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STRESZCZENIE PRACY 

 

Rosnąca popularność mikroinstalacji fotowoltaicznych (PV) montowanych przez odbiorców 

indywidualnych przyczynia się do okresowego występowania niekorzystnych zjawisk 

w systemie elektroenergetycznym, a głównym tego powodem jest zbyt wysoka generacja tych 

źródeł względem rzeczywistego zużycia energii w poszczególnych budynkach mieszkalnych, 

co sprawia, że nadmiar produkowanej energii jest oddawany do sieci elektroenergetycznej. 

Działania zaradcze podejmowane przez operatorów systemów dystrybucyjnych, polegające na 

modernizacji i rozbudowie sieci, poprawiają sytuację jedynie przez krótki czas, zazwyczaj do 

momentu przyłączenia kolejnych mikroinstalacji na danym obszarze. Ponadto działania te są 

bardzo kosztowne, a ich realizacja trwa latami. Dlatego pożądane jest znalezienie 

alternatywnego rozwiązania, umożliwiającego zwiększenie poziomu autokonsumpcji energii 

generowanej przez mikroinstalacje PV i tym samym zmniejszenie ilości energii oddawanej 

przez prosumentów do sieci elektroenergetycznej. Aby było to możliwe należy opracować 

system zarządzania generowaną energią w miejscu jej wytworzenia, który będzie realizował 

następujące funkcje: 

• pomiarową – monitorującą aktualne parametry charakteryzujące pracę instalacji zasilającej 

w rozpatrywanym budynku, w tym generację w źródle PV, 

• prognostyczną – polegającą na przygotowaniu prognozowanych profili zapotrzebowania 

bazowego budynku oraz generacji energii w mikroinstalacji PV z nim zintegrowanej, 

• optymalizującą – służącą do opracowania planu pracy magazynu energii oraz odbiorników 

o elastycznym czasie załączania, w sposób realizujący zadaną funkcje celu, 

• sterującą – kontrolującą pracę magazynu energii i wybranych odbiorników zgodnie 

z opracowanym planem pracy tych urządzeń. 

Zaprojektowanie i wdrożenie systemu, który będzie realizował wyżej wymienione funkcje 

będzie krokiem naprzód w stronę efektywnego zarządzania energią elektryczną w obrębie 

pojedynczego budynku wyposażonego w mikroinstalację PV, magazyn energii oraz odbiorniki 

o elastycznym czasie załączania. W rozprawie została przedstawiona propozycja systemu 

zarządzania energią w budynku mieszkalnym (Home Energy Management System – HEMS), 

który jest możliwy do praktycznego wdrożenia zarówno w nowo budowanych, jak 

i istniejących, tego typu obiektach. 
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1. WSTĘP 

W ostatnich kilku latach widoczny jest niezwykle dynamiczny przyrost liczby i mocy 

prosumenckich mikroinstalacji fotowoltaicznych (PV) przyłączanych do sieci niskiego 

napięcia (nN). Według stanu na koniec maja 2025 roku, sumaryczna liczba mikroinstalacji PV 

przyłączonych do sieci rozdzielczej nN należącej do Operatorów Systemów Dystrybucyjnych 

(OSD) w Polsce wyniosła ponad 1,5 mln, a ich łączna moc zainstalowana przekroczyła 

12,8 GW [1]. Rozwojowi tego segmentu wytwarzania nie towarzyszy jednak adekwatny rozwój 

metod i narzędzi pozwalających na optymalne zarządzanie wykorzystaniem generowanej 

energii w miejscu jej produkcji, z uwzględnieniem czasu, w którym ta produkcja występuje.  

Obecnie, w gospodarstwach domowych wyposażonych w źródła fotowoltaiczne, średnio 

tylko około 30% generowanej energii jest zużywane w chwili jej wyprodukowania [2], co 

wynika z niejednoczesności czasowej generacji i poboru energii w tego typu obiektach 

(maksymalna generacja energii w źródłach fotowoltaicznych następuje głównie w godzinach 

okołopołudniowych, podczas gdy największe zużycie energii przez odbiorcę komunalno-

bytowego ma miejsce w godzinach późno popołudniowych i wieczornych). Nadmiar 

generowanej energii jest również rzadko magazynowany w domowych zasobnikach energii 

elektrycznej. W efekcie, nadwyżki wyprodukowanej przez prosumentów energii są oddawane 

do sieci nN. Następstwem takiej sytuacji jest możliwość występowania w ciągu doby okresów, 

w których moc generowana przez wszystkie instalacje fotowoltaiczne przyłączone do danego 

fragmentu sieci nN jest na tyle duża, że powoduje powstawanie zakłóceń w pracy tej sieci, 

obejmujących m.in. [3 – 11]: 

1. wzrost napięcia powyżej wartości dopuszczalnej, tj. 110% Un (Un – napięcie 

znamionowe sieci),  

2. przekroczenie prądu dopuszczalnego długotrwale dla danego elementu sieci,  

3. pojawienie się odwrotnych przepływów mocy czynnej, czyli przepływów z sieci 

niskiego napięcia do sieci średniego napięcia (SN),  

4. wzrost strat sieciowych w stosunku do pracy tej samej sieci bez źródeł PV,  

5. wzrost niesymetrii napięć (głównie składowej zerowej).  

W konsekwencji, w wielu obszarach kraju, szczególnie zasilanych z terenowych sieci nN, 

wyczerpują się możliwości przyłączania nowych źródeł fotowoltaicznych do sieci 

elektroenergetycznej, czego najłatwiej zauważalnym objawem są występujące tam przerwy 

w pracy mikroinstalacji PV w słoneczne dni, spowodowane wyłączeniem falowników przez ich 

zabezpieczenia nadnapięciowe.  
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W reakcji na pojawiające się problemy możliwe jest zastosowanie szeregu rozwiązań 

technicznych poprawiających warunki pracy sieci nN o dużym nasyceniu źródłami PV. Należą 

do nich m.in. [12 – 17]:  

1. stosowanie transformatorów o zwiększonej mocy w stosunku do zapotrzebowania 

odbiorców, a także transformatorów z podobciążeniową regulacją napięcia,  

2. montaż urządzeń do kompensacji mocy biernej (np. SVC lub STATCOM) oraz 

regulatorów napięcia,  

3. sterowanie pracą falowników w instalacjach PV (zmiana współczynnika mocy), 

4. wymiana przewodów roboczych linii nN na przewody o większych przekrojach,  

5. zmiana punktów podziału sieci nN,  

6. budowa nowych stacji transformatorowych SN/nN i skracanie istniejących obwodów 

sieci nN. 

Wymieniony zestaw działań nie likwiduje jednak głównej przyczyny decydującej 

o powstawaniu zakłóceń w pracy sieci nN z dużym udziałem źródeł PV, jaką jest specyficzny 

lokalny bilans mocy, wynikający z niskiego obciążenia odbiorców oraz wysokiej generacji PV. 

Rozwiązaniem, które pozwoli na poprawę tego stanu jest zwiększenie poboru energii w miejscu 

jej wytworzenia, w tym samym czasie, w którym to wytwarzanie następuje. Można to uzyskać 

przez właściwe sterowanie wybranymi odbiornikami oraz przede wszystkim dzięki 

wykorzystaniu zasobnika (magazynu) energii, przyłączonego w układzie zasilania prosumenta 

i sterowanego według odpowiedniego algorytmu.  

Możliwości kształtowania bilansu energii elektrycznej odbiorcy indywidualnego 

wyposażonego w źródło fotowoltaiczne zostały wstępnie przeanalizowane w publikacji [Z.1], 

wchodzącej w skład omawianego zbioru powiązanych tematycznie artykułów naukowych 

stanowiących rozprawę doktorską (Załącznik Z.1). W artykule tym skupiono się na wstępnej 

analizie i możliwym sposobie rozwiązania problemu związanego z niskim wykorzystaniem na 

własne potrzeby energii generowanej w źródle fotowoltaicznym. Pierwszym krokiem 

przeprowadzonych badań było zainstalowanie w budynku jednorodzinnym miernika 

parametrów sieci Lumel P43, współpracującego z mikrokomputerem Raspberry Pi. Za pomocą 

tego układu zostały zarejestrowane różne wielkości charakteryzujące pracę instalacji 

elektrycznej w budynku. Uzyskane dane pomiarowe poddano szczegółowej analizie, która 

wykazała znaczącą rozbieżność profilu generacji źródła PV z profilem zużycia energii 

w budynku, efektem czego była niewielka autokonsumpcja oraz wysoka wymiana energii 

z siecią elektroenergetyczną.  
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W kolejnym etapie badań, aby zwiększyć poziom autokonsumpcji i tym samym 

zminimalizować wymianę z siecią, postanowiono przeanalizować możliwość sterowania 

wybranymi odbiornikami w taki sposób, aby załączać je w okresie wysokiej generacji PV, 

zamiast w godzinach popołudniowo-wieczornych. Uwzględniono również możliwość 

magazynowania części generowanej energii w zasobniku bateryjnym. W celu pogłębionej 

oceny potencjału zwiększenia wykorzystania generowanej przez źródło PV energii, 

opracowano w programie LabVIEW model symulacyjny szczegółowo odwzorowujący 

analizowany budynek. Za pomocą skonstruowanego modelu przeprowadzono 

wielowariantowe symulacje z wykorzystaniem zarejestrowanych wcześniej danych 

dotyczących generacji PV oraz zapotrzebowania całego budynku, jak i poszczególnych 

odbiorników. Stwierdzono, że po zastosowaniu sterowania wybranymi odbiornikami oraz 

magazynowania energii dla przykładowego dnia poddanego analizie poziom autokonsumpcji 

generowanej energii zwiększył się z 11,3% do 36,9%, natomiast wymiana energii z siecią 

elektroenergetyczną zmniejszyła się z 30,9 kWh do 19,3 kWh. 

Wykonane wielowariantowe symulacje potwierdziły zatem przypuszczenie, że u odbiorcy 

komunalno-bytowego wyposażonego w źródło fotowoltaiczne istnieje potencjał do zmiany 

bilansu energii i zwiększenia poziomu autokonsumpcji, a tym samym ograniczenia jego 

wpływu na pracę sieci nN. Jednakże, aby sterowanie takie było efektywne i przyjazne 

użytkownikowi, musi ono działać automatycznie. Oznacza to konieczność opracowania 

odpowiedniego systemu sterującego pracą różnorakich urządzeń posiadanych przez odbiorców 

komunalno-bytowych. Taką funkcję realizuje system nazywany w literaturze anglojęzycznej 

Home Energy Management System (HEMS), będący głównym przedmiotem zainteresowania 

w niniejszej rozprawie doktorskiej.  

System HEMS został stworzony, aby usprawnić zarządzanie energią w budynkach 

mieszkalnych, poprzez planowanie pracy i sterowanie pracą wielu urządzeń gospodarstwa 

domowego. Ogólną architekturę HEMS przedstawia rysunek 1.1. Jest to przykład typowej 

architektury HEMS [19], obejmującej instalację PV, różne urządzenia gospodarstwa 

domowego, magazyn energii elektrycznej (ang. Residential Energy Storage System – RESS), 

samochód elektryczny i centralny kontroler odpowiedzialny za zarządzanie pracą tych 

urządzeń. Urządzenia gospodarstwa domowego, których pracą ma zarządzać HEMS można 

podzielić na konwencjonalne, wymagające zastosowania tzw. inteligentnych wtyczek (ang. 

smart plugs) oraz sterowalne, potocznie nazwane „inteligentnymi” (ang. smart appliances). 

Kluczowym elementem systemu HEMS jest centralny kontroler, który odpowiada za 

optymalne zarządzanie zużyciem energii w gospodarstwie domowym. Komunikacja między 
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urządzeniami odbywa się za pomocą systemów przewodowych i bezprzewodowych. Interfejs 

człowiek-maszyna (ang. human-machine interface – HMI) prezentuje dane zebrane przez 

kontroler, pochodzące z inteligentnych liczników energii, różnorakich czujników, 

inteligentnych wtyczek oraz pozostałych urządzeń zintegrowanych z HEMS. W ten sposób 

użytkownik otrzymuje pełną informację o przepływach energii elektrycznej w budynku. 

 

 

Rys. 1.1 Ogólna architektura systemu HEMS (zaczerpnięto z [Z.5]) 
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2. TEZA, CEL I ZAKRES PRACY 

Opisane w publikacji [Z.1] badania wstępne potwierdziły istnienie potencjału do 

optymalizacji pracy układu zasilania odbiorcy komunalno-bytowego wyposażonego 

w mikroinstalację fotowoltaiczną (prosumenta). W związku z tym postanowiono kontynuować 

tą tematykę badawczą w ramach wdrożeniowego projektu doktorskiego, dla którego 

sformułowano następującą tezę: 

 

Zastosowanie u odbiorcy indywidualnego wyposażonego w źródło fotowoltaiczne systemu 

HEMS (Home Energy Management System), realizującego odpowiednio zaprojektowaną 

funkcję celu, umożliwia zwiększenie autokonsumpcji generowanej energii, a przez to 

zmniejszenie oddziaływania tego odbiorcy na system elektroenergetyczny. 

 

Uwzględniając sformułowaną tezę przyjęto, że celem pracy jest opracowanie, praktyczna 

implementacja i przetestowanie w rzeczywistym środowisku metody kształtowania bilansu 

energii odbiorców komunalno-bytowych wyposażonych w mikroinstalacje fotowoltaiczne 

(prosumentów), prowadzącej do zwiększenia autokonsumpcji generowanej energii 

elektrycznej, dzięki odpowiedniemu sterowaniu zasobnikiem bateryjnym oraz odbiornikami 

o elastycznym czasie załączania i znanych profilach poboru energii.  

Cel ten został osiągnięty w wyniku realizacji kolejnych etapów prac badawczo-

wdrożeniowych obejmujących: 

1. opracowanie metody prognozowania bazowego zapotrzebowania odbiorcy na energię 

elektryczną, 

2. opracowanie metody prognozowania generacji energii elektrycznej w źródle 

fotowoltaicznym na podstawie numerycznej prognozy pogody, 

3. opracowanie algorytmu optymalizującego pracę urządzeń zainstalowanych w badanym 

obiekcie, obejmujących bateryjny magazyn energii oraz odbiorniki o elastycznym 

czasie załączania, 

4. budowę stanowiska badawczego umożliwiająca sterowanie magazynem i odbiornikami 

według harmonogramu wyznaczonego przez algorytm optymalizacyjny, 

5. przeprowadzenie badań pozwalających na ocenę efektywności działania opracowanego 

algorytmu optymalizacyjnego oraz poprawności funkcjonowania wdrożonego systemu 

pomiarowo-sterującego w badanym obiekcie (w rzeczywistym budynku mieszkalnym). 



Naczyński T.: Analiza i optymalizacja pracy układu zasilania odbiorcy indywidualnego 

wyposażonego w źródło fotowoltaiczne 

 Strona 10 
 

Poszczególne etapy prac zostały krótko scharakteryzowane w kolejnych punktach 

autoreferatu, zgodnie z wymienionymi etapami prac badawczo-wdrożeniowych. Szczegółowy 

ich opis oraz szersza prezentacja uzyskanych wyników znajdują się w załączonych do 

autoreferatu artykułach (Załącznik [Z.1]), które wchodzą w skład powiązanych publikacji 

naukowych stanowiących rozprawę doktorską. 
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3. OPIS OSIĄGNIĘĆ NAUKOWYCH 

3.1. Metoda prognozowania bazowego zapotrzebowania na energię 

elektryczną odbiorcy komunalno-bytowego 

Opracowany system HEMS działa w horyzoncie dobowym. W związku z tym do 

opracowania planu pracy posiadanych przez odbiorcę komunalno-bytowego sterowanych 

odbiorników oraz magazynu energii konieczne jest dysponowanie dobową prognozą bazowego 

zapotrzebowania na energię elektryczną dla tego odbiorcy. 

Dobowe profile zapotrzebowania indywidualnych odbiorców komunalno-bytowych 

charakteryzują się dużą zmiennością, a czynnikami mającymi wpływ na zróżnicowany pobór 

energii są m.in.: pora roku, dzień tygodnia oraz tryb życia i nawyki domowników. Zmienność 

obciążenia spowodowana jest głównie poprzez zróżnicowane czasowo załączanie różnych 

odbiorników, w tym również odbiorników, których czasem załączania można w pewnym 

stopniu sterować. W pracy doktorskiej uwagę skupiono na przygotowaniu prognozy 

zapotrzebowania bazowego odbiorcy komunalno-bytowego, czyli obciążenia wynikającego  

z pracy odbiorników podstawowych, tj. oświetlenia, lodówki, pomp obiegowych CO i C.W.U, 

komputerów, sprzętu RTV i AGD oraz innych odbiorników, których pracą nie będzie sterował 

system HEMS. Na tle wyznaczonej prognozy obciążenia bazowego ustalone zostaną następnie 

momenty załączenia odbiorników sterowanych, o elastycznym czasie załączania i znanym 

profilu poboru energii (wyznaczony zostanie również program pracy magazynu energii). 

Generalnie odbiorniki o sterowanym czasie załączania mogą obejmować m.in. pralkę, suszarkę 

do ubrań, zmywarkę, bojler elektryczny, elektryczne urządzenia grzewczo-chłodzące, 

ładowarki samochodów i rowerów elektrycznych, przy czym liczba i rodzaj tego typu 

odbiorników będzie się różnić w zależności od gospodarstwa domowego i będzie ustalana 

indywidualnie przez samych właścicieli budynku, w taki sposób, aby realizowane przez system 

HEMS użytkowanie tych urządzeń nie naruszało komfortu mieszkańców. 

Opracowana metoda prognozowania bazowego zapotrzebowania odbiorcy na energię 

elektryczną została opisana szczegółowo w artykule [Z.4]. Opiera się ona na idei metody 

naiwnej i wykorzystuje historyczne dane pomiarowe z kilku takich samych dni 

poprzedzających. W pierwszym etapie prac zostały wykorzystane dane pomiarowe dotyczące 

zużycia energii pozyskane od dziesięciu przykładowych odbiorców komunalno-bytowych. 

Z ich zastosowaniem wyznaczano prognozę zapotrzebowania w różnych dniach. Zgodnie 

z założeniami metody naiwnej, prognoza opiera się na średnim zużyciu odbiorcy z pewnej 

liczby takich samych dni poprzedzających. Postanowiono jednak rozszerzyć tę ideę i oprócz 
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grafiku średniego do wyznaczenia prognozy zastosowano również inne metody opisu 

zmienności obciążenia, tj. grafik tzw. „typowy” oraz grafik statystycznie najczęstszy. Grafik 

„typowy” powstaje poprzez wyznaczenie wartości średnich z obciążeń uporządkowanych, 

które następnie zostają przypisane do odpowiednich przedziałów czasowych zgodnie 

z wyznaczonym wcześniej grafikiem średnim. Z kolei grafik statystycznie najczęstszy 

przedstawia wartości obciążeń, które wystąpiły najczęściej w poszczególnych przedziałach 

czasowych w analizowanych dniach poprzedzających. Sposoby tworzenia tych grafików 

opisano szczegółowo w artykule [Z.4]. Na podstawie przygotowanych grafików (średniego, 

„typowego” i statystycznie najczęstszego) wyznaczono prognozę obciążenia odbiorcy, będącą 

sumą ważoną poszczególnych grafików. 

Kolejnym etapem pracy było przeprowadzenie badań mających na celu kalibrację 

i walidację opracowanego modelu prognostycznego. Prace nad kalibracją modelu zostały 

podzielone na dwie części. W pierwszej części, z grupy analizowanych dziesięciu odbiorców, 

wybrano pięciu, dla których wyszukana została optymalna liczba dni poprzedzających, przy 

przyjęciu jednakowych wartości wag poszczególnych składników prognozy. Najlepsze wyniki 

uzyskano w przypadkach, gdy liczba takich samych dni poprzedzających była równa 3, 4 lub 

5. W drugiej część prac nad kalibracją modelu wyznaczono optymalne wartości 

współczynników wagowych. W tym celu zastosowano algorytm optymalizacji rojem cząstek 

(ang. Particle Swarm Optimization – PSO), dla którego funkcją celu było zminimalizowanie 

błędu MAPE. Analiza wyników wykazała, że dla dominującej liczby przypadków 

współczynnik wagowy dla grafiku średniego jest równy 1, a wartości współczynników 

wagowych dla grafiku „typowego” i statystycznie najczęstszego zawierają się zwykle 

w przedziale od -0,3 do 0,3 i mają taką samą wartość bezwzględną, ale przeciwne znaki. 

Następnie, po skalibrowaniu modelu, wykonana została jego walidacja, polegająca na 

wyznaczeniu prognoz zapotrzebowania dla wybranych dni dla pozostałych pięciu odbiorców. 

Uzyskane wyniki prognoz porównano z wynikami otrzymanymi przy zastosowaniu metody 

naiwnej w klasycznej postaci, w której prognoza zapotrzebowania w analizowanym dniu jest 

równa grafikowi średniemu z przyjętych dni poprzedzających. W większości 

przeanalizowanych przypadków błędy prognoz uzyskane za pomocą zaproponowanego 

modelu, w szczególności błąd MAPE, były niższe niż błędy uzyskane dla metody naiwnej. 

W trzecim etapie badań opracowany model prognostyczny zastosowano do określenia 

bazowego zapotrzebowania odbiorcy komunalno-bytowego. Ocenę dokładności uzyskiwanych 

prognoz wykonano bazując na wynikach pomiarów zarejestrowanych przez dedykowany 

system pomiarowo-sterujący zainstalowany w budynku mieszkalnym. W artykule [Z.4] efekty 
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działania modelu prognostycznego w zastosowaniu do prognozowania bazowego obciążenia 

odbiorcy komunalno-bytowego zostały przedstawione na przykładzie prognoz wyznaczonych 

dla trzech kolejnych, takich samych dni roboczych. Uzyskane wyniki przedstawiono na 

rysunku 3.1 i w tabeli 3.1. Wskazują one, że maksymalna różnica pomiędzy dobowymi 

prognozowanymi, a rzeczywistymi wartościami bazowego zużycia energii analizowanego 

odbiorcy wyniosła około 10%, a błąd MAPE zawierał się w przedziale od 20 do 30%. Dzięki 

odpowiedniej kalibracji modelu uzyskano dokładność prognoz porównywalną z innymi, 

opisanymi w literaturze, bardziej zaawansowanymi modelami prognostycznymi, a prostota 

opracowanego modelu prognostycznego sprawia, że jest on możliwy do zastosowania 

w systemie HEMS zarządzającym energią w budynku mieszkalnym. 

 

a. 

 
  
b. 

 
  
c. 

 
 

Rys. 3.1. Rzeczywiste i prognozowane bazowe zużycie energii analizowanego odbiorcy komunalno-

bytowego w środę: (a) 3 lipca 2024 r., (b) 10 lipca 2024 r., (c) 17 lipca 2024 r. (zaczerpnięto  
z [Z.4]) 
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Tabela 3.1 

Rzeczywiste i prognozowane bazowe zużycie energii oraz błędy prognoz obciążenia bazowego 
odbiorcy komunalno-bytowego uzyskane przy zastosowaniu opracowanego modelu prognostycznego 

(zaczerpnięto z [Z.4]) 

Dzień 

prognozy 

Liczba dni 

poprzedzających 

Bazowe zużycie energii Błędy prognozy 

rzeczywiste 

kWh 

prognozowane 

kWh 

MAE 

kWh 

RMSE 

kWh 

MAPE 

% 

03.04 

3 

11,79 

10,92 0,13 0,18 25,34 

4 10,87 0,14 0,21 24,89 

5 10,84 0,12 0,19 22,30 

10.07 

3 

12,49 

11,89 0,11 0,16 23,00 

4 11,18 0,11 0,15 20,73 

5 10,88 0,10 0,14 18,14 

17.07 

3 

12,39 

12,36 0,16 0,24 29,80 

4 11,88 0,15 0,23 27,19 

5 11,29 0,16 0,25 27,25 

 

3.2. Metoda prognozowania generacji energii elektrycznej w źródle 

fotowoltaicznym na podstawie numerycznej prognozy pogody 

Drugim niezbędnym elementem w pracy systemu HEMS jest prognozowany profil generacji 

energii w mikroinstalacji fotowoltaicznej, ponieważ posiadając te dane, a także prognozowany 

profil bazowego obciążenia odbiorcy, możliwe jest zaplanowanie pracy urządzeń w badanym 

obiekcie w taki sposób, aby m.in. zwiększyć poziom autokonsumpcji generowanej energii. 

Uwzględniając dodatkowo prognozowany profil cen energii elektrycznej możliwe jest 

opracowanie planu pracy tych urządzeń w sposób realizujący przyjętą (np. kosztową) funkcję 

celu, co zostanie omówione w następnym punkcie autoreferatu. 

Na moc generowaną przez moduł fotowoltaiczny ma wypływ wiele czynników. Do 

najważniejszych z nich zalicza się m.in.: położenie geograficzne instalacji, kąt nachylenia, 

azymut, czystość powierzchni panelu i rodzaj materiału z jakiego zostały wykonane. Kolejnymi 

czynnikami są zmienność natężenia promieniowania słonecznego oraz temperatury modułu 

PV, ponieważ wraz ze wzrostem temperatury oraz wraz ze zmniejszeniem natężenia 

promieniowania słonecznego docierającego do panelu maleje wartość mocy jaką panel może 

wygenerować. Przykładowe charakterystyki zaprezentowane na rys. 3.2 przedstawiają wpływ 

ww. parametrów na moc wyjściową panelu. Przedstawione wykresy można odnaleźć 

w karatach katalogowych producentów paneli. 
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Rys. 3.2. Charakterystyki panelu fotowoltaicznego (zaczerpnięto z [24]): (a) prądowo-napięciowa (w zależności 

od temperatury modułu), (b) mocowo-napięciowa (w zależności od natężenia promieniowania 

słonecznego), (c) prądowo-napięciowa (w zależności od natężenia promieniowania słonecznego) 

 

Wpływ natężenia promieniowania słonecznego oraz temperatury panelu na wartość mocy 

generowanej uwzględniony został w wykorzystanym modelu źródła fotowoltaicznego, 

przedstawionym na rys. 3.3. Model ten wchodzi w skład oprogramowania OpenDSS [21]. 

 

 

Rys. 3.3. Model źródła PV używany przez program OpenDSS (zaczerpnięto z [7]) 

 

Model źródła PV dostępny w programie OpenDSS składa się z modeli panelu 

fotowoltaicznego oraz falownika (inwertera). Głównym parametrem modelu panelu PV jest 

jego moc znamionowa Pn_PV, zdefiniowana dla standardowych warunków testowych (ang. 

Standard Test Conditions – STC), dla których temperatura ogniwa wynosi 25℃, 

a nasłonecznienie 1000 W/m2. Obliczenie rzeczywistej mocy generowanej przez panel PV 

(PDC) wymaga dostarczenia danych dotyczących aktualnego natężenia promieniowania 
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słonecznego i temperatury panelu oraz zdefiniowania jego charakterystyki mocowo-

temperaturowej (P = f(T)), określonej przez producenta urządzenia. W procesie prognozowania 

generacji PV, natężenie promieniowania słonecznego pochodzi z numerycznej prognozy 

pogody, natomiast temperatura panelu jest obliczana z wykorzystaniem zewnętrznego modelu, 

który wykorzystuje dane dotyczące prognozy natężenia promieniowania słonecznego, 

temperatury otoczenia oraz prędkości wiatru. Szczegóły dotyczące sposobu wyznaczenia 

temperatury panelu przedstawiono w dalszej części autoreferatu. 

Drugim elementem modelu jest model falownika (inwertera), który oblicza moc wyjściową 

(po stronie AC) rozpatrywanej instalacji PV. Podstawowymi parametrami modelu falownika są 

napięcie znamionowe (Un), moc znamionowa (Sn) i współczynnik mocy (cosφ), a dane 

wejściowe stanowi obliczona w pierwszym etapie moc generowana przez panel fotowoltaiczny 

(PDC). Dla modelu falownika definiuje się również charakterystykę obrazującą sprawność 

urządzenia w zależności od stopnia obciążenia (ƞ = f(P)) oraz określa tryb pracy inwertera, 

który może działać w następujący sposób: 

1. stały współczynnik mocy cosφ – inwerter dostarcza moc bierną w stałej proporcji do 

generowanej mocy czynnej, 

2. sterowanie mocą bierną (tzw. tryb U-Q) – inwerter dostosowuje moc bierną w zależności 

od napięcia w punkcie przyłączenia, co pozwala na regulację napięcia w sieci 

dystrybucyjnej, 

3. sterowanie mocą czynną (tzw. tryb U-W) – inwerter redukuje moc czynną w odpowiedzi 

na wzrost napięcia, aby zapobiec przekroczeniu dopuszczalnych wartości napięcia  

w sieci. 

W procesie prognozowania generacji PV przyjęto pierwszy tryb pracy falownika i założono 

cosφ = 1. Dla tak sparametryzowanego modelu, na podstawie wyznaczonej przez model panelu 

mocy PDC oraz zdefiniowanej charakterystyki sprawności falownika ƞ = f(P), w procesie 

prognozowania generacji obliczana jest moc czynna (P) źródła PV do stronie AC. 

 Jak wspomniano wyżej, celem prawidłowego obliczenia mocy generowanej przez panel PV 

(PDC) konieczna jest znajomość jego temperatury. W procesie prognozowania generacji PV ta 

informacja musi zostać obliczona na podstawie prognozowanych warunków otoczenia, 

w których panel będzie pracował w analizowanym okresie. Do tego służą odpowiednie modele 

empiryczne.  

Opracowanie metody krótkoterminowego prognozowania generacji energii elektrycznej 

w źródle fotowoltaicznym rozpoczęto od przeglądu dostępnych modeli empirycznych 

służących do szacowania temperatury modułów fotowoltaicznych w zależności od warunków 
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pogodowych. Zestawienie modeli zostało przedstawione w artykule [Z.2]. W następnym etapie 

przeprowadzono ocenę dokładności zebranych modeli z wykorzystaniem rzeczywistych 

danych pomiarowych. W tym celu wykorzystano historyczne dane pomiarowe dotyczące 

temperatury paneli PV pochodzące z instalacji fotowoltaicznej oraz dane pogodowe 

obejmujące natężenie promieniowania słonecznego, prędkość wiatru i temperaturę otoczenia, 

pochodzące ze stacji pogodowej zintegrowanej z tą instalacją PV. Do analizy porównawczej 

wybrano odnawialne źródło energii wraz z osprzętem pomiarowym, które znajduje się na dachu 

jednego z budynków Politechniki Śląskiej w Gliwicach. 

Wykonana analiza modeli empirycznych wykazała, że otrzymane z ich wykorzystaniem 

wyniki cechowały się stosunkowo dużą dokładnością dla danych pomiarowych dostarczanych 

w rozdzielczości godzinowej, natomiast dla danych pomiarowych dostarczanych 

w rozdzielczości minutowej modele empiryczne charakteryzowały się ograniczoną 

dokładnością w określaniu temperatury modułu PV pracującego w zmiennych warunkach 

atmosferycznych. W niektórych przypadkach błąd oszacowania dla danych w rozdzielczości 

minutowej przekroczył 25℃ (rys. 3.4), co przekłada się na około 10% błąd szacowania 

generacji PV. Tak wysoka wartość błędów modeli empirycznych wynika z głównej cechy 

przeanalizowanych modeli, którą jest pominięcie bezwładności cieplnej modułu PV. 

 

 

Rys. 3.4. Temperatura modułu fotowoltaicznego obliczona przy użyciu różnych modeli empirycznych 

w porównaniu ze zmierzoną temperaturą — warunki atmosferyczne w rozdzielczości minutowej, dane 

z 24 maja 2020 r. (zaczerpnięto z [Z.2]) 
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Problem z pominięciem bezwładności cieplnej panelu PV w istniejących modelach 

empirycznych postanowiono rozwiązać poprzez opracowanie dynamicznego modelu cieplnego 

modułu fotowoltaicznego, opisanego szczegółowo w publikacji [Z.2]. Zaproponowany model 

wzorowany jest na modelu cieplnym transformatora olejowego i opiera się na metodzie różnic 

skończonych (ang. Finite Difference Method – FDM). Wykorzystuje on jedynie dane dotyczące 

temperatury otoczenia, nasłonecznienia i prędkości wiatru, a więc dane dostępne 

w numerycznych prognozach pogody. Dzięki zastosowaniu metody FDM, model ten 

uwzględnia w swoim równaniu bezwładność cieplną modułu fotowoltaicznego. Celem 

opracowania uogólnionego modelu cieplnego modułu PV, współczynniki opracowanego 

modelu zostały zoptymalizowane przy użyciu metody PSO. Weryfikacja opracowanego 

modelu została wykonana na podstawie danych pomiarowych pochodzących z wyżej 

wymienionej instalacji fotowoltaicznej Politechniki Śląskiej. Uzyskane wyniki wskazywały na 

znaczącą poprawę dokładności szacowania temperatury modułu fotowoltaicznego 

(maksymalny błąd oszacowania temperatury zmniejszył się z 25℃ do 9℃). 

Celem pogłębionej oceny dokładności opracowanego modelu postanowiono również 

zweryfikować poprawność szacowania temperatury panelu porównując go z podobnym 

modelem i wykorzystując dane pomiarowe pochodzące z innego źródła. Porównano wyniki 

szacowania temperatury uzyskane przez opracowany model z wynikami uzyskanymi przy 

zastosowaniu dynamicznego modelu cieplnego panelu PV zaproponowanego przez Barry'ego 

i in. [20]. Wykorzystano dane pomiarowe z systemów zlokalizowanych w regionie Allgäu 

w Niemczech. Porównanie wyników (rys. 3.5) ponownie potwierdziło wysoką skuteczność 

zaproponowanego modelu w zastosowaniu do obliczania temperatury modułu 

fotowoltaicznego pracującego w zmiennych warunkach pogodowych. 

Posiadając zweryfikowany na rzeczywistych danych pomiarowych model cieplny panelu 

PV przystąpiono do drugiego etapu prac związanych z opracowaniem metody 

krótkoterminowego prognozowania generacji źródła PV z zastosowaniem opisanego wcześniej 

modelu źródła PV. W tym celu również wykorzystano dane pomiarowe dotyczące generacji 

źródła PV pochodzące z wyżej wymienionej instalacji PV Politechniki Śląskiej oraz 

historyczne numeryczne prognozy pogody, pochodzące z dwóch ogólnodostępnych platform 

meteorologicznych. Dane pogodowe zostały pozyskane w rozdzielczości godzinowej dla 

platform A i B oraz pięciominutowej dla platformy B. Dane dotyczące rzeczywistej generacji 

źródła PV miały analogiczną rozdzielczość.  
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Rys. 3.5. Temperatura modułu fotowoltaicznego obliczona przy użyciu uogólnionej formy modelu różnic 

skończonych i dynamicznego modelu Barry'ego i in. w porównaniu z temperaturą zmierzoną — 

warunki atmosferyczne w rozdzielczości minutowej, dane z 14 września 2018 r. (zaczerpnięto z [Z.2]) 

 

Pierwszym krokiem obliczeniowym było przygotowanie danych wejściowych do modelu 

źródła PV w programie OpenDSS. Zgodnie z opisem przedstawionym wyżej dane te 

obejmowały natężenie promieniowania słonecznego (wykorzystane jako dane wejściowe do 

modelu źródła PV oraz modelu cieplnego panelu) oraz informacje o temperaturze otoczenia 

i prędkości wiatru (wykorzystane jako dane wejściowe do modelu cieplnego panelu PV). Do 

badań zostały wybrane dwa losowe dni, dla których zostały wykonane symulacje 

z wykorzystaniem danych numerycznych prognoz pogody w rozdzielczości godzinowej 

i pięciominutowej. Analiza przeprowadzonych symulacji wykazała, że najlepsze wyniki 

uzyskano dla prognozy w rozdzielczości pięciominutowej z platformy B. Różnica w dobowej 

ilości wygenerowanej energii pomiędzy wartością obliczoną, a zmierzoną w najlepszym 

przypadku wyniosła 3,6%, natomiast błąd MAPE nie przekroczył 27%. Uzyskane wyniki 

przedstawiono na rysunku 3.6 i w tabeli 3.2. 
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a. 

 
  
b. 

 
  

Rys. 3.6. Prognoza generacji fotowoltaicznej na podstawie prognozy pogody w rozdzielczości godzinowej dla 

platform A oraz B oraz 5 min dla platformy B w porównaniu z mocą zmierzoną dla (a) 27 czerwca 

2021 r., (b) 29 września 2021 r., (zaczerpnięto z [Z.3]) 

Tabela. 3.2.  

Prognoza dziennej produkcji energii i błędy MAPE (zaczerpnięto z [Z.2]) 

Dzień 

prognozy 

Platforma, 

rozdzielczość 

Dzienna produkcja energii Błąd  

MAPE Zmierzona Obliczona Różnica 

kWh kWh % % 

27.06 

A, 1 h 

98,6 

124,5 26,3 87,1 

B, 1 h 118,3 20,1 59,7 

B, 5 min 114,2 15,9 53,4 

29.09 

A, 1 h 

38,5 

72,0 86,9 124,7 

B, 1 h 40,3 4,6 28,5 

B, 5 min 39,9 3,6 26,5 

 

 Postanowiono również przetestować opracowaną metodę prognozowania generacji 

w rzeczywistych mikroinstalacjach prosumenckich. Do badań wybrano dwie instalacje PV. 

Pierwsza z badanych instalacji o mocy znamionowej 7,32 kW znajdowała się w Koszęcinie 

(woj. Śląskie), a druga, o mocy 6,1 kW, zlokalizowana była w Łączy (woj. Śląskie). Dla obu 

lokalizacji zastosowano numeryczne prognozy pogody w rozdzielczości pięciominutowej. 

Uzyskane wyniki przedstawiono w tabelach 3.3 oraz 3.4. oraz na rysunku 3.7. 
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Tabela. 3.3.  

Prognoza dziennej produkcji energii i błędy MAPE dla instalacji prosumenckiej 7,32 kW (zaczerpnięto z [Z.3]) 

Dzień 

prognozy 

Dzienna produkcja energii Błąd  

MAPE Zmierzona Obliczona Różnica 

kWh kWh % % 

10.06 28,4 26,5 -6,8 43,1 

 

Tabela. 3.4.  

Prognoza dziennej produkcji energii i błędy MAPE dla instalacji prosumenckiej 6,1 kW (zaczerpnięto z [Z.3]) 

Dzień 

prognozy 

Dzienna produkcja energii Błąd  

MAPE Zmierzona Obliczona Różnica 

kWh kWh % % 

16.06 23,9 30,8 28,7 70,0 

 

a. 

 
  
b. 

 
  

Rys. 3.7. Prognoza generacji fotowoltaicznej wyznaczona na podstawie numerycznej prognozy pogody dla 

platformy B (rozdzielczość 5 min.) w porównaniu z mocą zmierzoną dla: (a) mikroinstalacja PV o mocy 

7,32 kW w Koszęcinie, 10 czerwca 2022 r., (b) mikroinstalacja PV o mocy 6,1 kW w Łączy, 16 czerwca 

2022 r., (zaczerpnięto z [Z.3]) 

 

Analiza uzyskanych wyników wykazała, że prognozy generacji PV obliczone dla 

numerycznych prognoz pogody dostarczanych w wyższej rozdzielczości czasowej 

charakteryzują się lepszą dokładnością. Szczegółowe wyniki badań dotyczących 
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krótkoterminowego prognozowania generacji PV przedstawiono w publikacji [Z.3]. 

Opracowana metoda prognozowania generacji energii w źródle fotowoltaicznym bazuje 

jedynie na trzech składnikach numerycznych prognoz pogody i dzięki swojej prostocie jest 

możliwa do zastosowania w systemie HEMS. Przy implementacji tej metody w systemie 

sterującym w budynku należy zwrócić uwagę na platformę, która udostępnia numeryczne 

prognozy pogody. Szczególną uwagę należy zwrócić na lokalizację, dla której podawana jest 

prognoza, aby była ona jak najbliżej miejsca zainstalowania rozpatrywanej instalacji PV. 

 

3.3. Algorytm optymalizujący pracę urządzeń elektrycznych 

zainstalowanych u odbiorcy komunalno-bytowego 

W ostatnich latach technologia wytwarzania energii w źródłach fotowoltaicznych stanowi 

główny segment w wytwarzaniu energii ze źródeł odnawialnych na świecie [25]. W Polsce 

rozwój tego segmentu jest szczególnie napędzany przez systemy prosumenckie o mocy 

zainstalowanej poniżej 50 kW. Największy udział w 2024 roku stanowiły mikroinstalacje, 

montowane zazwyczaj na dachach budynków. Większość mikroinstalacji w Polsce (prawie 

98,6%) należała do prosumentów, których w całym kraju było 1 522 655. Mikroinstalacje te 

odpowiadały niemal za 95 procent mocy zainstalowanej – 12 045 MW [26]. Przeważająca 

liczba mikroinstalacji PV jest instalowana w celu zużywania generowanej energii na pokrycie 

bieżącego zapotrzebowania, jednak często moce tych źródeł są przewymiarowane względem 

faktycznego zużycia energii przez prosumenta. Ponadto zwykle profile obciążenia i generacji 

są rozbieżne [27]. Powoduje to oddawanie nadmiaru generowanej energii do sieci 

dystrybucyjnej, co wpływa negatywnie na jej działanie [28]. Zatem prężnie rozwijający się 

segment prosumenckich instalacji PV wymaga stworzenia prostego, skalowalnego rozwiązania 

umożliwiającego automatyczne zarządzanie energią, które można by szeroko zastosować 

w budynkach mieszkalnych, aby jeszcze szerzej rozpowszechnić ideę wykorzystania energii 

odnawialnej opartej na źródłach fotowoltaicznych i jednocześnie zminimalizować negatywny 

wpływ tych źródeł na sieć elektroenergetyczną. 

Koncepcja rozwiązania dotyczącego zarządzania popytem w systemach energetycznych 

(ang. Demand Side Management – DSM) pojawiła się w latach 70. XX wieku w USA podczas 

kryzysu naftowego. Celem tego rozwiązania było zmniejszenie zużycia energii w godzinach 

szczytowego zapotrzebowania, aby uniknąć rozbudowy systemu elektroenergetycznego. 

Rozwijane od tego czasu systemy DSM stanowią ważny element w historii rozwoju systemów 

HEMS, a pierwsza koncepcja systemu automatyki domowej pojawiła się w latach 90-tych XX 
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wieku [29]. Jej głównym założeniem było wykorzystanie automatyki domowej w sektorze 

mieszkaniowym, celem umożliwienia odbiorcom energii uczestniczenia w programach DSM 

poprzez automatyczne dostosowanie ich zużycia do potrzeb systemu elektroenergetycznego. 

Dalszy rozwój systemów HEMS, w formie jaka jest obecnie znana, nastąpił po roku 2010, 

ponieważ wtedy popularność zyskały elementy systemu Internetu rzeczy (ang. – Internet of 

Things – IoT), czyli systemy automatyki budynkowej, które umożliwiają m.in. sterowanie 

odbiornikami. W tym samym czasie do użytku zaczęły wchodzić domowe magazyny energii 

(ang. Residential Energy Storage Systems – RESS), które znacząco poszerzyły możliwość 

zarządzania bilansem energii w budynku mieszkalnym. Tak szeroki potencjał kształtowania 

popytu, połączony z coraz popularniejszym wykorzystaniem mikroinstalacji PV 

zintegrowanych z budynkami mieszkalnymi, stanowi jeden z czynników stymulujących 

obecnie rozwój systemów HEMS. 

Systemy HEMS można podzielić na dwa główne rodzaje: oparte na regułach logicznych 

(ang. rule-based HEMS) i oparte na metodach optymalizacji (ang. optimization-based HEMS) 

[30]. Celem algorytmu, według którego działa system HEMS oparty na regułach jest najczęściej 

minimalizacja wymiany energii z siecią elektroenergetyczną. Oznacza to, że w tym przypadku 

budynek działa jako klient, który aktywnie stara się unikać dostarczania energii elektrycznej 

generowanej w mikroinstalacji PV do sieci rozdzielczej i robi to tylko wtedy, gdy to się nie 

powiedzie. Systemy HEMS bazujące na regułach logicznych są zwykle zaimplementowane 

w fabrycznych sterownikach dostarczanych przez producentów magazynów energii. Główną 

wadą tych systemów jest to, że sterując magazynem w sposób minimalizujący wymianę energii 

z siecią nie uwzględniają one bilansu całodobowego, a jedynie chwilowy. Oznacza to, że przy 

korzystnych warunkach pogodowych (duże nasłonecznienie) magazyn energii może zostać 

całkowicie naładowany już w godzinach porannych, podczas gdy lepszy efekt (np. w postaci 

większej redukcji niekorzystnego oddziaływania mikroinstalacji na sieć nN) można by 

osiągnąć, gdyby magazyn ładowany był dopiero w godzinach okołopołudniowych, czyli 

w czasie, w którym najczęściej występują problemy z przekroczeniem dopuszczalnej wartości 

napięcia. Dodatkowo systemy HEMS oparte na regułach dostarczane przez producentów 

magazynów zwykle nie posiadają możliwości sterowania wybranymi odbiornikami. 

W związku z powyższym w ramach realizacji niniejszej pracy postanowiono przeanalizować 

możliwość wykorzystania drugiego rozwiązania, czyli systemów HEMS opartych na metodach 

optymalizacji. 

W systemach HEMS opartych na metodach optymalizacji podejście do sterowania 

magazynem energii różni się od tego opartego na regułach logicznych, ponieważ zadawane 
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mogą być w nich różne funkcje celu algorytmu optymalizującego, skutkujące różnymi 

programami pracy magazynu. Ponadto projektant tego typu system HEMS ma możliwość 

uwzględnienia również optymalizacji pracy odbiorników o sterowanym czasie załączania 

i znanym profilu poboru energii (ang. Shiftable Loads – SL). Horyzont optymalizacji zwykle 

obejmuje kolejną dobę, a obliczenia wykonywane są w rozdzielczości godzinowej. Najczęściej 

stosowaną funkcją celu jest minimalizacja dobowego kosztu energii elektrycznej 

w analizowanym budynku, określona zależnością: 

 

 𝑓 = ∑ 𝑐ℎ𝑃𝐸𝑋,ℎ
24
ℎ=1 , (3.1) 

 

w której ch jest ceną energii w godzinie h, a PEX,h oznacza wymianę energii między budynkiem 

a siecią w godzinie h (użyto symbolu P, ponieważ analizowane są przedziały godzinowe ze 

stałą wartością mocy w tym czasie, a więc moc godzinowa jest równa energii). Wartość 

wymiany energii z siecią w godzinie h można obliczyć za pomocą następującego wzoru: 

 

 𝑃𝐸𝑋,ℎ = 𝑃𝐹𝐼𝑋,ℎ + 𝑃𝑆𝐻𝐼𝐹𝑇,ℎ − 𝑃𝑃𝑉,ℎ − 𝑃𝑅𝐸𝑆𝑆,ℎ (3.2) 

 

gdzie PFIX,h, PSHIFT,h oznaczają odpowiednio stałe (niesterowalne) oraz zmienne (sterowalne) 

obciążenie odbiorcy w godzinie h, PPV,h jest generacją źródła PV, a PRESS,h definiuje punkt 

pracy magazynu energii w godzinie h. Zadając punkt pracy magazynu energii RESS (znak 

dodatni oznacza rozładowanie, a znak ujemny ładowanie akumulatora) i ustawiając czas 

załączania sterowalnych odbiorników SL o znanych profilach poboru energii, możliwe jest 

uzyskanie pożądanej wartości wymiany energii z siecią w poszczególnych godzinach, 

a w efekcie – przy zadanych cenach energii – zmiana wartości optymalizowanej funkcji celu. 

 Zastosowanie minimalizacji kosztu energii (3.1), jako funkcji celu w systemie HEMS, 

w naturalny sposób będzie skutkowało chęcią uzyskania przez prosumenta jak największych 

korzyści finansowych, czyli zarabiania na wyprodukowanej w źródle PV energii. Takie 

podejście stoi jednak w sprzeczności z ideą prosumenta energii odnawialnej, który z założenia 

produkuje ją w przeznaczeniu do zaspokojenia własnych potrzeb. W związku z tym w artykule 

[Z.5] zaproponowano inną funkcję celu, którą jest maksymalizacja dobowej neutralności 

finansowej prosumenta, uzyskiwana przez minimalizację wartości funkcji określonej wzorem: 

 

 𝑓 = √∑ (𝑐ℎ𝑃𝐸𝑋,ℎ)2
24
ℎ=1 . (3.3) 
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Ceny energii wykorzystane w zależności (3.3) mogą być stałe w ciągu doby (np. ceny 

taryfowe) lub mogą zmieniać się w kolejnych interwałach czasowych (tzw. dynamiczne ceny 

energii). W ramach prowadzonych prac zastosowano dynamiczne ceny energii, zmieniające się 

w cyklu godzinowym. Ponieważ dynamiczne ceny energii mogą przyjmować wartości dodatnie 

i ujemne oraz wymiana energii z siecią również może być dodatnia (import energii z sieci) lub 

ujemna (eksport energii do sieci), to w efekcie w poszczególnych godzinach prosument może 

zarówno ponosić koszt, jak i uzyskiwać przychód. Poprzez podniesienie iloczynów ceny energii 

elektrycznej i wymiany energii z siecią do kwadratu, w procesie minimalizacji funkcji (3.3), 

zarówno koszt, jak i przychód prosumenta są minimalizowane. W ten sposób neutralność 

finansowa prosumenta zostaje zmaksymalizowana. Zastosowanie pierwiastka kwadratowego 

zapewnia lepszą zbieżność algorytmu optymalizacji oraz umożliwia bezpośrednie porównanie 

wartości funkcji celu (3.1) i (3.3). Przedstawiona funkcja celu (3.3) jest zgodna z ideą 

prosumenta energii odnawialnej, który ma przede wszystkim wytwarzać energię na własne 

potrzeby.  

Systemy HEMS oparte na metodach optymalizacji eliminują wymienione wyżej 

niedoskonałości systemów opartych na regułach. W ramach wykonanych badań, opisanych 

szczegółowo w artykule [Z.5], porównano działanie systemu HEMS wykorzystującego funkcję 

celu (3.3) z systemem HEMS opartym na regułach logicznych (zaimplementowanym 

fabrycznie w sterowniku magazynu energii). W celu oceny efektów uzyskiwanych przez 

zaproponowany system HEMS wykorzystano dane pomiarowe z rzeczywistej instalacji 

budynku jednorodzinnego. Obiekt ten wyposażony jest w mikroinstalację PV o mocy 5,25 kW 

oraz akumulator RESS o mocy 5 kW i pojemności 20,8 kWh, z ustawieniami minimalnego 

i maksymalnego poziomu naładowania (odpowiednio 10% i 100%). Wyniki pomiarów dla 

dwóch wybranych dni przedstawiono na rysunkach 3.8.a i 3.8.b. Na rysunkach tych widoczna 

jest generacja PV i praca magazynu energii sterowanego za pomocą systemu HEMS opartego 

na regułach. Na tle całkowitego obciążenia budynku, zaznaczono również pracę odbiorników 

o sterowanym czasie załączania i znanym profilu poboru energii (pralka, zmywarka – zielone 

prostokąty). Należy jednak zaznaczyć, że podczas pomiarów odbiory te nie podlegały 

sterowaniu (zaimplementowany w sterowniku magazynu energii system HEMS oparty na 

regułach logicznych nie posiada takiej funkcjonalności). Porównując przedstawione na rys. 3.8 

wyniki pomiarów można zauważyć, że wybrane do badań dni 20 oraz 21 września 

charakteryzowały się podobnymi profilami obciążenia oraz generacji energii w źródle PV. 

W obu tych dniach praca magazynu energii, sterowanego według fabrycznie 
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zaimplementowanego algorytmu opartego na regułach logicznych, była również podobna 

(około południa magazyn został w pełni naładowany). W efekcie zarejestrowane profile 

wymiany energii z siecią były również do siebie zbliżone (następował eksport energii do sieci 

w okresach wysokiej generacji PV).  

 

a. 

 
  
b. 

 
  

Rys. 3.8. Zmierzone profile obrazujące: pracę źródła PV i magazynu energii RESS oraz sumaryczne obciążenie 

budynku (zielonymi prostokątami zaznaczono pracę odbiorników sterowalnych SL) i wymianę energii 

z siecią (a) w dniu 20 września. 2023 r. i (b) 21 września 2023 r. (zaczerpnięto z [Z.5]) 

 

Zarejestrowane dane pomiarowe dla obu wybranych dni (rys. 3.8) stanowią bazę 

porównawczą dla wyników symulacji działania systemu HEMS bazującego ma metodzie 

optymalizacji (zastosowano algorytm Particle Swarm Optimization – PSO, realizujący funkcję 

celu (3.3) [Z.5]). Symulacje działania systemu HEMS maksymalizującego neutralność 

finansową prosumenta przeprowadzono w dwóch wariantach obliczeniowych. W pierwszym 

wariancie optymalizowano tylko dobowy profil pracy magazynu energii RESS, natomiast 

w drugim wariancie optymalizowano zarówno pracę RESS, jak i czas załączania sterowanych 

odbiorników SL o znanym profilu poboru energii (zielone prostokąty na rys. 3.8). Dynamiczne 

ceny energii elektrycznej, występujące we wzorze (3.3), pochodzą ze strony Polskich Sieci 

Elektroenergetycznych. Przedstawia je rys. 3.9. Należy zauważyć, że wybrane do analizy dni 
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znacząco różniły się od siebie cenami energii elektrycznej. Profil cenowy z 21 września miał 

typowy kształt, ze stabilnymi cenami w ciągu dnia i wyższymi cenami w wieczornym szczycie 

zapotrzebowania. Z kolei profil cenowy z 20 września charakteryzował się znacznym spadkiem 

cen energii między godzinami 9:00 a 14:00, z ujemnymi cenami od 10:00 do 13:00, co było 

wynikiem wysokiej produkcji energii ze źródeł odnawialnych, w szczególności 

fotowoltaicznych, w tym czasie [31]. Występujące różnice w profilach cenowych dla obu 

analizowanych dni znacząco wpływają na uzyskane profile pracy magazynu energii oraz czas 

załączania sterowanych odbiorników. 

 

Rys. 3.9. Godzinowe ceny rynkowe energii elektrycznej w dniach 20 września i 21 września 2023 r. 

wykorzystane w symulacjach (zaczerpnięto z [Z.5]) 

  

 Porównanie wyników przeprowadzonych symulacji pracy systemu HEMS opartego na 

metodzie optymalizacji z wynikami pomiarów uzyskanymi dla systemu HEMS opartego na 

regułach logicznych przedstawiono na rysunkach 3.10 i 3.11. Na rys. 3.10 zilustrowano profile 

pracy magazynu energii RESS (wartości ujemne oznaczają ładowanie, a dodatnie rozładowanie 

magazynu), natomiast na rys. 3.11, na tle całkowitego obciążenia budynku, zaznaczono okresy 

pracy sterowanych odbiorników SL (przy sterowaniu RESS i SL opartym na optymalizacji 

widoczne jest przeniesienie pracy odbiorników SL z godzin późno popołudniowych na godziny 

południowe, czyli na okresy najwyższej generacji PV). 

 

 

 

  ,2

 , 

 ,2

 , 

 , 

 , 

 , 

  2   5          2      5         2 2 22 2 2 

C
en
a,
 P
 N
/ 

Czas,  

2  września

2  września



Naczyński T.: Analiza i optymalizacja pracy układu zasilania odbiorcy indywidualnego 

wyposażonego w źródło fotowoltaiczne 

 Strona 28 
 

a. 

 
b. 

 
 

Rys. 3.10. Dobowe profile pracy RESS wynikające ze sterowania za pomocą metody opartej na regułach oraz 

metody opartej na optymalizacji: (a) w dniu 20 września 2023 r., (b) w dniu 21 września 2023 

(zaczerpnięto z [Z.5]) 

 

 

a. 

 
b. 

 
 

Rys. 3.11. Praca odbiorników o sterowanym czasie załączania SL wynikająca ze sterowania za pomocą metody 

opartej na regułach oraz metody opartej na optymalizacji: (a) w dniu 20 września 2023 r., (b) w dniu 21 

września 2023 (zaczerpnięto z [Z.5]) 
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Profile pracy RESS (rys. 3.10) obrazują sposoby wysterowania magazynu energii przez 

algorytmy zarządzające w obu analizowanych dniach. W dniu 20 września, algorytm RESS 

oparty na optymalizacji od północy do godziny 9.00 rano oraz w godzinach wieczorno-nocnych 

wyznaczył podobny profil pracy w porównaniu do sterowania opartego na regułach (rys. 

3.10.a). Z kolei różnice w działaniu RESS sterowanym wg analizowanych sposobów 

uwidoczniły się w godzinach od 9.00 do 15.00, czyli głównie podczas obowiązywania niskich 

cen energii elektrycznej w badanym dniu. W tym okresie algorytm oparty na optymalizacji PSO 

wyznaczył niższą moc ładowania magazynu niż wynikało to ze sterowania opartego na 

regułach, co wydłużyło czas ładowania magazynu. W ten sposób praca RESS była lepiej 

dostosowana do profilu generacji źródła fotowoltaicznego w tym dniu.  

W dniu 21 września różnice w wyznaczonych profilach pracy magazynu były widoczne już 

w nocy. W tym okresie algorytm optymalizacyjny PSO wyznaczył plan pracy RESS w taki 

sposób, żeby rozładowywał się on z mocą większą niż wynikało to z zapotrzebowania budynku. 

W ten sposób algorytm optymalizacyjny lepiej przygotował magazyn energii do trybu 

ładowania w ciągu dnia, co jest zauważalne na rysunku 3.10.b w godzinach 

okołopołudniowych, czyli przy największej generacji PV, a zarazem w okresie obowiązywania 

najniższych cen energii. Dla obydwóch analizowanych dni widoczny jest również wpływ 

przeniesienia obciążenia sterowanego (SL) z godzin wieczornych na inne godziny doby 

(rys.3.11). W godzinach, w których zapotrzebowanie na energię w budynku wzrosło w wyniku 

przeniesienia obciążenia SL, magazyn był ładowany z mniejszą mocą, a zaoszczędzona w ten 

sposób pojemność została wykorzystana w innym czasie.  

Wyznaczone za pomocą metody sterowania bazującej na optymalizacji profile pracy RESS 

oraz okresy pracy SL wpływają na zmianę profili wymiany energii z siecią elektroenergetyczną 

nN, w stosunku do profili zmierzonych, uzyskanych przy zastosowaniu sterowania RESS 

bazującego na regułach logicznych. Tę kwestię zilustrowano na rys. 3.12 (wartości ujemne 

symbolizują eksport energii do sieci, a dodatnie import energii z sieci). Zaprezentowane 

rezultaty symulacji pokazują, że zastosowanie algorytmu optymalizacyjnego PSO w systemie 

zarządzania energią HEMS przyniosło wymierne efekty w postaci redukcji eksportu energii 

elektrycznej do sieci elektroenergetycznej, co miało istotne znaczenie ekonomiczne dla 

prosumenta, szczególnie w kontekście dynamicznych i niekorzystnych dla niego (niskich lub 

nawet ujemnych) cen energii. 

W dniu 20 września (rys. 3.10.a) eksport energii do sieci występował przez pięć godzin, 

obejmując okres od 9:00 do 14:00, przy czym w godzinach szczytowej generacji PV 

odnotowano wyraźny spadek ilości energii oddawanej do sieci, co wiązało się z dynamicznie 
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zmieniającymi się cenami energii elektrycznej w ciągu dnia. Ceny te w godzinach 9:00–10:00 

oraz 13:00–14:00 były dodatnie i wynosiły 0,01 PLN/kWh, jednak już w godzinach 10:00–

11:00 i 12:00–13:00 ceny spadły do poziomu −0,01 PLN/kWh, a w godzinie od 11:00 do 12:00 

osiągnęły wartość −0,02 PLN/kWh (rys. 3.9). Oznacza to, że w okresie od 10:00 do 13:00 

eksport energii był dla prosumenta całkowicie nieopłacalny (gdyby do rozliczenia zastosowano 

wprost ceny dynamiczne, to prosument musiał ponosić opłatę za oddaną do sieci energię). 

W odpowiedzi na tę niekorzystną sytuację ekonomiczną, zastosowany w systemie HEMS 

algorytm PSO zoptymalizował pracę magazynu energii RESS (oraz czas załączenia odbiornika 

SL), ograniczając wymianę z siecią w godzinach z ujemnymi cenami energii. Pozwoliło to na 

minimalizację strat finansowych poprzez magazynowanie nadwyżki energii. Efektem było 

zmniejszenie dziennego eksportu energii z 7,6 kWh do 6,6 kWh. Dodatkowo, wprowadzenie 

mechanizmów zarządzania popytem DSM (przesunięcie okresu pracy odbiornika SL) 

umożliwiło dalsze ograniczenie eksportu do poziomu 5,6 kWh. Jeszcze większe korzyści 

w postaci zmniejszenia eksportu energii do sieci odnotowano w dniu 21 września (rys. 3.10.b), 

kiedy to, dzięki zastosowaniu optymalizacji PSO, eksport został zmniejszony z początkowych 

11,8 kWh (przy sterowaniu opartym na regułach) do 7,9 kWh w pierwszym wariancie 

optymalizacji (sterowanie RESS) i do 7,8 kWh w drugim wariancie (sterowanie RESS i SL). 

To pokazuje, że elastyczne zarządzanie energią w oparciu o zmienne ceny rynkowe może 

w znaczący sposób wpłynąć na zwiększenie efektywności energetycznej i ekonomicznej 

systemów prosumenckich. 

Podsumowując, dynamiczne ceny energii (zarówno dodatnie, jak i ujemne) stanowią 

skuteczne narzędzie wpływające na sposób pracy prosumenckich systemów zasilania budynku, 

wykorzystujących mikroinstalacje PV. W połączeniu z inteligentnym systemem zarządzania 

opartym na algorytmach optymalizacyjnych, możliwe jest nie tylko ograniczenie kosztów, ale 

także bardziej zrównoważone i efektywne wykorzystanie dostępnych zasobów energii oraz 

zmniejszenie wpływu tego typu obiektów na pracę sieci rozdzielczej nN. Syntetyczne 

podsumowanie wykonanych dla obu rozpatrywanych dni analiz zawierają tabele 3.5 i 3.6.  
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a. 

 
  
b. 

 
  

Rys. 3.12. Wymiana z siecią wynikająca ze zmierzonego (opartego na regułach) i zoptymalizowanego metodą 

PSO działania RESS i SL (a) w dniu 20 września 2023 r. i (b) w dniu 21 września 2023 r. (zaczerpnięto 

z [Z.5]) 

Tabela. 3.5.  

Najważniejsze wielkości charakteryzujące pracę analizowanego systemu zasilania budynku mieszkalnego 

w dniu 20 września 2023 r. dla różnych wariantów działania systemu HEMS 

Działanie 

systemu 

HEMS: 

Generacja 
źródła PV 

Obciążenie 

Magazyn energii 

(RESS) 
Wymiana z siecią 

Autokon- 
sumpcja 

Koszt 

Ładowanie 
Rozłado- 

wanie 
Pobór Oddanie 

kWh kWh kWh kWh kWh kWh % PLN 

Oparte na 

regułach 

(pomiary) 

26,0 9,3 14,8 5,1 0,6 7,6 43,1 -0,65 

Oparte na 

optymalizacji 

(tylko RESS) 

26,0 9,3 15,7 5,6 0 6,6 46,9 0 

Oparte na 

optymalizacji 

(RESS i SL) 

26,0 9,3 15,7 4,6 0 5,6 48,0 0 
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Tabela. 3.6.  

Najważniejsze wielkości charakteryzujące pracę analizowanego systemu zasilania budynku mieszkalnego 

w dniu 21 września 2023 r. dla różnych wariantów działania systemu HEMS 

Działanie 

systemu 

HEMS:  

Generacja 

źródła PV 
Obciążenie 

Magazyn energii 

(RESS) 
Wymiana z siecią 

Autokon-

sumpcja 
Koszt 

Ładowanie 
Rozłado-

wanie 
Pobór Oddanie 

kWh kWh kWh kWh kWh kWh % PLN 

Oparte na 

regułach 

(pomiary) 

22,5 9,1 7,2 5,1 0,6 11,8 36,7 -5,12 

Oparte na 
optymalizacji 

(tylko RESS) 

22,5 9,1 12,2 6,8 0 7,9 41,8 -3,84 

Oparte na 

optymalizacji 

(RESS i SL) 

22,5 9,1 14,5 9,0 0 7,8 48,5 -3,64 

 

Wyniki przeprowadzonych symulacji wykazały wzrost autokonsumpcji (zużycia własnego) 

wyprodukowanej energii PV w przypadku zastosowania sterowania RESS za pomocą systemu 

HEMS opartego na algorytmie optymalizacyjnym, w stosunku do sytuacji, w której magazyn 

sterowany był fabrycznym algorytmem opartym na regułach logicznych. Dla metody 

optymalizacji PSO zastosowanej do sterowania tylko magazynem energii RESS całkowite 

dzienne zużycie własne wzrosło z 43,1% do 46,9% w pierwszym analizowanym dniu i z 36,7% 

do 41,8% w drugim dniu. Jeszcze większy wzrost autokonsumpcji odnotowano po łącznej 

optymalizacji pracy magazynu energii RESS i odbiorników sterowanych SL. W tym przypadku 

zużycie własne wzrosło do 48,0% pierwszego dnia i do 48,5% drugiego dnia. Wzrost zużycia 

własnego wpłynął na wymianę energii z siecią dystrybucyjną nN. Jak wspomniano wcześniej, 

po zoptymalizowaniu profilu operacyjnego magazynu energii RESS, w pierwszym 

analizowanym dniu dzienny eksport energii do sieci zmniejszył się z 7,6 kWh do 6,6 kWh, 

podczas gdy drugiego dnia zmniejszył się z 11,8 kWh do 7,9 kWh. Zastosowanie optymalizacji 

PSO celem jednoczesnego wysterowania RESS i określenia czasu załączania sterowanych 

odbiorników SL dodatkowo zmniejszyło ilość energii oddawanej do sieci elektroenergetycznej 

w obu dniach.  

Przedstawione w tabelach 3.5 i 3.6 wyniki wskazują, że najlepsze efekty uzyskano dla 

łącznej optymalizacji pracy RESS oraz urządzeń domowych o sterowanym czasie załączania 

SL. W tych przypadkach zauważany był największy wzrost autokonsumpcji generowanej przez 

źródło PV energii i tym samym minimalizacja ilości energii oddawanej do sieci nN. 

Opracowany model systemu HEMS, maksymalizujący neutralność finansową prosumenta, 
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pozwala zatem zarządzać pracą urządzeń elektrycznych gospodarstwa domowego w taki 

sposób, aby zmniejszyć oddziaływanie mikroinstalacji PV na sieć dystrybucyjną, przy czym 

czynnikiem, który silnie wpływa na zachowanie algorytmu optymalizacyjnego, i tym samym 

na decyzje wypracowywane przez system HEMS, są ceny energii elektrycznej. Takiej 

możliwości nie posiadają systemy HEMS oparte na regułach. 

Zaproponowany w [Z.5] system HEMS przynosi korzyści nie tylko prosumentowi, 

maksymalizując jego zużycie własne, ale także zmniejsza presję inwestycyjną na operatora 

systemu dystrybucyjnego, minimalizując negatywny wpływ prosumenckich mikroinstalacji 

fotowoltaicznych na sieć elektroenergetyczną. Dodatkowo przedstawiona architektura systemu 

HEMS jest ogólna i możliwa do zastosowania w każdym budynku mieszkalnym, dzięki czemu 

może być szeroko wdrażana w instalacjach prosumenckich. Opisany system HEMS został 

wdrożony w budynku, w którym wykonane zostały pomiary oraz w drugim budynku 

mieszkalnym wyposażonym również w instalację PV, magazyn bateryjny RESS i odbiorniki 

znanych profilach poboru energii i sterowanym czasie załączania SL, w którym realizowane 

były (i są nadal) dalsze badania nad pracą systemu HEMS. Szczegółowy opis drugiego obiektu 

badań oraz zainstalowanego w nim systemu pomiarowo-sterującego został przedstawiony 

w kolejnej części autoreferatu, stanowiącego opis wykonanych prac wdrożeniowych. 
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4. OPIS OSIĄGNIĘĆ WDROŻENIOWYCH 

4.1. Charakterystyka obiektu (budynku jednorodzinnego) i urządzeń 

elektrycznych w nim zainstalowanych 

Obiektem, w którym przeprowadzono badania praktyczne rozwiązań opisanych 

w poprzednim rozdziale był dwukondygnacyjny budynek jednorodzinny z lat 70-tych XX 

wieku, o powierzchni użytkowej około 140 m2. Na stałe zamieszkują w nim cztery dorosłe 

osoby, a roczne zużycie energii elektrycznej dla analizowanego obiektu wynosi około 4 MWh. 

Budynek ten został wybrany do badań, ponieważ zalicza się do najliczniejszej grupy budynków, 

którymi są domy jednorodzinne. W Polsce takich obiektów jest około 6,3 mln [22]. Z kolei 

średnia liczba osób wliczanych do gospodarstwa domowego wynosi 2,43, a zużycie energii 

elektrycznej na jednego mieszkańca wynosi średnio około 800 kWh/rok, wg danych 

opublikowanych przez GUS za rok 2024 [23].  

Zasilanie analizowanego budynku jednorodzinnego zrealizowane jest napowietrznym 

przyłączem AsXSn 4×16 mm2. Moc przyłączeniowa badanego obiektu wynosi 16 kW. 

W budynku instalacja elektryczna w części pomieszczeń wykonana jest w układzie TN-C, 

natomiast w pomieszczeniach, które były remontowane przewody elektryczne zostały 

wymienione i instalacja została zmodernizowana do układu TN-S. W rozdzielnicy głównej 

budynku zainstalowane są obecnie wyłączniki nadprądowe typu S o prądzie znamionowym 

16 A oraz ogranicznik przepięć typu T1+T2. 

 W badanym budynku od roku 2019 roku pracuje prosumencka mikroinstalacja 

fotowoltaiczna o mocy znamionowej 6,1 kW. Instalacja składa się z dwudziestu krzemowych 

paneli monokrystalicznych o mocy 305 W każdy. Moduły zabudowane są na dachu budynku 

(rys. 4.1), posiadającym nachylenie około 15° i zorientowane są na południe. W ciągu całego 

roku panele PV nie są przysłaniane przez inne obiekty. Nad poprawnością pracy instalacji 

czuwa trójfazowy falownik marki Fornius Symo o mocy znamionowej 5 kW (sumaryczna moc 

zainstalowanych paneli została przewymiarowana w stosunku do mocy znamionowej 

falownika zgodnie z dopuszczalnymi wartościami podanymi przez producenta falownika dla 

zainstalowanego rodzaju paneli fotowoltaicznych). Omawiany budynek znajduje się około 

700 m od stacji transformatorowej 20/0,4 kV i jest przedostatnim budynkiem w tym obwodzie 

zasilającym. W bezpośrednim sąsiedztwie znajdują się inne mikroinstalacje PV o łącznej mocy 

około 80 kW i pomimo wykonanej w ostatnim czasie głębokiej modernizacji sieci nN (obecnie 

linie napowietrzne sieci nN zasilające ten budynek są wykonane w technologii ASXSn i mają 

przekrój 70 mm2; zastąpiły one linie napowietrzne z przewodami gołymi AL o przekroju 
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50 mm2) okresowo występują przekroczenia dopuszczalnego poziomu napięcia, skutkujące 

wyłączeniem mikroinstalacji PV przez zabezpieczenia nadnapięciowe falownika. 

 

 

Rys. 4.1. Prosumencka mikroinstalacja PV zintegrowana z analizowanym budynkiem mieszkalnym 

 

W połowie 2023 roku zakupiony został magazyn energii elektrycznej RESS o pojemności 

znamionowej około 20 kWh. Magazyn ten składa się z modułu zarządzającego BMS (ang. 

Battery Management System), ośmiu ogniw o pojemności znamionowej 2,45 kWh każde, 

wykonanych w technologii LiFePO4, oraz ładowarki (falownika) o mocy znamionowej 5 kW. 

Magazyn został zainstalowany i zintegrowany z instalacją elektryczną w omawianym budynku 

mieszkalnym wyposażonym w źródło PV. Na rysunku 4.2 przedstawiono zainstalowany 

magazyn energii wraz z ładowarką. Jak wcześniej wspomniano, opisany budynek został 

wykorzystywany do szczegółowego testowania opracowanej metody optymalnego sterowania 

pracą magazynu energii oraz odbiorników o sterowanym czasie załączania. Zainstalowane 

elementy stanowią razem instalację badawczą pracującą w rzeczywistych warunkach 

eksploatacyjnych.  
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Rys. 4.2. Magazyn energii RESS wraz z ładowarką, zainstalowany w analizowanym budynku mieszkalnym 

 

Jak zaznaczono wcześniej, roczne zużycie energii elektrycznej w rozpatrywanym obiekcie 

wynosi około 4 MWh. Na taki poziom zużycia energii mają wpływ odbiorniki jakie są 

zainstalowane w tym budynku, a są to m.in. urządzenia RTV i AGD, oświetlenie, komputery, 

elektryczny zasobnik CWU, w którym w okresie letnim przygotowywana jest ciepła woda 

użytkowa. Urządzenia te można podzielić na dwie główne grupy. Pierwszą z nich są odbiorniki 

stanowiące zapotrzebowanie podstawowe budynku, które są załączane automatycznie przez 

własne układy sterowania i mogą pobierać energię w dowolnym czasie lub są włączane przez 

domowników w różnych porach dnia, wtedy gdy jest konieczność użytkowania wybranego 

urządzenia. Do tej grupy zaliczone zostały m.in.: lodówka, zamrażarka, sprzęt AGD, 

oświetlenie, komputery i telewizory. Odbiorniki te nie podlegają sterowaniu przez system 

HEMS, a prognoza zużycia energii przez te urządzenia stanowi prognozę bazowego profilu 

obciążenia obiektu. Drugą grupę odbiorników stanowią urządzenia, których czasem załączania 

można sterować (odbiorniki SL), co oznacza że wybrany odbiornik może zostać załączony 
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automatycznie przez system HEMS o dowolnej porze w ciągu doby lub w wybranym, 

zdefiniowanym przez użytkownika, okresie doby. Do tej grupy odbiorników zaliczono m.in.: 

pralki, zmywarkę i bojler elektryczny (zasobnik C.W.U). Innym przykładem odbiorników 

stosowanych w budownictwie jednorodzinnym, które mogą być zaliczone do tej grupy 

urządzeń są m.in. pompa ciepła, klimatyzator oraz ładowarka samochodu lub roweru 

elektrycznego. Aktualnie urządzenia te nie są zainstalowane w badanym obiekcie. 

 

4.2. Rozbudowa układu pomiarowego zainstalowanego w rozpatrywanym 

budynku mieszkalnym 

4.2.1. Układ do pomiaru parametrów charakteryzujących pracę instalacji 

zasilającej w budynku 

Przed modernizacją instalacji elektrycznej, w budynku scharakteryzowanym w poprzednim 

punkcie, obwody odbiorcze były zabezpieczone bezpiecznikami typu DII. Obok bezpieczników 

zlokalizowany był indukcyjny licznik energii elektrycznej. Przed montażem instalacji 

fotowoltaicznej została wykonana modernizacja tablicy licznikowej. Podczas wykonywania 

prac, zgodnie z warunkami technicznymi otrzymanymi od operatora systemu dystrybucyjnego, 

licznik energii elektrycznej został przeniesiony na zewnętrzną ścianę budynku. Nastąpiła także 

wymiana wewnętrznej linii zasilającej (WLZ), a istniejące bezpieczniki zostały wymienione na 

zabezpieczenia nadprądowe typu S. Po wykonaniu tych prac modernizacyjnych instalacji 

elektrycznej, w kolejnym etapie, na dachu budynku zainstalowano mikroinstalację 

fotowoltaiczną. Po zgłoszeniu gotowości przyłączenia źródła PV do sieci elektroenergetycznej 

pracownicy lokalnego OSD zainstalowali dwukierunkowy licznik energii elektrycznej Iskra 

MT174. Urządzenie to wykonane jest w 1 klasie dokładności dla pomiaru energii czynnej, oraz 

2 klasie dla pomiaru energii biernej. Zainstalowany licznik wyposażony jest jedynie w wyjście 

impulsowe, co uniemożliwia (lub co najmniej znacząco utrudnia) wykorzystanie go 

w opracowanym systemie pomiarowym budynku, zatem aby można było odczytać różne 

parametry elektryczne na przyłączu budynku, konieczne było zainstalowane w tym miejscu 

dodatkowego licznika energii elektrycznej z wbudowanym modułem komunikacyjnym. 

W celu kompleksowej rejestracji aktualnych parametrów charakteryzujących pracę, 

rozbudowanej o źródło PV i magazyn energii RESS, instalacji zasilającej w badanym budynku 

zostały wykonane zmiany w rozdzielnicy głównej, które obejmowały instalację czterech 

dodatkowych liczników energii (mierników parametrów sieci) oraz wymaganych do zasilania 

niektórych z nich przekładników prądowych. Tablicę licznikową po rozbudowie przedstawiono 

na rysunku 4.3.  
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Rys. 4.3. Układ pomiarowy w budynku mieszkalnym wyposażonym w instalację PV i magazyn energii po 

rozbudowie o dodatkowe liczniki energii 

 

Widoczny na zdjęciu (rys. 4.3) licznik oznaczony numerem 1 jest zainstalowany za 

rozłącznikiem głównym FR 100 A. Jest to licznik marki Chint DTSU666, realizujący pomiar 

bezpośredni (nie wymaga instalacji przekładników). Urządzenie to charakteryzuje się dużą 

dokładnością, a procentowy zakres błędu dla pomiaru energii czynnej nie przekracza ±1%. 

Licznik ten skomunikowany jest przewodowo z modułem zarządzającym baterią 

akumulatorów (z ładowarką magazynu energii). Urządzenia komunikują się między sobą 

poprzez protokół komunikacyjny Modbus RTU. Protokół ten realizuje szeregową wymianę 

informacji z innymi urządzeniami opartą na interfejsie RS-485. W tej topologii ładowarka 

magazynu energii pełni rolę elementu typu „master”, który odpytuje urządzenie typu „slave” 

(w tym przypadku licznik Chint DTSU666), a ten w odpowiedzi na zapytanie przesyła żądane 

dane do odpowiednich jej rejestrów. Najważniejszą informacją przekazywaną z licznika do 

ładowarki magazynu jest aktualna wartość wymiany energii z siecią elektroenergetyczną, gdyż 

na tej podstawie fabrycznie zaimplementowany, bazujący na regułach logicznych, algorytm 

sterowania magazynem określa pożądany punkt pracy RESS, pozwalający na jej minimalizację.  

4 

1 

2 3 
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 Kolejne liczniki energii eklektycznej widoczne na zdjęciu (rys. 4.3), oznaczone numerami 

2, 3 i 4, są to liczniki marki F&F, model LE-03 MQ CT, realizujące półpośredni pomiar energii 

elektrycznej (i innych parametrów). Wymagają one podłączenia do instalacji za pomocą 

przekładników prądowych o znamionowym prądzie wtórnym równym 1 lub 5 A (odpowiednia 

wartość przekładni ustawiana jest w liczniku; w omawianej instalacji liczniki podłączono za 

pomocą przekładników prądowych o przekładni 40/5 A i klasie dokładności równej 1). Liczniki 

te posiadają certyfikat MID (Measuring Instruments Directive), co pozwala na legalne 

wykorzystanie tych urządzeń do rozliczeń handlowych w Unii Europejskiej. Procentowy zakres 

błędu tych liczników dla pomiaru energii czynnej nie przekracza ±1%. 

Licznik nr 2 służy do odczytu parametrów elektrycznych na zaciskach zasilających budynek 

(na przyłączu do sieci elektroenergetycznej nN). Należy zaznaczyć, że omówiony wcześniej 

licznik nr 1 oraz licznik nr 2 wykonują pomiary w tym samym miejscu (mierzą te same 

wartości). Montaż kolejnego licznika w rozdzielnicy (licznika nr 2) był jednak konieczny 

i wynikał z wcześniejszych (nieudanych) prób odczytu danych z zainstalowanego wcześniej 

licznika nr 1 przez kolejne urządzenie typu „master”, jakim jest serwer systemu pomiarowo-

sterującego (odczyt licznika nr 1 przez dwa urządzenia typu „master” powodował przerwanie 

transmisji lub błędy w odczytywanych wartościach rejestrów). 

Kolejny licznik (licznik nr 3) odczytuje parametry z instalacji fotowoltaicznej po stronie 

napięcia przemiennego. Pomiar parametrów odbywa się na odcinku instalacji pomiędzy 

falownikiem PV, a zabezpieczeniem zabudowanym w rozdzielnicy głównej budynku. Licznik 

nr 4 odczytuje natomiast parametry z magazynu energii, i podobnie jak dla licznika nr 3, pomiar 

odbywa się na odcinku pomiędzy ładowarką magazynu a zabezpieczeniem nadprądowym tego 

obwodu. 

W celu odczytu różnorakich paramentów kompleksowo charakteryzujących pracę 

omawianej instalacji zasilającej budynek mieszkalny, wyjścia komunikacyjne liczników nr 2, 

3 i 4 zostały połączone szeregowo ze sobą, a do licznika nr 4 został podłączony konwerter RS-

485/USB. Dzięki temu możliwy jest odczyt mierzonych wielkości przez mikrokomputer 

Raspberry Pi (pełniący rolę serwera systemu pomiarowo-sterującego) z zainstalowaną 

platformą Home Assistant. Opis sposobu odczytu danych przedstawiono w dalszej części 

opracowania. 
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4.2.2. Układ do pomiaru parametrów charakteryzujących pracę 

poszczególnych urządzeń elektrycznych 

W celu wykorzystania różnych urządzeń elektrycznych w procesie kształtowania 

całkowitego zapotrzebowania budynku (jako odbiorniki SL o sterowanym czasie załączania) 

konieczna jest znajomość czasowego profilu poboru energii przez te odbiorniki. W tym celu 

przeprowadzone zostały odpowiednie pomiary, obrazujące m.in. zmienność poboru mocy 

w czasie pracy tych urządzeń. Aby zrealizować tego typu pomiary zbudowano przenośne 

stanowisko pomiarowe składające się z licznika energii elektrycznej, rejestratora (do tego 

wykorzystano mikrokomputer Raspberry Pi), wtyczki oraz gniazda elektrycznego. Stanowisko 

to pełniło rolę „przedłużacza elektrycznego” z rejestracją danych. Jego widok przedstawiono 

na poniższym zdjęciu (rys. 4.4). Do pomiaru profili pracy urządzeń wykorzystano licznik 

energii eklektycznej Orno OR-WE-504. Jest to jednofazowe urządzenie przeznaczone do 

monitorowania zużycia energii czynnej w instalacjach domowych i przemysłowych. Licznik 

ten realizuje bezpośredni pomiar energii czynnej w 1 klasie dokładności, lecz nie posiada 

certyfikatu MID. Jest on wyposażony w interfejs RS-485 z obsługą protokołu Modbus RTU. 

Protokół ten umożliwia zdalny odczyt danych, co czyni go odpowiednim do zastosowań 

w systemach automatyki budynkowej i monitoringu energii. Z urządzenia można odczytać 

dane dotyczące napięcia, prądu, częstotliwości, mocy czynnej, biernej i pozornej, 

współczynnika mocy, energii czynnej oraz biernej.  

 

 

Rys. 4.4. Przenośne stanowisko pomiarowe do rejestracji profili pracy domowych urządzeń elektrycznych 
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Budowę przenośnego stanowiska do pomiaru profili pracy urządzeń gospodarstwa 

domowego rozpoczęto od wykonania fizycznego połączenia pomiędzy poszczególnymi 

elementami składowymi. Następnie opracowano algorytm, który umożliwił odczyt parametrów 

rejestrowanych przez licznik energii elektrycznej. W tym celu, na mikrokomputerze Raspberry 

Pi (RPi), został zainstalowany system operacyjny Raspberry Pi OS, w którym pracuje program 

IDLE, umożliwiający tworzenie algorytmów w języku programowania Python. W tym 

środowisku został stworzony i przetestowany kod realizujący odczyt danych z licznika energii 

elektrycznej, a następnie ich zapis do pliku csv z rozdzielczością pięciosekundową 

(rozdzielczość może być dowolnie zmieniana w kodzie programu). Kod ten przedstawiono na 

rysunku 4.5. 
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Rys. 4.5. Kod algorytmu odczytu i zapisu danych pomiarowych rejestrowanych przez licznik energii elektrycznej 

 

Ponieważ przenośny rejestrator profili został zbudowany w formie „przedłużacza 

elektrycznego”, to rejestracja profili pracy urządzeń odbywała się poprzez podłączenie wtyczki 

urządzenia, którego profil ma zostać zarejestrowany do gniazda elektrycznego rejestratora, 

a następnie zasilenie rejestratora z sieci. Dodatkowo należy podłączyć zasilanie do 

mikrokomputera RPi, co powoduje samoczynne uruchomienie opracowanego algorytmu 

odczytu i zapisu danych pomiarowych. Dane pomiarowe z licznika energii elektrycznej są 

odczytywane w rozdzielczości pięciosekundowej z wykorzystaniem protokołu Modbus 

RTU. Na rysunku 4.6 przedstawione zostały zarejestrowane profile pracy pralki, zmywarki 

oraz bojlera elektrycznego. Przedstawione wykresy są jednymi z kilku zarejestrowanych profili 

pracy tych urządzeń (zarejestrowano profile wynikające z różnych programów ich pracy). 
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a. 

 
  
b. 

 
  

c. 

 
  

Rys. 4.6. Zarejestrowane profile pracy: pralki (a), zmywarki (b), bojlera elektrycznego (c) 

 

Wyniki pomiarów rejestrowane przez jednofazowy licznik energii elektrycznej Orno zostały 

poddane analizie porównawczej z wynikami uzyskanymi przez renomowane urządzenie 

rejestrujące parametry pracy sieci elektroenergetycznej. Urządzeniem tym był miernik Fluke 

1773, który umożliwia pomiar różnych parametrów elektrycznych z dokładnością wynoszącą 

0,5%. Wykonano pomiary porównawcze dla dwóch odbiorników. W pierwszym 

z przeprowadzonych badań wykorzystano odbiornik o charakterze rezystancyjnym, jakim był 

grzejnik elektryczny o dwóch poziomach mocy grzewczej. Zarejestrowane profile poboru mocy 
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przez to urządzenie przedstawiono na rysunku 4.7. Z kolei na rysunku 4.8 przedstawiono profile 

uzyskane podczas drugiego badania, w którym rejestrowano pracę odbiornika rezystancyjno-

indukcyjnego (trójbiegowy wentylator pokojowy). W tabeli 4.1 podano minimalne, średnie 

i maksymalne wartości błędów względnych pomiaru mocy czynnej (wyniki uzyskane przez 

miernik Fluke zostały potraktowane jako wartość dokładna). Uzyskane wyniki wskazują, że 

zastosowany jednofazowy licznik energii elektrycznej Orno charakteryzuje się stosunkowo 

wysoką dokładnością pomiarową i nadaje się do zastosowania w celu rejestracji profili pracy 

urządzeń domowych. Dla odbiornika o większym poborze mocy czynnej (grzejnik) średni błąd 

względny pomiaru miał niższą wartość. Najwyższe wartości błędów wystąpiły w czasie 

załączania badanego urządzenia. 

 

 

Rys. 4.7. Profile poboru mocy czynnej przez grzejnik elektryczny zarejestrowane za pomocą licznika Orno oraz 

miernika Fluke 

 

 

Rys. 4.8. Profile poboru mocy czynnej przez trójbiegowy wentylator zarejestrowane za pomocą licznika Orno 

oraz miernika Fluke 
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Tabela. 4.1.  

Względne błędy pomiaru mocy czynnej za pomocą licznika Orno 

Urządzenie 
Względny błąd pomiaru, w % 

minimalny średni maksymalny 

Grzejnik 0,00 2,05 11,26 

Wentylator 0,00 5,65 83,33 

 

4.3. Home Assistant jako otwarta platforma pomiarowo-sterująca 

Poszukując platformy, która posłuży do zbudowania systemu pomiarowo-sterującego 

starano się znaleźć rozwiązanie, które umożliwi swobodną rejestrację danych z liczników 

pomiarowych oraz ich wizualizację, a jednocześnie będzie odpowiednio elastyczne i podatne 

na modyfikacje, aby w kolejnym kroku można je było wykorzystać do zbudowania systemu 

sterowania różnymi urządzeniami zainstalowanymi w budynku. Wybór padł na system Home 

Assistant (HA) [32], który jest otwartoźródłową platformą służącą do automatyzacji 

inteligentnego domu, umożliwiającą monitorowanie i sterowanie urządzeniami pracującymi 

według różnych standardów. Obecnie system ten oferuje ponad 1500 tzw. integracji (aplikacji), 

które oferują wsparcie dla nowych urządzeń, protokołów, umożliwiają modyfikacje lub 

rozszerzenie interfejsu użytkownika, a także połączenie HA z różnymi usługami zewnętrznymi. 

Platforma Home Assistant działa lokalnie, bez potrzeby korzystania z chmury, co zapewnia 

większą prywatność i bezpieczeństwo oraz szybkość działania. System ten może zostać 

zainstalowany na mikrokomputerze, laptopie lub komputerze stacjonarnym. W badanym 

obiekcie wybrano mikrokomputer RPi, który charakteryzuje się niewielkimi rozmiarami, 

posiada parametry obliczeniowe pozwalające na bezproblemowe działanie systemu HA oraz 

jest przystępny cenowo. 

4.3.1. Home Assistant – funkcje pomiarowe 

W rozpatrywanym budynku platforma HA została wdrożona w pierwszej kolejności w celu 

odczytu i rejestracji danych pomiarowych z zainstalowanych liczników energii elektrycznej 

(opisano je w punkcie 4.2.1). Jak wspomniano wcześniej, odczyt ten został zrealizowany za 

pomocą konwertera RS-485/USB, który jest podłączony do portu USB mikrokomputera RPi, 

na którym zainstalowano HA. Liczniki zostały połączone ze sobą szeregowo i każdemu z nich 

nadano indywidualny i niepowtarzalny identyfikator. Taki typ połączenia jest wymuszony 

przez protokół komunikacyjny Modbus RTU, w którym poszczególne urządzenia przesyłają 

dane szeregowo w ustalonym formacie binarnym. Od strony programowej w systemie 

operacyjnym HA stworzono algorytm, który odczytuje dane z liczników. Fragment kodu 
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odczytującego wartości napięcia z liczników pokazano na rys. 4.9. Z kolei szczegółowe 

pomiary odczytywane z liczników wskazanych powyżej przedstawiono na rysunku 4.10. 

Oprócz prezentacji w interfejsie użytkownika HA, dane dotyczące poziomów napięć, prądów, 

mocy czynnych i biernych, współczynnika mocy i innych parametrów są zapisywane również 

do pliku csv z rozdzielczością minutową. Zapisane dane są wykorzystywane do opracowania 

prognozy bazowego zapotrzebowania budynku, ale również zostały wykorzystane do celów 

testowania opracowanej metody sterowania pracą magazynu i odbiornikami o sterowanym 

czasie załączania. Mierzone wielkości pozwalają ponadto na przejrzystą wizualizację 

przepływów energii w analizowanym budynku, co przedstawia rysunek 4.11.  

 

Rys. 4.9. Fragment kodu umożliwiającego odczyt danych z zainstalowanych liczników 
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Rys. 4.10. Parametry elektryczne mierzone w instalacji zasilającej rozpatrywanego budynku mieszkalnego 

 

 

Rys. 4.11. Godzinowe przepływy energii w analizowanym budynku mieszkalnym (kolor pomarańczowy – 

generacja PV, kolor różowy – ładowanie magazynu, kolor zielony – rozładowanie magazynu, kolor 

niebieski – import z sieci, kolor fioletowy – eksport do sieci) w dniu 19 maja 2025 r. 
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Wykorzystując możliwości systemu HA, na głównym panelu platformy, stworzono również 

grafikę informującą o aktualnych wartościach podstawowych parametrów charakteryzujących 

bieżącą pracę instalacji zasilającej budynku. Na utworzonej wizualizacji (rys. 4.12) 

wyświetlane są: aktualne zapotrzebowanie budynku, moc wymieniana z siecią 

elektroenergetyczną, generacja źródła PV, moc magazynu (ładowanie lub rozładowanie) oraz 

stopień jego naładowania. Wyświetlany jest również dobowy współczynnik autokonsumpcji 

oraz pokazywana jest numeryczna prognoza pogody, która jest podstawą do opracowania 

prognozy generacji źródła PV. 

 

 

Rys. 4.12. Widok panelu głównego platformy Home Assistant 

 

Odczytywane dane pomiarowe z liczników energii elektrycznej są rejestrowane w pamięci 

RPi. Dzięki temu istnieje możliwość przeprowadzenia szczegółowej analizy warunków pracy 

instalacji zasilającej w budynku w dowolnym dniu w przeszłości. W tym celu w HA zostały 

zainstalowane dodatki InfluxDB oraz Grafana. InfluxDB to wyspecjalizowana baza danych 

typu TSDB (Time Series Database), czyli baza danych szeregów czasowych. Została ona 

zaprojektowana do przechowywania, analizowania i przetwarzania dużej ilości danych 

zmieniających się w czasie, co sprawia, że jest ona idealna do współpracy z Home Assistant. 
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Z kolei Grafana jest narzędziem służącym do wizualizacji danych zbieranych przez Home 

Assistant w postaci interaktywnych wykresów i pulpitów (tzw. dashboardów). Grafana pozwala 

tworzyć atrakcyjne graficznie, zaawansowane analizy danych z czujników i urządzeń 

inteligentnego domu. 

 Korzystając z funkcjonalności obu dodatków, w środowisku graficznym Grafana zostały 

utworzone wykresy przedstawiające m.in. zarejestrowane poziomy napięcia (odczytane przez 

licznik nr 2) oraz generację źródła PV (odczytaną przez licznik nr 3). Na wykresie 

przedstawiającym zmierzone wartości napięcia zostały dodatkowo umieszczone poziome 

przerywane linie, które oznaczają dopuszczalne odchylenia napięcia zasilającego, wynoszące 

±10% Un (tzn. minimalne dopuszczalne napięcie jest równe 207 V, a maksymalne 253 V). Dla 

zilustrowania funkcjonalności omawianych dodatków, na rysunku 4.13.a uwidoczniono 

wartości napięć w dniu, w którym zostały przekroczone dopuszczalne poziomy napięcia w sieci 

elektroenergetycznej, a na rysunku 4.13.b konsekwencje tej sytuacji napięciowej dla pracy 

źródła PV (zbyt wysokie poziomy napięcia spowodowały wielokrotne wyłączenia falownika 

instalacji PV, co skutkowało przerwami w generacji energii). Z kolei na rysunku 4.14.a 

zilustrowano sytuację napięciową w dniu, w którym napięcia fazowe mieściły się 

w dopuszczalnych granicach. W tym dniu mikroinstalacja PV pracowała bez zakłóceń (rys. 

4.14.b). Posiadanie tego typu informacji pozwala prosumentowi na lepsze zrozumienie 

warunków pracy swojego źródła PV. 
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a. 

 
  
b. 

 
  

Rys. 4.13. Przebiegi napięć fazowych (a) oraz generacja źródła PV (b) w dniu 21.05.2025 r. – przerwy w pracy 

mikroinstalacji PV w wyniku przekroczenia dopuszczalnego poziomu napięcia 
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a. 

 
  
b. 

 
  

Rys. 4.14. Przebiegi napięć fazowych (a) oraz generacja źródła PV (b) w dniu 19.05.2025 r. – normalna praca 

mikroinstalacji PV  

 

Platforma Home Assistant umożliwia również wyznaczenie obciążenia podstawowego 

(bazowego), czyli obciążenia budynku, wynikającego z pracy odbiorników, które są załączane 

automatycznie przez własne układy sterowania lub są włączane przez domowników wtedy, gdy 

zaistnieje konieczność użytkowania wybranego urządzenia (lodówka, zamrażarka, sprzęt AGD, 

oświetlenie, komputery i telewizory). Obciążenie bazowe (podstawowe) budynku jest 

obliczane w karcie „Energia”. W tym celu HA wykorzystuje dane pomiarowe pochodzące 
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z zainstalowanych w budynku liczników energii oraz gniazdek sterowanych (opisanych 

w dalszej części) zasilających odbiorniki SL, przy czym wyniki są prezentowane 

w rozdzielczości godzinowej. Przykładowe wyniki przedstawiono na rysunku 4.15 (profil 

obciążenia bazowego budynku jest pokazany szarym kolorem). Zarejestrowane profile 

obciążenia bazowego budynku stanowią zbiór historycznych danych pomiarowych, 

wykorzystywanych do prognozowania obciążenia bazowego, zgodnie z metodą opisaną 

w punkcie 3.1. 

 

a. 

 
  

b. 

 
  
c. 

 
  

Rys. 4.15. Wykresy godzinowe (a) przepływów energii w budynku, (b) szczegółowego zużycia z zaznaczonym 

poborem przez urządzenia o sterowanym czasie załączania (odbiorniki SL), (c) zapotrzebowania 

bazowego (podstawowego) w dniu 05.06.2025 r. 

4.3.2. Home Assistant – funkcje sterujące 

 Kolejnym etapem wdrożenia było wykorzystanie platformy Home Assistant jako systemu 

do sterowania wybranymi odbiornikami o elastycznym czasie załączania i znanym profilu 

poboru energii (odbiorniki SL). Wykorzystano tutaj profile pracy różnych urządzeń 

gospodarstwa domowego, tj. pralek, zmywarki, bojlera elektrycznego, zarejestrowane metodą 
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opisaną w punkcie 4.2.2, dzięki czemu możliwe jest odpowiednie sterowanie czasem ich 

załączania w taki sposób, aby w maksymalnym stopniu wykorzystać generację PV.  

 Zainstalowane w analizowanym budynku mieszkalnym odbiorniki SL są urządzeniami 

starszego typu, które nie posiadają funkcji zdalnego załączania z wykorzystaniem np. aplikacji 

na telefon. Zatem, w celu umożliwienia ich zdalnego załączania w odpowiedniej chwili, 

konieczne było opracowanie innego rozwiązania. W ramach wykonanych prac, do sterowania 

tymi urządzeniami wykorzystano sterowane gniazda sieciowe typu WiFi Shelly Plus S (rys. 

4.16). Gniazdka Shelly to seria inteligentnych urządzeń do automatyki domowej, które 

umożliwiają zdalne sterowanie podłączonymi do nich urządzeniami elektrycznymi (w tym 

przypadku odbiornikami SL, którymi w omawianym budynku są dwie pralki, zmywarka i bojler 

elektryczny). Podstawowo gniazdka te można załączać i wyłączać za pomocą aplikacji 

producenta zainstalowanej na telefonie lub fizycznym przyciskiem znajdującym się na 

obudowie. Po ich zintegrowaniu z platformą Home Assistant sterowanie gniazdkami jest 

możliwe także z tego poziomu (rys. 4.17).  Oprócz funkcji zdalnego załączania, urządzenia te 

posiadają również możliwość rejestracji zużycia energii elektrycznej, poziomu napięcia, 

natężenia prądu oraz aktualnej mocy pobieranej przez podłączone urządzenie, co umożliwia 

bieżącą kontrolę jego pracy. Te dane pomiarowe są dodatkowo rejestrowane przez platformę 

HA, dzięki czemu użytkownik ma do dyspozycji historię pracy odbiorników SL. Przykład 

zarejestrowanego przez gniazdko Shelly profilu pracy przykładowego odbiornika SL (pralka) 

przedstawiono na rysunku 4.18. 

 

 

Rys. 4.16. Gniazdko WiFi Shelly Plus S wykorzystane do zdalnego załączania odbiorników SL 
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Rys. 4.17. Panel służący do sterowania gniazdkami WiFi Shelly Plus S z poziomu interfejsu platformy HA 

 

 

Rys. 4.18. Zarejestrowany przez gniazdko sterowane profil pracy przykładowego urządzenia SL (pralka) 

 

W ramach dalszych prac wdrożeniowych, na platformie HA, został zaimplementowany 

układ sterowania gniazdkami WiFi Shelly Plus S, stosowany do automatycznego sterowania 

urządzeniami SL. W tym celu wykorzystano narzędzie Node-RED. Jest to narzędzie typu open-

source stworzone przez IBM, które umożliwia tworzenie aplikacji poprzez graficzne łączenie 

bloków funkcyjnych (tzw. „node’ów”) w odpowiedni zestaw, nazywany diagramem 

przepływów (tzw. „flow”), realizujący wymagane przez użytkownika zadanie. System Node-

RED posiada predefiniowane bloki funkcyjne, które realizują konkretne działania, np. odczyt, 

zapis i przetwarzanie danych, komunikację z urządzeniami zewnętrznymi z wykorzystaniem 

protokołów Modbus, MQTT lub innych, oraz umożliwiające wizualizację danych. Node-RED 

służy głównie do programowania w sposób wizualny, za pomocą przeciągania i łączenia 

poszczególnych elementów (bloków funkcyjnych) na diagramie przepływu, co czyni go 
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idealnym narzędziem dla osób niebędących programistami, jak również dla szybkiego 

prototypowania przez profesjonalistów.  

W opracowanym algorytmie sterowania gniazdkami zasilającymi odbiorniki SL 

wykorzystano trzy typy bloków funkcyjnych realizujących następujące zadania: 

1. blok „Harmonogram pracy”, który jest blokiem typu „Time”, realizującym wyzwalanie 

czasowe według przygotowanego planu pracy, 

2. blok „Czas pracy urządzenia”, który jest blokiem typu „Delay”, przesyłającym informację 

do kolejnego bloku funkcyjnego po zadanej zwłoce czasowej, 

3. bloki „Załącz” i „Wyłącz”, będące blokami typu „Action”, które realizują różne funkcje; 

w opisywanym zastosowaniu pierwszy blok załącza gniazdko po otrzymaniu informacji 

z bloku „Harmonogram pracy”, natomiast drugi blok wyłącza gniazdko, gdy taka 

informacja zostanie podana jako sygnał wejściowy do tego bloku. 

Opracowany algorytm sterowania gniazdkami WiFi Shelly Plus S przedstawiono na rys. 4.19.a, 

natomiast na rys. 4.19.b i 4.19.c pokazano przykładowy test jego funkcjonalności (odpowiednio 

pokazano zadany harmonogram oraz zarejestrowaną pracę przykładowego urządzenia 

(w badaniach zastosowano żarówkę o mocy 40 W)). Jak widać opracowany algorytm 

umożliwia automatyczne załączenie i wyłączenie urządzenia, zgodnie z ustalonym 

harmonogramem jego pracy. 

 

a. 

 
  

b. 

 
  
c. 

 
  

Rys. 4.19. Algorytm sterowania gniazdkami WiFi Shelly Plus S według zadanego harmonogramu pracy (a), 

przykładowy harmonogram pracy urządzenia sterowanego (b), zarejestrowana praca urządzenia (c) 
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W kolejnym etapie prac wdrożeniowych, na platformie Home Assistant został 

zaimplementowany układ do sterowania magazynem energii, który umożliwia zdalną zmianę 

punktu pracy ładowarki, wynikającą z zadanego, np. wyznaczonego przez zewnętrzny algorytm 

optymalizacyjny, harmonogramu jej pracy. W tym celu również wykorzystano narzędzie Node-

RED. W pierwszym kroku został stworzony algorytm przedstawiony na rysunku 4.20. 

Algorytm ten odczytuje parametry udostępniane przez magazyn energii elektrycznej 

w odpowiednich rejestrach ładowarki. Są to informacje dotyczące (kolejno od góry): mocy 

wymiany z siecią w trzech fazach, mocy ładowarki w trzech fazach, napięcia, prądu, mocy 

i temperatury baterii akumulatorów oraz stanu jej naładowania. Algorytm rozpoczyna swoją 

pracę od wyzwolenia bloku „Time”. Blok ten realizuje funkcję wyzwalacza czasowego 

i ponawia swoje działanie z określonym, zadanym przez użytkownika. interwałem czasowym. 

Kolejne bloki funkcyjne („Flex Getter”) zawierają adresy rejestrów ładowarki, z których mają 

być odczytane dane pomiarowe. Bloki te umożliwiają dynamiczne pobierane danych 

z urządzenia wyposażonego w protokół komunikacyjny Modbus. Odczytane dane są następnie 

przekształcane przez bloki „Parser”, które dokonują ich konwersji do wymaganego przez 

użytkownika formatu liczbowego. W następnych blokach („Function”) wykonywane jest 

skalowanie odczytanych wartości, które są finalnie wyświetlane przez ostatnie bloki funkcyjne 

typu „Sensor”. Opisany algorytm działa na bieżąco w zbudowanym systemie pomiarowo-

sterującym, realizując pomiary z jednominutowym krokiem czasowym. Zmierzone wartości są 

rejestrowane w HA oraz wizualizowane na odpowiednich wykresach, dzięki czemu użytkownik 

posiada aktualną i historyczną informację o stanie pracy magazynu. Przykłady odczytanych 

przy użyciu algorytmu Node-RED wartości przedstawiono na rysunku 4.21.  
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Rys. 4.20. Algorytm Node-RED umożliwiający odczytywanie danych z rejestrów magazynu energii 

 

a. 

 
  

b. 

 
  
c. 

 
  

Rys. 4.21. Wykresy przedstawiające odczytane przy użyciu algorytmu Node-RED przykładowe wartości rejestrów 

ładowarki magazynu: (a) stopień naładowana magazynu, (b) temperatura baterii akumulatorów, (c) moc 

magazynu energii  
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Oprócz rejestrów służących tylko do odczytu, ładowarka magazynu energii posiada również 

rejestry, do których można zapisywać dane, wywołując w ten sposób odpowiednią reakcję 

magazynu. Przykładami takich rejestrów są rejestry, w których można zadawać tryb pracy 

magazynu (sterowanie zdalne lub sterowanie lokalne przez fabrycznie zaimplementowany 

algorytm) oraz określać czas w jakim tryb zdalnego sterowania ma być aktywny (fabrycznie 

magazyn ma aktywowany tryb sterowania lokalnego, w którym punkt pracy magazynu jest 

zadawany przez algorytm oparty na regułach logicznych). Kolejnymi rejestrami posiadającymi 

funkcję zapisu są rejestry, w których można zadawać moc ładowania i moc rozładowania 

magazynu, w trybie sterowania zdalnego. Rejestry te zostały wykorzystane 

w zaimplementowanym w systemie pomiarowo-sterującym HA, w opracowanym w Node-

RED algorytmie sterowania magazynem, który został pokazany na rysunku 4.22. 

 

Rys. 4.22. Algorytm zdalnego sterowania ładowarką magazynu energii w Node-RED  

 

 

Rys. 4.23. Wewnętrzny algorytm podprogramu „Odczyt planu pracy” 

 

 



Naczyński T.: Analiza i optymalizacja pracy układu zasilania odbiorcy indywidualnego 

wyposażonego w źródło fotowoltaiczne 

 Strona 59 
 

Algorytm zdalnego sterowania ładowarką magazynu składa się z następujących bloków 

funkcyjnych: 

1. blok „Time” – opisany jako „Wyzwalacz”, który realizuje wyzwalanie czasowe algorytmu 

z interwałem jednominutowym, 

2. blok „Subflow” – opisany jako „Odczyt planu pracy”; jest to podprogram, który odczytuje 

przygotowany w formacie csv plik zawierający program pracy magazynu, w którym 

zadana jest moc ładowania lub rozładowania dla każdej godziny doby (założono, że 

zadawany jest dobowy harmonogram pracy magazynu w rozdzielczości godzinowej, przy 

czym algorytm sterowania umożliwia określenie dowolnego horyzontu czasowego oraz 

dowolnej rozdzielczości tego harmonogramu); opracowany podprogram działa w ten 

sposób, że odczytane dane są najpierw konwertowane na format JSON, a następnie 

wyszukiwana jest zadana wartość mocy dla aktualnego czasu; podprogram „Odczyt planu 

pracy” został przedstawiony na rysunku 4.23, 

3. blok „Switch” – opisany jako „Rozładowanie (+) czy ładowanie (-)?”, w którym algorytm 

sprawdza jaka wartość została odczytana z pliku zawierającego punkty pracy magazynu, 

a następnie przesyła informację do odpowiedniej gałęzi, w której realizowane jest zdalne 

zadawanie punktu pracy magazynu, 

4. bloki „Change” – opisane jako „Konwersja”, w których zostały zaszyte funkcje 

matematyczne umożliwiające przekształcenie odczytanego punktu pracy z pliku csv do 

wartości przyjmowanych przez rejestry magazynu energii, 

5. bloki „Function” – opisane jako „Moc rozładowania” oraz „Moc ładowania”, w których 

wnętrzu zapisane są odpowiednie rejestry magazynu energii, do których należy przesłać 

punkty pracy magazynu, 

6. blok „Flex Write”, będący blokiem wykonawczym, który realizuje bezpośrednio funkcję 

zapisu danych do wskazanych rejestrów magazynu energii, zmieniając w ten sposób jego 

bieżący punkt pracy.  

Celem weryfikacji poprawności działania opracowanego w środowisku Node-RED 

algorytmu zdalnego sterowania magazynem przeprowadzono szereg testów, polegających na 

zadawaniu różnych punktów pracy magazynu energii i obserwacji jego zachowania. Na 

początku testów należy aktywować sterowanie zdalne, które włącza się z poziomu systemu 

Home Assistant, za pomocą zmiany wartości odpowiedniego rejestru ładowarki magazynu z 0 

na 1 (wartość rejestru równa 0 oznacza, że magazyn jest sterowany za pomocą fabrycznie 

zaimplementowanego algorytmu, który minimalizuje moc wymienianą między budynkiem 
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a siecią elektroenergetyczną). Po aktywowaniu sterowania zdalnego można następnie ustawić 

czas trwania tego sterowania oraz moc rozładowania lub ładowania magazynu. Na rysunku 4.24 

przedstawiono przykładowy zadany profil pracy magazynu sterowanego zdalnie z poziomu 

platformy Home Assistant. Podczas tego eksperymentu, algorytm opracowany w narzędziu 

Node-RED odczytywał z przygotowanego w pliku csv planu pracy różne wartości mocy 

rozładowania i ładowania magazynu energii (magazyn był naładowany w około 88% 

w momencie rozpoczęcia testów). Na kolejnym rysunku (rys. 4.25) pokazano natomiast 

zarejestrowany, rzeczywisty profil magazynu sterowanego zgodnie z profilem zadanym z rys. 

4.24. Wartości dodatnie oznaczają, że magazyn rozładowywał się, natomiast ujemne wartości 

reprezentują ładowanie magazynu. Przeprowadzone testy sterowania magazynem pokazały 

możliwość dowolnej zmiany punktu pracy magazynu w pełnym zakresie mocy ładowarki, czyli 

od 5000 W do -5000 W (ograniczenie na dopuszczalny poziom SoC jest uwzględniane 

automatycznie przez układ kontroli magazynu). Punkty pracy można także zmieniać skokowo 

między maksymalną mocą ładowania i rozładowania, co dodatkowo udowadnia wysoką 

elastyczność pracy magazynu energii. Zrealizowane testy potwierdziły zatem możliwość 

pełnego kontrolowania punktu pracy magazynu za pomocą opracowanej metody sterowania 

tym urządzeniem, z wykorzystaniem platformy Home Assistant i oprogramowania Node-RED. 

 

 

Rys. 4.24. Zadany profil pracy magazynu podczas zdalnego sterowania z poziomu Home Assistant 
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Rys. 4.25. Zarejestrowany profil pracy magazynu podczas zdalnego sterowania od 5000 W do -5000 W z krokiem 

1000 W z poziomu Home Assistant 

 

Powyżej wykazano, że przygotowane w środowisku Node-RED algorytmy umożliwiają 

zdalne załączanie wybranych odbiorników oraz zdalne sterowanie pracą magazynu energii 

według zadanych harmonogramów pracy tych urządzeń. W kolejnym punkcie autoreferatu 

przedstawione zostaną wyniki pomiarów ilustrujących działanie opracowanego systemu 

sterowania w rzeczywistym środowisku pracy. 
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5. OCENA EFEKTÓW IMPLEMENTACJI OPRACOWANEGO 

SYSTEMU HEMS W RZECZYWISTYM ŚRODOWISKU PRACY  

 Omówiony szczegółowo w poprzednim rozdziale system pomiarowo-sterujący 

zrealizowany na platformie Home Assistant został przedstawiony schematycznie na rysunku 

5.1. Liniami przerywanymi zaznaczono drogi przepływu informacji między poszczególnymi 

elementami układu. Czerwone linie oznaczają drogi przepływu danych pomiarowych oraz 

prognoz, natomiast kolorem zielonym zobrazowano drogi przepływu sygnałów sterujących. 

 

 

Rys. 5.1. Schemat opracowanego układu pomiarowo-sterującego zarządzającego pracą instalacji elektrycznej 

w budynku mieszkalnym wyposażonym w źródło PV, magazyn energii oraz sterowane odbiorniki 

o elastycznym czasie załączania 

 

Opracowany system pomiarowo-sterujący, działający z wykorzystaniem rozwiązań 

przedstawionych w poprzedniej części autoreferatu oraz w poszczególnych publikacjach 

tworzących rozprawę doktorską, zaimplementowano w rzeczywistym środowisku 

eksploatacyjnym jakim jest budynek jednorodzinny opisany w rozdziale 4.1. Celem wdrożenia 
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opracowanego systemu HEMS była ocena przydatności i efektywności tego rozwiązania 

w procesie kształtowania bilansu energetycznego budynku wyposażonego w mikroinstalację 

PV. Badanie podzielono na trzy etapy, z których każdy trwał tydzień. Obejmowały one:  

1. sterowanie magazynem za pomocą fabrycznie zaimplementowanego algorytmu bazującego 

na regułach logicznych (minimalizującego chwilową wymianę energii elektrycznej z siecią), 

2. sterowanie magazynem za pomocą algorytmu opartego na metodzie optymalizacji PSO 

w sposób minimalizujący koszty energii elektrycznej ponoszone przez prosumenta, 

3. sterowanie magazynem za pomocą algorytmu opartego na metodzie optymalizacji PSO 

w sposób maksymalizujący neutralność finansową prosumenta. 

Ponieważ fabrycznie zaimplementowany algorytm sterowania magazynem oparty na regułach 

logicznych nie posiada funkcji sterowania wybranymi odbiornikami, to w celu zachowania 

spójności wszystkich trzech etapów badań, również w etapach 2 i 3 ograniczono się tylko do 

sterowania magazynem energii (praca odbiorników SL nie podlegała planowaniu i były one 

załączane przez użytkowników w miarę potrzeb). W kolejnych punktach opisano wyniki 

uzyskane w poszczególnych etapach badań. 

5.1. Sterowanie magazynem za pomocą algorytmu opartego na regułach 

logicznych 

Pierwszy etap badań został zrealizowany w okresie od 22 do 28 czerwca 2025 roku. W tym 

czasie sterowanie magazynem odbywało się lokalnie, za pomocą fabrycznie 

zaimplementowanego algorytmu bazującego na regułach logicznych, którego celem jest 

minimalizacja aktualnej wymiany energii pomiędzy siecią elektroenergetyczną a budynkiem. 

Podczas tak realizowanego sterowania, na podstawie danych pochodzących z licznika energii 

elektrycznej zainstalowanego na przyłączu budynku (licznik nr 1) oraz uwzględniając aktualny 

stan naładowania baterii, algorytm decydował czy w danej chwili magazyn ma być ładowany 

nadwyżką generowanej energii lub czy ma zostać rozładowany w celu zasilenia urządzeń 

w budynku. Jednocześnie w tym okresie wykonywane były badania symulacyjne, których 

celem było wyznaczenie w poszczególnych dniach dwóch dodatkowych planów pracy 

magazynu, opracowanych z wykorzystaniem metody optymalizacji PSO (rozdział 3.3), 

realizującej dwie funkcje celu: minimalizację kosztów energii ponoszonych przez prosumenta 

oraz maksymalizację neutralności finansowej prosumenta. Badania symulacyjne wykonywano 

z wykorzystaniem prognoz zapotrzebowania bazowego i generacji PV opracowanych dla 

poszczególnych dni, z zastosowaniem metod opisanych w punktach 3.1 i 3.2 oraz 

obowiązujących cen energii elektrycznej dla tych dni, pochodzących ze strony Polskich Sieci 
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Elektroenergetycznych. Celem badań było porównanie wyników pomiarów z wynikami 

symulacji. W symulacjach założono, że odbiorniki SL pracowały w ten sam sposób jak 

pracowały w rzeczywistości (nie optymalizowano czasów ich załączania).  

Danymi wsadowymi do symulacji przeprowadzanych dla kolejnych dni były: 

1. prognozowany profil bazowego (podstawowego) zapotrzebowania na energię 

elektryczną rozpatrywanego odbiorcy komunalno-bytowego, 

2. prognozowany profil generacji źródła fotowoltaicznego posiadanego przez 

rozpatrywanego prosumenta, 

3. obowiązujący profil godzinowych rynkowych cen energii elektrycznej (RCE), 

udostępniony przez Polskie Sieci Elektroenergetyczne (PSE). 

Przygotowane profile zostały wczytane do programu optymalizującego, w którym wcześniej 

sparametryzowany został model mikroinstalacji PV (zgodnie z opisem zamieszczonym 

w punkcie 3.2) oraz model magazynu energii (podano moc znamionową ładowarki, pojemność 

całkowitą magazynu, maksymalny stopień naładowania i rozładowania baterii oraz sprawność 

podczas ładowania i rozładowania zasobnika). Następnie, każdorazowo przed rozpoczęciem 

symulacji, zostały uzupełnione dane dotyczące stopnia naładowania magazynu o godzinie 

00:00 kolejnej doby, czyli w chwili początkowej okresu symulacji. Ponieważ symulacje były 

wykonywane w przeddzień dnia, dla którego wyznaczone miały być profile pracy magazynu, 

to stan jego naładowania został wyznaczony szacunkowo (z tego wynikają różnice między 

wynikami pomiarów a wynikami symulacji w tym zakresie). Następnie została wybrana 

funkcja celu jaką algorytm miał zrealizować. W pierwszym podejściu była to funkcja 

realizująca minimalizację kosztów energii, a w kolejnym kroku obliczenia realizowano dla 

maksymalizacji neutralności finansowej prosumenta. Algorytm PSO w jednym cyklu 

obliczeniowym wykonywał 350 iteracji. W celu uzyskania optymalnego profilu pracy 

magazynu energii dla zadanych funkcji celu wykonano po dziesięć symulacji, z których 

wybrano te, dla których uzyskano najlepsze wyniki. Wykorzystane dane oraz uzyskane wyniki 

dla przykładowego dnia z rozpatrywanego okresu przedstawiono na rysunkach 5.2 – 5.9. 

Z kolei w tabeli 5.2 zestawiono najważniejsze wielkości charakteryzujące pracę instalacji 

w kolejnych dniach analizowanego okresu.  

 Do szczegółowego omówienia wyników badań wybrano dzień 22 czerwca 2025 r., ponieważ 

profil cenowy w tym dniu wyróżniał się dużą zmiennością cen, z ujemnymi cenami energii 

elektrycznej między godziną 9:00 a 16:00 oraz wyższymi cenami w szczycie wieczornym (rys. 

5.2). Ujemne ceny były spowodowane wysoką produkcją energii elektrycznej z odnawialnych 

źródeł energii, zwłaszcza fotowoltaicznych, w tym dniu.  
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Rys. 5.2. Rynkowe ceny energii elektrycznej w dniu 22 czerwca 2025 r.  

 

W celu porównania efektów działania fabrycznie zaimplementowanego algorytmu 

sterowania magazynu z proponowanym algorytmem optymalizacyjnym PSO przeprowadzone 

zostały dwa warianty symulacji. Jak wspomniano wcześniej, w pierwszym wariancie 

wyznaczano profil pracy magazynu, który minimalizował koszty energii elektrycznej, 

a w drugim wariancie określano profil pracy magazynu, który maksymalizował neutralność 

finansową prosumenta. Prognozowane profile zapotrzebowania bazowego, generacji źródła PV 

oraz dane dotyczące początkowego stopnia naładowania magazynu energii były identyczne dla 

obu przeprowadzonych optymalizacji PSO. Omówienie uzyskanych wyników podzielono na 

kilka etapów, opisanych poniżej.  

W pierwszym kroku porównano, przyjęty w symulacjach prognozowany profil bazowego 

zapotrzebowania na energię elektryczną, z profilem zużycia zarejestrowanym w badanym dniu, 

co zostało przedstawione na rysunku 5.3 (prognozowany profil zapotrzebowania bazowego dla 

obydwóch funkcji celu był identyczny, a czas załączania urządzeń sterowanych nie był 

optymalizowany). Można zauważyć, że w początkowych godzinach doby profile 

prognozowany i rzeczywisty były bardzo zbliżone do siebie, natomiast w późniejszych 

godzinach wartości zmierzone mocniej różniły się od prognozy bazowego zapotrzebowania. 

Wpływ na to mieli domownicy mieszkający w badanym obiekcie, którzy poprzez załączanie 

różnych urządzeń wpływali na rzeczywiste wartości zużytej energii w kolejnych okresach doby. 

Na rys. 5.4 porównano z kolei prognozę generacji PV z rzeczywistymi danymi 

zarejestrowanymi w omawianym dniu. Największa różnica pomiędzy zarejestrowanymi 

wartościami a prognozą uwidoczniła się od godziny 11:00 do 15:00, czyli w okresie 

największego promieniowania słonecznego. Przyczyną tego stanu rzeczy były wyłączenia 

falownika spowodowane zbyt wysokim poziomem napięcia w sieci elektroenergetycznej 

(wzrost napięcia powyżej dopuszczalnej wartości 253 V), co ilustruje rzeczywisty profil 

  , 

  , 

  ,2

 , 

 ,2

 , 

 , 

 , 

  2   5          2      5         2 2 22 2 2 

C
en
  
e
n
e
rg
ii,
 P
 N
/ 

Czas,  

22    2 25



Naczyński T.: Analiza i optymalizacja pracy układu zasilania odbiorcy indywidualnego 

wyposażonego w źródło fotowoltaiczne 

 Strona 66 
 

generacji PV zarejestrowany w rozdzielczości minutowej oraz profil napięcia zmierzonego na 

przyłączu rozpatrywanego budynku, przedstawione na rysunku 5.5. 

 

a. 

 
  
b. 

 
  

Rys. 5.3. Porównanie prognozowanego i rzeczywistego obciążenia a) bazowego oraz b) całkowitego w dniu 22 

czerwca 2025 r. 

 

  

 

Rys. 5.4. Porównanie prognozowanej i rzeczywistej generacji źródła PV w dniu 22 czerwca 2025 r. 
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a. 

 
  
b. 

 
  

Rys. 5.5. Zarejestrowane profile a) generacji PV, b) napięcia na przyłączu w dniu 22 czerwca 2025 r. 

 

Przedstawione powyżej dobowe profile cen energii, prognozowanego zapotrzebowania 

bazowego oraz generacji PV stanowią dane wejściowe do algorytmu optymalizującego 

działanie RESS dla obu rozpatrywanych funkcji celu. Otrzymane wyniki symulacji, obejmujące 

program pracy RESS oraz stan naładowania magazynu, porównano z rzeczywistymi pomiarami 

zrealizowanymi w tym dniu podczas pracy magazynu sterowanego fabrycznym algorytmem 

opartym na regułach logicznych, co przedstawiono na rysunku 5.6. Widoczne jest, że algorytm 

PSO realizujący minimalizację kosztów energii elektrycznej (min CE) rozładowywał magazyn 

energii w godzinach nocnych i porannych, celem ładowania go w okresie największej generacji 
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PV, gdy ceny energii elektrycznej były niskie. W tym okresie moc ładowania RESS obliczona 

przez algorytm PSO była znacznie większa niż moc ładowania wynikająca z pomiarów. Z kolei 

w okresie szczytu wieczornego magazyn oddawał znacznie większe ilości energii, ponieważ 

wtedy cena na rynku miała największą wartość. Sterowanie magazynem w taki sposób 

pozwoliłoby mu pracować w trybie ładowania w okresie największej generacji PV przez 

dłuższy czas w porównaniu z sytuacją, gdy magazyn był sterowany przez algorytm oparty na 

regułach. Należy jednak zaznaczyć, że w przypadku gdy magazyn byłby kontrolowany zgodnie 

z profilem minimalizującym koszty energii akumulator byłby ładowany i rozładowywany 

z większą mocą niż w przypadku sterowania zgodnie z profilem maksymalizującym 

neutralność finansową prosumenta lub według algorytmu opartego na regułach (ten tryb pracy 

powodował, że magazyn bardzo szybko osiągał pełne naładowanie, a następnie równie szybko 

rozładowywał się do poziomu minimalnego poziomu SoC). W rezultacie RESS wykonywałby 

pełny cykl pracy w ciągu doby, co sprzyja szybszemu zużyciu urządzenia. 

Z kolei drugi wariant symulacji, który realizował maksymalizację neutralności finansowej 

prosumenta, przygotował profil pracy RESS w taki sposób, aby w czasie największej generacji 

naładować magazyn do SoC równego 100% (uprzednio go rozładowując, szczególnie w okresie 

gdy ceny zbliżyły się do zera) i następnie rozładowywać go w taki sposób, aby w czasie 

najwyższych cen energii zapotrzebowanie budynku było w całości poryte za pomocą 

zgromadzonej w magazynie energii pochodzącej z generacji PV. Działanie RESS zgodnie 

z tym profilem skutkowało wolniejszymi zmiany SoC i wykonaniem w ciągu doby niepełnego 

cyklu pracy, co powinno wydłużyć żywotność baterii w stosunku do sytuacji, w której magazyn 

byłby sterowany według minimalizacji kosztów energii.  

Wymiernym efektem optymalizacji RESS była zmiana poziomu autokonsumpcji 

generowanej energii w porównaniu z sytuacją, gdy magazyn był kontrolowany przez algorytm 

oparty na regułach. Zostało to pokazane na rysunku 5.7. Dla profilu pracy magazynu 

uzyskanego w wyniku maksymalizacji neutralności finansowej prosumenta widoczny jest 

znaczący wzrost autokonsumpcji w ciągu rozpatrywanej doby. Zużycie własne wprawdzie 

spadło w okresie od 8 rano do 10 oraz po południu od godziny 16 do 17, ale w pozostałych 

godzinach było wyższe w stosunku do pomiarów. W tym przypadku dzienne zużycie własne 

wzrosło z 40,1% (wartość uzyskana podczas sterowania magazynem opartym na fabrycznie 

zaimplementowanym algorytmie) do 51,2%, gdy sterowania RESS odbywałoby się według 

profilu maksymalizującego neutralność finansową prosumenta. Z kolei dla profilu pracy RESS 

minimalizującego koszty energii zaobserwowano zmniejszenie autokonsumpcji, która 

osiągnęła w ciągu całej doby poziom 30,1%. 
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a. 

 
  

b. 

 
  

Rys. 5.6. Porównanie zmierzonych i uzyskanych z symulacji PSO profili a) mocy i b) stopnia naładowania 

magazynu w dniu 22 czerwca 2025 r. 

 

 

 

Rys. 5.7. Autokonsumpcja generowanej energii pochodzącej ze źródła PV wynikająca z pomiarów i ze 

zoptymalizowanych profili pracy magazynu dniu 22 czerwca 2025 r. 

 

Zmiana poziomu zużycia własnego (autokonsumpcji) wpływa na wymianę energii z siecią 

dystrybucyjną nN, co zostało zilustrowane na rysunku 5.8. Po zastosowaniu algorytmu PSO 

minimalizującego koszt (min CE) zaobserwowano wzrost wymiany energii z siecią 

dystrybucyjną, natomiast dla maksymalizacji neutralności finansowej (max NF) wartość 

dobowej wymiany z siecią zmniejszyła się, w porównaniu do wartości rzeczywistych, 

wynikających z pomiarów przeprowadzonych przy pracy magazynu sterowanego algorytmem 

opartym na regułach logicznych. Dla pracy magazynu minimalizującego koszt energii (min CE) 
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eksport energii do sieci wystąpił przez większość doby, osiągając największe wartości 

w godzinach z najwyższymi cenami energii. Z kolei w godzinach z najniższymi (ujemnymi) 

cenami energii, nastąpił pobór energii z sieci, co skutkuje odnoszeniem dodatkowego 

przychodu przez prosumenta. Uzyskany efekt kosztowy zilustrowano na rys. 5.9. W przypadku 

gdy magazyn pracowałby w sposób maksymalizujący neutralność finansową prosumenta 

wymiana z siecią byłaby najmniejsza spośród analizowanych wariantów sterowania. 

Zastosowanie takiej funkcji celu spowodowałoby, że w tym dniu prosument nie poniósłby 

praktycznie żadnych kosztów, gdyż import energii z sieci wyniósłby jedynie 0,6 kWh. 

Jednocześnie przy eksporcie równym 12,4 kWh prosument uzyskałby jedynie minimalny 

przychód, ponieważ w czasie, w którym ten eksport miałby miejsce ceny energii były bliskie 

zeru. W rezultacie tego dnia osiągnięto by wysoką neutralność finansową, co przedstawiono na 

rys. 5.9. 

 

Rys. 5.8. Profile wymiany energii z siecią elektroenergetyczną w dniu 22 czerwca 2025 r. 

 

 

Rys. 5.9. Koszty (wartości dodatnie) i przychody (wartości ujemne) prosumenta obliczone na podstawie 

wymiany energii z siecią elektroenergetyczną wynikającej z pomiarów oraz ze sterowania magazynem 

według dwóch różnych funkcji celu w dniu 22 czerwca 2025 r. 

 

Podsumowanie wyników analiz wykonanych dla omawianego dnia przedstawiono w tabeli 

5.2, w której zestawiono również wyniki uzyskane dla kolejnych dni rozpatrywanego okresu. 

Podsumowując otrzymane rezultaty badań można przede wszystkim zauważyć, że: 
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1. uzyskano stosunkowo wysoką dokładność prognozy dobowego obciążenia bazowego 

i generacji PV (w porównaniu z wartościami zmierzonymi); maksymalna różnica między 

dobowym zapotrzebowaniem prognozowanym a rzeczywistym wyniosła 15,8%, natomiast 

w przypadku generacji PV było to 13,7%, 

2. w analizowanym tygodniu średni rzeczywisty poziom autokonsumpcji wyniósł 38,97%; 

z kolei otrzymane w symulacjach średnie wartości tego wskaźnika wynoszą 28,64% dla 

minimalizacji kosztów energii oraz 58,26% dla maksymalizacji neutralności finansowej 

prosumenta, 

3. w każdym przypadku sterowania magazynem tygodniowy import energii z sieci był niższy 

niż eksport energii do sieci, co wynika z przewagi sumarycznej generacji PV nad 

zapotrzebowaniem budynku w tym okresie; w rozpatrywanym tygodniu rzeczywisty 

(zmierzony) import energii wyniósł 13,7 kWh, natomiast eksport wyniósł 107,2 kWh; 

podczas symulacji wykonanych dla minimalizacji kosztów energii wymiana z siecią była 

największa (tygodniowy import wyniósł 55,9 kWh, przy eksporcie równym 190,3 kWh); 

z kolei dla symulacji maksymalizujących neutralność finansową prosumenta z sieci 

pobrano 12,8 kWh a oddano 59,1 kWh, co oznacza najmniejszą wymianę energii z siecią 

spośród trzech przeanalizowanych strategii sterowania pracą magazynu, 

4. gdyby do rozliczeń zastosować rynkowe ceny energii, to w badanym okresie prosument 

uzyskałby sumaryczny przychód w wysokości 2,29 zł; znacznie wyższy sumaryczny 

przychód (78,11 zł) w tym okresie prosument osiągnąłby, gdyby magazyn energii był 

sterowany według profilu minimalizującego koszty energii; z kolei podczas sterowania 

magazynem w sposób maksymalizujący neutralność finansową prosument poniósłby koszt 

równy 3,54 zł. 
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Tabela 5.2 

Zestawienie wyników badań dla okresu, w którym magazyn był sterowany algorytmem opartym na regułach logicznych 

Oceniana wielkość Jednostka Typ pomiaru 
Data  

22.06.2025 23.06.2025 24.06.2025 25.06.2025 26.06.2025 27.06.2025 28.06.2025 

Generacja PV kWh 
Prognoza 32,3 23,9 27,2 26,0 29,1 19,4 28,9 

Rzeczywisty 29,4 28,4 30,9 26,6 33,7 20,8 31,8 

Obciążenie kWh 
Prognoza 15,7 15,4 18,6 18,4 20,1 16,6 16,4 

Rzeczywisty 16,3 16,1 21,4 17,6 19,7 14,6 16,6 

Import energii kWh 

Rzeczywisty 0,8 1,6 5,0 2,5 1,6 1,1 1,1 

Symulacja – min CE 7,0 11,9 7,2 8,5 3,3 12,5 5,5 

Symulacja – max FN 0,6 1,2 3,5 3,1 2,4 1,4 0,6 

Eksport energii kWh 

Rzeczywisty 15,6 15,0 16,2 14,5 17,2 8,1 20,6 

Symulacja – min CE 32,0 31,9 26,3 26,9 22,2 24,6 26,4 

Symulacja – max FN 12,4 8,9 10,0 9,3 8,1 1,6 8,8 

Ładowanie RESS kWh 

Rzeczywisty 4,9 4,9 4,7 3,8 6,1 5,1 3,8 

Symulacja – min CE 19,7 19,1 19,5 19,3 14,4 18,3 19,5 

Symulacja – max FN 17,0 10,0 13,7 9,4 11,6 9,2 14,2 

Rozładowanie RESS kWh 

Rzeczywisty 5,9 5,9 6,5 7,5 7,6 5,9 8,1 

Symulacja – min CE 28,8 30,6 30,0 29,5 24,3 27,6 27,8 

Symulacja – max FN 12,8 9,2 11,6 7,5 8,3 6,6 9,9 

Początkowy SoC % 

Rzeczywisty 77 87 80 89 70 83 82 

Symulacja – min CE 81 93 89 86 83 80 77 

Symulacja – max FN 81 93 89 86 83 80 77 

Końcowy SoC % 

Rzeczywisty 87 80 89 70 83 82 83 

Symulacja – min CE 25 22 25 23 20 22 21 

Symulacja – max FN 86 84 85 83 86 81 84 

Autokonsumpcja % 

Rzeczywisty 40,1 35,5 40,5 40,2 41,1 45,6 29,8 

Symulacja – min CE 30,1 23,0 30,9 27,4 29,4 28,5 31,2 

Symulacja – max FN 51,2 59,5 62,0 58,0 50,4 63,9 62,8 

Koszt energii PLN 

Rzeczywisty 1,73 -1,11 2,39 1,14 -3,97 -0,61 -1,86 

Symulacja – min CE -12,87 -11,79 -9,48 -11,38 -11,94 -10,13 -10,52 

Symulacja – max FN -0,15 0,19 1,45 2,09 -0,51 0,42 0,05 
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5.2. Sterowanie magazynem za pomocą algorytmu opartego na metodzie 

optymalizacji w sposób minimalizujący koszty energii elektrycznej 

W tym punkcie opisano wyniki badań polegających na wyznaczeniu planu pracy magazynu 

w sposób minimalizujący dobowy koszt energii elektrycznej ponoszony przez prosumenta, 

a następnie sterowaniu magazynem według tak opracowanego planu. Podobnie jak poprzednio, 

badania obejmowały okres jednego tygodnia, a zrealizowano je w okresie od 10 do 16 lipca 

2025 r. Symulacje dobowe każdorazowo rozpoczęto od przygotowania prognozowanych profili 

generacji PV i zapotrzebowania bazowego budynku oraz uzupełnienia informacji 

o przewidywanym początkowym stanie naładowania magazynu. Proces przygotowania danych 

wejściowych był identyczny jak ten opisany w punkcie 5.1. Do szczegółowego zobrazowania 

uzyskanych wyników badań wybrano dzień 14 lipca 2025 r., cechujący się wysokim 

zróżnicowaniem cen energii. W tym dniu ceny w godzinach 00:00 a 18:00 charakteryzowały 

się zmianami o około 0,20 zł/kWh, natomiast podczas wieczornego szczytu zapotrzebowania 

ceny były ponad dwukrotnie wyższe od średniej dobowej, co przedstawiono na rys. 5.10.  

 

 

Rys. 5.10. Rynkowe ceny energii elektrycznej w dniu 14 lipca 2025 r.  

 

 Podobnie jak w rozdziale 5.1, na początku omawiania uzyskanych wyników dla wybranego 

dnia porównano zarejestrowane dane pomiarowe dotyczące zapotrzebowania budynku 

z prognozą, co zostało przedstawione na rysunku 5.11. Czas załączania urządzeń sterowanych, 

podobnie jak w badaniach przedstawionych w pkt. 5.1, nie był optymalizowany. Można 

zaobserwować, że zarejestrowane wartości zapotrzebowania budynku w początkowych 

i końcowych godzinach doby oraz w okresie od 12:00 do 15:00 są bardzo zbliżone do 

prognozowanego profilu bazowego zapotrzebowania. W pozostałych godzinach 

zarejestrowane wartości różnią się od tych zawartych w prognozie, co było spowodowane 

zachowaniem użytkowników w badanym obiekcie i załączaniem różnych sprzętów AGD 

w ciągu doby.  
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a. 

 
  
b. 

 
  

Rys. 5.11. Porównanie obciążenia a) bazowego oraz b) całkowitego w dniu 14 lipca 2025 r. 

 

Na rysunku 5.12 została z kolei porównana prognoza generacji w źródle PV z rzeczywistymi 

danymi. Widocznym jest, że rzeczywisty profil generacji był podobny do profilu 

prognozowanego w początkowych i końcowych godzinach generacji źródła PV. Znaczące 

różnice pojawiły się natomiast w okresie od godziny 12:00 do 14:00, co spowodowane było 

opadami deszczu (według prognozy opady te były przewidziane od 15:00 do 16:00, stąd 

rozbieżność prognozy od jej realizacji). 

 

 

Rys. 5.12. Porównanie generacji źródła PV w dniu 14 lipca 2025 r. 

 

Przedstawione wyżej dobowe profile cen energii i prognozy zapotrzebowania bazowego 

oraz generacji PV stanowią dane wejściowe do algorytmu optymalizującego RESS, w tym 
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przypadku minimalizującego koszty energii elektrycznej. Uzyskany w wyniku obliczeń 

optymalizacyjnych program pracy magazynu został następnie wykorzystany do sterowania 

pracą tego urządzenia, czyli rzeczywisty profil pracy magazynu był identyczny jak ten 

wyznaczony przez algorytm PSO, co pokazano na rys. 5.13.a. Rzeczywisty profil 

przedstawiający stan naładowania magazynu jest bardzo podobny do profilu wyznaczonego 

przez algorytm optymalizacyjny, co przedstawione zostało na rysunku 5.13.b. Występujące 

różnice miedzy tymi profilami są spowodowane rozbieżnością miedzy rzeczywistym, 

a przyjętym do obliczeń początkowym stopniem naładowania magazynu, a także 

niedoskonałością modelu magazynu wykorzystanego w symulacjach.   

 

a. 

 
  

b. 

 
  

Rys. 5.13. Porównanie rzeczywistych profili a) mocy magazynu i b) stopnia naładowania z wynikami uzyskanymi 

w procesie optymalizacji PSO w dniu 14 lipca 2025 r. 

 

Praca RESS według zadanego programu wpłynęła na poziom autokonsumpcji generowanej 

energii, co zostało przedstawione na rysunku 5.14. Na tym rysunku widoczne jest, iż 

w okresach od 7:00 do 9:00, 15:00 do 16:00 oraz 17:00 do 18:00 rzeczywisty poziom 

autokonsumpcji był o wiele niższy od przewidywanego współczynnika dla wyznaczonego 

symulacyjnie profilu pracy magazynu. Odwrotna sytuacja miała natomiast miejsce w godzinach 

od 12:00 do 14:00 oraz od 16:00 do 17:00, kiedy rzeczywisty poziom autokonsumpcji był 

wyższy od przewidywanego. Rzeczywiste dzienne zużycie własne dla tego dnia wyniosło 

26,9% i było niższe od wartości wyznaczonych w symulacjach, które wynosiło 32,6%. 
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Otrzymane rozbieżności wynikają głównie z różnic między prognozami zużycia i generacji, 

a ich rzeczywistymi realizacjami. 

 

 

Rys. 5.14. Autokonsumpcja generowanej energii pochodzącej ze źródła PV wynikająca z pomiarów i symulacji 

w dniu 14 lipca 2025 r. 

 

Poziom autokonsumpcji każdorazowo pływa na wymianę energii z siecią 

elektroenergetyczną (rys. 5.15), a ilość oddanej i pobranej energii ma swoje odzwierciedlenie 

finansowe dla prosumenta (rys. 5.16). W wybranym dniu (14 lipca) magazyn został 

wysterowany w taki sposób, aby w okresie najwyższych cen energii, eksportować energię do 

systemu i tym samym generować przychód. Wartości rzeczywistej wymiany energii z siecią 

elektroenergetyczną pozwoliły wygenerować przychód w wysokości 8,96 zł, który jest wyższy 

od uzyskanego w symulacjach (7,13 zł). Zestawienie wyników badań dla funkcji celu 

minimalizującej koszty energii dla poszczególnych dni analizowanego tygodnia przedstawiono 

w tabeli 5.3.  

 

 

Rys. 5.15. Profile wymiany energii z siecią elektroenergetyczną w dniu 14 lipca 2025 r. 
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Rys. 5.16. Koszt (wartości dodatnie) i przychód (wartości ujemne) prosumenta obliczone na podstawie zmierzonej 

i uzyskanej w symulacjach wymiany energii z siecią elektroenergetyczną w dniu 14 lipca 2025 r. 

 

Podsumowując zaprezentowane w tabeli 5.3 wyniki można przede wszystkim zauważyć, że: 

1. w porównaniu z wartościami zmierzonymi, prognozy dobowego obciążenia bazowego 

i dobowej generacji PV dla kilku dni osiągnęły bardzo dobre dopasowanie, co przekłada 

się na różnicę między prognozą a jej realizacją wynoszącą około 5%; pomimo ogólnie 

poprawnych prognoz w tym okresie, w dniu 13.07.2025 r. maksymalna różnica między 

dobowym prognozowanym zapotrzebowaniem a rzeczywistym pomiarem wyniosła 

35,2%; z kolei w przypadku generacji PV maksymalna różnica wynosiła 30,8% i wystąpiła 

w dniu 11.07.2025 r., 

2. przy pracy magazynu według profilu minimalizującego koszty energii średni rzeczywisty 

poziom autokonsumpcji w analizowanym tygodniu wyniósł 36,90% i był niższy niż 

uzyskany w symulacjach (42,29%),  

3. tygodniowy rzeczywisty import energii z sieci elektroenergetycznej wyniósł 39,1 kWh 

i był wyższy od przewidywanego (30,3 kWh); z kolei rzeczywisty eksport wyniósł 

83,9 kWh i również był wyższy od wyznaczonego przez algorytm optymalizacyjny PSO 

(71,1 kWh); uzyskane różnice pomiędzy tymi wartościami wynikają głównie 

z rozbieżności prognozowanej i rzeczywistej generacji energii w źródle PV oraz 

zapotrzebowania na energię elektryczną w budynku, 

4. sumaryczne rzeczywiste przychody prosumenta dla tego okresu wyniosłyby 25,02 zł, co 

jest wartością wyższą niż przewidywany przychód wyznaczony przez algorytm PSO, który 

wyniósł 20,49 zł. 
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Tabela 5.3 

Zestawienie wyników badań dla okresu, w którym magazyn był sterowany w sposób minimalizujący koszty energii elektrycznej ponoszone przez prosumenta 

Oceniana wielkość Jednostka Typ pomiaru 
Data  

10.07.2025 11.07.2025 12.07.2025 13.07.2025 14.07.2025 15.07.2025 16.07.2025 

Generacja PV kWh 
Prognoza 22,7 21,2 15,8 23,8 29,1 25,3 29,7 

Rzeczywisty 22,8 16,2 18,4 25,0 29,4 23,1 30,7 

Obciążenie kWh 
Prognoza 15,4 15,4 16,3 16,9 16,1 16,2 17,6 

Rzeczywisty 14,0 14,9 13,5 12,5 14,0 15,3 17,7 

Import energii kWh 
Rzeczywisty 7,8 2,8 3,1 10,0 2,9 7,7 4,8 

Symulacja – min CE 6,9 0,6 3,6 13,8 0,2 4,4 0,8 

Eksport energii kWh 
Rzeczywisty 12,3 4,8 6,7 14,2 17,7 11,2 17,0 

Symulacja – min CE 11,8 7,2 1,7 12,5 12,6 13,4 11,9 

Ładowanie RESS kWh 
Rzeczywisty 14,3 8,1 6,7 19,2 13,1 13,3 13,7 

Symulacja – min CE 14,3 8,1 6,7 19,2 13,1 13,3 13,7 

Rozładowanie RESS kWh 
Rzeczywisty 10,9 8,8 5,3 11,1 12,5 11,2 12,8 

Symulacja – min CE 10,9 8,8 5,3 11,1 12,5 11,2 12,8 

Początkowy SoC % 
Rzeczywisty 10 30 10 13 37 20 21 

Symulacja – min CE 10 30 18 20 40 15 34 

Końcowy SoC % 
Rzeczywisty 30 10 13 38 20 21 15 

Symulacja – min CE 19 14 13 22 18 33 41 

Autokonsumpcja % 
Rzeczywisty 45,8 46,5 37,5 33,4 26,9 40,0 28,2 

Symulacja – min CE 46,4 44,0 56,5 39,4 32,6 43,3 33,8 

Koszt energii PLN 
Rzeczywisty 3,94 -1,08 -1,81 -4,97 -8,96 -5,04 -7,10 

Symulacja – min CE 3,10 -3,18 0,71 -3,38 -7,13 -4,81 -5,80 
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5.3. Sterowanie magazynem za pomocą algorytmu opartego na metodzie 

optymalizacji w sposób maksymalizujący neutralność finansową 

prosumenta 

Podobnie jak badania opisane w punktach 5.1 oraz 5.2, również trzeci etap badań był 

realizowany w okresie jednego tygodnia (w okresie od 17 do 23 lipca 2025 r.). W tych dniach 

magazyn energii realizował, wyznaczony przez algorytm optymalizacyjny PSO, plan pracy 

maksymalizujący neutralność finansową prosumenta. Plan ten został przygotowany 

z wykorzystaniem analogicznych danych, jak opisane w poprzednich punktach. 

Do omówienia wyników badań wybrano dzień 19 lipca 2025 r. W tym dniu ceny energii od 

godziny 00:00 do 9:00 charakteryzowały się nieznacznymi zmianami. W kolejnym okresie, od 

godziny 9:00 do 15:00, ceny wyraźnie spadły i nie przekraczały wartości 0,20 zł/kWh. 

Najwyższa cena energii, w wieczornym szczycie zapotrzebowania, wynosiła około 0,6 zł/kWh. 

Dobowy profil cenowy dla tego dnia został przedstawiony na rysunku 5.17. 

 

 

Rys. 5.17. Rynkowe ceny energii elektrycznej w dniu 19 lipca 2025 r.  

 

Porównanie zarejestrowanego profilu zapotrzebowania budynku w wybranym do 

szczegółowej analizy dniu z prognozą przedstawiono na rysunku 5.18. Czas załączania 

urządzeń sterowanych, podobnie jak w badaniach przedstawionych w pkt. 5.1 i 5.2, nie był 

optymalizowany. Na wykresie można zaobserwować, że zarejestrowane wartości mocy 

w budynku w początkowych godzinach doby są bardzo zbliżone do prognozowanego profilu 

zapotrzebowania bazowego, natomiast w ciągu kolejnych godzin doby wartości te różnią się od 

siebie znacząco. Istotny wpływ na taki stan miał m.in. odbiornik sterowany, który pracował od 

8.00 a 11.00 oraz między godzinami 13:00 i 14:00.  
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a. 

 
  
b. 

 
  

Rys. 5.18. Porównanie obciążenia a) bazowego oraz b) całkowitego w dniu 19 lipca 2025 r. 

 

Kolejny rysunek (5.19) przedstawia porównanie prognozy generacji PV z rzeczywistymi 

danymi dotyczącymi produkcji energii w mikroinstalacji w analizowanym dniu. Kształt profilu 

rzeczywistej generacji był podobny do profilu z prognozy w początkowych i końcowych 

godzinach pracy źródła PV. Znaczące różnice pojawiły się w okresie od godziny 12:00 do 

14:00, co spowodowane było zbyt wysokim poziomem napięcia w sieci w tym przedziale 

czasowym, skutkującym okresowymi wyłączeniami falownika. Również w okresach od 9:00 

do 12:00 oraz 14:00 do 18:00 zaobserwować można różnice między prognozą a jej realizacją, 

przy czym w tym przypadku rzeczywista generacja w źródle PV była wyższa niż ta, którą 

przyjęto do obliczeń optymalizacyjnych. 

 

 

Rys. 5.19. Porównanie generacji źródła PV w dniu 19 lipca 2025 r. 
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Wykorzystując przedstawione dane wejściowe wyznaczono program pracy magazynu, który 

maksymalizuje neutralność finansową prosumenta w ciągu doby. Został on zaprezentowany na 

rys. 5.20.a, a następnie bezpośrednio wykorzystany do sterowania pracą zasobnika. W wyniku 

pracy magazynu zmianie ulegał jego dobowy stopnień naładowania, co pokazano z kolei na 

rys. 5.20.b. Występujące różnice wynikały przede wszystkim z innego początkowego stanu 

naładowania magazynu w rzeczywistości, w stosunku do przyjętego w symulacjach oraz 

niepełne odwzorowanie rzeczywistych właściwości magazynu w jego modelu. 

 

a. 

 
  

b. 

 
  

Rys. 5.20. Porównanie rzeczywistych profili a) mocy magazynu i b) stopnia naładowania z wynikami uzyskanymi 

w procesie optymalizacji PSO w dniu 19 lipca 2025 r. 

 

W początkowych godzinach doby rzeczywisty poziom autokonsumpcji był wyższy od 

wyznaczonego przez algorytm optymalizacyjny podczas symulacji i w miarę upływu czasu 

stopniowo się zmieniał, co pokazuje rys. 5.21. Największe różnice w autokonsumpcji 

rzeczywistej i wyznaczonej podczas symulacji miały wynosiły około 20%. Rzeczywiste 

dzienne zużycie własne dla tego dnia wyniosło 46,8% i było zbliżone do wartości 

wyznaczonych przez algorytm optymalizacyjny PSO (48,2%). 
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Rys. 5.21. Autokonsumpcja generowanej energii pochodzącej ze źródła PV wynikająca z pomiarów i symulacji 

w dniu 19 lipca 2025 r. 

 

Uzyskaną wymianę energii z siecią dystrybucyjną w omawianym dniu przedstawia rysunek 

5.22. W początkowych godzinach doby zmierzony profil wymiany miał kształt zbliżony do 

profilu przygotowanego przez algorytm optymalizacyjny. W kolejnych godzinach widoczne są 

większe różnice pomiędzy rzeczywistą wymianą energii z siecią, a profilem wyznaczonym 

przez algorytm optymalizacyjny, co wynika przede wszystkim z wartości generowanej energii 

w źródle PV. Pokazane na rys. 5.22 wartości rzeczywistej wymiany energii z siecią 

elektroenergetyczną wygenerowałby przychód w wysokości 1,65 zł, który jest nieco mniejszy 

od przychodu przewidywanego w symulacjach (2,04 zł). Uzyskiwane w kolejnych godzinach 

przychody i koszty prosumenta zostały przedstawione na rysunku 5.23. Zestawienie wyników 

badań dla funkcji celu maksymalizującej neutralność finansową prosumenta w ciągu całego 

tygodnia przedstawiono w tabeli 5.4.  

 

 

Rys. 5.22. Profile wymiany energii z siecią elektroenergetyczną w dniu 19 lipca 2025 r. 
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Rys. 5.23. Koszt (wartości dodatnie) i przychód (wartości ujemne) prosumenta obliczone na podstawie zmierzonej 

i uzyskanej w symulacjach wymiany energii z siecią elektroenergetyczną w dniu 19 lipca 2025 r. 

 

Podsumowując zaprezentowane w tabeli 5.4 wyniki można przede wszystkim zauważyć, że: 

1. ponownie uzyskano stosunkowo dobrą dokładność prognozy dobowego obciążenia 

bazowego i generacji PV (w porównaniu z wartościami zmierzonymi); maksymalna 

różnica między prognozowanym dobowym zapotrzebowaniem a rzeczywistym wyniosła 

20,2%, a w przypadku generacji PV maksymalna różnica wynosiła 23,2%, 

2. przy pracy magazynu według profilu maksymalizującego neutralność finansową 

prosumenta średni rzeczywisty poziom autokonsumpcji w analizowanym tygodniu 

wyniósł 50,46% i był niższy niż uzyskany podczas symulacji (57,69%),  

3. tygodniowy rzeczywisty import energii wyniósł 27,2 kWh i był wyższy od wyznaczonego 

symulacyjnie (11,1 kWh); z kolei rzeczywisty eksport energii wyniósł 53,2 kWh i również 

był wyższy od wyznaczonego przez algorytm PSO (34,9 kWh); podobnie jak 

w poprzednich cyklach badań, różnica pomiędzy wartościami zmierzonymi a obliczonymi 

wynika głównie z różnic między prognozami, a rzeczywistą generacją energii w źródle PV 

i zapotrzebowaniem budynku, 

4. sumaryczne rzeczywiste przychody prosumenta dla tego okresu wyniosłyby 7,02 zł, co jest 

wartością wyższą niż przewidywany przychód wyznaczony przez algorytm PSO, który 

wyniósł 3,84 zł. 
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Tabela 5.4 

Zestawienie wyników badań dla okresu, w którym magazyn był sterowany w sposób maksymalizujący neutralność finansową prosumenta 

Oceniana wielkość Jednostka Typ pomiaru 
Data  

17.07.2025 18.07.2025 19.07.2025 20.07.2025 21.07.2025 22.07.2025 23.07.2025 

Generacja PV kWh 
Prognoza 21,8 24,8 30,1 25,4 30,8 25,2 26,4 

Rzeczywisty 17,7 26,7 34,4 32,7 29,8 31,0 24,5 

Obciążenie kWh 
Prognoza 14,2 18,3 17,0 15,7 15,8 16,0 16,4 

Rzeczywisty 13,6 17,6 21,3 19,6 12,4 14,8 16,6 

Import energii kWh 
Rzeczywisty 7,7 7,6 2,9 1,9 1,1 4,3 1,7 

Symulacja – max FN 2,4 3,1 0,1 0,6 0,1 4,2 0,6 

Eksport energii kWh 
Rzeczywisty 1,8 5,5 12,7 11,2 14,7 1,4 5,9 

Symulacja – max FN 0,0 0,0 9,9 6,4 11,4 0,2 7,0 

Ładowanie RESS kWh 
Rzeczywisty 13,7 16,3 10,3 11,8 14,4 16,4 10,5 

Symulacja – max FN 13,7 16,3 10,3 11,8 14,4 16,4 10,5 

Rozładowanie RESS kWh 
Rzeczywisty 3,7 5,9 7,0 8,0 10,7 3,2 6,9 

Symulacja – max FN 3,7 5,9 7,0 8,0 10,7 3,2 6,9 

Początkowy SoC % 
Rzeczywisty 21 68 84 80 82 81 83 

Symulacja – max FN 15 40 80 80 80 70 80 

Końcowy SoC % 
Rzeczywisty 14 84 80 82 81 83 3 

Symulacja – max FN 53 79 83 85 84 65 84 

Autokonsumpcja % 
Rzeczywisty 60,0 54,2 46,8 52,5 41,8 52,4 45,5 

Symulacja – max FN 66,7 66,6 48,2 60,2 45,3 65,7 51,1 

Koszt energii PLN 
Rzeczywisty 2,67 1,11 -1,65 -0,87 -6,08 -0,56 -1,64 

Symulacja – max FN 1,04 1,53 -2,04 0,05 -4,59 1,66 -1,49 
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6. PODSUMOWANIE I NAJWAŻNIEJSZE WNIOSKI 

W pracy przedstawiono system HEMS pozwalający na zarządzanie energią u odbiorcy 

indywidulanego wyposażanego w źródło PV, magazyn energii elektrycznej oraz odbiorniki 

o elastycznym czasie załączania i znanym profilu poboru energii. Do wyznaczenia programu 

pracy magazynu energii oraz czasu załączania wybranych odbiorników zaprojektowany system 

HEMS stosuje model optymalizacyjny, realizujący zadaną funkcję celu z wykorzystaniem 

algorytmu PSO, a danymi wejściowymi są prognozowane profile generacji PV i bazowego 

zapotrzebowania budynku oraz profil cen energii elektrycznej na dany dzień. Opracowany 

system został wdrożony w praktyce w typowym budynku jednorodzinnym i posłużył do 

zrealizowania badań, których celem była ocena efektów jego działania w rzeczywistym 

środowisku pracy. W pierwszym etapie badań minimalizowane były koszty energii elektrycznej 

ponoszone przez prosumenta, natomiast w drugim etapie realizowana była funkcja mająca na 

celu zwiększenie poziomu neutralności finansowej tego prosumenta. W przeprowadzonych 

badaniach wzięto pod uwagę ograniczenia techniczne rzeczywistego zasobnika energii oraz 

parametry dotyczące aktualnego poziomu jego naładowania. Wykonano również badania 

porównawcze, w których magazyn energii był sterowany za pomocą fabrycznie 

zaimplementowanego algorytmu bazującego na regułach logicznych, którego celem jest 

minimalizacja bieżącej wymiany energii z siecią elektroenergetyczną. 

Przedstawione w pracy wyniki prac teoretycznych oraz badań praktycznych zrealizowanych 

w rzeczywistym układzie zasilania odbiorcy indywidulanego (prosumenta) pozwalają na 

sformułowanie następujących wniosków końcowych: 

1. Generacja energii w źródle PV zależy od wielu czynników, obejmujących m.in. kąt 

nachylenia paneli i ich orientację względem kierunku południowego, ale przede 

wszystkim od natężenia promieniowania słonecznego docierającego do powierzchni 

modułów PV. W ramach wykonanych prac opracowano metodę krótkoterminowego 

prognozowania generacji źródła fotowoltaicznego bazującą na numerycznych 

prognozach pogody, z wykorzystaniem modelu źródła PV wchodzącego w skład pakietu 

OpenDSS. Przeprowadzone badania wskazują, że opracowana metoda cechuje się 

dokładnością wystarczającą do zastosowania jej wyników w systemie HEMS. 

2. Generacja źródła PV zależy również od temperatury modułów fotowoltaicznych, która 

wynika z aktualnych warunków atmosferycznych i ulega silnym wahaniom wraz z ich 

zmianami. Celem poprawy jakości prognozowania generacji konieczne jest właściwe 

odwzorowanie zmienności temperatury paneli. W ramach zrealizowanych prac 
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opracowany został dynamiczny model temperaturowy, pozwalający na dokładniejsze 

uwzględnienie zmienności temperatury paneli PV pracujących w zmiennych warunkach 

atmosferycznych. Badania przeprowadzone na pracujących instalacjach 

fotowoltaicznych potwierdziły, że w przypadku zastosowania tego modelu uzyskane 

wyniki obliczeń są bliższe rzeczywistości, niż wyniki otrzymywane z wykorzystaniem 

opisanych w literaturze modeli empirycznych. Zatem zastosowanie opracowanego 

modelu umożliwi dokładniejsze oszacowanie ilości wygenerowanej energii elektrycznej 

w określonych warunkach pogodowych. 

3. W celu wyznaczenia profilu pracy magazynu energii oraz czasu załączania odbiorników 

sterowanych, oprócz prognozy generacji mikroinstalacji PV, niezbędna jest również 

prognoza bazowego profilu zapotrzebowania na energię elektryczną danego odbiorcy 

(prosumenta). Realizując zaplanowane prace badawcze zaproponowano metodę 

prognozowania zapotrzebowania odbiorcy komunalno-bytowego opartą na idei metody 

naiwnej, która do obliczeń wykorzystuje pomiary zużycia energii z kilku takich samych 

dni poprzedzających. Przedstawiony model został poddany odpowiedniej kalibracji, 

a następnie walidacji z wykorzystaniem danych pomiarowych rejestrowanych u odbiorcy 

komunalno-bytowego. Opracowany model dał błędy porównywalne z innymi, bardziej 

zaawansowanymi modelami, a dzięki jego prostocie istnieje możliwość jego praktycznej 

implementacji w systemie HEMS. 

4. Zastosowanie do opracowania profilu pracy magazynu energii systemu HEMS opartego 

na metodzie optymalizacji i realizującego różne funkcje celu daje odmienne efekty. 

W przypadku maksymalizacji neutralności finansowej prosumenta magazyn jest 

sterowany w taki sposób, aby w jak największym stopniu pokryć zapotrzebowanie 

danego odbiorcy za pomocą energii pochodzącej z jego źródła PV (bieżącą produkcją lub 

energią zgromadzoną w zasobniku). Z kolei w wyniku zastosowania jako funkcji celu 

minimalizacji kosztów energii algorytm dąży do jak najszybszego naładowania 

magazynu w okresie niskich cen energii (również kosztem zakupu energii z sieci), 

a następnie jego rozładowania w czasie, gdy ceny energii są wysokie. Oznacza to, że przy 

sposobie sterowania minimalizującym koszty energii zmiany stopnia naładowania 

magazynu są szybsze i głębsze, niż w przypadku maksymalizacji neutralności finansowej 

prosumenta, co będzie miało wpływ na szybszą degradację urządzenia. 

5. Sterowanie magazynem w sposób maksymalizujący neutralność finansową prosumenta 

charakteryzuje się najwyższym współczynnikiem autokonsumpcji energii generowanej 

w źródle PV, w porównaniu do fabrycznie zaimplementowanego algorytmu bazującego 
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na regułach logicznych oraz do algorytmu opartego na metodzie optymalizacji PSO, 

realizującego minimalizację kosztów energii elektrycznej. Oznacza to, że przy takim 

sposobie pracy magazynu wymiana energii z siecią jest najmniejsza, dzięki czemu 

zmniejsza się negatywny wpływ prosumenta na pracę systemu elektroenergetycznego. 

6. Przedstawione w pracy wyniki badań potwierdzają, że przy zastosowaniu odpowiedniej 

funkcji celu (maksymalizacji neutralności finansowej prosumenta), opracowany system 

HEMS umożliwił zwiększenie poziomu autokonsumpcji energii generowanej w źródle 

PV, w porównaniu do fabrycznie zaimplementowanego systemu sterowania magazynem 

opartym na regułach logicznych. Zatem opracowany system może stanowić wyznacznik 

do wdrożenia systemów HEMS w nowoprojektowanych oraz istniejących instalacjach 

wyposażonych w źródła fotowoltaiczne, magazyny energii oraz odbiorniki o elastycznym 

czasie załączania, a jego zastosowanie przyczyni się do poprawy warunków pracy sieci 

elektroenergetycznej, zmniejszając presję na jej rozbudowę. 

7. Opisany system HEMS został zbudowany jest na bazie mikrokomputera Raspberry Pi 

i otwartej platformy Home Assistant, co pozwala na jego lokalne działanie. System 

posiada jednak również możliwość zdalnego dostępu, co umożliwia wykorzystanie jego 

funkcjonalności z dowolnego miejsca. Zatem zewnętrzny dostęp do wybranych funkcji 

sterowania, np. programowania pracy magazynu, mógłby zostać udostępniony 

podmiotom zewnętrznym, np. operatorowi systemu dystrybucyjnego, który po zawarciu 

odpowiedniej umowy z prosumentem miałby możliwość zarządzania tym urządzeniem 

w procesie sterowania pracą sieci elektroenergetycznej na danym obszarze. 

8. Opracowany system HEMS jest elastycznym rozwiązaniem, umożliwiającym 

zarządzanie energią w budynkach różnego rodzaju. Może on być wdrożony zarówno 

w nowo budowanych obiektach, jak i obiektach już istniejących. Wdrożenie 

opracowanego systemu HEMS na szerszą skalę przyczyni się do rozwoju idei sieci 

inteligentnej (ang. smart grid), w której sterowanie pracą instalacjami zasilającymi 

poszczególnych prosumentów odbywa się w sposób automatyczny, prowadząc 

jednocześnie do minimalizacji ich wpływu na działanie systemu elektroenergetycznego. 
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Możliwości kształtowania bilansu energii elektrycznej odbiorcy 
indywidualnego wyposażonego w źródło fotowoltaiczne  

 
 

Streszczenie. W artykule omówiono wyniki rejestracji profili zapotrzebowania i generacji w budynku mieszkalnym wyposażonym w instancję foto-
woltaiczną. Wskazano na rozbieżność tych profili, skutkującą znaczącą wymianą energii elektrycznej z siecią rozdzielczą. Opracowano model symu-
lacyjny rozpatrywanego obiektu, w którym przeanalizowano wpływ sterowania wybranymi odbiornikami na bilans energii analizowanego odbiorcy 
(prosumenta). Celem rozszerzenia możliwości kształtowania bilansu energii założono wyposażenie układu w akumulatorowy zasobnik energii elek-
trycznej, działający zgodnie z założonym algorytmem sterowania. Przeprowadzono również analizę opłacalności zakupu różnych typów zasobników 
energii.  
  
Abstract. The paper discusses the results of recording demand and generation profiles in a residential building equipped with a photovoltaic source. 
The divergence of these profiles was pointed out. This divergence results in a significant exchange of electricity with the distribution network. 
A simulation model of the considered object was developed, in which the influence of control of selected receivers on the energy balance of the 
examined prosumer was analyzed. To extend the possibilities of forming the energy balance, it was assumed that the system will be equipped with 
battery storage of electric energy with an appropriate control algorithm. An analysis of the profitability of purchase of different types of energy storage 
devices was also carried out. (Possibilities of forming the electricity balance of an individual customer equipped with a photovoltaic source) 
 

Słowa kluczowe: prosument, źródło fotowoltaiczne, sterowanie odbiornikami, zasobnik energii elektrycznej 
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Wstęp 
 Zwiększający się udział odnawialnych źródeł energii 
(OZE) powoduje zmianę warunków pracy sieci elektroener-
getycznej. Przy pewnym poziomie mocy zainstalowanej 
w OZE, w sieci mogą okresowo pojawiać się negatywne 
efekty wynikające z działania tych źródeł wytwórczych. 
Można do nich zaliczyć [1 – 4]: 
 zwiększenie zmienności i przekroczenia dopuszczalnych 

poziomów napięć oraz pogłębienie się niesymetrii, 
 wzrost prądu obciążenia, niekiedy powyżej prądu dopusz-

czalnego długotrwale dla danego elementu sieci, 
 wzrost strat sieciowych, 
 pojawienie się odwrotnych przepływów mocy, np. z sieci 

niskiego (nN) do sieci średniego napięcia (SN). 
 Obserwowany w ostatnim czasie dynamiczny wzrost 
mocy zainstalowanej w mikroinstalacjach, głównie fotowol-
taicznych (PV) [5], przyłączanych do sieci nN, przyczynia 
się do znaczącej zmiany dobowego bilansu energii podmio-
tów posiadających takie instalacje (prosumentów). W go-
spodarstwach domowych wyposażonych w źródła fotowol-
taiczne średnio tylko około 30% generowanej energii jest 
zużywane w chwili jej wyprodukowania [6]. Powoduje to 
pojawienie się okresów, w których generacja przewyższa 
zużycie. Nadmiar generowanej energii jest oddawany, przy 
czym zwykle nie do rzeczywistego (fizycznego) magazynu, 
ale do magazynu wirtualnego, jakim jest sieć elektroenerge-
tyczna. Przy niewielkim udziale prosumentów w sumarycz-
nym zapotrzebowaniu odbiorców na danym obszarze, 
wprowadzane nadwyżki energii nie zaburzają pracy sieci. 
Jednak przy dużej łącznej mocy instalacji fotowoltaicznych 
okresowo mogą pojawić się wymienione wyżej negatywne 
zjawiska. To z kolei wymusza podejmowanie przez operato-
rów systemów dystrybucyjnych (OSD) odpowiednich dzia-
łań dostosowawczych, których celem jest zapewnienie 
prawidłowej pracy sieci bez względu na poziom generacji 
źródeł PV. Do działań tych należą ograniczenie możliwości 
przyłączania nowych mikroinstalacji fotowoltaicznych (wy-
maga zmian prawa) lub rozbudowa sieci [5]. 
 Ograniczanie możliwości przyłączania nowych mikroin-
stalacji PV, z punktu widzenia OSD, jest działaniem bez-
kosztowym, jednak jego negatywną konsekwencją jest 
blokowanie rozwoju tego sektora OZE na niektórych obsza-
rach. Z kolei głębokie działania modernizacyjne i rozwojowe 

prowadzone w sieci umożliwiłyby dalszy swobodny rozwój 
segmentu prosumenckich mikroinstalacji fotowoltaicznych, 
ale wymagałyby ponoszenia bardzo wysokich nakładów 
inwestycyjnych, przenoszonych następnie w taryfie dystry-
bucyjnej na wszystkich odbiorców, za pomocą znacząco 
zwiększonych stawek opłaty przesyłowej [7]. W związku z 
tym należy poszukiwać nowych rozwiązań, które będą po-
zbawione wskazanych wad. Rozwiązaniem, które pozwoli 
na przyłączanie większej liczby mikroinstalacji fotowoltaicz-
nych, bez jednoczesnej konieczności głębokiej rozbudowy 
sieci, jest zwiększenie poboru energii w miejscu jej wytwo-
rzenia, w tym samym czasie, w którym to wytwarzanie na-
stępuje. Można to uzyskać przez odpowiednie sterowanie 
wybranymi odbiornikami oraz dzięki wykorzystaniu zasobni-
ka energii elektrycznej, przyłączonego w układzie zasilania 
prosumenta.  

W artykule w pierwszej kolejności omówiono zastoso-
wane sposoby rejestracji danych opisujących zapotrzebo-
wanie oraz generację źródła fotowoltaicznego zainstalowa-
nego w analizowanym budynku mieszkalnym. Wybrane 
wyniki zobrazowano na rysunkach. W kolejnej części 
przedstawiono model symulacyjny rozpatrywanego obiektu, 
w którym przeprowadzono badania nad sposobami zwięk-
szenia możliwości autokonsumpcji generowanej energii. 
Przeanalizowano wpływ przesuwania obciążeń szczyto-
wych oraz magazynowania energii elektrycznej. Na zakoń-
czenie porównano opłacalność zakupu różnego typu maga-
zynów energii przeznaczonych do współpracy z instalacją 
fotowoltaiczną. 
 
Rejestracja profili zapotrzebowania i generacji PV 

Rejestracja profili zapotrzebowania i generacji analizo-
wanego prosumenta miała na celu określenie stopnia wyko-
rzystania produkowanej energii w okresach jej wytwarzania, 
a także identyfikację możliwości zwiększenia poziomu auto-
konsumpcji za pomocą sterowania wybranymi odbiornikami. 
Równolegle przeprowadzano szereg pomiarów zużycia 
energii elektrycznej w obiekcie oraz generacji w zintegro-
wanym z nim źródle PV. W badaniach wykorzystano reje-
strator parametrów sieci wraz z urządzeniami pomocniczy-
mi oraz mikrokomputerem, który zapisywał otrzymane wy-
niki. Na rys. 1 przedstawiono uproszczony schemat układu 
pomiarowego, wykorzystanego do rejestracji zapotrzebo-
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wania. Z koeli rejestracja generacji źródła PV przeprowa-
dzona została za pomocą aplikacji Fronius Solar.web. W 
przestrzeni udostępnionej przez producenta zapisane zo-
stały dane dotyczące generacji źródła fotowoltaicznego 
przesłane z falownika. Dane, które były gromadzone w 
chmurze zostały pobrane w formie pliku csv. 
 

 
Rys.1. Schemat układu pomiarowego wykorzystanego do rejestra-
cji zapotrzebowania w analizowanym budynku jednorodzinnym 
 

Przedstawiony na rys. 2 profil zapotrzebowania obrazuje 
rzeczywiste zapotrzebowanie na moc w analizowanym 
budynku w ciągu wybranej doby (dobowe zużycie energii na 
przedstawionym wykresie wynosi 6,65 kWh). Wyróżnić 
można zapotrzebowanie podstawowe (5,05 kWh) oraz 
zapotrzebowanie szczytowe (1,60 kWh), które spowodowa-
ne jest załączeniem odbiorników o dużej mocy. Urządze-
niami, które odpowiadają za zwiększone zapotrzebowanie 
są: pralka, zmywarka, czajnik elektryczny oraz płyta induk-
cyjna. Niektóre z tych odbiorników mogą być wykorzystane 
do sterowania zapotrzebowaniem analizowanego obiektu. 

Na rys. 2 przedstawiono również generację źródła foto-
woltaicznego zintegrowanego z instalacją odbiorczą rozpa-
trywanego budynku. Wygenerowana w analizowanej dobie 
ilość energii wyniosła 31,34 kWh. Zauważalna jest znaczą-
ca rozbieżność zarejestrowanych profili, co powoduje dużą 
wymianę energii z siecią elektroenergetyczną nN (rys. 3). 
Wymiana ta była równa 30,89 kWh, z czego 27,79 kWh  
 

stanowiło oddanie do sieci, a 3,10 kWh pobór energii z 
sieci. Na pokrycie zapotrzebowania budynku wykorzystano 
jedynie 3,55 kWh generowanej energii, co oznacza, że 
współczynnik autokonsumpcji w ciągu rozpatrywanej doby 
wyniósł jedynie 

11,34% (3,55 kWh / 31,34 kWh). Powodem tego jest 
bardzo wysoka generacja źródła PV, przy niewielkim zapo-
trzebowaniu odbiorcy występującym podczas pracy tego 
źródła. 
 

 
 

Rys. 2. Zarejestrowane dobowe profile zapotrzebowania i generacji 
źródła PV w analizowanym budynku jednorodzinnym 
 

 
 

Rys. 3. Wymiana energii z siecią elektroenergetyczną nN w ciągu 
rozpatrywanej doby 
 
Model symulacyjny rozpatrywanego obiektu 
 W celu przeprowadzenia badań dotyczących możliwości 
zwiększenia stopnia wykorzystania energii produkowanej 
przez źródło PV w badanym budynku, przy zastosowaniu 
graficznego środowiska programistycznego LabVIEW [8], 
zaprojektowano model symulacyjny obiektu, przedstawiony 
na rys. 4. 
 

 

 
 

Rys. 4. Model symulacyjny rozpatrywanego budynku jednorodzinnego z mikroinstalacją PV i zasobnikiem energii w programie LabVIEW 
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Danymi wejściowymi do modelu były zarejestrowane 
dobowe profile mocy generowanej przez źródło PV, profile 
zapotrzebowania podstawowego budynku oraz profile wy-
branych odbiorników dużej mocy, których chwila załączenia 
może być regulowany przez użytkownika. Do tej grupy 
urządzeń zaliczono pralkę, zmywarkę, czajnik elektryczny 
oraz płytę indukcyjną. W symulatorze zaimplementowano 
również zasobnik energii elektrycznej w postaci akumulato-
ra, w którym gromadzona jest nadwyżka produkowanej 
energii. Danymi wejściowymi dla akumulatora są: pojem-
ność magazynu, minimalny i maksymalny poziom nałado-
wania zasobnika, początkowy stan naładowania, maksy-
malna moc ładowania i rozładowania oraz sprawność pro-
cesów ładowania i rozładowania. 

W modelu symulacyjnym w pierwszej kolejności ustalo-
no godziny załączania odbiorników sterowalnych tak, aby 
ich praca odbywała się wtedy, kiedy moc generowana przez 
źródło PV przewyższa moc odbieraną. Podczas symulacji 
model bilansuje moc generowaną przez źródło PV z suma-
rycznym zapotrzebowaniem odbiorników, z uwzględnieniem 
wymiany z siecią. W wariantach z zaimplementowanym 
akumulatorem, w pierwszej kolejności nadmiar mocy gene-
rowanej jest wykorzystywany do ładowania zasobnika, a 
gdy stan naładowania osiągnie wartość maksymalną, wtedy 
nadmiar produkowanej energii jest oddawany do sieci. W 
przypadku niedoboru generacji ze źródła PV, w pierwszej 
kolejności do pokrycia zapotrzebowania jest wykorzystana 
energia zgromadzona w akumulatorze. W tak zaprojekto-
wanym modelu symulacyjnym przeprowadzono wielowa-
riantowe symulacje pracy analizowanego obiektu. Rozpa-
trywano możliwość instalacji różnych magazynów energii, 
co pozwoliło na wybór rozwiązania minimalizującego wy-
mianę z siecią. 
 

Możliwości zwiększenia autokonsumpcji energii 
 Celem określenia możliwości zwiększenia autokon-
sumpcji energii produkowanej przez mikroinstalację fotowol-
taiczną wykonano dwuetapową symulację obejmującą: 
1. sterowanie wybranymi odbiornikami (pralka, zmywarka, 

czajnik elektryczny, płyta indukcyjna), 
2. sterowanie odbiornikami (według programu jak w punk-

cie 1) oraz akumulatorowym zasobnikiem energii. 
Analizy zostały wykonane przy założeniu, że praca źródła 
PV odbywa się według grafiku pokazanego na rys. 2. 
 

 
 

Rys. 5. Profil generacji źródła PV oraz profil zapotrzebowania 
budynku po zastosowaniu sterowania pracą wybranych odbiorni-
ków 

Na rys. 5, na tle profilu generacji, przedstawiono profil 
zapotrzebowania budynku po zastosowaniu sterowania 
czasem załączania wybranych odbiorników. Z wygenero-
wanych 31,34 kWh energii na pokrycie zapotrzebowania 
budynku zużyte zostało 4,75 kWh (3,55 kWh bez sterowa-
nia odbiornikami), co oznacza, że współczynnik autokon-
sumpcji był równy 15,16% (wzrost z poziomu 11,34%). 

 Adekwatnej zmianie uległa również wymiana energii 
z siecią (rys. 6), która wyniosła 28,49 kWh (30,89 kWh w 
wariancie bez sterowania odbiornikami). Zmniejszenie wy-
miany z siecią wynika z jednakowego zmniejszenia ilości 
energii oddanej do sieci (spadek z 27,79 kWh do 
26,59 kWh) i energii pobranej z sieci (spadek z 3,10 kWh 
do 1,90 kWh). 
 

 
Rys. 6. Wymiana energii z siecią elektroenergetyczną nN po zasto-
sowaniu sterowania pracą wybranych odbiorników 
 

W celu dalszego zwiększenia stopnia wykorzystania ge-
nerowanej energii zamodelowano zasobnik AXIstorage Li 
9S (pojemność 8,5 kWh, minimalny stan naładowania 
1,7 kWh, maksymalna moc ładowania 6,5 kW, maksymalna 
moc rozładowania 8,3 kW, sprawność 85%). Ładowanie 
zasobnika następuje wtedy, gdy moc generowana przewyż-
sza zapotrzebowanie i jest kontynuowane do osiągnięcia 
pojemności znamionowej. Rozładowanie następuje w sytu-
acji odwrotnej i kończy się po uzyskaniu minimalnego stany 
naładowania. Pracę zasobnika w ciągu analizowanej doby 
ilustruje rys. 7. 
 

 
Rys. 7. Praca akumulatorowego zasobnika energii 
 

 
Rys. 8. Wymiana energii z siecią elektroenergetyczną nN po zasto-
sowaniu magazynowania energii 
 

Praca zasobnika według grafiku pokazanego na rys. 2 
pozwoliła na zmagazynowanie 6,80 kWh energii (stan po-
czątkowy naładowania zasobnika był równy poziomowi 
minimalnemu wynoszącemu 1,70 kWh). Uwzględniając 
zużycie energii przez odbiorniki podczas pracy źródła PV 
(4,75 kWh), współczynnik autokonsumpcji wzrósł do pozio-
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mu 36,85%. Znaczącej zmianie uległa również wymiana z 
siecią (rys. 8), która zmniejszyła się do poziomu 19,34 kWh 
(energia oddana była równa 18,59 kWh, a pobrana 
0,75 kWh). 
 

Analiza opłacalności zakupu magazynu energii 
Jednostkowa cena magazynu energii zależy m.in. od 

wykorzystanej technologii. Z uwagi na dużą gęstość energii 
magazyny przeznaczone do współpracy ze źródłami foto-
woltaicznymi zbudowane są najczęściej z akumulatorów 
litowo-jonowych [9]. Ważnym aspektem jest też żywotność 
zasobnika, którą można oszacować na podstawie maksy-
malnej liczby cykli pracy (założono 300 cykli na rok). W 
tabeli 1 zestawiono najważniejsze dane charakteryzujące 
rozpatrywane magazyny energii [10, 11] (przyjęto kurs 4,55 
zł/euro). 
 Szacując opłacalność wyposażenia instalacji fotowolta-
icznej w zasobnik energii należy uwzględnić stosowany 
obecnie w Polsce system rozliczeń za energię wprowadzo-
ną i odebraną z sieci przez prosumenta [12]. Zgodnie z tym 
systemem, dla instalacji o mocy do 10 kW, za 1 kWh energii 
oddanej do sieci prosument może bez dodatkowych opłat 
odebrać 0,8 kWh, przy czym rozliczenie jest realizowane w 
okresach rocznych. Oznacza to, że sieć elektroenergetycz-
na jest traktowana jako wirtualny magazyn o sprawności 
80%.  
 Przy takim sposobie rozliczeń wartość utraconych 20% 
energii wprowadzonej do sieci może być traktowana jako 
strata poniesiona przez prosumenta. Jej ograniczenie jest 
możliwe przy zastosowaniu zasobnika pozwalającego na 
zmniejszenie wymiany z siecią (magazynem minimalizują-
cym wymianę z siecią okazał się Tesla Powerwall 2, który 
posiada największą pojemność magazynową). Zatem za-

kup zasobnika będzie opłacalny ekonomicznie tylko wtedy, 
kiedy zmniejszenie straty ponoszonej przez prosumenta 
będzie wyższe niż koszt związany z instalacją magazynu. 
 W pracy [13], dla analizowanego prosumenta, wykona-
no symulacje pozwalające na oszacowanie rocznego bilan-
su energii. Obliczenia pokazały, że przy braku magazynu 
ilość energii wprowadzana do sieci będzie równa 
1926 kWh, czyli utracone zostanie 385 kWh. Przyjmując, że 
suma ceny energii i stawek opłat zmiennych dla odbiorcy 
rozliczanego według taryfy G11 wynosi 0,62 zł/kWh [14], 
maksymalna, możliwa do uzyskania, wartość rocznego 
zmniejszenie straty prosumenta jest równa 239 zł. Wartość 
tę należy porównać z rocznym kosztem związanym z insta-
lacją magazynu (tabela 1), oszacowanym jako iloraz ceny 
zakupu urządzenia i przewidywanej żywotności. Wykonana 
analiza wskazuje na brak opłacalności zakupu zasobnika 
energii. 
 

Wnioski 
 Znacząca rozbieżność profilu produkcji źródła fotowolta-
icznego i profilu zapotrzebowania odbiorcy komunalno-
bytowego w wielu sytuacjach powoduje dużą wymianę 
energii z siecią. Ograniczenie tego zjawiska jest możliwe 
poprzez pewne działania możliwe do wykonania u odbiorcy. 
Należą do nich zmiana profilu zapotrzebowania przez za-
stosowanie sterowania czasem załączania wybranych od-
biorników oraz zastosowanie magazynowania energii w 
miejscu jej wytworzenia. Praktyczne wdrożenie wymienio-
nych metod na szerszą skalę wymaga jednak opracowania 
odpowiednich rozwiązań technicznych i organizacyjnych. 
Rozwiązania te mogłyby być wzorowane na usłudze De-
mand Side Response, funkcjonującej obecnie na poziomie 
systemowym. 

 
Tabela 1. Najważniejsze dane rozpatrywanych akumulatorowych zasobników energii oraz wyniki analizy opłacalności zakupu magazynu 

Lp. Typ magazynu 
Pojemność 

Przewidywana  
żywotność 

Cena zakupu 
Roczny koszt 

instalacji  
magazynu 

Możliwe roczne 
zmniejszenie 

straty 
kWh cykle lata zł zł/kWh zł zł 

1 Pb 150 Ah 7,2 2500 8,3 4086 568 492 239 
2 Pb 200 Ah 9,6 2500 8,3 5448 568 656 239 
3 LiFePO4 150 Ah 7,2 5000 16,7 28311 3932 1695 239 
4 LiFePO4 200 Ah 9,6 5000 16,7 33142 3452 1985 239 
5 BMZ ESS 9.0 8,5 5000 16,7 19063 2243 1141 239 
6 AXIstorage Li 9S 8,5 7000 23,3 17383 2045 746 239 
7 Fronius Battery 9.0 9,0 8000 26,7 33069 3674 1239 239 
8 LG Chem REUS 10 9,8 6000 20,0 20148 2056 1007 239 
9 BYD Battery-Box L10.5 10,5 5000 16,7 21664 2063 1297 239 

10 Tesla Powerwall 2 14,0 3200 10,7 39271 2805 3670 239 
 
 

Autorzy: mgr. inż. Tomasz Naczyński, Politechnika Śląska – ab-
solwent 2020, E-mail: tomasz0128@interia.pl; dr hab. inż. Roman 
Korab prof. PŚ; E-mail: roman.korab@polsl.pl; Politechnika Śląska, 
KEiSU, ul. B. Krzywoustego 2, 44-100 Gliwice 

 

LITERATURA 
[1] Watson, J.D., Watson, N.R., Santos‐Martin, D., Wood, A.R., 

Lemon, S. and Miller, A.J.: Impact of Solar Photovoltaics on the 
Low‐Voltage Distribution Network in New Zealand. IET Gener. 
Transm. Distrib., 2016, 10, doi.org/10.1049/iet-gtd.2014.1076 

 [2] Singh R., Tripathi P. and Yatendra K.: Impact of Solar Photo-
voltaic Penetration In Distribution Network. 2019 3rd Interna-
tional Conference on Recent Developments in Control, Auto-
mation & Power Engineering (RDCAPE), Noida, India, 2019, 
doi.org/ 10.1109/RDCAPE47089.2019.8979014. 

[3] Fernández G., Galan N., Marquina D., Martínez D., Sanchez 
A., López P., Bludszuweit H., Rueda J.: Photovoltaic Genera-
tion Impact Analysis in Low Voltage Distribution Grids. Ener-
gies. 2020, 13 (17), 4347, doi.org/10.3390/en13174347 

[4] Gandhi O., Kumar D.S., Rodríguez-Gallegos C.D., Srinivasan 
D.: Review of power system impacts at high PV penetration. 
Part I: Factors limiting PV penetration. Solar Energy, 2020, 
210, doi.org/10.1016/j.solener.2020.06.097 

[5] PTPiREE: Mikroinstalacje w Polsce. 
www.ptpiree.pl/energetyka-w-polsce/energetyka-w-
liczbach/mikroinstalacje-w-polsce (dostęp 2021.04.13) 

[6] Wójcicki R.: Autokonsumpcja energii elektrycznej w prosu-
menckiej osłonie kontrolnej. Rynek Energii, 2020, 1 

[7] Topolski J.: Potrzebne zmiany regulacji w związku z rozwojem 
mikroinstalacji OZE. www.cire.pl (dostęp 2021.04.13) 

[8] Chruściel M.: LabVIEW w praktyce. Wydawnictwo BTC, Legio-
nowo 2008 

[9] Wojciechowski H.: Technologie magazynowania energii, cz. I, 
Instal 2/2017 

[10] Akumulatory ogólnego zastosowania, www.batimex.pl (dostęp 
2021.04.16) 

[11] Magazyny energii dla instalacji fotowoltaicznych, www.europe-
solarstore.com (dostęp 2021.04.16) 

[12] Ustawa z dnia 20 lutego 2015 r. o odnawialnych źródłach 
energii. Tekst jednolity. Dz. U. 2020, poz. 261 

[13] Naczyński T.: Źródło fotowoltaiczne w układzie zasilania od-
biorcy indywidualnego, Praca dyplomowa magisterska, Poli-
technika Śląska 2020 

[14] Taryfa dla energii elektrycznej – dla odbiorców grup taryfowych 
G11, G12, G12w, G13, www.tauron.pl (dostęp 2021.04.16) 



Energy Conversion and Management 280 (2023) 116773

0196-8904/© 2023 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

A dynamic thermal model for a photovoltaic module under varying
atmospheric conditions
Roman Korab a,b,∗, Marcin Połomski a,c, Tomasz Naczyński a,d, Tomasz Kandzia a,e

a Silesian University of Technology, Gliwice, Poland
b Department of Power Systems and Control, Faculty of Electrical Engineering, Silesian University of Technology, Gliwice, Poland
c Department of Algorithmics and Software, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
d Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
e Graduate of Faculty of Electrical Engineering, Silesian University of Technology, Gliwice, Poland

A R T I C L E I N F O

Keywords:
Photovoltaic module
Temperature prediction
Dynamic thermal model
Finite difference method
Particle swarm optimization

A B S T R A C T

Operating temperature strongly affects the performance of the photovoltaic module. Thus, the accurate estima-
tion of the module temperature plays an important role in the assessment of photovoltaic system generation.
In this article, it was shown that the existing empirical models are characterized by a limited accuracy in
determining the module temperature under varying atmospheric conditions, and the estimation error exceeded
25 ◦C. This feature of empirical models results from the neglect of the thermal inertia of the module. To solve
this problem, a dynamic thermal model for the photovoltaic module was proposed. The proposed model is
based on the Finite Difference Method and only uses data on the ambient temperature, solar irradiation, and
wind speed. The model coefficients were optimized using the Particle Swarm Optimization method. Developed
model was benchmarked against field measurements at the Silesian University of Technology, Poland. The
performance of the proposed model was also compared with the performance of the dynamic thermal model
proposed by Barry et al., using measurements from systems located in the Allgäu region, Germany. The results
demonstrated the effectiveness of the proposed dynamic thermal model for the correct calculation of the
photovoltaic module temperature under varying weather conditions. The temperature estimation error did
not exceed 9 ◦C.

1. Introduction

Solar energy can be easily transformed into electricity using photo-
voltaic (PV) modules. Crystalline silicon modules are widely used and
will continue to be the leader of the PV market for some time [1].
The amount of power generated by a PV module depends on several
factors including [2]: environmental factors (external), PV system fac-
tors (internal), PV system installation factors (operational), PV system
cost factors (economic) and other miscellaneous factors. The authors of
this review article [2] indicated that approximately 50% of the more
than 100 articles reviewed focused on the discussion of the impact of
environmental factors on PV function. On this basis, it can be concluded
that environmental factors have the greatest impact on the operation
of PV systems. The most important environmental factors are [2]: solar
irradiance, module temperature, dust accumulation, soiling, and the
effect of shading. The authors of other works also analyze the influence
of wind on the operation of PV modules [3], and indicate the combined
effect of various environmental factors on panel degradation [4], as
well as on the natural cleaning process of its surface [5].

∗ Correspondence to: Silesian University of Technology, Akademicka 2A44-100, Gliwice, Poland
E-mail address: roman.korab@polsl.pl (R. Korab).

Solar irradiance can be defined as the quantity of power coming
from the Sun per unit area. The output of a PV module significantly
depends on solar irradiance. As solar irradiance increases, the open
circuit voltage increases logarithmically, whereas the short circuit cur-
rent increases linearly [6]. As a result, the electrical power of the PV
module also increases [7]. Irradiance usually fluctuates and depends
on geographical location, season of the year, the sun’s position in the
sky, and weather. Clouds are the main cause of the greatest variability
of solar irradiance throughout the day. Some of the sunlight can also
be blocked by dust. The intensity of dust accumulation depends on
environmental factors such as wind speed, humidity, rainfall, the source
of dust, particle type, PV module technology, and PV module surface
cover [5]. Dust accumulation can cause soiling of the PV module,
leading to its partial shading. Trees and buildings may also cast shadow
on the PV modules. The effect of shading affects the current flow in the
entire module as the cells are normally connected in series.

In addition to solar irradiance, the temperature of the PV module
also has a direct influence on power output. The temperature effect

https://doi.org/10.1016/j.enconman.2023.116773
Received 27 October 2022; Received in revised form 12 January 2023; Accepted 1 February 2023

https://www.elsevier.com/locate/enconman
http://www.elsevier.com/locate/enconman
mailto:roman.korab@polsl.pl
https://doi.org/10.1016/j.enconman.2023.116773
https://doi.org/10.1016/j.enconman.2023.116773
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2023.116773&domain=pdf


Energy Conversion and Management 280 (2023) 116773

2

R. Korab et al.

Nomenclature

Symbols

𝜒 Constriction factor
𝛥𝑡 Length of the time interval [s]
𝛥𝑇𝑜 Increase of top oil temperature [◦𝐶]
𝛥𝑇𝑜𝑟 Increase of top oil temperature in steady

state at rated load [◦C]
𝛥𝑇𝑃𝑉 Increase of PV module temperature [◦C]
𝜂𝑃𝑉 PV module nominal efficiency
max |𝛥𝑇 | Maximal temperature difference [◦C]
𝜏𝛼 Product of transmissivity and absorbance

coefficients
𝜏𝑜 Oil thermal time constant [s]
𝜏𝑃𝑉 PV module thermal time constant [s]
|𝛥𝑇𝑚𝑎𝑥| Difference of maximal temperatures [◦C]
𝐶 Normalization factor
𝐺𝑇 Global solar irradiance [W/m2]
𝐺𝑁𝑂𝐶𝑇
𝑇 Global solar irradiance at NOCT [W/m2]

𝐾 Load factor
𝑘11 Thermal model constant
𝑁 Number of time intervals before the consid-

ered time interval
𝑛 Total number of time intervals in analyzed

period
𝑝 Number of general forms of formulas deter-

mining the increase of PV module tempera-
ture

𝑞 Number of objective functions adopted for
the optimization of finite difference thermal
models coefficients

𝑅 Ratio of load losses at rated current to
no-load losses

𝑇𝑎 Ambient temperature [◦C]
𝑇𝑁𝑂𝐶𝑇
𝑎 Ambient temperature at NOCT [◦C]

𝑇𝑜 Top oil temperature [◦C]
𝑇𝑃𝑉 𝑐 Calculated PV module temperature [◦C]
𝑇𝑃𝑉 𝑚 Measured PV module temperature [◦C]
𝑇𝑃𝑉 PV module temperature [◦C]
𝑇𝑁𝑂𝐶𝑇
𝑃𝑉 PV module temperature at NOCT [◦C]

𝑇𝑠𝑘𝑦 Sky temperature [◦C]
𝑢1, 𝑢2, 𝑢3 Empirical coefficients
𝑉𝑤 Wind speed [m/s]
𝑥1, 𝑥2, 𝑥3, 𝑥4 Empirical coefficients
𝑦 Oil exponent

Acronyms

FDM Finite Difference Method
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
NOCT Nominal Operating Cell Temperature
NTC Negative Temperature Coefficient
PSO Particle Swarm Optimization
PV Photovoltaic
RMSE Root Mean Square Error
SCADA Supervisory Control And Data Acquisition

is the result of a connatural characteristic of crystalline silicon cell-
based PV modules. The main effect of an increase in PV module
temperature is on the open circuit voltage, which decreases linearly

with temperature. Simultaneously the short circuit current increases
slightly with an increase in the PV module temperature. As a result,
the output power drops [8]. The manufacturers provide the value
of the power temperature coefficient for PV modules in the techni-
cal datasheets. The typical value of this factor ranges from 0.3 to
0.5%/◦C [9] and for the average silicon crystalline PV module this
is about 0.4%/◦C. This means that a 10 ◦C increase in temperature
results in a 4% reduction in generated power. The temperature of the
solar module is usually not measured directly. Instead, it is calculated
using appropriate mathematical models. As is shown later in the article,
some empirical models can give errors above 25 ◦C. This translates
into a 10% error in determining the generated power. For this reason,
an accurate calculation of the PV module temperature is essential to
obtain the correct prediction of the energy produced. The main goal of
this article is to develop a mathematical model that allows the correct
calculation of the temperature of a PV module operating under varying
atmospheric conditions. Research was started with a literature review.
On this basis some empirical models were selected for further analysis.

2. Thermal models for photovoltaic modules – a literature review

The influence of temperature on performance of PV modules has
attracted attention over the last few decades. In the literature, different
models have been suggested for predicting PV module temperature
(𝑇𝑃𝑉 ). Models for 𝑇𝑃𝑉 estimation can generally be classified by two
approaches: dynamic (transient) and steady state [10].

In the dynamic approach, parameters affecting the changing of the
module temperatures are considered to be time dependent [10]. There-
fore, these models can accurately predict the value of 𝑇𝑃𝑉 , particularly
when atmospheric conditions vary rapidly, which implies that the PV
module experiences thermal transients [11]. Dynamic models are based
on the energy balance between the PV module and the surrounding
environment and account for weather variables, the thermal capacity of
the PV module, the heat transfer processes (convection and radiation),
and the conversion into electrical power [12]. Dynamic thermal models
can be solved using a first-order difference equation, finite differ-
ence, or frequency-domain methods [11]. These models are complex
and require relatively long computational time, cost, and effort [13].
For these reasons, much simpler steady-state thermal models for 𝑇𝑃𝑉
estimation are often used.

In the steady-state approach all parameters are assumed to be time-
independent [10]. The intensity of incoming solar irradiance and other
parameters that affect the PV module performance, in a short period of
time (normally less than 1 h), are assumed to be constant. Steady-state
models are relatively simple, characterized by low computing times;
nevertheless, these models are not flexible and can overestimate or
underestimate the value of 𝑇𝑃𝑉 [13]. The steady-state thermal models
can be broadly classified into three types [11]: (i) models based on
a diode PV cell model and 𝑇𝑃𝑉 to establish the I–V curves, and thus
the output power, (ii) models based on the energy balance equation
for steady-state conditions, for which the thermal capacity of the PV
module and the transient phenomena are neglected, (iii) models applied
as a function of incident solar irradiance, ambient temperature, and
sometimes wind speed, when considering a PV module as a unique
element.

In recent years, considerable effort has been devoted by the scien-
tific community to the development and improvement of approaches
for calculating 𝑇𝑃𝑉 from measurable parameters [13]. In such a pro-
cess, steady state models from the third group mentioned above have
become most common. These models are usually empirical models
that express the correlation between temperature of a PV module and
relevant meteorological variables. Some correlations include material
and system-dependent properties, parameters depending on the type of
assembly arrangements/schemes and express the adverse effect of an
increasing 𝑇𝑃𝑉 on module efficiency.
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Table 1
Empirical models for estimation of PV module temperature.

No. Author(s) Year Ref. Empirical model

1 Ross 1976 [14] 𝑇𝑃𝑉 = 𝑇𝑎 + 0.03𝐺𝑇

2 Rauschenbach 1980 [15] 𝑇𝑃𝑉 = 𝑇𝑎 +
𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
𝑇

(

𝑇𝑁𝑂𝐶𝑇
𝑃𝑉 − 𝑇𝑁𝑂𝐶𝑇

𝑎

)

(

1 − 𝜂𝑃𝑉
𝜏𝛼

)

3 Risser & Fuentes 1984 [16] 𝑇𝑃𝑉 = 1.31𝑇𝑎 + 0.0282𝐺𝑇 − 1.65𝑉𝑤 + 3.81

4 Schott 1985 [17] 𝑇𝑃𝑉 = 𝑇𝑎 + 0.028𝐺𝑇 − 1

5 Ross & Smokler 1986 [18] 𝑇𝑃𝑉 = 𝑇𝑎 +
𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
𝑇

(

𝑇𝑁𝑂𝐶𝑇
𝑃𝑉 − 𝑇𝑁𝑂𝐶𝑇

𝑎

)

6 Lasnier & Ang 1990 [19] 𝑇𝑃𝑉 = 1.14
(

𝑇𝑎 − 25
)

+ 0.0175
(

𝐺𝑇 − 300
)

+ 30.006

7 King 1996 [20] 𝑇𝑃𝑉 = 𝑇𝑎 +
𝐺𝑇

1000

(

0.0712𝑉𝑤
2 − 2.411𝑉𝑤 + 32.96

)

8 King et al. 1998 [21] 𝑇𝑃𝑉 = 𝑇𝑎 +
𝐺𝑇

1000

(

19.6𝑒−0.223𝑉𝑤 + 11.6
)

9 TamizhMani et al. 2003 [22] 𝑇𝑃𝑉 = 0.943𝑇𝑎 + 0.028𝐺𝑇 − 1.528𝑉𝑤 + 4.3

10 King et al. (A) 2004 [23] 𝑇𝑃𝑉 = 𝑇𝑎 + 𝐺𝑇 𝑒−3.56−0.0750𝑉𝑤

11 King et al. (B) 2004 [23] 𝑇𝑃𝑉 = 𝑇𝑎 + 𝐺𝑇 𝑒−3.47−0.0594𝑉𝑤

12 Duffie & Beckman 2006 [24] 𝑇𝑃𝑉 = 𝑇𝑎 +
(

9.5
5.7+3.8𝑉𝑤

)

𝐺𝑇

𝐺𝑁𝑂𝐶𝑇
𝑇

(

𝑇𝑃𝑉
𝑁𝑂𝐶𝑇 − 𝑇𝑎

𝑁𝑂𝐶𝑇 )
(

1 − 𝜂𝑃𝑉
𝜏𝛼

)

13 Mondol et al. 2007 [25] 𝑇𝑃𝑉 = 𝑇𝑎 + 0.031𝐺𝑇

14 Skoplaki et al. (A) 2008 [26] 𝑇𝑃𝑉 = 𝑇𝑎 +
0.25

5.7+3.8𝑉𝑤
𝐺𝑇

15 Skoplaki et al. (B) 2008 [26] 𝑇𝑃𝑉 = 𝑇𝑎 +
0.32

8.91+2.0𝑉𝑤
𝐺𝑇

16 Muzathik 2014 [27] 𝑇𝑃𝑉 = 0.943𝑇𝑎 + 0.0195𝐺𝑇 − 1.528𝑉𝑤 + 0.3529

17 Kamuyu et al. 2018 [28] 𝑇𝑃𝑉 = 0.9458𝑇𝑎 + 0.0215𝐺𝑇 − 1.2376𝑉𝑤 + 2.0458

𝑇𝑃𝑉 – temperature of the PV module, in ◦C, 𝑇𝑎 – ambient temperature, in ◦C, 𝐺𝑇 – solar irradiance, in W/m2, 𝑉𝑤 – wind
speed, in m/s, 𝑇𝑁𝑂𝐶𝑇

𝑃𝑉 – PV module operating temperature at NOCT (nominal operating cell temperature) conditions, in ◦C,
𝑇𝑁𝑂𝐶𝑇
𝑎 – ambient temperature at NOCT conditions, 20 ◦C, 𝐺𝑁𝑂𝐶𝑇

𝑇 – solar irradiance at NOCT conditions, 800W∕m2, 𝜂𝑃𝑉 – PV
module nominal efficiency, 𝜏𝛼 – product of transmissivity and absorbance coefficients, 𝜂𝑃𝑉 ≈ 0.9.

In this article, empirical models expressing the correlation between
the PV module temperature and the ambient temperature, solar irra-
diance, and wind speed, as commonly measured and forecasted me-
teorological variables, were only analyzed. Some analyzed correla-
tions are also supplemented with parameters available in the technical
datasheets. The examined empirical models are presented in Table 1.

The models listed in Table 1 were developed in the years from
1976 to 2018. Also in recent years, several empirical models were
presented. In [29] a model considered the ambient temperature, solar
irradiance, and wind speed, as well as the thermal resistances of the
PV panel was proposed. An interesting approach was presented in
the article [30], in which, using a genetic algorithm, a functions that
express the correlations between the PV panel temperature and the
ambient temperature, solar irradiance, wind speed, and air humidity
were determined. Another model based on correlations, that considers
the temperature of the sky and the temperature of the ground, was
proposed in [31], and then evaluated and compared with other models
in [32]. The latest empirical model was proposed in [33]. In this
study, using the meteorological data of Kütahya (Turkey), expressions
giving the ambient temperature, solar irradiation, and wind speed were
created. Using these expressions, the correlation that gives the temper-
ature of photovoltaic panel cell was developed. The recently developed
models can also be analyzed using the methodology presented in this
study.

The common feature of the empirical models listed in Table 1 is that
the thermal inertia of the PV module is neglected. This means that in
the event of a change in the weather factor (ambient temperature, solar
irradiation, wind speed), there is an abrupt change of the temperature
of the PV module calculated by the models. In the following part of
this article, the performance of the models listed in Table 1 under
varying atmospheric conditions was evaluated. Before that, however,
the source of measurements and measurement results for the selected
day (Section 3) and the metrics adopted for evaluating the thermal
models (Section 4) were described.

3. The source of measurements and measurement results for the
selected day

The models for the estimation of PV module temperature listed
in Table 1 were evaluated using measurements from the PV installa-
tion located on the roof of the building of the Faculty of Automatic
Control, Electronics, and Computer Science of the Silesian University
of Technology in Gliwice, Poland (latitude 50.287899 N, longitude
18.6770453 E). This PV installation consists of 66 PV modules with
a rated power of 265 W (NeMo 60 P), connected to an inverter with a
rated power of 17 kVA (SolarEdge SE17K). Part of the PV installation
is shown in Fig. 1(a). Adjacent to the PV installation, there is a weather
station measuring ambient temperature and wind speed (Fig. 1(b)). The
weather station is also equipped with an external temperature sensor
for PV temperature measurement (Fig. 1(c)). The solar irradiance is
measured with a pyranometer (Fig. 1(d)).

The weather station (Lufft WS500-UMB) measured ambient temper-
ature with a highly accurate negative temperature coefficient (NTC)
resistor (sensor accuracy was ±0.2 ◦C for the measurement range -20 ◦C
to 50 ◦C). The measurement resolution was 0.1 ◦C, and the sampling
rate was 1 min. The wind speed meter used four ultrasonic sensors
taking cyclical measurements in all directions (sensor accuracy was
±0.3 m/s or ±3% for the measurement range 0 to 35 m/s). The
measurement resolution was 0.1 m/s, and the sampling rate was 1 s.
The average values of wind speed were provided with a resolution
of 1 min. The PV module temperature was measured by an NTC
external temperature sensor (Remote Temperature Probe WT1) with
sensor accuracy of ±1 ◦C across the measurement range of -40 ◦C to
80 ◦C. The measurement resolution was 0.25 ◦C, and the sampling
rate was 1 min. Global solar irradiance was measured by a thermopile
pyranometer (DeltaOHM LPPYRA03 S) mounted on the mast near the
weather station. LPPYRA03 S is a class C spectrally flat pyranometer
that fully complies with the ISO 9060:2018 standard and meets the
requirements defined by the World Meteorological Organization. The
measurement range was 0 to 2000 W/m2 and the measurement resolu-
tion was 1 W/m2. The sampling rate was 10 s and the average values
of solar irradiance were provided with 1 min resolution.
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Fig. 1. The PV installation (a), weather station (b), external temperature sensor for PV temperature measurement (c), and pyranometer (d) on the roof of the building of the
Faculty of Automatic Control, Electronics, and Computer Science of the Silesian University of Technology in Gliwice, Poland.

The PV installation was equipped with a Supervisory Control And
Data Acquisition (SCADA) system that recorded the described mea-
surements (and also information about the generated power) with a
1 min resolution. Recorded data can be downloaded with 1 min or
hourly resolution. The hourly values are the average of the minute
values in any given hour. Fig. 2 shows an example of measurements
in 1 min resolution on May 24, 2020. Fig. 3 shows data for this
day in hourly resolution. This day was selected for evaluating the
empirical models listed in Table 1 due to the very changeable weather
conditions, in particular the level of solar irradiance, which resulted in
high temperature variability of the PV module.

4. Adopted metrics for evaluating the thermal models

To assess the accuracy of the empirical models listed in Table 1, the
calculated values of temperature 𝑇𝑃𝑉 𝑐 (𝑡) were compared with the mea-
sured values 𝑇𝑃𝑉 𝑚(𝑡). The quality of individual models were evaluated
in five categories, applying the following metrics:

• mean absolute error, in ◦C:

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑡=1

|

|

𝑇𝑃𝑉 𝑚(𝑡) − 𝑇𝑃𝑉 𝑐 (𝑡)|| , (1)
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Fig. 2. Solar irradiance, ambient temperature, PV module temperature (a), and wind speed (b) recorded in 1 min resolution on May 24, 2020.

Fig. 3. Solar irradiance, ambient temperature, PV module temperature (a), and wind speed (b) in hourly resolution (calculated based on data recorded in 1 min resolution) on
May 24, 2020.

• root mean square error, in ◦C:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1

(

𝑇𝑃𝑉 𝑚(𝑡) − 𝑇𝑃𝑉 𝑐 (𝑡)
)2, (2)

• mean absolute percentage error, in %:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑡=1

|

|

|

|

𝑇𝑃𝑉 𝑚(𝑡) − 𝑇𝑃𝑉 𝑐 (𝑡)
𝑇𝑃𝑉 𝑚(𝑡)

|

|

|

|

⋅ 100%, (3)

• maximal temperature difference, in ◦C:

max |𝛥𝑇 | = max
𝑡

|

|

𝑇𝑃𝑉 𝑚(𝑡) − 𝑇𝑃𝑉 𝑐 (𝑡)||, (4)

• difference of maximal temperatures, in ◦C:

|

|

𝛥𝑇 𝑚𝑎𝑥
|

|

=
|

|

|

|

max
𝑡

𝑇𝑃𝑉 𝑚(𝑡) − max
𝑡

𝑇𝑃𝑉 𝑐 (𝑡)
|

|

|

|

, (5)
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where: 𝑇𝑃𝑉 𝑚(𝑡) – measured PV module temperature at time interval
𝑡, in ◦C, 𝑇𝑃𝑉 𝑐 (𝑡) – calculated PV module temperature at time interval
𝑡, in ◦C, 𝑛 – total number of time intervals in analyzed period. The
metrics defined by formulas (1) to (5) were calculated only for the time
intervals in which 𝐺𝑇 (𝑡) > 0.

Based on the values of the metrics defined above, a ranking of the
empirical models was created. In the first step, in each category, the
appropriate number of points to the individual models was assigned,
ranging from 1 to 17. The model with the highest value of the metric in
each category (the worst model) received one point, while the model
with the lowest value (the best model) received seventeen points. In
the next step, the number of points received by individual models in
all categories were added. The model with the highest total number
of points received the first position in the ranking. The described
procedure and the atmospheric conditions shown in Figs. 2 and 3 were
used to evaluate the empirical models listed in Table 1. The results were
presented in the next section.

5. Evaluation of empirical models for the estimation of photo-
voltaic module temperature

The performance of the empirical models listed in Table 1 for
the atmospheric conditions provided in hourly resolution (see Fig. 3)
were analyzed first. For each empirical model, the daily temperature
variation was calculated. The results are shown in Fig. 4. On this basis
and based on the measured temperature of the PV module (red line
in Fig. 4), the values of the metrics defined by the formulas (1) to (5)
were calculated. The results are presented in Table 2. When analyzing
the results presented in Fig. 4, it can be seen that some models over-
estimated, and some underestimated the operating temperature of the
PV module. The maximum value of the maximal temperature difference
(𝑚𝑎𝑥|𝛥𝑇 |) does not exceed 10 ◦C. The average value of this metric for
all analyzed models is approximately 5 ◦C (see Table 2). There were
also models that determined the temperature of the module with very
high accuracy. The best model turned out to be model 11 (King et al.
(B)), for which the maximal temperature difference was about 1.5 ◦C.

Fig. 5 and Table 3 show the results of the calculation for the
atmospheric conditions provided in 1 min resolution. Very large dis-
crepancies between the temperature calculated by empirical models
and the measured temperature can be observed. The maximum value of
the maximal temperature difference exceeds 27 ◦C. The average value
for all models analyzed is approximately 21 ◦C, while the minimal
value is 17 ◦C (see Table 3). The values of the other metrics are sig-
nificantly greater than those calculated for the atmospheric conditions
provided in hourly resolution (see Fig. 6).

The conducted analysis showed that empirical models, based on
measurements of the ambient temperature, solar irradiance, and wind
speed, can be used to estimate the temperature of a PV module for
atmospheric conditions provided in hourly resolution. For input data
provided in 1 min resolution, these models give unacceptably large
errors. The main reason for this is that these models assume that
the temperature changes immediately as the atmospheric conditions
change. However, the PV module are heated up and cooled down
gradually due to the large time constant [34]. This means that the
steady-state empirical models cannot be justified for calculation of the
PV module operating temperature under rapidly varying atmospheric
conditions, and a more accurate model is necessary to predict the
temperature variation.

In the next part of the article, a proposal for a dynamic model was
presented. The concept of this model is based on the thermal model of
oil-immersed power transformers described in the international stan-
dard IEC 60076-7.

6. The international electrotechnical commission thermal model
of oil-immersed power transformers

International standard IEC 60076-7 [35] provides a method for
calculating the top oil temperature of oil-immersed power transformers
operating with an arbitrarily time-varying load factor, in a time-varying
ambient temperature. This standard uses a finite difference method
(FDM) for solving the heat-transfer differential equations. After con-
verting the differential equations into difference equations, the top oil
temperature can be calculated using formulas:

𝑇𝑜(𝑡) = 𝑇𝑜(𝑡 − 1) + 𝛥𝑇𝑜(𝑡), (6)

𝛥𝑇𝑜(𝑡) =
𝛥𝑡

𝑘11𝜏𝑜

[ (1 +𝐾(𝑡)2𝑅
1 + 𝑅

)𝑦
𝛥𝑇𝑜𝑟

−
(

𝑇𝑜(𝑡 − 1) − 𝑇𝑎(𝑡)
) ]

,
(7)

where: 𝑇𝑜(𝑡) – top oil temperature at time interval 𝑡, 𝑇𝑜(𝑡 − 1) – top
oil temperature at time interval (𝑡 − 1), 𝛥𝑇𝑜(𝑡) – the increase of top oil
temperature at time interval 𝑡, 𝛥𝑡 – the assumed length of the time
interval, 𝑘11 – thermal model constant (𝑘11 = 1 for transformers cooled
by natural convection), 𝜏𝑜 – oil thermal time constant, 𝐾(𝑡) – load
factor (ratio of load current to rated current) at time interval 𝑡, 𝑅 –
ratio of load losses at rated current to no-load losses, 𝑦 – oil exponent,
𝛥𝑇𝑜𝑟 – the increase of top oil temperature in steady state at rated load,
𝑇𝑎(𝑡) – ambient temperature at time interval 𝑡.

Formula (7) can be written as:

𝛥𝑇𝑜(𝑡) =
𝛥𝑡
𝜏𝑜

[

𝛥𝑇𝑜(𝐾(𝑡)) −
(

𝑇𝑜(𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

, (8)

where 𝛥𝑇𝑜(𝐾(𝑡)) is the increase of the top oil temperature in steady state
at load 𝐾(𝑡). Formulas (6) and (8) were used to develop a dynamic,
finite difference thermal model of a PV module.

7. Finite difference thermal model of a photovoltaic module

Empirical models for estimation of PV module temperature pre-
sented in Table 1 can be written in general form as:

𝑇𝑃𝑉 (𝑡) = 𝑥𝑇𝑎(𝑡) + 𝛥𝑇𝑃𝑉
(

𝐺𝑇 (𝑡), 𝑉𝑤(𝑡)
)

, (9)

where: 𝑇𝑃𝑉 (𝑡) – PV module temperature at time interval 𝑡, 𝑥 – thermal
model constant, 𝑇𝑎(𝑡) – ambient temperature at time interval 𝑡, 𝐺𝑇 (𝑡) –
solar irradiance at time interval 𝑡, 𝑉𝑤(𝑡) – wind speed at time interval 𝑡,
𝛥𝑇𝑃𝑉 (𝐺(𝑡), 𝑉𝑊 (𝑡)) – increase of PV module temperature in steady state
due to specific atmospheric conditions 𝐺𝑇 (𝑡) and 𝑉𝑤(𝑡).

The second element of formula (9) was used to build the finite
difference thermal model of a PV module. Substituting 𝛥𝑇𝑜(𝐾(𝑡)) for
𝛥𝑇𝑃𝑉 (𝐺(𝑡), 𝑉𝑊 (𝑡)), 𝑇𝑜(𝑡 − 1) for 𝑇𝑃𝑉 (𝑡 − 1), and 𝜏𝑜 for 𝜏𝑃𝑉 in formula (8)
gives:

𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

𝛥𝑇𝑃𝑉
(

𝐺𝑇 (𝑡), 𝑉𝑤(𝑡)
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

,
(10)

and, analogous to Eq. (6), the temperature of the PV module can be
calculated as:

𝑇𝑃𝑉 (𝑡) = 𝑇𝑃𝑉 (𝑡 − 1) + 𝛥𝑇𝑃𝑉 (𝑡), (11)

where: 𝑇𝑃𝑉 (𝑡) – PV module temperature at time interval 𝑡, 𝑇𝑃𝑉 (𝑡 − 1) –
PV module temperature at time interval (𝑡 − 1), 𝛥𝑇𝑃𝑉 (𝑡) – the increase
of PV module temperature at time interval 𝑡, 𝜏𝑃𝑉 – PV module thermal
time constant.

Table 4 presents the formulas for determining the increase of a PV
module temperature due to specific atmospheric conditions 𝐺𝑇 (𝑡) and
𝑉𝑤(𝑡) at time interval 𝑡. These formulas result from the empirical models
listed in Table 1. In the proposed finite difference thermal model of a
PV module the temperature of the PV module at the first time interval
(𝑡 = 1) was calculated using the appropriate empirical model.
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Fig. 4. The temperature of a PV module calculated using various empirical models vs. measured temperature—atmospheric conditions provided in hourly resolution, May 24,
2020.

Table 2
Assessment of the accuracy of empirical models for estimation of PV module temperature for atmospheric
conditions provided in hourly resolution.

No. Author(s) Year Metrics for evaluating the thermal
models

Position
in the
ranking

MAE RMSE MAPE max |𝛥𝑇 | |

|

𝛥𝑇 𝑚𝑎𝑥
|

|

◦C ◦C % ◦C ◦C

1 Ross 1976 1.34 2.00 5.52 5.54 5.54 9
2 Rauschenbach 1980 1.09 1.66 4.55 4.78 4.78 7
3 Risser & Fuentes 1984 3.88 4.00 22.05 6.21 6.21 13
4 Schott 1985 0.91 1.15 4.91 3.05 3.05 5
5 Ross & Smokler 1986 2.85 3.88 11.69 9.46 9.46 14
6 Lasnier & Ang 1990 4.27 4.57 21.26 6.51 5.42 14
7 King 1996 0.53 0.64 2.56 1.50 1.50 2
8 King et al. 1998 1.31 1.66 5.50 2.86 2.11 6
9 TamizhMani et al. 2003 0.90 1.01 4.87 1.94 1.48 3
10 King et al. (A) 2004 0.99 1.26 4.32 2.22 1.05 4
11 King et al. (B) 2004 0.53 0.64 2.51 1.48 1.48 1
12 Duffie & Beckman 2006 2.91 3.78 11.68 6.90 6.90 12
13 Mondol et al. 2007 1.63 2.35 6.67 6.29 6.29 10
14 Skoplaki et al. (A) 2008 3.31 4.28 13.32 7.81 7.81 16
15 Skoplaki et al. (B) 2008 1.40 1.79 5.81 3.10 2.61 8
16 Muzathik 2014 6.40 6.79 32.05 9.29 8.82 17
17 Kamuyu et al. 2018 3.27 3.68 15.30 5.54 4.45 11

Minimum 0.53 0.64 2.51 1.48 1.05
Average 2.21 2.66 10.27 4.97 4.64

Maximum 6.40 6.79 32.05 9.46 9.46

8. Evaluation of the proposed finite difference thermal models of
a photovoltaic module

The finite difference thermal model of a PV module, defined by the
formulas (10) and (11), was used together with the formulas listed in
Table 4, to calculate the temperature of PV module for atmospheric
conditions provided in 1 min resolution (Fig. 2). It was assumed that the
length of the time interval (𝛥𝑡) resulted from the resolution of the mea-
surements and was equal to 60 s. The PV module thermal time constant
(𝛥𝑃𝑉 ) was assumed to be 600 s [36]. The results of the calculations are
shown in Fig. 7. The values of the metrics defined by the formulas (1) to
(5) are presented in Table 5. When comparing the values of the metrics
determined for the finite difference (FDM) thermal models with the
values determined for the corresponding empirical models, a significant
increase in the accuracy of the PV module temperature estimation using

FDM models can be observed (see Fig. 8). In particular, the maximum
value of the maximal temperature difference (max𝛥𝑇 ) decreased from
27 ◦C to 14 ◦C. In turn, the average value of this metric decreased
from 21 ◦C to 9 ◦C, and the minimum value from 17 ◦C to 5 ◦C. The
obtained accuracy improvement proves the usefulness of the proposed
finite difference thermal models for calculating the temperature of a
PV module operating under varying atmospheric conditions. In the
next section, five general forms of formulas to calculate 𝛥𝑇𝑃𝑉 (𝑡) were
developed and optimization of their coefficients was performed.

9. Optimization of the finite difference thermal models’ coeffi-
cients by the particle swarm optimization method

Analyzing the equations presented in Table 4, it was concluded that
some of them are similar. On this basis, the equations were categorized
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Fig. 5. The temperature of a PV module calculated using various empirical models vs. measured temperature—atmospheric conditions provided in 1 min resolution, May 24, 2020.

Table 3
Assessment of the accuracy of empirical models for estimation of PV module temperature for atmospheric conditions provided
in 1 min resolution.

No. Author(s) Year Metrics for evaluating the thermal
models

Position
in the
ranking

MAE RMSE MAPE max |𝛥𝑇 | |

|

𝛥𝑇 𝑚𝑎𝑥
|

|

◦C ◦C % ◦C ◦C

1 Ross 1976 3.18 5.04 12.89 22.01 9.40 12
2 Rauschenbach 1980 3.02 4.77 12.25 20.98 8.28 9
3 Risser & Fuentes 1984 5.05 6.22 26.82 25.55 11.97 17
4 Schott 1985 3.03 4.47 13.13 18.99 6.21 6
5 Ross & Smokler 1986 4.19 6.70 16.91 27.31 15.14 16
6 Lasnier & Ang 1990 4.45 5.46 21.52 19.11 5.85 13
7 King 1996 2.63 4.17 10.90 20.55 7.08 7
8 King et al. 1998 2.42 3.87 9.99 17.42 3.04 2
9 TamizhMani et al. 2003 3.35 4.83 15.40 20.46 6.68 10
10 King et al. (A) 2004 2.39 3.82 9.90 17.07 2.89 1
11 King et al. (B) 2004 2.57 4.09 10.65 19.64 5.95 4
12 Duffie & Beckman 2006 3.17 4.78 12.68 19.01 3.06 5
13 Mondol et al. 2007 3.35 5.32 13.56 23.02 10.49 14
14 Skoplaki et al. (A) 2008 3.43 5.07 13.62 19.24 0.51 8
15 Skoplaki et al. (B) 2008 2.49 3.96 10.28 17.67 4.25 3
16 Muzathik 2014 6.52 7.75 32.27 25.44 6.01 15
17 Kamuyu et al. 2018 3.80 5.28 17.39 21.57 1.77 11

Minimum 2.39 3.82 9.90 17.07 0.51
Average 3.47 5.03 15.30 20.88 6.39

Maximum 6.52 7.75 32.27 27.31 15.14

into five groups and a general mathematical formula for each group was
formulated. These general formulas that determine the increase of a PV
module temperature at time interval 𝑡 are presented in Table 6.

Each general formula representing the 𝛥𝑇𝑃𝑉 (𝑡) component in
Eq. (11) of the FDM model contains a set of coefficients denoted by
𝑥1, 𝑥2, 𝑥3, 𝑥4 (𝑥4 exclusively in II), and 𝜏𝑃𝑉 . The aim was to find
the optimal values of these coefficients in terms of the accuracy of
the FDM model for each general formula I to V. The Particle Swarm
Optimization (PSO) method was employed to achieve this. PSO is a
stochastic population-based optimization technique proposed in 1995
by Kennedy and Eberhart [37]. It was originally inspired by the social
behavior of bird flocks, fish schools and swarm theory in general. The
PSO method has proven practical effectiveness in many application
areas. Comprehensive reviews of theoretical and experimental works
on PSO have recently been published [38,39]. The PSO variant that

was used is based on the PSO algorithm dedicated to continuous search
space, including the concept of the constriction factor 𝜒 [40]. A more
detailed description of the PSO variant employed in this article can be
found in [41].

During the computational experiment, several optimizations were
performed using the PSO algorithm in which the objective function
being minimized was MAE (1), RMSE (2), or MAPE (3). The coefficients
𝜏𝑃𝑉 , 𝑥1, 𝑥2, 𝑥3, and 𝑥4 (𝑥4 only for formula II) were optimized for
a set of measurement data covering a six-month period (from April
to September 2021). Computing the objective function value required
the calculation of the temperature values using the FDM model with
formulas I to V for each data point (the measurement data were in
minute resolution) and then the calculation of the value of MAE (1),
RMSE (2), or MAPE (3). The population size of the swarm was chosen
experimentally and set to 40. The search dimension was equal to the
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Fig. 6. Comparison of metrics for evaluating the thermal models calculated for empirical models listed in Table 1 for atmospheric conditions provided in hourly and 1 min
resolution, May 24, 2020.

number of coefficients in the given formulas I to V, with decision
variables 𝜏𝑃𝑉 , 𝑥1, 𝑥2, 𝑥3, and 𝑥4 (𝑥4 only for formula II). The lower
and upper bounds on the decision variables were set to −50 and 50,

respectively. The lower and upper bounds on the velocities of particles
were set to −10 and 10, respectively. The constriction factor value was
set to 𝜒 = 0.5. Two types of stopping criteria were used; the first
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Table 4
Formulas determining the increase of the PV module temperature at time interval 𝑡 resulting from the empirical
models given in Table 1.

No. Author(s) Finite difference model – the increaseof PV module temperature at time interval 𝑡

1 Ross 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

0.03𝐺𝑇 (𝑡)
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

2 Rauschenbach 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

𝐺𝑇 (𝑡)
𝐺𝑁𝑂𝐶𝑇

𝑇

(

𝑇𝑁𝑂𝐶𝑇
𝑃𝑉 − 𝑇𝑁𝑂𝐶𝑇

𝑎

)(

1 − 𝜂𝑃𝑉
𝜏𝛼

)

)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

3 Risser & Fuentes 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(

0.0282𝐺𝑇 (𝑡) − 1.65𝑉𝑤(𝑡) + 3.81
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

4 Schott 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(

0.028𝐺𝑇 (𝑡) − 1
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

5 Ross & Smokler 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

𝐺𝑇 (𝑡)
𝐺𝑁𝑂𝐶𝑇

𝑇

(

𝑇𝑁𝑂𝐶𝑇
𝑃𝑉 − 𝑇𝑁𝑂𝐶𝑇

𝑎

)

)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

6 Lasnier & Ang 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(

0.0175𝐺𝑇 (𝑡) − 3.744
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

7 King 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

𝐺𝑇 (𝑡)
1000

(

0.0712𝑉 2
𝑤 (𝑡) − 2.411𝑉𝑤(𝑡) + 32.96

)

)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

8 King et al. 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

𝐺𝑇 (𝑡)
1000

(

19.6𝑒−0.223𝑉𝑤 (𝑡) + 11.6
)

)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

9 TamizhMani et al. 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(

0.028𝐺𝑇 (𝑡) − 1.528𝑉𝑤(𝑡) + 4.3
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

10 King et al. (A) 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

𝐺𝑇 (𝑡)𝑒−3.56−0.0750𝑉𝑤 (𝑡)
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

11 King et al. (B) 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

𝐺𝑇 (𝑡)𝑒−3.47−0.0594𝑉𝑤 (𝑡)
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

12 Duffie & Beckman

𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[ (

( 9.5
5.7 + 3.8𝑉𝑤(𝑡)

)( 𝐺𝑇 (𝑡)
𝐺𝑁𝑂𝐶𝑇

𝑇

(

𝑇𝑁𝑂𝐶𝑇
𝑃𝑉 − 𝑇𝑁𝑂𝐶𝑇

𝑎

)

)

(

1 −
𝜂𝑃𝑉
𝜏𝛼

)

)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

13 Mondol et al. 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(0.031𝐺𝑇 (𝑡)) −
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

14 Skoplaki et al. (A) 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

0.25
5.7+3.8𝑉𝑤 (𝑡)

𝐺𝑇 (𝑡)
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

15 Skoplaki et al. (B) 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[(

0.32
8.91+2.0𝑉𝑤 (𝑡)

𝐺𝑇 (𝑡)
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

16 Muzathik 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(0.0195𝐺𝑇 (𝑡) − 1.528𝑉𝑤(𝑡) + 0.3529) −
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

17 Kamuyu et al. 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(0.0215𝐺𝑇 (𝑡) − 1.2376𝑉𝑤(𝑡) + 2.0458) −
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

Fig. 7. The temperature of a PV module calculated using various finite difference models vs. measured temperature—atmospheric conditions provided in 1 min resolution, May
24, 2020.
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Table 5
Assessment of the accuracy of proposed finite difference thermal models of a PV module for atmospheric conditions provided
in 1 min resolution.

No. Author(s) Year Metrics for evaluating the thermal
models

Position
in the
ranking

MAE RMSE MAPE max |𝛥𝑇 | |

|

𝛥𝑇 𝑚𝑎𝑥
|

|

◦C ◦C % ◦C ◦C

1 Ross 1976 1.86 2.58 7.83 8.90 4.25 11
2 Rauschenbach 1980 2.21 2.42 2.02 7.58 4.30 9
3 Risser & Fuentes 1984 0.88 1.22 4.39 5.71 1.28 3
4 Schott 1985 1.22 1.57 6.22 5.83 2.36 5
5 Ross & Smokler 1986 2.89 4.03 12.14 12.35 10.26 14
6 Lasnier & Ang 1990 6.07 6.57 30.54 14.37 10.37 17
7 King 1996 0.84 1.21 4.08 5.39 0.81 1
8 King et al. 1998 1.45 2.04 6.15 8.49 3.39 8
9 TamizhMani et al. 2003 1.14 1.41 6.59 4.91 2.01 4
10 King et al. (A) 2004 1.24 1.77 5.43 7.67 2.55 6
11 King et al. (B) 2004 0.87 1.24 4.17 5.50 0.53 2
12 Duffie & Beckman 2006 2.80 3.85 11.03 12.56 8.02 13
13 Mondol et al. 2007 1.76 2.56 7.66 9.11 6.22 12
14 Skoplaki et al. (A) 2008 3.22 4.40 12.65 13.49 9.44 15
15 Skoplaki et al. (B) 2008 1.48 2.08 6.21 8.79 3.56 10
16 Muzathik 2014 5.71 6.26 27.84 14.38 9.94 16
17 Kamuyu et al. 2018 1.44 1.60 1.51 10.33 5.35 7

Minimum 0.84 1.21 1.51 4.91 0.53
Average 2.18 2.76 9.20 9.14 4.98

Maximum 6.07 6.57 30.54 14.38 10.37

Table 6
General forms of formulas determining the increase of PV module temperature at time interval 𝑡.

No. Based on model(s) no. (see Table 4) General form of formula determining the increase of PV module temperature

I 1, 3, 4, 6, 7, 13, 16, 17 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

(

𝑥1𝐺𝑇 (𝑡) + 𝑥2𝑉𝑤(𝑡) + 𝑥3
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

II 7 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

𝑥1𝐺𝑇 (𝑡)
(

𝑥2𝑉 2
𝑤 (𝑡) + 𝑥3𝑉𝑤(𝑡) + 𝑥4

)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

III 10, 11 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

𝑥1𝐺𝑇 (𝑡)
(

𝑒𝑥2𝑉𝑤 (𝑡)+𝑥3
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

IV 8 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

𝑥1𝐺𝑇 (𝑡)
(

𝑒𝑥2𝑉𝑤 (𝑡) + 𝑥3
)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

V 2, 5, 12, 14, 15 𝛥𝑇𝑃𝑉 (𝑡) =
𝛥𝑡
𝜏𝑃𝑉

[

( 𝑥1𝐺𝑇 (𝑡)
𝑥2𝑉𝑤 (𝑡)+𝑥3

)

−
(

𝑇𝑃𝑉 (𝑡 − 1) − 𝑇𝑎(𝑡)
)

]

Table 7
Results of optimization of finite difference thermal models’ coefficients by the PSO method.

No. 𝜏𝑃𝑉 𝑥1 𝑥2 𝑥3 𝑥4 MAE RMSE MAPE

sec ◦C ◦C ◦C

MAE minimization

I 490 0.02374 −0.52803 0.92683 – 1.717 5.484 11.18
II 506 0.01000 0.00009 −0.26811 2.98493 1.444 2.061 9.401
III 516 0.38449 −0.14050 −2.48248 – 1.422 2.034 9.296
IV 519 0.02506 −0.25147 0.34845 – 1.416 2.027 9.251
V 519 −1.51417 −10.14780 −43.53743 – 1.417 2.028 9.249

RMSE minimization

I 439 0.02333 −0.01473 −0.38287 – 1.801 2.516 10.706
II 474 0.01000 0.00009 −0.26666 2.94147 1.449 2.055 9.375
III 483 0.43827 −0.14559 −2.62086 – 1.427 2.026 9.273
IV 487 0.02524 −0.24912 0.32470 – 1.420 2.021 9.229
V 488 −0.11078 −0.76956 −3.20710 – 1.420 2.022 9.225

MAPE minimization

I 457 0.02149 −0.07893 0.10528 – 1.821 2.645 10.410
II 509 0.01000 0.00008 −0.23334 2.80773 1.469 2.076 9.324
III 520 1.77116 −0.13191 −4.06584 – 1.442 2.042 9.233
IV 527 0.02258 −0.32136 0.48214 – 1.437 2.038 9.186
V 525 −0.29929 −2.03390 −9.01629 – 1.435 2.036 9.190

was the maximum number of iterations (predefined to 300), and the
second was the maximum number of iterations in which the objective
function result did not improve (predefined to 70). Table 7 shows the
optimization results of the coefficients of the formulas I to V using the
PSO method. To obtain the optimal values of the decision variables
(presented in Table 7) for a given variant of the general FDM model
and a given objective function, 20 optimization tasks were performed.
The average value of the results obtained was taken as a final result.

10. Evaluation of finite difference thermal models with optimized
coefficients

The temperature of PV modules calculated using FDM models with
optimized coefficients is shown in Fig. 9. The values of the metrics
defined by the formulas (1) to (5) are presented in Table 8. Comparing
the obtained results with the results obtained using the models listed
in Table 4 (the results are presented in Fig. 7 and Table 5), shows that



Energy Conversion and Management 280 (2023) 116773

12

R. Korab et al.

Fig. 8. Comparison of metrics for evaluating the thermal models calculated for empirical models listed in Table 1 and for proposed finite difference models for atmospheric
conditions provided in 1 min resolution, May 24, 2020.

a significant reduction in the dispersion of the obtained temperature
courses can be noticed. FDM models with optimized coefficients gave
the maximal temperature difference (max |𝛥𝑇 |) ranging from 6.57 ◦C

to 9.76 ◦C (the dispersion was 3.19 ◦C), while for the models listed
in Table 4 this range was from 4.91 ◦C to 14.38 ◦C (the dispersion
was 9.47 ◦C). A similar reduction in dispersion can be observed in
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Fig. 9. The temperature of the PV module calculated using finite difference models with optimized coefficients vs. measured temperature—atmospheric conditions provided in
1 min resolution, May 24, 2020.

Table 8
Assessment of the accuracy of finite difference thermal models with optimized
coefficients for atmospheric conditions provided in 1 min resolution, May 24, 2020.

No. Metrics for evaluating the thermal
models

Position
in the
ranking

MAE RMSE MAPE max𝛥𝑇 |𝛥𝑇𝑚𝑎𝑥|
◦C ◦C % ◦C ◦C

MAE minimization

I 1.24 1.72 5.54 6.98 1.23 1
II 1.48 2.04 6.17 8.36 3.27 2
III 1.61 2.22 6.65 8.88 3.63 3
IV 1.70 2.34 6.97 9.18 3.87 4
V 1.70 2.34 6.97 9.15 3.90 5

MAE minimization

I 1.26 1.73 5.80 6.57 0.77 1
II 1.57 2.15 6.50 8.54 3.38 2
III 1.72 2.36 7.05 9.13 3.80 3
IV 1.79 2.45 7.29 9.35 3.97 4
V 1.79 2.44 7.29 9.33 4.01 5

MAE minimization

I 1.48 2.06 6.39 7.58 2.41 1
II 1.65 2.26 6.82 8.72 3.89 2
III 1.77 2.43 7.27 9.22 4.26 3
IV 1.94 2.65 7.87 9.76 4.74 5
V 1.88 2.57 7.67 9.57 4.60 4

The minimum, average, and maximum values of the metrics

Minimum 1.24 1.72 5.54 6.57 0.77
Average 1.64 2.25 6.82 8.69 3.45
Maximum 1.94 2.65 7.87 9.76 4.74

relation to the other metrics defined in Section 4. The average values of
all metrics for the FDM models with optimized coefficients decreased
noticeably. The obtained improvement in the accuracy of PV module
temperature estimation proves the validity of the optimization of the
FDM model coefficients.

11. Generalized form of the finite difference thermal model of a
photovoltaic module

After optimizing the coefficients, fifteen different FDM models were
obtained (five general forms of formulas determining the increase of

Table 9
Assessment of the accuracy of the generalized form of the finite
difference thermal model for atmospheric conditions provided
in 1 min resolution, May 24, 2020.

MAE RMSE MAPE max𝛥𝑇 |𝛥𝑇𝑚𝑎𝑥|
◦C ◦C % ◦C ◦C

1.62 2.22 6.75 8.69 3.55

PV module temperature at time interval 𝑡, each formula optimized
for three objective functions). As shown in Fig. 9, each model gives
a slightly different estimate of the PV module temperature. Having
the temperature measurements, it is possible to select the model that
gives the smallest errors. However, in the absence of measurements,
the best model cannot be identified. The authors of the article [13]
stated that the best strategy to obtain 𝑇𝑃𝑉 estimation is connecting
several temperature sensors and averaging the measurements. Applying
a similar strategy, a generalized form of the finite difference thermal
model of a PV module was defined as:

𝑇 𝑃𝑉 (𝑡) =
1
𝑝𝑞

𝑞=3
𝑝=5
∑

𝑗=1
𝑖=1

𝑇𝑃𝑉 (𝑡)𝑖,𝑗 , (12)

𝑇𝑃𝑉 (𝑡)𝑖,𝑗 = 𝑇𝑃𝑉 (𝑡 − 1)𝑖,𝑗 + 𝛥𝑇𝑃𝑉 (𝑡)𝑖,𝑗 , (13)

where: 𝛥𝑇𝑃𝑉 (𝑡)𝑖,𝑗 – the increase in PV module temperature at time inter-
val 𝑡 calculated using one of the general form of formulas (𝑖 = 1,… , 𝑝)
with coefficients optimized for one of the adopted objective functions
(𝑗 = 1,… , 𝑞), 𝑝 – the number of general forms of formulas determining
the increase of PV module temperature, 𝑝 = 5, (see Table 6), 𝑞 – the
number of objective functions adopted for the optimization of finite
difference thermal models’ coefficients, 𝑞 = 3, (see Table 7).

The performance of the generalized FDM model for the atmospheric
conditions provided in 1 min resolution is shown in Fig. 10. The values
of the metrics defined by the formulas (1) to (5) are presented in
Table 9.

Comparing the results obtained using the generalized form of the
FDM model with the results obtained using empirical models (Fig. 5
and Table 3), a significant improvement in the accuracy of the PV
module temperature estimation can be observed. This confirms the
usefulness of the proposed approach. In the next part of the article, the
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Fig. 10. The temperature of a PV module calculated using the generalized form of finite difference model vs. measured temperature—atmospheric conditions provided in 1 min
resolution, May 24, 2020.

Fig. 11. The temperature of the PV module calculated using the generalized form of finite difference model and Barry et al.’s dynamic model vs. measured temperature—atmospheric
conditions provided in 1 min resolution, September 14, 2018.

proposed FDM model were compared with another dynamic thermal
model proposed by Barry et al. using measurements from PV systems
located in the Allgäu region, Germany.

12. Comparison of the generalized finite difference model with
another dynamic thermal model of photovoltaic module

To verify the proposed model more deeply, the results obtained
using the generalized FDM model were compared with the results
obtained using the dynamic model proposed in [36] by Barry et al.
In Barry et al.’s model the PV module temperature time series 𝐓𝑃𝑉 is

written in matrix notation as:

𝐓𝑃𝑉 = 𝐌𝜏

[

𝐓𝑎 +
𝐆𝑇

𝑢1 + 𝑢2𝐕𝑤
+ 𝑢3

(

𝐓𝑠𝑘𝑦 − 𝐓𝑎
)

]

, (14)

where 𝑢1, 𝑢2, and 𝑢3 are the empirical coefficients, 𝐓𝑎, 𝐆𝑇 , 𝐕𝑤, and
𝐓𝑠𝑘𝑦 are ambient temperature, solar irradiance, wind speed, and sky
temperatures time series vectors respectively. The matrix 𝐌𝜏 is defined
as:

𝐌𝜏,𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

0 for 𝑖 − 𝑗 < 0
exp(−(𝑖−𝑗)𝛥𝑡∕𝜏𝑃𝑉 )

𝐶 for 0 ≤ 𝑖 − 𝑗 ≤ 𝑁
0 for 𝑖 − 𝑗 > 𝑁

, (15)
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Fig. 12. The temperature of the PV module calculated using the generalized form of finite difference model and Barry et al.’s dynamic model vs. measured temperature—atmospheric
conditions provided in 1 min resolution, September 27, 2018.

Fig. 13. The temperature of the PV module calculated using the generalized form of finite difference model and Barry et al.’s dynamic model vs. measured temperature—atmospheric
conditions provided in 1 min resolution, October 4, 2018.

where 𝐶 is the normalization factor given by the formula:

𝐶 =
𝑖

∑

𝑗=max(0,𝑖−𝑁)
𝑒𝑥𝑝(−(𝑖 − 𝑗)𝛥𝑡∕𝜏𝑃𝑉 ), (16)

and 𝑁 is the number of time intervals before the considered time in-
terval. In Barry et al.’s model, the PV module temperature at each time
interval in the past contributes to the temperature at the considered
time interval, with an exponentially decreasing weight.

The performance of the generalized form of the FDM model and the
Barry et al.’s model was compared for three selected days with different
atmospheric conditions:

1. September 14, 2018 – a day with high variability of solar irra-
diance,

2. September 27, 2018 – a completely cloudless day,

3. October 4, 2018 – a cloudless day with morning fog.

The atmospheric conditions and the measured temperature of PV
modules on selected days are shown in the figures in the appendix. All
data are available at [42]. The results of the calculations are shown in
Table 10 and Figs. 11, 12, and 13. The results presented indicate that
both models accurately reproduced the temperature variation of the
PV modules. The proposed FDM model was characterized by a higher
accuracy for September 27 and October 4, while for September 14, the
Barry et al.’s model turned out to be more precise.

13. Conclusion

The operating temperature of the PV module has a direct influ-
ence on power output, but the PV module temperature is usually
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Fig. A.1. Solar irradiance, ambient temperature, PV module temperature, sky temperature (a), and wind speed (b) recorded in 1 min resolution on September 14, 2018.

Fig. A.2. Solar irradiance, ambient temperature, PV module temperature, sky temperature (a), and wind speed (b) recorded in 1 min resolution on September 27, 2018.

not measured. Instead, it can be calculated using appropriate math-
ematical models. Empirical models are often used for this purpose.
These models express the correlation between the module temperature
and the variables describing atmospheric conditions. In the article, it
was shown that empirical models, based on measurements of ambient
temperature, solar irradiance, and wind speed, can be used to estimate
the temperature of the PV module for atmospheric conditions provided
in hourly resolution. In this case, the maximal temperature difference

between the measured values and those calculated by the analyzed
empirical models ranged from 1.5 ◦C to 10 ◦C.

However, for input data for the same day provided in 1 min resolu-
tion, the empirical models give unacceptably large errors. The maximal
temperature difference between the measured and calculated values
ranged from 17 ◦C to 27 ◦C. For the silicon crystalline PV module with a
power temperature coefficient equal to 0.4%/ ◦C, this translates into an
error in determining the generated power ranged from 6.8% to 10.8%.
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Fig. A.3. Solar irradiance, ambient temperature, PV module temperature, sky temperature (a), and wind speed (b) recorded in 1 min resolution on October 4, 2018.

Table 10
Assessment of the accuracy of generalized form of the finite difference thermal model and Barry’s et al.
dynamic model for atmospheric conditions provided in 1 min resolution.

Day Model MAE RMSE MAPE max𝛥𝑇 |𝛥𝑇𝑚𝑎𝑥|
◦C ◦C % ◦C ◦C

September 14, 2018 Generalized FDM 1.03 1.34 4.34 5.08 2.63
Barry et. al 0.75 1.13 2.71 4.07 0.32

September 27, 2018 Generalized FDM 1.95 2.43 296.40 5.63 1.79
Barry et. al 4.15 4.30 300.26 7.26 3.39

October 4, 2018 Generalized FDM 1.25 1.65 8.57 5.08 1.54
Barry et. al 1.50 1.87 12.39 5.50 1.10

Such significant values of temperature estimation errors result from the
neglect of the thermal inertia of the PV module in empirical models.
This means that in the event of a change in the weather factors, there
is an abrupt change of the temperature of the PV module calculated by
the models.

To resolve indicated problem, the finite difference thermal model,
which considers the dynamic of temperature changes of PV modules
operating under varying atmospheric conditions, was proposed. The
effectiveness of the proposed FDM model has been demonstrated by
experimental validation with outdoor module temperature measure-
ments under different weather conditions. The temperature estimation
error did not exceed 9 ◦C, which means that the PV panel generation
estimation error was less than 3.6%. The obtained results have demon-
strated the ability of the FDM model to adequately characterize the
thermal behavior of the PV modules, when compared with the prior-art
empirical models. This makes the proposed model further beneficial for
predicting the output power of PV modules.
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Short-term forecasting of photovoltaic power generation 
 
 

Abstract. In this article, a method for short-term forecasting of photovoltaic (PV) generation was proposed. The proposed method belongs to the 
group of physical methods and is based on numerical weather forecasts. The generation forecast was determined using the PV source model in the 
OpenDSS software. The results of calculations were compared with the results of measurements from the operating PV micro-installations. 
 
Streszczenie. W artykule zaproponowana została metoda krótkoterminowego prognozowania generacji źródła fotowoltaicznego (PV). Metoda ta 
należy do grupy tzw. metod fizycznych i bazuje na numerycznych prognozach pogody. Do wyznaczenia prognozy generacji zastosowano model 
źródła fotowoltaicznego wchodzący w skład pakietu OpenDSS. Wyniki prognoz zostały porównane w wynikami pomiarów pochodzących z działają-
cych mikroinstalacji PV. (Krótkoterminowe prognozowanie generacji źródła fotowoltaicznego) 
 
Keywords: photovoltaic source, prosumer, generation forecasting, physical method, numerical weather forecast, OpenDSS 
Słowa kluczowe: źródło fotowoltaiczne, prosument, prognozowanie generacji, metoda fizyczna, numeryczna prognoza pogody, OpenDSS 
 
 
Introduction 
 The increasing power of renewable energy sources [1], 
especially prosumer photovoltaic (PV) micro-installations 
[2], changes the operating conditions of the power grid. 
Distribution system operators are increasingly reporting 
emerging problems in the operation of the low-voltage (LV) 
grid. These problems mainly concern an increase in voltage 
above the permissible limit, the appearance of the reverse 
power flow from the LV network to the medium-voltage 
(MV) network, an increase in voltage asymmetry, and a 
higher load of some network elements. The described phe-
nomena occur locally, in places where a large number of 
PV micro-installations have been connected [3]. The risk of 
exceeding the normal operating conditions of the LV net-
work increases as the power of PV sources increases [4]. 
 Excessive power of PV sources connected locally to the 
LV grid also affects the situation of prosumers, especially 
during periods of high solar irradiation, when they produce 
the majority of the energy. Due to the low demand that 
usually occurs at this time, most of the energy produced is 
transmitted to the grid. This raises the voltage at the 
prosumer's connection point. Once the voltage exceeds the 
permissible limit, the inverter turns off and no energy is 
produced despite favorable weather conditions. As a result, 
the prosumer suffers a measurable loss. The situation de-
scribed is illustrated in Figure 1. 
 

 
 
Fig. 1. Phase voltages and power generated by a PV micro-
installation belonging to one of the authors of the article (measure-
ments from May 15, 2022; visible interruptions in production 
caused by switching off the inverter due to exceed the voltage limit) 
 
 The standard method to improve the operating condi-
tions of the LV grid with connected PV micro-installations is 
its modernization. Modernization usually consists in increas-
ing the power of the MV/LV transformer and the cross sec-

tion of the conductors, as well as shortening the LV circuits 
[5]. However, this is a costly method and takes a long time 
to implement the investment. An alternative solution is to 
increase the consumption of energy at the place where it is 
generated, at the same time as this generation occurs, i.e., 
to increase self-consumption. This can be achieved by 
appropriate control of selected household electrical appli-
ances owned by the prosumer and using energy storages, 
connected in the prosumer's power supply system [6]. 
Proper determination of the operating schedule of these 
devices during the day requires a forecast of the generation 
of the PV source. 
 Numerous studies have reviewed various PV power 
forecasting methodologies [7-11]. These works classify PV 
power forecasting mainly depending on the forecasting 
horizon and methods used to forecast. The duration of time 
for which the forecasting of the PV power output is per-
formed is called the forecasting horizon [8, 10]. Based on 
the time horizon, forecasting of PV power generation can be 
generally divided into three categories: long-term (done 
from one month to several years), medium-term (done for 
more than one week to one month), and short-term (done 
for one hour, several hours, one day or up to seven days). 
Long-term forecasts are used to plan the development of 
electricity generation, transmission, and distribution. Medi-
um-term forecasts are important for planning the mainte-
nance of power plants and networks in a cost-effective way. 
Short-term forecasts of PV generation are useful in unit 
commitment and dispatching of electrical power, as well as 
in scheduling of spinning reserves and demand response. 
These types of forecasts are also helpful in designing a PV 
integrated energy management system for buildings. 
 There are two main methods used for forecasting PV 
generation, namely statistical and physical [7, 9, 11]. Statis-
tical approach consists in predicting the power output using 
historical data. Therefore, the quality of the data is essential 
for an accurate forecast. Statistical methods require a large 
historical dataset (meteorological and power measure-
ments) to correctly define the correlation among them. The 
selection of a suitable training dataset becomes crucial for 
the accuracy. The statistical approach includes artificial 
neural networks, support vector machines, Markov chain, 
autoregressive, and regression models. Statistical models 
do not need any technical information from the PV system 
to model them. In contrast, the second approach, i.e., phys-
ical methods (also known as PV performance models), uses 
analytical equations and technical data to model the PV 
system. These methods use forecasted meteorological data 
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to calculate PV production. The main advantage of physical 
methods over the statistical methods is that no historical 
data are needed. However, the major disadvantage of these 
models is the high dependence on weather forecast, espe-
cially the forecast of solar irradiance. Physical methods 
include numerical weather forecasts, sky imagery, and 
satellite-imaging models. 
 In this article, we propose a physical method for short-
term forecasting of a PV generation, based on numerical 
weather forecasts. We determine the generation forecast 
using the PV source model in the OpenDSS software. We 
compare the results of the calculations with the results of 
measurements from the operating PV micro-installations. 
 
Model of a PV source 

 The PV source model used by OpenDSS [12] is pre-
sented in Figure 2 [4]. To parameterize the model, we first 
define the rated power of the PV panels Pr PV under stand-
ard test conditions. The power generated by the PV panels 
is determined for a given level of solar irradiance and is 
dependent upon the panel temperature, so the obtained 
power value must be corrected accordingly. The tempera-
ture of the PV panels is calculated using an external model 
based on ambient temperature, solar irradiance intensity, 
and wind speed. The DC power generated PDC is then con-
verted according to the efficiency characteristic of the in-
verter, for which the rated power Sr, the rated voltage Ur, 
and the power factor pf are given. The active power P and 
the reactive power Q generated by the PV source are calcu-
lated at the output of the inverter. 
 

 
 
Fig. 2. The PV source model used by OpenDSS [4] 
 
 In the following part of the article, the PV source model 
will be validated using the measurements for the PV instal-
lation operating at the Silesian University of Technology. 
 

The PV micro-installation at the Silesian University 
of Technology (SUT) 

The SUT PV micro-installation is located on the roof of 
the building of the Faculty of Automatic Control, Electronics 
and Computer Science (Fig. 3). This building is equipped 
with three PV installations. Installation no. 3 was selected 
for the tests, because in the other two there was periodic 
shading of the PV panels by building elements. The select-
ed installation is characterized by the same angle of inclina-
tion and orientation of all panels towards the cardinal direc-
tions. The installation consists of 66 NeMo 60 P modules 
with a rated power of 265 W, which gives a total installed 
power of 17.49 kW. It is based on the SolarEdge system, 
consisting of 33 power optimizers (P600) and an inverter 
(SE17K) with a rated power of 17 kVA. 

 
Fig. 3. PV installation on the roof of the building of the Faculty of 
Automatic Control, Electronics, and Computer Science of the Sile-
sian University of Technology in Gliwice, Poland 
 

Adjacent to the PV installation, there is a weather station 
measuring ambient temperature and wind speed. The 
weather station is also equipped with an external tempera-
ture sensor for PV temperature measurement. The solar 
irradiance is measured with a pyranometer. The PV installa-
tion is equipped with a SCADA (Supervisory Control And 
Data Acquisition) system that records the weather condi-
tions and generated power with an one-minute resolution. 
 
Weather conditions during the selected days 

Two random days from 2021 were selected for the anal-
ysis. These days differed primarily in the intensity of solar 
irradiation. The first day, June 27, was a sunny day with 
temporary clouds. The second day, September 29, was 
cloudy with varying degrees of cloud cover. The weather 
conditions on selected days are illustrated in Figures 4 
and 5. These figures also show the recorded temperature 
variability of the PV panels. 
 
a. 

 
b. 

 
 
Fig. 4. Solar irradiance, ambient temperature, PV module tempera-
ture (a), and wind speed (b) on June 27, 2021 
 
a. 

 
b. 

 
 
Fig. 5. Solar irradiance, ambient temperature, PV module tempera-
ture (a), and wind speed (b) on September 29, 2021 
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Correction of solar irradiance 
Figures 4a and 5a show the measured intensity of solar 

irradiation falling on a horizontal surface. On this basis, the 
intensity of solar irradiation incident on the surface of PV 
modules, that are inclined to the horizontal at an angle of 
12° and tilted from the north-south axis by 35° in the east-
ern direction, was determined. The calculations used a 
procedure according to PN-EN ISO 52010-1:2017-09, as 
described in the article [13]. Parameters that define the 
position of the sun relative to the PV panels were deter-
mined using the NOAA Solar Calculator [14]. Figures 6 and 
7 compare the measured and corrected solar irradiance. 
The corrected solar irradiance will be used to calculate the 
generation of PV panels. 
 

 
 
Fig. 6. Solar irradiance on sloped surface (corrected) vs. solar 
irradiance on a horizontal surface (measured) on June 27, 2021 
 

 
 
Fig. 7. Solar irradiance on sloped surface (corrected) vs. solar 
irradiance on a horizontal surface (measured) on September 29, 
2021 
 

Estimation of the PV module temperature  
 The operating temperature of the PV panel has a direct 
influence on power output. As the temperature increases, 
power generation decreases. The power temperature coef-
ficient for PV panels in considered micro-installation was 
equal to 0.42%/C. This means that a 10C increase in 
temperature results in a 4.2% reduction in generated power. 
In the article, a dynamic thermal model proposed in [15] 
was used to determine the temperature of PV panels. This 
model is based on the finite difference method and uses 
data on ambient temperature, solar irradiation, and wind 
speed. The measured and calculated daily variation of PV 
panels temperature is shown in Figures 8 and 9. The tem-
perature estimation error did not exceed 9C on June 27 
and 5C on September 29. 
 

 
 
Fig. 8. Temperature of a PV module calculated using the finite 
difference model vs. measured temperature – atmospheric condi-
tions on June 27, 2021 
 

 
 

Fig. 9. Temperature of a PV module calculated using the finite 
difference model vs. measured temperature – atmospheric condi-
tions on September 29, 2021 
 

Validation of the PV source model 
 The PV source model was parameterized according to 
the technical data for the analyzed SUT PV micro-
installation. Subsequently, corrected solar irradiance (Fig-
ures 6 and 7) and calculated PV panel temperature (Figures 
8 and 9) were entered into the model. On this basis, the 
generation of the micro-installation was calculated for the 
two days analyzed. The results of the calculation were 
compared with the generation measured on those days. 
The results are presented in Figures 10 and 11. 
 

 
 

Fig. 10. Generation of PV installation calculated using the PV 
source model vs. measured power – atmospheric conditions on 
June 27, 2021 
 

 
 

Fig. 11. Generation of PV installation calculated using the PV 
source model vs. measured power – atmospheric conditions on 
September 29, 2021 
 

 Comparing the results obtained using the PV source 
model with the measurements (Figs. 10 and 11), a high 
accuracy of estimation of the PV generation can be ob-
served. The quality of PV model can be evaluated applying 
the mean absolute percentage error (MAPE) defined as: 
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where: Pm(t) – measured PV generation at time interval t, in 
kW, Pc(t) – calculated PV generation at time interval t, in 
kW, n – the total number of time intervals in analyzed period 
(1440). The values of MAPE errors for both days analyzed, 
as well as the measured and calculated amount of a daily 
energy production, are given in Table 1. 
 

Table 1. Daily energy production and MAPE 

Day 
Daily energy production 

MAPE 
Measured Calculated Difference 

kWh kWh % % 
June 27 98.6 105.9 7.4 18.6 
September 29 38.5 39.8 3.4 8.7 
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 The applied model of the PV source turned out to be 
less accurate for a day with a higher level of solar irradi-
ance. An in-depth analysis of the results allowed us to con-
clude that the largest difference between the measured and 
calculated PV generation occurs for the morning hours (up 
to 6.00) and the afternoon hours (after 16.00). If only hours 
from 6.00 to 16.00 are considered for the assessment of the 
model accuracy (approximately 90% of the daily energy is 
generated during this period), the error values are signifi-
cantly smaller (see Table 2). 
 
Table 2. Energy production and MAPE – hours from 6.00 to 16.00 

Day 
Daily energy production 

MAPE 
Measured Calculated Difference 

kWh kWh % % 
June 27 87.3 91.8 5.2 6.8 
September 29 36.9 37.8 2.3 4.9 

 

 The described model can also be used to determine the 
forecasted generation of the PV source. For this purpose, 
numerical weather forecasts should be used as input to the 
model. 
 

 

 
 
Fig. 12. Numerical weather forecast from the platform A for June 
27, 2021 (hourly resolution) 
 

 

 
 
Fig. 13. Numerical weather forecast from the platform B for June 
27, 2021 (hourly resolution) 
 

 

 
 
Fig. 14. Numerical weather forecast from the platform B for June 
27, 2021 (5 minute resolution) 
 

 

 
 
Fig. 15. Numerical weather forecast from the platform A for Sep-
tember 29, 2021 (hourly resolution) 
 

 

 
 
Fig. 16. Numerical weather forecast from the platform B for Sep-
tember 29, 2021 (hourly resolution) 
 

 

 
 
Fig. 17. Numerical weather forecast from the platform B for Sep-
tember 29, 2021 (5 minute resolution) 
 
Numerical weather forecasts 
 The numerical weather forecasts used in the calcula-
tions came from two internet platforms (A and B). Both 
platforms provide information about the forecasted ambient 
temperature, wind speed, and solar irradiation through the 
API (application programming interface). The geographic 
resolution for platform A is 4 km and for platform B is 2 km. 
Platform A allows to download data in hourly resolution, 
while platform B in hourly and five-minute resolution. The 
weather forecasts from both platforms for the two days 
analyzed in the article are shown in Figures 12-17.  
 
PV generation forecasts 
 Using the procedure described in the previous sections, 
and based on the numerical weather forecasts presented in 
Figures 12-17, appropriate forecasts of the generation of 
the PV source with an installed capacity of 17.49 kW were 
determined. The calculation results are shown in Figures 
18-23 and Table 3. 
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Fig. 18. Forecast of PV generation based on the platform A weath-
er forecast (1 h) vs. measured power on June 27, 2021 
 

 
Fig. 19. Forecast of PV generation based on the platform B weath-
er forecast (1 h) vs. measured power on June 27, 2021 
 

 
Fig. 20. Forecast of PV generation based on the platform B weath-
er forecast (5 min) vs. measured power on June 27, 2021 
 

 
Fig. 21. Forecast of PV generation based on the platform A weath-
er forecast (1 h) vs. measured power on September 29, 2021 
 

 
Fig. 22. Forecast of PV generation based on the platform B weath-
er forecast (1 h) vs. measured power on September 29, 2021 
 

Fig. 23. Forecast of PV generation based on the platform B weath-
er forecast (5 min) vs. measured power on September 29, 2021 
 

Table 3. Forecast of daily energy production and MAPE 

Day 
Platform, 
resolution

Daily energy production 
MAPE

Measured Calculated Difference
kWh kWh % % 

June 27 
A, 1 h 

98.6 
124.5 26.3 87.1 

B, 1 h 118.3 20.1 59.7 
B, 5 min 114.2 15.9 53.4 

September 
29 

A, 1 h 
38.5 

72.0 86.9 124.7
B, 1 h 40.3 4.6 28.5 
B, 5 min 39.9 3.6 26.5 

 
 The obtained generation forecasts differ from the actual 
production of the analyzed PV source. The accuracy of the 
forecasts is different for both the days considered and for 
different numerical weather forecasts. The forecasts ob-
tained for the numerical weather forecasts from platform A 
are characterized by the lowest accuracy. The highest ac-
curacy was obtained for platform B weather forecasts with a 
five-minute resolution. In the best case, the difference be-
tween the forecast and the actual generation was 3.6%, and 
the MAPE error did not exceed 27%.  
 In the following section, weather forecasts in five-minute 
resolution from platform B will be used to forecast the gen-
eration of prosumer micro-installations.  
 
Generation forecast for a prosumer PV installations 
 The developed method was used to calculate the gen-
eration forecast for two prosumer micro-installations. The 
first is located in Koszęcin (Silesian Voivodeship). It is a 
household PV installation with an installed power of 
7.32 kW. The installation consists of 24 IBC Solar PV pan-
els with a power of 305 W and a Fronius Symo 6.0-3M 
inverter with a rated power of 6 kW. In the analyzed installa-
tion, the panels face south-west and are inclined at an an-
gle of 35. The forecast was developed using the numerical 
weather forecast for June 10, 2022 (Fig. 24). The results 
are shown in Figure 25 and Table 4. 
 

 

 
Fig. 24. Numerical weather forecast from the platform B for June 
10, 2022 (5 minute resolution) 
 

 
Fig. 25. Forecast of PV generation based on the platform B weath-
er forecast (5 min) vs. measured power on June 10, 2022 
 
Table 4. Daily energy production and MAPE 

Day 
Daily energy production 

MAPE 
Measured Calculated Difference 

kWh kWh % % 
June 10 28.4 26.5 -6.8 43.1 
 

 



36                                                                               PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 9/2023 

 The second micro-installation is located in Łącza (Sile-
sian Voivodeship). The installation consists of 20 LONGI 
Solar LR6-60PE modules with a rated power of 305 W, 
which gives a total power of 6.1 kW. The panels are con-
nected to the Fronius Symo 5.0-3M inverter with a rated 
power of 5 kW. In the analyzed installation, the panels face 
south and are inclined at an angle of 15. The forecast was 
prepared for June 16, 2022, also using the numerical 
weather forecast from platform B in a five-minute resolution 
(Fig. 26). The calculation results are shown in Figure 27 
and Table 5. 
 

 

 
Fig. 26. Numerical weather forecast from the platform B for June 
16, 2022 (5 minute resolution) 
 

 
Fig. 27. Forecast of PV generation based on the platform B weath-
er forecast (5 min) vs. measured power on June 10, 2022 
 
Table 5. Daily energy production and MAPE 

Day 
Daily energy production 

MAPE 
Measured Calculated Difference 

kWh kWh % % 
June 16 23.9 30.8 28.7 70.0 
 
Conclusions 
 The article presents a method of forecasting the genera-
tion of a PV source using numerical weather forecasts in-
cluding the forecast of solar irradiation, ambient tempera-
ture, and wind speed. The possibility of using hourly and 
five-minute weather forecasts from two meteorological plat-
forms was analyzed. The results of the forecasts were 
compared with the actual generation of three operating PV 
micro-installations.  
 The accuracy of PV generation forecasts depends on 
the source of the numerical weather forecasts and their 
resolution, as well as on the nature of the weather on the 
analyzed day, in particular on the nature of cloud cover. In 
the article, days with highly variable cloudiness were se-
lected for analysis. From the point of view of forecasting the 
generation of a PV source, these are days for which fore-
casting is very difficult. The analyzes performed indicate 
that much higher accuracy was obtained for weather fore-
casts with a five-minute resolution. This type of PV source 
generation forecast is characterized by sufficient accuracy 

to be used to determine the operating schedule of the se-
lected household electrical appliances and energy storages 
owned by prosumers in order to increase the self-
consumption of the produced energy. 
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Krótkoterminowe prognozowanie bazowego obciążenia odbiorcy 
komunalno-bytowego z wykorzystaniem danych historycznych 

 

Short-term forecasting of the baseline load of the residential customer using historical data 
 
 

Streszczenie. W artykule omówiono metodę prognozowania dobowego przebiegu obciążenia odbiorcy komunalno-bytowego. Opisana me-
toda bazuje na założeniach metody naiwnej i wykorzystuje historyczne dane dotyczące zużycia energii elektrycznej przez analizowanego 
odbiorcę. Zaproponowany model prognostyczny może zostać zastosowany do wyznaczenia prognozy obciążenia bazowego, wykorzystywa-
nej przez system zarządzania energią w budynku wyposażonym w źródło fotowoltaiczne, magazyn energii i sterowane odbiorniki. 
 
Abstract. This paper discusses a method for forecasting the daily load profile of a residential consumer. The method described is based on 
the assumptions of the persistence (naive) method and uses historical data on the electricity consumption by the analyzed customer. The 
proposed forecasting model can be applied to determine the consumer's baseline load forecast, used by the energy management system in 
a building equipped with a photovoltaic source, energy storage and shiftable (controllable) loads. 
 

Słowa kluczowe: odbiorca komunalno-bytowy, obciążenie bazowe, krótkoterminowe prognozowanie obciążenia, metoda naiwna 
Keywords: residential load, baseline load, short-term load forecasting, persistence (naive) method 
 
 

Wprowadzenie 
 Prosumenckie źródła fotowoltaiczne (PV), wraz z domo-
wymi magazynami energii oraz odbiornikami o elastycznym 
czasie załączania, umożliwiają budowę lokalnych (budynko-
wych) systemów bilansowania zapotrzebowania odbiorców 
komunalno-bytowych. Funkcję tę realizują układy określane 
jako Home Energy Management System (HEMS) [1]. Do pra-
widłowego zaplanowania pracy poszczególnych urządzeń, 
oprócz prognozy generacji źródła PV [2], konieczne jest dys-
ponowanie prognozą bazowego obciążenia odbiorcy. 
Uwzględniając te prognozy, system HEMS określa moce 
oraz okresy ładowania i rozładowania magazynu, a także 
momenty włączenia odbiorników o znanych profilach poboru 
energii i sterowanym czasie załączania [3]. 
 Horyzont czasowy prognozy obciążenia może być różny. 
Pierwszym rodzajem prognoz są prognozy długoterminowe 
[4], obejmujące zwykle okres od roku do kilkudziesięciu lat. 
Tego typu prognozy są wykorzystywane w procesie strate-
gicznego planowania rozwoju systemu elektroenergetycz-
nego. Drugim rodzajem prognoz są prognozy średniotermi-
nowe [5], przygotowywane na okres od tygodnia do roku. 
Znajdują one zastosowanie m.in. przy planowaniu zabiegów 
eksploatacyjnych. Kolejną grupę prognoz stanowią prognozy 
krótkoterminowe [6], przygotowywane najczęściej w rozdziel-
czości godzinowej dla okresu od kilku do kilkudziesięciu go-
dzin. Właśnie tego typu prognozy są wykorzystywane do pla-
nowania operacyjnego w kolejnej dobie. Niekiedy wyróżnia 
się jeszcze prognozy o krótszym horyzoncie czasowym 
i wyższej rozdzielczości (ultrakrótkoterminowe) [7], stoso-
wane w bieżącym bilansowaniu zapotrzebowania. 
 Kolejnym czynnikiem różnicującym rodzaje prognoz jest 
poziom agregacji, dla którego są one opracowywane [8]. 
Można tutaj wyróżnić prognozy systemowe, sporządzane dla 
całego systemu połączonego (np. europejskiego) lub po-
szczególnych systemów krajowych, prognozy regionalne, 
wykonywane dla obszarów działania pojedynczych operato-
rów systemów dystrybucyjnych, prognozy grupowe dla od-
biorców o podobnym charakterze zużycia oraz prognozy in-
dywidualne, opracowywane dla pojedynczych odbiorców. 
 Z punktu widzenia tematyki niniejszego artykułu przed-
miotem zainteresowania są indywidualne prognozy krótko-
terminowe (dobowe w rozdzielczości godzinowej), sporzą-
dzane dla odbiorców komunalno-bytowych. 

 Prawidłowe prognozowanie obciążenia odbiorcy komu-
nalno-bytowego jest trudnym zadaniem ze względu na 
znaczną zmienność tego obciążenia. Do typowych czynni-
ków mających istotny wpływ na zapotrzebowanie odbiorcy 
komunalno-bytowego należą: tryb życia i nawyki mieszkań-
ców [9], w tym różne wydarzenia medialne [10], pory roku 
determinujące m.in. dostępność światła dziennego [11] oraz 
warunki pogodowe, wpływające na komfort cieplny w bu-
dynku [12]. Oprócz tego wpływ na zużycie energii przez go-
spodarstwa domowe mogą mieć różnego typu programy pro-
mujące oszczędność energii [13], a także wzrastająca świa-
domość ekologiczna społeczeństwa [14]. Obecnie pojawiają 
się również dodatkowe czynniki wpływające na zapotrzebo-
wanie tej grupy odbiorców. Można do nich zaliczyć m.in. roz-
wój infrastruktury umożliwiającej zautomatyzowane zarzą-
dzenie energią w budynkach [15], dynamiczne ceny energii 
[16] lub zalecane przez operatorów okresy, w których należy 
zwiększyć lub zmniejszyć zużycie energii elektrycznej [17]. 
 W literaturze przedmiotu można znaleźć propozycje me-
tod krótkoterminowego prognozowania obciążenia odbior-
ców komunalno-bytowych, w których uwzględnia się wpływ 
niektórych z wymienionych wyżej czynników. Przykładowo 
w pracy [18] uwzględniono wpływ warunków pogodowych, 
w artykule [19] wpływ pór roku, a w pracy [20] nawyki miesz-
kańców w połączeniu z charakterystyką używanych urzą-
dzeń gospodarstwa domowego. Z kolei w artykule [21] opi-
sano metodę prognozowania dla budynków niskoemisyj-
nych, a w pracy [22] dla budynków z rozbudowaną automa-
tyką sterującą urządzeniami. Wymienione metody wykorzy-
stują zaawansowane techniki obliczeniowe, takie jak sieci 
neuronowe [18, 21, 22], uczenie maszynowe [20] lub opty-
malizację metaheurystyczną [19], w związku z tym są one 
zbyt skomplikowane, aby można było je łatwo zaimplemen-
tować w systemie HEMS. Zatem w tym obszarze zastoso-
wań potrzebne jest opracowanie znacznie prostszej metody, 
która pozwoli na wyznaczenie krótkoterminowej prognozy 
bazowego obciążenia odbiorcy komunalno-bytowego cechu-
jącej się zadowalającą dokładnością, przy jednoczesnej mi-
nimalizacji zasobów obliczeniowych niezbędnych do jej spo-
rządzenia. Jest to główny cel niniejszego artykułu.  
 Zaproponowana w artykule metoda prognozowania 
opiera się na założeniach metody naiwnej, przy czym w me-
todzie tej – oprócz wartości średniej obciążenia z kilku dni 
poprzedzających – do przygotowania prognozy 
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wykorzystano również inne sposoby opisu zmienności obcią-
żenia (obciążenie „typowe” i statystycznie najczęstsze), 
omówione w dalszej części artykułu. Do kalibracji i walidacji 
metody wykorzystano dane pomiarowe pochodzące z liczni-
ków energii zainstalowanych u odbiorców z grupy taryfowej 
G11. Uzyskane wyniki prognoz porównano z wynikami otrzy-
manymi przy zastosowaniu metody naiwnej w wersji podsta-
wowej (obciążenie średnie z kilku poprzednich dni). Finalnie, 
zaproponowany model prognostyczny zastosowano do wy-
znaczenia prognozy obciążenia bazowego wybranego od-
biorcy. 
 

Metoda naiwna w prognozowaniu obciążenia 
 Metoda naiwna nazywana jest również w literaturze an-
glojęzycznej „persistence method” [23], co można przetłuma-
czyć jako „metoda trwałości”. To określenie dobrze odzwier-
ciedla podstawę metody, którą jest założenie, że wszystko 
pozostanie bez zmian, czyli wartość prognozowana będzie 
taka sama jak ostatni pomiar. Zgodnie z tym założeniem ob-
ciążenie odbiorcy w godzinie h dnia n będzie takie samo jak 
obciążenie w tej samej godzinie w dniu poprzednim (wariant 
n – 1) lub w takim samym dniu tydzień temu (wariant n – 7). 
W innym wariancie metody naiwnej wykorzystuje się kilka dni 
poprzedzających (kolejnych lub kolejnych takich samych), 
dla których obliczana jest wartość średnia obciążenia w po-
szczególnych godzinach, stanowiąca prognozę zapotrzebo-
wania w analizowanym dniu n.  
 

Propozycja metody prognozowania obciążenia odbiorcy 
komunalno-bytowego bazująca na metodzie naiwnej 
 Ponieważ obciążenie odbiorcy komunalno-bytowego jest 
silnie skorelowane z obecnością domowników i zwykle wy-
kazuje pewną powtarzalność tygodniową, w niniejszym arty-
kule zastosowane zostanie podejście oparte na wykorzysta-
niu kilku kolejnych takich samych dni poprzedzających (dni 
n – 7, n – 14, n – 21…). Na rys. 1 ÷ 4 dla wybranego odbiorcy 
komunalno-bytowego przedstawiono dobowe grafiki obcią-
żenia dla czterech kolejnych wtorków. Dane te zostaną wy-
korzystane do zilustrowania zaproponowanej w artykule me-
tody prognozowania zapotrzebowania. 
 

 
 

Rys. 1. Obciążenie odbiorcy w poszczególnych godzinach w dniu 
n – 28 (wtorek, 21.05.2019, zużycie dobowe 6,86 kWh) 

 

 
 

Rys. 2. Obciążenie odbiorcy w poszczególnych godzinach w dniu 
n – 21 (wtorek, 28.05.2019, zużycie dobowe 8,32 kWh) 
 

 
 

Rys. 3. Obciążenie odbiorcy w poszczególnych godzinach w dniu 
n – 14 (wtorek, 04.06.2019, zużycie 5,57 kWh) 

 
 

Rys. 4. Obciążenie odbiorcy w poszczególnych godzinach w dniu 
n – 7 (wtorek, 11.06.2019, zużycie dobowe 6,89 kWh) 

 
 W pierwszym kroku proponowanej metody, na podstawie 
zarejestrowanych profili obciążenia odbiorcy (rys. 1 ÷ 4), wy-
znacza się wartości średnie zużycia w poszczególnych go-
dzinach doby, co ilustruje rys. 5. 
 

 
 

Rys. 5. Średnie obciążenie odbiorcy komunalno-bytowego w po-
szczególnych godzinach wyznaczone dla czterech kolejnych wtor-
ków (zużycie dobowe 6,91 kWh) 

 
 W metodzie naiwnej obliczone średnie obciążenia godzi-
nowe stanowiłyby wprost prognozę zapotrzebowania w ana-
lizowanym dniu (w dniu n, czyli w tym przypadku we wtorek, 
18.06.2019), co można wyrazić wzorem: 
 

 𝐸𝑛𝑝(ℎ) = 𝐸ś𝑟(ℎ) =
1

𝑁
∑ 𝐸𝑛−7𝑖(ℎ)𝑁

𝑖=1 , (1) 

gdzie: 
Enp(h) - prognozowane zużycie energii w dniu n w godzi-

nie h, 
Eśr(h) - średnie zużycie energii w godzinie h, 
En – 7i(h) - zużycie energii w godzinie h w kolejnych takich 

samych dniach poprzedzających, i = 1, 2…N, 
N - liczba kolejnych takich samych dni poprzedzają-

cych, dla których wyznaczane jest zużycie śred-
nie. 

W niniejszym artykule do wyznaczenia prognozy zapotrze-
bowania proponuje się natomiast zastosowanie również in-
nych niż grafik średni, sposobów opisu zmienności obciąże-
nia odbiorcy. W tym celu wykorzystany zostanie tzw. grafik 
„typowy” oraz grafik statystycznie najczęstszy. 
 Metoda tworzenia „typowego” grafiku obciążenia od-
biorcy została zaproponowana w pracy [24]. Polega ona na 
tym, że w pierwszej kolejności godzinowe zużycie energii 
w analizowanych N dniach, np. dla czterech wtorków poka-
zanych na rys. 1 ÷ 4, porządkuje się od wartości największej 
do najmniejszej. Następnie z tak uporządkowanych wartości 
oblicza się średnie dla poszczególnych godzin. W kolejnym 
kroku, obliczone średnie z wartości uporządkowanych przy-
pisuje się do odpowiednich przedziałów czasowych, wyko-
rzystując wyznaczone wcześniej średnie obciążenie od-
biorcy dla wartości chronologicznych (rys. 5). Przypisanie po-
lega na tym, że największą wartość średnią z uporządkowa-
nych wartości obciążeń godzinowych przypisuje się do prze-
działu czasowego, w którym wystąpiła największa wartość 
średnia z obciążeń chronologicznych. Drugą największą war-
tość średnią z obciążeń uporządkowanych przypisuje się do 
godziny, w której wystąpiła druga z kolei największa wartość 
średnia z obciążeń chronologicznych, trzecią do trzeciej, itd., 
co zilustrowano na rys. 6. W efekcie otrzymuje się tzw. grafik 
„typowy” przedstawiony na rys. 7. 
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Rys. 6. Ilustracja metody tworzenia „typowego” grafiku obciążenia 
odbiorcy komunalno-bytowego 
 

 
 

Rys. 7. „Typowe” obciążenie odbiorcy komunalno-bytowego w po-
szczególnych godzinach wyznaczone dla czterech kolejnych wtor-
ków (zużycie dobowe 6,91 kWh) 

 
 W trzecim kroku proponowanej metody prognozowania 
zapotrzebowania tworzony jest grafik obciążeń statystycznie 
najczęściej występujących w poszczególnych godzinach 
doby (grafik statystycznie najczęstszy). W tym celu dla N 
analizowanych takich samych dni poprzedzających najpierw 
określa się maksymalną wartość godzinowego zużycia ener-
gii (Emax(h)), jakie wystąpiło w tym okresie. Następnie obli-
czane są granice poszczególnych przedziałów zużycia 
równe (mniejsza szerokość dwóch pierwszych przedziałów 
umożliwia zróżnicowanie bardzo niskich obciążeń): 
(0, 0,05Emax(h)], (0,05Emax(h), 0,1Emax(h)], (0,1Emax(h), 
0,2Emax(h)], (0,2Emax(h), 0,3Emax(h)], …, (0,9Emax(h), Emax(h)]. 
Dla tak zdefiniowanych przedziałów sprawdza się, ile razy 
obciążenie w danej godzinie w ciągu N analizowanych dni 
zawierało się w poszczególnych przedziałach i wyszukuje się 
przedział z największą liczbą zliczeń. Środek tego przedziału 
przyjmowany jest jako obciążenie statystycznie najczęściej 
występujące w danej godzinie doby w ciągu N analizowa-
nych dni. Rysunek 8 przedstawia grafik statystycznie naj-
częstszy utworzony opisaną metodą dla czterech wtorków, 
dla których dobowe przebiegi obciążenia zostały zilustro-
wane na rys. 1 ÷ 4. 
 

 
 

Rys. 8. Statystycznie najczęstsze obciążenie odbiorcy komunalno-
bytowego w poszczególnych godzinach wyznaczone dla czterech 
kolejnych wtorków (zużycie dobowe 7,08 kWh) 

 
 Opracowane grafiki: średni (rys. 5), „typowy” (rys. 7) i sta-
tystycznie najczęstszy (rys. 8), określone dla N analizowa-
nych takich samych dni poprzedzających, w kolejnym kroku 
są wykorzystywane do wyznaczenia prognozy zapotrzebo-
wania dla rozpatrywanego dnia n. W tym celu dokonuje się 
odpowiedniego „złożenia” tych grafików z uwzględnieniem 
wag, co wyraża wzór: 

 

 𝐸𝑛𝑝(ℎ) = 𝑤1𝐸ś𝑟(ℎ) + 𝑤2𝐸𝑡𝑦𝑝(ℎ) + 𝑤3𝐸𝑠𝑡(ℎ), (2) 

gdzie: 
Etyp(h) - „typowe” zużycie energii w godzinie h, 
Est(h) - statystycznie najczęstsze zużycie energii w go-

dzinie h, 
w1, w2, w3 - wagi poszczególnych składników prognozy (na-

leży pamiętać, że dla w1 = 1 i w2 = w3 = 0 otrzy-
muje się model naiwny wyrażony wzorem (1)). 

Na rys. 9 przedstawiono prognozę wygasłą zapotrzebowania 
odbiorcy w dniu n (wtorek, 18.06.2019), określoną zapropo-
nowaną metodą dla czterech kolejnych wtorków poprzedza-
jących, przy założeniu jednakowych wag (w1 = w2 = w3 = 1/3) 
poszczególnych składników prognozy. 
 

 
 

Rys. 9. Prognoza wygasła zapotrzebowania na energię elektryczną 
w dniu n (wtorek, 18.06.2019) określona zaproponowaną metodą 
(zużycie rzeczywiste 8,44 kWh, zużycie prognozowane 6,97 kWh) 
 

 Zależność (2) definiuje, oparty na założeniach metody 
naiwnej, hybrydowy model prognostyczny, wykorzystujący 
historyczne dane pomiarowe. Model ten należy poddać od-
powiedniej kalibracji, polegającej na określeniu optymalnej 
liczby kolejnych takich samych dni poprzedzających (N) oraz 
wag poszczególnych składników prognozy (w1, w2, w3). 
 

Kalibracja modelu prognostycznego 
 Do kalibracji (a następnie do walidacji) zaproponowa-
nego modelu prognostycznego (2) wykorzystano roczne 
dane pomiarowe dotyczące zużycia energii dla dziesięciu 
wybranych odbiorców z obszaru miejsko-wiejskiego zlokali-
zowanych w promieniu 30 km. Wykorzystane dane miały 
rozdzielczość godzinową i pochodziły z liczników rozliczenio-
wych energii elektrycznej zainstalowanych u tych odbiorców. 
W tabeli 1 podano najważniejsze dane charakteryzujące roz-
patrywanych odbiorców. Wybrani odbiorcy zostali losowo po-
dzieleni na dwie równoliczne grupy. Dane pomiarowe dla od-
biorców z grupy pierwszej (O1, O3, O4, O7 i O9) zostały wy-
korzystane do kalibracji modelu, natomiast dane dla odbior-
ców z grupy drugiej (O2, O5, O6, O8 i O10) do jego walidacji, 
co opisano w kolejnej części artykułu. 
 

Tabela 1. Dane charakteryzujące odbiorców wykorzystanych do ka-
libracji i walidacji zaproponowanego modelu prognostycznego (2) 

Odbiorca 
Moc umowna, 

kW 
Moc szczytowa 

(godzinowa), kW 
Roczne zużycie 

energii, kWh 

O1 6 3,21 3 978 

O2 16 3,73 3 812 

O3 20 5,54 3 737 

O4 14 3,40 3 719 

O5 15 3,58 3 649 

O6 21 5,32 3 625 

O7 17,3 3,54 3 537 

O8 15 3,16 2 886 

O9 5,7 3,28 2 720 

O10 17,3 2,39 2 313 
 

 Kalibracja zaproponowanego modelu prognostycznego 
(2) polegała na dobraniu liczby kolejnych takich samych dni 
poprzedzających (N) oraz wartości wag (w1, w2, w3) w taki 
sposób, aby zminimalizować błędy prognozy zapotrzebowa-
nia w dniu n, w stosunku do rzeczywistego zużycia, jakie wy-
stąpiło w tym dniu. Poszukując optymalnych wartości N oraz 
w1, w2 i w3 obliczano błędy zdefiniowane zależnościami: 
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gdzie: 
Enr(h) - rzeczywiste zużycie energii w dniu n w godzinie h. 
 
 Kalibracja modelu (2) została wykonana dwuetapowo. 
W pierwszym etapie poszukiwano optymalnej liczby dni po-
przedzających (N), przy przyjęciu jednakowych wartości wag 
poszczególnych składników prognozy (w1 = w2 = w3 = 1/3). 
Obliczenia wykonano dla pięciu odbiorców, dla których lo-
sowo wybierano różne dni tygodnia (dni n) w różnych okre-
sach roku. Prognozy dla tych dni były wyznaczane dla N = 2, 
3, …, 10. Przykładowe wyniki obliczeń przedstawiono w ta-
beli 2 (wytłuszczono liczbę dni poprzedzających, dla których 
uzyskano najmniejszą wartość błędu MAPE). Otrzymane wy-
niki wskazują, że liczba takich samych dni poprzedzających 
(N), dla których uzyskano najmniejsze wartości błędów okre-
ślonych zależnościami (3) ÷ (5) wynosi zwykle od 3 do 5. 
 

Tabela 2. Błędy prognozy uzyskane modelem prognostycznym (2) 
dla różnej liczby takich samych dni poprzedzających N  

Odbiorca 
Dzień 

prognozy 
(dzień n) 

Liczba dni 
poprzedzają-

cych (N) 

Błędy prognozy 

MAE 
kWh 

RMSE 
kWh 

MAPE 
% 

O3 08.08 

2 0,13 0,25 30,17 

3 0,13 0,26 32,21 

4 0,13 0,25 29,82 

5 0,12 0,24 27,70 

6 0,13 0,25 33,93 

7 0,13 0,25 33,47 

8 0,14 0,26 34,55 

9 0,14 0,25 34,17 

10 0,14 0,26 34,68 

O4 12.06 

2 0,14 0,23 37,85 

3 0,12 0,20 33,33 

4 0,14 0,28 36,30 

5 0,16 0,28 37,48 

6 0,16 0,28 35,62 

7 0,16 0,28 37,46 

8 0,16 0,27 36,72 

9 0,16 0,26 38,51 

10 0,16 0,28 40,50 

O9 02.11 

2 0,19 0,23 34,95 

3 0,17 0,21 28,93 

4 0,16 0,22 25,43 

5 0,17 0,21 27,17 

6 0,15 0,21 25,62 

7 0,17 0,22 27,71 

8 0,17 0,21 26,64 

9 0,18 0,22 27,12 

10 0,19 0,24 28,90 
 

 W drugim etapie kalibracji wyznaczono optymalne warto-
ści współczynników w1, w2 i w3, przyjmując, że liczba takich 
samych dni poprzedzających N jest równa 3, 4 lub 5. Obli-
czenia wykonano przy zastosowaniu algorytmu optymaliza-
cyjnego PSO (Particle Swarm Optimization) [25], przy zało-
żeniu, że funkcją celu jest minimalizacja błędu MAPE (5), 
a wartości wag spełniają następujące ograniczenia: w1, w2, 

w3  [-1, 1], w1 + w2 + w3 = 1. Przykładowe wyniki obliczeń 
zestawiono w tabeli 3. Analiza pełnego zbioru uzyskanych 
wyników wykazała, że dla większości przypadków w1 = 1, 
a wartości w2 i w3 zawierają się zwykle w przedziale od -0,3 
do 0,3 i mają taką samą wartość bezwzględną, ale przeciwne 

znaki (w2 częściej jest dodatni). Dla zoptymalizowanych war-
tości wag błędy MAPE (tabela 3) osiągają niższe wartości, w 
porównaniu z wartościami uzyskanymi dla jednakowych 
współczynników wagowych (tabela 2). 
 

Tabela 3. Wartości wag poszczególnych składników prognozy mo-
delu (2) minimalizujące błąd MAPE 

Odbiorca 
Dzień  

prognozy 
(dzień n) 

Liczba dni 
poprzedzają-

cych (N) 

Wagi poszczególnych 
składników prognozy 

MAPE 
% 

w1 w2 w3 

O3 

01.08 

3 1,00 0,07 -0,07 23,16 

4 1,00 -0,11 0,11 23,49 

5 1,00 0,11 -0,11 21,97 

08.08 

3 1,00 -0,05 0,05 28,43 

4 1,00 -0,07 0,07 27,86 

5 1,00 -0,05 0,05 25,54 

O4 

12.06 

3 -0,04 1,00 0,04 25,64 

4 1,00 -0,07 0,07 32,77 

5 -0,10 1,00 0,10 32,45 

12.10 

3 1,00 0,39 -0,39 29,54 

4 0,62 0,38 0,00 25,32 

5 0,27 0,60 0,13 27,80 

O9 

02.11 

3 0,00 0,89 0,10 26,76 

4 -0,26 1,00 0,26 22,55 

5 0,10 0,96 -0,06 26,00 

07.12 

3 1,00 -0,08 0,08 26,75 

4 1,00 0,17 -0,17 30,73 

5 1,00 -0,20 0,20 25,90 
 

Walidacja modelu prognostycznego 
 Uwzględniając wyniki otrzymane podczas kalibracji mo-
delu prognostycznego (2), przy jego walidacji przyjęto, że 
liczba takich samych dni poprzedzających (N) wynosi od 3 
do 5, a współczynniki wagowe są równe w1 = 1, w2 = 0,3, w3 
= -0,3. Dla takich parametrów modelu wyznaczono prognozy 
dla odbiorców z drugiej grupy (O2, O5, O6, O8 i O10). War-
tości błędów prognozy dla wybranych przypadków zesta-
wiono w tabeli 4, przy czym, dla porównania, podano również 
wartości błędów uzyskane przy zastosowaniu metody naiw-
nej (1). W większości przeanalizowanych przypadków błędy 
prognozy uzyskane za pomocą zaproponowanego modelu 
(2), w szczególności błąd MAPE, były niższe niż błędy uzy-
skane dla metody naiwnej (1). Pozwala to wnioskować 
o przydatności zaproponowanego modelu do prognozowa-
nia bazowego obciążenia odbiorców komunalno-bytowych. 
 

Tabela 4. Porównanie dokładności prognoz uzyskanych metodą na-
iwną (1) z prognozami uzyskanymi zaproponowanym modelem (2) 

Od-
biorca 

Dzień 
pro-

gnozy 
n 

Liczba 
dni po-
prze-
dzają-
cych N 

Metoda naiwna (1) 
Model progno-

styczny (2) 

MAE 
kWh 

RMSE 
kWh 

MAPE 
% 

MAE 
kWh 

RMSE 
kWh 

MAPE 
% 

O2 25.03 

3 0,12 0,18 39,34 0,12 0,18 38,35 

4 0,11 0,17 34,39 0,11 0,17 32,72 

5 0,11 0,17 30,98 0,12 0,20 35,84 

O5 29.05 

3 0,17 0,28 34,62 0,20 0,35 35,47 

4 0,13 0,21 25,97 0,14 0,26 23,86 

5 0,10 0,17 20,77 0,08 0,11 17,15 

O10 13.11 

3 0,11 0,18 30,59 0,11 0,19 28,43 

4 0,11 0,18 30,30 0,11 0,19 29,68 

5 0,10 0,17 27,06 0,10 0,17 25,93 
 

Zastosowanie zaproponowanego modelu prognostycz-
nego do określania bazowego obciążenia odbiorcy ko-
munalno-bytowego 
 W omówionych dotychczas badaniach korzystano z po-
miarów zarejestrowanych przez liczniki rozliczeniowe nale-
żące do OSD. Wykorzystane pomiary stanowiły więc całko-
wite obciążenie analizowanych odbiorców, obejmujące za-
równo ich obciążenia bazowe, na które składają się odbior-
niki o niesterowanym czasie załączania (np. oświetlenie, lo-
dówki, telewizory, komputery, kuchenki, drobny sprzęt AGD, 
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pompy obiegowe CO i CWU, itp.), jak i obciążenia dodatkowe 
(potencjalnie sterowalne), na które składają się odbiorniki, 
których czas załączenia można zaprogramować (pralki, zmy-
warki, suszarki do ubrań, bojlery i grzejniki elektryczne, kli-
matyzatory, itp.). Dla takich pomiarów przeprowadzono kali-
brację i walidację zaproponowanego modelu prognostycz-
nego (2). Celem niniejszego artykułu jest opracowanie me-
tody prognozowania bazowego (nie całkowitego) obciążenia 
odbiorcy komunalno-bytowego. W tej części przedstawiono 
wyniki działania zaproponowanego modelu prognostycz-
nego (2) w tym zastosowaniu. 
 Do weryfikacji przydatności modelu (2) do prognozowa-
nia obciążenia bazowego wykorzystano wyniki pomiarów za-
rejestrowanych przez dedykowany system pomiarowy zain-
stalowany w budynku mieszkalnym należącym do jednego 
z autorów artykułu. System ten umożliwia rejestrację całko-
witego obciążenia budynku, jak również rejestrację obciąże-
nia odbiorników przeznaczonych do zdalnego załączania 
przez system HEMS (odbiorniki o sterowanym czasie załą-
czania obejmują: zmywarkę, pralkę, suszarkę do ubrań oraz 
ładowarkę roweru elektrycznego). Zatem na podstawie ta-
kiego zbioru pomiarów można określić bazowe obciążenie 
budynku w poszczególnych dniach poprzedzających N, sta-
nowiące podstawę do opracowania prognozy obciążenia ba-
zowego w analizowanym dniu n. Przykładowe wyniki pomia-
rów, zarejestrowanych w sobotę, 31 sierpnia 2024 r., przed-
stawiono na rys. 10. W tym dniu obciążenie całkowite bu-
dynku wyniosło 19,32 kWh, a obciążenie bazowe było równe 
15,94 kWh. Na obciążenie dodatkowe (3,38 kWh) złożyła się 
energia zużyta przez: zmywarkę (1,15 kWh), pralkę 
(0,5 kWh), suszarkę do ubrań (0,65 kWh) oraz ładowarkę ro-
weru elektrycznego (1,05 kWh). 
 

 
 

Rys. 10. Obciążenie bazowe oraz obciążenie dodatkowe (odbiorniki 
o sterowanym czasie załączania) analizowanego odbiorcy komu-
nalno-bytowego w sobotę, 31 sierpnia 2024 r. 
 

 Efekty działania modelu prognostycznego (2) w zastoso-
waniu do prognozowania bazowego obciążenia odbiorcy ko-
munalno-bytowego zostaną przedstawione na przykładzie 
prognoz wyznaczonych dla trzech kolejnych, takich samych 
dni roboczych (dni prognozy n obejmują środy: 3, 10 i 17 
lipca 2024 r.). W obliczeniach przyjęto parametry modelu (2) 
podane w poprzedniej części artykułu. Prognozy wykonano 
dla N = 3, 4, 5 kolejnych takich samych dni poprzedzających. 
Wyniki podsumowujące przeprowadzone obliczenia zapre-
zentowano w tabeli 5. Z kolei na rys. 10 ÷ 13 porównano do-
bowe przebiegi zmierzonego (rzeczywistego) obciążenia ba-
zowego z przebiegami wyznaczonymi za pomocą modelu 
(2), dla N = 5 kolejnych takich samych dni poprzedzających. 
 Analizując uzyskane wyniki można zauważyć, że maksy-
malna różnica między rzeczywistym a prognozowanym ba-
zowym zużyciem energii elektrycznej w rozpatrywanych 
dniach wynosi od 1 kWh do 1,6 kWh (około 10% zużycia do-
bowego). Z kolei błędy MAPE zawierają się w przedziale od 
20% do 30%. Otrzymana dokładność prognozy jest porów-
nywalna z dokładnością, którą inni autorzy uzyskali dla tego 
rodzaju zadania prognostycznego (prognozowanie zapotrze-
bowania pojedynczego odbiorcy komunalno-bytowego) 
z wykorzystaniem znacznie bardziej zaawansowanych me-
tod, opartych na sztucznych sieciach neuronowych. Przykła-
dowo, błędy MAPE dla prognoz dobowych dla okresu 

rocznego, uzyskane dla 42 przeanalizowanych odbiorców 
przy wykorzystaniu metody zaproponowanej w artykule [26], 
zawierały się zwykle w granicach od 30% do 50%. Z kolei 
analizy wykonane w artykule [27] dla 1181 odbiorców wska-
zują, że dla odbiorców o największej zmienności obciążenia 
w tej grupie dobowe błędy MAPE w miesiącu o najwyższym 
zapotrzebowaniu w ciągu roku kształtowały się na poziomie 
od kilkunastu do nawet 100%. Zatem dokładność prognoz 
bazowego obciążenia odbiorcy uzyskiwana z wykorzysta-
niem zaproponowanego modelu (2) jest zadowalająca, aby 
zaproponowana metoda mogła zostać zastosowana w sys-
temie HEMS, służącym do zarządzania energią elektryczną 
w budynku mieszkalnym wyposażonym w źródło fotowolta-
iczne, magazyn energii i sterowane odbiorniki. 
 

Tabela 5. Rzeczywiste i prognozowane bazowe zużycie energii oraz 
błędy prognoz obciążenia bazowego odbiorcy komunalno-bytowego 
uzyskane przy zastosowaniu zaproponowanego modelu (2) 

Dzień 
prognozy 

n 

Liczba dni 
poprze-

dzających 
N 

Bazowe zużycie energii Błędy prognozy 

rzeczywiste, 
kWh 

prognozo-
wane, kWh 

MAE 
kWh 

RMSE 
kWh 

MAPE 
% 

03.07 

3 

11,79 

10,92 0,13 0,18 25,34 

4 10,87 0,14 0,21 24,89 

5 10,84 0,12 0,19 22,30 

10.07 

3 

12,49 

11,89 0,11 0,16 23,00 

4 11,18 0,11 0,15 20,73 

5 10,88 0,10 0,14 18,14 

17.07 

3 

12,39 

12,36 0,16 0,24 29,80 

4 11,88 0,15 0,23 27,19 

5 11,29 0,16 0,25 27,25 
 

 
 

Rys. 11. Rzeczywiste i prognozowane bazowe zużycie energii ana-
lizowanego odbiorcy komunalno-bytowego w środę, 3 lipca 2024 r. 
 

 
 

Rys. 12. Rzeczywiste i prognozowane bazowe zużycie energii ana-
lizowanego odbiorcy komunalno-bytowego w środę, 10 lipca 2024 r. 
 

 
 

Rys. 13. Rzeczywiste i prognozowane bazowe zużycie energii ana-
lizowanego odbiorcy komunalno-bytowego w środę, 17 lipca 2024 r. 
 

Podsumowanie 
 Dobowe profile zapotrzebowania na energię elektryczną 
indywidualnych odbiorców komunalno-bytowych charaktery-
zują się dużą zmiennością, wynikającą z różnorodności za-
chowań tych odbiorców, stymulowanych dodatkowo przez 
szeroką gamę czynników zewnętrznych. W efekcie progno-
zowanie tego rodzaju przebiegów z odpowiednio wysoką do-
kładnością jest zadaniem skomplikowanym, wymagającym 
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często wykorzystania zaawansowanych metod obliczenio-
wych, bazujących na szerokim zakresie danych wejścio-
wych. To sprawia, że tak rozbudowane metody mogą stwa-
rzać problemy w zastosowaniu w budynkowych systemach 
zarządzania energią HEMS. Istnieje zatem konieczność po-
szukiwania prostszych rozwiązań, które jednocześnie będą 
cechowały się odpowiednią, do tego zastosowania, jakością 
generowanych prognoz. 
 W artykule zaproponowano metodę prognozowania za-
potrzebowania odbiorcy komunalno-bytowego opartą na idei 
metody naiwnej, która do obliczeń wykorzystuje godzinowe 
pomiary zużycia energii z kilku takich samych dni poprzedza-
jących. Na podstawie takiego zestawu pomiarów wyzna-
czane są przebiegi opisujące w różny sposób dobowe obcią-
żenie analizowanego odbiorcy: grafik średni, tzw. grafik „ty-
powy” i grafik statystycznie najczęstszy, a prognoza wyzna-
czana jest przez zsumowanie powyższych grafików, 
z uwzględnieniem odpowiednich wag.  
 Zaproponowany model prognostyczny został skalibro-
wany przy wykorzystaniu rzeczywistych danych pomiaro-
wych pochodzących z liczników rozliczeniowych odbiorców 
należących do grupy taryfowej G11. Liczba takich samych 

dni poprzedzających, dla których uzyskano największą do-
kładność prognozy wynosi od 3 do 5. Wagi, z którymi sumo-
wane są poszczególne składniki prognozy, wyznaczone przy 
użyciu metody optymalizacji PSO, są niejednakowe. Naj-
większą wagę ma grafik średni. Wagi dwóch pozostałych 
składników – grafiku „typowego” i statystycznie najczęst-
szego – są niższe oraz mają jednakową wartość bez-
względną, ale przeciwne znaki. Tak skalibrowany model dał 
błędy porównywalne z innymi, bardziej zaawansowanymi 
modelami. Dzięki prostocie opracowanego modelu progno-
stycznego istnieje możliwość jego praktycznej implementacji 
w systemie HEMS, zarządzającym energią w budynku wypo-
sażonym w źródło fotowoltaiczne, magazyn energii i stero-
wane odbiorniki. 
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Abstract: Photovoltaic (PV) systems are becoming increasingly popular, especially in residential
buildings. However, the high penetration of prosumer PV micro-installations can have a negative
impact on the operation of distribution networks due to the low self-consumption of the energy
produced. One way to mitigate this problem is to use a residential energy storage system (RESS) and
load shifting under a demand-side management (DSM) scheme. Energy management systems (EMSs)
are used to control the operation of RESSs and to implement DSM. There are two main categories
of EMSs: rule-based and optimization-based. Optimization-based EMSs provide better results than
rule-based EMSs but can be computationally expensive. This article proposes an optimization-based
EMS that is designed specifically for residential buildings. The proposed home energy management
system (HEMS) uses a particle swarm optimization method to maximize the prosumer’s financial
neutrality, which is calculated based on dynamic energy prices. Simulation-based evaluation using
the measurements taken in a building equipped with a PV source, RESS, and shiftable loads shows
the improved performance of the proposed HEMS compared to rule-based RESS control. The results
show that the designed HEMS increases self-consumption, thus reducing the impact of the prosumer’s
PV micro-installations on the distribution grid.

Keywords: photovoltaic micro-installation; residential building; prosumer; self-consumption; energy
storage; load-shifting; home energy management system; dynamic energy prices; particle swarm
optimization

1. Introduction

Photovoltaic (PV) technology has evolved in recent decades into a major worldwide
renewable generation technology [1]. By the end of 2022, the global cumulative installed
capacity of PV systems reached 1177 GW and experienced 25% growth compared to 2021 [2].
Solar power contributes an increasing share of total electricity demand, accounting for
4.5% of global power production in 2022, up from 3.7% in the previous year. The reasons
for this spectacular growth result from the unmatched versatility of PV technology, which
can be applied in comparatively quickly deployed utility-scale projects at a competitive
low cost and can generate energy for individual customers by means of rooftop micro-
installations, increasing their self-sufficiency. Globally, the share of the rooftop segment has
been growing continuously since 2018 and, in 2022, both marked segments were balanced,
with 48% of new capacity on rooftops [3]. One of the markets with the fastest growing
segment of rooftop PV installations is Poland, where the growth has been primarily driven
by prosumer systems below 50 kW. In 2022, Poland’s rooftop segment was responsible
for 78% of the installed PV capacity. In the third quarter of 2023, there were more than
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1,322,000 prosumer micro-installations in operation, with a total installed capacity of more
than 10 GW [4].

The economy, combined with growing ecological awareness, is the most common
factor in the decision to install a prosumer PV source [5]. On the other hand, the current
regulatory framework favors self-consumption as the only economically viable model for
rooftop PV installations [6]. Considering this, prosumers should select the rated power
of their PV plants so that their annual generation is approximately equal to the annual
electricity consumption of their households [7]. Since the capacity factor of the PV source is
low (it ranges from 10% in Europe to 20% in Latin America [8], and in Poland, it is about
11% [9]), producing energy equal to the consumer’s annual demand requires the installation
of a PV source of sufficiently large power rating. With an average annual consumption in
the EU household sector of 1671 kWh per capita [10], the power of a PV source should be
equal to 1.9 kW per capita. The PV micro-installation capacity determined in this way is
much larger than a typical household load [11]. In addition, load and generation profiles
are usually divergent [12]. As a result, most of the energy produced is fed into the power
system to be taken back from it later.

The high penetration of PV micro-installations can have a negative impact on the
operation of distribution networks [13]. One way to eliminate it is to curtail the active
power generation of PV sources when it becomes problematic. Smart inverters can first
reduce the output power and may eventually shut down a micro-installation to mitigate
adverse effects on the network [14]. However, this is an unfavorable remedy that limits the
economic and environmental benefits of solar energy production. An alternative technique
is to reduce the amount of energy injected by prosumers into the power system when the
PV sources are operating by using a residential energy storage system (RESS) and load
shifting under a demand-side management (DSM) scheme.

RESSs can decrease PV curtailment by storing excess generation and, therefore, can
reduce the export of energy to the network [15]. Currently, battery-based energy storage
systems are predominantly employed [16]. To maximize effectiveness, the battery should
be charged during high PV production, when the risk of exceeding the normal operating
conditions of the network is at its highest [17]. However, reducing PV curtailment is not
the sole purpose of installing an RESS. An additional benefit of battery installation results
from serving the household load with stored PV energy. Another option to decrease PV
curtailment is DSM, which has the potential to be a practical solution in all energy demand
sectors, including residential buildings [18]. In this case, DSM mostly refers to the active
shifting of household loads to increase matching demand with the power production. To
obtain the best results from the use of RESS and DSM, the prosumer should properly
control the operation of the storage and flexible loads through an energy management
system (EMS).

There are two main categories of EMSs [19]: rule-based EMSs and optimization-based
EMSs. A rule-based EMS allocates the resources using predefined logical rules so that
the energy produced can be adequately used or stored. An optimization-based EMS is
more sophisticated and usually implements an optimization-based unit commitment (UC)
model that considers several technical constraints while optimizing the objective function.
The authors of article [19] compared these two approaches by controlling a microgrid
testbed equipped with controllable load banks, a battery, a diesel genset, and wind energy
as well as PV simulators and generators. Article [20], on the other hand, compared the
employment of these methods to control the operation of a microgrid in an office building
supplied by PV and wind sources, as well as by various storage units. In both cases, the
optimization-based EMS minimized the operating costs of the microgrid. The optimization
problem formulated in [19] has been decomposed into UC and optimal power flow (OPF)
problems [21]. A mixed-integer linear programming (MILP) method was used to solve
the UC problem, while the OPF problem was solved using an interior-point nonlinear
programming method. The MILP method was also used in [20].
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Articles [19,20] considered microgrids with relatively large source and load capacities.
In turn, article [22] compared these methods to control the energy flexibility in a single
residential building with PV. The flexible sources included were a heat pump with an
auxiliary electric resistance heater and a water tank, a battery, and shiftable loads (SLs),
such as washing machines. Under the rule-based control, the PV’s self-consumption was
maximized, and the building acted as a customer who actively tried to avoid supplying
PV electricity to the grid and did so only when other options were unsuccessful. If there
was surplus PV power available, the energy was self-consumed in the following priority:
firstly, shiftable appliances were operated; secondly, the remaining surplus was stored
in the battery; and lastly, the remaining surplus was converted to heat and stored. At
times when the PV power did not cover all consumption, the battery was discharged,
and only the deficit was drawn from the grid. The second control approach analyzed
in [22] was the cost-optimal control, which minimizes the total electricity cost to the
building. In this mode, the building takes the role of an active prosumer that both buys
and sells electricity. The electricity cost is minimized over sequential 24 h horizons using a
deterministic dynamic programming (DP) algorithm. A similar optimization algorithm
was applied in the article [23], in which the battery’s state of charge (SoC) was chosen
as the decision variable to maximize the user’s profit. The proposed optimization-based
control method was compared with the rule-based method in simulations conducted for a
residential building equipped with a PV source and storage unit. An analogous comparison
was made in the paper [24], with the MILP method being used to optimally control the
energy storage and heat pump. The objective was to minimize costs and peak power while
considering the thermal comfort of the residents of the building.

In the articles discussed above, various objective functions and optimization al-
gorithms were used to control EMSs. In each case, better results were obtained for
optimization-based EMSs than for rule-based EMSs. However, when applying the opti-
mization-based control, the computation time can be long [21] and is highly dependent
on the flexible sources included [22] and the simulation time step assumed [23]. As a
result, high-performance computing may be required. This may be a significant obstacle to
implementing optimization-based control into EMSs in residential buildings. Therefore,
it is necessary to search for optimization methods that provide adequate results without
having such high computational requirements. This is the purpose of this article.

The remainder of this study is organized as follows. In Section 2, a method for the
optimal control of RESSs and SLs that maximizes the prosumer’s financial neutrality is
proposed. Section 3 presents a test installation located in a residential building equipped
with a rooftop PV source, an RESS, and controllable household appliances, where field
measurements were taken to test and validate the proposed method. The simulation results
are shown and discussed in Section 4. Section 5 describes the architecture and framework
of the proposed optimization-based EMS. Finally, the main contributions of the presented
work and the conclusion are given in Section 6.

2. Control Algorithm for Maximizing the Prosumer’s Financial Neutrality

The above-mentioned challenges and current trends indicate the need to look for a
simple, scalable system that can be widely applied in residential buildings in order to
spread the concept of renewable energy based on PV technology. Of particular importance
in this system is a method for adequately controlling the operation of RESSs and flexible
loads, which consequently leads to the search for a suitable EMS system that, at its core, con-
tains a dedicated algorithm whose task is to optimally control devices for a predetermined
objective function. While rule-based management strategies continue to be developed
and refined [25], management strategies using novel approaches based on various com-
putational intelligence tools are gaining popularity and attention from researchers [26]. In
particular, extensive applications of artificial intelligence techniques to hybrid microgrids
based on renewable energy sources have been highlighted, addressing problems such as
multi-criteria optimization, demand and supply forecasting, energy management [27], as
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well as fault detection, classification, and security [28]. A variety of techniques have been
applied in this regard, such as machine learning, genetic algorithms, neural networks,
swarm intelligence methods, and others. Among these, the multi-agent metaheuristic
algorithms, such as particle swarm optimization (PSO), are especially gaining in popularity.

PSO is a stochastic population-based meta-heuristic optimization method inspired by
swarm intelligence, such as the social behavior of bird flocking. It mimics the cooperative
behavior of birds in a flock, where individual birds work together to find food and protect
themselves from predators. Its first application to optimization problems was proposed by
Kennedy and Eberhart [29], and it has since been successfully applied in many fields [30].

In general, the optimization problem considered in this paper can be defined as:

min
x

f (x), (1)

where f : RN → R is the objective function, and vector x ∈ RN represents the problem’s
decision variables. The problem described by Equation (1) is treated as an unconstrained
optimization problem. However, only solutions belonging to a subset of the search space
are considered admissible. The feasible subset of the search space is defined as follows:

Ω =
[

xl
1, xu

1

]
×

[
xl

2, xu
2

]
× · · · ×

[
xl

N , xu
N

]
⊂ RN , (2)

where xl
j and xu

j are, respectively, the lower and upper bounds of the search space along
dimensions j, for j = 1, 2, . . . , N, where N is the number of decision variables.

PSO employs a swarm of particles, each representing a potential solution to an op-
timization problem. In a swarm of size M, these potential solutions are denoted by the
particles’ current positions:

xi = [xi1 , xi2 , . . . , xiN ]
T, for i = 1, 2, . . . , M, (3)

where xi is the position of the i-th particle. Each particle i, in addition to its position vector
xi, also has a velocity vector vi, defined as:

vi = [vi1 , vi2 , . . . , viN ]
T, for i = 1, 2, . . . , M. (4)

Additionally, the particles maintain the value of their most favorable personal position
so far, represented by pi. The overall best position g found by any particle in the swarm,
known as the swarm leader, is also tracked.

During the iterative optimization process, the best position of each particle pi is
maintained or updated. An update occurs when the particle’s new position yields a smaller
value of the objective function. For the i-th particle, the value of its personal best position
pk

i in the k-th iteration is updated according to the following rule:

pk
i =

{
xk

i if f (xk
i ) < f (pk−1

i )

pk−1
i if f (xk

i ) ⩾ f (pk−1
i )

. (5)

For iteration k, based on the personal best positions of all particles {pk
1, pk

2, . . . , pk
M}, the

swarm leader g is selected using the formula:

gk = arg min f
(
{pk

i }
)

, for i = 1, 2, . . . , M, (6)

where gk represents the best position discovered by any of the particles at iteration k.
The algorithm proceeds iteratively and, during this process, particles traverse the

search space, considering their individual optimal position as well as the collective best
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position. The velocity and position of each particle are updated based on these factors. At
iteration k, for each particle i, its velocity is updated first, using the following formula:

vk+1
i = χ

(
vk

i + c1rk
1

(
pk

i − xk
i

)
+ c2rk

2

(
gk − xk

i

))
. (7)

The particle’s velocity is then restricted to predetermined minimum and maximum values
(vmin and vmax) [31], followed by updating its position:

xk+1
i = xk

i + vk+1
i , i = 1, 2, . . . , M, (8)

where r1 and r2 are N-dimensional vectors of uniformly distributed random numbers
within the range [0, 1], c1 and c2 are acceleration coefficients, and χ is the so-called constric-
tion factor [32]. Factors c1 and c2 determine the range of particle motion in an iteration. In
most cases, they are identical.

In the optimization problem discussed in this article, each particle represents an RESS
operating profile for an assumed 24 h time horizon. It also stores values representing the
switching time of the SLs. This means that each particle has 25 elements (parameters), of
which the first 24 elements represent the operating points of the RESS in the subsequent
hours of the day, and the last element represents the time of switching on the SL (it was
assumed that the SL can be switched on at any hour of the day, but its operation must be
completed within the analyzed 24 h time horizon). During the optimization process, the
PSO algorithm utilizes OpenDSS simulation software (version 9.6.1.1) [33], which uses a
model of a building’s power supply system implemented specifically for the purpose of
the optimization procedure (the model is described in Section 3).

Figure 1 illustrates the sequence of steps of the PSO algorithm and how it interacts
with the OpenDSS environment. During the algorithm initialization, an initial swarm (3) is
generated. The values of swarm particles are randomly chosen from a set of permissible
solutions. Furthermore, each particle is assigned a randomized initial velocity value (4).
Then, during the initialization stage, the algorithm computes the objective function value
for every particle, which also serves as its initial best value. Based on these, the swarm
leader is determined (6). After the initialization step, the algorithm progresses to the
iterative phase. In each iteration, after determining the velocity of the particles (7) and
restricting them to their limiting values, new positions of the particles are calculated (8)
while respecting their permissible values. Based on the new positions of the particles,
the input OpenDSS model is modified. The primary algorithm initiates the simulation
process, which is executed by the OpenDSS simulation engine. Based on the result of the
simulations, an objective function value is calculated. Once the objective function values
are determined, the best positions of each particle in the swarm are updated (5), and the
leader of the swarm is selected (6). If the termination condition is not met, the algorithm
will continue its operation in a loop, and the described process will be repeated.

Execute Extract data

Updating swarm
particles
velocities

and positions

Input
OpenDSS

model

Updated
OpenDSS

model

OpenDSS
simulator

PSO operating path

OpenDSS operating path
Update
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algorithm
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objective
function
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Figure 1. PSO-based optimization algorithm flowchart.

From the standpoint of the problem examined in this article, specifically the optimiza-
tion of the operation of the RESS and SLs and the general optimization problem formulated
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by Equation (1), it is crucial to properly define the objective function’s form. According to
the European Commission’s regulation establishing a guideline on electricity balancing [34],
the settlement processes should ensure the financial neutrality of all Transmission System
Operators. An analogous principle was adopted in this article for the selection of the
objective function for the problem of optimizing the operation of the RESS and SLs. It was
assumed that the goal of the optimization was to maximize the daily financial neutrality of
the prosumer. This could be achieved by minimizing the objective function f , defined by
the formula:

f =

√√√√ 24

∑
h=1

(chPEX,h)
2, (9)

where PEX,h is the power exchange with the grid in hour h, and ch is the energy price in
hour h. The value of the power exchange with the grid in hour h can be calculated using
the following formula:

PEX,h = PFIX,h + PSHIFT,h − PPV,h − PRESS,h, (10)

where PFIX,h and PSHIFT,h are fixed and shiftable loads, respectively; PPV,h is the PV source
generation; and PRESS,h is the energy storage operation point. The value of PRESS,h can be
positive or negative (a positive sign indicates discharging, and a negative sign indicates
charging the battery). Therefore, by controlling the operating point of RESS and the
switching time of the SLs, it is possible to change the value of the power exchange with the
grid in individual hours and, as a result, the value of the optimized objective function (9).

Dynamic energy prices, changing on an hourly basis, were assumed to be used in the
calculations. This is the preferred method of settling transactions in the energy market in
the European Union [35]. The 24 h horizon, on the other hand, is a realistic optimization
horizon in terms of day-ahead electricity price and weather forecast availability. Dynamic
energy prices can have a positive or negative value (negative energy prices indicate a
general need to increase the flexibility of the power system; in the case of prosumers, this
phenomenon should stimulate an increase in self-consumption, e.g., by storing energy or
increasing load by switching on additional shiftable loads). Power exchange with the grid
can also be positive (import from the grid) or negative (export to the grid). As a result, the
products of price and power appearing in the formula (9) can also be positive or negative,
representing cost or income (Table 1). By squaring these products, the prosumer’s cost and
income are both minimized. In this way, the prosumer’s financial neutrality is maximized.
The application of the square root ensures better convergence of the optimization algorithm.

Table 1. Combinations of energy price and power exchange with the grid resulting in a cost or income
for the prosumer.

Quantity/Value
Power Exchange with the Grid

Positive Negative

Energy price
Positive Cost Income

Negative Income Cost

3. Overview of a Test Installation and Input Data

The simulations carried out to test the proposed optimization method were based
on measurements taken in a real residential detached house located in southern Poland.
The building was inhabited by four people, and the annual electricity consumption was
approximately 5000 kWh. The house was equipped with a rooftop PV micro-installation
with a rated power of 5.25 kW and a Li-ion battery RESS with a rated power of 5 kW and
a capacity of 20.8 kWh. The battery minimum SoC was set to 10%, while the maximum
SoC was 100%. There were typical electrical appliances in the household, among which,
the washing machine, clothes dryer, and dishwasher could be used as SLs. Dedicated
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energy meters were installed in the building’s power supply system to monitor PV genera-
tion, storage operation, total load, and power exchange with the grid. The results of the
measurements were recorded with a 1 min resolution.

Figures 2 and 3 show the operation of the building’s power supply system for
two consecutive weekdays in September 2023 (all figures in the article use Coordinated
Universal Time or UTC; in the summer in Poland, local time is UTC +02.00). No central
EMS was used when the measurements were taken, as the RESS was being controlled by its
own rule-based algorithm that minimized the power exchange with the grid. In addition,
no DSM was used during the measurements.
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Figure 2. PV generation, total load, RESS operation, and power exchange with the grid on 20 Septem-
ber 2023, recorded at 1 min resolution in the analyzed residential building.
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Figure 3. PV generation, total load, RESS operation, and power exchange with the grid on 21 Septem-
ber 2023, recorded at 1 min resolution in the analyzed residential building.

The days of 20 September (Wednesday) and 21 September (Thursday) were selected for
evaluating the proposed optimization method due to their similar PV generation and load
profiles. The operation of the RESS, which was fully charged around noon, was also similar.
On both days, the operation of a potential SL could also be observed in the afternoon, after
the PV source generation was completed. However, significant differences in the profiles
of hourly electricity market prices were recorded on these days [36], as shown in Figure 4.
The 21 September price profile had a typical shape, with stable prices during the day and
higher prices in the evening peak. In contrast, the 20 September price profile showed a
significant reduction in energy prices between 9 a.m. and 2 p.m., with negative prices
between 10 a.m. and 1 p.m. This was the result of the high generation of renewable energy
sources, particularly PV sources, during these hours [37]. The described common features
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and differences for the chosen days allowed us to assess the impact of energy prices on the
results of optimizing the operation of the RESS and SLs.
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Figure 4. Hourly electricity market prices on 20 September and 21 September 2023 used in simulations
(1 EUR is approximately 4.5 PLN).

Since electricity prices are quoted with an hourly resolution, all the simulations de-
scribed in this article were carried out with an hourly resolution. The hourly energy
balances also corresponded to the net-billing system, which was in use in Poland. Thus, the
daily operating profiles of the building’s power supply system recorded at 1 min resolution
(Figures 2 and 3) had to be transformed to an hourly resolution. Hourly power values
were determined in such a way that the hourly energy quantities for 1 min and hourly
resolution were equal. Figures 5 and 6 show the recorded daily profiles transformed to
hourly resolution. The power consumed by the electrical appliances (washing machine in
Figure 5 and dishwasher in Figure 6), treated as SLs in the simulations, is marked with
green bars.
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Figure 5. PV generation, total load, RESS operation, and power exchange with the grid on 20 Septem-
ber 2023, transformed to hourly resolution.

Simulations were carried out using a model of the building’s power supply system
implemented in OpenDSS software [33]. The model built in the OpenDSS environment
considered the actual parameters of individual devices and their most important con-
straints, such as the SoC constraints for the RESS. An electrical topology in which the loads
(shiftable and fixed), the RESS, and the PV source were connected to the single AC bus,
which was directly connected to the low voltage (LV) grid, was employed (Figure 7). The
measured operating profiles of the individual components of the building’s power supply
system were used to tune the model. During the simulations, the daily profiles of loads
(fixed PFIX and shiftable PSHIFT), PV source generation (PPV), energy storage operation
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(PRESS), and power exchange with the grid (PEX) were recorded. The value of the objective
function (9) was determined based on the recorded value of power exchanged with the
grid (PEX) and the hourly electricity prices shown in Figure 4. Simulations were carried
out separately for the two days analyzed, each time starting from the battery SoC resulting
from the measurements.
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Figure 6. PV generation, total load, RESS operation, and power exchange with the grid on 21 Septem-
ber 2023, transformed to hourly resolution.

LV grid

Fixed
load

RESS
Shiftable

load
PV

source

AC bus

AC AC

DC DC

PRESSPPV

PEX

PFIX PSHIFT

Figure 7. Building’s power supply system model applied in simulations.

4. Simulation Results and Discussion

Two variants of the simulation were carried out to test the proposed optimization
algorithm for each of the days analyzed. In the first variant, only the daily operation of the
RESS was optimized, while in the second variant, both the operation of the RESS and the
switching time of the SLs were optimized. Figure 8 shows the daily operating profiles of
the RESS determined using the PSO algorithm, while Figure 9 shows the SoC of the storage.
For comparison, the measured values of these quantities, resulting from the RESS control
based on a factory-implemented rule-based algorithm, are also shown. Figure 10, on the
other hand, shows the total load in the building, both measured and after optimizing the
switching time of the SLs.
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Figure 8. The measured and optimized daily operating profiles of the RESS (a) on 20 September 2023
and (b) on 21 September 2023.
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Figure 9. RESS SoC resulting from the measured and optimized operating profiles of the RESS (a) on
20 September 2023 and (b) on 21 September 2023.
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Figure 10. The measured and optimized total load of the residential building (a) on 20 September
2023 and (b) on 21 September 2023.

On 20 September (a day with negative energy prices), from midnight to 9 a.m., the
RESS operation determined by the optimization algorithm (in both variants) was the same
as the RESS operation recorded at that time (Figure 8a). Also, in the evening and the first
part of the following night, the optimization results coincided with the measurements. The
major differences in storage operation occurred between 9 a.m. and 3 p.m., i.e., during the
period when energy prices were low. From 9 a.m. to 12 p.m., the RESS charging power
calculated by the PSO algorithm was lower than the charging power resulting from the
measurements. Controlling the storage in this way allowed it to operate in charging mode
for a longer time compared to the situation when the storage was controlled by a rule-based
algorithm (Figure 9a). As a result, the operation of the RESS was better adapted to the
generation profile of the PV source.

On the second analyzed day, 21 September, differences in the RESS operating profile
determined by the PSO algorithm and the measured profile were already noticeable at
night (Figure 8b). During this period, the PSO algorithm controlled the RESS to operate
in the discharge mode with a higher power than the power determined by the rule-based
algorithm. Part of the discharged energy was used to cover the building’s demand, while
the remaining part was supplied to the grid. This was beneficial for both the power
system and the prosumer. Discharging the RESS with a higher power at night reduces
the power generated from non-renewable resources. At the same time, the RESS became
better prepared to operate in charging mode during the day (Figure 9b), when energy
was generated by the PV source, which was noticeable around noon. On both the days
analyzed, the effect of shifting load from evening to late morning hours on the operation
of the RESS was also evident. During the hours when the demand in the building had
increased (Figure 10), the RESS was charged with lower power, and the capacity saved in
this way was utilized at other times.

A measurable effect of optimizing the RESS and the SL was to increase the self-
consumption of energy produced by the PV source compared to the situation when the
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storage was controlled by a rule-based algorithm. This is shown in Figure 11. After
the application of the PSO, on the first analyzed day (Figure 11a), the self-consumption
admittedly decreased from 9 a.m. to 12 p.m., but it was higher in the remaining hours
in relation to the measurements. As a result, the total daily self-consumption increased
from 43.1% to 46.9% after optimizing the RESS operation (Table 2). On the other hand,
after optimizing the RESS and SL, the daily self-consumption increased to 48.0%. An even
greater increase in self-consumption was recorded on 21 September (Figure 11b). On that
day, the daily self-consumption increased from 36.7% when controlling the RESS with a
rule-based algorithm to 41.8% after applying PSO. There was a further increase to 48.5%
after optimizing storage and shiftable load.

Table 2. The daily performance of the analyzed residential building’s power supply system, both
measured and resulting from the application of PSO.

Results Obtained with:
PV

Generation Load
RESS Operation Grid Exchange Self-

Consumption
Objective
FunctionCharge Discharge Import Export

kWh kWh kWh kWh kWh kWh % PLN

20 September 2023

Measurements 26.0 9.3 14.8 5.1 0.6 7.6 43.1 −0.65
RESS optimization 26.0 9.3 15.7 5.6 0.0 6.6 46.9 0.00
RESS & SL optimization 26.0 9.3 15.7 4.6 0.0 5.6 48.0 0.00

21 September 2023

Measurements 22.5 9.1 7.2 5.1 0.6 11.8 36.7 −5.12
RESS optimization 22.5 9.1 12.2 6.8 0.0 7.9 41.8 −3.84
RESS & SL optimization 22.5 9.1 14.5 9.0 0.0 7.8 48.5 −3.64
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Figure 11. Self-consumption of PV energy resulting from the measured and optimized operating
profiles of the RESS and SL (a) on 20 September 2023 and (b) on 21 September 2023.
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A change in the level of self-consumption affects the exchange of energy with the LV
distribution network. This is illustrated in Figure 12. After the application of PSO, only
the export of energy to the grid occurred. On 20 September (Figure 12a), energy exports
occurred for five hours, from 9 a.m. to 2 p.m., with a clear trend of reduction during
hours when PV generation was higher. This phenomenon was closely related to the level
of energy prices during these hours. From 9 a.m. to 10 a.m. and from 1 p.m. to 2 p.m.,
energy prices were at their highest and amounted to 0.01 PLN/kWh. From 10 a.m. to
11 a.m. and from 12 p.m. to 1 p.m., the prices dropped to −0.01 PLN/kWh, and from
11 a.m. to 12 p.m., the price was −0.02 PLN/kWh. Thus, to reduce the costs incurred by
the prosumer as a result of the energy exports during hours when prices were negative,
the PSO algorithm adequately reduced the exchange with the grid. This means that, when
using an optimization-based EMS, energy prices can be an appropriate tool to influence the
operating profiles of the RESS and the SL and, thus, the value of power exchanged with the
grid. After optimizing the RESS operating profile, on 20 September, the daily energy export
to the grid decreased from 7.6 kWh to 6.6 kWh (Table 2). The use of DSM further reduced it
by 1 kWh. An even more pronounced reduction in the amount of energy exported to the
grid as a result of PSO application was recorded on 21 September (Figure 12b). On that day,
export to the grid decreased from 11.8 kWh to 7.9 kWh in the first optimization variant and
to 7.8 kWh in the second variant.
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Figure 12. Power exchange with the grid resulting from the measured and optimized operating
profiles of the RESS and SL (a) on 20 September 2023 and (b) on 21 September 2023.

In the method applied to optimize the operation of RESS and SL, it was assumed
that the objective function was to maximize the daily financial neutrality of the prosumer.
This required minimizing both cost and income. The results of the calculations are shown
in Figure 13 (positive values represent the cost for the prosumer, and negative values
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represent their income). On 20 September (Figure 13a), the prosumer earned income or
incurred a cost only from 9 a.m. to 2 p.m., as there is no exchange of energy with the
grid during the remaining hours. However, since energy prices were close to zero at this
time, the income generated and the costs incurred were negligible and offset each other.
As a result, complete financial neutrality of the prosumer was achieved on that day. The
situation was slightly different on the next analyzed day. On 21 September (Figure 13b),
after applying the PSO, the prosumer did not incur any costs, since the import of energy
from the grid was zero and the energy prices on that day were exclusively positive. Instead,
the prosumer received income for the energy sold. However, after optimization, the total
daily income was approximately 25% lower than in the case when the RESS was controlled
by a rule-based algorithm. Thus, the financial neutrality of the prosumer also increased
on that day. A summary of the analysis results for both days is shown in Table 2. Detailed
results are given in Appendix A (Tables A1–A6).
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Figure 13. The prosumer’s cost (positive values) and income (negative values) calculated based
on measured and optimized power exchange with the grid (a) on 20 September 2023 and (b) on 21
September 2023.

When carrying out the simulations described above, a series of experiments were
performed to observe the convergence process of the PSO algorithm. Figure 14 shows
the results of the subsequent 10 daily PSO-optimized operating profiles of the RESS on
20 September 2023 (the daily operating profiles of the RESS shown in Figure 8 are the
average of the 10 PSO optimizations). Additionally, the convergence curves of the PSO al-
gorithm executions for the corresponding RESS optimization results displayed in Figure 14
are shown in Figure 15. The curves show decreasing values of the objective function for the
swarm leader of each PSO run in successive iterations. A swarm of 40 particles was used for
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these experiments. The PSO algorithm’s parameter values χ and c1, c2 were experimentally
selected and set to χ = 0.73 and c1 = c2 = 2.25. The average duration of a single PSO
optimization, obtained from 30 test runs, was approximately 22 s, with the maximum
number of iterations set at 320. All simulations were carried out on a computer with an
Intel Core i7-3770K CPU, 3.5 GHz with 16 GB of RAM, running on a 64-bit Windows 10
operating system.
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Figure 14. Results of the subsequent 10 PSO-based optimizations of the RESS operating profiles on 20
September 2023.
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Figure 15. Convergence curves for 10 consecutive runs of the PSO algorithm obtained for the RESS
optimization variant.

5. Home Energy Management System Architecture

An EMS designed to improve the energy management of residential buildings by
controlling and scheduling the use of household equipment is called a home energy manage-
ment system (HEMS) [38]. Figure 16 shows the HEMS architecture applying the proposed
PSO-based method to optimize the operating profiles of the RESS and the SLs. This is a
typical HEMS architecture [39], containing various household appliances, a PV source, an
RESS, an electric vehicle, and a central controller. Household appliances are divided into
conventional appliances, which require a smart plug, and smart appliances. The central
controller is the core component of HEMS, and it optimizes and controls the energy usage
in the household. Wired and wireless systems are used for communication between the
corresponding devices. A human–machine interface (HMI) displays information from the
controller, smart meters, sensors, smart plugs, and the smart appliances of the HEMS.
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Figure 16. The HEMS architecture applying the proposed PSO-based method to optimize the
operating profiles of the RESS and SLs.

The HEMS shown in Figure 16 is in the implementation stage in the residential building
where the measurements used in this article were taken. A second analogous HEMS is
being implemented in a similar building, also equipped with a PV source, RESS, and SLs.
The designed HEMS will operate according to the following principles. At the planning
stage, the central controller will collect information on the day-ahead energy prices, the
PV source generation forecast, the building’s baseline demand forecast, and the storage’s
SoC. The PV generation forecast will be based on numerical weather forecasts [40]. The
building’s baseline demand forecast will be determined using historical load profiles [41].
Using the HMI, the user will enter information into the system about the time intervals in
which SLs can be switched on. The planned operating programs of these appliances will
also be provided, and HEMS will download appropriate load profiles from the database
containing data analogous to the load profiles described in [42]. Based on the described
input data, the PSO algorithm implemented in the central controller will determine the
RESS operating profile and the times of switching on the SLs. The proposed HEMS will use
a moving horizon of 24 h. The operating schedule will be updated in accordance with the
update time of numerical weather forecasts. During the implementation of the developed
plan, data from energy meters will be recorded. In this way, the results of the applied
forecasting and optimization methods will be verified and improved.

The practical implementation of HEMS in a real environment such as a residential
building requires meeting several challenges, both technical and non-technical in nature.
The first issue that determines the quality of the decisions developed by the HEMS is to
ensure the highest possible accuracy of generation and load forecasts in the building. Other
technical challenges include the need to equip many electrical devices with monitoring
and control systems and to build a reliable communication system, which must also
ensure a correspondingly high level of cybersecurity. An additional problem may be the
need to integrate devices from different manufacturers, operating according to different
communication standards or having no communication system at all, which directly affects
the cost of system implementation. In turn, a non-technical challenge is the need to
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raise awareness of people in the field of energy use and conservation so that residents
of buildings equipped with HEMS will more willingly accept a situation in which some
decisions are not made by them but by an automatic control system. It is obvious that the
acceptance of such a situation will be easier for the residents when the decisions made by
the HEMS system do not reduce their living comfort. This is another challenge that should
be considered at the HEMS design and implementation stage.

6. Conclusions

The application of PV micro-installations to cover the electric energy needs of residen-
tial buildings is becoming increasingly popular worldwide. Unfortunately, the discrepancy
between generation and load profiles results in low self-consumption, which means that
a large part of the generated energy is transmitted to the LV grid, negatively affecting its
operation. The remedy for this problem may be the use of RESSs and the implementation
of DSM schemes, which involves switching on SLs at the appropriate time. However, such
an extensive power supply system for a building requires a properly designed HEMS.

In this study, a PSO-based method was proposed to optimize the operation of an RESS and
the switching time of SLs. The objective was to maximize the prosumer’s financial neutrality,
which was calculated based on dynamic energy prices. The proposed optimization method was
validated using measurement results taken in a building equipped with an RESS controlled
by a rule-based algorithm. Compared to the situation when the RESS was controlled by the
rule-based algorithm, the simulation results demonstrated an increase in the self-consumption
of produced energy. After the application of PSO, the total daily self-consumption increased
from 43.1% to 46.9% on the first analyzed day and from 36.7% to 41.8% on the second day.
An even greater increase was recorded after optimizing the RESS and SLs. In this case, the
self-consumption increased to 48.0% on the first day and to 48.5% on the second day.

The increase in self-consumption affects the exchange of energy with the LV distri-
bution grid. After optimizing the RESS operating profile, on the first analyzed day, the
daily energy export to the grid decreased from 7.6 kWh to 6.6 kWh (13%), while on the
second day it decreased from 11.8 kWh to 7.9 kWh (33%). The use of DSM further reduced
the daily energy export to the grid. In addition, the proposed PSO-based algorithm also
optimized the amount of energy exported to the grid at specific hours of the day, reducing
exports at a time when PV generation was at its highest. This was particularly noticeable
on the day with negative energy prices that occurred as a result of excess energy from
renewable sources across the power system. This means that, using the proposed PSO-
based HEMS, it is possible to use price signals from the wholesale energy market to control
the operation of the individual RESS and the SLs in a way that improves the LV network
operating conditions. Therefore, the proposed algorithm not only benefits the prosumer
by maximizing self-consumption, but it also decreases the investment pressure on the
distribution system operator by minimizing the negative grid impact of the prosumer’s
PV micro-installations. The proposed architecture of the HEMS is generic and practically
applicable to any residential building, so it can be widely implemented in such locations.

Further research will include the integration of other renewable energy sources
(e.g., wind microturbines) and electric appliances used to ensure thermal comfort in the
building (heat pump, air conditioning, heat storage) into the HEMS system. The effects of
controlling the prosumer power supply system according to other objective functions (e.g.,
cost minimization) will also be analyzed, and the impact of different control strategies on
the operation of the low-voltage distribution network will be compared.

Author Contributions: Conceptualization, R.K.; methodology, R.K., M.P. and T.N.; validation, R.K.,
M.P. and T.N.; formal analysis, R.K., M.P. and T.N.; investigation, R.K., M.P. and T.N.; resources,
R.K., M.P. and T.N.; data curation, R.K., M.P. and T.N.; writing—original draft preparation, R.K.
and M.P.; writing—review and editing, R.K., M.P. and T.N.; visualization, M.P. and R.K.; PSO-based
optimization algorithm design and implementation, M.P.; supervision, R.K. All authors have read
and agreed to the published version of the manuscript.



Energies 2024, 17, 5264 18 of 23

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors report no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DP Dynamic Programming
DSM Demand-Side Management
EMS Energy Management System
HEMS Home Energy Management System
MILP Mixed-Integer Linear Programming
OPF Optimal Power Flow
PSO Particle Swarm Optimization
PV Photovoltaic
RESS Residential Energy Storage System
UC Unit Commitment
SoC State of Charge
LV Low Voltage
SL Shiftable Load
HMI Human–Machine Interface

Appendix A

Here we present detailed results of the daily performance of the analyzed residential
building’s power supply system, both measured and resulting from the application of PSO.
A positive value of grid exchange indicates import energy from the grid, while negative
value indicates export energy to the grid. A positive value of RESS power indicates
discharging, and a negative value indicates charging of the battery.

Table A1. The daily performance of the analyzed residential building’s power supply system on
20 September 2023—measurements.

Hour
Price PV

Generation Load RESS
Operation SoC Grid

Exchange
Self-

Consumption
Objective
Function

PLN/kWh Wh Wh Wh % Wh % PLN/h

0 0.4431 0 174 144 45 30 0 0.0131
1 0.4246 0 225 194 44 31 0 0.0131
2 0.4241 0 179 149 43 29 0 0.0124
3 0.4415 0 190 164 42 26 0 0.0116
4 0.4489 12 469 459 41 −2 100 −0.0010
5 0.3633 100 249 116 38 33 100 0.0120
6 0.4118 184 308 93 38 30 100 0.0125
7 0.4431 219 237 −16 37 34 100 0.0151
8 0.3098 2541 342 −2222 37 22 100 0.0067
9 0.0100 3564 301 −3297 46 34 100 0.0003

10 −0.0141 4080 292 −3817 60 29 100 −0.0004
11 −0.0252 4239 334 −3939 77 33 100 −0.0008
12 −0.0141 4012 453 −1324 93 −2237 44 0.0316
13 0.0100 3609 616 −82 100 −2911 19 −0.0291
14 0.2927 2404 327 −87 100 −1990 17 −0.5825
15 0.7134 959 518 5 99 −446 53 −0.3180
16 0.7437 63 309 210 99 36 100 0.0266
17 0.8262 0 1534 1500 98 31 0 0.0258
18 0.7415 0 547 517 90 30 0 0.0219
19 0.7000 0 478 452 87 26 0 0.0182
20 0.3737 0 416 387 85 29 0 0.0108
21 0.4456 0 266 228 83 37 0 0.0167
22 0.4443 0 314 273 81 40 0 0.0179
23 0.4484 0 245 211 80 33 0 0.0150
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Table A2. The daily performance of the analyzed residential building’s power supply system on
20 September 2023—RESS optimization.

Hour
Price PV

Generation Load RESS
Operation SoC Grid

Exchange
Self-

Consumption
Objective
Function

PLN/kWh Wh Wh Wh % Wh % PLN/h

0 0.4431 0 174 175 45 −1 0 −0.0005
1 0.4246 0 225 227 44 −2 0 −0.0008
2 0.4241 0 179 181 43 −2 0 −0.0008
3 0.4415 0 190 192 42 −1 0 −0.0006
4 0.4489 12 469 459 41 −1 100 −0.0006
5 0.3633 100 249 151 38 −2 100 −0.0008
6 0.4118 184 308 125 37 −1 100 −0.0005
7 0.4431 218 237 20 36 −2 100 −0.0007
8 0.3098 2542 342 −2197 36 −3 100 −0.0008
9 0.0100 3564 301 −1121 45 −2141 40 −0.0214

10 −0.0141 4080 292 −2784 50 −1004 75 0.0141
11 −0.0252 4239 334 −3570 62 −335 92 0.0085
12 −0.0141 4013 453 −2486 77 −1073 73 0.0152
13 0.0100 3609 616 −1009 87 −1985 45 −0.0198
14 0.2927 2404 327 −2074 91 −3 100 −0.0009
15 0.7134 959 518 −441 100 0 100 0.0001
16 0.7437 63 309 246 100 0 100 0.0000
17 0.8262 0 1534 1534 99 0 0 0.0000
18 0.7415 0 547 547 90 0 0 −0.0001
19 0.7000 0 478 478 87 0 0 0.0000
20 0.3737 0 416 416 84 0 0 0.0000
21 0.4456 0 266 266 82 0 0 0.0001
22 0.4443 0 314 314 80 0 0 0.0000
23 0.4484 0 245 244 78 0 0 0.0001

Table A3. The daily performance of the analyzed residential building’s power supply system on
20 September 2023—RESS & SL optimization.

Hour
Price PV

Generation
Base
Load

Shifted
Load

Total
Load

RESS
Operation SoC Grid

Exchange
Self-

Consumption
Objective
Function

PLN/kWh Wh Wh Wh Wh Wh % Wh % PLN/h

0 0.4431 0 174 0 174 175 45 −1 0 −0.0006
1 0.4246 0 225 0 225 227 44 −2 0 −0.0008
2 0.4241 0 179 0 179 180 43 −1 0 −0.0006
3 0.4415 0 190 0 190 192 42 −1 0 −0.0006
4 0.4489 12 469 0 469 458 41 −1 100 −0.0005
5 0.3633 100 249 0 249 151 38 −2 100 −0.0006
6 0.4118 184 308 0 308 125 37 −1 100 −0.0006
7 0.4431 218 237 0 237 20 36 −1 100 −0.0004
8 0.3098 2542 342 0 342 −2198 36 −1 100 −0.0005
9 0.0100 3564 301 0 301 −1480 45 −1782 50 −0.0178
10 −0.0141 4080 292 0 292 −2922 52 −866 79 0.0122
11 −0.0252 4239 334 1000 1334 −2638 64 −267 94 0.0067
12 −0.0141 4013 453 0 453 −2706 75 −854 79 0.0121
13 0.0100 3609 616 0 616 −1221 86 −1772 51 −0.0177
14 0.2927 2404 327 0 327 −2075 91 −2 100 −0.0006
15 0.7134 959 518 0 518 −441 100 0 100 0.0001
16 0.7437 63 309 0 309 246 100 0 100 −0.0001
17 0.8262 0 534 0 534 534 99 0 0 0.0000
18 0.7415 0 547 0 547 546 96 0 0 0.0001
19 0.7000 0 478 0 478 478 92 0 0 −0.0001
20 0.3737 0 416 0 416 416 90 0 0 0.0001
21 0.4456 0 266 0 266 266 87 0 0 0.0000
22 0.4443 0 314 0 314 313 86 0 0 0.0000
23 0.4484 0 245 0 245 245 84 0 0 −0.0001
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Table A4. The daily performance of the analyzed residential building’s power supply system on
21 September 2023—measurements.

Hour
Price PV

Generation Load RESS
Operation SoC Grid

Exchange
Self-

Consumption
Objective
Function

PLN/kWh Wh Wh Wh % Wh % PLN/h

0 0.4487 0 244 212 78 33 0 0.0147
1 0.4487 0 197 167 77 30 0 0.0135
2 0.4487 0 170 139 76 31 0 0.0141
3 0.4487 0 241 208 76 34 0 0.0151
4 0.4983 6 316 275 74 34 100 0.0171
5 0.4846 93 301 174 72 34 100 0.0165
6 0.4846 171 243 42 72 29 100 0.0141
7 0.4846 207 263 24 71 32 100 0.0154
8 0.4535 2451 335 −2148 71 31 100 0.0142
9 0.4272 3518 257 −3287 80 25 100 0.0108

10 0.4267 3938 352 −1466 93 −2120 46 −0.9047
11 0.4272 4072 279 −83 100 −3711 9 −1.5854
12 0.4443 3559 447 −87 100 −3024 15 −1.3436
13 0.4516 2380 600 −74 99 −1705 28 −0.7701
14 0.6471 1313 342 −84 99 −887 32 −0.5738
15 0.6836 725 402 42 99 −365 50 −0.2498
16 0.7388 49 1271 1161 98 60 100 0.0440
17 0.7438 0 810 780 93 32 0 0.0241
18 0.6471 0 412 383 89 29 0 0.0188
19 0.6385 0 453 426 87 27 0 0.0173
20 0.4645 0 369 343 84 26 0 0.0119
21 0.4458 0 288 254 82 34 0 0.0153
22 0.4349 0 322 291 81 31 0 0.0135
23 0.4354 0 229 197 79 33 0 0.0143

Table A5. The daily performance of the analyzed residential building’s power supply system on
21 September 2023—RESS optimization.

Hour
Price PV

Generation Load RESS
Operation SoC Grid

Exchange
Self-

Consumption
Objective
Function

PLN/kWh Wh Wh Wh % Wh % PLN/h

0 0.4487 0 245 408 78 −164 0 −0.0734
1 0.4487 0 198 367 76 −170 0 −0.0761
2 0.4487 0 170 343 74 −172 0 −0.0774
3 0.4487 0 241 406 72 −165 0 −0.0740
4 0.4983 6 316 443 69 −133 100 −0.0661
5 0.4846 93 301 351 67 −143 100 −0.0694
6 0.4846 171 243 216 65 −144 100 −0.0700
7 0.4846 207 263 196 64 −140 100 −0.0680
8 0.4535 2451 335 −1998 62 −118 95 −0.0536
9 0.4272 3518 257 −3125 71 −136 96 −0.0581

10 0.4267 3938 352 −3445 84 −141 96 −0.0601
11 0.4272 4071 279 −3658 98 −135 97 −0.0576
12 0.4443 3559 447 −2 100 −3110 13 −1.3817
13 0.4516 2380 600 −2 100 −1778 25 −0.8029
14 0.6471 1313 342 −2 100 −969 26 −0.6271
15 0.6836 725 402 −2 100 −322 56 −0.2201
16 0.7388 49 1271 1221 100 1 100 0.0006
17 0.7438 0 810 811 93 −1 0 −0.0004
18 0.6471 0 412 413 88 −1 0 −0.0006
19 0.6385 0 453 451 86 2 0 0.0013
20 0.4645 0 369 370 84 0 0 0.0000
21 0.4458 0 288 288 81 0 0 0.0000
22 0.4349 0 322 324 80 −2 0 −0.0007
23 0.4354 0 230 230 78 −1 0 −0.0004
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Table A6. The daily performance of the analyzed residential building’s power supply system on
21 September 2023—RESS & SL optimization.

Hour
Price PV

Generation
Base
Load

Shifted
Load

Total
Load

RESS
Operation SoC Grid

Exchange
Self-

Consumption
Objective
Function

PLN/kWh Wh Wh Wh Wh Wh % Wh % PLN/h

0 0.4487 0 244 0 244 857 78 −612 0 −0.2746
1 0.4487 0 197 0 197 806 73 −609 0 −0.2732
2 0.4487 0 170 0 170 800 69 −630 0 −0.2825
3 0.4487 0 241 0 241 854 64 −613 0 −0.2751
4 0.4983 6 316 0 316 831 59 −520 100 −0.2592
5 0.4846 93 301 0 301 742 54 −534 100 −0.2586
6 0.4846 171 243 0 243 609 50 −538 100 −0.2605
7 0.4846 207 263 0 263 606 47 −550 100 −0.2666
8 0.4535 2451 335 0 335 −1674 43 −442 82 −0.2004
9 0.4272 3518 257 0 257 −2741 50 −520 85 −0.2222

10 0.4267 3938 352 800 1152 −2272 62 −513 87 −0.2190
11 0.4272 4071 279 400 679 −2888 71 −505 88 −0.2157
12 0.4443 3559 447 0 447 −2640 83 −471 87 −0.2095
13 0.4516 2380 600 0 600 −1325 94 −455 81 −0.2054
14 0.6471 1313 342 0 342 −971 100 1 100 0.0005
15 0.6836 725 402 0 402 −2 100 −322 56 −0.2200
16 0.7388 49 471 0 471 425 100 −3 100 −0.0023
17 0.7438 0 410 0 410 412 98 −2 0 −0.0015
18 0.6471 0 412 0 412 409 95 3 0 0.0022
19 0.6385 0 453 0 453 458 93 −4 0 −0.0026
20 0.4645 0 369 0 369 371 90 −1 0 −0.0007
21 0.4458 0 288 0 288 285 88 3 0 0.0014
22 0.4349 0 322 0 322 317 87 5 0 0.0020
23 0.4354 0 229 0 229 218 85 11 0 0.0048
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40. Korab, R.; Kandzia, T.; Naczyński, T. Short-Term Forecasting of Photovoltaic Power Generation. Prz. Elektrotechniczny 2023,
97, 31–37. [CrossRef]

http://dx.doi.org/10.1016/j.segan.2023.101030
http://dx.doi.org/10.1109/PEDES49360.2020.9379895
http://dx.doi.org/10.3390/en16010317
http://dx.doi.org/10.3390/en15061969
http://dx.doi.org/10.1186/s42162-023-00262-7
http://dx.doi.org/10.1016/j.apenergy.2021.116760
http://dx.doi.org/10.17877/DE290R-7262
http://dx.doi.org/10.1109/TSG.2013.2294187
http://dx.doi.org/10.1016/j.apenergy.2015.10.036
http://dx.doi.org/10.1049/rpg2.12002
http://dx.doi.org/10.3390/en12112098
http://dx.doi.org/10.1016/j.est.2022.105865
http://dx.doi.org/10.21833/ijaas.2021.07.007
http://dx.doi.org/10.3390/en16186613
http://dx.doi.org/10.3390/en16041786
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/s11831-021-09694-4
http://dx.doi.org/10.1109/4235.985692
https://www.epri.com/pages/sa/opendss
https://www.epri.com/pages/sa/opendss
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2195&from=LV
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R2195&from=LV
https://fsr.eui.eu/publications/?handle=1814/68899
https://www.pse.pl/web/pse-eng/data/balancing-market-operation/settlement-prices
https://www.pse.pl/web/pse-eng/data/balancing-market-operation/settlement-prices
http://dx.doi.org/10.1016/j.eneco.2019.104532
http://dx.doi.org/10.1109/ACCESS.2020.3005244
http://dx.doi.org/10.1109/ACCESS.2023.3248502
http://dx.doi.org/10.15199/48.2023.09.06


Energies 2024, 17, 5264 23 of 23

41. Kychkin, A.V.; Chasparis, G.C. Feature and Model Selection for Day-Ahead Electricity-Load Forecasting in Residential Buildings.
Energy Build. 2021, 249, 111200. [CrossRef]

42. Papadopoulos, T.; Barzegkar-Ntovom, G.; Kryonidis, G.; Doukas, D.; Marinopoulos, A.; Covrig, C.-F.; Kontis, E. High Resolution
Profiles of Residential Appliances. IEEE Dataport. 18 February 2020. Available online: https://ieee-dataport.org/open-access/
high-resolution-profiles-residential-appliances (accessed on 11 September 2024). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.enbuild.2021.111200
https://ieee-dataport.org/open-access/high-resolution-profiles-residential-appliances
https://ieee-dataport.org/open-access/high-resolution-profiles-residential-appliances
http://dx.doi.org/10.21227/yz3w-ca81

	A dynamic thermal model for a photovoltaic module under varying atmospheric conditions
	Introduction
	Thermal models for photovoltaic modules – a literature review
	The source of measurements and measurement results for the selected day
	Adopted metrics for evaluating the thermal models
	Evaluation of empirical models for the estimation of photovoltaic module temperature
	The International Electrotechnical Commission thermal model of oil-immersed power transformers
	Finite difference thermal model of a photovoltaic module
	Evaluation of the proposed finite difference thermal models of a photovoltaic module
	Optimization of the finite difference thermal models' coefficients by the Particle Swarm Optimization method
	Evaluation of finite difference thermal models with optimized coefficients
	Generalized form of the finite difference thermal model of a photovoltaic module
	Comparison of the generalized finite difference model with another dynamic thermal model of photovoltaic module
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix
	References

	Introduction
	Control Algorithm for Maximizing the Prosumer's Financial Neutrality
	Overview of a Test Installation and Input Data 
	Simulation Results and Discussion
	Home Energy Management System Architecture
	Conclusions
	Appendix A
	References

