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Abstract

E�ective condition monitoring and maintenance of wheels of wheelset of railcars require

ongoing diagnostics of the technical condition of the vehicle components, in particular the

wheel systems. The condition of the railcar wheels determines the e�ciency and safety

of the rail vehicle tra�c. In this light, this dissertation presents a method for assessing

the wheel condition of a railcar during railroad drive operations. The study aims to

diagnosis the condition of tram vehicle wheels using micro-electromechanical systems

(MEMS)-based accelerometer sensors that record rail vibrations during the passage of

the vehicles. The study analyses sensor signals in the time-frequency domain to assess

the condition of wheels during railroad drives.

The developed method for processing the collected sensor data is based on assessing

the energy of vibrations at di�erent frequency bands. The wavelet-based maximal overlap

discrete wavelet packet transform (MODWPT) is chosen as the basis for processing. As

a criterion for assessing the wheel conditions, the relative weighted di�erence (DW)

between the extreme values of the vibration energy of �good" and damaged wheels in

a given frequency range is proposed. Optimisation of transform parameters is carried

out, the type of base wavelet used, the required level of decomposition and characteristic

frequency bands are determined to be an important parameter for the assessment of the

condition of the wheels. The optimisation task is carried out using data from initial

vibration measurements during tram journeys in the depot.

The study validates the method during �eld test drives sessions of trams on shunting

tracks at the tram depot using a prototype accelerometer sensor based on MEMS tech-

nology. The MEMS sensor with 3-axis is mounted underneath of rail track and utilised

to record the vibrations of the running wheels. The recorded acceleration is sampled

at a frequency of 1 kHz. During drive test sessions, the vehicle was �tted with wheels

damaged to varying degrees. The energy of the recorded signals is calculated using the
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MODWPT transform coe�cients with the Coi�et3 base wavelet at the 8th decomposition

level within the frequency band of 420 � 422 Hz.

The results of the validation con�rm that the possibility of using sensors in MEMS

technology to assess the condition and, above all, to signal passages with damaged wheels.

The use of the MODWPT transform e�ectively describes vibration anomalies, and thus

indicates damaged wheels. The established parameters of the MODWPT transform may

need to be corrected when the drives are made on tracks in a poor technical condition and

when the travel speeds exceed a few km/h. The developed method has been successfully

used to detect the wheel fault conditions while driving.

In conclusion, the study demonstrates the potential of MEMS accelerometer sensors

and MODWPT transform for assessing the condition of wheels of the wheelsets systems

in the railcars. The developed method shows promise in detecting wheel fault conditions

during tram operation, which can improve maintenance practices and ensure the safety

of rail vehicle operations. Future research may delve into identifying and categorising

sources of vibration energy anomalies within speci�c frequency bands, evaluating the

size and type of wheel damage, integrating supplementary measuring tools with MEMS

accelerometers, and implementing machine learning-based techniques for comprehensive

wheel condition diagnosis and maintenance strategies.

Keywords: wheel fault condition assessment; MEMS-based sensor; MODWPT; wavelet

coe�cient; weighted di�erence; decomposition level; vibration energy; frequency band.
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Streszczenie

Efektywne utrzymanie w ruchu pojazdów kolejowych wymaga bie»¡cej diagnostyki stanu

technicznego podzespoªów pojazdów w szczególno±ci ukªadów jezdnych. Stan kóª wózków

determinuje sprawno±¢ i bezpiecze«stwo ruchu pojazdów. Znana metodyka diagnostyki

stanu kóª opiera si¦ na analizie sygnaªów z czujników umieszczonych na piastach kóª,

na szynach lub w pobli»u torów. Analizowane s¡ drgania kóª lub szyn, d¹wi¦ki gen-

erowane przez koªa lub mierzone s¡ przemieszczenia wzgl¦dne elementów wózka kole-

jowego. Opracowane rozwi¡zania pomiarowe zawieraj¡ czujniki przespiesze«, mikrofony

lub tensometry wymagaj¡ce starannej obsªugi. Analiza sygnaªów dokonywana jest w

dziedzinie czasu, cz¦stotliwo±ci i czasowo-cz¦stotliwo±ciowej.

Podj¦to zadanie wery�kacji metodyki z zastosowaniem pomiaru parametrów sygnaªu

drganiowego. Wybrano jako pole bada« ocen¦ stanu kóª pojazdów tramwajowych. Utrzy-

manie w ruchu pojazdów tramwajowych jest wa»nym zagadnieniem dla systemu trans-

portowego Aglomeracji �l¡skiej. Komunikacja tramwajowa jest znacz¡cym elementem

systemu i wpisuje si¦ w polityk¦ redukcji ±ladu w¦glowego realizowan¡ przez wªadze

Regionu.

Specy�ka konstrukcji pojazdów tramwajowych - znacznie mniejsza waga i niewielkie

pr¦dko±ci poruszania si¦ w porównaniu do taboru kolejowego redukuj¡ wymagane za-

kresy pomiarów parametrów sygnaªów. Wykonano wstepne badania i uzyskano widma

sygnaªów drganiowych, istotne dla diagnostyki uszkodze« kóª, w zakresie cz¦totliwo±ci 50

� 500 Hz. Maksymalne warto±ci przyspiesze« drga« nie przekraczaªy 200 [m/s2]. Taki

zakres parametrów drga« mo»liwy jest do pomiaru z u»yciem dost¦pnych czujników

przyspiesze« wykonanych w postaci mikroukªadów elektromechanicznych - MEMS.

Sformuªowano pytanie badawcze: W jaki sposób mo»na u»y¢ czujników przyspiesze«

w technologii MEMS do oceny stanu kóª wózków pojazdów podczas przejazdu? Zapro-

ponowano u»ycie analizy sygnaªów z czujników w dziedzinie czasowo-cz¦stotliwo±ciowej
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dla uwzgl¦dnienia wpªywu ruchu pojazdu podczas bada«. Postawiono hipotezy badawcze:

Analiza obrazu drga«, w przedziale cz¦stotliwo±ci 0-500 Hz, szyn po których porusza si¦

pojazd umo»liwia ocen¦ stanu kóª. Energia drga« szyn w charakterystycznych zakresach

cz¦stotliwo±ci wskazuje stan kóª.

Przyj¦to ograniczenia dla realizacji pomiarów wynikaj¡ce z praktyki dy»urnych ruchu

w zajezdni. Obserwowany jest przejazd pojazdu z niewielk¡ pr¦dko±ci¡, gdy poziom

generowanego haªasu podczas jazdy wzbudza "niepokój" niedopuszcza si¦ do opuszczenia

zajezdni przez pojazd. Pr¦dko±¢ ruchu jest ograniczona do kilku km/godz. Czujnik

pomiarowy zostaje umieszczony na torze manewrowym w zajezdni i nie wpªywa na ruch

pojazdu.

Kwerenda literatury pozwala zidenty�kowa¢ kilka podej±¢ do zagadnienia oceny stanu

kóª. Mo»na wyró»ni¢ metody oceny z u»yciem czujników pokªadowych montowanych na

elementach wózków lub na konstrukcji pojazdów. Rozwi¡zania pokªadowe mog¡ dostar-

czy¢ bie»¡cej informacji i wskaza¢ konieczno±¢ podj¦cia serwisowania, wi¡»e si¦ to jednak

z du»ymi kosztami monta»u czujników jak i utrzymania ich w sprawno±ci. Autorzy opra-

cowa« dowodz¡ du»ej przydatno±ci pokªadowych czujników dla oceny stanu kóª oraz dla

realizacji zada« utrzymania w ruchu zgodnie z zaªo»eniami strategii CBM (utrzymanie

w ruchu oparte na ocenie stanu technicznego).

Zastosowanie czujników poza pojazdem to domena metod opartych na pomiarach

oddziaªywania kóª pojazdu na szyny lub na pomiarach generowanego haªasu w otoczeniu

toru. Pomiar stopnia odksztaªcenia szyny lub rejestracja parametrów drga« wywoªnych

przez koªa pozwala odwzorowa¢ przebieg oddziaªywania i ujawnia anomalie gdy pojazd

posiada uszkodzone koªa. Autorzy prezentowanych w literaturze prób analizy sygnaªów

z czujników dla oceny stanu kóª de�niuj¡ istotne ograniczenia dla uzyskania poprawnych

wyników oceny. Wymieniane s¡ przede wszystkich pr¦dko±¢ przejazdu, stan torowiska,

rodzaj i stan techniczny wózka kolejowego jako czynniki determinuj¡ce zdolno±¢ do

poprawnego opisu stanu technicznego kóª.

Opracowane metody oparte na ocenie haªasu przejazdu pojazdu czuªe s¡ na haªas w

otoczeniu. Publikowane opracowania zalecaj¡ poddanie sygnaªów akustycznych z czu-

jników �ltracji w dziedzinie cz¦±totliwo±ci dla eliminacji zakªóce«. Autorzy zwracaj¡

uwag¦ na konieczno±¢ uwa»nej oceny ¹ródeª w otoczeniu dla identy�kacji zakresów cz¦s-

totliwo±ci maskowania d¹wi¦ków przejazdu.

Prezentowane w literaturze rozwi¡zania ukªadów pomiarowych dostarczaj¡ strumie-

nie danych, które podlegaj¡ analizie w dziedzinie czasu, cz¦stotliow±ci lub w dziedzinie
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czasowo-cz¦stotliwo±ciowej. Autorzy proponuj¡ zastosowanie znanych metod analizy

opartych na transformacjach przede wszystkim Fouriera i falkowych. Przeprowadzone

dyskusje wªa±ciwo±ci wybranych metod nie daj¡ jednoznacznego wskazania najlepszej

metody analizy. Wa»n¡ przesªank¡ dla wyboru metody analizy, podkre±lan¡ przez

autorów prac, jest niestacjonarny charakter danych z czujników. Efektywna analiza

wymaga powi¡zania cech czasowych i cech cz¦stotliwo±ciowych dla uzyskania opisu,

który b¦dzie u»yteczny do okre±lenia anomalii przebiegów oraz powi¡zania ich z stanem

technicznym kóª. Wyró»niono transformacje falkowe ze wzgl¦du na zdolno±¢ do opisu

przebiegów w ró»nych skalach czasowych jak i w ró»nych rozdzielczo±ciach cz¦stotliwo±ci.

Dokonuj¡c przegl¡du wªa±ciwow±ci transformacji falkowych zwrócono uwag¦ na trans-

formacj¦ MODWPT opart¡ na dekompozycji z u»yciem pakietów falkowych. Pakietowa

analiza oparta na binarnym drzewie dekompozycji dostarcza opisu w wi¦kszej rozdziel-

czo±ci zarówno w czasie jak i w dziedzinie cz¦stotliwo±ci st¡d uzyskuje si¦ zdolno±¢ do

bardziej szczegóªowego opisu danych pomiarowych. Dobór falki bazowej oraz poziomu

dekompozycji jest przedmiotem optymalizacji dla uzyskania efektywnego narz¦dzia do

oceny stanu kóª. W literaturze brak prac podejmuj¡cych zadanie optymalizacji parametrów

MODWPT dla oceny stanu technicznego kóª.

Opracowano metod¦ oceny stanu kóª z zastosowaniem danych z czujnika przyspiesze«

rejetruj¡cego drgania szyny podczas przejazdu pojazdu. Wybrano jako podstaw¦ przetwarza-

nia transformacj¦ MODWPT oraz energi¦ drga« w charakterystycznych przedziaªach

cz¦stotliwo±ci jako miar¦ stanu technicznego. Jako kryterium optymalizacji zaproponowano

wzgl¦dn¡ ró»nic¦ mi¦dzy energi¡ drga« "dobrych" i uszkodzonych kóª w danym przedziale

cz¦stotliwo±ci. Przeprowadzono optymalizacj¦ parametrów transformacji, ustalono rodzaj

falki bazowej, wymagany poziom dekompozycji oraz charakterystyczne zakresy cz¦stotli-

wo±ci istotne dla oceny stanu kóª. Zadanie optymalizacji wykonano z u»yciem danych ze

wst¦pnych pomiarów drga« podczas przejazdów tramwajów w zajezdni.

Przeprowadzono walidacj¦ metody podczas próbnych przejazdów tramwajów na torach

manewrowych zajezdni. U»yto prototypu czujnika przyspiesze« opartego na akcelrometrze

3-osiowym wykonanym w technologii MEMS. Rejestrowano przyspieszenia drga« szyn

po których przemieszczaª si¦ pojazd z cz¦stotliwo±ci¡ 1 kHz. W poje¹dzie zamontowano

uszkodzone w ró»nym stopniu koªa. Obliczono energi¦ zarejestrowanych sygnaªów z u»y-

ciem wspóªczynników transforamcji MODWPT z falk¡ bazow¡ Coi�et3 na 8 poziomie

dekompozycji w przedziale cz¦stotliwo±ci 420-422 Hz. W celu selekcji "dobrych" i uszkod-

zonych kóª wyznaczono próg detekcji.
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Wyniki walidacji potwierdzaj¡ mo»liwo±¢ zastosowania czujników w technologii MEMS

do oceny stanu a przede wszystkim do sygnalizacji przejazdów z uszkodzonymi koªami.

Zastosowanie transformacji MODWPT skutecznie pozwala opisa¢ anomalie drganiowe

i tym wskaza¢ uszkodzone koªa. Ustalone parametry transformacji MODWPT mog¡

wymaga¢ korekty gdy przejazdy wykonywane b¦d¡ na torach w zªym stanie technicznym

i gdy pr¦dko±ci przejazdów przekrocz¡ kilka km/godz. Opracowana metoda zostaªa z

powodzeniem wykorzystana do wykrywania usterek kóª podczas jazdy.

Sªowa kluczowe: ocena stanu kóª; MEMS czujnik drga«; MODWPT; energia drga«;

przedziaª cz¦stotliwo±ci.
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Extended Summary

E�ective maintenance of railway vehicles requires ongoing diagnostics of the technical

condition of vehicle components, in particular the wheel systems. The condition of

the railcar wheels determines the e�ciency and safety of vehicle tra�c. A well-known

methodology for diagnosing the condition of wheels is based on the analysis of signals

from sensors located on wheel hubs, on rails or near tracks. The vibrations of the wheels

or rails, the sounds generated by the wheels, or the relative displacements of the wheelset

components are measured. The developed measurement solutions include speed sensors,

microphones or strain gauges that require careful handling. The analysis of the signal is

performed in the time, frequency and time-frequency domains.

The task of verifying the methodology using the measurement of vibration signal

parameters were undertaken. The assessment of the condition of tram wheels was chosen

as the �eld of research. Maintenance of tram vehicles is an important issue for the

transport system of the Silesian Agglomeration. Tram transport is a signi�cant element

of the system and is part of the policy of reducing the carbon footprint implemented by

the authorities of the Region.

The speci�cs of tram vehicles are: much lower weight and low speeds of movement

in comparison to rolling stock this leads to the reduction of required ranges of signal

parameter measurements. Preliminary tests were carried out and spectra of vibration

signals, important for the diagnosis of wheel condition, in the frequency range of 50 � 500

Hz were obtained. The maximum values of vibration accelerations did not exceed 200

[m/s2]. Such a range of vibration parameters can be measured with the use of available

acceleration sensors made in the form of electromechanical microcircuits - MEMS.

The research question is formulated: How can MEMS acceleration sensors be used

to assess the condition of wheels of wheelsets of railcars during a railroad drive? The

analysis of sensor signals in the time-frequency domain is proposed to take into account
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the in�uence of vehicle movement during tests. The following research hypotheses are

formulated: The analysis of the vibration image in the frequency range of 0 � 500 Hz

of the rails on which the vehicle moves enables the assessment of the condition of the

wheels. The vibration energy of the rails in characteristic frequency bands indicates the

condition of the wheels.

Limitations for the implementation of measurements resulting from the practice of

tra�c dispatchers in the depot are adopted. I practice a vehicle is observed passing at a

low speed and when the level of noise generated while driving causes "anxiety" for the

dispatcher he prevents the vehicle from leaving the depot. Movement speed is limited

to a few km/h. The measuring sensor is placed on the manoeuvring track in the depot

and does not a�ect the movement of the vehicle.

A literature query allows us to identify several approaches to the issue of wheel

condition assessment. A distinction can be made between evaluation methods using

onboard sensors mounted on bogie components or vehicle structures. Onboard solutions

can provide real-time information and indicate the need for maintenance, but this is

associated with the high costs of installing sensors and maintaining them in working

order. The authors of the studies prove the high usefulness of onboard sensors for the

assessment of the condition of the wheels and for the implementation of maintenance

tasks in accordance with the assumptions of the CBM strategy (maintenance based on

the assessment of technical condition).

The use of sensors outside the vehicle is the domain of methods based on measure-

ments of the impact of the vehicle's wheels on the rails or on measurements of the

generated noise in the track environment. Measuring the degree of rail deformation

or recording the parameters of vibrations caused by the wheels allows for mapping the

course of the impact and reveals anomalies when the vehicle has damaged wheels. The

authors of the attempts presented in the literature to analyze signals from sensors for the

assessment of the condition of wheels de�ne signi�cant limitations for obtaining correct

evaluation results. First of all, the speed of travel, the condition of the track, the type

and technical condition of the bogie are mentioned as factors determining the ability to

correctly describe the technical condition of the wheels.

The developed methods based on the assessment of vehicle passing noise are sensitive

to ambient noise. Published studies recommend subjecting the acoustic signals from the

sensors to �ltration in the frequency domain to eliminate interference. The authors draw

attention to the necessity of careful assessment of sources in the environment in order to

x



identify the frequency ranges of masking the passage sounds.

The solutions of measurement systems presented in the literature provide data streams

that are subject to analysis in the time, frequency or time-frequency domain. The au-

thors propose the use of well-known methods of analysis based primarily on Fourier and

wavelet transformations. Discussions of the properties of the selected methods do not

give a clear indication of the best method of analysis. An important premise for the

choice of the analysis method, emphasized by the authors of the papers, is the non-

stationary nature of the sensor data. E�ective analysis requires the linking of time

and frequency characteristics to obtain a description that will be useful for determining

waveform anomalies and linking them to the technical condition of the wheels. Wavelet

transformations are distinguished due to their ability to describe waveforms at di�erent

time scales and at di�erent frequency resolutions.

When reviewing the properties of wavelet transformations, attention was paid to the

MODWPT transform based on decomposition with the use of wavelet packets. Packet

analysis based on a binary decomposition tree provides a description in higher resolution

both in time and in the frequency domain, hence the ability to describe the measurement

data in more detail is obtained. The selection of the base wave and the level of decom-

position is the subject of optimisation in order to obtain an e�ective tool for assessing

the condition of the wheels. There are no papers in the literature undertaking the task

of optimising MODWPT parameters for the assessment of the technical condition of

wheels.

A method was developed to assess the condition of the wheels using data from an

acceleration sensor that records rail vibrations during the passage of the vehicle. The

MODWPT transform and vibration energy in characteristic frequency intervals were

chosen as the basis for the processing. As a criterion for optimisation, the relative di�er-

ence between the vibration energy of "good" and damaged wheels in a given frequency

range was proposed. Optimisation of transform parameters was carried out, the type

of base wavelet, the required level of decomposition and characteristic frequency ranges

that are important for the assessment of the condition of the wheels were determined.

The optimisation task was carried out using data from initial measurements of vibrations

during tram journeys in the depot.

The method was validated during test runs of trams on the depot's shunting tracks.

A prototype of an acceleration sensor based on a 3-axis accelerometer made in MEMS

technology was used. Accelerations of vibrations of rails on which the vehicle was moving
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at a frequency of 1 kHz were recorded. The vehicle was �tted with wheels damaged to

varying degrees. The energy of the recorded signals was calculated using the MODWPT

transform coe�cients with the Coi�et3 base wave at the 8th decomposition level in the

frequency range of 420 � 422 Hz.

The results of the validation con�rm that the possibility of using sensors in MEMS

technology to assess the condition and, above all, to signal passages with damaged wheels.

The use of the MODWPT transform e�ectively allows the description of vibration anoma-

lies and thus indicates wheel conditions. The established parameters of the MODWPT

transform may need to be corrected when the drives are made on tracks in poor technical

condition and when the travel speeds exceed a few km/h. The developed method has

been successfully used to detect wheel fault conditions while driving.

Keywords: wheel fault condition assessment; MEMS-based sensor; MODWPT; wavelet

coe�cient; weighted di�erence; decomposition level; vibration energy; frequency band.
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1
Introduction

1.1 Background of the study

Railroads are a crucial part of the infrastructure of every nation because they can move

large volumes of goods and thousands of passengers in a short period of time Gapi«ski

et al. [2020]. Potential factors determining the success of rail transport are its durability,

reliability, safety, and operational strategy Jin et al. [2022], Kuminek et al. [2015]. One

of the strategies for promoting and encouraging rail transportation is that it runs on

clean energy, which emits no pollutants. For this purpose, the use and development of

rail transport is primarily dedicated to urban and rural areas of the world, with a huge

investment cost.

For a railway network to operate safely and e�ciently, the healthy contact condition

of wheels and rails must always be maintained. This can be done through fault diagnosis,

onboard condition monitoring, and maintaining the safe operation of a train's wheelsets.
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Chapter 1: Introduction

Figure 1.1: Typical wheel defects captured from a tram depot

The wheelset of a railway vehicle is a critical component that contributes signi�cantly

to the stability of the vehicle while it is in motion by ensuring ride quality, transmitting

traction, and braking force to a railroad. The tasks of supporting, guiding, and braking

are centralized by wheelset components (wheel, axle, and axle box), and therefore, the

safety of tra�c depends primarily on the health condition of wheelsets, which support

the weight of the vehicles on the track.

Among wheelset components, wheels are critical and one of the most heavily loaded

components of rolling stock, and their faults are the leading cause of train accidents.

Wheels are subjected to cyclic impact forces and are exposed to di�erent track conditions,

such as complex external track irregularities. As a result, the wheel su�ers from numerous

defects, which in�uence the smoothness of its rotation. Among the various defects of

the wheels, wheel �at, wheel wear, eccentricity, discrete defects, periodic non-roundness,

non-periodic, corrugation, roughness, spalling, and shelling fall within the main category.

Figure 1.1 presents an examples of such a typical wheel defects. Such defects trigger high-

strength collisions of the wheel-rail, promote wheel-rail damage, and cause component

failure Alemi et al. [2017].

The wheel-�at fault is the most common localised defect that gives rise to another
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family of wheel damages. It is a defect originating from wheel-rail sliding and occurs

when hard braking is applied to the wheel element. Hard braking forces the locked wheel

to revolve around the centre of the axle, which causes excessive deformation and scratches

to the surface of the wheels and rails. When the wheel rotates with a deformed irregular

surface, it interacts adversely with the environment (rain, ice, and sand) and causes

the wheel-rail adhesion wear, which deteriorates the contacting surface. Additionally, a

signi�cant amount of damage and fault is caused by the high contact forces that exist

at wheel-rails; this is largely due to the large weights involved in rail tra�c and the

hardness of the wheel-rail materials Belotti et al. [2006].

The repetitive impacts on a wheel-rail system, along with the signi�cant forces in-

volved, inevitably lead to the rapid deterioration of both the rolling and �xed railway

assets. The resulting fault from impulsive force will cause materials to degrade if not

given proper attention, ultimately leading to complete and irreversible failure. Wheel-

�at faults play a signi�cant role in causing and spreading other types of damage to

wheels. In this work, the terms wheel-�at, wheel fault and wheel conditions are used

interchangeably.

When locomotives travel with a faulty wheel, each wheelset turns, causing track

disturbances and wheel-rail surface damage. The ups and downs and guiding forces

from contact with the tracks render the upper half of the track and the vehicle itself.

This condition helps for monitoring and diagnosing the wheel condition based on the

characteristics of the motion of a vehicle. For instance, a train running on a track with

a �at wheel subjected to cyclic impulsive loads, and such a wheel jumps o� the track

surface.

A train vehicle driving on the straight, sharply curved rail track and turnout cross-

sections subjected to an impact force experiences two contact patches. These contact

patches are wheel tread and rail-head contact, wheel �ange and rail-gauge corner contact,

but the contact condition is more severe in the latter, according to Xu et al. [2016]. Such

a contact condition results in unnecessary vibration and wheel �ange surface material

loss from the contacting parts and contributes to the wear of the wheel tread, �ange, and

deformation of the rail gauge corner. Therefore, early fault diagnosis and maintenance of

wheelset components, precisely the wheel element, as early as possible is a vital concept

for condition monitoring of wheelset components of a railcar.
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Wheel-rail maintenance workers and managers are striving to identify problems with

wheels to avoid costly system-wide repairs. The wheel's assembly state should be moni-

tored and maintained e�ectively before huge damage happens. Early wheel fault detec-

tion is required to ensure train safety and stability. Therefore, condition-based main-

tenance (CBM) has proven to be a pro�table strategy for railway assets. By detecting

component issues at the earliest possible stage, the CBM can aid in guaranteeing im-

proved safety and functionality. CBM can extend component lifetimes by minimising

downtime and enabling maintenance workers and operators to optimise any replaceable

component in a particular operational condition by altering the dependency on scheduled

maintenance and ensuring a unique component repair schedule Bernal et al. [2018].

Train wheel condition monitoring and fault diagnostic techniques are widely practised

in the railway industry, with applications of predictive and condition-based maintenance

Dalpiaz and Rivola [1997]. To simplify, there are two broad methods of diagnosing and

monitoring the state of the wheel defect on a railcar. These assessment methods include

both conventional and innovative detection methods. Conventional detection methods

include visual inspection, magnetic particles, and ultrasound testing methods to assess

the state of the wheel. However, these techniques could not provide CBM and thus

are not considered in this study. Innovative detection methods are types of preventive

maintenance techniques, and they are e�ciently employed for CBM purposes. There

are two main categories of innovative detection methods: (1) onboard and (2) track or

wayside detection methods.

Onboard detection approaches are methods employed on the train to detect the na-

ture of the �xed assets, such as switches and rail conditions, whereas track or wayside-

mounted detection approaches are applied to study the health condition of the moving

components on the train, such as wheels, axles, and bearing elements. Wayside detection

methods assess the condition of a moving vehicle by utilizing a strain gauge, temperature

sensor, mechanical sensors, vibration, and noise-based sensor systems by mounting them

at a single point where all trains pass by. This method is inexpensive; however, the

disadvantage is that they cannot detect the running state of the vehicle throughout the

entire process in a real-time scenario.

On the other hand, onboard detection methods can perform a diagnosis of the ve-

hicle's state in real-time by installing sensors on the axle box. The drawbacks of this
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approach are the large volume of work required for data preparation, the tedious cali-

bration method, the measurement results being a�ected by di�erent signals which lead

to misjudgment and the speci�c design of instrumented wheels are required for di�er-

ent vehicles Li et al. [2017]. The deployment of either a wayside or onboard detection

method depends on the type of resource that are going to be monitored and diagnosed.

For this study, wayside detection methods is considered for monitoring and diagnosing

the wheel condition of a railcar during drive operation.

Nowadays, the need for reliable and e�cient train wheel fault diagnosis methods

has been recognized as an essential aspect of railway maintenance and safety. The

development of accurate and e�ective methods for train wheel fault diagnosis is crucial

to guarantee the secure and e�ective functioning of railway systems. Several techniques

have been proposed and developed for train wheel fault diagnosis over the past 30 years.

This includes acoustic emission (AE) analysis, vibration analysis, and non-destructive

testing (NDT) methods. The vibration analysis technique has the potential to map the

condition of wheelsets and rail infrastructure. This technique uses sensors for collecting

measurement data and uses di�erent time-frequency analysing tools to extract valuable

features of the signals captured.

In recent years, time-frequency analysis techniques have emerged as a promising

approach for train wheel fault diagnosis. These techniques provide a more comprehensive

and e�ective way to analyse and interpret the signals collected from the train wheels.

The method can be e�ectively used to diagnose various types of faults and anomalies

within the wheelset components.

1.2 Motivations of the study

Rail transport can be light rail transit, high-speed trains (HST), freight vehicles, and

other types. In many cities, trams are an important part of the mass transit. Fluent

urban transportation improves the lives of citizens, attracts entrepreneurs, and reduces

tra�c in cities, which bene�ts citizens and the environment at large. Due to enormous

bene�ts of the rail transport, this transport system has seen rapidly growing in many

urban areas of the worldwide in recent years. Tram networks are being modernized are

in an increasingly complex manner, and costly ways, and new tram lines are being built.
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Modern tram communication relies on the safety and reliability of the track in-

frastructure. However, the old tracks are still in use, and they a�ect the life of the

contacting surface, tram speed, and passenger comfort, generating irritating noise and

vibration emissions in the nearby environment. This will cause deterioration of track in-

frastructure, including rail track turnouts, a�ect tram wheelsets, cause tra�c congestion,

derailment accidents, and hurt the general safe operations of the railcar.

Unlike long-distance trains that travel over �at terrain, city trams encounter much

sharper curves and tra�c intersections, resulting in more frequent wheel faults and fail-

ure. The consequences of a tram wheel failure are enormous, and in some cases, the

failure of a tram wheel system can be catastrophic if it occurs in a densely populated

area like cities. A signi�cant amount of money is budgeted each year for wheel-rail track

infrastructure construction and its maintenance in Poland to reduce tram wheels system

failure during railroad drive operation. To achieve the reliability of railway tracks and

the safety of the tram wheelset system must be diagnosed, maintained, and �xed at the

early faulty indication stage.

The cost of maintaining the tram wheelset system is substantial. Tram vehicles are

operated on heavily used tracks, sometimes in poor condition. Horizontal curve radii are

much smaller than railway radii. This will a�ect the conditions of the wheel-rail contact

in a di�erent way and will force the contacting body to wear and tear repeatedly. The

running gear, especially the wheel pro�le, was subjected to intense wear and out-of-

roundness. The wear of the rolling surface a�ects the value and direction of forces

between the wheels and the rail, a�ecting the vehicle's safety on the track.

In addition, the quality of the wheel pro�le and the wear of the wheelset a�ect the

ride comfort, the wheel-rail interaction, and produce unnecessary noise and vibration.

The noise and vibration generated a�ect the buildings close to the track and tram infras-

tructure, in general, Staskiewicz and Firlik [2017]. Nowadays, both high- and low-�oor

trams are in service due to the availability of old tracks, and the replacement of modern

tracks is underway. Using hybrid rail tracks results in the tread of the wheel being sub-

jected to high and variable loading conditions Staskiewicz and Firlik [2017]. As a result,

old or bad track causes wheel failure and forces the wheel to operate under complex

loading conditions.
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Furthermore, train wheel fault diagnosis methods that are commonly practised by

maintenance operators, such as visual inspections, non-destructive methods, and acoustic

emission monitoring, are limited in their e�ectiveness and e�ciency. Visual inspections

are prone to human error and human experience and can only detect visible faults,

while acoustic emission monitoring requires specialised equipment and trained personnel,

making it costly and time-consuming.

Therefore, the need for e�cient methods for train wheel fault detection is paramount

for ensuring the safety of tram operations. Critical components such as wheelset compo-

nents and rail tracks should be ensured and checked when they provide a service. Any

damages or faults within these components of tramway infrastructure can cause a tram

derailment, loss of passenger life, damage to costly infrastructure, and also result in a

long schedule for corrective maintenance. In light of the increasing demand for rail trans-

portation, it is important to implement a reliable and e�cient method for the diagnosis

of tram wheel faults.

The growing demand for the development of e�cient methods for train or tram

wheel fault diagnosis is on the rise. Advanced signal processing techniques, such as time-

frequency analysis, have shown great potential to detect and diagnose train wheel faults.

The use of these techniques can provide a more comprehensive and accurate assessment

of wheel faults, improving the reliability and e�ciency of train wheel fault diagnosis.

The motivation for conducting a research study and preparing a dissertation on the

method of assessing and diagnosing of the fault condition of railcar wheels arises from

the current demand for fault diagnosis at the tram depot maintenance centre for inno-

vative monitoring the condition of wheels and wheelset system. Despite the numerous

techniques developed for assessing and detecting the fault condition of tram wheels in

recent decades, current capabilities need further improvement to provide a safe, durable,

and reliable transport service.

Based on these current demand, the utilisation of MEMS-based sensors and time-

frequency analysis techniques lies in the need to address the limitations of current fault

diagnosis methods and contribute to the advancement of railway safety and e�ciency.

The development of an e�cient and reliable method for the diagnosis of train wheel

faults using time-frequency analysis can provide valuable information on the behaviour
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of railcar wheels and help improve the maintenance and repair of tram wheelsets system.

1.3 Problem statement

Urban trams and light rail transit ride on a very dynamic geographical elevation with

a short curve, turnout, high tra�c intersections, allowing them to e�ciently utilise the

space available in the city. The regular and continuous movement of tram vehicles on a

dynamic rail track causes deterioration such as wear, tear, and �attening of the wheel

and rail component, a leading problem in the modern urban transportation system. This

deterioration causes uneven or irregular surface formation and results in impact loading

of the wheel-rail surface.

When the wheels impact the rail surface, the fault surface causes abnormal vertical

vibration. When the wheels hit the rail surfaces, they load heavily on the contact

surface and generate impact noise to the environment, which may cause the failure of

the wheelset system in the long run. Nearly half of the railcars accidents were caused by

wheel-rail system failures, and these failures can be costly to repair. The most dangerous

infrastructure elements for rolling stock that cause complex loading (impact and dynamic

loading) events are overpasses, crossings, and switch crossovers.

In addition, the tram crosses the highway at several intersections, frequently forcing

emergency braking of trams. Frequent hard braking causes wheel locking forces excessive

deformation, heat dissipation, and the wearing of the contacting surface, which causes

various faults on the surface of the wheel-railway infrastructure. Due to track design,

variable elevation, and dynamical loading of the rolling stock, failure of the wheelsets'

in-service operation will occasionally result in a catastrophic failure that endangers pas-

sengers' lives and costs much for breakdown maintenance.

For instance, the Municipality of Katowice dispatches 130 trams per day for passen-

gers' transportation. Maintenance and checkups of tram wheelset systems are usually

done for these �eets of trams before and after dispatches every day. Monitoring and

maintaining the condition of each tram wheelset is a heavy task compared to the num-

ber of employees working in the rolling stock workshop. To maintain and diagnose the

healthy functioning of a tram wheelset, experts in the rolling stock maintenance division
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perform various maintenance approaches in the workshops.

Currently, the experts of the workshop use visual, gauge and noise-based diagnosis

approaches, which are simple inspection methods. The drawbacks of these diagnosis

techniques are that they require very experienced operators, are limited to individuals'

capabilities, are time-consuming, and are a�ected by environment.

Furthermore, using these traditional inspection approach, the experts do not know

when to perform maintenance before failure, early failure detection, and condition moni-

toring in real-time, which is very challenging. Therefore, the need for an e�cient method

for wheel fault condition assessment and diagnosis is high, and the workshop mainte-

nance divisions are looking and requesting for further fault diagnosing methods that are

adaptive, simple, e�cient, and low-cost approaches to enhance the wheel fault diagnosis

for real-time condition monitoring of tram wheelsets system during operations.

For this purpose, vibration analysis of a signal acquired from railcars during railroad

drive operation using a MEMS-based sensor is proposed. Preliminary studies show that

the frequency bandwidth of vibrations is signi�cant for evaluating the condition of wheels

falling within a few hundred Hz, which is possible to measure with the MEMS-based

acceleration sensors. The use of low-cost, low-power MEMS sensors ensures economic

viability.

The research question of the study is speci�ed as:

In what way MEMS-based acceleration sensors can be applied to assess

the condition of wheels of wheelsets of railcars during railroad drive?

The use of MEMS-based acceleration sensors limits the scope of available measure-

ment data for processing. These devices can deliver acceleration measurements in a

number of axes in space. Basically, these are the three perpendicular planes � x, y,

and z. The range of acceleration values can surpass 200 [m/s2] and the resolution of

measurements can achieve 0,01 [m/s2]. The frequency response can reach 4 kHz. This

limited scope of measurement data requires a careful approach for extracting diagnostic

information.

The time-frequency-based analysis is proposed for determining the properties of the

collected data. The study assumes that wheel irregularities produce disruptions in the
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frequency spectrum of recorded accelerations and that these vibrations can be used to

derive information on the condition of the wheels. The rail vibration energy in the

characteristic frequency spectrum indicates the wheel fault condition.

The provisional research hypotheses answers are put forward as the following.

1. The analysis of the vibration signals or image with a 0-500Hz limited frequency

spectrum, of the railways during a railroad drive, enables the assessment of the

fault condition of wheels.

2. The energy of vibration signals in characteristic frequency bands during a railroad

drive indicates the condition of wheels.

The tasks required for proving these hypotheses encompass a series of steps, which are

not limited to the following.

The initial step involves the collection of vibration data from rails, which is generated

by railcars during actual railroad drives. The railroad drives map the conditions of

dispatching trams for transport services. During this stage, it is crucial to ensure that

the acquired data is not corrupted by vibrations caused by bad rail conditions.

Subsequently, signal processing and analysis are imperative. The choice of an e�ective

method for extracting "fault wheel condition" is crucial for performing the analysis.

For a such signal processing, the candidates are time-frequency analysis techniques. A

promising method within the realm of time-frequency analysis techniques enables the

mapping of frequency anomalies, which speci�cally targets relevant features for wheel

fault condition assessment. Determining the parameters of the analysis technique is the

goal of this step.

Thirdly, it is necessary to develop a fault wheel assessment test on the �eld. This

involves creating a �eld test that establishes the relations between vibration patterns

and wheel conditions, taking into account the description parameters of the vibration

data. Energy, in characteristic frequency bands, is recognised as the most informative

for determining wheel fault conditions.

Lastly, validation of the proposed method is carried out. This involves conducting

drives tests sessions and tuning of parameters of the method in real-world scenarios.
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1.4 Objectives

The objective of the study is to develop and validate a method for assessing the condi-

tion of wheels of railcars using vibration analysis during railroad drives operation. The

study aims to establish relations between vibration patterns and wheel fault conditions,

enabling e�cient and reliable assessment of the condition of railcar wheels.

Speci�c objectives:

� Propose a way of identi�cation of irregularities of the vibration frequency spectrum.

� Determine the characteristic frequency bands of vibrations signi�cant for describing

the condition of wheels.

� Propose measures for collecting vibration data during railroad drives with the

minimum resources possible.

� Develop an implementation of the vibration data analysis that will facilitate wheel-

rail maintenance workshop operations.

The wheelset of railcar wheel faults and surface defect assessment during in-service op-

eration are key topics in the �eld of railway research, as they have a large impact on

the economic and safety aspects of train set design, operation, and rolling stock main-

tenance. One of the main causes of the increased dynamic impacts dependent on the

vehicle at the wheel-rail point of contact is defects or irregularities on the running surface

of the wheels, and solving these problems is very impressive. Today, the advancement

of railway engineering requires scienti�c research to improve current problems related to

safety issues, time, resources, and the structural integrity of wheel-rail systems.
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1.5 Dissertation layout

Chapter 1, presents the background of wheel fault analysis in railway infrastructure,

identi�es the research problem and de�nes measures for resolving it. In particular, the

solution scope is marked, research hypotheses are put forward, objectives and study goals

are detailed.

In chapter 2, the literature review in the �eld of fault diagnosis, related to the stated

research problem, is presented and discussed. The properties of time-domain analy-

sis, frequency-domain analysis, and joint time-frequency-domain analysis methods are

evaluated for extracting frequency features for diagnosing faults in wheel and railway

systems.

Chapter 3, presents the method for assessing the condition of wheels of wheelsets of

railcars during railroad drives. The variants of the method are discussed. Vibration data

collected using MEMS-based acceleration sensors constitutes the input of the devised

method and MODWPT is used to obtain the description of the data.

The validation of the method is presented in Chapter 4. Vibration data collected at

the tram depot of Silesian Trams is analysed using the proposed method. The parameters

of the method are tuned and optimised to achieve the best-diagnosing properties.

In Chapter 5, the IoT solutions of the sensor node for wheel condition monitoring

for a practical application that optimises energy consumption, e�cient wireless commu-

nication and low-cost maintenance is elaborated.

Finally, chapter 6 summarises the overall �ndings gained and puts forward a future

perspective as a recommendation for a scholar in the same �eld.
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2
Methods for Assessing Wheel Condition;

Literature Review

The goal of the design of methods for assessing wheel conditions, in the area of fault

diagnosis and condition monitoring, is to de�ne measures to identify fault conditions

in the wheelset components and railway infrastructure. The measures should be robust

enough for application in maintenance operations at workshops or on railway in-service

operations. In this regard vibration analysis techniques are prominent. time-domain

analysis, frequency analysis, and time-frequency-domain analysis dominate.

In this chapter, a survey of the existing literature on monitoring conditions of railway

wheel faults is presented. This review aims to provide an in-depth understanding of the

current state of knowledge and identify research gaps in the �eld. The vibration signal

analysis framework, particularly focusing on digital signal processing techniques such

as time-frequency methods, is identi�ed as one of the most valuable approaches and
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employed to address the research question at hand.

2.1 Condition monitoring of wheels of railcars

The condition monitoring of the railway wheels is a process of continuously observing

and checking the progress of the functionality of the wheelset component to ensure the

optimal performance and safety of rail transport. This condition monitoring uses various

techniques and tools to detect defects, abnormalities, or faults in the wheels. By collect-

ing real-time information and monitoring the dynamic behaviour of a train, railway wheel

monitoring aims to identify faulty conditions that can impact the overall performance

and safety of the rolling stock. Some of the common fault condition problems that can

occur within a railway wheels include �at wheels, wear, discrete defects, polygonal wear,

out-of-roundness, and spalling, which are local surface defects that can cause increased

contact forces between the wheel and the rail, causing excessive vibrations and potential

vehicle derailment.

In the past 30 years, extensive research has been conducted on wheel fault diag-

nostics, resulting in the development of numerous techniques. A recent study done by

Kostrzewski and Melnik [2021] presents a comprehensive literature review and biblio-

metric analysis to examine the monitoring of conditions of rail transport systems. The

authors outlined the current trends in condition monitoring approaches and their signi�-

cance in the maintenance of rail transport systems throughout the previous decades. The

article also discusses the evolution and trends in condition monitoring for rail transport

systems, highlighting the shift from manual maintenance to sensor-based technologies. In

this regard, the studies identi�ed key trends such as increasing sensor use, automation

of diagnostic procedures, and the need for sophisticated data interpretation methods.

Furthermore, future predictions such as further automation, the application of arti�cial

intelligence, and the Internet of Things to enhance condition monitoring are presented.

The paper also suggests a research agenda focused on optimising sensor usage and ex-

ploring alternative monitoring methods.

The manual maintenance techniques applied to monitor the condition of railway

wheels include visual routine inspections conducted by skilled �eld technicians. These

manual inspections involve measurements of important wheelset parameters such as the
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wheel back-to-back distance and wheel tread pro�le Osman and Yacout [2023], Emoto

et al. [2022]. However, manual measurements are time-consuming and require signi�cant

e�ort from engineers and technicians Mal et al. [2022]. In addition, these methods are

inherently inaccurate due to the potential of human error and are ine�cient. To overcome

these limitations, there is a need to develop automated inspection systems using sensors

and image data. These systems can provide accurate measurements, reduce maintenance

costs, and improve the e�ciency of inspections.

Alemi et al. [2017] present condition monitoring approaches for detecting railway

wheel defects, emphasizing the importance of data acquisition for maintenance plan-

ning. The authors classify the collection of in-service data into onboard and wayside

measurements, exploring advanced techniques and identifying areas for further research.

The paper also compares physical, statistical and condition monitoring methods for as-

sessing the conditions of railway wheels. The conclusion of the paper suggests the use

of multiple sensors and stations to improve data acquisition, leading to better diagnos-

tic approaches and increased detection e�ciency. The limitations of this study may

be the focus on existing data acquisition techniques without proposing new solutions,

and it does not address the implementation challenges of these techniques in real-world

scenarios.

Fu et al. [2023] review recent wayside railway wheel �at detection techniques, empha-

sizing the shift towards simpli�ed devices, multi-sensor fusion, and intelligent algorithms.

The authors discuss stress-based methods using sensors like strain gauges and �bre bragg

gratings for dynamic stress measurement. However, the challenge of detecting wheel �ats

with limited information from single-pass wayside methods, forces for looking towards

advanced signal processing algorithms. Based on this review article, further simulation

studies are needed to evaluate the impact of train speed, train weight, and severity

re�ected in wayside measurement data on the wheel �at detection.

Furthermore, a diagnostic and detection algorithm for onboard wheel �ats was sug-

gested by Bosso et al. [2018]. This algorithm relies on computing a wheel-�at index

number to detect and quantify the severity of �at wheels at an early stage. To calculate

the �at severity index of the wheel, the authors used properties of acceleration measure-

ments, wheel rotation angle, vehicle velocity, and �at surface depth. These properties

are combined in a time-domain analysis to detect the presence and severity of wheel

15



Chapter 2: Methods for assessing wheel condition; literature review

�ats. The study measures vertical axle-box acceleration and wheel angular position for

wheel �at phenomenon detection. The method relies on the fact that a �at section of the

wheel generates a signi�cant vertical acceleration with each rotation when it encounters

the rail. However, during data acquisition and testing, a lower sampling frequency (1000

Hz) was used, which has the e�ect of altering the detection and diagnosis of wheel �ats

that produce high-frequency components.

Sun et al. [2021] proposed a framework for railway wheel condition monitoring us-

ing vertical axle-box vibration acceleration sensors. They applied the angle domain

synchronous averaging technique (ADSAT) to extract the wheel defect features from

the sensor data. The study compares the proposed ADSAT and traditional methods

by demonstrating that the ADSAT-based method achieved higher-order detection and

also mitigates the in�uence of background noise than traditional methods. The authors

validated the e�ectiveness of the proposed method through simulation and real �eld in-

vestigations. However, the noise reduction capability is not easy to quantify in �eld data

due to the di�culty in evaluating the power of the desired signal component and also

due to vibration data properties; the proposed method has limitation to detect the direct

component of wheel irregularity, which is evident in the manual measurement results.

Detection of railway wheel polygonization through numerical time-frequency analysis

of axle-box acceleration is proposed by Song et al. [2020]. The authors evaluate the

evolution and severity of wheel polygonization by analyzing the acceleration data from

the axle box. Nevertheless, this study only presents �ndings based on computational

simulations. In addition, axle-box vibration data is less sensitive to studying the polygon

wear of railway wheels, and the proposed method is insensitive to low-speed �uctuations.

On the other hand, Wang et al. [2020] present a three-dimensional vehicle-track cou-

pled dynamics model that includes axle-box bearings and considers non-linear factors like

bearing sti�ness, clearance, wheel-polygonal wear, and wheel-rail contact forces. The au-

thors highlight that axle-box bearing forces increase with vehicle speed and polygonal

wear amplitude, especially at higher speeds, which can lead to bearing and wheel degra-

dation. The proposed method was validated by involving numerical simulations and �eld

tests, with a limitation being the focus on speci�c wear patterns and their impact. This

may not include all potential variables a�ecting axle-box bearings.
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Zhao et al. [2020] studied the di�erent e�ects of drive and trailer wheelsets on polygo-

nal wheel wear. The study was conducted using a frictional self-excited vibration analysis

method. The results show that the unstable vibration frequency of the driving wheelset

leads to polygonal wheel wear in the order 19 − 20th, and the trailer wheelset leads to

polygonal wheel wear in the order 20− 21st.

A wear monitoring parameter for wheel-rail contact based on emitted noise has been

proposed by Bergseth et al. [2019]. This study found that contact noise and vibration-

induced increases as a transition in the wear fault regime (low to moderate, severe

to disastrous wear) happens. Even though the degree of roughness in the track and

the vehicle speed are some of the many factors in�uencing rolling noise, the suggested

approach only measures extreme wear change at the maximum levels of wear values

and does not specify when severe wear situations arise from noisy emissions. Also, only

higher-frequency components >5 kHz are considered in the evaluation and analysis of

the noise signals.

Thakkar et al. [2010] designed an onboard measuring device for wheel �ange faults

in railway vehicles using an inductive displacement sensor. The device is capable of

functioning during both stationary and moving states of the vehicle, capturing data on

the thickness of the wheel �anges to identify potential faults. However, this study does

not analyse the time-frequency response of individual wheels, making it challenging to

distinguish speci�c fault conditions within each wheel component.

Chen et al. [2021a] introduce hybrid microphone array signal processing to identify

faulty wheels and estimate ground impedance. Mosleh et al. [2021] uses an envelope

spectrum analysis approach for �at-wheel detection in railway train wheels. Lanza di

Scalea and McNamara [2004] applied longitudinal and lateral transient vibration char-

acterisation of railroad tracks using wavelet transforms. Brizuela et al. [2011] report

work introduce an ultra-sound technique based on measuring the changes in the round-

trip time of �ight (RTOF) of the ultrasound pulse to the rail�wheel contact point for

detecting and quantifying wheel �ats.

Madejski and Gola [2006] discusses an autonomous tram wheel condition monitoring

system developed, which has led to signi�cant savings in wheel re-pro�ling and reduced

noise levels. The system processes measurement data at the trackside and wirelessly
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transfers it to a control room database for diagnostic analysis and action recommenda-

tions. It utilizes radio frequency/identi�cation (RF/ID) tags for tram identi�cation and

sensors built into the track for detecting wheel �ats and material build-up.

Barman and Hazarika [2020] investigated an accelerometer-based system that detects

and identi�es the faults of a train using linear and quadratic time-frequency analysis. The

linear analysis includes a short-time Fourier transform and wavelet transform, whereas

the quadratic time-frequency analysis mainly uses the Wigner-Ville transform. This

transform o�ers high resolution in both time and frequency. The authors used the

Wigner�Vile transform analysis of the vibration signal during the movement of a train

over the track and faults was detected. However, studies employing frequency methods

do not incorporate time data, and the speci�c timing of impulsive loading during fault

conditions remains unknown.

Gao et al. [2020], proposed a �at-wheel detection and quanti�cation method based

on measuring the wheel-rail impact force of the entire wheel circumference. The method

utilises two re�ective optical position sensors positioned along the rail to detect displace-

ment. Analysis of impact-response curves is used to assess the condition of the wheel

and determine parameters related to its �atness.

Komorski et al. [2017] presented wheel-�at detection using advanced acoustic signal

analysis techniques. The researchers captured the sound characteristics of tram wheel

faults by deploying three sets of microphones positioned along the tram tracks. They

utilised the Hilbert transform and spectrum envelope analysis to identify any potential

faults. The �ndings from the experiments demonstrate that acoustic signals obtained

near a passing rail vehicle e�ectively convey valuable diagnostic information for identi-

fying �at wheels. However, it is noted that these acoustic signals can be signi�cantly

in�uenced by other ambient sounds, necessitating additional �ltration processes for ac-

curate detection

Jianhai et al. [2002] used continuous wavelet transform to detect irregular meshing in

wheels with tread defects. The vibration signals collected by the sensor from a railway

wheel are used and processed for detecting wheel �ats. For this analysis, a sampling

frequency of 10 kHz is chosen for a vehicle speed of 60 km/h. The applied method is

more e�ective at detecting �at spots on wheels than it is for identifying wear on treads,
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with the signal response of a �at wheel exhibiting the greatest amplitude.

Ghosh et al. [2021] report the use of fast Fourier and wavelet transforms to detect

the condition of rail tracks in real-time. The results show that corrugation faults are

more likely to be detected by the fast Fourier transform than by the wavelet transform,

while crack damage is more likely to be detected by the wavelet transform than the fast

Fourier transform. In this study, vibrations are measured using accelerometer sensors

mounted on the axle boxes of service trains, which are susceptible to interference from

other vibration sources. The proposed detection approach is better suited for identifying

rail corrugation but less e�ective in detecting wheel defects.

Zhang et al. [2017] established an adaptive parameter blind source separation ap-

proach for the diagnosis and monitoring of wheel defects. This method processes sig-

nals from acceleration sensors mounted on the wheels, and it can separate weak fault

sources from a mixture of vibration signals related to train movement. Additionally,

Liu et al. [2019] presents a similar approach for the detection of wheel thread defects.

The study utilises wayside-mounted �bre bragg gratings to measure rail de�ections and

defect-sensitive features are obtained using Bayesian blind source separation techniques.

However, numerous variables, such as train speed variation, sharp rail geometric varia-

tion, and the location of the �bre bragg gratings sensor with respect to sleepers in�uence

defect detection results.

Li et al. [2017] proposed an adaptive multi-scale morphological �lter for the fault

detection of railway wheel �ats. The input signal of the �lter is the vibration signal

of the railway vehicle's axle box caused by the wheel �at. An adaptive multi-scale

morphology �ltering analysis algorithm extracts the wheel-track impact features from

strong background noises. For validation purposes, simulation results of simple vibration

models consisting of one impulsive function and two sine-cosine harmonic waves with

Gaussian white noise are used. However, no �eld-investigative data are provided.

In their study, a method for identifying �at wheel lengths based on data analysis

was proposed by Ye et al. [2019]. The researchers utilised a multibody dynamics (MBS)

model to generate arti�cial axle-box acceleration data for a 20 mm �at wheel under vary-

ing vehicle speeds. To estimate the length of the wheel �at, they employed a Kriging

surrogate model to represent axle-box acceleration and utilised particle-swarm optimisa-
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tion. However, it is important to note that the precision of this approach relies on factors

such as the MBS model, wheel-�at mode, and feature-selection technique. Additionally,

more features re�ecting real-time conditions of wheel �ats are necessary for accurate

detection in practical scenarios.

Most of the established techniques in the literature above rely on well-saturated

measurement approaches, which assume there is no signal interference in a real-time

operation, for recording accelerations, analysis and identifying wheel defects. Therefore,

it is essential to detect wheel faults amidst changing operation conditions and the intense

interference that can distort the fault signal feature measurements using di�erent sensors.

The gathered data undergo analysis using di�erent frequency-based methods. While

these strategies e�ectively identify faults, their practical application in the �eld of wheel

maintenance may be challenging or expensive.

The constantly changing operating conditions that damage the conical shape of the

wheel are responsible for a signi�cant portion of the wheel-rail wear, �at spots, polygonal

wear, and tread spalling complexity Thompson [2008], Gan et al. [2015]. As far as wheel

abnormalities reduce safety operations, the condition monitoring system is the most

promising and e�ective technique for providing safety and economic improvement for

industrial railway companies. An e�cient condition-based maintenance system that can

provide timely information on the condition of the wheels and other key components to

railway operators is required to ensure operational safety and reduce maintenance costs.

The monitoring and diagnosis of train wheel condition is one of the essential aspects

that most researchers are working on nowadays to provide good service and save re-

sources in the rail transportation sector. Several studies have been done and various

diagnostic techniques have been established Abid et al. [2021]. Most of the established

condition monitoring, fault diagnosis and detection techniques (FDD) range from tra-

ditional model-based approaches to modern pattern recognition approaches. In this

dissertation, the attempt made is to narrow down the general fault detection approaches

to speci�c technique categories of data-driven methods, which is followed by signal-based

approaches, and �nally focused in detail on vibration-based techniques.

Data-driven methods are model-independent methods that are used to extract infor-

mation from the measured signals to predict the occurrence of a fault or malfunction.
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The raw information from the measured variables is �rst transformed into useful fault-

characterizing features by signal processing tools.

Signal analysis-based approaches use both statistical and non-statistical approaches

to extract the features of a signal. Statistical approaches are very practical for quick

fault detection but are generally not suited for classi�cation and diagnosis purposes. On

the other hand, non-statistical interpretation of the observed signal is also carried out

through machine learning fault detection techniques.

With the development of technology and the advancement of computing methods,

machine learning has become a popular feature extraction, selection, and fault diagnosis

method. The key principle in the feature selection process is to obtain a feature subset

that produces fast detection and accurate classi�cation of faults. The major challenge

in designing intelligent FDD methods like machine learning algorithms is developing a

knowledge base from raw historical data, and this method is not the subject of this

dissertation.

Among data-driven methods, vibration signal-based fault diagnosis methods have

high-performance accuracy. Therefore, many researchers have proposed this method to

diagnose gear, bearing, alternative current (AC) motor, and rotating machinery faults.

Modern vibration techniques employ di�erent monitoring approaches to identify faults in

machinery, and the diagnostics technique is a well-established �eld and employs various

methods, mainly time-domain statistics, spectral analysis, wavelet transform, Hilbert

transform, and empirical mode decomposition.

Whereas, conventional vibration techniques are incapable of diagnosing transient

faults during their early stages of development and exhibit low sensitivity for diagnostic

capability. The presence of multiple vibration sources, non-stationary dynamic phenom-

ena, and the in�uence of transfer functions on the vibration source and transducers put

great constraints on classical vibration techniques. As a result, techniques for process-

ing vibration signals for fault diagnosis and monitoring requires additional research to

determine the most e�ective methods.

For the railcars to run smoothly and safely, the health of the railway wheel is essen-

tial. In this dissertation work, the focus is to use vibration signals induced by vehicles

during railroad drives to diagnose and monitor the train wheel fault. The vibration
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signal produced by a rotating wheel is used for fault diagnosis and condition monitoring

purposes Abid et al. [2021]. Nowadays, the diagnosis of bearing faults is of interest to

many researchers, and much research has been done to solve the problem of bearing

elements using signal vibration analysis. However, the diagnosis of wheel faults, which

are probably one of the leading causes of bearing faults in railway infrastructure, has

not been studied in di�erent aspects.

From the perspectives of system con�guration design, sensor performance, data ac-

quisition systems, and wheel defect identi�cation algorithms based on online monitoring

data, more e�orts are yet to be made to improve the performance of existing detection

methods to make real-time wheel fault detection methods more easily applied. Although

there have been numerous real-time wheel defect detection techniques in these decades,

the current capabilities require further improvement. Therefore, the details of wheel

fault diagnosis categories, analysis of each method, and selection of the best method

for the implementation of a particular application are presented in this chapter as the

following.

2.2 Vibration-based condition monitoring

Vibration-based condition monitoring of railway wheels plays a vital role in guaranteeing

the safety and e�ectiveness of train operations. When a fault is initiated in a railway

wheel system, the vibration characteristics of the wheelsets and their components start

to change. This shows that by monitoring the vibrations of the wheels, potential faults

can be detected early on with diagnostic tools that support timely maintenance and

prevent serious issues from occurring. This can be achieved by installing di�erent sensor

devices, such as accelerometers, strain gauges, and eddy current sensors, on the wheelset

and rail track, which can detect abnormalities in the vibration pattern. Mounting of the

sensors either on rail tracks or wheelset components is determined based on the type

of infrastructure intended to be monitored. These mounted sensors collect data on the

frequency and amplitude of vibrations, which can then be analysed using advanced signal

processing techniques. This monitoring approach allows for the identi�cation of wheel

faults

Vibration-based fault condition monitoring and diagnosis is a well-established �eld
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that encompasses a wide range of techniques employing mainly time-domain analysis,

frequency-domain analysis, and time-frequency domain analysis to extract features from

vibration signals collected by sensors. Among the methods, the time-frequency method

is a widely used and e�ective technique nowadays. The detail descriptions and recent

development related to each technique is provided in the following subsections based on

di�erent application requirements.

2.3 Time-domain analysis of vibration signals

Time series data is a waveform of signals from the data acquisition device at its raw

level. Time-domain data is a collection of time-indexed data points that represent the

measurement parameters such as acceleration, velocity, or proximity are determined

by the type of transducer utilised to gather the signal, as discussed in Jardine et al.

[2006]. A time-domain analysis is performed directly on the time waveform data. When

analysing a vibration signal in a time series, time-domain analysis is used to determine

the amplitude and phase information contained in the signal.

Traditionally, time-domain analysis uses descriptive statistics techniques such as

mean, peak, peak-to-peak interval, standard deviation, crest factor, and higher-order

statistics such as root mean square, skewness, and kurtosis to extract valuable features

from a time waveform signal.

On the other hand, time-synchronous average (TSA), root mean square, skewness,

and kurtosis are among the popular time-domain analysis techniques used for fault di-

agnosis approaches. In addition, advanced time-domain analysis techniques such as

autoregressive (AR) and autoregressive moving average (ARMA) models were highly

utilised to �t waveform data to a parametric time series model and extract features of

rotating machines such as wheelsets, rolling element bearings, and gear tooth fault diag-

nosis, as described by Cheng [2014]. These techniques can be used for the diagnosis and

detection of mechanical equipment failures. However, when a mechanical component

fails, the frequency components of the signals change, making it di�cult to distinguish

the fault characteristics of the feature because the frequency information is hidden in

the time domain.
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Figure 2.1: The lateral acceleration signals of railcars collected by MEMS sensor; (a)
fault free wheel signals and (b) fault wheel signals

The time series signals shown in Figure 2.1 were collected by mounting a MEMS

sensor on the rail track of Katowice tramways in Poland for wheel condition monitoring.

As shown in the �gure, the lateral acceleration of the railcars under a) normal or fault-free

and b) with a fault conditions are collected for monitoring the condition of two di�erent

wheels. By closely looking at the time series information presented in the Figure 2.1, it

is di�cult to di�erentiate between the fault-free and fault wheel conditions of a railcar.

The amplitude and time information contained in the graphs do not clearly indicate

the di�erence between the signals. Therefore, another feature-extracting and analysing

technique should be implemented to di�erentiate the content of the acceleration signals.

As shown in Table 2.1, time-domain feature extraction techniques and their capa-

bilities are shown. The mathematical representation of the special parametric models,

descriptive statistics properties of each feature extracting elements and reference related

to each description in time-domain analysis are presented in the table.
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Several studies were conducted using time-domain approaches to analyse waveform

data for rotary machine fault diagnosis and prognosis. Ignjatovska et al. [2023] presents

a methodology for the time-domain analysis of vibration signals from defective rotat-

ing machinery, under varying load conditions. The authors utilised a vibration dataset,

applied time synchronous averaging (TSA), and evaluated the importance of statistical

functions for fault identi�cation. Key �ndings include the importance of the peak value,

the root mean square (RMS), and standard deviation as in�uential parameters. The

study focuses on the initial phases of creating classi�cation algorithms for fault iden-

ti�cation, with the aim of improving algorithm accuracy. However, future work must

extract features from the frequency domain and time domain to create a comprehensive

feature set.

Wodecki [2021] propose time-varying spectral kurtosis for the detection of local dam-

ages of rotary machines during time-varying operations. The authors employed time-

varying spectral kurtosis to estimate segments of the signal, resulting in a coe�cient

matrix that considers the changing properties of the signal over time. This matrix is

then converted into a binary format and utilised as a �lter in the process. However,

this study does not discuss the computational complexity or real-time implementation

feasibility of the proposed method, which could be important considerations for practical

applications.

Antoni and Randall [2006] demonstrates the application of spectral kurtosis (SK) in

identifying and assessing faults in rotating machinery that generates transient vibration

signals. Additionally, the author presents the idea of a kurtogram, which illustrates the

SK based on the frequency and spectral resolution, assisting in creating e�ective band-

pass �lters for fault detection. However, the research involves theoretical assumptions

like the Gaussianity and stationarity of the noise, independence of the impulses, and

validity of the shot noise model. In practice, such assumptions are not always valid.

Moreover, estimating spectral kurtosis can be a�ected by factors such as window length

and number of averages, leading to potential bias and variance. Additionally, computing

spectral kurtosis and the kurtogram demands signi�cant data and processing time, which

could limit their real-time feasibility despite their value.

In summary, although time-domain techniques are commonly employed for fault di-

agnosis and prognosis or rotary machines, it is crucial to acknowledge the limitations
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of these methods. The potential challenges associated with computational complexity,

real-time implementation feasibility, theoretical assumptions about noise characteristics,

and factors a�ecting the estimation of spectral kurtosis need to be considered. These is-

sues may impact the practical applicability of these techniques in industrial applications

where quick decision-making based on fault detection is essential. While the insights

obtained from time-domain analyses are valuable for developing classi�cation algorithms

and creating e�ective band-pass �lters for fault identi�cation, addressing these draw-

backs using a frequency and time-frequency approach would be imperative for ensuring

their broader adoption in real-world applications.

2.4 Frequency-domain analysis

Historically, condition monitoring of railway wheels has relied on Fourier analysis (FA)

techniques to convert acquired signals into a more meaningful form. Frequency analysis

is one of the most widely used vibration analysis techniques for monitoring the condition

of machines. In fact, frequency-domain analysis techniques can divulge information

based on frequency characteristics that are not easily observed in the time domain. In

comparison to time-domain analysis, frequency-domain analysis can easily identify and

isolate speci�c frequency components in a signal. This is an advantage of frequency-

domain techniques over time-domain approaches.

The Fourier transform (FT), the most widely used signal transformation technique,

facilitates the transformation of the time-domain signal to the frequency-domain. In ad-

dition, frequency analysis techniques enable the extraction of various features of the fre-

quency spectrum that can more e�ciently represent machine health conditions. Frequency-

domain techniques rely on the proper utilisation of the Fast Fourier transform (FFT).

The FT reduces the e�ect of phase shifts in time-domain data, presenting a more compact

representation of the signal.

For example, the measured time-domain vibration signals are often generated by

several components of a railway wheel such as the wheels, wheelset, bearings, and axle

box. Each of these components produces a unique frequency. The measured signal often

contains a summation of the produced frequencies rather than the individual produced

frequencies. The spectrum of frequency components generated from the time-domain
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waveform helps to identify the vibration sources from which components are produced.

Railway wheel components generate various types of vibration signals in the time

domain. These can be random signals and periodic signals, for both healthy and faulty

conditions Bocciarelli et al. [2004]. The frequency representations of these signals in

the frequency domain are often performed using FA, which is generally classi�ed into

three types: (i) Fourier series (FS), (ii) continuous Fourier transform (CFT), and (iii)

discrete Fourier transform (DFT). The fundamental idea of FA is dependent on periodic

functions that can be expressed as a summation of complex exponential functions Sheng

et al. [2007].

A Fourier analysis is used to extract features of a frequency spectrum that can more

accurately re�ect the machine's healthy status during operation. These include: (i) enve-

lope analysis, also called high-frequency resonance analysis, which is a signal processing

technique that is considered a powerful and dependable method for detecting faults in

rotating elements; and (ii) frequency-domain features, which provide a quick overview of

a machine's condition without speci�c diagnostic capability and which include arithmetic

mean, matched �lter RMS, the RMS of spectral di�erence, the sum of squares spectral

di�erence, and high-order spectra techniques Ahmed and Nandi [2020].

When relying on frequency-domain methods, energy leakage and spectrum overlap

are common sources of signi�cant errors. This makes frequency representation functions

(FRFs) less sensitive for fault detection and identi�cation at a very de�ned periodic time

Peng and Chu [2004].

The frequency-domain analysis techniques algorithm and the description used for

the feature extraction are described in Table 2.2 with important notation. The table

describes the continuous-time Fourier transform, discrete-time Fourier transform, fast

Fourier transform and power spectral density (PSD) with their fundamental equations

and feature extraction capabilities.

Spectrum analysis based on the FFT is one of the most widely used methods of

frequency conversion. The principle of spectrum analysis is to obtain the signal's fre-

quency components and look at certain interesting frequency components to �nd their

relationship with the amplitude, the phase, or the power, and then the fault features

can be extracted from the signals. The FFT computational e�ciency is excellent, and
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Table 2.2: Frequency-domain feature extraction techniques for vibration signals

Feature extrac-

tion category

Fundamental equation Feature extraction capability

and description

CFT
∞∫

−∞
x(t)e−j2πftdt Enables signals analysis in fre-

quency content only and requires
high computational complexity.

DFT and FFT
N−1∑
n=0

(x(n)e
−j2πkn

N , k → 0, 1, . . . N −
1

Have excellent computational
speed and does not indicate lo-
calised time-frequency of signals

PSD limx→N
(△t)2

T
∥

N∑
n=−N

x−j2πfn△t
e ∥2 Adequately describes the additive

noise and does not fully describe
the multiplicative noise

it saves time, resources, and energy used during synthesis and analysis. The spectrum

analysis mainly includes the amplitude spectrum, power spectrum, Cepstrum spectrum,

and Hilbert spectrum. However, when a rotating component has a fault, the vibration

signal will become non-stationary and non-linear, and the spectral composition of the

vibration signal will often change with time.

FT and FFT are not practical for non-stationary, transient vibration signals to be

analysed in the frequency domain, as the power spectrum of the signature gives only

delocalised information on the frequency content. Furthermore, since the signal power

is averaged on the whole frequency axis, two di�erent vibration signatures may have a

very similar power spectrum.

Based on the Boashash [2015], the frequency-domain analysis approaches of two

di�erent signals may have similar magnitude spectra, as shown in Figure 2.2. The

di�erence is clearly visible in the time domain (left-hand traces), whereas it is hardly

visible in the frequency domain (right-hand traces). The present observation serves to

demonstrate that the frequency domain manifests the frequency composition that is

contained in the entire signal, irrespective of any temporal in�uence. This indicates that

the frequency content of the signal is not a function of time.

By utilising the properties of the FT, e�orts were made to examine the state of the

wheel component of Katowice urban trams. The analysis involves collecting vibration

signals of rail track by employing a sensor device on a rail track, then processing the

collected data through a frequency-domain approach, which entails extracting the spec-
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Figure 2.2: Power spectrum of a) a noisy low-frequency modulation signal with an SNR
of 16dB and b) its energy spectrum; c) a noisy modulated sinc function with the same
SNR and d) its energy spectrum

tral frequency of the rail track signals. Figure 2.3 and Figure 2.4 showcase the power

spectral density of the signal under fault and normal wheel conditions respectively.

By closely looking at Figure 2.3, the frequency spectrum of the signals collected under

fault-free conditions, the impulsive overshoot of the frequency spectrum resulted within

the range of 400 Hz to 450 Hz and experiences huge variation in dispersion. Similarly,

in Figure 2.4 for a wheel with fault condition, the impulsive power spectrum of a signal

resulted within the ranges of 180 Hz-230Hz. There is a prominent spike around 200 Hz,

indicating a signi�cant anomaly or feature at this frequency. This could potentially be

associated with a speci�c type of fault condition on the wheel components.

For both signals, the time-domain information appeared to be similar. However,

a shift in the frequency spectrum band was observed during the frequency analysis.

One of the challenges encountered in this frequency-domain analysis technique is the

inability to determine the exact time at which the spikes of this frequency spectrum

occur and to which element of the wheel frequency that indicates fault condition is

related. This makes it challenging to distinguish between wheels in good condition and

those in poor condition. To enhance the accuracy of fault detection in railway wheels,
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Figure 2.3: a) Time series and b) frequency spectrum of the fault-free wheel signal

this analysis results underscore the need for further signal processing techniques such as

time-frequency domain analysis.

Numerous studies have utilised frequency-domain analysis techniques for fault con-

dition monitoring of railway wheels and signal feature extraction. For instance, in a

wheel-rail system, researchers have employed the fast Fourier transform to raw data to

derive the power spectrum and gain insights into the signal's characteristic frequencies

Zhang et al. [2011a].

Shim et al. [2021] discusses vibration signal processing techniques for identifying

wheel �ats in railway vehicles. They focus on utilising cepstrum analysis, order analysis,

and cross-correlation analysis to address challenges posed by varying train speeds and

high levels of �eld noise. However, assessing the �at wheel signal is complicated due

to frequent changes in train speed which impact the time cycle of the �at wheel signal.

Further research is necessary to re�ne fault detection and diagnosis accuracy in real-world

operational settings.
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Figure 2.4: a) Time series and b) frequency spectrum of the fault wheel signal

Zhou et al. [2024] presents an experimental study on the detection of wheel �ats

(WFs) in railway vehicles using the angular domain synchronous averaging (ADSA)

method. The ADSA method is shown to e�ectively detect WFs by averaging axle box

acceleration (ABA) signals in the angular domain, reducing the amount of measured

data and eliminating interference signals. However, the experimental study focuses on a

single-wheel �at with a speci�c length of 20 mm on a tank wagon, which may not fully

represent the range of WFs conditions that can occur in railway vehicles.

Kvasnikov and Stakhova [2022] explores the use of vibration analysis for early iden-

ti�cation and prevention of critical machine fault problems. The approach involves

examining vibration patterns through the Fourier transform to analyse the output signal

connected to a sensor. The �ndings indicate that spectral analysis, speci�cally narrow-

band spectral analysis, is e�ective in identifying various faults and is vital for equipment

monitoring and thorough diagnostics. Additionally, it underscores the signi�cance of con-

sidering the relationship between spectrum bandwidth and signal accumulation time to

enhance test e�ciency. However, while FFT algorithms improve performance by reduc-
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ing operations, they may introduce limitations such as resolution, leakage or windowing

e�ects.

Another work that has been done by Atoui et al. [2013] discusses the application

of FFT and wavelet transform in detecting faults in rotating machinery, with a focus

on rotor unbalance. The approach entails utilising a combined FFT-wavelet transform

method to analyse vibration signals collected from accelerometer sensors during experi-

mental investigations on a defective rotor. The �ndings validate the capability of wavelet

transform-FFT to promptly identify fault conditions and their locations.

In summary, FA is ine�ective when the acquired signals exhibit non-stationary char-

acteristics, as this method obscures the time localization of local oscillations. Therefore,

it is impossible to determine whether the frequencies of the FT exist uniformly across

the signal or are focused within speci�c localised intervals. Providing time-frequency

analysis techniques such as a short-time frequency history of the localised signals, i.e.

the short-time Fourier transform and wavelet analysis can mitigate some of the Fourier

transform's shortcomings. Short-time Fourier transform and wavelet analysis re�ect im-

portant feature characteristics of localised signals that FA cannot re�ect. The details of

the time-frequency analysing techniques which are used for processing vibration signals

for condition monitoring of railway wheels are presented in detail in the Section 2.5.

2.5 Time-frequency analysis of vibrations signals

Fourier analysis and its related frequency methods have been established based on an

ideal linear transformation model, which is a steady-state conversion. Therefore, they

are suitable for dealing with linear and stationary signals. However, when industrial

and rotating mechanical equipment fails, the vibration signal typically becomes non-

stationary. The critical step in processing non-stationary signals requires performing a

local time-frequency analysis. Unfortunately, FA has di�culty in processing a nonlinear

and non-stationary signal in practical applications. As a result, time-frequency analysis

was developed for non-stationary vibration signals analysis purposes.

Time-frequency distributions (TFDs) provide information about non-stationary sig-

nals that neither time-domain nor frequency-domain-alone representations can provide.
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This includes the frequency of the instantaneous signal. TFDs can be used to classify

non-stationary signals by extracting relevant (time, frequency) features as characteristics

rather than using all (time, frequency) points as features, which would result in many

redundant features, increasing the computational time and cost for analysis of the data.

Two signi�cant de�ciencies of the conventional time-domain and spectral analysis

techniques include (i) the inability to interpret time dependence between frequency con-

tent and time and vice versa; and (ii) the di�culty in representing signals with non-

periodic components, such as a transient signal. For example, speci�c frequency compo-

nents indicate faults in rotating machines; however, because some of these frequencies

are dependent on the rotational speed, it is impossible to determine these frequencies

using spectral analysis when the rotating element operates at a variable rotational speed.

In addition, studies have underscored the importance of monitoring railway wheel

systems and other rotating machinery during transient states like startup, shutdown,

brake down, and acceleration. This is crucial as substantial component failures often

occur during these transitional phases. Transient signals can yield important insights

into the condition of the wheelset system that are not evident during steady states.

Consequently, methods based on the FT may not be suitable for fault diagnosis and

condition monitoring under changing time conditions Jardine et al. [2006].

A signi�cant reason to use time-frequency representations (TFRs) and TFDs of sig-

nals is that they reveal whether the signal is mono- or multi-component, which cannot be

determined easily using conventional frequency analysis, even more so when individual

components are also time-varying. In summary, the (time, frequency) representation is

more appropriate and intuitive for non-stationary signals.

Numerous time-frequency analysis techniques have been used to diagnose railway

wheels faults condition, including short-time Fourier transforms, wavelet transforms, the

Hilbert Huang transform, and empirical mode decomposition. The discussion, analysis,

and selection of these time-frequency analysis techniques were given greater weight in

this research work. More e�cient methods other than using the FT and its frequency

spectrum features are described for determining the best time-frequency characteristics

of a signal. The following section describes each time-frequency technique in detail,

including its de�ned scope, a review of related scope, and �nally, the limitations related
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to each technique.

2.5.1 Short-time Fourier transform

Cohen [1995] developed the short-time Fourier transform (STFT), which was the �rst

modi�ed version of the Fourier transform that could be used to analyse both stationary

and non-stationary signals in the time-frequency domain. Gabor was the one who �rst

introduced this algorithm, Gabor [1946]. Fundamentally, the STFT converts the vibra-

tion signal into a two-dimensional (2D) time-frequency function. The following relations

give the fundamental equation of STFT for a speci�c continuous-time signal segment:

STFTx(t)(t, w) =

∫ +∞

−∞
x(t)w(t− τ)e−jwtdτ (2.1)

Where w(τ) is a window function and τ is a time variable. For a vibration signal in

discrete form, Equation 2.1 above becomes;

STFTx[n](n,w) =
+∞∑
−∞

x(n)w(n−m)e−jwtdτ (2.2)

Instead of computing the discrete Fourier transform of the entire signal, the STFT

decomposes the signal into shorter segments of equal length using a time-localised window

function, such as a Gaussian or Hamming window and then performs the DFT separately

on each windowed segment Sejdi¢ et al. [2009]. This enables the frequency of the defect

signal to be determined within a given time window. The time interval used in this

method is very critical. By decreasing the window size, it is possible to achieve more

accurate representations of signals in terms of time resolution, but this causes an increase

in computational time. Furthermore, a longer time interval is required to improve the

frequency resolution.

The challenge with using the STFT is that the accuracy of the frequency information

extracted is limited by the window's length in relation to the signal's duration. Once

the window function is de�ned, its area in the time-frequency plane (time-bandwidth

product) remains constant. This means that the resolutions of both time and frequency
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cannot be increased concurrently. STFT can overcome the limitations of FFT-based

methods in processing non-stationary signals; however, it does not produce a constant

resolution for all frequencies because it uses the same window for the entire signal during

processing. Obtaining high-frequency resolution requires the use of wide windows for

low-frequency components, which results in a trade-o� with the time resolution needed

for analysing high-frequency components. Therefore, STFT is suitable for analysing

quasi-stationary signals instead of real non-stationary signals.

As a result of using the STFT, the frequency content of a signal can be determined

based on its magnitude squared, or spectrogram. Spectrograms are chart representa-

tions of a signal that show its energy distribution over a time-frequency domain. The

spectrogram of STFT can be mathematically presented using the following relation:

SPECx[n](n,w) = |STFTx(n)[n,w]2| (2.3)

The STFT technique is pivotal in this analysis as it enables the examination of these

frequency components in a time-localised manner. By windowing the signal and trans-

forming these windows into the frequency domain, it is possible to detect transient faults

in the wheel that may not be perceptible in a standard FT.

Wigner introduced the Wigner-Ville distribution (WVDs) Ville [1958]. He derived

a relationship between the power spectrum and the autocorrelation function for a non-

stationary, time-variant process to analyse a signal. WVDs have overcome some limita-

tions of STFT time-frequency resolution. However, when multiple component signals are

applied, interference terms between the bi-linear distribution and the real signal overlap,

and interpreting the energy distribution of the 2D image is a more challenging task in

such a case.

Considering that the STFT does not use windowing functions with varying sizes for

all frequency components, fault diagnosis and condition monitoring of rotating machines

based on non-stationary signals, which are masked by noises, may need more adaptable

and e�ective techniques than the STFT. Among these adaptable and e�ective techniques,

the commonly used methods are presented in the next subsection. The choice of each

technique depends on di�erent factors, and there is no generalised rule. However, what

makes these techniques more valuable than STFT is their ability to analyse the non-
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Figure 2.5: Short-time Fourier transform scalogram of wheel vibration signals with a) a
normal and b) fault wheel condition

stationary vibration signals within a variable time-frequency window resolution needed

for quanti�cation of the content of the slice of a signal.

In the attempt made to analyse the acceleration datasets measured at the Katowice

tram depot using the STFT technique, the potential of this technique is evaluated for

extracting valuable features that indicate the wheel condition. For instance, Figure 2.5

provides a visual representation that displays two scalograms that illustrate the STFT of

signals acquired by a MEMS sensor from a rail track to monitor wheel fault conditions.

The STFT technique is utilised to determine the frequency and time characteristics of

local segments of a signal.

The �rst scalogram in Figure 2.5 a) illustrates the frequency distribution of wheel sig-

nals collected under fault-free circumstances. The magnitude of the STFT coe�cients is

represented by a colour gradient ranging from blue to yellow, with yellow denoting higher

magnitudes. Noteworthy high-magnitude frequency spectrum characteristic bands of the

signals which are identi�ed by red arrows at approximately the entire given time occur
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Figure 2.6: Short-time Fourier transform spectrogram of a wheel vibration signals with
a) a normal and b) a fault wheel condition

at a frequency bandwidth of 200 Hz-300 Hz, which could potentially signify normal

operational characteristics of the wheel.

The second scalogram of Figure 2.5 b) illustrates the frequency distribution of signals

collected during a fault condition. Similar to Figure 2.5 a), the colour gradient represents

the magnitude of the STFT coe�cients. In the presence of prominent signals, at varying

times and frequencies bandwidth of a signal is widened from 100Hz-400Hz which is

indicated by both red and blue arrows, resulting in distinct types or stages of faults or

anomalies compared to normal wheel signals. The STFT technique involves segmenting

the signal's data into manageable portions and subsequently computing the FT on each

segment individually. This approach yields a time-frequency representation that can be

visually analysed as demonstrated in these scalograms.

Figure 2.6 presents a pair of 3D spectrograms of STFT, which are employed to ex-

amine the frequency characteristics of a signal over time. Figure 2.6 a) shows STFT

spectrogram that displays various frequencies at di�erent sample times. Notable peaks
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in amplitude at speci�c times indicate prominent frequencies. Similarly, Figure 2.6 b)

presents a unique spectrogram that marks certain frequencies with red arrows which are

not noticeable in Figure 2.6 a). These frequencies could potentially signify abnormal or

unexpected frequency components that may indicate a fault condition in the wheel.

In summary, although the STFT is capable of analysing non-stationary signals, it suf-

fers from certain limitations. The �xed window size introduces a compromise between

time and frequency resolution. Moreover, spectral leakage, edge e�ects, and aliasing,

spectrum distortion of the original signal resulted due to the windowing function. Conse-

quently, this may impact the accuracy of fault detection analysis. Therefore, alternative

time-frequency processing methods become necessary despite the e�ciency of the STFT

in analysing non-stationary signals.

2.5.2 Wavelet transform

Another linear transform that provides time-frequency analyses is a wavelet transform

(WT). A WT is a mathematical tool that converts a signal in the time domain to a

di�erent form in the time-scale domain, namely to a series of wavelet coe�cients Chan

[2011]. An implementation of the wavelet transform requires a wavelet function. A

wavelet function is a small wave that exhibits oscillating wave-like characteristics and

concentrates its energy in a short period. The di�erence between a wave (sine cosine,

which is typically deterministic and time-invariant or stationary signals) and a wavelet is

that a wave is usually smooth and regular in shape and can be in�nite, while in contrast,

a wavelet may be irregular in shape and normally lasts only for a limited period. The

wavelet function is referred to as a mother wavelet or a father wavelet, and subsequent

families of wavelet transforms are decomposed from this base function Bhatnagar [2020].

Morlet introduced the wavelet transform, and it quickly developed into a power-

ful mathematical tool. For N data points, the wavelet transforms computation time is

O(N), which is less than the FFT computation time of O(NlogN). Wavelet transform

is an adaptive transform that overcomes the STFT's resolution problem. It exhibits

fundamental properties such as linearity, translation, dilation, and symmetry. The WT

properties are well suited for performing multi-resolution analysis on a non-stationary

signal both in the time domain (via translation) and the frequency domain (through
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dilation). WT is a type of variable window in which the high and low-frequency compo-

nents of the signal are analysed using a time interval. WT data can be decomposed into

approximation and detail coe�cients in a multi-scale manner, making it a more e�ective

algorithm for the analysis of non-stationary signals than FT.

Compared to STFT, wavelets enable e�ective analysis of multi-scale signals and the

extraction of time-frequency characteristics from non-stationary signals. Wavelet anal-

ysis is a good alternative to the STFT method because it localises the signal's infor-

mation in the time-frequency domain via variable spectrograms. The wavelet transform

enables time-frequency analysis and the creation of maps with high time resolution at

high frequencies, thereby identifying the temporal instants at which transient phenom-

ena occur: the presence of impulses in the vibration signal can be determined using the

high-frequency part of the wavelet transform, where the time resolution is comparable

to the duration of the analysed events Rubini and Meneghetti [2001].

In contrast to the STFT window, wavelet families such as Haar, Daubechies, Symlets,

Morlets, and Coi�ets all have �xed shapes. However, the wavelet function is scalable,

which means it can be applied to a wide variety of frequency and time-based resolutions.

As a result, wavelets are more suitable for analysing non-stationary signals than STFT.

Nevertheless, because wavelets are not adaptive, their analysis results depend on the

chosen wavelet base function. This may result in a subjective and prior assumption

about the characteristics of a signal. In this case, only those characteristics of the signal

that correlate well with the shape of the wavelet base function can produce coe�cients

of high value. Any additional characteristics can be masked or ignored entirely Lei et al.

[2013].

Unlike FT and STFT, WT has more options for matching a speci�c fault symptom,

which helps to extract fault features. WT has also proven extremely useful in diagnosing

faults in rotating machinery due to its multi-resolution advantage. To improve rotating

machinery fault detection and diagnosis, WT is widely used. Its strong time and fre-

quency capabilities have recently been used in rotating machinery fault detection Chen

et al. [2016].

The wavelet theory has gained widespread acceptance and rapid development over

the past decades, with a wide range of applications. Generally, wavelet transforms were
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classi�ed as continuous wavelet transform (CWT), Discrete wavelet transform (DWT),

and wavelet packets transform (WPT) Goswami and Chan [2011]. The developments

in the discrete wavelet transform (DWT) and the wavelet packets series (WPS) make

the wavelet approach more suitable for signal and image processing. The following

subsections discuss the fundamental theory underlying each classical wavelet type and

the common application capability of each wavelet type.

Continuous wavelet transform

The term continuous wavelet transform (CWT) is an integral wavelet transform (IWT)

and unlike the FT, which always uses a sinusoidal wave as its basis for decomposing a

signal, wavelet shape allows for the selection of other basis functions based on the signal's

characteristics. The scale and translation parameters de�ne the basis function in wavelet

analysis Daubechies [1992]. This property enables the representation of non-stationary

signals with multiple resolutions analysis that employs a basis wavelet function (mother

wavelet), which indicated in the Equation 2.4. The basis function of a wavelet with the

order N is denoted by:

ψ(n) = cj

N−1∑
j=0

(−1)j(2n+ j −N + 1) (2.4)

where cj is a coe�cient and the base function, ψ should satisfy the following two

conditions. The basis function integrates to zero.

∫ +∞

−∞
ψ(t)dt = 0 (2.5)

and it is square integrable or, equivalently, has �nite energy, i.e.

∫ +∞

−∞
|ψ(t)|2dt = 0 (2.6)

Equation 2.5 suggests an oscillatory or wave basis function. According to Equation

2.6, the basis function's energy is mostly �nite. Orthogonality and bi-orthogonality

are important basis function properties. These properties allow for quick coe�cient
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calculation. There is no redundancy because there is only one wavelet decomposition for

the signal. But not all basis functions have these. The term compact support is used as

the basis function, which values are non-zero for �nite intervals. This property allows

for e�cient representation of localised signals. Continuous wavelet transform is de�ned

using the following relations.

W (a, b) =
1√
a

∫
f(t).ψ∗

(
t− b

a

)
(2.7)

where a and b are scale and translation parameters, respectively and ψ∗ is the complex

conjugate of W . The basis function W is represented as;

ψj,k(t) = 21/2ψ(2jt− k) (2.8)

The primary uses of the CWT are for analysing the time-frequency characteristics of

signals and for �ltering out speci�c frequency components that are localised in time.

Using the acceleration measurement dataset conducted at the Katowice tram depot,

the acceleration signals are analysed to test the e�ciency of CWT in extracting valuable

features, which are insightful for the wheel fault condition monitoring. For example,

Figure 2.7 shows the magnitude of the scalogram for a fault-free and fault wheel condition

signal.

Figures 2.7 a) and c) illustrates a time-frequency scalogram representation of the

signals. The colour intensity indicates the strength of di�erent frequency components

over time. Compared to Figure 2.7 a), Figure 2.7 c) scalogram does not provide an

informative frequency band due to the fault-free condition of a signal. By closely looking

at both �gures, the magnitude of the frequency intensity of the scalogram for a fault

wheel suspected is greater than that of a fault-free wheel.

A higher frequency intensity for fault wheels results within a narrow frequency band

found around 100 Hz whereas wide frequency ranges are registered for wheels in normal

condition. However, there is an overlapping and mixing of frequency bands, especially

in the characteristic frequency band region, making it di�cult to distinctly di�erentiate

or categorise the signals. Figures 2.7 b) and d) show the amplitude of these signals over
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Figure 2.7: CWT time-frequency images of wheel vibration signal; Magnitude of scalo-
gram images of a wheel with normal a), b) and c), d) wheel with faulty conditions
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a short time frame that is very similar. It provides a snapshot of the signal's behaviour

within a speci�c time frame marked by an arrow on the top graph.

Despite CWT's capability to handle complex signals, Figure 2.7 shows a challenge

in di�erentiating signals e�ectively although it does better than STFT. This complexity

arises due to the limitation of multi-resolution analysis of CWT, leading to increased dif-

�culty in isolating speci�c frequency components associated with wheel faults e�ectively.

Thus, while CWT remains a powerful tool, additional processing methods are required

to enhance fault detection accuracy in such scenarios.

Discrete wavelet transform

The Discrete wavelet transform (DWT) is a discretised form of a continuous wavelet

transform. The most common discretisation is dyadic. On the time-frequency plane of

the CWT assigns redundant information Daubechies [1992]. To address these redundant

time-frequency de�ciencies, DWT was established Yan et al. [2014]. The mathematical

expression of DWT is shown as the following:

DWT (j, k) =
1√
2j

∫
f(t).ψ∗

(
t− 2jk

2j

)
(2.9)

where a and b are scales are replaced by 2j, and 2jk, j, is an integer.

DWT is a multi-resolution analysis transform that analyses a signal at di�erent scales.

The Figure 2.8 illustrates the useful application of DWT for multi-resolution analysis

step. For this purpose, DWT uses two distinct sets of functions, the scaling functions

and wavelet functions, which correspond to low-pass and high-pass �lters, respectively.

The discrete signal is passed through a high-pass �lter (H) and a low-pass �lter (L),

yielding two vectors at the �rst level: the approximation coe�cient (A1) and the detail

coe�cient (L).

In the same manner, the same transform is applied to the approximation coe�cient

(A1), which is further decomposed at the second level into the approximation (A2) and

detail (D2) coe�cients. Finally, the signal is decomposed into its component parts at

the expected decomposition level. The approximations represent the signal's high-scale
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Figure 2.8: Principles of DWT with �ve decomposition levels

and low-frequency components, while the details represent the signal's low-scale with a

high-frequency components.

Figure 2.8 illustrates the discrete wavelet decomposition of level 5. Each vector Aj

contains approximately N/2j coe�cients, where N denotes the number of data points

in the input signal x, and contains information about the frequency range [0, fs/2j+1],

where fs denotes the sampling frequency. The H and L denote the decomposition �lters,

and each �lter is downsampled by two factors Bendjama et al. [2012].

Wavelet packet transform

The wavelet packet transform (WPT) is a modi�ed version of DWT in which every of

high-frequency detail obtained by DWT is further decomposed into an approximate and

a detail coe�cients Shen et al. [2013]. This can be possible because WPT processes a

signal by using more �lters than those that DWT o�ers. The following Equations 2.10

yield the WPT decomposition coe�cients for a given signal x(t):

dj+1,2n =
∑
m

(h(m− 2k)2j,n

dj+1,2n+1 =
∑
m

(g(m− 2k)2j,n

(2.10)
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Figure 2.9: Principles of WPT with third decomposition levels

Where, m is the number of coe�cients, and dj,n, dj+1,2n, and dj+1,2n+1 are the wavelet

coe�cients at sub-bands n, 2n, and 2n+1, respectively. WPT provides a more approxi-

mation and detailed representation of extracted frequency components than DWT, which

is signi�cantly bene�cial Saleh and Rahman [2005]. An approximation and detailed rep-

resentations of the decomposed signals make the WPT superior to other wavelet trans-

forms. Time-localised wavelet packet basis functions also improve signal approximation

and decomposition levels.

The WPT of a discrete signal x involves �ltering it with a low-pass �lter (L) and high-

pass �lter (H), resulting in two sub-bands at the �rst level (i). The �rst vector represents

the approximation coe�cient (AL), and the second is the detailed coe�cient (DH).
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To proceed with the next decomposition, x(ii) applies L and H �lters to AL and DH,

resulting in approximation coe�cients (AAL and ADH) and detailed coe�cients (DAL

and DDH) at subsequent levels. Figure 2.9 shows the principle of WPT decomposition

for the fourth level of decomposition. The drawback of the WPT is the loss of detailed

information about the signal due to downsampling by two factors at each H and L �lter

decomposition.

The MODWPT algorithm, which do not use downsampling techniques to decompose

and �lter a signal using high and low �lters, improve the shortcomings of WPT. MOD-

WPT is a time-invariant and energy-conserving wavelet packet algorithm that can be

used to decompose a signal into an approximate and detail coe�cient like WPT Percival

and Walden [2000]. The di�erence is that MODWPT does not use the downsampling of

a signal at each decomposing �lter. Further information about the MODWPT algorithm

is discussed and presented in the chapter 3 of this dissertation.

When it comes to the application of WT and STFT time-frequency analysis tech-

niques in the fault detection, diagnosis and condition monitoring, several researchers

have used various techniques to identify fault conditions. For instance, Peng and Chu

[2004] introduces the �rst form of a comprehensive review of the application of wavelet

transforms in machine fault diagnosis and condition monitoring, with a focus on time-

frequency, fault feature extraction, weak signal extraction, and vibration signal com-

pression for system identi�cation. The review summarizes the successful role of wavelet

transform in handling multi-scale signals and its potential for analyzing non-stationary

signals.

Belotti et al. [2006] developed a �at wheel defect diagnostics technique using wavelet

transform. The authors set up an experimental tool for the study of wheel conditions

at a variable train speed with accurate speed measurement using a single accelerometer,

reducing hardware requirements and providing accurate results. While this approach re-

duces hardware requirements and provides accurate results, the study identi�es the bogie

with the defective wheel without explicitly pinpointing the �at wheel element. Addition-

ally, the author highlights that a train's speed has a considerable impact on detecting

wheel defects; however, in urban tram systems, factors such as braking frequency due

to tra�c engineering need to be taken into account. Because trams experience surface

defects as a result of frequent brake usage at multiple stop locations, which needs to be
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considered but not taken into account by the authors.

An adaptive chirp mode decomposition method for railway wheel �at detection under

variable-speed conditions was proposed by Chen et al. [2021b]. The author employed

a time-frequency analysis technique to precisely extract the time-varying fault char-

acteristic frequencies and thus successfully detected the fault through simulation and

experimental veri�cation. Detecting wheel �ats under variable-speed conditions is a dif-

�cult task that has only been rarely reported in the scienti�c literature. Identifying

time-varying characteristic frequencies and strong interference that overwhelm the fault

signal features are two of the most di�cult challenges.

The study conducted by Ding et al. [2014] provides a detailed analysis of the shock

experienced by the wheel-rail system in the presence of a wheel �at, focusing on the time-

frequency aspects. Based on wheel vertical force measurements from sensors installed on

the railway network, two machine learning methods were proposed by Krummenacher

et al. [2017] to detect wheel defects automatically.

Dalpiaz and Rivola [1997] assessed the e�ectiveness and reliability of vibration tech-

niques and wavelet transform fault detection and diagnostics in a cam mechanism of an

automatic packaging machine. The study found that the wavelet transform is better at

detecting and diagnosing faults in non-stationary, transient (di�erent impulsive phenom-

ena) signals than other vibration assessing techniques like amplitude probability density,

power spectral density , and time-synchronous averaging.

Zhang et al. [2017] proposed an adaptive blind source separation (BSS) approach

based on the theory of adaptive time-frequency distributions to address the non-stationary

blind separation problem and applied it to the diagnosis and monitor the wheel defects

condition. Quantitative metrics of inter-symbol interference and experimental work val-

idated the proposed method, concluding that BSS can separate weak fault sources from

various source mixtures.

An online wheel tread defect detection system using wayside �bre bragg gratings

(FBG) was developed by Liu et al. [2019]. As part of the analysis, the author employed

a Bayesian blind source separation approach to obtain the component that contains

defect-sensitive features by decomposing the rail response signal. The method was then

veri�ed by testing a train with defective wheels. However, numerous variables, such as
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train speed variation, temperature e�ects on strain gauge measurements, and location

of the FBG sensor with respect to sleepers that could in�uence defect detection results,

are not considered in the method.

Wan et al. [2023] studied the detection of train wheel anomalies utilising short-time

Fourier transforms combined with unsupervised learning algorithms for monitoring pas-

senger train wheel conditions. The authors used STFT to extract time-frequency features

from the vibration signal collected with a pair of �bre bragg grating sensors during nor-

mal operating hours. In addition, they illustrated the e�ciency of the proposed method

of the FBG sensor signal samples and the STFT in inspecting the condition of the wheel

by repro�ling the wheel circumference using turning operations.

Zhang et al. [2011b] proposed wavelet-based online �ange thickness measurement

using laser displacement sensors and discovered that the wavelet method outperforms

FFT in non-stationary signal analysis. The author measured practical data with optical-

electronic sensors and found that the measurements were noise-contaminated, so they

used the Wavelet tool to denoise the data. When the laser displacement sensor method

was compared to the manual measurement method, the result obtained by the laser

displacement sensor method was not signi�cantly di�erent from the manual method.

This suggests that further signal processing, such as wavelet analysis, is required to

identify the actual wheel conditions online.

Bian et al. [2013] investigated impact analysis induced by wheel �ats and found that

wheel �at presence signi�cantly increases dynamic impact forces on the rail and sleeper

and also increases the size of wheel �ats. However, the study does not indicate the exact

size, and when a signi�cant wheel condition emerged in the wheel portion during in-

service operations, several studies were conducted to investigate the relationship between

the impact forces and the wheel �at sizes.

Experimental investigation of essential features of polygonal wear of locomotive wheels

performed by Yang et al. [2020] revealed that high-order polygonal wear is the root cause

of locomotive vibration and contributes to another type of residue. However, due to its

complexity and universality, the source of high-order polygonal wear remains unknown

and unsolved. As a result, more experimentation and theoretical research are required.

Bai et al. [2023] review the e�ectiveness of time-frequency analysis in diagnosing faults
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in rotating machinery by capturing transient signal information. They discussed time-

frequency transformation methods and their development, emphasizing their importance

in vibration signal fault diagnosis. Time-frequency analysis has improved machinery fault

detection and has the potential for further research. In addition, the authors discuss the

development and future of data analysis technology with time-frequency transformation.

2.5.3 Empirical mode decomposition

Empirical mode decomposition (EMD) is a self-adaptive signal processing method that

can be applied to non-linear and non-stationary signals. EMD is used to decompose and

process the time-domain signal x(t) into di�erent scales called intrinsic mode functions

(IMF) Huang et al. [1998]. The EMD method was formulated under the assumption

that every signal consists of distinct intrinsic modes of oscillations, which can be either

linear or non-linear. An IMF meets two conditions: (i) the number of extrema and zero

crossings must be equal or di�er by one across the dataset, and (ii) the mean value

of the envelope de�ned by the local maxima and minima must be zero at any point

Huang [2014]. The EMD employs a recursive and repetitive decomposition technique

to systematically extract the IMFs of a signal at di�erent levels. For a signal x(t), the

EMD decomposition process can be described as follows.

i) Determine all the local extrema and then link all the local maxima using a cubic

spline as the upper envelope.

ii) Repeat the procedure for local minima to create the lower envelope. The lower

and upper envelopes should cover all data between them.

iii) De�ne m1 as the mean of upper and lower envelope values, and h1 as the di�erence

between signal x(t) and m1, which is the IMF, ideally the �rst component of x(t).

h1 = x(t)−m1 (2.11)

iv) If h1 is not an IMF, treat it as the original signal and repeat the above steps, then

h11 = h1 −m11 (2.12)

where m11 is the mean of the upper and lower envelope values of signal h1.
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v) For a repeated shift up to k times, h1k becomes an IMF, such that:

h1k = h1(k−1) −m1k

C1 = h1k

(2.13)

Where C1 is the �rst IMF component from the data.

The stoppage criterion for the repeated shifting process must be selected to guarantee

that the IMF components retain enough physical sense of amplitude and frequency mod-

ulation Huang et al. [1998]. Reducing the standard deviation (SD) from two consecutive

sifting results can accomplish this. The following equation de�nes the normalised SD

between two successive shifting operations:

SDk =
T∑
t=0

|(h1(k−1))(t)− h1k(t)|2

h21(k−1)(t)
(2.14)

The standard deviation is commonly assigned a value within the range of 0.2 to 0.3.

Shifting stops if SDk is less than a predetermined value of SD. Once the �rst IMF is

found, the remaining IMF components can be generated from the original signal x(t) by

using the repeated shifting algorithms as indicated in the following equation:

r1 = x(t)− C1

r2 = r1− C2

...
...

rj = rj−1 − Cj


(2.15)

Where r1 and r2 are residues treated as the new signals for the �rst and second shifting

processes, this procedure may be repeated up to rj's, where r = 1, 2, 3, . . . n. Mathe-

matically, summing up the equation above, we can get the original signal x(t) using the

following equation:

x(t) =
n∑

j=1

Cj + rn (2.16)

EMD has been utilised by a multitude of researchers for analysing vibration signals

for machine fault diagnosis purposes. For instance, Zhao et al. [2012] introduces the use

of EMD for condition monitoring of rotating machinery. Lei et al. [2013] presented a re-

view of EMD research and development in rotating machinery fault diagnosis to provide
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comprehensive references and aim at helping researchers identify new research topics.

The authors describe the highlights of EMD fault diagnosis applications for rotating ma-

chinery components like rolling element bearings, gears, and rotors. They also indicated

the EMD's unsolved fault diagnosis problems and future research directions.

Li et al. [2016] established an improved empirical mode decomposition (EMD) ap-

proach for the detection of railway wheel �ats. The proposed method investigates the

axle box vibration response caused by wheel �ats. The experimental results show that

an improved EMD extracts wheel fault characteristics e�ectively. However, EMD may

not correctly extract the desired fault signals in complex excitation due to inherent lim-

itations such as mode mixing, end e�ects, and noise robustness. Moreover, axle box

vibration signals are always contaminated by track irregularity, vehicle speed variation,

and noise. Furthermore, extracting fault-relevant characteristics using the axle box vi-

bration signals is di�cult.

Jiang and Lin [2018] proposed wheel �at fault diagnosis based on the EMD-Hilbert

envelope spectrum. Wang et al. [2018] proposed an improved EMD method using second-

generation wavelet interpolation. Li et al. [2016] established an improved empirical

mode decomposition (EMD) approach for the detection of railway wheel �ats. The

proposed method looks into the vibration response of the axle box due to wheel �ats. The

experimental results show that an improved EMD extracts wheel fault characteristics.

However, EMD might not be able to correctly pull out the fault signals that are needed

in complex excitations because of built-in problems like mode mixing, end e�ects, and

noise robustness. Additionally, track irregularities, vehicle speed variations, and noise are

always contaminating axle box vibration signals. Furthermore, extracting fault-relevant

characteristics using the axle box vibration signals is di�cult.

For example, for this study, the analysis of samples of dataset measurement conducted

at the Katowice tram depot has utilised the EMD to check the applicability of this

transform in the fault identi�cation for assessing the condition of railcar wheels. Figure

2.10 illustrates the EMD of the signals collected from a rail track for monitoring the

fault condition of the wheels.

Figures 2.10 a) and b) show 3 out of 4 IMFs derived from the signal. Each IMF is

represented as a waveform pattern against sample points. The amplitude variations are
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Figure 2.10: Empirical mode decomposition of a wheel with a) fault-free and b) fault
wheel signal 53



Chapter 2: Methods for assessing wheel condition; literature review

visible but show similarities across di�erent IMFs, making di�erentiation challenging.

For both signals, the residual component at the bottom exhibits a waveform pattern but

with less frequency variation compared to IMFs.

Despite EMD's adaptability in handling complex signal patterns, the Figure 2.10

underscores a challenge in di�erentiating signals e�ectively. This indicates that while

EMD is adept at isolating intrinsic oscillatory modes embedded within complex signals,

distinguishing between normal and anomaly conditions necessitates further analytical

approaches to enhance diagnostic precision.

2.5.4 Hilbert-Huang transform

The Hilbert-Huang transform (HHT) is a time-frequency technique that has been widely

applied to analyse vibration signals in the �eld of fault diagnosis of rotating machinery

Shan et al. [2010]. The HHT consists of two main operations: the EMD and Hilbert

transform. EMD can decompose a signal into an IMF Chandra and Sekhar [2016]. Once

IMFs are produced by EMD, the application of the Hilbert transform to each IMF, helps

for calculating the instantaneous frequency and amplitude corresponding to each IMF

Fan and Zuo [2006]. The Hilbert transform of a signal x(t) can be de�ned as its complex

conjugate y(t).

y(t) =
p

π

∫ +∞

−∞

x(t)

t− τ
dτ (2.17)

Where P is the principal value of the singular integral. With the help of HT, the analytic

signal z(t), which is an imaginary complex signal part, is the Hilbert transform of its

real part; x(t) can be expressed mathematically in the following equation:
z(t) = x(t) + iy(t) = a(t)eiφ(t)

a(t) =
√
x2(t) + y2(t)

φ(t) = arctan(y(t)/x(t))

(2.18)

where a(t) is the instantaneous amplitude of x(t), which re�ects how the energy of x(t)

varies with time t and φ(t) is the instantaneous phase of x(t). If the signal x(t) is

monocomponent, then the time derivative of the instantaneous phase φ(t) will be the

instantaneous frequency ω(t) of the signal x(t). The instantaneous frequency ω(t) is
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given as

ω(t) =
dφ(t)

dt
(2.19)

For a signal x(t) having an N number of IMFs created by EMD, by applying HHT,

the instantaneous amplitude a(t) and frequency ω(t) determined can be integrated to

produce the original signal x(t using the following equation:

x(t) =
N∑

n=1

an(t)exp

(
i

∫ N

n

ωn(t)dt

)
(2.20)

Thus, utilising the IMFs derived from EMD, the Hilbert transform represents the

signal x(t) in terms of its time-frequency-energy distribution.

The utilisation of the Hilbert transform in fault diagnosis, speci�cally in analysing

vibration signals, has been extensively researched, and numerous studies have been pub-

lished by various scholars. For instance, Lei and Zuo [2009] introduced an improved

HHT based on ensemble empirical mode decomposition (EEMD) fault diagnosis of ro-

tating machinery using sensitive IMFs. The authors analysed the vibration signals using

intrinsic mode functions extracted using EMD. However, the drawback of EMD is that

it cannot reveal the signal characteristics accurately because of the problem of mode

mixing.

This problem was alleviated by introducing EEMD. The �ndings of the work proved

that improved HHT based on EEMD performed superior to HHT based on the EMD

fault diagnosis technique. Feldman [2011] presented a detailed application of the Hilbert

transform in vibration analysis. The author relies on many examples to demonstrate

how the Hilbert transform can be used in machine diagnostics, mechanical system iden-

ti�cation, and signal component decomposition.

Furthermore, Nowakowski et al. [2019] used Hilbert's transform to detect tram wheel

�ats; the analysis was performed for identifying good and bad wheel condition responses.

The authors used an experimental investigation randomly that placed a tram wheel with

a �at spots. However, the fault wheel was not carefully chosen from the rest of the

wheels with unique characteristics. Also, the author assumed the vehicle accelerations

to be a basic physical quantity, though tram wheel acceleration is low, at 15-20 km/hr

relative to other trains.
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Figure 2.11: Hillbert Huang transform spectrum for a signal with a) fault-free and b)
fault wheel condition

The analysis of acceleration datasets measurement obtained from Katowice tram

depot is conducted by employing the HHT technique to assess its applicability in de-

riving meaningful insights from these datasets. For instance, Figure 2.11 presents high-

frequency spectrums obtained through the HHT. HHT is a powerful tool for analyzing

nonlinear and non-stationary signals, which seems to be the case with these signals that

were collected from rail track sensors to monitor wheel fault conditions.

Figure 2.11 a) shows a high-frequency spectrum with varying intensities over time,

indicating a mix of frequencies. The complexity of these signals makes it di�cult to iso-

late speci�c frequency components associated with distinct fault conditions. Figure 2.11

b) exhibits a similar pattern with slight variations in intensity distribution. The presence

of multiple overlapping signals further complicates the task of signal di�erentiation.
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While HHT is renowned for its adaptability in handling complex signal patterns, the

complexity of the presented data underscores the need for supplementary analytical tools

or methodologies to enhance signal di�erentiation and fault identi�cation precision.

2.6 Time-frequency methods comparison

As mostly described in detail in the previous section, the time-frequency analysis tech-

niques are utilised to analyse non-stationary signals and extract valuable features such as

frequency spectral content at each respective time point. The Table 2.3 below compares

various time-frequency analysis techniques utilised for fault detection in the railway

wheels and other �eld of applications. Each technique o�ers unique advantages and

limitations. For instance, the STFT excels in providing a well-de�ned time-frequency

localization but struggles with non-stationary signals Shaikh et al. [2023], Fu et al. [2023].

On the other hand, DWT and WPT techniques o�er multi-resolution analysis capa-

bilities, enabling the extraction of smooth trends and spaced frequencies while preserving

energy Liang et al. [2013], Yuejian et al. [2014]. The EMD method stands out for its

adaptability to nonlinear and non-stationary signals, making it suitable for capturing

localised transient events Zhang et al. [2017], Liu et al. [2016]. However, it is sensitive to

noise and may encounter mode mixing issues. The principles of each technique presented

also aid in understanding the scenarios of fault detection applicability. In summary, the

speci�c characteristics of the signals and the desired features for fault detection deter-

mine the choice among these techniques, every technique has a unique set of bene�ts

and limitations.

Moreover, the MODWPT is a highly e�ective choice for non-stationary signal analysis

and fault detection, boasting a range of valuable properties such as exceptional time-

frequency resolution and the ability to mitigate boundary e�ects through its maximal

overlap approachWalden and Cristan [1998]. By combining the bene�ts of wavelet packet

decomposition and overlap processing, MODWPT can accurately capture localised tran-

sient events, greatly enhancing fault detection capabilities in railway wheel systems Peng

et al. [2005].

Furthermore, MODWPT is adept at extracting smooth trends and spaced frequencies
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while preserving energy, ensuring a comprehensive analysis that doesn't compromise cru-

cial signal features Gómez et al. [2020], Yang [2021]. Its versatility in handling complex

signals, coupled with its ability to balance computational e�ciency with high-resolution

analysis, makes MODWPT a valuable tool for fault detection tasks. With a wide range

of time-frequency analysis techniques to choose from, MODWPT is chosen in this study,

as it emerges as an optimal solution for addressing the multifaceted challenges inherent

in railway wheel fault detection.

Therefore, this research primarily aims to utilise MEMS-based sensors for acquiring

acceleration and MODWPT for analysing the acceleration signals to detect faults in

railway wheels. Conventional vibration measurement techniques encounter di�culties in

promptly detecting transient faults and have limited diagnostic sensitivity. MEMS-based

sensors and MODWPT signal analysis could provide improved monitoring capabilities

that exceed the limitations of traditional methods.

Additionally, the current real-time wheel defect detection techniques require enhance-

ment, and MEMS-based sensors could o�er more cost-e�ective, low-power, precise, and

timely data measurements for identifying wheel faults. There is a clear indication of fur-

ther e�orts to improve existing detection methods by employing MEMS-based sensors.

Incorporating MEMS-based sensors and the MODWPT algorithm has the potential to

lead to signi�cant advancements in railway wheel condition monitoring and fault detec-

tion.
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3
MODWPT-Based Wheel Condition

Assessment

The use of MEMS-based acceleration sensors limits the scope of available measurement

data for processing and requires a careful approach for extracting diagnostic details,

which are bene�cial for evaluating wheel conditions. The study assumes that wheel

conditions irregularities produce disruptions in the frequency spectrum of recorded ac-

celerations and these irregularities can be used to derive information on the condition of

wheels. The rail vibration energy in the characteristic frequency bands is chosen as the

measure of the wheel condition. The properties of MODWPT favour its application for

determining the properties of the collected data. These prerequisites curb the design of

the method for assessing wheel condition.

This chapter provides details of the MODWPT algorithm; the proposed method for

analysing the condition of wheel fault signals. The proposed MODWPT analysis tech-
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nique employed for the wheel condition assessment outlines three key steps: i) vibration

data measurement, ii) processing of the data, and iii) analysis of MODWPT coe�cients

to identify fault conditions in the wheels. In addition, the samples of results gained using

the proposed method are thoroughly presented and discussed in this chapter. Further-

more, a discussion of the solution search limits for processing requirements for assessing

the wheel conditions of a moving railcar is presented.

3.1 Concept of the proposed method

The proposed method is essentially aimed at achieving an e�cient interpretation of vibra-

tion signals with the goal of detecting indications of the wheel condition. The proposed

method involves the use of MEMS-based acceleration sensors, which are highly sensitive

and capable of measuring the parameters of vibration signals with a great accuracy. In

addition, the MODWPT signal processing technique is proposed as a robust method

for processing the acquired acceleration signals. The combination of these techniques

promises to facilitate the processing of acceleration signals and yield a precise inter-

pretation of vibration signals. By leveraging these techniques, it is expected that the

proposed method will serve as a reliable means of detecting the wheel condition at the

workshop and maintenance operation centres of the tram vehicle.

The processing steps and overall concept of the proposed method are illustrated in

Figure 3.1. A selective framework is designed to o�er a comprehensive analysis of the

state of railcar wheels during railroad drive operations. This framework employs a sys-

tematic approach that aims to identify any potential issues with the wheels, allowing for

prompt maintenance, and ensuring a safety of railcars during railroad drive operations.

In brief, the processing steps that are used for the detection of the wheels condition are

presented as the following.

1. Data collection.

The method begins with the collection of vibration signals from railway tracks

using MEMS-based accelerometer sensors. These signals, which represent track

vibration are represented by acceleration signals in three axes. The measurement

data is saved in embedded memory or radio transmitted to a local repository.
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Figure 3.1: Processing steps of the method

2. Data processing.

The collected data is then processed using MODWPT. MODWPT is applied to the

collected acceleration data to extract informative frequency bands. The parameters

of MODWPT are derived from �eld tests carried out on rail tracks during railroad

drives.

3. Analysis of MODWT coe�cients.

By analysing the MODWPT coe�cients, the MODWPT assesses vibration energy

within the characteristic frequency bands which are used as the measure of anoma-

lies of the vibration signals. Anomalies in these bands serve as indicators of wheel

condition, allowing for the detection of wheel faults.

3.2 Application of MEMS-based sensors

The �rst step of the proposed method relies on the e�ective collection of vibration data.

Preliminary tests show that accelerations of the rail track correctly map the vibration

signal. Accelerations in the three axes are measured in order to include the e�ects of

di�erent kinds of wheel fault conditions which may cause movements in the speci�c axis

of the track. The condition of the track, sleeper type and ground parameters a�ect

the vibration image. Damaged sleepers and loose ground contribute to the spectrum of

vibrations in various ways, especially by increasing the amplitude of vibrations. In order

to account for such acceleration deviations, the acquisition process needs to be carefully

devised.

For instance, hardware-based �ltering in the frequency domain is commonly used

to reduce or alleviate interference signals corrupting the measured physical quantity.

However, hardware �ltering of signals in the frequency domain may delete signi�cant
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Figure 3.2: Raw acceleration data from an acceleration sensor

indications of vibration anomalies. Increasing the resolution of collected data, in place

of �ltering can enable to retain of details masked by the disrupting sources. Higher

resolution brings the ability to analyse superimposed signals with large di�erences in

values. It also enhances the accuracy of processing for correct calculation of the transform

coe�cients when the technical track conditions are poor.

Preliminary studies show that the frequency bandwidth of vibrations signal that sig-

ni�cant for evaluating the condition of wheels falls within a few hundred Hz. The limited

ranges of such vibration frequencies open up a great opportunity for applying MEMS-

based sensors, particularly in wheel fault condition monitoring. MEMS devices that are

widely accessible have the capability to capture acceleration data at a frequency of several

thousand times per second. The measured acceleration values span across ranges that

surpass hundreds of [m/s2] Murphy [2017]. These devices can provide analogue output

signals representing accelerations or digital outputs streaming data containing measured

acceleration values. Data streams can be treated as discrete-time-series signals.

For instance, the Figure 3.2 presents an excerpt of a graph of raw acceleration data

collected by an accelerometer during a railroad drive. The accelerometer is mounted on

the rail track and measures accelerations in three axes (x, y, z). The x-axis values are

gravity-biased because the sensor was attached to the web of the rail. Each sample num-

ber corresponds to a speci�c point in time during the railroad drive when the vibration

data was collected.

The list of parameters of the MEMS sensors that can be used for collecting vibration

is elaborated in Table 3.1. These are examples of sensors for applications in robotics,
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Table 3.1: Examples of MEMS-based acceleration sensors suitable for measuring track
vibrations caused by railcars

Manufacturer Device series Measuring range,
sampling rate Resolution [m/s2]

Analog Devices ADXL357 ±10g, 4kHz 0,0002
STMicroelectronics LIS2DUX12 ±8g, 800Hz 0,002
STMicroelectronics AIS3624DQ ±6g, 1kHz 0,03

Bosch BMA400 ±8g, 800Hz 0,04
Kionix KX132-1211 ±8g, 1600Hz 0,002

condition monitoring and for use in the Internet of Things (IoT) devices. The highest

resolution equals 1/220 of the measurement range (the sensor incorporates a 20-bit ADC)

and if the range is ±10g it means the sensor has the ability to distinguish acceleration

values of 0,0002 [m/s2]. Some sensors incorporate 16-bit ADCs which give resolutions of

0,002 [m/s2]. The most common sensors are equipped with 12-bit ADC (the bold row

series of sensor in the Table 3.1 giving lower resolutions which are adequate for obtaining

and processing vibration data for identifying the wheels condition. For this study, the

STMicroelectronics, AIS3624DQ sensors with a measuring range and sampling rate of

±6g, 1 kHz and with a resolution of 0.03 is considered.

Figure 3.3 illustrates the scaled example of the acceleration data collected by a MEMS

sensor at the precise moment when the wheelset passes over the sensor. The accelerations

of the rail are quanti�ed through the deployment of a sensor positioned beneath the

track, which records data as the tram progresses at an approximate speed of 2 [m/s].

The sampling rate is set to 1 kHz. The values of the lateral accelerations are shown

and the raw data is converted to absolute acceleration values. There are two distinct

scenarios of lateral acceleration signals (wheel impact signals and rolling wheels signal)

collected by the sensor from a railway wheel during a railroad drive:

Figure 3.3 a) shows signi�cant spikes in the lateral acceleration signals at speci�c

instances (around 503 [s] and 525 [s]) due to wheel impact at the rail joint. The wheel

impacts cause a sudden increase in lateral acceleration due to the physical interaction

between the wheel and the rail joints. This could be indicative of potential anomalies

resulted on wheels surface due to rail joints.

Figure 3.3 b) shows a more consistent yet �uctuating pattern of lateral acceleration

signals between the impacts. This may represents the normal operation of rolling wheels
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Figure 3.3: Samples of acceleration data collected by MEMS sensor (a) wheel impacts
at rail joints; (b) rolling wheels

where no direct impacts like those at rail joints are occurring. This indicates that the

vibration signals has strong relations with the operating condition of the wheels.

To analysis the vibration signals of the railcar wheels, the measurement data is saved

in embedded memory or radio transmitted to a local repository. In order to facilitate

e�cient processing and to retain accuracy it is advisable to keep the raw format of the

measurements.

3.3 Maximal overlap discrete wavelet packets trans-

forms

The wheel fault irregularities produce disruptions in the frequency spectrum of recorded

acceleration signals. The acceleration signals generated under such circumstances exhibit

non-stationary behaviour, and the analysis based on the Fourier transform is restricted

in its ability to e�ectively extract the characteristic frequency spectrum of these signals.

A maximal overlap discrete wavelet packet-based approach is proposed for processing

the acceleration data collected under such a scenario.

The MODWPT is a powerful technique utilised for exploring the frequency charac-
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teristics of data. Its advantages include time-frequency localization, energy compaction,

multi-resolution analysis, and noise reduction. This approach enables the examination

of signals at various resolutions, making it well-suited for analyzing signals with diverse

scales or frequencies. Furthermore, MODWPT can identify signal faults as it o�ers a

precise and concise representation of signals, which can be used to describe anomalies.

The MODWPT is a transform method that remains unchanged over time and breaks

down an input signal into numerous coe�cients. Unlike other discrete wavelet trans-

forms, the MODWPT does not reduce the input signal by half or lose its coe�cients

at various decomposition levels Walden and Cristan [1998], Shrifan et al. [2021]. This

implies that all the decomposition coe�cients are directly linked to their respective time

series, ensuring consistent pass-band duration at each stage of decomposition. The length

of the resulting coe�cients matches the length of the input signal. To decompose the in-

put signal, the low and high-pass �lters are used in the MODWPT to produce a uniform

frequency output bands.

The acceleration measurement registered for the rolling wheel sample data points

looks the same making it di�cult to distinguish fault wheel acceleration data from good

wheel condition. To discern the contrast between these sets of sample data, it is im-

perative to pinpoint a unique eyeglass and thoroughly examine the signal in the other

window.

MODWPT is chosen as the tool for processing these samples of data. This trans-

form algorithm enables gaining a more comprehensive understanding of the underlying

patterns and variations in the data. This transformation exhibits resilience against the

absence of translation invariance by maintaining invariance to circular shifts within the

data samples. This attribute is particularly bene�cial for the identi�cation of signal

anomalies, ensuring that the detection process is not hindered by the positioning of the

data points.

The mathematical representation of MODWPT entails a series of procedures. MOD-

WPT is the analysis method that breaks down a signal into smaller sub-bands by repeat-

edly applying the discrete wavelet transform. The initial phase involves using the DWT

on the input signal, followed by organizing the resulting coe�cients into a binary tree

structure called the wavelet packet tree, which represents di�erent sub-bands as shown
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Figure 3.4: Undecimated wavelet packet tree coe�cients for a signal X at the 3rd level
of decomposition using MODWPT.

in Figure 3.4.

At each node in this tree diagram, MODWPT identi�es the sub-band with the highest

energy and applies another DWT to it. This recursive process continues until a speci�c

decomposition level is achieved. The details of the MODWPT algorithm is demonstrated

in the undecimated wavelet packet tree of the Figure 3.4.

For a discrete-time sequence X={x0, x1, x2, . . . , xN−1} comprisingN samples obtained

from the MEMS sensor at sampling rate fs, the MODWPT decomposition coe�cient is

computed by convolving X with a subset of low-pass scaling �lter (gk : k = 0, 1, . . . L−1)

and its quadrature mirror high-pass wavelet �lter (hk : k = 0, 1, . . . L − 1). Here, L

denotes the length of the �lter and must be lesser than or equal to N. The two �lters are

interrelated according to the Equation 3.1.

hk = (−1)kgL−K−1, gk = (−1)khL−K−1 (3.1)

The �lters are scaled by a factor of 1√
2
to maintain energy conservation. The mathe-

matical representation of these scaled �lters is given as hk = hk
1√
2
and gk = gk

1√
2
. The

relationship between the corresponding transfer functions of the scaled �lters is expressed
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as follows:

Gk(f) =
L−1∑
k=0

(−1)gke
−j2πfk, Hk(f) =

L−1∑
k=0

(−1)hke
−j2πfk (3.2)

The MODWPT coe�cients are computed using an iterative method, as illustrated in

Figure 3.4. Initially, X undergoes circular processing and �ltering through gk with its

corresponding transfer function Gk(f) to produce the initial set of scaling coe�cients,

denoted asW1,0 = {W(1,0,k)k = 0, 1, . . . , N−1}. Similarly at this stage, X is subjected to

circular processing and �ltering through hk, along with its respective transfer function

Hk(f) to yield the �rst set of wavelet coe�cients given by W1,1 = {W(1,1,k) : k =

0, 1, . . . , N − 1}.

Subsequently, for levels j greater than or equal to 1, the �lters at each level is extended

by inserting 2(j−1) − 1 zeros between the coe�cients of low and high pass �lters (gk, hk)

respectively. The placement of 2(j−1) − 1 zeroes in between the �lter coe�cients takes

into account that there is no downsampling. The alteration of the transfer function

representing the sequence-ordered changes with a level of decomposition is determined by

the relationship between Gk(2
(j−1)f) andHk(2

(j−1)f) correspondingly. This computation

is iterated to obtain the next level of wavelet coe�cients: W2,0,W2,1,W2,2,W2,3. This

process continues until it reaches a desired level of decomposition.

The MODWPT coe�cients at node (j, n) are;

Wj,n,m =
L−1∑
k=0

fn,kWj−1,

∣∣∣∣n2
∣∣∣∣, (m− 2(j−1)k)mod N (3.3)

where,

fn,k =

 gk if n mod 4=0 or 3

hk if n mod 4=0 or 3
(3.4)

At each decomposition level, there are a total of 2(j−1) frequency bands, n- refers to

the speci�c frequency band number at that level and `mod' means modulus after division.

The energy of a signal captured by the MEMS sensor is expressed using MODWPT

coe�cients at jth level of decomposition and the values of the energy at a given level is

68



Chapter 3: MODWPT-based wheel condition assessment

calculated using the following equation:

||X|| =
2j−1∑
k=0

||Wj,n||2 (3.5)

The norm vector, ||X|| represents the total energy across all frequency bands in the sensor

samples. The sampling rate fs establishes both the frequency ranges of the bands bjn at

a speci�c decomposition level j, and it also determines the resolution of the frequency

analysis for signals.

bjn =

{
n

(
fs
2j

)
, (n+ 1)

(
fs
2j

)}
(3.6)

The energy levels of the signal within speci�c frequency ranges provide insights into

potential faults in the wheels. The objective of conducting MODWPT signal analysis is

to identify high-energy frequency bands or frequency bands with extraordinary energy

values. For a normal wheel, the baseline vibration energy level is determined as the

average of frequency band energies, thereby representing typical operating conditions

on the analysed rail track. Identifying the frequency band with the highest energy can

serve as an indication of any wheel faults arising from irregularities on its surface. By

monitoring these peak positions throughout tram journeys, it becomes possible to map

out the instances of faulty wheel elements during operation.

Base wavelet for vibration energy calculation

The sensor registers vibrations in the rail caused by the rolling tram wheels and much

higher vibrations caused by impacts of the wheels at rail joints. The rail segments at the

depot are not welded together so the segments, during the tram passage, warp generating

high amplitude accelerations of the rails that e�ectively mask the e�ects of wheel faults

Figure 3.3 a). Cutting out the impacts from the collected sensor dataset gives data for

assessing wheel conditions Figure 3.3 b).

The energy of vibration in characteristic frequency bands is chosen as the measure

for assessing the condition of wheels. The MODWPT properties are de�ned by the

base wavelet in consequence this sets up the energy evaluation. The base wavelet de-

�nes the ability to e�ciently approximate particular behaviour of the vibration signal

with few nonzero wavelet coe�cients. The candidates for evaluation are Daubechies

69



Chapter 3: MODWPT-based wheel condition assessment

wavelets, Symlets and Coi�ets. Wavelets with 3 vanishing moments are used for eval-

uation. MODWPT with such wavelet bases can be e�ciently calculated using modest

processing resources.

The 9th level of decomposition is arbitrarily chosen for the comparison of the energy

calculation properties using MODWPT with di�erent base wavelets. At this level of

decomposition, when the sampling rate equals 1 kHz, the resolution of frequency analysis

is about 1 Hz which is common in vibration analysis tasks. The ability to resolve the

di�erence between wheels in good and bad condition is adopted as the appraisal criterion.

A random pair of datasets mapping fault-free wheels and wheels in bad condition

is transformed using MODWPT with Daubechies, Coi�ets and Symlets base wavelets.

Datasets contain 4096 acceleration samples mapping the vibrations. The resultant coef-

�cients are used for calculating the vibration energy in the frequency bands determined

by the level of decomposition.

Figure 3.5 a) presents the vibration energy spectrum of a fault-free wheel. There

are small peaks of vibration energy at 160, 166 and higher peaks at 432, 437, and 442

Hz. Their values do not exceed 0.015. Figure 3.5 b) indicates the fault condition,

with a distinct peak of energy at 421 Hz reaching 0.02. This peak signi�es resonant

frequencies where excessive vibrations occur due to bad wheel conditions. Figure 3.5 c)

superimposes the energy spectra of both fault-free and fault conditions for comparison.

It is evident that there is a signi�cant increase in energy at speci�c frequencies when a

fault is present, indicating abnormal vibrations."Bad wheels" can be clearly identi�ed

as the energy peaks do not overlap.

The energy values obtained using MODWPT with Daubechies and Symlets base

wavelets coincide, whereas Coi�ets give higher values and steeper peaks. MODWPT

with Coi�et3 base wavelet gives 40% higher energy values focused in single frequency

bands of the decomposition. The energy peaks are distinct and steep. Other pairs of

collected vibration data give similar results.

The MODWPT with the Coi�et base wavelet approximates better the behaviour of

the vibration signal of the rails generated during railcar drives. Regardless of the type

of wavelet, the extraction of vibration energy based on the MODWPT coe�cients yields

comparable outcomes. For the same level of decomposition, changing the base wavelet
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Figure 3.5: Relative energy of the vibrations a) fault-free wheel, b) "bad" wheel, c) both
fault-free and "bad" wheel. Marked by: solid line - Daubechies base wavelet, dotted line
- Coi�et base wavelet, dashed line - Symlet base wavelet.

does not alter the frequency bands characteristic for describing the wheel conditions.

3.4 Analysis of signal anomalies - wheel fault indica-

tions

The properties of the MODWPT coe�cients are determined by the base wavelet type

and the level of decomposition. Di�erent wavelets such as Daubechies wavelets, Coi�ets,

and Symlets can be considered for use due to their distinct characteristics. The frequency
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resolution of the analysis is de�ned by the chosen level of decomposition. The important

optimisation criterion is the complexity of calculations as the signals from MEMS sensors

are usually processed using microcontrollers.

The task of �nding the energy frequency band and parameters of MODWPT which

most distinctly distinguish the condition of the wheel is the base of the analysis. It

can be formulated as a discrete optimisation problem as the variables are discrete. The

weighted di�erence, DW between values of energy in the frequency band for a wheels in

the fault condition, Ef and for a wheels in the good condition, En is proposed as the

measure of the ability to distinguish the wheels condition.

DW =
Ef − En

En

(3.7)

It is assumed that the wheels in bad condition generate higher energy values in char-

acteristic frequency bands than wheels in good condition. The energies are calculated

using MODWPT coe�cients determined by the transform parameters. These are base

wavelet type - w, decomposition level - i and the number of the frequency band of the

decomposition - n. The width of the frequency band may be advantageously extended to

take into account the behaviour and characteristics of the signal in neighbouring bands of

the decomposition. The largest extension may cover the whole spectrum of frequencies.

The extended width is de�ned as the number - k of combined frequency bands at the

current decomposition level.

The resulting search has four parameters which depend on the condition of the rails

at the depot, the kind and size of wheel faults which require maintenance and the speed

of travelling of the tram. The goal is to �nd the parameters de�ning the frequency

bandwidth and the largest di�erence of energies between normal and faulty wheels,

using vibration data from tests at the tram depot. The tests are representative of the

standard operating procedures for the arrival and departure of trams.

The objective function is:

DW (w, i, k, n) =
Ef

(
n(fs

2i
), (n+ k)(fs

2i
)
)
−En

(
n(fs

2i
), (n+ k)(fs

2i
)
)

En

(
n(fs

2i
), (n+ k)(fs

2i
)
) (3.8)
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expressed using wavelet coe�cients:

DW (w, i, k, n) =

n+k∑
j=n

∥wi,l,f∥2 −
n+k∑
j=n

∥wi,l,n∥2

n+k∑
j=n

∥wi,l,n∥2
(3.9)

where: w− base wavelet of the transform, i− decomposition level, k− number of neigh-

bouring (slots) frequency bands, n− width of the frequency band. Each MODWPT

coe�cients of wheels in a good (wi,l,n) and in a fault conditions (wi,l,f ) are calculated us-

ing Equation (3.3) and the absolute vibration energy values of each variable is computed

using Equation (3.5).

The solution de�nes the parameters of calculating the MODWPT, for determining

the indicative frequency band, using a set of samples from a MEMS-based acceleration

sensor. This solution takes into account the conditions of performing tests that represent

the real-world dispatch or arrival of trams at the tram depot. The mid value between

the minimum energy of fault wheels (minEf ) and maximum energy of normal wheels

(maxEn) in the obtained frequency band, is taken as a threshold (TH) for detecting the

fault wheels condition.

TH =
minEf (

nfs
2i
) +maxEn(

nfs
2i
)

2
(3.10)

The energy of vibration, in the frequency band, above the threshold TH signals a faulty

wheels condition. The resultant detection threshold is determined by the state of the

rails at the tram depot which de�nes the vibration image registered by the MEMS sensor.

Consequently, the implementation of the method may necessitate updates in response

to alterations in the wheels-rail conditions at the tram depot.

The optimisation problem is subjected to the following constraints:

- wavelet types: w = {Db, coif, sym},

- N - number of frequency bands at decomposition level i,

- number of decomposition levels: i = {1, . . . , log2(N)},

- number of combined frequency bands: k = {0, . . . , N},

- frequency band number: n = {0, . . . , N}.
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3.4.1 Length of sensor datasets

The length of sensor datasets used for fault detection is another factor determining the

success of analysis using MODWPT. Small datasets limit the permissible decomposition

level and this decreases the frequency resolution of the transform. Wide frequency bands

may lose indications of the fault conditions. The length of time required for sample

collection is based on the volume of samples being processed. This time frame is limited

by the time gap between consecutive impacts of the tram wheels, which in turn relies on

the speed of the tram and the distance between rail joints. When manoeuvring at a tram

depot, the number of samples can reach thousands when utilising a sensor sampling rate

set at 1 kHz.

In the �rst step, to limit the search for the solution, the frequency resolution is

restricted to 1 Hz. This value is common for describing the vibration properties of

objects. Taking into account the distance between rail joints and the manoeuvring

speeds the time lapse between rail joint impacts can fall in the range of 6 to 12 seconds.

This observation and the use of 1 kHz sampling rate determine the number of samples,

in the dataset, to be in the interval of 6000 to 12000, which can be used for describing

the wheels condition. The size of the dataset in turn determines the possible range of

decomposition levels which can be applied to obtain MODWPT coe�cients and calculate

vibration energy.

At a de�ned decomposition level the dataset size determines the number of samples

used for computing a single coe�cient. A small number of samples gives a coe�cient

sensitive to signal disruptions. The smallest number of samples for applying MODWPT

at the 9th level of decomposition is 29 = 512.

Figure 3.6 illustrates the changes in the value of DW which is the measure of the

ability to distinguish the condition of wheels, for di�erent dataset sizes and a range of

decomposition levels. The base wavelet of the MODWPT is coif3 as this gives the best

vibration energy evaluation. The dataset samples size is limited to 12000, which accounts

for the largest time intervals between rail joint impacts.

The DW values for decomposition levels 4 to 6 are small and change little in the whole

range of sensor data sizes. These decomposition levels give frequency resolutions in the
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Figure 3.6: DW values relative to the level of decomposition - dl, calculated using MOD-
WPT with coif3 base wavelet

range of 32 - 8 Hz which may be inadequate for distinguishing the wheels' condition.

Higher decomposition levels give larger DW values, but decrease with the sample data

size, up to the sample data size equal to 6000, from there on the DW graphs behave in

a similar way as in the case of the lower decomposition levels. The DW value fall starts

about the dataset size equal to 3600. The behaviour of the DW for the 9th decomposition

level is volatile.

In order to obtain stable evaluations of the DW function, the 7th or 8th level of

decomposition is appropriate. The dataset size can be set to 3600. This size safeguards at

least 28 or 14 samples for calculating a single coe�cient at the determined decomposition

levels. A large set of samples e�ectively suppresses signal disruptions. The collection of a

set of 3600 samples is done in approximately 4 seconds, which is suitable for conducting

a real-time diagnosis of the wheels condition.

3.4.2 Number of vanishing moments of the wavelet �lters for

vibration energy calculation

In the next step, the idea of combining the vibration energy of neighbouring frequency

bands is abandoned. This approach reduces the number of variables of the objective

function DW (w, i, k, n) to 3: w - wavelet type, i- is the level of decomposition, n �

number of the frequency band and reduces the complexity of the optimisation task. The
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Figure 3.7: DW function values for the changing number of vanishing moments of the
Coi�et base wavelet

number of the frequency band, in the decomposition, indicates the range of frequencies

of the band.

Description of the vibration signal using MODWPT, with Coi�et3 base wavelet, co-

e�cients, gives the best results, a question arises as to whether this can be improved.

Modi�cation of the base wavelet by increasing the number of vanishing moments brings

"smoother" approximations of the vibration signal which can be advantageous in calcu-

lating the vibration energy and DW value. The comparison of DW values for evaluating

the impact of vanishing moment change of the base wavelet - Coi�et, is done.

The stem plot in Figure 3.7 illustrates the change of DW in the function of the

number of vanishing moments of the Coi�et base wavelet. The 8th level of decomposition

is applied and the dataset consists of 3600 samples. There is a slight �attening increase

of the DW value as the number of vanishing moments grows. This increase aids in

distinguishing between signals from good and faulty wheels. At this point, it becomes

evident that the vibration energy di�erence between signals varies, with the faulty wheel

energy consistently higher.

Increasing the number of vanishing moments of the wavelets �lters improves the DW

value but at the cost of computational complexity which may be prohibitive when the

calculation is done and implemented in an embedded microcontroller-based device. The

preferred wavelet base is Coi�et with 3 vanishing moments - coif3.

76



Chapter 3: MODWPT-based wheel condition assessment

3.4.3 Level of decomposition for vibration energy calculation

In the �nal step of limiting the search for the solution, the level of decomposition comes

under scrutiny. Commonly a 1 Hz resolution of analysis is used so it implies the use

of the 9th level of decomposition when a 1 kHz sampling rate is used. As the graph in

Figure 3.6 shows the 9th level of decomposition gives volatile results when calculating

the DW value. Other candidates are the 7th and 8th level of decomposition which give a

4 and 2 Hz resolution.

Figure 3.8: Relative energy of the vibrations a) fault-free wheel, b) "bad" wheel, c) both
fault-free and "bad" wheel. Decomposition levels marked by: dash-dotted line - 6th, solid
line - 7th, dashed line - 8th, dotted line - 9th.

The comparison of results of using di�erent decomposition levels for evaluating the

wheel conditions is presented in Figure 3.8. Relative energy graphs calculated using 6th
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to 9th decomposition levels illustrate the ability to distinguish good and bad wheels.

Figures 3.8 a), b) show energy islands with widths equal to the width of frequency

bands resulting from the decomposition level. This con�rms that abandoning the idea

of combining neighbouring frequency bands is justi�ed.

The enlarged excerpt of the spectrum Figure 3.8 c) details the intervals characteristic

for separating the wheel conditions. In the case of the 6th level of decomposition the

interval is equal to one frequency band of the decomposition which is 8 Hz. Similarly

the 7th level gives also an 8 Hz separation but this represents 2 frequency bands by

�ltering the bands using a dyadic �lters (2i, i = 0, 1, 2, 3) starting from the ninth level of

decomposition.

At the 8th and 9th decomposition levels, the generated frequency interval for the

separations wheel conditions are much larger, speci�cally 12 Hz and 10 Hz, which in

turn corresponds to 6 and 10 frequency bands. This means that the signals are broken

down into smaller and distinct frequency ranges, allowing for a more detailed analysis

of the signal. Table 3.2 contains the frequency description for di�erentiating the wheel

conditions.

Table 3.2: Wheel condition description

Decomposition Peak frequency [Hz] Distance
DW

level fault-free "bad" wheel ∆ [Hz] freq. bands

6 433 425 8 1 3
7 431 423 8 2 6
8 433 421 12 6 9
9 432 422 10 10 10

When evaluating the condition of wheels, it is important to take into account the

frequency bands that separate the wheels in good and bad condition. A larger number

of frequency bands makes it easier to di�erentiate between the two conditions, as it

allows for a more precise evaluation. However, it is important to note that small errors

in energy calculation may cause changes in the peak energy frequency bands, which

can a�ect the accuracy of the evaluation. To ensure a more robust evaluation, it is

recommended to have a large number of separating frequency bands, as this provides a

more rugged margin of evaluation.

The level of decomposition in the MODWPT signi�cantly in�uences the resolution
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of the signal and therefore a�ects the ability to assess the wheel condition. The higher

levels of decomposition enable �ner resolution in frequency bands, which is essential for

identifying sharp changes in vibration signals. With an increased level of decomposition,

the width of frequency bands decreases, allowing for more detailed frequency information

to be captured. This detail is crucial for extracting speci�c anomaly frequencies that

may indicate wheel defects.

In contrast, lower decomposition levels result in wider frequency bands that can blend

various components together, making it di�cult to distinguish between normal and faulty

wheel conditions as distinctive features might be masked. In short, the wider frequency

bands at a lower decomposition level may lead to decreased resolution, making it more

challenging to accurately identify wheel conditions.

The �ndings prove that the 8th decomposition level utilising coif3 wavelets base o�ers

an optimal combination of computational e�ciency and reliable condition assessment

capability.
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4
Validation of the Method Using Field Test

Data

The proposed method is validated at the main tram depot of Tramwaje �l¡skie, S.A.,

which is the largest tramway operator in the Silesian Region in Poland. The company

provides tram services for the Upper Silesia Region in Poland. The depot is responsible

for the maintenance of more than 130 trams. The company strives to enhance the oper-

ational maintenance of its tram �eet. The primary objective is to tune the parameters

of the proposed method to obtain a robust solution for assessing the condition of wheels

of dispatched and arriving trams.

Figure 4.1 presents the block diagram of the actions used for the validations of the

method. A prototype recording device based on a MEMS acceleration sensor is used

to collect vibration data. The collected data is transformed using MODWPT with

parameters determined in the course of the design of the proposed method by selecting
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Figure 4.1: The block diagram for validating the wheel condition assessment method

the most valuable base wavelet. These base wavelet of the transform is mainly the

Coi�et with 3 vanishing moments, the 8th level of decomposition is applied, and the

characteristic frequency band of 420 � 422 Hz clearly determines the condition of wheels

within which fault conditions experienced.

The coe�cients of the transformed acceleration data are used to calculate the energies

of the vibration in frequency bands of the decomposition. The energy values are stored

in the repository and are used to calculate the threshold for detecting faulty wheels. A

number of drives with known wheel conditions are done to set up TH - the reference

threshold. The value of the threshold is henceforth updated every new railroad drive
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of the dispatched or arriving trams. This value is used to evaluate the condition of

the wheels. If the current energy value in the characteristic frequency band surpasses,

the threshold of a wheel fault is signalled. The size of the DW can be a measure of the

wheel condition. A higher DW value indicates a more serious condition requiring manual

inspection.

4.1 Test site and the acceleration sensor

The tram depot includes repair workshops, test tracks and complex facilities for re-

generating wheelsets of trams. The process of regenerating wheelsets involves di�erent

machining operations (molding, turning, facing, drilling) for evaluation of the condition

of the wheels, reconstruction of damaged wheels and testing. The depot has a very long

history of operation and the sta� is experienced in inspecting, repairing and maintaining

overall operations of tram vehicles. Their attitude favours testing new solutions for en-

hancing the depot's operation. A large spectrum of faulty wheels is available for testing

and a suitable piece of track is ready for tests.

The tram depot is equipped with several rail tracks, which are utilised to e�ectively

organise the movement of trams within the premises. The chosen rail track for the

tests consists of grooved rails type 59R1 (Ri59) 18 m long placed on concrete sleepers.

Consecutive rails are not welded so the track vibrations transferred from rail to rail are

highly dampened. The prototype vibration recording device containing a MEMS-based

acceleration sensor is attached to the foot of the rail - Figure 4.2 b). A special metal

bracket is used for reliable vibration transfer. The device may also be attached, using a

strong magnet, to the web of the rail Figure 4.2 a).

The prototype vibration recording device contains a 3-axis MEMS accelerometer

sensor. The measurement ranges are ±6g, ±12g and ±24g. The accelerometer has

been quali�ed according to AEC-Q100 standards, making it suitable for operating in

challenging environmental conditions. The MEMS prototype is self-powered and it is

able to record acceleration measurements for several weeks. Through various testing

procedures, the most e�ective measurement range was established. The established

measurement range is ±6g and this range enables the registration of impacts at rail

joints without �overloading� the sensor and also, this ranges gives large signal values
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Figure 4.2: Sensor prototype mounted a) on the web of the rail, b) on foot of the rail

during wheel rolling operation. The accelerometer has a digital output and provides a

stream of data with a resolution of 1/212 of its range. The highest sampling rate equals

1 kHz.

4.2 Data �ltering

The stream of acceleration data is stored in an embedded memory or it may be radio

transmitted to a repository. During the tests, the option of local storage is used. Several

recording sessions were carried out. A recording session is performed during a railroad

drive of a tram on the test track. Trams with wheelsets in di�erent conditions were

driven. Figure 4.3 shows the results of a recording session with graphs of acceleration

values for wheelsets in good condition (a) and wheelsets with "�at" wheels (b).

The graphs present rolling vibrations alternated with impact images when the tram

wheels pass rail joints. The amplitude of the impact vibrations is much higher than

rolling. The acceleration values are raw data from the ADC of the sensor. The sensor

contains a 12-bit ADC providing values in the range [-2048, 2047] which covers the

measuring range in the tests that are ±6g.

Figure 4.4 presents a 0,1 [s] excerpt with data converted to absolute acceleration

values. The sensor is mounted to the web of the rail in such a way that the x-axis

data is biased by the earth's gravity and maps up-down accelerations of movements of

the rail, y-axis data maps accelerations along the rail, whereas z-axis values represent
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Figure 4.3: Samples of acceleration values for wheelsets; a) good condition and b)
wheelsets with "�at" wheels

accelerations of movements perpendicular to the length of the rail. The values do not

exceed 2 [m/s2] which is about 1/60 of the measuring range.

The perpendicular accelerations have the highest amplitudes as illustrated in the

Figure 4.4 c) surpassing twice the accelerations in other axes. The source of these

vibrations is not clear it may originate from the side movements of the wheelsets during

the drive.

Damaged wheels especially with deformations of the wheel surface act on the rail in a

hammer-like way causing up-down movements which are visible in the x-axis acceleration

data as demonstrated in the Figure 4.4 a). This stream of data is the candidate for

extraction of wheel condition indications. Comparable acceleration values are measured

in the y-axis, shown in Figure 4.4 b).

The employed MEMS-based acceleration sensor includes an advanced noise-�ltering

circuit which adapts the cut-o� frequency to the programmed sampling rate. This ensures
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Figure 4.4: Samples of acceleration values for wheelsets; a) x-axis b) y-axis c) z-axis

a reliable conversion of accelerations using the embedded ADC.

The elapsed time between rail joint impacts varies in the time bracket 6 to 12 sec-

onds that is 6000 to 12000 samples when the sampling rate equals 1 kHz. The size of the

time bracket depends on the tram's speed during the railroad drive and on the distances

between the wheelsets of the tram and on the distance of wheels of the wheelsets. Com-

plying with the results of the search for the best dataset length in order to safeguard a

"clean set" of rolling vibration data and to obtain a high DW value, 3600 samples are

cut out of the data stream between impacts.

A moving average of the incoming acceleration values is used as an indication of the

start of the rolling period. The length of averaging the incoming samples is chosen to

match the size of the impact. A number of tests were carried out and the value of 1000

proved satisfactory. During the tests, a rolling threshold was also determined. When the

average of the previous 1000 samples falls below the rolling threshold it signals the start

of rolling data. The start signal triggers the assembly of the dataset for the MODWPT.
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The next set is assembled when the average sustains a rise and falls again. The collected

sets of data - packets are passed to the MODWPT calculation step. The packets contain

3600 samples of x-axis acceleration values.

4.3 MODWPT-based energy results for test drives

The goal of transforming the data packets is to obtain vibration energy values in fre-

quency bands which describe the properties of the vibration signal. The vibration energy

proves credibility for assessing wheel anomalies such as faults. MODWPT is applied to

obtain description coe�cients which are used to calculate energy values. The proposed

method de�nes the appropriate base wavelet of the transform and the necessary decom-

position level in order to achieve e�ective results for describing the energy characteristics.

MODWPT with base wavelet coif3 is applied to the collected data packets. The

MODWPT coe�cients at the 8th level of decomposition are used to calculate energy

values of the vibration signal in the frequency bands of the decomposition. Railroad

drive tests were done using di�erent trams.

Figures 4.5 and 4.6 present energy variation of the rolling data calculated using

the MODWPT coe�cients for two exemplary test drives sessions. Theses test drives

sessions were carried out using trams with di�erent wheels and wheelsets condition. The

sampling rate is 1 kHz so the width of the frequency bands comes to about 2 Hz. In these

�gures, the normal wheel data and "�at" wheel data are graphed. The relative energy

graphs presented in these �gures map data from packets collected during the two test

sessions. Each test drive session consist of a sets of tram drive for the diagnosis of wheels

conditions. These sets of drives have 10-12 packets of characteristic frequency which is

represented with the speci�c tram and wheels as graphed in the following �gures.

The superimposed graphs of the relative energy illustrate the behaviour of the rails

due to rail - wheel contacts during the drive. The graphs slightly di�er but retain the

characteristics. The relative energies values are related to the total vibration energy in

the measured frequency spectrum. The selected trams for test drive had "�at" wheels

and wheelsets in di�erent conditions. There are characteristic high energy islands in

frequency bands at 150-230 Hz and at 400-460 Hz in test session I as illustrated in

86



Chapter 4: Validation of the method using �eld test data

Figure 4.5: Relative energy of the sensor samples (test session I): a) normal wheels, b)
"�at" wheels, c) superimposed normal and "�at"

Figure 4.5. In test session II there is an island at 70 � 110 Hz with twice the energy and

also an island with smaller energy at 170 � 230 Hz and again at 400 � 460 Hz Figure 4.6.

The lower frequency band energies of normal and "�at" wheels, obtained in both test

sessions, almost cover each other, no distinct di�erences can be extracted. The energy

volatility may be assigned to the wheelset conditions. The test track condition may also

add energy islands with characteristic frequencies.

In the case of the higher frequency band, the "�at" wheels have an energy peak in

the frequency band 420 � 422 Hz, whereas normal wheels are 12 Hz further on. This

complies with the results of determining the frequency band with the highest DW value.

The damaged wheel frequency images appear independent from the frequency spectrum

generated by the conditions of wheelsets.

87



Chapter 4: Validation of the method using �eld test data

Figure 4.6: Relative energy of the sensor samples (test session II): a) normal wheels, b)
"�at" wheels, c) superimposed normal and "�at"

4.4 Wheel condition assessment

The obtained energy values for each of the data packets are used for the calculation of

TH - the threshold for determining the wheel condition. A number of railroad drives

are carried out with trams which have "�at" wheels to determine the reference TH. The

way the drives are carried out and the conditions of the trams in�uence the value of TH.

The reference value is chosen to satisfy the worst testing condition for "�at" wheels.

Figure 4.7 presents the characteristics of the test drives session I. The DW values

and energies are calculated for the energy peak of "bad" wheels frequency band 420 �

422 Hz using datasets with 3600 samples. The DW values fall in the range 2 � 9 and

the vibration energy values correspond to the DW values. Taking into account that the
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Figure 4.7: Characteristics of the test drives (session I) a) DW values, b) energies En -
good condition, Ef - bad condition and bad condition threshold - TH

rolling energy of wheels in good condition does not change much, because the test drives

are carried out on the same test track, the higher energies may indicate the size of surface

damages of the wheels.

Table 4.1 demonstrates the energies during test drives session I. The vibration energy

of wheels in good condition is more than twice as small as that of the "bad" wheels. The

scattering of energy values in the case of wheels in good condition does not surpasses

23% whereas for the "bad" wheels reaches up to 30%.

Table 4.1 demonstrates an analysis of vibration energies of ten speci�c tram vehicles'

wheels during test drives. Wheels in faulty conditions were intentionally mounted on the

tram vehicle. Test drives were conducted on the same length of rail track, and repeated

measurements were analysed. The maximum energy resulting from the faulty wheel was

registered at test number six, whereas the minimum energy was registered during test
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Table 4.1: Wheel energies characteristics for a test drives session I

Test drives
session I

1 2 3 4 5 6 7 8 9 10

DW 2 3 4 3 6 9 5 5 2 3
Ef 2800 3300 3915 2835 4270 5390 4800 5240 3655 1930
En 1000 890 760 830 665 550 820 940 1190 530
Ef − En 1800 2410 3155 2005 3605 4840 3980 4300 2465 1400

drive number ten.

For a normal wheel, the same measurement was conducted simultaneously, and the

all-wheel energies registered were much smaller compared to faulty wheel energies. The

variation in wheel energy is signi�cant for faulty wheel conditions. A huge variation of

energy is registered for test drive numbers 5 to 8. An examination conducted veri�ed

the presence of the wheels with worse conditions, which con�rmed that high vibration

energy may be generated by the very bad condition of the wheels.

For the same set of test drives session I, a reference TH is calculated using Equation

3.10 and indicated in the Figure 4.7 b). The range of "�at" wheel energies is signi�cantly

larger. TH is calculated as the mid-value between the highest normal wheel energy and

the lowest "bad" wheel energy. The size of the di�erence between the threshold and

"bad" wheel energy may be a measure of the wheel tyre damage or wheel fault condition.

Similarly, in the test drives session II - Figure 4.8, the vibration energy of selected

tram vehicles was registered and analysed to identify di�erences in vibration energy

resulting from normal and faulty wheel conditions. The numerical values illustrated in

Figure 4.8 b) con�rmed similar conclusions derived from session I. The DW values range

increased up to 15 without a�ecting the TH value assigned for the separation condition

of the wheels. The increase in the DW values supports the di�erentiation of signal

energy resulting from a faulty wheel, and it enhances monitoring operations. Therefore,

the results gained from test drives session II con�rm that a faulty wheel induces much

higher vibration compared to a normal wheel.

Table 4.2 illustrates the vibration energy registered and analysed for a typical �eet of

tram vehicles which are considered in the test drives session II. In this session, the �eet

of tram vehicles is randomly chosen and ordered for the railroad drive test. Likewise

the �rst session drive test, the higher vibration energy resulted from the faulty wheel-
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Figure 4.8: Characteristics of the test drives (session II) a) DW values, b) energies En -
good condition, Ef - bad condition and bad condition threshold - TH

mounted tram vehicle.

For a fault wheel-mounted tram vehicle, the maximum energy was registered at test

drive number 8, whereas the minimum energy was registered during test drive number 1.

Higher energy value variations are registered at test numbers 3, 5, 6, 8 and 9. By closely

looking at the DW value, the maximum DW value of 15 is registered at 6th test drive

number although the maximum energy of the signal is registered for test drive number

8. This show that for DW>0, after a certain limit, the peak DW values are not always

proportional to the peak energy resulting from the signal.

Faulty wheels detection tests using the threshold also prove that the threshold value

is robust to variation of tram speed in the range of 2-7 [m/s] which covers the range of

speeds of manoeuvring trams in the tram depot.

The threshold value for the detection of faulty wheels is susceptible to the conditions
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Table 4.2: Wheel energies characteristics for a test drives session II

Test drives
session II

1 2 3 4 5 6 7 8 9 10

DW 3 4 11 3 10 15 7 11 10 4
Ef 2300 3405 3770 2590 3545 4800 4075 6260 3180 3060
En 510 645 315 670 310 295 520 500 270 580
Ef − En 1790 2760 3455 1920 3235 4505 3555 5760 2910 2480

of the rail tracks within the tram depot area. Poorly maintained rail joints and damaged

sleepers produce substantial vibration signals when trams are in motion, which can

adversely a�ect the collected vibration data. Consequently, this leads to distorted energy

values in frequency bands that do not align with the actual conditions of the wheels.

Wheel energy values and TH values are stored in the repository. The reference TH

obtained in test drives is updated when there is an indication that new data describes

"�at" wheels. The indication may be entered by sta� or it may come from the condition

assessment stage when the evaluated energy surpasses the threshold TH.

The tram depot where the tests were conducted maintains a large �eet of trams in

di�erent technical conditions. The tests were carried out for trams with �at wheels. The

reference threshold TH was applied for the calculated energies in the tests and every �at

wheel was detected. The reference threshold is independent of the vibration spectrum

generated by the conditions of wheelsets. Calculated DW values in the test could be

used to assess the severity of the wheel damage. The results prove that more damaged

wheels have higher values of the DW and generate much higher vibration energies.
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Sensor Node for Wheel Condition Monitoring

Validation of the proposed wheel condition assessment method proves that the applica-

tion of MEMS-based acceleration sensors is e�ective for obtaining the spectrum image

of vibrations. Collected acceleration data can be transformed using MODWPT and the

resultant coe�cient values can be used to describe with su�cient accuracy the condition

of wheels. The practical implementation of the proposed method is determined by the

tram depot resources. The goal is to provide reliable information, for the personnel re-

sponsible for maintaining the tram �eet, on the conditions of being dispatched or arriving

trams.

A least invasive, into the infrastructure of the depot, implementation is highly rec-

ommended. This implies the reduction of wiring needs which involves designing and

putting some cables in the ground within the manoeuvring rail network. Power supply

for functioning may be di�cult to deliver same as carrying out of the transfer of vibra-

tion data for processing. The proliferation of IoT solutions is a chance to satisfy such

limitations of the implementation.
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An IoT solution of the sensor node for wheel condition monitoring determines a

circuit optimised for energy consumption, e�cient wireless communication and for least

maintenance requirements. This gives a construction based on an embedded solution

integrating a transceiver, microcontroller, sensor and power supply. The transceiver

may be combined with the microcontroller, the sensor will be a MEMS-based device and

the power supply must ensure long periods of operation and easy charging.

The energy balance of a sensor node consists of a transceiver, computing and sensing

energy. The transceiver energy consumption dominates as it determines the reliability

of exchanging vibration data within the tram depot which may have a very noisy elec-

tromagnetically environment. Such environments require higher transmitter energies to

sustain error-free communications.

Radio platforms available for developing wireless communications can be split into

licensed platforms strictly governed by radio operators and free-to-use platforms using

proprietary or standardised transmission technologies. Preferable are license-free plat-

forms such as WiFi, Bluetooth LE, LoRa and Zigbee. Transceiver energy consumption

is reduced by selecting the right mode of transceiver operation to ensure the required

range and error rate. The application of sleep/wake and cycling is noted as the most

e�ective approach for saving power.

The transceiver must comply with radio regulations that limit the transmission power

at the antenna. The necessary power for transmitting depends on the modulation schema

and on the e�ciency of the transceiver circuit. The e�ciency of the transceiver circuit

highly depends on the construction of its antenna and matching components. Table 5.1

lists the maximum power requirements of transmissions meeting the radio regulations.

LoRa platform has the lowest power demand and it also has the longest transmission

range. This platform uses spread spectrum modulation which is very resistant to ambient

radio noise.

Table 5.1: Radio platforms power requirements mW

Platform WiFi 2.4GHz BLE 2.4GHz LoRa subGHz Zigbee 2.4GHz

Tx 940 640 150 200
Rx 300 83 33 92

A design is proposed which meets the presented limitations for the construction.
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Figure 5.1: Sensor node: a) schematics, b) antenna model

LoRa radio platform is chosen as the communication basis. MEMS-based sensor quali�ed

for automotive use is chosen for enduring the harsh environment at the tram depot and

the power supply is provided by a Li-ion cell. Additionally, the work parameters of the

device are registered in a �ash memory for potential analysis of its performance. The

functioning and data processing is controlled using a microcontroller.

Microcontrollers are based on CMOS technology and their power requirements are

highly related to the clock frequency. Low-power 32-bit microcontrollers consume about

300µW/MHz which gives around 15 mW at the highest clock frequencies. Such compo-

nents are capable of calculating MODWPT coe�cients. Microcontrollers with integrated

LoRa transceivers are available on the market. These devices can greatly reduce the com-

ponent count of the sensor node design.

The proposed design consists of a microcontroller with an integrated LoRa transceiver,

a low-power MEMS 3-axis acceleration sensor, a �ash memory and a power supply mon-

itoring component to protect the Li-ion battery which supplies energy for the operation

of the sensor node. Figure 5.1 a) presents the schematics. All components are placed on

one side of the PCB the transceiver uses a printed inverted F antenna as shown in Figure

5.1 b). The transmission range reaches a few hundred meters, satisfying the needs of

operation in the tram depot.

The functionality of the construction is de�ned by �rmware stored in the microcon-

troller. The construction can function as a transmitter or as a receiver. The transmitter

collects vibration data from the MEMS sensor and calculates vibration energy values

using MODWPT, the resultant data stream is sent out. The proposed solution incorpo-

rates the receiver connected to a PC at the tram depot. The received stream of vibration
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energy values is processed and the condition of the wheels is evaluated, the results are

presented on the PC. Additional PC software can monitor the behaviour of the sensor

node and the operation of the receiver.

Tests of the prototype - Figure 4.2 prove that it can function for several months with

an 18Wh Li-ion battery transmitting data to a second prototype which functioned as a

repository of vibration data.
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6
Conclusions

The analysis of vibration energy content in di�erent frequency bands proves successful

for assessing the condition of wheels. The condition is manifested by values of vibration

energy in speci�c frequency bands. The highest vibration frequencies, at low speeds

of vehicle movements, do not surpass the frequency bandwidths of commonly available

MEMS sensors. The most common sensors equipped with 12-bit ADCs are adequate for

obtaining, and useful for processing, vibration data for assessing the wheel conditions.

The provisional research hypotheses are successfully con�rmed. The hypotheses con-

stitute the basis of the proposed method for assessing the condition of the wheels of

wheelsets of railcar during a railroad drive. The method de�nes the action steps for

deriving the indications of wheel damage using vibration data collected on the rails

during the drives. Vibration data is collected using a MEMS-based acceleration sensor

mounted on the rail on which the railcar moves. The vertical movement acceleration of

the rail track measurements is transformed to obtain the energy of vibrations. MOD-

WPT with an appropriate base wavelet that is Coi�et with 3 vanishing moments, is used
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for calculating the transform coe�cients. The study proves that the 8th decomposition

level provides coe�cients e�ective for indicating damaged wheels. The frequency range

420-422 Hz is the characteristic band for assessment of the condition of the wheels.

The use of MEMS sensor devices for measuring acceleration signals by mounting

on rail tracks allows for a convenient design of a wheel fault detection system. Highly

integrated MEMS-based sensor devices are small sized, can be attached using brackets or

magnets to the rail track. The calculation of the MODWPT coe�cients for the 8th level

of decomposition, utilising the coif3 wavelet, does not impose excessive requirements on

the computation resources. Therefore, an embedded system incorporating the MEMS

sensor and an advanced microcontroller can e�ectively handle the stream of acceleration

measurements and derive the wheel condition description.

The changes in vibration characteristics mark the initiation of faults within the wheel

systems of railcars. Therefore, vibration-based condition monitoring of railway wheels is

considered to be a vital approach in the conduct of maintenance services. This approach

facilitates early detection of potential problems with wheel systems, enabling timely

maintenance interventions to avoid severe accidents.

The application of MODWPT e�ectively provides a description of MEMS sensor

acceleration signals. The values of vibration energy, calculated using the transform

coe�cients in the frequency bands de�ned by the decomposition level, indicate potential

anomalies of the railroad drive. The anomalies are generated by the technical conditions

of the wheels, wheelsets and rails. Careful analysis is required to appropriately assign the

frequency bands to the sources of anomalies. This study maps the condition of wheels

to the energy in the frequency band 420-422 Hz. It is important to draw attention to

the overall circumstances of the railroad drive. A bad condition of the rail track, loose

sleepers, and high speed of the railcar may change the characteristic frequency band for

assessing the wheel condition.
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Future studies can investigate the mapping of other than wheel conditions, sources of

vibration energy anomalies to characteristics frequency bands. The problem of evaluating

the size and type of wheel damage is challenging and it may require supplementary

measuring tools besides the MEMS accelerometers.

Furthermore, the following future research works are promising and they can be used

as additional thoughts for researchers interested in this �eld.

1. Frequency Band Analysis:

The study of frequency bands can provide valuable insights into the nature of vi-

bration energy anomalies. Di�erent types of wheel damage may produce unique

frequency signatures, which could be used to identify and classify the damage.

Advanced signal processing techniques, such as wavelet transform, or wavelet scat-

tering, could be employed to extract these frequency characteristics.

2. Sensors Integration:

While MEMS accelerometers are e�ective at capturing vibration data, the use of

integrating various sensors type could provide a more comprehensive understanding

of wheels, wheelsets systems and overall railcars conditions. For instance, acoustic

sensors could be used to detect audible changes associated with wheel damage, and

temperature sensors could identify overheating issues.

3. Machine Learning Approaches:

Machine learning algorithms could be trained to recognize patterns in the sensor

data that correspond to speci�c types of wheel damage. This could potentially

allow for real-time detection and classi�cation of wheel damage, improving main-

tenance e�ciency and preventing further damage.

4. Damage Simulation:

To better understand the relationship between wheel conditions and vibration en-

ergy anomalies, it might be bene�cial to conduct controlled experiments or simula-

tions. By intentionally introducing di�erent types and sizes of damage to wheels in

a controlled environment, researchers could directly observe the resulting changes

in vibration energy and frequency characteristics.
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5. Collaboration with Industry Experts:

Collaboration with industry experts could provide practical insights into the real-

world challenges of wheel damage evaluation. Their experience could guide the

design of experiments and the interpretation of results.

In conclusion, the �eld of vibration analysis for condition monitoring of the wheels

of wheelsets of railcar is a complex and multidisciplinary, involving aspects of physics,

engineering, and data science. Therefore, a comprehensive approach that incorporates

various methods and perspectives will likely yield the most meaningful results.
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A
MATLAB Scripts

Listing A.1: DW values syntax function

1 % Processing wheel data for determining the DW values function

2 % between impacts

3 % ax, ay, az acceleration samples

4 % fo = sampling rate 1000Hz (original)

5 % calculation of DW for Daubechies wavelets with 1=10 vanishing moments

6 % at 7th level of decomposition

7

8 clear all

9

10 load n01_n04_normal.mat % wheelnormal raw data (int16)

11 load f01_f03_flat.mat % wheel flat raw data (int16)

12

13 % list of quiet starts for normal wheels

14 pn = [429000, 451000, 480000, 503000, 534000, 557000, ...

15 585000, 607000, 641000, 667000, 705000];

16 % list of quiet starts for flat wheels

17 pf = [298000, 315000, 335000, 350000, 371000, 387000, ...

18 412000, 429000, 454000, 472000, 499000];

19

20 fs = 1000; % sensor sampling rate [1/s]
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21 % wavelet type (sym4, coif4 give similar results)

22 falka = string(["coif1", "coif2", "coif3", "coif4", "coif5"]);

23 % falka = string(["db3", "coif3", "sym3", "db4", "coif4", "sym4", "db5", "coif5", "sym5"]);

24 len = 4096; % number of samples in data set for WPT

25 dl = 7; % decomposition level

26 an = zeros(1,len); % acceleration data vector normal wheels

27 af = zeros(1,len); % acceleration data vector flat wheels

28 DW7 = zeros(length(falka),fs/2); % wheel detection function

29 f = 0; % start frequency of the slot

30 lp = 2^dl; % number of frequency slots

31 en = zeros(length(pn),lp); % energy data vector normal wheels

32 ef = zeros(length(pn),lp); % energy data vector flat wheels

33 men = zeros(length(falka),lp); % energy data vector normal wheels

34 mef = zeros(length(falka),lp); % energy data vector flat wheels

35 for j=1:length(falka)

36 for i=1:length(pn)

37 an = cast(anx(pn(i):pn(i)+len=1), "double"); % normal wheels

38 af = cast(afx(pf(i):pf(i)+len=1), "double"); % flat wheels

39 an = an = mean(an); % mean = reduction of bias

40 af = af = mean(af); % mean = reduction of bias

41 [~,~,~,energy,~] = modwpt(an, falka(j), dl);

42 en(i,:) = energy(:);

43 [~,~,~,energy,~] = modwpt(af, falka(j), dl);

44 ef(i,:) = energy(:);

45 end

46 for dk=1:lp % frequency slot number

47 f = floor(dk*fs/lp/2);

48 if f == 0 f = 1; end

49 mef(j,f) = min(ef(:,dk));

50 men(j,f) = max(en(:,dk));

51 DW7(j,f) = (mef(j,f) = men(j,f))/men(j,f)*100;

52 end

53 f = 0; f1 = 0; f2 = 0;

54 for i=1:fs/2

55 if DW7(j,i) ~= 0 f = DW7(j,i); end

56 DW7(j,i) = f;

57 if mef(j,i) ~= 0 f1 = mef(j,i); end

58 mef(j,i) = f1;

59 if men(j,i) ~= 0 f2 = men(j,i); end

60 men(j,i) = f2;

61 end

62 falka(j)

63 DW7 = (DW7 > 0).*DW7; % present only positive values

64 end

65

66 % save('DW7c.mat', 'DW7');

67 % DW at 420 [Hz]

68 DW_db(:) = DW7(:,420);

69 DW_db(6) = NaN;

70 figure('Color',[1 1 1]);

71 t = tiledlayout(1,2);
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72 t.TileSpacing = 'compact';

73 nexttile;

74 stem(DW_db,':o');

75 grid on

76 % title('Daubechies wavelets');

77 xlabel('Number of vanishing moments');

78 ylabel('DW [%]');

79 % figure

80 % vibration energy

81 nexttile;

82 evf(:) = mef(:,420);

83 evn(:) = men(:,420);

84 evn(6) = NaN;

85 evf(6) = NaN;

86 stem(evf, ':ro'); hold on

87 evt = (evf/2 + evn/2);

88 stem(evt, ':k_','LineStyle','none');

89 stem(evn, ':bo');

90 grid on

91 xlabel('Number of vanishing moments');

92 ylabel('Vibration energy');

93 legend('Ef','TH','En','Location','northwest');

94 legend('boxoff');

95 %%

Listing A.2: Energy variation of the rolling data calculated using the MODWPT coe�-

cients

1 % processing wheel data for energy variation, calculated using the MODWPT coefficients

2 % between impacts

3 % ax, ay, az acceleration samples

4 % fo = sampling rate 1000Hz (original)

5

6 clear all

7

8 load n01_n04_normal.mat % wheel normal raw data (int16)

9 load f01_f03_flat.mat % wheel flat raw data (int16)

10 % % list of quiet starts for normal wheels

11 pn = [432000, 482500, 537500, 588000, 644500, 707500, ...

12 453000, 505000, 558500, 609500, 668000];

13 % % list of quiet starts for flat wheels

14 pf = [301500, 338000, 374500, 415500, 458500, 502500, ...

15 317500, 352500, 389000, 431500, 474000];

16 fo = 1000; % sensor sampling rate [1/s]

17 dr = 1; % decimation rate of raw data

18 dl = 6; % decomposition level

19 falka = ['coif4']; % wavelet type (sym4, db4 give similar results)

20 len = 4096; % number of samples in data set for WPT

21 fs = (fo/dr); % sample rate [1/s]

22 n = len/dr; % vector length after decimation

23 ax = zeros(1,n); % acceleration data vector normal wheels
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24 ay = ax; % acceleration data vector flat wheels

25 dk = 0; % number of combined frequency slots

26 lp = 2^dl; % number of freqency slots

27

28 figure;

29 for k=1:lp=dk

30 for i=1:length(pn)

31 ax = decimate(cast(any(pn(i):pn(i)+len=1), "double"),dr); % normal wheels

32 ay = decimate(cast(afy(pf(i):pf(i)+len=1), "double"),dr); % flat wheels

33 ax = (ax = mean(ax)); % mean = reduction of bias

34 ay = (ay = mean(ay)); % mean = reduction of bias

35 [nwpt,~,n_cfreq,energy,relenergy] = modwpt(ax, falka, dl);

36 n_cfreq = fs*n_cfreq;

37 en(k,i) = sum(energy(k:k+dk));

38

39 subplot(3,1,1);

40 hold on; plot(n_cfreq, relenergy, 'r'); hold off;

41 relN = relenergy(k);

42

43 [fwpt,~,f_cfreq,fenergy,frelenergy] = modwpt(ay, falka, dl);

44 f_cfreq = fs*f_cfreq;

45 ef(k,i) = sum(fenergy(k:k+dk));

46 relF = frelenergy(k);

47 hold on; plot(f_cfreq,frelenergy, 'b'); title(['N + F ', falka, ' dl=', int2str(dl), ' dr=', int2str(dr)

]); xlabel('[Hz]'); hold off;

48

49 subplot(3,1,2);

50 hold on; plot(f_cfreq, frelenergy, 'b'); title('F'); xlabel('[Hz]'); hold off;

51

52 subplot(3,1,3);

53 [nwpt,~,n_cfreq,energy,relenergy] = modwpt(ax, falka, dl);

54 n_cfreq = fs*n_cfreq;

55 hold on; plot(n_cfreq,relenergy, 'r'); title('N'); xlabel('[Hz]'); hold off;

56 end

57 end

58 df = fs/lp/2; % size of frequency step

59 figure;

60 tiledlayout(2,3);

61 for k=20:25 %17:lp=dk

62 nexttile;

63 plot(en(k,:), 'r'); hold on; plot(ef(k,:), 'b'); hold off;

64 mef = min(ef(k,:)); men = max(en(k,:));

65 k

66 roz = (men = mef)/men*100

67 title([falka, ' k=',int2str(k), ' dk=', int2str(dk), ' f:', int2str((k=dk=1)*df), '...', int2str(k*df), '

Hz']);

68

69 end

70 %%
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Listing A.3: DW values variation relative to sample size and level of decomposition based

on MODWPT

1 % processing wheel data for DW values variation relative to sample size and level of decomposition

2 % between impacts

3 % ax, ay, az acceleration samples

4 % fs = sampling rate 1000Hz (original)

5

6 clear all

7

8 load n01_n04_normal.mat % wheelnormal raw data (int16)

9 load f01_f03_flat.mat % wheel flat raw data (int16)

10

11 % list of quiet starts for normal wheels(number of test band)

12 pn = [432000, 482500, 537500, 588000, 644500, 707500, ...

13 453000, 505000, 558500, 609500, 668000];

14 % list of quiet starts for flat wheels (number of test band)

15 pf = [301500, 338000, 374500, 415500, 458500, 502500, ...

16 317500, 352500, 389000, 431500, 474000];

17 fs = 1000; % sensor sampling rate [1/s]

18 falka = ['coif4']; % wavelet type (sym4, db4 give similar results)

19 dl = 5; % decomposition level

20 d = length(pn); % number of test bands

21

22 figure;

23 title([falka, ' dl = ', int2str(dl)]);

24 xlabel('length of sensor data'); ylabel('difference [%]');

25

26 for dl=4:11

27 lp = 2^dl; % number of freqency slots

28 roz = zeros(lp); % differences

29 for j=1:24

30 len = j*500 + 2000; % number of samples in data set for WPT

31 llen(j) = len;

32 an = zeros(1,len); % acceleration data vector normal wheels

33 af = zeros(1,len); % acceleration data vector flat wheels

34 clear enn enf

35 for i=1:d

36 an = cast(anx(pn(i):pn(i)+len=1), "double");

37 af = cast(afx(pf(i):pf(i)+len=1), "double");

38 an = an = mean(an); % mean = reduction of bias

39 af = af = mean(af); % mean = reduction of bias

40 [~,~,~,enn(i,:),~] = modwpt(an, falka, dl);

41 [~,~,~,enf(i,:),~] = modwpt(af, falka, dl);

42 end

43

44 for dk=0:lp=1

45 for k=1:lp=dk

46 for i=1:d

47 en(i) = sum(enn(i,k:k+dk));

48 ef(i) = sum(enf(i,k:k+dk));

117



MATLAB scripts

49 end

50 mef = min(ef); men = max(en);

51 roz(dk+1,k) = (mef = men)/men*100; % dl,roz, object function

52 end

53 end

54

55 [m,k] = max(max(roz)); % frequency slot start number

56 [m,dk] = max(max(roz')); % number of combined neighbouring slots

57 dk = dk=1;

58

59 for i=1:d

60 epn(i) = sum(enn(i,k:k+dk));

61 epf(i) = sum(enf(i,k:k+dk));

62 end

63 j

64 mef = min(epf); men = max(epn);

65 blad(j) = (mef = men)/men*100;

66 end

67

68 hold on; plot(llen, blad); title([falka, ' dl max = ', int2str(dl)]); hold off;

69 end

70 %

Listing A.4: Railroad drive test threshold values for di�erentiating fault wheel energy

1 % Processing wheel data for test drives threshold values for differentiating flat wheel energy

2 % between impacts

3 % ax, ay, az acceleration samples

4 % fo = sampling rate 1000Hz (original)

5 % calculation of DW for wavelets with 3=5 vanishing moments

6

7 clear all

8

9 load n01_n04_normal.mat % wheelnormal raw data (int16)

10 load f01_f03_flat.mat % wheel flat raw data (int16)

11

12 % list of quiet starts for normal wheels

13 pn = [429000, 451000, 480000, 503000, 534000, 557000, ...

14 585000, 607000, 641000, 667000, 705000];

15 % list of quiet starts for flat wheels

16 pf = [298000, 315000, 335000, 350000, 371000, 387000, ...

17 412000, 429000, 454000, 472000, 499000];

18 fs = 1000; % sensor sampling rate [1/s]

19 % wavelet type (sym4, coif4 give similar results)

20 falka = string(["db3", "coif3", "sym3", "db4", "coif4", "sym4", "db5", "coif5", "sym5"]);

21 % falka = string(["db4", "coif4", "sym4", "db5", "coif5", "sym5"]);

22 % falka = string(["db5", "coif5", "sym5"]);

23 len = 4096; % number of samples in data set for WPT

24 %falka = 'coif5';

25 dl = 7; % decomposition level

26 an = zeros(1,len); % acceleration data vector normal wheels
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27 af = zeros(1,len); % acceleration data vector flat wheels

28 lp = 2^dl; % number of frequency slots

29 dk = 107; % frequency slot number

30 DW5 = zeros(1,length(pn)); % wheel detection function

31 f = 0; % start frequency of the slot

32 blad = 0.02;

33 en = zeros(1,length(pn)); % energy data vector normal wheels

34 ef = zeros(1,length(pn)); % energy data vector flat wheels

35 for i=1:length(pn)

36 an = cast(anx(pn(i):pn(i)+len=1), "double"); % normal wheels

37 af = cast(afx(pf(i):pf(i)+len=1), "double"); % flat wheels

38 an1 = an*(1 + blad); % normal wheels + sensor error

39 af1 = af*(1 + blad); % flat wheels + sensor error

40 an2 = an*(1=blad); % normal wheels = sensor error

41 af2 = af*(1=blad); % flat wheels = sensor error

42 [~,~,~,energy,~] = modwpt(an, falka, dl);

43 en(i) = energy(dk);

44 [~,~,~,energy1,~] = modwpt(af, falka, dl);

45 ef(i) = energy1(dk);

46 [~,~,~,energy,~] = modwpt(an1, falka, dl);

47 en1(i) = energy(dk);

48 [~,~,~,energy1,~] = modwpt(af1, falka, dl);

49 ef1(i) = energy1(dk);

50 [~,~,~,energy,~] = modwpt(an2, falka, dl);

51 en2(i) = energy(dk);

52 [~,~,~,energy1,~] = modwpt(af2, falka, dl);

53 ef2(i) = energy1(dk);

54

55 DW5(i) = (ef(i) = en(i))/en(i)*100;

56 end

57 figure('Color',[1 1 1]);

58 t = tiledlayout(1,2);

59 t.TileSpacing = 'compact';

60 nexttile;

61 stem(DW5,':o'); hold on

62 xlabel('test drive number');

63 ylabel('DW[%]');

64 grid on

65 nexttile;

66 en(12) = NaN; ef(12) = NaN;

67 en1(12) = NaN; ef1(12) = NaN;

68 en2(12) = NaN; ef2(12) = NaN;

69 stem(en, ':o', MarkerSize=4); hold on

70 stem(ef, ':o');

71 plot((ef*0 + 2800), 'k==');

72 stem(en1, ':k_', MarkerSize=12); stem(ef1, ':k_', MarkerSize=12); stem(en2, ':k_', MarkerSize=12);

73 stem(ef2, ':k_', MarkerSize=12);

74 xlabel('test drive number'); ylabel('energy');

75 legend('En','Ef','TH','Location','northwest');

76 legend('boxoff');

77 %%
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