
ABSTRACT 

Single cell RNAseq experiments are often conducted on a large scale, involving multiple 

laboratories or measurements taken at different times. Perfectly balanced experimental designs 

for such large projects may be infeasible, resulting in the need to conduct experiments in 

batches. Consequently, batch effects inevitably arise. They introduce an additional layer of 

technical noise to an already noisy scRNAseq data. However, this noise is not uniformly 

distributed across genomic data features, making it unsuitable to address during the 

normalization step. If left unaddressed, batch effects can result in misleading conclusions drawn 

from the analysis. Consequently, computational correction or removal becomes necessary, 

which is the objective of existing algorithms. Nevertheless, distinguishing batch effects from 

biological heterogeneity is a challenging task due to their differential origins. 

 

Although batch effects have a detrimental impact on the data, the process of correction for them 

can also be harmful, particularly at the gene-level. The gene-level analyses are not safe to be 

performed on corrected data because in most cases correction distorts the original data 

distribution, and there is lack of a measure to quantify the uncertainty associated with the 

correction process. Therefore, there is a strong need to develop research in the field of batch 

effect removal, correction or mitigation employing new approaches and bioinformatic tools.  

 

This work aims to provide a pipeline that utilizes iterative subspace clustering, combined with 

functional analysis of gene sets, to mitigate the negative impact of the batch effect on scRNAseq 

data. The novel and central idea was to employ effect size measure to determine cluster-specific 

pathways, followed by a linkage procedure that enables cluster tracking (linking) across 

different batches. 

Therefore, the proposed workflow eliminates the need for applying batch-effect correction and 

enables consolidated analysis of batches that were generated separately. In contrast to existing 

complex and computationally demanding algorithms, this approach prioritizes simplicity, low 

computational cost, and ease of interpretation. The utilization of subspace clustering combined 

with functional analysis of gene pathways for mitigating batch effects has not been explored 

before, making this thesis a novel contribution to the field.  

 



The underlying assumption is that iterative subspace clustering may diminish batch effects by 

removing more noise from the data with each subsequent iteration. As a result, cells should tend 

to form groups based on their true biology. Furthermore, the cluster-specific pathways 

identified are expected to exhibit robust manifestations and demonstrate resilience to the 

negative impact of batch effects, which is typically less pronounced compared to individual 

genes. 

 

To address specific challenges encountered in scRNA-seq data, original adjustments were 

introduced, such as global noise filtration based on binarized gene expression matrix to handle 

dropouts. 

 

The theses of this dissertation are formulated as follows: 

 

1. Existing algorithms for batch effect correction in scRNAseq often distort the original 

distribution of gene expression data. Consequently, gene-level analyses such as 

differential expression or marker identification cannot be safely applied to the corrected 

dataset. 

2. A simple feature selection strategy based on variance decomposition yields similar 

results to more sophisticated and computationally expensive methods. 

3. In confounded scRNA-seq data, batch effect correction can be skipped. Instead, a 

reliable analysis can be performed by independently identifying subclusters of cells 

within each batch and then linking them between batches based on the similarity of their 

functional profiles to track similar cells from different batches. 

This project stands out due to its unique experimental setup, which involves a pair of 

experimentally derived datasets. These datasets shared identical biological properties but 

differed only in technical study design, as illustrated in Figure 1. 



The first experiment was part of a larger study. However, upon analysis, it was discovered that 

the experiment exhibited strong batch effects resulting from variations in the experimental 

processing of the biological groups corresponding to the time of harvesting. In this study, cells 

collected at different time points were processed on separate chips and on various days. This 

dataset is referred to as a confounded study. 

The second experiment, referred to as a balanced study, was designed to minimize technical 

variation. In this design, cells collected at different time points were split and processed on the 

same chip, all on the same day. This approach aimed to ensure that any observed differences 

were primarily due to the effects of the drug treatment and not influenced by technical factors. 

This study serves as a reference. 

 

Such experimental setup is distinct from existing evaluations of batch effect correction, which 

often rely on simulation scenarios or include true cell identity labels. Both datasets (balanced 

and confounded) were visualized using UMAP plots (Figure 2). In the balanced dataset, cells 

from both repetitions group according to the biological variable of interest (timepoint). 

However, in the confounded dataset, each technical replicate forms its own cluster. This 

Figure 1. Experimental design. Both experiments conducted to explore the impact of navitoclax treatment 

on the transcriptome of a triple-negative breast cancer cell line. Both experiments utilized the MDA-MB-

231 cancer cell line, and two biological replicates, labelled as A and B, were included. The cells were 

subjected to a 10 µM concentration of navitoclax and harvested at three specific time points: before the 

treatment (baseline; T1), after treatment (T2) and after recovery from the treatment (T3). 

 



indicates that the dataset is completely confounded, with batch effects overpowering the 

biological variable of interest.  

Since reliable analysis of such a completely confounded dataset is not possible, six batch-effect 

correction tools were applied to address this issue. However, non of them gave satisfactory 

performance. Moreover, the evaluations of the impact of batch-effect correction on feature-

level layer of the original data revealed that correction distorts the original data distribution 

(Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. UMAP plots of balanced and confounded study. 

Scanorama 

Figure 3. Feature characteristics of confounded study before (top panel) and after batch effect correction 

(bottom panel). From the left: (i) histogram of average gene expression, (ii) scatter plot of variance vs mean 

expression (red line with intercept = 0 and slope = 1) and (iii) detection rate vs average expression (red line 

indicates the expected distribution under a Poisson model. Individual points are colored by the number of 

neighboring points).  



To facilitate the consolidated analysis of separately generated data, a pipeline utilizing iterative 

subspace clustering combined with functional analysis was proposed (Figure 4). 

 

The first step involves a filtering procedure that addresses the prevalent issue of zero 

measurements in scRNAseq data. All datasets exhibited a significant level of global noise, 

which was manifested in high dropout rates exceeding 90%. Many genes were rarely detected 

in any cell, with a dropout rate close to 1. To filter out noisy genes in a data-driven manner, a 

method based on hierarchical clustering was proposed. Global filtration resulted in the reduced 

domain of features.  In contrast, the term 'full domain' is used to describe the original feature 

space before any filtration occurred. 

 

Figure 4. The proposed framework for analysis of confounded datasets.  



In the second step of feature selection, a filtering strategy was applied locally to each cluster 

obtained at every clustering iteration. Local feature selection was performed through 

decomposition of gene variances into mixture of gaussian components.  

The GMM filtration strategy was validated by sparse k-means clustering which incorporates a 

feature selection procedure. In other words, it internally assesses the importance of each gene 

in the clustering process by assigning higher weights to more significant genes. When the full 

domain is considered, the clusters are blurred due to the presence of many noise features that 

do not contribute to the clustering process (Figure 5). After GMM filtration, the quality of 

clustering substantially improved, and the clusters became more distinct. 

 

The evaluation of the distribution of weights assigned by sparse k-means revealed that the 

weights in the GMM filtered group of genes, called HVG group were substantially higher, 

despite comprising only a small number of genes, constituting 2-3% of the full domain (Figure 

6). The above analyses proved that the proposed strategy of local feature selection yields similar 

results to more sophisticated and computationally expensive methods.  

Figure 5. Sparse k-means clustering with different scenarios. full domain – corresponds to the original 

feature space before global filtration, GMM filtered domain – after variance decomposition by GMM 



 

 

Clusters discovered within batches were subsequently subjected to independent functional 

analysis of gene sets. To find cluster specific pathways for each dataset, Cliff's delta effect size 

statistics was proposed. This metric quantifies the extent to which values in one group are larger 

(dominate) than the values in a second group. However, these groups were determined 

according to one-versus-others scenario, which was designed to identify pathways with a robust 

manifestation. These pathways were assumed to demonstrate resilience to the negative impact 

of batch effects, which is generally less pronounced compared to individual genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Distribution of feature weights assigned by sparse k-means. Two groups were considered: 

involving only HVGs obtained by GMM filtering (green), and non-HVG group (red). Weights were 

assigned automatically by the algorithm. There is a number of features depicted inside of each violin 

plot. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following functional analysis, clusters from corresponding timepoints in the reference and 

confounded datasets are linked based on the similarity of their functional profiles. 

Two variants of scoring function were utilized to enable cluster linkage: based on Pearson’s 

correlation coefficient and based on metric called similarity score, which is simple dot product 

of two vectors. Both the similarity score and Pearson’s correlation are related; however, the 

former focuses on representing the alignment between vectors, while the latter represents the 

strength and direction of the linear relationship between the variables. A larger dot product 

indicates a stronger alignment. 

 

To visually track clusters across timepoints, Sankey diagrams were generated for each dataset 

based on the two similarity metrics under consideration. The Sankey plot effectively illustrates 

the flow of clusters between datasets (Figure 7). 

 

 

 

 

 

cluster pathway ES 

T1_I_1 

SMALL_CELL_LUNG_CANCER 0.122 

MAPK_SIGNALING_PATHWAY 0.092 

CHRONIC_MYELOID_LEUKEMIA 0.074 

OOCYTE_MEIOSIS -0.114 

CELL_CYCLE -0.117 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.159 
   

T1_I_2 

HUNTINGTONS_DISEASE 0.113 

OXIDATIVE_PHOSPHORYLATION 0.109 

ALZHEIMERS_DISEASE 0.103 

UBIQUITIN_MEDIATED_PROTEOLYSIS -0.093 

CHRONIC_MYELOID_LEUKEMIA -0.109 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.115 
   

T1_II_1 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.249 

OOCYTE_MEIOSIS 0.158 

CELL_CYCLE 0.154 

PARKINSONS_DISEASE -0.114 

OXIDATIVE_PHOSPHORYLATION -0.121 

HUNTINGTONS_DISEASE -0.122 
   

T1_II_2 

TGF_BETA_SIGNALING_PATHWAY 0.239 

CELL_CYCLE 0.231 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.182 

VIBRIO_CHOLERAE_INFECTION -0.119 

SPLICEOSOME -0.125 

PROTEASOME -0.155 
   

T2_I_1 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.214 

CELL_CYCLE 0.190 

TGF_BETA_SIGNALING_PATHWAY 0.149 

ANTIGEN_PROCESSING_AND_PRESENTATION -0.106 

ENDOCYTOSIS -0.111 

PROTEIN_EXPORT -0.117 
   

T2_I_2 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.188 

OOCYTE_MEIOSIS 0.097 

CELL_CYCLE 0.080 

HUNTINGTONS_DISEASE -0.068 

TGF_BETA_SIGNALING_PATHWAY -0.076 

DNA_REPLICATION -0.168 

 

Table. 1. Top three pathways with the highest (marked in red) and lowest effect size (ES) for sample 

clusters in balanced (green) and confounded study (orange) 



 

Figure 7. Sankey diagrams for between datasets comparisons. Left column corresponds to the comparison 

between repetition A and B of balanced study. Right column corresponds to the comparison between repetition 

A of balanced study and confounded study. Rows reflect the corresponding timepoints: top – T1; middle – T2 

and bottom – T3. The thickness of flows is proportional to the value of similarity score.  The label on the right 

of the cluster name represents the sum of the values coming out of the given cluster (for source nodes) or the 

sum of the values coming in the given cluster (for target nodes). 



Based on maximization approach, only clusters with the highest positive similar-ity metric 

(separately for correlation and similarity score) were paired, allowing each cluster to form only 

one pair. (Table 2). These pairs of clusters can be considered the most similar between 

timepoints (batches). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed workflow prioritizes simplicity, low computational cost, and ease of 

interpretation. All the methods employed in this pipeline are well-established and widely 

recognized in the field. However, it is worth noting that the goal, which was not initially 

introduced in this dissertation, was to provide an approach that is easily understandable not only 

for statisticians or data analysts but also for biologists responsible for designing such 

experiments. 

 

To fully validate the proposed approach, further research is necessary, addressing the afore-

mentioned issues. Nonetheless, it is important to note that this work aimed not to provide a 

ready-to-use method but rather to pave the way for new directions in research 

repA_vs_repB  repA_vs_confounded 

cluster_repA cluster_repB max_sim_score   cluster_repA cluster_confounded max_sim_score 

T1_II_2 T1_I_2 0.146   T1_I_2 T1_II_1 0.201 

T1_I_2 T1_II_2 0.141   T1_I_1 T1_II_2 0.189 

T1_I_1 T1_II_1 0.104   T1_II_2 T1_I_2 0.101 

T1_II_1 T1_I_1 0.002   T1_II_1 T1_I_1 0.053 
              

T2_I_1 T2_II_2 0.326   T2_I_1 T2_I_1 0.164 

T2_I_2 T2_II_1 0.136   T2_I_2 T2_I_2 0.075 

T2_II_2 T2_I_2 0.131   T2_II_2 T2_II_2 0.055 

T2_II_1 T2_I_1 0.045   T2_II_1 T2_II_1 0.033 
              

T3_II_2 T3_II_1 0.334   T3_II_2 T3_I_1 0.23 

T3_I_2 T3_I_2 0.076   T3_I_2 T3_II_1 0.148 

T3_I_1 T3_I_1 0.058   T3_I_1 T3_II_2 0.103 

T3_II_1 T3_II_2 0.024   T3_II_1 T3_I_2 0.031 

 

Table. 2. The most similar pair of clusters between batches 
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