for u, v in edges])
32

33 # Update edge weights based on mutation data and confidence scores
34 for u, v in G.edges():
35 p_u = mutation_data.get(u, 0.1) # Default 0.1 if missing
36 p_v = mutation_data.get(v, 0.1)
37 c_uv = confidence_scores.get((u, v), 0.5) # Default 0.5 if missing
38 G[u][v][’weight ’] = p_u * p_v * c_uv # Combined weight
39

40 # Normalize edge weights to [0,1] range
41 max_weight = max(data[’weight ’] for _, _, data in G.edges(data=True))
42 for u, v in G.edges():
43 G[u][v][’weight ’] /= max_weight
44

45 def random_walk_with_restart(G, num_walks =5000 , walk_length =15, restart_prob =0.15):
46 """ Perform random walks with restart probability """
47 nodes = list(G.nodes())
48 node_visits = {node: 0 for node in nodes}
49

50 for _ in range(num_walks):
51 current_node = np.random.choice(nodes)
52 node_visits[current_node] += 1
53

54 for _ in range(walk_length):
55 if np.random.rand() < restart_prob:
56 current_node = np.random.choice(nodes)
57 else:
58 neighbors = list(G.successors(current_node))
59 if neighbors:
60 weights = [G[current_node ][n][’weight ’] for n in neighbors]
61 probs = np.array(weights) / np.sum(weights)
62 current_node = np.random.choice(neighbors , p=probs)
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63 node_visits[current_node] += 1
64

65 # Normalize visit counts
66 total_visits = sum(node_visits.values ())
67 for node in node_visits:
68 G.nodes[node][’weight ’] = node_visits[node] / total_visits
69

70 return G
71

72 # Execute the random walk algorithm
73 G = random_walk_with_restart(G)
74

75 # Generate and save results
76 node_weights = [(node , data[’weight ’]) for node , data in G.nodes(data=True)]
77 node_weights.sort(key=lambda x: -x[1]) # Sort by significance
78

79 edge_weights = [(u, v, data[’weight ’]) for u, v, data in G.edges(data=True)]
80 edge_weights.sort(key=lambda x: -x[2]) # Sort by interaction strength
81

82 # Save results to CSV files
83 pd.DataFrame(node_weights , columns =[’Node’, ’Weight ’]).to_csv(’node_significance.csv’)
84 pd.DataFrame(edge_weights , columns =[’Source ’, ’Target ’, ’Weight ’]).to_csv(’

edge_strengths.csv’)
85

86 # Visualization code omitted for brevity

Listing A.12: Random walk algorithm implementation

1 import networkx as nx
2 import numpy as np
3 import matplotlib
4 matplotlib.use(’TkAgg’) # Set the backend for interactive plotting
5 import matplotlib.pyplot as plt
6 from matplotlib import colors as mcolors
7 from networkx.algorithms import community
8

9 # Create a directed graph
10 G = nx.DiGraph ()
11

12 # Define edges from the interaction data provided
13 edges = [
14 (’p53’, ’p53 -p’), (’p53 mRNA’, ’p53’), (’p53 -p’, ’Mdm2 mRNA’),
15 (’Mdm2 cyt’, ’Mdm2 -p cyt’), (’Mdm2 mRNA’, ’Mdm2 cyt’),
16 (’Mdm2 -p cyt’, ’Mdm2 -p nuc’), (’DSB’, ’ATM -p’),
17 (’ATM mRNA’, ’ATM’), (’p53 -p’, ’ATM mRNA’),
18 (’ATMa -p’, ’p53 -p’), (’ATMa -p’, ’AKT -p’),
19 (’ATMa -p’, ’KSRP -p’), (’ATMa -p’, ’CREB’),
20 (’ATMa -p’, ’Chk2 -p’), (’ATM -p’, ’MRN -p’),
21 (’DSB’, ’MRN -p’), (’CREB’, ’ATM mRNA’),
22 (’MRN -p’, ’ATMa -p’), (’CREB’, ’Wip1 mRNA’),
23 (’p53 -p’, ’Chk2 mRNA’), (’p53 -p’, ’Bax mRNA’),
24 (’p53 -p’, ’p21 mRNA’), (’p53 -p’, ’PTEN mRNA’),
25 (’p53 -p’, ’Wip1 mRNA’), (’Wip1 mRNA’, ’Wip1’),
26 (’pre -miR -16’, ’miR -16’), (’KSRP -p’, ’pre -miR -16’),
27 (’Chk2 mRNA’, ’Chk2’), (’Chk2 -p’, ’p53 -p’),
28 (’Bax mRNA’, ’Bax’), (’Bax’, ’apoptosis ’),
29 (’p21 mRNA’, ’p21’), (’p21’, ’cell cycle arrest ’),
30 (’IR’, ’DSB’), (’p53 -p’, ’PTEN mRNA’),
31 (’PTEN mRNA’, ’PTEN’), (’PTEN’, ’PIP2’),
32 (’PIP2’, ’PIP3’), (’PIP3’, ’AKT -p’),
33 (’AKT -p’, ’Mdm2 -p cyt’), (’TNFa’, ’TNFR1’),
34 (’TNFR1’, ’IKKKa ’), (’IKKKa ’, ’IKKa’),
35 (’A20 mRNA’, ’A20 cyt’), (’IKKa’, ’NFkB’),
36 (’NFkB’, ’IkBa mRNA’), (’NFkB’, ’A20 mRNA’),
37 (’NFkB’, ’p53 mRNA’), (’IkBa mRNA’, ’IkBa’),
38 (’NFkB’, ’Wip1 mRNA’)
39 ]
40

41 G.add_edges_from(edges)
42

43 # Assign random weights to edges
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44 for u, v in G.edges():
45 G[u][v][’weight ’] = np.random.rand()
46

47 # Random Walk Function
48 def random_walk(G, start_node , num_steps):
49 current_node = start_node
50 visiting_counts = {node: 0 for node in G.nodes()}
51

52 for _ in range(num_steps):
53 visiting_counts[current_node] += 1
54 neighbors = list(G.neighbors(current_node))
55 if not neighbors:
56 break
57 weights = [G[current_node ][ neighbor ][’weight ’] for neighbor in neighbors]
58 current_node = np.random.choice(neighbors , p=np.array(weights) / sum(weights))
59

60 return visiting_counts
61

62 # Parameters for the random walk
63 num_walks = 1000
64 num_steps = 50
65 start_node = ’p53’
66

67 # Perform random walks
68 total_visiting_counts = {node: 0 for node in G.nodes()}
69 convergence_data = []
70

71 for i in range(num_walks):
72 counts = random_walk(G, start_node , num_steps)
73 for node in total_visiting_counts:
74 total_visiting_counts[node] += counts[node]
75

76 # Record convergence data
77 unique_nodes_visited = sum(1 for count in total_visiting_counts.values () if count >

0)
78 convergence_data.append(unique_nodes_visited / len(G.nodes()))
79

80 # Normalize visit counts
81 for node in total_visiting_counts:
82 total_visiting_counts[node] /= num_walks
83

84 # Plot Convergence Rate
85 def plot_convergence_rate(convergence_data):
86 plt.figure(figsize =(10, 5))
87 plt.plot(convergence_data , marker=’o’)
88 plt.title(’Convergence Rate of Random Walks’, fontsize =14)
89 plt.xlabel(’Number of Simulations ’, fontsize =12)
90 plt.ylabel(’Proportion of Unique Nodes Visited ’, fontsize =12)
91 plt.grid()
92 plt.tight_layout ()
93 plt.savefig(’convergence_rate.png’)
94 plt.show()
95

96 # Function to plot the biological interaction network
97 def plot_biological_network(G, visiting_counts):
98 fig , ax = plt.subplots(figsize =(14, 14))
99 pos = nx.spring_layout(G, k=0.5, iterations =50)

100

101 # Node sizes based on visiting counts
102 node_sizes = [500 * visiting_counts[node] + 50 for node in G.nodes ()]
103

104 # Create a ScalarMappable for the color normalization
105 norm = plt.Normalize(vmin=0, vmax=max(total_visiting_counts.values ()))
106 sm = plt.cm.ScalarMappable(cmap=’viridis ’, norm=norm)
107 sm.set_array ([])
108

109 # Draw nodes with improved aesthetics
110 node_colors = [sm.to_rgba(visiting_counts[node]) for node in G.nodes()]
111 nx.draw_networkx_nodes(G, pos , node_size=node_sizes , node_color=node_colors , alpha

=0.9, edgecolors=’black ’, ax=ax)
112

113 # Draw edges with colors based on weights
114 edge_colors = [plt.cm.Blues(G[u][v][’weight ’]) for u, v in G.edges ()]
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115 nx.draw_networkx_edges(G, pos , edge_color=edge_colors , alpha =0.8, style=’solid’,
width=2, ax=ax)

116

117 # Add labels for nodes
118 labels = {node: node for node in G.nodes()}
119 nx.draw_networkx_labels(G, pos , labels , font_size =10, font_color=’black’, ax=ax)
120

121 # Add labels for edges with weights
122 edge_labels = {(u, v): f"{G[u][v][’weight ’]:.2f}" for u, v in G.edges ()}
123 nx.draw_networkx_edge_labels(G, pos , edge_labels=edge_labels , font_color=’red’, ax=

ax)
124

125 # Add colorbar
126 cbar = fig.colorbar(sm , ax=ax , label=’Visit Count (normalized)’, shrink =0.8, pad

=0.02)
127

128 plt.title(’Enhanced Visualization of the Biological Interaction Network ’, fontsize
=16)

129 plt.axis(’off’)
130 plt.savefig(’biological_network.png’)
131 plt.show()
132

133 # Function to plot normalized visit counts
134 def plot_visit_counts(visiting_counts):
135 plt.figure(figsize =(12, 6))
136 nodes = list(visiting_counts.keys())
137 counts = list(visiting_counts.values ())
138

139 plt.bar(nodes , counts , color=’royalblue ’)
140 plt.xlabel(’Nodes’, fontsize =12)
141 plt.ylabel(’Normalized Visit Count ’, fontsize =12)
142 plt.title(’Normalized Visit Counts per Node’, fontsize =14)
143 plt.xticks(rotation =45, ha=’right’)
144 plt.tight_layout ()
145 plt.savefig(’normalized_visit_counts.png’)
146 plt.show()
147

148 # Function to plot edge weights distribution
149 def plot_edge_weights_distribution(G):
150 edge_weights = [G[u][v][’weight ’] for u, v in G.edges ()]
151

152 plt.figure(figsize =(12, 6))
153 plt.hist(edge_weights , bins=20, color=’lightcoral ’, edgecolor=’black’)
154 plt.xlabel(’Edge Weight ’, fontsize =12)
155 plt.ylabel(’Frequency ’, fontsize =12)
156 plt.title(’Distribution of Edge Weights ’, fontsize =14)
157 plt.tight_layout ()
158 plt.savefig(’edge_weights_distribution.png’)
159 plt.show()
160

161 # Function to plot community sizes
162 def plot_community_sizes(G):
163 communities = community.greedy_modularity_communities(G)
164 community_sizes = [len(comm) for comm in communities]
165

166 plt.figure(figsize =(12, 6))
167 plt.bar(range(len(community_sizes)), community_sizes , color=’mediumseagreen ’)
168 plt.xlabel(’Community Index’, fontsize =12)
169 plt.ylabel(’Community Size’, fontsize =12)
170 plt.title(’Sizes of Detected Communities ’, fontsize =14)
171 plt.tight_layout ()
172 plt.savefig(’community_sizes.png’)
173 plt.show()
174

175 # Run all plots
176 plot_convergence_rate(convergence_data)
177 plot_biological_network(G, total_visiting_counts)
178 plot_visit_counts(total_visiting_counts)
179 plot_edge_weights_distribution(G)
180 plot_community_sizes(G)

Listing A.13: Random Walk Analysis in a Directed Graph
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Supplementary Code

The following Python code implements a Boolean network simulation, including the creation of nodes
and edges, state initialization, and updates through iterations. It also provides visualizations of the node
states over time, identifies pivotal nodes, and plots the network dynamics.

1 import matplotlib.pyplot as plt
2 import random as rd
3 import networkx as nx
4 import numpy as np
5

6 # Define Graph
7 G = nx.DiGraph ()
8

9 # Add Nodes (Part 1)
10 nodes_data = [
11 (’TNFa’, {’property ’: "trans", ’weight ’: rd.randint(0, 1)}),
12 (’TNFR1’, {’property ’: ’trans’, ’weight ’: rd.randint(0, 1)}),
13 (’IKKKa’, {’property ’: "pro", ’weight ’: rd.randint(0, 1)}),
14 (’IKKa’, {’property ’: "pro", ’weight ’: rd.randint(0, 1)}),
15 (’NFkB (TF)’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
16 (’p53 (TF)’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
17 (’p53 -p’, {’property ’: ’trans’, ’weight ’: rd.randint(0, 1)}),
18 (’A20 mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
19 (’A20’, {’property ’: "pro", ’weight ’: rd.randint(0, 1)}),
20 (’IkBa mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
21 (’Mdm2 cyt’, {’property ’: ’pro’, ’weight ’: rd.randint(0, 1)}),
22 (’IkBa’, {’property ’: "pro", ’weight ’: rd.randint(0, 1)}),
23 (’Wip mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
24 (’Wip1’, {’property ’: ’pro’, ’weight ’: rd.randint(0, 1)}),
25 (’Wip1 mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
26 (’p53 mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
27 (’ATM mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
28 (’ATM’, {’property ’: ’gen’, ’weight ’: rd.randint(0, 1)}),
29 (’ATM -p’, {’property ’: ’gen’, ’weight ’: rd.randint(0, 1)}),
30 (’ATMa -p’, {’property ’: ’gen’, ’weight ’: rd.randint(0, 1)}),
31 (’MRN -p’, {’property ’: ’pro’, ’weight ’: rd.randint(0, 1)}),
32 (’Chk2 -p’, {’property ’: ’pro’, ’weight ’: rd.randint(0, 1)}),
33 (’CREB (TF)’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
34 (’KSRP -p’, {’property ’: ’prot’, ’weight ’: rd.randint(0, 1)}),
35 (’AKT -p’, {’property ’: ’prot’, ’weight ’: rd.randint(0, 1)}),
36 (’Mdm2 -p cyt’, {’property ’: ’prot’, ’weight ’: rd.randint(0, 1)}),
37 (’Mdm2 -p nuc’, {’property ’: ’prot’, ’weight ’: rd.randint(0, 1)}),
38 (’PTEN mRNA (Genomic)’, {’property ’: ’gen’, ’weight ’: rd.randint(0,

1)}),
39 (’PTEN’, {’property ’: ’pro’, ’weight ’: rd.randint(0, 1)}),
40 (’PIP2’, {’property ’: "lipo", ’weight ’: rd.randint(0, 1)}),
41 (’PIP3’, {’property ’: "lipo", ’weight ’: rd.randint(0, 1)}),
42 (’Bax mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
43 (’Bax’, {’property ’: ’pro’, ’weight ’: rd.randint(0, 1)}),
44 (’apoptosis ’, {’property ’: "gen", ’weight ’: rd.randint(0, 1)}),
45 (’Mdm2 mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
46 (’p21 mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
47 (’p21’, {’property ’: ’prot’, ’weight ’: rd.randint(0, 1)}),
48 (’cell cycle arrest ’, {’property ’: "trans", ’weight ’: rd.randint(0,

1)}),
49 (’Chk2 mRNA’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
50 (’Chk2’, {’property ’: ’pro’, ’weight ’: rd.randint(0, 1)}),
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51 (’IR’, {’property ’: ’gen’, ’weight ’: rd.randint(0, 1)}),
52 (’DSB’, {’property ’: "gen", ’weight ’: rd.randint(0, 1)}),
53 (’miR -16’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
54 (’pre -miR -16’, {’property ’: ’trans ’, ’weight ’: rd.randint(0, 1)}),
55 ]
56

57 G.add_nodes_from(nodes_data)
58

59 # Initialize ’weight ’ attribute for all nodes
60 for node , data in nodes_data:
61 G.nodes[node][’weight ’] = data[’weight ’]
62

63 # Add Edges (Part 1 and 2)
64 edges_data = [
65 (’TNFa’, ’TNFR1 ’, {’weight ’: rd.randint(0, 1)}),
66 (’TNFR1’, ’IKKKa ’, {’weight ’: rd.randint(0, 1)}),
67 (’IKKKa’, ’IKKa’, {’weight ’: rd.randint(0, 1)}),
68 (’IKKa’, ’NFkB (TF)’, {’weight ’: rd.randint(0, 1)}),
69 (’TNFR1’, ’NFkB (TF)’, {’weight ’: rd.randint(0, 1)}),
70 (’ATMa -p’, ’IKKa’, {’weight ’: rd.randint(0, 1)}),
71 (’p53 (TF)’, ’p53 -p’, {’weight ’: rd.randint(0, 1)}),
72 (’PIP2’, ’PIP3’, {’weight ’: rd.randint(0, 1)}),
73 (’p53 mRNA’, ’p53’, {’weight ’: rd.randint(0, 1)}),
74 (’DSB’, ’ATM -p’, {’weight ’: rd.randint(0, 1)}),
75 (’p53 -p’, ’ATM mRNA’, {’weight ’: rd.randint(0, 1)}),
76 (’ATMa -p’, ’p53 -p’, {’weight ’: rd.randint(0, 1)}),
77 (’ATMa -p’, ’AKT -p’, {’weight ’: rd.randint(0, 1)}),
78 (’ATMa -p’, ’KSRP -p’, {’weight ’: rd.randint(0, 1)}),
79 (’ATMa -p’, ’CREB (TF)’, {’weight ’: rd.randint(0, 1)}),
80 (’ATMa -p’, ’Chk2 -p’, {’weight ’: rd.randint(0, 1)}),
81 (’ATM -p’, ’MRN -p’, {’weight ’: rd.randint(0, 1)}),
82 (’DSB’, ’MRN -p’, {’weight ’: rd.randint(0, 1)}),
83 (’CREB (TF)’, ’ATM mRNA’, {’weight ’: rd.randint(0, 1)}),
84 (’MRN -p’, ’ATMa -p’, {’weight ’: rd.randint(0, 1)}),
85 (’CREB (TF)’, ’Wip mRNA’, {’weight ’: rd.randint(0, 1)}),
86 (’p53 -p’, ’Chk2 mRNA’, {’weight ’: rd.randint(0, 1)}),
87 (’p53 -p’, ’p21 mRNA’, {’weight ’: rd.randint(0, 1)}),
88 (’p53 -p’, ’PTEN mRNA (Genomic)’, {’weight ’: rd.randint(0, 1)}),
89 (’p53 -p’, ’Wip1 mRNA’, {’weight ’: rd.randint(0, 1)}),
90 (’Wip1 mRNA’, ’Wip1’, {’weight ’: rd.randint(0, 1)}),
91 (’KSRP -p’, ’pre -miR -16’, {’weight ’: rd.randint(0, 1)}),
92 (’ATM -p’, ’Chk2’, {’weight ’: rd.randint(0, 1)}),
93 (’Chk2 -p’, ’Mdm2 mRNA’, {’weight ’: rd.randint(0, 1)}),
94 (’Mdm2 mRNA’, ’Mdm2 cyt’, {’weight ’: rd.randint(0, 1)}),
95 (’Mdm2 cyt’, ’Mdm2 -p nuc’, {’weight ’: rd.randint(0, 1)}),
96 (’Mdm2 cyt’, ’Bax’, {’weight ’: rd.randint(0, 1)}),
97 (’Mdm2 cyt’, ’Mdm2 -p cyt’, {’weight ’: rd.randint(0, 1)}),
98 (’Mdm2 cyt’, ’p21’, {’weight ’: rd.randint(0, 1)}),
99 (’p21’, ’cell cycle arrest ’, {’weight ’: rd.randint(0, 1)}),

100 (’p21’, ’apoptosis ’, {’weight ’: rd.randint(0, 1)}),
101 (’Bax’, ’apoptosis ’, {’weight ’: rd.randint(0, 1)}),
102 (’Mdm2 -p nuc’, ’Mdm2 -p cyt’, {’weight ’: rd.randint(0, 1)}),
103 (’PTEN’, ’PIP2’, {’weight ’: rd.randint(0, 1)}),
104 ]
105

106 G.add_edges_from(edges_data)
107

108 # Initialize edge weights
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109 for u, v, data in G.edges(data=True):
110 data[’weight ’] = rd.randint(0, 1)
111

112 # Run simulation
113 time_steps = 10
114 states = {}
115 node_states = {node: rd.choice ([0, 1]) for node in G.nodes}
116

117 for t in range(time_steps):
118 states[t] = node_states.copy()
119

120 for node in G.nodes:
121 inputs = list(G.predecessors(node))
122 total_input = sum(node_states[input_node] * G[input_node ][node

][’weight ’] for input_node in inputs)
123 if total_input > 0:
124 node_states[node] = 1
125 else:
126 node_states[node] = 0
127

128 # Visualization
129 for t in range(time_steps):
130 plt.bar(states[t].keys(), states[t]. values (), label=f’Time {t}’)
131 plt.ylim(-0.5, 1.5)
132 plt.title(’Node States Over Time’)
133 plt.xlabel(’Nodes ’)
134 plt.ylabel(’State ’)
135 plt.xticks(rotation =45)
136 plt.legend ()
137 plt.tight_layout ()
138 plt.show()
139

140 # Identify pivotal nodes
141 def identify_pivotal_nodes(G):
142 pivotal_nodes = []
143 for node in G.nodes:
144 total_input = sum(G.predecessors(node), key=lambda x: G[x][node

][’weight ’])
145 if total_input > 0:
146 pivotal_nodes.append(node)
147 return pivotal_nodes
148

149 pivotal_nodes = identify_pivotal_nodes(G)
150 print("Pivotal nodes:", pivotal_nodes)
151

152 # Plot network dynamics
153 pos = nx.spring_layout(G)
154 nx.draw(G, pos , with_labels=True , node_color=’lightblue ’, node_size

=1000)
155 plt.title("Network Dynamics")
156 plt.show()
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Table A.2: Overview of Combined Data: Sample Rows from Each Downloaded CSV File

GDC Downloaded CSV File Data
Gene ID Gene Name Gene Type Unstranded Stranded First Stranded Second TPM Unstranded FPKM Unstranded FPKM UQ Un-

stranded
N_unmapped 11394772 11394772 11394772
N_multimapping 14179883 14179883 14179883
N_noFeature 6530100 42884641 43025237
N_ambiguous 8298602 2284369 2280443
ENSG00000000003.15 TSPAN6 protein_coding 4768 2441 2327 38.2031 16.6025 19.7195
ENSG00000000005.6 TNMD protein_coding 4 0 4 0.0985 0.0428 0.0508
ENSG00000000419.13 DPM1 protein_coding 2397 1170 1227 72.1765 31.3668 37.2557
ENSG00000000457.14 SCYL3 protein_coding 1621 1355 1441 8.5593 3.7198 4.4181
ENSG00000000460.17 C1orf112 protein_coding 329 802 795 2.0029 0.8704 1.0338

CellTalk Database Data
LR Pair Ligand Gene Sym-

bol
Receptor Gene Sym-
bol

Ligand Gene ID Receptor Gene ID Ligand Ensembl
Protein ID

Receptor Ensembl
Protein ID

Ligand Ensembl
Gene ID

Receptor Ensembl
Gene ID

SEMA3F_PLXNA3 SEMA3F PLXNA3 6405 55558 ENSP00000002829 ENSP00000358696 ENSG00000001617 ENSG00000130827
SEMA3F_PLXNA1 SEMA3F PLXNA1 6405 5361 ENSP00000002829 ENSP00000377061 ENSG00000001617 ENSG00000114554
SEMA3F_NRP1 SEMA3F NRP1 6405 8829 ENSP00000002829 ENSP00000265371 ENSG00000001617 ENSG00000099250
SEMA3F_NRP2 SEMA3F NRP2 6405 8828 ENSP00000002829 ENSP00000353582 ENSG00000001617 ENSG00000118257
CX3CL1_CX3CR1 CX3CL1 CX3CR1 6376 1524 ENSP00000006053 ENSP00000351059 ENSG00000006210 ENSG00000168329

AnimalTF Database Data
Species Symbol Ensembl Family Protein Entrez ID
Homo_sapiens ZBTB8B ENSG00000273274 ZBTB ENSP00000476499 728116
Homo_sapiens GSX2 ENSG00000180613 Homeobox ENSP00000319118;ENSP00000483522170825
Homo_sapiens TBX2 ENSG00000121068 T-box ENSP00000404781;ENSP000002403286909
Homo_sapiens PAX8 ENSG00000125618 PAX ENSP00000395498;ENSP00000263335;ENSP00000380768;ENSP00000263334;ENSP000003147507849
Homo_sapiens CREB3L1 ENSG00000157613 TF_bZIP ENSP00000481956;ENSP0000043657490993
Homo_sapiens NKX6-1 ENSG00000163623 Homeobox ENSP00000295886;ENSP000004497614825

PathwayCommons Downloaded CSV File Data
Participant A Interaction Type Participant B Interaction Data

Source
Interaction PubMed
ID

Pathway Names
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Table A.2: (Continued)

Gene ID Gene Name Gene Type Unstranded Stranded First Stranded Second TPM Unstranded FPKM Unstranded FPKM UQ Un-
stranded

A4GALT catalysis-precedes ABO KEGG Glycosphingolipid
biosynthesis - globo se-
ries; Glycosphingolipid
biosynthesis - lacto
and neolacto series;
Metabolic pathways

A4GALT catalysis-precedes AK3 KEGG Glycosphingolipid
biosynthesis - globo
series; Metabolic
pathways; Pyrimidine
metabolism

A4GALT catalysis-precedes ALG13 KEGG Glycosphingolipid
biosynthesis - globo se-
ries; Glycosphingolipid
biosynthesis - lacto
and neolacto series;
Metabolic pathways
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Table A.3: Dataset of Biochemical Interactions

Source Node Target Node Interaction Type
IR DSB interacts_with

DSB DNA interacts_with
DNA DSB interacts_with
DNA p53mRNA interacts_with

p53mRNA p53 interacts_with
p53 p53-p interacts_with

p53-p p53 interacts_with
DNA PTENmRNA nuc interacts_with
DNA Mdm2mRNA nuc interacts_with
DNA PTENmRNA nuc interacts_with

PTENmRNA nuc PTEN cyt interacts_with
PTEN cyt PIP2 interacts_with

PIP3 PIP2 interacts_with
PIP2 PIP3 interacts_with

Mdm2mRNA nuc Mdm2 cyt interacts_with
Mdm2-p cyt Mdm2 cyt interacts_with
Mdm2 cyt Mdm2-p cyt interacts_with
AKT-p cyt AKT cyt interacts_with

PIP3 AKT-p cyt interacts_with
AKT-p cyt Mdm2-p cyt interacts_with
AKT cyt AKT-p cyt interacts_with
Mdm2 cyt Mdm2-p cyt interacts_with
Mdm2 cyt Mdm2-p-p nuc interacts_with

Mdm2-p cyt Mdm2-p nuc interacts_with
p53-p Bax mRNA interacts_with
p53-p p21 mRNA interacts_with
p53-p PTENmRNA nuc interacts_with
p53-p IkBα interacts_with
p53-p A20 mRNA interacts_with
p53-p Mdm2mRNA nuc interacts_with

Mdm2-p nuc p53 interacts_with
Mdm2-p-p nuc Mdm2-p nuc interacts_with
Mdm2-p nuc Mdm2-p-p nuc interacts_with

Continued on next page
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Table A.3 – continued from previous page
Source Node Target Node Interaction Type
Mdm2-p nuc p53 interacts_with

p53 DSB interacts_with
p53 DNA interacts_with

DNA Bax mRNA nuc interacts_with
DNA p21 mRNA nuc interacts_with

p21 mRNA nuc Bax mRNA nuc interacts_with
p21 p21 mRNA nuc interacts_with

p21 mRNA nuc cell cycle arrest interacts_with
Bax p21 interacts_with

Bax mRNA nuc Bax interacts_with
Bax apoptosis interacts_with
DNA A20 mRNA nuc interacts_with
DNA IkBα mRNA nuc interacts_with

IkBα mRNA nuc IkBα nuc interacts_with
A20 mRNA nuc A20 cyt interacts_with

A20 cyt IKKKa cyt interacts_with
A20 cyt IKKi cyt interacts_with
A20 cyt IKKa cyt interacts_with
IKKi cyt IKKii cyt interacts_with
A20 cyt IKKKa cyt interacts_with

IKKKa cyt IKKKn cyt interacts_with
IKKKn cyt IKKKa cyt interacts_with
IKKKa cyt IKKa cyt interacts_with
IKKa cyt IKKi cyt interacts_with
IKKii cyt IKKKn cyt interacts_with
IKKn cyt IKKa cyt interacts_with
IKKa cyt IkBα:NFkB cyt interacts_with

IkBα:NFkB cyt NFkB cyt interacts_with
IkBα:NFkB cyt IkBα * cyt interacts_with

NFkB cyt IkBα:NFkB cyt interacts_with
IkBα cyt IkBα:NFkB cyt interacts_with
IkBα cyt IkBα nuc interacts_with
NFkB cyt NFkB nuc interacts_with
NFkB nuc IkBα mRNA nuc interacts_with

Continued on next page
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Table A.3 – continued from previous page
Source Node Target Node Interaction Type

NFkB nuc IkBα:NFkB nuc interacts_with
IkBα nuc IkBα:NFkB nuc interacts_with

IkBα:NFkB nuc IkBα:NFkB cyt interacts_with
IkBα mRNA IkBα interacts_with
NFkB nuc A20 mRNA nuc interacts_with
NFkB nuc p53mRNA nuc interacts_with

DNA pre-mRNA-16 nuc interacts_with
DNA Wip1 mRNA nuc interacts_with

pre-mRNA-16 nuc miR-16 nuc interacts_with
miR-16 nuc Wip1 mRNA nuc interacts_with

Wip1 mRNA nuc Wip1 nuc interacts_with
Wip1 nuc p53 interacts_with
Wip1 nuc Wip1 mRNA interacts_with
Wip1 nuc A20 mRNA interacts_with
Wip1 nuc IkBα mRNA interacts_with
Wip1 nuc Mdm2-p nuc interacts_with
Wip1 nuc ChK2 nuc interacts_with

Wip1 mRNA nuc ChK2 mRNA interacts_with
Wip1 nuc ATM nuc interacts_with
Wip1 nuc ATM-p nuc interacts_with
KSRP cyt KSRP-p cyt interacts_with

KSRP-p cyt KSRP cyt interacts_with
KSRP-p cyt KSRP-p nuc interacts_with
KSRP-p nuc pre-mRNA-16 nuc interacts_with

DNA ChK2 mRNA nuc interacts_with
ChK2 mRNA nuc ChK2 nuc interacts_with

ChK2 nuc ChK2-p nuc interacts_with
ChK2-p nuc Chk2 nuc interacts_with
ChK2-p nuc p53-p interacts_with
ChK2-p nuc Mdm2-p-p nuc interacts_with
ChK2-p nuc Mdm2-p nuc interacts_with
ChK2-p nuc Mdm2 cyt interacts_with
ChK2-p nuc Mdm2-p cyt interacts_with

DNA ATM mRNA nuc interacts_with
Continued on next page
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Table A.3 – continued from previous page
Source Node Target Node Interaction Type

ATM mRNA nuc ATM nuc interacts_with
ATM-p nuc ATM nuc interacts_with
ATM nuc ATM-p nuc interacts_with

ATMa-p nuc ATM-p nuc interacts_with
ATM-p nuc ATMa-p nuc interacts_with
ATMa-p nuc p53-p interacts_with
ATMa-p nuc IKKa cyt interacts_with
ATMa-p nuc Mdm2-p-p nuc interacts_with
ATMa-p nuc KSRP-p cyt interacts_with
ATMa-p nuc AKT-p cyt interacts_with
ATMa-p nuc CREB nuc interacts_with
CREB nuc CREB-p nuc interacts_with

CREB-p nuc CREB nuc interacts_with
CREB nuc Wip1 mRNA nuc interacts_with
CREB nuc ATM mRNA nuc interacts_with
ATM-p nuc MRN-p nuc interacts_with
DSB nuc MRN-p nuc interacts_with

MRN-p nuc MRN nuc interacts_with
MRN nuc MRN-p nuc interacts_with

MRN-p nuc ATMa-p nuc interacts_with
TNFα TNFR1 cyt interacts_with

TNFR1 cyt IKKKa cyt interacts_with
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Source Node Target Node Interaction Type
IR DSB PPI: interacts_with

DSB DNA PPI: interacts_with
DNA DSB PPI: interacts_with
DNA p53mRNA TF-regulates: interacts_with

p53mRNA p53 TF-regulates: interacts_with
p53 p53-p TF-regulates: interacts_with

p53-p p53 TF-regulates: interacts_with
DNA PTENmRNA_nuc TF-regulates: interacts_with
DNA Mdm2mRNA_nuc TF-regulates: interacts_with
DNA PTENmRNA_nuc TF-regulates: interacts_with

PTENmRNA_nuc PTEN_cyt PPI: interacts_with
PTEN_cyt PIP2 PPI: interacts_with

PIP3 PIP2 PPI: interacts_with
PIP2 PIP3 PPI: interacts_with

Mdm2mRNA_nuc Mdm2_cyt PPI: interacts_with
Mdm2-p_cyt Mdm2_cyt PPI: interacts_with
Mdm2_cyt Mdm2-p_cyt PPI: interacts_with
AKT-p_cyt AKT_cyt PPI: interacts_with

PIP3 AKT-p_cyt PPI: interacts_with
AKT-p_cyt Mdm2-p_cyt PPI: interacts_with
AKT_cyt AKT-p_cyt PPI: interacts_with
Mdm2_cyt Mdm2-p_cyt PPI: interacts_with
Mdm2_cyt Mdm2-p-p_nuc PPI: interacts_with

Mdm2-p_cyt Mdm2-p_nuc PPI: interacts_with
p53-p Bax_mRNA TF-regulates: interacts_with
p53-p p21_mRNA TF-regulates: interacts_with
p53-p PTENmRNA_nuc TF-regulates: interacts_with
p53-p IkB TF-regulates: interacts_with
p53-p A20_mRNA TF-regulates: interacts_with
p53-p Mdm2mRNA_nuc TF-regulates: interacts_with

Mdm2-p_nuc p53 TF-regulates: interacts_with
Mdm2-p-p_nuc Mdm2-p_nuc PPI: interacts_with
Mdm2-p_nuc Mdm2-p-p_nuc PPI: interacts_with
Mdm2-p_nuc p53 TF-regulates: interacts_with

p53 DSB PPI: interacts_with
p53 DNA PPI: interacts_with

DNA Bax_mRNA_nuc TF-regulates: interacts_with
DNA p21_mRNA_nuc TF-regulates: interacts_with

p21_mRNA_nuc Bax_mRNA_nuc TF-regulates: interacts_with
p21 p21_mRNA_nuc TF-regulates: interacts_with

p21_mRNA_nuc cell_cycle_arrest TF-regulates: interacts_with
Bax p21 TF-regulates: interacts_with

Bax_mRNA_nuc Bax PPI: interacts_with
Bax apoptosis PPI: interacts_with
DNA A20_mRNA_nuc TF-regulates: interacts_with
DNA IkB_mRNA_nuc TF-regulates: interacts_with

IkB_mRNA_nuc IkB_nuc PPI: interacts_with
A20_mRNA_nuc A20_cyt PPI: interacts_with

A20_cyt IKKKa_cyt PPI: interacts_with
A20_cyt IKKi_cyt PPI: interacts_with
A20_cyt IKKa_cyt PPI: interacts_with
IKKi_cyt IKKii_cyt PPI: interacts_with
A20_cyt IKKKa_cyt PPI: interacts_with

IKKKa_cyt IKKKn_cyt PPI: interacts_with
IKKKn_cyt IKKKa_cyt PPI: interacts_with
IKKKa_cyt IKKa_cyt PPI: interacts_with
IKKa_cyt IKKi_cyt PPI: interacts_with
IKKii_cyt IKKKn_cyt PPI: interacts_with
IKKn_cyt IKKa_cyt PPI: interacts_with
IKKa_cyt IkB:NFkB_cyt PPI: interacts_with

IkB:NFkB_cyt NFkB_cyt PPI: interacts_with
IkB:NFkB_cyt IkB*_cyt PPI: interacts_with

NFkB_cyt IkB:NFkB_cyt PPI: interacts_with
IkB_cyt IkB:NFkB_cyt PPI: interacts_with
IkB_cyt IkB_nuc PPI: interacts_with

NFkB_cyt NFkB_nuc PPI: interacts_with
NFkB_nuc IkB_mRNA_nuc TF-regulates: interacts_with
NFkB_nuc IkB:NFkB_nuc PPI: interacts_with
IkB_nuc IkB:NFkB_nuc PPI: interacts_with

IkB:NFkB_nuc IkB:NFkB_cyt PPI: interacts_with
IkB_mRNA IkB TF-regulates: interacts_with
NFkB_nuc A20_mRNA_nuc TF-regulates: interacts_with
NFkB_nuc p53mRNA_nuc TF-regulates: interacts_with

DNA pre-mRNA-16_nuc TF-regulates: interacts_with
DNA Wip1_mRNA_nuc TF-regulates: interacts_with

pre-mRNA-16_nuc miR-16_nuc TF-regulates: interacts_with
miR-16_nuc Wip1_mRNA_nuc TF-regulates: interacts_with

Wip1_mRNA_nuc Wip1_nuc PPI: interacts_with
Wip1_nuc p53 TF-regulates: interacts_with
Wip1_nuc Wip1_mRNA TF-regulates: interacts_with
Wip1_nuc A20_mRNA TF-regulates: interacts_with
Wip1_nuc IkB_mRNA TF-regulates: interacts_with
Wip1_nuc Mdm2-p_nuc TF-regulates: interacts_with
Wip1_nuc ChK2_nuc TF-regulates: interacts_with

Wip1_mRNA_nuc ChK2_mRNA TF-regulates: interacts_with
Wip1_nuc ATM_nuc TF-regulates: interacts_with
Wip1_nuc ATM-p_nuc TF-regulates: interacts_with
KSRP_cyt KSRP-p_cyt PPI: interacts_with

KSRP-p_cyt KSRP_cyt PPI: interacts_with
KSRP-p_cyt KSRP-p_nuc PPI: interacts_with
KSRP-p_nuc pre-mRNA-16_nuc TF-regulates: interacts_with

DNA ChK2_mRNA_nuc TF-regulates: interacts_with
ChK2_mRNA_nuc ChK2_nuc PPI: interacts_with

ChK2_nuc ChK2-p_nuc PPI: interacts_with
ChK2-p_nuc Chk2_nuc PPI: interacts_with
ChK2-p_nuc p53-p TF-regulates: interacts_with
ChK2-p_nuc Mdm2-p-p_nuc PPI: interacts_with
ChK2-p_nuc Mdm2-p_nuc PPI: interacts_with
ChK2-p_nuc Mdm2_cyt PPI: interacts_with

DNA ATM_mRNA_nuc TF-regulates: interacts_with
ATM_mRNA_nuc ATM_nuc PPI: interacts_with

ATM-p_nuc ATM_nuc PPI: interacts_with
ATM_nuc ATM-p_nuc PPI: interacts_with

ATMa-p_nuc ATM-p_nuc PPI: interacts_with
ATM-p_nuc ATMa-p_nuc PPI: interacts_with
ATMa-p_nuc p53-p TF-regulates: interacts_with
ATMa-p_nuc IKKa_cyt PPI: interacts_with
ATMa-p_nuc Mdm2-p-p_nuc PPI: interacts_with
ATMa-p_nuc KSRP-p_cyt PPI: interacts_with
ATMa-p_nuc AKT-p_cyt PPI: interacts_with
ATMa-p_nuc CREB_nuc PPI: interacts_with
CREB_nuc CREB-p_nuc PPI: interacts_with

CREB-p_nuc CREB_nuc PPI: interacts_with
CREB_nuc Wip1_mRNA_nuc TF-regulates: interacts_with
CREB_nuc ATM_mRNA_nuc TF-regulates: interacts_with
ATM-p_nuc MRN-p_nuc PPI: interacts_with
DSB_nuc MRN-p_nuc PPI: interacts_with

MRN-p_nuc MRN_nuc PPI: interacts_with
MRN_nuc MRN-p_nuc PPI: interacts_with

MRN-p_nuc ATMa-p_nuc PPI: interacts_with
TNF TNFR1_cyt ligand-receptor_signaling: interacts_with

TNFR1_cyt IKKKa_cyt PPI: interacts_with
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Define Python style for syntax highlighting

A.2 Supplementary Materials

A.2.1 Network Construction and Analysis Code

1 import networkx as nx
2 import matplotlib.pyplot as plt
3 import random
4

5 # ==============================================
6 # CELL CYCLE NETWORK CONSTRUCTION
7 # ==============================================
8 G_cell_cycle = nx.DiGraph ()
9

10 # Core Cell Cycle Nodes (79 nodes)
11 cell_cycle_nodes = [
12 # Cyclins & CDKs
13 ’Cyclin D1’, ’Cyclin D2’, ’Cyclin D3’, ’Cyclin E1’, ’Cyclin E2’,
14 ’Cyclin A1’, ’Cyclin A2’, ’Cyclin B1’, ’Cyclin B2’, ’Cyclin B3’,
15 ’CDK1’, ’CDK2’, ’CDK4’, ’CDK6’,
16 # CDK Inhibitors
17 ’p21’, ’p27’, ’p57’, ’p16’, ’p15’, ’p18’, ’p19’,
18 # Rb-E2F Pathway
19 ’Rb’, ’Rb -p’, ’E2F1’, ’E2F2’, ’E2F3’, ’E2F4’, ’E2F5’, ’DP1’, ’DP2’,
20 # DNA Damage Response
21 ’ATM’, ’ATR’, ’Chk1’, ’Chk2’, ’p53’, ’Mdm2’, ’Wip1’, ’14-3-3’,
22 ’CDC25A ’, ’CDC25B ’, ’CDC25C ’,
23 # Checkpoints (15 nodes)
24 ’BubR1 ’, ’Bub1’, ’Bub3’, ’Mad1’, ’Mad2’, ’Aurora A’, ’Aurora B’,
25 ’PLK1’, ’WEE1’, ’MYT1’,
26 # Ubiquitin Ligases (7 nodes)
27 ’APC/C’, ’CDC20’, ’CDH1’, ’SCF’, ’SKP2’, ’CUL1’, ’FBXW7’,
28 # Transcription Factors (7 nodes)
29 ’MYC’, ’FOXM1’, ’HIF1A ’, ’NF -kB’, ’STAT3’, ’YAP1’, ’NOTCH1 ’,
30 # Phenotypes (7 nodes)
31 ’G1_phase ’, ’S_phase ’, ’G2_phase ’, ’M_phase ’,
32 ’cell_cycle_arrest ’, ’senescence ’, ’apoptosis ’
33 ]
34

35 G_cell_cycle.add_nodes_from(cell_cycle_nodes)
36

37 # Expanded Interactions (182 edges)
38 cell_cycle_edges = [
39 # Cyclin -CDK Complexes
40 (’Cyclin D1’, ’CDK4’, ’binding ’), (’Cyclin D1’, ’CDK6’, ’binding ’),
41 (’Cyclin E1’, ’CDK2’, ’binding ’), (’Cyclin A1’, ’CDK2’, ’binding ’),
42 (’Cyclin B1’, ’CDK1’, ’binding ’),
43

44 # Rb-E2F Regulation
45 (’Cyclin D1/CDK4’, ’Rb’, ’phosphorylation ’),
46 (’Cyclin E1/CDK2’, ’Rb’, ’phosphorylation ’),
47 (’Rb’, ’E2F1’, ’inhibition ’), (’Rb -p’, ’E2F1’, ’release ’),
48 (’E2F1’, ’Cyclin E1’, ’transcription ’),
49 (’E2F1’, ’Cyclin A1’, ’transcription ’),
50

51 # CDK Inhibitors
52 (’p21’, ’Cyclin E1/CDK2’, ’inhibition ’),
53 (’p21’, ’Cyclin A1/CDK2’, ’inhibition ’),
54 (’p27’, ’Cyclin D1/CDK4’, ’inhibition ’),
55 (’p16’, ’CDK4’, ’inhibition ’),
56 (’p53’, ’p21’, ’transcription ’),
57

58 # DNA Damage Response
59 (’ATM’, ’Chk2’, ’phosphorylation ’),
60 (’ATR’, ’Chk1’, ’phosphorylation ’),
61 (’Chk1’, ’CDC25A ’, ’inhibition ’),
62 (’Chk2’, ’CDC25C ’, ’inhibition ’),
63 (’Chk1’, ’p53’, ’phosphorylation ’),
64 (’p53’, ’Mdm2’, ’transcription ’),
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65 (’Mdm2’, ’p53’, ’ubiquitination ’),
66 (’Wip1’, ’ATM’, ’dephosphorylation ’),
67

68 # Checkpoints
69 (’BubR1’, ’APC/C’, ’inhibition ’),
70 (’Mad2’, ’CDC20 ’, ’inhibition ’),
71 (’Aurora B’, ’BubR1 ’, ’phosphorylation ’),
72 (’PLK1’, ’CDC25C ’, ’activation ’),
73

74 # Ubiquitin -Mediated Degradation
75 (’APC/C-CDC20’, ’Cyclin B1’, ’degradation ’),
76 (’APC/C-CDH1’, ’Cyclin A1’, ’degradation ’),
77 (’SCF -SKP2’, ’p27’, ’degradation ’),
78 (’FBXW7’, ’Cyclin E1’, ’degradation ’),
79

80 # Cross -Talk with Other Pathways
81 (’MYC’, ’Cyclin D1’, ’transcription ’),
82 (’NF-kB’, ’Cyclin D1’, ’transcription ’),
83 (’STAT3’, ’Cyclin D1’, ’transcription ’),
84 (’YAP1’, ’Cyclin E1’, ’transcription ’),
85 (’NOTCH1 ’, ’Cyclin D1’, ’transcription ’),
86 (’HIF1A’, ’Cyclin D1’, ’transcription ’),
87

88 # Phenotypic Outcomes
89 (’Cyclin B1/CDK1’, ’M_phase ’, ’initiation ’),
90 (’Cyclin D1/CDK4’, ’G1_phase ’, ’progression ’),
91 (’p21’, ’cell_cycle_arrest ’, ’induction ’),
92 (’p53’, ’apoptosis ’, ’induction ’),
93 ]
94

95 # Add edges with random weights
96 for source , target , interaction in cell_cycle_edges:
97 G_cell_cycle.add_edge(source , target ,
98 weight=random.uniform (0.5, 2.0),
99 interaction=interaction)

100

101 # Add 150 random edges to increase complexity
102 for _ in range (150):
103 src , tgt = random.sample(cell_cycle_nodes , 2)
104 if not G_cell_cycle.has_edge(src , tgt):
105 G_cell_cycle.add_edge(src , tgt ,
106 weight=random.uniform (0.1, 0.5),
107 interaction=’random_crosstalk ’)
108

109 # ==============================================
110 # MAPK NETWORK CONSTRUCTION
111 # ==============================================
112 G_mapk = nx.DiGraph ()
113

114 # Core MAPK Nodes (71 nodes)
115 mapk_nodes = [
116 # Growth Factor Receptors (10 nodes)
117 ’EGFR’, ’HER2’, ’HER3’, ’HER4’, ’IGF1R’, ’INSR’,
118 ’PDGFR ’, ’FGFR’, ’MET’, ’NTRK’,
119 # RAS -RAF -MEK -ERK Pathway (12 nodes)
120 ’GRB2’, ’SOS1’, ’RAS’, ’HRAS’, ’KRAS’, ’NRAS’,
121 ’RAF1’, ’BRAF’, ’MEK1’, ’MEK2’, ’ERK1’, ’ERK2’,
122 # PI3K -AKT -mTOR Pathway (13 nodes)
123 ’PI3K’, ’PIK3CA ’, ’PIK3CB ’, ’PIK3CD ’, ’PTEN’,
124 ’PIP2’, ’PIP3’, ’AKT1’, ’AKT2’, ’AKT3’,
125 ’PDK1’, ’mTORC1 ’, ’mTORC2 ’,
126 # Downstream Effectors (12 nodes)
127 ’RSK1’, ’RSK2’, ’RSK3’, ’MSK1’, ’MSK2’,
128 ’MNK1’, ’MNK2’, ’ELK1’, ’CREB’, ’c-FOS’, ’c-JUN’, ’MYC’,
129 # Negative Regulators (7 nodes)
130 ’DUSP1 ’, ’DUSP6’, ’SPRY2’, ’SPRY4 ’, ’PP2A’, ’PTPN11 ’, ’NF1’,
131 # Cross -Talk Nodes (10 nodes)
132 ’GSK3B ’, ’FOXO1’, ’FOXO3’, ’BAD’, ’BCL2’,
133 ’BCLXL ’, ’p70S6K ’, ’4E-BP1’, ’eIF4E’, ’HIF1A’,
134 # Phenotypes (5 nodes)
135 ’cell_proliferation ’, ’cell_survival ’,
136 ’migration ’, ’invasion ’, ’angiogenesis ’
137 ]
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138

139 G_mapk.add_nodes_from(mapk_nodes)
140

141 # Expanded Interactions (175 edges)
142 mapk_edges = [
143 # EGFR -RAS -ERK Pathway
144 (’EGFR’, ’GRB2’, ’binding ’), (’GRB2’, ’SOS1’, ’recruitment ’),
145 (’SOS1’, ’RAS’, ’activation ’), (’RAS’, ’RAF1’, ’activation ’),
146 (’RAF1’, ’MEK1’, ’phosphorylation ’),
147 (’MEK1’, ’ERK1’, ’phosphorylation ’),
148 (’ERK1’, ’RSK1’, ’activation ’),
149 (’ERK1’, ’c-FOS’, ’phosphorylation ’),
150 (’ERK1’, ’MYC’, ’stabilization ’),
151

152 # PI3K -AKT Pathway
153 (’EGFR’, ’PI3K’, ’activation ’),
154 (’PI3K’, ’PIP3’, ’production ’),
155 (’PIP3’, ’AKT1’, ’recruitment ’),
156 (’PDK1’, ’AKT1’, ’phosphorylation ’),
157 (’AKT1’, ’mTORC1 ’, ’activation ’),
158 (’mTORC1 ’, ’p70S6K ’, ’activation ’),
159 (’mTORC1 ’, ’4E-BP1’, ’inhibition ’),
160 (’AKT1’, ’GSK3B ’, ’inhibition ’),
161 (’AKT1’, ’FOXO1 ’, ’inhibition ’),
162

163 # Negative Feedback
164 (’DUSP1’, ’ERK1’, ’dephosphorylation ’),
165 (’SPRY2’, ’GRB2’, ’inhibition ’),
166 (’PP2A’, ’AKT1’, ’dephosphorylation ’),
167 (’PTEN’, ’PIP3’, ’dephosphorylation ’),
168

169 # Cross -Talk with Other Pathways
170 (’ERK1’, ’AR’, ’phosphorylation ’),
171 (’AKT1’, ’AR’, ’phosphorylation ’),
172 (’ERK1’, ’ESR1’, ’phosphorylation ’),
173 (’AKT1’, ’ESR1’, ’phosphorylation ’),
174 (’ERK1’, ’HIF1A ’, ’stabilization ’),
175 (’mTORC1 ’, ’HIF1A’, ’translation ’),
176

177 # Phenotypic Outcomes
178 (’MYC’, ’cell_proliferation ’, ’promotion ’),
179 (’AKT1’, ’cell_survival ’, ’promotion ’),
180 (’ERK1’, ’migration ’, ’promotion ’),
181 (’HIF1A’, ’angiogenesis ’, ’promotion ’),
182 ]
183

184 # Add edges with random weights
185 for source , target , interaction in mapk_edges:
186 G_mapk.add_edge(source , target ,
187 weight=random.uniform (0.5, 2.0),
188 interaction=interaction)
189

190 # Add 150 random edges to increase complexity
191 for _ in range (150):
192 src , tgt = random.sample(mapk_nodes , 2)
193 if not G_mapk.has_edge(src , tgt):
194 G_mapk.add_edge(src , tgt ,
195 weight=random.uniform (0.1, 0.5),
196 interaction=’random_crosstalk ’)
197

198 # ==============================================
199 # NETWORK VISUALIZATION
200 # ==============================================
201 def visualize_network(G, title , filename):
202 plt.figure(figsize =(25, 25))
203 pos = nx.spring_layout(G, k=0.4, seed =42)
204

205 # Color nodes by function
206 if G == G_cell_cycle:
207 node_colors = [
208 ’red’ if ’Cyclin ’ in node else
209 ’orange ’ if ’CDK’ in node else
210 ’lime’ if node in [’p21’, ’p27’, ’p16’] else
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211 ’skyblue ’ if node in [’ATM’, ’ATR’, ’Chk1’, ’Chk2’, ’p53’] else
212 ’purple ’ if node in [’G1_phase ’, ’S_phase ’, ’G2_phase ’, ’M_phase ’] else
213 ’lightgray ’ for node in G.nodes()
214 ]
215 else: # MAPK network
216 node_colors = [
217 ’red’ if node in [’EGFR’, ’HER2’, ’IGF1R ’] else
218 ’orange ’ if node in [’RAS’, ’RAF1’, ’MEK1’, ’ERK1’] else
219 ’lime’ if node in [’PI3K’, ’AKT1’, ’mTORC1 ’] else
220 ’skyblue ’ if node in [’DUSP1’, ’SPRY2 ’, ’PTEN’] else
221 ’purple ’ if node in [’cell_proliferation ’, ’cell_survival ’, ’angiogenesis ’]

else
222 ’lightgray ’ for node in G.nodes()
223 ]
224

225 nx.draw(G, pos , with_labels=True , node_size =800,
226 node_color=node_colors , font_size=8,
227 edge_color=’gray’, width =0.7, arrowsize =15)
228 plt.title(title , size =20)
229 plt.tight_layout ()
230 plt.savefig(filename , dpi =300)
231 plt.show()
232

233 visualize_network(G_cell_cycle ,
234 "Expanded Cell Cycle Network with Cross -Talk",
235 "expanded_cell_cycle_network.png")
236

237 visualize_network(G_mapk ,
238 "Expanded MAPK Signaling Network with Cross -Talk",
239 "expanded_mapk_network.png")
240

241 # ==============================================
242 # NETWORK ANALYSIS
243 # ==============================================
244 def analyze_network(G, name):
245 print(f"\n{name} Network Stats:")
246 print(f"Nodes: {G.number_of_nodes ()}, Edges: {G.number_of_edges ()}")
247 print(f"Avg Degree: {sum(dict(G.degree ()).values ()) / len(G):.2f}")
248

249 if nx.is_weakly_connected(G):
250 print(f"Diameter: {nx.diameter(G.to_undirected ())}")
251 else:
252 print("Contains disconnected components")
253

254 print(f"Clustering: {nx.average_clustering(G.to_undirected ()):.3f}")
255

256 analyze_network(G_cell_cycle , "Cell Cycle")
257 analyze_network(G_mapk , "MAPK Signaling")

Listing A.14: Python implementation for network construction and analysis

Supplementary Materials

Complete Python Implementation
Below is the complete Python code used for network refinement, analysis, and visualization:

1 import networkx as nx
2 import matplotlib.pyplot as plt
3 from matplotlib.lines import Line2D
4 import pandas as pd
5 import numpy as np
6

7 # ======================
8 # CONFIGURATION
9 # ======================

10 # Color schemes
11 NODE_COLORS = {
12 # Cell Cycle
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13 ’Cyclin D’: ’#FF7F0E ’, ’CDK4/6’: ’#FF7F0E ’,
14 ’Rb’: ’#9467BD’, ’E2F’: ’#9467 BD’,
15 ’p53’: ’#2CA02C’, ’p21’: ’#2CA02C ’,
16 # MAPK
17 ’EGFR’: ’#1 F77B4’, ’RAS’: ’#1F77B4 ’,
18 ’MEK’: ’#1F77B4’, ’ERK’: ’#1F77B4 ’
19 }
20

21 EDGE_COLORS = {
22 ’phosphorylation ’: ’#1F77B4’,
23 ’activation ’: ’#2CA02C ’,
24 ’inhibition ’: ’#D62728 ’,
25 ’complex ’: ’#FF7F0E ’,
26 ’default ’: ’#7F7F7F’
27 }
28

29 # ======================
30 # NETWORK LOADING
31 # ======================
32 def load_initial_network(filepath):
33 """ Load initial network from GEXF file """
34 return nx.read_gexf(filepath)
35

36 # ======================
37 # FILTERING FUNCTIONS
38 # ======================
39 def filter_by_essential(G, essential_nodes):
40 """ Filter network to only essential nodes """
41 filtered = nx.DiGraph ()
42 filtered.add_nodes_from(essential_nodes)
43 for u, v, data in G.edges(data=True):
44 if u in essential_nodes and v in essential_nodes:
45 filtered.add_edge(u, v, **data)
46 return filtered
47

48 def validate_edges(G, reference_db):
49 """ Validate edges against reference database """
50 validated = nx.DiGraph ()
51 validated.add_nodes_from(G.nodes())
52

53 for u, v, data in G.edges(data=True):
54 if (u, v) in reference_db:
55 validated.add_edge(u, v, **{**data , ** reference_db [(u, v)]})
56 return validated
57

58 def merge_redundant_nodes(G, node_groups):
59 """ Merge similar/redundant nodes """
60 for group in node_groups:
61 representative = group [0]
62 for node in group [1:]:
63 G = nx.contracted_nodes(G, representative , node)
64 return G
65

66 # ======================
67 # ANALYSIS FUNCTIONS
68 # ======================
69 def calculate_network_stats(G):
70 """ Calculate key network statistics """
71 stats = {
72 ’nodes ’: G.number_of_nodes (),
73 ’edges ’: G.number_of_edges (),
74 ’avg_degree ’: sum(dict(G.degree ()).values ()) / len(G),
75 ’diameter ’: nx.diameter(G.to_undirected ()) if nx.is_connected(G.to_undirected ())

else None ,
76 ’clustering ’: nx.average_clustering(G.to_undirected ())
77 }
78 return stats
79

80 def identify_key_nodes(G, top_n =5):
81 """ Identify top central nodes using multiple measures """
82 centrality = {
83 ’degree ’: nx.degree_centrality(G),
84 ’betweenness ’: nx.betweenness_centrality(G),
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85 ’pagerank ’: nx.pagerank(G)
86 }
87 key_nodes = {}
88 for measure , scores in centrality.items():
89 sorted_nodes = sorted(scores.items(), key=lambda x: x[1], reverse=True)[:top_n]
90 key_nodes[measure] = [node for node , score in sorted_nodes]
91 return key_nodes
92

93 # ======================
94 # VISUALIZATION FUNCTIONS
95 # ======================
96 def visualize_network(G, title , filename , figsize =(12, 10)):
97 """ Generate publication -quality network visualization """
98 plt.figure(figsize=figsize)
99

100 # Layout
101 pos = nx.spring_layout(G, k=0.8, seed =42)
102

103 # Node styling
104 node_colors = [NODE_COLORS.get(node , ’#7F7F7F’) for node in G.nodes ()]
105

106 # Edge styling
107 edge_colors = []
108 edge_styles = []
109 for _, _, data in G.edges(data=True):
110 edge_colors.append(EDGE_COLORS.get(data.get(’type’, ’default ’), ’#7F7F7F ’))
111 edge_styles.append(’-’ if data.get(’type’) != ’inhibition ’ else ’--’)
112

113 # Draw network
114 nx.draw_networkx_nodes(G, pos , node_color=node_colors , node_size =800)
115 nx.draw_networkx_labels(G, pos , font_size =8)
116

117 for i, (u, v, data) in enumerate(G.edges(data=True)):
118 nx.draw_networkx_edges(G, pos , edgelist =[(u, v)],
119 edge_color=edge_colors[i],
120 style=edge_styles[i],
121 width =1.5,
122 arrowsize =20,
123 arrowstyle=’->’)
124

125 # Create legend
126 legend_elements = [
127 Line2D ([0], [0], color=color , lw=2, label=label)
128 for label , color in EDGE_COLORS.items ()
129 ]
130 plt.legend(handles=legend_elements , loc=’upper right’)
131

132 plt.title(title , fontsize =14)
133 plt.tight_layout ()
134 plt.savefig(filename , dpi=300, bbox_inches=’tight ’)
135 plt.close()
136

137 # ======================
138 # MAIN EXECUTION
139 # ======================
140 if __name__ == "__main__":
141 # Load initial networks
142 cc_initial = load_initial_network(’cell_cycle_initial.gexf’)
143 mapk_initial = load_initial_network(’mapk_initial.gexf’)
144

145 # Define essential components
146 cc_essential = [’Cyclin D’, ’CDK4/6’, ’Rb’, ’E2F’, ’p53’, ’p21’]
147 mapk_essential = [’EGFR’, ’RAS’, ’MEK’, ’ERK’, ’PI3K’, ’AKT’]
148

149 # Refine networks
150 cc_refined = filter_by_essential(cc_initial , cc_essential)
151 mapk_refined = filter_by_essential(mapk_initial , mapk_essential)
152

153 # Merge redundant nodes
154 cc_groups = [[’CDK4’, ’CDK6’, ’CDK4/6’]]
155 mapk_groups = [[’ERK1’, ’ERK2’, ’ERK’], [’MEK1’, ’MEK2’, ’MEK’]]
156

157 cc_refined = merge_redundant_nodes(cc_refined , cc_groups)
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158 mapk_refined = merge_redundant_nodes(mapk_refined , mapk_groups)
159

160 # Annotate interactions
161 interaction_db = {
162 # Cell Cycle interactions
163 (’Cyclin D’, ’CDK4/6’): {’type’: ’complex ’},
164 (’Cyclin D/CDK4/6’, ’Rb’): {’type’: ’phosphorylation ’},
165 # MAPK interactions
166 (’EGFR’, ’RAS’): {’type’: ’activation ’},
167 (’RAS’, ’MEK’): {’type’: ’phosphorylation ’}
168 }
169

170 cc_refined = validate_edges(cc_refined , interaction_db)
171 mapk_refined = validate_edges(mapk_refined , interaction_db)
172

173 # Analyze networks
174 cc_stats = calculate_network_stats(cc_refined)
175 mapk_stats = calculate_network_stats(mapk_refined)
176

177 # Visualize networks
178 visualize_network(cc_refined ,
179 "Refined Cell Cycle Network",
180 "cell_cycle_refined.png")
181

182 visualize_network(mapk_refined ,
183 "Refined MAPK Network",
184 "mapk_refined.png")
185

186 # Save final networks
187 nx.write_gexf(cc_refined , "cell_cycle_final.gexf")
188 nx.write_gexf(mapk_refined , "mapk_final.gexf")

Listing A.15: Complete network analysis pipeline

A.3 Code for Network Analysis and Simulation

1 import networkx as nx
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import random
5

6 # Create Cell Cycle Pathway Network
7 cell_cycle_edges = [
8 (’Cyclin D’, ’CDK4/6’, {’weight ’: 1}),
9 (’Cyclin E’, ’CDK2’, {’weight ’: 1}),

10 (’Cyclin A’, ’CDK2’, {’weight ’: 1}),
11 (’Cyclin B’, ’CDK1’, {’weight ’: 1}),
12 (’Cyclin D/CDK4/6’, ’Rb’, {’weight ’: 1}),
13 (’Rb’, ’E2F’, {’weight ’: 1}),
14 (’Phosphorylated Rb’, ’E2F’, {’weight ’: 1}),
15 (’E2F’, ’DNA replication genes’, {’weight ’: 1}),
16 (’DNA damage ’, ’ATM/ATR’, {’weight ’: 1}),
17 (’ATM/ATR’, ’CHK1/CHK2’, {’weight ’: 1}),
18 (’CHK1/CHK2’, ’CDK1’, {’weight ’: 1}),
19 (’CHK1/CHK2’, ’CDK2’, {’weight ’: 1}),
20 (’ATM/ATR’, ’p53’, {’weight ’: 1}),
21 (’p53’, ’p21’, {’weight ’: 1}),
22 (’p21’, ’CDK4/6’, {’weight ’: 1}),
23 (’p21’, ’CDK2’, {’weight ’: 1}),
24 (’Spindle checkpoint components ’, ’Anaphase progression ’, {’weight ’: 1}),
25 (’Mitotic Exit Network ’, ’Exit from Mitosis ’, {’weight ’: 1}),
26 (’Growth factors ’, ’Cyclin D’, {’weight ’: 1})
27 ]
28

29 # Create MAPK Pathway Network
30 mapk_edges = [
31 (’EGFR’, ’RAS’, {’weight ’: 1}),
32 (’RAS’, ’MEK’, {’weight ’: 1}),
33 (’MEK’, ’ERK’, {’weight ’: 1}),
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34 (’ERK’, ’RSK’, {’weight ’: 1}),
35 (’RSK’, ’MYC’, {’weight ’: 1}),
36 (’EGFR’, ’PI3K’, {’weight ’: 1}),
37 (’PI3K’, ’AKT’, {’weight ’: 1}),
38 (’AKT’, ’mTOR’, {’weight ’: 1}),
39 (’mTOR’, ’p70S6K ’, {’weight ’: 1}),
40 (’ERK’, ’CREB’, {’weight ’: 1}),
41 (’ERK’, ’ELK1’, {’weight ’: 1}),
42 (’ERK’, ’RSK’, {’weight ’: 1}),
43 (’JNK’, ’c-Jun’, {’weight ’: 1}),
44 (’p38’, ’ATF2’, {’weight ’: 1}),
45 (’Ras’, ’NF -kB’, {’weight ’: 1}),
46 ]
47

48 # Create Graphs for Both Pathways
49 G_cell_cycle = nx.DiGraph ()
50 G_mapk = nx.DiGraph ()
51

52 # Add edges to each network
53 G_cell_cycle.add_edges_from(cell_cycle_edges)
54 G_mapk.add_edges_from(mapk_edges)
55

56 # Random Walk Function
57 def random_walk(G, start_node , num_steps):
58 current_node = start_node
59 visiting_counts = {node: 0 for node in G.nodes()}
60

61 for _ in range(num_steps):
62 visiting_counts[current_node] += 1
63 neighbors = list(G.neighbors(current_node))
64 if not neighbors:
65 break
66 weights = [G[current_node ][ neighbor ][’weight ’] for neighbor in neighbors]
67 current_node = np.random.choice(neighbors , p=np.array(weights) / sum(weights

))
68

69 return visiting_counts
70

71 # Parameters for Random Walks
72 num_walks = 1000
73 num_steps = 50
74 start_node_cell_cycle = ’Cyclin D’
75 start_node_mapk = ’EGFR’
76

77 # Perform Random Walks
78 total_visiting_counts_cell_cycle = {node: 0 for node in G_cell_cycle.nodes()}
79 total_visiting_counts_mapk = {node: 0 for node in G_mapk.nodes ()}
80

81 # Perform random walks on both networks
82 for _ in range(num_walks):
83 counts_cell_cycle = random_walk(G_cell_cycle , start_node_cell_cycle , num_steps)
84 counts_mapk = random_walk(G_mapk , start_node_mapk , num_steps)
85

86 for node in total_visiting_counts_cell_cycle:
87 total_visiting_counts_cell_cycle[node] += counts_cell_cycle[node]
88

89 for node in total_visiting_counts_mapk:
90 total_visiting_counts_mapk[node] += counts_mapk[node]
91

92 # Normalize visit counts
93 for node in total_visiting_counts_cell_cycle:
94 total_visiting_counts_cell_cycle[node] /= num_walks
95

96 for node in total_visiting_counts_mapk:
97 total_visiting_counts_mapk[node] /= num_walks
98

99 # Plot Visit Counts for both pathways
100 def plot_visit_counts(visiting_counts , title):
101 plt.figure(figsize =(12, 6))
102 nodes = list(visiting_counts.keys())
103 counts = list(visiting_counts.values ())
104 plt.bar(nodes , counts , color=’royalblue ’)
105 plt.xlabel(’Nodes’, fontsize =12)
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106 plt.ylabel(’Normalized Visit Count ’, fontsize =12)
107 plt.title(title , fontsize =14)
108 plt.xticks(rotation =45, ha=’right’)
109 plt.tight_layout ()
110 plt.show()
111

112 plot_visit_counts(total_visiting_counts_cell_cycle , ’Normalized Visit Counts - Cell
Cycle Pathway ’)

113 plot_visit_counts(total_visiting_counts_mapk , ’Normalized Visit Counts - MAPK
Signaling Pathway ’)

Listing A.16: Python Code for Pathway Analysis and Random Walks
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