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“And the Earth becomes my throne, I adapt to the unknown, under wandering stars
I’ve grown, by myself but not alone.”

James Hetfield
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Chapter 1

Introduction

1.1 Understanding Image Resolution

At its core, image resolution defines the level of detail an image can hold. It is
typically expressed in terms of pixels for digital images, indicating the num-
ber of individual pixels present in the image both horizontally and vertically.
The more pixels an image contains, the more detailed it can be. This detail
affects not only the clarity and sharpness but also the potential accuracy of
any analysis derived from the image [38].

In the realm of digital photography and imaging, the resolution is para-
mount [11]. As images serve as a primary medium of conveying information
in various domains, from medicine [23] to satellite imaging [55], the clarity
and detail they provide can be crucial.

However, obtaining images of higher spatial resolution is not always fea-
sible. Physical limitations of imaging sensors [35], constraints in bandwidth
and storage [60], and unfavourable conditions during image capture (like
atmospheric disturbances in satellite imaging) [121] can lead to images that
lack the desired detail or clarity.

1.2 Motivation for Super-Resolution

Given the significant importance of image clarity across multiple domains
and the inherent challenges in obtaining high-resolution (HR) images directly,
there is a pressing need for techniques that can enhance the spatial resolution
of existing images [156]. This is where the concept of super-resolution recon-
struction (SRR) enters the frame. The ability to derive HR images from low-
resolution (LR) counterparts can unlock new possibilities, from refining vi-
sual content for entertainment and education to enhancing critical decision-
making in fields like medicine, geospatial studies, and defence.
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Furthermore, as the world becomes increasingly digitized, the volume of
visual data available for analysis grows exponentially [32]. There is a sig-
nificant amount of LR data already in existence, and the ability to enhance
these data can provide fresh insights and understanding. However, merely
increasing the pixel count of an image does not necessarily equate to an im-
provement in its true resolution [131]. Specifically, in remote sensing applica-
tions, there exists a critical distinction between nominal and effective ground
sampling distance (GSD) [93]. While the nominal GSD quantifies how much
real-world distance each pixel represents, the effective GSD conveys the true
clarity or discernibility of the image beyond mere pixel count. The challenge
then becomes twofold: to increase the spatial resolution while simultane-
ously enhancing the authentic details and textures in the image. Achieving
this demands sophisticated techniques capable of inferring and reintroduc-
ing details absent in the original LR image, rendering super-resolution recon-
struction a complex yet highly rewarding endeavour.

The blend of deep learning with SRR provides a promising avenue to
tackle this challenge [27]. With its ability to learn from vast amounts of data
and model intricate, non-linear relationships, deep learning can potentially
understand and recreate the details in LR images with unprecedented accu-
racy. In essence, the journey to refine and enhance image resolution using
SRR techniques, especially those rooted in deep learning, is not just a pursuit
of academic interest. It holds the promise of vast real-world applications,
driving improvements in numerous fields and paving the way for innova-
tions that hinge on the clarity and detail of visual data.

1.3 Differentiating Single-Image and Multi-Image

Super-Resolution

The super-resolution field is divided into two primary branches: single-image
super-resolution (SISR) and multi-image super-resolution (MISR). Both method-
ologies aim to create HR images from lower-resolution inputs, but they fun-
damentally differ in their approach and techniques.

1.3.1 Single-Image Super-Resolution

SISR, a key branch of SRR, works with a single LR image to generate an HR
counterpart. The fundamental problem that it aims to solve is to predict the
high-frequency components—the finer details, textures, and contours—that
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are missing in the LR image. This is a non-trivial problem, because high-
frequency information tends to be lost or distorted during the image degra-
dation process, either through natural effects such as blurring or through
digital processes such as compression.

To solve the SISR problem, various methods have been explored over
time. Earlier approaches relied on non-learning-based techniques [133], such
as bicubic interpolation [64], that use the surrounding pixel values to esti-
mate those in higher resolutions. While straightforward and lightweight in
the computational sense, these methods often produce smoothed images that
lack finer details. As the field evolved, learning-based approaches became
dominant [105]. Typically, these methods involve a training phase where
models learn the mapping between low and HR image spaces from large-
scale datasets of such pairs of images with different spatial resolutions. The
models employed can range from classic machine learning techniques, like
sparse coding [41, 101, 156] [12, 53], to advanced deep learning strategies,
such as convolutional neural networks (CNNs) [75] or generative adversarial net-
works (GANs) [39, 76, 140].

Deep learning-based SISR methods have been recognized for superior
performance in capturing intricate data details through complex, non-linear
mappings [28, 142]. These methods employ advanced architectural designs
like residual learning [66], attention mechanisms [2], and multi-scale process-
ing [72] to better model the SRR problem. However, inherent limitations exist
in SISR due to its fundamentally ill-posed nature; with multiple possible HR
outcomes for a given LR image, the ambiguity in reconstruction increases
with the magnification ratio. Although SISR models strive to infer missing
details in the LR input using educated estimations from training, they are
bound by the information in a single image, which might not suffice for ac-
curately deducing all absent details [161].

1.3.2 Multi-Image Super-Resolution

Unlike SISR, MISR uses multiple LR images of a scene to achieve a more de-
tailed image of higher resolution. These images have varying, complemen-
tary information due to minor capture differences. Ideally, these differences
appear as slight, sub-pixel shifts between observations, but in reality, images
taken at different times often vary in brightness, contrast, sensor noise or
other factors and MISR methods have to minimize negative implications of
such distortions [78].
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MISR can be dissected into two main stages: registration and fusion [96,
109, 132]. Registration aligns input images, ensuring shared features are spa-
tially matched [16]. It starts by extracting necessary affine transformations,
like shift vectors or rotation matrices, and then applying them for alignment.
For images that are only shifted, registration is categorized as full-pixel or
sub-pixel, based on alignment granularity [128]. Full-pixel registration, cor-
recting major misalignments without changing pixel values, is vital for pre-
serving information for fusion [135]. On the contrary, sub-pixel registration,
aiming for finer alignment by adjusting pixel values, must be cautiously han-
dled to avoid compromising fusion information. Theoretically, ideal sub-
pixel registration with only shifted images can reduce the volume of infor-
mation required for MISR, turning the problem into a SISR one due to infor-
mation loss; hence most MISR methods stick to full-pixel registration [22, 91,
111].

After registration, the images are fused into a single HR output, using
collective information from multiple images to better render scene details.
MISR’s advantage is in the extra information from additional images, mak-
ing super-resolution reconstruction more accurate and robust compared to
SISR, and helping reduce noise and distortion effects [2, 56]. The MISR field
has embraced machine learning, particularly deep learning, to significantly
improve performance by leveraging complex image data relationships [61].
Unlike SISR, which focuses on understanding degradation, MISR concen-
trates on utilizing the diversity in multiple scene images, with deep neural
networks designed to optimally merge this information.

1.3.3 Common Challenges in MISR

While MISR offers promising improvements over SISR, it introduces a unique
set of challenges. In addition to registration, these challenges can be mani-
fested as temporal differences between the multiple LR images taken at differ-
ent points in time. This temporal variation between images adds a layer of
complexity, particularly due to changes in the environment, such as various
optical aberrations or object motion. For images spanning wider time frames,
especially in remote sensing applications, more pronounced inconsistencies
across the LR images can arise from changing weather patterns or man-made
alterations like construction [104]. For instance, conflicting information be-
tween images—like a scene with a newly constructed building in one image
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and an empty lot in another—poses the challenge of deciding which repre-
sentation to prioritize during super-resolution.

Furthermore, common issues extend to occlusions, where parts of the
scene are obscured in some images [170], noise interference with varying
noise characteristics across different images [30, 87], and variable lighting
conditions introducing disparities in object appearances [149]. These com-
plications collectively make the task of multi-image super-resolution more
demanding, necessitating robust algorithms to handle such complexities and
achieve a high-quality super-resolved image. Notably, traditional CNNs of-
ten struggle with generating visual artefacts in regions of high temporal vari-
ance, such as rapidly moving objects, busy urban intersections, or areas with
dense vegetation and rapid growth [152].

These challenges, ranging from alignment issues to temporal inconsisten-
cies, make MISR a sophisticated task, demanding robust algorithms capable
of handling such complexities to achieve a high-quality super-resolved im-
age.

1.3.4 Importance of MISR

MISR, as a software-based solution, augments existing hardware limitations
in a cost-effective and versatile manner, unlike traditional methods that entail
physical enhancements to the imaging sensor’s resolution [105]. By leverag-
ing the inherent redundancy in multiple images of the same scene, captured
from slightly different perspectives and at different times, MISR infers de-
tails not visible in any single LR image, delivering an HR output with more
accurate and detailed information. This development of MISR techniques
addresses the growing demand for higher-resolution images across various
fields, marking a significant stride in digital imagery enhancement beyond
the hardware limitations.

The wide-ranging applications of MISR techniques underscore their im-
portance. Here are some of the key domains:

• Remote Sensing and Geospatial Imaging: In this field, MISR can help
enhance the resolution of satellite or drone imagery, providing more
detailed geographical data for environmental monitoring, urban plan-
ning, and resource management [100, 109, 141].

• Medical Imaging: In medical applications, MISR can be used to im-
prove the resolution of images obtained from various imaging modal-
ities such as magnetic resonance imaging, computed tomography, and
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ultrasound. This can aid in more accurate diagnosis and treatment
planning [119].

• Surveillance and Security: In surveillance systems, MISR can be used
to enhance the quality of CCTV footage, which can assist in identifying
faces, license plates, or other details that might be critical for security
or forensic investigations [51, 116].

• Entertainment and Media: In the film and television industry, MISR
can be used to upsample old, LR footage to a higher resolution, making
it suitable for modern high-resolution displays [31, 90].

• Astronomy: MISR can be used to enhance the resolution of astronomi-
cal images, providing clearer views of distant celestial bodies and phe-
nomena [43].

• Document Processing: MISR can enhance scanned documents, restore
historical manuscripts, improve the accuracy of optical character recog-
nition methods, and support forensic investigations. Its ability to pro-
duce clearer, HR versions of the documents is valuable across sectors
like academia and law enforcement [103].

1.4 Central Themes of the Dissertation

When addressing the challenges associated with MISR, traditional CNNs
have demonstrated proficiency in processing both spatial and temporal in-
formation [61]. However, their inherent design often lacks the finesse re-
quired to untangle the complex, asymmetric relationships among individual
pixels based on spatial, spectral, or temporal dimensions. For instance, while
CNNs can identify and process patterns, they have limited ability to discern
the distinct connection of a pixel to its specific neighbour based on these vari-
ous criteria. In MISR scenarios, where the unique relationship of every pixel,
such as precise relative displacements, could be instrumental for accurate
super-resolution, there emerges a potential for models adept in capturing
and utilizing these nuanced relationships. Moreover, a fundamental limi-
tation arises from the common methodology employed by CNNs in MISR,
which involves stacking LR images in a matrix format. This representation
provides no explicit information about the shifts between these images, es-
pecially the sub-pixel ones, obliging these models to deduce such shifts in-
directly. Although some methods attempt to address this challenge in MISR,
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for example, through a dedicated registration submodule [96], the matrix-
based representation adopted by CNNs does not facilitate lossless sub-pixel
registration.

This dissertation thus pivots towards exploring the potential of graph neu-
ral networks (GNNs), which inherently possess the capacity to encode such
multifaceted relationships [168]. Unlike their CNN counterparts, GNNs con-
sider the image as a graph, with each node representing a pixel or a region,
and the edges signifying the relationships between them [70]. Moreover, this
graph representation overcomes the limitations faced by CNNs, as it em-
beds the information about sub-pixel shifts directly into the graph without
modifying the original input information, facilitating a more nuanced under-
standing and processing of the intricate relationships that are commonplace
in MISR scenarios.

The pivotal assertion of this dissertation is that GNNs can significantly
impact the course of advancements in MISR. This proposition is anchored on
three core theses:

1. When a set of LR images with sub-pixel shifts are represented as a
graph, GNNs can process this graph to achieve super-resolution re-
sults comparable or better to those obtained by leading MISR archi-
tectures based on convolutional networks.

2. GNNs can enhance their MISR performance by incorporating tech-
niques inspired by existing state-of-the-art MISR models based on
CNNs. These techniques include individual feature extraction for
each LR image, the use of attention mechanisms, and dynamic and
trainable input registration.

3. GNNs can reconstruct a scene from a specific point in time by select-
ing a particular reference image from the input LR image set, with
other images serving as supplementary information sources to en-
hance super-resolution accuracy. This approach can help reduce vi-
sual artefacts in regions of high temporal variability.

The validation of these theses has been conducted both quantitatively and
qualitatively to assess the effectiveness of GNNs in MISR tasks. Quantita-
tive validation on traditional MISR benchmarks offers a measurable compar-
ison of GNN-based models against existing methods. Qualitative validation
sheds light on the visual quality and interpretability of the super-resolved
images generated by different models. Especially for the last thesis on man-
aging temporal variations, additional validation can be done by inspecting
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the differences in the outputs of the same scene, generated using different
reference images. This inspection demonstrates how GNNs handle temporal
relations among input LR images, and how this capability affects the visual
consistency and accuracy of the super-resolved outputs. Through analyz-
ing these differences, the robustness and adaptability of GNNs in managing
temporal dynamics in MISR can be substantiated.

Guided by these theses, the subsequent chapters of this dissertation ex-
plore GNNs in the context of MISR, aiming to provide both a detailed theo-
retical analysis and empirical validations through experiments. The results
are evaluated quantitatively on traditional MISR benchmarks and qualita-
tively through visual inspections, particularly considering the temporal vari-
ations as outlined in the third thesis. Through this structured examination,
this research aims to offer a clear argument for the potential of GNNs in ad-
dressing the challenges faced in MISR.

1.5 Published Works

The journey towards addressing the challenges in MISR through this dis-
sertation was significantly informed and enriched by a series of published
works. The papers listed below, in chronological order, either directly con-
tributed to the thematic focus of this dissertation or provided essential theo-
retical and practical knowledge that propelled the research forward. It should
be noted that these are among several other works published by the author
of this dissertation, and have been selected for their relevance to the central
themes of this study.

1. A Graph Neural Network for Multiple-Image Super-Resolution, in
IEEE International Conference on Image Processing, 2021. MNSIW:
70 [123]

2. Deep Learning for Multiple-Image Super-Resolution of Sentinel-2
Data, in IEEE International Geoscience and Remote Sensing Sympo-
sium, 2021. MNSIW: 20 [62]

3. Semi-Simulated Training Data for Multi-Image Super-Resolution, in
IEEE International Geoscience and Remote Sensing Symposium, 2022.
MNSIW: 20 [124]
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4. Extracting High-Resolution Cultivated Land Maps from Sentinel-2
Image Series, in IEEE International Geoscience and Remote Sensing
Symposium, 2022. MNSIW: 20 [125]

5. Transformer-Based Spectro-Temporal Fusion for Sentinel-2 Super-Re-
solution, in International Conference on Systems, Signals and Image
Processing, 2023. MNSIW: 20 [107]

6. Graph-Based Representation for Multi-Image Super-Resolution, in
International Workshop on Graph-Based Representations in Pattern Re-
cognition, 2023. MNSIW: 20 [122]

7. A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolu-
tion, in Scientific Data, In press. MNSIW: 140 [69]

8. Multitemporal and Multispectral Data Fusion for Super-Resolution
of Sentinel-2 Images, in IEEE Transactions on Geoscience and Remote
Sensing, In press. MNSIW: 200 [126]

1.6 Thesis Organization

The dissertation is organized as follows:

• Chapter 2 provides a detailed literature review of MISR techniques,
emphasizing deep learning-based approaches. This chapter also intro-
duces GNNs and outlines the existing research gaps and challenges as-
sociated with current MISR techniques.

• Chapter 3 delves into the proposed MISR technique using deep GNNs,
highlighting its innovative approach in addressing the identified chal-
lenges.

• Chapter 4 is dedicated to the datasets used in this research. It describes
the real-world datasets and provides an in-depth explanation of the
simulation process for generating data.

• Chapter 5 details the training process of the models and the evalua-
tion methodology. It also introduces and explains the metrics used for
evaluation.

• Chapter 6 presents the experimental results of the proposed method,
comparing it with existing techniques. It discusses the implications of



Chapter 1. Introduction 10

these results, potential applications, and points towards possible direc-
tions for future research.

• Chapter 7 concludes the dissertation, offering a summary of the find-
ings and providing suggestions for future avenues of research.
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Chapter 2

Related Work

The field of super-resolution reconstruction has witnessed considerable ad-
vancements over the years, fueled by the growing demand for HR imagery
in diverse domains such as remote sensing, surveillance, and medical imag-
ing. This area of study has seen an array of methods and techniques being
proposed and validated, each with its unique strengths and limitations. The
current landscape of SRR techniques is a testament to the relentless efforts
of researchers worldwide to improve upon the existing methodologies and
address emerging challenges. This section aims to provide a comprehensive
overview of the key developments in this field, with a particular empha-
sis on the evolution of SISR (Section 1.3.1) and MISR (Section 1.3.2) methods
and their underlying principles. Additionally, this chapter introduces GNNs,
detailing their foundational concepts and illustrating their operational mech-
anisms, setting the stage for their application in the realm of SRR.

2.1 Single Image Super-Resolution

SISR has been an area of extensive exploration in the past years, with CNNs
being central to the majority of the state-of-the-art solutions [142]. CNNs
have been instrumental in advancing the performance of SISR solutions by
effectively modelling the relationship between LR and HR images through
feature representation and nonlinear mapping.

The first CNN proposed for SR, the super-resolution convolutional neural
network (SRCNN) [28], was composed of just three convolutional layers. Sub-
sequent advancements in the field gave rise to SRResNet [76], which notably
introduced the incorporation of residual blocks to simplify training and en-
hance super-resolution performance. This design was inspired by the suc-
cess of ResNet, the pioneering architecture that initially introduced the con-
cept of deep residual learning [48]. Following this, the multi-scale deep super-
resolution (MDSR) network was developed, offering an innovative approach
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by integrating multiple scaling factors into a single model, allowing it to han-
dle different upsampling tasks without switching models [80]. Building on
these advancements, the residual channel attention network (RCAN) [166] was
proposed, which further enhanced SISR by using a channel attention mech-
anism to weigh the importance of different channels and refine the feature
representations, proving particularly beneficial for capturing intricate image
details. Additionally, more complex models of much larger capacities, like
the enhanced deep SR network (EDSR) [80], showcased the potential to model
the LR-to-HR relationship even more effectively.

In addition to traditional CNNs, the application of GAN models to SISR
has witnessed notable advancements. SRGAN [76], which utilised SRResNet
as its generator and paired it with a single discriminator network, showcases
the power of adversarial training in super-resolution, particularly in produc-
ing images with high perceptual quality. Building upon the foundation laid
by SRGAN, ESRGAN [140] introduced architectural and loss function mod-
ifications, leveraging a robust adversarial loss and integrating residual-in-
residual dense blocks. This resulted in images with enhanced details and
sharper textures, setting new standards in the field. It is important to note
that while GANs are particularly effective in reconstructing images of high
perceptual quality, they do not necessarily recover the actual high-frequency
information [117]. Despite this, GANs have been utilized in remote sens-
ing [143] or medical imaging [44] applications, and it has been demonstrated
that certain constraints on the adversarial loss can increase the reliability of
the reconstruction outcome [65]. Another recent development in SISR is the
use of vision transformers, which dynamically adjust the size of the feature
maps, thus reducing the model complexity [86]. While this approach has
shown potential, its broader implications and effectiveness in the context of
SRR are still being explored.

2.2 Multi-Image Super-Resolution

The concept of MISR has its roots in early video processing techniques. In
the late 1980s and early 1990s, the idea of using multiple LR frames to recon-
struct a higher-resolution frame was first proposed [132]. This technique was
initially known as multi-frame image restoration, and it was primarily used
to enhance the quality of video footage.

The process exploited the natural movement in a video sequence, which
caused each frame to capture slightly different information about the scene.
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By aligning and combining these frames, it was possible to extract more de-
tails than could be seen in any single frame, resulting in a higher-resolution
output. This concept was revolutionary at the time, as it provided a means
to enhance the resolution of video footage without requiring any improve-
ments in hardware. As computational power increased and algorithms be-
came more sophisticated, the concept of MISR was extended to still images,
resulting in the development of new techniques. MISR has since evolved
into a complex field of study that involves various sub-disciplines, including
image registration[95], image fusion [102], and machine learning.

Compared to SISR, its multi-image counterpart often achieves higher ac-
curacy in reconstructing images [97, 158]. While SISR methods generate
missing high-frequency details from a single image, MISR models leverage
the information contained in multiple LR images of the same scene. This
multi-image approach provides richer data, enabling the fusion of informa-
tion from different images to enhance resolution.

MISR has witnessed significant progress during recent years, largely dri-
ven by the Proba-V Super Resolution Competition [91], an initiative of the Eu-
ropean Space Agency in 2018 that ran for a duration of eight months. The
primary objective of this competition was to super-resolve satellite images
with a GSD of 300 meters to a finer, 100 m GSD resolution, thus it aimed to
upsample the input images by a factor of three. GSD refers to the distance be-
tween two consecutive pixel centres measured on the ground, indicating the
spatial resolution of an image [79]. The data for this challenge was sourced
from the Proba-V satellite, with each scene composed of a varying number
of observations. It introduced challenges such as obscured pixels from ob-
structions like clouds or their shadows, and uncaptured pixels for which the
data was not observed. Even though the challenge concluded in 2019, the
servers remain operational, allowing for so-called post-mortem evaluations.
Current results from these ongoing assessments are recorded and showcased
on a dedicated post-mortem leaderboard. A comprehensive overview of the
dataset curated for this challenge can be found in Section 4.2.

Early in the deep learning era of MISR, EvoNet [61] emerged, applying
convolutional neural networks for SISR combined with an evolutionary fu-
sion strategy for multi-image integration [63]. It was succeeded by Deep-
SUM [96], a pioneering end-to-end deep learning model for MISR and the
winner of the Proba-V challenge. Although powerful, DeepSUM’s architec-
ture is constrained to a fixed number of LR inputs and necessitates extensive
training. HighRes-Net [22] subsequently addressed DeepSUM’s limitations
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by introducing a flexible model capable of handling variable input image
counts. Its unique recursive fusion mechanism for latent representations
marked a significant departure from earlier models. For a detailed explo-
ration of HighRes-Net’s architecture and contributions, refer to Section 2.4.
Similarly, RAMS [111] model, while operational on a fixed number of LR im-
ages like DeepSUM, incorporated attention mechanisms [4], setting a new
direction for MISR research. The MISR-GRU [109] model brought a different
perspective by utilizing recurrent neural networks (RNNs) [110] to perform
a fusion of information along the temporal dimension. It employed gated re-
current units (GRUs) to adaptively capture temporal dependencies, showcas-
ing its potential in addressing MISR’s inherent challenges related to handling
temporal variations. Another groundbreaking model was PIUNET [134], fo-
cusing on permutation invariance and uncertainty in MISR tasks. Further
innovations were witnessed with TR-MISR [2], which built upon HighRes-
Net’s foundation. Integrating visual transformers [136] into MISR showcased
the capability of attention mechanisms in this domain. Detailed insights into
TR-MISR’s and PIUNET’s approaches are elaborated in the subsequent sec-
tion. It is worth noting that both of these models currently lead in the post-
mortem Proba-V Super Resolution Competition, underscoring the efficacy of
these state-of-the-art techniques in addressing MISR challenges.

Multitemporal fusion based on CNNs has been applied to both burst-
image super-resolution [10] and video super-resolution [58], with a compre-
hensive overview provided by Liu et al.[82]. 3D CNNs have shown effec-
tiveness in addressing video SRR challenges [67]. Moreover, contemporary
methods are merging SISR and MISR techniques to enhance video streams
more effectively [50, 114]. Such methodologies have also found applications
in satellite imagery enhancement, particularly in processing satellite image
bursts. These strategies typically leverage the consistent and known tempo-
ral frequency of input frames. They are often designed to handle moving
objects by estimating motion fields, distinguishing them from multi-image
fusion techniques that work with an unordered collection of images without
specific timestamps, rather than a chronological sequence [100].
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2.3 Spectral Fusion

Multispectral super-resolution plays a pivotal role in remote sensing appli-
cations, particularly in enhancing the spatial resolution of multispectral im-
ages. Among various spectral fusion approaches tailored for this task, pan-
sharpening is a notable technique where a higher-resolution panchromatic
channel is leveraged to enhance the resolution of other spectral bands [54].
This pansharpening-inspired strategy was notably employed in the DSen2
model proposed by Lanaras et al. [74], amplifying the resolution of 20 m and
60 m GSD Sentiel-2 bands to 10 m GSD. In scenarios devoid of an HR channel,
the exploitation of spectral correlations via methods such as 3D convolutions
or tensor decompositions becomes prevalent [77, 154]. These techniques aid
in recovering lost spatial details while ensuring spectral consistency. While
initially explored for hyperspectral images, these fusion techniques have also
found applicability in multispectral images, broadening the scope of multi-
spectral SRR methods.

Traditionally, spectral fusion has been conducted on single multi-channel
images, aligning with the SISR framework [19]. A notable advancement in
bridging the gap between multispectral super-resolution and MISR is the
author’s proposition of DeepSent, as detailed in [126]. Crafted for super-
resolving multitemporal series of multispectral Sentinel-2 images, the uni-
queness of this CNN lies in its capability to perform information fusion both
in the spectral and temporal dimensions. This facilitates the enlargement
of multispectral images and elevates all spectral bands to a unified 3.3 m
GSD, achieving up to an 18× upsampling factor. In [107], a transformer-
based modification to DeepSent was also proposed, significantly reducing
the model’s parameter count without compromising the reconstruction per-
formance. Empirical evidence showcases DeepSent’s superior performance
over state-of-the-art techniques, especially in real-world Sentinel-2 image en-
hancement, thereby extending the frontier of multispectral MISR.

2.4 Prominent Models in Super-Resolution

Super-resolution, encompassing both its single and multi-image variants, has
seen the emergence of numerous models. Many of these have contributed
to advancing the field, introducing novel methodologies or refining existing
ones. In this section, the models that have substantially influenced the land-
scape of SRR, and particularly the direction of the research, are explored.
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2.4.1 FSRCNN

The fast super-resolution convolutional neural network (FSRCNN) [24] represents
a significant evolution in deep learning-based super-resolution. While many
deep learning models aim for an end-to-end mapping from LR to HR images,
FSRCNN distinguishes itself through its innovative architecture tailored for
computational efficiency without sacrificing reconstruction quality. Unlike
its predecessor, SRCNN, which employed an explicit bicubic interpolation
step, FSRCNN eliminates this, leading to faster processing. The model’s ar-
chitecture is distinctively structured into several phases: an initial feature
extraction phase, a shrinking phase to reduce the feature map dimensions,
a series of convolutional layers for further feature extraction, and an expan-
sion phase for upsampling the feature maps. This design ensures efficient
feature representation and has set a benchmark for subsequent SISR models.
Conceptually, FSRCNN can be viewed as being composed of three primary
blocks:

Feature Extraction: At the heart of FSRCNN is its feature extraction phase,
which employs a single convolution layer. The aim here is to capture the
low-level features of the input LR image. This step ensures that the foun-
dational features, which are essential for subsequent stages, are adequately
represented.

Shrinking and Non-linear Mapping: Post feature extraction, FSRCNN
introduces a shrinking layer which reduces the number of feature maps, en-
suring a compact representation. This is followed by a series of non-linear
mapping convolutional layers. These layers delve deeper into the captured
features, enhancing their granularity and richness. The motivation behind
this block is to refine the features before the expansion phase, ensuring that
the model has a comprehensive feature set to work with during the upsam-
pling process and that it is computationally efficient.

Expansion and Deconvolution: The final block of FSRCNN involves the
expansion of the refined features back to a higher dimensional space, set-
ting the stage for the deconvolution process. The deconvolution layer [159,
160], or transposed convolutional layer [29, 137], then upsamples the feature
maps to produce the HR output. This design choice avoids the explicit bicu-
bic interpolation used in traditional SR methods like SRCNN, resulting in a
significant boost in computational efficiency.

The genius of FSRCNN lies in its ability to maintain a balance. While it
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adopts a lightweight structure, it does not compromise the quality of super-
resolved images. By intricately weaving together feature extraction, non-
linear mapping, and deconvolution, FSRCNN sets a robust precedent, em-
phasizing efficiency without sacrificing performance.

2.4.2 DeepSUM

DeepSUM [96] marked a significant stride in the domain of MISR. Central
to its design is a combination of CNN-based SISR techniques with an evo-
lutionary fusion mechanism, enabling the model to assimilate details from
multiple images effectively. A standout feature of DeepSUM is the RegNet
submodule consisting of a series of shared 2D convolutional layers and a
global dynamic convolutional layer (GDC). Instead of attempting to register the
LR images directly, DeepSUM first employs its SISR component to upsample
these images. RegNet then takes centre stage, ensuring alignment of these
upsampled versions based predominantly on their spatial shifts. Specifically,
for each upsampled image, except for a reference one, RegNet learns a fil-
ter Gi, which, when convolved with the image by the GDC, aligns it to the
reference. The process of generating registration filters can be described as:

Gi = fRegNet(ZILR
[0,N−1], θRegNet), i = 1, . . . , N − 1, (2.1)

which is followed by a registration process performed by GDC:

ZIRLR
i =

ZILR
i if i = 0

Gi ∗ ZILR
i if i = 1, . . . , N − 1

(2.2)

Here, ZILR
[0,N−1] represents a stack of N input images, θRegNet denotes the

learned parameters of the RegNet model, and ∗ stands for the 2D convolution
operation. After the images are aligned to the first image, ZILR

0 , they are then
passed to subsequent modules for fusion to form an HR output.

DeepSUM’s proficiency was unambiguously showcased when it emerged
victorious in the Proba-V Super Resolution Competition, thus attesting to its
efficacy in challenging real-world settings. However, one aspect of DeepSUM
that warrants attention is its two-phased training approach. Initially, the
RegNet submodule undergoes training, post which the overarching model
is trained. While this sequential approach was pivotal in achieving the de-
sired outcomes, it introduced additional complexity, particularly concerning
training duration and computational requirements.
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2.4.3 HighRes-Net

HighRes-Net [22] introduced an innovative approach to MISR by addressing
the limitation of handling a fixed number of input images. One of its stand-
out features is the formulation of shared representations and the embedding
mechanism.

The backbone of HighRes-Net’s feature extraction process is an architec-
ture of its embedding block, represented as embθ, which encompasses a con-
volutional layer followed by two residual blocks, each activated by a para-
metric rectified linear unit (PReLU) [49] function. This architecture ensures
consistent and robust feature extraction and is uniformly applied across all
LR images independently. To derive a common representation for the set
of LR images, the model computes a reference image by taking the median
values across the entire set of LR frames. The value of a reference pixel at
position (x, y) is defined as:

ref(x, y) = median(LR0(x, y), . . . , LRN−1(x, y)). (2.3)

This computed reference serves as a composite representation of the scene,
synthesized from multiple vantage points. Each individual LR frame is then
cohesively embedded with this reference. The resulting embedded states,
originally denoted by si

0, capture the distinct features of each frame in com-
parison to the reference:

si
0 = embθ([LRi, ref]). (2.4)

Subsequent to the embedding phase, HighRes-Net unveils its recursive
fusion mechanism. This procedure operates on the latent representations,
amalgamating the information from multiple frames in a hierarchical man-
ner. In instances where the number of LR frames does not align with a power
of two, the model compensates by padding the set with zero-valued views,
ensuring the fusion process remains consistent. The culmination of this fu-
sion is a super-resolved image, enriched by the collective information from
all the input LRs.

Through its unique approach of shared representation, embedding, and
recursive fusion, HighRes-Net has solidified its place as a noteworthy contri-
bution to the evolution of MISR techniques.
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2.4.4 RAMS

The residual attention multi-image super-resolution network (RAMS) [111]
represents a significant advancement in MISR, integrating attention mecha-
nisms to refine the fusion process. Recognizing that different parts of the in-
put images contribute variably to the super-resolved output, RAMS employs
attention maps to amplify the most crucial regions, ensuring better feature
utilization.

Central to RAMS is its series of attention blocks dispersed among its
super-resolution layers. These blocks generate attention maps that gauge the
interdependencies between different regions of the input images. By dynam-
ically modulating the feature maps, RAMS ensures the subsequent network
layers prioritize the emphasized regions, resulting in sharper and more ac-
curate outputs.

However, a limitation of RAMS, similar to DeepSUM, is its reliance on
3D convolutional layers in the attention blocks, which fixes the number of
input images it can process. Despite this, RAMS’s introduction of attention
mechanisms into MISR has not only elevated the standard for super-resolved
images but also set a precedent for future models blending attention with
super-resolution.

2.4.5 PIUNET

PIUNET [134], a significant advancement in the MISR domain, tackled two
complex challenges: permutation invariance and uncertainty estimation. Rec-
ognizing the potential inconsistencies arising from different orders of input
images, PIUNET ensured a consistent super-resolved output regardless of
the sequence of its input images. This design is especially crucial in real-
world scenarios where the order of image acquisition might differ, making
consistent output a priority.

Furthermore, PIUNET brought an added dimension of interpretability to
MISR by providing a measure of the uncertainty associated with its predic-
tions. With an uncertainty map accompanying the super-resolved image, it
highlights regions where the model is confident and areas where it is less
certain. This not only aids in understanding the model’s decision-making,
but also offers a practical metric to assess the reliability of the super-resolved
outputs in various parts of the image.

The architecture of PIUNET skillfully integrates these features, producing
a model that excels in the quality of its outputs while also offering insightful
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meta-information about its predictions. Its effectiveness is evident from its
ranking in the Proba-V challenge, where it occupies the second-best position,
highlighting PIUNET’s capability and its importance in guiding future MISR
research.

2.4.6 TR-MISR

TR-MISR [2], building upon the foundation laid by HighRes-Net, introduced
the capabilities of transformers to the MISR domain. The central innova-
tion in TR-MISR is its shift from the recursive fusion mechanism of its pre-
decessor, HighRes-Net, to a transformer-based fusion. This change reflects
the growing appreciation for the potential of attention mechanisms in deep
learning, especially in tasks requiring detailed feature fusion.

Transformers, originally designed for natural language processing tasks,
have been adopted across various domains due to their ability to handle
long-range dependencies and intricate relationships between data points. In
the context of MISR, transformers allow TR-MISR to effectively merge infor-
mation from multiple LR images, capturing subtle details and relationships
between features across these images.

By using self-attention mechanisms, TR-MISR can dynamically weigh the
importance of features from different input images, leading to a more refined
and contextually aware super-resolved output. This ability to adjust the fo-
cus on different parts of the input images based on their relevance allows
TR-MISR to produce superior super-resolved images.

Highlighting its effectiveness, TR-MISR currently leads the post-mortem
leaderboard of the Proba-V Super Resolution Competition, marking its po-
sition as one of the foremost models in the field of MISR. This achievement
showcases the value of transformer architectures in pushing the boundaries
in areas like multi-image super-resolution and provides a new standard for
future research in this domain.

2.4.7 DeepSent

DeepSent is a model designed to be the first end-to-end architecture to per-
form a fusion of spatial, temporal and spectral information in the SRR do-
main [126]. Its aim is to super-resolve all Sentinel-2 bands, which origi-
nally have resolutions of 10 m, 20 m, and 60 m, to a uniform resolution of
3.3 m nominal GSD while preserving spectral relations between bands. The
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architecture of DeepSent incorporates a feature extraction block and recur-
sive fusion module, taking inspiration from the HighRes-Net architecture.
DeepSent can be dissected into twelve branches, each corresponding to a spe-
cific spectral band, with the feature extraction block at the beginning of each
branch.

The primary motivation behind DeepSent is to efficiently fuse informa-
tion across both temporal and spectral dimensions to enhance the resolution
of multispectral images. The recursive fusion module is employed to merge
information initially in the temporal dimension as well as in the spectral di-
mension, ensuring a comprehensive fusion of data. Thanks to the recursive
fusion blocks on both temporal and spectral levels, DeepSent shows signifi-
cant flexibility when it comes to input data—it can operate on various num-
bers of LR images (this number can be different for each band) as well as
handling scenarios in which some of the bands are not provided.

In the upsampling phase, DeepSent captures and propagates the intrin-
sic characteristics of each band to the output, ensuring the proper recon-
struction of the entire multispectral image at a higher resolution. The final
super-resolution module decodes the latent representation of a scene and
upsamples it to reach the target resolution of 3.3 m GSD, maintaining the
band-specific characteristics based on the latent representation. Through its
architecture and fusion mechanisms, DeepSent addresses the challenges of
super-resolving multispectral images, marking an advancement in the SRR
domain.

2.5 Graph Neural Networks

A recent yet less explored area within super-resolution pertains to the use of
GNNs. These networks have demonstrated considerable promise across var-
ious applications due to their inherent capability to model complex relational
information in graph-structured data [70]. Super-resolution tasks fundamen-
tally revolve around understanding and leveraging intricate relational infor-
mation present in images [97]. While traditional methods, mainly CNNs,
have predominantly focused on spatial dependencies, the true richness of re-
lationships in image data goes beyond just spatial interactions. GNNs, with
their ability to capture not just spatial, but more intricate and higher-order
dependencies, are poised as potentially more suitable for super-resolution
tasks. Their broader relational modelling capabilities can provide an edge in
tasks where understanding nuanced relationships is paramount.
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The advent of GNNs can be traced back to 2014 with the introduction of
the graph convolutional network (GCN) [18]. GCNs represent a significant evo-
lution in the realm of neural networks, adapting the foundational principles
of traditional CNNs to suit graph-structured data. Unlike CNNs, which are
optimized for grid-like data such as images, GCNs are designed to handle
data that exists in non-grid formats, where entities have complex interrela-
tionships. In essence, GCNs capture and process the relational information
inherent in graphs. They achieve this by employing a form of convolution
that respects the topology of the graph, allowing for the effective propaga-
tion of information across connected nodes. This unique capability has made
GCNs particularly valuable in scenarios where understanding the relation-
ships between data points is crucial e.g. node classification [68], graph clas-
sification [164], recommendation systems [157] or relational reasoning [113].

Incorporating the graph attention networks (GATs)[138] into the realm of
GNNs marked a significant advancement. GATs introduced an attention
mechanism that assigns different weights to various edges in a graph, di-
verging from the conventional uniform information aggregation method in
traditional GCNs. This allowed GATs to process varying contributions from
different connected nodes based on their relative importance. The unique at-
tention mechanism not only enables the model to highlight salient features
but also devalues less important ones, leading to more expressive and dis-
criminative feature representations. This selective aggregation of informa-
tion, driven by the attention mechanism, enhances GATs’ capability to cap-
ture informative nodes effectively, finding applications in tasks like person
re-identification [5], action recognition [155] or prompt-driven object detec-
tion [139].

Recurrent graph networks (RGNs) are another variant of GNNs that process
graph-structured data by recursively updating node representations. This re-
cursive nature allows the network to capture deeper and more intricate rela-
tionships within the graph. RGNs have been particularly beneficial for video
analysis [81], where the temporal sequence of frames can be modelled as a
graph, and the recurrent nature helps in capturing the temporal dependen-
cies. Additionally, RGNs have shown promise in modelling social relation-
ships [37], capturing intricate patterns and dynamics within social networks.

A significant milestone in the development of GNNs for computer vision
tasks is the introduction of SplineCNN. This model presents a generalization
of the convolution operation that respects the local structure and spatial char-
acteristics of arbitrary graphs. The distinctive feature of SplineCNN is its use
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of continuous B-spline kernels for convolution, effectively applying spline-
based filters on graphs and efficiently utilizing spatial information of each
node. By parametrizing the filters as splines, the model can better adapt
to the characteristics of the graph data. These spline-based filters ensure
smooth transformations, which are more expressive and robust against over-
smoothing, a prevalent issue in traditional GCNs. SplineCNNs have been
effectively used in the task of image graph classification, graph node classifi-
cation and 3D shape recognition on point clouds [34].

While the use of GNNs in super-resolution is still in its nascent phase, the
introduction of the cross-scale internal graph neural network (IGNN)[150]—that
integrates traditional convolutional layers with the graph-based ones—high-
lights the immense promise of these networks for resolution enhancement
tasks. The design of IGNN is particularly tailored for the SISR problem, prov-
ing especially advantageous for images that exhibit repetitive patterns across
varying scales, akin to self-exemplar techniques like the one proposed by
Huang et al.[52]. It establishes an internal graph structure from the input im-
age and taps into both local and global correlations, employing a cross-scale
approach to boost reconstruction quality. However, the application of GNNs
for MISR remains an open area of research, presenting a potential avenue for
groundbreaking discoveries and advancements in the domain.

Further enriching the landscape of GNNs in SRR is the introduction of
the interlayer feature-representation-based GNN for image super-resolution,
LSGNN [120]. This model, similarly to IGNN, is tailored specifically to tackle
the SISR problem. While many CNNs for SISR have primarily focused on
broader and deeper architecture designs, they often overlook the detailed
information inherent in the image itself and the potential relationships be-
tween features captured at different stages of a network. The LSGNN model
addresses these gaps by emphasizing the importance of understanding the
interdependence between the extracted features of different layers. It intro-
duces a layer feature graph representation learning module that captures this
interdependence, enabling the extraction of deeper and more fine-grained
image detail features.

2.6 Introduction to GNNs

In the multifaceted domain of machine learning, neural networks have been
instrumental in facilitating substantial progress across a wide range of fields,
from image and speech recognition to natural language processing. These



Chapter 2. Related Work 24

networks draw their design inspiration from the neural structure of the hu-
man brain, providing them with remarkable abilities to identify patterns and
make data-driven predictions. However, traditional neural networks often
face challenges when dealing with data that is not regularly structured, as
is the case with images or time series, and often overlook the relational in-
formation inherent in the input data. This is the intersection where GNNs
showcase their strength.

2.6.1 The Concept of Graphs

A fundamental understanding of graphs is essential for grasping the intrica-
cies of GNNs. In the realm of data structures, a graph is defined as a collec-
tion of entities, termed as nodes or vertices, which are interconnected by links
known as edges [47, 147]. The power of graphs lies in their ability to repre-
sent intricate relationships and systems, from social networks and molecular
formations to the vast interconnectedness of web pages [168].

Within the domain of graph theory, various classifications of graphs exist
based on their structural properties and the kind of relationships they de-
pict [98]. Notable among them are:

• Undirected Graphs: These are graphs where edges do not have a di-
rection. An edge between vertex A and vertex B is identical to an edge
between vertex B and vertex A.

• Directed Graphs (Digraphs): In these graphs, edges have a clear direc-
tion. An edge from vertex A to vertex B does not reciprocate an edge
from vertex B to vertex A.

• Weighted Graphs: In such graphs, every edge is assigned a specific
weight or cost. This weight can represent various metrics, such as dis-
tance, cost, or any domain-specific value.

• Unweighted Graphs: Contrary to weighted graphs, all edges in these
graphs are identical and do not carry any specific weight.

• Cyclic Graphs: These graphs contain cycles, which are closed paths
where the starting and ending vertices are the same.

• Acyclic Graphs: Such graphs are devoid of any cycles. A special kind
of acyclic graph, termed a tree, ensures a unique path between any two
vertices.
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• Connected Graphs: In these graphs, a path exists between every pair
of vertices.

• Disconnected Graphs: These are graphs where certain vertices might
not be reachable from others.

• Bipartite Graphs: The vertices of these graphs can be divided into two
distinct sets where no two vertices within the same set share an edge.

• Complete Graphs: In these graphs, a unique edge connects every pair
of distinct vertices.

Mathematically, a graph G can be defined as a tuple G = (V , H, E , U),
where:

• V is a set of vertices (or nodes). Each vertex represents an entity in the
graph. Formally, V = {v1, v2, . . . , vn}where n is the number of vertices.

• H is a matrix representing the features of each node in V . For a given
node vi, its feature vector is represented as hi ∈ RF, where F is the
number of features in each node, thus H ∈ Rn×F.

• E is a set of edges that connect pairs of vertices. Each edge represents a
relationship or connection between two vertices. Formally, E ⊆ V × V ,
and an edge eij exists if there is a connection from vertex vj to vertex vi.
E can also be represented as a sparse adjacency matrix A ∈ Bn×n.

• U is a set of attributes associated with the edges. Here, each edge eij has
an attribute from the set U and such attribute is denoted as uij. Since
those attributes can take different forms for different applications, such
as single values (attention coefficients [14]), vectors (relative position to
another node [33]) or even matrices (multifaceted attributes in knowl-
edge graphs [113]), their dimensionality is not explicitly defined at this
point.

If the graph is undirected, then the order of vertices in the edge pair does
not matter, that is, eij = eji what implies uij = uji. If the graph is directed,
then the order is significant, thus eij and eji are distinct edges.

This understanding of graphs is not only fundamental but also intimately
tied to the essence of this research.
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2.6.2 Importance of Graph Neural Networks

GNNs represent a pivotal shift in the realm of neural networks. They are a
specialized form of neural networks tailored to efficiently handle and process
graph-structured data [15, 45]. This differs from traditional neural networks
like CNNs or RNNs, which excel when the data can be structured in a reg-
ular form, such as images or time series. These structured data types inher-
ently possess a local order and continuity in their relationships, which these
networks leverage to capture patterns and dependencies. However, when
the data deviates from this structural format, as is the case with graph data,
these traditional networks encounter difficulties [7].

Graph-structured data does not adhere to the spatial or temporal con-
sistency of images or time series data. Instead, graphs are non-Euclidean
structures where nodes and their corresponding edges can represent diverse
and complex systems [168]. The edges connecting the nodes can symbolize a
myriad of relationships, from friendships in a social network [94] and hyper-
link connections in the World Wide Web [13] to protein interactions in a bio-
logical network [6]. The fundamental challenge is to process this irregularly
structured data, extract meaningful features, and identify complex patterns
that capture the inherent relationships within the graph [40, 46].

GNNs rise to this challenge by working directly with data in a graph for-
mat, allowing them to exploit the unique properties and the richness of re-
lationships that graphs offer [15, 112]. Unlike traditional neural networks
that may lose relational information when applied to graph data, GNNs are
designed to natively preserve and manipulate the relationships between the
nodes [68]. They are capable of learning the topology of the graph and the
attributes of the nodes and edges [36], which equips them with the ability to
infer the intricate and often non-linear relationships within the data [7].

This capability of GNNs opens the door to enhanced performance across
a broad array of tasks that involve relational or structured data. In essence,
they are adept at tasks that require inference about relationships, relational
reasoning, and the propagation of relational information. These tasks span
the spectrum from node classification, link prediction, graph classification,
and even complex system dynamics prediction [14].

The power of GNNs to handle and learn from graph-structured data sig-
nifies a paradigm shift in the realm of deep learning and artificial intelli-
gence [151]. By processing data in its native graph format, they are not only
better equipped to handle the data’s complexity but also to unlock insights
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from the intricate relationships within the graph. It is this transformative ca-
pability of GNNs that introduces a new era in machine learning, paving the
way for novel applications and research directions.

2.6.3 The Mechanics of Graph Neural Networks

The operational philosophy of GNNs centres on principles known as message
passing or neighbourhood aggregation [36]. This methodology, derived from
the fundamental characteristics of graphs, forms the backbone of GNNs, en-
abling them to process and extract information from graph-structured data
in an iterative and layered manner.

In essence, the message-passing framework postulates that a node’s rep-
resentation can be effectively informed by aggregating information from its
immediate neighbourhood. This is formalized in a two-step process - a mes-
sage function and an update function [112].

Message Function

Initially, each node vi in the graph is assigned a feature vector h(0)i ∈ RF,
derived from its attributes. This feature vector serves as the initial state of
the node. As the network progresses through each layer of computation,
the nodes perform the message-passing steps, updating their states based on
the aggregated messages from their neighbours and their current states. A
node vj is considered a neighbour to vi if there exists an edge eij between
them, meaning A(i, j) = 1. The capability to perform these operations re-
peatedly, often referred to as "stacking layers" in GNNs, allows the nodes
to gradually incorporate information from an increasingly larger neighbour-
hood [68]. After several iterations, each node in the graph holds a feature
representation that captures not only its own attributes but also the contex-
tual information from its extended neighbourhood. This process is pivotal to
learning in GNNs, with the final node representations serving as powerful
feature vectors for downstream tasks.

Each node vi computes a message mi based on its current state, hi, and
the state of its neighbouring nodes. This can be expressed mathematically as:

mi =
⊕

j∈N (i)

ϕ(hi, hj, uij), (2.5)

where
⊕

represents a differentiable and permutation invariant aggregation
function (e.g. sum, product, mean), N (i) is the neighbourhood of node vi, hi
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and hj are the features of nodes vi and vj, uij is the edge attribute from node
vi to vj, and ϕ is the message function.

Update Function

Each node vi updates its state based on its current state and the aggregated
messages from its neighbours. This is represented as:

h′i = γ(hi, mi), (2.6)

where h′i is the updated feature of node vi, and γ is the update function.

2.6.4 Influential Architectures

GNNs have evolved into a diverse array of architectures and methodologies,
each tailored to process and understand graph-structured data in its unique
way [7]. Among the vast landscape of GNN architectures, certain types and
specific models have been identified as especially influential, not only in the
broader research community but also in shaping the direction and method-
ologies of this research. The differences between these GNN architectures
have been primarily defined by how information from a node’s neighbours
is aggregated and how features describing their type of connection are uti-
lized—the defining aspect of graph neural processing [153].

In this section, emphasis is placed on two fundamental types of GNNs:
GCNs and their attention-augmented variant, GATs. Also, SplineCNN is ex-
amined as a specific GNN architecture that has been found to be particularly
impactful for graphs where spatial relationships are meaningful. While the
foundation for processing graph data has been provided by GCNs and GATs,
a novel approach has been introduced by SplineCNN that has significantly
influenced the research perspective. Each of these architectures has offered
unique insights and methodologies for handling graph-structured data, and
their contributions to the field have been instrumental in guiding the ap-
proaches adopted in this research.

Graph Convolutional Networks

GCNs [18] operate under the principle that nodes closer to each other in the
graph space should exhibit similar features. This intuition is materialized by
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implementing a convolution operation in the graph domain. The convolu-
tion is achieved by applying a propagation rule at each layer, mathematically
expressed as:

h′
i = ∑

j∈N (i)

Whj√
d̃id̃j

, i ∈ N (i). (2.7)

Here, d̃i and d̃j indicate node degrees, i.e. a total number of edges from
nodes vi and vj, respectively. By incorporating a normalization factor based
on node degrees, GCNs ensure that feature updates remain stable across lay-
ers. It is worth noting that GCNs assume self-connections for each node,
hence i ∈ N (i). Additionally, W ∈ RF′×F is the learnable weight matrix
which plays a pivotal role in transforming F input features to F′ output fea-
tures. As the network progresses in depth, a node’s representation begins to
encapsulate features from more distant nodes, effectively capturing informa-
tion from its multi-hop neighbourhood.

Graph Attention Networks

GATs introduced the concept of attention mechanisms to the world of graph
networks [138]. Rather than simply averaging the features of neighbour
nodes, GATs perform a weighted average where the weights are learned
through the data itself. This ability to adaptively assign importance to neigh-
bours results in a more expressive and flexible model. The attention-guided
computation of features for node vi in GATs can be formulated as:

h′
i = γ

 ∑
j∈N (i)

αijWhj

 , (2.8)

for which the attention coefficient αij is a softmax-normalized weight across
all choices of vj in the neighbourhood of node vi. It can be formulated as:

αij =
exp

(
LeakyReLU

(
aT[Whi||Whj]

))
∑k∈N (i) exp (LeakyReLU (aT[Whi||Whk]))

(2.9)

where a ∈ R2F′ is a learnable weight vector serving as an attention mecha-
nism in GATs, and the weight matrix W ∈ RF′×F, similarly to GCNs, is used
as a higher-level feature extractor. The || operator stands for concatenation
operation, and ·T is a transposition. To achieve a higher level of non-linearity
and stabilize the training, the calculation of attention coefficients αij employs
the leaky rectified linear unit (LeakyReLU) activation function [88].
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Spline Convolutional Neural Networks

SplineCNN [34] represents an important advancement in the field of GNNs,
leveraging the power of B-spline basis functions to perform convolution op-
erations on graph-structured data. The key innovation of SplineCNN is the
use of continuous kernel functions, defined using these B-spline basis func-
tions, which allows for more flexible and efficient handling of irregularly
structured data.

The convolution operation in the SplineCNN takes into account the rela-
tive positions of the nodes with respect to their neighbours. This is achieved
by using spatial relation vectors, or pseudo-coordinates, to define the ker-
nel functions. These pseudo-coordinates are contained in the set of edge at-
tributes U where the attributes of the edge eij are denoted by uij ∈ RD for
a D-dimensional scenario. The ability to utilize spatial information is a key
advantage of SplineCNN. This feature allows for the processing of graph-
structured data in a way that is more similar to the processing of image data
in traditional CNNs.

A pivotal aspect of the design and success of SplineCNN is its encod-
ing of spatial relationships through edge attributes. This design philosophy
draws parallels with the fundamental operations of traditional 2D convolu-
tions. Just as a sliding window in traditional convolutions identifies neigh-
bouring pixels based on their relative positions without knowledge of global
position, SplineCNN discerns the relationships among nodes through the
encoded spatial relationships in edge attributes. The graph structure inher-
ently encodes not just the presence of a neighbour but also its direction and
distance. This spatial encoding becomes especially pivotal for spline-based
convolutions. Unlike traditional convolutional filters that are fixed, the rel-
ative spatial information embedded in the edge attributes facilitates a more
fluid and adaptive convolutional operation in SplineCNN, making it adept
at capturing intricate spatial relationships inherent in graph data.

SplineCNN has been successfully applied to a range of tasks, as demon-
strated in the original paper [34]. The authors showcased the effectiveness
of SplineCNN in image graph classification, graph node classification, and
shape correspondence on meshes. In these applications, the architecture,
with its spline-based convolution operator, proved particularly proficient.

SplineCNN operates by aggregating information from neighbouring nodes,
with each node’s contribution weighted by a kernel function gθ : [a1, b1] ×
. . .× [aD, bD] → RF. It is crucial to mention that it performs a normalization
step before the convolution operation, Specifically, the edge attributes uij are
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normalized and then rescaled such that they align with the span of the kernel,
i.e., [a1, b1]× . . .× [aD, bD]. This ensures that the convolution is performed in
a consistent space, leading to more meaningful feature aggregations. The
computation of F′ output features for the ith node can be mathematically ex-
pressed as:

h′
i =

1
|N (i)|

F′

∥
s=1

∑
j∈N (i)

hj
Tgθs(uij) (2.10)

where ∥ stands for a concatenation operation. The gθs function is funda-
mentally based on D open B-spline basis functions of degree m, denoted as
((Nm

1,i)1≤i≤kD , . . . , (Nm
D,i)1≤i≤kD) and uniformly positioned based on equidis-

tant knot vectors [106] with k = {k1, . . . , kD} defining the number of basis
functions for each dimension:

gθs(u) =
F
∥

r=1
∑

p∈P
ws,p,r · Bp(u). (2.11)

Here, p is a D-element tuple of basis functions taken from the Cartesian
product of P = (Nm

1,i)i × · · · × (Nm
D,i)i. Each tuple p has assigned a learn-

able parameter ws,p,r for rth input feature and sth output feature. Bp(u) is the
product of the basis functions in p at position u:

Bp(u) =
D

∏
d=1

Nm
d,pd

(u(d)) (2.12)

Following the theoretical overview of SplineCNN, it is beneficial to delve
into a visual exploration to illuminate its operations. Starting with a one-
dimensional context provides an intuitive foundation before progressing to
the more intricate two-dimensional scenario. In both cases, the basis func-
tions have a constant degree m = 2.

In the one-dimensional context, Figure 2.1 depicts the positioning of indi-
vidual B-spline basis functions along the continuum. When these functions
are combined, they produce a consolidated spline-based surface. The inter-
val [a1, b1] marks the kernel’s definition range, where the sum of all uniform
basis functions equals one. This configuration provides a consistent back-
drop for understanding the convolution operation in SplineCNN.

Building upon this, Figure 2.2 shows the outcome when each basis func-
tion is multiplied by its corresponding weight, ws,p,r. The result is a fully
defined kernel within the [a1, b1] span. Notably, the kernel’s profile deviates
from the unity observed in Figure 2.1 due to the influence of the weights.
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FIGURE 2.1: Positioning of B-spline basis functions in a 1D con-
text. The orange line indicates a surface created by summing
the k1 = 6 spline bases of degree m = 2, and [a1, b1] denote the
lower and upper bounds of an interval in which the value of a

spline surface equals one.

This modification allows the kernel to discern intricate patterns in the data,
offering flexibility in the convolution operation.
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FIGURE 2.2: 1D basis functions multiplied by their correspond-
ing weights. The continuous kernel is defined as a sum of the

altered bases over the interval [a1, b1].

Transitioning to the two-dimensional scenario (D = 2), Figure 2.3 illus-
trates the spatial arrangement of B-spline basis functions in a plane, culmi-
nating in the formation of a continuous 2-dimensional kernel. This kernel
operates within a 2D span, defined by [a1, b1]× [a2, b2]. Unlike the 1D setting
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where each basis function is associated with an individual weight, in the 2D
context, each weight corresponds to a pair of basis functions, one from each
dimension. Thus, with 6 basis functions for each dimension, a total of 36
weights are defined.

X

a1

b1

Y
a2

b2

g
FIGURE 2.3: Creation of a continuous 2D kernel using B-spline
basis functions. Here, each product Bp of basis functions in p is
multiplied by its corresponding weight wp and summed within

a given interval to create the continuous kernel.

Lastly, Figure 2.4 demonstrates the application of the 2D kernel to a spe-
cific node in a graph. This visualization provides insight on how SplineCNN
processes graph-structured data, drawing parallels to traditional CNNs’ han-
dling of image data. Through these illustrations, the capabilities and poten-
tial of SplineCNN in managing graph-structured datasets with irregularly
located nodes become evident.
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FIGURE 2.4: Application of the 2D spline-based kernel to a spe-
cific node in a graph. The red arrows indicate which neigh-
bours within the kernel interval propagate their information to

the centre node.
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Chapter 3

Architecture Design

Super-resolution, particularly within the scope of MISR, is an ill-posed prob-
lem in optimization theory [100]. Addressing this challenge necessitates max-
imizing the information encapsulated in the input data to achieve high-quali-
ty outputs. A balance between effective data representation and algorithmic
design is pivotal for harnessing this information.

In this chapter, the primary focus lies on the data creation process, elu-
cidating the transformation of a stack of input images into a single, unified
graph. The subsequent sections unravel the evolutionary sequence of model
architectures. This journey commences with the foundational MagNet model,
transitioning through its successive counterparts: MagNet++ and MagNetenc.
The sequence culminates in the most advanced model, MagNAt. Further, this
chapter introduces two additional models derived from MagNAt, namely
MagNAtno_reg and MagNAtlead, each aimed at investigating specific aspects
of the image super-resolution problem. This progressive evolution of Mag-
NAt began with the foundational principles laid out by MagNet. With each
subsequent model, new features and improvements were incorporated, high-
lighting the step-by-step advancements and providing insights into the mo-
tivations behind each architectural refinement.

3.1 Converting a Stack of LR Images into a Single

Graph

This section elucidates the transition from conventional image-based data
structures to a graph representation, marking not merely a change in for-
mat but a fundamental shift in data representation. Initially, each pixel is
transformed into a node on a mutual 2D plane, a step referred to as node
positioning. Subsequently, these node positions are adjusted to account for
shifts between LR images. Finally, nodes are interconnected to fabricate the
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graph structure. This unique approach amalgamates multiple LR images into
a single integrated graph, ensuring a lossless transition while preserving all
original information.

3.1.1 Node Positioning

Establishing a meaningful position for each node within the eventual graph
is paramount for preserving the inherent spatial relationships of the original
images. At this preliminary stage, the challenge lies in mapping pixels to
nodes on a unified plane, ensuring that the relative positions of these nodes
reflect the spatial coherence of the original image.

To construct a graph, the primary components are initially defined. As
introduced in Section 2.6.1, a graph G can be represented as G = (V , H, E , U).
At this initial stage, two of these components are defined: the set of vertices
V and the matrix of Fin features for each node, H ∈ Rn×Fin . The vertices are
derived from the pixels of the LR images. Meanwhile, the input features, H,
depend on the number of channels in the LR images. For instance, in the case
of RGB images, each pixel has three channels (Red, Green, and Blue); hence,
each node in the graph would have three input features. Generally, if the LR
images have Fin channels, each node would have the same number of input
features.

N
W

H

(A) A stack of N = 3 input images of di-
mensions 5× 5.

x

4

0

0 4

Y

(B) Conversion of pixels to nodes on a
mutual 2-dimensional plane.

FIGURE 3.1: Illustration of the process of converting a stack of
LR images into a single graph.

As visualized in Figure 3.1, every pixel from the given set of LR images,
shown in subfigure (A), is represented as a node on this plane. Its position on
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the plane, depicted in subfigure (B), directly corresponds to its original posi-
tion within its respective image. Specifically, if a node corresponding to the
ith pixel is denoted as vi, its position on the plane can be defined by a function
loc : V → N2 and the resulting node position loc(vi) = (xi, yi) corresponds
to indices of a pixel from an image in a matrix form, thus it maintains the
spatial integrity between the graph and the corresponding LR image. Hence,
xi and yi are constrained by the image dimensions: xi ∈ {0, . . . , W − 1} and
yi ∈ {0, . . . , H − 1}, where W and H represent the width and height of the
LR images, respectively.

Given N input images, each of size W × H, there are in total n = N ×
W × H nodes on this plane. However, it is crucial to note that at each occu-
pied position on the plane, there are N vertices, each from a different image.
Considering the nature of images and their grid-like structure, the closest
horizontal neighbours of a pixel at (x, y) would be at (x± 1, y), and the ver-
tical neighbours would be at (x, y± 1).

By this definition, at this initial phase, the node positions are direct repre-
sentations of the pixel positions in the LR images without any adjustments.
Subsequent steps involve refining these positions and establishing connec-
tions between these nodes to form a cohesive graph.

3.1.2 Displacement Calculation

The process of determining displacement vectors, essential to the node posi-
tioning strategy, seeks to identify both the magnitude and direction of each
LR image’s deviation concerning a reference image. This alignment, known
as image registration, can be achieved using traditional registration algo-
rithms or by leveraging neural networks specifically designed for this task.
The techniques employed for registration can be broadly categorized into
full-pixel and sub-pixel methods.

Full-pixel registration offers a direct methodology, translating pixels to
align images while preserving their inherent values [16]. This approach is
computationally efficient but might overlook the detailed nuances present
at sub-pixel levels. On the other hand, sub-pixel registration delves deeper,
adjusting pixel values to achieve more refined alignments, though at the po-
tential cost of introducing noise or distortions [127].

Several traditional methods have been employed for image registration.
Cross-correlation [71] serves as a foundational technique. Feature detection,
such as SIFT [83], is crucial for facilitating feature matching methods [169].



Chapter 3. Architecture Design 38

Discrete Fourier transform (DFT)–based techniques also offer refined align-
ments [42]. In the realm of deep learning, models like RegNet [96] and Shift-
Net [22] have emerged, along with convolutional networks designed specif-
ically for geometric transformations in image registration [21]. The choice
between these methodologies largely depends on the application’s specific
needs, available computational resources, and the desired level of precision.

In many MISR models, the inherent challenge is that they lack direct in-
put information about sub-pixel shifts. Instead, these models must deduce
such granular details independently in their feed-forward pass, often miss-
ing out on the nuanced information. In contrast, in this research, an effi-
cient sub-pixel image translation registration by cross-correlation has been
selected [42]. This choice was influenced by its notable advantages of rela-
tively low computation time and high accuracy.

Regardless of the chosen method, the primary objective remains consis-
tent: to determine the sub-pixel displacement for each LR image, ensuring
the nodes’ accurate positioning in the graph. Formally, for an ensemble of N
images, where the image at index i = 0 is chosen as the reference, the dis-
placement vectors u⃗i for each of the N − 1 remaining images are computed.
Each vector u⃗i is a two-dimensional representation capturing the horizontal
and vertical shifts, given by u⃗i = [x̄i, ȳi], where i ranges from 0 to N − 1,
and x̄0 = ȳ0 = 0. Building on this, the adjusted position of the node vj,
accounting for the displacement of its associated image, can be represented
as loc’(vj) = loc(vj) + u⃗img(vj)

. Here, img(vj) is a function that maps a node
vj to its associated image index, hence img : V → {0, . . . , N − 1}. Given
loc(vj) = (xj, yj), this translates to:

loc’(vj) =

[
xj + x̄img(vj)

yj + ȳimg(vj)

]
=

[
x′j
y′j

]
, j ∈ {1, . . . , n}. (3.1)

This mapping ensures that the spatial relationships between nodes are
consistent with the displacements of their respective LR images.

As depicted in Figure 3.2, the left image (subfigure A) visualizes the re-
sulting shift vectors derived from the image registration algorithms. Mean-
while, the right image (subfigure B) illustrates how these vectors have been
applied to adjust the nodes’ positions within the graph.

It is important to note that in more complex scenarios, where images ex-
hibit rotational deviations relative to each other, the procedure can be ex-
tended to compute a distinct shift vector for each node using algorithms
such as optical flow [163]. This approach accommodates rotational and other
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(A) Calculated shift vectors using image
registration algorithms.
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(B) Node positions adjusted using the
computed shift vectors.

FIGURE 3.2: Illustration of the process of computing shift vec-
tors and adjusting node positions based on these shifts.

complex transformations, determining spatial displacements on a per-node
level. However, this method is not adopted in this research as the employed
datasets exhibit only translations between the input images. Additionally,
optical flow is sensitive to noise, potentially causing significant errors in im-
ages with high temporal variations, and is computationally more demand-
ing [167]. Hence, this research focuses on addressing translations alone, uti-
lizing the described displacement calculation mechanism to ascertain and
compensate for spatial deviations between different LR images.

3.1.3 Graph Construction

In constructing the graph, the first critical step, post-node positioning, is the
creation of edges, effectively binding the individual nodes into an integrated
graph structure. As visualized in Figure 3.3, the establishment of connections
is primarily dictated by proximity, employing the concept of Euclidean dis-
tance. Formally, for any two nodes vi and vj with positions loc’(vi) = (x′i, y′i)
and loc’(vj) = (x′j, y′j), the Euclidean distance d : V, V → R between them is
defined as:

d(vi, vj) =
√
(x′j − x′i)

2 + (y′j − y′i)
2. (3.2)
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(A) Connecting procedure on two arbi-

trary nodes for radius r = 1.
(B) Fully prepared graph.

FIGURE 3.3: Visualization of node connection process.
The illustration provides a depiction of the graph construction process. The

left subfigure (A) demonstrates the method of connecting nodes that fall
within a specified radius, while the right (B) displays the completed graph,

integrating both nodes and edges.

Using this distance metric, the graph’s adjacency matrix A and the edge
set E are updated as:

A(i, j) =

1 if d(vi, vj) ≤ r

0 otherwise
. (3.3)

Here, an edge eij is present if A(i, j) = 1 and absent otherwise. The thresh-
old r, set to one in this context, marks the boundary for node connection.
Nodes within or on the circumference of a circle with radius r centred around
any given node are regarded as neighbours.

By setting r = 1, the connections predominantly align with the pixel
width, naturally preserving the spatial relationships inherent within individ-
ual images. Such a choice is both intuitive and computationally efficient: a
broader radius would compound the number of connections, amplifying the
computational burden.

With the foundational graph in place, enriched with the set of connec-
tions E , edge attributes U are added not only to boost the graph’s descriptive
potential but also to fulfil the input requirements of the spline-based con-
volution highlighted in section . These attributes capture the spatial offsets
between paired nodes, providing essential spatial relationship data that the
spline-based convolution needs to operate efficiently.
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For any two nodes vi and vj interconnected by edge eij, the attribute uij

records their spatial displacement:

uij = loc’(vj)− loc’(vi) =

[
x′j − x′i
y′j − y′i

]
= −uji (3.4)

With these edge attributes, the graph’s depth transcends mere structural
connections, shedding light on relative spatial orientations between nodes.
These attributes grant crucial context, particularly during graph processing
or analysis, as the relative node positions can be inferred directly from edge
data.

In conclusion, these steps come together to create a structured graph that
accurately represents the original set of LR images. This representation not
only maintains the inherent spatial dynamics and displacements, but also
enriches the spatial relational details embedded within. Unlike the conven-
tional matrix-based methods, where images are simply stacked in a sequence
without adding any new information beyond raw pixel values, this graph-
based approach is a significant move toward affirming the first thesis of this
dissertation.

3.1.4 Benefits of Graph Data Representation for MISR

In theory, the graph-based data representation method offers numerous ad-
vantages that make it particularly suitable for MISR tasks. These potential
benefits, including permutation invariance, the ability to handle varying quan-
tities of inputs or data heterogeneous in size, and flexible relationship modelling, are
discussed in this section.

Permutation Invariance

Permutation invariance in MISR signifies that the sequence of input LR im-
ages should not affect the super-resolution results. Regrettably, not every
MISR approach inherently embodies this attribute. Many conventional meth-
ods necessitate a static ordering of input images, inadvertently inducing de-
pendence on the specific sequence of LR inputs.

While contemporary techniques, particularly PIUNET and TR-MISR, do
ensure permutation invariance, they do so through distinct architectural strate-
gies. For instance, PIUNET employs self-attention mechanisms in the tempo-
ral dimension and shared convolutional layers. Conversely, TR-MISR utilizes
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a transformer-based fusion mechanism to ensure input order does not affect
outcomes.

However, the graph-based representation inherently guarantees permu-
tation invariance by placing each pixel from all LR images on a unified two-
dimensional plane, irrespective of their origin. Achieving this at the data-
creation level eliminates the requirement for special architectural decisions
to tackle this issue.

Varying Number of Input Images

A distinctive feature of the graph-based representation is its adaptability to
various numbers of input images. In contrast, some traditional methods,
such as RAMS, DeepSUM, and, to a certain extent, HighRes-Net, demon-
strate limitations. Specifically, RAMS and DeepSUM can only handle the
exact number of LR images during both training and inference as was avail-
able during their respective training sessions. Meanwhile, HighRes-Net fre-
quently resorts to padding its input matrix with blank images to round up to
the nearest power of two.

In the graph-based approach, the accommodation of varied numbers of
LR images is straightforward and does not demand architectural adjustments.
Regardless of the input count, they all form a single graph, with the only
variable being the graph’s density. However, it is worth noting that while
this model demonstrates scalability, an exponential rise in complexity ac-
companies each additional input image. For an in-depth discussion on the
computational implications, readers can refer to Section 6.5.

Handling of Heterogeneous Inputs

When it comes to real-world SRR tasks, there is often a mix of input im-
ages varying in aspects like resolution, size, or orientation, especially in re-
mote sensing applications [74, 126]. Traditional MISR methods might grap-
ple with this diversity, necessitating extra preprocessing steps to create a uni-
form dataset. This can be cumbersome and resource-intensive. In stark con-
trast, the graph-based approach can natively process a mix of different num-
bers, sizes, and orientations of LR images, assuming a proper node position-
ing procedure. This inherent flexibility means that whether the inputs are
uniformly oriented LR images or a mix of varying resolutions and orienta-
tions, the graph-based model can process them without problems, position-
ing it as a versatile choice for diverse scenarios. However, a comprehensive
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exploration of the adaptability to heterogeneous inputs remains beyond the
scope of the current research.

Flexible Modelling of Relationships

Graphs are renowned for their ability to capture relationships between en-
tities [15], an attribute that is highly beneficial in the context of MISR. In
the adopted graph-based representation, nodes are interconnected through
edges, which can represent various relationships, from spatial proximity to
pixel value similarity. Such dynamic connection modelling enables the dis-
cernment and utilization of intricate interpixel relations, potentially augment-
ing the super-resolution results.

In the research presented, these relationships are characterized as relative
displacements between pairs of pixels. While this serves as the primary re-
lational feature for the current focus, in more advanced scenarios, other rela-
tional characteristics can be encoded. This is reminiscent of the approaches in
more complex models, where, for instance, the significance of a node relative
to its neighbours is encoded, hinting at the versatility of the graph-based ap-
proach. However, a detailed exploration of more advanced encoding meth-
ods is discussed in Section 3.5 in the context of the MagNAt architecture.

3.2 MagNet: A Comprehensive Analysis and Proof-

of-Concept

MagNet [123], developed to support the propositions put forth in this thesis,
pioneers in utilizing GNN for the purpose of MISR. In the briskly advancing
domain of image super-resolution, MagNet introduces a unique application
of GNNs for MISR, carving out a novel path for research in this sphere.

The architecture of the MagNet model seamlessly integrates Graph Neu-
ral Networks with the framework of the SISR model FSRCNN [25]. Even
though FSRCNN was originally conceptualized as a SISR model, its struc-
ture lends itself efficiently to MagNet’s needs. The graph data representation
in MagNet essentially translates the multi-image super-resolution task into a
single-graph super-resolution. This, in essence, means that the model, while
processing a graph composed of various images, treats it similarly to a sin-
gle image scenario. By harnessing this graph-centric representation, MagNet
adeptly merges insights from various LR images, enhancing its overall per-
formance in the MISR challenge.
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As MagNet entered the MISR domain, its functionality and prowess were
put to the test through an array of meticulously planned experiments. These
tests did more than just highlight its operational efficiency; they emphasized
its capability and prospective contributions in managing the intricate facets
of multiple-image super-resolution.

It is pivotal to note that MagNet’s present incarnation serves primarily as
a proof-of-concept, illustrating the practicality of using GNNs in MISR. The
initial rounds of evaluation were predominantly anchored on simulated data,
extracted from a diverse pool of standard benchmark datasets. The primary
reason for initially using simulated data, as detailed in Chapter 4, describing
the employed datasets, was to assess the suitability of the architecture for the
MISR problem in a controlled and more manageable testing environment.

However, leaning solely on simulated data is but a preliminary phase in
MagNet’s developmental journey. The inherent limitations of simulated data
make it imperative to test the model in real-world scenarios. This transition
to real-world data testing, detailed further in section 6.2, is expected to shed
more light on the model’s potential and areas needed for refinement.

In essence, while the simulated data-centric proof-of-concept phase was
instrumental in unveiling MagNet’s potential, the move towards real-world
data promises a more comprehensive understanding of its capabilities, sug-
gesting an imminent evolution in the world of MISR.

3.2.1 Dissecting the Architecture of MagNet

As depicted in Figure 3.4, the architecture of MagNet is influenced by the
SISR network FSRCNN, discussed in Section 2.4.1. The proposed method of
data representation, which merges multiple LR images into a solitary graph,
makes this similarity possible. This unified graph can be perceived as a ’sin-
gle super-image’, possessing richer information than a conventional LR im-
age used in SISR.MagNet employs spline-based convolutions, as introduced
in SplineCNN (Section 2.6.4). This forms a composite model integrating tra-
ditional convolution methods with a message-passing technique inherent to
GNNs. This hybrid design empowers the model to harness both the features
and connection weights present in graph nodes and the spatial information
often disregarded in standard GNNs, due to their relational-centric scenar-
ios.

The very first layer in MagNet, serving as the feature extraction com-
ponent, employs spline-based convolution kernels with a configuration of
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k = {3, 3}. In this setup, the convolution utilizes two sets of B-spline basis
functions, one for each spatial dimension, with each set having three basis
functions. This configuration dictates the density of the weights within the
kernel’s spatial span and not the span itself. The spatial extent of this kernel,
specifically from -1 to 1 in both dimensions, adheres to the connection radius
described in section 3.1.1. Thus, it ensures that the convolution is influenced
only by the nodes within this defined spatial range around each node. With
this convolution, the input channels of each node are transformed to pro-
duce 56 features. The choice of outputting 56 features from this layer draws
its inspiration directly from the FSRCNN architecture.

Subsequent to this, MagNet integrates a shrinking layer to streamline the
architecture. This layer efficiently consolidates the previously mentioned 56
features, reducing them to a more compact 16 features, once again, a de-
sign choice influenced by FSRCNN. To achieve this feature reduction, the
architecture employs 1× 1 (k = {1, 1}) spline-based kernels. Notably, these
kernels incorporate only a single pair of B-spline basis functions—one for
each spatial dimension. Despite being influenced by just a singular weight
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for each node, this kernel design is ingeniously capable of assimilating infor-
mation from different neighbouring nodes, a characteristic that distinctively
sets it apart from conventional 1× 1 convolutional layers. Subsequent to this,
the architecture includes a convolutional block made up of four spline-based
convolutional layers, interlinked with a skip connection to counteract van-
ishing gradient issues in deep neural networks [48].

In the next phase, the feature count is increased back to 56 through a
single 1 × 1 spline-based convolutional layer. This is followed by a max-
pooling operation applied to predefined node clusters. To understand the
cluster formation, one can refer to the function introduced in Section 3.1,
denoted as loc(vi). This function yields the discrete location of a node vi.
Considering multiple LR images, for each discrete position (x, y) where x ∈
{0, . . . , W − 1} and y ∈ {0, . . . , H − 1}, there are N nodes, each correspond-
ing to one of the N LR images. These nodes are assembled into a cluster
based on their mutual spatial location, as defined by loc(vi).

By employing this clustering strategy, the architecture generates W · H
clusters, and each cluster encompasses N nodes. Here’s where the transfor-
mation becomes significant: the max-pooling operation consolidates each of
these clusters, which consists of N nodes, into a single representative node.
Consequently, the total number of nodes is reduced from N ·W · H to just
W · H.

This means that post max-pooling, for every discrete position (xi, yi) given
by the function loc(vi) = (xi, yi), there exists only one corresponding node.
Effectively, the architecture has transformed the graph into a regular, grid-
like structure. This uniformity mirrors a standard image grid, with each node
denoting a pixel-like entity at a particular spatial location. Such a structure
not only makes further processing more streamlined but also enhances Mag-
Net’s scalability and adaptability, ensuring that the model remains efficient
irrespective of the number of input images.

After the max-pooling step, the graph assumes a regular, grid-like struc-
ture. Before transitioning into a matrix format, MagNet conducts further
spline-based convolutions on this grid-like graph, incorporating a residual
block and a single spline-based convolution modifying the feature depth to
S2, with S being the upsampling factor of the model. Upon the conclusion
of these convolutional processes, the graph is converted into a matrix form,
preserving the spatial integrity of each pixel according to the loc(vi) func-
tion, and preparing the data for the pixel-shuffle operation [115]. The op-
eration works by reshuffling the channels of the input tensor to the spatial



Chapter 3. Architecture Design 47

dimensions. For an input tensor with shape [H, W, F · S2], where F is the
number of features, the pixel-shuffle operation outputs a tensor with shape
[H · S , W · S , F]. In the context of MagNet, given that the matrix represen-
tation post convolutions is of shape [H, W,S2], the pixel-shuffle operation
transforms it into [H · S , W · S , 1]. This effectively expands the spatial di-
mensions by a factor of S and produces a single channel, resulting in a rep-
resentation resembling a high-resolution single-channel image.

In summary, the MagNet architecture, through its unique incorporation
of graph-based techniques and spline-based convolutions, presents a dis-
tinct approach to addressing the MISR challenge. It effectively consolidates
multiple LR images into a cohesive graph structure, applies convolutions to
harness rich node information, and subsequently employs max-pooling and
pixel-shuffling to produce a higher-resolution image.

3.2.2 Limitations of MagNet

The MagNet architecture, while being a promising approach to SRR tasks,
poses certain challenges that need consideration. Central to these challenges
is the application of max-pooling before the upsampling step. The primary
objective of max-pooling in this context is to transform the graph into a more
structured, grid-like configuration, essential for its conversion into a matrix
form suitable for the pixel shuffle operation. However, while this transfor-
mation preserves the spatial boundaries, it reduces the graph’s node count,
potentially diminishing the amount of information embedded in the graph.

Consequently, the following pixel shuffle operation, applied to this now
simplified matrix, might not fully utilize the complete spectrum of informa-
tion present in the graph’s state prior to the max-pooling. In light of these
limitations, the next section introduces an evolved architecture, MagNet++,
which aspires to retain the foundational strengths of MagNet while address-
ing its weaknesses, aiming for an optimized super-resolution output.

3.3 Graph-Based Upsampling in MagNet++

Built on the foundations of the MagNet model, a new and refined architec-
ture named MagNet++ was designed and introduced by the author of this
dissertation in [122]. While retaining core elements such as the feature extrac-
tion layer, shrinking layer, and a convolutional block with skip connections—
all leveraging spline-based convolutions—its primary distinction lies in its
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upscaling technique. This method is optimized for the use of input node in-
formation and is crafted to reduce the likelihood of information loss, thereby
exploiting the unique aspects of this data representation more effectively.

In MagNet, the upscaling process involved the max-pooling of nodes cor-
responding to the same pixel position of the LR images. This operation re-
duced the number of nodes by a factor of N, transforming the nodes into
a grid-like configuration. The transformed data was processed by a convo-
lutional block, followed by a pixel shuffle operation to enhance the spatial
resolution of the image.

FIGURE 3.5: Schematic representation of the graph transforma-
tion and connection establishment for the bipartite upsampling
procedure. The original nodes (red, green and blue) establish
directed edges to the newly overlaid nodes (purple), ensuring
a one-way flow of information in the new bipartite structure.

MagNet++, on the other hand, embraces a different approach. Instead
of transforming the graph into a matrix prior to resolution enhancement, a
fully graph-based approach is adopted here. This method utilizes a bipartite
graph structure. To construct it, initially, the connections within the original
graph are entirely removed, rendering it a null graph—a type of graph con-
sisting of nodes but lacking any edges. Next, a new null grid-like graph
is crafted having of W · H · S2 nodes, with a distance between each pair
of neighbouring nodes (vertically or horizontally) equal to S−1. This new
graph is then overlaid onto the original, now edge-less one, so that their cen-
tres are aligned. The connection strategy utilizes one-way directed edges,
wherein the original nodes, retaining their information, connect exclusively
to the new nodes. The chosen radius, r =

√
2, ensures that each new node

establishes a connection to the original nodes, thus it avoids rendering a dis-
connected graph. A smaller radius, such as previously used r = 1, could risk
nodes positioned centrally between original pixels (across both dimensions)
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being too distant to form any connection. This could be particularly prob-
lematic in scenarios with a low count of input images or minimal displace-
ments between them. These new edges ensure a one-way flow of informa-
tion. Consequently, the newly overlaid nodes act solely as targets, receiving
information from the original nodes without initiating any connections of
their own. Visualization of this process can be seen in Figure 3.5, which pro-
vides a comprehensive schematic representation of the graph transformation
and connection establishment.

In this bipartite graph structure, a single spline-based convolutional layer
activated by the PReLU function is applied to gather information from the
source nodes. Next, the overlaid grid-like graph is separated from the orig-
inal one and transformed into a tensor of shape [S ·W × S · H]. With this
method, information loss from the input graph is potentially reduced, ad-
dressing a notable limitation, discussed in Section 3.2.2, of the MagNet archi-
tecture.

3.3.1 MagNet++ Architecture
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With the return of a single rectangular tensor from the bipartite upscaling
operation, standard 2D convolutional layers can be applied instead of the
spline-based ones to reduce the computational overhead of the model. The
data is further processed through a single residually connected convolutional
block, followed by a convolutional layer with a single kernel, producing the
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final super-resolved image. The architecture of MagNet++ is shown in Fig-
ure 3.6.

A noteworthy advantage of MagNet++ is its flexibility with the shape
and completeness of the input LR images. Unlike many models that neces-
sitate rectangular input, MagNet++, theoretically, is able to accommodate
non-rectangular images, providing greater adaptability in various applica-
tion contexts. Furthermore, it also permits the processing of images with
specific nodes removed, such as masked nodes. This functionality is particu-
larly beneficial in cases like remote sensing applications, where certain nodes
might depict unwanted or noise-inducing elements, such as clouds or uncap-
tured pixels. By introducing these new features, MagNet++ demonstrates a
significant stride forward in the field of super-resolution imaging, offering a
promising prospect for further advancements.

3.4 MagNetenc and Improved Feature Extraction
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The successes of MagNet and MagNet++ paved the way for MagNetenc,
a model designed to refine super-resolution capabilities further, depicted in
Figure 3.7. A core challenge in MISR is the diversity in LR images, which can
differ in brightness, contrast, sharpness, and noise. This diversity, while of-
fering a unique perspective of a scene, can sometimes cause neural networks
to unintentionally prioritize some images over others based on their intrinsic
characteristics.
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To address this, MagNetenc incorporates an encoding block inspired by
the HighRes-Net [22] and TR-MISR [2] models. As shown in equations 2.3
and 2.4, this block is anchored by a reference image derived from the me-
dian pixel value across multiple LR images, providing a consistent baseline.
Individual LR images are then processed in conjunction with this reference.
The encoding block’s design, featuring an initial convolutional layer and two
subsequent residual blocks with PReLU activations, effectively captures spa-
tial patterns and hierarchies. Jointly processing the LR image with the ref-
erence image emphasizes differences across frames and aids in identifying
high-frequency features. Subsequently, with each LR image independently
processed, the resulting feature maps are merged into a unified graph. This
combined graph is then passed through the same sequence of processing lay-
ers as detailed in the MagNet++ model. Through this approach, the core
innovations of the MagNet++ architecture are retained, particularly the bi-
partite graph upsampling.

In conclusion, MagNetenc signifies a notable advancement from its prede-
cessors, emphasizing a more detailed feature extraction phase. This model
was crafted as a step towards validating the thesis concerning the integra-
tion of techniques utilized by current state-of-the-art MISR architectures to
enhance the super-resolution performance of GNNs. By processing diverse
LR images independently with a reference image, MagNetenc seeks to high-
light differences across images, assisting in the recognition of high-frequency
features. It aims to leverage the unique insights each LR image provides, to-
wards generating a high-resolution output. This approach keeps the core
innovations from MagNet++ intact, particularly the bipartite graph upsam-
pling, while introducing an encoding block to better grasp spatial patterns
and hierarchies.

3.5 Learnable Relationships in MagNAt

The motivation behind the development of the MagNAt model encapsulates
two pivotal principles. Initially, the driving idea was that, while the relation-
ships and dependencies between a pixel and its neighbours are crucial, not
all pixels contribute equally to understanding the underlying scene structure;
some relationships are more informative than others. The attention mecha-
nism was seen as a tool to identify and weigh these different relationships
based on their significance. By examining the relative importance of each
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neighbouring node within a graph representation of an image, the model as-
signs weights that guide the subsequent processing steps. This ensures that
the more relevant features are highlighted while the less relevant ones are
toned down, enabling a more accurate and informed super-resolution pro-
cess.

Moreover, traditional registration algorithms, while proficient in the realm
of image super-resolution, exhibit potential shortcomings in scenarios with
pronounced discrepancies between images [130]. This observation unveils a
chance for inaccuracies that could influence the entire learning journey, pos-
sibly propelling the model to work with less-than-ideal data. Recognizing
these sporadic challenges sparked an exploration into more adaptive alterna-
tives. Within this narrative, the adaptive and trainable registration method is
employed in the MagNAt model as a solution aiming to better address such
specific scenarios. The dynamic node placement mechanism in the model
adjusts translations of LR images relative to a reference image with each for-
ward pass through the network, standing in contrast to conventional models
where translations are usually set once during the data-loading phase and
then remain static throughout the training.
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The following sections go into the details of the MagNAt’s architecture,
depicted in Figure 3.8, showing how the attention mechanism and adaptive
registration work together to improve the super-resolution process, and pro-
viding a guide on how the model manages the convolutions, attention dis-
tribution, and dynamic node adjustments throughout its layers to achieve its
goals. This approach was a necessary step towards substantiating the second
thesis, stating that GNNs can markedly improve their MISR performance by
assimilating techniques from existing state-of-the-art MISR models.
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3.5.1 Attention-Based Convolution

The MagNAt model introduces a multi-level attention mechanism, specifi-
cally targeting both node features and edge attributes, into the field of graph-
based image super-resolution. This mechanism, layered over the latent rep-
resentation of an image mapped onto a graph structure, operates in tandem
with the bipartite upscaling operator. Combining the principles of GATs,
as detailed in Section 2.6.4, with spline-based convolution operations, this
model is adept at assigning variable importance to neighboring nodes, there-
by enhancing its expressiveness. For a given node vi, the attention weight αij

for each of its neighbours j ∈ N (i) is determined. Unlike the original atten-
tion coefficient methodology in GATs described by equation 2.9, the MagNAt
model employs a modified approach that incorporates edge attributes, which
can be defined as:

αij =
exp

(
LeakyReLU

(
aT[Whi||Whj||uij]

))
∑k∈N (i) exp (LeakyReLU (aT[Whi||Whk||uik]))

. (3.5)

In this equation, the inclusion of the two-element edge attribute vector
uij necessitates an adjustment in the dimensionality of the learnable weight
vector, so that aT ∈ R2F′+2.

Incorporating these attention weights into the convolutional process, the
MagNAt model deviates from the traditional spline-based convolution, as
given by the equation 2.10. The resulting feature vector for node vi from this
modified layer can be calculated as:

h′
i =

F′

∥
s=1

∑
j∈N (i)

αijhj
Tgθs(uij). (3.6)

The primary adaptation in this layer revolves around the multiplication of
the message from each neighbouring node j by its specific attention weight
αij. Intrinsically, because the attention coefficients are obtained through a
softmax function, their cumulative value for all neighbours of the node vi

converges to 1. Consequently, there is no need to divide the message by
the count of neighbours of the node vi. Instead, this mechanism effectively
considers the incoming messages as a weighted sum.

3.5.2 Dynamic Registration

The MagNAt model employs a dynamic node placement technique, building
upon the RegNet model from the DeepSUM framework [96]. From a set of
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N input images, one serves as the reference image. The remaining images un-
dergo processing through 3D convolutional layers followed by a global pool-
ing stage, resulting in a single vector for each image. Conventionally, these
vectors are reshaped into convolutional kernels that, when applied to the
corresponding image, align it to the reference. However, in MagNAt, they
are channelled through a linear layer to form 2-element shift vectors, which
represent horizontal and vertical shifts, for each of the N-1 non-reference im-
ages.

At first, all images’ nodes are placed based on the node positioning mech-
anism highlighted in Section 3.1.1. Using the shift vectors computed by Reg-
Net, nodes in each image are adjusted, enabling dynamic alignment with
the reference image. The entirety of this mechanism—including node adjust-
ments, shift vector calculations, and the broader architecture—is depicted in
Figure 3.8. While the overarching philosophy for graph creation remains un-
changed, the innovation lies in the revamped algorithm that calculates these
shifts, now a trained submodule. This dynamic alignment unfolds in real-
time, underscoring MagNAt’s adaptability and robustness.

Theoretical Advantages of Dynamic Registration

The dynamic node placement in the MagNAt model suggests several poten-
tial advantages based on theoretical reasoning, though these require further
empirical validation:

1. Robustness to Initial Errors: Dynamic node placement might help the
model continuously adapt to any initial registration errors, potentially
providing resistance against inaccuracies seen in traditional static reg-
istration methods.

2. Adaptive Learning: With dynamic node placement, the model may
have the ability to adjust to changes throughout training epochs, which
could lead to better performance and improved super-resolution re-
sults.

3. Improved Feature Extraction: By better aligning LR images through
dynamic node placement, the model might achieve more accurate fea-
ture extraction, potentially improving the quality of the super-resolu-
tion output.
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4. Increased Model Flexibility: The adaptive nature of node placement
could provide an additional level of flexibility, allowing it to optimize
learning for the given task.

5. Mitigating Overfitting: By constantly adjusting the registration dur-
ing training, the model may be able to reduce the risk of overfitting
to incorrect translations, potentially leading to better performance on
unseen data.

The MagNAt model significantly leverages a graph attention mechanism,
underscoring the crucial relationships between pixels in image super-resolu-
tion tasks. This attention-centric approach is pivotal, especially in the ini-
tial residual block and the upsampling module, setting the MagNAt model
apart from the MagNetenc design, and aiming for superior super-resolution
outcomes. Furthermore, the adaptive registration component augments the
model’s robustness and performance by adaptively handling spatial discrep-
ancies between input images. In the broader scope of this research, the Mag-
NAt model, owing to its innovative features, has been chosen for extensive
testing and evaluation, standing as a potential milestone in the MISR do-
main. Earlier versions of the model, although fundamental, are examined
in their comparative analysis section 6.4, showing the step-by-step improve-
ments and emphasizing the promising potential of the MagNAt model.

3.6 Modifications of MagNAt

In this section, two derivative models, MagNAtno_reg and MagNAtlead, are
introduced, both fundamentally grounded on the MagNAt architecture. The
creation of MagNAtno_reg aims at evaluating the impact of adaptive regis-
tration on the model’s performance, contributing to the validation of the
second thesis postulated in this dissertation. The distinguishing feature of
MagNAtno_reg from MagNAt is the absence of the RegNet component, thus
rendering the registration in this model analogous to other models utilizing
pre-computed shift vectors. The architectural design of MagNAtno_reg is il-
lustrated in Figure 3.9.

3.6.1 Ensuring Temporal Consistency

MagNAtlead is devised to substantiate the third thesis, positing the feasibility
of designating one of the LR images as the leading image to steer the model
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in reconstructing the scene at a specific point in time, dictated by this leading
image, and adeptly reconstructing regions of high-temporal variance. The
structure of MagNAtlead mirrors that of MagNAt, although with minor devi-
ations in the methodologies of registration, encoding, and upsampling. Re-
garding registration, the difference lies in merely selecting the leading image
as the reference during the registration phase, thereby aligning all other im-
ages in relation to it. In the context of encoding, opposed to utilizing the me-
dian of all LR images as a reference, as denoted by equation 2.3, the leading
image is solely used as such reference. Consequently, the modified general
expression for the encoding block (equation 2.4) is formulated as:

si
0 = embθ([LRi, LRlead]) (3.7)

where LRlead represents the leading LR image.
Lastly, within the bipartite upsampling module, the modification relates

to the positioning procedure of the new high-resolution graph laid onto the
original one. Contrary to centring it with respect to all nodes of the initial
graph, as denoted in Section 3.3, it is now aligned solely with the set of nodes
corresponding to the leading LR image. In effect, there are W ·H nodes of this
high-resolution graph positioned identically to the nodes corresponding to
the leading image. Theoretically, such an arrangement creates a pronounced
bias towards the reconstruction of features corresponding to the leading im-
age.
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Although the MagNAtlead model suggests a potential improvement over
MagNAt by aiming to address the particular problem of temporal consis-
tency, it has not been adopted as a primary model within this dissertation.
This decision stems from the fact that the current prevalent MISR datasets do
not officially consider or provide a framework for evaluating temporal con-
sistency. Nonetheless, the potential enhancements and performance charac-
teristics of MagNAtlead are deliberated in Section 6.3.1, showcasing its promis-
ing capability to manage temporal variance in reconstructing scenes.

3.7 Comparison of Proposed Architectures

A progression is observed in the proposed models through iterative refine-
ments, enhancements, and the incorporation of new concepts. For a consoli-
dated overview, a tabulated comparison is presented below, showcasing the
distinctive features of each architecture.

Model Bipartite
upsampling

LR
uncoding

Multi-level
attention

Adaptive
registration

Leading
LR

MagNet ✗ ✗ ✗ ✗ ✗

MagNet++ ✓ ✗ ✗ ✗ ✗

MagNetenc ✓ ✓ ✗ ✗ ✗

MagNAtno_reg ✓ ✓ ✓ ✗ ✗

MagNAt ✓ ✓ ✓ ✓ ✗

MagNAtlead ✓ ✓ ✓ ✓ ✓

TABLE 3.1: A comparison of distinctive features across the pro-
posed architectures.
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Chapter 4

Data Description and Simulation

High-quality data is fundamental to the success of any machine learning or
deep learning project. When it comes to super-resolution tasks, the choice
of data and its preparation become even more critical due to the challenges
inherent in this domain. This chapter focuses on the datasets used in this
research, specifically detailing the process of data simulation, which played
a key role in training and evaluating the developed models.

4.1 Simulated Dataset

This research strategically incorporates both simulated and real-world data-
sets. The simulated datasets afford advantages in generating a plethora of
training examples from a limited set of HR images. They provide a con-
trolled environment where specific features of the LR images, such as degra-
dation levels, can be manipulated. Furthermore, they permit emulation of
certain real-world conditions, particularly minor shifts in the image, crucial
for MISR.

Two distinct simulated datasets, SRRB and SRRBenh, were curated for this
work. Their distinctions arise from their simulation parameters and intended
purposes. The SRRB dataset solely simulates sub-pixel shifts between LR im-
ages, designed to assess the capability of models in capturing and addressing
these minute translations. In contrast, the SRRBenh dataset simulates not just
translations, but also global variations like brightness, contrast, and noise.
This was intended to approximate real-world scenarios where LR images of
the same scene exhibit distinct global attributes. While SRRBenh moves closer
to mimicking real-world datasets, it still diverges due to inherent temporal
consistencies. Since simulated LR images stem from a single HR source, they
inherently share identical temporal information, unlike real-world observa-
tions, which inevitably possess such temporal variations.
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In the context of this research, a pivotal decision concerned the down-
sampling factor for simulating LR images. Opting for a 3× downsampling
factor, the resultant LR images are three times smaller compared to their HR
versions. This configuration mirrors the Proba-V super-resolution challenge
and its corresponding dataset employed in this study (Section 4.2). Notably,
numerous state-of-the-art models, which were employed and evaluated in
this work, were originally tailored for this challenge and its specific upsam-
pling factor. To preserve the original training conditions of the state-of-the-
art models, the upsampling factor, S , was consistently set at three for retrain-
ing and evaluation in this study.

Both simulated datasets source images from established databases. Specif-
ically, the DIV2K [1] database was employed for training the models, while
others, namely BSDS100 [3], historical [73], Manga109 [92], Set5 [9], Set14 [162],
and Urban100 [73], were utilized for benchmarking purposes. The selected
databases are renowned in super-resolution research, ensuring the incorpo-
ration of diverse image types and thereby enabling a comprehensive evalua-
tion of the proposed models.

4.1.1 Training and Validation Datasets

The DIV2K dataset was chosen as the primary resource for the training and
validation phases of the models. DIV2K is widely recognized in the super-
resolution domain for its diverse and extensive collection of high-quality im-
ages. The original dataset comprises 1000 RGB images that display a range
of scenes, objects, and textures.

For the purpose of this study, all images from the DIV2K dataset, as well
as those from all other included datasets, were converted to grayscale. This
conversion was undertaken to simplify the research process, concentrating
on the core problem of image super-resolution without the added complexity
of colour information.

Additionally, a preprocessing step was introduced to ensure uniformity in
image sizes, a vital aspect for facilitating batch creation and collation during
the training phase. The smallest image size in the dataset was identified,
and all larger images were divided into non-overlapping sub-images of this
determined dimension. In this research, the chosen size was 222× 222 pixels.
As a result of this cropping strategy, the effective number of images in the
dataset was expanded from the original 1000 to 1409.
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An 80:20 split was then applied to the preprocessed DIV2K dataset, with
80% of the images reserved for training and the remaining 20% designated
for validation. This commonly adopted ratio ensures a substantial major-
ity of data aids in discerning core features and patterns, while a significant
portion is preserved to evaluate the model’s capabilities and adaptability on
previously unseen data during the validation stage, thus mitigating overfit-
ting risks. This allocation remained consistent in both the SRRB and SRRBenh

datasets.

4.1.2 Benchmark Datasets

In addition to DIV2K, several other datasets were used for benchmark pur-
poses. These datasets - BSDS100, historical, Manga109, Set5, Set14, and Ur-
ban100 - are well-known in the super-resolution community and widely em-
ployed for model evaluation, especially in SISR [129, 26, 66].

Each benchmark dataset offers unique image characteristics, providing a
diverse testing ground. Notably, the numbers in the names of datasets like
BSDS100, Manga109, Set5, Set14, and Urban100 indicate the number of im-
ages they contain. BSDS100 comprises natural images with complex textures
and structures. The historical dataset, distinctively, consists of 10 images that
showcase older, classical styles and textures. Manga109 is characterized by
manga-style images demanding the preservation of sharp edges. Set5 and
Set14, although smaller in size, offer a diverse and broadly used collection of
images for benchmarking in the super-resolution community and image pro-
cessing in general. Urban100 features images of urban scenes, predominantly
with man-made structures and patterns. Using these varied datasets ensures
that the performance of the models is scrutinized across different image types
and conditions, thereby measuring their robustness and adaptability - factors
vital for effective deployment in real-world SRR tasks.

4.1.3 The Process of Generating Simulated Datasets

This section details the methodologies behind the creation of simulated LR
images for the SRRB and SRRBenh datasets. While the SRRB is centred on im-
age shifting and downsampling, the SRRBenh goes a step further, introducing
real-world challenges such as contrast adjustments, blurring, and noise. Each
dataset plays a distinct role in evaluating MISR models, differing in their
complexity levels. The subsequent subsections provide a thorough overview
of the image generation processes for each dataset.
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Simulated Dataset

HR LR1 LR2 LR3

a)

b)

FIGURE 4.1: Illustration of the images synthesized for the SRRB
dataset. The first row (a) presents the full-sized images, while
the second row (b) offers magnified segments, emphasizing the

sub-pixel shift variations between them.

The process of generating simulated LR images for the SRRB dataset in-
volved two crucial steps: image shifting and downsampling. In the initial stage,
every HR image was subjected to a series of shifts, resulting in nine distinct
shifted versions for each. These shifts aimed to emulate the variability fre-
quently observed in real-world situations where factors such as changes in
perspective or environmental variables might modify a scene’s representa-
tion. Shift vectors, applied to each HR image independently, were derived
from a uniform distribution within the range of [−1.2, 1.2] for both dimen-
sions individually. This range was selected based on calculations and ob-
servations from the real-world Proba-V dataset. Specifically, sub-pixel shifts
between LR images rarely surpass the interval [−0.4, 0.4]. Given the chosen
downsampling rate of three, the range for HR images effectively matches
this observed interval for the LR images. Following the shifting operations,
the HR images were downsampled 3× to produce the respective LR counter-
parts.

From this method, nine LR images were produced for each original HR
image, intending to introduce foundational intricacies associated with MISR
tasks. The entire procedure of generating multiple LR images from a singular
HR example is detailed in Algorithm 1, and the resulting images are depicted
in Figure 4.1.
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Algorithm 1 Algorithm used to simulate multiple LR images.

1: Initialize empty set LRs
2: Set number of shifts n← 9
3: Set shift range r ← [−1.2, 1.2]
4: Set downscale factor d← 3
5: for i← 1 to n do
6: x_shi f t← random number within r
7: y_shi f t← random number within r
8: shi f t_vector ← (x_shi f t, y_shi f t)
9: shi f ted_image← shift HR by shi f t_vector

10: LR← downscale shi f ted_image by factor d
11: Add LR to the set LRs
12: end for
13: return LRs

Enhanced Simulated Dataset

The procedure for generating LR images for the SRRBenh dataset is a slight
enhancement of the one used for the SRRB dataset. This includes the steps of
shifting HR images, adjusting contrast and brightness, downsampling, blur-
ring, and finally, adding noise.

HR LR1 LR2 LR3

FIGURE 4.2: Illustration of the LR images obtained for the
SRRBenh dataset. The images underwent a series of transforma-
tions, including shifting, contrast and brightness adjustments,

blurring, and noise addition.

Each image alteration parameter is independently sampled from the nor-
mal distributionN (µ, σ2) for every generated LR image. Using a distribution
rather than a fixed value enables variations across different images, augment-
ing the dataset’s diversity. In the normal distribution, two parameters are de-
fined: the mean (µ), denoting the central value, and the standard deviation (σ),
expressing the dispersion of values.

The contrast adjustment is performed using values from N (1.0, 0.052),
while brightness adjustment employs values from N (0.0, 5.02). After these
alterations, the image is downsampled and then blurred using a Gaussian
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kernel with a standard deviation of 0.2. The noise is finally added using val-
ues fromN (0.0, 10.02). The specific values for each parameter were carefully
chosen based on the author’s insights gathered in previous research [124,
126]. This series of steps increases the complexity of the SRRBenh dataset, pro-
viding a more rigorous testing environment for the super-resolution models.
Figure 4.2 showcases the LR images derived through the procedure outlined
in Algorithm 2.

Algorithm 2 Algorithm used to simulate multiple LR images for the SRRBenh
dataset.

1: Initialize empty set LRs
2: Set number of shifts n← 9
3: Set shift range r ← [−1.2, 1.2]
4: Set downscale factor d← 3
5: Set contrast parameters µc ← 1.0, σc ← 0.05
6: Set brightness parameters µb ← 0.0, σb ← 5.0
7: Set noise parameters µn ← 0.0, σn ← 10.0
8: for i← 1 to n do
9: x_shi f t← random number within r

10: y_shi f t← random number within r
11: shi f t_vector ← (x_shi f t, y_shi f t)
12: shi f ted_image← shift HR by shi f t_vector
13: c← sample from N (µc, σ2

c )
14: b← sample from N (µb, σ2

b )
15: enhanced_image← shi f ted_image ∗ c + b
16: LR← downscale enhanced_image by factor d
17: LR← blur LR with Gaussian kernel (σ = 0.2)
18: noise←matrix sampled fromN (µn, σ2

n) with the same size as the LR
19: LR← LR + noise
20: Add LR to the set LRs
21: end for
22: return LRs

4.1.4 Reflection on Data Simulation

Both the SRRB and SRRBenh datasets were crafted to emulate the intricacies
of real-world imaging, albeit with distinct intentions. The SRRB dataset, de-
rived through random shifts and downsampling of HR images, offers a foun-
dational training ground for super-resolution models. These shifts embody
the natural variability found in multiple captures of real scenes, ensuring
model exposure to diverse training conditions.

Enhancing upon the SRRB’s premise, the SRRBenh dataset integrates fur-
ther intricacies, including image modifications like contrast and brightness
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adjustments, noise addition, and mild blurring. These alterations simulate
environmental influences and the various challenges faced in real-world cap-
tures, such as blurring from atmospheric distortions or noise due to sensor
constraints and lighting conditions [17].

However, an essential nuance in these datasets is that the simulated LR
images, despite their differences, represent the same temporal instance. Real-
world captures often span different time points, encompassing shifts due to
camera movements, environmental variations, or differing exposure times.
For remote sensing, factors like satellite position alterations and atmospheric
shifts further complicate the scenario. The current SRRBenh dataset does not
capture these temporal dynamics, suggesting a potential enhancement av-
enue for subsequent versions.

In essence, while the SRRB offers foundational training, the SRRBenh pro-
pels model challenges by imitating a broader spectrum of imaging challenges.
Using them in tandem ensures a comprehensive model evaluation, balancing
fundamental training with advanced adaptability.

4.2 Real-World Dataset

Real-world data is pivotal in this research, enabling the testing and validation
of super-resolution models under genuine conditions. To achieve this, the
Proba-V multi-image super-resolution dataset [91] was chosen.

Several factors guided the selection of the Proba-V dataset. Firstly, it of-
fers real-world images captured by the Proba-V satellite, creating an authen-
tic and challenging environment for developing and testing super-resolution
models. This dataset incorporates the inherent complexities typical of satel-
lite imagery, including data gaps and variations in image quality due to at-
mospheric conditions like cloud coverage. These characteristics make it a
true reflection of real-world scenarios.

Moreover, the Proba-V dataset provides an element that the simulated
datasets SRRB and SRRBenh lack: temporal variation. As the images in the
Proba-V dataset were captured at different points in time, they expose the
models to the natural alterations that occur between subsequent captures,
including changes in lighting, movement of objects, and potential growth
or alteration of the landscape. This temporal variation is an indispensable
factor in real-world SRR tasks, making the Proba-V dataset a crucial tool for
this research.
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Lastly, the Proba-V MISR challenge has been a significant driving force
in the field of MISR. Numerous state-of-the-art models have emerged as a
result of this challenge, providing innovative techniques and benchmarks
for evaluating and comparing the models developed in this research.

4.2.1 Proba-V MISR Dataset Structure

The Proba-V MISR dataset, provided for the challenge, consists of satellite
data from 74 regions around the globe, which were hand-selected at different
points in time within a 30-day window. A total of 1450 scenes are contained
in this dataset, of which 1160 scenes are allocated for training and 290 for
testing; however, the latter set is devoid of HR target images.

Each scene consists of exactly one HR (100 m GSD) image of shape 384×
384, which is accompanied by multiple LR (300 m GSD) of shape 128× 128.
Additionally, each image has a corresponding quality map. Their role is to
indicate which pixels in the image are obscured (e.g., by clouds, cloud shad-
ows, ice, water) and which ones remain clear.

Inclusion criteria for an image in this dataset dictate that at least 75% of
its pixels must be clear for 100 m resolution images, and 60% for 300 m res-
olution images. The number of LR images per scene can vary from 9 to 32,
with an average count of 19. The original test set, encompassing 290 scenes,
is not accompanied by HR reference images and is specifically structured
for evaluations on the competition’s servers. For the sake of enabling local
evaluations, the original training subset was divided into three distinct sub-
sets: training, validation, and test, adhering to an 80:10:10 ratio, respectively.
Through this division, comprehensive evaluations of the models at different
developmental stages were facilitated.

4.2.2 Spectral Bands of Proba-V Dataset

The Proba-V MISR dataset includes two spectral bands: near-infrared (NIR)
and red (RED). The data consists of radiometrically and geometrically cor-
rected top-of-atmosphere reflectances for these spectral bands.

The NIR band, with wavelengths between 780 and 2500 nm, is often used
in remote sensing and satellite imaging to study vegetation, water bodies,
and atmospheric properties. Images in the NIR band can reveal details about
plant health, water content, and other features that are not visible in the RGB
spectrum. The RED band, with wavelengths approximately between 620 and
750 nm, is particularly sensitive to chlorophyll and can provide information
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about vegetation’s photosynthetic activity. This makes it useful for moni-
toring plant growth, assessing crop yields, and tracking changes in forest
cover, among other applications. In this study, both NIR and RED subsets,
comprising 566 and 594 scenes, respectively, were independently utilized for
training, validation, and testing of the models.

4.2.3 Handling Real-World Challenges

The Proba-V MISR dataset embodies various real-world challenges, under-
scoring the imperative for advanced super-resolution models. The models
developed must not only replicate real-world dynamics but also adapt to
myriad inconsistencies to ensure their practical relevance.

A significant challenge in the dataset is the presence of areas obscured
by clouds, cloud shadows, ice, and water. To assist in managing this, the
dataset provides clearance masks for both LR and HR images. During the
training phase, these masks play an invaluable role, allowing the exclusion
of obscured or irrelevant pixels. During the super-resolution reconstruction
phase, these masks ensure a better input by excluding the irrelevant pixels.

Another nuance in the dataset is its data storage method. The image files
use a 16-bit depth, but the actual image content occupies only 14 bits. Con-
sequently, areas without captured content reach the maximum of the 16-bit
range. This specific representation is not complexity in itself but a feature of
the dataset. It’s essential for super-resolution models to recognize this aspect,
ensuring these pixels are properly managed to prevent distortions.

Geometric intricacies, inherent in satellite imagery, appear as shifts and
rotations due to factors like satellite position and Earth’s rotation. The Proba-
V MISR dataset addresses this by utilizing the Plate Carrée projection [118].
While this projection significantly rectifies geometric distortions using eleva-
tion data and the sensor’s metadata, minor shifts—primarily at the subpixel
level—persist between the LR images. These shifts, however, can be seen as
an advantage. Offering varied views of the same scene, they can potentially
enrich the super-resolution process. Models should capitalize on these shifts,
extracting enhanced information and producing more detailed outputs. To
visually comprehend the nuances of the Proba-V MISR dataset, Figure 4.3
showcases representative images from the dataset alongside their respective
clearance maps.
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HR LR1 LR2 LR3

a)

b)

FIGURE 4.3: Illustrative samples from the Proba-V MISR
dataset. The top row (a) displays selected images, while the bot-
tom row (b) presents the corresponding clearance maps, high-

lighting the areas of clarity (white) versus obscurity (black).

4.2.4 Importance of the Proba-V MISR Dataset

The Proba-V MISR dataset’s utilization in this research is seen as instrumen-
tal for the development and evaluation of super-resolution models under au-
thentic real-world conditions. Characterized by its broad geographical cov-
erage and diverse atmospheric conditions, this dataset can be considered a
pivotal resource for super-resolution studies. Further advancements in the
field have been significantly catalyzed by the Proba-V MISR challenge, with
an array of innovative techniques and cutting-edge models being introduced.
By engaging with this dataset, existing knowledge from these developments
was built upon, and further contributions to this dynamic field were facili-
tated.

Although the Proba-V dataset is not the only resource available for MISR,
other notable datasets have been introduced, such as MuS2 [69] and the semi-
simulated Sentinel-2 dataset [124]. MuS2 was designed for super-resolving
multiple Sentinel-2 images, using WorldView-2 as the HR reference. How-
ever, it faces challenges due to the distinct sensor characteristics of the Senti-
nel-2 and WorldView satellites, leading to subtle discrepancies between the
low and high-resolution images. Moreover, while the semi-simulated Sentinel-
2 dataset approximates real-world conditions better than typical simulated
datasets, it does not capture the full authenticity of purely real-world data. A
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distinguishing factor of these datasets is their orientation towards multispec-
tral MISR, which presents a different set of challenges and considerations.
Given these considerations, the Proba-V dataset was favoured for this re-
search. This choice was also influenced by the state-of-the-art MISR models
specifically tailored for Proba-V, which were pivotal for comparison in this
study. Additionally, the Proba-V dataset ensures a uniform sensor profile for
both its resolution scales. Coupled with its intrinsic real-world challenges
and the unbiased evaluation potential via the challenge’s servers, the Proba-
V dataset stands out as the principal dataset for this dissertation.

4.3 Dataset Comparison

Understanding the differences between datasets is crucial for appreciating
the challenges and opportunities they present. To shed light on the distinc-
tions between SRRB, SRRBenh, and Proba-V datasets, a comparative table has
been developed below.

Parameter SRRB SRRBenh Proba-V (NIR) Proba-V (RED)
Training examples 1409 1409 510 535

Test examples 338 338 56 59
Images/Scene 9 9 9–32 9–32

LR Size 74 74 128 128
HR Size 222 222 384 384
LR Shifts ✓ ✓ ✓ ✓

Global LR Differences ✗ ✓ ✓ ✓

Local Variations ✗ ✗ ✓ ✓

TABLE 4.1: Comparison of the datasets used in this research.

Given the outlined characteristics of each dataset, the subsequent chapter
details how this data was employed for training the super-resolution models.
The methodology adopted and the metrics chosen for assessment are also
discussed to provide a comprehensive view of the experimental approach.



69

Chapter 5

Training Methodology and
Evaluation Metrics

The methodology adopted for training significantly influences a model’s per-
formance. This chapter delves into the detailed training processes utilized
for the proposed and various state-of-the-art models. The training was con-
ducted on three distinct datasets: SRRB, SRRBenh, and the real-world Proba-
V dataset, each presenting its own unique challenges. Notably, for each ar-
chitecture, four independent models were trained, one for each simulated
dataset and one for each Proba-V band subset. The procedures followed
while handling the training for each dataset, the choice of hyperparameters,
and the techniques used to overcome various challenges are discussed in de-
tail in the subsequent sections.

5.1 Loss Function

In the training phase of deep learning models, the loss function plays a piv-
otal role in optimizing the model to produce outputs closely resembling the
target images. To train the proposed models, the corrected PSNR (cPSNR) is
used as a loss function. cPSNR is a specialized version of the peak signal-to-
noise ratio (PSNR) [146, 108] and was originally introduced for the Proba-V
competition to address the unique challenges posed by its corresponding
dataset in MISR tasks. A key feature of this metric is the exclusion of con-
cealed pixels, which is particularly useful for real-world satellite imagery to
avoid reconstructing obscured areas, such as clouds, that can introduce in-
accuracies. Additionally, cPSNR incorporates brightness correction and full-
pixel registration, ensuring that image quality assessment remains consistent
regardless of variations in brightness and positional discrepancies between
the compared images.
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5.1.1 cPSNR Computation

The foundation of cPSNR lies in its emphasis on image registration. Given
the inherent complexities of the multi-image super-resolution (MISR) sce-
nario, where a series of mutually shifted LR images is provided without a
precise HR image reference, it would be unjust to penalize the model for
minor registration deviations. To account for this, cPSNR permits full-pixel
shifts, aligning the super-resolved and HR images and adjusting for possible
shifts during the super-resolution phase.

In the context of cPSNR computation, the HR images are divided into
patches using indices i and j. These patches are created by shifting the HR
image within a [−3, 3] range in both dimensions, resulting in 49 distinct
patches. Concurrently, the super-resolved image is cropped to obtain a sin-
gle, central patch. It is important to note that each patch has a diminished
effective size due to a 3-pixel exclusion on all sides. This exclusion ensures
that border effects, resulting from shifting, do not influence the computation.
The focus is primarily on comparing patches of these shifted HR images with
the corresponding central patch of the super-resolved image.

First, the brightness correction term b is calculated by subtracting the av-
erage intensities of the cropped super-resolved image from the HR patches,
considering only clear pixels. This is done for each of the 49 HR image
patches denoted by HRi,j:

b =
1

|clear(HRi,j)|

 ∑
x,y∈clear(HRi,j)

HRi,j(x, y)− SR(x, y)

 . (5.1)

Next, the corrected mean squared error (cMSE) between the cropped super-
resolved image and each HR patch is computed, with a correction for bright-
ness. The cMSE accounts for the average intensity difference between the
super-resolved and HR images and, analogously to the brightness correction
term, is calculated only over clear pixels:

cMSE(HRi,j, SR) =
1

|clear(HRi,j)| ∑
x,y∈clear(HRi,j)

(HRi,j(x, y)− (SR(x, y)+ b))2.

(5.2)
Finally, the cPSNR is computed by finding the maximum value calculated for
different HR patches:
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cPSNR(HR, SR) = max
i,j∈0,...,6

{
−10 log10(cMSE(HRi,j, SR))

}
. (5.3)

In the following section, a detailed discussion on the training methodolo-
gies employed for the models is provided.

5.2 Training Details of Super-Resolution Models

During the course of this study, for each super-resolution architecture, four
models were trained—one for each of the datasets: SRRB, SRRBenh, Proba-
V NIR, and Proba-V RED. The specific training configurations adopted for
these models are detailed in Table 5.1.

TABLE 5.1: Training parameters for super-resolution models
across different datasets.

Dataset Model Learning
Rate

LR Patch
Size

LR
Images

Batch
Size Loss Function Preprocessing

SRRB
SRRBenh

HighRes-Net 0.0007 64× 64 9 32 cPSNR Rescaling
RAMS 0.0005 32× 32 9 32 cL1 Standardization
PIUNET 0.0001 32× 32 9 24 cL1 with uncertainty Standardization
TR-MISR 0.0005 64× 64 9 24 cPSNR Rescaling
MagNAt 0.001 32× 32 9 32 cPSNR Rescaling

Proba-V

HighRes-Net 0.0007 64× 64 9-32 32 cPSNR Rescaling
RAMS 0.0005 32× 32 9 32 cL1 Standardization
PIUNET 0.0001 32× 32 9 24 cL1 with uncertainty Standardization
TR-MISR 0.0005 64× 64 9-24 4 cPSNR Rescaling
MagNAt 0.0005 32× 32 9-15 16 cPSNR Rescaling

Hyperparameters for the state-of-the-art models—HighRes-Net, RAMS,
PIUNET, and TR-MISR—were adopted without alteration based on their cor-
responding papers and repositories. This adherence to original specifications
encompasses preprocessing as well: while images for certain models under-
went rescaling, adjusting image values to lie between 0 and 1, others utilized
standardization. The latter was conducted using the overall mean and stan-
dard deviation of all training set images. Furthermore, the Adam optimizer
was consistently employed for all models.

In terms of loss function optimization, most models were trained to im-
prove the cPSNR value. However, RAMS and PIUNET took a different path,
aiming to minimize the cL1 loss function. This cL1 is an adapted version of
the L1 loss, adjusted with brightness and shift corrections analogous to the
transition from PSNR to cPSNR. Additionally, PIUNET introduces the un-
certainty loss component during training. Further insights into this specific
aspect of PIUNET can be found in [134].
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A notable divergence in the adopted approach was observed in terms of
training duration. Instead of following epoch counts as outlined in the cor-
responding literature for each model, a consistent training period of 1000
epochs was established for all models. To counter potential biases, model
weights that demonstrated optimal performance on a validation subset were
chosen, regardless of when this peak performance occurred during the train-
ing process. This approach was devised to address potential overfitting chal-
lenges that could arise from the extended training duration.

Compared to Proba-V, the simulated datasets’ uniform structure of al-
ways having nine LR images per scene allowed for the batch sizes to be in-
creased for certain models, specifically TR-MISR and MagNAt. By maximiz-
ing the batch size within hardware memory limits, more efficient gradient
approximations can be achieved, potentially accelerating convergence and
improving generalization.

When it came to validation, a shift was made from the patch-based eval-
uation to using entire images from the validation subset. This strategic de-
viation ensured a holistic assessment of the models, gauging their capability
to super-resolve entire images, which is more aligned with practical applica-
tions. It should be highlighted that the validation metric employed consis-
tently for all models was cPSNR.

5.3 Evaluation

The post-training assessment spanned both simulated and Proba-V datasets,
focusing on the adaptability of models to diverse data conditions.

For the simulated datasets, evaluations were based on image dimensions
up to 160× 160 for LR inputs and 480× 480 for HR images. Images larger
than these sizes were either cropped or split into non-overlapping patches.
This method aimed to gauge the models’ adaptability beyond training con-
straints and their scalability for diverse image sizes. The chosen maximum
patch size was primarily dictated by the MagNAt’s memory limitations, as
further discussed in Section 6.5. In the context of Proba-V, evaluations en-
gaged with original-sized images: 128× 128 for LR images and 384× 384 for
HR references, offering a hands-on evaluation of the models’ super-resolution
abilities on entire images.

The prudent selection of evaluation metrics, particularly for satellite im-
agery, is pivotal to ensure that super-resolution techniques align with real-
world applications [8]. In this research, the metrics employed include the
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cPSNR, previously discussed in Section 5.1.1, and four additional metrics:
structural similarity index measure (SSIM) [145], learned perceptual image patch
similarity (LPIPS) [165], mean gradient error (MGE) [85], and the blur effect
(TBE) [20]. Except for TBE, which is a non-reference metric calculated solely
from the super-resolved image, other metrics use their ’corrected’ version,
denoted by the ’c’ prefix. This correction, mirroring the cPSNR’s adjustment
process, encompasses brightness rectification and full-pixel registration, en-
suring consistent, precise model performance comparisons.

5.3.1 Structural Similarity Index Measure

The SSIM is a perceptual metric used to assess super-resolved image quality
against HR references. While traditional metrics like PSNR emphasize signal
fidelity, SSIM focuses on preserving structural information, reflecting a more
human-centric perception.

SSIM operates in a unique manner, moving a window of size K× K pixel
by pixel over the entire image and evaluating the similarity between local
regions in the super-resolved image and the corresponding regions in the
HR image. It is a location-dependent analysis providing detailed insights
into where the super-resolution model excels and where it falls short.

The SSIM index is calculated for each pair of windows x and y, both of
size K×K, taken from the super-resolved image and the HR reference image,
respectively:

SSIM(x, y) =
(2µxµy + c1)(2σx,y + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (5.4)

Here µx and µy are the averages of windows x and y, respectively; σ2
x and σ2

y

are the variances of x and y; σx,y is the covariance of x and y; c1 = (k1L)2 and
c2 = (k2L)2 are two variables to stabilize the division with a weak denomi-
nator; L is the dynamic range of the pixel-values; k1 = 0.01 and k2 = 0.03 by
default. SSIM values range from 0 to 1, with 1 denoting perfect similarity.

In the context of image super-resolution, SSIM stands out for its percep-
tual focus, emphasizing structural and contrast changes over pure signal fi-
delity. This aligns it more with human vision, which prioritizes structural
detail. Its sliding window approach also highlights specific areas of dissimi-
larity for a nuanced evaluation.
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However, SSIM is not without limitations. The sliding window approach
introduces a higher computational cost. Additionally, while it offers a per-
ceptual quality score, it does not necessarily align perfectly with human judg-
ment in all cases, given the vast complexity of vision and the many factors
that influence human perception of image quality [144].

5.3.2 Learned Perceptual Image Patch Similarity

LPIPS is a state-of-the-art metric designed for perceptual similarity assess-
ment, differentiating it from traditional metrics such as PSNR and SSIM that
target low-level image features. It uses deep learning to concentrate on high-
level structures and details. It employs a neural network trained on human-
rated images to estimate perceptual similarity between a pair of images. No-
tably, the LPIPS score ranges between 0 and 1, with 0 indicating perfect per-
ceptual similarity and 1 signifying maximal perceptual dissimilarity. Captur-
ing both pixel-level accuracy and nuanced visual characteristics, LPIPS has
been recognized in recent research [69] as effective for assessing the quality
of super-resolved images, especially when combined with PSNR and SSIM.
However, its dependence on the training data and increased computational
demand are acknowledged limitations.

Comparing SSIM with LPIPS highlights distinct approaches. SSIM mea-
sures structural similarity by considering aspects like contrast, luminance,
and structure. In contrast, LPIPS assesses perceptual differences based on
human judgment. While LPIPS offers a deep perceptual analysis, SSIM’s de-
terministic approach delivers results without the potential biases from train-
ing data and is less computationally intensive. Both metrics serve their pur-
pose: SSIM for structural similarity and LPIPS for deeper perceptual differ-
ences. Using both provides a thorough evaluation of super-resolved images
in terms of both structure and visual perception.

5.3.3 Mean Gradient Error

The MGE is a metric uniquely tailored to evaluate edge sharpness in images—
a critical component of perceptual quality [87]. While metrics like PSNR,
SSIM, and LPIPS provide a broader perspective on image quality, MGE di-
rectly contrasts the gradient magnitudes between super-resolved and HR ref-
erence images, offering a specialized assessment of detail sharpness.

Edge sharpness delineates objects and communicates essential boundary
and texture details. Given its capability to detect changes in edge sharpness,
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MGE’s importance in super-resolution is underscored. Traditionally utilized
as a loss function [85, 84], through the evaluation of gradient magnitudes,
MGE measures the preservation of edge sharpness in super-resolved out-
puts. Hence, a lower MGE score is preferable, indicating reduced sharpness
differences between the images.

The MGE score between an HR image and a super-resolved image is de-
fined as follows:

MGE(HR, SR) =
1

HW

H

∑
i=1

W

∑
j=1

(G(i, j)− Ĝ(i, j))2. (5.5)

In this equation, G(i, j) and Ĝ(i, j) represent the gradient magnitude at
pixel location (i, j) in the HR and super-resolved images, respectively, with
H and W indicating the total number of pixels in the vertical and horizontal
dimensions. The gradient magnitude at a given pixel location is calculated
using the formula:

G(i, j) =
√

G2
x(i, j) + G2

y(i, j) (5.6)

Here, Gx and Gy represent the horizontal and vertical gradients, respec-
tively. These gradients are obtained by convolving the image Y with the
Sobel operators[57], which are well-established edge detection filters:

Gx = Y ∗

−1 −2 −1
0 0 0
1 2 1

 , (5.7)

Gy = Y ∗

−1 0 1
−2 0 2
−1 0 1

 (5.8)

with ∗ denoting convolution operation. This gradient information serves as
the basis for calculating the MGE, thereby allowing for a direct assessment of
edge sharpness in the images.

5.3.4 The Blur Effect

TBE metric is designed to offer a no-reference evaluation of image sharpness
by quantifying perceived blur. Unlike traditional metrics that require a refer-
ence image, TBE operates independently, eliminating the need for correction
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procedures such as full-pixel registration and brightness adjustments. Its rel-
evance and applicability have been demonstrated in other super-resolution
studies, including those by Maier et al. [89] and Karmakar et al. [59].

TBE’s foundation is based on the concept that blurring significantly af-
fects perceived image quality, originating from various factors like camera
focus errors, motion blur, atmospheric effects, or compression artefacts. De-
signed to capture perceptual aspects of the blur, TBE evaluates local con-
trasts, especially in edge regions, which are most perceptually significant.
The following steps are involved in the computation of TBE:

1. Edge Detection: Edges within the image are identified using specific
techniques. Such edges, marking boundaries between distinct regions,
are vital for perceiving sharpness.

2. Local Contrast Assessment: The local contrast around detected edges
is evaluated. Sharp edges show pronounced intensity changes over
short distances, whereas blurred edges present gradual transitions.

3. Spatial Distribution Analysis: The distribution of local contrasts across
the image is analyzed. This analysis provides a holistic view of the im-
age’s sharpness.

4. Metric Aggregation: Local contrast measurements and their spatial
distribution insights are combined into a single metric value, indicat-
ing the overall perceived blur in the image.

MGE and TBE have been incorporated to offer a well-rounded sharp-
ness assessment. While MGE centres on edge structures through gradient
magnitude comparisons, TBE focuses on the broader aspect of a perceived
blur. MGE is sensitive to registration quality, introducing potential vari-
ability, whereas TBE’s non-reliance on references minimizes such concerns.
Given TBE’s alignment with human perceptions of blur and validation against
human judgments, using both metrics ensures a comprehensive and robust
evaluation for super-resolution model assessment.
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Chapter 6

Experimental Results and
Discussion

In this chapter, I present a comprehensive evaluation of the models proposed
in this research, as well as various state-of-the-art models, namely HighRes-
Net, RAMS, PIUNET and TR-MISR. The evaluation was conducted on both
the simulated datasets (SRRB and SRRBenh) and the real-world Proba-V data-
set.

Each model was tested on the test subsets of each dataset. The quality
of the super-resolved images was assessed based on several reconstruction
quality metrics, as discussed in Chapter 5. Each metric offers a unique per-
spective on the quality of the super-resolved images, thereby enabling a com-
prehensive evaluation of the models’ performance. In addition to these qual-
ity metrics, the time efficiency of each model was examined. This involved
measuring the time taken by each model to produce a super-resolved im-
age, which provides insights into their practical applicability in real-world
scenarios where time efficiency can be crucial.

In addition to the state-of-the-art deep learning models, a multi-image
version of bicubic interpolation was employed as a baseline for comparison.
This version operates by interpolating each LR image independently before
averaging the stack of upsampled images to generate the final super-resolved
image. This process aligns with the methodology delineated in [123], al-
lowing for a methodical comparison of bicubic interpolation with more ad-
vanced MISR models. The following sections delve into the detailed results
of these evaluations, starting with the experiments on the simulated datasets.

6.1 Results on the Simulated Datasets

The super-resolution models were evaluated on both the SRRB and SRRBenh

datasets. Tables 6.1 and 6.2, respectively, detail the performance metrics for
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each benchmark dataset independently, and when combined. To facilitate
a direct comparison of model performance across these datasets, Table 6.3
provides the overall mean scores, consolidating results from both SRRB and
SRRBenh.

TABLE 6.1: Performance of super-resolution models on SRRB
dataset. The table presents the mean scores of quality met-
rics across each benchmark dataset included in SRRB. The best
scores are highlighted in bold, while the second-best scores are

underlined.

Model→ Bicubic HighRes-Net RAMS PIUNET TR-MISR MagNAt
Metric ↓ Dataset ↓

cPSNR

BSDS100 25.46 29.11 31.27 31.42 29.67 32.41
Manga109 25.56 32.11 34.81 34.35 33.35 36.17

Set14 25.96 29.31 31.70 31.72 30.16 32.55
Set5 28.91 33.77 35.10 36.41 34.79 36.76

Urban100 23.11 27.43 29.59 28.74 27.87 29.79
historical 22.10 26.53 28.50 28.72 26.99 29.43

cSSIM

BSDS100 0.737 0.878 0.921 0.925 0.885 0.939
Manga109 0.852 0.959 0.975 0.976 0.966 0.980

Set14 0.770 0.884 0.927 0.930 0.899 0.915
Set5 0.865 0.954 0.967 0.974 0.964 0.974

Urban100 0.739 0.887 0.927 0.915 0.894 0.924
historical 0.704 0.885 0.92 0.922 0.889 0.931

cLPIPS

BSDS100 0.418 0.088 0.058 0.066 0.085 0.052
Manga109 0.284 0.027 0.017 0.023 0.025 0.017

Set14 0.358 0.065 0.043 0.051 0.060 0.048
Set5 0.250 0.029 0.020 0.016 0.026 0.023

Urban100 0.392 0.071 0.048 0.074 0.071 0.058
historical 0.475 0.078 0.054 0.061 0.076 0.056

cMGE

BSDS100 0.080 0.028 0.017 0.017 0.025 0.013
Manga109 0.110 0.022 0.012 0.014 0.016 0.007

Set14 0.078 0.026 0.015 0.018 0.021 0.014
Set5 0.053 0.012 0.006 0.006 0.008 0.005

Urban100 0.172 0.053 0.033 0.044 0.048 0.033
historical 0.152 0.049 0.037 0.035 0.046 0.028

TBE

BSDS100 0.384 0.302 0.297 0.301 0.304 0.293
Manga109 0.412 0.313 0.318 0.326 0.320 0.315

Set14 0.426 0.339 0.339 0.345 0.342 0.337
Set5 0.474 0.391 0.395 0.397 0.397 0.385

Urban100 0.406 0.318 0.317 0.328 0.321 0.312
historical 0.352 0.273 0.271 0.278 0.278 0.272

The evaluation of super-resolution models across the simulated datasets
provided several insights into their performance and adaptability. As ob-
served for both simulated datasets, the bicubic interpolation trails behind the
other models across all metrics. This consistent underperformance under-
scores its limitations when faced with the intricacies of the super-resolution
task. The bicubic interpolation lacks the sophistication to accurately recon-
struct HR details from multiple LR images. This deficiency becomes more
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TABLE 6.2: Performance of super-resolution models on
SRRBenh dataset. The table presents the mean scores for im-
age similarity metrics for each model across each benchmark
dataset. The best scores are highlighted in bold, while the

second-best scores are underlined.

Model→ Bicubic HighRes-Net RAMS PIUNET TR-MISR MagNAt
Metric ↓ Dataset ↓

cPSNR

BSDS100 25.31 27.68 28.71 28.70 27.87 29.39
Manga109 25.25 29.95 31.25 30.96 30.21 32.17

Set14 25.66 27.63 29.05 28.78 27.89 30.20
Set5 28.22 30.88 31.20 30.90 31.11 31.58

Urban100 22.98 25.90 27.26 27.07 26.12 28.54
historical 22.15 25.00 26.53 26.32 25.56 27.08

cSSIM

BSDS100 0.711 0.817 0.848 0.844 0.820 0.861
Manga109 0.815 0.918 0.932 0.928 0.921 0.935

Set14 0.743 0.822 0.861 0.849 0.829 0.876
Set5 0.828 0.890 0.893 0.891 0.892 0.895

Urban100 0.702 0.834 0.867 0.861 0.838 0.887
historical 0.690 0.834 0.873 0.865 0.846 0.886

cLPIPS

BSDS100 0.447 0.180 0.144 0.152 0.175 0.149
Manga109 0.314 0.082 0.075 0.073 0.079 0.067

Set14 0.373 0.159 0.136 0.139 0.152 0.129
Set5 0.280 0.112 0.108 0.102 0.107 0.102

Urban100 0.428 0.122 0.102 0.107 0.121 0.093
historical 0.490 0.132 0.101 0.117 0.126 0.102

cMGE

BSDS100 0.085 0.039 0.030 0.030 0.036 0.025
Manga109 0.117 0.032 0.023 0.024 0.028 0.016

Set14 0.084 0.041 0.027 0.030 0.035 0.021
Set5 0.056 0.027 0.026 0.026 0.025 0.018

Urban100 0.182 0.076 0.056 0.054 0.067 0.037
historical 0.159 0.069 0.050 0.052 0.058 0.041

TBE

BSDS100 0.376 0.330 0.323 0.331 0.330 0.323
Manga109 0.403 0.333 0.335 0.342 0.334 0.331

Set14 0.415 0.371 0.368 0.375 0.368 0.366
Set5 0.449 0.426 0.429 0.435 0.427 0.430

Urban100 0.398 0.335 0.334 0.340 0.335 0.331
historical 0.357 0.287 0.280 0.290 0.287 0.280

pronounced when handling the SRRBenh dataset, where the LR images in
a stack contain variations not only in spatial alignment but also in global
attributes. The struggle of the bicubic interpolation with these datasets em-
phasizes the need for more complex models to effectively tackle the super-
resolution task.

HighRes-Net consistently outperformed the bicubic interpolation in ev-
ery metric across all datasets, showcasing its enhanced capability to tackle
super-resolution challenges. When compared with more advanced models,
while its scores were commendable, especially in terms of minimizing blur
(TBE metric), it rarely secured the leading position.
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TABLE 6.3: Aggregated performance metrics for super-
resolution models, combining results from both SRRB and
SRRBenh datasets. This table presents the overall mean scores
for each metric, across all benchmark datasets combined. The
best scores are highlighted in bold, and the second-best scores

are underlined.

Dataset Model cPSNR cSSIM cLPIPS cMGE TBE

SRRB

Bicubic 24.56 0.783 0.355 0.129 0.405
HighRes-Net 29.60 0.913 0.057 0.036 0.314
RAMS 31.96 0.945 0.038 0.021 0.315
PIUNET 31.49 0.941 0.052 0.026 0.323
TR-MISR 30.38 0.920 0.055 0.031 0.318
MagNAt 32.81 0.948 0.041 0.019 0.310

SRRBenh

Bicubic 24.35 0.749 0.386 0.136 0.396
HighRes-Net 27.83 0.863 0.118 0.051 0.334
RAMS 29.10 0.888 0.100 0.037 0.333
PIUNET 28.90 0.884 0.103 0.038 0.340
TR-MISR 28.06 0.867 0.115 0.045 0.334
MagNAt 30.12 0.901 0.094 0.026 0.330

The RAMS model consistently demonstrates an impressive performance
across all metrics in both simulated datasets. It particularly stands out for
its low cLPIPS score, highlighting its proficiency at maintaining perceptual
similarity during the super-resolution process. A key feature contributing to
RAMS’s notable performance is its use of 3D convolutions. These convolu-
tions not only process individual image spatial information but also adeptly
capture variations across image stacks. By effectively harnessing these re-
lationships and intricacies among different images, RAMS manages to pro-
duce high-quality super-resolved images, underlining its robustness in con-
fronting the nuanced challenges of super-resolution.

PIUNET’s performance was consistently strong across both datasets, em-
phasizing its versatility and reliability. Although it registered high scores,
especially in cPSNR and cSSIM metrics for the SRRB dataset, it did not al-
ways outpace every other model in all metrics. Such outcomes underline the
close competition among super-resolution models, with each having unique
strengths.

By examining the results, TR-MISR typically outperforms HighRes-Net
across the evaluated metrics on simulated datasets. However, when com-
pared to other state-of-the-art models, its performance seems to lag slightly.
These findings could be indicative of the broader challenges associated with
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the model’s underlying design choices. TR-MISR, built on a transformer-
based architecture, is inherently optimized for capturing complex depen-
dencies and variations in data. Nevertheless, the nature of the simulated
datasets, characterized predominantly by global image modifications, might
not align seamlessly with the local complexities that transformers excel at
modelling. Such a mismatch suggests that while transformers have shown
significant promise in various domains, their application to specific super-
resolution tasks might require a more tailored approach, especially when the
dataset’s nuances do not fully align with their strengths.

The MagNAt model frequently secured high rankings, often achieving
the highest or near-highest scores across various metrics in both datasets. Its
strengths in maintaining signal fidelity, retaining structural nuances, mini-
mizing blur effects, and matching the perceptual attributes of the original
HR image were evident. The commendable performance of MagNAt on both
SRRB and SRRBenh datasets highlights its potential in the super-resolution
landscape.

Upon comparing the performance metrics across the SRRB and SRRBenh

datasets, a distinct trend emerges. Given the SRRBenh dataset’s more com-
plex nature, it is evident that all models faced increased challenges, resulting
in generally worse performance scores than when evaluated on the simpler
SRRB dataset. This underscores the escalating difficulty of super-resolution
tasks as dataset complexities rise.

6.1.1 Distribution Analysis

While averaging scores oftentimes gives a sufficient view of a model’s per-
formance, it is also valuable to look at the spread and distribution of the
results. Figures 6.1 and 6.2 illustrate this effectively using half-violin plots,
which combine two metrics in a single visual, providing a clearer picture of
each model’s performance on the SRRB and SRRBenh datasets. The width
of each violin shows how data is distributed: wider areas have more data
points, while narrower ones have fewer. Instead of traditional box details
inside, lines mark quartiles (dotted lines) and the median (solid line).

Upon examining the plots, a consistent trend emerges across both datasets.
The distribution of scores for bicubic interpolation stands out, being dis-
tinctly wider, with its median positioned considerably distant from other
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FIGURE 6.1: Half-violin plots of performance metrics for each
model on the SRRB dataset, with quartiles (dotted lines) and

median (dashed line) indicated.

models. This spread emphasizes its less consistent performance in compari-
son to more specialized super-resolution models. Moreover, among the con-
temporary models, MagNAt and RAMS distinctly manifest as the most con-
sistent in their performance, closely trailed by PIUNET. Their score distribu-
tions are not just compact but also tend towards the better end of the scale,
reinforcing their superior performance.

6.1.2 Assessing Statistical Significance of Model Performance

In experimental research, mere observation of performance differences be-
tween various models may not provide a comprehensive understanding. It
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FIGURE 6.2: Half-violin plots of performance metrics for each
model on the SRRBenh dataset, with quartiles (dotted lines) and

median (dashed line) indicated.

is essential to discern whether these observed variations are genuine or sim-
ply due to chance. Basing conclusions purely on observed means or distri-
butions can be misleading, as they do not capture the variability within the
data. Therefore, statistical tests are vital in validating the true significance of
observed performance differences.

For this study, the two-tailed Wilcoxon signed-rank test [148] was employed
to determine if there were statistically significant differences in scores be-
tween MagNAt and other models. The test’s null hypothesis posits no sig-
nificant performance discrepancy between the two models being compared.
Rejecting this hypothesis indicates a statistically significant difference in per-
formance. A conventional significance level is set at 0.05. If a p-value is less
than this level, it suggests statistically significant performance differences for
the evaluated metric.
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The results of the two-tailed Wilcoxon signed-rank tests bolstered the per-
formance evaluation. For the SRRB dataset, only in the instance of the cLPIPS
metric when compared with RAMS, did the p-value (0.12) exceed the 0.05 sig-
nificance threshold, indicating no statistically significant difference between
the two. However, on the SRRBenh dataset, MagNAt was statistically distinct
from all other models across every metric, highlighting its superior perfor-
mance with more complex simulated data.

6.1.3 Qualitative Analysis on Simulated Dataset

FIGURE 6.3: High-resolution target images utilized in this
qualitative assessment. Each image originates from a distinct
benchmark dataset, respectively (from top-left to bottom-right):
BSDS100, Historical, Set5, Set14, Urban100, Manga109. The
red rectangles highlight the regions of interest examined in the

qualitative analysis.

Visual examinations of super-resolution outputs serve as critical adjuncts
to quantitative metrics, offering intuitive insights into model performance.
The high-resolution target images utilized in this qualitative assessment are
depicted in Figure 6.3 with red rectangles denoting their specific regions on
which this visual analysis is conducted. These super-resolved regions are
shown in Figures 6.4-6.6, providing a better understanding of each model’s
strengths and weaknesses.
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FIGURE 6.4: Examples of super-resolved simulated images
from BSDS100 (top) and historical (bottom) datasets.

In the analyzed super-resolution outputs, high-frequency details, initially
absent in each LR image, were effectively reintroduced by the models. How-
ever, subtle discrepancies in their outputs became apparent, especially in re-
gions featuring complex textures. These variations, often emerging as dis-
ruptions in texture or irregular pixel transitions, compromised the visual fi-
delity of the super-resolved images.

This was particularly evident in high-frequency repeatable patterns such
as the parallel lines on the bird’s wings in Figure 6.4 or the fur in Figure 6.5. In
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FIGURE 6.5: Examples of super-resolved simulated images
from Set5 (top) and Set14 (bottom) datasets.

these examples, while the MagNAt model effectively captured the textures,
other models, particularly HighRes-Net and TR-MISR, struggled, often mis-
representing the true direction and nuance of these patterns.

6.1.4 Considerations on Simulated Data

The simulated datasets SRRB and SRRBenh used in this study possess char-
acteristics that might influence model performance. They notably lack local
temporal variations seen in real-world scenarios, potentially simplifying the
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FIGURE 6.6: Examples of super-resolved simulated images
from Urban100 (top) and Manga109 (bottom) datasets.

super-resolution task due to the absence of these complexities and the likely
reduced registration errors during LR image alignment. Given this context,
the strong performance of MagNAt on these datasets might be influenced
by its unique attributes. While most models rely on full-pixel registration,
the MagNAt model differentiates itself by demanding precise subpixel reg-
istration. This trait, combined with its adaptive registration method, might



Chapter 6. Experimental Results and Discussion 88

give MagNAt an advantage in handling minor registration errors, contribut-
ing to its enhanced performance in these scenarios. However, despite Mag-
NAt’s positive results on the simulated datasets, extending validations with
real-world data remains crucial. Engaging with challenging datasets like the
Proba-V will shed light on the models’ capabilities under more realistic con-
ditions, providing a comprehensive view of their actual strengths and limita-
tions. Nonetheless, these experiments on simulated datasets can be seen as a
step forward in proving the first thesis of this dissertation, stating that when
a set of LR images with sub-pixel shifts is represented as a graph, GNNs can
process this graph to achieve super-resolution results comparable or even
superior to those obtained by leading MISR architectures reliant on convolu-
tional networks.

6.2 Real-World Evaluation: The Proba-V Dataset

In this section, a detailed analysis of the performance of the models on both
spectral subsets of the Proba-V datasets is presented, along with a discussion
on the visual quality of super-resolved images, and the results of the statis-
tical tests. The aim is to ascertain whether the conclusions drawn from the
simulated datasets are upheld in a real-world, remote-sensing scenario and
to potentially uncover new insights into the performance of these models
under more complex conditions.

6.2.1 Performance Dynamics with Varying Number of Input

Images

The analysis started by inspecting how the number of LR input images (N)
affects the performance of super-resolution models. The goal was to find out
how many input images each model needs for the best performance, rang-
ing from a single image up to 32. To keep the input quality consistent across
different N values, images were chosen based on clearance maps, with pref-
erence given to the least obscured images. The clearest images were included
in every set, while more obscured ones were added gradually and only fully
included at the highest N.

Because the performance metrics are multifaceted, a combined metric was
created to simplify the process of finding the optimal N. This metric mixed
standardized versions of five different performance metrics, summing the
cPSNR and cSSIM values and subtracting the cLPIPS, cMGE, and TBE values,
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for which lower scores indicate better performance. Using this combined
metric, the N value that scored the highest was chosen as the optimal N
for each model. This assessment was done on the validation subsets, which
helped fine-tune the N parameter to evaluate each model’s performance on
the test subsets.

The data was visualized using line plots to explore the relationship be-
tween the number of LR input images and the performance metrics for each
model. This is shown in Figure 6.7 and Figure 6.8 for NIR and RED bands,
respectively. The best metric scores for each model are marked as dots. Al-
though these plots revealed how the models’ performance changed with
varying N values, it is worth noting that the RAMS model can only use nine
images due to its architectural design; thus, its results appear as single points.
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FIGURE 6.8: Performance dynamics of the models on the RED
subset of the Proba-V dataset against varying LR input images

(N).

The trends for every method in both spectral bands are observed to be
very similar, underscoring the consistency in each model’s response to vary-
ing N. The bicubic interpolation, simply averaging the upsampled LR im-
ages, demonstrates a preference for a smaller number of images. As their
number increases, the reconstruction quality tends to decline, which sug-
gests bicubic’s limited capacity to utilize multiple LR inputs for enhanced
super-resolution.

The performance of TR-MISR and HighRes-Net enhances with the in-
crease in N, indicating a positive relationship between the number of in-
put images and improved reconstruction quality. Interestingly, with a higher
number of input images, their results begin to plateau. This convergence
hints at a saturation point in performance, suggesting that even if more im-
ages were available, the models might not achieve significantly better results,
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or the improvement might be marginal at best. Yet, this observation requires
further validation to conclusively determine the models’ behaviour with a
higher number of LR image

Distinct from others, PIUNET and MagNAt exhibit a performance peak
at specific N values, after which their efficiency tends to decline. MagNAt
necessitates a higher number of images compared to PIUNET to achieve its
optimal performance. Interestingly, the performance of PIUNET begins to
decline post the nine-image mark, which is the exact number of images it was
initially trained on. This trend underscores a nuanced interaction between
the number of input images and the architectural design of these models,
pointing out a threshold beyond which additional images fail to contribute
to better super-resolution results.

The optimal N values were identified by studying the line plots for the
combined metric, as shown in Figures 6.7 and Figure 6.8. The information
from these plots helped determine the right number of LR input images for
each model, improving their performance. The optimal N values, for both
the NIR and RED bands separately, are listed in Table 6.4.

TABLE 6.4: Optimal number of LR input images (N) for each
method across NIR and RED bands, calculated on the valida-

tion subset.

Model NIR RED

Bicubic 2 1
HighRes-Net 32 29
RAMS 9 9
PIUNET 7 9
TR-MISR 31 24
MagNAt 15 16

6.2.2 Metric Scores for Optimal Number of LR Images

Having determined the most optimal number of images for each model from
the validation subset, as showcased in Table 6.4, the models were subse-
quently evaluated on the test subsets of the Proba-V dataset. This quanti-
tative comparison is presented in Table 6.5. As anticipated, bicubic interpo-
lation fell behind other methods in every metric, underscoring its limitations
in this complex task. However, for the rest of the models, a distinct perfor-
mance pattern emerged.



Chapter 6. Experimental Results and Discussion 92

TABLE 6.5: Performance metrics obtained by all tested methods
on the Proba-V dataset. The best scores are highlighted in bold,
while the second-best scores are underlined for each spectral

band independently.

Band Model cPSNR cSSIM cLPIPS cMGE TBE

NIR

Bicubic 33.380 .8625 .2791 .0119 .4595
HighRes-Net 35.401 .9117 .1361 .0065 .3338
RAMS 35.648 .9148 .1571 .0065 .3382
PIUNET 35.769 .9127 .1683 .0067 .3510
TR-MISR 35.958 .9166 .1307 .0062 .3337
MagNAt 36.169 .9161 .1777 .0059 .3280

RED

Bicubic 36.419 .9000 .3028 .0068 .4481
HighRes-Net 37.743 .9337 .1393 .0037 .3245
RAMS 38.492 .9411 .1601 .0033 .3206
PIUNET 38.629 .9430 .1706 .0035 .3462
TR-MISR 38.650 .9396 .1299 .0033 .3238
MagNAt 38.819 .9406 .1649 .0032 .3195

The MagNAt model, mirroring its previous performance on simulated
datasets, excelled in cPSNR, cMGE, and TBE metrics, affirming its capac-
ity to uphold high fidelity and sharpness akin to the HR reference images.
Nevertheless, a deviation was observed in the cSSIM metric, where MagNAt
now ranked second and third places for NIR and RED bands, respectively.
Additionally, both MagNAt and PIUNET experienced a significant incline in
cLPIPS scores, showing challenges in creating images perceptually akin to
their HR counterparts.

Among other models, a rearrangement in performance rankings was no-
ticeable. The RAMS model, despite its strong performance in simulated data,
demonstrated mixed outcomes, shining solely in cSSIM, cMGE, and TBE
metrics but only on the RED band data. On the other hand, the TR-MISR
model manifested a notable improvement, especially in the NIR band, where
it consistently secured first or second places, showcasing its relative adept-
ness in navigating real-world data complexities.

Distribution of Metric Scores

The performance score distributions, illustrated in Figures 6.9 and 6.10 for
NIR and RED spectral subsets, respectively, reveal the nuanced behaviours
of models on the Proba-V dataset at their optimal N. A recurring observation
across both subsets is the consistent underperformance of the bicubic model,
aligning with trends noticed in simulated datasets.



Chapter 6. Experimental Results and Discussion 93

Bicubic HighRes-Net RAMS PIUNET TR-MISR MagNAt
20.0

25.0

30.0

35.0

40.0

45.0

50.0
cP

SN
R

cPSNR cSSIM

Bicubic HighRes-Net RAMS PIUNET TR-MISR MagNAt
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

cL
PI

PS

cLPIPS cMGE

Bicubic HighRes-Net RAMS PIUNET TR-MISR MagNAt
0.20

0.30

0.40

0.50

0.60

TB
E

TBE

0.668

0.735

0.801

0.868

0.934

1.0

1.067

cS
SI

M

-0.0
0.007
0.014
0.021
0.029
0.036
0.043
0.05

cM
G

E
FIGURE 6.9: Violin plots showing the distribution of metric
scores for each model on the NIR subset of the Proba-V dataset.
The scores are calculated for the optimal number of LR input

images for each model.

Identifying a clear leader among the remaining models is challenging due
to the irregular behaviour reflected in the metrics. Instead of simply adhering
to a Gaussian distribution, the metrics exhibit varied and complex patterns,
reflecting the models’ different strategies in handling the challenges posed
by the real-world scenarios of the Proba-V dataset. This consistency in obser-
vations across both spectral subsets highlights the multifaceted performance
characteristics exhibited by the models, which, in turn, underscores the com-
plexities involved in transitioning from simulated to real-world datasets.
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FIGURE 6.10: Violin plots showing the distribution of metric
scores for each model on the RED subset of the Proba-V dataset.
The scores are calculated for the optimal number of LR input

images (N) for each model.

6.2.3 Statistical Significance Testing

The statistical validation was conducted using the Wilcoxon signed-rank test
as detailed in the section on simulated datasets, extending the analysis to the
performance metrics of MagNAt and other super-resolution models on both
spectral subsets of the Proba-V dataset. The derived p-values are depicted
in correlation matrices shown in Figures 6.11 and 6.12 for the NIR and RED
subsets, respectively.

Upon comparison, MagNAt either outperformed or showcased no sig-
nificant difference against other models across most metrics, attesting to its
competitive performance. Specifically, MagNAt consistently displayed sta-
tistical significance in its favour in the TBE metric on NIR, whereas on the



Chapter 6. Experimental Results and Discussion 95

RED subset, it showed statistical superiority only over Bicubic, HighRes-Net,
and PIUNET in this metric. Additionally, MagNAt excelled in the MGE met-
ric on NIR. However, in the cLPIPS metric, both HighRes-Net and TR-MISR
manifested statistically significant advantages over MagNAt across both sub-
sets, as substantiated by low p-values and superior mean scores, indicating
their enhanced perceptual quality outcomes.

In summary, the analysis underscores MagNAt as a solid performer in
real-world MISR applications, especially exhibiting statistical superiority in
rendering sharper images, as evidenced by the MGE and TBE metrics. How-
ever, its weakness surfaces in the cLPIPS metric, highlighting a perceptual
similarity gap when compared to HighRes-Net and particularly TR-MISR.
Among the models compared, TR-MISR emerges as MagNAt’s strongest com-
petitor, showcasing its lead in cLPIPS scores for both subsets while only
falling behind in TBE on the NIR subset. This analysis, both in statistical val-
idation and mean score evaluations, not only reinforces MagNAt’s strengths
and areas of improvement but also sheds light on the nuanced competitive
landscape of MISR.
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FIGURE 6.11: Correlation matrix of p-values from the two-
tailed Wilcoxon signed-tank test comparing MagNAt against

other models for various metrics on the NIR subset.
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FIGURE 6.12: Correlation matrix of p-values from the two-
tailed Wilcoxon signed-rank test comparing MagNAt against

other models for various metrics on the RED subset.

6.2.4 Qualitative Analysis on NIR and RED Subsets

Figure 6.13 visually compares models’ performance on the NIR and RED sub-
sets of the Proba-V dataset. The same 80x80 region was used for a direct
comparison, allowing for an immediate evaluation of each model’s super-
resolution capabilities. Bicubic interpolation, as expected, yields images that
are less sharp and lack the fine details present in the HR images, showcasing
its limitation as a traditional interpolation method.

In the NIR example, the shoreline of a river depicted in the HR image
exhibits a level of roughness and irregularity, which is not fully captured by
any of the models, including MagNAt. However, MagNAt does render these
shoreline edges with sharper contrast compared to other models, yet they
still are not as detailed as in the reference image. Similarly, in the RED ex-
ample, MagNAt delineates the road with slightly better sharpness compared
to other models, albeit the difference is not as pronounced as in the NIR ex-
ample. A notable observation in this scene is the visual artefact above the
white object in the output of TR-MISR, likely resulting from high variabil-
ity between input images in this specific region—an observation discussed
further in Section 6.3.
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(B) Comparison on RED subset.

FIGURE 6.13: Visual comparisons of different models on the
NIR (A) and RED (B) subsets of the Proba-V dataset. The im-
ages are cropped to a 150× 150 region centred at the same lo-
cation for all models. The red rectangle on the HR image (left-
most) indicates the cropped region. The results are presented
for the optimal number of LR input images (N) for each model.
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These visual assessments suggest a potential edge for MagNAt in han-
dling certain scene details and producing sharp images, laying a groundwork
for further refinement in MISR tasks on real-world datasets like Proba-V.

The accumulated insights from experiments on both simulated and real-
world data serve as compelling evidence in support of the primary thesis of
this dissertation. This hypothesis explored the potential of employing GNNs
to process a graph representation of LR images with sub-pixel shifts, aiming
to achieve super-resolution outcomes that could match or exceed the perfor-
mance of prevailing MISR architectures based on convolutional networks.
The promising results affirm the notion that adapting such an approach not
only holds merit but opens up avenues for further exploration and optimiza-
tion in the domain of MISR.

6.2.5 Benchmark Performance on the Proba-V Challenge

At the time of composing this dissertation, the MagNAt model is ranked
sixth in the post-mortem Proba-V super-resolution challenge. The challenge
evaluates models’ performance on 144 NIR and 146 RED scenes and is based
solely on the cPSNR metric. It should be noted that the test subset utilized
by the Proba-V challenge is distinct from the subsets used in previous exper-
iments of this study, primarily due to the absence of HR references, which
prevents local model evaluations.

The leaderboard of the challenge is presently led by the TR-MISR model,
with PIUNET positioned second. There are three other models ranked be-
tween MagNAt and PIUNET, which, to the best of the author’s knowledge,
have not been reported in available literature or peer-reviewed publications.
This lack of transparency makes direct comparisons with MagNAt challeng-
ing. Evaluations for this challenge are executed on servers maintained by
the organizers, ensuring a consistent evaluation environment for all submit-
ted models. The noteworthy ranking of the MagNAt model in this esteemed
benchmark highlights its robust capabilities in the realm of MISR tasks. As
advancements in the field of MISR persist, further refinements in both Mag-
NAt and competing models can be expected.

6.3 Temporal Variations and Super-Resolution

Temporal variations in the Proba-V dataset provide a unique challenge for
super-resolution tasks. Given the evident discrepancies between LR images
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captured at different time frames, super-resolution models are presented with
the task of fusing contradictory information. To visually illustrate the com-
plexities and the performances of the different models in handling these chal-
lenges, two distinct scenes from the dataset are presented.

LR1 LR2 Bicubic

HighRes-Net RAMS PIUNET

TR-MISR MagNAt HR

FIGURE 6.14: Visual comparison of super-resolution outputs
for a scene containing centre-pivot irrigation fields with signif-

icant temporal differences between the LR images.

In the scene depicted in Figure 6.14, the centre-pivot irrigation fields stand
out in the cropped region of interest. The vast temporal difference between
the two presented LR images poses a challenge for the models, as they have
to make decisions on whether to combine or select specific features. This
decision-making process is reflected in the varied outputs of the models, with
none being a clear match to the HR image. Notably, TR-MISR’s output ex-
hibits visual artefacts, suggesting difficulties in handling regions with high
temporal variance.

Interestingly, the TR-MISR model displays peculiar behaviour in areas of
pronounced temporal variance. In these regions, the model seems to pro-
duce artefacts that resemble sections of the LR image that have been merely
enlarged without enhancement. It appears as though TR-MISR avoids the
complex task of super-resolving these challenging areas, leading to regions in
the output that appear as if they were directly taken from the LR image with-
out any enhancement or detail addition. This results in the appearance of
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larger, coarse pixels, giving the impression of a lack of true super-resolution
in those specific regions. It is surprising that despite these evident short-
comings in handling highly temporally-variant regions, TR-MISR stands as
one of the most competitive models to MagNAt in terms of quantitative as-
sessment, especially given the inherent challenges and temporal variances
present in the Proba-V dataset.

LR1 LR2 Bicubic

HighRes-Net RAMS PIUNET

TR-MISR MagNAt HR

FIGURE 6.15: Visual comparison of super-resolution outputs
for a scene with uncaptured pixels in one of the nine LR images,

resulting in a white patch.

The next depicted scene in Figure 6.15 offers a different challenge. Some
pixels in this scene inherit the maximum possible value due to certain prob-
lems in the acquisition process. It becomes apparent that most models strug-
gle to handle these white patches appropriately, leading to visible artefacts.
The use of histogram equalization reveals these artefacts more distinctly, es-
pecially in the outputs of RAMS and TR-MISR, which might be less notice-
able without this adjustment. In contrast, MagNAt stands out by producing
an image devoid of such artefacts, emphasizing its resilience and adaptability
in handling the challenges posed by temporal variance and uncaptured pix-
els. A possible explanation for such behaviour is the use of the multi-level at-
tention mechanism in MagNAt model, setting the importance of nodes with
respect to each of their neighbours. It might have been learned by the model
that such purely white pixels should not be taken into consideration when
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reconstructing the scene. If this is true, such nodes would send none to mini-
mal information about their features to their neighbours, thus reducing their
influence on the reconstruction output. However, at the moment, this obser-
vation remains only on a speculative level and requires further investigation.

The visual examinations presented in this section underscore the nuanced
challenges that temporal variations introduce to the super-resolution process.
The varied responses of models to these challenges, from managing signifi-
cant temporal differences to addressing uncaptured pixels, shed light on the
balance required between data interpretation and model design. While cer-
tain models face difficulties, introducing artefacts or blending details, the
performance of the MagNAt model stands as a beacon of potential. It show-
cases that, with a tailored approach, one can traverse the intricacies of real-
world datasets, producing super-resolution outcomes that accentuate image
details while retaining the temporal and structural essence of scenes.

6.3.1 Leveraging a Leading Image

From the prior evaluations, it becomes clear that managing the challenges
presented by temporal variations is crucial for super-resolution tasks on satel-
lite images. Super-resolution models, in their quest for high-fidelity outputs,
often face challenges due to inconsistent data from different time frames. Ad-
dressing this inconsistency necessitates a guiding reference that would steer
the models to reconstruct the features related to a specific point in time. Tak-
ing inspiration from the work of Nguyen et al. [99], where the authors iden-
tified the LR image most similar to the downsampled HR for each scene,
a similar approach was adopted in this research. Recognizing that every
scene in the Proba-V dataset has an LR captured concurrently with its HR
counterpart, they tailored existing models to accommodate this knowledge.
This approach resulted in increased quantitative performance of each tested
model and a more pronounced resemblance of outputs to specific leading
LR images. In line with their strategy, for each scene, a specific LR image
was designated as the leading one for the MagNAtlead model (Section 3.6) in
this analysis. By focusing on reproducing the attributes of this leading LR,
the MagNAtlead can navigate the ambiguities more effectively, harnessing its
inherent details and nuances. This approach offers a clearer, more defined
task for the model, assisting in the mitigation of challenges introduced by
pronounced temporal variations in the dataset.
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FIGURE 6.16: Performance trends of the MagNAtlead model
across different metrics as the number of input images in-

creases, emphasizing the impact of the leading LR strategy.

To assess the potency of this strategy, MagNAtlead was trained and evalu-
ated on the Proba-V NIR subset using the leading LR image paradigm, main-
taining all the hyperparameters originally set for the MagNAt model. Figure
6.16 provides a line plot that visually charts the performance of the model
across varied metrics as the number of input images (N) increases. Intrigu-
ingly, for the MagNAtlead, the pinnacle of performance remarkably mani-
fests at N=32, a stark deviation from the traditional MagNAt model, which
peaked at N=16 and thereafter witnessed a decline in output quality. Further-
more, the MagNAtlead exhibits a notable enhancement in results for N<5, a
domain where MagNAt’s results were unsatisfactory. This underscores the
transformative potential and adaptability of the leading LR approach in man-
aging disparate input conditions.

Delving deeper into the performance metrics of the MagNAtlead model
across the test subset of Proba-V NIR, the mean scores and their changes
with respect to the MagNAt model were observed to be:

• cPSNR: 38.620 (+2.451)

• cSSIM: 0.9342 (+0.0181)

• cLPIPS: 0.1688 (-0.0089)
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• cMGE: 0.0043 (-0.0016)

• TBE: 0.2673 (-0.0607)

Upon further analysis, the MagNAtlead model exhibits marked improve-
ments across all examined metrics on the Proba-V NIR data when compared
to the MagNAt model. This includes a noticeable enhancement in cPSNR
and cSSIM, as well as a commendable reduction in values for cLPIPS, cMGE,
and TBE, indicating a robust performance of the MagNAtlead model in ad-
dressing the MISR challenge.

Visual Assessment of Temporal Consistency

For a clearer understanding of the MagNAtlead model’s performance, es-
pecially in terms of image fidelity and temporal accuracy, a direct visual
comparison is presented. Figure 6.17 offers a side-by-side view of super-
resolution outputs from the tested models, emphasizing the distinct advan-
tages of the leading LR approach. The figure also includes a visual display
of difference maps, providing a detailed examination of the errors in recon-
structing regions of high temporal variance by different methods with re-
spect to the HR image reference. The showcased scene, representing a cul-
tivated area filled with diverse fields, highlights the pronounced temporal
variance inherent in the Proba-V dataset.

Upon examining the super-resolved outputs from various methods, it be-
comes clear that models like RAMS, HighRes-Net, and MagNAt produced
detailed images, yet there are still obvious content differences in their out-
puts. Additionally, PIUNET’s results appear blurred, challenging the clear
identification of individual fields. TR-MISR continues to display its charac-
teristic behaviour of introducing artefacts that resemble sections of the LR
image that seem merely enlarged without any true enhancement. On the
other hand, the output of the MagNAtlead model excels in terms of fidelity.
The super-resolved image aligns accurately with each cultivated field and
maintains its brightness and contrast in harmony with both the leading LR
and the HR image. This precise alignment with the scene’s temporal and
structural characteristics underscores the effectiveness of the leading LR im-
age approach. The provided error maps show well the areas each model
failed to reconstruct properly when compared to the leading LR and HR im-
ages. From these maps, it is evident that MagNAtlead produced the least
noticeable errors while maintaining temporal consistency with respect to the
leading and HR images, showcasing how MagNAtlead skillfully utilizes this
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(A) Super-resolved images produced by different methods with inputs of high temporal
variance.
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(B) Maps depicting a squared error of each pixel between the super-resolved images and the
HR reference.

FIGURE 6.17: Visual comparison of super-resolution outputs
from different models (A) and their corresponding difference

maps with respect to HR reference (B).
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approach to produce super-resolved images that authentically capture the
original scene’s temporal context.

Evaluating Temporal Reconstruction with Varied Leading Images

To further inspect the MagNAtlead model’s performance, the effect of dif-
ferent leading LR images on reconstructing a specific scene was examined.
This approach aims to verify whether MagNAtlead can accurately reproduce
a scene at different time points dictated by the chosen leading LR images.
Figure 6.18 demonstrates the reconstruction results for the same scene using
different leading LR images, with one of them (d) taken at the same time
as the HR image. As expected, the best quantitative score was obtained for
the leading LR image captured concurrently with the HR image. A close ob-
servation shows that characteristic features from the leading images, such
as uncaptured pixels or clouds, are preserved in the output. Notably, these
features are present only in the corresponding leading image and not in the
other LR inputs, indicating the model’s ability to retain distinct temporal in-
formation from the leading image.

(a) (b) (c) (d)

HR image

18.90/0.70

SR

Leading 
LR

38.52/0.959.98/0.69 19.52/0.57

FIGURE 6.18: Reconstruction results from MagNAtlead for the
same scene using different leading LR images, with one of them
(d) captured at the same time as the HR image. Correspond-
ing cPSNR and cSSIM scores are provided below each super-

resolved image.

The observations from this segment of the analysis support a part of the
third thesis of the dissertation, indicating that by choosing a specific reference
image from the input LR image set, GNNs can effectively reconstruct a scene
from a particular point in time. This is illustrated by the visual fidelity and
temporal accuracy of the super-resolved outputs. On the other hand, the
results from Figure 6.16 provide evidence for another segment of the third



Chapter 6. Experimental Results and Discussion 106

thesis, showcasing that other images in the leading LR approach indeed serve
as supplementary information sources which contribute to enhanced super-
resolution accuracy.

6.4 Comparative Analysis of Architectural Progres-

sion

This section outlines the evolution of models developed to substantiate the
second thesis of this dissertation: GNNs can improve their MISR perfor-
mance by integrating techniques inspired by existing state-of-the-art MISR
models based on CNNs, such as individual feature extraction for each LR
image, the employment of attention mechanisms, and dynamic and trainable
input registration. The following list provides a brief overview of the models
created in this pursuit, discussed in detail in Chapter 3, each representing
a distinct approach or enhancement towards leveraging the aforementioned
techniques for MISR:

1. MagNet: The pioneering model in this series, MagNet, was the first re-
ported attempt at employing GNNs for MISR. By integrating the power
of graph-based data representation with the FSRCNN architecture, Mag-
Net successfully transforms the MISR task into a graph processing chal-
lenge.

2. MagNet++: Building on MagNet, MagNet++ aims to enhance the up-
scaling operation. It introduces a new architectural choice that opti-
mises the use of input nodes, minimizing information loss during up-
sampling by performing convolutional operations on bipartite graphs
without the need for max-pooling.

3. MagNetenc: This model focused on refining the embedding phase. By
treating each LR image individually during feature extraction, it aims
to ensure that every input image, irrespective of its inherent character-
istics, contributes equally to the super-resolved output.

4. MagNAt: This model introduced a multi-level attention mechanism
alongside dynamic registration in the context of GNNs for MISR. This
combination allows for the evaluation of the relative importance of each
neighbouring node and the recalibration of positional shifts between
LR images during each forward pass, aiming to optimize the model’s
adaptability and performance.



Chapter 6. Experimental Results and Discussion 107

5. MagNAtno_reg: As a modification of MagNAt, MagNAtno_reg retains
the multi-level attention mechanism but omits the dynamic registration
feature. This variation provides a controlled setup to assess the impact
of the dynamic registration on the SRR performance of MagNAt.

While each of the above models brought forth some advancements for
the GNNs in MISR, it is the MagNAt that stands as the most refined and
comprehensive one. This section seeks to provide a comparative analysis
of these models, highlighting their strengths, limitations, and incremental
improvements leading up to the final MagNAt model.

6.4.1 Performance Analysis for Optimal Number of Inputs

An experiment was conducted on the validation subset of the Proba-V NIR
dataset with each model delineated in the preceding discussion, with the in-
tention of determining the optimal number of input images (N) that would
enable a fair comparison of performance among the models. Utilizing a sim-
ilar procedure of varying N as depicted in earlier analyses, this step was
crucial to ensure that each model was evaluated at its peak performance for
a more accurate comparative analysis.

In Figure 6.19, the performance trends of each model as a function of the
number of input images, N, are showcased. An initial performance improve-
ment with increased N, reaching an optimal point, followed by a decline and
then a plateau at higher N values, is a shared trend observed across all the
models for most metrics. This pattern, consistent across most metrics, elu-
cidates the universal challenge of efficiently managing a larger number of
input images. A clear advancement from MagNet to MagNAt, with each
subsequent model exhibiting enhanced performance, is depicted. This pro-
gression underscores the iterative nature of model refinement and the effec-
tiveness of the architectural modifications implemented at each step.

A notable observation is the TBE performance of MagNet for N > 8.
Unlike its successors, MagNet produces markedly sharper results as N in-
creases. This enhanced sharpness could potentially be attributed to the uti-
lization of node max-pooling and pixel shuffle operations. By eschewing con-
volutions during internal supersampling, where spline-based convolutions
typically introduce a slight blur, MagNet achieves a sharper output. How-
ever, while sharper, it is imperative to approach these findings with caution
as TBE, a non-reference metric, assesses image sharpness without a reference
image for comparison, implying that while the outputs might be sharper,
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FIGURE 6.19: Performance metrics for the proposed models as
a function of the number of input images (N). The graph delin-
eates how each model’s performance trends with an increase in

N, pinpointing the optimal N for peak performance.

they may not necessarily offer accuracy or fidelity to the desired HR image,
as suggested by other metrics, particularly cMGE.

The optimal number of input images, N, at which each model version
reaches peak performance, is ascertained by examining the combined metric
plot in Figure 6.19. The performance metrics calculated on the test subset for
each model at these optimal N values are compiled in Table 6.6.

The transition from MagNet to MagNAt is evident in the results, with
each additional component aiding in performance improvement. Notably,
MagNAt consistently outperforms its predecessors across most indicators,
marking a significant advancement. However, in the TBE metric, MagNet
holds a slight lead, demonstrating its ability to yield sharper results, a trend
also noticed on the validation subset. Yet, this sharpness does not always
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TABLE 6.6: Mean metrics for each model at their optimal N.

Model N cPSNR cSSIM cLPIPS cMGE TBE
MagNet 16 35.448 .9041 .2187 .0069 .3275

MagNet++ 13 35.500 .9056 .2151 .0067 .3364
MagNetenc 18 35.900 .9133 .1863 .0061 .3300

MagNAtno_reg 18 35.955 .9132 .1830 .0060 .3311
MagNAt 15 36.169 .9161 .1777 .0059 .3280

translate to accurate super-resolution, as highlighted by other metrics. More-
over, a significant performance leap is observed with MagNetenc, which is
directly attributed to the incorporation of the encoding block. By treating
each LR image individually during the feature extraction phase, this addi-
tion ensures a more nuanced representation of the input, facilitating a richer,
more detailed super-resolved output. This observation is in line with insights
gained during the development of the DeepSent model [126]. The compre-
hensive advancements and architectural choices in MagNAt affirm its stand-
ing as a promising model in MISR, portraying the incremental enhancements
and the importance of well-informed design decisions. Furthermore, these
findings substantiate the second thesis of this dissertation, that integrating
techniques from existing state-of-the-art CNN-based MISR models can en-
hance GNNs’ MISR performance.

6.5 Time and Memory Analysis

Computational efficiency is a paramount criterion when assessing the utility
of super-resolution methods. This is especially crucial in situations requiring
real-time or rapid image processing, which can be seen in applications such
as medical diagnostics during emergencies, autonomous vehicle operations,
or security monitoring in high-risk areas. Environments with limited compu-
tational resources further underscore the importance of efficiency. The out-
comes across various super-resolution methods, given changes in the num-
ber of input LR images denoted as N, are depicted in Figure 6.20.

Bicubic interpolation, predictably, emerges as the fastest technique, reach-
ing times from 0.01 ms (at N=1) to 0.3 ms (at N=32). Among the deep learn-
ing methodologies, RAMS stands out for its computational efficiency, fol-
lowed closely by HighRes-Net. The latter’s resilience to increasing N values
is commendable, signifying its adaptability to a growing number of input im-
ages. TR-MISR, though following a similar performance trajectory, exhibits a
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slightly elongated computational time, especially for values of N exceeding
24.

PIUNET presents an interesting pattern, starting competitively for smaller
N but demonstrating an exponential rise in computational time as the num-
ber of input images grows, making it one of the more time-intensive models
for larger image sets.

The MagNAt model, being the most time-intensive among the tested me-
thods, demands a closer inspection. Its performance, with respect to com-
putational time, reveals a distinct exponential increase, more accentuated
than that observed with PIUNET. An intriguing aspect of MagNAt’s trend
is its fluctuating time measurements for higher values of N. In certain in-
stances, and rather counterintuitively, MagNAt achieved shorter computa-
tional times for larger N than for some smaller values. Such behaviour sug-
gests the influence of underlying system operations, possibly related to mem-
ory management, allocation, and optimization routines. The substantial mem-
ory demands of MagNAt might trigger these system responses. Interestingly,
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repeated runs of the experiment confirmed that this fluctuation in MagNAt’s
performance is not consistent across trials, further underscoring the potential
impact of background memory-related processes on its performance.

This temporal inconsistency poses questions about MagNAt’s predictabil-
ity in real-world scenarios, while its pronounced time overhead also chal-
lenges its viability as a time-efficient solution in the SRR domain. A primary
factor behind this behaviour is its graph-based data representation approach.
Unlike models that rely on a direct stack of LR images, MagNAt thoroughly
processes intricate inter-node relationships and their attributes. While this
complexity provides it with the ability to capture richer information, it si-
multaneously worsens its memory requirements.

For a standard input stack of LR images with the shape [1, 32, 128, 128],
represented in a format [batch, N, H, W], and stored as 32-bit floating num-
bers, the memory consumption is just 2MB. However, the graph-based repre-
sentation of the same data in MagNAt necessitates considerably more mem-
ory, which can be attributed to its low-level components used to describe a
graph. In addition to node features, it requires:

• The batch vector, indicating which pixels belong to specific examples in
a batch, uses a 64-bit integer format, a requirement of the PyTorch Geo-
metric library, to cater to the extensive number of nodes, thus utilizing
4MB of memory in this specific example.

• The edge indices, dictating node connections, are also maintained in a
64-bit integer format, occupying a significant 256MB.

• The edge attributes, which store the relative position between pairs
of nodes and are integral for spline-based convolutions and attention
mechanisms in MagNAt, are represented as 32-bit floating numbers,
consuming 128MB.

Cumulatively, these components lead to a memory requirement of 392MB
for MagNAt’s graph-based data representation. This is approximately 200
times the memory footprint of the original input tensor, which is the only in-
put for other tested models. Such an extensive memory allocation restricted
the training of MagNAt to a maximum of N=15 images for the Proba-V
dataset. It is worth recalling that other models were trained using their
originally reported hyperparameters to ensure a balanced comparison, even
though they are able to manage a full stack N=32 input images.

In summation, while the advanced graph-based approach of MagNAt of-
fers the enticing prospect of capturing richer, more nuanced information, it



Chapter 6. Experimental Results and Discussion 112

comes at the cost of increased computational time. The model’s engagement
with detailed inter-node relationships and the intricacies of their attributes
necessitates deeper, more complex calculations. This is in stark contrast to
more conventional models that process straightforward image data. Con-
sequently, MagNAt’s heightened memory requirements and the intricacies
of its computational processes make it notably less time-efficient than its
counterparts. The trade-off between richer information capture and com-
putational efficiency is evident and remains a pivotal consideration in the
broader context of super-resolution research.
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Chapter 7

Summary and Conclusions

The primary aim of this dissertation was to explore the potential of GNNs in
the realm of MISR. Initially, a thorough introduction to the domain of super-
resolution was provided, distinguishing between its main sub-fields: SISR
and MISR. The discussion on MISR covered its real-world applications and
inherent challenges, with a particular focus on the temporal variations ex-
isting between different input images. A comprehensive literature review
followed, evaluating various MISR and SISR methodologies, and exploring
those which significantly impacted this research. The fundamental concepts
of graphs and GNNs were explained next, highlighting specific models like
GCN, GAT, and SplineCNN, which heavily influenced this research.

The methodological discussion began with a detailed description of rep-
resenting multiple LR images as a graph, alongside discussing the rationale
behind such representation. The conversation proceeded with the introduc-
tion of proposed models, initiating with MagNet and its subsequent enhance-
ments, each one incorporating new elements aiming to increase their super-
resolution potential. The motivation for utilizing simulated data to test the
models in a controlled environment was articulated, followed by the cura-
tion of two simulated datasets, SRRB and SRRBenh, each of different levels of
difficulty. The choice of the Proba-V dataset, representing real-world data for
MISR, was also justified.

The following chapter delineated the training methodology employed
for the models and the image similarity metrics utilized for evaluating the
proposed method against existing state-of-the-art MISR models. The exper-
iments were presented on both simulated and real-world data, comparing
the proposed method to established solutions in this domain. Detailed dis-
cussions on both quantitative and qualitative findings were provided, with
qualitative analyses being supported by statistical significance testing of the
model against its competitors.
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The challenge posed by temporal variability in input data was also dis-
cussed, alongside a solution to mitigate it by guiding the reconstruction pro-
cess to focus on a specific timeframe dictated by the leading input image.
Further, experiments were conducted to compare the proposed models, and
examine how the modifications introduced by each of them affected their
super-resolution performance. Lastly, a time and memory analysis of the
MagNAt model was performed, marking the culmination of the discussions
on the methodologies and experiments conducted in this dissertation.

7.1 Discussion on Theses

This section explores the theses proposed at the onset of this dissertation,
validating them with the empirical evidence gathered from the conducted
experiments.

• Thesis 1: The primary thesis proposed that by representing a set of LR
images with sub-pixel shifts as a graph, GNNs are capable of process-
ing this graph to yield super-resolution results that are comparable or
superior to those achieved by leading MISR architectures based on con-
volutional networks. This thesis was strongly substantiated both quan-
titatively and qualitatively on simulated and real-world datasets. In the
simulated datasets, MagNAt consistently outperformed its state-of-the-
art counterparts across most metrics, a claim further supported by sta-
tistically significant testing of these results. On the real-world Proba-V
dataset, MagNAt achieved better or comparable results in most metrics
and in terms of visuals. Furthermore, it was also most robust against
temporal variations between input images, which are the main cause
for the visual artefacts produced by other models. This comprehensive
evaluation supports the viability and potential superiority of GNNs for
MISR tasks when employing a graph-based representation of LR im-
ages with sub-pixel shifts.

• Thesis 2: The second thesis stated that the performance of GNNs in
MISR can be elevated by assimilating techniques inspired by existing
state-of-the-art MISR models based on CNNs. These techniques en-
compass individual feature extraction for each LR image, the applica-
tion of attention mechanisms, and dynamic and trainable input reg-
istration. Through a comparative analysis amongst all the proposed
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models—each model incorporating at least one new component de-
rived from state-of-the-art CNN-based MISR models—a clear perfor-
mance enhancement trajectory was established. It was observed that
while independent feature extraction for each LR image emerged as the
most impactful methodology, other incorporated techniques also sig-
nificantly contributed to the increase of the models’ performance, what
quantitatively substantiated this thesis.

• Thesis 3: The third thesis proposed that GNNs can reconstruct a scene
from a specific point in time by designating a particular reference image
from the input LR image set, with the remaining images serving as sup-
plementary information sources to improve super-resolution accuracy.
This methodology was anticipated to mitigate visual inconsistencies in
regions of high temporal variability and produce a temporally consis-
tent image. MagNAtlead showcased an experiment where a specific in-
put image was identified as the leading image, guiding the model to
reconstruct the scene at that specific point in time. Quantitative analy-
sis revealed that the additional LR images indeed acted as an auxiliary
source of information, with MagNAtlead demonstrating optimal per-
formance with the maximum available number of input images. The
qualitative analysis further supported this thesis, revealing a consistent
reconstruction of time-specific features present exclusively in each spe-
cific leading image.

This systematic discussion manifests the substantial fulfilment of the pro-
posed theses, thereby achieving the primary objectives outlined for this dis-
sertation.

7.2 Future Work

7.2.1 Potential Enhancements

A crucial aspect of improving the proposed method revolves around its time
and memory demands, as highlighted in the time and memory analysis sec-
tion. It was observed that MagNAt is the slowest and the most memory-
demanding model among the tested models, with the extensive number of
individual connections between nodes being the primary cause. Tackling
this challenge is essential to enhance the practicability and scalability of the
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model for more comprehensive or real-time applications. The possible en-
hancements are:

• Refine a new procedure for establishing connections, which could re-
duce the number of graph edges. This modification could significantly
reduce MagNAt’s memory demands, leading to more efficient compu-
tations.

• There is room for optimization steps that could potentially augment
the model’s time efficiency. However, these require a thorough inves-
tigation to ensure that the model’s super-resolution performance is not
compromised. Exploring optimized graph construction methods or in-
vestigating more efficient GNN architectures may yield valuable in-
sights into reducing the computational burden, without sacrificing the
quality of super-resolution.

• Leveraging the advancements in hardware and parallel computing may
provide means to accelerate the computations and manage memory us-
age more effectively. Utilizing distributed computing resources or tai-
lored hardware accelerators for graph-based computations could sig-
nificantly boost MagNAt’s efficiency, making it a more feasible solution
for a wider array of MISR scenarios.

7.2.2 Prospective Research

The primary trajectory of the subsequent research revolves around adapting
the MagNAtlead model for the multispectral MISR domain, specifically tar-
geting the remotely sensed images from the Sentinel-2 satellite. This adapta-
tion could require some conceptual changes in the model to efficiently handle
the multispectral data. Additionally, the spectral images from Sentinel-2 vary
in size, which presents a new challenge for MagNAt and the graph creation
process.

Another promising research direction involves the refinement of the new
node-connecting procedure discussed in the previous section. The aim is to
reduce the number of edges, thereby decreasing the computational load of
MagNAt. This refinement could be crucial, especially in the multispectral
scenario, where the data naturally contains a significantly larger volume of
information compared to the scenarios that MagNAt has been subjected to
thus far. This dual approach not only provides opportunities for optimizing
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the existing model but also extends the model’s applicability to a broader
range of MISR scenarios.

7.2.3 Interesting Avenues

This subsection sheds light on captivating directions for further exploration
that could contribute to the refinement or broadening of the methodologies
deployed in this research.

• Handling Rotations and Shifts: One engaging avenue for MagNAt lies
in the ability to manage LR images that are not solely shifted, but also
rotated concerning each other. This would demand modifications in the
node positioning procedure to ensure the accurate placement of such
images on a shared 2D plane. Investigating a procedure to properly
register rotations along with translations between images could aug-
ment the versatility and applicability of MagNAt in dealing with more
complex real-world MISR scenarios.

• Non-Rigid Transformations: Extending the scope to accommodate sce-
narios wherein LR images are influenced by non-rigid transformations
presents another interesting avenue. This extension is particularly ap-
pealing for super-resolving raw satellite imagery that has not under-
gone the orthorectification process—a process dedicated to removing
image distortions or displacements brought about by sensor tilt and ter-
rain variations to ensure a geometrically correct image. Adapting Mag-
NAt to handle such transformations could challenge the registration
process significantly, necessitating careful and more nuanced alignment
of each pixel in relation to other images, thus adding a new dimension
of complexity and capability to the model.

• Processing Spatially Irregular Data: Stepping into the area of spatially
irregular data processing, such as handling images with missing pix-
els or managing point clouds, reveals an entirely new set of challenges
and opportunities. This direction would require a significant change
in both the model architecture and the corresponding graph creation
procedure. Exploring methods to adapt MagNAt to these unconven-
tional data types could discover novel insights and extend the model’s
effectiveness across a broader spectrum of MISR scenarios.
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